1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 #include <net/sctp/stream_sched.h> 83 84 /* Forward declarations for internal helper functions. */ 85 static int sctp_writeable(struct sock *sk); 86 static void sctp_wfree(struct sk_buff *skb); 87 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 88 size_t msg_len); 89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 91 static int sctp_wait_for_accept(struct sock *sk, long timeo); 92 static void sctp_wait_for_close(struct sock *sk, long timeo); 93 static void sctp_destruct_sock(struct sock *sk); 94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 95 union sctp_addr *addr, int len); 96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf(struct sctp_association *asoc, 101 struct sctp_chunk *chunk); 102 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 103 static int sctp_autobind(struct sock *sk); 104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 105 struct sctp_association *assoc, 106 enum sctp_socket_type type); 107 108 static unsigned long sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 if (chunk->shkey) 160 sctp_auth_shkey_hold(chunk->shkey); 161 162 skb_set_owner_w(chunk->skb, sk); 163 164 chunk->skb->destructor = sctp_wfree; 165 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 166 skb_shinfo(chunk->skb)->destructor_arg = chunk; 167 168 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 169 sizeof(struct sk_buff) + 170 sizeof(struct sctp_chunk); 171 172 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 173 sk->sk_wmem_queued += chunk->skb->truesize; 174 sk_mem_charge(sk, chunk->skb->truesize); 175 } 176 177 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 178 { 179 skb_orphan(chunk->skb); 180 } 181 182 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 183 void (*cb)(struct sctp_chunk *)) 184 185 { 186 struct sctp_outq *q = &asoc->outqueue; 187 struct sctp_transport *t; 188 struct sctp_chunk *chunk; 189 190 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 191 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 192 cb(chunk); 193 194 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 195 cb(chunk); 196 197 list_for_each_entry(chunk, &q->sacked, transmitted_list) 198 cb(chunk); 199 200 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 201 cb(chunk); 202 203 list_for_each_entry(chunk, &q->out_chunk_list, list) 204 cb(chunk); 205 } 206 207 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 208 void (*cb)(struct sk_buff *, struct sock *)) 209 210 { 211 struct sk_buff *skb, *tmp; 212 213 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 214 cb(skb, sk); 215 216 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 217 cb(skb, sk); 218 219 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 220 cb(skb, sk); 221 } 222 223 /* Verify that this is a valid address. */ 224 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 225 int len) 226 { 227 struct sctp_af *af; 228 229 /* Verify basic sockaddr. */ 230 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 231 if (!af) 232 return -EINVAL; 233 234 /* Is this a valid SCTP address? */ 235 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 236 return -EINVAL; 237 238 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /* Look up the association by its id. If this is not a UDP-style 245 * socket, the ID field is always ignored. 246 */ 247 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 248 { 249 struct sctp_association *asoc = NULL; 250 251 /* If this is not a UDP-style socket, assoc id should be ignored. */ 252 if (!sctp_style(sk, UDP)) { 253 /* Return NULL if the socket state is not ESTABLISHED. It 254 * could be a TCP-style listening socket or a socket which 255 * hasn't yet called connect() to establish an association. 256 */ 257 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 258 return NULL; 259 260 /* Get the first and the only association from the list. */ 261 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 262 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 263 struct sctp_association, asocs); 264 return asoc; 265 } 266 267 /* Otherwise this is a UDP-style socket. */ 268 if (!id || (id == (sctp_assoc_t)-1)) 269 return NULL; 270 271 spin_lock_bh(&sctp_assocs_id_lock); 272 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 273 spin_unlock_bh(&sctp_assocs_id_lock); 274 275 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 276 return NULL; 277 278 return asoc; 279 } 280 281 /* Look up the transport from an address and an assoc id. If both address and 282 * id are specified, the associations matching the address and the id should be 283 * the same. 284 */ 285 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 286 struct sockaddr_storage *addr, 287 sctp_assoc_t id) 288 { 289 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 290 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 291 union sctp_addr *laddr = (union sctp_addr *)addr; 292 struct sctp_transport *transport; 293 294 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 295 return NULL; 296 297 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 298 laddr, 299 &transport); 300 301 if (!addr_asoc) 302 return NULL; 303 304 id_asoc = sctp_id2assoc(sk, id); 305 if (id_asoc && (id_asoc != addr_asoc)) 306 return NULL; 307 308 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 309 (union sctp_addr *)addr); 310 311 return transport; 312 } 313 314 /* API 3.1.2 bind() - UDP Style Syntax 315 * The syntax of bind() is, 316 * 317 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 318 * 319 * sd - the socket descriptor returned by socket(). 320 * addr - the address structure (struct sockaddr_in or struct 321 * sockaddr_in6 [RFC 2553]), 322 * addr_len - the size of the address structure. 323 */ 324 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 325 { 326 int retval = 0; 327 328 lock_sock(sk); 329 330 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 331 addr, addr_len); 332 333 /* Disallow binding twice. */ 334 if (!sctp_sk(sk)->ep->base.bind_addr.port) 335 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 336 addr_len); 337 else 338 retval = -EINVAL; 339 340 release_sock(sk); 341 342 return retval; 343 } 344 345 static long sctp_get_port_local(struct sock *, union sctp_addr *); 346 347 /* Verify this is a valid sockaddr. */ 348 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 349 union sctp_addr *addr, int len) 350 { 351 struct sctp_af *af; 352 353 /* Check minimum size. */ 354 if (len < sizeof (struct sockaddr)) 355 return NULL; 356 357 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 358 return NULL; 359 360 if (addr->sa.sa_family == AF_INET6) { 361 if (len < SIN6_LEN_RFC2133) 362 return NULL; 363 /* V4 mapped address are really of AF_INET family */ 364 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 365 !opt->pf->af_supported(AF_INET, opt)) 366 return NULL; 367 } 368 369 /* If we get this far, af is valid. */ 370 af = sctp_get_af_specific(addr->sa.sa_family); 371 372 if (len < af->sockaddr_len) 373 return NULL; 374 375 return af; 376 } 377 378 /* Bind a local address either to an endpoint or to an association. */ 379 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 380 { 381 struct net *net = sock_net(sk); 382 struct sctp_sock *sp = sctp_sk(sk); 383 struct sctp_endpoint *ep = sp->ep; 384 struct sctp_bind_addr *bp = &ep->base.bind_addr; 385 struct sctp_af *af; 386 unsigned short snum; 387 int ret = 0; 388 389 /* Common sockaddr verification. */ 390 af = sctp_sockaddr_af(sp, addr, len); 391 if (!af) { 392 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 393 __func__, sk, addr, len); 394 return -EINVAL; 395 } 396 397 snum = ntohs(addr->v4.sin_port); 398 399 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 400 __func__, sk, &addr->sa, bp->port, snum, len); 401 402 /* PF specific bind() address verification. */ 403 if (!sp->pf->bind_verify(sp, addr)) 404 return -EADDRNOTAVAIL; 405 406 /* We must either be unbound, or bind to the same port. 407 * It's OK to allow 0 ports if we are already bound. 408 * We'll just inhert an already bound port in this case 409 */ 410 if (bp->port) { 411 if (!snum) 412 snum = bp->port; 413 else if (snum != bp->port) { 414 pr_debug("%s: new port %d doesn't match existing port " 415 "%d\n", __func__, snum, bp->port); 416 return -EINVAL; 417 } 418 } 419 420 if (snum && snum < inet_prot_sock(net) && 421 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 422 return -EACCES; 423 424 /* See if the address matches any of the addresses we may have 425 * already bound before checking against other endpoints. 426 */ 427 if (sctp_bind_addr_match(bp, addr, sp)) 428 return -EINVAL; 429 430 /* Make sure we are allowed to bind here. 431 * The function sctp_get_port_local() does duplicate address 432 * detection. 433 */ 434 addr->v4.sin_port = htons(snum); 435 if ((ret = sctp_get_port_local(sk, addr))) { 436 return -EADDRINUSE; 437 } 438 439 /* Refresh ephemeral port. */ 440 if (!bp->port) 441 bp->port = inet_sk(sk)->inet_num; 442 443 /* Add the address to the bind address list. 444 * Use GFP_ATOMIC since BHs will be disabled. 445 */ 446 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 447 SCTP_ADDR_SRC, GFP_ATOMIC); 448 449 /* Copy back into socket for getsockname() use. */ 450 if (!ret) { 451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 452 sp->pf->to_sk_saddr(addr, sk); 453 } 454 455 return ret; 456 } 457 458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 459 * 460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 461 * at any one time. If a sender, after sending an ASCONF chunk, decides 462 * it needs to transfer another ASCONF Chunk, it MUST wait until the 463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 464 * subsequent ASCONF. Note this restriction binds each side, so at any 465 * time two ASCONF may be in-transit on any given association (one sent 466 * from each endpoint). 467 */ 468 static int sctp_send_asconf(struct sctp_association *asoc, 469 struct sctp_chunk *chunk) 470 { 471 struct net *net = sock_net(asoc->base.sk); 472 int retval = 0; 473 474 /* If there is an outstanding ASCONF chunk, queue it for later 475 * transmission. 476 */ 477 if (asoc->addip_last_asconf) { 478 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 479 goto out; 480 } 481 482 /* Hold the chunk until an ASCONF_ACK is received. */ 483 sctp_chunk_hold(chunk); 484 retval = sctp_primitive_ASCONF(net, asoc, chunk); 485 if (retval) 486 sctp_chunk_free(chunk); 487 else 488 asoc->addip_last_asconf = chunk; 489 490 out: 491 return retval; 492 } 493 494 /* Add a list of addresses as bind addresses to local endpoint or 495 * association. 496 * 497 * Basically run through each address specified in the addrs/addrcnt 498 * array/length pair, determine if it is IPv6 or IPv4 and call 499 * sctp_do_bind() on it. 500 * 501 * If any of them fails, then the operation will be reversed and the 502 * ones that were added will be removed. 503 * 504 * Only sctp_setsockopt_bindx() is supposed to call this function. 505 */ 506 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 507 { 508 int cnt; 509 int retval = 0; 510 void *addr_buf; 511 struct sockaddr *sa_addr; 512 struct sctp_af *af; 513 514 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 515 addrs, addrcnt); 516 517 addr_buf = addrs; 518 for (cnt = 0; cnt < addrcnt; cnt++) { 519 /* The list may contain either IPv4 or IPv6 address; 520 * determine the address length for walking thru the list. 521 */ 522 sa_addr = addr_buf; 523 af = sctp_get_af_specific(sa_addr->sa_family); 524 if (!af) { 525 retval = -EINVAL; 526 goto err_bindx_add; 527 } 528 529 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 530 af->sockaddr_len); 531 532 addr_buf += af->sockaddr_len; 533 534 err_bindx_add: 535 if (retval < 0) { 536 /* Failed. Cleanup the ones that have been added */ 537 if (cnt > 0) 538 sctp_bindx_rem(sk, addrs, cnt); 539 return retval; 540 } 541 } 542 543 return retval; 544 } 545 546 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 547 * associations that are part of the endpoint indicating that a list of local 548 * addresses are added to the endpoint. 549 * 550 * If any of the addresses is already in the bind address list of the 551 * association, we do not send the chunk for that association. But it will not 552 * affect other associations. 553 * 554 * Only sctp_setsockopt_bindx() is supposed to call this function. 555 */ 556 static int sctp_send_asconf_add_ip(struct sock *sk, 557 struct sockaddr *addrs, 558 int addrcnt) 559 { 560 struct net *net = sock_net(sk); 561 struct sctp_sock *sp; 562 struct sctp_endpoint *ep; 563 struct sctp_association *asoc; 564 struct sctp_bind_addr *bp; 565 struct sctp_chunk *chunk; 566 struct sctp_sockaddr_entry *laddr; 567 union sctp_addr *addr; 568 union sctp_addr saveaddr; 569 void *addr_buf; 570 struct sctp_af *af; 571 struct list_head *p; 572 int i; 573 int retval = 0; 574 575 if (!net->sctp.addip_enable) 576 return retval; 577 578 sp = sctp_sk(sk); 579 ep = sp->ep; 580 581 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 582 __func__, sk, addrs, addrcnt); 583 584 list_for_each_entry(asoc, &ep->asocs, asocs) { 585 if (!asoc->peer.asconf_capable) 586 continue; 587 588 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 589 continue; 590 591 if (!sctp_state(asoc, ESTABLISHED)) 592 continue; 593 594 /* Check if any address in the packed array of addresses is 595 * in the bind address list of the association. If so, 596 * do not send the asconf chunk to its peer, but continue with 597 * other associations. 598 */ 599 addr_buf = addrs; 600 for (i = 0; i < addrcnt; i++) { 601 addr = addr_buf; 602 af = sctp_get_af_specific(addr->v4.sin_family); 603 if (!af) { 604 retval = -EINVAL; 605 goto out; 606 } 607 608 if (sctp_assoc_lookup_laddr(asoc, addr)) 609 break; 610 611 addr_buf += af->sockaddr_len; 612 } 613 if (i < addrcnt) 614 continue; 615 616 /* Use the first valid address in bind addr list of 617 * association as Address Parameter of ASCONF CHUNK. 618 */ 619 bp = &asoc->base.bind_addr; 620 p = bp->address_list.next; 621 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 622 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 623 addrcnt, SCTP_PARAM_ADD_IP); 624 if (!chunk) { 625 retval = -ENOMEM; 626 goto out; 627 } 628 629 /* Add the new addresses to the bind address list with 630 * use_as_src set to 0. 631 */ 632 addr_buf = addrs; 633 for (i = 0; i < addrcnt; i++) { 634 addr = addr_buf; 635 af = sctp_get_af_specific(addr->v4.sin_family); 636 memcpy(&saveaddr, addr, af->sockaddr_len); 637 retval = sctp_add_bind_addr(bp, &saveaddr, 638 sizeof(saveaddr), 639 SCTP_ADDR_NEW, GFP_ATOMIC); 640 addr_buf += af->sockaddr_len; 641 } 642 if (asoc->src_out_of_asoc_ok) { 643 struct sctp_transport *trans; 644 645 list_for_each_entry(trans, 646 &asoc->peer.transport_addr_list, transports) { 647 /* Clear the source and route cache */ 648 sctp_transport_dst_release(trans); 649 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 650 2*asoc->pathmtu, 4380)); 651 trans->ssthresh = asoc->peer.i.a_rwnd; 652 trans->rto = asoc->rto_initial; 653 sctp_max_rto(asoc, trans); 654 trans->rtt = trans->srtt = trans->rttvar = 0; 655 sctp_transport_route(trans, NULL, 656 sctp_sk(asoc->base.sk)); 657 } 658 } 659 retval = sctp_send_asconf(asoc, chunk); 660 } 661 662 out: 663 return retval; 664 } 665 666 /* Remove a list of addresses from bind addresses list. Do not remove the 667 * last address. 668 * 669 * Basically run through each address specified in the addrs/addrcnt 670 * array/length pair, determine if it is IPv6 or IPv4 and call 671 * sctp_del_bind() on it. 672 * 673 * If any of them fails, then the operation will be reversed and the 674 * ones that were removed will be added back. 675 * 676 * At least one address has to be left; if only one address is 677 * available, the operation will return -EBUSY. 678 * 679 * Only sctp_setsockopt_bindx() is supposed to call this function. 680 */ 681 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 682 { 683 struct sctp_sock *sp = sctp_sk(sk); 684 struct sctp_endpoint *ep = sp->ep; 685 int cnt; 686 struct sctp_bind_addr *bp = &ep->base.bind_addr; 687 int retval = 0; 688 void *addr_buf; 689 union sctp_addr *sa_addr; 690 struct sctp_af *af; 691 692 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 693 __func__, sk, addrs, addrcnt); 694 695 addr_buf = addrs; 696 for (cnt = 0; cnt < addrcnt; cnt++) { 697 /* If the bind address list is empty or if there is only one 698 * bind address, there is nothing more to be removed (we need 699 * at least one address here). 700 */ 701 if (list_empty(&bp->address_list) || 702 (sctp_list_single_entry(&bp->address_list))) { 703 retval = -EBUSY; 704 goto err_bindx_rem; 705 } 706 707 sa_addr = addr_buf; 708 af = sctp_get_af_specific(sa_addr->sa.sa_family); 709 if (!af) { 710 retval = -EINVAL; 711 goto err_bindx_rem; 712 } 713 714 if (!af->addr_valid(sa_addr, sp, NULL)) { 715 retval = -EADDRNOTAVAIL; 716 goto err_bindx_rem; 717 } 718 719 if (sa_addr->v4.sin_port && 720 sa_addr->v4.sin_port != htons(bp->port)) { 721 retval = -EINVAL; 722 goto err_bindx_rem; 723 } 724 725 if (!sa_addr->v4.sin_port) 726 sa_addr->v4.sin_port = htons(bp->port); 727 728 /* FIXME - There is probably a need to check if sk->sk_saddr and 729 * sk->sk_rcv_addr are currently set to one of the addresses to 730 * be removed. This is something which needs to be looked into 731 * when we are fixing the outstanding issues with multi-homing 732 * socket routing and failover schemes. Refer to comments in 733 * sctp_do_bind(). -daisy 734 */ 735 retval = sctp_del_bind_addr(bp, sa_addr); 736 737 addr_buf += af->sockaddr_len; 738 err_bindx_rem: 739 if (retval < 0) { 740 /* Failed. Add the ones that has been removed back */ 741 if (cnt > 0) 742 sctp_bindx_add(sk, addrs, cnt); 743 return retval; 744 } 745 } 746 747 return retval; 748 } 749 750 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 751 * the associations that are part of the endpoint indicating that a list of 752 * local addresses are removed from the endpoint. 753 * 754 * If any of the addresses is already in the bind address list of the 755 * association, we do not send the chunk for that association. But it will not 756 * affect other associations. 757 * 758 * Only sctp_setsockopt_bindx() is supposed to call this function. 759 */ 760 static int sctp_send_asconf_del_ip(struct sock *sk, 761 struct sockaddr *addrs, 762 int addrcnt) 763 { 764 struct net *net = sock_net(sk); 765 struct sctp_sock *sp; 766 struct sctp_endpoint *ep; 767 struct sctp_association *asoc; 768 struct sctp_transport *transport; 769 struct sctp_bind_addr *bp; 770 struct sctp_chunk *chunk; 771 union sctp_addr *laddr; 772 void *addr_buf; 773 struct sctp_af *af; 774 struct sctp_sockaddr_entry *saddr; 775 int i; 776 int retval = 0; 777 int stored = 0; 778 779 chunk = NULL; 780 if (!net->sctp.addip_enable) 781 return retval; 782 783 sp = sctp_sk(sk); 784 ep = sp->ep; 785 786 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 787 __func__, sk, addrs, addrcnt); 788 789 list_for_each_entry(asoc, &ep->asocs, asocs) { 790 791 if (!asoc->peer.asconf_capable) 792 continue; 793 794 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 795 continue; 796 797 if (!sctp_state(asoc, ESTABLISHED)) 798 continue; 799 800 /* Check if any address in the packed array of addresses is 801 * not present in the bind address list of the association. 802 * If so, do not send the asconf chunk to its peer, but 803 * continue with other associations. 804 */ 805 addr_buf = addrs; 806 for (i = 0; i < addrcnt; i++) { 807 laddr = addr_buf; 808 af = sctp_get_af_specific(laddr->v4.sin_family); 809 if (!af) { 810 retval = -EINVAL; 811 goto out; 812 } 813 814 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 815 break; 816 817 addr_buf += af->sockaddr_len; 818 } 819 if (i < addrcnt) 820 continue; 821 822 /* Find one address in the association's bind address list 823 * that is not in the packed array of addresses. This is to 824 * make sure that we do not delete all the addresses in the 825 * association. 826 */ 827 bp = &asoc->base.bind_addr; 828 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 829 addrcnt, sp); 830 if ((laddr == NULL) && (addrcnt == 1)) { 831 if (asoc->asconf_addr_del_pending) 832 continue; 833 asoc->asconf_addr_del_pending = 834 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 835 if (asoc->asconf_addr_del_pending == NULL) { 836 retval = -ENOMEM; 837 goto out; 838 } 839 asoc->asconf_addr_del_pending->sa.sa_family = 840 addrs->sa_family; 841 asoc->asconf_addr_del_pending->v4.sin_port = 842 htons(bp->port); 843 if (addrs->sa_family == AF_INET) { 844 struct sockaddr_in *sin; 845 846 sin = (struct sockaddr_in *)addrs; 847 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 848 } else if (addrs->sa_family == AF_INET6) { 849 struct sockaddr_in6 *sin6; 850 851 sin6 = (struct sockaddr_in6 *)addrs; 852 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 853 } 854 855 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 856 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 857 asoc->asconf_addr_del_pending); 858 859 asoc->src_out_of_asoc_ok = 1; 860 stored = 1; 861 goto skip_mkasconf; 862 } 863 864 if (laddr == NULL) 865 return -EINVAL; 866 867 /* We do not need RCU protection throughout this loop 868 * because this is done under a socket lock from the 869 * setsockopt call. 870 */ 871 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 872 SCTP_PARAM_DEL_IP); 873 if (!chunk) { 874 retval = -ENOMEM; 875 goto out; 876 } 877 878 skip_mkasconf: 879 /* Reset use_as_src flag for the addresses in the bind address 880 * list that are to be deleted. 881 */ 882 addr_buf = addrs; 883 for (i = 0; i < addrcnt; i++) { 884 laddr = addr_buf; 885 af = sctp_get_af_specific(laddr->v4.sin_family); 886 list_for_each_entry(saddr, &bp->address_list, list) { 887 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 888 saddr->state = SCTP_ADDR_DEL; 889 } 890 addr_buf += af->sockaddr_len; 891 } 892 893 /* Update the route and saddr entries for all the transports 894 * as some of the addresses in the bind address list are 895 * about to be deleted and cannot be used as source addresses. 896 */ 897 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 898 transports) { 899 sctp_transport_dst_release(transport); 900 sctp_transport_route(transport, NULL, 901 sctp_sk(asoc->base.sk)); 902 } 903 904 if (stored) 905 /* We don't need to transmit ASCONF */ 906 continue; 907 retval = sctp_send_asconf(asoc, chunk); 908 } 909 out: 910 return retval; 911 } 912 913 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 914 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 915 { 916 struct sock *sk = sctp_opt2sk(sp); 917 union sctp_addr *addr; 918 struct sctp_af *af; 919 920 /* It is safe to write port space in caller. */ 921 addr = &addrw->a; 922 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 923 af = sctp_get_af_specific(addr->sa.sa_family); 924 if (!af) 925 return -EINVAL; 926 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 927 return -EINVAL; 928 929 if (addrw->state == SCTP_ADDR_NEW) 930 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 931 else 932 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 933 } 934 935 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 936 * 937 * API 8.1 938 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 939 * int flags); 940 * 941 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 942 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 943 * or IPv6 addresses. 944 * 945 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 946 * Section 3.1.2 for this usage. 947 * 948 * addrs is a pointer to an array of one or more socket addresses. Each 949 * address is contained in its appropriate structure (i.e. struct 950 * sockaddr_in or struct sockaddr_in6) the family of the address type 951 * must be used to distinguish the address length (note that this 952 * representation is termed a "packed array" of addresses). The caller 953 * specifies the number of addresses in the array with addrcnt. 954 * 955 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 956 * -1, and sets errno to the appropriate error code. 957 * 958 * For SCTP, the port given in each socket address must be the same, or 959 * sctp_bindx() will fail, setting errno to EINVAL. 960 * 961 * The flags parameter is formed from the bitwise OR of zero or more of 962 * the following currently defined flags: 963 * 964 * SCTP_BINDX_ADD_ADDR 965 * 966 * SCTP_BINDX_REM_ADDR 967 * 968 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 969 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 970 * addresses from the association. The two flags are mutually exclusive; 971 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 972 * not remove all addresses from an association; sctp_bindx() will 973 * reject such an attempt with EINVAL. 974 * 975 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 976 * additional addresses with an endpoint after calling bind(). Or use 977 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 978 * socket is associated with so that no new association accepted will be 979 * associated with those addresses. If the endpoint supports dynamic 980 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 981 * endpoint to send the appropriate message to the peer to change the 982 * peers address lists. 983 * 984 * Adding and removing addresses from a connected association is 985 * optional functionality. Implementations that do not support this 986 * functionality should return EOPNOTSUPP. 987 * 988 * Basically do nothing but copying the addresses from user to kernel 989 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 990 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 991 * from userspace. 992 * 993 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 994 * it. 995 * 996 * sk The sk of the socket 997 * addrs The pointer to the addresses in user land 998 * addrssize Size of the addrs buffer 999 * op Operation to perform (add or remove, see the flags of 1000 * sctp_bindx) 1001 * 1002 * Returns 0 if ok, <0 errno code on error. 1003 */ 1004 static int sctp_setsockopt_bindx(struct sock *sk, 1005 struct sockaddr __user *addrs, 1006 int addrs_size, int op) 1007 { 1008 struct sockaddr *kaddrs; 1009 int err; 1010 int addrcnt = 0; 1011 int walk_size = 0; 1012 struct sockaddr *sa_addr; 1013 void *addr_buf; 1014 struct sctp_af *af; 1015 1016 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1017 __func__, sk, addrs, addrs_size, op); 1018 1019 if (unlikely(addrs_size <= 0)) 1020 return -EINVAL; 1021 1022 kaddrs = vmemdup_user(addrs, addrs_size); 1023 if (unlikely(IS_ERR(kaddrs))) 1024 return PTR_ERR(kaddrs); 1025 1026 /* Walk through the addrs buffer and count the number of addresses. */ 1027 addr_buf = kaddrs; 1028 while (walk_size < addrs_size) { 1029 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1030 kvfree(kaddrs); 1031 return -EINVAL; 1032 } 1033 1034 sa_addr = addr_buf; 1035 af = sctp_get_af_specific(sa_addr->sa_family); 1036 1037 /* If the address family is not supported or if this address 1038 * causes the address buffer to overflow return EINVAL. 1039 */ 1040 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1041 kvfree(kaddrs); 1042 return -EINVAL; 1043 } 1044 addrcnt++; 1045 addr_buf += af->sockaddr_len; 1046 walk_size += af->sockaddr_len; 1047 } 1048 1049 /* Do the work. */ 1050 switch (op) { 1051 case SCTP_BINDX_ADD_ADDR: 1052 /* Allow security module to validate bindx addresses. */ 1053 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1054 (struct sockaddr *)kaddrs, 1055 addrs_size); 1056 if (err) 1057 goto out; 1058 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1059 if (err) 1060 goto out; 1061 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1062 break; 1063 1064 case SCTP_BINDX_REM_ADDR: 1065 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1066 if (err) 1067 goto out; 1068 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1069 break; 1070 1071 default: 1072 err = -EINVAL; 1073 break; 1074 } 1075 1076 out: 1077 kvfree(kaddrs); 1078 1079 return err; 1080 } 1081 1082 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1083 * 1084 * Common routine for handling connect() and sctp_connectx(). 1085 * Connect will come in with just a single address. 1086 */ 1087 static int __sctp_connect(struct sock *sk, 1088 struct sockaddr *kaddrs, 1089 int addrs_size, 1090 sctp_assoc_t *assoc_id) 1091 { 1092 struct net *net = sock_net(sk); 1093 struct sctp_sock *sp; 1094 struct sctp_endpoint *ep; 1095 struct sctp_association *asoc = NULL; 1096 struct sctp_association *asoc2; 1097 struct sctp_transport *transport; 1098 union sctp_addr to; 1099 enum sctp_scope scope; 1100 long timeo; 1101 int err = 0; 1102 int addrcnt = 0; 1103 int walk_size = 0; 1104 union sctp_addr *sa_addr = NULL; 1105 void *addr_buf; 1106 unsigned short port; 1107 unsigned int f_flags = 0; 1108 1109 sp = sctp_sk(sk); 1110 ep = sp->ep; 1111 1112 /* connect() cannot be done on a socket that is already in ESTABLISHED 1113 * state - UDP-style peeled off socket or a TCP-style socket that 1114 * is already connected. 1115 * It cannot be done even on a TCP-style listening socket. 1116 */ 1117 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1118 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1119 err = -EISCONN; 1120 goto out_free; 1121 } 1122 1123 /* Walk through the addrs buffer and count the number of addresses. */ 1124 addr_buf = kaddrs; 1125 while (walk_size < addrs_size) { 1126 struct sctp_af *af; 1127 1128 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1129 err = -EINVAL; 1130 goto out_free; 1131 } 1132 1133 sa_addr = addr_buf; 1134 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1135 1136 /* If the address family is not supported or if this address 1137 * causes the address buffer to overflow return EINVAL. 1138 */ 1139 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1140 err = -EINVAL; 1141 goto out_free; 1142 } 1143 1144 port = ntohs(sa_addr->v4.sin_port); 1145 1146 /* Save current address so we can work with it */ 1147 memcpy(&to, sa_addr, af->sockaddr_len); 1148 1149 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1150 if (err) 1151 goto out_free; 1152 1153 /* Make sure the destination port is correctly set 1154 * in all addresses. 1155 */ 1156 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1157 err = -EINVAL; 1158 goto out_free; 1159 } 1160 1161 /* Check if there already is a matching association on the 1162 * endpoint (other than the one created here). 1163 */ 1164 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1165 if (asoc2 && asoc2 != asoc) { 1166 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1167 err = -EISCONN; 1168 else 1169 err = -EALREADY; 1170 goto out_free; 1171 } 1172 1173 /* If we could not find a matching association on the endpoint, 1174 * make sure that there is no peeled-off association matching 1175 * the peer address even on another socket. 1176 */ 1177 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1178 err = -EADDRNOTAVAIL; 1179 goto out_free; 1180 } 1181 1182 if (!asoc) { 1183 /* If a bind() or sctp_bindx() is not called prior to 1184 * an sctp_connectx() call, the system picks an 1185 * ephemeral port and will choose an address set 1186 * equivalent to binding with a wildcard address. 1187 */ 1188 if (!ep->base.bind_addr.port) { 1189 if (sctp_autobind(sk)) { 1190 err = -EAGAIN; 1191 goto out_free; 1192 } 1193 } else { 1194 /* 1195 * If an unprivileged user inherits a 1-many 1196 * style socket with open associations on a 1197 * privileged port, it MAY be permitted to 1198 * accept new associations, but it SHOULD NOT 1199 * be permitted to open new associations. 