1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/ip.h> 61 #include <linux/capability.h> 62 #include <linux/fcntl.h> 63 #include <linux/poll.h> 64 #include <linux/init.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 #include <linux/compat.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 #include <net/busy_poll.h> 75 76 #include <linux/socket.h> /* for sa_family_t */ 77 #include <linux/export.h> 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* Forward declarations for internal helper functions. */ 83 static int sctp_writeable(struct sock *sk); 84 static void sctp_wfree(struct sk_buff *skb); 85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 86 size_t msg_len); 87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 89 static int sctp_wait_for_accept(struct sock *sk, long timeo); 90 static void sctp_wait_for_close(struct sock *sk, long timeo); 91 static void sctp_destruct_sock(struct sock *sk); 92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 93 union sctp_addr *addr, int len); 94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf(struct sctp_association *asoc, 99 struct sctp_chunk *chunk); 100 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 101 static int sctp_autobind(struct sock *sk); 102 static void sctp_sock_migrate(struct sock *, struct sock *, 103 struct sctp_association *, sctp_socket_type_t); 104 105 static int sctp_memory_pressure; 106 static atomic_long_t sctp_memory_allocated; 107 struct percpu_counter sctp_sockets_allocated; 108 109 static void sctp_enter_memory_pressure(struct sock *sk) 110 { 111 sctp_memory_pressure = 1; 112 } 113 114 115 /* Get the sndbuf space available at the time on the association. */ 116 static inline int sctp_wspace(struct sctp_association *asoc) 117 { 118 int amt; 119 120 if (asoc->ep->sndbuf_policy) 121 amt = asoc->sndbuf_used; 122 else 123 amt = sk_wmem_alloc_get(asoc->base.sk); 124 125 if (amt >= asoc->base.sk->sk_sndbuf) { 126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 127 amt = 0; 128 else { 129 amt = sk_stream_wspace(asoc->base.sk); 130 if (amt < 0) 131 amt = 0; 132 } 133 } else { 134 amt = asoc->base.sk->sk_sndbuf - amt; 135 } 136 return amt; 137 } 138 139 /* Increment the used sndbuf space count of the corresponding association by 140 * the size of the outgoing data chunk. 141 * Also, set the skb destructor for sndbuf accounting later. 142 * 143 * Since it is always 1-1 between chunk and skb, and also a new skb is always 144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 145 * destructor in the data chunk skb for the purpose of the sndbuf space 146 * tracking. 147 */ 148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 149 { 150 struct sctp_association *asoc = chunk->asoc; 151 struct sock *sk = asoc->base.sk; 152 153 /* The sndbuf space is tracked per association. */ 154 sctp_association_hold(asoc); 155 156 skb_set_owner_w(chunk->skb, sk); 157 158 chunk->skb->destructor = sctp_wfree; 159 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 160 skb_shinfo(chunk->skb)->destructor_arg = chunk; 161 162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 163 sizeof(struct sk_buff) + 164 sizeof(struct sctp_chunk); 165 166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 167 sk->sk_wmem_queued += chunk->skb->truesize; 168 sk_mem_charge(sk, chunk->skb->truesize); 169 } 170 171 /* Verify that this is a valid address. */ 172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 173 int len) 174 { 175 struct sctp_af *af; 176 177 /* Verify basic sockaddr. */ 178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 179 if (!af) 180 return -EINVAL; 181 182 /* Is this a valid SCTP address? */ 183 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 184 return -EINVAL; 185 186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /* Look up the association by its id. If this is not a UDP-style 193 * socket, the ID field is always ignored. 194 */ 195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 196 { 197 struct sctp_association *asoc = NULL; 198 199 /* If this is not a UDP-style socket, assoc id should be ignored. */ 200 if (!sctp_style(sk, UDP)) { 201 /* Return NULL if the socket state is not ESTABLISHED. It 202 * could be a TCP-style listening socket or a socket which 203 * hasn't yet called connect() to establish an association. 204 */ 205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 206 return NULL; 207 208 /* Get the first and the only association from the list. */ 209 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 211 struct sctp_association, asocs); 212 return asoc; 213 } 214 215 /* Otherwise this is a UDP-style socket. */ 216 if (!id || (id == (sctp_assoc_t)-1)) 217 return NULL; 218 219 spin_lock_bh(&sctp_assocs_id_lock); 220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 221 spin_unlock_bh(&sctp_assocs_id_lock); 222 223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 224 return NULL; 225 226 return asoc; 227 } 228 229 /* Look up the transport from an address and an assoc id. If both address and 230 * id are specified, the associations matching the address and the id should be 231 * the same. 232 */ 233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 234 struct sockaddr_storage *addr, 235 sctp_assoc_t id) 236 { 237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 238 struct sctp_transport *transport; 239 union sctp_addr *laddr = (union sctp_addr *)addr; 240 241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 242 laddr, 243 &transport); 244 245 if (!addr_asoc) 246 return NULL; 247 248 id_asoc = sctp_id2assoc(sk, id); 249 if (id_asoc && (id_asoc != addr_asoc)) 250 return NULL; 251 252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 253 (union sctp_addr *)addr); 254 255 return transport; 256 } 257 258 /* API 3.1.2 bind() - UDP Style Syntax 259 * The syntax of bind() is, 260 * 261 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 262 * 263 * sd - the socket descriptor returned by socket(). 264 * addr - the address structure (struct sockaddr_in or struct 265 * sockaddr_in6 [RFC 2553]), 266 * addr_len - the size of the address structure. 267 */ 268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 269 { 270 int retval = 0; 271 272 lock_sock(sk); 273 274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 275 addr, addr_len); 276 277 /* Disallow binding twice. */ 278 if (!sctp_sk(sk)->ep->base.bind_addr.port) 279 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 280 addr_len); 281 else 282 retval = -EINVAL; 283 284 release_sock(sk); 285 286 return retval; 287 } 288 289 static long sctp_get_port_local(struct sock *, union sctp_addr *); 290 291 /* Verify this is a valid sockaddr. */ 292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 293 union sctp_addr *addr, int len) 294 { 295 struct sctp_af *af; 296 297 /* Check minimum size. */ 298 if (len < sizeof (struct sockaddr)) 299 return NULL; 300 301 /* V4 mapped address are really of AF_INET family */ 302 if (addr->sa.sa_family == AF_INET6 && 303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 304 if (!opt->pf->af_supported(AF_INET, opt)) 305 return NULL; 306 } else { 307 /* Does this PF support this AF? */ 308 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 309 return NULL; 310 } 311 312 /* If we get this far, af is valid. */ 313 af = sctp_get_af_specific(addr->sa.sa_family); 314 315 if (len < af->sockaddr_len) 316 return NULL; 317 318 return af; 319 } 320 321 /* Bind a local address either to an endpoint or to an association. */ 322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 323 { 324 struct net *net = sock_net(sk); 325 struct sctp_sock *sp = sctp_sk(sk); 326 struct sctp_endpoint *ep = sp->ep; 327 struct sctp_bind_addr *bp = &ep->base.bind_addr; 328 struct sctp_af *af; 329 unsigned short snum; 330 int ret = 0; 331 332 /* Common sockaddr verification. */ 333 af = sctp_sockaddr_af(sp, addr, len); 334 if (!af) { 335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 336 __func__, sk, addr, len); 337 return -EINVAL; 338 } 339 340 snum = ntohs(addr->v4.sin_port); 341 342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 343 __func__, sk, &addr->sa, bp->port, snum, len); 344 345 /* PF specific bind() address verification. */ 346 if (!sp->pf->bind_verify(sp, addr)) 347 return -EADDRNOTAVAIL; 348 349 /* We must either be unbound, or bind to the same port. 350 * It's OK to allow 0 ports if we are already bound. 351 * We'll just inhert an already bound port in this case 352 */ 353 if (bp->port) { 354 if (!snum) 355 snum = bp->port; 356 else if (snum != bp->port) { 357 pr_debug("%s: new port %d doesn't match existing port " 358 "%d\n", __func__, snum, bp->port); 359 return -EINVAL; 360 } 361 } 362 363 if (snum && snum < PROT_SOCK && 364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 365 return -EACCES; 366 367 /* See if the address matches any of the addresses we may have 368 * already bound before checking against other endpoints. 369 */ 370 if (sctp_bind_addr_match(bp, addr, sp)) 371 return -EINVAL; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 return -EADDRINUSE; 380 } 381 382 /* Refresh ephemeral port. */ 383 if (!bp->port) 384 bp->port = inet_sk(sk)->inet_num; 385 386 /* Add the address to the bind address list. 387 * Use GFP_ATOMIC since BHs will be disabled. 388 */ 389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 390 SCTP_ADDR_SRC, GFP_ATOMIC); 391 392 /* Copy back into socket for getsockname() use. */ 393 if (!ret) { 394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 395 sp->pf->to_sk_saddr(addr, sk); 396 } 397 398 return ret; 399 } 400 401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 402 * 403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 404 * at any one time. If a sender, after sending an ASCONF chunk, decides 405 * it needs to transfer another ASCONF Chunk, it MUST wait until the 406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 407 * subsequent ASCONF. Note this restriction binds each side, so at any 408 * time two ASCONF may be in-transit on any given association (one sent 409 * from each endpoint). 410 */ 411 static int sctp_send_asconf(struct sctp_association *asoc, 412 struct sctp_chunk *chunk) 413 { 414 struct net *net = sock_net(asoc->base.sk); 415 int retval = 0; 416 417 /* If there is an outstanding ASCONF chunk, queue it for later 418 * transmission. 419 */ 420 if (asoc->addip_last_asconf) { 421 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 422 goto out; 423 } 424 425 /* Hold the chunk until an ASCONF_ACK is received. */ 426 sctp_chunk_hold(chunk); 427 retval = sctp_primitive_ASCONF(net, asoc, chunk); 428 if (retval) 429 sctp_chunk_free(chunk); 430 else 431 asoc->addip_last_asconf = chunk; 432 433 out: 434 return retval; 435 } 436 437 /* Add a list of addresses as bind addresses to local endpoint or 438 * association. 439 * 440 * Basically run through each address specified in the addrs/addrcnt 441 * array/length pair, determine if it is IPv6 or IPv4 and call 442 * sctp_do_bind() on it. 443 * 444 * If any of them fails, then the operation will be reversed and the 445 * ones that were added will be removed. 446 * 447 * Only sctp_setsockopt_bindx() is supposed to call this function. 448 */ 449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 450 { 451 int cnt; 452 int retval = 0; 453 void *addr_buf; 454 struct sockaddr *sa_addr; 455 struct sctp_af *af; 456 457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 458 addrs, addrcnt); 459 460 addr_buf = addrs; 461 for (cnt = 0; cnt < addrcnt; cnt++) { 462 /* The list may contain either IPv4 or IPv6 address; 463 * determine the address length for walking thru the list. 464 */ 465 sa_addr = addr_buf; 466 af = sctp_get_af_specific(sa_addr->sa_family); 467 if (!af) { 468 retval = -EINVAL; 469 goto err_bindx_add; 470 } 471 472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 473 af->sockaddr_len); 474 475 addr_buf += af->sockaddr_len; 476 477 err_bindx_add: 478 if (retval < 0) { 479 /* Failed. Cleanup the ones that have been added */ 480 if (cnt > 0) 481 sctp_bindx_rem(sk, addrs, cnt); 482 return retval; 483 } 484 } 485 486 return retval; 487 } 488 489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 490 * associations that are part of the endpoint indicating that a list of local 491 * addresses are added to the endpoint. 492 * 493 * If any of the addresses is already in the bind address list of the 494 * association, we do not send the chunk for that association. But it will not 495 * affect other associations. 496 * 497 * Only sctp_setsockopt_bindx() is supposed to call this function. 498 */ 499 static int sctp_send_asconf_add_ip(struct sock *sk, 500 struct sockaddr *addrs, 501 int addrcnt) 502 { 503 struct net *net = sock_net(sk); 504 struct sctp_sock *sp; 505 struct sctp_endpoint *ep; 506 struct sctp_association *asoc; 507 struct sctp_bind_addr *bp; 508 struct sctp_chunk *chunk; 509 struct sctp_sockaddr_entry *laddr; 510 union sctp_addr *addr; 511 union sctp_addr saveaddr; 512 void *addr_buf; 513 struct sctp_af *af; 514 struct list_head *p; 515 int i; 516 int retval = 0; 517 518 if (!net->sctp.addip_enable) 519 return retval; 520 521 sp = sctp_sk(sk); 522 ep = sp->ep; 523 524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 525 __func__, sk, addrs, addrcnt); 526 527 list_for_each_entry(asoc, &ep->asocs, asocs) { 528 if (!asoc->peer.asconf_capable) 529 continue; 530 531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 532 continue; 533 534 if (!sctp_state(asoc, ESTABLISHED)) 535 continue; 536 537 /* Check if any address in the packed array of addresses is 538 * in the bind address list of the association. If so, 539 * do not send the asconf chunk to its peer, but continue with 540 * other associations. 541 */ 542 addr_buf = addrs; 543 for (i = 0; i < addrcnt; i++) { 544 addr = addr_buf; 545 af = sctp_get_af_specific(addr->v4.sin_family); 546 if (!af) { 547 retval = -EINVAL; 548 goto out; 549 } 550 551 if (sctp_assoc_lookup_laddr(asoc, addr)) 552 break; 553 554 addr_buf += af->sockaddr_len; 555 } 556 if (i < addrcnt) 557 continue; 558 559 /* Use the first valid address in bind addr list of 560 * association as Address Parameter of ASCONF CHUNK. 561 */ 562 bp = &asoc->base.bind_addr; 563 p = bp->address_list.next; 564 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 566 addrcnt, SCTP_PARAM_ADD_IP); 567 if (!chunk) { 568 retval = -ENOMEM; 569 goto out; 570 } 571 572 /* Add the new addresses to the bind address list with 573 * use_as_src set to 0. 574 */ 575 addr_buf = addrs; 576 for (i = 0; i < addrcnt; i++) { 577 addr = addr_buf; 578 af = sctp_get_af_specific(addr->v4.sin_family); 579 memcpy(&saveaddr, addr, af->sockaddr_len); 580 retval = sctp_add_bind_addr(bp, &saveaddr, 581 sizeof(saveaddr), 582 SCTP_ADDR_NEW, GFP_ATOMIC); 583 addr_buf += af->sockaddr_len; 584 } 585 if (asoc->src_out_of_asoc_ok) { 586 struct sctp_transport *trans; 587 588 list_for_each_entry(trans, 589 &asoc->peer.transport_addr_list, transports) { 590 /* Clear the source and route cache */ 591 dst_release(trans->dst); 592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 593 2*asoc->pathmtu, 4380)); 594 trans->ssthresh = asoc->peer.i.a_rwnd; 595 trans->rto = asoc->rto_initial; 596 sctp_max_rto(asoc, trans); 597 trans->rtt = trans->srtt = trans->rttvar = 0; 598 sctp_transport_route(trans, NULL, 599 sctp_sk(asoc->base.sk)); 600 } 601 } 602 retval = sctp_send_asconf(asoc, chunk); 603 } 604 605 out: 606 return retval; 607 } 608 609 /* Remove a list of addresses from bind addresses list. Do not remove the 610 * last address. 611 * 612 * Basically run through each address specified in the addrs/addrcnt 613 * array/length pair, determine if it is IPv6 or IPv4 and call 614 * sctp_del_bind() on it. 615 * 616 * If any of them fails, then the operation will be reversed and the 617 * ones that were removed will be added back. 618 * 619 * At least one address has to be left; if only one address is 620 * available, the operation will return -EBUSY. 621 * 622 * Only sctp_setsockopt_bindx() is supposed to call this function. 