xref: /openbmc/linux/net/sctp/socket.c (revision cc8bbe1a)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108 
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 	sctp_memory_pressure = 1;
112 }
113 
114 
115 /* Get the sndbuf space available at the time on the association.  */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 	int amt;
119 
120 	if (asoc->ep->sndbuf_policy)
121 		amt = asoc->sndbuf_used;
122 	else
123 		amt = sk_wmem_alloc_get(asoc->base.sk);
124 
125 	if (amt >= asoc->base.sk->sk_sndbuf) {
126 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 			amt = 0;
128 		else {
129 			amt = sk_stream_wspace(asoc->base.sk);
130 			if (amt < 0)
131 				amt = 0;
132 		}
133 	} else {
134 		amt = asoc->base.sk->sk_sndbuf - amt;
135 	}
136 	return amt;
137 }
138 
139 /* Increment the used sndbuf space count of the corresponding association by
140  * the size of the outgoing data chunk.
141  * Also, set the skb destructor for sndbuf accounting later.
142  *
143  * Since it is always 1-1 between chunk and skb, and also a new skb is always
144  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145  * destructor in the data chunk skb for the purpose of the sndbuf space
146  * tracking.
147  */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 	struct sctp_association *asoc = chunk->asoc;
151 	struct sock *sk = asoc->base.sk;
152 
153 	/* The sndbuf space is tracked per association.  */
154 	sctp_association_hold(asoc);
155 
156 	skb_set_owner_w(chunk->skb, sk);
157 
158 	chunk->skb->destructor = sctp_wfree;
159 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
160 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
161 
162 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 				sizeof(struct sk_buff) +
164 				sizeof(struct sctp_chunk);
165 
166 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 	sk->sk_wmem_queued += chunk->skb->truesize;
168 	sk_mem_charge(sk, chunk->skb->truesize);
169 }
170 
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 				   int len)
174 {
175 	struct sctp_af *af;
176 
177 	/* Verify basic sockaddr. */
178 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 	if (!af)
180 		return -EINVAL;
181 
182 	/* Is this a valid SCTP address?  */
183 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 		return -EINVAL;
185 
186 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* Look up the association by its id.  If this is not a UDP-style
193  * socket, the ID field is always ignored.
194  */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 	struct sctp_association *asoc = NULL;
198 
199 	/* If this is not a UDP-style socket, assoc id should be ignored. */
200 	if (!sctp_style(sk, UDP)) {
201 		/* Return NULL if the socket state is not ESTABLISHED. It
202 		 * could be a TCP-style listening socket or a socket which
203 		 * hasn't yet called connect() to establish an association.
204 		 */
205 		if (!sctp_sstate(sk, ESTABLISHED))
206 			return NULL;
207 
208 		/* Get the first and the only association from the list. */
209 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 					  struct sctp_association, asocs);
212 		return asoc;
213 	}
214 
215 	/* Otherwise this is a UDP-style socket. */
216 	if (!id || (id == (sctp_assoc_t)-1))
217 		return NULL;
218 
219 	spin_lock_bh(&sctp_assocs_id_lock);
220 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 	spin_unlock_bh(&sctp_assocs_id_lock);
222 
223 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 		return NULL;
225 
226 	return asoc;
227 }
228 
229 /* Look up the transport from an address and an assoc id. If both address and
230  * id are specified, the associations matching the address and the id should be
231  * the same.
232  */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 					      struct sockaddr_storage *addr,
235 					      sctp_assoc_t id)
236 {
237 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 	struct sctp_transport *transport;
239 	union sctp_addr *laddr = (union sctp_addr *)addr;
240 
241 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 					       laddr,
243 					       &transport);
244 
245 	if (!addr_asoc)
246 		return NULL;
247 
248 	id_asoc = sctp_id2assoc(sk, id);
249 	if (id_asoc && (id_asoc != addr_asoc))
250 		return NULL;
251 
252 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 						(union sctp_addr *)addr);
254 
255 	return transport;
256 }
257 
258 /* API 3.1.2 bind() - UDP Style Syntax
259  * The syntax of bind() is,
260  *
261  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
262  *
263  *   sd      - the socket descriptor returned by socket().
264  *   addr    - the address structure (struct sockaddr_in or struct
265  *             sockaddr_in6 [RFC 2553]),
266  *   addr_len - the size of the address structure.
267  */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 	int retval = 0;
271 
272 	lock_sock(sk);
273 
274 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 		 addr, addr_len);
276 
277 	/* Disallow binding twice. */
278 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 				      addr_len);
281 	else
282 		retval = -EINVAL;
283 
284 	release_sock(sk);
285 
286 	return retval;
287 }
288 
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290 
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 					union sctp_addr *addr, int len)
294 {
295 	struct sctp_af *af;
296 
297 	/* Check minimum size.  */
298 	if (len < sizeof (struct sockaddr))
299 		return NULL;
300 
301 	/* V4 mapped address are really of AF_INET family */
302 	if (addr->sa.sa_family == AF_INET6 &&
303 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 		if (!opt->pf->af_supported(AF_INET, opt))
305 			return NULL;
306 	} else {
307 		/* Does this PF support this AF? */
308 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 			return NULL;
310 	}
311 
312 	/* If we get this far, af is valid. */
313 	af = sctp_get_af_specific(addr->sa.sa_family);
314 
315 	if (len < af->sockaddr_len)
316 		return NULL;
317 
318 	return af;
319 }
320 
321 /* Bind a local address either to an endpoint or to an association.  */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 	struct net *net = sock_net(sk);
325 	struct sctp_sock *sp = sctp_sk(sk);
326 	struct sctp_endpoint *ep = sp->ep;
327 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 	struct sctp_af *af;
329 	unsigned short snum;
330 	int ret = 0;
331 
332 	/* Common sockaddr verification. */
333 	af = sctp_sockaddr_af(sp, addr, len);
334 	if (!af) {
335 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 			 __func__, sk, addr, len);
337 		return -EINVAL;
338 	}
339 
340 	snum = ntohs(addr->v4.sin_port);
341 
342 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 		 __func__, sk, &addr->sa, bp->port, snum, len);
344 
345 	/* PF specific bind() address verification. */
346 	if (!sp->pf->bind_verify(sp, addr))
347 		return -EADDRNOTAVAIL;
348 
349 	/* We must either be unbound, or bind to the same port.
350 	 * It's OK to allow 0 ports if we are already bound.
351 	 * We'll just inhert an already bound port in this case
352 	 */
353 	if (bp->port) {
354 		if (!snum)
355 			snum = bp->port;
356 		else if (snum != bp->port) {
357 			pr_debug("%s: new port %d doesn't match existing port "
358 				 "%d\n", __func__, snum, bp->port);
359 			return -EINVAL;
360 		}
361 	}
362 
363 	if (snum && snum < PROT_SOCK &&
364 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 		return -EACCES;
366 
367 	/* See if the address matches any of the addresses we may have
368 	 * already bound before checking against other endpoints.
369 	 */
370 	if (sctp_bind_addr_match(bp, addr, sp))
371 		return -EINVAL;
372 
373 	/* Make sure we are allowed to bind here.
374 	 * The function sctp_get_port_local() does duplicate address
375 	 * detection.
376 	 */
377 	addr->v4.sin_port = htons(snum);
378 	if ((ret = sctp_get_port_local(sk, addr))) {
379 		return -EADDRINUSE;
380 	}
381 
382 	/* Refresh ephemeral port.  */
383 	if (!bp->port)
384 		bp->port = inet_sk(sk)->inet_num;
385 
386 	/* Add the address to the bind address list.
387 	 * Use GFP_ATOMIC since BHs will be disabled.
388 	 */
389 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
390 
391 	/* Copy back into socket for getsockname() use. */
392 	if (!ret) {
393 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
394 		sp->pf->to_sk_saddr(addr, sk);
395 	}
396 
397 	return ret;
398 }
399 
400  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
401  *
402  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
403  * at any one time.  If a sender, after sending an ASCONF chunk, decides
404  * it needs to transfer another ASCONF Chunk, it MUST wait until the
405  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
406  * subsequent ASCONF. Note this restriction binds each side, so at any
407  * time two ASCONF may be in-transit on any given association (one sent
408  * from each endpoint).
409  */
410 static int sctp_send_asconf(struct sctp_association *asoc,
411 			    struct sctp_chunk *chunk)
412 {
413 	struct net 	*net = sock_net(asoc->base.sk);
414 	int		retval = 0;
415 
416 	/* If there is an outstanding ASCONF chunk, queue it for later
417 	 * transmission.
418 	 */
419 	if (asoc->addip_last_asconf) {
420 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
421 		goto out;
422 	}
423 
424 	/* Hold the chunk until an ASCONF_ACK is received. */
425 	sctp_chunk_hold(chunk);
426 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
427 	if (retval)
428 		sctp_chunk_free(chunk);
429 	else
430 		asoc->addip_last_asconf = chunk;
431 
432 out:
433 	return retval;
434 }
435 
436 /* Add a list of addresses as bind addresses to local endpoint or
437  * association.
438  *
439  * Basically run through each address specified in the addrs/addrcnt
440  * array/length pair, determine if it is IPv6 or IPv4 and call
441  * sctp_do_bind() on it.
442  *
443  * If any of them fails, then the operation will be reversed and the
444  * ones that were added will be removed.
445  *
446  * Only sctp_setsockopt_bindx() is supposed to call this function.
447  */
448 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
449 {
450 	int cnt;
451 	int retval = 0;
452 	void *addr_buf;
453 	struct sockaddr *sa_addr;
454 	struct sctp_af *af;
455 
456 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
457 		 addrs, addrcnt);
458 
459 	addr_buf = addrs;
460 	for (cnt = 0; cnt < addrcnt; cnt++) {
461 		/* The list may contain either IPv4 or IPv6 address;
462 		 * determine the address length for walking thru the list.
463 		 */
464 		sa_addr = addr_buf;
465 		af = sctp_get_af_specific(sa_addr->sa_family);
466 		if (!af) {
467 			retval = -EINVAL;
468 			goto err_bindx_add;
469 		}
470 
471 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
472 				      af->sockaddr_len);
473 
474 		addr_buf += af->sockaddr_len;
475 
476 err_bindx_add:
477 		if (retval < 0) {
478 			/* Failed. Cleanup the ones that have been added */
479 			if (cnt > 0)
480 				sctp_bindx_rem(sk, addrs, cnt);
481 			return retval;
482 		}
483 	}
484 
485 	return retval;
486 }
487 
488 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
489  * associations that are part of the endpoint indicating that a list of local
490  * addresses are added to the endpoint.
491  *
492  * If any of the addresses is already in the bind address list of the
493  * association, we do not send the chunk for that association.  But it will not
494  * affect other associations.
495  *
496  * Only sctp_setsockopt_bindx() is supposed to call this function.
497  */
498 static int sctp_send_asconf_add_ip(struct sock		*sk,
499 				   struct sockaddr	*addrs,
500 				   int 			addrcnt)
501 {
502 	struct net *net = sock_net(sk);
503 	struct sctp_sock		*sp;
504 	struct sctp_endpoint		*ep;
505 	struct sctp_association		*asoc;
506 	struct sctp_bind_addr		*bp;
507 	struct sctp_chunk		*chunk;
508 	struct sctp_sockaddr_entry	*laddr;
509 	union sctp_addr			*addr;
510 	union sctp_addr			saveaddr;
511 	void				*addr_buf;
512 	struct sctp_af			*af;
513 	struct list_head		*p;
514 	int 				i;
515 	int 				retval = 0;
516 
517 	if (!net->sctp.addip_enable)
518 		return retval;
519 
520 	sp = sctp_sk(sk);
521 	ep = sp->ep;
522 
523 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
524 		 __func__, sk, addrs, addrcnt);
525 
526 	list_for_each_entry(asoc, &ep->asocs, asocs) {
527 		if (!asoc->peer.asconf_capable)
528 			continue;
529 
530 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
531 			continue;
532 
533 		if (!sctp_state(asoc, ESTABLISHED))
534 			continue;
535 
536 		/* Check if any address in the packed array of addresses is
537 		 * in the bind address list of the association. If so,
538 		 * do not send the asconf chunk to its peer, but continue with
539 		 * other associations.
540 		 */
541 		addr_buf = addrs;
542 		for (i = 0; i < addrcnt; i++) {
543 			addr = addr_buf;
544 			af = sctp_get_af_specific(addr->v4.sin_family);
545 			if (!af) {
546 				retval = -EINVAL;
547 				goto out;
548 			}
549 
550 			if (sctp_assoc_lookup_laddr(asoc, addr))
551 				break;
552 
553 			addr_buf += af->sockaddr_len;
554 		}
555 		if (i < addrcnt)
556 			continue;
557 
558 		/* Use the first valid address in bind addr list of
559 		 * association as Address Parameter of ASCONF CHUNK.
560 		 */
561 		bp = &asoc->base.bind_addr;
562 		p = bp->address_list.next;
563 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
564 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
565 						   addrcnt, SCTP_PARAM_ADD_IP);
566 		if (!chunk) {
567 			retval = -ENOMEM;
568 			goto out;
569 		}
570 
571 		/* Add the new addresses to the bind address list with
572 		 * use_as_src set to 0.
573 		 */
574 		addr_buf = addrs;
575 		for (i = 0; i < addrcnt; i++) {
576 			addr = addr_buf;
577 			af = sctp_get_af_specific(addr->v4.sin_family);
578 			memcpy(&saveaddr, addr, af->sockaddr_len);
579 			retval = sctp_add_bind_addr(bp, &saveaddr,
580 						    SCTP_ADDR_NEW, GFP_ATOMIC);
581 			addr_buf += af->sockaddr_len;
582 		}
583 		if (asoc->src_out_of_asoc_ok) {
584 			struct sctp_transport *trans;
585 
586 			list_for_each_entry(trans,
587 			    &asoc->peer.transport_addr_list, transports) {
588 				/* Clear the source and route cache */
589 				dst_release(trans->dst);
590 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
591 				    2*asoc->pathmtu, 4380));
592 				trans->ssthresh = asoc->peer.i.a_rwnd;
593 				trans->rto = asoc->rto_initial;
594 				sctp_max_rto(asoc, trans);
595 				trans->rtt = trans->srtt = trans->rttvar = 0;
596 				sctp_transport_route(trans, NULL,
597 				    sctp_sk(asoc->base.sk));
598 			}
599 		}
600 		retval = sctp_send_asconf(asoc, chunk);
601 	}
602 
603 out:
604 	return retval;
605 }
606 
607 /* Remove a list of addresses from bind addresses list.  Do not remove the
608  * last address.
609  *
610  * Basically run through each address specified in the addrs/addrcnt
611  * array/length pair, determine if it is IPv6 or IPv4 and call
612  * sctp_del_bind() on it.
613  *
614  * If any of them fails, then the operation will be reversed and the
615  * ones that were removed will be added back.
616  *
617  * At least one address has to be left; if only one address is
618  * available, the operation will return -EBUSY.
619  *
620  * Only sctp_setsockopt_bindx() is supposed to call this function.
621  */
622 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
623 {
624 	struct sctp_sock *sp = sctp_sk(sk);
625 	struct sctp_endpoint *ep = sp->ep;
626 	int cnt;
627 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
628 	int retval = 0;
629 	void *addr_buf;
630 	union sctp_addr *sa_addr;
631 	struct sctp_af *af;
632 
633 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
634 		 __func__, sk, addrs, addrcnt);
635 
636 	addr_buf = addrs;
637 	for (cnt = 0; cnt < addrcnt; cnt++) {
638 		/* If the bind address list is empty or if there is only one
639 		 * bind address, there is nothing more to be removed (we need
640 		 * at least one address here).
641 		 */
642 		if (list_empty(&bp->address_list) ||
643 		    (sctp_list_single_entry(&bp->address_list))) {
644 			retval = -EBUSY;
645 			goto err_bindx_rem;
646 		}
647 
648 		sa_addr = addr_buf;
649 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
650 		if (!af) {
651 			retval = -EINVAL;
652 			goto err_bindx_rem;
653 		}
654 
655 		if (!af->addr_valid(sa_addr, sp, NULL)) {
656 			retval = -EADDRNOTAVAIL;
657 			goto err_bindx_rem;
658 		}
659 
660 		if (sa_addr->v4.sin_port &&
661 		    sa_addr->v4.sin_port != htons(bp->port)) {
662 			retval = -EINVAL;
663 			goto err_bindx_rem;
664 		}
665 
666 		if (!sa_addr->v4.sin_port)
667 			sa_addr->v4.sin_port = htons(bp->port);
668 
669 		/* FIXME - There is probably a need to check if sk->sk_saddr and
670 		 * sk->sk_rcv_addr are currently set to one of the addresses to
671 		 * be removed. This is something which needs to be looked into
672 		 * when we are fixing the outstanding issues with multi-homing
673 		 * socket routing and failover schemes. Refer to comments in
674 		 * sctp_do_bind(). -daisy
675 		 */
676 		retval = sctp_del_bind_addr(bp, sa_addr);
677 
678 		addr_buf += af->sockaddr_len;
679 err_bindx_rem:
680 		if (retval < 0) {
681 			/* Failed. Add the ones that has been removed back */
682 			if (cnt > 0)
683 				sctp_bindx_add(sk, addrs, cnt);
684 			return retval;
685 		}
686 	}
687 
688 	return retval;
689 }
690 
691 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
692  * the associations that are part of the endpoint indicating that a list of
693  * local addresses are removed from the endpoint.
694  *
695  * If any of the addresses is already in the bind address list of the
696  * association, we do not send the chunk for that association.  But it will not
697  * affect other associations.
698  *
699  * Only sctp_setsockopt_bindx() is supposed to call this function.
700  */
701 static int sctp_send_asconf_del_ip(struct sock		*sk,
702 				   struct sockaddr	*addrs,
703 				   int			addrcnt)
704 {
705 	struct net *net = sock_net(sk);
706 	struct sctp_sock	*sp;
707 	struct sctp_endpoint	*ep;
708 	struct sctp_association	*asoc;
709 	struct sctp_transport	*transport;
710 	struct sctp_bind_addr	*bp;
711 	struct sctp_chunk	*chunk;
712 	union sctp_addr		*laddr;
713 	void			*addr_buf;
714 	struct sctp_af		*af;
715 	struct sctp_sockaddr_entry *saddr;
716 	int 			i;
717 	int 			retval = 0;
718 	int			stored = 0;
719 
720 	chunk = NULL;
721 	if (!net->sctp.addip_enable)
722 		return retval;
723 
724 	sp = sctp_sk(sk);
725 	ep = sp->ep;
726 
727 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
728 		 __func__, sk, addrs, addrcnt);
729 
730 	list_for_each_entry(asoc, &ep->asocs, asocs) {
731 
732 		if (!asoc->peer.asconf_capable)
733 			continue;
734 
735 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
736 			continue;
737 
738 		if (!sctp_state(asoc, ESTABLISHED))
739 			continue;
740 
741 		/* Check if any address in the packed array of addresses is
742 		 * not present in the bind address list of the association.
743 		 * If so, do not send the asconf chunk to its peer, but
744 		 * continue with other associations.
745 		 */
746 		addr_buf = addrs;
747 		for (i = 0; i < addrcnt; i++) {
748 			laddr = addr_buf;
749 			af = sctp_get_af_specific(laddr->v4.sin_family);
750 			if (!af) {
751 				retval = -EINVAL;
752 				goto out;
753 			}
754 
755 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
756 				break;
757 
758 			addr_buf += af->sockaddr_len;
759 		}
760 		if (i < addrcnt)
761 			continue;
762 
763 		/* Find one address in the association's bind address list
764 		 * that is not in the packed array of addresses. This is to
765 		 * make sure that we do not delete all the addresses in the
766 		 * association.
767 		 */
768 		bp = &asoc->base.bind_addr;
769 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
770 					       addrcnt, sp);
771 		if ((laddr == NULL) && (addrcnt == 1)) {
772 			if (asoc->asconf_addr_del_pending)
773 				continue;
774 			asoc->asconf_addr_del_pending =
775 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
776 			if (asoc->asconf_addr_del_pending == NULL) {
777 				retval = -ENOMEM;
778 				goto out;
779 			}
780 			asoc->asconf_addr_del_pending->sa.sa_family =
781 				    addrs->sa_family;
782 			asoc->asconf_addr_del_pending->v4.sin_port =
783 				    htons(bp->port);
784 			if (addrs->sa_family == AF_INET) {
785 				struct sockaddr_in *sin;
786 
787 				sin = (struct sockaddr_in *)addrs;
788 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
789 			} else if (addrs->sa_family == AF_INET6) {
790 				struct sockaddr_in6 *sin6;
791 
792 				sin6 = (struct sockaddr_in6 *)addrs;
793 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
794 			}
795 
796 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
797 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
798 				 asoc->asconf_addr_del_pending);
799 
800 			asoc->src_out_of_asoc_ok = 1;
801 			stored = 1;
802 			goto skip_mkasconf;
803 		}
804 
805 		if (laddr == NULL)
806 			return -EINVAL;
807 
808 		/* We do not need RCU protection throughout this loop
809 		 * because this is done under a socket lock from the
810 		 * setsockopt call.
811 		 */
812 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
813 						   SCTP_PARAM_DEL_IP);
814 		if (!chunk) {
815 			retval = -ENOMEM;
816 			goto out;
817 		}
818 
819 skip_mkasconf:
820 		/* Reset use_as_src flag for the addresses in the bind address
821 		 * list that are to be deleted.
822 		 */
823 		addr_buf = addrs;
824 		for (i = 0; i < addrcnt; i++) {
825 			laddr = addr_buf;
826 			af = sctp_get_af_specific(laddr->v4.sin_family);
827 			list_for_each_entry(saddr, &bp->address_list, list) {
828 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
829 					saddr->state = SCTP_ADDR_DEL;
830 			}
831 			addr_buf += af->sockaddr_len;
832 		}
833 
834 		/* Update the route and saddr entries for all the transports
835 		 * as some of the addresses in the bind address list are
836 		 * about to be deleted and cannot be used as source addresses.
837 		 */
838 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
839 					transports) {
840 			dst_release(transport->dst);
841 			sctp_transport_route(transport, NULL,
842 					     sctp_sk(asoc->base.sk));
843 		}
844 
845 		if (stored)
846 			/* We don't need to transmit ASCONF */
847 			continue;
848 		retval = sctp_send_asconf(asoc, chunk);
849 	}
850 out:
851 	return retval;
852 }
853 
854 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
855 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
856 {
857 	struct sock *sk = sctp_opt2sk(sp);
858 	union sctp_addr *addr;
859 	struct sctp_af *af;
860 
861 	/* It is safe to write port space in caller. */
862 	addr = &addrw->a;
863 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
864 	af = sctp_get_af_specific(addr->sa.sa_family);
865 	if (!af)
866 		return -EINVAL;
867 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
868 		return -EINVAL;
869 
870 	if (addrw->state == SCTP_ADDR_NEW)
871 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
872 	else
873 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
874 }
875 
876 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
877  *
878  * API 8.1
879  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
880  *                int flags);
881  *
882  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
883  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
884  * or IPv6 addresses.
885  *
886  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
887  * Section 3.1.2 for this usage.
888  *
889  * addrs is a pointer to an array of one or more socket addresses. Each
890  * address is contained in its appropriate structure (i.e. struct
891  * sockaddr_in or struct sockaddr_in6) the family of the address type
892  * must be used to distinguish the address length (note that this
893  * representation is termed a "packed array" of addresses). The caller
894  * specifies the number of addresses in the array with addrcnt.
895  *
896  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
897  * -1, and sets errno to the appropriate error code.
898  *
899  * For SCTP, the port given in each socket address must be the same, or
900  * sctp_bindx() will fail, setting errno to EINVAL.
901  *
902  * The flags parameter is formed from the bitwise OR of zero or more of
903  * the following currently defined flags:
904  *
905  * SCTP_BINDX_ADD_ADDR
906  *
907  * SCTP_BINDX_REM_ADDR
908  *
909  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
910  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
911  * addresses from the association. The two flags are mutually exclusive;
912  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
913  * not remove all addresses from an association; sctp_bindx() will
914  * reject such an attempt with EINVAL.
915  *
916  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
917  * additional addresses with an endpoint after calling bind().  Or use
918  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
919  * socket is associated with so that no new association accepted will be
920  * associated with those addresses. If the endpoint supports dynamic
921  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
922  * endpoint to send the appropriate message to the peer to change the
923  * peers address lists.
924  *
925  * Adding and removing addresses from a connected association is
926  * optional functionality. Implementations that do not support this
927  * functionality should return EOPNOTSUPP.
928  *
929  * Basically do nothing but copying the addresses from user to kernel
930  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
931  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
932  * from userspace.
933  *
934  * We don't use copy_from_user() for optimization: we first do the
935  * sanity checks (buffer size -fast- and access check-healthy
936  * pointer); if all of those succeed, then we can alloc the memory
937  * (expensive operation) needed to copy the data to kernel. Then we do
938  * the copying without checking the user space area
939  * (__copy_from_user()).
940  *
941  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
942  * it.
943  *
944  * sk        The sk of the socket
945  * addrs     The pointer to the addresses in user land
946  * addrssize Size of the addrs buffer
947  * op        Operation to perform (add or remove, see the flags of
948  *           sctp_bindx)
949  *
950  * Returns 0 if ok, <0 errno code on error.
951  */
952 static int sctp_setsockopt_bindx(struct sock *sk,
953 				 struct sockaddr __user *addrs,
954 				 int addrs_size, int op)
955 {
956 	struct sockaddr *kaddrs;
957 	int err;
958 	int addrcnt = 0;
959 	int walk_size = 0;
960 	struct sockaddr *sa_addr;
961 	void *addr_buf;
962 	struct sctp_af *af;
963 
964 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
965 		 __func__, sk, addrs, addrs_size, op);
966 
967 	if (unlikely(addrs_size <= 0))
968 		return -EINVAL;
969 
970 	/* Check the user passed a healthy pointer.  */
971 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
972 		return -EFAULT;
973 
974 	/* Alloc space for the address array in kernel memory.  */
975 	kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
976 	if (unlikely(!kaddrs))
977 		return -ENOMEM;
978 
979 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
980 		kfree(kaddrs);
981 		return -EFAULT;
982 	}
983 
984 	/* Walk through the addrs buffer and count the number of addresses. */
985 	addr_buf = kaddrs;
986 	while (walk_size < addrs_size) {
987 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
988 			kfree(kaddrs);
989 			return -EINVAL;
990 		}
991 
992 		sa_addr = addr_buf;
993 		af = sctp_get_af_specific(sa_addr->sa_family);
994 
995 		/* If the address family is not supported or if this address
996 		 * causes the address buffer to overflow return EINVAL.
997 		 */
998 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
999 			kfree(kaddrs);
1000 			return -EINVAL;
1001 		}
1002 		addrcnt++;
1003 		addr_buf += af->sockaddr_len;
1004 		walk_size += af->sockaddr_len;
1005 	}
1006 
1007 	/* Do the work. */
1008 	switch (op) {
1009 	case SCTP_BINDX_ADD_ADDR:
1010 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1011 		if (err)
1012 			goto out;
1013 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1014 		break;
1015 
1016 	case SCTP_BINDX_REM_ADDR:
1017 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1018 		if (err)
1019 			goto out;
1020 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1021 		break;
1022 
1023 	default:
1024 		err = -EINVAL;
1025 		break;
1026 	}
1027 
1028 out:
1029 	kfree(kaddrs);
1030 
1031 	return err;
1032 }
1033 
1034 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1035  *
1036  * Common routine for handling connect() and sctp_connectx().
1037  * Connect will come in with just a single address.
1038  */
1039 static int __sctp_connect(struct sock *sk,
1040 			  struct sockaddr *kaddrs,
1041 			  int addrs_size,
1042 			  sctp_assoc_t *assoc_id)
1043 {
1044 	struct net *net = sock_net(sk);
1045 	struct sctp_sock *sp;
1046 	struct sctp_endpoint *ep;
1047 	struct sctp_association *asoc = NULL;
1048 	struct sctp_association *asoc2;
1049 	struct sctp_transport *transport;
1050 	union sctp_addr to;
1051 	sctp_scope_t scope;
1052 	long timeo;
1053 	int err = 0;
1054 	int addrcnt = 0;
1055 	int walk_size = 0;
1056 	union sctp_addr *sa_addr = NULL;
1057 	void *addr_buf;
1058 	unsigned short port;
1059 	unsigned int f_flags = 0;
1060 
1061 	sp = sctp_sk(sk);
1062 	ep = sp->ep;
1063 
1064 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1065 	 * state - UDP-style peeled off socket or a TCP-style socket that
1066 	 * is already connected.