1200 */ 1201 if (ep->base.bind_addr.port < 1202 inet_prot_sock(net) && 1203 !ns_capable(net->user_ns, 1204 CAP_NET_BIND_SERVICE)) { 1205 err = -EACCES; 1206 goto out_free; 1207 } 1208 } 1209 1210 scope = sctp_scope(&to); 1211 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1212 if (!asoc) { 1213 err = -ENOMEM; 1214 goto out_free; 1215 } 1216 1217 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1218 GFP_KERNEL); 1219 if (err < 0) { 1220 goto out_free; 1221 } 1222 1223 } 1224 1225 /* Prime the peer's transport structures. */ 1226 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1227 SCTP_UNKNOWN); 1228 if (!transport) { 1229 err = -ENOMEM; 1230 goto out_free; 1231 } 1232 1233 addrcnt++; 1234 addr_buf += af->sockaddr_len; 1235 walk_size += af->sockaddr_len; 1236 } 1237 1238 /* In case the user of sctp_connectx() wants an association 1239 * id back, assign one now. 1240 */ 1241 if (assoc_id) { 1242 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1243 if (err < 0) 1244 goto out_free; 1245 } 1246 1247 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1248 if (err < 0) { 1249 goto out_free; 1250 } 1251 1252 /* Initialize sk's dport and daddr for getpeername() */ 1253 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1254 sp->pf->to_sk_daddr(sa_addr, sk); 1255 sk->sk_err = 0; 1256 1257 /* in-kernel sockets don't generally have a file allocated to them 1258 * if all they do is call sock_create_kern(). 1259 */ 1260 if (sk->sk_socket->file) 1261 f_flags = sk->sk_socket->file->f_flags; 1262 1263 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1264 1265 if (assoc_id) 1266 *assoc_id = asoc->assoc_id; 1267 1268 err = sctp_wait_for_connect(asoc, &timeo); 1269 /* Note: the asoc may be freed after the return of 1270 * sctp_wait_for_connect. 1271 */ 1272 1273 /* Don't free association on exit. */ 1274 asoc = NULL; 1275 1276 out_free: 1277 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1278 __func__, asoc, kaddrs, err); 1279 1280 if (asoc) { 1281 /* sctp_primitive_ASSOCIATE may have added this association 1282 * To the hash table, try to unhash it, just in case, its a noop 1283 * if it wasn't hashed so we're safe 1284 */ 1285 sctp_association_free(asoc); 1286 } 1287 return err; 1288 } 1289 1290 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1291 * 1292 * API 8.9 1293 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1294 * sctp_assoc_t *asoc); 1295 * 1296 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1297 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1298 * or IPv6 addresses. 1299 * 1300 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1301 * Section 3.1.2 for this usage. 1302 * 1303 * addrs is a pointer to an array of one or more socket addresses. Each 1304 * address is contained in its appropriate structure (i.e. struct 1305 * sockaddr_in or struct sockaddr_in6) the family of the address type 1306 * must be used to distengish the address length (note that this 1307 * representation is termed a "packed array" of addresses). The caller 1308 * specifies the number of addresses in the array with addrcnt. 1309 * 1310 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1311 * the association id of the new association. On failure, sctp_connectx() 1312 * returns -1, and sets errno to the appropriate error code. The assoc_id 1313 * is not touched by the kernel. 1314 * 1315 * For SCTP, the port given in each socket address must be the same, or 1316 * sctp_connectx() will fail, setting errno to EINVAL. 1317 * 1318 * An application can use sctp_connectx to initiate an association with 1319 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1320 * allows a caller to specify multiple addresses at which a peer can be 1321 * reached. The way the SCTP stack uses the list of addresses to set up 1322 * the association is implementation dependent. This function only 1323 * specifies that the stack will try to make use of all the addresses in 1324 * the list when needed. 1325 * 1326 * Note that the list of addresses passed in is only used for setting up 1327 * the association. It does not necessarily equal the set of addresses 1328 * the peer uses for the resulting association. If the caller wants to 1329 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1330 * retrieve them after the association has been set up. 1331 * 1332 * Basically do nothing but copying the addresses from user to kernel 1333 * land and invoking either sctp_connectx(). This is used for tunneling 1334 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1335 * 1336 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1337 * it. 1338 * 1339 * sk The sk of the socket 1340 * addrs The pointer to the addresses in user land 1341 * addrssize Size of the addrs buffer 1342 * 1343 * Returns >=0 if ok, <0 errno code on error. 1344 */ 1345 static int __sctp_setsockopt_connectx(struct sock *sk, 1346 struct sockaddr __user *addrs, 1347 int addrs_size, 1348 sctp_assoc_t *assoc_id) 1349 { 1350 struct sockaddr *kaddrs; 1351 int err = 0; 1352 1353 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1354 __func__, sk, addrs, addrs_size); 1355 1356 if (unlikely(addrs_size <= 0)) 1357 return -EINVAL; 1358 1359 kaddrs = vmemdup_user(addrs, addrs_size); 1360 if (unlikely(IS_ERR(kaddrs))) 1361 return PTR_ERR(kaddrs); 1362 1363 /* Allow security module to validate connectx addresses. */ 1364 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1365 (struct sockaddr *)kaddrs, 1366 addrs_size); 1367 if (err) 1368 goto out_free; 1369 1370 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1371 1372 out_free: 1373 kvfree(kaddrs); 1374 1375 return err; 1376 } 1377 1378 /* 1379 * This is an older interface. It's kept for backward compatibility 1380 * to the option that doesn't provide association id. 1381 */ 1382 static int sctp_setsockopt_connectx_old(struct sock *sk, 1383 struct sockaddr __user *addrs, 1384 int addrs_size) 1385 { 1386 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1387 } 1388 1389 /* 1390 * New interface for the API. The since the API is done with a socket 1391 * option, to make it simple we feed back the association id is as a return 1392 * indication to the call. Error is always negative and association id is 1393 * always positive. 1394 */ 1395 static int sctp_setsockopt_connectx(struct sock *sk, 1396 struct sockaddr __user *addrs, 1397 int addrs_size) 1398 { 1399 sctp_assoc_t assoc_id = 0; 1400 int err = 0; 1401 1402 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1403 1404 if (err) 1405 return err; 1406 else 1407 return assoc_id; 1408 } 1409 1410 /* 1411 * New (hopefully final) interface for the API. 1412 * We use the sctp_getaddrs_old structure so that use-space library 1413 * can avoid any unnecessary allocations. The only different part 1414 * is that we store the actual length of the address buffer into the 1415 * addrs_num structure member. That way we can re-use the existing 1416 * code. 1417 */ 1418 #ifdef CONFIG_COMPAT 1419 struct compat_sctp_getaddrs_old { 1420 sctp_assoc_t assoc_id; 1421 s32 addr_num; 1422 compat_uptr_t addrs; /* struct sockaddr * */ 1423 }; 1424 #endif 1425 1426 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1427 char __user *optval, 1428 int __user *optlen) 1429 { 1430 struct sctp_getaddrs_old param; 1431 sctp_assoc_t assoc_id = 0; 1432 int err = 0; 1433 1434 #ifdef CONFIG_COMPAT 1435 if (in_compat_syscall()) { 1436 struct compat_sctp_getaddrs_old param32; 1437 1438 if (len < sizeof(param32)) 1439 return -EINVAL; 1440 if (copy_from_user(¶m32, optval, sizeof(param32))) 1441 return -EFAULT; 1442 1443 param.assoc_id = param32.assoc_id; 1444 param.addr_num = param32.addr_num; 1445 param.addrs = compat_ptr(param32.addrs); 1446 } else 1447 #endif 1448 { 1449 if (len < sizeof(param)) 1450 return -EINVAL; 1451 if (copy_from_user(¶m, optval, sizeof(param))) 1452 return -EFAULT; 1453 } 1454 1455 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1456 param.addrs, param.addr_num, 1457 &assoc_id); 1458 if (err == 0 || err == -EINPROGRESS) { 1459 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1460 return -EFAULT; 1461 if (put_user(sizeof(assoc_id), optlen)) 1462 return -EFAULT; 1463 } 1464 1465 return err; 1466 } 1467 1468 /* API 3.1.4 close() - UDP Style Syntax 1469 * Applications use close() to perform graceful shutdown (as described in 1470 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1471 * by a UDP-style socket. 1472 * 1473 * The syntax is 1474 * 1475 * ret = close(int sd); 1476 * 1477 * sd - the socket descriptor of the associations to be closed. 1478 * 1479 * To gracefully shutdown a specific association represented by the 1480 * UDP-style socket, an application should use the sendmsg() call, 1481 * passing no user data, but including the appropriate flag in the 1482 * ancillary data (see Section xxxx). 1483 * 1484 * If sd in the close() call is a branched-off socket representing only 1485 * one association, the shutdown is performed on that association only. 1486 * 1487 * 4.1.6 close() - TCP Style Syntax 1488 * 1489 * Applications use close() to gracefully close down an association. 1490 * 1491 * The syntax is: 1492 * 1493 * int close(int sd); 1494 * 1495 * sd - the socket descriptor of the association to be closed. 1496 * 1497 * After an application calls close() on a socket descriptor, no further 1498 * socket operations will succeed on that descriptor. 1499 * 1500 * API 7.1.4 SO_LINGER 1501 * 1502 * An application using the TCP-style socket can use this option to 1503 * perform the SCTP ABORT primitive. The linger option structure is: 1504 * 1505 * struct linger { 1506 * int l_onoff; // option on/off 1507 * int l_linger; // linger time 1508 * }; 1509 * 1510 * To enable the option, set l_onoff to 1. If the l_linger value is set 1511 * to 0, calling close() is the same as the ABORT primitive. If the 1512 * value is set to a negative value, the setsockopt() call will return 1513 * an error. If the value is set to a positive value linger_time, the 1514 * close() can be blocked for at most linger_time ms. If the graceful 1515 * shutdown phase does not finish during this period, close() will 1516 * return but the graceful shutdown phase continues in the system. 1517 */ 1518 static void sctp_close(struct sock *sk, long timeout) 1519 { 1520 struct net *net = sock_net(sk); 1521 struct sctp_endpoint *ep; 1522 struct sctp_association *asoc; 1523 struct list_head *pos, *temp; 1524 unsigned int data_was_unread; 1525 1526 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1527 1528 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1529 sk->sk_shutdown = SHUTDOWN_MASK; 1530 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1531 1532 ep = sctp_sk(sk)->ep; 1533 1534 /* Clean up any skbs sitting on the receive queue. */ 1535 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1536 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1537 1538 /* Walk all associations on an endpoint. */ 1539 list_for_each_safe(pos, temp, &ep->asocs) { 1540 asoc = list_entry(pos, struct sctp_association, asocs); 1541 1542 if (sctp_style(sk, TCP)) { 1543 /* A closed association can still be in the list if 1544 * it belongs to a TCP-style listening socket that is 1545 * not yet accepted. If so, free it. If not, send an 1546 * ABORT or SHUTDOWN based on the linger options. 1547 */ 1548 if (sctp_state(asoc, CLOSED)) { 1549 sctp_association_free(asoc); 1550 continue; 1551 } 1552 } 1553 1554 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1555 !skb_queue_empty(&asoc->ulpq.reasm) || 1556 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1557 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1558 struct sctp_chunk *chunk; 1559 1560 chunk = sctp_make_abort_user(asoc, NULL, 0); 1561 sctp_primitive_ABORT(net, asoc, chunk); 1562 } else 1563 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1564 } 1565 1566 /* On a TCP-style socket, block for at most linger_time if set. */ 1567 if (sctp_style(sk, TCP) && timeout) 1568 sctp_wait_for_close(sk, timeout); 1569 1570 /* This will run the backlog queue. */ 1571 release_sock(sk); 1572 1573 /* Supposedly, no process has access to the socket, but 1574 * the net layers still may. 1575 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1576 * held and that should be grabbed before socket lock. 1577 */ 1578 spin_lock_bh(&net->sctp.addr_wq_lock); 1579 bh_lock_sock_nested(sk); 1580 1581 /* Hold the sock, since sk_common_release() will put sock_put() 1582 * and we have just a little more cleanup. 1583 */ 1584 sock_hold(sk); 1585 sk_common_release(sk); 1586 1587 bh_unlock_sock(sk); 1588 spin_unlock_bh(&net->sctp.addr_wq_lock); 1589 1590 sock_put(sk); 1591 1592 SCTP_DBG_OBJCNT_DEC(sock); 1593 } 1594 1595 /* Handle EPIPE error. */ 1596 static int sctp_error(struct sock *sk, int flags, int err) 1597 { 1598 if (err == -EPIPE) 1599 err = sock_error(sk) ? : -EPIPE; 1600 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1601 send_sig(SIGPIPE, current, 0); 1602 return err; 1603 } 1604 1605 /* API 3.1.3 sendmsg() - UDP Style Syntax 1606 * 1607 * An application uses sendmsg() and recvmsg() calls to transmit data to 1608 * and receive data from its peer. 1609 * 1610 * ssize_t sendmsg(int socket, const struct msghdr *message, 1611 * int flags); 1612 * 1613 * socket - the socket descriptor of the endpoint. 1614 * message - pointer to the msghdr structure which contains a single 1615 * user message and possibly some ancillary data. 1616 * 1617 * See Section 5 for complete description of the data 1618 * structures. 1619 * 1620 * flags - flags sent or received with the user message, see Section 1621 * 5 for complete description of the flags. 1622 * 1623 * Note: This function could use a rewrite especially when explicit 1624 * connect support comes in. 1625 */ 1626 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1627 1628 static int sctp_msghdr_parse(const struct msghdr *msg, 1629 struct sctp_cmsgs *cmsgs); 1630 1631 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1632 struct sctp_sndrcvinfo *srinfo, 1633 const struct msghdr *msg, size_t msg_len) 1634 { 1635 __u16 sflags; 1636 int err; 1637 1638 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1639 return -EPIPE; 1640 1641 if (msg_len > sk->sk_sndbuf) 1642 return -EMSGSIZE; 1643 1644 memset(cmsgs, 0, sizeof(*cmsgs)); 1645 err = sctp_msghdr_parse(msg, cmsgs); 1646 if (err) { 1647 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1648 return err; 1649 } 1650 1651 memset(srinfo, 0, sizeof(*srinfo)); 1652 if (cmsgs->srinfo) { 1653 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1654 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1655 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1656 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1657 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1658 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1659 } 1660 1661 if (cmsgs->sinfo) { 1662 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1663 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1664 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1665 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1666 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1667 } 1668 1669 if (cmsgs->prinfo) { 1670 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1671 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1672 cmsgs->prinfo->pr_policy); 1673 } 1674 1675 sflags = srinfo->sinfo_flags; 1676 if (!sflags && msg_len) 1677 return 0; 1678 1679 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1680 return -EINVAL; 1681 1682 if (((sflags & SCTP_EOF) && msg_len > 0) || 1683 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1684 return -EINVAL; 1685 1686 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1687 return -EINVAL; 1688 1689 return 0; 1690 } 1691 1692 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1693 struct sctp_cmsgs *cmsgs, 1694 union sctp_addr *daddr, 1695 struct sctp_transport **tp) 1696 { 1697 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1698 struct net *net = sock_net(sk); 1699 struct sctp_association *asoc; 1700 enum sctp_scope scope; 1701 struct cmsghdr *cmsg; 1702 struct sctp_af *af; 1703 int err; 1704 1705 *tp = NULL; 1706 1707 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1708 return -EINVAL; 1709 1710 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1711 sctp_sstate(sk, CLOSING))) 1712 return -EADDRNOTAVAIL; 1713 1714 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1715 return -EADDRNOTAVAIL; 1716 1717 if (!ep->base.bind_addr.port) { 1718 if (sctp_autobind(sk)) 1719 return -EAGAIN; 1720 } else { 1721 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1722 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1723 return -EACCES; 1724 } 1725 1726 scope = sctp_scope(daddr); 1727 1728 /* Label connection socket for first association 1-to-many 1729 * style for client sequence socket()->sendmsg(). This 1730 * needs to be done before sctp_assoc_add_peer() as that will 1731 * set up the initial packet that needs to account for any 1732 * security ip options (CIPSO/CALIPSO) added to the packet. 1733 */ 1734 af = sctp_get_af_specific(daddr->sa.sa_family); 1735 if (!af) 1736 return -EINVAL; 1737 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1738 (struct sockaddr *)daddr, 1739 af->sockaddr_len); 1740 if (err < 0) 1741 return err; 1742 1743 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1744 if (!asoc) 1745 return -ENOMEM; 1746 1747 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1748 err = -ENOMEM; 1749 goto free; 1750 } 1751 1752 if (cmsgs->init) { 1753 struct sctp_initmsg *init = cmsgs->init; 1754 1755 if (init->sinit_num_ostreams) { 1756 __u16 outcnt = init->sinit_num_ostreams; 1757 1758 asoc->c.sinit_num_ostreams = outcnt; 1759 /* outcnt has been changed, need to re-init stream */ 1760 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1761 GFP_KERNEL); 1762 if (err) 1763 goto free; 1764 } 1765 1766 if (init->sinit_max_instreams) 1767 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1768 1769 if (init->sinit_max_attempts) 1770 asoc->max_init_attempts = init->sinit_max_attempts; 1771 1772 if (init->sinit_max_init_timeo) 1773 asoc->max_init_timeo = 1774 msecs_to_jiffies(init->sinit_max_init_timeo); 1775 } 1776 1777 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1778 if (!*tp) { 1779 err = -ENOMEM; 1780 goto free; 1781 } 1782 1783 if (!cmsgs->addrs_msg) 1784 return 0; 1785 1786 /* sendv addr list parse */ 1787 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1788 struct sctp_transport *transport; 1789 struct sctp_association *old; 1790 union sctp_addr _daddr; 1791 int dlen; 1792 1793 if (cmsg->cmsg_level != IPPROTO_SCTP || 1794 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1795 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1796 continue; 1797 1798 daddr = &_daddr; 1799 memset(daddr, 0, sizeof(*daddr)); 1800 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1801 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1802 if (dlen < sizeof(struct in_addr)) { 1803 err = -EINVAL; 1804 goto free; 1805 } 1806 1807 dlen = sizeof(struct in_addr); 1808 daddr->v4.sin_family = AF_INET; 1809 daddr->v4.sin_port = htons(asoc->peer.port); 1810 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1811 } else { 1812 if (dlen < sizeof(struct in6_addr)) { 1813 err = -EINVAL; 1814 goto free; 1815 } 1816 1817 dlen = sizeof(struct in6_addr); 1818 daddr->v6.sin6_family = AF_INET6; 1819 daddr->v6.sin6_port = htons(asoc->peer.port); 1820 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1821 } 1822 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1823 if (err) 1824 goto free; 1825 1826 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1827 if (old && old != asoc) { 1828 if (old->state >= SCTP_STATE_ESTABLISHED) 1829 err = -EISCONN; 1830 else 1831 err = -EALREADY; 1832 goto free; 1833 } 1834 1835 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1836 err = -EADDRNOTAVAIL; 1837 goto free; 1838 } 1839 1840 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1841 SCTP_UNKNOWN); 1842 if (!transport) { 1843 err = -ENOMEM; 1844 goto free; 1845 } 1846 } 1847 1848 return 0; 1849 1850 free: 1851 sctp_association_free(asoc); 1852 return err; 1853 } 1854 1855 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1856 __u16 sflags, struct msghdr *msg, 1857 size_t msg_len) 1858 { 1859 struct sock *sk = asoc->base.sk; 1860 struct net *net = sock_net(sk); 1861 1862 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1863 return -EPIPE; 1864 1865 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1866 !sctp_state(asoc, ESTABLISHED)) 1867 return 0; 1868 1869 if (sflags & SCTP_EOF) { 1870 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1871 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1872 1873 return 0; 1874 } 1875 1876 if (sflags & SCTP_ABORT) { 1877 struct sctp_chunk *chunk; 1878 1879 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1880 if (!chunk) 1881 return -ENOMEM; 1882 1883 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1884 sctp_primitive_ABORT(net, asoc, chunk); 1885 1886 return 0; 1887 } 1888 1889 return 1; 1890 } 1891 1892 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1893 struct msghdr *msg, size_t msg_len, 1894 struct sctp_transport *transport, 1895 struct sctp_sndrcvinfo *sinfo) 1896 { 1897 struct sock *sk = asoc->base.sk; 1898 struct net *net = sock_net(sk); 1899 struct sctp_datamsg *datamsg; 1900 bool wait_connect = false; 1901 struct sctp_chunk *chunk; 1902 long timeo; 1903 int err; 1904 1905 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1906 err = -EINVAL; 1907 goto err; 1908 } 1909 1910 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1911 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1912 if (err) 1913 goto err; 1914 } 1915 1916 if (sctp_sk(sk)->disable_fragments && msg_len > asoc->frag_point) { 1917 err = -EMSGSIZE; 1918 goto err; 1919 } 1920 1921 if (asoc->pmtu_pending) 1922 sctp_assoc_pending_pmtu(asoc); 1923 1924 if (sctp_wspace(asoc) < msg_len) 1925 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1926 1927 if (!sctp_wspace(asoc)) { 1928 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1929 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1930 if (err) 1931 goto err; 1932 } 1933 1934 if (sctp_state(asoc, CLOSED)) { 1935 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1936 if (err) 1937 goto err; 1938 1939 if (sctp_sk(sk)->strm_interleave) { 1940 timeo = sock_sndtimeo(sk, 0); 1941 err = sctp_wait_for_connect(asoc, &timeo); 1942 if (err) 1943 goto err; 1944 } else { 1945 wait_connect = true; 1946 } 1947 1948 pr_debug("%s: we associated primitively\n", __func__); 1949 } 1950 1951 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1952 if (IS_ERR(datamsg)) { 1953 err = PTR_ERR(datamsg); 1954 goto err; 1955 } 1956 1957 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1958 1959 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1960 sctp_chunk_hold(chunk); 1961 sctp_set_owner_w(chunk); 1962 chunk->transport = transport; 1963 } 1964 1965 err = sctp_primitive_SEND(net, asoc, datamsg); 1966 if (err) { 1967 sctp_datamsg_free(datamsg); 1968 goto err; 1969 } 1970 1971 pr_debug("%s: we sent primitively\n", __func__); 1972 1973 sctp_datamsg_put(datamsg); 1974 1975 if (unlikely(wait_connect)) { 1976 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1977 sctp_wait_for_connect(asoc, &timeo); 1978 } 1979 1980 err = msg_len; 1981 1982 err: 1983 return err; 1984 } 1985 1986 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1987 const struct msghdr *msg, 1988 struct sctp_cmsgs *cmsgs) 1989 { 1990 union sctp_addr *daddr = NULL; 1991 int err; 1992 1993 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1994 int len = msg->msg_namelen; 1995 1996 if (len > sizeof(*daddr)) 1997 len = sizeof(*daddr); 1998 1999 daddr = (union sctp_addr *)msg->msg_name; 2000 2001 err = sctp_verify_addr(sk, daddr, len); 2002 if (err) 2003 return ERR_PTR(err); 2004 } 2005 2006 return daddr; 2007 } 2008 2009 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2010 struct sctp_sndrcvinfo *sinfo, 2011 struct sctp_cmsgs *cmsgs) 2012 { 2013 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2014 sinfo->sinfo_stream = asoc->default_stream; 2015 sinfo->sinfo_ppid = asoc->default_ppid; 2016 sinfo->sinfo_context = asoc->default_context; 2017 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2018 2019 if (!cmsgs->prinfo) 2020 sinfo->sinfo_flags = asoc->default_flags; 2021 } 2022 2023 if (!cmsgs->srinfo && !cmsgs->prinfo) 2024 sinfo->sinfo_timetolive = asoc->default_timetolive; 2025 2026 if (cmsgs->authinfo) { 2027 /* Reuse sinfo_tsn to indicate that authinfo was set and 2028 * sinfo_ssn to save the keyid on tx path. 2029 */ 2030 sinfo->sinfo_tsn = 1; 2031 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2032 } 2033 } 2034 2035 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2036 { 2037 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2038 struct sctp_transport *transport = NULL; 2039 struct sctp_sndrcvinfo _sinfo, *sinfo; 2040 struct sctp_association *asoc; 2041 struct sctp_cmsgs cmsgs; 2042 union sctp_addr *daddr; 2043 bool new = false; 2044 __u16 sflags; 2045 int err; 2046 2047 /* Parse and get snd_info */ 2048 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2049 if (err) 2050 goto out; 2051 2052 sinfo = &_sinfo; 2053 sflags = sinfo->sinfo_flags; 2054 2055 /* Get daddr from msg */ 2056 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2057 if (IS_ERR(daddr)) { 2058 err = PTR_ERR(daddr); 2059 goto out; 2060 } 2061 2062 lock_sock(sk); 2063 2064 /* SCTP_SENDALL process */ 2065 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2066 list_for_each_entry(asoc, &ep->asocs, asocs) { 2067 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2068 msg_len); 2069 if (err == 0) 2070 continue; 2071 if (err < 0) 2072 goto out_unlock; 2073 2074 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2075 2076 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2077 NULL, sinfo); 2078 if (err < 0) 2079 goto out_unlock; 2080 2081 iov_iter_revert(&msg->msg_iter, err); 2082 } 2083 2084 goto out_unlock; 2085 } 2086 2087 /* Get and check or create asoc */ 2088 if (daddr) { 2089 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2090 if (asoc) { 2091 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2092 msg_len); 2093 if (err <= 0) 2094 goto out_unlock; 2095 } else { 2096 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2097 &transport); 2098 if (err) 2099 goto out_unlock; 2100 2101 asoc = transport->asoc; 2102 new = true; 2103 } 2104 2105 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2106 transport = NULL; 2107 } else { 2108 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2109 if (!asoc) { 2110 err = -EPIPE; 2111 goto out_unlock; 2112 } 2113 2114 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2115 if (err <= 0) 2116 goto out_unlock; 2117 } 2118 2119 /* Update snd_info with the asoc */ 2120 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2121 2122 /* Send msg to the asoc */ 2123 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2124 if (err < 0 && err != -ESRCH && new) 2125 sctp_association_free(asoc); 2126 2127 out_unlock: 2128 release_sock(sk); 2129 out: 2130 return sctp_error(sk, msg->msg_flags, err); 2131 } 2132 2133 /* This is an extended version of skb_pull() that removes the data from the 2134 * start of a skb even when data is spread across the list of skb's in the 2135 * frag_list. len specifies the total amount of data that needs to be removed. 2136 * when 'len' bytes could be removed from the skb, it returns 0. 2137 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2138 * could not be removed. 2139 */ 2140 static int sctp_skb_pull(struct sk_buff *skb, int len) 2141 { 2142 struct sk_buff *list; 2143 int skb_len = skb_headlen(skb); 2144 int rlen; 2145 2146 if (len <= skb_len) { 2147 __skb_pull(skb, len); 2148 return 0; 2149 } 2150 len -= skb_len; 2151 __skb_pull(skb, skb_len); 2152 2153 skb_walk_frags(skb, list) { 2154 rlen = sctp_skb_pull(list, len); 2155 skb->len -= (len-rlen); 2156 skb->data_len -= (len-rlen); 2157 2158 if (!rlen) 2159 return 0; 2160 2161 len = rlen; 2162 } 2163 2164 return len; 2165 } 2166 2167 /* API 3.1.3 recvmsg() - UDP Style Syntax 2168 * 2169 * ssize_t recvmsg(int socket, struct msghdr *message, 2170 * int flags); 2171 * 2172 * socket - the socket descriptor of the endpoint. 2173 * message - pointer to the msghdr structure which contains a single 2174 * user message and possibly some ancillary data. 2175 * 2176 * See Section 5 for complete description of the data 2177 * structures. 2178 * 2179 * flags - flags sent or received with the user message, see Section 2180 * 5 for complete description of the flags. 2181 */ 2182 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2183 int noblock, int flags, int *addr_len) 2184 { 2185 struct sctp_ulpevent *event = NULL; 2186 struct sctp_sock *sp = sctp_sk(sk); 2187 struct sk_buff *skb, *head_skb; 2188 int copied; 2189 int err = 0; 2190 int skb_len; 2191 2192 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2193 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2194 addr_len); 2195 2196 lock_sock(sk); 2197 2198 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2199 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2200 err = -ENOTCONN; 2201 goto out; 2202 } 2203 2204 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2205 if (!skb) 2206 goto out; 2207 2208 /* Get the total length of the skb including any skb's in the 2209 * frag_list. 2210 */ 2211 skb_len = skb->len; 2212 2213 copied = skb_len; 2214 if (copied > len) 2215 copied = len; 2216 2217 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2218 2219 event = sctp_skb2event(skb); 2220 2221 if (err) 2222 goto out_free; 2223 2224 if (event->chunk && event->chunk->head_skb) 2225 head_skb = event->chunk->head_skb; 2226 else 2227 head_skb = skb; 2228 sock_recv_ts_and_drops(msg, sk, head_skb); 2229 if (sctp_ulpevent_is_notification(event)) { 2230 msg->msg_flags |= MSG_NOTIFICATION; 2231 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2232 } else { 2233 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2234 } 2235 2236 /* Check if we allow SCTP_NXTINFO. */ 2237 if (sp->recvnxtinfo) 2238 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2239 /* Check if we allow SCTP_RCVINFO. */ 2240 if (sp->recvrcvinfo) 2241 sctp_ulpevent_read_rcvinfo(event, msg); 2242 /* Check if we allow SCTP_SNDRCVINFO. */ 2243 if (sp->subscribe.sctp_data_io_event) 2244 sctp_ulpevent_read_sndrcvinfo(event, msg); 2245 2246 err = copied; 2247 2248 /* If skb's length exceeds the user's buffer, update the skb and 2249 * push it back to the receive_queue so that the next call to 2250 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2251 */ 2252 if (skb_len > copied) { 2253 msg->msg_flags &= ~MSG_EOR; 2254 if (flags & MSG_PEEK) 2255 goto out_free; 2256 sctp_skb_pull(skb, copied); 2257 skb_queue_head(&sk->sk_receive_queue, skb); 2258 2259 /* When only partial message is copied to the user, increase 2260 * rwnd by that amount. If all the data in the skb is read, 2261 * rwnd is updated when the event is freed. 2262 */ 2263 if (!sctp_ulpevent_is_notification(event)) 2264 sctp_assoc_rwnd_increase(event->asoc, copied); 2265 goto out; 2266 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2267 (event->msg_flags & MSG_EOR)) 2268 msg->msg_flags |= MSG_EOR; 2269 else 2270 msg->msg_flags &= ~MSG_EOR; 2271 2272 out_free: 2273 if (flags & MSG_PEEK) { 2274 /* Release the skb reference acquired after peeking the skb in 2275 * sctp_skb_recv_datagram(). 2276 */ 2277 kfree_skb(skb); 2278 } else { 2279 /* Free the event which includes releasing the reference to 2280 * the owner of the skb, freeing the skb and updating the 2281 * rwnd. 2282 */ 2283 sctp_ulpevent_free(event); 2284 } 2285 out: 2286 release_sock(sk); 2287 return err; 2288 } 2289 2290 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2291 * 2292 * This option is a on/off flag. If enabled no SCTP message 2293 * fragmentation will be performed. Instead if a message being sent 2294 * exceeds the current PMTU size, the message will NOT be sent and 2295 * instead a error will be indicated to the user. 2296 */ 2297 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2298 char __user *optval, 2299 unsigned int optlen) 2300 { 2301 int val; 2302 2303 if (optlen < sizeof(int)) 2304 return -EINVAL; 2305 2306 if (get_user(val, (int __user *)optval)) 2307 return -EFAULT; 2308 2309 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2310 2311 return 0; 2312 } 2313 2314 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2315 unsigned int optlen) 2316 { 2317 struct sctp_association *asoc; 2318 struct sctp_ulpevent *event; 2319 2320 if (optlen > sizeof(struct sctp_event_subscribe)) 2321 return -EINVAL; 2322 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2323 return -EFAULT; 2324 2325 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2326 * if there is no data to be sent or retransmit, the stack will 2327 * immediately send up this notification. 