623 */ 624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 625 { 626 struct sctp_sock *sp = sctp_sk(sk); 627 struct sctp_endpoint *ep = sp->ep; 628 int cnt; 629 struct sctp_bind_addr *bp = &ep->base.bind_addr; 630 int retval = 0; 631 void *addr_buf; 632 union sctp_addr *sa_addr; 633 struct sctp_af *af; 634 635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 636 __func__, sk, addrs, addrcnt); 637 638 addr_buf = addrs; 639 for (cnt = 0; cnt < addrcnt; cnt++) { 640 /* If the bind address list is empty or if there is only one 641 * bind address, there is nothing more to be removed (we need 642 * at least one address here). 643 */ 644 if (list_empty(&bp->address_list) || 645 (sctp_list_single_entry(&bp->address_list))) { 646 retval = -EBUSY; 647 goto err_bindx_rem; 648 } 649 650 sa_addr = addr_buf; 651 af = sctp_get_af_specific(sa_addr->sa.sa_family); 652 if (!af) { 653 retval = -EINVAL; 654 goto err_bindx_rem; 655 } 656 657 if (!af->addr_valid(sa_addr, sp, NULL)) { 658 retval = -EADDRNOTAVAIL; 659 goto err_bindx_rem; 660 } 661 662 if (sa_addr->v4.sin_port && 663 sa_addr->v4.sin_port != htons(bp->port)) { 664 retval = -EINVAL; 665 goto err_bindx_rem; 666 } 667 668 if (!sa_addr->v4.sin_port) 669 sa_addr->v4.sin_port = htons(bp->port); 670 671 /* FIXME - There is probably a need to check if sk->sk_saddr and 672 * sk->sk_rcv_addr are currently set to one of the addresses to 673 * be removed. This is something which needs to be looked into 674 * when we are fixing the outstanding issues with multi-homing 675 * socket routing and failover schemes. Refer to comments in 676 * sctp_do_bind(). -daisy 677 */ 678 retval = sctp_del_bind_addr(bp, sa_addr); 679 680 addr_buf += af->sockaddr_len; 681 err_bindx_rem: 682 if (retval < 0) { 683 /* Failed. Add the ones that has been removed back */ 684 if (cnt > 0) 685 sctp_bindx_add(sk, addrs, cnt); 686 return retval; 687 } 688 } 689 690 return retval; 691 } 692 693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 694 * the associations that are part of the endpoint indicating that a list of 695 * local addresses are removed from the endpoint. 696 * 697 * If any of the addresses is already in the bind address list of the 698 * association, we do not send the chunk for that association. But it will not 699 * affect other associations. 700 * 701 * Only sctp_setsockopt_bindx() is supposed to call this function. 702 */ 703 static int sctp_send_asconf_del_ip(struct sock *sk, 704 struct sockaddr *addrs, 705 int addrcnt) 706 { 707 struct net *net = sock_net(sk); 708 struct sctp_sock *sp; 709 struct sctp_endpoint *ep; 710 struct sctp_association *asoc; 711 struct sctp_transport *transport; 712 struct sctp_bind_addr *bp; 713 struct sctp_chunk *chunk; 714 union sctp_addr *laddr; 715 void *addr_buf; 716 struct sctp_af *af; 717 struct sctp_sockaddr_entry *saddr; 718 int i; 719 int retval = 0; 720 int stored = 0; 721 722 chunk = NULL; 723 if (!net->sctp.addip_enable) 724 return retval; 725 726 sp = sctp_sk(sk); 727 ep = sp->ep; 728 729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 730 __func__, sk, addrs, addrcnt); 731 732 list_for_each_entry(asoc, &ep->asocs, asocs) { 733 734 if (!asoc->peer.asconf_capable) 735 continue; 736 737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 738 continue; 739 740 if (!sctp_state(asoc, ESTABLISHED)) 741 continue; 742 743 /* Check if any address in the packed array of addresses is 744 * not present in the bind address list of the association. 745 * If so, do not send the asconf chunk to its peer, but 746 * continue with other associations. 747 */ 748 addr_buf = addrs; 749 for (i = 0; i < addrcnt; i++) { 750 laddr = addr_buf; 751 af = sctp_get_af_specific(laddr->v4.sin_family); 752 if (!af) { 753 retval = -EINVAL; 754 goto out; 755 } 756 757 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 758 break; 759 760 addr_buf += af->sockaddr_len; 761 } 762 if (i < addrcnt) 763 continue; 764 765 /* Find one address in the association's bind address list 766 * that is not in the packed array of addresses. This is to 767 * make sure that we do not delete all the addresses in the 768 * association. 769 */ 770 bp = &asoc->base.bind_addr; 771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 772 addrcnt, sp); 773 if ((laddr == NULL) && (addrcnt == 1)) { 774 if (asoc->asconf_addr_del_pending) 775 continue; 776 asoc->asconf_addr_del_pending = 777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 778 if (asoc->asconf_addr_del_pending == NULL) { 779 retval = -ENOMEM; 780 goto out; 781 } 782 asoc->asconf_addr_del_pending->sa.sa_family = 783 addrs->sa_family; 784 asoc->asconf_addr_del_pending->v4.sin_port = 785 htons(bp->port); 786 if (addrs->sa_family == AF_INET) { 787 struct sockaddr_in *sin; 788 789 sin = (struct sockaddr_in *)addrs; 790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 791 } else if (addrs->sa_family == AF_INET6) { 792 struct sockaddr_in6 *sin6; 793 794 sin6 = (struct sockaddr_in6 *)addrs; 795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 796 } 797 798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 799 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 800 asoc->asconf_addr_del_pending); 801 802 asoc->src_out_of_asoc_ok = 1; 803 stored = 1; 804 goto skip_mkasconf; 805 } 806 807 if (laddr == NULL) 808 return -EINVAL; 809 810 /* We do not need RCU protection throughout this loop 811 * because this is done under a socket lock from the 812 * setsockopt call. 813 */ 814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 815 SCTP_PARAM_DEL_IP); 816 if (!chunk) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 821 skip_mkasconf: 822 /* Reset use_as_src flag for the addresses in the bind address 823 * list that are to be deleted. 824 */ 825 addr_buf = addrs; 826 for (i = 0; i < addrcnt; i++) { 827 laddr = addr_buf; 828 af = sctp_get_af_specific(laddr->v4.sin_family); 829 list_for_each_entry(saddr, &bp->address_list, list) { 830 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 831 saddr->state = SCTP_ADDR_DEL; 832 } 833 addr_buf += af->sockaddr_len; 834 } 835 836 /* Update the route and saddr entries for all the transports 837 * as some of the addresses in the bind address list are 838 * about to be deleted and cannot be used as source addresses. 839 */ 840 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 841 transports) { 842 dst_release(transport->dst); 843 sctp_transport_route(transport, NULL, 844 sctp_sk(asoc->base.sk)); 845 } 846 847 if (stored) 848 /* We don't need to transmit ASCONF */ 849 continue; 850 retval = sctp_send_asconf(asoc, chunk); 851 } 852 out: 853 return retval; 854 } 855 856 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 858 { 859 struct sock *sk = sctp_opt2sk(sp); 860 union sctp_addr *addr; 861 struct sctp_af *af; 862 863 /* It is safe to write port space in caller. */ 864 addr = &addrw->a; 865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 866 af = sctp_get_af_specific(addr->sa.sa_family); 867 if (!af) 868 return -EINVAL; 869 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 870 return -EINVAL; 871 872 if (addrw->state == SCTP_ADDR_NEW) 873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 874 else 875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 876 } 877 878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 879 * 880 * API 8.1 881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 882 * int flags); 883 * 884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 886 * or IPv6 addresses. 887 * 888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 889 * Section 3.1.2 for this usage. 890 * 891 * addrs is a pointer to an array of one or more socket addresses. Each 892 * address is contained in its appropriate structure (i.e. struct 893 * sockaddr_in or struct sockaddr_in6) the family of the address type 894 * must be used to distinguish the address length (note that this 895 * representation is termed a "packed array" of addresses). The caller 896 * specifies the number of addresses in the array with addrcnt. 897 * 898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 899 * -1, and sets errno to the appropriate error code. 900 * 901 * For SCTP, the port given in each socket address must be the same, or 902 * sctp_bindx() will fail, setting errno to EINVAL. 903 * 904 * The flags parameter is formed from the bitwise OR of zero or more of 905 * the following currently defined flags: 906 * 907 * SCTP_BINDX_ADD_ADDR 908 * 909 * SCTP_BINDX_REM_ADDR 910 * 911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 913 * addresses from the association. The two flags are mutually exclusive; 914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 915 * not remove all addresses from an association; sctp_bindx() will 916 * reject such an attempt with EINVAL. 917 * 918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 919 * additional addresses with an endpoint after calling bind(). Or use 920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 921 * socket is associated with so that no new association accepted will be 922 * associated with those addresses. If the endpoint supports dynamic 923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 924 * endpoint to send the appropriate message to the peer to change the 925 * peers address lists. 926 * 927 * Adding and removing addresses from a connected association is 928 * optional functionality. Implementations that do not support this 929 * functionality should return EOPNOTSUPP. 930 * 931 * Basically do nothing but copying the addresses from user to kernel 932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 934 * from userspace. 935 * 936 * We don't use copy_from_user() for optimization: we first do the 937 * sanity checks (buffer size -fast- and access check-healthy 938 * pointer); if all of those succeed, then we can alloc the memory 939 * (expensive operation) needed to copy the data to kernel. Then we do 940 * the copying without checking the user space area 941 * (__copy_from_user()). 942 * 943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 944 * it. 945 * 946 * sk The sk of the socket 947 * addrs The pointer to the addresses in user land 948 * addrssize Size of the addrs buffer 949 * op Operation to perform (add or remove, see the flags of 950 * sctp_bindx) 951 * 952 * Returns 0 if ok, <0 errno code on error. 953 */ 954 static int sctp_setsockopt_bindx(struct sock *sk, 955 struct sockaddr __user *addrs, 956 int addrs_size, int op) 957 { 958 struct sockaddr *kaddrs; 959 int err; 960 int addrcnt = 0; 961 int walk_size = 0; 962 struct sockaddr *sa_addr; 963 void *addr_buf; 964 struct sctp_af *af; 965 966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 967 __func__, sk, addrs, addrs_size, op); 968 969 if (unlikely(addrs_size <= 0)) 970 return -EINVAL; 971 972 /* Check the user passed a healthy pointer. */ 973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 974 return -EFAULT; 975 976 /* Alloc space for the address array in kernel memory. */ 977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 978 if (unlikely(!kaddrs)) 979 return -ENOMEM; 980 981 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 982 kfree(kaddrs); 983 return -EFAULT; 984 } 985 986 /* Walk through the addrs buffer and count the number of addresses. */ 987 addr_buf = kaddrs; 988 while (walk_size < addrs_size) { 989 if (walk_size + sizeof(sa_family_t) > addrs_size) { 990 kfree(kaddrs); 991 return -EINVAL; 992 } 993 994 sa_addr = addr_buf; 995 af = sctp_get_af_specific(sa_addr->sa_family); 996 997 /* If the address family is not supported or if this address 998 * causes the address buffer to overflow return EINVAL. 999 */ 1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1001 kfree(kaddrs); 1002 return -EINVAL; 1003 } 1004 addrcnt++; 1005 addr_buf += af->sockaddr_len; 1006 walk_size += af->sockaddr_len; 1007 } 1008 1009 /* Do the work. */ 1010 switch (op) { 1011 case SCTP_BINDX_ADD_ADDR: 1012 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1013 if (err) 1014 goto out; 1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1016 break; 1017 1018 case SCTP_BINDX_REM_ADDR: 1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1020 if (err) 1021 goto out; 1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1023 break; 1024 1025 default: 1026 err = -EINVAL; 1027 break; 1028 } 1029 1030 out: 1031 kfree(kaddrs); 1032 1033 return err; 1034 } 1035 1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1037 * 1038 * Common routine for handling connect() and sctp_connectx(). 1039 * Connect will come in with just a single address. 1040 */ 1041 static int __sctp_connect(struct sock *sk, 1042 struct sockaddr *kaddrs, 1043 int addrs_size, 1044 sctp_assoc_t *assoc_id) 1045 { 1046 struct net *net = sock_net(sk); 1047 struct sctp_sock *sp; 1048 struct sctp_endpoint *ep; 1049 struct sctp_association *asoc = NULL; 1050 struct sctp_association *asoc2; 1051 struct sctp_transport *transport; 1052 union sctp_addr to; 1053 sctp_scope_t scope; 1054 long timeo; 1055 int err = 0; 1056 int addrcnt = 0; 1057 int walk_size = 0; 1058 union sctp_addr *sa_addr = NULL; 1059 void *addr_buf; 1060 unsigned short port; 1061 unsigned int f_flags = 0; 1062 1063 sp = sctp_sk(sk); 1064 ep = sp->ep; 1065 1066 /* connect() cannot be done on a socket that is already in ESTABLISHED 1067 * state - UDP-style peeled off socket or a TCP-style socket that 1068 * is already connected. 1069 * It cannot be done even on a TCP-style listening socket. 1070 */ 1071 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1073 err = -EISCONN; 1074 goto out_free; 1075 } 1076 1077 /* Walk through the addrs buffer and count the number of addresses. */ 1078 addr_buf = kaddrs; 1079 while (walk_size < addrs_size) { 1080 struct sctp_af *af; 1081 1082 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1083 err = -EINVAL; 1084 goto out_free; 1085 } 1086 1087 sa_addr = addr_buf; 1088 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1089 1090 /* If the address family is not supported or if this address 1091 * causes the address buffer to overflow return EINVAL. 1092 */ 1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1094 err = -EINVAL; 1095 goto out_free; 1096 } 1097 1098 port = ntohs(sa_addr->v4.sin_port); 1099 1100 /* Save current address so we can work with it */ 1101 memcpy(&to, sa_addr, af->sockaddr_len); 1102 1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1104 if (err) 1105 goto out_free; 1106 1107 /* Make sure the destination port is correctly set 1108 * in all addresses. 1109 */ 1110 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1111 err = -EINVAL; 1112 goto out_free; 1113 } 1114 1115 /* Check if there already is a matching association on the 1116 * endpoint (other than the one created here). 1117 */ 1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1119 if (asoc2 && asoc2 != asoc) { 1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1121 err = -EISCONN; 1122 else 1123 err = -EALREADY; 1124 goto out_free; 1125 } 1126 1127 /* If we could not find a matching association on the endpoint, 1128 * make sure that there is no peeled-off association matching 1129 * the peer address even on another socket. 1130 */ 1131 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1132 err = -EADDRNOTAVAIL; 1133 goto out_free; 1134 } 1135 1136 if (!asoc) { 1137 /* If a bind() or sctp_bindx() is not called prior to 1138 * an sctp_connectx() call, the system picks an 1139 * ephemeral port and will choose an address set 1140 * equivalent to binding with a wildcard address. 1141 */ 1142 if (!ep->base.bind_addr.port) { 1143 if (sctp_autobind(sk)) { 1144 err = -EAGAIN; 1145 goto out_free; 1146 } 1147 } else { 1148 /* 1149 * If an unprivileged user inherits a 1-many 1150 * style socket with open associations on a 1151 * privileged port, it MAY be permitted to 1152 * accept new associations, but it SHOULD NOT 1153 * be permitted to open new associations. 