1067 	 * It cannot be done even on a TCP-style listening socket.
1068 	 */
1069 	if (sctp_sstate(sk, ESTABLISHED) ||
1070 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1071 		err = -EISCONN;
1072 		goto out_free;
1073 	}
1074 
1075 	/* Walk through the addrs buffer and count the number of addresses. */
1076 	addr_buf = kaddrs;
1077 	while (walk_size < addrs_size) {
1078 		struct sctp_af *af;
1079 
1080 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1081 			err = -EINVAL;
1082 			goto out_free;
1083 		}
1084 
1085 		sa_addr = addr_buf;
1086 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1087 
1088 		/* If the address family is not supported or if this address
1089 		 * causes the address buffer to overflow return EINVAL.
1090 		 */
1091 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 
1096 		port = ntohs(sa_addr->v4.sin_port);
1097 
1098 		/* Save current address so we can work with it */
1099 		memcpy(&to, sa_addr, af->sockaddr_len);
1100 
1101 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1102 		if (err)
1103 			goto out_free;
1104 
1105 		/* Make sure the destination port is correctly set
1106 		 * in all addresses.
1107 		 */
1108 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1109 			err = -EINVAL;
1110 			goto out_free;
1111 		}
1112 
1113 		/* Check if there already is a matching association on the
1114 		 * endpoint (other than the one created here).
1115 		 */
1116 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1117 		if (asoc2 && asoc2 != asoc) {
1118 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1119 				err = -EISCONN;
1120 			else
1121 				err = -EALREADY;
1122 			goto out_free;
1123 		}
1124 
1125 		/* If we could not find a matching association on the endpoint,
1126 		 * make sure that there is no peeled-off association matching
1127 		 * the peer address even on another socket.
1128 		 */
1129 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1130 			err = -EADDRNOTAVAIL;
1131 			goto out_free;
1132 		}
1133 
1134 		if (!asoc) {
1135 			/* If a bind() or sctp_bindx() is not called prior to
1136 			 * an sctp_connectx() call, the system picks an
1137 			 * ephemeral port and will choose an address set
1138 			 * equivalent to binding with a wildcard address.
1139 			 */
1140 			if (!ep->base.bind_addr.port) {
1141 				if (sctp_autobind(sk)) {
1142 					err = -EAGAIN;
1143 					goto out_free;
1144 				}
1145 			} else {
1146 				/*
1147 				 * If an unprivileged user inherits a 1-many
1148 				 * style socket with open associations on a
1149 				 * privileged port, it MAY be permitted to
1150 				 * accept new associations, but it SHOULD NOT
1151 				 * be permitted to open new associations.
1152 				 */
1153 				if (ep->base.bind_addr.port < PROT_SOCK &&
1154 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1155 					err = -EACCES;
1156 					goto out_free;
1157 				}
1158 			}
1159 
1160 			scope = sctp_scope(&to);
1161 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1162 			if (!asoc) {
1163 				err = -ENOMEM;
1164 				goto out_free;
1165 			}
1166 
1167 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1168 							      GFP_KERNEL);
1169 			if (err < 0) {
1170 				goto out_free;
1171 			}
1172 
1173 		}
1174 
1175 		/* Prime the peer's transport structures.  */
1176 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1177 						SCTP_UNKNOWN);
1178 		if (!transport) {
1179 			err = -ENOMEM;
1180 			goto out_free;
1181 		}
1182 
1183 		addrcnt++;
1184 		addr_buf += af->sockaddr_len;
1185 		walk_size += af->sockaddr_len;
1186 	}
1187 
1188 	/* In case the user of sctp_connectx() wants an association
1189 	 * id back, assign one now.
1190 	 */
1191 	if (assoc_id) {
1192 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1193 		if (err < 0)
1194 			goto out_free;
1195 	}
1196 
1197 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1198 	if (err < 0) {
1199 		goto out_free;
1200 	}
1201 
1202 	/* Initialize sk's dport and daddr for getpeername() */
1203 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1204 	sp->pf->to_sk_daddr(sa_addr, sk);
1205 	sk->sk_err = 0;
1206 
1207 	/* in-kernel sockets don't generally have a file allocated to them
1208 	 * if all they do is call sock_create_kern().
1209 	 */
1210 	if (sk->sk_socket->file)
1211 		f_flags = sk->sk_socket->file->f_flags;
1212 
1213 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1214 
1215 	err = sctp_wait_for_connect(asoc, &timeo);
1216 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1217 		*assoc_id = asoc->assoc_id;
1218 
1219 	/* Don't free association on exit. */
1220 	asoc = NULL;
1221 
1222 out_free:
1223 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1224 		 __func__, asoc, kaddrs, err);
1225 
1226 	if (asoc) {
1227 		/* sctp_primitive_ASSOCIATE may have added this association
1228 		 * To the hash table, try to unhash it, just in case, its a noop
1229 		 * if it wasn't hashed so we're safe
1230 		 */
1231 		sctp_association_free(asoc);
1232 	}
1233 	return err;
1234 }
1235 
1236 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1237  *
1238  * API 8.9
1239  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1240  * 			sctp_assoc_t *asoc);
1241  *
1242  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1243  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1244  * or IPv6 addresses.
1245  *
1246  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1247  * Section 3.1.2 for this usage.
1248  *
1249  * addrs is a pointer to an array of one or more socket addresses. Each
1250  * address is contained in its appropriate structure (i.e. struct
1251  * sockaddr_in or struct sockaddr_in6) the family of the address type
1252  * must be used to distengish the address length (note that this
1253  * representation is termed a "packed array" of addresses). The caller
1254  * specifies the number of addresses in the array with addrcnt.
1255  *
1256  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1257  * the association id of the new association.  On failure, sctp_connectx()
1258  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1259  * is not touched by the kernel.
1260  *
1261  * For SCTP, the port given in each socket address must be the same, or
1262  * sctp_connectx() will fail, setting errno to EINVAL.
1263  *
1264  * An application can use sctp_connectx to initiate an association with
1265  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1266  * allows a caller to specify multiple addresses at which a peer can be
1267  * reached.  The way the SCTP stack uses the list of addresses to set up
1268  * the association is implementation dependent.  This function only
1269  * specifies that the stack will try to make use of all the addresses in
1270  * the list when needed.
1271  *
1272  * Note that the list of addresses passed in is only used for setting up
1273  * the association.  It does not necessarily equal the set of addresses
1274  * the peer uses for the resulting association.  If the caller wants to
1275  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1276  * retrieve them after the association has been set up.
1277  *
1278  * Basically do nothing but copying the addresses from user to kernel
1279  * land and invoking either sctp_connectx(). This is used for tunneling
1280  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1281  *
1282  * We don't use copy_from_user() for optimization: we first do the
1283  * sanity checks (buffer size -fast- and access check-healthy
1284  * pointer); if all of those succeed, then we can alloc the memory
1285  * (expensive operation) needed to copy the data to kernel. Then we do
1286  * the copying without checking the user space area
1287  * (__copy_from_user()).
1288  *
1289  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1290  * it.
1291  *
1292  * sk        The sk of the socket
1293  * addrs     The pointer to the addresses in user land
1294  * addrssize Size of the addrs buffer
1295  *
1296  * Returns >=0 if ok, <0 errno code on error.
1297  */
1298 static int __sctp_setsockopt_connectx(struct sock *sk,
1299 				      struct sockaddr __user *addrs,
1300 				      int addrs_size,
1301 				      sctp_assoc_t *assoc_id)
1302 {
1303 	struct sockaddr *kaddrs;
1304 	gfp_t gfp = GFP_KERNEL;
1305 	int err = 0;
1306 
1307 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1308 		 __func__, sk, addrs, addrs_size);
1309 
1310 	if (unlikely(addrs_size <= 0))
1311 		return -EINVAL;
1312 
1313 	/* Check the user passed a healthy pointer.  */
1314 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1315 		return -EFAULT;
1316 
1317 	/* Alloc space for the address array in kernel memory.  */
1318 	if (sk->sk_socket->file)
1319 		gfp = GFP_USER | __GFP_NOWARN;
1320 	kaddrs = kmalloc(addrs_size, gfp);
1321 	if (unlikely(!kaddrs))
1322 		return -ENOMEM;
1323 
1324 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1325 		err = -EFAULT;
1326 	} else {
1327 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1328 	}
1329 
1330 	kfree(kaddrs);
1331 
1332 	return err;
1333 }
1334 
1335 /*
1336  * This is an older interface.  It's kept for backward compatibility
1337  * to the option that doesn't provide association id.
1338  */
1339 static int sctp_setsockopt_connectx_old(struct sock *sk,
1340 					struct sockaddr __user *addrs,
1341 					int addrs_size)
1342 {
1343 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1344 }
1345 
1346 /*
1347  * New interface for the API.  The since the API is done with a socket
1348  * option, to make it simple we feed back the association id is as a return
1349  * indication to the call.  Error is always negative and association id is
1350  * always positive.
1351  */
1352 static int sctp_setsockopt_connectx(struct sock *sk,
1353 				    struct sockaddr __user *addrs,
1354 				    int addrs_size)
1355 {
1356 	sctp_assoc_t assoc_id = 0;
1357 	int err = 0;
1358 
1359 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1360 
1361 	if (err)
1362 		return err;
1363 	else
1364 		return assoc_id;
1365 }
1366 
1367 /*
1368  * New (hopefully final) interface for the API.
1369  * We use the sctp_getaddrs_old structure so that use-space library
1370  * can avoid any unnecessary allocations. The only different part
1371  * is that we store the actual length of the address buffer into the
1372  * addrs_num structure member. That way we can re-use the existing
1373  * code.
1374  */
1375 #ifdef CONFIG_COMPAT
1376 struct compat_sctp_getaddrs_old {
1377 	sctp_assoc_t	assoc_id;
1378 	s32		addr_num;
1379 	compat_uptr_t	addrs;		/* struct sockaddr * */
1380 };
1381 #endif
1382 
1383 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1384 				     char __user *optval,
1385 				     int __user *optlen)
1386 {
1387 	struct sctp_getaddrs_old param;
1388 	sctp_assoc_t assoc_id = 0;
1389 	int err = 0;
1390 
1391 #ifdef CONFIG_COMPAT
1392 	if (is_compat_task()) {
1393 		struct compat_sctp_getaddrs_old param32;
1394 
1395 		if (len < sizeof(param32))
1396 			return -EINVAL;
1397 		if (copy_from_user(&param32, optval, sizeof(param32)))
1398 			return -EFAULT;
1399 
1400 		param.assoc_id = param32.assoc_id;
1401 		param.addr_num = param32.addr_num;
1402 		param.addrs = compat_ptr(param32.addrs);
1403 	} else
1404 #endif
1405 	{
1406 		if (len < sizeof(param))
1407 			return -EINVAL;
1408 		if (copy_from_user(&param, optval, sizeof(param)))
1409 			return -EFAULT;
1410 	}
1411 
1412 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1413 					 param.addrs, param.addr_num,
1414 					 &assoc_id);
1415 	if (err == 0 || err == -EINPROGRESS) {
1416 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1417 			return -EFAULT;
1418 		if (put_user(sizeof(assoc_id), optlen))
1419 			return -EFAULT;
1420 	}
1421 
1422 	return err;
1423 }
1424 
1425 /* API 3.1.4 close() - UDP Style Syntax
1426  * Applications use close() to perform graceful shutdown (as described in
1427  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1428  * by a UDP-style socket.
1429  *
1430  * The syntax is
1431  *
1432  *   ret = close(int sd);
1433  *
1434  *   sd      - the socket descriptor of the associations to be closed.
1435  *
1436  * To gracefully shutdown a specific association represented by the
1437  * UDP-style socket, an application should use the sendmsg() call,
1438  * passing no user data, but including the appropriate flag in the
1439  * ancillary data (see Section xxxx).
1440  *
1441  * If sd in the close() call is a branched-off socket representing only
1442  * one association, the shutdown is performed on that association only.
1443  *
1444  * 4.1.6 close() - TCP Style Syntax
1445  *
1446  * Applications use close() to gracefully close down an association.
1447  *
1448  * The syntax is:
1449  *
1450  *    int close(int sd);
1451  *
1452  *      sd      - the socket descriptor of the association to be closed.
1453  *
1454  * After an application calls close() on a socket descriptor, no further
1455  * socket operations will succeed on that descriptor.
1456  *
1457  * API 7.1.4 SO_LINGER
1458  *
1459  * An application using the TCP-style socket can use this option to
1460  * perform the SCTP ABORT primitive.  The linger option structure is:
1461  *
1462  *  struct  linger {
1463  *     int     l_onoff;                // option on/off
1464  *     int     l_linger;               // linger time
1465  * };
1466  *
1467  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1468  * to 0, calling close() is the same as the ABORT primitive.  If the
1469  * value is set to a negative value, the setsockopt() call will return
1470  * an error.  If the value is set to a positive value linger_time, the
1471  * close() can be blocked for at most linger_time ms.  If the graceful
1472  * shutdown phase does not finish during this period, close() will
1473  * return but the graceful shutdown phase continues in the system.
1474  */
1475 static void sctp_close(struct sock *sk, long timeout)
1476 {
1477 	struct net *net = sock_net(sk);
1478 	struct sctp_endpoint *ep;
1479 	struct sctp_association *asoc;
1480 	struct list_head *pos, *temp;
1481 	unsigned int data_was_unread;
1482 
1483 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1484 
1485 	lock_sock(sk);
1486 	sk->sk_shutdown = SHUTDOWN_MASK;
1487 	sk->sk_state = SCTP_SS_CLOSING;
1488 
1489 	ep = sctp_sk(sk)->ep;
1490 
1491 	/* Clean up any skbs sitting on the receive queue.  */
1492 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1493 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1494 
1495 	/* Walk all associations on an endpoint.  */
1496 	list_for_each_safe(pos, temp, &ep->asocs) {
1497 		asoc = list_entry(pos, struct sctp_association, asocs);
1498 
1499 		if (sctp_style(sk, TCP)) {
1500 			/* A closed association can still be in the list if
1501 			 * it belongs to a TCP-style listening socket that is
1502 			 * not yet accepted. If so, free it. If not, send an
1503 			 * ABORT or SHUTDOWN based on the linger options.
1504 			 */
1505 			if (sctp_state(asoc, CLOSED)) {
1506 				sctp_association_free(asoc);
1507 				continue;
1508 			}
1509 		}
1510 
1511 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1512 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1513 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1514 			struct sctp_chunk *chunk;
1515 
1516 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1517 			sctp_primitive_ABORT(net, asoc, chunk);
1518 		} else
1519 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1520 	}
1521 
1522 	/* On a TCP-style socket, block for at most linger_time if set. */
1523 	if (sctp_style(sk, TCP) && timeout)
1524 		sctp_wait_for_close(sk, timeout);
1525 
1526 	/* This will run the backlog queue.  */
1527 	release_sock(sk);
1528 
1529 	/* Supposedly, no process has access to the socket, but
1530 	 * the net layers still may.
1531 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1532 	 * held and that should be grabbed before socket lock.
1533 	 */
1534 	spin_lock_bh(&net->sctp.addr_wq_lock);
1535 	bh_lock_sock(sk);
1536 
1537 	/* Hold the sock, since sk_common_release() will put sock_put()
1538 	 * and we have just a little more cleanup.
1539 	 */
1540 	sock_hold(sk);
1541 	sk_common_release(sk);
1542 
1543 	bh_unlock_sock(sk);
1544 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1545 
1546 	sock_put(sk);
1547 
1548 	SCTP_DBG_OBJCNT_DEC(sock);
1549 }
1550 
1551 /* Handle EPIPE error. */
1552 static int sctp_error(struct sock *sk, int flags, int err)
1553 {
1554 	if (err == -EPIPE)
1555 		err = sock_error(sk) ? : -EPIPE;
1556 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1557 		send_sig(SIGPIPE, current, 0);
1558 	return err;
1559 }
1560 
1561 /* API 3.1.3 sendmsg() - UDP Style Syntax
1562  *
1563  * An application uses sendmsg() and recvmsg() calls to transmit data to
1564  * and receive data from its peer.
1565  *
1566  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1567  *                  int flags);
1568  *
1569  *  socket  - the socket descriptor of the endpoint.
1570  *  message - pointer to the msghdr structure which contains a single
1571  *            user message and possibly some ancillary data.
1572  *
1573  *            See Section 5 for complete description of the data
1574  *            structures.
1575  *
1576  *  flags   - flags sent or received with the user message, see Section
1577  *            5 for complete description of the flags.
1578  *
1579  * Note:  This function could use a rewrite especially when explicit
1580  * connect support comes in.
1581  */
1582 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1583 
1584 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1585 
1586 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1587 {
1588 	struct net *net = sock_net(sk);
1589 	struct sctp_sock *sp;
1590 	struct sctp_endpoint *ep;
1591 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1592 	struct sctp_transport *transport, *chunk_tp;
1593 	struct sctp_chunk *chunk;
1594 	union sctp_addr to;
1595 	struct sockaddr *msg_name = NULL;
1596 	struct sctp_sndrcvinfo default_sinfo;
1597 	struct sctp_sndrcvinfo *sinfo;
1598 	struct sctp_initmsg *sinit;
1599 	sctp_assoc_t associd = 0;
1600 	sctp_cmsgs_t cmsgs = { NULL };
1601 	sctp_scope_t scope;
1602 	bool fill_sinfo_ttl = false, wait_connect = false;
1603 	struct sctp_datamsg *datamsg;
1604 	int msg_flags = msg->msg_flags;
1605 	__u16 sinfo_flags = 0;
1606 	long timeo;
1607 	int err;
1608 
1609 	err = 0;
1610 	sp = sctp_sk(sk);
1611 	ep = sp->ep;
1612 
1613 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1614 		 msg, msg_len, ep);
1615 
1616 	/* We cannot send a message over a TCP-style listening socket. */
1617 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1618 		err = -EPIPE;
1619 		goto out_nounlock;
1620 	}
1621 
1622 	/* Parse out the SCTP CMSGs.  */
1623 	err = sctp_msghdr_parse(msg, &cmsgs);
1624 	if (err) {
1625 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1626 		goto out_nounlock;
1627 	}
1628 
1629 	/* Fetch the destination address for this packet.  This
1630 	 * address only selects the association--it is not necessarily
1631 	 * the address we will send to.
1632 	 * For a peeled-off socket, msg_name is ignored.
1633 	 */
1634 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1635 		int msg_namelen = msg->msg_namelen;
1636 
1637 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1638 				       msg_namelen);
1639 		if (err)
1640 			return err;
1641 
1642 		if (msg_namelen > sizeof(to))
1643 			msg_namelen = sizeof(to);
1644 		memcpy(&to, msg->msg_name, msg_namelen);
1645 		msg_name = msg->msg_name;
1646 	}
1647 
1648 	sinit = cmsgs.init;
1649 	if (cmsgs.sinfo != NULL) {
1650 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1651 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1652 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1653 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1654 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1655 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1656 
1657 		sinfo = &default_sinfo;
1658 		fill_sinfo_ttl = true;
1659 	} else {
1660 		sinfo = cmsgs.srinfo;
1661 	}
1662 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1663 	if (sinfo) {
1664 		sinfo_flags = sinfo->sinfo_flags;
1665 		associd = sinfo->sinfo_assoc_id;
1666 	}
1667 
1668 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1669 		 msg_len, sinfo_flags);
1670 
1671 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1672 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1673 		err = -EINVAL;
1674 		goto out_nounlock;
1675 	}
1676 
1677 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1678 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1679 	 * If SCTP_ABORT is set, the message length could be non zero with
1680 	 * the msg_iov set to the user abort reason.
1681 	 */
1682 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1683 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1684 		err = -EINVAL;
1685 		goto out_nounlock;
1686 	}
1687 
1688 	/* If SCTP_ADDR_OVER is set, there must be an address
1689 	 * specified in msg_name.
1690 	 */
1691 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1692 		err = -EINVAL;
1693 		goto out_nounlock;
1694 	}
1695 
1696 	transport = NULL;
1697 
1698 	pr_debug("%s: about to look up association\n", __func__);
1699 
1700 	lock_sock(sk);
1701 
1702 	/* If a msg_name has been specified, assume this is to be used.  */
1703 	if (msg_name) {
1704 		/* Look for a matching association on the endpoint. */
1705 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1706 		if (!asoc) {
1707 			/* If we could not find a matching association on the
1708 			 * endpoint, make sure that it is not a TCP-style
1709 			 * socket that already has an association or there is
1710 			 * no peeled-off association on another socket.
1711 			 */
1712 			if ((sctp_style(sk, TCP) &&
1713 			     sctp_sstate(sk, ESTABLISHED)) ||
1714 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1715 				err = -EADDRNOTAVAIL;
1716 				goto out_unlock;
1717 			}
1718 		}
1719 	} else {
1720 		asoc = sctp_id2assoc(sk, associd);
1721 		if (!asoc) {
1722 			err = -EPIPE;
1723 			goto out_unlock;
1724 		}
1725 	}
1726 
1727 	if (asoc) {
1728 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1729 
1730 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1731 		 * socket that has an association in CLOSED state. This can
1732 		 * happen when an accepted socket has an association that is
1733 		 * already CLOSED.
1734 		 */
1735 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1736 			err = -EPIPE;
1737 			goto out_unlock;
1738 		}
1739 
1740 		if (sinfo_flags & SCTP_EOF) {
1741 			pr_debug("%s: shutting down association:%p\n",
1742 				 __func__, asoc);
1743 
1744 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1745 			err = 0;
1746 			goto out_unlock;
1747 		}
1748 		if (sinfo_flags & SCTP_ABORT) {
1749 
1750 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1751 			if (!chunk) {
1752 				err = -ENOMEM;
1753 				goto out_unlock;
1754 			}
1755 
1756 			pr_debug("%s: aborting association:%p\n",
1757 				 __func__, asoc);
1758 
1759 			sctp_primitive_ABORT(net, asoc, chunk);
1760 			err = 0;
1761 			goto out_unlock;
1762 		}
1763 	}
1764 
1765 	/* Do we need to create the association?  */
1766 	if (!asoc) {
1767 		pr_debug("%s: there is no association yet\n", __func__);
1768 
1769 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1770 			err = -EINVAL;
1771 			goto out_unlock;
1772 		}
1773 
1774 		/* Check for invalid stream against the stream counts,
1775 		 * either the default or the user specified stream counts.
1776 		 */
1777 		if (sinfo) {
1778 			if (!sinit || !sinit->sinit_num_ostreams) {
1779 				/* Check against the defaults. */
1780 				if (sinfo->sinfo_stream >=
1781 				    sp->initmsg.sinit_num_ostreams) {
1782 					err = -EINVAL;
1783 					goto out_unlock;
1784 				}
1785 			} else {
1786 				/* Check against the requested.  */
1787 				if (sinfo->sinfo_stream >=
1788 				    sinit->sinit_num_ostreams) {
1789 					err = -EINVAL;
1790 					goto out_unlock;
1791 				}
1792 			}
1793 		}
1794 
1795 		/*
1796 		 * API 3.1.2 bind() - UDP Style Syntax
1797 		 * If a bind() or sctp_bindx() is not called prior to a
1798 		 * sendmsg() call that initiates a new association, the
1799 		 * system picks an ephemeral port and will choose an address
1800 		 * set equivalent to binding with a wildcard address.
1801 		 */
1802 		if (!ep->base.bind_addr.port) {
1803 			if (sctp_autobind(sk)) {
1804 				err = -EAGAIN;
1805 				goto out_unlock;
1806 			}
1807 		} else {
1808 			/*
1809 			 * If an unprivileged user inherits a one-to-many
1810 			 * style socket with open associations on a privileged
1811 			 * port, it MAY be permitted to accept new associations,
1812 			 * but it SHOULD NOT be permitted to open new
1813 			 * associations.
1814 			 */
1815 			if (ep->base.bind_addr.port < PROT_SOCK &&
1816 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1817 				err = -EACCES;
1818 				goto out_unlock;
1819 			}
1820 		}
1821 
1822 		scope = sctp_scope(&to);
1823 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1824 		if (!new_asoc) {
1825 			err = -ENOMEM;
1826 			goto out_unlock;
1827 		}
1828 		asoc = new_asoc;
1829 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1830 		if (err < 0) {
1831 			err = -ENOMEM;
1832 			goto out_free;
1833 		}
1834 
1835 		/* If the SCTP_INIT ancillary data is specified, set all
1836 		 * the association init values accordingly.
1837 		 */
1838 		if (sinit) {
1839 			if (sinit->sinit_num_ostreams) {
1840 				asoc->c.sinit_num_ostreams =
1841 					sinit->sinit_num_ostreams;
1842 			}
1843 			if (sinit->sinit_max_instreams) {
1844 				asoc->c.sinit_max_instreams =
1845 					sinit->sinit_max_instreams;
1846 			}
1847 			if (sinit->sinit_max_attempts) {
1848 				asoc->max_init_attempts
1849 					= sinit->sinit_max_attempts;
1850 			}
1851 			if (sinit->sinit_max_init_timeo) {
1852 				asoc->max_init_timeo =
1853 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1854 			}
1855 		}
1856 
1857 		/* Prime the peer's transport structures.  */
1858 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1859 		if (!transport) {
1860 			err = -ENOMEM;
1861 			goto out_free;
1862 		}
1863 	}
1864 
1865 	/* ASSERT: we have a valid association at this point.  */
1866 	pr_debug("%s: we have a valid association\n", __func__);
1867 
1868 	if (!sinfo) {
1869 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1870 		 * one with some defaults.
1871 		 */
1872 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1873 		default_sinfo.sinfo_stream = asoc->default_stream;
1874 		default_sinfo.sinfo_flags = asoc->default_flags;
1875 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1876 		default_sinfo.sinfo_context = asoc->default_context;
1877 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1878 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1879 
1880 		sinfo = &default_sinfo;
1881 	} else if (fill_sinfo_ttl) {
1882 		/* In case SNDINFO was specified, we still need to fill
1883 		 * it with a default ttl from the assoc here.
1884 		 */
1885 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1886 	}
1887 
1888 	/* API 7.1.7, the sndbuf size per association bounds the
1889 	 * maximum size of data that can be sent in a single send call.
1890 	 */
1891 	if (msg_len > sk->sk_sndbuf) {
1892 		err = -EMSGSIZE;
1893 		goto out_free;
1894 	}
1895 
1896 	if (asoc->pmtu_pending)
1897 		sctp_assoc_pending_pmtu(sk, asoc);
1898 
1899 	/* If fragmentation is disabled and the message length exceeds the
1900 	 * association fragmentation point, return EMSGSIZE.  The I-D
1901 	 * does not specify what this error is, but this looks like
1902 	 * a great fit.
1903 	 */
1904 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1905 		err = -EMSGSIZE;
1906 		goto out_free;
1907 	}
1908 
1909 	/* Check for invalid stream. */
1910 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1911 		err = -EINVAL;
1912 		goto out_free;
1913 	}
1914 
1915 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1916 	if (!sctp_wspace(asoc)) {
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto out_free;
1920 	}
1921 
1922 	/* If an address is passed with the sendto/sendmsg call, it is used
1923 	 * to override the primary destination address in the TCP model, or
1924 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1925 	 */
1926 	if ((sctp_style(sk, TCP) && msg_name) ||
1927 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1928 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1929 		if (!chunk_tp) {
1930 			err = -EINVAL;
1931 			goto out_free;
1932 		}
1933 	} else
1934 		chunk_tp = NULL;
1935 
1936 	/* Auto-connect, if we aren't connected already. */
1937 	if (sctp_state(asoc, CLOSED)) {
1938 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1939 		if (err < 0)
1940 			goto out_free;
1941 
1942 		wait_connect = true;
1943 		pr_debug("%s: we associated primitively\n", __func__);
1944 	}
1945 
1946 	/* Break the message into multiple chunks of maximum size. */
1947 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1948 	if (IS_ERR(datamsg)) {
1949 		err = PTR_ERR(datamsg);
1950 		goto out_free;
1951 	}
1952 
1953 	/* Now send the (possibly) fragmented message. */
1954 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1955 		/* Do accounting for the write space.  */
1956 		sctp_set_owner_w(chunk);
1957 
1958 		chunk->transport = chunk_tp;
1959 	}
1960 
1961 	/* Send it to the lower layers.  Note:  all chunks
1962 	 * must either fail or succeed.   The lower layer
1963 	 * works that way today.  Keep it that way or this
1964 	 * breaks.