2328 */ 2329 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2330 &sctp_sk(sk)->subscribe)) { 2331 asoc = sctp_id2assoc(sk, 0); 2332 2333 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2334 event = sctp_ulpevent_make_sender_dry_event(asoc, 2335 GFP_USER | __GFP_NOWARN); 2336 if (!event) 2337 return -ENOMEM; 2338 2339 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2340 } 2341 } 2342 2343 return 0; 2344 } 2345 2346 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2347 * 2348 * This socket option is applicable to the UDP-style socket only. When 2349 * set it will cause associations that are idle for more than the 2350 * specified number of seconds to automatically close. An association 2351 * being idle is defined an association that has NOT sent or received 2352 * user data. The special value of '0' indicates that no automatic 2353 * close of any associations should be performed. The option expects an 2354 * integer defining the number of seconds of idle time before an 2355 * association is closed. 2356 */ 2357 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2358 unsigned int optlen) 2359 { 2360 struct sctp_sock *sp = sctp_sk(sk); 2361 struct net *net = sock_net(sk); 2362 2363 /* Applicable to UDP-style socket only */ 2364 if (sctp_style(sk, TCP)) 2365 return -EOPNOTSUPP; 2366 if (optlen != sizeof(int)) 2367 return -EINVAL; 2368 if (copy_from_user(&sp->autoclose, optval, optlen)) 2369 return -EFAULT; 2370 2371 if (sp->autoclose > net->sctp.max_autoclose) 2372 sp->autoclose = net->sctp.max_autoclose; 2373 2374 return 0; 2375 } 2376 2377 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2378 * 2379 * Applications can enable or disable heartbeats for any peer address of 2380 * an association, modify an address's heartbeat interval, force a 2381 * heartbeat to be sent immediately, and adjust the address's maximum 2382 * number of retransmissions sent before an address is considered 2383 * unreachable. The following structure is used to access and modify an 2384 * address's parameters: 2385 * 2386 * struct sctp_paddrparams { 2387 * sctp_assoc_t spp_assoc_id; 2388 * struct sockaddr_storage spp_address; 2389 * uint32_t spp_hbinterval; 2390 * uint16_t spp_pathmaxrxt; 2391 * uint32_t spp_pathmtu; 2392 * uint32_t spp_sackdelay; 2393 * uint32_t spp_flags; 2394 * }; 2395 * 2396 * spp_assoc_id - (one-to-many style socket) This is filled in the 2397 * application, and identifies the association for 2398 * this query. 2399 * spp_address - This specifies which address is of interest. 2400 * spp_hbinterval - This contains the value of the heartbeat interval, 2401 * in milliseconds. If a value of zero 2402 * is present in this field then no changes are to 2403 * be made to this parameter. 2404 * spp_pathmaxrxt - This contains the maximum number of 2405 * retransmissions before this address shall be 2406 * considered unreachable. If a value of zero 2407 * is present in this field then no changes are to 2408 * be made to this parameter. 2409 * spp_pathmtu - When Path MTU discovery is disabled the value 2410 * specified here will be the "fixed" path mtu. 2411 * Note that if the spp_address field is empty 2412 * then all associations on this address will 2413 * have this fixed path mtu set upon them. 2414 * 2415 * spp_sackdelay - When delayed sack is enabled, this value specifies 2416 * the number of milliseconds that sacks will be delayed 2417 * for. This value will apply to all addresses of an 2418 * association if the spp_address field is empty. Note 2419 * also, that if delayed sack is enabled and this 2420 * value is set to 0, no change is made to the last 2421 * recorded delayed sack timer value. 2422 * 2423 * spp_flags - These flags are used to control various features 2424 * on an association. The flag field may contain 2425 * zero or more of the following options. 2426 * 2427 * SPP_HB_ENABLE - Enable heartbeats on the 2428 * specified address. Note that if the address 2429 * field is empty all addresses for the association 2430 * have heartbeats enabled upon them. 2431 * 2432 * SPP_HB_DISABLE - Disable heartbeats on the 2433 * speicifed address. Note that if the address 2434 * field is empty all addresses for the association 2435 * will have their heartbeats disabled. Note also 2436 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2437 * mutually exclusive, only one of these two should 2438 * be specified. Enabling both fields will have 2439 * undetermined results. 2440 * 2441 * SPP_HB_DEMAND - Request a user initiated heartbeat 2442 * to be made immediately. 2443 * 2444 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2445 * heartbeat delayis to be set to the value of 0 2446 * milliseconds. 2447 * 2448 * SPP_PMTUD_ENABLE - This field will enable PMTU 2449 * discovery upon the specified address. Note that 2450 * if the address feild is empty then all addresses 2451 * on the association are effected. 2452 * 2453 * SPP_PMTUD_DISABLE - This field will disable PMTU 2454 * discovery upon the specified address. Note that 2455 * if the address feild is empty then all addresses 2456 * on the association are effected. Not also that 2457 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2458 * exclusive. Enabling both will have undetermined 2459 * results. 2460 * 2461 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2462 * on delayed sack. The time specified in spp_sackdelay 2463 * is used to specify the sack delay for this address. Note 2464 * that if spp_address is empty then all addresses will 2465 * enable delayed sack and take on the sack delay 2466 * value specified in spp_sackdelay. 2467 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2468 * off delayed sack. If the spp_address field is blank then 2469 * delayed sack is disabled for the entire association. Note 2470 * also that this field is mutually exclusive to 2471 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2472 * results. 2473 */ 2474 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2475 struct sctp_transport *trans, 2476 struct sctp_association *asoc, 2477 struct sctp_sock *sp, 2478 int hb_change, 2479 int pmtud_change, 2480 int sackdelay_change) 2481 { 2482 int error; 2483 2484 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2485 struct net *net = sock_net(trans->asoc->base.sk); 2486 2487 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2488 if (error) 2489 return error; 2490 } 2491 2492 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2493 * this field is ignored. Note also that a value of zero indicates 2494 * the current setting should be left unchanged. 2495 */ 2496 if (params->spp_flags & SPP_HB_ENABLE) { 2497 2498 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2499 * set. This lets us use 0 value when this flag 2500 * is set. 2501 */ 2502 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2503 params->spp_hbinterval = 0; 2504 2505 if (params->spp_hbinterval || 2506 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2507 if (trans) { 2508 trans->hbinterval = 2509 msecs_to_jiffies(params->spp_hbinterval); 2510 } else if (asoc) { 2511 asoc->hbinterval = 2512 msecs_to_jiffies(params->spp_hbinterval); 2513 } else { 2514 sp->hbinterval = params->spp_hbinterval; 2515 } 2516 } 2517 } 2518 2519 if (hb_change) { 2520 if (trans) { 2521 trans->param_flags = 2522 (trans->param_flags & ~SPP_HB) | hb_change; 2523 } else if (asoc) { 2524 asoc->param_flags = 2525 (asoc->param_flags & ~SPP_HB) | hb_change; 2526 } else { 2527 sp->param_flags = 2528 (sp->param_flags & ~SPP_HB) | hb_change; 2529 } 2530 } 2531 2532 /* When Path MTU discovery is disabled the value specified here will 2533 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2534 * include the flag SPP_PMTUD_DISABLE for this field to have any 2535 * effect). 2536 */ 2537 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2538 if (trans) { 2539 trans->pathmtu = params->spp_pathmtu; 2540 sctp_assoc_sync_pmtu(asoc); 2541 } else if (asoc) { 2542 asoc->pathmtu = params->spp_pathmtu; 2543 } else { 2544 sp->pathmtu = params->spp_pathmtu; 2545 } 2546 } 2547 2548 if (pmtud_change) { 2549 if (trans) { 2550 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2551 (params->spp_flags & SPP_PMTUD_ENABLE); 2552 trans->param_flags = 2553 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2554 if (update) { 2555 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2556 sctp_assoc_sync_pmtu(asoc); 2557 } 2558 } else if (asoc) { 2559 asoc->param_flags = 2560 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2561 } else { 2562 sp->param_flags = 2563 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2564 } 2565 } 2566 2567 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2568 * value of this field is ignored. Note also that a value of zero 2569 * indicates the current setting should be left unchanged. 2570 */ 2571 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2572 if (trans) { 2573 trans->sackdelay = 2574 msecs_to_jiffies(params->spp_sackdelay); 2575 } else if (asoc) { 2576 asoc->sackdelay = 2577 msecs_to_jiffies(params->spp_sackdelay); 2578 } else { 2579 sp->sackdelay = params->spp_sackdelay; 2580 } 2581 } 2582 2583 if (sackdelay_change) { 2584 if (trans) { 2585 trans->param_flags = 2586 (trans->param_flags & ~SPP_SACKDELAY) | 2587 sackdelay_change; 2588 } else if (asoc) { 2589 asoc->param_flags = 2590 (asoc->param_flags & ~SPP_SACKDELAY) | 2591 sackdelay_change; 2592 } else { 2593 sp->param_flags = 2594 (sp->param_flags & ~SPP_SACKDELAY) | 2595 sackdelay_change; 2596 } 2597 } 2598 2599 /* Note that a value of zero indicates the current setting should be 2600 left unchanged. 2601 */ 2602 if (params->spp_pathmaxrxt) { 2603 if (trans) { 2604 trans->pathmaxrxt = params->spp_pathmaxrxt; 2605 } else if (asoc) { 2606 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2607 } else { 2608 sp->pathmaxrxt = params->spp_pathmaxrxt; 2609 } 2610 } 2611 2612 return 0; 2613 } 2614 2615 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2616 char __user *optval, 2617 unsigned int optlen) 2618 { 2619 struct sctp_paddrparams params; 2620 struct sctp_transport *trans = NULL; 2621 struct sctp_association *asoc = NULL; 2622 struct sctp_sock *sp = sctp_sk(sk); 2623 int error; 2624 int hb_change, pmtud_change, sackdelay_change; 2625 2626 if (optlen != sizeof(struct sctp_paddrparams)) 2627 return -EINVAL; 2628 2629 if (copy_from_user(¶ms, optval, optlen)) 2630 return -EFAULT; 2631 2632 /* Validate flags and value parameters. */ 2633 hb_change = params.spp_flags & SPP_HB; 2634 pmtud_change = params.spp_flags & SPP_PMTUD; 2635 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2636 2637 if (hb_change == SPP_HB || 2638 pmtud_change == SPP_PMTUD || 2639 sackdelay_change == SPP_SACKDELAY || 2640 params.spp_sackdelay > 500 || 2641 (params.spp_pathmtu && 2642 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2643 return -EINVAL; 2644 2645 /* If an address other than INADDR_ANY is specified, and 2646 * no transport is found, then the request is invalid. 2647 */ 2648 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2649 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2650 params.spp_assoc_id); 2651 if (!trans) 2652 return -EINVAL; 2653 } 2654 2655 /* Get association, if assoc_id != 0 and the socket is a one 2656 * to many style socket, and an association was not found, then 2657 * the id was invalid. 2658 */ 2659 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2660 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2661 return -EINVAL; 2662 2663 /* Heartbeat demand can only be sent on a transport or 2664 * association, but not a socket. 2665 */ 2666 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2667 return -EINVAL; 2668 2669 /* Process parameters. */ 2670 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2671 hb_change, pmtud_change, 2672 sackdelay_change); 2673 2674 if (error) 2675 return error; 2676 2677 /* If changes are for association, also apply parameters to each 2678 * transport. 2679 */ 2680 if (!trans && asoc) { 2681 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2682 transports) { 2683 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2684 hb_change, pmtud_change, 2685 sackdelay_change); 2686 } 2687 } 2688 2689 return 0; 2690 } 2691 2692 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2693 { 2694 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2695 } 2696 2697 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2698 { 2699 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2700 } 2701 2702 /* 2703 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2704 * 2705 * This option will effect the way delayed acks are performed. This 2706 * option allows you to get or set the delayed ack time, in 2707 * milliseconds. It also allows changing the delayed ack frequency. 2708 * Changing the frequency to 1 disables the delayed sack algorithm. If 2709 * the assoc_id is 0, then this sets or gets the endpoints default 2710 * values. If the assoc_id field is non-zero, then the set or get 2711 * effects the specified association for the one to many model (the 2712 * assoc_id field is ignored by the one to one model). Note that if 2713 * sack_delay or sack_freq are 0 when setting this option, then the 2714 * current values will remain unchanged. 2715 * 2716 * struct sctp_sack_info { 2717 * sctp_assoc_t sack_assoc_id; 2718 * uint32_t sack_delay; 2719 * uint32_t sack_freq; 2720 * }; 2721 * 2722 * sack_assoc_id - This parameter, indicates which association the user 2723 * is performing an action upon. Note that if this field's value is 2724 * zero then the endpoints default value is changed (effecting future 2725 * associations only). 2726 * 2727 * sack_delay - This parameter contains the number of milliseconds that 2728 * the user is requesting the delayed ACK timer be set to. Note that 2729 * this value is defined in the standard to be between 200 and 500 2730 * milliseconds. 2731 * 2732 * sack_freq - This parameter contains the number of packets that must 2733 * be received before a sack is sent without waiting for the delay 2734 * timer to expire. The default value for this is 2, setting this 2735 * value to 1 will disable the delayed sack algorithm. 2736 */ 2737 2738 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2739 char __user *optval, unsigned int optlen) 2740 { 2741 struct sctp_sack_info params; 2742 struct sctp_transport *trans = NULL; 2743 struct sctp_association *asoc = NULL; 2744 struct sctp_sock *sp = sctp_sk(sk); 2745 2746 if (optlen == sizeof(struct sctp_sack_info)) { 2747 if (copy_from_user(¶ms, optval, optlen)) 2748 return -EFAULT; 2749 2750 if (params.sack_delay == 0 && params.sack_freq == 0) 2751 return 0; 2752 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2753 pr_warn_ratelimited(DEPRECATED 2754 "%s (pid %d) " 2755 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2756 "Use struct sctp_sack_info instead\n", 2757 current->comm, task_pid_nr(current)); 2758 if (copy_from_user(¶ms, optval, optlen)) 2759 return -EFAULT; 2760 2761 if (params.sack_delay == 0) 2762 params.sack_freq = 1; 2763 else 2764 params.sack_freq = 0; 2765 } else 2766 return -EINVAL; 2767 2768 /* Validate value parameter. */ 2769 if (params.sack_delay > 500) 2770 return -EINVAL; 2771 2772 /* Get association, if sack_assoc_id != 0 and the socket is a one 2773 * to many style socket, and an association was not found, then 2774 * the id was invalid. 2775 */ 2776 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2777 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2778 return -EINVAL; 2779 2780 if (params.sack_delay) { 2781 if (asoc) { 2782 asoc->sackdelay = 2783 msecs_to_jiffies(params.sack_delay); 2784 asoc->param_flags = 2785 sctp_spp_sackdelay_enable(asoc->param_flags); 2786 } else { 2787 sp->sackdelay = params.sack_delay; 2788 sp->param_flags = 2789 sctp_spp_sackdelay_enable(sp->param_flags); 2790 } 2791 } 2792 2793 if (params.sack_freq == 1) { 2794 if (asoc) { 2795 asoc->param_flags = 2796 sctp_spp_sackdelay_disable(asoc->param_flags); 2797 } else { 2798 sp->param_flags = 2799 sctp_spp_sackdelay_disable(sp->param_flags); 2800 } 2801 } else if (params.sack_freq > 1) { 2802 if (asoc) { 2803 asoc->sackfreq = params.sack_freq; 2804 asoc->param_flags = 2805 sctp_spp_sackdelay_enable(asoc->param_flags); 2806 } else { 2807 sp->sackfreq = params.sack_freq; 2808 sp->param_flags = 2809 sctp_spp_sackdelay_enable(sp->param_flags); 2810 } 2811 } 2812 2813 /* If change is for association, also apply to each transport. */ 2814 if (asoc) { 2815 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2816 transports) { 2817 if (params.sack_delay) { 2818 trans->sackdelay = 2819 msecs_to_jiffies(params.sack_delay); 2820 trans->param_flags = 2821 sctp_spp_sackdelay_enable(trans->param_flags); 2822 } 2823 if (params.sack_freq == 1) { 2824 trans->param_flags = 2825 sctp_spp_sackdelay_disable(trans->param_flags); 2826 } else if (params.sack_freq > 1) { 2827 trans->sackfreq = params.sack_freq; 2828 trans->param_flags = 2829 sctp_spp_sackdelay_enable(trans->param_flags); 2830 } 2831 } 2832 } 2833 2834 return 0; 2835 } 2836 2837 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2838 * 2839 * Applications can specify protocol parameters for the default association 2840 * initialization. The option name argument to setsockopt() and getsockopt() 2841 * is SCTP_INITMSG. 2842 * 2843 * Setting initialization parameters is effective only on an unconnected 2844 * socket (for UDP-style sockets only future associations are effected 2845 * by the change). With TCP-style sockets, this option is inherited by 2846 * sockets derived from a listener socket. 2847 */ 2848 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2849 { 2850 struct sctp_initmsg sinit; 2851 struct sctp_sock *sp = sctp_sk(sk); 2852 2853 if (optlen != sizeof(struct sctp_initmsg)) 2854 return -EINVAL; 2855 if (copy_from_user(&sinit, optval, optlen)) 2856 return -EFAULT; 2857 2858 if (sinit.sinit_num_ostreams) 2859 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2860 if (sinit.sinit_max_instreams) 2861 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2862 if (sinit.sinit_max_attempts) 2863 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2864 if (sinit.sinit_max_init_timeo) 2865 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2866 2867 return 0; 2868 } 2869 2870 /* 2871 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2872 * 2873 * Applications that wish to use the sendto() system call may wish to 2874 * specify a default set of parameters that would normally be supplied 2875 * through the inclusion of ancillary data. This socket option allows 2876 * such an application to set the default sctp_sndrcvinfo structure. 2877 * The application that wishes to use this socket option simply passes 2878 * in to this call the sctp_sndrcvinfo structure defined in Section 2879 * 5.2.2) The input parameters accepted by this call include 2880 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2881 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2882 * to this call if the caller is using the UDP model. 2883 */ 2884 static int sctp_setsockopt_default_send_param(struct sock *sk, 2885 char __user *optval, 2886 unsigned int optlen) 2887 { 2888 struct sctp_sock *sp = sctp_sk(sk); 2889 struct sctp_association *asoc; 2890 struct sctp_sndrcvinfo info; 2891 2892 if (optlen != sizeof(info)) 2893 return -EINVAL; 2894 if (copy_from_user(&info, optval, optlen)) 2895 return -EFAULT; 2896 if (info.sinfo_flags & 2897 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2898 SCTP_ABORT | SCTP_EOF)) 2899 return -EINVAL; 2900 2901 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2902 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2903 return -EINVAL; 2904 if (asoc) { 2905 asoc->default_stream = info.sinfo_stream; 2906 asoc->default_flags = info.sinfo_flags; 2907 asoc->default_ppid = info.sinfo_ppid; 2908 asoc->default_context = info.sinfo_context; 2909 asoc->default_timetolive = info.sinfo_timetolive; 2910 } else { 2911 sp->default_stream = info.sinfo_stream; 2912 sp->default_flags = info.sinfo_flags; 2913 sp->default_ppid = info.sinfo_ppid; 2914 sp->default_context = info.sinfo_context; 2915 sp->default_timetolive = info.sinfo_timetolive; 2916 } 2917 2918 return 0; 2919 } 2920 2921 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2922 * (SCTP_DEFAULT_SNDINFO) 2923 */ 2924 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2925 char __user *optval, 2926 unsigned int optlen) 2927 { 2928 struct sctp_sock *sp = sctp_sk(sk); 2929 struct sctp_association *asoc; 2930 struct sctp_sndinfo info; 2931 2932 if (optlen != sizeof(info)) 2933 return -EINVAL; 2934 if (copy_from_user(&info, optval, optlen)) 2935 return -EFAULT; 2936 if (info.snd_flags & 2937 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2938 SCTP_ABORT | SCTP_EOF)) 2939 return -EINVAL; 2940 2941 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2942 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2943 return -EINVAL; 2944 if (asoc) { 2945 asoc->default_stream = info.snd_sid; 2946 asoc->default_flags = info.snd_flags; 2947 asoc->default_ppid = info.snd_ppid; 2948 asoc->default_context = info.snd_context; 2949 } else { 2950 sp->default_stream = info.snd_sid; 2951 sp->default_flags = info.snd_flags; 2952 sp->default_ppid = info.snd_ppid; 2953 sp->default_context = info.snd_context; 2954 } 2955 2956 return 0; 2957 } 2958 2959 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2960 * 2961 * Requests that the local SCTP stack use the enclosed peer address as 2962 * the association primary. The enclosed address must be one of the 2963 * association peer's addresses. 2964 */ 2965 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2966 unsigned int optlen) 2967 { 2968 struct sctp_prim prim; 2969 struct sctp_transport *trans; 2970 struct sctp_af *af; 2971 int err; 2972 2973 if (optlen != sizeof(struct sctp_prim)) 2974 return -EINVAL; 2975 2976 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2977 return -EFAULT; 2978 2979 /* Allow security module to validate address but need address len. */ 2980 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 2981 if (!af) 2982 return -EINVAL; 2983 2984 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 2985 (struct sockaddr *)&prim.ssp_addr, 2986 af->sockaddr_len); 2987 if (err) 2988 return err; 2989 2990 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2991 if (!trans) 2992 return -EINVAL; 2993 2994 sctp_assoc_set_primary(trans->asoc, trans); 2995 2996 return 0; 2997 } 2998 2999 /* 3000 * 7.1.5 SCTP_NODELAY 3001 * 3002 * Turn on/off any Nagle-like algorithm. This means that packets are 3003 * generally sent as soon as possible and no unnecessary delays are 3004 * introduced, at the cost of more packets in the network. Expects an 3005 * integer boolean flag. 3006 */ 3007 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3008 unsigned int optlen) 3009 { 3010 int val; 3011 3012 if (optlen < sizeof(int)) 3013 return -EINVAL; 3014 if (get_user(val, (int __user *)optval)) 3015 return -EFAULT; 3016 3017 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3018 return 0; 3019 } 3020 3021 /* 3022 * 3023 * 7.1.1 SCTP_RTOINFO 3024 * 3025 * The protocol parameters used to initialize and bound retransmission 3026 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3027 * and modify these parameters. 3028 * All parameters are time values, in milliseconds. A value of 0, when 3029 * modifying the parameters, indicates that the current value should not 3030 * be changed. 3031 * 3032 */ 3033 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3034 { 3035 struct sctp_rtoinfo rtoinfo; 3036 struct sctp_association *asoc; 3037 unsigned long rto_min, rto_max; 3038 struct sctp_sock *sp = sctp_sk(sk); 3039 3040 if (optlen != sizeof (struct sctp_rtoinfo)) 3041 return -EINVAL; 3042 3043 if (copy_from_user(&rtoinfo, optval, optlen)) 3044 return -EFAULT; 3045 3046 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3047 3048 /* Set the values to the specific association */ 3049 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3050 return -EINVAL; 3051 3052 rto_max = rtoinfo.srto_max; 3053 rto_min = rtoinfo.srto_min; 3054 3055 if (rto_max) 3056 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3057 else 3058 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3059 3060 if (rto_min) 3061 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3062 else 3063 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3064 3065 if (rto_min > rto_max) 3066 return -EINVAL; 3067 3068 if (asoc) { 3069 if (rtoinfo.srto_initial != 0) 3070 asoc->rto_initial = 3071 msecs_to_jiffies(rtoinfo.srto_initial); 3072 asoc->rto_max = rto_max; 3073 asoc->rto_min = rto_min; 3074 } else { 3075 /* If there is no association or the association-id = 0 3076 * set the values to the endpoint. 3077 */ 3078 if (rtoinfo.srto_initial != 0) 3079 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3080 sp->rtoinfo.srto_max = rto_max; 3081 sp->rtoinfo.srto_min = rto_min; 3082 } 3083 3084 return 0; 3085 } 3086 3087 /* 3088 * 3089 * 7.1.2 SCTP_ASSOCINFO 3090 * 3091 * This option is used to tune the maximum retransmission attempts 3092 * of the association. 3093 * Returns an error if the new association retransmission value is 3094 * greater than the sum of the retransmission value of the peer. 3095 * See [SCTP] for more information. 3096 * 3097 */ 3098 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3099 { 3100 3101 struct sctp_assocparams assocparams; 3102 struct sctp_association *asoc; 3103 3104 if (optlen != sizeof(struct sctp_assocparams)) 3105 return -EINVAL; 3106 if (copy_from_user(&assocparams, optval, optlen)) 3107 return -EFAULT; 3108 3109 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3110 3111 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3112 return -EINVAL; 3113 3114 /* Set the values to the specific association */ 3115 if (asoc) { 3116 if (assocparams.sasoc_asocmaxrxt != 0) { 3117 __u32 path_sum = 0; 3118 int paths = 0; 3119 struct sctp_transport *peer_addr; 3120 3121 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3122 transports) { 3123 path_sum += peer_addr->pathmaxrxt; 3124 paths++; 3125 } 3126 3127 /* Only validate asocmaxrxt if we have more than 3128 * one path/transport. We do this because path 3129 * retransmissions are only counted when we have more 3130 * then one path. 3131 */ 3132 if (paths > 1 && 3133 assocparams.sasoc_asocmaxrxt > path_sum) 3134 return -EINVAL; 3135 3136 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3137 } 3138 3139 if (assocparams.sasoc_cookie_life != 0) 3140 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3141 } else { 3142 /* Set the values to the endpoint */ 3143 struct sctp_sock *sp = sctp_sk(sk); 3144 3145 if (assocparams.sasoc_asocmaxrxt != 0) 3146 sp->assocparams.sasoc_asocmaxrxt = 3147 assocparams.sasoc_asocmaxrxt; 3148 if (assocparams.sasoc_cookie_life != 0) 3149 sp->assocparams.sasoc_cookie_life = 3150 assocparams.sasoc_cookie_life; 3151 } 3152 return 0; 3153 } 3154 3155 /* 3156 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3157 * 3158 * This socket option is a boolean flag which turns on or off mapped V4 3159 * addresses. If this option is turned on and the socket is type 3160 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3161 * If this option is turned off, then no mapping will be done of V4 3162 * addresses and a user will receive both PF_INET6 and PF_INET type 3163 * addresses on the socket. 3164 */ 3165 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3166 { 3167 int val; 3168 struct sctp_sock *sp = sctp_sk(sk); 3169 3170 if (optlen < sizeof(int)) 3171 return -EINVAL; 3172 if (get_user(val, (int __user *)optval)) 3173 return -EFAULT; 3174 if (val) 3175 sp->v4mapped = 1; 3176 else 3177 sp->v4mapped = 0; 3178 3179 return 0; 3180 } 3181 3182 /* 3183 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3184 * This option will get or set the maximum size to put in any outgoing 3185 * SCTP DATA chunk. If a message is larger than this size it will be 3186 * fragmented by SCTP into the specified size. Note that the underlying 3187 * SCTP implementation may fragment into smaller sized chunks when the 3188 * PMTU of the underlying association is smaller than the value set by 3189 * the user. The default value for this option is '0' which indicates 3190 * the user is NOT limiting fragmentation and only the PMTU will effect 3191 * SCTP's choice of DATA chunk size. Note also that values set larger 3192 * than the maximum size of an IP datagram will effectively let SCTP 3193 * control fragmentation (i.e. the same as setting this option to 0). 3194 * 3195 * The following structure is used to access and modify this parameter: 3196 * 3197 * struct sctp_assoc_value { 3198 * sctp_assoc_t assoc_id; 3199 * uint32_t assoc_value; 3200 * }; 3201 * 3202 * assoc_id: This parameter is ignored for one-to-one style sockets. 3203 * For one-to-many style sockets this parameter indicates which 3204 * association the user is performing an action upon. Note that if 3205 * this field's value is zero then the endpoints default value is 3206 * changed (effecting future associations only). 3207 * assoc_value: This parameter specifies the maximum size in bytes. 3208 */ 3209 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3210 { 3211 struct sctp_sock *sp = sctp_sk(sk); 3212 struct sctp_af *af = sp->pf->af; 3213 struct sctp_assoc_value params; 3214 struct sctp_association *asoc; 3215 int val; 3216 3217 if (optlen == sizeof(int)) { 3218 pr_warn_ratelimited(DEPRECATED 3219 "%s (pid %d) " 3220 "Use of int in maxseg socket option.