1154 */ 1155 if (ep->base.bind_addr.port < PROT_SOCK && 1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1157 err = -EACCES; 1158 goto out_free; 1159 } 1160 } 1161 1162 scope = sctp_scope(&to); 1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1164 if (!asoc) { 1165 err = -ENOMEM; 1166 goto out_free; 1167 } 1168 1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1170 GFP_KERNEL); 1171 if (err < 0) { 1172 goto out_free; 1173 } 1174 1175 } 1176 1177 /* Prime the peer's transport structures. */ 1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1179 SCTP_UNKNOWN); 1180 if (!transport) { 1181 err = -ENOMEM; 1182 goto out_free; 1183 } 1184 1185 addrcnt++; 1186 addr_buf += af->sockaddr_len; 1187 walk_size += af->sockaddr_len; 1188 } 1189 1190 /* In case the user of sctp_connectx() wants an association 1191 * id back, assign one now. 1192 */ 1193 if (assoc_id) { 1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1195 if (err < 0) 1196 goto out_free; 1197 } 1198 1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1200 if (err < 0) { 1201 goto out_free; 1202 } 1203 1204 /* Initialize sk's dport and daddr for getpeername() */ 1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1206 sp->pf->to_sk_daddr(sa_addr, sk); 1207 sk->sk_err = 0; 1208 1209 /* in-kernel sockets don't generally have a file allocated to them 1210 * if all they do is call sock_create_kern(). 1211 */ 1212 if (sk->sk_socket->file) 1213 f_flags = sk->sk_socket->file->f_flags; 1214 1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1216 1217 if (assoc_id) 1218 *assoc_id = asoc->assoc_id; 1219 err = sctp_wait_for_connect(asoc, &timeo); 1220 /* Note: the asoc may be freed after the return of 1221 * sctp_wait_for_connect. 1222 */ 1223 1224 /* Don't free association on exit. */ 1225 asoc = NULL; 1226 1227 out_free: 1228 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1229 __func__, asoc, kaddrs, err); 1230 1231 if (asoc) { 1232 /* sctp_primitive_ASSOCIATE may have added this association 1233 * To the hash table, try to unhash it, just in case, its a noop 1234 * if it wasn't hashed so we're safe 1235 */ 1236 sctp_association_free(asoc); 1237 } 1238 return err; 1239 } 1240 1241 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1242 * 1243 * API 8.9 1244 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1245 * sctp_assoc_t *asoc); 1246 * 1247 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1248 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1249 * or IPv6 addresses. 1250 * 1251 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1252 * Section 3.1.2 for this usage. 1253 * 1254 * addrs is a pointer to an array of one or more socket addresses. Each 1255 * address is contained in its appropriate structure (i.e. struct 1256 * sockaddr_in or struct sockaddr_in6) the family of the address type 1257 * must be used to distengish the address length (note that this 1258 * representation is termed a "packed array" of addresses). The caller 1259 * specifies the number of addresses in the array with addrcnt. 1260 * 1261 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1262 * the association id of the new association. On failure, sctp_connectx() 1263 * returns -1, and sets errno to the appropriate error code. The assoc_id 1264 * is not touched by the kernel. 1265 * 1266 * For SCTP, the port given in each socket address must be the same, or 1267 * sctp_connectx() will fail, setting errno to EINVAL. 1268 * 1269 * An application can use sctp_connectx to initiate an association with 1270 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1271 * allows a caller to specify multiple addresses at which a peer can be 1272 * reached. The way the SCTP stack uses the list of addresses to set up 1273 * the association is implementation dependent. This function only 1274 * specifies that the stack will try to make use of all the addresses in 1275 * the list when needed. 1276 * 1277 * Note that the list of addresses passed in is only used for setting up 1278 * the association. It does not necessarily equal the set of addresses 1279 * the peer uses for the resulting association. If the caller wants to 1280 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1281 * retrieve them after the association has been set up. 1282 * 1283 * Basically do nothing but copying the addresses from user to kernel 1284 * land and invoking either sctp_connectx(). This is used for tunneling 1285 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1286 * 1287 * We don't use copy_from_user() for optimization: we first do the 1288 * sanity checks (buffer size -fast- and access check-healthy 1289 * pointer); if all of those succeed, then we can alloc the memory 1290 * (expensive operation) needed to copy the data to kernel. Then we do 1291 * the copying without checking the user space area 1292 * (__copy_from_user()). 1293 * 1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1295 * it. 1296 * 1297 * sk The sk of the socket 1298 * addrs The pointer to the addresses in user land 1299 * addrssize Size of the addrs buffer 1300 * 1301 * Returns >=0 if ok, <0 errno code on error. 1302 */ 1303 static int __sctp_setsockopt_connectx(struct sock *sk, 1304 struct sockaddr __user *addrs, 1305 int addrs_size, 1306 sctp_assoc_t *assoc_id) 1307 { 1308 struct sockaddr *kaddrs; 1309 gfp_t gfp = GFP_KERNEL; 1310 int err = 0; 1311 1312 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1313 __func__, sk, addrs, addrs_size); 1314 1315 if (unlikely(addrs_size <= 0)) 1316 return -EINVAL; 1317 1318 /* Check the user passed a healthy pointer. */ 1319 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1320 return -EFAULT; 1321 1322 /* Alloc space for the address array in kernel memory. */ 1323 if (sk->sk_socket->file) 1324 gfp = GFP_USER | __GFP_NOWARN; 1325 kaddrs = kmalloc(addrs_size, gfp); 1326 if (unlikely(!kaddrs)) 1327 return -ENOMEM; 1328 1329 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1330 err = -EFAULT; 1331 } else { 1332 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1333 } 1334 1335 kfree(kaddrs); 1336 1337 return err; 1338 } 1339 1340 /* 1341 * This is an older interface. It's kept for backward compatibility 1342 * to the option that doesn't provide association id. 1343 */ 1344 static int sctp_setsockopt_connectx_old(struct sock *sk, 1345 struct sockaddr __user *addrs, 1346 int addrs_size) 1347 { 1348 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1349 } 1350 1351 /* 1352 * New interface for the API. The since the API is done with a socket 1353 * option, to make it simple we feed back the association id is as a return 1354 * indication to the call. Error is always negative and association id is 1355 * always positive. 1356 */ 1357 static int sctp_setsockopt_connectx(struct sock *sk, 1358 struct sockaddr __user *addrs, 1359 int addrs_size) 1360 { 1361 sctp_assoc_t assoc_id = 0; 1362 int err = 0; 1363 1364 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1365 1366 if (err) 1367 return err; 1368 else 1369 return assoc_id; 1370 } 1371 1372 /* 1373 * New (hopefully final) interface for the API. 1374 * We use the sctp_getaddrs_old structure so that use-space library 1375 * can avoid any unnecessary allocations. The only different part 1376 * is that we store the actual length of the address buffer into the 1377 * addrs_num structure member. That way we can re-use the existing 1378 * code. 1379 */ 1380 #ifdef CONFIG_COMPAT 1381 struct compat_sctp_getaddrs_old { 1382 sctp_assoc_t assoc_id; 1383 s32 addr_num; 1384 compat_uptr_t addrs; /* struct sockaddr * */ 1385 }; 1386 #endif 1387 1388 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1389 char __user *optval, 1390 int __user *optlen) 1391 { 1392 struct sctp_getaddrs_old param; 1393 sctp_assoc_t assoc_id = 0; 1394 int err = 0; 1395 1396 #ifdef CONFIG_COMPAT 1397 if (in_compat_syscall()) { 1398 struct compat_sctp_getaddrs_old param32; 1399 1400 if (len < sizeof(param32)) 1401 return -EINVAL; 1402 if (copy_from_user(¶m32, optval, sizeof(param32))) 1403 return -EFAULT; 1404 1405 param.assoc_id = param32.assoc_id; 1406 param.addr_num = param32.addr_num; 1407 param.addrs = compat_ptr(param32.addrs); 1408 } else 1409 #endif 1410 { 1411 if (len < sizeof(param)) 1412 return -EINVAL; 1413 if (copy_from_user(¶m, optval, sizeof(param))) 1414 return -EFAULT; 1415 } 1416 1417 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1418 param.addrs, param.addr_num, 1419 &assoc_id); 1420 if (err == 0 || err == -EINPROGRESS) { 1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1422 return -EFAULT; 1423 if (put_user(sizeof(assoc_id), optlen)) 1424 return -EFAULT; 1425 } 1426 1427 return err; 1428 } 1429 1430 /* API 3.1.4 close() - UDP Style Syntax 1431 * Applications use close() to perform graceful shutdown (as described in 1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1433 * by a UDP-style socket. 1434 * 1435 * The syntax is 1436 * 1437 * ret = close(int sd); 1438 * 1439 * sd - the socket descriptor of the associations to be closed. 1440 * 1441 * To gracefully shutdown a specific association represented by the 1442 * UDP-style socket, an application should use the sendmsg() call, 1443 * passing no user data, but including the appropriate flag in the 1444 * ancillary data (see Section xxxx). 1445 * 1446 * If sd in the close() call is a branched-off socket representing only 1447 * one association, the shutdown is performed on that association only. 1448 * 1449 * 4.1.6 close() - TCP Style Syntax 1450 * 1451 * Applications use close() to gracefully close down an association. 1452 * 1453 * The syntax is: 1454 * 1455 * int close(int sd); 1456 * 1457 * sd - the socket descriptor of the association to be closed. 1458 * 1459 * After an application calls close() on a socket descriptor, no further 1460 * socket operations will succeed on that descriptor. 1461 * 1462 * API 7.1.4 SO_LINGER 1463 * 1464 * An application using the TCP-style socket can use this option to 1465 * perform the SCTP ABORT primitive. The linger option structure is: 1466 * 1467 * struct linger { 1468 * int l_onoff; // option on/off 1469 * int l_linger; // linger time 1470 * }; 1471 * 1472 * To enable the option, set l_onoff to 1. If the l_linger value is set 1473 * to 0, calling close() is the same as the ABORT primitive. If the 1474 * value is set to a negative value, the setsockopt() call will return 1475 * an error. If the value is set to a positive value linger_time, the 1476 * close() can be blocked for at most linger_time ms. If the graceful 1477 * shutdown phase does not finish during this period, close() will 1478 * return but the graceful shutdown phase continues in the system. 1479 */ 1480 static void sctp_close(struct sock *sk, long timeout) 1481 { 1482 struct net *net = sock_net(sk); 1483 struct sctp_endpoint *ep; 1484 struct sctp_association *asoc; 1485 struct list_head *pos, *temp; 1486 unsigned int data_was_unread; 1487 1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1489 1490 lock_sock(sk); 1491 sk->sk_shutdown = SHUTDOWN_MASK; 1492 sk->sk_state = SCTP_SS_CLOSING; 1493 1494 ep = sctp_sk(sk)->ep; 1495 1496 /* Clean up any skbs sitting on the receive queue. */ 1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1499 1500 /* Walk all associations on an endpoint. */ 1501 list_for_each_safe(pos, temp, &ep->asocs) { 1502 asoc = list_entry(pos, struct sctp_association, asocs); 1503 1504 if (sctp_style(sk, TCP)) { 1505 /* A closed association can still be in the list if 1506 * it belongs to a TCP-style listening socket that is 1507 * not yet accepted. If so, free it. If not, send an 1508 * ABORT or SHUTDOWN based on the linger options. 1509 */ 1510 if (sctp_state(asoc, CLOSED)) { 1511 sctp_association_free(asoc); 1512 continue; 1513 } 1514 } 1515 1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1517 !skb_queue_empty(&asoc->ulpq.reasm) || 1518 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1519 struct sctp_chunk *chunk; 1520 1521 chunk = sctp_make_abort_user(asoc, NULL, 0); 1522 sctp_primitive_ABORT(net, asoc, chunk); 1523 } else 1524 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1525 } 1526 1527 /* On a TCP-style socket, block for at most linger_time if set. */ 1528 if (sctp_style(sk, TCP) && timeout) 1529 sctp_wait_for_close(sk, timeout); 1530 1531 /* This will run the backlog queue. */ 1532 release_sock(sk); 1533 1534 /* Supposedly, no process has access to the socket, but 1535 * the net layers still may. 1536 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1537 * held and that should be grabbed before socket lock. 1538 */ 1539 spin_lock_bh(&net->sctp.addr_wq_lock); 1540 bh_lock_sock(sk); 1541 1542 /* Hold the sock, since sk_common_release() will put sock_put() 1543 * and we have just a little more cleanup. 1544 */ 1545 sock_hold(sk); 1546 sk_common_release(sk); 1547 1548 bh_unlock_sock(sk); 1549 spin_unlock_bh(&net->sctp.addr_wq_lock); 1550 1551 sock_put(sk); 1552 1553 SCTP_DBG_OBJCNT_DEC(sock); 1554 } 1555 1556 /* Handle EPIPE error. */ 1557 static int sctp_error(struct sock *sk, int flags, int err) 1558 { 1559 if (err == -EPIPE) 1560 err = sock_error(sk) ? : -EPIPE; 1561 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1562 send_sig(SIGPIPE, current, 0); 1563 return err; 1564 } 1565 1566 /* API 3.1.3 sendmsg() - UDP Style Syntax 1567 * 1568 * An application uses sendmsg() and recvmsg() calls to transmit data to 1569 * and receive data from its peer. 1570 * 1571 * ssize_t sendmsg(int socket, const struct msghdr *message, 1572 * int flags); 1573 * 1574 * socket - the socket descriptor of the endpoint. 1575 * message - pointer to the msghdr structure which contains a single 1576 * user message and possibly some ancillary data. 1577 * 1578 * See Section 5 for complete description of the data 1579 * structures. 1580 * 1581 * flags - flags sent or received with the user message, see Section 1582 * 5 for complete description of the flags. 1583 * 1584 * Note: This function could use a rewrite especially when explicit 1585 * connect support comes in. 1586 */ 1587 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1588 1589 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1590 1591 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1592 { 1593 struct net *net = sock_net(sk); 1594 struct sctp_sock *sp; 1595 struct sctp_endpoint *ep; 1596 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1597 struct sctp_transport *transport, *chunk_tp; 1598 struct sctp_chunk *chunk; 1599 union sctp_addr to; 1600 struct sockaddr *msg_name = NULL; 1601 struct sctp_sndrcvinfo default_sinfo; 1602 struct sctp_sndrcvinfo *sinfo; 1603 struct sctp_initmsg *sinit; 1604 sctp_assoc_t associd = 0; 1605 sctp_cmsgs_t cmsgs = { NULL }; 1606 sctp_scope_t scope; 1607 bool fill_sinfo_ttl = false, wait_connect = false; 1608 struct sctp_datamsg *datamsg; 1609 int msg_flags = msg->msg_flags; 1610 __u16 sinfo_flags = 0; 1611 long timeo; 1612 int err; 1613 1614 err = 0; 1615 sp = sctp_sk(sk); 1616 ep = sp->ep; 1617 1618 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1619 msg, msg_len, ep); 1620 1621 /* We cannot send a message over a TCP-style listening socket. */ 1622 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1623 err = -EPIPE; 1624 goto out_nounlock; 1625 } 1626 1627 /* Parse out the SCTP CMSGs. */ 1628 err = sctp_msghdr_parse(msg, &cmsgs); 1629 if (err) { 1630 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1631 goto out_nounlock; 1632 } 1633 1634 /* Fetch the destination address for this packet. This 1635 * address only selects the association--it is not necessarily 1636 * the address we will send to. 1637 * For a peeled-off socket, msg_name is ignored. 1638 */ 1639 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1640 int msg_namelen = msg->msg_namelen; 1641 1642 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1643 msg_namelen); 1644 if (err) 1645 return err; 1646 1647 if (msg_namelen > sizeof(to)) 1648 msg_namelen = sizeof(to); 1649 memcpy(&to, msg->msg_name, msg_namelen); 1650 msg_name = msg->msg_name; 1651 } 1652 1653 sinit = cmsgs.init; 1654 if (cmsgs.sinfo != NULL) { 1655 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1656 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1657 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1658 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1659 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1660 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1661 1662 sinfo = &default_sinfo; 1663 fill_sinfo_ttl = true; 1664 } else { 1665 sinfo = cmsgs.srinfo; 1666 } 1667 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1668 if (sinfo) { 1669 sinfo_flags = sinfo->sinfo_flags; 1670 associd = sinfo->sinfo_assoc_id; 1671 } 1672 1673 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1674 msg_len, sinfo_flags); 1675 1676 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1677 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1678 err = -EINVAL; 1679 goto out_nounlock; 1680 } 1681 1682 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1683 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1684 * If SCTP_ABORT is set, the message length could be non zero with 1685 * the msg_iov set to the user abort reason. 