1965 	 */
1966 	err = sctp_primitive_SEND(net, asoc, datamsg);
1967 	sctp_datamsg_put(datamsg);
1968 	/* Did the lower layer accept the chunk? */
1969 	if (err)
1970 		goto out_free;
1971 
1972 	pr_debug("%s: we sent primitively\n", __func__);
1973 
1974 	err = msg_len;
1975 
1976 	if (unlikely(wait_connect)) {
1977 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1978 		sctp_wait_for_connect(asoc, &timeo);
1979 	}
1980 
1981 	/* If we are already past ASSOCIATE, the lower
1982 	 * layers are responsible for association cleanup.
1983 	 */
1984 	goto out_unlock;
1985 
1986 out_free:
1987 	if (new_asoc)
1988 		sctp_association_free(asoc);
1989 out_unlock:
1990 	release_sock(sk);
1991 
1992 out_nounlock:
1993 	return sctp_error(sk, msg_flags, err);
1994 
1995 #if 0
1996 do_sock_err:
1997 	if (msg_len)
1998 		err = msg_len;
1999 	else
2000 		err = sock_error(sk);
2001 	goto out;
2002 
2003 do_interrupted:
2004 	if (msg_len)
2005 		err = msg_len;
2006 	goto out;
2007 #endif /* 0 */
2008 }
2009 
2010 /* This is an extended version of skb_pull() that removes the data from the
2011  * start of a skb even when data is spread across the list of skb's in the
2012  * frag_list. len specifies the total amount of data that needs to be removed.
2013  * when 'len' bytes could be removed from the skb, it returns 0.
2014  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2015  * could not be removed.
2016  */
2017 static int sctp_skb_pull(struct sk_buff *skb, int len)
2018 {
2019 	struct sk_buff *list;
2020 	int skb_len = skb_headlen(skb);
2021 	int rlen;
2022 
2023 	if (len <= skb_len) {
2024 		__skb_pull(skb, len);
2025 		return 0;
2026 	}
2027 	len -= skb_len;
2028 	__skb_pull(skb, skb_len);
2029 
2030 	skb_walk_frags(skb, list) {
2031 		rlen = sctp_skb_pull(list, len);
2032 		skb->len -= (len-rlen);
2033 		skb->data_len -= (len-rlen);
2034 
2035 		if (!rlen)
2036 			return 0;
2037 
2038 		len = rlen;
2039 	}
2040 
2041 	return len;
2042 }
2043 
2044 /* API 3.1.3  recvmsg() - UDP Style Syntax
2045  *
2046  *  ssize_t recvmsg(int socket, struct msghdr *message,
2047  *                    int flags);
2048  *
2049  *  socket  - the socket descriptor of the endpoint.
2050  *  message - pointer to the msghdr structure which contains a single
2051  *            user message and possibly some ancillary data.
2052  *
2053  *            See Section 5 for complete description of the data
2054  *            structures.
2055  *
2056  *  flags   - flags sent or received with the user message, see Section
2057  *            5 for complete description of the flags.
2058  */
2059 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2060 			int noblock, int flags, int *addr_len)
2061 {
2062 	struct sctp_ulpevent *event = NULL;
2063 	struct sctp_sock *sp = sctp_sk(sk);
2064 	struct sk_buff *skb;
2065 	int copied;
2066 	int err = 0;
2067 	int skb_len;
2068 
2069 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2070 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2071 		 addr_len);
2072 
2073 	lock_sock(sk);
2074 
2075 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2076 		err = -ENOTCONN;
2077 		goto out;
2078 	}
2079 
2080 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2081 	if (!skb)
2082 		goto out;
2083 
2084 	/* Get the total length of the skb including any skb's in the
2085 	 * frag_list.
2086 	 */
2087 	skb_len = skb->len;
2088 
2089 	copied = skb_len;
2090 	if (copied > len)
2091 		copied = len;
2092 
2093 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2094 
2095 	event = sctp_skb2event(skb);
2096 
2097 	if (err)
2098 		goto out_free;
2099 
2100 	sock_recv_ts_and_drops(msg, sk, skb);
2101 	if (sctp_ulpevent_is_notification(event)) {
2102 		msg->msg_flags |= MSG_NOTIFICATION;
2103 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2104 	} else {
2105 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2106 	}
2107 
2108 	/* Check if we allow SCTP_NXTINFO. */
2109 	if (sp->recvnxtinfo)
2110 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2111 	/* Check if we allow SCTP_RCVINFO. */
2112 	if (sp->recvrcvinfo)
2113 		sctp_ulpevent_read_rcvinfo(event, msg);
2114 	/* Check if we allow SCTP_SNDRCVINFO. */
2115 	if (sp->subscribe.sctp_data_io_event)
2116 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2117 
2118 	err = copied;
2119 
2120 	/* If skb's length exceeds the user's buffer, update the skb and
2121 	 * push it back to the receive_queue so that the next call to
2122 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2123 	 */
2124 	if (skb_len > copied) {
2125 		msg->msg_flags &= ~MSG_EOR;
2126 		if (flags & MSG_PEEK)
2127 			goto out_free;
2128 		sctp_skb_pull(skb, copied);
2129 		skb_queue_head(&sk->sk_receive_queue, skb);
2130 
2131 		/* When only partial message is copied to the user, increase
2132 		 * rwnd by that amount. If all the data in the skb is read,
2133 		 * rwnd is updated when the event is freed.
2134 		 */
2135 		if (!sctp_ulpevent_is_notification(event))
2136 			sctp_assoc_rwnd_increase(event->asoc, copied);
2137 		goto out;
2138 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2139 		   (event->msg_flags & MSG_EOR))
2140 		msg->msg_flags |= MSG_EOR;
2141 	else
2142 		msg->msg_flags &= ~MSG_EOR;
2143 
2144 out_free:
2145 	if (flags & MSG_PEEK) {
2146 		/* Release the skb reference acquired after peeking the skb in
2147 		 * sctp_skb_recv_datagram().
2148 		 */
2149 		kfree_skb(skb);
2150 	} else {
2151 		/* Free the event which includes releasing the reference to
2152 		 * the owner of the skb, freeing the skb and updating the
2153 		 * rwnd.
2154 		 */
2155 		sctp_ulpevent_free(event);
2156 	}
2157 out:
2158 	release_sock(sk);
2159 	return err;
2160 }
2161 
2162 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2163  *
2164  * This option is a on/off flag.  If enabled no SCTP message
2165  * fragmentation will be performed.  Instead if a message being sent
2166  * exceeds the current PMTU size, the message will NOT be sent and
2167  * instead a error will be indicated to the user.
2168  */
2169 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2170 					     char __user *optval,
2171 					     unsigned int optlen)
2172 {
2173 	int val;
2174 
2175 	if (optlen < sizeof(int))
2176 		return -EINVAL;
2177 
2178 	if (get_user(val, (int __user *)optval))
2179 		return -EFAULT;
2180 
2181 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2182 
2183 	return 0;
2184 }
2185 
2186 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2187 				  unsigned int optlen)
2188 {
2189 	struct sctp_association *asoc;
2190 	struct sctp_ulpevent *event;
2191 
2192 	if (optlen > sizeof(struct sctp_event_subscribe))
2193 		return -EINVAL;
2194 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2195 		return -EFAULT;
2196 
2197 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2198 	 * if there is no data to be sent or retransmit, the stack will
2199 	 * immediately send up this notification.
2200 	 */
2201 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2202 				       &sctp_sk(sk)->subscribe)) {
2203 		asoc = sctp_id2assoc(sk, 0);
2204 
2205 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2206 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2207 					GFP_ATOMIC);
2208 			if (!event)
2209 				return -ENOMEM;
2210 
2211 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2212 		}
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2219  *
2220  * This socket option is applicable to the UDP-style socket only.  When
2221  * set it will cause associations that are idle for more than the
2222  * specified number of seconds to automatically close.  An association
2223  * being idle is defined an association that has NOT sent or received
2224  * user data.  The special value of '0' indicates that no automatic
2225  * close of any associations should be performed.  The option expects an
2226  * integer defining the number of seconds of idle time before an
2227  * association is closed.
2228  */
2229 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2230 				     unsigned int optlen)
2231 {
2232 	struct sctp_sock *sp = sctp_sk(sk);
2233 	struct net *net = sock_net(sk);
2234 
2235 	/* Applicable to UDP-style socket only */
2236 	if (sctp_style(sk, TCP))
2237 		return -EOPNOTSUPP;
2238 	if (optlen != sizeof(int))
2239 		return -EINVAL;
2240 	if (copy_from_user(&sp->autoclose, optval, optlen))
2241 		return -EFAULT;
2242 
2243 	if (sp->autoclose > net->sctp.max_autoclose)
2244 		sp->autoclose = net->sctp.max_autoclose;
2245 
2246 	return 0;
2247 }
2248 
2249 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2250  *
2251  * Applications can enable or disable heartbeats for any peer address of
2252  * an association, modify an address's heartbeat interval, force a
2253  * heartbeat to be sent immediately, and adjust the address's maximum
2254  * number of retransmissions sent before an address is considered
2255  * unreachable.  The following structure is used to access and modify an
2256  * address's parameters:
2257  *
2258  *  struct sctp_paddrparams {
2259  *     sctp_assoc_t            spp_assoc_id;
2260  *     struct sockaddr_storage spp_address;
2261  *     uint32_t                spp_hbinterval;
2262  *     uint16_t                spp_pathmaxrxt;
2263  *     uint32_t                spp_pathmtu;
2264  *     uint32_t                spp_sackdelay;
2265  *     uint32_t                spp_flags;
2266  * };
2267  *
2268  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2269  *                     application, and identifies the association for
2270  *                     this query.
2271  *   spp_address     - This specifies which address is of interest.
2272  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2273  *                     in milliseconds.  If a  value of zero
2274  *                     is present in this field then no changes are to
2275  *                     be made to this parameter.
2276  *   spp_pathmaxrxt  - This contains the maximum number of
2277  *                     retransmissions before this address shall be
2278  *                     considered unreachable. If a  value of zero
2279  *                     is present in this field then no changes are to
2280  *                     be made to this parameter.
2281  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2282  *                     specified here will be the "fixed" path mtu.
2283  *                     Note that if the spp_address field is empty
2284  *                     then all associations on this address will
2285  *                     have this fixed path mtu set upon them.
2286  *
2287  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2288  *                     the number of milliseconds that sacks will be delayed
2289  *                     for. This value will apply to all addresses of an
2290  *                     association if the spp_address field is empty. Note
2291  *                     also, that if delayed sack is enabled and this
2292  *                     value is set to 0, no change is made to the last
2293  *                     recorded delayed sack timer value.
2294  *
2295  *   spp_flags       - These flags are used to control various features
2296  *                     on an association. The flag field may contain
2297  *                     zero or more of the following options.
2298  *
2299  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2300  *                     specified address. Note that if the address
2301  *                     field is empty all addresses for the association
2302  *                     have heartbeats enabled upon them.
2303  *
2304  *                     SPP_HB_DISABLE - Disable heartbeats on the
2305  *                     speicifed address. Note that if the address
2306  *                     field is empty all addresses for the association
2307  *                     will have their heartbeats disabled. Note also
2308  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2309  *                     mutually exclusive, only one of these two should
2310  *                     be specified. Enabling both fields will have
2311  *                     undetermined results.
2312  *
2313  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2314  *                     to be made immediately.
2315  *
2316  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2317  *                     heartbeat delayis to be set to the value of 0
2318  *                     milliseconds.
2319  *
2320  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2321  *                     discovery upon the specified address. Note that
2322  *                     if the address feild is empty then all addresses
2323  *                     on the association are effected.
2324  *
2325  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2326  *                     discovery upon the specified address. Note that
2327  *                     if the address feild is empty then all addresses
2328  *                     on the association are effected. Not also that
2329  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2330  *                     exclusive. Enabling both will have undetermined
2331  *                     results.
2332  *
2333  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2334  *                     on delayed sack. The time specified in spp_sackdelay
2335  *                     is used to specify the sack delay for this address. Note
2336  *                     that if spp_address is empty then all addresses will
2337  *                     enable delayed sack and take on the sack delay
2338  *                     value specified in spp_sackdelay.
2339  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2340  *                     off delayed sack. If the spp_address field is blank then
2341  *                     delayed sack is disabled for the entire association. Note
2342  *                     also that this field is mutually exclusive to
2343  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2344  *                     results.
2345  */
2346 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2347 				       struct sctp_transport   *trans,
2348 				       struct sctp_association *asoc,
2349 				       struct sctp_sock        *sp,
2350 				       int                      hb_change,
2351 				       int                      pmtud_change,
2352 				       int                      sackdelay_change)
2353 {
2354 	int error;
2355 
2356 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2357 		struct net *net = sock_net(trans->asoc->base.sk);
2358 
2359 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2360 		if (error)
2361 			return error;
2362 	}
2363 
2364 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2365 	 * this field is ignored.  Note also that a value of zero indicates
2366 	 * the current setting should be left unchanged.
2367 	 */
2368 	if (params->spp_flags & SPP_HB_ENABLE) {
2369 
2370 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2371 		 * set.  This lets us use 0 value when this flag
2372 		 * is set.
2373 		 */
2374 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2375 			params->spp_hbinterval = 0;
2376 
2377 		if (params->spp_hbinterval ||
2378 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2379 			if (trans) {
2380 				trans->hbinterval =
2381 				    msecs_to_jiffies(params->spp_hbinterval);
2382 			} else if (asoc) {
2383 				asoc->hbinterval =
2384 				    msecs_to_jiffies(params->spp_hbinterval);
2385 			} else {
2386 				sp->hbinterval = params->spp_hbinterval;
2387 			}
2388 		}
2389 	}
2390 
2391 	if (hb_change) {
2392 		if (trans) {
2393 			trans->param_flags =
2394 				(trans->param_flags & ~SPP_HB) | hb_change;
2395 		} else if (asoc) {
2396 			asoc->param_flags =
2397 				(asoc->param_flags & ~SPP_HB) | hb_change;
2398 		} else {
2399 			sp->param_flags =
2400 				(sp->param_flags & ~SPP_HB) | hb_change;
2401 		}
2402 	}
2403 
2404 	/* When Path MTU discovery is disabled the value specified here will
2405 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2406 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2407 	 * effect).
2408 	 */
2409 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2410 		if (trans) {
2411 			trans->pathmtu = params->spp_pathmtu;
2412 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2413 		} else if (asoc) {
2414 			asoc->pathmtu = params->spp_pathmtu;
2415 			sctp_frag_point(asoc, params->spp_pathmtu);
2416 		} else {
2417 			sp->pathmtu = params->spp_pathmtu;
2418 		}
2419 	}
2420 
2421 	if (pmtud_change) {
2422 		if (trans) {
2423 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2424 				(params->spp_flags & SPP_PMTUD_ENABLE);
2425 			trans->param_flags =
2426 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2427 			if (update) {
2428 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2429 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2430 			}
2431 		} else if (asoc) {
2432 			asoc->param_flags =
2433 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2434 		} else {
2435 			sp->param_flags =
2436 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2437 		}
2438 	}
2439 
2440 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2441 	 * value of this field is ignored.  Note also that a value of zero
2442 	 * indicates the current setting should be left unchanged.
2443 	 */
2444 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2445 		if (trans) {
2446 			trans->sackdelay =
2447 				msecs_to_jiffies(params->spp_sackdelay);
2448 		} else if (asoc) {
2449 			asoc->sackdelay =
2450 				msecs_to_jiffies(params->spp_sackdelay);
2451 		} else {
2452 			sp->sackdelay = params->spp_sackdelay;
2453 		}
2454 	}
2455 
2456 	if (sackdelay_change) {
2457 		if (trans) {
2458 			trans->param_flags =
2459 				(trans->param_flags & ~SPP_SACKDELAY) |
2460 				sackdelay_change;
2461 		} else if (asoc) {
2462 			asoc->param_flags =
2463 				(asoc->param_flags & ~SPP_SACKDELAY) |
2464 				sackdelay_change;
2465 		} else {
2466 			sp->param_flags =
2467 				(sp->param_flags & ~SPP_SACKDELAY) |
2468 				sackdelay_change;
2469 		}
2470 	}
2471 
2472 	/* Note that a value of zero indicates the current setting should be
2473 	   left unchanged.
2474 	 */
2475 	if (params->spp_pathmaxrxt) {
2476 		if (trans) {
2477 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2478 		} else if (asoc) {
2479 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2480 		} else {
2481 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2482 		}
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2489 					    char __user *optval,
2490 					    unsigned int optlen)
2491 {
2492 	struct sctp_paddrparams  params;
2493 	struct sctp_transport   *trans = NULL;
2494 	struct sctp_association *asoc = NULL;
2495 	struct sctp_sock        *sp = sctp_sk(sk);
2496 	int error;
2497 	int hb_change, pmtud_change, sackdelay_change;
2498 
2499 	if (optlen != sizeof(struct sctp_paddrparams))
2500 		return -EINVAL;
2501 
2502 	if (copy_from_user(&params, optval, optlen))
2503 		return -EFAULT;
2504 
2505 	/* Validate flags and value parameters. */
2506 	hb_change        = params.spp_flags & SPP_HB;
2507 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2508 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2509 
2510 	if (hb_change        == SPP_HB ||
2511 	    pmtud_change     == SPP_PMTUD ||
2512 	    sackdelay_change == SPP_SACKDELAY ||
2513 	    params.spp_sackdelay > 500 ||
2514 	    (params.spp_pathmtu &&
2515 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2516 		return -EINVAL;
2517 
2518 	/* If an address other than INADDR_ANY is specified, and
2519 	 * no transport is found, then the request is invalid.
2520 	 */
2521 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2522 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2523 					       params.spp_assoc_id);
2524 		if (!trans)
2525 			return -EINVAL;
2526 	}
2527 
2528 	/* Get association, if assoc_id != 0 and the socket is a one
2529 	 * to many style socket, and an association was not found, then
2530 	 * the id was invalid.
2531 	 */
2532 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2533 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2534 		return -EINVAL;
2535 
2536 	/* Heartbeat demand can only be sent on a transport or
2537 	 * association, but not a socket.
2538 	 */
2539 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2540 		return -EINVAL;
2541 
2542 	/* Process parameters. */
2543 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2544 					    hb_change, pmtud_change,
2545 					    sackdelay_change);
2546 
2547 	if (error)
2548 		return error;
2549 
2550 	/* If changes are for association, also apply parameters to each
2551 	 * transport.
2552 	 */
2553 	if (!trans && asoc) {
2554 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2555 				transports) {
2556 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2557 						    hb_change, pmtud_change,
2558 						    sackdelay_change);
2559 		}
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2566 {
2567 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2568 }
2569 
2570 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2571 {
2572 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2573 }
2574 
2575 /*
2576  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2577  *
2578  * This option will effect the way delayed acks are performed.  This
2579  * option allows you to get or set the delayed ack time, in
2580  * milliseconds.  It also allows changing the delayed ack frequency.
2581  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2582  * the assoc_id is 0, then this sets or gets the endpoints default
2583  * values.  If the assoc_id field is non-zero, then the set or get
2584  * effects the specified association for the one to many model (the
2585  * assoc_id field is ignored by the one to one model).  Note that if
2586  * sack_delay or sack_freq are 0 when setting this option, then the
2587  * current values will remain unchanged.
2588  *
2589  * struct sctp_sack_info {
2590  *     sctp_assoc_t            sack_assoc_id;
2591  *     uint32_t                sack_delay;
2592  *     uint32_t                sack_freq;
2593  * };
2594  *
2595  * sack_assoc_id -  This parameter, indicates which association the user
2596  *    is performing an action upon.  Note that if this field's value is
2597  *    zero then the endpoints default value is changed (effecting future
2598  *    associations only).
2599  *
2600  * sack_delay -  This parameter contains the number of milliseconds that
2601  *    the user is requesting the delayed ACK timer be set to.  Note that
2602  *    this value is defined in the standard to be between 200 and 500
2603  *    milliseconds.
2604  *
2605  * sack_freq -  This parameter contains the number of packets that must
2606  *    be received before a sack is sent without waiting for the delay
2607  *    timer to expire.  The default value for this is 2, setting this
2608  *    value to 1 will disable the delayed sack algorithm.
2609  */
2610 
2611 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2612 				       char __user *optval, unsigned int optlen)
2613 {
2614 	struct sctp_sack_info    params;
2615 	struct sctp_transport   *trans = NULL;
2616 	struct sctp_association *asoc = NULL;
2617 	struct sctp_sock        *sp = sctp_sk(sk);
2618 
2619 	if (optlen == sizeof(struct sctp_sack_info)) {
2620 		if (copy_from_user(&params, optval, optlen))
2621 			return -EFAULT;
2622 
2623 		if (params.sack_delay == 0 && params.sack_freq == 0)
2624 			return 0;
2625 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2626 		pr_warn_ratelimited(DEPRECATED
2627 				    "%s (pid %d) "
2628 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2629 				    "Use struct sctp_sack_info instead\n",
2630 				    current->comm, task_pid_nr(current));
2631 		if (copy_from_user(&params, optval, optlen))
2632 			return -EFAULT;
2633 
2634 		if (params.sack_delay == 0)
2635 			params.sack_freq = 1;
2636 		else
2637 			params.sack_freq = 0;
2638 	} else
2639 		return -EINVAL;
2640 
2641 	/* Validate value parameter. */
2642 	if (params.sack_delay > 500)
2643 		return -EINVAL;
2644 
2645 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2646 	 * to many style socket, and an association was not found, then
2647 	 * the id was invalid.
2648 	 */
2649 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2650 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2651 		return -EINVAL;
2652 
2653 	if (params.sack_delay) {
2654 		if (asoc) {
2655 			asoc->sackdelay =
2656 				msecs_to_jiffies(params.sack_delay);
2657 			asoc->param_flags =
2658 				sctp_spp_sackdelay_enable(asoc->param_flags);
2659 		} else {
2660 			sp->sackdelay = params.sack_delay;
2661 			sp->param_flags =
2662 				sctp_spp_sackdelay_enable(sp->param_flags);
2663 		}
2664 	}
2665 
2666 	if (params.sack_freq == 1) {
2667 		if (asoc) {
2668 			asoc->param_flags =
2669 				sctp_spp_sackdelay_disable(asoc->param_flags);
2670 		} else {
2671 			sp->param_flags =
2672 				sctp_spp_sackdelay_disable(sp->param_flags);
2673 		}
2674 	} else if (params.sack_freq > 1) {
2675 		if (asoc) {
2676 			asoc->sackfreq = params.sack_freq;
2677 			asoc->param_flags =
2678 				sctp_spp_sackdelay_enable(asoc->param_flags);
2679 		} else {
2680 			sp->sackfreq = params.sack_freq;
2681 			sp->param_flags =
2682 				sctp_spp_sackdelay_enable(sp->param_flags);
2683 		}
2684 	}
2685 
2686 	/* If change is for association, also apply to each transport. */
2687 	if (asoc) {
2688 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2689 				transports) {
2690 			if (params.sack_delay) {
2691 				trans->sackdelay =
2692 					msecs_to_jiffies(params.sack_delay);
2693 				trans->param_flags =
2694 					sctp_spp_sackdelay_enable(trans->param_flags);
2695 			}
2696 			if (params.sack_freq == 1) {
2697 				trans->param_flags =
2698 					sctp_spp_sackdelay_disable(trans->param_flags);
2699 			} else if (params.sack_freq > 1) {
2700 				trans->sackfreq = params.sack_freq;
2701 				trans->param_flags =
2702 					sctp_spp_sackdelay_enable(trans->param_flags);
2703 			}
2704 		}
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2711  *
2712  * Applications can specify protocol parameters for the default association
2713  * initialization.  The option name argument to setsockopt() and getsockopt()
2714  * is SCTP_INITMSG.
2715  *
2716  * Setting initialization parameters is effective only on an unconnected
2717  * socket (for UDP-style sockets only future associations are effected
2718  * by the change).  With TCP-style sockets, this option is inherited by
2719  * sockets derived from a listener socket.
2720  */
2721 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2722 {
2723 	struct sctp_initmsg sinit;
2724 	struct sctp_sock *sp = sctp_sk(sk);
2725 
2726 	if (optlen != sizeof(struct sctp_initmsg))
2727 		return -EINVAL;
2728 	if (copy_from_user(&sinit, optval, optlen))
2729 		return -EFAULT;
2730 
2731 	if (sinit.sinit_num_ostreams)
2732 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2733 	if (sinit.sinit_max_instreams)
2734 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2735 	if (sinit.sinit_max_attempts)
2736 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2737 	if (sinit.sinit_max_init_timeo)
2738 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2739 
2740 	return 0;
2741 }
2742 
2743 /*
2744  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2745  *
2746  *   Applications that wish to use the sendto() system call may wish to
2747  *   specify a default set of parameters that would normally be supplied
2748  *   through the inclusion of ancillary data.  This socket option allows
2749  *   such an application to set the default sctp_sndrcvinfo structure.
2750  *   The application that wishes to use this socket option simply passes
2751  *   in to this call the sctp_sndrcvinfo structure defined in Section
2752  *   5.2.2) The input parameters accepted by this call include
2753  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2754  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2755  *   to this call if the caller is using the UDP model.
2756  */
2757 static int sctp_setsockopt_default_send_param(struct sock *sk,
2758 					      char __user *optval,
2759 					      unsigned int optlen)
2760 {
2761 	struct sctp_sock *sp = sctp_sk(sk);
2762 	struct sctp_association *asoc;
2763 	struct sctp_sndrcvinfo info;
2764 
2765 	if (optlen != sizeof(info))
2766 		return -EINVAL;
2767 	if (copy_from_user(&info, optval, optlen))
2768 		return -EFAULT;
2769 	if (info.sinfo_flags &
2770 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2771 	      SCTP_ABORT | SCTP_EOF))
2772 		return -EINVAL;
2773 
2774 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2775 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2776 		return -EINVAL;
2777 	if (asoc) {
2778 		asoc->default_stream = info.sinfo_stream;
2779 		asoc->default_flags = info.sinfo_flags;
2780 		asoc->default_ppid = info.sinfo_ppid;
2781 		asoc->default_context = info.sinfo_context;
2782 		asoc->default_timetolive = info.sinfo_timetolive;
2783 	} else {
2784 		sp->default_stream = info.sinfo_stream;
2785 		sp->default_flags = info.sinfo_flags;
2786 		sp->default_ppid = info.sinfo_ppid;
2787 		sp->default_context = info.sinfo_context;
2788 		sp->default_timetolive = info.sinfo_timetolive;
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2795  * (SCTP_DEFAULT_SNDINFO)
2796  */
2797 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2798 					   char __user *optval,
2799 					   unsigned int optlen)
2800 {
2801 	struct sctp_sock *sp = sctp_sk(sk);
2802 	struct sctp_association *asoc;
2803 	struct sctp_sndinfo info;
2804 
2805 	if (optlen != sizeof(info))
2806 		return -EINVAL;
2807 	if (copy_from_user(&info, optval, optlen))
2808 		return -EFAULT;
2809 	if (info.snd_flags &
2810 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2811 	      SCTP_ABORT | SCTP_EOF))
2812 		return -EINVAL;
2813 
2814 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2815 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2816 		return -EINVAL;
2817 	if (asoc) {
2818 		asoc->default_stream = info.snd_sid;
2819 		asoc->default_flags = info.snd_flags;
2820 		asoc->default_ppid = info.snd_ppid;
2821 		asoc->default_context = info.snd_context;
2822 	} else {
2823 		sp->default_stream = info.snd_sid;
2824 		sp->default_flags = info.snd_flags;
2825 		sp->default_ppid = info.snd_ppid;
2826 		sp->default_context = info.snd_context;
2827 	}
2828 
2829 	return 0;
2830 }
2831 
2832 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2833  *
2834  * Requests that the local SCTP stack use the enclosed peer address as
2835  * the association primary.  The enclosed address must be one of the
2836  * association peer's addresses.