\n" 3221 "Use struct sctp_assoc_value instead\n", 3222 current->comm, task_pid_nr(current)); 3223 if (copy_from_user(&val, optval, optlen)) 3224 return -EFAULT; 3225 params.assoc_id = 0; 3226 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3227 if (copy_from_user(¶ms, optval, optlen)) 3228 return -EFAULT; 3229 val = params.assoc_value; 3230 } else { 3231 return -EINVAL; 3232 } 3233 3234 if (val) { 3235 int min_len, max_len; 3236 3237 min_len = SCTP_DEFAULT_MINSEGMENT - af->net_header_len; 3238 min_len -= af->ip_options_len(sk); 3239 min_len -= sizeof(struct sctphdr) + 3240 sizeof(struct sctp_data_chunk); 3241 3242 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk); 3243 3244 if (val < min_len || val > max_len) 3245 return -EINVAL; 3246 } 3247 3248 asoc = sctp_id2assoc(sk, params.assoc_id); 3249 if (asoc) { 3250 if (val == 0) { 3251 val = asoc->pathmtu - af->net_header_len; 3252 val -= af->ip_options_len(sk); 3253 val -= sizeof(struct sctphdr) + 3254 sctp_datachk_len(&asoc->stream); 3255 } 3256 asoc->user_frag = val; 3257 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3258 } else { 3259 if (params.assoc_id && sctp_style(sk, UDP)) 3260 return -EINVAL; 3261 sp->user_frag = val; 3262 } 3263 3264 return 0; 3265 } 3266 3267 3268 /* 3269 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3270 * 3271 * Requests that the peer mark the enclosed address as the association 3272 * primary. The enclosed address must be one of the association's 3273 * locally bound addresses. The following structure is used to make a 3274 * set primary request: 3275 */ 3276 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3277 unsigned int optlen) 3278 { 3279 struct net *net = sock_net(sk); 3280 struct sctp_sock *sp; 3281 struct sctp_association *asoc = NULL; 3282 struct sctp_setpeerprim prim; 3283 struct sctp_chunk *chunk; 3284 struct sctp_af *af; 3285 int err; 3286 3287 sp = sctp_sk(sk); 3288 3289 if (!net->sctp.addip_enable) 3290 return -EPERM; 3291 3292 if (optlen != sizeof(struct sctp_setpeerprim)) 3293 return -EINVAL; 3294 3295 if (copy_from_user(&prim, optval, optlen)) 3296 return -EFAULT; 3297 3298 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3299 if (!asoc) 3300 return -EINVAL; 3301 3302 if (!asoc->peer.asconf_capable) 3303 return -EPERM; 3304 3305 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3306 return -EPERM; 3307 3308 if (!sctp_state(asoc, ESTABLISHED)) 3309 return -ENOTCONN; 3310 3311 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3312 if (!af) 3313 return -EINVAL; 3314 3315 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3316 return -EADDRNOTAVAIL; 3317 3318 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3319 return -EADDRNOTAVAIL; 3320 3321 /* Allow security module to validate address. */ 3322 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3323 (struct sockaddr *)&prim.sspp_addr, 3324 af->sockaddr_len); 3325 if (err) 3326 return err; 3327 3328 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3329 chunk = sctp_make_asconf_set_prim(asoc, 3330 (union sctp_addr *)&prim.sspp_addr); 3331 if (!chunk) 3332 return -ENOMEM; 3333 3334 err = sctp_send_asconf(asoc, chunk); 3335 3336 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3337 3338 return err; 3339 } 3340 3341 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3342 unsigned int optlen) 3343 { 3344 struct sctp_setadaptation adaptation; 3345 3346 if (optlen != sizeof(struct sctp_setadaptation)) 3347 return -EINVAL; 3348 if (copy_from_user(&adaptation, optval, optlen)) 3349 return -EFAULT; 3350 3351 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3352 3353 return 0; 3354 } 3355 3356 /* 3357 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3358 * 3359 * The context field in the sctp_sndrcvinfo structure is normally only 3360 * used when a failed message is retrieved holding the value that was 3361 * sent down on the actual send call. This option allows the setting of 3362 * a default context on an association basis that will be received on 3363 * reading messages from the peer. This is especially helpful in the 3364 * one-2-many model for an application to keep some reference to an 3365 * internal state machine that is processing messages on the 3366 * association. Note that the setting of this value only effects 3367 * received messages from the peer and does not effect the value that is 3368 * saved with outbound messages. 3369 */ 3370 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3371 unsigned int optlen) 3372 { 3373 struct sctp_assoc_value params; 3374 struct sctp_sock *sp; 3375 struct sctp_association *asoc; 3376 3377 if (optlen != sizeof(struct sctp_assoc_value)) 3378 return -EINVAL; 3379 if (copy_from_user(¶ms, optval, optlen)) 3380 return -EFAULT; 3381 3382 sp = sctp_sk(sk); 3383 3384 if (params.assoc_id != 0) { 3385 asoc = sctp_id2assoc(sk, params.assoc_id); 3386 if (!asoc) 3387 return -EINVAL; 3388 asoc->default_rcv_context = params.assoc_value; 3389 } else { 3390 sp->default_rcv_context = params.assoc_value; 3391 } 3392 3393 return 0; 3394 } 3395 3396 /* 3397 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3398 * 3399 * This options will at a minimum specify if the implementation is doing 3400 * fragmented interleave. Fragmented interleave, for a one to many 3401 * socket, is when subsequent calls to receive a message may return 3402 * parts of messages from different associations. Some implementations 3403 * may allow you to turn this value on or off. If so, when turned off, 3404 * no fragment interleave will occur (which will cause a head of line 3405 * blocking amongst multiple associations sharing the same one to many 3406 * socket). When this option is turned on, then each receive call may 3407 * come from a different association (thus the user must receive data 3408 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3409 * association each receive belongs to. 3410 * 3411 * This option takes a boolean value. A non-zero value indicates that 3412 * fragmented interleave is on. A value of zero indicates that 3413 * fragmented interleave is off. 3414 * 3415 * Note that it is important that an implementation that allows this 3416 * option to be turned on, have it off by default. Otherwise an unaware 3417 * application using the one to many model may become confused and act 3418 * incorrectly. 3419 */ 3420 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3421 char __user *optval, 3422 unsigned int optlen) 3423 { 3424 int val; 3425 3426 if (optlen != sizeof(int)) 3427 return -EINVAL; 3428 if (get_user(val, (int __user *)optval)) 3429 return -EFAULT; 3430 3431 sctp_sk(sk)->frag_interleave = !!val; 3432 3433 if (!sctp_sk(sk)->frag_interleave) 3434 sctp_sk(sk)->strm_interleave = 0; 3435 3436 return 0; 3437 } 3438 3439 /* 3440 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3441 * (SCTP_PARTIAL_DELIVERY_POINT) 3442 * 3443 * This option will set or get the SCTP partial delivery point. This 3444 * point is the size of a message where the partial delivery API will be 3445 * invoked to help free up rwnd space for the peer. Setting this to a 3446 * lower value will cause partial deliveries to happen more often. The 3447 * calls argument is an integer that sets or gets the partial delivery 3448 * point. Note also that the call will fail if the user attempts to set 3449 * this value larger than the socket receive buffer size. 3450 * 3451 * Note that any single message having a length smaller than or equal to 3452 * the SCTP partial delivery point will be delivered in one single read 3453 * call as long as the user provided buffer is large enough to hold the 3454 * message. 3455 */ 3456 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3457 char __user *optval, 3458 unsigned int optlen) 3459 { 3460 u32 val; 3461 3462 if (optlen != sizeof(u32)) 3463 return -EINVAL; 3464 if (get_user(val, (int __user *)optval)) 3465 return -EFAULT; 3466 3467 /* Note: We double the receive buffer from what the user sets 3468 * it to be, also initial rwnd is based on rcvbuf/2. 3469 */ 3470 if (val > (sk->sk_rcvbuf >> 1)) 3471 return -EINVAL; 3472 3473 sctp_sk(sk)->pd_point = val; 3474 3475 return 0; /* is this the right error code? */ 3476 } 3477 3478 /* 3479 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3480 * 3481 * This option will allow a user to change the maximum burst of packets 3482 * that can be emitted by this association. Note that the default value 3483 * is 4, and some implementations may restrict this setting so that it 3484 * can only be lowered. 3485 * 3486 * NOTE: This text doesn't seem right. Do this on a socket basis with 3487 * future associations inheriting the socket value. 3488 */ 3489 static int sctp_setsockopt_maxburst(struct sock *sk, 3490 char __user *optval, 3491 unsigned int optlen) 3492 { 3493 struct sctp_assoc_value params; 3494 struct sctp_sock *sp; 3495 struct sctp_association *asoc; 3496 int val; 3497 int assoc_id = 0; 3498 3499 if (optlen == sizeof(int)) { 3500 pr_warn_ratelimited(DEPRECATED 3501 "%s (pid %d) " 3502 "Use of int in max_burst socket option deprecated.\n" 3503 "Use struct sctp_assoc_value instead\n", 3504 current->comm, task_pid_nr(current)); 3505 if (copy_from_user(&val, optval, optlen)) 3506 return -EFAULT; 3507 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3508 if (copy_from_user(¶ms, optval, optlen)) 3509 return -EFAULT; 3510 val = params.assoc_value; 3511 assoc_id = params.assoc_id; 3512 } else 3513 return -EINVAL; 3514 3515 sp = sctp_sk(sk); 3516 3517 if (assoc_id != 0) { 3518 asoc = sctp_id2assoc(sk, assoc_id); 3519 if (!asoc) 3520 return -EINVAL; 3521 asoc->max_burst = val; 3522 } else 3523 sp->max_burst = val; 3524 3525 return 0; 3526 } 3527 3528 /* 3529 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3530 * 3531 * This set option adds a chunk type that the user is requesting to be 3532 * received only in an authenticated way. Changes to the list of chunks 3533 * will only effect future associations on the socket. 3534 */ 3535 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3536 char __user *optval, 3537 unsigned int optlen) 3538 { 3539 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3540 struct sctp_authchunk val; 3541 3542 if (!ep->auth_enable) 3543 return -EACCES; 3544 3545 if (optlen != sizeof(struct sctp_authchunk)) 3546 return -EINVAL; 3547 if (copy_from_user(&val, optval, optlen)) 3548 return -EFAULT; 3549 3550 switch (val.sauth_chunk) { 3551 case SCTP_CID_INIT: 3552 case SCTP_CID_INIT_ACK: 3553 case SCTP_CID_SHUTDOWN_COMPLETE: 3554 case SCTP_CID_AUTH: 3555 return -EINVAL; 3556 } 3557 3558 /* add this chunk id to the endpoint */ 3559 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3560 } 3561 3562 /* 3563 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3564 * 3565 * This option gets or sets the list of HMAC algorithms that the local 3566 * endpoint requires the peer to use. 3567 */ 3568 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3569 char __user *optval, 3570 unsigned int optlen) 3571 { 3572 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3573 struct sctp_hmacalgo *hmacs; 3574 u32 idents; 3575 int err; 3576 3577 if (!ep->auth_enable) 3578 return -EACCES; 3579 3580 if (optlen < sizeof(struct sctp_hmacalgo)) 3581 return -EINVAL; 3582 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3583 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3584 3585 hmacs = memdup_user(optval, optlen); 3586 if (IS_ERR(hmacs)) 3587 return PTR_ERR(hmacs); 3588 3589 idents = hmacs->shmac_num_idents; 3590 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3591 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3592 err = -EINVAL; 3593 goto out; 3594 } 3595 3596 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3597 out: 3598 kfree(hmacs); 3599 return err; 3600 } 3601 3602 /* 3603 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3604 * 3605 * This option will set a shared secret key which is used to build an 3606 * association shared key. 3607 */ 3608 static int sctp_setsockopt_auth_key(struct sock *sk, 3609 char __user *optval, 3610 unsigned int optlen) 3611 { 3612 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3613 struct sctp_authkey *authkey; 3614 struct sctp_association *asoc; 3615 int ret; 3616 3617 if (!ep->auth_enable) 3618 return -EACCES; 3619 3620 if (optlen <= sizeof(struct sctp_authkey)) 3621 return -EINVAL; 3622 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3623 * this. 3624 */ 3625 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3626 sizeof(struct sctp_authkey)); 3627 3628 authkey = memdup_user(optval, optlen); 3629 if (IS_ERR(authkey)) 3630 return PTR_ERR(authkey); 3631 3632 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3633 ret = -EINVAL; 3634 goto out; 3635 } 3636 3637 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3638 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3639 ret = -EINVAL; 3640 goto out; 3641 } 3642 3643 ret = sctp_auth_set_key(ep, asoc, authkey); 3644 out: 3645 kzfree(authkey); 3646 return ret; 3647 } 3648 3649 /* 3650 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3651 * 3652 * This option will get or set the active shared key to be used to build 3653 * the association shared key. 3654 */ 3655 static int sctp_setsockopt_active_key(struct sock *sk, 3656 char __user *optval, 3657 unsigned int optlen) 3658 { 3659 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3660 struct sctp_authkeyid val; 3661 struct sctp_association *asoc; 3662 3663 if (!ep->auth_enable) 3664 return -EACCES; 3665 3666 if (optlen != sizeof(struct sctp_authkeyid)) 3667 return -EINVAL; 3668 if (copy_from_user(&val, optval, optlen)) 3669 return -EFAULT; 3670 3671 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3672 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3673 return -EINVAL; 3674 3675 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3676 } 3677 3678 /* 3679 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3680 * 3681 * This set option will delete a shared secret key from use. 3682 */ 3683 static int sctp_setsockopt_del_key(struct sock *sk, 3684 char __user *optval, 3685 unsigned int optlen) 3686 { 3687 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3688 struct sctp_authkeyid val; 3689 struct sctp_association *asoc; 3690 3691 if (!ep->auth_enable) 3692 return -EACCES; 3693 3694 if (optlen != sizeof(struct sctp_authkeyid)) 3695 return -EINVAL; 3696 if (copy_from_user(&val, optval, optlen)) 3697 return -EFAULT; 3698 3699 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3700 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3701 return -EINVAL; 3702 3703 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3704 3705 } 3706 3707 /* 3708 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3709 * 3710 * This set option will deactivate a shared secret key. 3711 */ 3712 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3713 unsigned int optlen) 3714 { 3715 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3716 struct sctp_authkeyid val; 3717 struct sctp_association *asoc; 3718 3719 if (!ep->auth_enable) 3720 return -EACCES; 3721 3722 if (optlen != sizeof(struct sctp_authkeyid)) 3723 return -EINVAL; 3724 if (copy_from_user(&val, optval, optlen)) 3725 return -EFAULT; 3726 3727 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3728 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3729 return -EINVAL; 3730 3731 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3732 } 3733 3734 /* 3735 * 8.1.23 SCTP_AUTO_ASCONF 3736 * 3737 * This option will enable or disable the use of the automatic generation of 3738 * ASCONF chunks to add and delete addresses to an existing association. Note 3739 * that this option has two caveats namely: a) it only affects sockets that 3740 * are bound to all addresses available to the SCTP stack, and b) the system 3741 * administrator may have an overriding control that turns the ASCONF feature 3742 * off no matter what setting the socket option may have. 3743 * This option expects an integer boolean flag, where a non-zero value turns on 3744 * the option, and a zero value turns off the option. 3745 * Note. In this implementation, socket operation overrides default parameter 3746 * being set by sysctl as well as FreeBSD implementation 3747 */ 3748 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3749 unsigned int optlen) 3750 { 3751 int val; 3752 struct sctp_sock *sp = sctp_sk(sk); 3753 3754 if (optlen < sizeof(int)) 3755 return -EINVAL; 3756 if (get_user(val, (int __user *)optval)) 3757 return -EFAULT; 3758 if (!sctp_is_ep_boundall(sk) && val) 3759 return -EINVAL; 3760 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3761 return 0; 3762 3763 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3764 if (val == 0 && sp->do_auto_asconf) { 3765 list_del(&sp->auto_asconf_list); 3766 sp->do_auto_asconf = 0; 3767 } else if (val && !sp->do_auto_asconf) { 3768 list_add_tail(&sp->auto_asconf_list, 3769 &sock_net(sk)->sctp.auto_asconf_splist); 3770 sp->do_auto_asconf = 1; 3771 } 3772 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3773 return 0; 3774 } 3775 3776 /* 3777 * SCTP_PEER_ADDR_THLDS 3778 * 3779 * This option allows us to alter the partially failed threshold for one or all 3780 * transports in an association. See Section 6.1 of: 3781 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3782 */ 3783 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3784 char __user *optval, 3785 unsigned int optlen) 3786 { 3787 struct sctp_paddrthlds val; 3788 struct sctp_transport *trans; 3789 struct sctp_association *asoc; 3790 3791 if (optlen < sizeof(struct sctp_paddrthlds)) 3792 return -EINVAL; 3793 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3794 sizeof(struct sctp_paddrthlds))) 3795 return -EFAULT; 3796 3797 3798 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3799 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3800 if (!asoc) 3801 return -ENOENT; 3802 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3803 transports) { 3804 if (val.spt_pathmaxrxt) 3805 trans->pathmaxrxt = val.spt_pathmaxrxt; 3806 trans->pf_retrans = val.spt_pathpfthld; 3807 } 3808 3809 if (val.spt_pathmaxrxt) 3810 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3811 asoc->pf_retrans = val.spt_pathpfthld; 3812 } else { 3813 trans = sctp_addr_id2transport(sk, &val.spt_address, 3814 val.spt_assoc_id); 3815 if (!trans) 3816 return -ENOENT; 3817 3818 if (val.spt_pathmaxrxt) 3819 trans->pathmaxrxt = val.spt_pathmaxrxt; 3820 trans->pf_retrans = val.spt_pathpfthld; 3821 } 3822 3823 return 0; 3824 } 3825 3826 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3827 char __user *optval, 3828 unsigned int optlen) 3829 { 3830 int val; 3831 3832 if (optlen < sizeof(int)) 3833 return -EINVAL; 3834 if (get_user(val, (int __user *) optval)) 3835 return -EFAULT; 3836 3837 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3838 3839 return 0; 3840 } 3841 3842 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3843 char __user *optval, 3844 unsigned int optlen) 3845 { 3846 int val; 3847 3848 if (optlen < sizeof(int)) 3849 return -EINVAL; 3850 if (get_user(val, (int __user *) optval)) 3851 return -EFAULT; 3852 3853 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3854 3855 return 0; 3856 } 3857 3858 static int sctp_setsockopt_pr_supported(struct sock *sk, 3859 char __user *optval, 3860 unsigned int optlen) 3861 { 3862 struct sctp_assoc_value params; 3863 struct sctp_association *asoc; 3864 int retval = -EINVAL; 3865 3866 if (optlen != sizeof(params)) 3867 goto out; 3868 3869 if (copy_from_user(¶ms, optval, optlen)) { 3870 retval = -EFAULT; 3871 goto out; 3872 } 3873 3874 asoc = sctp_id2assoc(sk, params.assoc_id); 3875 if (asoc) { 3876 asoc->prsctp_enable = !!params.assoc_value; 3877 } else if (!params.assoc_id) { 3878 struct sctp_sock *sp = sctp_sk(sk); 3879 3880 sp->ep->prsctp_enable = !!params.assoc_value; 3881 } else { 3882 goto out; 3883 } 3884 3885 retval = 0; 3886 3887 out: 3888 return retval; 3889 } 3890 3891 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3892 char __user *optval, 3893 unsigned int optlen) 3894 { 3895 struct sctp_default_prinfo info; 3896 struct sctp_association *asoc; 3897 int retval = -EINVAL; 3898 3899 if (optlen != sizeof(info)) 3900 goto out; 3901 3902 if (copy_from_user(&info, optval, sizeof(info))) { 3903 retval = -EFAULT; 3904 goto out; 3905 } 3906 3907 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3908 goto out; 3909 3910 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3911 info.pr_value = 0; 3912 3913 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3914 if (asoc) { 3915 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3916 asoc->default_timetolive = info.pr_value; 3917 } else if (!info.pr_assoc_id) { 3918 struct sctp_sock *sp = sctp_sk(sk); 3919 3920 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3921 sp->default_timetolive = info.pr_value; 3922 } else { 3923 goto out; 3924 } 3925 3926 retval = 0; 3927 3928 out: 3929 return retval; 3930 } 3931 3932 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3933 char __user *optval, 3934 unsigned int optlen) 3935 { 3936 struct sctp_assoc_value params; 3937 struct sctp_association *asoc; 3938 int retval = -EINVAL; 3939 3940 if (optlen != sizeof(params)) 3941 goto out; 3942 3943 if (copy_from_user(¶ms, optval, optlen)) { 3944 retval = -EFAULT; 3945 goto out; 3946 } 3947 3948 asoc = sctp_id2assoc(sk, params.assoc_id); 3949 if (asoc) { 3950 asoc->reconf_enable = !!params.assoc_value; 3951 } else if (!params.assoc_id) { 3952 struct sctp_sock *sp = sctp_sk(sk); 3953 3954 sp->ep->reconf_enable = !!params.assoc_value; 3955 } else { 3956 goto out; 3957 } 3958 3959 retval = 0; 3960 3961 out: 3962 return retval; 3963 } 3964 3965 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3966 char __user *optval, 3967 unsigned int optlen) 3968 { 3969 struct sctp_assoc_value params; 3970 struct sctp_association *asoc; 3971 int retval = -EINVAL; 3972 3973 if (optlen != sizeof(params)) 3974 goto out; 3975 3976 if (copy_from_user(¶ms, optval, optlen)) { 3977 retval = -EFAULT; 3978 goto out; 3979 } 3980 3981 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3982 goto out; 3983 3984 asoc = sctp_id2assoc(sk, params.assoc_id); 3985 if (asoc) { 3986 asoc->strreset_enable = params.assoc_value; 3987 } else if (!params.assoc_id) { 3988 struct sctp_sock *sp = sctp_sk(sk); 3989 3990 sp->ep->strreset_enable = params.assoc_value; 3991 } else { 3992 goto out; 3993 } 3994 3995 retval = 0; 3996 3997 out: 3998 return retval; 3999 } 4000 4001 static int sctp_setsockopt_reset_streams(struct sock *sk, 4002 char __user *optval, 4003 unsigned int optlen) 4004 { 4005 struct sctp_reset_streams *params; 4006 struct sctp_association *asoc; 4007 int retval = -EINVAL; 4008 4009 if (optlen < sizeof(*params)) 4010 return -EINVAL; 4011 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4012 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4013 sizeof(__u16) * sizeof(*params)); 4014 4015 params = memdup_user(optval, optlen); 4016 if (IS_ERR(params)) 4017 return PTR_ERR(params); 4018 4019 if (params->srs_number_streams * sizeof(__u16) > 4020 optlen - sizeof(*params)) 4021 goto out; 4022 4023 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4024 if (!asoc) 4025 goto out; 4026 4027 retval = sctp_send_reset_streams(asoc, params); 4028 4029 out: 4030 kfree(params); 4031 return retval; 4032 } 4033 4034 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4035 char __user *optval, 4036 unsigned int optlen) 4037 { 4038 struct sctp_association *asoc; 4039 sctp_assoc_t associd; 4040 int retval = -EINVAL; 4041 4042 if (optlen != sizeof(associd)) 4043 goto out; 4044 4045 if (copy_from_user(&associd, optval, optlen)) { 4046 retval = -EFAULT; 4047 goto out; 4048 } 4049 4050 asoc = sctp_id2assoc(sk, associd); 4051 if (!asoc) 4052 goto out; 4053 4054 retval = sctp_send_reset_assoc(asoc); 4055 4056 out: 4057 return retval; 4058 } 4059 4060 static int sctp_setsockopt_add_streams(struct sock *sk, 4061 char __user *optval, 4062 unsigned int optlen) 4063 { 4064 struct sctp_association *asoc; 4065 struct sctp_add_streams params; 4066 int retval = -EINVAL; 4067 4068 if (optlen != sizeof(params)) 4069 goto out; 4070 4071 if (copy_from_user(¶ms, optval, optlen)) { 4072 retval = -EFAULT; 4073 goto out; 4074 } 4075 4076 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4077 if (!asoc) 4078 goto out; 4079 4080 retval = sctp_send_add_streams(asoc, ¶ms); 4081 4082 out: 4083 return retval; 4084 } 4085 4086 static int sctp_setsockopt_scheduler(struct sock *sk, 4087 char __user *optval, 4088 unsigned int optlen) 4089 { 4090 struct sctp_association *asoc; 4091 struct sctp_assoc_value params; 4092 int retval = -EINVAL; 4093 4094 if (optlen < sizeof(params)) 4095 goto out; 4096 4097 optlen = sizeof(params); 4098 if (copy_from_user(¶ms, optval, optlen)) { 4099 retval = -EFAULT; 4100 goto out; 4101 } 4102 4103 if (params.assoc_value > SCTP_SS_MAX) 4104 goto out; 4105 4106 asoc = sctp_id2assoc(sk, params.assoc_id); 4107 if (!asoc) 4108 goto out; 4109 4110 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4111 4112 out: 4113 return retval; 4114 } 4115 4116 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4117 char __user *optval, 4118 unsigned int optlen) 4119 { 4120 struct sctp_association *asoc; 4121 struct sctp_stream_value params; 4122 int retval = -EINVAL; 4123 4124 if (optlen < sizeof(params)) 4125 goto out; 4126 4127 optlen = sizeof(params); 4128 if (copy_from_user(¶ms, optval, optlen)) { 4129 retval = -EFAULT; 4130 goto out; 4131 } 4132 4133 asoc = sctp_id2assoc(sk, params.assoc_id); 4134 if (!asoc) 4135 goto out; 4136 4137 retval = sctp_sched_set_value(asoc, params.stream_id, 4138 params.stream_value, GFP_KERNEL); 4139 4140 out: 4141 return retval; 4142 } 4143 4144 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4145 char __user *optval, 4146 unsigned int optlen) 4147 { 4148 struct sctp_sock *sp = sctp_sk(sk); 4149 struct net *net = sock_net(sk); 4150 struct sctp_assoc_value params; 4151 int retval = -EINVAL; 4152 4153 if (optlen < sizeof(params)) 4154 goto out; 4155 4156 optlen = sizeof(params); 4157 if (copy_from_user(¶ms, optval, optlen)) { 4158 retval = -EFAULT; 4159 goto out; 4160 } 4161 4162 if (params.assoc_id) 4163 goto out; 4164 4165 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4166 retval = -EPERM; 4167 goto out; 4168 } 4169 4170 sp->strm_interleave = !!params.assoc_value; 4171 4172 retval = 0; 4173 4174 out: 4175 return retval; 4176 } 4177 4178 /* API 6.2 setsockopt(), getsockopt() 4179 * 4180 * Applications use setsockopt() and getsockopt() to set or retrieve 4181 * socket options. Socket options are used to change the default 4182 * behavior of sockets calls. They are described in Section 7. 4183 * 4184 * The syntax is: 4185 * 4186 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4187 * int __user *optlen); 4188 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4189 * int optlen); 4190 * 4191 * sd - the socket descript. 4192 * level - set to IPPROTO_SCTP for all SCTP options. 4193 * optname - the option name. 4194 * optval - the buffer to store the value of the option. 4195 * optlen - the size of the buffer. 4196 */ 4197 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4198 char __user *optval, unsigned int optlen) 4199 { 4200 int retval = 0; 4201 4202 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4203 4204 /* I can hardly begin to describe how wrong this is. This is 4205 * so broken as to be worse than useless. The API draft 4206 * REALLY is NOT helpful here... I am not convinced that the 4207 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4208 * are at all well-founded. 4209 */ 4210 if (level != SOL_SCTP) { 4211 struct sctp_af *af = sctp_sk(sk)->pf->af; 4212 retval = af->setsockopt(sk, level, optname, optval, optlen); 4213 goto out_nounlock; 4214 } 4215 4216 lock_sock(sk); 4217 4218 switch (optname) { 4219 case SCTP_SOCKOPT_BINDX_ADD: 4220 /* 'optlen' is the size of the addresses buffer. */ 4221 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4222 optlen, SCTP_BINDX_ADD_ADDR); 4223 break; 4224 4225 case SCTP_SOCKOPT_BINDX_REM: 4226 /* 'optlen' is the size of the addresses buffer. */ 4227 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4228 optlen, SCTP_BINDX_REM_ADDR); 4229 break; 4230 4231 case SCTP_SOCKOPT_CONNECTX_OLD: 4232 /* 'optlen' is the size of the addresses buffer. */ 4233 retval = sctp_setsockopt_connectx_old(sk, 4234 (struct sockaddr __user *)optval, 4235 optlen); 4236 break; 4237 4238 case SCTP_SOCKOPT_CONNECTX: 4239 /* 'optlen' is the size of the addresses buffer. */ 4240 retval = sctp_setsockopt_connectx(sk, 4241 (struct sockaddr __user *)optval, 4242 optlen); 4243 break; 4244 4245 case SCTP_DISABLE_FRAGMENTS: 4246 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4247 break; 4248 4249 case SCTP_EVENTS: 4250 retval = sctp_setsockopt_events(sk, optval, optlen); 4251 break; 4252 4253 case SCTP_AUTOCLOSE: 4254 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4255 break; 4256 4257 case SCTP_PEER_ADDR_PARAMS: 4258 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4259 break; 4260 4261 case SCTP_DELAYED_SACK: 4262 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4263 break; 4264 case SCTP_PARTIAL_DELIVERY_POINT: 4265 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4266 break; 4267 4268 case SCTP_INITMSG: 4269 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4270 break; 4271 case SCTP_DEFAULT_SEND_PARAM: 4272 retval = sctp_setsockopt_default_send_param(sk, optval, 4273 optlen); 4274 break; 4275 case SCTP_DEFAULT_SNDINFO: 4276 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4277 break; 4278 case SCTP_PRIMARY_ADDR: 4279 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4280 break; 4281 case SCTP_SET_PEER_PRIMARY_ADDR: 4282 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4283 break; 4284 case SCTP_NODELAY: 4285 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4286 break; 4287 case SCTP_RTOINFO: 4288 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4289 break; 4290 case SCTP_ASSOCINFO: 4291 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4292 break; 4293 case SCTP_I_WANT_MAPPED_V4_ADDR: 4294 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4295 break; 4296 case SCTP_MAXSEG: 4297 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4298 break; 4299 case SCTP_ADAPTATION_LAYER: 4300 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4301 break; 4302 case SCTP_CONTEXT: 4303 retval = sctp_setsockopt_context(sk, optval, optlen); 4304 break; 4305 case SCTP_FRAGMENT_INTERLEAVE: 4306 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4307 break; 4308 case SCTP_MAX_BURST: 4309 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4310 break; 4311 case SCTP_AUTH_CHUNK: 4312 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4313 break; 4314 case SCTP_HMAC_IDENT: 4315 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4316 break; 4317 case SCTP_AUTH_KEY: 4318 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4319 break; 4320 case SCTP_AUTH_ACTIVE_KEY: 4321 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4322 break; 4323 case SCTP_AUTH_DELETE_KEY: 4324 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4325 break; 4326 case SCTP_AUTH_DEACTIVATE_KEY: 4327 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4328 break; 4329 case SCTP_AUTO_ASCONF: 4330 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4331 break; 4332 case SCTP_PEER_ADDR_THLDS: 4333 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4334 break; 4335 case SCTP_RECVRCVINFO: 4336 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4337 break; 4338 case SCTP_RECVNXTINFO: 4339 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4340 break; 4341 case SCTP_PR_SUPPORTED: 4342 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4343 break; 4344 case SCTP_DEFAULT_PRINFO: 4345 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4346 break; 4347 case SCTP_RECONFIG_SUPPORTED: 4348 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4349 break; 4350 case SCTP_ENABLE_STREAM_RESET: 4351 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4352 break; 4353 case SCTP_RESET_STREAMS: 4354 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4355 break; 4356 case SCTP_RESET_ASSOC: 4357 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4358 break; 4359 case SCTP_ADD_STREAMS: 4360 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4361 break; 4362 case SCTP_STREAM_SCHEDULER: 4363 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4364 break; 4365 case SCTP_STREAM_SCHEDULER_VALUE: 4366 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4367 break; 4368 case SCTP_INTERLEAVING_SUPPORTED: 4369 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4370 optlen); 4371 break; 4372 default: 4373 retval = -ENOPROTOOPT; 4374 break; 4375 } 4376 4377 release_sock(sk); 4378 4379 out_nounlock: 4380 return retval; 4381 } 4382 4383 /* API 3.1.6 connect() - UDP Style Syntax 4384 * 4385 * An application may use the connect() call in the UDP model to initiate an 4386 * association without sending data. 4387 * 4388 * The syntax is: 4389 * 4390 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4391 * 4392 * sd: the socket descriptor to have a new association added to. 4393 * 4394 * nam: the address structure (either struct sockaddr_in or struct 4395 * sockaddr_in6 defined in RFC2553 [7]). 4396 * 4397 * len: the size of the address. 4398 */ 4399 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4400 int addr_len) 4401 { 4402 int err = 0; 4403 struct sctp_af *af; 4404 4405 lock_sock(sk); 4406 4407 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4408 addr, addr_len); 4409 4410 /* Validate addr_len before calling common connect/connectx routine. */ 4411 af = sctp_get_af_specific(addr->sa_family); 4412 if (!af || addr_len < af->sockaddr_len) { 4413 err = -EINVAL; 4414 } else { 4415 /* Pass correct addr len to common routine (so it knows there 4416 * is only one address being passed. 