1686 */ 1687 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1688 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1689 err = -EINVAL; 1690 goto out_nounlock; 1691 } 1692 1693 /* If SCTP_ADDR_OVER is set, there must be an address 1694 * specified in msg_name. 1695 */ 1696 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1697 err = -EINVAL; 1698 goto out_nounlock; 1699 } 1700 1701 transport = NULL; 1702 1703 pr_debug("%s: about to look up association\n", __func__); 1704 1705 lock_sock(sk); 1706 1707 /* If a msg_name has been specified, assume this is to be used. */ 1708 if (msg_name) { 1709 /* Look for a matching association on the endpoint. */ 1710 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1711 1712 /* If we could not find a matching association on the 1713 * endpoint, make sure that it is not a TCP-style 1714 * socket that already has an association or there is 1715 * no peeled-off association on another socket. 1716 */ 1717 if (!asoc && 1718 ((sctp_style(sk, TCP) && 1719 (sctp_sstate(sk, ESTABLISHED) || 1720 sctp_sstate(sk, CLOSING))) || 1721 sctp_endpoint_is_peeled_off(ep, &to))) { 1722 err = -EADDRNOTAVAIL; 1723 goto out_unlock; 1724 } 1725 } else { 1726 asoc = sctp_id2assoc(sk, associd); 1727 if (!asoc) { 1728 err = -EPIPE; 1729 goto out_unlock; 1730 } 1731 } 1732 1733 if (asoc) { 1734 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1735 1736 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1737 * socket that has an association in CLOSED state. This can 1738 * happen when an accepted socket has an association that is 1739 * already CLOSED. 1740 */ 1741 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1742 err = -EPIPE; 1743 goto out_unlock; 1744 } 1745 1746 if (sinfo_flags & SCTP_EOF) { 1747 pr_debug("%s: shutting down association:%p\n", 1748 __func__, asoc); 1749 1750 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1751 err = 0; 1752 goto out_unlock; 1753 } 1754 if (sinfo_flags & SCTP_ABORT) { 1755 1756 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1757 if (!chunk) { 1758 err = -ENOMEM; 1759 goto out_unlock; 1760 } 1761 1762 pr_debug("%s: aborting association:%p\n", 1763 __func__, asoc); 1764 1765 sctp_primitive_ABORT(net, asoc, chunk); 1766 err = 0; 1767 goto out_unlock; 1768 } 1769 } 1770 1771 /* Do we need to create the association? */ 1772 if (!asoc) { 1773 pr_debug("%s: there is no association yet\n", __func__); 1774 1775 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1776 err = -EINVAL; 1777 goto out_unlock; 1778 } 1779 1780 /* Check for invalid stream against the stream counts, 1781 * either the default or the user specified stream counts. 1782 */ 1783 if (sinfo) { 1784 if (!sinit || !sinit->sinit_num_ostreams) { 1785 /* Check against the defaults. */ 1786 if (sinfo->sinfo_stream >= 1787 sp->initmsg.sinit_num_ostreams) { 1788 err = -EINVAL; 1789 goto out_unlock; 1790 } 1791 } else { 1792 /* Check against the requested. */ 1793 if (sinfo->sinfo_stream >= 1794 sinit->sinit_num_ostreams) { 1795 err = -EINVAL; 1796 goto out_unlock; 1797 } 1798 } 1799 } 1800 1801 /* 1802 * API 3.1.2 bind() - UDP Style Syntax 1803 * If a bind() or sctp_bindx() is not called prior to a 1804 * sendmsg() call that initiates a new association, the 1805 * system picks an ephemeral port and will choose an address 1806 * set equivalent to binding with a wildcard address. 1807 */ 1808 if (!ep->base.bind_addr.port) { 1809 if (sctp_autobind(sk)) { 1810 err = -EAGAIN; 1811 goto out_unlock; 1812 } 1813 } else { 1814 /* 1815 * If an unprivileged user inherits a one-to-many 1816 * style socket with open associations on a privileged 1817 * port, it MAY be permitted to accept new associations, 1818 * but it SHOULD NOT be permitted to open new 1819 * associations. 1820 */ 1821 if (ep->base.bind_addr.port < PROT_SOCK && 1822 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1823 err = -EACCES; 1824 goto out_unlock; 1825 } 1826 } 1827 1828 scope = sctp_scope(&to); 1829 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1830 if (!new_asoc) { 1831 err = -ENOMEM; 1832 goto out_unlock; 1833 } 1834 asoc = new_asoc; 1835 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1836 if (err < 0) { 1837 err = -ENOMEM; 1838 goto out_free; 1839 } 1840 1841 /* If the SCTP_INIT ancillary data is specified, set all 1842 * the association init values accordingly. 1843 */ 1844 if (sinit) { 1845 if (sinit->sinit_num_ostreams) { 1846 asoc->c.sinit_num_ostreams = 1847 sinit->sinit_num_ostreams; 1848 } 1849 if (sinit->sinit_max_instreams) { 1850 asoc->c.sinit_max_instreams = 1851 sinit->sinit_max_instreams; 1852 } 1853 if (sinit->sinit_max_attempts) { 1854 asoc->max_init_attempts 1855 = sinit->sinit_max_attempts; 1856 } 1857 if (sinit->sinit_max_init_timeo) { 1858 asoc->max_init_timeo = 1859 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1860 } 1861 } 1862 1863 /* Prime the peer's transport structures. */ 1864 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1865 if (!transport) { 1866 err = -ENOMEM; 1867 goto out_free; 1868 } 1869 } 1870 1871 /* ASSERT: we have a valid association at this point. */ 1872 pr_debug("%s: we have a valid association\n", __func__); 1873 1874 if (!sinfo) { 1875 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1876 * one with some defaults. 1877 */ 1878 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1879 default_sinfo.sinfo_stream = asoc->default_stream; 1880 default_sinfo.sinfo_flags = asoc->default_flags; 1881 default_sinfo.sinfo_ppid = asoc->default_ppid; 1882 default_sinfo.sinfo_context = asoc->default_context; 1883 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1884 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1885 1886 sinfo = &default_sinfo; 1887 } else if (fill_sinfo_ttl) { 1888 /* In case SNDINFO was specified, we still need to fill 1889 * it with a default ttl from the assoc here. 1890 */ 1891 sinfo->sinfo_timetolive = asoc->default_timetolive; 1892 } 1893 1894 /* API 7.1.7, the sndbuf size per association bounds the 1895 * maximum size of data that can be sent in a single send call. 1896 */ 1897 if (msg_len > sk->sk_sndbuf) { 1898 err = -EMSGSIZE; 1899 goto out_free; 1900 } 1901 1902 if (asoc->pmtu_pending) 1903 sctp_assoc_pending_pmtu(sk, asoc); 1904 1905 /* If fragmentation is disabled and the message length exceeds the 1906 * association fragmentation point, return EMSGSIZE. The I-D 1907 * does not specify what this error is, but this looks like 1908 * a great fit. 1909 */ 1910 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1911 err = -EMSGSIZE; 1912 goto out_free; 1913 } 1914 1915 /* Check for invalid stream. */ 1916 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1917 err = -EINVAL; 1918 goto out_free; 1919 } 1920 1921 if (sctp_wspace(asoc) < msg_len) 1922 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1923 1924 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1925 if (!sctp_wspace(asoc)) { 1926 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1927 if (err) 1928 goto out_free; 1929 } 1930 1931 /* If an address is passed with the sendto/sendmsg call, it is used 1932 * to override the primary destination address in the TCP model, or 1933 * when SCTP_ADDR_OVER flag is set in the UDP model. 1934 */ 1935 if ((sctp_style(sk, TCP) && msg_name) || 1936 (sinfo_flags & SCTP_ADDR_OVER)) { 1937 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1938 if (!chunk_tp) { 1939 err = -EINVAL; 1940 goto out_free; 1941 } 1942 } else 1943 chunk_tp = NULL; 1944 1945 /* Auto-connect, if we aren't connected already. */ 1946 if (sctp_state(asoc, CLOSED)) { 1947 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1948 if (err < 0) 1949 goto out_free; 1950 1951 wait_connect = true; 1952 pr_debug("%s: we associated primitively\n", __func__); 1953 } 1954 1955 /* Break the message into multiple chunks of maximum size. */ 1956 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1957 if (IS_ERR(datamsg)) { 1958 err = PTR_ERR(datamsg); 1959 goto out_free; 1960 } 1961 1962 /* Now send the (possibly) fragmented message. */ 1963 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1964 sctp_chunk_hold(chunk); 1965 1966 /* Do accounting for the write space. */ 1967 sctp_set_owner_w(chunk); 1968 1969 chunk->transport = chunk_tp; 1970 } 1971 1972 /* Send it to the lower layers. Note: all chunks 1973 * must either fail or succeed. The lower layer 1974 * works that way today. Keep it that way or this 1975 * breaks. 1976 */ 1977 err = sctp_primitive_SEND(net, asoc, datamsg); 1978 /* Did the lower layer accept the chunk? */ 1979 if (err) { 1980 sctp_datamsg_free(datamsg); 1981 goto out_free; 1982 } 1983 1984 pr_debug("%s: we sent primitively\n", __func__); 1985 1986 sctp_datamsg_put(datamsg); 1987 err = msg_len; 1988 1989 if (unlikely(wait_connect)) { 1990 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1991 sctp_wait_for_connect(asoc, &timeo); 1992 } 1993 1994 /* If we are already past ASSOCIATE, the lower 1995 * layers are responsible for association cleanup. 1996 */ 1997 goto out_unlock; 1998 1999 out_free: 2000 if (new_asoc) 2001 sctp_association_free(asoc); 2002 out_unlock: 2003 release_sock(sk); 2004 2005 out_nounlock: 2006 return sctp_error(sk, msg_flags, err); 2007 2008 #if 0 2009 do_sock_err: 2010 if (msg_len) 2011 err = msg_len; 2012 else 2013 err = sock_error(sk); 2014 goto out; 2015 2016 do_interrupted: 2017 if (msg_len) 2018 err = msg_len; 2019 goto out; 2020 #endif /* 0 */ 2021 } 2022 2023 /* This is an extended version of skb_pull() that removes the data from the 2024 * start of a skb even when data is spread across the list of skb's in the 2025 * frag_list. len specifies the total amount of data that needs to be removed. 2026 * when 'len' bytes could be removed from the skb, it returns 0. 2027 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2028 * could not be removed. 2029 */ 2030 static int sctp_skb_pull(struct sk_buff *skb, int len) 2031 { 2032 struct sk_buff *list; 2033 int skb_len = skb_headlen(skb); 2034 int rlen; 2035 2036 if (len <= skb_len) { 2037 __skb_pull(skb, len); 2038 return 0; 2039 } 2040 len -= skb_len; 2041 __skb_pull(skb, skb_len); 2042 2043 skb_walk_frags(skb, list) { 2044 rlen = sctp_skb_pull(list, len); 2045 skb->len -= (len-rlen); 2046 skb->data_len -= (len-rlen); 2047 2048 if (!rlen) 2049 return 0; 2050 2051 len = rlen; 2052 } 2053 2054 return len; 2055 } 2056 2057 /* API 3.1.3 recvmsg() - UDP Style Syntax 2058 * 2059 * ssize_t recvmsg(int socket, struct msghdr *message, 2060 * int flags); 2061 * 2062 * socket - the socket descriptor of the endpoint. 2063 * message - pointer to the msghdr structure which contains a single 2064 * user message and possibly some ancillary data. 2065 * 2066 * See Section 5 for complete description of the data 2067 * structures. 2068 * 2069 * flags - flags sent or received with the user message, see Section 2070 * 5 for complete description of the flags. 2071 */ 2072 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2073 int noblock, int flags, int *addr_len) 2074 { 2075 struct sctp_ulpevent *event = NULL; 2076 struct sctp_sock *sp = sctp_sk(sk); 2077 struct sk_buff *skb, *head_skb; 2078 int copied; 2079 int err = 0; 2080 int skb_len; 2081 2082 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2083 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2084 addr_len); 2085 2086 lock_sock(sk); 2087 2088 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2089 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2090 err = -ENOTCONN; 2091 goto out; 2092 } 2093 2094 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2095 if (!skb) 2096 goto out; 2097 2098 /* Get the total length of the skb including any skb's in the 2099 * frag_list. 2100 */ 2101 skb_len = skb->len; 2102 2103 copied = skb_len; 2104 if (copied > len) 2105 copied = len; 2106 2107 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2108 2109 event = sctp_skb2event(skb); 2110 2111 if (err) 2112 goto out_free; 2113 2114 if (event->chunk && event->chunk->head_skb) 2115 head_skb = event->chunk->head_skb; 2116 else 2117 head_skb = skb; 2118 sock_recv_ts_and_drops(msg, sk, head_skb); 2119 if (sctp_ulpevent_is_notification(event)) { 2120 msg->msg_flags |= MSG_NOTIFICATION; 2121 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2122 } else { 2123 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2124 } 2125 2126 /* Check if we allow SCTP_NXTINFO. */ 2127 if (sp->recvnxtinfo) 2128 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2129 /* Check if we allow SCTP_RCVINFO. */ 2130 if (sp->recvrcvinfo) 2131 sctp_ulpevent_read_rcvinfo(event, msg); 2132 /* Check if we allow SCTP_SNDRCVINFO. */ 2133 if (sp->subscribe.sctp_data_io_event) 2134 sctp_ulpevent_read_sndrcvinfo(event, msg); 2135 2136 err = copied; 2137 2138 /* If skb's length exceeds the user's buffer, update the skb and 2139 * push it back to the receive_queue so that the next call to 2140 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2141 */ 2142 if (skb_len > copied) { 2143 msg->msg_flags &= ~MSG_EOR; 2144 if (flags & MSG_PEEK) 2145 goto out_free; 2146 sctp_skb_pull(skb, copied); 2147 skb_queue_head(&sk->sk_receive_queue, skb); 2148 2149 /* When only partial message is copied to the user, increase 2150 * rwnd by that amount. If all the data in the skb is read, 2151 * rwnd is updated when the event is freed. 2152 */ 2153 if (!sctp_ulpevent_is_notification(event)) 2154 sctp_assoc_rwnd_increase(event->asoc, copied); 2155 goto out; 2156 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2157 (event->msg_flags & MSG_EOR)) 2158 msg->msg_flags |= MSG_EOR; 2159 else 2160 msg->msg_flags &= ~MSG_EOR; 2161 2162 out_free: 2163 if (flags & MSG_PEEK) { 2164 /* Release the skb reference acquired after peeking the skb in 2165 * sctp_skb_recv_datagram(). 2166 */ 2167 kfree_skb(skb); 2168 } else { 2169 /* Free the event which includes releasing the reference to 2170 * the owner of the skb, freeing the skb and updating the 2171 * rwnd. 2172 */ 2173 sctp_ulpevent_free(event); 2174 } 2175 out: 2176 release_sock(sk); 2177 return err; 2178 } 2179 2180 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2181 * 2182 * This option is a on/off flag. If enabled no SCTP message 2183 * fragmentation will be performed. Instead if a message being sent 2184 * exceeds the current PMTU size, the message will NOT be sent and 2185 * instead a error will be indicated to the user. 2186 */ 2187 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2188 char __user *optval, 2189 unsigned int optlen) 2190 { 2191 int val; 2192 2193 if (optlen < sizeof(int)) 2194 return -EINVAL; 2195 2196 if (get_user(val, (int __user *)optval)) 2197 return -EFAULT; 2198 2199 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2200 2201 return 0; 2202 } 2203 2204 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2205 unsigned int optlen) 2206 { 2207 struct sctp_association *asoc; 2208 struct sctp_ulpevent *event; 2209 2210 if (optlen > sizeof(struct sctp_event_subscribe)) 2211 return -EINVAL; 2212 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2213 return -EFAULT; 2214 2215 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2216 * if there is no data to be sent or retransmit, the stack will 2217 * immediately send up this notification. 2218 */ 2219 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2220 &sctp_sk(sk)->subscribe)) { 2221 asoc = sctp_id2assoc(sk, 0); 2222 2223 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2224 event = sctp_ulpevent_make_sender_dry_event(asoc, 2225 GFP_ATOMIC); 2226 if (!event) 2227 return -ENOMEM; 2228 2229 sctp_ulpq_tail_event(&asoc->ulpq, event); 2230 } 2231 } 2232 2233 return 0; 2234 } 2235 2236 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2237 * 2238 * This socket option is applicable to the UDP-style socket only. When 2239 * set it will cause associations that are idle for more than the 2240 * specified number of seconds to automatically close. An association 2241 * being idle is defined an association that has NOT sent or received 2242 * user data. The special value of '0' indicates that no automatic 2243 * close of any associations should be performed. The option expects an 2244 * integer defining the number of seconds of idle time before an 2245 * association is closed. 