2837  */
2838 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2839 					unsigned int optlen)
2840 {
2841 	struct sctp_prim prim;
2842 	struct sctp_transport *trans;
2843 
2844 	if (optlen != sizeof(struct sctp_prim))
2845 		return -EINVAL;
2846 
2847 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2848 		return -EFAULT;
2849 
2850 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2851 	if (!trans)
2852 		return -EINVAL;
2853 
2854 	sctp_assoc_set_primary(trans->asoc, trans);
2855 
2856 	return 0;
2857 }
2858 
2859 /*
2860  * 7.1.5 SCTP_NODELAY
2861  *
2862  * Turn on/off any Nagle-like algorithm.  This means that packets are
2863  * generally sent as soon as possible and no unnecessary delays are
2864  * introduced, at the cost of more packets in the network.  Expects an
2865  *  integer boolean flag.
2866  */
2867 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2868 				   unsigned int optlen)
2869 {
2870 	int val;
2871 
2872 	if (optlen < sizeof(int))
2873 		return -EINVAL;
2874 	if (get_user(val, (int __user *)optval))
2875 		return -EFAULT;
2876 
2877 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2878 	return 0;
2879 }
2880 
2881 /*
2882  *
2883  * 7.1.1 SCTP_RTOINFO
2884  *
2885  * The protocol parameters used to initialize and bound retransmission
2886  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2887  * and modify these parameters.
2888  * All parameters are time values, in milliseconds.  A value of 0, when
2889  * modifying the parameters, indicates that the current value should not
2890  * be changed.
2891  *
2892  */
2893 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2894 {
2895 	struct sctp_rtoinfo rtoinfo;
2896 	struct sctp_association *asoc;
2897 	unsigned long rto_min, rto_max;
2898 	struct sctp_sock *sp = sctp_sk(sk);
2899 
2900 	if (optlen != sizeof (struct sctp_rtoinfo))
2901 		return -EINVAL;
2902 
2903 	if (copy_from_user(&rtoinfo, optval, optlen))
2904 		return -EFAULT;
2905 
2906 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2907 
2908 	/* Set the values to the specific association */
2909 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2910 		return -EINVAL;
2911 
2912 	rto_max = rtoinfo.srto_max;
2913 	rto_min = rtoinfo.srto_min;
2914 
2915 	if (rto_max)
2916 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2917 	else
2918 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2919 
2920 	if (rto_min)
2921 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2922 	else
2923 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2924 
2925 	if (rto_min > rto_max)
2926 		return -EINVAL;
2927 
2928 	if (asoc) {
2929 		if (rtoinfo.srto_initial != 0)
2930 			asoc->rto_initial =
2931 				msecs_to_jiffies(rtoinfo.srto_initial);
2932 		asoc->rto_max = rto_max;
2933 		asoc->rto_min = rto_min;
2934 	} else {
2935 		/* If there is no association or the association-id = 0
2936 		 * set the values to the endpoint.
2937 		 */
2938 		if (rtoinfo.srto_initial != 0)
2939 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2940 		sp->rtoinfo.srto_max = rto_max;
2941 		sp->rtoinfo.srto_min = rto_min;
2942 	}
2943 
2944 	return 0;
2945 }
2946 
2947 /*
2948  *
2949  * 7.1.2 SCTP_ASSOCINFO
2950  *
2951  * This option is used to tune the maximum retransmission attempts
2952  * of the association.
2953  * Returns an error if the new association retransmission value is
2954  * greater than the sum of the retransmission value  of the peer.
2955  * See [SCTP] for more information.
2956  *
2957  */
2958 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2959 {
2960 
2961 	struct sctp_assocparams assocparams;
2962 	struct sctp_association *asoc;
2963 
2964 	if (optlen != sizeof(struct sctp_assocparams))
2965 		return -EINVAL;
2966 	if (copy_from_user(&assocparams, optval, optlen))
2967 		return -EFAULT;
2968 
2969 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2970 
2971 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2972 		return -EINVAL;
2973 
2974 	/* Set the values to the specific association */
2975 	if (asoc) {
2976 		if (assocparams.sasoc_asocmaxrxt != 0) {
2977 			__u32 path_sum = 0;
2978 			int   paths = 0;
2979 			struct sctp_transport *peer_addr;
2980 
2981 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2982 					transports) {
2983 				path_sum += peer_addr->pathmaxrxt;
2984 				paths++;
2985 			}
2986 
2987 			/* Only validate asocmaxrxt if we have more than
2988 			 * one path/transport.  We do this because path
2989 			 * retransmissions are only counted when we have more
2990 			 * then one path.
2991 			 */
2992 			if (paths > 1 &&
2993 			    assocparams.sasoc_asocmaxrxt > path_sum)
2994 				return -EINVAL;
2995 
2996 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2997 		}
2998 
2999 		if (assocparams.sasoc_cookie_life != 0)
3000 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3001 	} else {
3002 		/* Set the values to the endpoint */
3003 		struct sctp_sock *sp = sctp_sk(sk);
3004 
3005 		if (assocparams.sasoc_asocmaxrxt != 0)
3006 			sp->assocparams.sasoc_asocmaxrxt =
3007 						assocparams.sasoc_asocmaxrxt;
3008 		if (assocparams.sasoc_cookie_life != 0)
3009 			sp->assocparams.sasoc_cookie_life =
3010 						assocparams.sasoc_cookie_life;
3011 	}
3012 	return 0;
3013 }
3014 
3015 /*
3016  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3017  *
3018  * This socket option is a boolean flag which turns on or off mapped V4
3019  * addresses.  If this option is turned on and the socket is type
3020  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3021  * If this option is turned off, then no mapping will be done of V4
3022  * addresses and a user will receive both PF_INET6 and PF_INET type
3023  * addresses on the socket.
3024  */
3025 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3026 {
3027 	int val;
3028 	struct sctp_sock *sp = sctp_sk(sk);
3029 
3030 	if (optlen < sizeof(int))
3031 		return -EINVAL;
3032 	if (get_user(val, (int __user *)optval))
3033 		return -EFAULT;
3034 	if (val)
3035 		sp->v4mapped = 1;
3036 	else
3037 		sp->v4mapped = 0;
3038 
3039 	return 0;
3040 }
3041 
3042 /*
3043  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3044  * This option will get or set the maximum size to put in any outgoing
3045  * SCTP DATA chunk.  If a message is larger than this size it will be
3046  * fragmented by SCTP into the specified size.  Note that the underlying
3047  * SCTP implementation may fragment into smaller sized chunks when the
3048  * PMTU of the underlying association is smaller than the value set by
3049  * the user.  The default value for this option is '0' which indicates
3050  * the user is NOT limiting fragmentation and only the PMTU will effect
3051  * SCTP's choice of DATA chunk size.  Note also that values set larger
3052  * than the maximum size of an IP datagram will effectively let SCTP
3053  * control fragmentation (i.e. the same as setting this option to 0).
3054  *
3055  * The following structure is used to access and modify this parameter:
3056  *
3057  * struct sctp_assoc_value {
3058  *   sctp_assoc_t assoc_id;
3059  *   uint32_t assoc_value;
3060  * };
3061  *
3062  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3063  *    For one-to-many style sockets this parameter indicates which
3064  *    association the user is performing an action upon.  Note that if
3065  *    this field's value is zero then the endpoints default value is
3066  *    changed (effecting future associations only).
3067  * assoc_value:  This parameter specifies the maximum size in bytes.
3068  */
3069 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3070 {
3071 	struct sctp_assoc_value params;
3072 	struct sctp_association *asoc;
3073 	struct sctp_sock *sp = sctp_sk(sk);
3074 	int val;
3075 
3076 	if (optlen == sizeof(int)) {
3077 		pr_warn_ratelimited(DEPRECATED
3078 				    "%s (pid %d) "
3079 				    "Use of int in maxseg socket option.\n"
3080 				    "Use struct sctp_assoc_value instead\n",
3081 				    current->comm, task_pid_nr(current));
3082 		if (copy_from_user(&val, optval, optlen))
3083 			return -EFAULT;
3084 		params.assoc_id = 0;
3085 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3086 		if (copy_from_user(&params, optval, optlen))
3087 			return -EFAULT;
3088 		val = params.assoc_value;
3089 	} else
3090 		return -EINVAL;
3091 
3092 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3093 		return -EINVAL;
3094 
3095 	asoc = sctp_id2assoc(sk, params.assoc_id);
3096 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3097 		return -EINVAL;
3098 
3099 	if (asoc) {
3100 		if (val == 0) {
3101 			val = asoc->pathmtu;
3102 			val -= sp->pf->af->net_header_len;
3103 			val -= sizeof(struct sctphdr) +
3104 					sizeof(struct sctp_data_chunk);
3105 		}
3106 		asoc->user_frag = val;
3107 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3108 	} else {
3109 		sp->user_frag = val;
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 
3116 /*
3117  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3118  *
3119  *   Requests that the peer mark the enclosed address as the association
3120  *   primary. The enclosed address must be one of the association's
3121  *   locally bound addresses. The following structure is used to make a
3122  *   set primary request:
3123  */
3124 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3125 					     unsigned int optlen)
3126 {
3127 	struct net *net = sock_net(sk);
3128 	struct sctp_sock	*sp;
3129 	struct sctp_association	*asoc = NULL;
3130 	struct sctp_setpeerprim	prim;
3131 	struct sctp_chunk	*chunk;
3132 	struct sctp_af		*af;
3133 	int 			err;
3134 
3135 	sp = sctp_sk(sk);
3136 
3137 	if (!net->sctp.addip_enable)
3138 		return -EPERM;
3139 
3140 	if (optlen != sizeof(struct sctp_setpeerprim))
3141 		return -EINVAL;
3142 
3143 	if (copy_from_user(&prim, optval, optlen))
3144 		return -EFAULT;
3145 
3146 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3147 	if (!asoc)
3148 		return -EINVAL;
3149 
3150 	if (!asoc->peer.asconf_capable)
3151 		return -EPERM;
3152 
3153 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3154 		return -EPERM;
3155 
3156 	if (!sctp_state(asoc, ESTABLISHED))
3157 		return -ENOTCONN;
3158 
3159 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3160 	if (!af)
3161 		return -EINVAL;
3162 
3163 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3164 		return -EADDRNOTAVAIL;
3165 
3166 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3167 		return -EADDRNOTAVAIL;
3168 
3169 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3170 	chunk = sctp_make_asconf_set_prim(asoc,
3171 					  (union sctp_addr *)&prim.sspp_addr);
3172 	if (!chunk)
3173 		return -ENOMEM;
3174 
3175 	err = sctp_send_asconf(asoc, chunk);
3176 
3177 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3178 
3179 	return err;
3180 }
3181 
3182 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3183 					    unsigned int optlen)
3184 {
3185 	struct sctp_setadaptation adaptation;
3186 
3187 	if (optlen != sizeof(struct sctp_setadaptation))
3188 		return -EINVAL;
3189 	if (copy_from_user(&adaptation, optval, optlen))
3190 		return -EFAULT;
3191 
3192 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3193 
3194 	return 0;
3195 }
3196 
3197 /*
3198  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3199  *
3200  * The context field in the sctp_sndrcvinfo structure is normally only
3201  * used when a failed message is retrieved holding the value that was
3202  * sent down on the actual send call.  This option allows the setting of
3203  * a default context on an association basis that will be received on
3204  * reading messages from the peer.  This is especially helpful in the
3205  * one-2-many model for an application to keep some reference to an
3206  * internal state machine that is processing messages on the
3207  * association.  Note that the setting of this value only effects
3208  * received messages from the peer and does not effect the value that is
3209  * saved with outbound messages.
3210  */
3211 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3212 				   unsigned int optlen)
3213 {
3214 	struct sctp_assoc_value params;
3215 	struct sctp_sock *sp;
3216 	struct sctp_association *asoc;
3217 
3218 	if (optlen != sizeof(struct sctp_assoc_value))
3219 		return -EINVAL;
3220 	if (copy_from_user(&params, optval, optlen))
3221 		return -EFAULT;
3222 
3223 	sp = sctp_sk(sk);
3224 
3225 	if (params.assoc_id != 0) {
3226 		asoc = sctp_id2assoc(sk, params.assoc_id);
3227 		if (!asoc)
3228 			return -EINVAL;
3229 		asoc->default_rcv_context = params.assoc_value;
3230 	} else {
3231 		sp->default_rcv_context = params.assoc_value;
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 /*
3238  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3239  *
3240  * This options will at a minimum specify if the implementation is doing
3241  * fragmented interleave.  Fragmented interleave, for a one to many
3242  * socket, is when subsequent calls to receive a message may return
3243  * parts of messages from different associations.  Some implementations
3244  * may allow you to turn this value on or off.  If so, when turned off,
3245  * no fragment interleave will occur (which will cause a head of line
3246  * blocking amongst multiple associations sharing the same one to many
3247  * socket).  When this option is turned on, then each receive call may
3248  * come from a different association (thus the user must receive data
3249  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3250  * association each receive belongs to.
3251  *
3252  * This option takes a boolean value.  A non-zero value indicates that
3253  * fragmented interleave is on.  A value of zero indicates that
3254  * fragmented interleave is off.
3255  *
3256  * Note that it is important that an implementation that allows this
3257  * option to be turned on, have it off by default.  Otherwise an unaware
3258  * application using the one to many model may become confused and act
3259  * incorrectly.
3260  */
3261 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3262 					       char __user *optval,
3263 					       unsigned int optlen)
3264 {
3265 	int val;
3266 
3267 	if (optlen != sizeof(int))
3268 		return -EINVAL;
3269 	if (get_user(val, (int __user *)optval))
3270 		return -EFAULT;
3271 
3272 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3273 
3274 	return 0;
3275 }
3276 
3277 /*
3278  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3279  *       (SCTP_PARTIAL_DELIVERY_POINT)
3280  *
3281  * This option will set or get the SCTP partial delivery point.  This
3282  * point is the size of a message where the partial delivery API will be
3283  * invoked to help free up rwnd space for the peer.  Setting this to a
3284  * lower value will cause partial deliveries to happen more often.  The
3285  * calls argument is an integer that sets or gets the partial delivery
3286  * point.  Note also that the call will fail if the user attempts to set
3287  * this value larger than the socket receive buffer size.
3288  *
3289  * Note that any single message having a length smaller than or equal to
3290  * the SCTP partial delivery point will be delivered in one single read
3291  * call as long as the user provided buffer is large enough to hold the
3292  * message.
3293  */
3294 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3295 						  char __user *optval,
3296 						  unsigned int optlen)
3297 {
3298 	u32 val;
3299 
3300 	if (optlen != sizeof(u32))
3301 		return -EINVAL;
3302 	if (get_user(val, (int __user *)optval))
3303 		return -EFAULT;
3304 
3305 	/* Note: We double the receive buffer from what the user sets
3306 	 * it to be, also initial rwnd is based on rcvbuf/2.
3307 	 */
3308 	if (val > (sk->sk_rcvbuf >> 1))
3309 		return -EINVAL;
3310 
3311 	sctp_sk(sk)->pd_point = val;
3312 
3313 	return 0; /* is this the right error code? */
3314 }
3315 
3316 /*
3317  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3318  *
3319  * This option will allow a user to change the maximum burst of packets
3320  * that can be emitted by this association.  Note that the default value
3321  * is 4, and some implementations may restrict this setting so that it
3322  * can only be lowered.
3323  *
3324  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3325  * future associations inheriting the socket value.
3326  */
3327 static int sctp_setsockopt_maxburst(struct sock *sk,
3328 				    char __user *optval,
3329 				    unsigned int optlen)
3330 {
3331 	struct sctp_assoc_value params;
3332 	struct sctp_sock *sp;
3333 	struct sctp_association *asoc;
3334 	int val;
3335 	int assoc_id = 0;
3336 
3337 	if (optlen == sizeof(int)) {
3338 		pr_warn_ratelimited(DEPRECATED
3339 				    "%s (pid %d) "
3340 				    "Use of int in max_burst socket option deprecated.\n"
3341 				    "Use struct sctp_assoc_value instead\n",
3342 				    current->comm, task_pid_nr(current));
3343 		if (copy_from_user(&val, optval, optlen))
3344 			return -EFAULT;
3345 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3346 		if (copy_from_user(&params, optval, optlen))
3347 			return -EFAULT;
3348 		val = params.assoc_value;
3349 		assoc_id = params.assoc_id;
3350 	} else
3351 		return -EINVAL;
3352 
3353 	sp = sctp_sk(sk);
3354 
3355 	if (assoc_id != 0) {
3356 		asoc = sctp_id2assoc(sk, assoc_id);
3357 		if (!asoc)
3358 			return -EINVAL;
3359 		asoc->max_burst = val;
3360 	} else
3361 		sp->max_burst = val;
3362 
3363 	return 0;
3364 }
3365 
3366 /*
3367  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3368  *
3369  * This set option adds a chunk type that the user is requesting to be
3370  * received only in an authenticated way.  Changes to the list of chunks
3371  * will only effect future associations on the socket.
3372  */
3373 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3374 				      char __user *optval,
3375 				      unsigned int optlen)
3376 {
3377 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3378 	struct sctp_authchunk val;
3379 
3380 	if (!ep->auth_enable)
3381 		return -EACCES;
3382 
3383 	if (optlen != sizeof(struct sctp_authchunk))
3384 		return -EINVAL;
3385 	if (copy_from_user(&val, optval, optlen))
3386 		return -EFAULT;
3387 
3388 	switch (val.sauth_chunk) {
3389 	case SCTP_CID_INIT:
3390 	case SCTP_CID_INIT_ACK:
3391 	case SCTP_CID_SHUTDOWN_COMPLETE:
3392 	case SCTP_CID_AUTH:
3393 		return -EINVAL;
3394 	}
3395 
3396 	/* add this chunk id to the endpoint */
3397 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3398 }
3399 
3400 /*
3401  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3402  *
3403  * This option gets or sets the list of HMAC algorithms that the local
3404  * endpoint requires the peer to use.
3405  */
3406 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3407 				      char __user *optval,
3408 				      unsigned int optlen)
3409 {
3410 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3411 	struct sctp_hmacalgo *hmacs;
3412 	u32 idents;
3413 	int err;
3414 
3415 	if (!ep->auth_enable)
3416 		return -EACCES;
3417 
3418 	if (optlen < sizeof(struct sctp_hmacalgo))
3419 		return -EINVAL;
3420 
3421 	hmacs = memdup_user(optval, optlen);
3422 	if (IS_ERR(hmacs))
3423 		return PTR_ERR(hmacs);
3424 
3425 	idents = hmacs->shmac_num_idents;
3426 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3427 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3428 		err = -EINVAL;
3429 		goto out;
3430 	}
3431 
3432 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3433 out:
3434 	kfree(hmacs);
3435 	return err;
3436 }
3437 
3438 /*
3439  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3440  *
3441  * This option will set a shared secret key which is used to build an
3442  * association shared key.
3443  */
3444 static int sctp_setsockopt_auth_key(struct sock *sk,
3445 				    char __user *optval,
3446 				    unsigned int optlen)
3447 {
3448 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3449 	struct sctp_authkey *authkey;
3450 	struct sctp_association *asoc;
3451 	int ret;
3452 
3453 	if (!ep->auth_enable)
3454 		return -EACCES;
3455 
3456 	if (optlen <= sizeof(struct sctp_authkey))
3457 		return -EINVAL;
3458 
3459 	authkey = memdup_user(optval, optlen);
3460 	if (IS_ERR(authkey))
3461 		return PTR_ERR(authkey);
3462 
3463 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3464 		ret = -EINVAL;
3465 		goto out;
3466 	}
3467 
3468 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3469 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3470 		ret = -EINVAL;
3471 		goto out;
3472 	}
3473 
3474 	ret = sctp_auth_set_key(ep, asoc, authkey);
3475 out:
3476 	kzfree(authkey);
3477 	return ret;
3478 }
3479 
3480 /*
3481  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3482  *
3483  * This option will get or set the active shared key to be used to build
3484  * the association shared key.
3485  */
3486 static int sctp_setsockopt_active_key(struct sock *sk,
3487 				      char __user *optval,
3488 				      unsigned int optlen)
3489 {
3490 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3491 	struct sctp_authkeyid val;
3492 	struct sctp_association *asoc;
3493 
3494 	if (!ep->auth_enable)
3495 		return -EACCES;
3496 
3497 	if (optlen != sizeof(struct sctp_authkeyid))
3498 		return -EINVAL;
3499 	if (copy_from_user(&val, optval, optlen))
3500 		return -EFAULT;
3501 
3502 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3503 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3504 		return -EINVAL;
3505 
3506 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3507 }
3508 
3509 /*
3510  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3511  *
3512  * This set option will delete a shared secret key from use.
3513  */
3514 static int sctp_setsockopt_del_key(struct sock *sk,
3515 				   char __user *optval,
3516 				   unsigned int optlen)
3517 {
3518 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3519 	struct sctp_authkeyid val;
3520 	struct sctp_association *asoc;
3521 
3522 	if (!ep->auth_enable)
3523 		return -EACCES;
3524 
3525 	if (optlen != sizeof(struct sctp_authkeyid))
3526 		return -EINVAL;
3527 	if (copy_from_user(&val, optval, optlen))
3528 		return -EFAULT;
3529 
3530 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3531 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3532 		return -EINVAL;
3533 
3534 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3535 
3536 }
3537 
3538 /*
3539  * 8.1.23 SCTP_AUTO_ASCONF
3540  *
3541  * This option will enable or disable the use of the automatic generation of
3542  * ASCONF chunks to add and delete addresses to an existing association.  Note
3543  * that this option has two caveats namely: a) it only affects sockets that
3544  * are bound to all addresses available to the SCTP stack, and b) the system
3545  * administrator may have an overriding control that turns the ASCONF feature
3546  * off no matter what setting the socket option may have.
3547  * This option expects an integer boolean flag, where a non-zero value turns on
3548  * the option, and a zero value turns off the option.
3549  * Note. In this implementation, socket operation overrides default parameter
3550  * being set by sysctl as well as FreeBSD implementation
3551  */
3552 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3553 					unsigned int optlen)
3554 {
3555 	int val;
3556 	struct sctp_sock *sp = sctp_sk(sk);
3557 
3558 	if (optlen < sizeof(int))
3559 		return -EINVAL;
3560 	if (get_user(val, (int __user *)optval))
3561 		return -EFAULT;
3562 	if (!sctp_is_ep_boundall(sk) && val)
3563 		return -EINVAL;
3564 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3565 		return 0;
3566 
3567 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3568 	if (val == 0 && sp->do_auto_asconf) {
3569 		list_del(&sp->auto_asconf_list);
3570 		sp->do_auto_asconf = 0;
3571 	} else if (val && !sp->do_auto_asconf) {
3572 		list_add_tail(&sp->auto_asconf_list,
3573 		    &sock_net(sk)->sctp.auto_asconf_splist);
3574 		sp->do_auto_asconf = 1;
3575 	}
3576 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3577 	return 0;
3578 }
3579 
3580 /*
3581  * SCTP_PEER_ADDR_THLDS
3582  *
3583  * This option allows us to alter the partially failed threshold for one or all
3584  * transports in an association.  See Section 6.1 of:
3585  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3586  */
3587 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3588 					    char __user *optval,
3589 					    unsigned int optlen)
3590 {
3591 	struct sctp_paddrthlds val;
3592 	struct sctp_transport *trans;
3593 	struct sctp_association *asoc;
3594 
3595 	if (optlen < sizeof(struct sctp_paddrthlds))
3596 		return -EINVAL;
3597 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3598 			   sizeof(struct sctp_paddrthlds)))
3599 		return -EFAULT;
3600 
3601 
3602 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3603 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3604 		if (!asoc)
3605 			return -ENOENT;
3606 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3607 				    transports) {
3608 			if (val.spt_pathmaxrxt)
3609 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3610 			trans->pf_retrans = val.spt_pathpfthld;
3611 		}
3612 
3613 		if (val.spt_pathmaxrxt)
3614 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3615 		asoc->pf_retrans = val.spt_pathpfthld;
3616 	} else {
3617 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3618 					       val.spt_assoc_id);
3619 		if (!trans)
3620 			return -ENOENT;
3621 
3622 		if (val.spt_pathmaxrxt)
3623 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3624 		trans->pf_retrans = val.spt_pathpfthld;
3625 	}
3626 
3627 	return 0;
3628 }
3629 
3630 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3631 				       char __user *optval,
3632 				       unsigned int optlen)
3633 {
3634 	int val;
3635 
3636 	if (optlen < sizeof(int))
3637 		return -EINVAL;
3638 	if (get_user(val, (int __user *) optval))
3639 		return -EFAULT;
3640 
3641 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3642 
3643 	return 0;
3644 }
3645 
3646 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3647 				       char __user *optval,
3648 				       unsigned int optlen)
3649 {
3650 	int val;
3651 
3652 	if (optlen < sizeof(int))
3653 		return -EINVAL;
3654 	if (get_user(val, (int __user *) optval))
3655 		return -EFAULT;
3656 
3657 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3658 
3659 	return 0;
3660 }
3661 
3662 /* API 6.2 setsockopt(), getsockopt()
3663  *
3664  * Applications use setsockopt() and getsockopt() to set or retrieve
3665  * socket options.  Socket options are used to change the default
3666  * behavior of sockets calls.  They are described in Section 7.
3667  *
3668  * The syntax is:
3669  *
3670  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3671  *                    int __user *optlen);
3672  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3673  *                    int optlen);
3674  *
3675  *   sd      - the socket descript.
3676  *   level   - set to IPPROTO_SCTP for all SCTP options.
3677  *   optname - the option name.
3678  *   optval  - the buffer to store the value of the option.
3679  *   optlen  - the size of the buffer.
3680  */
3681 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3682 			   char __user *optval, unsigned int optlen)
3683 {
3684 	int retval = 0;
3685 
3686 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3687 
3688 	/* I can hardly begin to describe how wrong this is.  This is
3689 	 * so broken as to be worse than useless.  The API draft
3690 	 * REALLY is NOT helpful here...  I am not convinced that the
3691 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3692 	 * are at all well-founded.
3693 	 */
3694 	if (level != SOL_SCTP) {
3695 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3696 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3697 		goto out_nounlock;
3698 	}
3699 
3700 	lock_sock(sk);
3701 
3702 	switch (optname) {
3703 	case SCTP_SOCKOPT_BINDX_ADD:
3704 		/* 'optlen' is the size of the addresses buffer. */
3705 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3706 					       optlen, SCTP_BINDX_ADD_ADDR);
3707 		break;
3708 
3709 	case SCTP_SOCKOPT_BINDX_REM:
3710 		/* 'optlen' is the size of the addresses buffer. */
3711 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3712 					       optlen, SCTP_BINDX_REM_ADDR);
3713 		break;
3714 
3715 	case SCTP_SOCKOPT_CONNECTX_OLD:
3716 		/* 'optlen' is the size of the addresses buffer. */
3717 		retval = sctp_setsockopt_connectx_old(sk,
3718 					    (struct sockaddr __user *)optval,
3719 					    optlen);
3720 		break;
3721 
3722 	case SCTP_SOCKOPT_CONNECTX:
3723 		/* 'optlen' is the size of the addresses buffer. */
3724 		retval = sctp_setsockopt_connectx(sk,
3725 					    (struct sockaddr __user *)optval,
3726 					    optlen);
3727 		break;
3728 
3729 	case SCTP_DISABLE_FRAGMENTS:
3730 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3731 		break;
3732 
3733 	case SCTP_EVENTS:
3734 		retval = sctp_setsockopt_events(sk, optval, optlen);
3735 		break;
3736 
3737 	case SCTP_AUTOCLOSE:
3738 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3739 		break;
3740 
3741 	case SCTP_PEER_ADDR_PARAMS:
3742 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3743 		break;
3744 
3745 	case SCTP_DELAYED_SACK:
3746 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3747 		break;
3748 	case SCTP_PARTIAL_DELIVERY_POINT:
3749 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3750 		break;
3751 
3752 	case SCTP_INITMSG:
3753 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3754 		break;
3755 	case SCTP_DEFAULT_SEND_PARAM:
3756 		retval = sctp_setsockopt_default_send_param(sk, optval,
3757 							    optlen);
3758 		break;
3759 	case SCTP_DEFAULT_SNDINFO:
3760 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3761 		break;
3762 	case SCTP_PRIMARY_ADDR:
3763 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3764 		break;
3765 	case SCTP_SET_PEER_PRIMARY_ADDR:
3766 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3767 		break;
3768 	case SCTP_NODELAY:
3769 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3770 		break;
3771 	case SCTP_RTOINFO:
3772 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3773 		break;
3774 	case SCTP_ASSOCINFO:
3775 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3776 		break;
3777 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3778 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3779 		break;
3780 	case SCTP_MAXSEG:
3781 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3782 		break;
3783 	case SCTP_ADAPTATION_LAYER:
3784 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3785 		break;
3786 	case SCTP_CONTEXT:
3787 		retval = sctp_setsockopt_context(sk, optval, optlen);
3788 		break;
3789 	case SCTP_FRAGMENT_INTERLEAVE:
3790 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3791 		break;
3792 	case SCTP_MAX_BURST:
3793 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3794 		break;
3795 	case SCTP_AUTH_CHUNK:
3796 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3797 		break;
3798 	case SCTP_HMAC_IDENT:
3799 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3800 		break;
3801 	case SCTP_AUTH_KEY:
3802 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3803 		break;
3804 	case SCTP_AUTH_ACTIVE_KEY:
3805 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3806 		break;
3807 	case SCTP_AUTH_DELETE_KEY:
3808 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3809 		break;
3810 	case SCTP_AUTO_ASCONF:
3811 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3812 		break;
3813 	case SCTP_PEER_ADDR_THLDS:
3814 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3815 		break;
3816 	case SCTP_RECVRCVINFO:
3817 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3818 		break;
3819 	case SCTP_RECVNXTINFO:
3820 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3821 		break;
3822 	default:
3823 		retval = -ENOPROTOOPT;
3824 		break;
3825 	}
3826 
3827 	release_sock(sk);
3828 
3829 out_nounlock:
3830 	return retval;
3831 }
3832 
3833 /* API 3.1.6 connect() - UDP Style Syntax
3834  *
3835  * An application may use the connect() call in the UDP model to initiate an
3836  * association without sending data.