4417 */ 4418 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4419 } 4420 4421 release_sock(sk); 4422 return err; 4423 } 4424 4425 /* FIXME: Write comments. */ 4426 static int sctp_disconnect(struct sock *sk, int flags) 4427 { 4428 return -EOPNOTSUPP; /* STUB */ 4429 } 4430 4431 /* 4.1.4 accept() - TCP Style Syntax 4432 * 4433 * Applications use accept() call to remove an established SCTP 4434 * association from the accept queue of the endpoint. A new socket 4435 * descriptor will be returned from accept() to represent the newly 4436 * formed association. 4437 */ 4438 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4439 { 4440 struct sctp_sock *sp; 4441 struct sctp_endpoint *ep; 4442 struct sock *newsk = NULL; 4443 struct sctp_association *asoc; 4444 long timeo; 4445 int error = 0; 4446 4447 lock_sock(sk); 4448 4449 sp = sctp_sk(sk); 4450 ep = sp->ep; 4451 4452 if (!sctp_style(sk, TCP)) { 4453 error = -EOPNOTSUPP; 4454 goto out; 4455 } 4456 4457 if (!sctp_sstate(sk, LISTENING)) { 4458 error = -EINVAL; 4459 goto out; 4460 } 4461 4462 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4463 4464 error = sctp_wait_for_accept(sk, timeo); 4465 if (error) 4466 goto out; 4467 4468 /* We treat the list of associations on the endpoint as the accept 4469 * queue and pick the first association on the list. 4470 */ 4471 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4472 4473 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4474 if (!newsk) { 4475 error = -ENOMEM; 4476 goto out; 4477 } 4478 4479 /* Populate the fields of the newsk from the oldsk and migrate the 4480 * asoc to the newsk. 4481 */ 4482 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4483 4484 out: 4485 release_sock(sk); 4486 *err = error; 4487 return newsk; 4488 } 4489 4490 /* The SCTP ioctl handler. */ 4491 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4492 { 4493 int rc = -ENOTCONN; 4494 4495 lock_sock(sk); 4496 4497 /* 4498 * SEQPACKET-style sockets in LISTENING state are valid, for 4499 * SCTP, so only discard TCP-style sockets in LISTENING state. 4500 */ 4501 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4502 goto out; 4503 4504 switch (cmd) { 4505 case SIOCINQ: { 4506 struct sk_buff *skb; 4507 unsigned int amount = 0; 4508 4509 skb = skb_peek(&sk->sk_receive_queue); 4510 if (skb != NULL) { 4511 /* 4512 * We will only return the amount of this packet since 4513 * that is all that will be read. 4514 */ 4515 amount = skb->len; 4516 } 4517 rc = put_user(amount, (int __user *)arg); 4518 break; 4519 } 4520 default: 4521 rc = -ENOIOCTLCMD; 4522 break; 4523 } 4524 out: 4525 release_sock(sk); 4526 return rc; 4527 } 4528 4529 /* This is the function which gets called during socket creation to 4530 * initialized the SCTP-specific portion of the sock. 4531 * The sock structure should already be zero-filled memory. 4532 */ 4533 static int sctp_init_sock(struct sock *sk) 4534 { 4535 struct net *net = sock_net(sk); 4536 struct sctp_sock *sp; 4537 4538 pr_debug("%s: sk:%p\n", __func__, sk); 4539 4540 sp = sctp_sk(sk); 4541 4542 /* Initialize the SCTP per socket area. */ 4543 switch (sk->sk_type) { 4544 case SOCK_SEQPACKET: 4545 sp->type = SCTP_SOCKET_UDP; 4546 break; 4547 case SOCK_STREAM: 4548 sp->type = SCTP_SOCKET_TCP; 4549 break; 4550 default: 4551 return -ESOCKTNOSUPPORT; 4552 } 4553 4554 sk->sk_gso_type = SKB_GSO_SCTP; 4555 4556 /* Initialize default send parameters. These parameters can be 4557 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4558 */ 4559 sp->default_stream = 0; 4560 sp->default_ppid = 0; 4561 sp->default_flags = 0; 4562 sp->default_context = 0; 4563 sp->default_timetolive = 0; 4564 4565 sp->default_rcv_context = 0; 4566 sp->max_burst = net->sctp.max_burst; 4567 4568 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4569 4570 /* Initialize default setup parameters. These parameters 4571 * can be modified with the SCTP_INITMSG socket option or 4572 * overridden by the SCTP_INIT CMSG. 4573 */ 4574 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4575 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4576 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4577 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4578 4579 /* Initialize default RTO related parameters. These parameters can 4580 * be modified for with the SCTP_RTOINFO socket option. 4581 */ 4582 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4583 sp->rtoinfo.srto_max = net->sctp.rto_max; 4584 sp->rtoinfo.srto_min = net->sctp.rto_min; 4585 4586 /* Initialize default association related parameters. These parameters 4587 * can be modified with the SCTP_ASSOCINFO socket option. 4588 */ 4589 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4590 sp->assocparams.sasoc_number_peer_destinations = 0; 4591 sp->assocparams.sasoc_peer_rwnd = 0; 4592 sp->assocparams.sasoc_local_rwnd = 0; 4593 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4594 4595 /* Initialize default event subscriptions. By default, all the 4596 * options are off. 4597 */ 4598 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4599 4600 /* Default Peer Address Parameters. These defaults can 4601 * be modified via SCTP_PEER_ADDR_PARAMS 4602 */ 4603 sp->hbinterval = net->sctp.hb_interval; 4604 sp->pathmaxrxt = net->sctp.max_retrans_path; 4605 sp->pathmtu = 0; /* allow default discovery */ 4606 sp->sackdelay = net->sctp.sack_timeout; 4607 sp->sackfreq = 2; 4608 sp->param_flags = SPP_HB_ENABLE | 4609 SPP_PMTUD_ENABLE | 4610 SPP_SACKDELAY_ENABLE; 4611 4612 /* If enabled no SCTP message fragmentation will be performed. 4613 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4614 */ 4615 sp->disable_fragments = 0; 4616 4617 /* Enable Nagle algorithm by default. */ 4618 sp->nodelay = 0; 4619 4620 sp->recvrcvinfo = 0; 4621 sp->recvnxtinfo = 0; 4622 4623 /* Enable by default. */ 4624 sp->v4mapped = 1; 4625 4626 /* Auto-close idle associations after the configured 4627 * number of seconds. A value of 0 disables this 4628 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4629 * for UDP-style sockets only. 4630 */ 4631 sp->autoclose = 0; 4632 4633 /* User specified fragmentation limit. */ 4634 sp->user_frag = 0; 4635 4636 sp->adaptation_ind = 0; 4637 4638 sp->pf = sctp_get_pf_specific(sk->sk_family); 4639 4640 /* Control variables for partial data delivery. */ 4641 atomic_set(&sp->pd_mode, 0); 4642 skb_queue_head_init(&sp->pd_lobby); 4643 sp->frag_interleave = 0; 4644 4645 /* Create a per socket endpoint structure. Even if we 4646 * change the data structure relationships, this may still 4647 * be useful for storing pre-connect address information. 4648 */ 4649 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4650 if (!sp->ep) 4651 return -ENOMEM; 4652 4653 sp->hmac = NULL; 4654 4655 sk->sk_destruct = sctp_destruct_sock; 4656 4657 SCTP_DBG_OBJCNT_INC(sock); 4658 4659 local_bh_disable(); 4660 sk_sockets_allocated_inc(sk); 4661 sock_prot_inuse_add(net, sk->sk_prot, 1); 4662 4663 /* Nothing can fail after this block, otherwise 4664 * sctp_destroy_sock() will be called without addr_wq_lock held 4665 */ 4666 if (net->sctp.default_auto_asconf) { 4667 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4668 list_add_tail(&sp->auto_asconf_list, 4669 &net->sctp.auto_asconf_splist); 4670 sp->do_auto_asconf = 1; 4671 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4672 } else { 4673 sp->do_auto_asconf = 0; 4674 } 4675 4676 local_bh_enable(); 4677 4678 return 0; 4679 } 4680 4681 /* Cleanup any SCTP per socket resources. Must be called with 4682 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4683 */ 4684 static void sctp_destroy_sock(struct sock *sk) 4685 { 4686 struct sctp_sock *sp; 4687 4688 pr_debug("%s: sk:%p\n", __func__, sk); 4689 4690 /* Release our hold on the endpoint. */ 4691 sp = sctp_sk(sk); 4692 /* This could happen during socket init, thus we bail out 4693 * early, since the rest of the below is not setup either. 4694 */ 4695 if (sp->ep == NULL) 4696 return; 4697 4698 if (sp->do_auto_asconf) { 4699 sp->do_auto_asconf = 0; 4700 list_del(&sp->auto_asconf_list); 4701 } 4702 sctp_endpoint_free(sp->ep); 4703 local_bh_disable(); 4704 sk_sockets_allocated_dec(sk); 4705 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4706 local_bh_enable(); 4707 } 4708 4709 /* Triggered when there are no references on the socket anymore */ 4710 static void sctp_destruct_sock(struct sock *sk) 4711 { 4712 struct sctp_sock *sp = sctp_sk(sk); 4713 4714 /* Free up the HMAC transform. */ 4715 crypto_free_shash(sp->hmac); 4716 4717 inet_sock_destruct(sk); 4718 } 4719 4720 /* API 4.1.7 shutdown() - TCP Style Syntax 4721 * int shutdown(int socket, int how); 4722 * 4723 * sd - the socket descriptor of the association to be closed. 4724 * how - Specifies the type of shutdown. The values are 4725 * as follows: 4726 * SHUT_RD 4727 * Disables further receive operations. No SCTP 4728 * protocol action is taken. 4729 * SHUT_WR 4730 * Disables further send operations, and initiates 4731 * the SCTP shutdown sequence. 4732 * SHUT_RDWR 4733 * Disables further send and receive operations 4734 * and initiates the SCTP shutdown sequence. 4735 */ 4736 static void sctp_shutdown(struct sock *sk, int how) 4737 { 4738 struct net *net = sock_net(sk); 4739 struct sctp_endpoint *ep; 4740 4741 if (!sctp_style(sk, TCP)) 4742 return; 4743 4744 ep = sctp_sk(sk)->ep; 4745 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4746 struct sctp_association *asoc; 4747 4748 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4749 asoc = list_entry(ep->asocs.next, 4750 struct sctp_association, asocs); 4751 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4752 } 4753 } 4754 4755 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4756 struct sctp_info *info) 4757 { 4758 struct sctp_transport *prim; 4759 struct list_head *pos; 4760 int mask; 4761 4762 memset(info, 0, sizeof(*info)); 4763 if (!asoc) { 4764 struct sctp_sock *sp = sctp_sk(sk); 4765 4766 info->sctpi_s_autoclose = sp->autoclose; 4767 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4768 info->sctpi_s_pd_point = sp->pd_point; 4769 info->sctpi_s_nodelay = sp->nodelay; 4770 info->sctpi_s_disable_fragments = sp->disable_fragments; 4771 info->sctpi_s_v4mapped = sp->v4mapped; 4772 info->sctpi_s_frag_interleave = sp->frag_interleave; 4773 info->sctpi_s_type = sp->type; 4774 4775 return 0; 4776 } 4777 4778 info->sctpi_tag = asoc->c.my_vtag; 4779 info->sctpi_state = asoc->state; 4780 info->sctpi_rwnd = asoc->a_rwnd; 4781 info->sctpi_unackdata = asoc->unack_data; 4782 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4783 info->sctpi_instrms = asoc->stream.incnt; 4784 info->sctpi_outstrms = asoc->stream.outcnt; 4785 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4786 info->sctpi_inqueue++; 4787 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4788 info->sctpi_outqueue++; 4789 info->sctpi_overall_error = asoc->overall_error_count; 4790 info->sctpi_max_burst = asoc->max_burst; 4791 info->sctpi_maxseg = asoc->frag_point; 4792 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4793 info->sctpi_peer_tag = asoc->c.peer_vtag; 4794 4795 mask = asoc->peer.ecn_capable << 1; 4796 mask = (mask | asoc->peer.ipv4_address) << 1; 4797 mask = (mask | asoc->peer.ipv6_address) << 1; 4798 mask = (mask | asoc->peer.hostname_address) << 1; 4799 mask = (mask | asoc->peer.asconf_capable) << 1; 4800 mask = (mask | asoc->peer.prsctp_capable) << 1; 4801 mask = (mask | asoc->peer.auth_capable); 4802 info->sctpi_peer_capable = mask; 4803 mask = asoc->peer.sack_needed << 1; 4804 mask = (mask | asoc->peer.sack_generation) << 1; 4805 mask = (mask | asoc->peer.zero_window_announced); 4806 info->sctpi_peer_sack = mask; 4807 4808 info->sctpi_isacks = asoc->stats.isacks; 4809 info->sctpi_osacks = asoc->stats.osacks; 4810 info->sctpi_opackets = asoc->stats.opackets; 4811 info->sctpi_ipackets = asoc->stats.ipackets; 4812 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4813 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4814 info->sctpi_idupchunks = asoc->stats.idupchunks; 4815 info->sctpi_gapcnt = asoc->stats.gapcnt; 4816 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4817 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4818 info->sctpi_oodchunks = asoc->stats.oodchunks; 4819 info->sctpi_iodchunks = asoc->stats.iodchunks; 4820 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4821 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4822 4823 prim = asoc->peer.primary_path; 4824 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4825 info->sctpi_p_state = prim->state; 4826 info->sctpi_p_cwnd = prim->cwnd; 4827 info->sctpi_p_srtt = prim->srtt; 4828 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4829 info->sctpi_p_hbinterval = prim->hbinterval; 4830 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4831 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4832 info->sctpi_p_ssthresh = prim->ssthresh; 4833 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4834 info->sctpi_p_flight_size = prim->flight_size; 4835 info->sctpi_p_error = prim->error_count; 4836 4837 return 0; 4838 } 4839 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4840 4841 /* use callback to avoid exporting the core structure */ 4842 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4843 { 4844 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4845 4846 rhashtable_walk_start(iter); 4847 } 4848 4849 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4850 { 4851 rhashtable_walk_stop(iter); 4852 rhashtable_walk_exit(iter); 4853 } 4854 4855 struct sctp_transport *sctp_transport_get_next(struct net *net, 4856 struct rhashtable_iter *iter) 4857 { 4858 struct sctp_transport *t; 4859 4860 t = rhashtable_walk_next(iter); 4861 for (; t; t = rhashtable_walk_next(iter)) { 4862 if (IS_ERR(t)) { 4863 if (PTR_ERR(t) == -EAGAIN) 4864 continue; 4865 break; 4866 } 4867 4868 if (net_eq(sock_net(t->asoc->base.sk), net) && 4869 t->asoc->peer.primary_path == t) 4870 break; 4871 } 4872 4873 return t; 4874 } 4875 4876 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4877 struct rhashtable_iter *iter, 4878 int pos) 4879 { 4880 void *obj = SEQ_START_TOKEN; 4881 4882 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4883 !IS_ERR(obj)) 4884 pos--; 4885 4886 return obj; 4887 } 4888 4889 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4890 void *p) { 4891 int err = 0; 4892 int hash = 0; 4893 struct sctp_ep_common *epb; 4894 struct sctp_hashbucket *head; 4895 4896 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4897 hash++, head++) { 4898 read_lock_bh(&head->lock); 4899 sctp_for_each_hentry(epb, &head->chain) { 4900 err = cb(sctp_ep(epb), p); 4901 if (err) 4902 break; 4903 } 4904 read_unlock_bh(&head->lock); 4905 } 4906 4907 return err; 4908 } 4909 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4910 4911 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4912 struct net *net, 4913 const union sctp_addr *laddr, 4914 const union sctp_addr *paddr, void *p) 4915 { 4916 struct sctp_transport *transport; 4917 int err; 4918 4919 rcu_read_lock(); 4920 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4921 rcu_read_unlock(); 4922 if (!transport) 4923 return -ENOENT; 4924 4925 err = cb(transport, p); 4926 sctp_transport_put(transport); 4927 4928 return err; 4929 } 4930 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4931 4932 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4933 int (*cb_done)(struct sctp_transport *, void *), 4934 struct net *net, int *pos, void *p) { 4935 struct rhashtable_iter hti; 4936 struct sctp_transport *tsp; 4937 int ret; 4938 4939 again: 4940 ret = 0; 4941 sctp_transport_walk_start(&hti); 4942 4943 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4944 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4945 if (!sctp_transport_hold(tsp)) 4946 continue; 4947 ret = cb(tsp, p); 4948 if (ret) 4949 break; 4950 (*pos)++; 4951 sctp_transport_put(tsp); 4952 } 4953 sctp_transport_walk_stop(&hti); 4954 4955 if (ret) { 4956 if (cb_done && !cb_done(tsp, p)) { 4957 (*pos)++; 4958 sctp_transport_put(tsp); 4959 goto again; 4960 } 4961 sctp_transport_put(tsp); 4962 } 4963 4964 return ret; 4965 } 4966 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4967 4968 /* 7.2.1 Association Status (SCTP_STATUS) 4969 4970 * Applications can retrieve current status information about an 4971 * association, including association state, peer receiver window size, 4972 * number of unacked data chunks, and number of data chunks pending 4973 * receipt. This information is read-only. 4974 */ 4975 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4976 char __user *optval, 4977 int __user *optlen) 4978 { 4979 struct sctp_status status; 4980 struct sctp_association *asoc = NULL; 4981 struct sctp_transport *transport; 4982 sctp_assoc_t associd; 4983 int retval = 0; 4984 4985 if (len < sizeof(status)) { 4986 retval = -EINVAL; 4987 goto out; 4988 } 4989 4990 len = sizeof(status); 4991 if (copy_from_user(&status, optval, len)) { 4992 retval = -EFAULT; 4993 goto out; 4994 } 4995 4996 associd = status.sstat_assoc_id; 4997 asoc = sctp_id2assoc(sk, associd); 4998 if (!asoc) { 4999 retval = -EINVAL; 5000 goto out; 5001 } 5002 5003 transport = asoc->peer.primary_path; 5004 5005 status.sstat_assoc_id = sctp_assoc2id(asoc); 5006 status.sstat_state = sctp_assoc_to_state(asoc); 5007 status.sstat_rwnd = asoc->peer.rwnd; 5008 status.sstat_unackdata = asoc->unack_data; 5009 5010 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5011 status.sstat_instrms = asoc->stream.incnt; 5012 status.sstat_outstrms = asoc->stream.outcnt; 5013 status.sstat_fragmentation_point = asoc->frag_point; 5014 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5015 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5016 transport->af_specific->sockaddr_len); 5017 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5018 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5019 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5020 status.sstat_primary.spinfo_state = transport->state; 5021 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5022 status.sstat_primary.spinfo_srtt = transport->srtt; 5023 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5024 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5025 5026 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5027 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5028 5029 if (put_user(len, optlen)) { 5030 retval = -EFAULT; 5031 goto out; 5032 } 5033 5034 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5035 __func__, len, status.sstat_state, status.sstat_rwnd, 5036 status.sstat_assoc_id); 5037 5038 if (copy_to_user(optval, &status, len)) { 5039 retval = -EFAULT; 5040 goto out; 5041 } 5042 5043 out: 5044 return retval; 5045 } 5046 5047 5048 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5049 * 5050 * Applications can retrieve information about a specific peer address 5051 * of an association, including its reachability state, congestion 5052 * window, and retransmission timer values. This information is 5053 * read-only. 5054 */ 5055 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5056 char __user *optval, 5057 int __user *optlen) 5058 { 5059 struct sctp_paddrinfo pinfo; 5060 struct sctp_transport *transport; 5061 int retval = 0; 5062 5063 if (len < sizeof(pinfo)) { 5064 retval = -EINVAL; 5065 goto out; 5066 } 5067 5068 len = sizeof(pinfo); 5069 if (copy_from_user(&pinfo, optval, len)) { 5070 retval = -EFAULT; 5071 goto out; 5072 } 5073 5074 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5075 pinfo.spinfo_assoc_id); 5076 if (!transport) 5077 return -EINVAL; 5078 5079 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5080 pinfo.spinfo_state = transport->state; 5081 pinfo.spinfo_cwnd = transport->cwnd; 5082 pinfo.spinfo_srtt = transport->srtt; 5083 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5084 pinfo.spinfo_mtu = transport->pathmtu; 5085 5086 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5087 pinfo.spinfo_state = SCTP_ACTIVE; 5088 5089 if (put_user(len, optlen)) { 5090 retval = -EFAULT; 5091 goto out; 5092 } 5093 5094 if (copy_to_user(optval, &pinfo, len)) { 5095 retval = -EFAULT; 5096 goto out; 5097 } 5098 5099 out: 5100 return retval; 5101 } 5102 5103 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5104 * 5105 * This option is a on/off flag. If enabled no SCTP message 5106 * fragmentation will be performed. Instead if a message being sent 5107 * exceeds the current PMTU size, the message will NOT be sent and 5108 * instead a error will be indicated to the user. 5109 */ 5110 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5111 char __user *optval, int __user *optlen) 5112 { 5113 int val; 5114 5115 if (len < sizeof(int)) 5116 return -EINVAL; 5117 5118 len = sizeof(int); 5119 val = (sctp_sk(sk)->disable_fragments == 1); 5120 if (put_user(len, optlen)) 5121 return -EFAULT; 5122 if (copy_to_user(optval, &val, len)) 5123 return -EFAULT; 5124 return 0; 5125 } 5126 5127 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5128 * 5129 * This socket option is used to specify various notifications and 5130 * ancillary data the user wishes to receive. 5131 */ 5132 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5133 int __user *optlen) 5134 { 5135 if (len == 0) 5136 return -EINVAL; 5137 if (len > sizeof(struct sctp_event_subscribe)) 5138 len = sizeof(struct sctp_event_subscribe); 5139 if (put_user(len, optlen)) 5140 return -EFAULT; 5141 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5142 return -EFAULT; 5143 return 0; 5144 } 5145 5146 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5147 * 5148 * This socket option is applicable to the UDP-style socket only. When 5149 * set it will cause associations that are idle for more than the 5150 * specified number of seconds to automatically close. An association 5151 * being idle is defined an association that has NOT sent or received 5152 * user data. The special value of '0' indicates that no automatic 5153 * close of any associations should be performed. The option expects an 5154 * integer defining the number of seconds of idle time before an 5155 * association is closed. 5156 */ 5157 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5158 { 5159 /* Applicable to UDP-style socket only */ 5160 if (sctp_style(sk, TCP)) 5161 return -EOPNOTSUPP; 5162 if (len < sizeof(int)) 5163 return -EINVAL; 5164 len = sizeof(int); 5165 if (put_user(len, optlen)) 5166 return -EFAULT; 5167 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5168 return -EFAULT; 5169 return 0; 5170 } 5171 5172 /* Helper routine to branch off an association to a new socket. */ 5173 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5174 { 5175 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5176 struct sctp_sock *sp = sctp_sk(sk); 5177 struct socket *sock; 5178 int err = 0; 5179 5180 /* Do not peel off from one netns to another one. */ 5181 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5182 return -EINVAL; 5183 5184 if (!asoc) 5185 return -EINVAL; 5186 5187 /* An association cannot be branched off from an already peeled-off 5188 * socket, nor is this supported for tcp style sockets. 5189 */ 5190 if (!sctp_style(sk, UDP)) 5191 return -EINVAL; 5192 5193 /* Create a new socket. */ 5194 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5195 if (err < 0) 5196 return err; 5197 5198 sctp_copy_sock(sock->sk, sk, asoc); 5199 5200 /* Make peeled-off sockets more like 1-1 accepted sockets. 5201 * Set the daddr and initialize id to something more random and also 5202 * copy over any ip options. 5203 */ 5204 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5205 sp->pf->copy_ip_options(sk, sock->sk); 5206 5207 /* Populate the fields of the newsk from the oldsk and migrate the 5208 * asoc to the newsk. 5209 */ 5210 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5211 5212 *sockp = sock; 5213 5214 return err; 5215 } 5216 EXPORT_SYMBOL(sctp_do_peeloff); 5217 5218 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5219 struct file **newfile, unsigned flags) 5220 { 5221 struct socket *newsock; 5222 int retval; 5223 5224 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5225 if (retval < 0) 5226 goto out; 5227 5228 /* Map the socket to an unused fd that can be returned to the user. */ 5229 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5230 if (retval < 0) { 5231 sock_release(newsock); 5232 goto out; 5233 } 5234 5235 *newfile = sock_alloc_file(newsock, 0, NULL); 5236 if (IS_ERR(*newfile)) { 5237 put_unused_fd(retval); 5238 retval = PTR_ERR(*newfile); 5239 *newfile = NULL; 5240 return retval; 5241 } 5242 5243 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5244 retval); 5245 5246 peeloff->sd = retval; 5247 5248 if (flags & SOCK_NONBLOCK) 5249 (*newfile)->f_flags |= O_NONBLOCK; 5250 out: 5251 return retval; 5252 } 5253 5254 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5255 { 5256 sctp_peeloff_arg_t peeloff; 5257 struct file *newfile = NULL; 5258 int retval = 0; 5259 5260 if (len < sizeof(sctp_peeloff_arg_t)) 5261 return -EINVAL; 5262 len = sizeof(sctp_peeloff_arg_t); 5263 if (copy_from_user(&peeloff, optval, len)) 5264 return -EFAULT; 5265 5266 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5267 if (retval < 0) 5268 goto out; 5269 5270 /* Return the fd mapped to the new socket. */ 5271 if (put_user(len, optlen)) { 5272 fput(newfile); 5273 put_unused_fd(retval); 5274 return -EFAULT; 5275 } 5276 5277 if (copy_to_user(optval, &peeloff, len)) { 5278 fput(newfile); 5279 put_unused_fd(retval); 5280 return -EFAULT; 5281 } 5282 fd_install(retval, newfile); 5283 out: 5284 return retval; 5285 } 5286 5287 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5288 char __user *optval, int __user *optlen) 5289 { 5290 sctp_peeloff_flags_arg_t peeloff; 5291 struct file *newfile = NULL; 5292 int retval = 0; 5293 5294 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5295 return -EINVAL; 5296 len = sizeof(sctp_peeloff_flags_arg_t); 5297 if (copy_from_user(&peeloff, optval, len)) 5298 return -EFAULT; 5299 5300 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5301 &newfile, peeloff.flags); 5302 if (retval < 0) 5303 goto out; 5304 5305 /* Return the fd mapped to the new socket. */ 5306 if (put_user(len, optlen)) { 5307 fput(newfile); 5308 put_unused_fd(retval); 5309 return -EFAULT; 5310 } 5311 5312 if (copy_to_user(optval, &peeloff, len)) { 5313 fput(newfile); 5314 put_unused_fd(retval); 5315 return -EFAULT; 5316 } 5317 fd_install(retval, newfile); 5318 out: 5319 return retval; 5320 } 5321 5322 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5323 * 5324 * Applications can enable or disable heartbeats for any peer address of 5325 * an association, modify an address's heartbeat interval, force a 5326 * heartbeat to be sent immediately, and adjust the address's maximum 5327 * number of retransmissions sent before an address is considered 5328 * unreachable. The following structure is used to access and modify an 5329 * address's parameters: 5330 * 5331 * struct sctp_paddrparams { 5332 * sctp_assoc_t spp_assoc_id; 5333 * struct sockaddr_storage spp_address; 5334 * uint32_t spp_hbinterval; 5335 * uint16_t spp_pathmaxrxt; 5336 * uint32_t spp_pathmtu; 5337 * uint32_t spp_sackdelay; 5338 * uint32_t spp_flags; 5339 * }; 5340 * 5341 * spp_assoc_id - (one-to-many style socket) This is filled in the 5342 * application, and identifies the association for 5343 * this query. 5344 * spp_address - This specifies which address is of interest. 5345 * spp_hbinterval - This contains the value of the heartbeat interval, 5346 * in milliseconds. If a value of zero 5347 * is present in this field then no changes are to 5348 * be made to this parameter. 5349 * spp_pathmaxrxt - This contains the maximum number of 5350 * retransmissions before this address shall be 5351 * considered unreachable. If a value of zero 5352 * is present in this field then no changes are to 5353 * be made to this parameter. 5354 * spp_pathmtu - When Path MTU discovery is disabled the value 5355 * specified here will be the "fixed" path mtu. 5356 * Note that if the spp_address field is empty 5357 * then all associations on this address will 5358 * have this fixed path mtu set upon them. 5359 * 5360 * spp_sackdelay - When delayed sack is enabled, this value specifies 5361 * the number of milliseconds that sacks will be delayed 5362 * for. This value will apply to all addresses of an 5363 * association if the spp_address field is empty. Note 5364 * also, that if delayed sack is enabled and this 5365 * value is set to 0, no change is made to the last 5366 * recorded delayed sack timer value. 5367 * 5368 * spp_flags - These flags are used to control various features 5369 * on an association. The flag field may contain 5370 * zero or more of the following options. 5371 * 5372 * SPP_HB_ENABLE - Enable heartbeats on the 5373 * specified address. Note that if the address 5374 * field is empty all addresses for the association 5375 * have heartbeats enabled upon them. 5376 * 5377 * SPP_HB_DISABLE - Disable heartbeats on the 5378 * speicifed address. Note that if the address 5379 * field is empty all addresses for the association 5380 * will have their heartbeats disabled. Note also 5381 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5382 * mutually exclusive, only one of these two should 5383 * be specified. Enabling both fields will have 5384 * undetermined results. 5385 * 5386 * SPP_HB_DEMAND - Request a user initiated heartbeat 5387 * to be made immediately. 5388 * 5389 * SPP_PMTUD_ENABLE - This field will enable PMTU 5390 * discovery upon the specified address. Note that 5391 * if the address feild is empty then all addresses 5392 * on the association are effected. 5393 * 5394 * SPP_PMTUD_DISABLE - This field will disable PMTU 5395 * discovery upon the specified address. Note that 5396 * if the address feild is empty then all addresses 5397 * on the association are effected. Not also that 5398 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5399 * exclusive. Enabling both will have undetermined 5400 * results. 5401 * 5402 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5403 * on delayed sack. The time specified in spp_sackdelay 5404 * is used to specify the sack delay for this address. Note 5405 * that if spp_address is empty then all addresses will 5406 * enable delayed sack and take on the sack delay 5407 * value specified in spp_sackdelay. 5408 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5409 * off delayed sack. If the spp_address field is blank then 5410 * delayed sack is disabled for the entire association. Note 5411 * also that this field is mutually exclusive to 5412 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5413 * results. 5414 */ 5415 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5416 char __user *optval, int __user *optlen) 5417 { 5418 struct sctp_paddrparams params; 5419 struct sctp_transport *trans = NULL; 5420 struct sctp_association *asoc = NULL; 5421 struct sctp_sock *sp = sctp_sk(sk); 5422 5423 if (len < sizeof(struct sctp_paddrparams)) 5424 return -EINVAL; 5425 len = sizeof(struct sctp_paddrparams); 5426 if (copy_from_user(¶ms, optval, len)) 5427 return -EFAULT; 5428 5429 /* If an address other than INADDR_ANY is specified, and 5430 * no transport is found, then the request is invalid. 5431 */ 5432 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5433 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5434 params.spp_assoc_id); 5435 if (!trans) { 5436 pr_debug("%s: failed no transport\n", __func__); 5437 return -EINVAL; 5438 } 5439 } 5440 5441 /* Get association, if assoc_id != 0 and the socket is a one 5442 * to many style socket, and an association was not found, then 5443 * the id was invalid. 