2246 */ 2247 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2248 unsigned int optlen) 2249 { 2250 struct sctp_sock *sp = sctp_sk(sk); 2251 struct net *net = sock_net(sk); 2252 2253 /* Applicable to UDP-style socket only */ 2254 if (sctp_style(sk, TCP)) 2255 return -EOPNOTSUPP; 2256 if (optlen != sizeof(int)) 2257 return -EINVAL; 2258 if (copy_from_user(&sp->autoclose, optval, optlen)) 2259 return -EFAULT; 2260 2261 if (sp->autoclose > net->sctp.max_autoclose) 2262 sp->autoclose = net->sctp.max_autoclose; 2263 2264 return 0; 2265 } 2266 2267 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2268 * 2269 * Applications can enable or disable heartbeats for any peer address of 2270 * an association, modify an address's heartbeat interval, force a 2271 * heartbeat to be sent immediately, and adjust the address's maximum 2272 * number of retransmissions sent before an address is considered 2273 * unreachable. The following structure is used to access and modify an 2274 * address's parameters: 2275 * 2276 * struct sctp_paddrparams { 2277 * sctp_assoc_t spp_assoc_id; 2278 * struct sockaddr_storage spp_address; 2279 * uint32_t spp_hbinterval; 2280 * uint16_t spp_pathmaxrxt; 2281 * uint32_t spp_pathmtu; 2282 * uint32_t spp_sackdelay; 2283 * uint32_t spp_flags; 2284 * }; 2285 * 2286 * spp_assoc_id - (one-to-many style socket) This is filled in the 2287 * application, and identifies the association for 2288 * this query. 2289 * spp_address - This specifies which address is of interest. 2290 * spp_hbinterval - This contains the value of the heartbeat interval, 2291 * in milliseconds. If a value of zero 2292 * is present in this field then no changes are to 2293 * be made to this parameter. 2294 * spp_pathmaxrxt - This contains the maximum number of 2295 * retransmissions before this address shall be 2296 * considered unreachable. If a value of zero 2297 * is present in this field then no changes are to 2298 * be made to this parameter. 2299 * spp_pathmtu - When Path MTU discovery is disabled the value 2300 * specified here will be the "fixed" path mtu. 2301 * Note that if the spp_address field is empty 2302 * then all associations on this address will 2303 * have this fixed path mtu set upon them. 2304 * 2305 * spp_sackdelay - When delayed sack is enabled, this value specifies 2306 * the number of milliseconds that sacks will be delayed 2307 * for. This value will apply to all addresses of an 2308 * association if the spp_address field is empty. Note 2309 * also, that if delayed sack is enabled and this 2310 * value is set to 0, no change is made to the last 2311 * recorded delayed sack timer value. 2312 * 2313 * spp_flags - These flags are used to control various features 2314 * on an association. The flag field may contain 2315 * zero or more of the following options. 2316 * 2317 * SPP_HB_ENABLE - Enable heartbeats on the 2318 * specified address. Note that if the address 2319 * field is empty all addresses for the association 2320 * have heartbeats enabled upon them. 2321 * 2322 * SPP_HB_DISABLE - Disable heartbeats on the 2323 * speicifed address. Note that if the address 2324 * field is empty all addresses for the association 2325 * will have their heartbeats disabled. Note also 2326 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2327 * mutually exclusive, only one of these two should 2328 * be specified. Enabling both fields will have 2329 * undetermined results. 2330 * 2331 * SPP_HB_DEMAND - Request a user initiated heartbeat 2332 * to be made immediately. 2333 * 2334 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2335 * heartbeat delayis to be set to the value of 0 2336 * milliseconds. 2337 * 2338 * SPP_PMTUD_ENABLE - This field will enable PMTU 2339 * discovery upon the specified address. Note that 2340 * if the address feild is empty then all addresses 2341 * on the association are effected. 2342 * 2343 * SPP_PMTUD_DISABLE - This field will disable PMTU 2344 * discovery upon the specified address. Note that 2345 * if the address feild is empty then all addresses 2346 * on the association are effected. Not also that 2347 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2348 * exclusive. Enabling both will have undetermined 2349 * results. 2350 * 2351 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2352 * on delayed sack. The time specified in spp_sackdelay 2353 * is used to specify the sack delay for this address. Note 2354 * that if spp_address is empty then all addresses will 2355 * enable delayed sack and take on the sack delay 2356 * value specified in spp_sackdelay. 2357 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2358 * off delayed sack. If the spp_address field is blank then 2359 * delayed sack is disabled for the entire association. Note 2360 * also that this field is mutually exclusive to 2361 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2362 * results. 2363 */ 2364 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2365 struct sctp_transport *trans, 2366 struct sctp_association *asoc, 2367 struct sctp_sock *sp, 2368 int hb_change, 2369 int pmtud_change, 2370 int sackdelay_change) 2371 { 2372 int error; 2373 2374 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2375 struct net *net = sock_net(trans->asoc->base.sk); 2376 2377 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2378 if (error) 2379 return error; 2380 } 2381 2382 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2383 * this field is ignored. Note also that a value of zero indicates 2384 * the current setting should be left unchanged. 2385 */ 2386 if (params->spp_flags & SPP_HB_ENABLE) { 2387 2388 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2389 * set. This lets us use 0 value when this flag 2390 * is set. 2391 */ 2392 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2393 params->spp_hbinterval = 0; 2394 2395 if (params->spp_hbinterval || 2396 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2397 if (trans) { 2398 trans->hbinterval = 2399 msecs_to_jiffies(params->spp_hbinterval); 2400 } else if (asoc) { 2401 asoc->hbinterval = 2402 msecs_to_jiffies(params->spp_hbinterval); 2403 } else { 2404 sp->hbinterval = params->spp_hbinterval; 2405 } 2406 } 2407 } 2408 2409 if (hb_change) { 2410 if (trans) { 2411 trans->param_flags = 2412 (trans->param_flags & ~SPP_HB) | hb_change; 2413 } else if (asoc) { 2414 asoc->param_flags = 2415 (asoc->param_flags & ~SPP_HB) | hb_change; 2416 } else { 2417 sp->param_flags = 2418 (sp->param_flags & ~SPP_HB) | hb_change; 2419 } 2420 } 2421 2422 /* When Path MTU discovery is disabled the value specified here will 2423 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2424 * include the flag SPP_PMTUD_DISABLE for this field to have any 2425 * effect). 2426 */ 2427 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2428 if (trans) { 2429 trans->pathmtu = params->spp_pathmtu; 2430 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2431 } else if (asoc) { 2432 asoc->pathmtu = params->spp_pathmtu; 2433 sctp_frag_point(asoc, params->spp_pathmtu); 2434 } else { 2435 sp->pathmtu = params->spp_pathmtu; 2436 } 2437 } 2438 2439 if (pmtud_change) { 2440 if (trans) { 2441 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2442 (params->spp_flags & SPP_PMTUD_ENABLE); 2443 trans->param_flags = 2444 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2445 if (update) { 2446 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2447 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2448 } 2449 } else if (asoc) { 2450 asoc->param_flags = 2451 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2452 } else { 2453 sp->param_flags = 2454 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2455 } 2456 } 2457 2458 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2459 * value of this field is ignored. Note also that a value of zero 2460 * indicates the current setting should be left unchanged. 2461 */ 2462 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2463 if (trans) { 2464 trans->sackdelay = 2465 msecs_to_jiffies(params->spp_sackdelay); 2466 } else if (asoc) { 2467 asoc->sackdelay = 2468 msecs_to_jiffies(params->spp_sackdelay); 2469 } else { 2470 sp->sackdelay = params->spp_sackdelay; 2471 } 2472 } 2473 2474 if (sackdelay_change) { 2475 if (trans) { 2476 trans->param_flags = 2477 (trans->param_flags & ~SPP_SACKDELAY) | 2478 sackdelay_change; 2479 } else if (asoc) { 2480 asoc->param_flags = 2481 (asoc->param_flags & ~SPP_SACKDELAY) | 2482 sackdelay_change; 2483 } else { 2484 sp->param_flags = 2485 (sp->param_flags & ~SPP_SACKDELAY) | 2486 sackdelay_change; 2487 } 2488 } 2489 2490 /* Note that a value of zero indicates the current setting should be 2491 left unchanged. 2492 */ 2493 if (params->spp_pathmaxrxt) { 2494 if (trans) { 2495 trans->pathmaxrxt = params->spp_pathmaxrxt; 2496 } else if (asoc) { 2497 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2498 } else { 2499 sp->pathmaxrxt = params->spp_pathmaxrxt; 2500 } 2501 } 2502 2503 return 0; 2504 } 2505 2506 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2507 char __user *optval, 2508 unsigned int optlen) 2509 { 2510 struct sctp_paddrparams params; 2511 struct sctp_transport *trans = NULL; 2512 struct sctp_association *asoc = NULL; 2513 struct sctp_sock *sp = sctp_sk(sk); 2514 int error; 2515 int hb_change, pmtud_change, sackdelay_change; 2516 2517 if (optlen != sizeof(struct sctp_paddrparams)) 2518 return -EINVAL; 2519 2520 if (copy_from_user(¶ms, optval, optlen)) 2521 return -EFAULT; 2522 2523 /* Validate flags and value parameters. */ 2524 hb_change = params.spp_flags & SPP_HB; 2525 pmtud_change = params.spp_flags & SPP_PMTUD; 2526 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2527 2528 if (hb_change == SPP_HB || 2529 pmtud_change == SPP_PMTUD || 2530 sackdelay_change == SPP_SACKDELAY || 2531 params.spp_sackdelay > 500 || 2532 (params.spp_pathmtu && 2533 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2534 return -EINVAL; 2535 2536 /* If an address other than INADDR_ANY is specified, and 2537 * no transport is found, then the request is invalid. 2538 */ 2539 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2540 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2541 params.spp_assoc_id); 2542 if (!trans) 2543 return -EINVAL; 2544 } 2545 2546 /* Get association, if assoc_id != 0 and the socket is a one 2547 * to many style socket, and an association was not found, then 2548 * the id was invalid. 2549 */ 2550 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2551 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2552 return -EINVAL; 2553 2554 /* Heartbeat demand can only be sent on a transport or 2555 * association, but not a socket. 2556 */ 2557 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2558 return -EINVAL; 2559 2560 /* Process parameters. */ 2561 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2562 hb_change, pmtud_change, 2563 sackdelay_change); 2564 2565 if (error) 2566 return error; 2567 2568 /* If changes are for association, also apply parameters to each 2569 * transport. 2570 */ 2571 if (!trans && asoc) { 2572 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2573 transports) { 2574 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2575 hb_change, pmtud_change, 2576 sackdelay_change); 2577 } 2578 } 2579 2580 return 0; 2581 } 2582 2583 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2584 { 2585 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2586 } 2587 2588 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2589 { 2590 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2591 } 2592 2593 /* 2594 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2595 * 2596 * This option will effect the way delayed acks are performed. This 2597 * option allows you to get or set the delayed ack time, in 2598 * milliseconds. It also allows changing the delayed ack frequency. 2599 * Changing the frequency to 1 disables the delayed sack algorithm. If 2600 * the assoc_id is 0, then this sets or gets the endpoints default 2601 * values. If the assoc_id field is non-zero, then the set or get 2602 * effects the specified association for the one to many model (the 2603 * assoc_id field is ignored by the one to one model). Note that if 2604 * sack_delay or sack_freq are 0 when setting this option, then the 2605 * current values will remain unchanged. 2606 * 2607 * struct sctp_sack_info { 2608 * sctp_assoc_t sack_assoc_id; 2609 * uint32_t sack_delay; 2610 * uint32_t sack_freq; 2611 * }; 2612 * 2613 * sack_assoc_id - This parameter, indicates which association the user 2614 * is performing an action upon. Note that if this field's value is 2615 * zero then the endpoints default value is changed (effecting future 2616 * associations only). 2617 * 2618 * sack_delay - This parameter contains the number of milliseconds that 2619 * the user is requesting the delayed ACK timer be set to. Note that 2620 * this value is defined in the standard to be between 200 and 500 2621 * milliseconds. 2622 * 2623 * sack_freq - This parameter contains the number of packets that must 2624 * be received before a sack is sent without waiting for the delay 2625 * timer to expire. The default value for this is 2, setting this 2626 * value to 1 will disable the delayed sack algorithm. 2627 */ 2628 2629 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2630 char __user *optval, unsigned int optlen) 2631 { 2632 struct sctp_sack_info params; 2633 struct sctp_transport *trans = NULL; 2634 struct sctp_association *asoc = NULL; 2635 struct sctp_sock *sp = sctp_sk(sk); 2636 2637 if (optlen == sizeof(struct sctp_sack_info)) { 2638 if (copy_from_user(¶ms, optval, optlen)) 2639 return -EFAULT; 2640 2641 if (params.sack_delay == 0 && params.sack_freq == 0) 2642 return 0; 2643 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2644 pr_warn_ratelimited(DEPRECATED 2645 "%s (pid %d) " 2646 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2647 "Use struct sctp_sack_info instead\n", 2648 current->comm, task_pid_nr(current)); 2649 if (copy_from_user(¶ms, optval, optlen)) 2650 return -EFAULT; 2651 2652 if (params.sack_delay == 0) 2653 params.sack_freq = 1; 2654 else 2655 params.sack_freq = 0; 2656 } else 2657 return -EINVAL; 2658 2659 /* Validate value parameter. */ 2660 if (params.sack_delay > 500) 2661 return -EINVAL; 2662 2663 /* Get association, if sack_assoc_id != 0 and the socket is a one 2664 * to many style socket, and an association was not found, then 2665 * the id was invalid. 2666 */ 2667 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2668 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2669 return -EINVAL; 2670 2671 if (params.sack_delay) { 2672 if (asoc) { 2673 asoc->sackdelay = 2674 msecs_to_jiffies(params.sack_delay); 2675 asoc->param_flags = 2676 sctp_spp_sackdelay_enable(asoc->param_flags); 2677 } else { 2678 sp->sackdelay = params.sack_delay; 2679 sp->param_flags = 2680 sctp_spp_sackdelay_enable(sp->param_flags); 2681 } 2682 } 2683 2684 if (params.sack_freq == 1) { 2685 if (asoc) { 2686 asoc->param_flags = 2687 sctp_spp_sackdelay_disable(asoc->param_flags); 2688 } else { 2689 sp->param_flags = 2690 sctp_spp_sackdelay_disable(sp->param_flags); 2691 } 2692 } else if (params.sack_freq > 1) { 2693 if (asoc) { 2694 asoc->sackfreq = params.sack_freq; 2695 asoc->param_flags = 2696 sctp_spp_sackdelay_enable(asoc->param_flags); 2697 } else { 2698 sp->sackfreq = params.sack_freq; 2699 sp->param_flags = 2700 sctp_spp_sackdelay_enable(sp->param_flags); 2701 } 2702 } 2703 2704 /* If change is for association, also apply to each transport. */ 2705 if (asoc) { 2706 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2707 transports) { 2708 if (params.sack_delay) { 2709 trans->sackdelay = 2710 msecs_to_jiffies(params.sack_delay); 2711 trans->param_flags = 2712 sctp_spp_sackdelay_enable(trans->param_flags); 2713 } 2714 if (params.sack_freq == 1) { 2715 trans->param_flags = 2716 sctp_spp_sackdelay_disable(trans->param_flags); 2717 } else if (params.sack_freq > 1) { 2718 trans->sackfreq = params.sack_freq; 2719 trans->param_flags = 2720 sctp_spp_sackdelay_enable(trans->param_flags); 2721 } 2722 } 2723 } 2724 2725 return 0; 2726 } 2727 2728 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2729 * 2730 * Applications can specify protocol parameters for the default association 2731 * initialization. The option name argument to setsockopt() and getsockopt() 2732 * is SCTP_INITMSG. 