3837  *
3838  * The syntax is:
3839  *
3840  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3841  *
3842  * sd: the socket descriptor to have a new association added to.
3843  *
3844  * nam: the address structure (either struct sockaddr_in or struct
3845  *    sockaddr_in6 defined in RFC2553 [7]).
3846  *
3847  * len: the size of the address.
3848  */
3849 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3850 			int addr_len)
3851 {
3852 	int err = 0;
3853 	struct sctp_af *af;
3854 
3855 	lock_sock(sk);
3856 
3857 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3858 		 addr, addr_len);
3859 
3860 	/* Validate addr_len before calling common connect/connectx routine. */
3861 	af = sctp_get_af_specific(addr->sa_family);
3862 	if (!af || addr_len < af->sockaddr_len) {
3863 		err = -EINVAL;
3864 	} else {
3865 		/* Pass correct addr len to common routine (so it knows there
3866 		 * is only one address being passed.
3867 		 */
3868 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3869 	}
3870 
3871 	release_sock(sk);
3872 	return err;
3873 }
3874 
3875 /* FIXME: Write comments. */
3876 static int sctp_disconnect(struct sock *sk, int flags)
3877 {
3878 	return -EOPNOTSUPP; /* STUB */
3879 }
3880 
3881 /* 4.1.4 accept() - TCP Style Syntax
3882  *
3883  * Applications use accept() call to remove an established SCTP
3884  * association from the accept queue of the endpoint.  A new socket
3885  * descriptor will be returned from accept() to represent the newly
3886  * formed association.
3887  */
3888 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3889 {
3890 	struct sctp_sock *sp;
3891 	struct sctp_endpoint *ep;
3892 	struct sock *newsk = NULL;
3893 	struct sctp_association *asoc;
3894 	long timeo;
3895 	int error = 0;
3896 
3897 	lock_sock(sk);
3898 
3899 	sp = sctp_sk(sk);
3900 	ep = sp->ep;
3901 
3902 	if (!sctp_style(sk, TCP)) {
3903 		error = -EOPNOTSUPP;
3904 		goto out;
3905 	}
3906 
3907 	if (!sctp_sstate(sk, LISTENING)) {
3908 		error = -EINVAL;
3909 		goto out;
3910 	}
3911 
3912 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3913 
3914 	error = sctp_wait_for_accept(sk, timeo);
3915 	if (error)
3916 		goto out;
3917 
3918 	/* We treat the list of associations on the endpoint as the accept
3919 	 * queue and pick the first association on the list.
3920 	 */
3921 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3922 
3923 	newsk = sp->pf->create_accept_sk(sk, asoc);
3924 	if (!newsk) {
3925 		error = -ENOMEM;
3926 		goto out;
3927 	}
3928 
3929 	/* Populate the fields of the newsk from the oldsk and migrate the
3930 	 * asoc to the newsk.
3931 	 */
3932 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3933 
3934 out:
3935 	release_sock(sk);
3936 	*err = error;
3937 	return newsk;
3938 }
3939 
3940 /* The SCTP ioctl handler. */
3941 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3942 {
3943 	int rc = -ENOTCONN;
3944 
3945 	lock_sock(sk);
3946 
3947 	/*
3948 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3949 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3950 	 */
3951 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3952 		goto out;
3953 
3954 	switch (cmd) {
3955 	case SIOCINQ: {
3956 		struct sk_buff *skb;
3957 		unsigned int amount = 0;
3958 
3959 		skb = skb_peek(&sk->sk_receive_queue);
3960 		if (skb != NULL) {
3961 			/*
3962 			 * We will only return the amount of this packet since
3963 			 * that is all that will be read.
3964 			 */
3965 			amount = skb->len;
3966 		}
3967 		rc = put_user(amount, (int __user *)arg);
3968 		break;
3969 	}
3970 	default:
3971 		rc = -ENOIOCTLCMD;
3972 		break;
3973 	}
3974 out:
3975 	release_sock(sk);
3976 	return rc;
3977 }
3978 
3979 /* This is the function which gets called during socket creation to
3980  * initialized the SCTP-specific portion of the sock.
3981  * The sock structure should already be zero-filled memory.
3982  */
3983 static int sctp_init_sock(struct sock *sk)
3984 {
3985 	struct net *net = sock_net(sk);
3986 	struct sctp_sock *sp;
3987 
3988 	pr_debug("%s: sk:%p\n", __func__, sk);
3989 
3990 	sp = sctp_sk(sk);
3991 
3992 	/* Initialize the SCTP per socket area.  */
3993 	switch (sk->sk_type) {
3994 	case SOCK_SEQPACKET:
3995 		sp->type = SCTP_SOCKET_UDP;
3996 		break;
3997 	case SOCK_STREAM:
3998 		sp->type = SCTP_SOCKET_TCP;
3999 		break;
4000 	default:
4001 		return -ESOCKTNOSUPPORT;
4002 	}
4003 
4004 	/* Initialize default send parameters. These parameters can be
4005 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4006 	 */
4007 	sp->default_stream = 0;
4008 	sp->default_ppid = 0;
4009 	sp->default_flags = 0;
4010 	sp->default_context = 0;
4011 	sp->default_timetolive = 0;
4012 
4013 	sp->default_rcv_context = 0;
4014 	sp->max_burst = net->sctp.max_burst;
4015 
4016 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4017 
4018 	/* Initialize default setup parameters. These parameters
4019 	 * can be modified with the SCTP_INITMSG socket option or
4020 	 * overridden by the SCTP_INIT CMSG.
4021 	 */
4022 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4023 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4024 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4025 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4026 
4027 	/* Initialize default RTO related parameters.  These parameters can
4028 	 * be modified for with the SCTP_RTOINFO socket option.
4029 	 */
4030 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4031 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4032 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4033 
4034 	/* Initialize default association related parameters. These parameters
4035 	 * can be modified with the SCTP_ASSOCINFO socket option.
4036 	 */
4037 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4038 	sp->assocparams.sasoc_number_peer_destinations = 0;
4039 	sp->assocparams.sasoc_peer_rwnd = 0;
4040 	sp->assocparams.sasoc_local_rwnd = 0;
4041 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4042 
4043 	/* Initialize default event subscriptions. By default, all the
4044 	 * options are off.
4045 	 */
4046 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4047 
4048 	/* Default Peer Address Parameters.  These defaults can
4049 	 * be modified via SCTP_PEER_ADDR_PARAMS
4050 	 */
4051 	sp->hbinterval  = net->sctp.hb_interval;
4052 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4053 	sp->pathmtu     = 0; /* allow default discovery */
4054 	sp->sackdelay   = net->sctp.sack_timeout;
4055 	sp->sackfreq	= 2;
4056 	sp->param_flags = SPP_HB_ENABLE |
4057 			  SPP_PMTUD_ENABLE |
4058 			  SPP_SACKDELAY_ENABLE;
4059 
4060 	/* If enabled no SCTP message fragmentation will be performed.
4061 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4062 	 */
4063 	sp->disable_fragments = 0;
4064 
4065 	/* Enable Nagle algorithm by default.  */
4066 	sp->nodelay           = 0;
4067 
4068 	sp->recvrcvinfo = 0;
4069 	sp->recvnxtinfo = 0;
4070 
4071 	/* Enable by default. */
4072 	sp->v4mapped          = 1;
4073 
4074 	/* Auto-close idle associations after the configured
4075 	 * number of seconds.  A value of 0 disables this
4076 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4077 	 * for UDP-style sockets only.
4078 	 */
4079 	sp->autoclose         = 0;
4080 
4081 	/* User specified fragmentation limit. */
4082 	sp->user_frag         = 0;
4083 
4084 	sp->adaptation_ind = 0;
4085 
4086 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4087 
4088 	/* Control variables for partial data delivery. */
4089 	atomic_set(&sp->pd_mode, 0);
4090 	skb_queue_head_init(&sp->pd_lobby);
4091 	sp->frag_interleave = 0;
4092 
4093 	/* Create a per socket endpoint structure.  Even if we
4094 	 * change the data structure relationships, this may still
4095 	 * be useful for storing pre-connect address information.
4096 	 */
4097 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4098 	if (!sp->ep)
4099 		return -ENOMEM;
4100 
4101 	sp->hmac = NULL;
4102 
4103 	sk->sk_destruct = sctp_destruct_sock;
4104 
4105 	SCTP_DBG_OBJCNT_INC(sock);
4106 
4107 	local_bh_disable();
4108 	percpu_counter_inc(&sctp_sockets_allocated);
4109 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4110 
4111 	/* Nothing can fail after this block, otherwise
4112 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4113 	 */
4114 	if (net->sctp.default_auto_asconf) {
4115 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4116 		list_add_tail(&sp->auto_asconf_list,
4117 		    &net->sctp.auto_asconf_splist);
4118 		sp->do_auto_asconf = 1;
4119 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4120 	} else {
4121 		sp->do_auto_asconf = 0;
4122 	}
4123 
4124 	local_bh_enable();
4125 
4126 	return 0;
4127 }
4128 
4129 /* Cleanup any SCTP per socket resources. Must be called with
4130  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4131  */
4132 static void sctp_destroy_sock(struct sock *sk)
4133 {
4134 	struct sctp_sock *sp;
4135 
4136 	pr_debug("%s: sk:%p\n", __func__, sk);
4137 
4138 	/* Release our hold on the endpoint. */
4139 	sp = sctp_sk(sk);
4140 	/* This could happen during socket init, thus we bail out
4141 	 * early, since the rest of the below is not setup either.
4142 	 */
4143 	if (sp->ep == NULL)
4144 		return;
4145 
4146 	if (sp->do_auto_asconf) {
4147 		sp->do_auto_asconf = 0;
4148 		list_del(&sp->auto_asconf_list);
4149 	}
4150 	sctp_endpoint_free(sp->ep);
4151 	local_bh_disable();
4152 	percpu_counter_dec(&sctp_sockets_allocated);
4153 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4154 	local_bh_enable();
4155 }
4156 
4157 /* Triggered when there are no references on the socket anymore */
4158 static void sctp_destruct_sock(struct sock *sk)
4159 {
4160 	struct sctp_sock *sp = sctp_sk(sk);
4161 
4162 	/* Free up the HMAC transform. */
4163 	crypto_free_hash(sp->hmac);
4164 
4165 	inet_sock_destruct(sk);
4166 }
4167 
4168 /* API 4.1.7 shutdown() - TCP Style Syntax
4169  *     int shutdown(int socket, int how);
4170  *
4171  *     sd      - the socket descriptor of the association to be closed.
4172  *     how     - Specifies the type of shutdown.  The  values  are
4173  *               as follows:
4174  *               SHUT_RD
4175  *                     Disables further receive operations. No SCTP
4176  *                     protocol action is taken.
4177  *               SHUT_WR
4178  *                     Disables further send operations, and initiates
4179  *                     the SCTP shutdown sequence.
4180  *               SHUT_RDWR
4181  *                     Disables further send  and  receive  operations
4182  *                     and initiates the SCTP shutdown sequence.
4183  */
4184 static void sctp_shutdown(struct sock *sk, int how)
4185 {
4186 	struct net *net = sock_net(sk);
4187 	struct sctp_endpoint *ep;
4188 	struct sctp_association *asoc;
4189 
4190 	if (!sctp_style(sk, TCP))
4191 		return;
4192 
4193 	if (how & SEND_SHUTDOWN) {
4194 		ep = sctp_sk(sk)->ep;
4195 		if (!list_empty(&ep->asocs)) {
4196 			asoc = list_entry(ep->asocs.next,
4197 					  struct sctp_association, asocs);
4198 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4199 		}
4200 	}
4201 }
4202 
4203 /* 7.2.1 Association Status (SCTP_STATUS)
4204 
4205  * Applications can retrieve current status information about an
4206  * association, including association state, peer receiver window size,
4207  * number of unacked data chunks, and number of data chunks pending
4208  * receipt.  This information is read-only.
4209  */
4210 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4211 				       char __user *optval,
4212 				       int __user *optlen)
4213 {
4214 	struct sctp_status status;
4215 	struct sctp_association *asoc = NULL;
4216 	struct sctp_transport *transport;
4217 	sctp_assoc_t associd;
4218 	int retval = 0;
4219 
4220 	if (len < sizeof(status)) {
4221 		retval = -EINVAL;
4222 		goto out;
4223 	}
4224 
4225 	len = sizeof(status);
4226 	if (copy_from_user(&status, optval, len)) {
4227 		retval = -EFAULT;
4228 		goto out;
4229 	}
4230 
4231 	associd = status.sstat_assoc_id;
4232 	asoc = sctp_id2assoc(sk, associd);
4233 	if (!asoc) {
4234 		retval = -EINVAL;
4235 		goto out;
4236 	}
4237 
4238 	transport = asoc->peer.primary_path;
4239 
4240 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4241 	status.sstat_state = sctp_assoc_to_state(asoc);
4242 	status.sstat_rwnd =  asoc->peer.rwnd;
4243 	status.sstat_unackdata = asoc->unack_data;
4244 
4245 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4246 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4247 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4248 	status.sstat_fragmentation_point = asoc->frag_point;
4249 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4250 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4251 			transport->af_specific->sockaddr_len);
4252 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4253 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4254 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4255 	status.sstat_primary.spinfo_state = transport->state;
4256 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4257 	status.sstat_primary.spinfo_srtt = transport->srtt;
4258 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4259 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4260 
4261 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4262 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4263 
4264 	if (put_user(len, optlen)) {
4265 		retval = -EFAULT;
4266 		goto out;
4267 	}
4268 
4269 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4270 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4271 		 status.sstat_assoc_id);
4272 
4273 	if (copy_to_user(optval, &status, len)) {
4274 		retval = -EFAULT;
4275 		goto out;
4276 	}
4277 
4278 out:
4279 	return retval;
4280 }
4281 
4282 
4283 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4284  *
4285  * Applications can retrieve information about a specific peer address
4286  * of an association, including its reachability state, congestion
4287  * window, and retransmission timer values.  This information is
4288  * read-only.
4289  */
4290 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4291 					  char __user *optval,
4292 					  int __user *optlen)
4293 {
4294 	struct sctp_paddrinfo pinfo;
4295 	struct sctp_transport *transport;
4296 	int retval = 0;
4297 
4298 	if (len < sizeof(pinfo)) {
4299 		retval = -EINVAL;
4300 		goto out;
4301 	}
4302 
4303 	len = sizeof(pinfo);
4304 	if (copy_from_user(&pinfo, optval, len)) {
4305 		retval = -EFAULT;
4306 		goto out;
4307 	}
4308 
4309 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4310 					   pinfo.spinfo_assoc_id);
4311 	if (!transport)
4312 		return -EINVAL;
4313 
4314 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4315 	pinfo.spinfo_state = transport->state;
4316 	pinfo.spinfo_cwnd = transport->cwnd;
4317 	pinfo.spinfo_srtt = transport->srtt;
4318 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4319 	pinfo.spinfo_mtu = transport->pathmtu;
4320 
4321 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4322 		pinfo.spinfo_state = SCTP_ACTIVE;
4323 
4324 	if (put_user(len, optlen)) {
4325 		retval = -EFAULT;
4326 		goto out;
4327 	}
4328 
4329 	if (copy_to_user(optval, &pinfo, len)) {
4330 		retval = -EFAULT;
4331 		goto out;
4332 	}
4333 
4334 out:
4335 	return retval;
4336 }
4337 
4338 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4339  *
4340  * This option is a on/off flag.  If enabled no SCTP message
4341  * fragmentation will be performed.  Instead if a message being sent
4342  * exceeds the current PMTU size, the message will NOT be sent and
4343  * instead a error will be indicated to the user.
4344  */
4345 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4346 					char __user *optval, int __user *optlen)
4347 {
4348 	int val;
4349 
4350 	if (len < sizeof(int))
4351 		return -EINVAL;
4352 
4353 	len = sizeof(int);
4354 	val = (sctp_sk(sk)->disable_fragments == 1);
4355 	if (put_user(len, optlen))
4356 		return -EFAULT;
4357 	if (copy_to_user(optval, &val, len))
4358 		return -EFAULT;
4359 	return 0;
4360 }
4361 
4362 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4363  *
4364  * This socket option is used to specify various notifications and
4365  * ancillary data the user wishes to receive.
4366  */
4367 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4368 				  int __user *optlen)
4369 {
4370 	if (len <= 0)
4371 		return -EINVAL;
4372 	if (len > sizeof(struct sctp_event_subscribe))
4373 		len = sizeof(struct sctp_event_subscribe);
4374 	if (put_user(len, optlen))
4375 		return -EFAULT;
4376 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4377 		return -EFAULT;
4378 	return 0;
4379 }
4380 
4381 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4382  *
4383  * This socket option is applicable to the UDP-style socket only.  When
4384  * set it will cause associations that are idle for more than the
4385  * specified number of seconds to automatically close.  An association
4386  * being idle is defined an association that has NOT sent or received
4387  * user data.  The special value of '0' indicates that no automatic
4388  * close of any associations should be performed.  The option expects an
4389  * integer defining the number of seconds of idle time before an
4390  * association is closed.
4391  */
4392 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4393 {
4394 	/* Applicable to UDP-style socket only */
4395 	if (sctp_style(sk, TCP))
4396 		return -EOPNOTSUPP;
4397 	if (len < sizeof(int))
4398 		return -EINVAL;
4399 	len = sizeof(int);
4400 	if (put_user(len, optlen))
4401 		return -EFAULT;
4402 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4403 		return -EFAULT;
4404 	return 0;
4405 }
4406 
4407 /* Helper routine to branch off an association to a new socket.  */
4408 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4409 {
4410 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4411 	struct sctp_sock *sp = sctp_sk(sk);
4412 	struct socket *sock;
4413 	int err = 0;
4414 
4415 	if (!asoc)
4416 		return -EINVAL;
4417 
4418 	/* An association cannot be branched off from an already peeled-off
4419 	 * socket, nor is this supported for tcp style sockets.
4420 	 */
4421 	if (!sctp_style(sk, UDP))
4422 		return -EINVAL;
4423 
4424 	/* Create a new socket.  */
4425 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4426 	if (err < 0)
4427 		return err;
4428 
4429 	sctp_copy_sock(sock->sk, sk, asoc);
4430 
4431 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4432 	 * Set the daddr and initialize id to something more random
4433 	 */
4434 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4435 
4436 	/* Populate the fields of the newsk from the oldsk and migrate the
4437 	 * asoc to the newsk.
4438 	 */
4439 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4440 
4441 	*sockp = sock;
4442 
4443 	return err;
4444 }
4445 EXPORT_SYMBOL(sctp_do_peeloff);
4446 
4447 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4448 {
4449 	sctp_peeloff_arg_t peeloff;
4450 	struct socket *newsock;
4451 	struct file *newfile;
4452 	int retval = 0;
4453 
4454 	if (len < sizeof(sctp_peeloff_arg_t))
4455 		return -EINVAL;
4456 	len = sizeof(sctp_peeloff_arg_t);
4457 	if (copy_from_user(&peeloff, optval, len))
4458 		return -EFAULT;
4459 
4460 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4461 	if (retval < 0)
4462 		goto out;
4463 
4464 	/* Map the socket to an unused fd that can be returned to the user.  */
4465 	retval = get_unused_fd_flags(0);
4466 	if (retval < 0) {
4467 		sock_release(newsock);
4468 		goto out;
4469 	}
4470 
4471 	newfile = sock_alloc_file(newsock, 0, NULL);
4472 	if (IS_ERR(newfile)) {
4473 		put_unused_fd(retval);
4474 		sock_release(newsock);
4475 		return PTR_ERR(newfile);
4476 	}
4477 
4478 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4479 		 retval);
4480 
4481 	/* Return the fd mapped to the new socket.  */
4482 	if (put_user(len, optlen)) {
4483 		fput(newfile);
4484 		put_unused_fd(retval);
4485 		return -EFAULT;
4486 	}
4487 	peeloff.sd = retval;
4488 	if (copy_to_user(optval, &peeloff, len)) {
4489 		fput(newfile);
4490 		put_unused_fd(retval);
4491 		return -EFAULT;
4492 	}
4493 	fd_install(retval, newfile);
4494 out:
4495 	return retval;
4496 }
4497 
4498 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4499  *
4500  * Applications can enable or disable heartbeats for any peer address of
4501  * an association, modify an address's heartbeat interval, force a
4502  * heartbeat to be sent immediately, and adjust the address's maximum
4503  * number of retransmissions sent before an address is considered
4504  * unreachable.  The following structure is used to access and modify an
4505  * address's parameters:
4506  *
4507  *  struct sctp_paddrparams {
4508  *     sctp_assoc_t            spp_assoc_id;
4509  *     struct sockaddr_storage spp_address;
4510  *     uint32_t                spp_hbinterval;
4511  *     uint16_t                spp_pathmaxrxt;
4512  *     uint32_t                spp_pathmtu;
4513  *     uint32_t                spp_sackdelay;
4514  *     uint32_t                spp_flags;
4515  * };
4516  *
4517  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4518  *                     application, and identifies the association for
4519  *                     this query.
4520  *   spp_address     - This specifies which address is of interest.
4521  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4522  *                     in milliseconds.  If a  value of zero
4523  *                     is present in this field then no changes are to
4524  *                     be made to this parameter.
4525  *   spp_pathmaxrxt  - This contains the maximum number of
4526  *                     retransmissions before this address shall be
4527  *                     considered unreachable. If a  value of zero
4528  *                     is present in this field then no changes are to
4529  *                     be made to this parameter.
4530  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4531  *                     specified here will be the "fixed" path mtu.
4532  *                     Note that if the spp_address field is empty
4533  *                     then all associations on this address will
4534  *                     have this fixed path mtu set upon them.
4535  *
4536  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4537  *                     the number of milliseconds that sacks will be delayed
4538  *                     for. This value will apply to all addresses of an
4539  *                     association if the spp_address field is empty. Note
4540  *                     also, that if delayed sack is enabled and this
4541  *                     value is set to 0, no change is made to the last
4542  *                     recorded delayed sack timer value.
4543  *
4544  *   spp_flags       - These flags are used to control various features
4545  *                     on an association. The flag field may contain
4546  *                     zero or more of the following options.
4547  *
4548  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4549  *                     specified address. Note that if the address
4550  *                     field is empty all addresses for the association
4551  *                     have heartbeats enabled upon them.
4552  *
4553  *                     SPP_HB_DISABLE - Disable heartbeats on the
4554  *                     speicifed address. Note that if the address
4555  *                     field is empty all addresses for the association
4556  *                     will have their heartbeats disabled. Note also
4557  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4558  *                     mutually exclusive, only one of these two should
4559  *                     be specified. Enabling both fields will have
4560  *                     undetermined results.
4561  *
4562  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4563  *                     to be made immediately.
4564  *
4565  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4566  *                     discovery upon the specified address. Note that
4567  *                     if the address feild is empty then all addresses
4568  *                     on the association are effected.
4569  *
4570  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4571  *                     discovery upon the specified address. Note that
4572  *                     if the address feild is empty then all addresses
4573  *                     on the association are effected. Not also that
4574  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4575  *                     exclusive. Enabling both will have undetermined
4576  *                     results.
4577  *
4578  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4579  *                     on delayed sack. The time specified in spp_sackdelay
4580  *                     is used to specify the sack delay for this address. Note
4581  *                     that if spp_address is empty then all addresses will
4582  *                     enable delayed sack and take on the sack delay
4583  *                     value specified in spp_sackdelay.
4584  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4585  *                     off delayed sack. If the spp_address field is blank then
4586  *                     delayed sack is disabled for the entire association. Note
4587  *                     also that this field is mutually exclusive to
4588  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4589  *                     results.
4590  */
4591 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4592 					    char __user *optval, int __user *optlen)
4593 {
4594 	struct sctp_paddrparams  params;
4595 	struct sctp_transport   *trans = NULL;
4596 	struct sctp_association *asoc = NULL;
4597 	struct sctp_sock        *sp = sctp_sk(sk);
4598 
4599 	if (len < sizeof(struct sctp_paddrparams))
4600 		return -EINVAL;
4601 	len = sizeof(struct sctp_paddrparams);
4602 	if (copy_from_user(&params, optval, len))
4603 		return -EFAULT;
4604 
4605 	/* If an address other than INADDR_ANY is specified, and
4606 	 * no transport is found, then the request is invalid.
4607 	 */
4608 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4609 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4610 					       params.spp_assoc_id);
4611 		if (!trans) {
4612 			pr_debug("%s: failed no transport\n", __func__);
4613 			return -EINVAL;
4614 		}
4615 	}
4616 
4617 	/* Get association, if assoc_id != 0 and the socket is a one
4618 	 * to many style socket, and an association was not found, then
4619 	 * the id was invalid.
4620 	 */
4621 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4622 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4623 		pr_debug("%s: failed no association\n", __func__);
4624 		return -EINVAL;
4625 	}
4626 
4627 	if (trans) {
4628 		/* Fetch transport values. */
4629 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4630 		params.spp_pathmtu    = trans->pathmtu;
4631 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4632 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4633 
4634 		/*draft-11 doesn't say what to return in spp_flags*/
4635 		params.spp_flags      = trans->param_flags;
4636 	} else if (asoc) {
4637 		/* Fetch association values. */
4638 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4639 		params.spp_pathmtu    = asoc->pathmtu;
4640 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4641 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4642 
4643 		/*draft-11 doesn't say what to return in spp_flags*/
4644 		params.spp_flags      = asoc->param_flags;
4645 	} else {
4646 		/* Fetch socket values. */
4647 		params.spp_hbinterval = sp->hbinterval;
4648 		params.spp_pathmtu    = sp->pathmtu;
4649 		params.spp_sackdelay  = sp->sackdelay;
4650 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4651 
4652 		/*draft-11 doesn't say what to return in spp_flags*/
4653 		params.spp_flags      = sp->param_flags;
4654 	}
4655 
4656 	if (copy_to_user(optval, &params, len))
4657 		return -EFAULT;
4658 
4659 	if (put_user(len, optlen))
4660 		return -EFAULT;
4661 
4662 	return 0;
4663 }
4664 
4665 /*
4666  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4667  *
4668  * This option will effect the way delayed acks are performed.  This
4669  * option allows you to get or set the delayed ack time, in
4670  * milliseconds.  It also allows changing the delayed ack frequency.
4671  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4672  * the assoc_id is 0, then this sets or gets the endpoints default
4673  * values.  If the assoc_id field is non-zero, then the set or get
4674  * effects the specified association for the one to many model (the
4675  * assoc_id field is ignored by the one to one model).  Note that if
4676  * sack_delay or sack_freq are 0 when setting this option, then the
4677  * current values will remain unchanged.
4678  *
4679  * struct sctp_sack_info {
4680  *     sctp_assoc_t            sack_assoc_id;
4681  *     uint32_t                sack_delay;
4682  *     uint32_t                sack_freq;
4683  * };
4684  *
4685  * sack_assoc_id -  This parameter, indicates which association the user
4686  *    is performing an action upon.  Note that if this field's value is
4687  *    zero then the endpoints default value is changed (effecting future
4688  *    associations only).