5444 */ 5445 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5446 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5447 pr_debug("%s: failed no association\n", __func__); 5448 return -EINVAL; 5449 } 5450 5451 if (trans) { 5452 /* Fetch transport values. */ 5453 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5454 params.spp_pathmtu = trans->pathmtu; 5455 params.spp_pathmaxrxt = trans->pathmaxrxt; 5456 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5457 5458 /*draft-11 doesn't say what to return in spp_flags*/ 5459 params.spp_flags = trans->param_flags; 5460 } else if (asoc) { 5461 /* Fetch association values. */ 5462 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5463 params.spp_pathmtu = asoc->pathmtu; 5464 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5465 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5466 5467 /*draft-11 doesn't say what to return in spp_flags*/ 5468 params.spp_flags = asoc->param_flags; 5469 } else { 5470 /* Fetch socket values. */ 5471 params.spp_hbinterval = sp->hbinterval; 5472 params.spp_pathmtu = sp->pathmtu; 5473 params.spp_sackdelay = sp->sackdelay; 5474 params.spp_pathmaxrxt = sp->pathmaxrxt; 5475 5476 /*draft-11 doesn't say what to return in spp_flags*/ 5477 params.spp_flags = sp->param_flags; 5478 } 5479 5480 if (copy_to_user(optval, ¶ms, len)) 5481 return -EFAULT; 5482 5483 if (put_user(len, optlen)) 5484 return -EFAULT; 5485 5486 return 0; 5487 } 5488 5489 /* 5490 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5491 * 5492 * This option will effect the way delayed acks are performed. This 5493 * option allows you to get or set the delayed ack time, in 5494 * milliseconds. It also allows changing the delayed ack frequency. 5495 * Changing the frequency to 1 disables the delayed sack algorithm. If 5496 * the assoc_id is 0, then this sets or gets the endpoints default 5497 * values. If the assoc_id field is non-zero, then the set or get 5498 * effects the specified association for the one to many model (the 5499 * assoc_id field is ignored by the one to one model). Note that if 5500 * sack_delay or sack_freq are 0 when setting this option, then the 5501 * current values will remain unchanged. 5502 * 5503 * struct sctp_sack_info { 5504 * sctp_assoc_t sack_assoc_id; 5505 * uint32_t sack_delay; 5506 * uint32_t sack_freq; 5507 * }; 5508 * 5509 * sack_assoc_id - This parameter, indicates which association the user 5510 * is performing an action upon. Note that if this field's value is 5511 * zero then the endpoints default value is changed (effecting future 5512 * associations only). 5513 * 5514 * sack_delay - This parameter contains the number of milliseconds that 5515 * the user is requesting the delayed ACK timer be set to. Note that 5516 * this value is defined in the standard to be between 200 and 500 5517 * milliseconds. 5518 * 5519 * sack_freq - This parameter contains the number of packets that must 5520 * be received before a sack is sent without waiting for the delay 5521 * timer to expire. The default value for this is 2, setting this 5522 * value to 1 will disable the delayed sack algorithm. 5523 */ 5524 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5525 char __user *optval, 5526 int __user *optlen) 5527 { 5528 struct sctp_sack_info params; 5529 struct sctp_association *asoc = NULL; 5530 struct sctp_sock *sp = sctp_sk(sk); 5531 5532 if (len >= sizeof(struct sctp_sack_info)) { 5533 len = sizeof(struct sctp_sack_info); 5534 5535 if (copy_from_user(¶ms, optval, len)) 5536 return -EFAULT; 5537 } else if (len == sizeof(struct sctp_assoc_value)) { 5538 pr_warn_ratelimited(DEPRECATED 5539 "%s (pid %d) " 5540 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5541 "Use struct sctp_sack_info instead\n", 5542 current->comm, task_pid_nr(current)); 5543 if (copy_from_user(¶ms, optval, len)) 5544 return -EFAULT; 5545 } else 5546 return -EINVAL; 5547 5548 /* Get association, if sack_assoc_id != 0 and the socket is a one 5549 * to many style socket, and an association was not found, then 5550 * the id was invalid. 5551 */ 5552 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5553 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5554 return -EINVAL; 5555 5556 if (asoc) { 5557 /* Fetch association values. */ 5558 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5559 params.sack_delay = jiffies_to_msecs( 5560 asoc->sackdelay); 5561 params.sack_freq = asoc->sackfreq; 5562 5563 } else { 5564 params.sack_delay = 0; 5565 params.sack_freq = 1; 5566 } 5567 } else { 5568 /* Fetch socket values. */ 5569 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5570 params.sack_delay = sp->sackdelay; 5571 params.sack_freq = sp->sackfreq; 5572 } else { 5573 params.sack_delay = 0; 5574 params.sack_freq = 1; 5575 } 5576 } 5577 5578 if (copy_to_user(optval, ¶ms, len)) 5579 return -EFAULT; 5580 5581 if (put_user(len, optlen)) 5582 return -EFAULT; 5583 5584 return 0; 5585 } 5586 5587 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5588 * 5589 * Applications can specify protocol parameters for the default association 5590 * initialization. The option name argument to setsockopt() and getsockopt() 5591 * is SCTP_INITMSG. 5592 * 5593 * Setting initialization parameters is effective only on an unconnected 5594 * socket (for UDP-style sockets only future associations are effected 5595 * by the change). With TCP-style sockets, this option is inherited by 5596 * sockets derived from a listener socket. 5597 */ 5598 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5599 { 5600 if (len < sizeof(struct sctp_initmsg)) 5601 return -EINVAL; 5602 len = sizeof(struct sctp_initmsg); 5603 if (put_user(len, optlen)) 5604 return -EFAULT; 5605 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5606 return -EFAULT; 5607 return 0; 5608 } 5609 5610 5611 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5612 char __user *optval, int __user *optlen) 5613 { 5614 struct sctp_association *asoc; 5615 int cnt = 0; 5616 struct sctp_getaddrs getaddrs; 5617 struct sctp_transport *from; 5618 void __user *to; 5619 union sctp_addr temp; 5620 struct sctp_sock *sp = sctp_sk(sk); 5621 int addrlen; 5622 size_t space_left; 5623 int bytes_copied; 5624 5625 if (len < sizeof(struct sctp_getaddrs)) 5626 return -EINVAL; 5627 5628 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5629 return -EFAULT; 5630 5631 /* For UDP-style sockets, id specifies the association to query. */ 5632 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5633 if (!asoc) 5634 return -EINVAL; 5635 5636 to = optval + offsetof(struct sctp_getaddrs, addrs); 5637 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5638 5639 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5640 transports) { 5641 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5642 addrlen = sctp_get_pf_specific(sk->sk_family) 5643 ->addr_to_user(sp, &temp); 5644 if (space_left < addrlen) 5645 return -ENOMEM; 5646 if (copy_to_user(to, &temp, addrlen)) 5647 return -EFAULT; 5648 to += addrlen; 5649 cnt++; 5650 space_left -= addrlen; 5651 } 5652 5653 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5654 return -EFAULT; 5655 bytes_copied = ((char __user *)to) - optval; 5656 if (put_user(bytes_copied, optlen)) 5657 return -EFAULT; 5658 5659 return 0; 5660 } 5661 5662 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5663 size_t space_left, int *bytes_copied) 5664 { 5665 struct sctp_sockaddr_entry *addr; 5666 union sctp_addr temp; 5667 int cnt = 0; 5668 int addrlen; 5669 struct net *net = sock_net(sk); 5670 5671 rcu_read_lock(); 5672 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5673 if (!addr->valid) 5674 continue; 5675 5676 if ((PF_INET == sk->sk_family) && 5677 (AF_INET6 == addr->a.sa.sa_family)) 5678 continue; 5679 if ((PF_INET6 == sk->sk_family) && 5680 inet_v6_ipv6only(sk) && 5681 (AF_INET == addr->a.sa.sa_family)) 5682 continue; 5683 memcpy(&temp, &addr->a, sizeof(temp)); 5684 if (!temp.v4.sin_port) 5685 temp.v4.sin_port = htons(port); 5686 5687 addrlen = sctp_get_pf_specific(sk->sk_family) 5688 ->addr_to_user(sctp_sk(sk), &temp); 5689 5690 if (space_left < addrlen) { 5691 cnt = -ENOMEM; 5692 break; 5693 } 5694 memcpy(to, &temp, addrlen); 5695 5696 to += addrlen; 5697 cnt++; 5698 space_left -= addrlen; 5699 *bytes_copied += addrlen; 5700 } 5701 rcu_read_unlock(); 5702 5703 return cnt; 5704 } 5705 5706 5707 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5708 char __user *optval, int __user *optlen) 5709 { 5710 struct sctp_bind_addr *bp; 5711 struct sctp_association *asoc; 5712 int cnt = 0; 5713 struct sctp_getaddrs getaddrs; 5714 struct sctp_sockaddr_entry *addr; 5715 void __user *to; 5716 union sctp_addr temp; 5717 struct sctp_sock *sp = sctp_sk(sk); 5718 int addrlen; 5719 int err = 0; 5720 size_t space_left; 5721 int bytes_copied = 0; 5722 void *addrs; 5723 void *buf; 5724 5725 if (len < sizeof(struct sctp_getaddrs)) 5726 return -EINVAL; 5727 5728 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5729 return -EFAULT; 5730 5731 /* 5732 * For UDP-style sockets, id specifies the association to query. 5733 * If the id field is set to the value '0' then the locally bound 5734 * addresses are returned without regard to any particular 5735 * association. 5736 */ 5737 if (0 == getaddrs.assoc_id) { 5738 bp = &sctp_sk(sk)->ep->base.bind_addr; 5739 } else { 5740 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5741 if (!asoc) 5742 return -EINVAL; 5743 bp = &asoc->base.bind_addr; 5744 } 5745 5746 to = optval + offsetof(struct sctp_getaddrs, addrs); 5747 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5748 5749 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5750 if (!addrs) 5751 return -ENOMEM; 5752 5753 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5754 * addresses from the global local address list. 5755 */ 5756 if (sctp_list_single_entry(&bp->address_list)) { 5757 addr = list_entry(bp->address_list.next, 5758 struct sctp_sockaddr_entry, list); 5759 if (sctp_is_any(sk, &addr->a)) { 5760 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5761 space_left, &bytes_copied); 5762 if (cnt < 0) { 5763 err = cnt; 5764 goto out; 5765 } 5766 goto copy_getaddrs; 5767 } 5768 } 5769 5770 buf = addrs; 5771 /* Protection on the bound address list is not needed since 5772 * in the socket option context we hold a socket lock and 5773 * thus the bound address list can't change. 5774 */ 5775 list_for_each_entry(addr, &bp->address_list, list) { 5776 memcpy(&temp, &addr->a, sizeof(temp)); 5777 addrlen = sctp_get_pf_specific(sk->sk_family) 5778 ->addr_to_user(sp, &temp); 5779 if (space_left < addrlen) { 5780 err = -ENOMEM; /*fixme: right error?*/ 5781 goto out; 5782 } 5783 memcpy(buf, &temp, addrlen); 5784 buf += addrlen; 5785 bytes_copied += addrlen; 5786 cnt++; 5787 space_left -= addrlen; 5788 } 5789 5790 copy_getaddrs: 5791 if (copy_to_user(to, addrs, bytes_copied)) { 5792 err = -EFAULT; 5793 goto out; 5794 } 5795 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5796 err = -EFAULT; 5797 goto out; 5798 } 5799 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5800 * but we can't change it anymore. 5801 */ 5802 if (put_user(bytes_copied, optlen)) 5803 err = -EFAULT; 5804 out: 5805 kfree(addrs); 5806 return err; 5807 } 5808 5809 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5810 * 5811 * Requests that the local SCTP stack use the enclosed peer address as 5812 * the association primary. The enclosed address must be one of the 5813 * association peer's addresses. 5814 */ 5815 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5816 char __user *optval, int __user *optlen) 5817 { 5818 struct sctp_prim prim; 5819 struct sctp_association *asoc; 5820 struct sctp_sock *sp = sctp_sk(sk); 5821 5822 if (len < sizeof(struct sctp_prim)) 5823 return -EINVAL; 5824 5825 len = sizeof(struct sctp_prim); 5826 5827 if (copy_from_user(&prim, optval, len)) 5828 return -EFAULT; 5829 5830 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5831 if (!asoc) 5832 return -EINVAL; 5833 5834 if (!asoc->peer.primary_path) 5835 return -ENOTCONN; 5836 5837 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5838 asoc->peer.primary_path->af_specific->sockaddr_len); 5839 5840 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5841 (union sctp_addr *)&prim.ssp_addr); 5842 5843 if (put_user(len, optlen)) 5844 return -EFAULT; 5845 if (copy_to_user(optval, &prim, len)) 5846 return -EFAULT; 5847 5848 return 0; 5849 } 5850 5851 /* 5852 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5853 * 5854 * Requests that the local endpoint set the specified Adaptation Layer 5855 * Indication parameter for all future INIT and INIT-ACK exchanges. 5856 */ 5857 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5858 char __user *optval, int __user *optlen) 5859 { 5860 struct sctp_setadaptation adaptation; 5861 5862 if (len < sizeof(struct sctp_setadaptation)) 5863 return -EINVAL; 5864 5865 len = sizeof(struct sctp_setadaptation); 5866 5867 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5868 5869 if (put_user(len, optlen)) 5870 return -EFAULT; 5871 if (copy_to_user(optval, &adaptation, len)) 5872 return -EFAULT; 5873 5874 return 0; 5875 } 5876 5877 /* 5878 * 5879 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5880 * 5881 * Applications that wish to use the sendto() system call may wish to 5882 * specify a default set of parameters that would normally be supplied 5883 * through the inclusion of ancillary data. This socket option allows 5884 * such an application to set the default sctp_sndrcvinfo structure. 5885 5886 5887 * The application that wishes to use this socket option simply passes 5888 * in to this call the sctp_sndrcvinfo structure defined in Section 5889 * 5.2.2) The input parameters accepted by this call include 5890 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5891 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5892 * to this call if the caller is using the UDP model. 5893 * 5894 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5895 */ 5896 static int sctp_getsockopt_default_send_param(struct sock *sk, 5897 int len, char __user *optval, 5898 int __user *optlen) 5899 { 5900 struct sctp_sock *sp = sctp_sk(sk); 5901 struct sctp_association *asoc; 5902 struct sctp_sndrcvinfo info; 5903 5904 if (len < sizeof(info)) 5905 return -EINVAL; 5906 5907 len = sizeof(info); 5908 5909 if (copy_from_user(&info, optval, len)) 5910 return -EFAULT; 5911 5912 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5913 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5914 return -EINVAL; 5915 if (asoc) { 5916 info.sinfo_stream = asoc->default_stream; 5917 info.sinfo_flags = asoc->default_flags; 5918 info.sinfo_ppid = asoc->default_ppid; 5919 info.sinfo_context = asoc->default_context; 5920 info.sinfo_timetolive = asoc->default_timetolive; 5921 } else { 5922 info.sinfo_stream = sp->default_stream; 5923 info.sinfo_flags = sp->default_flags; 5924 info.sinfo_ppid = sp->default_ppid; 5925 info.sinfo_context = sp->default_context; 5926 info.sinfo_timetolive = sp->default_timetolive; 5927 } 5928 5929 if (put_user(len, optlen)) 5930 return -EFAULT; 5931 if (copy_to_user(optval, &info, len)) 5932 return -EFAULT; 5933 5934 return 0; 5935 } 5936 5937 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5938 * (SCTP_DEFAULT_SNDINFO) 5939 */ 5940 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5941 char __user *optval, 5942 int __user *optlen) 5943 { 5944 struct sctp_sock *sp = sctp_sk(sk); 5945 struct sctp_association *asoc; 5946 struct sctp_sndinfo info; 5947 5948 if (len < sizeof(info)) 5949 return -EINVAL; 5950 5951 len = sizeof(info); 5952 5953 if (copy_from_user(&info, optval, len)) 5954 return -EFAULT; 5955 5956 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5957 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5958 return -EINVAL; 5959 if (asoc) { 5960 info.snd_sid = asoc->default_stream; 5961 info.snd_flags = asoc->default_flags; 5962 info.snd_ppid = asoc->default_ppid; 5963 info.snd_context = asoc->default_context; 5964 } else { 5965 info.snd_sid = sp->default_stream; 5966 info.snd_flags = sp->default_flags; 5967 info.snd_ppid = sp->default_ppid; 5968 info.snd_context = sp->default_context; 5969 } 5970 5971 if (put_user(len, optlen)) 5972 return -EFAULT; 5973 if (copy_to_user(optval, &info, len)) 5974 return -EFAULT; 5975 5976 return 0; 5977 } 5978 5979 /* 5980 * 5981 * 7.1.5 SCTP_NODELAY 5982 * 5983 * Turn on/off any Nagle-like algorithm. This means that packets are 5984 * generally sent as soon as possible and no unnecessary delays are 5985 * introduced, at the cost of more packets in the network. Expects an 5986 * integer boolean flag. 5987 */ 5988 5989 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5990 char __user *optval, int __user *optlen) 5991 { 5992 int val; 5993 5994 if (len < sizeof(int)) 5995 return -EINVAL; 5996 5997 len = sizeof(int); 5998 val = (sctp_sk(sk)->nodelay == 1); 5999 if (put_user(len, optlen)) 6000 return -EFAULT; 6001 if (copy_to_user(optval, &val, len)) 6002 return -EFAULT; 6003 return 0; 6004 } 6005 6006 /* 6007 * 6008 * 7.1.1 SCTP_RTOINFO 6009 * 6010 * The protocol parameters used to initialize and bound retransmission 6011 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6012 * and modify these parameters. 6013 * All parameters are time values, in milliseconds. A value of 0, when 6014 * modifying the parameters, indicates that the current value should not 6015 * be changed. 6016 * 6017 */ 6018 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6019 char __user *optval, 6020 int __user *optlen) { 6021 struct sctp_rtoinfo rtoinfo; 6022 struct sctp_association *asoc; 6023 6024 if (len < sizeof (struct sctp_rtoinfo)) 6025 return -EINVAL; 6026 6027 len = sizeof(struct sctp_rtoinfo); 6028 6029 if (copy_from_user(&rtoinfo, optval, len)) 6030 return -EFAULT; 6031 6032 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6033 6034 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6035 return -EINVAL; 6036 6037 /* Values corresponding to the specific association. */ 6038 if (asoc) { 6039 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6040 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6041 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6042 } else { 6043 /* Values corresponding to the endpoint. */ 6044 struct sctp_sock *sp = sctp_sk(sk); 6045 6046 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6047 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6048 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6049 } 6050 6051 if (put_user(len, optlen)) 6052 return -EFAULT; 6053 6054 if (copy_to_user(optval, &rtoinfo, len)) 6055 return -EFAULT; 6056 6057 return 0; 6058 } 6059 6060 /* 6061 * 6062 * 7.1.2 SCTP_ASSOCINFO 6063 * 6064 * This option is used to tune the maximum retransmission attempts 6065 * of the association. 6066 * Returns an error if the new association retransmission value is 6067 * greater than the sum of the retransmission value of the peer. 6068 * See [SCTP] for more information. 6069 * 6070 */ 6071 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6072 char __user *optval, 6073 int __user *optlen) 6074 { 6075 6076 struct sctp_assocparams assocparams; 6077 struct sctp_association *asoc; 6078 struct list_head *pos; 6079 int cnt = 0; 6080 6081 if (len < sizeof (struct sctp_assocparams)) 6082 return -EINVAL; 6083 6084 len = sizeof(struct sctp_assocparams); 6085 6086 if (copy_from_user(&assocparams, optval, len)) 6087 return -EFAULT; 6088 6089 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6090 6091 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6092 return -EINVAL; 6093 6094 /* Values correspoinding to the specific association */ 6095 if (asoc) { 6096 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6097 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6098 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6099 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6100 6101 list_for_each(pos, &asoc->peer.transport_addr_list) { 6102 cnt++; 6103 } 6104 6105 assocparams.sasoc_number_peer_destinations = cnt; 6106 } else { 6107 /* Values corresponding to the endpoint */ 6108 struct sctp_sock *sp = sctp_sk(sk); 6109 6110 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6111 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6112 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6113 assocparams.sasoc_cookie_life = 6114 sp->assocparams.sasoc_cookie_life; 6115 assocparams.sasoc_number_peer_destinations = 6116 sp->assocparams. 6117 sasoc_number_peer_destinations; 6118 } 6119 6120 if (put_user(len, optlen)) 6121 return -EFAULT; 6122 6123 if (copy_to_user(optval, &assocparams, len)) 6124 return -EFAULT; 6125 6126 return 0; 6127 } 6128 6129 /* 6130 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6131 * 6132 * This socket option is a boolean flag which turns on or off mapped V4 6133 * addresses. If this option is turned on and the socket is type 6134 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6135 * If this option is turned off, then no mapping will be done of V4 6136 * addresses and a user will receive both PF_INET6 and PF_INET type 6137 * addresses on the socket. 6138 */ 6139 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6140 char __user *optval, int __user *optlen) 6141 { 6142 int val; 6143 struct sctp_sock *sp = sctp_sk(sk); 6144 6145 if (len < sizeof(int)) 6146 return -EINVAL; 6147 6148 len = sizeof(int); 6149 val = sp->v4mapped; 6150 if (put_user(len, optlen)) 6151 return -EFAULT; 6152 if (copy_to_user(optval, &val, len)) 6153 return -EFAULT; 6154 6155 return 0; 6156 } 6157 6158 /* 6159 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6160 * (chapter and verse is quoted at sctp_setsockopt_context()) 6161 */ 6162 static int sctp_getsockopt_context(struct sock *sk, int len, 6163 char __user *optval, int __user *optlen) 6164 { 6165 struct sctp_assoc_value params; 6166 struct sctp_sock *sp; 6167 struct sctp_association *asoc; 6168 6169 if (len < sizeof(struct sctp_assoc_value)) 6170 return -EINVAL; 6171 6172 len = sizeof(struct sctp_assoc_value); 6173 6174 if (copy_from_user(¶ms, optval, len)) 6175 return -EFAULT; 6176 6177 sp = sctp_sk(sk); 6178 6179 if (params.assoc_id != 0) { 6180 asoc = sctp_id2assoc(sk, params.assoc_id); 6181 if (!asoc) 6182 return -EINVAL; 6183 params.assoc_value = asoc->default_rcv_context; 6184 } else { 6185 params.assoc_value = sp->default_rcv_context; 6186 } 6187 6188 if (put_user(len, optlen)) 6189 return -EFAULT; 6190 if (copy_to_user(optval, ¶ms, len)) 6191 return -EFAULT; 6192 6193 return 0; 6194 } 6195 6196 /* 6197 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6198 * This option will get or set the maximum size to put in any outgoing 6199 * SCTP DATA chunk. If a message is larger than this size it will be 6200 * fragmented by SCTP into the specified size. Note that the underlying 6201 * SCTP implementation may fragment into smaller sized chunks when the 6202 * PMTU of the underlying association is smaller than the value set by 6203 * the user. The default value for this option is '0' which indicates 6204 * the user is NOT limiting fragmentation and only the PMTU will effect 6205 * SCTP's choice of DATA chunk size. Note also that values set larger 6206 * than the maximum size of an IP datagram will effectively let SCTP 6207 * control fragmentation (i.e. the same as setting this option to 0). 6208 * 6209 * The following structure is used to access and modify this parameter: 6210 * 6211 * struct sctp_assoc_value { 6212 * sctp_assoc_t assoc_id; 6213 * uint32_t assoc_value; 6214 * }; 6215 * 6216 * assoc_id: This parameter is ignored for one-to-one style sockets. 6217 * For one-to-many style sockets this parameter indicates which 6218 * association the user is performing an action upon. Note that if 6219 * this field's value is zero then the endpoints default value is 6220 * changed (effecting future associations only). 6221 * assoc_value: This parameter specifies the maximum size in bytes. 6222 */ 6223 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6224 char __user *optval, int __user *optlen) 6225 { 6226 struct sctp_assoc_value params; 6227 struct sctp_association *asoc; 6228 6229 if (len == sizeof(int)) { 6230 pr_warn_ratelimited(DEPRECATED 6231 "%s (pid %d) " 6232 "Use of int in maxseg socket option.\n" 6233 "Use struct sctp_assoc_value instead\n", 6234 current->comm, task_pid_nr(current)); 6235 params.assoc_id = 0; 6236 } else if (len >= sizeof(struct sctp_assoc_value)) { 6237 len = sizeof(struct sctp_assoc_value); 6238 if (copy_from_user(¶ms, optval, len)) 6239 return -EFAULT; 6240 } else 6241 return -EINVAL; 6242 6243 asoc = sctp_id2assoc(sk, params.assoc_id); 6244 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6245 return -EINVAL; 6246 6247 if (asoc) 6248 params.assoc_value = asoc->frag_point; 6249 else 6250 params.assoc_value = sctp_sk(sk)->user_frag; 6251 6252 if (put_user(len, optlen)) 6253 return -EFAULT; 6254 if (len == sizeof(int)) { 6255 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6256 return -EFAULT; 6257 } else { 6258 if (copy_to_user(optval, ¶ms, len)) 6259 return -EFAULT; 6260 } 6261 6262 return 0; 6263 } 6264 6265 /* 6266 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6267 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6268 */ 6269 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6270 char __user *optval, int __user *optlen) 6271 { 6272 int val; 6273 6274 if (len < sizeof(int)) 6275 return -EINVAL; 6276 6277 len = sizeof(int); 6278 6279 val = sctp_sk(sk)->frag_interleave; 6280 if (put_user(len, optlen)) 6281 return -EFAULT; 6282 if (copy_to_user(optval, &val, len)) 6283 return -EFAULT; 6284 6285 return 0; 6286 } 6287 6288 /* 6289 * 7.1.25. Set or Get the sctp partial delivery point 6290 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6291 */ 6292 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6293 char __user *optval, 6294 int __user *optlen) 6295 { 6296 u32 val; 6297 6298 if (len < sizeof(u32)) 6299 return -EINVAL; 6300 6301 len = sizeof(u32); 6302 6303 val = sctp_sk(sk)->pd_point; 6304 if (put_user(len, optlen)) 6305 return -EFAULT; 6306 if (copy_to_user(optval, &val, len)) 6307 return -EFAULT; 6308 6309 return 0; 6310 } 6311 6312 /* 6313 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6314 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6315 */ 6316 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6317 char __user *optval, 6318 int __user *optlen) 6319 { 6320 struct sctp_assoc_value params; 6321 struct sctp_sock *sp; 6322 struct sctp_association *asoc; 6323 6324 if (len == sizeof(int)) { 6325 pr_warn_ratelimited(DEPRECATED 6326 "%s (pid %d) " 6327 "Use of int in max_burst socket option.\n" 6328 "Use struct sctp_assoc_value instead\n", 6329 current->comm, task_pid_nr(current)); 6330 params.assoc_id = 0; 6331 } else if (len >= sizeof(struct sctp_assoc_value)) { 6332 len = sizeof(struct sctp_assoc_value); 6333 if (copy_from_user(¶ms, optval, len)) 6334 return -EFAULT; 6335 } else 6336 return -EINVAL; 6337 6338 sp = sctp_sk(sk); 6339 6340 if (params.assoc_id != 0) { 6341 asoc = sctp_id2assoc(sk, params.assoc_id); 6342 if (!asoc) 6343 return -EINVAL; 6344 params.assoc_value = asoc->max_burst; 6345 } else 6346 params.assoc_value = sp->max_burst; 6347 6348 if (len == sizeof(int)) { 6349 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6350 return -EFAULT; 6351 } else { 6352 if (copy_to_user(optval, ¶ms, len)) 6353 return -EFAULT; 6354 } 6355 6356 return 0; 6357 6358 } 6359 6360 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6361 char __user *optval, int __user *optlen) 6362 { 6363 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6364 struct sctp_hmacalgo __user *p = (void __user *)optval; 6365 struct sctp_hmac_algo_param *hmacs; 6366 __u16 data_len = 0; 6367 u32 num_idents; 6368 int i; 6369 6370 if (!ep->auth_enable) 6371 return -EACCES; 6372 6373 hmacs = ep->auth_hmacs_list; 6374 data_len = ntohs(hmacs->param_hdr.length) - 6375 sizeof(struct sctp_paramhdr); 6376 6377 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6378 return -EINVAL; 6379 6380 len = sizeof(struct sctp_hmacalgo) + data_len; 6381 num_idents = data_len / sizeof(u16); 6382 6383 if (put_user(len, optlen)) 6384 return -EFAULT; 6385 if (put_user(num_idents, &p->shmac_num_idents)) 6386 return -EFAULT; 6387 for (i = 0; i < num_idents; i++) { 6388 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6389 6390 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6391 return -EFAULT; 6392 } 6393 return 0; 6394 } 6395 6396 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6397 char __user *optval, int __user *optlen) 6398 { 6399 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6400 struct sctp_authkeyid val; 6401 struct sctp_association *asoc; 6402 6403 if (!ep->auth_enable) 6404 return -EACCES; 6405 6406 if (len < sizeof(struct sctp_authkeyid)) 6407 return -EINVAL; 6408 6409 len = sizeof(struct sctp_authkeyid); 6410 if (copy_from_user(&val, optval, len)) 6411 return -EFAULT; 6412 6413 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6414 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6415 return -EINVAL; 6416 6417 if (asoc) 6418 val.scact_keynumber = asoc->active_key_id; 6419 else 6420 val.scact_keynumber = ep->active_key_id; 6421 6422 if (put_user(len, optlen)) 6423 return -EFAULT; 6424 if (copy_to_user(optval, &val, len)) 6425 return -EFAULT; 6426 6427 return 0; 6428 } 6429 6430 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6431 char __user *optval, int __user *optlen) 6432 { 6433 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6434 struct sctp_authchunks __user *p = (void __user *)optval; 6435 struct sctp_authchunks val; 6436 struct sctp_association *asoc; 6437 struct sctp_chunks_param *ch; 6438 u32 num_chunks = 0; 6439 char __user *to; 6440 6441 if (!ep->auth_enable) 6442 return -EACCES; 6443 6444 if (len < sizeof(struct sctp_authchunks)) 6445 return -EINVAL; 6446 6447 if (copy_from_user(&val, optval, sizeof(val))) 6448 return -EFAULT; 6449 6450 to = p->gauth_chunks; 6451 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6452 if (!asoc) 6453 return -EINVAL; 6454 6455 ch = asoc->peer.peer_chunks; 6456 if (!ch) 6457 goto num; 6458 6459 /* See if the user provided enough room for all the data */ 6460 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6461 if (len < num_chunks) 6462 return -EINVAL; 6463 6464 if (copy_to_user(to, ch->chunks, num_chunks)) 6465 return -EFAULT; 6466 num: 6467 len = sizeof(struct sctp_authchunks) + num_chunks; 6468 if (put_user(len, optlen)) 6469 return -EFAULT; 6470 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6471 return -EFAULT; 6472 return 0; 6473 } 6474 6475 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6476 char __user *optval, int __user *optlen) 6477 { 6478 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6479 struct sctp_authchunks __user *p = (void __user *)optval; 6480 struct sctp_authchunks val; 6481 struct sctp_association *asoc; 6482 struct sctp_chunks_param *ch; 6483 u32 num_chunks = 0; 6484 char __user *to; 6485 6486 if (!ep->auth_enable) 6487 return -EACCES; 6488 6489 if (len < sizeof(struct sctp_authchunks)) 6490 return -EINVAL; 6491 6492 if (copy_from_user(&val, optval, sizeof(val))) 6493 return -EFAULT; 6494 6495 to = p->gauth_chunks; 6496 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6497 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6498 return -EINVAL; 6499 6500 if (asoc) 6501 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6502 else 6503 ch = ep->auth_chunk_list; 6504 6505 if (!ch) 6506 goto num; 6507 6508 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6509 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6510 return -EINVAL; 6511 6512 if (copy_to_user(to, ch->chunks, num_chunks)) 6513 return -EFAULT; 6514 num: 6515 len = sizeof(struct sctp_authchunks) + num_chunks; 6516 if (put_user(len, optlen)) 6517 return -EFAULT; 6518 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6519 return -EFAULT; 6520 6521 return 0; 6522 } 6523 6524 /* 6525 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6526 * This option gets the current number of associations that are attached 6527 * to a one-to-many style socket. The option value is an uint32_t. 6528 */ 6529 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6530 char __user *optval, int __user *optlen) 6531 { 6532 struct sctp_sock *sp = sctp_sk(sk); 6533 struct sctp_association *asoc; 6534 u32 val = 0; 6535 6536 if (sctp_style(sk, TCP)) 6537 return -EOPNOTSUPP; 6538 6539 if (len < sizeof(u32)) 6540 return -EINVAL; 6541 6542 len = sizeof(u32); 6543 6544 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6545 val++; 6546 } 6547 6548 if (put_user(len, optlen)) 6549 return -EFAULT; 6550 if (copy_to_user(optval, &val, len)) 6551 return -EFAULT; 6552 6553 return 0; 6554 } 6555 6556 /* 6557 * 8.1.23 SCTP_AUTO_ASCONF 6558 * See the corresponding setsockopt entry as description 6559 */ 6560 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6561 char __user *optval, int __user *optlen) 6562 { 6563 int val = 0; 6564 6565 if (len < sizeof(int)) 6566 return -EINVAL; 6567 6568 len = sizeof(int); 6569 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6570 val = 1; 6571 if (put_user(len, optlen)) 6572 return -EFAULT; 6573 if (copy_to_user(optval, &val, len)) 6574 return -EFAULT; 6575 return 0; 6576 } 6577 6578 /* 6579 * 8.2.6. Get the Current Identifiers of Associations 6580 * (SCTP_GET_ASSOC_ID_LIST) 6581 * 6582 * This option gets the current list of SCTP association identifiers of 6583 * the SCTP associations handled by a one-to-many style socket. 