2733 * 2734 * Setting initialization parameters is effective only on an unconnected 2735 * socket (for UDP-style sockets only future associations are effected 2736 * by the change). With TCP-style sockets, this option is inherited by 2737 * sockets derived from a listener socket. 2738 */ 2739 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2740 { 2741 struct sctp_initmsg sinit; 2742 struct sctp_sock *sp = sctp_sk(sk); 2743 2744 if (optlen != sizeof(struct sctp_initmsg)) 2745 return -EINVAL; 2746 if (copy_from_user(&sinit, optval, optlen)) 2747 return -EFAULT; 2748 2749 if (sinit.sinit_num_ostreams) 2750 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2751 if (sinit.sinit_max_instreams) 2752 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2753 if (sinit.sinit_max_attempts) 2754 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2755 if (sinit.sinit_max_init_timeo) 2756 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2757 2758 return 0; 2759 } 2760 2761 /* 2762 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2763 * 2764 * Applications that wish to use the sendto() system call may wish to 2765 * specify a default set of parameters that would normally be supplied 2766 * through the inclusion of ancillary data. This socket option allows 2767 * such an application to set the default sctp_sndrcvinfo structure. 2768 * The application that wishes to use this socket option simply passes 2769 * in to this call the sctp_sndrcvinfo structure defined in Section 2770 * 5.2.2) The input parameters accepted by this call include 2771 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2772 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2773 * to this call if the caller is using the UDP model. 2774 */ 2775 static int sctp_setsockopt_default_send_param(struct sock *sk, 2776 char __user *optval, 2777 unsigned int optlen) 2778 { 2779 struct sctp_sock *sp = sctp_sk(sk); 2780 struct sctp_association *asoc; 2781 struct sctp_sndrcvinfo info; 2782 2783 if (optlen != sizeof(info)) 2784 return -EINVAL; 2785 if (copy_from_user(&info, optval, optlen)) 2786 return -EFAULT; 2787 if (info.sinfo_flags & 2788 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2789 SCTP_ABORT | SCTP_EOF)) 2790 return -EINVAL; 2791 2792 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2793 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2794 return -EINVAL; 2795 if (asoc) { 2796 asoc->default_stream = info.sinfo_stream; 2797 asoc->default_flags = info.sinfo_flags; 2798 asoc->default_ppid = info.sinfo_ppid; 2799 asoc->default_context = info.sinfo_context; 2800 asoc->default_timetolive = info.sinfo_timetolive; 2801 } else { 2802 sp->default_stream = info.sinfo_stream; 2803 sp->default_flags = info.sinfo_flags; 2804 sp->default_ppid = info.sinfo_ppid; 2805 sp->default_context = info.sinfo_context; 2806 sp->default_timetolive = info.sinfo_timetolive; 2807 } 2808 2809 return 0; 2810 } 2811 2812 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2813 * (SCTP_DEFAULT_SNDINFO) 2814 */ 2815 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2816 char __user *optval, 2817 unsigned int optlen) 2818 { 2819 struct sctp_sock *sp = sctp_sk(sk); 2820 struct sctp_association *asoc; 2821 struct sctp_sndinfo info; 2822 2823 if (optlen != sizeof(info)) 2824 return -EINVAL; 2825 if (copy_from_user(&info, optval, optlen)) 2826 return -EFAULT; 2827 if (info.snd_flags & 2828 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2829 SCTP_ABORT | SCTP_EOF)) 2830 return -EINVAL; 2831 2832 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2833 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2834 return -EINVAL; 2835 if (asoc) { 2836 asoc->default_stream = info.snd_sid; 2837 asoc->default_flags = info.snd_flags; 2838 asoc->default_ppid = info.snd_ppid; 2839 asoc->default_context = info.snd_context; 2840 } else { 2841 sp->default_stream = info.snd_sid; 2842 sp->default_flags = info.snd_flags; 2843 sp->default_ppid = info.snd_ppid; 2844 sp->default_context = info.snd_context; 2845 } 2846 2847 return 0; 2848 } 2849 2850 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2851 * 2852 * Requests that the local SCTP stack use the enclosed peer address as 2853 * the association primary. The enclosed address must be one of the 2854 * association peer's addresses. 2855 */ 2856 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2857 unsigned int optlen) 2858 { 2859 struct sctp_prim prim; 2860 struct sctp_transport *trans; 2861 2862 if (optlen != sizeof(struct sctp_prim)) 2863 return -EINVAL; 2864 2865 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2866 return -EFAULT; 2867 2868 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2869 if (!trans) 2870 return -EINVAL; 2871 2872 sctp_assoc_set_primary(trans->asoc, trans); 2873 2874 return 0; 2875 } 2876 2877 /* 2878 * 7.1.5 SCTP_NODELAY 2879 * 2880 * Turn on/off any Nagle-like algorithm. This means that packets are 2881 * generally sent as soon as possible and no unnecessary delays are 2882 * introduced, at the cost of more packets in the network. Expects an 2883 * integer boolean flag. 2884 */ 2885 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2886 unsigned int optlen) 2887 { 2888 int val; 2889 2890 if (optlen < sizeof(int)) 2891 return -EINVAL; 2892 if (get_user(val, (int __user *)optval)) 2893 return -EFAULT; 2894 2895 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2896 return 0; 2897 } 2898 2899 /* 2900 * 2901 * 7.1.1 SCTP_RTOINFO 2902 * 2903 * The protocol parameters used to initialize and bound retransmission 2904 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2905 * and modify these parameters. 2906 * All parameters are time values, in milliseconds. A value of 0, when 2907 * modifying the parameters, indicates that the current value should not 2908 * be changed. 2909 * 2910 */ 2911 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2912 { 2913 struct sctp_rtoinfo rtoinfo; 2914 struct sctp_association *asoc; 2915 unsigned long rto_min, rto_max; 2916 struct sctp_sock *sp = sctp_sk(sk); 2917 2918 if (optlen != sizeof (struct sctp_rtoinfo)) 2919 return -EINVAL; 2920 2921 if (copy_from_user(&rtoinfo, optval, optlen)) 2922 return -EFAULT; 2923 2924 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2925 2926 /* Set the values to the specific association */ 2927 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2928 return -EINVAL; 2929 2930 rto_max = rtoinfo.srto_max; 2931 rto_min = rtoinfo.srto_min; 2932 2933 if (rto_max) 2934 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2935 else 2936 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2937 2938 if (rto_min) 2939 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2940 else 2941 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2942 2943 if (rto_min > rto_max) 2944 return -EINVAL; 2945 2946 if (asoc) { 2947 if (rtoinfo.srto_initial != 0) 2948 asoc->rto_initial = 2949 msecs_to_jiffies(rtoinfo.srto_initial); 2950 asoc->rto_max = rto_max; 2951 asoc->rto_min = rto_min; 2952 } else { 2953 /* If there is no association or the association-id = 0 2954 * set the values to the endpoint. 2955 */ 2956 if (rtoinfo.srto_initial != 0) 2957 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2958 sp->rtoinfo.srto_max = rto_max; 2959 sp->rtoinfo.srto_min = rto_min; 2960 } 2961 2962 return 0; 2963 } 2964 2965 /* 2966 * 2967 * 7.1.2 SCTP_ASSOCINFO 2968 * 2969 * This option is used to tune the maximum retransmission attempts 2970 * of the association. 2971 * Returns an error if the new association retransmission value is 2972 * greater than the sum of the retransmission value of the peer. 2973 * See [SCTP] for more information. 2974 * 2975 */ 2976 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2977 { 2978 2979 struct sctp_assocparams assocparams; 2980 struct sctp_association *asoc; 2981 2982 if (optlen != sizeof(struct sctp_assocparams)) 2983 return -EINVAL; 2984 if (copy_from_user(&assocparams, optval, optlen)) 2985 return -EFAULT; 2986 2987 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2988 2989 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2990 return -EINVAL; 2991 2992 /* Set the values to the specific association */ 2993 if (asoc) { 2994 if (assocparams.sasoc_asocmaxrxt != 0) { 2995 __u32 path_sum = 0; 2996 int paths = 0; 2997 struct sctp_transport *peer_addr; 2998 2999 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3000 transports) { 3001 path_sum += peer_addr->pathmaxrxt; 3002 paths++; 3003 } 3004 3005 /* Only validate asocmaxrxt if we have more than 3006 * one path/transport. We do this because path 3007 * retransmissions are only counted when we have more 3008 * then one path. 3009 */ 3010 if (paths > 1 && 3011 assocparams.sasoc_asocmaxrxt > path_sum) 3012 return -EINVAL; 3013 3014 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3015 } 3016 3017 if (assocparams.sasoc_cookie_life != 0) 3018 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3019 } else { 3020 /* Set the values to the endpoint */ 3021 struct sctp_sock *sp = sctp_sk(sk); 3022 3023 if (assocparams.sasoc_asocmaxrxt != 0) 3024 sp->assocparams.sasoc_asocmaxrxt = 3025 assocparams.sasoc_asocmaxrxt; 3026 if (assocparams.sasoc_cookie_life != 0) 3027 sp->assocparams.sasoc_cookie_life = 3028 assocparams.sasoc_cookie_life; 3029 } 3030 return 0; 3031 } 3032 3033 /* 3034 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3035 * 3036 * This socket option is a boolean flag which turns on or off mapped V4 3037 * addresses. If this option is turned on and the socket is type 3038 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3039 * If this option is turned off, then no mapping will be done of V4 3040 * addresses and a user will receive both PF_INET6 and PF_INET type 3041 * addresses on the socket. 3042 */ 3043 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3044 { 3045 int val; 3046 struct sctp_sock *sp = sctp_sk(sk); 3047 3048 if (optlen < sizeof(int)) 3049 return -EINVAL; 3050 if (get_user(val, (int __user *)optval)) 3051 return -EFAULT; 3052 if (val) 3053 sp->v4mapped = 1; 3054 else 3055 sp->v4mapped = 0; 3056 3057 return 0; 3058 } 3059 3060 /* 3061 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3062 * This option will get or set the maximum size to put in any outgoing 3063 * SCTP DATA chunk. If a message is larger than this size it will be 3064 * fragmented by SCTP into the specified size. Note that the underlying 3065 * SCTP implementation may fragment into smaller sized chunks when the 3066 * PMTU of the underlying association is smaller than the value set by 3067 * the user. The default value for this option is '0' which indicates 3068 * the user is NOT limiting fragmentation and only the PMTU will effect 3069 * SCTP's choice of DATA chunk size. Note also that values set larger 3070 * than the maximum size of an IP datagram will effectively let SCTP 3071 * control fragmentation (i.e. the same as setting this option to 0). 3072 * 3073 * The following structure is used to access and modify this parameter: 3074 * 3075 * struct sctp_assoc_value { 3076 * sctp_assoc_t assoc_id; 3077 * uint32_t assoc_value; 3078 * }; 3079 * 3080 * assoc_id: This parameter is ignored for one-to-one style sockets. 3081 * For one-to-many style sockets this parameter indicates which 3082 * association the user is performing an action upon. Note that if 3083 * this field's value is zero then the endpoints default value is 3084 * changed (effecting future associations only). 3085 * assoc_value: This parameter specifies the maximum size in bytes. 3086 */ 3087 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3088 { 3089 struct sctp_assoc_value params; 3090 struct sctp_association *asoc; 3091 struct sctp_sock *sp = sctp_sk(sk); 3092 int val; 3093 3094 if (optlen == sizeof(int)) { 3095 pr_warn_ratelimited(DEPRECATED 3096 "%s (pid %d) " 3097 "Use of int in maxseg socket option.\n" 3098 "Use struct sctp_assoc_value instead\n", 3099 current->comm, task_pid_nr(current)); 3100 if (copy_from_user(&val, optval, optlen)) 3101 return -EFAULT; 3102 params.assoc_id = 0; 3103 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3104 if (copy_from_user(¶ms, optval, optlen)) 3105 return -EFAULT; 3106 val = params.assoc_value; 3107 } else 3108 return -EINVAL; 3109 3110 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3111 return -EINVAL; 3112 3113 asoc = sctp_id2assoc(sk, params.assoc_id); 3114 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3115 return -EINVAL; 3116 3117 if (asoc) { 3118 if (val == 0) { 3119 val = asoc->pathmtu; 3120 val -= sp->pf->af->net_header_len; 3121 val -= sizeof(struct sctphdr) + 3122 sizeof(struct sctp_data_chunk); 3123 } 3124 asoc->user_frag = val; 3125 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3126 } else { 3127 sp->user_frag = val; 3128 } 3129 3130 return 0; 3131 } 3132 3133 3134 /* 3135 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3136 * 3137 * Requests that the peer mark the enclosed address as the association 3138 * primary. The enclosed address must be one of the association's 3139 * locally bound addresses. The following structure is used to make a 3140 * set primary request: 3141 */ 3142 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3143 unsigned int optlen) 3144 { 3145 struct net *net = sock_net(sk); 3146 struct sctp_sock *sp; 3147 struct sctp_association *asoc = NULL; 3148 struct sctp_setpeerprim prim; 3149 struct sctp_chunk *chunk; 3150 struct sctp_af *af; 3151 int err; 3152 3153 sp = sctp_sk(sk); 3154 3155 if (!net->sctp.addip_enable) 3156 return -EPERM; 3157 3158 if (optlen != sizeof(struct sctp_setpeerprim)) 3159 return -EINVAL; 3160 3161 if (copy_from_user(&prim, optval, optlen)) 3162 return -EFAULT; 3163 3164 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3165 if (!asoc) 3166 return -EINVAL; 3167 3168 if (!asoc->peer.asconf_capable) 3169 return -EPERM; 3170 3171 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3172 return -EPERM; 3173 3174 if (!sctp_state(asoc, ESTABLISHED)) 3175 return -ENOTCONN; 3176 3177 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3178 if (!af) 3179 return -EINVAL; 3180 3181 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3182 return -EADDRNOTAVAIL; 3183 3184 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3185 return -EADDRNOTAVAIL; 3186 3187 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3188 chunk = sctp_make_asconf_set_prim(asoc, 3189 (union sctp_addr *)&prim.sspp_addr); 3190 if (!chunk) 3191 return -ENOMEM; 3192 3193 err = sctp_send_asconf(asoc, chunk); 3194 3195 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3196 3197 return err; 3198 } 3199 3200 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3201 unsigned int optlen) 3202 { 3203 struct sctp_setadaptation adaptation; 3204 3205 if (optlen != sizeof(struct sctp_setadaptation)) 3206 return -EINVAL; 3207 if (copy_from_user(&adaptation, optval, optlen)) 3208 return -EFAULT; 3209 3210 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3211 3212 return 0; 3213 } 3214 3215 /* 3216 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3217 * 3218 * The context field in the sctp_sndrcvinfo structure is normally only 3219 * used when a failed message is retrieved holding the value that was 3220 * sent down on the actual send call. This option allows the setting of 3221 * a default context on an association basis that will be received on 3222 * reading messages from the peer. This is especially helpful in the 3223 * one-2-many model for an application to keep some reference to an 3224 * internal state machine that is processing messages on the 3225 * association. Note that the setting of this value only effects 3226 * received messages from the peer and does not effect the value that is 3227 * saved with outbound messages. 