4689  *
4690  * sack_delay -  This parameter contains the number of milliseconds that
4691  *    the user is requesting the delayed ACK timer be set to.  Note that
4692  *    this value is defined in the standard to be between 200 and 500
4693  *    milliseconds.
4694  *
4695  * sack_freq -  This parameter contains the number of packets that must
4696  *    be received before a sack is sent without waiting for the delay
4697  *    timer to expire.  The default value for this is 2, setting this
4698  *    value to 1 will disable the delayed sack algorithm.
4699  */
4700 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4701 					    char __user *optval,
4702 					    int __user *optlen)
4703 {
4704 	struct sctp_sack_info    params;
4705 	struct sctp_association *asoc = NULL;
4706 	struct sctp_sock        *sp = sctp_sk(sk);
4707 
4708 	if (len >= sizeof(struct sctp_sack_info)) {
4709 		len = sizeof(struct sctp_sack_info);
4710 
4711 		if (copy_from_user(&params, optval, len))
4712 			return -EFAULT;
4713 	} else if (len == sizeof(struct sctp_assoc_value)) {
4714 		pr_warn_ratelimited(DEPRECATED
4715 				    "%s (pid %d) "
4716 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4717 				    "Use struct sctp_sack_info instead\n",
4718 				    current->comm, task_pid_nr(current));
4719 		if (copy_from_user(&params, optval, len))
4720 			return -EFAULT;
4721 	} else
4722 		return -EINVAL;
4723 
4724 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4725 	 * to many style socket, and an association was not found, then
4726 	 * the id was invalid.
4727 	 */
4728 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4729 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4730 		return -EINVAL;
4731 
4732 	if (asoc) {
4733 		/* Fetch association values. */
4734 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4735 			params.sack_delay = jiffies_to_msecs(
4736 				asoc->sackdelay);
4737 			params.sack_freq = asoc->sackfreq;
4738 
4739 		} else {
4740 			params.sack_delay = 0;
4741 			params.sack_freq = 1;
4742 		}
4743 	} else {
4744 		/* Fetch socket values. */
4745 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4746 			params.sack_delay  = sp->sackdelay;
4747 			params.sack_freq = sp->sackfreq;
4748 		} else {
4749 			params.sack_delay  = 0;
4750 			params.sack_freq = 1;
4751 		}
4752 	}
4753 
4754 	if (copy_to_user(optval, &params, len))
4755 		return -EFAULT;
4756 
4757 	if (put_user(len, optlen))
4758 		return -EFAULT;
4759 
4760 	return 0;
4761 }
4762 
4763 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4764  *
4765  * Applications can specify protocol parameters for the default association
4766  * initialization.  The option name argument to setsockopt() and getsockopt()
4767  * is SCTP_INITMSG.
4768  *
4769  * Setting initialization parameters is effective only on an unconnected
4770  * socket (for UDP-style sockets only future associations are effected
4771  * by the change).  With TCP-style sockets, this option is inherited by
4772  * sockets derived from a listener socket.
4773  */
4774 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4775 {
4776 	if (len < sizeof(struct sctp_initmsg))
4777 		return -EINVAL;
4778 	len = sizeof(struct sctp_initmsg);
4779 	if (put_user(len, optlen))
4780 		return -EFAULT;
4781 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4782 		return -EFAULT;
4783 	return 0;
4784 }
4785 
4786 
4787 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4788 				      char __user *optval, int __user *optlen)
4789 {
4790 	struct sctp_association *asoc;
4791 	int cnt = 0;
4792 	struct sctp_getaddrs getaddrs;
4793 	struct sctp_transport *from;
4794 	void __user *to;
4795 	union sctp_addr temp;
4796 	struct sctp_sock *sp = sctp_sk(sk);
4797 	int addrlen;
4798 	size_t space_left;
4799 	int bytes_copied;
4800 
4801 	if (len < sizeof(struct sctp_getaddrs))
4802 		return -EINVAL;
4803 
4804 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4805 		return -EFAULT;
4806 
4807 	/* For UDP-style sockets, id specifies the association to query.  */
4808 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4809 	if (!asoc)
4810 		return -EINVAL;
4811 
4812 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4813 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4814 
4815 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4816 				transports) {
4817 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4818 		addrlen = sctp_get_pf_specific(sk->sk_family)
4819 			      ->addr_to_user(sp, &temp);
4820 		if (space_left < addrlen)
4821 			return -ENOMEM;
4822 		if (copy_to_user(to, &temp, addrlen))
4823 			return -EFAULT;
4824 		to += addrlen;
4825 		cnt++;
4826 		space_left -= addrlen;
4827 	}
4828 
4829 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4830 		return -EFAULT;
4831 	bytes_copied = ((char __user *)to) - optval;
4832 	if (put_user(bytes_copied, optlen))
4833 		return -EFAULT;
4834 
4835 	return 0;
4836 }
4837 
4838 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4839 			    size_t space_left, int *bytes_copied)
4840 {
4841 	struct sctp_sockaddr_entry *addr;
4842 	union sctp_addr temp;
4843 	int cnt = 0;
4844 	int addrlen;
4845 	struct net *net = sock_net(sk);
4846 
4847 	rcu_read_lock();
4848 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4849 		if (!addr->valid)
4850 			continue;
4851 
4852 		if ((PF_INET == sk->sk_family) &&
4853 		    (AF_INET6 == addr->a.sa.sa_family))
4854 			continue;
4855 		if ((PF_INET6 == sk->sk_family) &&
4856 		    inet_v6_ipv6only(sk) &&
4857 		    (AF_INET == addr->a.sa.sa_family))
4858 			continue;
4859 		memcpy(&temp, &addr->a, sizeof(temp));
4860 		if (!temp.v4.sin_port)
4861 			temp.v4.sin_port = htons(port);
4862 
4863 		addrlen = sctp_get_pf_specific(sk->sk_family)
4864 			      ->addr_to_user(sctp_sk(sk), &temp);
4865 
4866 		if (space_left < addrlen) {
4867 			cnt =  -ENOMEM;
4868 			break;
4869 		}
4870 		memcpy(to, &temp, addrlen);
4871 
4872 		to += addrlen;
4873 		cnt++;
4874 		space_left -= addrlen;
4875 		*bytes_copied += addrlen;
4876 	}
4877 	rcu_read_unlock();
4878 
4879 	return cnt;
4880 }
4881 
4882 
4883 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4884 				       char __user *optval, int __user *optlen)
4885 {
4886 	struct sctp_bind_addr *bp;
4887 	struct sctp_association *asoc;
4888 	int cnt = 0;
4889 	struct sctp_getaddrs getaddrs;
4890 	struct sctp_sockaddr_entry *addr;
4891 	void __user *to;
4892 	union sctp_addr temp;
4893 	struct sctp_sock *sp = sctp_sk(sk);
4894 	int addrlen;
4895 	int err = 0;
4896 	size_t space_left;
4897 	int bytes_copied = 0;
4898 	void *addrs;
4899 	void *buf;
4900 
4901 	if (len < sizeof(struct sctp_getaddrs))
4902 		return -EINVAL;
4903 
4904 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4905 		return -EFAULT;
4906 
4907 	/*
4908 	 *  For UDP-style sockets, id specifies the association to query.
4909 	 *  If the id field is set to the value '0' then the locally bound
4910 	 *  addresses are returned without regard to any particular
4911 	 *  association.
4912 	 */
4913 	if (0 == getaddrs.assoc_id) {
4914 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4915 	} else {
4916 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4917 		if (!asoc)
4918 			return -EINVAL;
4919 		bp = &asoc->base.bind_addr;
4920 	}
4921 
4922 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4923 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4924 
4925 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
4926 	if (!addrs)
4927 		return -ENOMEM;
4928 
4929 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4930 	 * addresses from the global local address list.
4931 	 */
4932 	if (sctp_list_single_entry(&bp->address_list)) {
4933 		addr = list_entry(bp->address_list.next,
4934 				  struct sctp_sockaddr_entry, list);
4935 		if (sctp_is_any(sk, &addr->a)) {
4936 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4937 						space_left, &bytes_copied);
4938 			if (cnt < 0) {
4939 				err = cnt;
4940 				goto out;
4941 			}
4942 			goto copy_getaddrs;
4943 		}
4944 	}
4945 
4946 	buf = addrs;
4947 	/* Protection on the bound address list is not needed since
4948 	 * in the socket option context we hold a socket lock and
4949 	 * thus the bound address list can't change.
4950 	 */
4951 	list_for_each_entry(addr, &bp->address_list, list) {
4952 		memcpy(&temp, &addr->a, sizeof(temp));
4953 		addrlen = sctp_get_pf_specific(sk->sk_family)
4954 			      ->addr_to_user(sp, &temp);
4955 		if (space_left < addrlen) {
4956 			err =  -ENOMEM; /*fixme: right error?*/
4957 			goto out;
4958 		}
4959 		memcpy(buf, &temp, addrlen);
4960 		buf += addrlen;
4961 		bytes_copied += addrlen;
4962 		cnt++;
4963 		space_left -= addrlen;
4964 	}
4965 
4966 copy_getaddrs:
4967 	if (copy_to_user(to, addrs, bytes_copied)) {
4968 		err = -EFAULT;
4969 		goto out;
4970 	}
4971 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4972 		err = -EFAULT;
4973 		goto out;
4974 	}
4975 	if (put_user(bytes_copied, optlen))
4976 		err = -EFAULT;
4977 out:
4978 	kfree(addrs);
4979 	return err;
4980 }
4981 
4982 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4983  *
4984  * Requests that the local SCTP stack use the enclosed peer address as
4985  * the association primary.  The enclosed address must be one of the
4986  * association peer's addresses.
4987  */
4988 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4989 					char __user *optval, int __user *optlen)
4990 {
4991 	struct sctp_prim prim;
4992 	struct sctp_association *asoc;
4993 	struct sctp_sock *sp = sctp_sk(sk);
4994 
4995 	if (len < sizeof(struct sctp_prim))
4996 		return -EINVAL;
4997 
4998 	len = sizeof(struct sctp_prim);
4999 
5000 	if (copy_from_user(&prim, optval, len))
5001 		return -EFAULT;
5002 
5003 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5004 	if (!asoc)
5005 		return -EINVAL;
5006 
5007 	if (!asoc->peer.primary_path)
5008 		return -ENOTCONN;
5009 
5010 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5011 		asoc->peer.primary_path->af_specific->sockaddr_len);
5012 
5013 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5014 			(union sctp_addr *)&prim.ssp_addr);
5015 
5016 	if (put_user(len, optlen))
5017 		return -EFAULT;
5018 	if (copy_to_user(optval, &prim, len))
5019 		return -EFAULT;
5020 
5021 	return 0;
5022 }
5023 
5024 /*
5025  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5026  *
5027  * Requests that the local endpoint set the specified Adaptation Layer
5028  * Indication parameter for all future INIT and INIT-ACK exchanges.
5029  */
5030 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5031 				  char __user *optval, int __user *optlen)
5032 {
5033 	struct sctp_setadaptation adaptation;
5034 
5035 	if (len < sizeof(struct sctp_setadaptation))
5036 		return -EINVAL;
5037 
5038 	len = sizeof(struct sctp_setadaptation);
5039 
5040 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5041 
5042 	if (put_user(len, optlen))
5043 		return -EFAULT;
5044 	if (copy_to_user(optval, &adaptation, len))
5045 		return -EFAULT;
5046 
5047 	return 0;
5048 }
5049 
5050 /*
5051  *
5052  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5053  *
5054  *   Applications that wish to use the sendto() system call may wish to
5055  *   specify a default set of parameters that would normally be supplied
5056  *   through the inclusion of ancillary data.  This socket option allows
5057  *   such an application to set the default sctp_sndrcvinfo structure.
5058 
5059 
5060  *   The application that wishes to use this socket option simply passes
5061  *   in to this call the sctp_sndrcvinfo structure defined in Section
5062  *   5.2.2) The input parameters accepted by this call include
5063  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5064  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5065  *   to this call if the caller is using the UDP model.
5066  *
5067  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5068  */
5069 static int sctp_getsockopt_default_send_param(struct sock *sk,
5070 					int len, char __user *optval,
5071 					int __user *optlen)
5072 {
5073 	struct sctp_sock *sp = sctp_sk(sk);
5074 	struct sctp_association *asoc;
5075 	struct sctp_sndrcvinfo info;
5076 
5077 	if (len < sizeof(info))
5078 		return -EINVAL;
5079 
5080 	len = sizeof(info);
5081 
5082 	if (copy_from_user(&info, optval, len))
5083 		return -EFAULT;
5084 
5085 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5086 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5087 		return -EINVAL;
5088 	if (asoc) {
5089 		info.sinfo_stream = asoc->default_stream;
5090 		info.sinfo_flags = asoc->default_flags;
5091 		info.sinfo_ppid = asoc->default_ppid;
5092 		info.sinfo_context = asoc->default_context;
5093 		info.sinfo_timetolive = asoc->default_timetolive;
5094 	} else {
5095 		info.sinfo_stream = sp->default_stream;
5096 		info.sinfo_flags = sp->default_flags;
5097 		info.sinfo_ppid = sp->default_ppid;
5098 		info.sinfo_context = sp->default_context;
5099 		info.sinfo_timetolive = sp->default_timetolive;
5100 	}
5101 
5102 	if (put_user(len, optlen))
5103 		return -EFAULT;
5104 	if (copy_to_user(optval, &info, len))
5105 		return -EFAULT;
5106 
5107 	return 0;
5108 }
5109 
5110 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5111  * (SCTP_DEFAULT_SNDINFO)
5112  */
5113 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5114 					   char __user *optval,
5115 					   int __user *optlen)
5116 {
5117 	struct sctp_sock *sp = sctp_sk(sk);
5118 	struct sctp_association *asoc;
5119 	struct sctp_sndinfo info;
5120 
5121 	if (len < sizeof(info))
5122 		return -EINVAL;
5123 
5124 	len = sizeof(info);
5125 
5126 	if (copy_from_user(&info, optval, len))
5127 		return -EFAULT;
5128 
5129 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5130 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5131 		return -EINVAL;
5132 	if (asoc) {
5133 		info.snd_sid = asoc->default_stream;
5134 		info.snd_flags = asoc->default_flags;
5135 		info.snd_ppid = asoc->default_ppid;
5136 		info.snd_context = asoc->default_context;
5137 	} else {
5138 		info.snd_sid = sp->default_stream;
5139 		info.snd_flags = sp->default_flags;
5140 		info.snd_ppid = sp->default_ppid;
5141 		info.snd_context = sp->default_context;
5142 	}
5143 
5144 	if (put_user(len, optlen))
5145 		return -EFAULT;
5146 	if (copy_to_user(optval, &info, len))
5147 		return -EFAULT;
5148 
5149 	return 0;
5150 }
5151 
5152 /*
5153  *
5154  * 7.1.5 SCTP_NODELAY
5155  *
5156  * Turn on/off any Nagle-like algorithm.  This means that packets are
5157  * generally sent as soon as possible and no unnecessary delays are
5158  * introduced, at the cost of more packets in the network.  Expects an
5159  * integer boolean flag.
5160  */
5161 
5162 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5163 				   char __user *optval, int __user *optlen)
5164 {
5165 	int val;
5166 
5167 	if (len < sizeof(int))
5168 		return -EINVAL;
5169 
5170 	len = sizeof(int);
5171 	val = (sctp_sk(sk)->nodelay == 1);
5172 	if (put_user(len, optlen))
5173 		return -EFAULT;
5174 	if (copy_to_user(optval, &val, len))
5175 		return -EFAULT;
5176 	return 0;
5177 }
5178 
5179 /*
5180  *
5181  * 7.1.1 SCTP_RTOINFO
5182  *
5183  * The protocol parameters used to initialize and bound retransmission
5184  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5185  * and modify these parameters.
5186  * All parameters are time values, in milliseconds.  A value of 0, when
5187  * modifying the parameters, indicates that the current value should not
5188  * be changed.
5189  *
5190  */
5191 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5192 				char __user *optval,
5193 				int __user *optlen) {
5194 	struct sctp_rtoinfo rtoinfo;
5195 	struct sctp_association *asoc;
5196 
5197 	if (len < sizeof (struct sctp_rtoinfo))
5198 		return -EINVAL;
5199 
5200 	len = sizeof(struct sctp_rtoinfo);
5201 
5202 	if (copy_from_user(&rtoinfo, optval, len))
5203 		return -EFAULT;
5204 
5205 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5206 
5207 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5208 		return -EINVAL;
5209 
5210 	/* Values corresponding to the specific association. */
5211 	if (asoc) {
5212 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5213 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5214 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5215 	} else {
5216 		/* Values corresponding to the endpoint. */
5217 		struct sctp_sock *sp = sctp_sk(sk);
5218 
5219 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5220 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5221 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5222 	}
5223 
5224 	if (put_user(len, optlen))
5225 		return -EFAULT;
5226 
5227 	if (copy_to_user(optval, &rtoinfo, len))
5228 		return -EFAULT;
5229 
5230 	return 0;
5231 }
5232 
5233 /*
5234  *
5235  * 7.1.2 SCTP_ASSOCINFO
5236  *
5237  * This option is used to tune the maximum retransmission attempts
5238  * of the association.
5239  * Returns an error if the new association retransmission value is
5240  * greater than the sum of the retransmission value  of the peer.
5241  * See [SCTP] for more information.
5242  *
5243  */
5244 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5245 				     char __user *optval,
5246 				     int __user *optlen)
5247 {
5248 
5249 	struct sctp_assocparams assocparams;
5250 	struct sctp_association *asoc;
5251 	struct list_head *pos;
5252 	int cnt = 0;
5253 
5254 	if (len < sizeof (struct sctp_assocparams))
5255 		return -EINVAL;
5256 
5257 	len = sizeof(struct sctp_assocparams);
5258 
5259 	if (copy_from_user(&assocparams, optval, len))
5260 		return -EFAULT;
5261 
5262 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5263 
5264 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5265 		return -EINVAL;
5266 
5267 	/* Values correspoinding to the specific association */
5268 	if (asoc) {
5269 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5270 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5271 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5272 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5273 
5274 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5275 			cnt++;
5276 		}
5277 
5278 		assocparams.sasoc_number_peer_destinations = cnt;
5279 	} else {
5280 		/* Values corresponding to the endpoint */
5281 		struct sctp_sock *sp = sctp_sk(sk);
5282 
5283 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5284 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5285 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5286 		assocparams.sasoc_cookie_life =
5287 					sp->assocparams.sasoc_cookie_life;
5288 		assocparams.sasoc_number_peer_destinations =
5289 					sp->assocparams.
5290 					sasoc_number_peer_destinations;
5291 	}
5292 
5293 	if (put_user(len, optlen))
5294 		return -EFAULT;
5295 
5296 	if (copy_to_user(optval, &assocparams, len))
5297 		return -EFAULT;
5298 
5299 	return 0;
5300 }
5301 
5302 /*
5303  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5304  *
5305  * This socket option is a boolean flag which turns on or off mapped V4
5306  * addresses.  If this option is turned on and the socket is type
5307  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5308  * If this option is turned off, then no mapping will be done of V4
5309  * addresses and a user will receive both PF_INET6 and PF_INET type
5310  * addresses on the socket.
5311  */
5312 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5313 				    char __user *optval, int __user *optlen)
5314 {
5315 	int val;
5316 	struct sctp_sock *sp = sctp_sk(sk);
5317 
5318 	if (len < sizeof(int))
5319 		return -EINVAL;
5320 
5321 	len = sizeof(int);
5322 	val = sp->v4mapped;
5323 	if (put_user(len, optlen))
5324 		return -EFAULT;
5325 	if (copy_to_user(optval, &val, len))
5326 		return -EFAULT;
5327 
5328 	return 0;
5329 }
5330 
5331 /*
5332  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5333  * (chapter and verse is quoted at sctp_setsockopt_context())
5334  */
5335 static int sctp_getsockopt_context(struct sock *sk, int len,
5336 				   char __user *optval, int __user *optlen)
5337 {
5338 	struct sctp_assoc_value params;
5339 	struct sctp_sock *sp;
5340 	struct sctp_association *asoc;
5341 
5342 	if (len < sizeof(struct sctp_assoc_value))
5343 		return -EINVAL;
5344 
5345 	len = sizeof(struct sctp_assoc_value);
5346 
5347 	if (copy_from_user(&params, optval, len))
5348 		return -EFAULT;
5349 
5350 	sp = sctp_sk(sk);
5351 
5352 	if (params.assoc_id != 0) {
5353 		asoc = sctp_id2assoc(sk, params.assoc_id);
5354 		if (!asoc)
5355 			return -EINVAL;
5356 		params.assoc_value = asoc->default_rcv_context;
5357 	} else {
5358 		params.assoc_value = sp->default_rcv_context;
5359 	}
5360 
5361 	if (put_user(len, optlen))
5362 		return -EFAULT;
5363 	if (copy_to_user(optval, &params, len))
5364 		return -EFAULT;
5365 
5366 	return 0;
5367 }
5368 
5369 /*
5370  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5371  * This option will get or set the maximum size to put in any outgoing
5372  * SCTP DATA chunk.  If a message is larger than this size it will be
5373  * fragmented by SCTP into the specified size.  Note that the underlying
5374  * SCTP implementation may fragment into smaller sized chunks when the
5375  * PMTU of the underlying association is smaller than the value set by
5376  * the user.  The default value for this option is '0' which indicates
5377  * the user is NOT limiting fragmentation and only the PMTU will effect
5378  * SCTP's choice of DATA chunk size.  Note also that values set larger
5379  * than the maximum size of an IP datagram will effectively let SCTP
5380  * control fragmentation (i.e. the same as setting this option to 0).
5381  *
5382  * The following structure is used to access and modify this parameter:
5383  *
5384  * struct sctp_assoc_value {
5385  *   sctp_assoc_t assoc_id;
5386  *   uint32_t assoc_value;
5387  * };
5388  *
5389  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5390  *    For one-to-many style sockets this parameter indicates which
5391  *    association the user is performing an action upon.  Note that if
5392  *    this field's value is zero then the endpoints default value is
5393  *    changed (effecting future associations only).
5394  * assoc_value:  This parameter specifies the maximum size in bytes.
5395  */
5396 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5397 				  char __user *optval, int __user *optlen)
5398 {
5399 	struct sctp_assoc_value params;
5400 	struct sctp_association *asoc;
5401 
5402 	if (len == sizeof(int)) {
5403 		pr_warn_ratelimited(DEPRECATED
5404 				    "%s (pid %d) "
5405 				    "Use of int in maxseg socket option.\n"
5406 				    "Use struct sctp_assoc_value instead\n",
5407 				    current->comm, task_pid_nr(current));
5408 		params.assoc_id = 0;
5409 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5410 		len = sizeof(struct sctp_assoc_value);
5411 		if (copy_from_user(&params, optval, sizeof(params)))
5412 			return -EFAULT;
5413 	} else
5414 		return -EINVAL;
5415 
5416 	asoc = sctp_id2assoc(sk, params.assoc_id);
5417 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5418 		return -EINVAL;
5419 
5420 	if (asoc)
5421 		params.assoc_value = asoc->frag_point;
5422 	else
5423 		params.assoc_value = sctp_sk(sk)->user_frag;
5424 
5425 	if (put_user(len, optlen))
5426 		return -EFAULT;
5427 	if (len == sizeof(int)) {
5428 		if (copy_to_user(optval, &params.assoc_value, len))
5429 			return -EFAULT;
5430 	} else {
5431 		if (copy_to_user(optval, &params, len))
5432 			return -EFAULT;
5433 	}
5434 
5435 	return 0;
5436 }
5437 
5438 /*
5439  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5440  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5441  */
5442 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5443 					       char __user *optval, int __user *optlen)
5444 {
5445 	int val;
5446 
5447 	if (len < sizeof(int))
5448 		return -EINVAL;
5449 
5450 	len = sizeof(int);
5451 
5452 	val = sctp_sk(sk)->frag_interleave;
5453 	if (put_user(len, optlen))
5454 		return -EFAULT;
5455 	if (copy_to_user(optval, &val, len))
5456 		return -EFAULT;
5457 
5458 	return 0;
5459 }
5460 
5461 /*
5462  * 7.1.25.  Set or Get the sctp partial delivery point
5463  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5464  */
5465 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5466 						  char __user *optval,
5467 						  int __user *optlen)
5468 {
5469 	u32 val;
5470 
5471 	if (len < sizeof(u32))
5472 		return -EINVAL;
5473 
5474 	len = sizeof(u32);
5475 
5476 	val = sctp_sk(sk)->pd_point;
5477 	if (put_user(len, optlen))
5478 		return -EFAULT;
5479 	if (copy_to_user(optval, &val, len))
5480 		return -EFAULT;
5481 
5482 	return 0;
5483 }
5484 
5485 /*
5486  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5487  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5488  */
5489 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5490 				    char __user *optval,
5491 				    int __user *optlen)
5492 {
5493 	struct sctp_assoc_value params;
5494 	struct sctp_sock *sp;
5495 	struct sctp_association *asoc;
5496 
5497 	if (len == sizeof(int)) {
5498 		pr_warn_ratelimited(DEPRECATED
5499 				    "%s (pid %d) "
5500 				    "Use of int in max_burst socket option.\n"
5501 				    "Use struct sctp_assoc_value instead\n",
5502 				    current->comm, task_pid_nr(current));
5503 		params.assoc_id = 0;
5504 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5505 		len = sizeof(struct sctp_assoc_value);
5506 		if (copy_from_user(&params, optval, len))
5507 			return -EFAULT;
5508 	} else
5509 		return -EINVAL;
5510 
5511 	sp = sctp_sk(sk);
5512 
5513 	if (params.assoc_id != 0) {
5514 		asoc = sctp_id2assoc(sk, params.assoc_id);
5515 		if (!asoc)
5516 			return -EINVAL;
5517 		params.assoc_value = asoc->max_burst;
5518 	} else
5519 		params.assoc_value = sp->max_burst;
5520 
5521 	if (len == sizeof(int)) {
5522 		if (copy_to_user(optval, &params.assoc_value, len))
5523 			return -EFAULT;
5524 	} else {
5525 		if (copy_to_user(optval, &params, len))
5526 			return -EFAULT;
5527 	}
5528 
5529 	return 0;
5530 
5531 }
5532 
5533 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5534 				    char __user *optval, int __user *optlen)
5535 {
5536 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5537 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5538 	struct sctp_hmac_algo_param *hmacs;
5539 	__u16 data_len = 0;
5540 	u32 num_idents;
5541 	int i;
5542 
5543 	if (!ep->auth_enable)
5544 		return -EACCES;
5545 
5546 	hmacs = ep->auth_hmacs_list;
5547 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5548 
5549 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5550 		return -EINVAL;
5551 
5552 	len = sizeof(struct sctp_hmacalgo) + data_len;
5553 	num_idents = data_len / sizeof(u16);
5554 
5555 	if (put_user(len, optlen))
5556 		return -EFAULT;
5557 	if (put_user(num_idents, &p->shmac_num_idents))
5558 		return -EFAULT;
5559 	for (i = 0; i < num_idents; i++) {
5560 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5561 
5562 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5563 			return -EFAULT;
5564 	}
5565 	return 0;
5566 }
5567 
5568 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5569 				    char __user *optval, int __user *optlen)
5570 {
5571 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5572 	struct sctp_authkeyid val;
5573 	struct sctp_association *asoc;
5574 
5575 	if (!ep->auth_enable)
5576 		return -EACCES;
5577 
5578 	if (len < sizeof(struct sctp_authkeyid))
5579 		return -EINVAL;
5580 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5581 		return -EFAULT;
5582 
5583 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5584 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5585 		return -EINVAL;
5586 
5587 	if (asoc)
5588 		val.scact_keynumber = asoc->active_key_id;
5589 	else
5590 		val.scact_keynumber = ep->active_key_id;
5591 
5592 	len = sizeof(struct sctp_authkeyid);
5593 	if (put_user(len, optlen))
5594 		return -EFAULT;
5595 	if (copy_to_user(optval, &val, len))
5596 		return -EFAULT;
5597 
5598 	return 0;
5599 }
5600 
5601 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5602 				    char __user *optval, int __user *optlen)
5603 {
5604 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5605 	struct sctp_authchunks __user *p = (void __user *)optval;
5606 	struct sctp_authchunks val;
5607 	struct sctp_association *asoc;
5608 	struct sctp_chunks_param *ch;
5609 	u32    num_chunks = 0;
5610 	char __user *to;
5611 
5612 	if (!ep->auth_enable)
5613 		return -EACCES;
5614 
5615 	if (len < sizeof(struct sctp_authchunks))
5616 		return -EINVAL;
5617 
5618 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5619 		return -EFAULT;
5620 
5621 	to = p->gauth_chunks;
5622 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5623 	if (!asoc)
5624 		return -EINVAL;
5625 
5626 	ch = asoc->peer.peer_chunks;
5627 	if (!ch)
5628 		goto num;
5629 
5630 	/* See if the user provided enough room for all the data */
5631 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5632 	if (len < num_chunks)
5633 		return -EINVAL;
5634 
5635 	if (copy_to_user(to, ch->chunks, num_chunks))
5636 		return -EFAULT;
5637 num:
5638 	len = sizeof(struct sctp_authchunks) + num_chunks;
5639 	if (put_user(len, optlen))
5640 		return -EFAULT;
5641 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5642 		return -EFAULT;
5643 	return 0;
5644 }
5645 
5646 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5647 				    char __user *optval, int __user *optlen)
5648 {
5649 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5650 	struct sctp_authchunks __user *p = (void __user *)optval;
5651 	struct sctp_authchunks val;
5652 	struct sctp_association *asoc;
5653 	struct sctp_chunks_param *ch;
5654 	u32    num_chunks = 0;
5655 	char __user *to;
5656 
5657 	if (!ep->auth_enable)
5658 		return -EACCES;
5659 
5660 	if (len < sizeof(struct sctp_authchunks))
5661 		return -EINVAL;
5662 
5663 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5664 		return -EFAULT;
5665 
5666 	to = p->gauth_chunks;
5667 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5668 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5669 		return -EINVAL;
5670 
5671 	if (asoc)
5672 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5673 	else
5674 		ch = ep->auth_chunk_list;
5675 
5676 	if (!ch)
5677 		goto num;
5678 
5679 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5680 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5681 		return -EINVAL;
5682 
5683 	if (copy_to_user(to, ch->chunks, num_chunks))
5684 		return -EFAULT;
5685 num:
5686 	len = sizeof(struct sctp_authchunks) + num_chunks;
5687 	if (put_user(len, optlen))
5688 		return -EFAULT;
5689 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5690 		return -EFAULT;
5691 
5692 	return 0;
5693 }
5694 
5695 /*
5696  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5697  * This option gets the current number of associations that are attached
5698  * to a one-to-many style socket.  The option value is an uint32_t.