6584 */ 6585 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6586 char __user *optval, int __user *optlen) 6587 { 6588 struct sctp_sock *sp = sctp_sk(sk); 6589 struct sctp_association *asoc; 6590 struct sctp_assoc_ids *ids; 6591 u32 num = 0; 6592 6593 if (sctp_style(sk, TCP)) 6594 return -EOPNOTSUPP; 6595 6596 if (len < sizeof(struct sctp_assoc_ids)) 6597 return -EINVAL; 6598 6599 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6600 num++; 6601 } 6602 6603 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6604 return -EINVAL; 6605 6606 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6607 6608 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6609 if (unlikely(!ids)) 6610 return -ENOMEM; 6611 6612 ids->gaids_number_of_ids = num; 6613 num = 0; 6614 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6615 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6616 } 6617 6618 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6619 kfree(ids); 6620 return -EFAULT; 6621 } 6622 6623 kfree(ids); 6624 return 0; 6625 } 6626 6627 /* 6628 * SCTP_PEER_ADDR_THLDS 6629 * 6630 * This option allows us to fetch the partially failed threshold for one or all 6631 * transports in an association. See Section 6.1 of: 6632 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6633 */ 6634 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6635 char __user *optval, 6636 int len, 6637 int __user *optlen) 6638 { 6639 struct sctp_paddrthlds val; 6640 struct sctp_transport *trans; 6641 struct sctp_association *asoc; 6642 6643 if (len < sizeof(struct sctp_paddrthlds)) 6644 return -EINVAL; 6645 len = sizeof(struct sctp_paddrthlds); 6646 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6647 return -EFAULT; 6648 6649 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6650 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6651 if (!asoc) 6652 return -ENOENT; 6653 6654 val.spt_pathpfthld = asoc->pf_retrans; 6655 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6656 } else { 6657 trans = sctp_addr_id2transport(sk, &val.spt_address, 6658 val.spt_assoc_id); 6659 if (!trans) 6660 return -ENOENT; 6661 6662 val.spt_pathmaxrxt = trans->pathmaxrxt; 6663 val.spt_pathpfthld = trans->pf_retrans; 6664 } 6665 6666 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6667 return -EFAULT; 6668 6669 return 0; 6670 } 6671 6672 /* 6673 * SCTP_GET_ASSOC_STATS 6674 * 6675 * This option retrieves local per endpoint statistics. It is modeled 6676 * after OpenSolaris' implementation 6677 */ 6678 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6679 char __user *optval, 6680 int __user *optlen) 6681 { 6682 struct sctp_assoc_stats sas; 6683 struct sctp_association *asoc = NULL; 6684 6685 /* User must provide at least the assoc id */ 6686 if (len < sizeof(sctp_assoc_t)) 6687 return -EINVAL; 6688 6689 /* Allow the struct to grow and fill in as much as possible */ 6690 len = min_t(size_t, len, sizeof(sas)); 6691 6692 if (copy_from_user(&sas, optval, len)) 6693 return -EFAULT; 6694 6695 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6696 if (!asoc) 6697 return -EINVAL; 6698 6699 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6700 sas.sas_gapcnt = asoc->stats.gapcnt; 6701 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6702 sas.sas_osacks = asoc->stats.osacks; 6703 sas.sas_isacks = asoc->stats.isacks; 6704 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6705 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6706 sas.sas_oodchunks = asoc->stats.oodchunks; 6707 sas.sas_iodchunks = asoc->stats.iodchunks; 6708 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6709 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6710 sas.sas_idupchunks = asoc->stats.idupchunks; 6711 sas.sas_opackets = asoc->stats.opackets; 6712 sas.sas_ipackets = asoc->stats.ipackets; 6713 6714 /* New high max rto observed, will return 0 if not a single 6715 * RTO update took place. obs_rto_ipaddr will be bogus 6716 * in such a case 6717 */ 6718 sas.sas_maxrto = asoc->stats.max_obs_rto; 6719 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6720 sizeof(struct sockaddr_storage)); 6721 6722 /* Mark beginning of a new observation period */ 6723 asoc->stats.max_obs_rto = asoc->rto_min; 6724 6725 if (put_user(len, optlen)) 6726 return -EFAULT; 6727 6728 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6729 6730 if (copy_to_user(optval, &sas, len)) 6731 return -EFAULT; 6732 6733 return 0; 6734 } 6735 6736 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6737 char __user *optval, 6738 int __user *optlen) 6739 { 6740 int val = 0; 6741 6742 if (len < sizeof(int)) 6743 return -EINVAL; 6744 6745 len = sizeof(int); 6746 if (sctp_sk(sk)->recvrcvinfo) 6747 val = 1; 6748 if (put_user(len, optlen)) 6749 return -EFAULT; 6750 if (copy_to_user(optval, &val, len)) 6751 return -EFAULT; 6752 6753 return 0; 6754 } 6755 6756 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6757 char __user *optval, 6758 int __user *optlen) 6759 { 6760 int val = 0; 6761 6762 if (len < sizeof(int)) 6763 return -EINVAL; 6764 6765 len = sizeof(int); 6766 if (sctp_sk(sk)->recvnxtinfo) 6767 val = 1; 6768 if (put_user(len, optlen)) 6769 return -EFAULT; 6770 if (copy_to_user(optval, &val, len)) 6771 return -EFAULT; 6772 6773 return 0; 6774 } 6775 6776 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6777 char __user *optval, 6778 int __user *optlen) 6779 { 6780 struct sctp_assoc_value params; 6781 struct sctp_association *asoc; 6782 int retval = -EFAULT; 6783 6784 if (len < sizeof(params)) { 6785 retval = -EINVAL; 6786 goto out; 6787 } 6788 6789 len = sizeof(params); 6790 if (copy_from_user(¶ms, optval, len)) 6791 goto out; 6792 6793 asoc = sctp_id2assoc(sk, params.assoc_id); 6794 if (asoc) { 6795 params.assoc_value = asoc->prsctp_enable; 6796 } else if (!params.assoc_id) { 6797 struct sctp_sock *sp = sctp_sk(sk); 6798 6799 params.assoc_value = sp->ep->prsctp_enable; 6800 } else { 6801 retval = -EINVAL; 6802 goto out; 6803 } 6804 6805 if (put_user(len, optlen)) 6806 goto out; 6807 6808 if (copy_to_user(optval, ¶ms, len)) 6809 goto out; 6810 6811 retval = 0; 6812 6813 out: 6814 return retval; 6815 } 6816 6817 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6818 char __user *optval, 6819 int __user *optlen) 6820 { 6821 struct sctp_default_prinfo info; 6822 struct sctp_association *asoc; 6823 int retval = -EFAULT; 6824 6825 if (len < sizeof(info)) { 6826 retval = -EINVAL; 6827 goto out; 6828 } 6829 6830 len = sizeof(info); 6831 if (copy_from_user(&info, optval, len)) 6832 goto out; 6833 6834 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6835 if (asoc) { 6836 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6837 info.pr_value = asoc->default_timetolive; 6838 } else if (!info.pr_assoc_id) { 6839 struct sctp_sock *sp = sctp_sk(sk); 6840 6841 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6842 info.pr_value = sp->default_timetolive; 6843 } else { 6844 retval = -EINVAL; 6845 goto out; 6846 } 6847 6848 if (put_user(len, optlen)) 6849 goto out; 6850 6851 if (copy_to_user(optval, &info, len)) 6852 goto out; 6853 6854 retval = 0; 6855 6856 out: 6857 return retval; 6858 } 6859 6860 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6861 char __user *optval, 6862 int __user *optlen) 6863 { 6864 struct sctp_prstatus params; 6865 struct sctp_association *asoc; 6866 int policy; 6867 int retval = -EINVAL; 6868 6869 if (len < sizeof(params)) 6870 goto out; 6871 6872 len = sizeof(params); 6873 if (copy_from_user(¶ms, optval, len)) { 6874 retval = -EFAULT; 6875 goto out; 6876 } 6877 6878 policy = params.sprstat_policy; 6879 if (policy & ~SCTP_PR_SCTP_MASK) 6880 goto out; 6881 6882 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6883 if (!asoc) 6884 goto out; 6885 6886 if (policy == SCTP_PR_SCTP_NONE) { 6887 params.sprstat_abandoned_unsent = 0; 6888 params.sprstat_abandoned_sent = 0; 6889 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6890 params.sprstat_abandoned_unsent += 6891 asoc->abandoned_unsent[policy]; 6892 params.sprstat_abandoned_sent += 6893 asoc->abandoned_sent[policy]; 6894 } 6895 } else { 6896 params.sprstat_abandoned_unsent = 6897 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6898 params.sprstat_abandoned_sent = 6899 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6900 } 6901 6902 if (put_user(len, optlen)) { 6903 retval = -EFAULT; 6904 goto out; 6905 } 6906 6907 if (copy_to_user(optval, ¶ms, len)) { 6908 retval = -EFAULT; 6909 goto out; 6910 } 6911 6912 retval = 0; 6913 6914 out: 6915 return retval; 6916 } 6917 6918 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6919 char __user *optval, 6920 int __user *optlen) 6921 { 6922 struct sctp_stream_out_ext *streamoute; 6923 struct sctp_association *asoc; 6924 struct sctp_prstatus params; 6925 int retval = -EINVAL; 6926 int policy; 6927 6928 if (len < sizeof(params)) 6929 goto out; 6930 6931 len = sizeof(params); 6932 if (copy_from_user(¶ms, optval, len)) { 6933 retval = -EFAULT; 6934 goto out; 6935 } 6936 6937 policy = params.sprstat_policy; 6938 if (policy & ~SCTP_PR_SCTP_MASK) 6939 goto out; 6940 6941 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6942 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6943 goto out; 6944 6945 streamoute = asoc->stream.out[params.sprstat_sid].ext; 6946 if (!streamoute) { 6947 /* Not allocated yet, means all stats are 0 */ 6948 params.sprstat_abandoned_unsent = 0; 6949 params.sprstat_abandoned_sent = 0; 6950 retval = 0; 6951 goto out; 6952 } 6953 6954 if (policy == SCTP_PR_SCTP_NONE) { 6955 params.sprstat_abandoned_unsent = 0; 6956 params.sprstat_abandoned_sent = 0; 6957 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6958 params.sprstat_abandoned_unsent += 6959 streamoute->abandoned_unsent[policy]; 6960 params.sprstat_abandoned_sent += 6961 streamoute->abandoned_sent[policy]; 6962 } 6963 } else { 6964 params.sprstat_abandoned_unsent = 6965 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6966 params.sprstat_abandoned_sent = 6967 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6968 } 6969 6970 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6971 retval = -EFAULT; 6972 goto out; 6973 } 6974 6975 retval = 0; 6976 6977 out: 6978 return retval; 6979 } 6980 6981 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6982 char __user *optval, 6983 int __user *optlen) 6984 { 6985 struct sctp_assoc_value params; 6986 struct sctp_association *asoc; 6987 int retval = -EFAULT; 6988 6989 if (len < sizeof(params)) { 6990 retval = -EINVAL; 6991 goto out; 6992 } 6993 6994 len = sizeof(params); 6995 if (copy_from_user(¶ms, optval, len)) 6996 goto out; 6997 6998 asoc = sctp_id2assoc(sk, params.assoc_id); 6999 if (asoc) { 7000 params.assoc_value = asoc->reconf_enable; 7001 } else if (!params.assoc_id) { 7002 struct sctp_sock *sp = sctp_sk(sk); 7003 7004 params.assoc_value = sp->ep->reconf_enable; 7005 } else { 7006 retval = -EINVAL; 7007 goto out; 7008 } 7009 7010 if (put_user(len, optlen)) 7011 goto out; 7012 7013 if (copy_to_user(optval, ¶ms, len)) 7014 goto out; 7015 7016 retval = 0; 7017 7018 out: 7019 return retval; 7020 } 7021 7022 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7023 char __user *optval, 7024 int __user *optlen) 7025 { 7026 struct sctp_assoc_value params; 7027 struct sctp_association *asoc; 7028 int retval = -EFAULT; 7029 7030 if (len < sizeof(params)) { 7031 retval = -EINVAL; 7032 goto out; 7033 } 7034 7035 len = sizeof(params); 7036 if (copy_from_user(¶ms, optval, len)) 7037 goto out; 7038 7039 asoc = sctp_id2assoc(sk, params.assoc_id); 7040 if (asoc) { 7041 params.assoc_value = asoc->strreset_enable; 7042 } else if (!params.assoc_id) { 7043 struct sctp_sock *sp = sctp_sk(sk); 7044 7045 params.assoc_value = sp->ep->strreset_enable; 7046 } else { 7047 retval = -EINVAL; 7048 goto out; 7049 } 7050 7051 if (put_user(len, optlen)) 7052 goto out; 7053 7054 if (copy_to_user(optval, ¶ms, len)) 7055 goto out; 7056 7057 retval = 0; 7058 7059 out: 7060 return retval; 7061 } 7062 7063 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7064 char __user *optval, 7065 int __user *optlen) 7066 { 7067 struct sctp_assoc_value params; 7068 struct sctp_association *asoc; 7069 int retval = -EFAULT; 7070 7071 if (len < sizeof(params)) { 7072 retval = -EINVAL; 7073 goto out; 7074 } 7075 7076 len = sizeof(params); 7077 if (copy_from_user(¶ms, optval, len)) 7078 goto out; 7079 7080 asoc = sctp_id2assoc(sk, params.assoc_id); 7081 if (!asoc) { 7082 retval = -EINVAL; 7083 goto out; 7084 } 7085 7086 params.assoc_value = sctp_sched_get_sched(asoc); 7087 7088 if (put_user(len, optlen)) 7089 goto out; 7090 7091 if (copy_to_user(optval, ¶ms, len)) 7092 goto out; 7093 7094 retval = 0; 7095 7096 out: 7097 return retval; 7098 } 7099 7100 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7101 char __user *optval, 7102 int __user *optlen) 7103 { 7104 struct sctp_stream_value params; 7105 struct sctp_association *asoc; 7106 int retval = -EFAULT; 7107 7108 if (len < sizeof(params)) { 7109 retval = -EINVAL; 7110 goto out; 7111 } 7112 7113 len = sizeof(params); 7114 if (copy_from_user(¶ms, optval, len)) 7115 goto out; 7116 7117 asoc = sctp_id2assoc(sk, params.assoc_id); 7118 if (!asoc) { 7119 retval = -EINVAL; 7120 goto out; 7121 } 7122 7123 retval = sctp_sched_get_value(asoc, params.stream_id, 7124 ¶ms.stream_value); 7125 if (retval) 7126 goto out; 7127 7128 if (put_user(len, optlen)) { 7129 retval = -EFAULT; 7130 goto out; 7131 } 7132 7133 if (copy_to_user(optval, ¶ms, len)) { 7134 retval = -EFAULT; 7135 goto out; 7136 } 7137 7138 out: 7139 return retval; 7140 } 7141 7142 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7143 char __user *optval, 7144 int __user *optlen) 7145 { 7146 struct sctp_assoc_value params; 7147 struct sctp_association *asoc; 7148 int retval = -EFAULT; 7149 7150 if (len < sizeof(params)) { 7151 retval = -EINVAL; 7152 goto out; 7153 } 7154 7155 len = sizeof(params); 7156 if (copy_from_user(¶ms, optval, len)) 7157 goto out; 7158 7159 asoc = sctp_id2assoc(sk, params.assoc_id); 7160 if (asoc) { 7161 params.assoc_value = asoc->intl_enable; 7162 } else if (!params.assoc_id) { 7163 struct sctp_sock *sp = sctp_sk(sk); 7164 7165 params.assoc_value = sp->strm_interleave; 7166 } else { 7167 retval = -EINVAL; 7168 goto out; 7169 } 7170 7171 if (put_user(len, optlen)) 7172 goto out; 7173 7174 if (copy_to_user(optval, ¶ms, len)) 7175 goto out; 7176 7177 retval = 0; 7178 7179 out: 7180 return retval; 7181 } 7182 7183 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7184 char __user *optval, int __user *optlen) 7185 { 7186 int retval = 0; 7187 int len; 7188 7189 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7190 7191 /* I can hardly begin to describe how wrong this is. This is 7192 * so broken as to be worse than useless. The API draft 7193 * REALLY is NOT helpful here... I am not convinced that the 7194 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7195 * are at all well-founded. 7196 */ 7197 if (level != SOL_SCTP) { 7198 struct sctp_af *af = sctp_sk(sk)->pf->af; 7199 7200 retval = af->getsockopt(sk, level, optname, optval, optlen); 7201 return retval; 7202 } 7203 7204 if (get_user(len, optlen)) 7205 return -EFAULT; 7206 7207 if (len < 0) 7208 return -EINVAL; 7209 7210 lock_sock(sk); 7211 7212 switch (optname) { 7213 case SCTP_STATUS: 7214 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7215 break; 7216 case SCTP_DISABLE_FRAGMENTS: 7217 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7218 optlen); 7219 break; 7220 case SCTP_EVENTS: 7221 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7222 break; 7223 case SCTP_AUTOCLOSE: 7224 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7225 break; 7226 case SCTP_SOCKOPT_PEELOFF: 7227 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7228 break; 7229 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7230 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7231 break; 7232 case SCTP_PEER_ADDR_PARAMS: 7233 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7234 optlen); 7235 break; 7236 case SCTP_DELAYED_SACK: 7237 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7238 optlen); 7239 break; 7240 case SCTP_INITMSG: 7241 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7242 break; 7243 case SCTP_GET_PEER_ADDRS: 7244 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7245 optlen); 7246 break; 7247 case SCTP_GET_LOCAL_ADDRS: 7248 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7249 optlen); 7250 break; 7251 case SCTP_SOCKOPT_CONNECTX3: 7252 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7253 break; 7254 case SCTP_DEFAULT_SEND_PARAM: 7255 retval = sctp_getsockopt_default_send_param(sk, len, 7256 optval, optlen); 7257 break; 7258 case SCTP_DEFAULT_SNDINFO: 7259 retval = sctp_getsockopt_default_sndinfo(sk, len, 7260 optval, optlen); 7261 break; 7262 case SCTP_PRIMARY_ADDR: 7263 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7264 break; 7265 case SCTP_NODELAY: 7266 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7267 break; 7268 case SCTP_RTOINFO: 7269 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7270 break; 7271 case SCTP_ASSOCINFO: 7272 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7273 break; 7274 case SCTP_I_WANT_MAPPED_V4_ADDR: 7275 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7276 break; 7277 case SCTP_MAXSEG: 7278 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7279 break; 7280 case SCTP_GET_PEER_ADDR_INFO: 7281 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7282 optlen); 7283 break; 7284 case SCTP_ADAPTATION_LAYER: 7285 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7286 optlen); 7287 break; 7288 case SCTP_CONTEXT: 7289 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7290 break; 7291 case SCTP_FRAGMENT_INTERLEAVE: 7292 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7293 optlen); 7294 break; 7295 case SCTP_PARTIAL_DELIVERY_POINT: 7296 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7297 optlen); 7298 break; 7299 case SCTP_MAX_BURST: 7300 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7301 break; 7302 case SCTP_AUTH_KEY: 7303 case SCTP_AUTH_CHUNK: 7304 case SCTP_AUTH_DELETE_KEY: 7305 case SCTP_AUTH_DEACTIVATE_KEY: 7306 retval = -EOPNOTSUPP; 7307 break; 7308 case SCTP_HMAC_IDENT: 7309 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7310 break; 7311 case SCTP_AUTH_ACTIVE_KEY: 7312 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7313 break; 7314 case SCTP_PEER_AUTH_CHUNKS: 7315 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7316 optlen); 7317 break; 7318 case SCTP_LOCAL_AUTH_CHUNKS: 7319 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7320 optlen); 7321 break; 7322 case SCTP_GET_ASSOC_NUMBER: 7323 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7324 break; 7325 case SCTP_GET_ASSOC_ID_LIST: 7326 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7327 break; 7328 case SCTP_AUTO_ASCONF: 7329 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7330 break; 7331 case SCTP_PEER_ADDR_THLDS: 7332 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7333 break; 7334 case SCTP_GET_ASSOC_STATS: 7335 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7336 break; 7337 case SCTP_RECVRCVINFO: 7338 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7339 break; 7340 case SCTP_RECVNXTINFO: 7341 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7342 break; 7343 case SCTP_PR_SUPPORTED: 7344 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7345 break; 7346 case SCTP_DEFAULT_PRINFO: 7347 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7348 optlen); 7349 break; 7350 case SCTP_PR_ASSOC_STATUS: 7351 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7352 optlen); 7353 break; 7354 case SCTP_PR_STREAM_STATUS: 7355 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7356 optlen); 7357 break; 7358 case SCTP_RECONFIG_SUPPORTED: 7359 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7360 optlen); 7361 break; 7362 case SCTP_ENABLE_STREAM_RESET: 7363 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7364 optlen); 7365 break; 7366 case SCTP_STREAM_SCHEDULER: 7367 retval = sctp_getsockopt_scheduler(sk, len, optval, 7368 optlen); 7369 break; 7370 case SCTP_STREAM_SCHEDULER_VALUE: 7371 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7372 optlen); 7373 break; 7374 case SCTP_INTERLEAVING_SUPPORTED: 7375 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7376 optlen); 7377 break; 7378 default: 7379 retval = -ENOPROTOOPT; 7380 break; 7381 } 7382 7383 release_sock(sk); 7384 return retval; 7385 } 7386 7387 static int sctp_hash(struct sock *sk) 7388 { 7389 /* STUB */ 7390 return 0; 7391 } 7392 7393 static void sctp_unhash(struct sock *sk) 7394 { 7395 /* STUB */ 7396 } 7397 7398 /* Check if port is acceptable. Possibly find first available port. 7399 * 7400 * The port hash table (contained in the 'global' SCTP protocol storage 7401 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7402 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7403 * list (the list number is the port number hashed out, so as you 7404 * would expect from a hash function, all the ports in a given list have 7405 * such a number that hashes out to the same list number; you were 7406 * expecting that, right?); so each list has a set of ports, with a 7407 * link to the socket (struct sock) that uses it, the port number and 7408 * a fastreuse flag (FIXME: NPI ipg). 7409 */ 7410 static struct sctp_bind_bucket *sctp_bucket_create( 7411 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7412 7413 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7414 { 7415 struct sctp_bind_hashbucket *head; /* hash list */ 7416 struct sctp_bind_bucket *pp; 7417 unsigned short snum; 7418 int ret; 7419 7420 snum = ntohs(addr->v4.sin_port); 7421 7422 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7423 7424 local_bh_disable(); 7425 7426 if (snum == 0) { 7427 /* Search for an available port. */ 7428 int low, high, remaining, index; 7429 unsigned int rover; 7430 struct net *net = sock_net(sk); 7431 7432 inet_get_local_port_range(net, &low, &high); 7433 remaining = (high - low) + 1; 7434 rover = prandom_u32() % remaining + low; 7435 7436 do { 7437 rover++; 7438 if ((rover < low) || (rover > high)) 7439 rover = low; 7440 if (inet_is_local_reserved_port(net, rover)) 7441 continue; 7442 index = sctp_phashfn(sock_net(sk), rover); 7443 head = &sctp_port_hashtable[index]; 7444 spin_lock(&head->lock); 7445 sctp_for_each_hentry(pp, &head->chain) 7446 if ((pp->port == rover) && 7447 net_eq(sock_net(sk), pp->net)) 7448 goto next; 7449 break; 7450 next: 7451 spin_unlock(&head->lock); 7452 } while (--remaining > 0); 7453 7454 /* Exhausted local port range during search? */ 7455 ret = 1; 7456 if (remaining <= 0) 7457 goto fail; 7458 7459 /* OK, here is the one we will use. HEAD (the port 7460 * hash table list entry) is non-NULL and we hold it's 7461 * mutex. 7462 */ 7463 snum = rover; 7464 } else { 7465 /* We are given an specific port number; we verify 7466 * that it is not being used. If it is used, we will 7467 * exahust the search in the hash list corresponding 7468 * to the port number (snum) - we detect that with the 7469 * port iterator, pp being NULL. 7470 */ 7471 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7472 spin_lock(&head->lock); 7473 sctp_for_each_hentry(pp, &head->chain) { 7474 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7475 goto pp_found; 7476 } 7477 } 7478 pp = NULL; 7479 goto pp_not_found; 7480 pp_found: 7481 if (!hlist_empty(&pp->owner)) { 7482 /* We had a port hash table hit - there is an 7483 * available port (pp != NULL) and it is being 7484 * used by other socket (pp->owner not empty); that other 7485 * socket is going to be sk2. 7486 */ 7487 int reuse = sk->sk_reuse; 7488 struct sock *sk2; 7489 7490 pr_debug("%s: found a possible match\n", __func__); 7491 7492 if (pp->fastreuse && sk->sk_reuse && 7493 sk->sk_state != SCTP_SS_LISTENING) 7494 goto success; 7495 7496 /* Run through the list of sockets bound to the port 7497 * (pp->port) [via the pointers bind_next and 7498 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7499 * we get the endpoint they describe and run through 7500 * the endpoint's list of IP (v4 or v6) addresses, 7501 * comparing each of the addresses with the address of 7502 * the socket sk. If we find a match, then that means 7503 * that this port/socket (sk) combination are already 7504 * in an endpoint. 7505 */ 7506 sk_for_each_bound(sk2, &pp->owner) { 7507 struct sctp_endpoint *ep2; 7508 ep2 = sctp_sk(sk2)->ep; 7509 7510 if (sk == sk2 || 7511 (reuse && sk2->sk_reuse && 7512 sk2->sk_state != SCTP_SS_LISTENING)) 7513 continue; 7514 7515 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7516 sctp_sk(sk2), sctp_sk(sk))) { 7517 ret = (long)sk2; 7518 goto fail_unlock; 7519 } 7520 } 7521 7522 pr_debug("%s: found a match\n", __func__); 7523 } 7524 pp_not_found: 7525 /* If there was a hash table miss, create a new port. */ 7526 ret = 1; 7527 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7528 goto fail_unlock; 7529 7530 /* In either case (hit or miss), make sure fastreuse is 1 only 7531 * if sk->sk_reuse is too (that is, if the caller requested 7532 * SO_REUSEADDR on this socket -sk-). 7533 */ 7534 if (hlist_empty(&pp->owner)) { 7535 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7536 pp->fastreuse = 1; 7537 else 7538 pp->fastreuse = 0; 7539 } else if (pp->fastreuse && 7540 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7541 pp->fastreuse = 0; 7542 7543 /* We are set, so fill up all the data in the hash table 7544 * entry, tie the socket list information with the rest of the 7545 * sockets FIXME: Blurry, NPI (ipg). 7546 */ 7547 success: 7548 if (!sctp_sk(sk)->bind_hash) { 7549 inet_sk(sk)->inet_num = snum; 7550 sk_add_bind_node(sk, &pp->owner); 7551 sctp_sk(sk)->bind_hash = pp; 7552 } 7553 ret = 0; 7554 7555 fail_unlock: 7556 spin_unlock(&head->lock); 7557 7558 fail: 7559 local_bh_enable(); 7560 return ret; 7561 } 7562 7563 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7564 * port is requested. 7565 */ 7566 static int sctp_get_port(struct sock *sk, unsigned short snum) 7567 { 7568 union sctp_addr addr; 7569 struct sctp_af *af = sctp_sk(sk)->pf->af; 7570 7571 /* Set up a dummy address struct from the sk. */ 7572 af->from_sk(&addr, sk); 7573 addr.v4.sin_port = htons(snum); 7574 7575 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7576 return !!sctp_get_port_local(sk, &addr); 7577 } 7578 7579 /* 7580 * Move a socket to LISTENING state. 7581 */ 7582 static int sctp_listen_start(struct sock *sk, int backlog) 7583 { 7584 struct sctp_sock *sp = sctp_sk(sk); 7585 struct sctp_endpoint *ep = sp->ep; 7586 struct crypto_shash *tfm = NULL; 7587 char alg[32]; 7588 7589 /* Allocate HMAC for generating cookie. */ 7590 if (!sp->hmac && sp->sctp_hmac_alg) { 7591 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7592 tfm = crypto_alloc_shash(alg, 0, 0); 7593 if (IS_ERR(tfm)) { 7594 net_info_ratelimited("failed to load transform for %s: %ld\n", 7595 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7596 return -ENOSYS; 7597 } 7598 sctp_sk(sk)->hmac = tfm; 7599 } 7600 7601 /* 7602 * If a bind() or sctp_bindx() is not called prior to a listen() 7603 * call that allows new associations to be accepted, the system 7604 * picks an ephemeral port and will choose an address set equivalent 7605 * to binding with a wildcard address. 7606 * 7607 * This is not currently spelled out in the SCTP sockets 7608 * extensions draft, but follows the practice as seen in TCP 7609 * sockets. 7610 * 7611 */ 7612 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7613 if (!ep->base.bind_addr.port) { 7614 if (sctp_autobind(sk)) 7615 return -EAGAIN; 7616 } else { 7617 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7618 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7619 return -EADDRINUSE; 7620 } 7621 } 7622 7623 sk->sk_max_ack_backlog = backlog; 7624 sctp_hash_endpoint(ep); 7625 return 0; 7626 } 7627 7628 /* 7629 * 4.1.3 / 5.1.3 listen() 7630 * 7631 * By default, new associations are not accepted for UDP style sockets. 7632 * An application uses listen() to mark a socket as being able to 7633 * accept new associations. 7634 * 7635 * On TCP style sockets, applications use listen() to ready the SCTP 7636 * endpoint for accepting inbound associations. 7637 * 7638 * On both types of endpoints a backlog of '0' disables listening. 7639 * 7640 * Move a socket to LISTENING state. 7641 */ 7642 int sctp_inet_listen(struct socket *sock, int backlog) 7643 { 7644 struct sock *sk = sock->sk; 7645 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7646 int err = -EINVAL; 7647 7648 if (unlikely(backlog < 0)) 7649 return err; 7650 7651 lock_sock(sk); 7652 7653 /* Peeled-off sockets are not allowed to listen(). */ 7654 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7655 goto out; 7656 7657 if (sock->state != SS_UNCONNECTED) 7658 goto out; 7659 7660 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7661 goto out; 7662 7663 /* If backlog is zero, disable listening. */ 7664 if (!backlog) { 7665 if (sctp_sstate(sk, CLOSED)) 7666 goto out; 7667 7668 err = 0; 7669 sctp_unhash_endpoint(ep); 7670 sk->sk_state = SCTP_SS_CLOSED; 7671 if (sk->sk_reuse) 7672 sctp_sk(sk)->bind_hash->fastreuse = 1; 7673 goto out; 7674 } 7675 7676 /* If we are already listening, just update the backlog */ 7677 if (sctp_sstate(sk, LISTENING)) 7678 sk->sk_max_ack_backlog = backlog; 7679 else { 7680 err = sctp_listen_start(sk, backlog); 7681 if (err) 7682 goto out; 7683 } 7684 7685 err = 0; 7686 out: 7687 release_sock(sk); 7688 return err; 7689 } 7690 7691 /* 7692 * This function is done by modeling the current datagram_poll() and the 7693 * tcp_poll(). Note that, based on these implementations, we don't 7694 * lock the socket in this function, even though it seems that, 7695 * ideally, locking or some other mechanisms can be used to ensure 7696 * the integrity of the counters (sndbuf and wmem_alloc) used 7697 * in this place. We assume that we don't need locks either until proven 7698 * otherwise. 7699 * 7700 * Another thing to note is that we include the Async I/O support 7701 * here, again, by modeling the current TCP/UDP code. We don't have 7702 * a good way to test with it yet. 7703 */ 7704 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7705 { 7706 struct sock *sk = sock->sk; 7707 struct sctp_sock *sp = sctp_sk(sk); 7708 __poll_t mask; 7709 7710 poll_wait(file, sk_sleep(sk), wait); 7711 7712 sock_rps_record_flow(sk); 7713 7714 /* A TCP-style listening socket becomes readable when the accept queue 7715 * is not empty. 7716 */ 7717 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7718 return (!list_empty(&sp->ep->asocs)) ? 