3228 */ 3229 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3230 unsigned int optlen) 3231 { 3232 struct sctp_assoc_value params; 3233 struct sctp_sock *sp; 3234 struct sctp_association *asoc; 3235 3236 if (optlen != sizeof(struct sctp_assoc_value)) 3237 return -EINVAL; 3238 if (copy_from_user(¶ms, optval, optlen)) 3239 return -EFAULT; 3240 3241 sp = sctp_sk(sk); 3242 3243 if (params.assoc_id != 0) { 3244 asoc = sctp_id2assoc(sk, params.assoc_id); 3245 if (!asoc) 3246 return -EINVAL; 3247 asoc->default_rcv_context = params.assoc_value; 3248 } else { 3249 sp->default_rcv_context = params.assoc_value; 3250 } 3251 3252 return 0; 3253 } 3254 3255 /* 3256 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3257 * 3258 * This options will at a minimum specify if the implementation is doing 3259 * fragmented interleave. Fragmented interleave, for a one to many 3260 * socket, is when subsequent calls to receive a message may return 3261 * parts of messages from different associations. Some implementations 3262 * may allow you to turn this value on or off. If so, when turned off, 3263 * no fragment interleave will occur (which will cause a head of line 3264 * blocking amongst multiple associations sharing the same one to many 3265 * socket). When this option is turned on, then each receive call may 3266 * come from a different association (thus the user must receive data 3267 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3268 * association each receive belongs to. 3269 * 3270 * This option takes a boolean value. A non-zero value indicates that 3271 * fragmented interleave is on. A value of zero indicates that 3272 * fragmented interleave is off. 3273 * 3274 * Note that it is important that an implementation that allows this 3275 * option to be turned on, have it off by default. Otherwise an unaware 3276 * application using the one to many model may become confused and act 3277 * incorrectly. 3278 */ 3279 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3280 char __user *optval, 3281 unsigned int optlen) 3282 { 3283 int val; 3284 3285 if (optlen != sizeof(int)) 3286 return -EINVAL; 3287 if (get_user(val, (int __user *)optval)) 3288 return -EFAULT; 3289 3290 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3291 3292 return 0; 3293 } 3294 3295 /* 3296 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3297 * (SCTP_PARTIAL_DELIVERY_POINT) 3298 * 3299 * This option will set or get the SCTP partial delivery point. This 3300 * point is the size of a message where the partial delivery API will be 3301 * invoked to help free up rwnd space for the peer. Setting this to a 3302 * lower value will cause partial deliveries to happen more often. The 3303 * calls argument is an integer that sets or gets the partial delivery 3304 * point. Note also that the call will fail if the user attempts to set 3305 * this value larger than the socket receive buffer size. 3306 * 3307 * Note that any single message having a length smaller than or equal to 3308 * the SCTP partial delivery point will be delivered in one single read 3309 * call as long as the user provided buffer is large enough to hold the 3310 * message. 3311 */ 3312 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3313 char __user *optval, 3314 unsigned int optlen) 3315 { 3316 u32 val; 3317 3318 if (optlen != sizeof(u32)) 3319 return -EINVAL; 3320 if (get_user(val, (int __user *)optval)) 3321 return -EFAULT; 3322 3323 /* Note: We double the receive buffer from what the user sets 3324 * it to be, also initial rwnd is based on rcvbuf/2. 3325 */ 3326 if (val > (sk->sk_rcvbuf >> 1)) 3327 return -EINVAL; 3328 3329 sctp_sk(sk)->pd_point = val; 3330 3331 return 0; /* is this the right error code? */ 3332 } 3333 3334 /* 3335 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3336 * 3337 * This option will allow a user to change the maximum burst of packets 3338 * that can be emitted by this association. Note that the default value 3339 * is 4, and some implementations may restrict this setting so that it 3340 * can only be lowered. 3341 * 3342 * NOTE: This text doesn't seem right. Do this on a socket basis with 3343 * future associations inheriting the socket value. 3344 */ 3345 static int sctp_setsockopt_maxburst(struct sock *sk, 3346 char __user *optval, 3347 unsigned int optlen) 3348 { 3349 struct sctp_assoc_value params; 3350 struct sctp_sock *sp; 3351 struct sctp_association *asoc; 3352 int val; 3353 int assoc_id = 0; 3354 3355 if (optlen == sizeof(int)) { 3356 pr_warn_ratelimited(DEPRECATED 3357 "%s (pid %d) " 3358 "Use of int in max_burst socket option deprecated.\n" 3359 "Use struct sctp_assoc_value instead\n", 3360 current->comm, task_pid_nr(current)); 3361 if (copy_from_user(&val, optval, optlen)) 3362 return -EFAULT; 3363 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3364 if (copy_from_user(¶ms, optval, optlen)) 3365 return -EFAULT; 3366 val = params.assoc_value; 3367 assoc_id = params.assoc_id; 3368 } else 3369 return -EINVAL; 3370 3371 sp = sctp_sk(sk); 3372 3373 if (assoc_id != 0) { 3374 asoc = sctp_id2assoc(sk, assoc_id); 3375 if (!asoc) 3376 return -EINVAL; 3377 asoc->max_burst = val; 3378 } else 3379 sp->max_burst = val; 3380 3381 return 0; 3382 } 3383 3384 /* 3385 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3386 * 3387 * This set option adds a chunk type that the user is requesting to be 3388 * received only in an authenticated way. Changes to the list of chunks 3389 * will only effect future associations on the socket. 3390 */ 3391 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3392 char __user *optval, 3393 unsigned int optlen) 3394 { 3395 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3396 struct sctp_authchunk val; 3397 3398 if (!ep->auth_enable) 3399 return -EACCES; 3400 3401 if (optlen != sizeof(struct sctp_authchunk)) 3402 return -EINVAL; 3403 if (copy_from_user(&val, optval, optlen)) 3404 return -EFAULT; 3405 3406 switch (val.sauth_chunk) { 3407 case SCTP_CID_INIT: 3408 case SCTP_CID_INIT_ACK: 3409 case SCTP_CID_SHUTDOWN_COMPLETE: 3410 case SCTP_CID_AUTH: 3411 return -EINVAL; 3412 } 3413 3414 /* add this chunk id to the endpoint */ 3415 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3416 } 3417 3418 /* 3419 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3420 * 3421 * This option gets or sets the list of HMAC algorithms that the local 3422 * endpoint requires the peer to use. 3423 */ 3424 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3425 char __user *optval, 3426 unsigned int optlen) 3427 { 3428 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3429 struct sctp_hmacalgo *hmacs; 3430 u32 idents; 3431 int err; 3432 3433 if (!ep->auth_enable) 3434 return -EACCES; 3435 3436 if (optlen < sizeof(struct sctp_hmacalgo)) 3437 return -EINVAL; 3438 3439 hmacs = memdup_user(optval, optlen); 3440 if (IS_ERR(hmacs)) 3441 return PTR_ERR(hmacs); 3442 3443 idents = hmacs->shmac_num_idents; 3444 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3445 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3446 err = -EINVAL; 3447 goto out; 3448 } 3449 3450 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3451 out: 3452 kfree(hmacs); 3453 return err; 3454 } 3455 3456 /* 3457 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3458 * 3459 * This option will set a shared secret key which is used to build an 3460 * association shared key. 3461 */ 3462 static int sctp_setsockopt_auth_key(struct sock *sk, 3463 char __user *optval, 3464 unsigned int optlen) 3465 { 3466 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3467 struct sctp_authkey *authkey; 3468 struct sctp_association *asoc; 3469 int ret; 3470 3471 if (!ep->auth_enable) 3472 return -EACCES; 3473 3474 if (optlen <= sizeof(struct sctp_authkey)) 3475 return -EINVAL; 3476 3477 authkey = memdup_user(optval, optlen); 3478 if (IS_ERR(authkey)) 3479 return PTR_ERR(authkey); 3480 3481 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3482 ret = -EINVAL; 3483 goto out; 3484 } 3485 3486 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3487 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3488 ret = -EINVAL; 3489 goto out; 3490 } 3491 3492 ret = sctp_auth_set_key(ep, asoc, authkey); 3493 out: 3494 kzfree(authkey); 3495 return ret; 3496 } 3497 3498 /* 3499 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3500 * 3501 * This option will get or set the active shared key to be used to build 3502 * the association shared key. 3503 */ 3504 static int sctp_setsockopt_active_key(struct sock *sk, 3505 char __user *optval, 3506 unsigned int optlen) 3507 { 3508 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3509 struct sctp_authkeyid val; 3510 struct sctp_association *asoc; 3511 3512 if (!ep->auth_enable) 3513 return -EACCES; 3514 3515 if (optlen != sizeof(struct sctp_authkeyid)) 3516 return -EINVAL; 3517 if (copy_from_user(&val, optval, optlen)) 3518 return -EFAULT; 3519 3520 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3521 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3522 return -EINVAL; 3523 3524 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3525 } 3526 3527 /* 3528 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3529 * 3530 * This set option will delete a shared secret key from use. 3531 */ 3532 static int sctp_setsockopt_del_key(struct sock *sk, 3533 char __user *optval, 3534 unsigned int optlen) 3535 { 3536 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3537 struct sctp_authkeyid val; 3538 struct sctp_association *asoc; 3539 3540 if (!ep->auth_enable) 3541 return -EACCES; 3542 3543 if (optlen != sizeof(struct sctp_authkeyid)) 3544 return -EINVAL; 3545 if (copy_from_user(&val, optval, optlen)) 3546 return -EFAULT; 3547 3548 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3549 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3550 return -EINVAL; 3551 3552 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3553 3554 } 3555 3556 /* 3557 * 8.1.23 SCTP_AUTO_ASCONF 3558 * 3559 * This option will enable or disable the use of the automatic generation of 3560 * ASCONF chunks to add and delete addresses to an existing association. Note 3561 * that this option has two caveats namely: a) it only affects sockets that 3562 * are bound to all addresses available to the SCTP stack, and b) the system 3563 * administrator may have an overriding control that turns the ASCONF feature 3564 * off no matter what setting the socket option may have. 3565 * This option expects an integer boolean flag, where a non-zero value turns on 3566 * the option, and a zero value turns off the option. 3567 * Note. In this implementation, socket operation overrides default parameter 3568 * being set by sysctl as well as FreeBSD implementation 3569 */ 3570 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3571 unsigned int optlen) 3572 { 3573 int val; 3574 struct sctp_sock *sp = sctp_sk(sk); 3575 3576 if (optlen < sizeof(int)) 3577 return -EINVAL; 3578 if (get_user(val, (int __user *)optval)) 3579 return -EFAULT; 3580 if (!sctp_is_ep_boundall(sk) && val) 3581 return -EINVAL; 3582 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3583 return 0; 3584 3585 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3586 if (val == 0 && sp->do_auto_asconf) { 3587 list_del(&sp->auto_asconf_list); 3588 sp->do_auto_asconf = 0; 3589 } else if (val && !sp->do_auto_asconf) { 3590 list_add_tail(&sp->auto_asconf_list, 3591 &sock_net(sk)->sctp.auto_asconf_splist); 3592 sp->do_auto_asconf = 1; 3593 } 3594 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3595 return 0; 3596 } 3597 3598 /* 3599 * SCTP_PEER_ADDR_THLDS 3600 * 3601 * This option allows us to alter the partially failed threshold for one or all 3602 * transports in an association. See Section 6.1 of: 3603 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3604 */ 3605 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3606 char __user *optval, 3607 unsigned int optlen) 3608 { 3609 struct sctp_paddrthlds val; 3610 struct sctp_transport *trans; 3611 struct sctp_association *asoc; 3612 3613 if (optlen < sizeof(struct sctp_paddrthlds)) 3614 return -EINVAL; 3615 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3616 sizeof(struct sctp_paddrthlds))) 3617 return -EFAULT; 3618 3619 3620 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3621 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3622 if (!asoc) 3623 return -ENOENT; 3624 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3625 transports) { 3626 if (val.spt_pathmaxrxt) 3627 trans->pathmaxrxt = val.spt_pathmaxrxt; 3628 trans->pf_retrans = val.spt_pathpfthld; 3629 } 3630 3631 if (val.spt_pathmaxrxt) 3632 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3633 asoc->pf_retrans = val.spt_pathpfthld; 3634 } else { 3635 trans = sctp_addr_id2transport(sk, &val.spt_address, 3636 val.spt_assoc_id); 3637 if (!trans) 3638 return -ENOENT; 3639 3640 if (val.spt_pathmaxrxt) 3641 trans->pathmaxrxt = val.spt_pathmaxrxt; 3642 trans->pf_retrans = val.spt_pathpfthld; 3643 } 3644 3645 return 0; 3646 } 3647 3648 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3649 char __user *optval, 3650 unsigned int optlen) 3651 { 3652 int val; 3653 3654 if (optlen < sizeof(int)) 3655 return -EINVAL; 3656 if (get_user(val, (int __user *) optval)) 3657 return -EFAULT; 3658 3659 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3660 3661 return 0; 3662 } 3663 3664 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3665 char __user *optval, 3666 unsigned int optlen) 3667 { 3668 int val; 3669 3670 if (optlen < sizeof(int)) 3671 return -EINVAL; 3672 if (get_user(val, (int __user *) optval)) 3673 return -EFAULT; 3674 3675 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3676 3677 return 0; 3678 } 3679 3680 static int sctp_setsockopt_pr_supported(struct sock *sk, 3681 char __user *optval, 3682 unsigned int optlen) 3683 { 3684 struct sctp_assoc_value params; 3685 struct sctp_association *asoc; 3686 int retval = -EINVAL; 3687 3688 if (optlen != sizeof(params)) 3689 goto out; 3690 3691 if (copy_from_user(¶ms, optval, optlen)) { 3692 retval = -EFAULT; 3693 goto out; 3694 } 3695 3696 asoc = sctp_id2assoc(sk, params.assoc_id); 3697 if (asoc) { 3698 asoc->prsctp_enable = !!params.assoc_value; 3699 } else if (!params.assoc_id) { 3700 struct sctp_sock *sp = sctp_sk(sk); 3701 3702 sp->ep->prsctp_enable = !!params.assoc_value; 3703 } else { 3704 goto out; 3705 } 3706 3707 retval = 0; 3708 3709 out: 3710 return retval; 3711 } 3712 3713 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3714 char __user *optval, 3715 unsigned int optlen) 3716 { 3717 struct sctp_default_prinfo info; 3718 struct sctp_association *asoc; 3719 int retval = -EINVAL; 3720 3721 if (optlen != sizeof(info)) 3722 goto out; 3723 3724 if (copy_from_user(&info, optval, sizeof(info))) { 3725 retval = -EFAULT; 3726 goto out; 3727 } 3728 3729 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3730 goto out; 3731 3732 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3733 info.pr_value = 0; 3734 3735 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3736 if (asoc) { 3737 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3738 asoc->default_timetolive = info.pr_value; 3739 } else if (!info.pr_assoc_id) { 3740 struct sctp_sock *sp = sctp_sk(sk); 3741 3742 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3743 sp->default_timetolive = info.pr_value; 3744 } else { 3745 goto out; 3746 } 3747 3748 retval = 0; 3749 3750 out: 3751 return retval; 3752 } 3753 3754 /* API 6.2 setsockopt(), getsockopt() 3755 * 3756 * Applications use setsockopt() and getsockopt() to set or retrieve 3757 * socket options. Socket options are used to change the default 3758 * behavior of sockets calls. They are described in Section 7. 3759 * 3760 * The syntax is: 3761 * 3762 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3763 * int __user *optlen); 3764 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3765 * int optlen); 3766 * 3767 * sd - the socket descript. 3768 * level - set to IPPROTO_SCTP for all SCTP options. 3769 * optname - the option name. 3770 * optval - the buffer to store the value of the option. 3771 * optlen - the size of the buffer. 