5699  */
5700 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5701 				    char __user *optval, int __user *optlen)
5702 {
5703 	struct sctp_sock *sp = sctp_sk(sk);
5704 	struct sctp_association *asoc;
5705 	u32 val = 0;
5706 
5707 	if (sctp_style(sk, TCP))
5708 		return -EOPNOTSUPP;
5709 
5710 	if (len < sizeof(u32))
5711 		return -EINVAL;
5712 
5713 	len = sizeof(u32);
5714 
5715 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5716 		val++;
5717 	}
5718 
5719 	if (put_user(len, optlen))
5720 		return -EFAULT;
5721 	if (copy_to_user(optval, &val, len))
5722 		return -EFAULT;
5723 
5724 	return 0;
5725 }
5726 
5727 /*
5728  * 8.1.23 SCTP_AUTO_ASCONF
5729  * See the corresponding setsockopt entry as description
5730  */
5731 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5732 				   char __user *optval, int __user *optlen)
5733 {
5734 	int val = 0;
5735 
5736 	if (len < sizeof(int))
5737 		return -EINVAL;
5738 
5739 	len = sizeof(int);
5740 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5741 		val = 1;
5742 	if (put_user(len, optlen))
5743 		return -EFAULT;
5744 	if (copy_to_user(optval, &val, len))
5745 		return -EFAULT;
5746 	return 0;
5747 }
5748 
5749 /*
5750  * 8.2.6. Get the Current Identifiers of Associations
5751  *        (SCTP_GET_ASSOC_ID_LIST)
5752  *
5753  * This option gets the current list of SCTP association identifiers of
5754  * the SCTP associations handled by a one-to-many style socket.
5755  */
5756 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5757 				    char __user *optval, int __user *optlen)
5758 {
5759 	struct sctp_sock *sp = sctp_sk(sk);
5760 	struct sctp_association *asoc;
5761 	struct sctp_assoc_ids *ids;
5762 	u32 num = 0;
5763 
5764 	if (sctp_style(sk, TCP))
5765 		return -EOPNOTSUPP;
5766 
5767 	if (len < sizeof(struct sctp_assoc_ids))
5768 		return -EINVAL;
5769 
5770 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5771 		num++;
5772 	}
5773 
5774 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5775 		return -EINVAL;
5776 
5777 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5778 
5779 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
5780 	if (unlikely(!ids))
5781 		return -ENOMEM;
5782 
5783 	ids->gaids_number_of_ids = num;
5784 	num = 0;
5785 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5786 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5787 	}
5788 
5789 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5790 		kfree(ids);
5791 		return -EFAULT;
5792 	}
5793 
5794 	kfree(ids);
5795 	return 0;
5796 }
5797 
5798 /*
5799  * SCTP_PEER_ADDR_THLDS
5800  *
5801  * This option allows us to fetch the partially failed threshold for one or all
5802  * transports in an association.  See Section 6.1 of:
5803  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5804  */
5805 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5806 					    char __user *optval,
5807 					    int len,
5808 					    int __user *optlen)
5809 {
5810 	struct sctp_paddrthlds val;
5811 	struct sctp_transport *trans;
5812 	struct sctp_association *asoc;
5813 
5814 	if (len < sizeof(struct sctp_paddrthlds))
5815 		return -EINVAL;
5816 	len = sizeof(struct sctp_paddrthlds);
5817 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5818 		return -EFAULT;
5819 
5820 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5821 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5822 		if (!asoc)
5823 			return -ENOENT;
5824 
5825 		val.spt_pathpfthld = asoc->pf_retrans;
5826 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5827 	} else {
5828 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5829 					       val.spt_assoc_id);
5830 		if (!trans)
5831 			return -ENOENT;
5832 
5833 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5834 		val.spt_pathpfthld = trans->pf_retrans;
5835 	}
5836 
5837 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5838 		return -EFAULT;
5839 
5840 	return 0;
5841 }
5842 
5843 /*
5844  * SCTP_GET_ASSOC_STATS
5845  *
5846  * This option retrieves local per endpoint statistics. It is modeled
5847  * after OpenSolaris' implementation
5848  */
5849 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5850 				       char __user *optval,
5851 				       int __user *optlen)
5852 {
5853 	struct sctp_assoc_stats sas;
5854 	struct sctp_association *asoc = NULL;
5855 
5856 	/* User must provide at least the assoc id */
5857 	if (len < sizeof(sctp_assoc_t))
5858 		return -EINVAL;
5859 
5860 	/* Allow the struct to grow and fill in as much as possible */
5861 	len = min_t(size_t, len, sizeof(sas));
5862 
5863 	if (copy_from_user(&sas, optval, len))
5864 		return -EFAULT;
5865 
5866 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5867 	if (!asoc)
5868 		return -EINVAL;
5869 
5870 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5871 	sas.sas_gapcnt = asoc->stats.gapcnt;
5872 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5873 	sas.sas_osacks = asoc->stats.osacks;
5874 	sas.sas_isacks = asoc->stats.isacks;
5875 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5876 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5877 	sas.sas_oodchunks = asoc->stats.oodchunks;
5878 	sas.sas_iodchunks = asoc->stats.iodchunks;
5879 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5880 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5881 	sas.sas_idupchunks = asoc->stats.idupchunks;
5882 	sas.sas_opackets = asoc->stats.opackets;
5883 	sas.sas_ipackets = asoc->stats.ipackets;
5884 
5885 	/* New high max rto observed, will return 0 if not a single
5886 	 * RTO update took place. obs_rto_ipaddr will be bogus
5887 	 * in such a case
5888 	 */
5889 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5890 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5891 		sizeof(struct sockaddr_storage));
5892 
5893 	/* Mark beginning of a new observation period */
5894 	asoc->stats.max_obs_rto = asoc->rto_min;
5895 
5896 	if (put_user(len, optlen))
5897 		return -EFAULT;
5898 
5899 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5900 
5901 	if (copy_to_user(optval, &sas, len))
5902 		return -EFAULT;
5903 
5904 	return 0;
5905 }
5906 
5907 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5908 				       char __user *optval,
5909 				       int __user *optlen)
5910 {
5911 	int val = 0;
5912 
5913 	if (len < sizeof(int))
5914 		return -EINVAL;
5915 
5916 	len = sizeof(int);
5917 	if (sctp_sk(sk)->recvrcvinfo)
5918 		val = 1;
5919 	if (put_user(len, optlen))
5920 		return -EFAULT;
5921 	if (copy_to_user(optval, &val, len))
5922 		return -EFAULT;
5923 
5924 	return 0;
5925 }
5926 
5927 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5928 				       char __user *optval,
5929 				       int __user *optlen)
5930 {
5931 	int val = 0;
5932 
5933 	if (len < sizeof(int))
5934 		return -EINVAL;
5935 
5936 	len = sizeof(int);
5937 	if (sctp_sk(sk)->recvnxtinfo)
5938 		val = 1;
5939 	if (put_user(len, optlen))
5940 		return -EFAULT;
5941 	if (copy_to_user(optval, &val, len))
5942 		return -EFAULT;
5943 
5944 	return 0;
5945 }
5946 
5947 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5948 			   char __user *optval, int __user *optlen)
5949 {
5950 	int retval = 0;
5951 	int len;
5952 
5953 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5954 
5955 	/* I can hardly begin to describe how wrong this is.  This is
5956 	 * so broken as to be worse than useless.  The API draft
5957 	 * REALLY is NOT helpful here...  I am not convinced that the
5958 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5959 	 * are at all well-founded.
5960 	 */
5961 	if (level != SOL_SCTP) {
5962 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5963 
5964 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5965 		return retval;
5966 	}
5967 
5968 	if (get_user(len, optlen))
5969 		return -EFAULT;
5970 
5971 	lock_sock(sk);
5972 
5973 	switch (optname) {
5974 	case SCTP_STATUS:
5975 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5976 		break;
5977 	case SCTP_DISABLE_FRAGMENTS:
5978 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5979 							   optlen);
5980 		break;
5981 	case SCTP_EVENTS:
5982 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5983 		break;
5984 	case SCTP_AUTOCLOSE:
5985 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5986 		break;
5987 	case SCTP_SOCKOPT_PEELOFF:
5988 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5989 		break;
5990 	case SCTP_PEER_ADDR_PARAMS:
5991 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5992 							  optlen);
5993 		break;
5994 	case SCTP_DELAYED_SACK:
5995 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5996 							  optlen);
5997 		break;
5998 	case SCTP_INITMSG:
5999 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6000 		break;
6001 	case SCTP_GET_PEER_ADDRS:
6002 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6003 						    optlen);
6004 		break;
6005 	case SCTP_GET_LOCAL_ADDRS:
6006 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6007 						     optlen);
6008 		break;
6009 	case SCTP_SOCKOPT_CONNECTX3:
6010 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6011 		break;
6012 	case SCTP_DEFAULT_SEND_PARAM:
6013 		retval = sctp_getsockopt_default_send_param(sk, len,
6014 							    optval, optlen);
6015 		break;
6016 	case SCTP_DEFAULT_SNDINFO:
6017 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6018 							 optval, optlen);
6019 		break;
6020 	case SCTP_PRIMARY_ADDR:
6021 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6022 		break;
6023 	case SCTP_NODELAY:
6024 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6025 		break;
6026 	case SCTP_RTOINFO:
6027 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6028 		break;
6029 	case SCTP_ASSOCINFO:
6030 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6031 		break;
6032 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6033 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6034 		break;
6035 	case SCTP_MAXSEG:
6036 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6037 		break;
6038 	case SCTP_GET_PEER_ADDR_INFO:
6039 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6040 							optlen);
6041 		break;
6042 	case SCTP_ADAPTATION_LAYER:
6043 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6044 							optlen);
6045 		break;
6046 	case SCTP_CONTEXT:
6047 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6048 		break;
6049 	case SCTP_FRAGMENT_INTERLEAVE:
6050 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6051 							     optlen);
6052 		break;
6053 	case SCTP_PARTIAL_DELIVERY_POINT:
6054 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6055 								optlen);
6056 		break;
6057 	case SCTP_MAX_BURST:
6058 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6059 		break;
6060 	case SCTP_AUTH_KEY:
6061 	case SCTP_AUTH_CHUNK:
6062 	case SCTP_AUTH_DELETE_KEY:
6063 		retval = -EOPNOTSUPP;
6064 		break;
6065 	case SCTP_HMAC_IDENT:
6066 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6067 		break;
6068 	case SCTP_AUTH_ACTIVE_KEY:
6069 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6070 		break;
6071 	case SCTP_PEER_AUTH_CHUNKS:
6072 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6073 							optlen);
6074 		break;
6075 	case SCTP_LOCAL_AUTH_CHUNKS:
6076 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6077 							optlen);
6078 		break;
6079 	case SCTP_GET_ASSOC_NUMBER:
6080 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6081 		break;
6082 	case SCTP_GET_ASSOC_ID_LIST:
6083 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6084 		break;
6085 	case SCTP_AUTO_ASCONF:
6086 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6087 		break;
6088 	case SCTP_PEER_ADDR_THLDS:
6089 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6090 		break;
6091 	case SCTP_GET_ASSOC_STATS:
6092 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6093 		break;
6094 	case SCTP_RECVRCVINFO:
6095 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6096 		break;
6097 	case SCTP_RECVNXTINFO:
6098 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6099 		break;
6100 	default:
6101 		retval = -ENOPROTOOPT;
6102 		break;
6103 	}
6104 
6105 	release_sock(sk);
6106 	return retval;
6107 }
6108 
6109 static void sctp_hash(struct sock *sk)
6110 {
6111 	/* STUB */
6112 }
6113 
6114 static void sctp_unhash(struct sock *sk)
6115 {
6116 	/* STUB */
6117 }
6118 
6119 /* Check if port is acceptable.  Possibly find first available port.
6120  *
6121  * The port hash table (contained in the 'global' SCTP protocol storage
6122  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6123  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6124  * list (the list number is the port number hashed out, so as you
6125  * would expect from a hash function, all the ports in a given list have
6126  * such a number that hashes out to the same list number; you were
6127  * expecting that, right?); so each list has a set of ports, with a
6128  * link to the socket (struct sock) that uses it, the port number and
6129  * a fastreuse flag (FIXME: NPI ipg).
6130  */
6131 static struct sctp_bind_bucket *sctp_bucket_create(
6132 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6133 
6134 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6135 {
6136 	struct sctp_bind_hashbucket *head; /* hash list */
6137 	struct sctp_bind_bucket *pp;
6138 	unsigned short snum;
6139 	int ret;
6140 
6141 	snum = ntohs(addr->v4.sin_port);
6142 
6143 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6144 
6145 	local_bh_disable();
6146 
6147 	if (snum == 0) {
6148 		/* Search for an available port. */
6149 		int low, high, remaining, index;
6150 		unsigned int rover;
6151 		struct net *net = sock_net(sk);
6152 
6153 		inet_get_local_port_range(net, &low, &high);
6154 		remaining = (high - low) + 1;
6155 		rover = prandom_u32() % remaining + low;
6156 
6157 		do {
6158 			rover++;
6159 			if ((rover < low) || (rover > high))
6160 				rover = low;
6161 			if (inet_is_local_reserved_port(net, rover))
6162 				continue;
6163 			index = sctp_phashfn(sock_net(sk), rover);
6164 			head = &sctp_port_hashtable[index];
6165 			spin_lock(&head->lock);
6166 			sctp_for_each_hentry(pp, &head->chain)
6167 				if ((pp->port == rover) &&
6168 				    net_eq(sock_net(sk), pp->net))
6169 					goto next;
6170 			break;
6171 		next:
6172 			spin_unlock(&head->lock);
6173 		} while (--remaining > 0);
6174 
6175 		/* Exhausted local port range during search? */
6176 		ret = 1;
6177 		if (remaining <= 0)
6178 			goto fail;
6179 
6180 		/* OK, here is the one we will use.  HEAD (the port
6181 		 * hash table list entry) is non-NULL and we hold it's
6182 		 * mutex.
6183 		 */
6184 		snum = rover;
6185 	} else {
6186 		/* We are given an specific port number; we verify
6187 		 * that it is not being used. If it is used, we will
6188 		 * exahust the search in the hash list corresponding
6189 		 * to the port number (snum) - we detect that with the
6190 		 * port iterator, pp being NULL.
6191 		 */
6192 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6193 		spin_lock(&head->lock);
6194 		sctp_for_each_hentry(pp, &head->chain) {
6195 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6196 				goto pp_found;
6197 		}
6198 	}
6199 	pp = NULL;
6200 	goto pp_not_found;
6201 pp_found:
6202 	if (!hlist_empty(&pp->owner)) {
6203 		/* We had a port hash table hit - there is an
6204 		 * available port (pp != NULL) and it is being
6205 		 * used by other socket (pp->owner not empty); that other
6206 		 * socket is going to be sk2.
6207 		 */
6208 		int reuse = sk->sk_reuse;
6209 		struct sock *sk2;
6210 
6211 		pr_debug("%s: found a possible match\n", __func__);
6212 
6213 		if (pp->fastreuse && sk->sk_reuse &&
6214 			sk->sk_state != SCTP_SS_LISTENING)
6215 			goto success;
6216 
6217 		/* Run through the list of sockets bound to the port
6218 		 * (pp->port) [via the pointers bind_next and
6219 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6220 		 * we get the endpoint they describe and run through
6221 		 * the endpoint's list of IP (v4 or v6) addresses,
6222 		 * comparing each of the addresses with the address of
6223 		 * the socket sk. If we find a match, then that means
6224 		 * that this port/socket (sk) combination are already
6225 		 * in an endpoint.
6226 		 */
6227 		sk_for_each_bound(sk2, &pp->owner) {
6228 			struct sctp_endpoint *ep2;
6229 			ep2 = sctp_sk(sk2)->ep;
6230 
6231 			if (sk == sk2 ||
6232 			    (reuse && sk2->sk_reuse &&
6233 			     sk2->sk_state != SCTP_SS_LISTENING))
6234 				continue;
6235 
6236 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6237 						 sctp_sk(sk2), sctp_sk(sk))) {
6238 				ret = (long)sk2;
6239 				goto fail_unlock;
6240 			}
6241 		}
6242 
6243 		pr_debug("%s: found a match\n", __func__);
6244 	}
6245 pp_not_found:
6246 	/* If there was a hash table miss, create a new port.  */
6247 	ret = 1;
6248 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6249 		goto fail_unlock;
6250 
6251 	/* In either case (hit or miss), make sure fastreuse is 1 only
6252 	 * if sk->sk_reuse is too (that is, if the caller requested
6253 	 * SO_REUSEADDR on this socket -sk-).
6254 	 */
6255 	if (hlist_empty(&pp->owner)) {
6256 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6257 			pp->fastreuse = 1;
6258 		else
6259 			pp->fastreuse = 0;
6260 	} else if (pp->fastreuse &&
6261 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6262 		pp->fastreuse = 0;
6263 
6264 	/* We are set, so fill up all the data in the hash table
6265 	 * entry, tie the socket list information with the rest of the
6266 	 * sockets FIXME: Blurry, NPI (ipg).
6267 	 */
6268 success:
6269 	if (!sctp_sk(sk)->bind_hash) {
6270 		inet_sk(sk)->inet_num = snum;
6271 		sk_add_bind_node(sk, &pp->owner);
6272 		sctp_sk(sk)->bind_hash = pp;
6273 	}
6274 	ret = 0;
6275 
6276 fail_unlock:
6277 	spin_unlock(&head->lock);
6278 
6279 fail:
6280 	local_bh_enable();
6281 	return ret;
6282 }
6283 
6284 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6285  * port is requested.
6286  */
6287 static int sctp_get_port(struct sock *sk, unsigned short snum)
6288 {
6289 	union sctp_addr addr;
6290 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6291 
6292 	/* Set up a dummy address struct from the sk. */
6293 	af->from_sk(&addr, sk);
6294 	addr.v4.sin_port = htons(snum);
6295 
6296 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6297 	return !!sctp_get_port_local(sk, &addr);
6298 }
6299 
6300 /*
6301  *  Move a socket to LISTENING state.
6302  */
6303 static int sctp_listen_start(struct sock *sk, int backlog)
6304 {
6305 	struct sctp_sock *sp = sctp_sk(sk);
6306 	struct sctp_endpoint *ep = sp->ep;
6307 	struct crypto_hash *tfm = NULL;
6308 	char alg[32];
6309 
6310 	/* Allocate HMAC for generating cookie. */
6311 	if (!sp->hmac && sp->sctp_hmac_alg) {
6312 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6313 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6314 		if (IS_ERR(tfm)) {
6315 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6316 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6317 			return -ENOSYS;
6318 		}
6319 		sctp_sk(sk)->hmac = tfm;
6320 	}
6321 
6322 	/*
6323 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6324 	 * call that allows new associations to be accepted, the system
6325 	 * picks an ephemeral port and will choose an address set equivalent
6326 	 * to binding with a wildcard address.
6327 	 *
6328 	 * This is not currently spelled out in the SCTP sockets
6329 	 * extensions draft, but follows the practice as seen in TCP
6330 	 * sockets.
6331 	 *
6332 	 */
6333 	sk->sk_state = SCTP_SS_LISTENING;
6334 	if (!ep->base.bind_addr.port) {
6335 		if (sctp_autobind(sk))
6336 			return -EAGAIN;
6337 	} else {
6338 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6339 			sk->sk_state = SCTP_SS_CLOSED;
6340 			return -EADDRINUSE;
6341 		}
6342 	}
6343 
6344 	sk->sk_max_ack_backlog = backlog;
6345 	sctp_hash_endpoint(ep);
6346 	return 0;
6347 }
6348 
6349 /*
6350  * 4.1.3 / 5.1.3 listen()
6351  *
6352  *   By default, new associations are not accepted for UDP style sockets.
6353  *   An application uses listen() to mark a socket as being able to
6354  *   accept new associations.
6355  *
6356  *   On TCP style sockets, applications use listen() to ready the SCTP
6357  *   endpoint for accepting inbound associations.
6358  *
6359  *   On both types of endpoints a backlog of '0' disables listening.
6360  *
6361  *  Move a socket to LISTENING state.
6362  */
6363 int sctp_inet_listen(struct socket *sock, int backlog)
6364 {
6365 	struct sock *sk = sock->sk;
6366 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6367 	int err = -EINVAL;
6368 
6369 	if (unlikely(backlog < 0))
6370 		return err;
6371 
6372 	lock_sock(sk);
6373 
6374 	/* Peeled-off sockets are not allowed to listen().  */
6375 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6376 		goto out;
6377 
6378 	if (sock->state != SS_UNCONNECTED)
6379 		goto out;
6380 
6381 	/* If backlog is zero, disable listening. */
6382 	if (!backlog) {
6383 		if (sctp_sstate(sk, CLOSED))
6384 			goto out;
6385 
6386 		err = 0;
6387 		sctp_unhash_endpoint(ep);
6388 		sk->sk_state = SCTP_SS_CLOSED;
6389 		if (sk->sk_reuse)
6390 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6391 		goto out;
6392 	}
6393 
6394 	/* If we are already listening, just update the backlog */
6395 	if (sctp_sstate(sk, LISTENING))
6396 		sk->sk_max_ack_backlog = backlog;
6397 	else {
6398 		err = sctp_listen_start(sk, backlog);
6399 		if (err)
6400 			goto out;
6401 	}
6402 
6403 	err = 0;
6404 out:
6405 	release_sock(sk);
6406 	return err;
6407 }
6408 
6409 /*
6410  * This function is done by modeling the current datagram_poll() and the
6411  * tcp_poll().  Note that, based on these implementations, we don't
6412  * lock the socket in this function, even though it seems that,
6413  * ideally, locking or some other mechanisms can be used to ensure
6414  * the integrity of the counters (sndbuf and wmem_alloc) used
6415  * in this place.  We assume that we don't need locks either until proven
6416  * otherwise.
6417  *
6418  * Another thing to note is that we include the Async I/O support
6419  * here, again, by modeling the current TCP/UDP code.  We don't have
6420  * a good way to test with it yet.
6421  */
6422 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6423 {
6424 	struct sock *sk = sock->sk;
6425 	struct sctp_sock *sp = sctp_sk(sk);
6426 	unsigned int mask;
6427 
6428 	poll_wait(file, sk_sleep(sk), wait);
6429 
6430 	/* A TCP-style listening socket becomes readable when the accept queue
6431 	 * is not empty.
6432 	 */
6433 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6434 		return (!list_empty(&sp->ep->asocs)) ?
6435 			(POLLIN | POLLRDNORM) : 0;
6436 
6437 	mask = 0;
6438 
6439 	/* Is there any exceptional events?  */
6440 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6441 		mask |= POLLERR |
6442 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6443 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6444 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6445 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6446 		mask |= POLLHUP;
6447 
6448 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6449 	if (!skb_queue_empty(&sk->sk_receive_queue))
6450 		mask |= POLLIN | POLLRDNORM;
6451 
6452 	/* The association is either gone or not ready.  */
6453 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6454 		return mask;
6455 
6456 	/* Is it writable?  */
6457 	if (sctp_writeable(sk)) {
6458 		mask |= POLLOUT | POLLWRNORM;
6459 	} else {
6460 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6461 		/*
6462 		 * Since the socket is not locked, the buffer
6463 		 * might be made available after the writeable check and
6464 		 * before the bit is set.  This could cause a lost I/O
6465 		 * signal.  tcp_poll() has a race breaker for this race
6466 		 * condition.  Based on their implementation, we put
6467 		 * in the following code to cover it as well.
6468 		 */
6469 		if (sctp_writeable(sk))
6470 			mask |= POLLOUT | POLLWRNORM;
6471 	}
6472 	return mask;
6473 }
6474 
6475 /********************************************************************
6476  * 2nd Level Abstractions
6477  ********************************************************************/
6478 
6479 static struct sctp_bind_bucket *sctp_bucket_create(
6480 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6481 {
6482 	struct sctp_bind_bucket *pp;
6483 
6484 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6485 	if (pp) {
6486 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6487 		pp->port = snum;
6488 		pp->fastreuse = 0;
6489 		INIT_HLIST_HEAD(&pp->owner);
6490 		pp->net = net;
6491 		hlist_add_head(&pp->node, &head->chain);
6492 	}
6493 	return pp;
6494 }
6495 
6496 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6497 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6498 {
6499 	if (pp && hlist_empty(&pp->owner)) {
6500 		__hlist_del(&pp->node);
6501 		kmem_cache_free(sctp_bucket_cachep, pp);
6502 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6503 	}
6504 }
6505 
6506 /* Release this socket's reference to a local port.  */
6507 static inline void __sctp_put_port(struct sock *sk)
6508 {
6509 	struct sctp_bind_hashbucket *head =
6510 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6511 						  inet_sk(sk)->inet_num)];
6512 	struct sctp_bind_bucket *pp;
6513 
6514 	spin_lock(&head->lock);
6515 	pp = sctp_sk(sk)->bind_hash;
6516 	__sk_del_bind_node(sk);
6517 	sctp_sk(sk)->bind_hash = NULL;
6518 	inet_sk(sk)->inet_num = 0;
6519 	sctp_bucket_destroy(pp);
6520 	spin_unlock(&head->lock);
6521 }
6522 
6523 void sctp_put_port(struct sock *sk)
6524 {
6525 	local_bh_disable();
6526 	__sctp_put_port(sk);
6527 	local_bh_enable();
6528 }
6529 
6530 /*
6531  * The system picks an ephemeral port and choose an address set equivalent
6532  * to binding with a wildcard address.
6533  * One of those addresses will be the primary address for the association.
6534  * This automatically enables the multihoming capability of SCTP.