7719 (EPOLLIN | EPOLLRDNORM) : 0; 7720 7721 mask = 0; 7722 7723 /* Is there any exceptional events? */ 7724 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7725 mask |= EPOLLERR | 7726 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7727 if (sk->sk_shutdown & RCV_SHUTDOWN) 7728 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7729 if (sk->sk_shutdown == SHUTDOWN_MASK) 7730 mask |= EPOLLHUP; 7731 7732 /* Is it readable? Reconsider this code with TCP-style support. */ 7733 if (!skb_queue_empty(&sk->sk_receive_queue)) 7734 mask |= EPOLLIN | EPOLLRDNORM; 7735 7736 /* The association is either gone or not ready. */ 7737 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7738 return mask; 7739 7740 /* Is it writable? */ 7741 if (sctp_writeable(sk)) { 7742 mask |= EPOLLOUT | EPOLLWRNORM; 7743 } else { 7744 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7745 /* 7746 * Since the socket is not locked, the buffer 7747 * might be made available after the writeable check and 7748 * before the bit is set. This could cause a lost I/O 7749 * signal. tcp_poll() has a race breaker for this race 7750 * condition. Based on their implementation, we put 7751 * in the following code to cover it as well. 7752 */ 7753 if (sctp_writeable(sk)) 7754 mask |= EPOLLOUT | EPOLLWRNORM; 7755 } 7756 return mask; 7757 } 7758 7759 /******************************************************************** 7760 * 2nd Level Abstractions 7761 ********************************************************************/ 7762 7763 static struct sctp_bind_bucket *sctp_bucket_create( 7764 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7765 { 7766 struct sctp_bind_bucket *pp; 7767 7768 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7769 if (pp) { 7770 SCTP_DBG_OBJCNT_INC(bind_bucket); 7771 pp->port = snum; 7772 pp->fastreuse = 0; 7773 INIT_HLIST_HEAD(&pp->owner); 7774 pp->net = net; 7775 hlist_add_head(&pp->node, &head->chain); 7776 } 7777 return pp; 7778 } 7779 7780 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7781 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7782 { 7783 if (pp && hlist_empty(&pp->owner)) { 7784 __hlist_del(&pp->node); 7785 kmem_cache_free(sctp_bucket_cachep, pp); 7786 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7787 } 7788 } 7789 7790 /* Release this socket's reference to a local port. */ 7791 static inline void __sctp_put_port(struct sock *sk) 7792 { 7793 struct sctp_bind_hashbucket *head = 7794 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7795 inet_sk(sk)->inet_num)]; 7796 struct sctp_bind_bucket *pp; 7797 7798 spin_lock(&head->lock); 7799 pp = sctp_sk(sk)->bind_hash; 7800 __sk_del_bind_node(sk); 7801 sctp_sk(sk)->bind_hash = NULL; 7802 inet_sk(sk)->inet_num = 0; 7803 sctp_bucket_destroy(pp); 7804 spin_unlock(&head->lock); 7805 } 7806 7807 void sctp_put_port(struct sock *sk) 7808 { 7809 local_bh_disable(); 7810 __sctp_put_port(sk); 7811 local_bh_enable(); 7812 } 7813 7814 /* 7815 * The system picks an ephemeral port and choose an address set equivalent 7816 * to binding with a wildcard address. 7817 * One of those addresses will be the primary address for the association. 7818 * This automatically enables the multihoming capability of SCTP. 7819 */ 7820 static int sctp_autobind(struct sock *sk) 7821 { 7822 union sctp_addr autoaddr; 7823 struct sctp_af *af; 7824 __be16 port; 7825 7826 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7827 af = sctp_sk(sk)->pf->af; 7828 7829 port = htons(inet_sk(sk)->inet_num); 7830 af->inaddr_any(&autoaddr, port); 7831 7832 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7833 } 7834 7835 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7836 * 7837 * From RFC 2292 7838 * 4.2 The cmsghdr Structure * 7839 * 7840 * When ancillary data is sent or received, any number of ancillary data 7841 * objects can be specified by the msg_control and msg_controllen members of 7842 * the msghdr structure, because each object is preceded by 7843 * a cmsghdr structure defining the object's length (the cmsg_len member). 7844 * Historically Berkeley-derived implementations have passed only one object 7845 * at a time, but this API allows multiple objects to be 7846 * passed in a single call to sendmsg() or recvmsg(). The following example 7847 * shows two ancillary data objects in a control buffer. 7848 * 7849 * |<--------------------------- msg_controllen -------------------------->| 7850 * | | 7851 * 7852 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7853 * 7854 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7855 * | | | 7856 * 7857 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7858 * 7859 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7860 * | | | | | 7861 * 7862 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7863 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7864 * 7865 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7866 * 7867 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7868 * ^ 7869 * | 7870 * 7871 * msg_control 7872 * points here 7873 */ 7874 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7875 { 7876 struct msghdr *my_msg = (struct msghdr *)msg; 7877 struct cmsghdr *cmsg; 7878 7879 for_each_cmsghdr(cmsg, my_msg) { 7880 if (!CMSG_OK(my_msg, cmsg)) 7881 return -EINVAL; 7882 7883 /* Should we parse this header or ignore? */ 7884 if (cmsg->cmsg_level != IPPROTO_SCTP) 7885 continue; 7886 7887 /* Strictly check lengths following example in SCM code. */ 7888 switch (cmsg->cmsg_type) { 7889 case SCTP_INIT: 7890 /* SCTP Socket API Extension 7891 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7892 * 7893 * This cmsghdr structure provides information for 7894 * initializing new SCTP associations with sendmsg(). 7895 * The SCTP_INITMSG socket option uses this same data 7896 * structure. This structure is not used for 7897 * recvmsg(). 7898 * 7899 * cmsg_level cmsg_type cmsg_data[] 7900 * ------------ ------------ ---------------------- 7901 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7902 */ 7903 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7904 return -EINVAL; 7905 7906 cmsgs->init = CMSG_DATA(cmsg); 7907 break; 7908 7909 case SCTP_SNDRCV: 7910 /* SCTP Socket API Extension 7911 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7912 * 7913 * This cmsghdr structure specifies SCTP options for 7914 * sendmsg() and describes SCTP header information 7915 * about a received message through recvmsg(). 7916 * 7917 * cmsg_level cmsg_type cmsg_data[] 7918 * ------------ ------------ ---------------------- 7919 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7920 */ 7921 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7922 return -EINVAL; 7923 7924 cmsgs->srinfo = CMSG_DATA(cmsg); 7925 7926 if (cmsgs->srinfo->sinfo_flags & 7927 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7928 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7929 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7930 return -EINVAL; 7931 break; 7932 7933 case SCTP_SNDINFO: 7934 /* SCTP Socket API Extension 7935 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7936 * 7937 * This cmsghdr structure specifies SCTP options for 7938 * sendmsg(). This structure and SCTP_RCVINFO replaces 7939 * SCTP_SNDRCV which has been deprecated. 7940 * 7941 * cmsg_level cmsg_type cmsg_data[] 7942 * ------------ ------------ --------------------- 7943 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7944 */ 7945 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7946 return -EINVAL; 7947 7948 cmsgs->sinfo = CMSG_DATA(cmsg); 7949 7950 if (cmsgs->sinfo->snd_flags & 7951 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7952 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7953 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7954 return -EINVAL; 7955 break; 7956 case SCTP_PRINFO: 7957 /* SCTP Socket API Extension 7958 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 7959 * 7960 * This cmsghdr structure specifies SCTP options for sendmsg(). 7961 * 7962 * cmsg_level cmsg_type cmsg_data[] 7963 * ------------ ------------ --------------------- 7964 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 7965 */ 7966 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 7967 return -EINVAL; 7968 7969 cmsgs->prinfo = CMSG_DATA(cmsg); 7970 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 7971 return -EINVAL; 7972 7973 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 7974 cmsgs->prinfo->pr_value = 0; 7975 break; 7976 case SCTP_AUTHINFO: 7977 /* SCTP Socket API Extension 7978 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 7979 * 7980 * This cmsghdr structure specifies SCTP options for sendmsg(). 7981 * 7982 * cmsg_level cmsg_type cmsg_data[] 7983 * ------------ ------------ --------------------- 7984 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 7985 */ 7986 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 7987 return -EINVAL; 7988 7989 cmsgs->authinfo = CMSG_DATA(cmsg); 7990 break; 7991 case SCTP_DSTADDRV4: 7992 case SCTP_DSTADDRV6: 7993 /* SCTP Socket API Extension 7994 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 7995 * 7996 * This cmsghdr structure specifies SCTP options for sendmsg(). 7997 * 7998 * cmsg_level cmsg_type cmsg_data[] 7999 * ------------ ------------ --------------------- 8000 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8001 * ------------ ------------ --------------------- 8002 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8003 */ 8004 cmsgs->addrs_msg = my_msg; 8005 break; 8006 default: 8007 return -EINVAL; 8008 } 8009 } 8010 8011 return 0; 8012 } 8013 8014 /* 8015 * Wait for a packet.. 8016 * Note: This function is the same function as in core/datagram.c 8017 * with a few modifications to make lksctp work. 8018 */ 8019 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8020 { 8021 int error; 8022 DEFINE_WAIT(wait); 8023 8024 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8025 8026 /* Socket errors? */ 8027 error = sock_error(sk); 8028 if (error) 8029 goto out; 8030 8031 if (!skb_queue_empty(&sk->sk_receive_queue)) 8032 goto ready; 8033 8034 /* Socket shut down? */ 8035 if (sk->sk_shutdown & RCV_SHUTDOWN) 8036 goto out; 8037 8038 /* Sequenced packets can come disconnected. If so we report the 8039 * problem. 8040 */ 8041 error = -ENOTCONN; 8042 8043 /* Is there a good reason to think that we may receive some data? */ 8044 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8045 goto out; 8046 8047 /* Handle signals. */ 8048 if (signal_pending(current)) 8049 goto interrupted; 8050 8051 /* Let another process have a go. Since we are going to sleep 8052 * anyway. Note: This may cause odd behaviors if the message 8053 * does not fit in the user's buffer, but this seems to be the 8054 * only way to honor MSG_DONTWAIT realistically. 8055 */ 8056 release_sock(sk); 8057 *timeo_p = schedule_timeout(*timeo_p); 8058 lock_sock(sk); 8059 8060 ready: 8061 finish_wait(sk_sleep(sk), &wait); 8062 return 0; 8063 8064 interrupted: 8065 error = sock_intr_errno(*timeo_p); 8066 8067 out: 8068 finish_wait(sk_sleep(sk), &wait); 8069 *err = error; 8070 return error; 8071 } 8072 8073 /* Receive a datagram. 8074 * Note: This is pretty much the same routine as in core/datagram.c 8075 * with a few changes to make lksctp work. 8076 */ 8077 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8078 int noblock, int *err) 8079 { 8080 int error; 8081 struct sk_buff *skb; 8082 long timeo; 8083 8084 timeo = sock_rcvtimeo(sk, noblock); 8085 8086 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8087 MAX_SCHEDULE_TIMEOUT); 8088 8089 do { 8090 /* Again only user level code calls this function, 8091 * so nothing interrupt level 8092 * will suddenly eat the receive_queue. 8093 * 8094 * Look at current nfs client by the way... 8095 * However, this function was correct in any case. 8) 8096 */ 8097 if (flags & MSG_PEEK) { 8098 skb = skb_peek(&sk->sk_receive_queue); 8099 if (skb) 8100 refcount_inc(&skb->users); 8101 } else { 8102 skb = __skb_dequeue(&sk->sk_receive_queue); 8103 } 8104 8105 if (skb) 8106 return skb; 8107 8108 /* Caller is allowed not to check sk->sk_err before calling. */ 8109 error = sock_error(sk); 8110 if (error) 8111 goto no_packet; 8112 8113 if (sk->sk_shutdown & RCV_SHUTDOWN) 8114 break; 8115 8116 if (sk_can_busy_loop(sk)) { 8117 sk_busy_loop(sk, noblock); 8118 8119 if (!skb_queue_empty(&sk->sk_receive_queue)) 8120 continue; 8121 } 8122 8123 /* User doesn't want to wait. */ 8124 error = -EAGAIN; 8125 if (!timeo) 8126 goto no_packet; 8127 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8128 8129 return NULL; 8130 8131 no_packet: 8132 *err = error; 8133 return NULL; 8134 } 8135 8136 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8137 static void __sctp_write_space(struct sctp_association *asoc) 8138 { 8139 struct sock *sk = asoc->base.sk; 8140 8141 if (sctp_wspace(asoc) <= 0) 8142 return; 8143 8144 if (waitqueue_active(&asoc->wait)) 8145 wake_up_interruptible(&asoc->wait); 8146 8147 if (sctp_writeable(sk)) { 8148 struct socket_wq *wq; 8149 8150 rcu_read_lock(); 8151 wq = rcu_dereference(sk->sk_wq); 8152 if (wq) { 8153 if (waitqueue_active(&wq->wait)) 8154 wake_up_interruptible(&wq->wait); 8155 8156 /* Note that we try to include the Async I/O support 8157 * here by modeling from the current TCP/UDP code. 8158 * We have not tested with it yet. 8159 */ 8160 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8161 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8162 } 8163 rcu_read_unlock(); 8164 } 8165 } 8166 8167 static void sctp_wake_up_waiters(struct sock *sk, 8168 struct sctp_association *asoc) 8169 { 8170 struct sctp_association *tmp = asoc; 8171 8172 /* We do accounting for the sndbuf space per association, 8173 * so we only need to wake our own association. 8174 */ 8175 if (asoc->ep->sndbuf_policy) 8176 return __sctp_write_space(asoc); 8177 8178 /* If association goes down and is just flushing its 8179 * outq, then just normally notify others. 8180 */ 8181 if (asoc->base.dead) 8182 return sctp_write_space(sk); 8183 8184 /* Accounting for the sndbuf space is per socket, so we 8185 * need to wake up others, try to be fair and in case of 8186 * other associations, let them have a go first instead 8187 * of just doing a sctp_write_space() call. 8188 * 8189 * Note that we reach sctp_wake_up_waiters() only when 8190 * associations free up queued chunks, thus we are under 8191 * lock and the list of associations on a socket is 8192 * guaranteed not to change. 8193 */ 8194 for (tmp = list_next_entry(tmp, asocs); 1; 8195 tmp = list_next_entry(tmp, asocs)) { 8196 /* Manually skip the head element. */ 8197 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8198 continue; 8199 /* Wake up association. */ 8200 __sctp_write_space(tmp); 8201 /* We've reached the end. */ 8202 if (tmp == asoc) 8203 break; 8204 } 8205 } 8206 8207 /* Do accounting for the sndbuf space. 8208 * Decrement the used sndbuf space of the corresponding association by the 8209 * data size which was just transmitted(freed). 8210 */ 8211 static void sctp_wfree(struct sk_buff *skb) 8212 { 8213 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8214 struct sctp_association *asoc = chunk->asoc; 8215 struct sock *sk = asoc->base.sk; 8216 8217 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 8218 sizeof(struct sk_buff) + 8219 sizeof(struct sctp_chunk); 8220 8221 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 8222 8223 /* 8224 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 8225 */ 8226 sk->sk_wmem_queued -= skb->truesize; 8227 sk_mem_uncharge(sk, skb->truesize); 8228 8229 if (chunk->shkey) { 8230 struct sctp_shared_key *shkey = chunk->shkey; 8231 8232 /* refcnt == 2 and !list_empty mean after this release, it's 8233 * not being used anywhere, and it's time to notify userland 8234 * that this shkey can be freed if it's been deactivated. 8235 */ 8236 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8237 refcount_read(&shkey->refcnt) == 2) { 8238 struct sctp_ulpevent *ev; 8239 8240 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8241 SCTP_AUTH_FREE_KEY, 8242 GFP_KERNEL); 8243 if (ev) 8244 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8245 } 8246 sctp_auth_shkey_release(chunk->shkey); 8247 } 8248 8249 sock_wfree(skb); 8250 sctp_wake_up_waiters(sk, asoc); 8251 8252 sctp_association_put(asoc); 8253 } 8254 8255 /* Do accounting for the receive space on the socket. 8256 * Accounting for the association is done in ulpevent.c 8257 * We set this as a destructor for the cloned data skbs so that 8258 * accounting is done at the correct time. 8259 */ 8260 void sctp_sock_rfree(struct sk_buff *skb) 8261 { 8262 struct sock *sk = skb->sk; 8263 struct sctp_ulpevent *event = sctp_skb2event(skb); 8264 8265 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8266 8267 /* 8268 * Mimic the behavior of sock_rfree 8269 */ 8270 sk_mem_uncharge(sk, event->rmem_len); 8271 } 8272 8273 8274 /* Helper function to wait for space in the sndbuf. */ 8275 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8276 size_t msg_len) 8277 { 8278 struct sock *sk = asoc->base.sk; 8279 long current_timeo = *timeo_p; 8280 DEFINE_WAIT(wait); 8281 int err = 0; 8282 8283 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8284 *timeo_p, msg_len); 8285 8286 /* Increment the association's refcnt. */ 8287 sctp_association_hold(asoc); 8288 8289 /* Wait on the association specific sndbuf space. */ 8290 for (;;) { 8291 prepare_to_wait_exclusive(&asoc->wait, &wait, 8292 TASK_INTERRUPTIBLE); 8293 if (asoc->base.dead) 8294 goto do_dead; 8295 if (!*timeo_p) 8296 goto do_nonblock; 8297 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8298 goto do_error; 8299 if (signal_pending(current)) 8300 goto do_interrupted; 8301 if (msg_len <= sctp_wspace(asoc)) 8302 break; 8303 8304 /* Let another process have a go. Since we are going 8305 * to sleep anyway. 8306 */ 8307 release_sock(sk); 8308 current_timeo = schedule_timeout(current_timeo); 8309 lock_sock(sk); 8310 if (sk != asoc->base.sk) 8311 goto do_error; 8312 8313 *timeo_p = current_timeo; 8314 } 8315 8316 out: 8317 finish_wait(&asoc->wait, &wait); 8318 8319 /* Release the association's refcnt. */ 8320 sctp_association_put(asoc); 8321 8322 return err; 8323 8324 do_dead: 8325 err = -ESRCH; 8326 goto out; 8327 8328 do_error: 8329 err = -EPIPE; 8330 goto out; 8331 8332 do_interrupted: 8333 err = sock_intr_errno(*timeo_p); 8334 goto out; 8335 8336 do_nonblock: 8337 err = -EAGAIN; 8338 goto out; 8339 } 8340 8341 void sctp_data_ready(struct sock *sk) 8342 { 8343 struct socket_wq *wq; 8344 8345 rcu_read_lock(); 8346 wq = rcu_dereference(sk->sk_wq); 8347 if (skwq_has_sleeper(wq)) 8348 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8349 EPOLLRDNORM | EPOLLRDBAND); 8350 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8351 rcu_read_unlock(); 8352 } 8353 8354 /* If socket sndbuf has changed, wake up all per association waiters. */ 8355 void sctp_write_space(struct sock *sk) 8356 { 8357 struct sctp_association *asoc; 8358 8359 /* Wake up the tasks in each wait queue. */ 8360 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8361 __sctp_write_space(asoc); 8362 } 8363 } 8364 8365 /* Is there any sndbuf space available on the socket? 8366 * 8367 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8368 * associations on the same socket. For a UDP-style socket with 8369 * multiple associations, it is possible for it to be "unwriteable" 8370 * prematurely. I assume that this is acceptable because 8371 * a premature "unwriteable" is better than an accidental "writeable" which 8372 * would cause an unwanted block under certain circumstances. For the 1-1 8373 * UDP-style sockets or TCP-style sockets, this code should work. 8374 * - Daisy 8375 */ 8376 static int sctp_writeable(struct sock *sk) 8377 { 8378 int amt = 0; 8379 8380 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8381 if (amt < 0) 8382 amt = 0; 8383 return amt; 8384 } 8385 8386 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8387 * returns immediately with EINPROGRESS. 8388 */ 8389 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8390 { 8391 struct sock *sk = asoc->base.sk; 8392 int err = 0; 8393 long current_timeo = *timeo_p; 8394 DEFINE_WAIT(wait); 8395 8396 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8397 8398 /* Increment the association's refcnt. */ 8399 sctp_association_hold(asoc); 8400 8401 for (;;) { 8402 prepare_to_wait_exclusive(&asoc->wait, &wait, 8403 TASK_INTERRUPTIBLE); 8404 if (!*timeo_p) 8405 goto do_nonblock; 8406 if (sk->sk_shutdown & RCV_SHUTDOWN) 8407 break; 8408 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8409 asoc->base.dead) 8410 goto do_error; 8411 if (signal_pending(current)) 8412 goto do_interrupted; 8413 8414 if (sctp_state(asoc, ESTABLISHED)) 8415 break; 8416 8417 /* Let another process have a go. Since we are going 8418 * to sleep anyway. 8419 */ 8420 release_sock(sk); 8421 current_timeo = schedule_timeout(current_timeo); 8422 lock_sock(sk); 8423 8424 *timeo_p = current_timeo; 8425 } 8426 8427 out: 8428 finish_wait(&asoc->wait, &wait); 8429 8430 /* Release the association's refcnt. */ 8431 sctp_association_put(asoc); 8432 8433 return err; 8434 8435 do_error: 8436 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8437 err = -ETIMEDOUT; 8438 else 8439 err = -ECONNREFUSED; 8440 goto out; 8441 8442 do_interrupted: 8443 err = sock_intr_errno(*timeo_p); 8444 goto out; 8445 8446 do_nonblock: 8447 err = -EINPROGRESS; 8448 goto out; 8449 } 8450 8451 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8452 { 8453 struct sctp_endpoint *ep; 8454 int err = 0; 8455 DEFINE_WAIT(wait); 8456 8457 ep = sctp_sk(sk)->ep; 8458 8459 8460 for (;;) { 8461 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8462 TASK_INTERRUPTIBLE); 8463 8464 if (list_empty(&ep->asocs)) { 8465 release_sock(sk); 8466 timeo = schedule_timeout(timeo); 8467 lock_sock(sk); 8468 } 8469 8470 err = -EINVAL; 8471 if (!sctp_sstate(sk, LISTENING)) 8472 break; 8473 8474 err = 0; 8475 if (!list_empty(&ep->asocs)) 8476 break; 8477 8478 err = sock_intr_errno(timeo); 8479 if (signal_pending(current)) 8480 break; 8481 8482 err = -EAGAIN; 8483 if (!timeo) 8484 break; 8485 } 8486 8487 finish_wait(sk_sleep(sk), &wait); 8488 8489 return err; 8490 } 8491 8492 static void sctp_wait_for_close(struct sock *sk, long timeout) 8493 { 8494 DEFINE_WAIT(wait); 8495 8496 do { 8497 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8498 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8499 break; 8500 release_sock(sk); 8501 timeout = schedule_timeout(timeout); 8502 lock_sock(sk); 8503 } while (!signal_pending(current) && timeout); 8504 8505 finish_wait(sk_sleep(sk), &wait); 8506 } 8507 8508 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8509 { 8510 struct sk_buff *frag; 8511 8512 if (!skb->data_len) 8513 goto done; 8514 8515 /* Don't forget the fragments. */ 8516 skb_walk_frags(skb, frag) 8517 sctp_skb_set_owner_r_frag(frag, sk); 8518 8519 done: 8520 sctp_skb_set_owner_r(skb, sk); 8521 } 8522 8523 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8524 struct sctp_association *asoc) 8525 { 8526 struct inet_sock *inet = inet_sk(sk); 8527 struct inet_sock *newinet; 8528 struct sctp_sock *sp = sctp_sk(sk); 8529 struct sctp_endpoint *ep = sp->ep; 8530 8531 newsk->sk_type = sk->sk_type; 8532 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8533 newsk->sk_flags = sk->sk_flags; 8534 newsk->sk_tsflags = sk->sk_tsflags; 8535 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8536 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8537 newsk->sk_reuse = sk->sk_reuse; 8538 8539 newsk->sk_shutdown = sk->sk_shutdown; 8540 newsk->sk_destruct = sctp_destruct_sock; 8541 newsk->sk_family = sk->sk_family; 8542 newsk->sk_protocol = IPPROTO_SCTP; 8543 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8544 newsk->sk_sndbuf = sk->sk_sndbuf; 8545 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8546 newsk->sk_lingertime = sk->sk_lingertime; 8547 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8548 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8549 newsk->sk_rxhash = sk->sk_rxhash; 8550 8551 newinet = inet_sk(newsk); 8552 8553 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8554 * getsockname() and getpeername() 8555 */ 8556 newinet->inet_sport = inet->inet_sport; 8557 newinet->inet_saddr = inet->inet_saddr; 8558 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8559 newinet->inet_dport = htons(asoc->peer.port); 8560 newinet->pmtudisc = inet->pmtudisc; 8561 newinet->inet_id = asoc->next_tsn ^ jiffies; 8562 8563 newinet->uc_ttl = inet->uc_ttl; 8564 newinet->mc_loop = 1; 8565 newinet->mc_ttl = 1; 8566 newinet->mc_index = 0; 8567 newinet->mc_list = NULL; 8568 8569 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8570 net_enable_timestamp(); 8571 8572 /* Set newsk security attributes from orginal sk and connection 8573 * security attribute from ep. 8574 */ 8575 security_sctp_sk_clone(ep, sk, newsk); 8576 } 8577 8578 static inline void sctp_copy_descendant(struct sock *sk_to, 8579 const struct sock *sk_from) 8580 { 8581 int ancestor_size = sizeof(struct inet_sock) + 8582 sizeof(struct sctp_sock) - 8583 offsetof(struct sctp_sock, auto_asconf_list); 8584 8585 if (sk_from->sk_family == PF_INET6) 8586 ancestor_size += sizeof(struct ipv6_pinfo); 8587 8588 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8589 } 8590 8591 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8592 * and its messages to the newsk. 8593 */ 8594 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8595 struct sctp_association *assoc, 8596 enum sctp_socket_type type) 8597 { 8598 struct sctp_sock *oldsp = sctp_sk(oldsk); 8599 struct sctp_sock *newsp = sctp_sk(newsk); 8600 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8601 struct sctp_endpoint *newep = newsp->ep; 8602 struct sk_buff *skb, *tmp; 8603 struct sctp_ulpevent *event; 8604 struct sctp_bind_hashbucket *head; 8605 8606 /* Migrate socket buffer sizes and all the socket level options to the 8607 * new socket. 8608 */ 8609 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8610 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8611 /* Brute force copy old sctp opt. */ 8612 sctp_copy_descendant(newsk, oldsk); 8613 8614 /* Restore the ep value that was overwritten with the above structure 8615 * copy. 8616 */ 8617 newsp->ep = newep; 8618 newsp->hmac = NULL; 8619 8620 /* Hook this new socket in to the bind_hash list. */ 8621 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8622 inet_sk(oldsk)->inet_num)]; 8623 spin_lock_bh(&head->lock); 8624 pp = sctp_sk(oldsk)->bind_hash; 8625 sk_add_bind_node(newsk, &pp->owner); 8626 sctp_sk(newsk)->bind_hash = pp; 8627 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8628 spin_unlock_bh(&head->lock); 8629 8630 /* Copy the bind_addr list from the original endpoint to the new 8631 * endpoint so that we can handle restarts properly 8632 */ 8633 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8634 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8635 8636 /* Move any messages in the old socket's receive queue that are for the 8637 * peeled off association to the new socket's receive queue. 8638 */ 8639 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8640 event = sctp_skb2event(skb); 8641 if (event->asoc == assoc) { 8642 __skb_unlink(skb, &oldsk->sk_receive_queue); 8643 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8644 sctp_skb_set_owner_r_frag(skb, newsk); 8645 } 8646 } 8647 8648 /* Clean up any messages pending delivery due to partial 8649 * delivery. Three cases: 8650 * 1) No partial deliver; no work. 8651 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8652 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8653 */ 8654 skb_queue_head_init(&newsp->pd_lobby); 8655 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8656 8657 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8658 struct sk_buff_head *queue; 8659 8660 /* Decide which queue to move pd_lobby skbs to. */ 8661 if (assoc->ulpq.pd_mode) { 8662 queue = &newsp->pd_lobby; 8663 } else 8664 queue = &newsk->sk_receive_queue; 8665 8666 /* Walk through the pd_lobby, looking for skbs that 8667 * need moved to the new socket. 8668 */ 8669 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8670 event = sctp_skb2event(skb); 8671 if (event->asoc == assoc) { 8672 __skb_unlink(skb, &oldsp->pd_lobby); 8673 __skb_queue_tail(queue, skb); 8674 sctp_skb_set_owner_r_frag(skb, newsk); 8675 } 8676 } 8677 8678 /* Clear up any skbs waiting for the partial 8679 * delivery to finish. 8680 */ 8681 if (assoc->ulpq.pd_mode) 8682 sctp_clear_pd(oldsk, NULL); 8683 8684 } 8685 8686 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8687 8688 /* Set the type of socket to indicate that it is peeled off from the 8689 * original UDP-style socket or created with the accept() call on a 8690 * TCP-style socket.. 8691 */ 8692 newsp->type = type; 8693 8694 /* Mark the new socket "in-use" by the user so that any packets 8695 * that may arrive on the association after we've moved it are 8696 * queued to the backlog. This prevents a potential race between 8697 * backlog processing on the old socket and new-packet processing 8698 * on the new socket. 8699 * 8700 * The caller has just allocated newsk so we can guarantee that other 8701 * paths won't try to lock it and then oldsk. 8702 */ 8703 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8704 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8705 sctp_assoc_migrate(assoc, newsk); 8706 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8707 8708 /* If the association on the newsk is already closed before accept() 8709 * is called, set RCV_SHUTDOWN flag. 8710 */ 8711 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8712 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8713 newsk->sk_shutdown |= RCV_SHUTDOWN; 8714 } else { 8715 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8716 } 8717 8718 release_sock(newsk); 8719 } 8720 8721 8722 /* This proto struct describes the ULP interface for SCTP. */ 8723 struct proto sctp_prot = { 8724 .name = "SCTP", 8725 .owner = THIS_MODULE, 8726 .close = sctp_close, 8727 .connect = sctp_connect, 8728 .disconnect = sctp_disconnect, 8729 .accept = sctp_accept, 8730 .ioctl = sctp_ioctl, 8731 .init = sctp_init_sock, 8732 .destroy = sctp_destroy_sock, 8733 .shutdown = sctp_shutdown, 8734 .setsockopt = sctp_setsockopt, 8735 .getsockopt = sctp_getsockopt, 8736 .sendmsg = sctp_sendmsg, 8737 .recvmsg = sctp_recvmsg, 8738 .bind = sctp_bind, 8739 .backlog_rcv = sctp_backlog_rcv, 8740 .hash = sctp_hash, 8741 .unhash = sctp_unhash, 8742 .get_port = sctp_get_port, 8743 .obj_size = sizeof(struct sctp_sock), 8744 .useroffset = offsetof(struct sctp_sock, subscribe), 8745 .usersize = offsetof(struct sctp_sock, initmsg) - 8746 offsetof(struct sctp_sock, subscribe) + 8747 sizeof_field(struct sctp_sock, initmsg), 8748 .sysctl_mem = sysctl_sctp_mem, 8749 .sysctl_rmem = sysctl_sctp_rmem, 8750 .sysctl_wmem = sysctl_sctp_wmem, 8751 .memory_pressure = &sctp_memory_pressure, 8752 .enter_memory_pressure = sctp_enter_memory_pressure, 8753 .memory_allocated = &sctp_memory_allocated, 8754 .sockets_allocated = &sctp_sockets_allocated, 8755 }; 8756 8757 #if IS_ENABLED(CONFIG_IPV6) 8758 8759 #include <net/transp_v6.h> 8760 static void sctp_v6_destroy_sock(struct sock *sk) 8761 { 8762 sctp_destroy_sock(sk); 8763 inet6_destroy_sock(sk); 8764 } 8765 8766 struct proto sctpv6_prot = { 8767 .name = "SCTPv6", 8768 .owner = THIS_MODULE, 8769 .close = sctp_close, 8770 .connect = sctp_connect, 8771 .disconnect = sctp_disconnect, 8772 .accept = sctp_accept, 8773 .ioctl = sctp_ioctl, 8774 .init = sctp_init_sock, 8775 .destroy = sctp_v6_destroy_sock, 8776 .shutdown = sctp_shutdown, 8777 .setsockopt = sctp_setsockopt, 8778 .getsockopt = sctp_getsockopt, 8779 .sendmsg = sctp_sendmsg, 8780 .recvmsg = sctp_recvmsg, 8781 .bind = sctp_bind, 8782 .backlog_rcv = sctp_backlog_rcv, 8783 .hash = sctp_hash, 8784 .unhash = sctp_unhash, 8785 .get_port = sctp_get_port, 8786 .obj_size = sizeof(struct sctp6_sock), 8787 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 8788 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 8789 offsetof(struct sctp6_sock, sctp.subscribe) + 8790 sizeof_field(struct sctp6_sock, sctp.initmsg), 8791 .sysctl_mem = sysctl_sctp_mem, 8792 .sysctl_rmem = sysctl_sctp_rmem, 8793 .sysctl_wmem = sysctl_sctp_wmem, 8794 .memory_pressure = &sctp_memory_pressure, 8795 .enter_memory_pressure = sctp_enter_memory_pressure, 8796 .memory_allocated = &sctp_memory_allocated, 8797 .sockets_allocated = &sctp_sockets_allocated, 8798 }; 8799 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8800