6535  */
6536 static int sctp_autobind(struct sock *sk)
6537 {
6538 	union sctp_addr autoaddr;
6539 	struct sctp_af *af;
6540 	__be16 port;
6541 
6542 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6543 	af = sctp_sk(sk)->pf->af;
6544 
6545 	port = htons(inet_sk(sk)->inet_num);
6546 	af->inaddr_any(&autoaddr, port);
6547 
6548 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6549 }
6550 
6551 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6552  *
6553  * From RFC 2292
6554  * 4.2 The cmsghdr Structure *
6555  *
6556  * When ancillary data is sent or received, any number of ancillary data
6557  * objects can be specified by the msg_control and msg_controllen members of
6558  * the msghdr structure, because each object is preceded by
6559  * a cmsghdr structure defining the object's length (the cmsg_len member).
6560  * Historically Berkeley-derived implementations have passed only one object
6561  * at a time, but this API allows multiple objects to be
6562  * passed in a single call to sendmsg() or recvmsg(). The following example
6563  * shows two ancillary data objects in a control buffer.
6564  *
6565  *   |<--------------------------- msg_controllen -------------------------->|
6566  *   |                                                                       |
6567  *
6568  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6569  *
6570  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6571  *   |                                   |                                   |
6572  *
6573  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6574  *
6575  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6576  *   |                                |  |                                |  |
6577  *
6578  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6579  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6580  *
6581  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6582  *
6583  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6584  *    ^
6585  *    |
6586  *
6587  * msg_control
6588  * points here
6589  */
6590 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6591 {
6592 	struct cmsghdr *cmsg;
6593 	struct msghdr *my_msg = (struct msghdr *)msg;
6594 
6595 	for_each_cmsghdr(cmsg, my_msg) {
6596 		if (!CMSG_OK(my_msg, cmsg))
6597 			return -EINVAL;
6598 
6599 		/* Should we parse this header or ignore?  */
6600 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6601 			continue;
6602 
6603 		/* Strictly check lengths following example in SCM code.  */
6604 		switch (cmsg->cmsg_type) {
6605 		case SCTP_INIT:
6606 			/* SCTP Socket API Extension
6607 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6608 			 *
6609 			 * This cmsghdr structure provides information for
6610 			 * initializing new SCTP associations with sendmsg().
6611 			 * The SCTP_INITMSG socket option uses this same data
6612 			 * structure.  This structure is not used for
6613 			 * recvmsg().
6614 			 *
6615 			 * cmsg_level    cmsg_type      cmsg_data[]
6616 			 * ------------  ------------   ----------------------
6617 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6618 			 */
6619 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6620 				return -EINVAL;
6621 
6622 			cmsgs->init = CMSG_DATA(cmsg);
6623 			break;
6624 
6625 		case SCTP_SNDRCV:
6626 			/* SCTP Socket API Extension
6627 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6628 			 *
6629 			 * This cmsghdr structure specifies SCTP options for
6630 			 * sendmsg() and describes SCTP header information
6631 			 * about a received message through recvmsg().
6632 			 *
6633 			 * cmsg_level    cmsg_type      cmsg_data[]
6634 			 * ------------  ------------   ----------------------
6635 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6636 			 */
6637 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6638 				return -EINVAL;
6639 
6640 			cmsgs->srinfo = CMSG_DATA(cmsg);
6641 
6642 			if (cmsgs->srinfo->sinfo_flags &
6643 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6644 			      SCTP_SACK_IMMEDIATELY |
6645 			      SCTP_ABORT | SCTP_EOF))
6646 				return -EINVAL;
6647 			break;
6648 
6649 		case SCTP_SNDINFO:
6650 			/* SCTP Socket API Extension
6651 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6652 			 *
6653 			 * This cmsghdr structure specifies SCTP options for
6654 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6655 			 * SCTP_SNDRCV which has been deprecated.
6656 			 *
6657 			 * cmsg_level    cmsg_type      cmsg_data[]
6658 			 * ------------  ------------   ---------------------
6659 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6660 			 */
6661 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6662 				return -EINVAL;
6663 
6664 			cmsgs->sinfo = CMSG_DATA(cmsg);
6665 
6666 			if (cmsgs->sinfo->snd_flags &
6667 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6668 			      SCTP_SACK_IMMEDIATELY |
6669 			      SCTP_ABORT | SCTP_EOF))
6670 				return -EINVAL;
6671 			break;
6672 		default:
6673 			return -EINVAL;
6674 		}
6675 	}
6676 
6677 	return 0;
6678 }
6679 
6680 /*
6681  * Wait for a packet..
6682  * Note: This function is the same function as in core/datagram.c
6683  * with a few modifications to make lksctp work.
6684  */
6685 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6686 {
6687 	int error;
6688 	DEFINE_WAIT(wait);
6689 
6690 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6691 
6692 	/* Socket errors? */
6693 	error = sock_error(sk);
6694 	if (error)
6695 		goto out;
6696 
6697 	if (!skb_queue_empty(&sk->sk_receive_queue))
6698 		goto ready;
6699 
6700 	/* Socket shut down?  */
6701 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6702 		goto out;
6703 
6704 	/* Sequenced packets can come disconnected.  If so we report the
6705 	 * problem.
6706 	 */
6707 	error = -ENOTCONN;
6708 
6709 	/* Is there a good reason to think that we may receive some data?  */
6710 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6711 		goto out;
6712 
6713 	/* Handle signals.  */
6714 	if (signal_pending(current))
6715 		goto interrupted;
6716 
6717 	/* Let another process have a go.  Since we are going to sleep
6718 	 * anyway.  Note: This may cause odd behaviors if the message
6719 	 * does not fit in the user's buffer, but this seems to be the
6720 	 * only way to honor MSG_DONTWAIT realistically.
6721 	 */
6722 	release_sock(sk);
6723 	*timeo_p = schedule_timeout(*timeo_p);
6724 	lock_sock(sk);
6725 
6726 ready:
6727 	finish_wait(sk_sleep(sk), &wait);
6728 	return 0;
6729 
6730 interrupted:
6731 	error = sock_intr_errno(*timeo_p);
6732 
6733 out:
6734 	finish_wait(sk_sleep(sk), &wait);
6735 	*err = error;
6736 	return error;
6737 }
6738 
6739 /* Receive a datagram.
6740  * Note: This is pretty much the same routine as in core/datagram.c
6741  * with a few changes to make lksctp work.
6742  */
6743 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6744 				       int noblock, int *err)
6745 {
6746 	int error;
6747 	struct sk_buff *skb;
6748 	long timeo;
6749 
6750 	timeo = sock_rcvtimeo(sk, noblock);
6751 
6752 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6753 		 MAX_SCHEDULE_TIMEOUT);
6754 
6755 	do {
6756 		/* Again only user level code calls this function,
6757 		 * so nothing interrupt level
6758 		 * will suddenly eat the receive_queue.
6759 		 *
6760 		 *  Look at current nfs client by the way...
6761 		 *  However, this function was correct in any case. 8)
6762 		 */
6763 		if (flags & MSG_PEEK) {
6764 			spin_lock_bh(&sk->sk_receive_queue.lock);
6765 			skb = skb_peek(&sk->sk_receive_queue);
6766 			if (skb)
6767 				atomic_inc(&skb->users);
6768 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6769 		} else {
6770 			skb = skb_dequeue(&sk->sk_receive_queue);
6771 		}
6772 
6773 		if (skb)
6774 			return skb;
6775 
6776 		/* Caller is allowed not to check sk->sk_err before calling. */
6777 		error = sock_error(sk);
6778 		if (error)
6779 			goto no_packet;
6780 
6781 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6782 			break;
6783 
6784 		if (sk_can_busy_loop(sk) &&
6785 		    sk_busy_loop(sk, noblock))
6786 			continue;
6787 
6788 		/* User doesn't want to wait.  */
6789 		error = -EAGAIN;
6790 		if (!timeo)
6791 			goto no_packet;
6792 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6793 
6794 	return NULL;
6795 
6796 no_packet:
6797 	*err = error;
6798 	return NULL;
6799 }
6800 
6801 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6802 static void __sctp_write_space(struct sctp_association *asoc)
6803 {
6804 	struct sock *sk = asoc->base.sk;
6805 
6806 	if (sctp_wspace(asoc) <= 0)
6807 		return;
6808 
6809 	if (waitqueue_active(&asoc->wait))
6810 		wake_up_interruptible(&asoc->wait);
6811 
6812 	if (sctp_writeable(sk)) {
6813 		struct socket_wq *wq;
6814 
6815 		rcu_read_lock();
6816 		wq = rcu_dereference(sk->sk_wq);
6817 		if (wq) {
6818 			if (waitqueue_active(&wq->wait))
6819 				wake_up_interruptible(&wq->wait);
6820 
6821 			/* Note that we try to include the Async I/O support
6822 			 * here by modeling from the current TCP/UDP code.
6823 			 * We have not tested with it yet.
6824 			 */
6825 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6826 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
6827 		}
6828 		rcu_read_unlock();
6829 	}
6830 }
6831 
6832 static void sctp_wake_up_waiters(struct sock *sk,
6833 				 struct sctp_association *asoc)
6834 {
6835 	struct sctp_association *tmp = asoc;
6836 
6837 	/* We do accounting for the sndbuf space per association,
6838 	 * so we only need to wake our own association.
6839 	 */
6840 	if (asoc->ep->sndbuf_policy)
6841 		return __sctp_write_space(asoc);
6842 
6843 	/* If association goes down and is just flushing its
6844 	 * outq, then just normally notify others.
6845 	 */
6846 	if (asoc->base.dead)
6847 		return sctp_write_space(sk);
6848 
6849 	/* Accounting for the sndbuf space is per socket, so we
6850 	 * need to wake up others, try to be fair and in case of
6851 	 * other associations, let them have a go first instead
6852 	 * of just doing a sctp_write_space() call.
6853 	 *
6854 	 * Note that we reach sctp_wake_up_waiters() only when
6855 	 * associations free up queued chunks, thus we are under
6856 	 * lock and the list of associations on a socket is
6857 	 * guaranteed not to change.
6858 	 */
6859 	for (tmp = list_next_entry(tmp, asocs); 1;
6860 	     tmp = list_next_entry(tmp, asocs)) {
6861 		/* Manually skip the head element. */
6862 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6863 			continue;
6864 		/* Wake up association. */
6865 		__sctp_write_space(tmp);
6866 		/* We've reached the end. */
6867 		if (tmp == asoc)
6868 			break;
6869 	}
6870 }
6871 
6872 /* Do accounting for the sndbuf space.
6873  * Decrement the used sndbuf space of the corresponding association by the
6874  * data size which was just transmitted(freed).
6875  */
6876 static void sctp_wfree(struct sk_buff *skb)
6877 {
6878 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6879 	struct sctp_association *asoc = chunk->asoc;
6880 	struct sock *sk = asoc->base.sk;
6881 
6882 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6883 				sizeof(struct sk_buff) +
6884 				sizeof(struct sctp_chunk);
6885 
6886 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6887 
6888 	/*
6889 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6890 	 */
6891 	sk->sk_wmem_queued   -= skb->truesize;
6892 	sk_mem_uncharge(sk, skb->truesize);
6893 
6894 	sock_wfree(skb);
6895 	sctp_wake_up_waiters(sk, asoc);
6896 
6897 	sctp_association_put(asoc);
6898 }
6899 
6900 /* Do accounting for the receive space on the socket.
6901  * Accounting for the association is done in ulpevent.c
6902  * We set this as a destructor for the cloned data skbs so that
6903  * accounting is done at the correct time.
6904  */
6905 void sctp_sock_rfree(struct sk_buff *skb)
6906 {
6907 	struct sock *sk = skb->sk;
6908 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6909 
6910 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6911 
6912 	/*
6913 	 * Mimic the behavior of sock_rfree
6914 	 */
6915 	sk_mem_uncharge(sk, event->rmem_len);
6916 }
6917 
6918 
6919 /* Helper function to wait for space in the sndbuf.  */
6920 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6921 				size_t msg_len)
6922 {
6923 	struct sock *sk = asoc->base.sk;
6924 	int err = 0;
6925 	long current_timeo = *timeo_p;
6926 	DEFINE_WAIT(wait);
6927 
6928 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6929 		 *timeo_p, msg_len);
6930 
6931 	/* Increment the association's refcnt.  */
6932 	sctp_association_hold(asoc);
6933 
6934 	/* Wait on the association specific sndbuf space. */
6935 	for (;;) {
6936 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6937 					  TASK_INTERRUPTIBLE);
6938 		if (!*timeo_p)
6939 			goto do_nonblock;
6940 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6941 		    asoc->base.dead)
6942 			goto do_error;
6943 		if (signal_pending(current))
6944 			goto do_interrupted;
6945 		if (msg_len <= sctp_wspace(asoc))
6946 			break;
6947 
6948 		/* Let another process have a go.  Since we are going
6949 		 * to sleep anyway.
6950 		 */
6951 		release_sock(sk);
6952 		current_timeo = schedule_timeout(current_timeo);
6953 		BUG_ON(sk != asoc->base.sk);
6954 		lock_sock(sk);
6955 
6956 		*timeo_p = current_timeo;
6957 	}
6958 
6959 out:
6960 	finish_wait(&asoc->wait, &wait);
6961 
6962 	/* Release the association's refcnt.  */
6963 	sctp_association_put(asoc);
6964 
6965 	return err;
6966 
6967 do_error:
6968 	err = -EPIPE;
6969 	goto out;
6970 
6971 do_interrupted:
6972 	err = sock_intr_errno(*timeo_p);
6973 	goto out;
6974 
6975 do_nonblock:
6976 	err = -EAGAIN;
6977 	goto out;
6978 }
6979 
6980 void sctp_data_ready(struct sock *sk)
6981 {
6982 	struct socket_wq *wq;
6983 
6984 	rcu_read_lock();
6985 	wq = rcu_dereference(sk->sk_wq);
6986 	if (skwq_has_sleeper(wq))
6987 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6988 						POLLRDNORM | POLLRDBAND);
6989 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6990 	rcu_read_unlock();
6991 }
6992 
6993 /* If socket sndbuf has changed, wake up all per association waiters.  */
6994 void sctp_write_space(struct sock *sk)
6995 {
6996 	struct sctp_association *asoc;
6997 
6998 	/* Wake up the tasks in each wait queue.  */
6999 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7000 		__sctp_write_space(asoc);
7001 	}
7002 }
7003 
7004 /* Is there any sndbuf space available on the socket?
7005  *
7006  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7007  * associations on the same socket.  For a UDP-style socket with
7008  * multiple associations, it is possible for it to be "unwriteable"
7009  * prematurely.  I assume that this is acceptable because
7010  * a premature "unwriteable" is better than an accidental "writeable" which
7011  * would cause an unwanted block under certain circumstances.  For the 1-1
7012  * UDP-style sockets or TCP-style sockets, this code should work.
7013  *  - Daisy
7014  */
7015 static int sctp_writeable(struct sock *sk)
7016 {
7017 	int amt = 0;
7018 
7019 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7020 	if (amt < 0)
7021 		amt = 0;
7022 	return amt;
7023 }
7024 
7025 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7026  * returns immediately with EINPROGRESS.
7027  */
7028 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7029 {
7030 	struct sock *sk = asoc->base.sk;
7031 	int err = 0;
7032 	long current_timeo = *timeo_p;
7033 	DEFINE_WAIT(wait);
7034 
7035 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7036 
7037 	/* Increment the association's refcnt.  */
7038 	sctp_association_hold(asoc);
7039 
7040 	for (;;) {
7041 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7042 					  TASK_INTERRUPTIBLE);
7043 		if (!*timeo_p)
7044 			goto do_nonblock;
7045 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7046 			break;
7047 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7048 		    asoc->base.dead)
7049 			goto do_error;
7050 		if (signal_pending(current))
7051 			goto do_interrupted;
7052 
7053 		if (sctp_state(asoc, ESTABLISHED))
7054 			break;
7055 
7056 		/* Let another process have a go.  Since we are going
7057 		 * to sleep anyway.
7058 		 */
7059 		release_sock(sk);
7060 		current_timeo = schedule_timeout(current_timeo);
7061 		lock_sock(sk);
7062 
7063 		*timeo_p = current_timeo;
7064 	}
7065 
7066 out:
7067 	finish_wait(&asoc->wait, &wait);
7068 
7069 	/* Release the association's refcnt.  */
7070 	sctp_association_put(asoc);
7071 
7072 	return err;
7073 
7074 do_error:
7075 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7076 		err = -ETIMEDOUT;
7077 	else
7078 		err = -ECONNREFUSED;
7079 	goto out;
7080 
7081 do_interrupted:
7082 	err = sock_intr_errno(*timeo_p);
7083 	goto out;
7084 
7085 do_nonblock:
7086 	err = -EINPROGRESS;
7087 	goto out;
7088 }
7089 
7090 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7091 {
7092 	struct sctp_endpoint *ep;
7093 	int err = 0;
7094 	DEFINE_WAIT(wait);
7095 
7096 	ep = sctp_sk(sk)->ep;
7097 
7098 
7099 	for (;;) {
7100 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7101 					  TASK_INTERRUPTIBLE);
7102 
7103 		if (list_empty(&ep->asocs)) {
7104 			release_sock(sk);
7105 			timeo = schedule_timeout(timeo);
7106 			lock_sock(sk);
7107 		}
7108 
7109 		err = -EINVAL;
7110 		if (!sctp_sstate(sk, LISTENING))
7111 			break;
7112 
7113 		err = 0;
7114 		if (!list_empty(&ep->asocs))
7115 			break;
7116 
7117 		err = sock_intr_errno(timeo);
7118 		if (signal_pending(current))
7119 			break;
7120 
7121 		err = -EAGAIN;
7122 		if (!timeo)
7123 			break;
7124 	}
7125 
7126 	finish_wait(sk_sleep(sk), &wait);
7127 
7128 	return err;
7129 }
7130 
7131 static void sctp_wait_for_close(struct sock *sk, long timeout)
7132 {
7133 	DEFINE_WAIT(wait);
7134 
7135 	do {
7136 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7137 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7138 			break;
7139 		release_sock(sk);
7140 		timeout = schedule_timeout(timeout);
7141 		lock_sock(sk);
7142 	} while (!signal_pending(current) && timeout);
7143 
7144 	finish_wait(sk_sleep(sk), &wait);
7145 }
7146 
7147 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7148 {
7149 	struct sk_buff *frag;
7150 
7151 	if (!skb->data_len)
7152 		goto done;
7153 
7154 	/* Don't forget the fragments. */
7155 	skb_walk_frags(skb, frag)
7156 		sctp_skb_set_owner_r_frag(frag, sk);
7157 
7158 done:
7159 	sctp_skb_set_owner_r(skb, sk);
7160 }
7161 
7162 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7163 		    struct sctp_association *asoc)
7164 {
7165 	struct inet_sock *inet = inet_sk(sk);
7166 	struct inet_sock *newinet;
7167 
7168 	newsk->sk_type = sk->sk_type;
7169 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7170 	newsk->sk_flags = sk->sk_flags;
7171 	newsk->sk_tsflags = sk->sk_tsflags;
7172 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7173 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7174 	newsk->sk_reuse = sk->sk_reuse;
7175 
7176 	newsk->sk_shutdown = sk->sk_shutdown;
7177 	newsk->sk_destruct = sctp_destruct_sock;
7178 	newsk->sk_family = sk->sk_family;
7179 	newsk->sk_protocol = IPPROTO_SCTP;
7180 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7181 	newsk->sk_sndbuf = sk->sk_sndbuf;
7182 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7183 	newsk->sk_lingertime = sk->sk_lingertime;
7184 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7185 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7186 
7187 	newinet = inet_sk(newsk);
7188 
7189 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7190 	 * getsockname() and getpeername()
7191 	 */
7192 	newinet->inet_sport = inet->inet_sport;
7193 	newinet->inet_saddr = inet->inet_saddr;
7194 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7195 	newinet->inet_dport = htons(asoc->peer.port);
7196 	newinet->pmtudisc = inet->pmtudisc;
7197 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7198 
7199 	newinet->uc_ttl = inet->uc_ttl;
7200 	newinet->mc_loop = 1;
7201 	newinet->mc_ttl = 1;
7202 	newinet->mc_index = 0;
7203 	newinet->mc_list = NULL;
7204 
7205 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7206 		net_enable_timestamp();
7207 
7208 	security_sk_clone(sk, newsk);
7209 }
7210 
7211 static inline void sctp_copy_descendant(struct sock *sk_to,
7212 					const struct sock *sk_from)
7213 {
7214 	int ancestor_size = sizeof(struct inet_sock) +
7215 			    sizeof(struct sctp_sock) -
7216 			    offsetof(struct sctp_sock, auto_asconf_list);
7217 
7218 	if (sk_from->sk_family == PF_INET6)
7219 		ancestor_size += sizeof(struct ipv6_pinfo);
7220 
7221 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7222 }
7223 
7224 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7225  * and its messages to the newsk.
7226  */
7227 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7228 			      struct sctp_association *assoc,
7229 			      sctp_socket_type_t type)
7230 {
7231 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7232 	struct sctp_sock *newsp = sctp_sk(newsk);
7233 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7234 	struct sctp_endpoint *newep = newsp->ep;
7235 	struct sk_buff *skb, *tmp;
7236 	struct sctp_ulpevent *event;
7237 	struct sctp_bind_hashbucket *head;
7238 
7239 	/* Migrate socket buffer sizes and all the socket level options to the
7240 	 * new socket.
7241 	 */
7242 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7243 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7244 	/* Brute force copy old sctp opt. */
7245 	sctp_copy_descendant(newsk, oldsk);
7246 
7247 	/* Restore the ep value that was overwritten with the above structure
7248 	 * copy.
7249 	 */
7250 	newsp->ep = newep;
7251 	newsp->hmac = NULL;
7252 
7253 	/* Hook this new socket in to the bind_hash list. */
7254 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7255 						 inet_sk(oldsk)->inet_num)];
7256 	local_bh_disable();
7257 	spin_lock(&head->lock);
7258 	pp = sctp_sk(oldsk)->bind_hash;
7259 	sk_add_bind_node(newsk, &pp->owner);
7260 	sctp_sk(newsk)->bind_hash = pp;
7261 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7262 	spin_unlock(&head->lock);
7263 	local_bh_enable();
7264 
7265 	/* Copy the bind_addr list from the original endpoint to the new
7266 	 * endpoint so that we can handle restarts properly
7267 	 */
7268 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7269 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7270 
7271 	/* Move any messages in the old socket's receive queue that are for the
7272 	 * peeled off association to the new socket's receive queue.
7273 	 */
7274 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7275 		event = sctp_skb2event(skb);
7276 		if (event->asoc == assoc) {
7277 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7278 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7279 			sctp_skb_set_owner_r_frag(skb, newsk);
7280 		}
7281 	}
7282 
7283 	/* Clean up any messages pending delivery due to partial
7284 	 * delivery.   Three cases:
7285 	 * 1) No partial deliver;  no work.
7286 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7287 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7288 	 */
7289 	skb_queue_head_init(&newsp->pd_lobby);
7290 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7291 
7292 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7293 		struct sk_buff_head *queue;
7294 
7295 		/* Decide which queue to move pd_lobby skbs to. */
7296 		if (assoc->ulpq.pd_mode) {
7297 			queue = &newsp->pd_lobby;
7298 		} else
7299 			queue = &newsk->sk_receive_queue;
7300 
7301 		/* Walk through the pd_lobby, looking for skbs that
7302 		 * need moved to the new socket.
7303 		 */
7304 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7305 			event = sctp_skb2event(skb);
7306 			if (event->asoc == assoc) {
7307 				__skb_unlink(skb, &oldsp->pd_lobby);
7308 				__skb_queue_tail(queue, skb);
7309 				sctp_skb_set_owner_r_frag(skb, newsk);
7310 			}
7311 		}
7312 
7313 		/* Clear up any skbs waiting for the partial
7314 		 * delivery to finish.
7315 		 */
7316 		if (assoc->ulpq.pd_mode)
7317 			sctp_clear_pd(oldsk, NULL);
7318 
7319 	}
7320 
7321 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7322 		sctp_skb_set_owner_r_frag(skb, newsk);
7323 
7324 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7325 		sctp_skb_set_owner_r_frag(skb, newsk);
7326 
7327 	/* Set the type of socket to indicate that it is peeled off from the
7328 	 * original UDP-style socket or created with the accept() call on a
7329 	 * TCP-style socket..
7330 	 */
7331 	newsp->type = type;
7332 
7333 	/* Mark the new socket "in-use" by the user so that any packets
7334 	 * that may arrive on the association after we've moved it are
7335 	 * queued to the backlog.  This prevents a potential race between
7336 	 * backlog processing on the old socket and new-packet processing
7337 	 * on the new socket.
7338 	 *
7339 	 * The caller has just allocated newsk so we can guarantee that other
7340 	 * paths won't try to lock it and then oldsk.
7341 	 */
7342 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7343 	sctp_assoc_migrate(assoc, newsk);
7344 
7345 	/* If the association on the newsk is already closed before accept()
7346 	 * is called, set RCV_SHUTDOWN flag.
7347 	 */
7348 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7349 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7350 
7351 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7352 	release_sock(newsk);
7353 }
7354 
7355 
7356 /* This proto struct describes the ULP interface for SCTP.  */
7357 struct proto sctp_prot = {
7358 	.name        =	"SCTP",
7359 	.owner       =	THIS_MODULE,
7360 	.close       =	sctp_close,
7361 	.connect     =	sctp_connect,
7362 	.disconnect  =	sctp_disconnect,
7363 	.accept      =	sctp_accept,
7364 	.ioctl       =	sctp_ioctl,
7365 	.init        =	sctp_init_sock,
7366 	.destroy     =	sctp_destroy_sock,
7367 	.shutdown    =	sctp_shutdown,
7368 	.setsockopt  =	sctp_setsockopt,
7369 	.getsockopt  =	sctp_getsockopt,
7370 	.sendmsg     =	sctp_sendmsg,
7371 	.recvmsg     =	sctp_recvmsg,
7372 	.bind        =	sctp_bind,
7373 	.backlog_rcv =	sctp_backlog_rcv,
7374 	.hash        =	sctp_hash,
7375 	.unhash      =	sctp_unhash,
7376 	.get_port    =	sctp_get_port,
7377 	.obj_size    =  sizeof(struct sctp_sock),
7378 	.sysctl_mem  =  sysctl_sctp_mem,
7379 	.sysctl_rmem =  sysctl_sctp_rmem,
7380 	.sysctl_wmem =  sysctl_sctp_wmem,
7381 	.memory_pressure = &sctp_memory_pressure,
7382 	.enter_memory_pressure = sctp_enter_memory_pressure,
7383 	.memory_allocated = &sctp_memory_allocated,
7384 	.sockets_allocated = &sctp_sockets_allocated,
7385 };
7386 
7387 #if IS_ENABLED(CONFIG_IPV6)
7388 
7389 #include <net/transp_v6.h>
7390 static void sctp_v6_destroy_sock(struct sock *sk)
7391 {
7392 	sctp_destroy_sock(sk);
7393 	inet6_destroy_sock(sk);
7394 }
7395 
7396 struct proto sctpv6_prot = {
7397 	.name		= "SCTPv6",
7398 	.owner		= THIS_MODULE,
7399 	.close		= sctp_close,
7400 	.connect	= sctp_connect,
7401 	.disconnect	= sctp_disconnect,
7402 	.accept		= sctp_accept,
7403 	.ioctl		= sctp_ioctl,
7404 	.init		= sctp_init_sock,
7405 	.destroy	= sctp_v6_destroy_sock,
7406 	.shutdown	= sctp_shutdown,
7407 	.setsockopt	= sctp_setsockopt,
7408 	.getsockopt	= sctp_getsockopt,
7409 	.sendmsg	= sctp_sendmsg,
7410 	.recvmsg	= sctp_recvmsg,
7411 	.bind		= sctp_bind,
7412 	.backlog_rcv	= sctp_backlog_rcv,
7413 	.hash		= sctp_hash,
7414 	.unhash		= sctp_unhash,
7415 	.get_port	= sctp_get_port,
7416 	.obj_size	= sizeof(struct sctp6_sock),
7417 	.sysctl_mem	= sysctl_sctp_mem,
7418 	.sysctl_rmem	= sysctl_sctp_rmem,
7419 	.sysctl_wmem	= sysctl_sctp_wmem,
7420 	.memory_pressure = &sctp_memory_pressure,
7421 	.enter_memory_pressure = sctp_enter_memory_pressure,
7422 	.memory_allocated = &sctp_memory_allocated,
7423 	.sockets_allocated = &sctp_sockets_allocated,
7424 };
7425 #endif /* IS_ENABLED(CONFIG_IPV6) */
7426