3772 */ 3773 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3774 char __user *optval, unsigned int optlen) 3775 { 3776 int retval = 0; 3777 3778 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3779 3780 /* I can hardly begin to describe how wrong this is. This is 3781 * so broken as to be worse than useless. The API draft 3782 * REALLY is NOT helpful here... I am not convinced that the 3783 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3784 * are at all well-founded. 3785 */ 3786 if (level != SOL_SCTP) { 3787 struct sctp_af *af = sctp_sk(sk)->pf->af; 3788 retval = af->setsockopt(sk, level, optname, optval, optlen); 3789 goto out_nounlock; 3790 } 3791 3792 lock_sock(sk); 3793 3794 switch (optname) { 3795 case SCTP_SOCKOPT_BINDX_ADD: 3796 /* 'optlen' is the size of the addresses buffer. */ 3797 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3798 optlen, SCTP_BINDX_ADD_ADDR); 3799 break; 3800 3801 case SCTP_SOCKOPT_BINDX_REM: 3802 /* 'optlen' is the size of the addresses buffer. */ 3803 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3804 optlen, SCTP_BINDX_REM_ADDR); 3805 break; 3806 3807 case SCTP_SOCKOPT_CONNECTX_OLD: 3808 /* 'optlen' is the size of the addresses buffer. */ 3809 retval = sctp_setsockopt_connectx_old(sk, 3810 (struct sockaddr __user *)optval, 3811 optlen); 3812 break; 3813 3814 case SCTP_SOCKOPT_CONNECTX: 3815 /* 'optlen' is the size of the addresses buffer. */ 3816 retval = sctp_setsockopt_connectx(sk, 3817 (struct sockaddr __user *)optval, 3818 optlen); 3819 break; 3820 3821 case SCTP_DISABLE_FRAGMENTS: 3822 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3823 break; 3824 3825 case SCTP_EVENTS: 3826 retval = sctp_setsockopt_events(sk, optval, optlen); 3827 break; 3828 3829 case SCTP_AUTOCLOSE: 3830 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3831 break; 3832 3833 case SCTP_PEER_ADDR_PARAMS: 3834 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3835 break; 3836 3837 case SCTP_DELAYED_SACK: 3838 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3839 break; 3840 case SCTP_PARTIAL_DELIVERY_POINT: 3841 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3842 break; 3843 3844 case SCTP_INITMSG: 3845 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3846 break; 3847 case SCTP_DEFAULT_SEND_PARAM: 3848 retval = sctp_setsockopt_default_send_param(sk, optval, 3849 optlen); 3850 break; 3851 case SCTP_DEFAULT_SNDINFO: 3852 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3853 break; 3854 case SCTP_PRIMARY_ADDR: 3855 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3856 break; 3857 case SCTP_SET_PEER_PRIMARY_ADDR: 3858 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3859 break; 3860 case SCTP_NODELAY: 3861 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3862 break; 3863 case SCTP_RTOINFO: 3864 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3865 break; 3866 case SCTP_ASSOCINFO: 3867 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3868 break; 3869 case SCTP_I_WANT_MAPPED_V4_ADDR: 3870 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3871 break; 3872 case SCTP_MAXSEG: 3873 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3874 break; 3875 case SCTP_ADAPTATION_LAYER: 3876 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3877 break; 3878 case SCTP_CONTEXT: 3879 retval = sctp_setsockopt_context(sk, optval, optlen); 3880 break; 3881 case SCTP_FRAGMENT_INTERLEAVE: 3882 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3883 break; 3884 case SCTP_MAX_BURST: 3885 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3886 break; 3887 case SCTP_AUTH_CHUNK: 3888 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3889 break; 3890 case SCTP_HMAC_IDENT: 3891 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3892 break; 3893 case SCTP_AUTH_KEY: 3894 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3895 break; 3896 case SCTP_AUTH_ACTIVE_KEY: 3897 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3898 break; 3899 case SCTP_AUTH_DELETE_KEY: 3900 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3901 break; 3902 case SCTP_AUTO_ASCONF: 3903 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3904 break; 3905 case SCTP_PEER_ADDR_THLDS: 3906 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3907 break; 3908 case SCTP_RECVRCVINFO: 3909 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 3910 break; 3911 case SCTP_RECVNXTINFO: 3912 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 3913 break; 3914 case SCTP_PR_SUPPORTED: 3915 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 3916 break; 3917 case SCTP_DEFAULT_PRINFO: 3918 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 3919 break; 3920 default: 3921 retval = -ENOPROTOOPT; 3922 break; 3923 } 3924 3925 release_sock(sk); 3926 3927 out_nounlock: 3928 return retval; 3929 } 3930 3931 /* API 3.1.6 connect() - UDP Style Syntax 3932 * 3933 * An application may use the connect() call in the UDP model to initiate an 3934 * association without sending data. 3935 * 3936 * The syntax is: 3937 * 3938 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3939 * 3940 * sd: the socket descriptor to have a new association added to. 3941 * 3942 * nam: the address structure (either struct sockaddr_in or struct 3943 * sockaddr_in6 defined in RFC2553 [7]). 3944 * 3945 * len: the size of the address. 3946 */ 3947 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3948 int addr_len) 3949 { 3950 int err = 0; 3951 struct sctp_af *af; 3952 3953 lock_sock(sk); 3954 3955 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3956 addr, addr_len); 3957 3958 /* Validate addr_len before calling common connect/connectx routine. */ 3959 af = sctp_get_af_specific(addr->sa_family); 3960 if (!af || addr_len < af->sockaddr_len) { 3961 err = -EINVAL; 3962 } else { 3963 /* Pass correct addr len to common routine (so it knows there 3964 * is only one address being passed. 3965 */ 3966 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3967 } 3968 3969 release_sock(sk); 3970 return err; 3971 } 3972 3973 /* FIXME: Write comments. */ 3974 static int sctp_disconnect(struct sock *sk, int flags) 3975 { 3976 return -EOPNOTSUPP; /* STUB */ 3977 } 3978 3979 /* 4.1.4 accept() - TCP Style Syntax 3980 * 3981 * Applications use accept() call to remove an established SCTP 3982 * association from the accept queue of the endpoint. A new socket 3983 * descriptor will be returned from accept() to represent the newly 3984 * formed association. 3985 */ 3986 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3987 { 3988 struct sctp_sock *sp; 3989 struct sctp_endpoint *ep; 3990 struct sock *newsk = NULL; 3991 struct sctp_association *asoc; 3992 long timeo; 3993 int error = 0; 3994 3995 lock_sock(sk); 3996 3997 sp = sctp_sk(sk); 3998 ep = sp->ep; 3999 4000 if (!sctp_style(sk, TCP)) { 4001 error = -EOPNOTSUPP; 4002 goto out; 4003 } 4004 4005 if (!sctp_sstate(sk, LISTENING)) { 4006 error = -EINVAL; 4007 goto out; 4008 } 4009 4010 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4011 4012 error = sctp_wait_for_accept(sk, timeo); 4013 if (error) 4014 goto out; 4015 4016 /* We treat the list of associations on the endpoint as the accept 4017 * queue and pick the first association on the list. 4018 */ 4019 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4020 4021 newsk = sp->pf->create_accept_sk(sk, asoc); 4022 if (!newsk) { 4023 error = -ENOMEM; 4024 goto out; 4025 } 4026 4027 /* Populate the fields of the newsk from the oldsk and migrate the 4028 * asoc to the newsk. 4029 */ 4030 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4031 4032 out: 4033 release_sock(sk); 4034 *err = error; 4035 return newsk; 4036 } 4037 4038 /* The SCTP ioctl handler. */ 4039 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4040 { 4041 int rc = -ENOTCONN; 4042 4043 lock_sock(sk); 4044 4045 /* 4046 * SEQPACKET-style sockets in LISTENING state are valid, for 4047 * SCTP, so only discard TCP-style sockets in LISTENING state. 4048 */ 4049 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4050 goto out; 4051 4052 switch (cmd) { 4053 case SIOCINQ: { 4054 struct sk_buff *skb; 4055 unsigned int amount = 0; 4056 4057 skb = skb_peek(&sk->sk_receive_queue); 4058 if (skb != NULL) { 4059 /* 4060 * We will only return the amount of this packet since 4061 * that is all that will be read. 4062 */ 4063 amount = skb->len; 4064 } 4065 rc = put_user(amount, (int __user *)arg); 4066 break; 4067 } 4068 default: 4069 rc = -ENOIOCTLCMD; 4070 break; 4071 } 4072 out: 4073 release_sock(sk); 4074 return rc; 4075 } 4076 4077 /* This is the function which gets called during socket creation to 4078 * initialized the SCTP-specific portion of the sock. 4079 * The sock structure should already be zero-filled memory. 4080 */ 4081 static int sctp_init_sock(struct sock *sk) 4082 { 4083 struct net *net = sock_net(sk); 4084 struct sctp_sock *sp; 4085 4086 pr_debug("%s: sk:%p\n", __func__, sk); 4087 4088 sp = sctp_sk(sk); 4089 4090 /* Initialize the SCTP per socket area. */ 4091 switch (sk->sk_type) { 4092 case SOCK_SEQPACKET: 4093 sp->type = SCTP_SOCKET_UDP; 4094 break; 4095 case SOCK_STREAM: 4096 sp->type = SCTP_SOCKET_TCP; 4097 break; 4098 default: 4099 return -ESOCKTNOSUPPORT; 4100 } 4101 4102 sk->sk_gso_type = SKB_GSO_SCTP; 4103 4104 /* Initialize default send parameters. These parameters can be 4105 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4106 */ 4107 sp->default_stream = 0; 4108 sp->default_ppid = 0; 4109 sp->default_flags = 0; 4110 sp->default_context = 0; 4111 sp->default_timetolive = 0; 4112 4113 sp->default_rcv_context = 0; 4114 sp->max_burst = net->sctp.max_burst; 4115 4116 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4117 4118 /* Initialize default setup parameters. These parameters 4119 * can be modified with the SCTP_INITMSG socket option or 4120 * overridden by the SCTP_INIT CMSG. 4121 */ 4122 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4123 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4124 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4125 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4126 4127 /* Initialize default RTO related parameters. These parameters can 4128 * be modified for with the SCTP_RTOINFO socket option. 4129 */ 4130 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4131 sp->rtoinfo.srto_max = net->sctp.rto_max; 4132 sp->rtoinfo.srto_min = net->sctp.rto_min; 4133 4134 /* Initialize default association related parameters. These parameters 4135 * can be modified with the SCTP_ASSOCINFO socket option. 4136 */ 4137 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4138 sp->assocparams.sasoc_number_peer_destinations = 0; 4139 sp->assocparams.sasoc_peer_rwnd = 0; 4140 sp->assocparams.sasoc_local_rwnd = 0; 4141 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4142 4143 /* Initialize default event subscriptions. By default, all the 4144 * options are off. 4145 */ 4146 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4147 4148 /* Default Peer Address Parameters. These defaults can 4149 * be modified via SCTP_PEER_ADDR_PARAMS 4150 */ 4151 sp->hbinterval = net->sctp.hb_interval; 4152 sp->pathmaxrxt = net->sctp.max_retrans_path; 4153 sp->pathmtu = 0; /* allow default discovery */ 4154 sp->sackdelay = net->sctp.sack_timeout; 4155 sp->sackfreq = 2; 4156 sp->param_flags = SPP_HB_ENABLE | 4157 SPP_PMTUD_ENABLE | 4158 SPP_SACKDELAY_ENABLE; 4159 4160 /* If enabled no SCTP message fragmentation will be performed. 4161 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4162 */ 4163 sp->disable_fragments = 0; 4164 4165 /* Enable Nagle algorithm by default. */ 4166 sp->nodelay = 0; 4167 4168 sp->recvrcvinfo = 0; 4169 sp->recvnxtinfo = 0; 4170 4171 /* Enable by default. */ 4172 sp->v4mapped = 1; 4173 4174 /* Auto-close idle associations after the configured 4175 * number of seconds. A value of 0 disables this 4176 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4177 * for UDP-style sockets only. 4178 */ 4179 sp->autoclose = 0; 4180 4181 /* User specified fragmentation limit. */ 4182 sp->user_frag = 0; 4183 4184 sp->adaptation_ind = 0; 4185 4186 sp->pf = sctp_get_pf_specific(sk->sk_family); 4187 4188 /* Control variables for partial data delivery. */ 4189 atomic_set(&sp->pd_mode, 0); 4190 skb_queue_head_init(&sp->pd_lobby); 4191 sp->frag_interleave = 0; 4192 4193 /* Create a per socket endpoint structure. Even if we 4194 * change the data structure relationships, this may still 4195 * be useful for storing pre-connect address information. 4196 */ 4197 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4198 if (!sp->ep) 4199 return -ENOMEM; 4200 4201 sp->hmac = NULL; 4202 4203 sk->sk_destruct = sctp_destruct_sock; 4204 4205 SCTP_DBG_OBJCNT_INC(sock); 4206 4207 local_bh_disable(); 4208 percpu_counter_inc(&sctp_sockets_allocated); 4209 sock_prot_inuse_add(net, sk->sk_prot, 1); 4210 4211 /* Nothing can fail after this block, otherwise 4212 * sctp_destroy_sock() will be called without addr_wq_lock held 4213 */ 4214 if (net->sctp.default_auto_asconf) { 4215 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4216 list_add_tail(&sp->auto_asconf_list, 4217 &net->sctp.auto_asconf_splist); 4218 sp->do_auto_asconf = 1; 4219 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4220 } else { 4221 sp->do_auto_asconf = 0; 4222 } 4223 4224 local_bh_enable(); 4225 4226 return 0; 4227 } 4228 4229 /* Cleanup any SCTP per socket resources. Must be called with 4230 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4231 */ 4232 static void sctp_destroy_sock(struct sock *sk) 4233 { 4234 struct sctp_sock *sp; 4235 4236 pr_debug("%s: sk:%p\n", __func__, sk); 4237 4238 /* Release our hold on the endpoint. */ 4239 sp = sctp_sk(sk); 4240 /* This could happen during socket init, thus we bail out 4241 * early, since the rest of the below is not setup either. 4242 */ 4243 if (sp->ep == NULL) 4244 return; 4245 4246 if (sp->do_auto_asconf) { 4247 sp->do_auto_asconf = 0; 4248 list_del(&sp->auto_asconf_list); 4249 } 4250 sctp_endpoint_free(sp->ep); 4251 local_bh_disable(); 4252 percpu_counter_dec(&sctp_sockets_allocated); 4253 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4254 local_bh_enable(); 4255 } 4256 4257 /* Triggered when there are no references on the socket anymore */ 4258 static void sctp_destruct_sock(struct sock *sk) 4259 { 4260 struct sctp_sock *sp = sctp_sk(sk); 4261 4262 /* Free up the HMAC transform. */ 4263 crypto_free_shash(sp->hmac); 4264 4265 inet_sock_destruct(sk); 4266 } 4267 4268 /* API 4.1.7 shutdown() - TCP Style Syntax 4269 * int shutdown(int socket, int how); 4270 * 4271 * sd - the socket descriptor of the association to be closed. 4272 * how - Specifies the type of shutdown. The values are 4273 * as follows: 4274 * SHUT_RD 4275 * Disables further receive operations. No SCTP 4276 * protocol action is taken. 4277 * SHUT_WR 4278 * Disables further send operations, and initiates 4279 * the SCTP shutdown sequence. 4280 * SHUT_RDWR 4281 * Disables further send and receive operations 4282 * and initiates the SCTP shutdown sequence. 4283 */ 4284 static void sctp_shutdown(struct sock *sk, int how) 4285 { 4286 struct net *net = sock_net(sk); 4287 struct sctp_endpoint *ep; 4288 4289 if (!sctp_style(sk, TCP)) 4290 return; 4291 4292 ep = sctp_sk(sk)->ep; 4293 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4294 struct sctp_association *asoc; 4295 4296 sk->sk_state = SCTP_SS_CLOSING; 4297 asoc = list_entry(ep->asocs.next, 4298 struct sctp_association, asocs); 4299 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4300 } 4301 } 4302 4303 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4304 struct sctp_info *info) 4305 { 4306 struct sctp_transport *prim; 4307 struct list_head *pos; 4308 int mask; 4309 4310 memset(info, 0, sizeof(*info)); 4311 if (!asoc) { 4312 struct sctp_sock *sp = sctp_sk(sk); 4313 4314 info->sctpi_s_autoclose = sp->autoclose; 4315 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4316 info->sctpi_s_pd_point = sp->pd_point; 4317 info->sctpi_s_nodelay = sp->nodelay; 4318 info->sctpi_s_disable_fragments = sp->disable_fragments; 4319 info->sctpi_s_v4mapped = sp->v4mapped; 4320 info->sctpi_s_frag_interleave = sp->frag_interleave; 4321 info->sctpi_s_type = sp->type; 4322 4323 return 0; 4324 } 4325 4326 info->sctpi_tag = asoc->c.my_vtag; 4327 info->sctpi_state = asoc->state; 4328 info->sctpi_rwnd = asoc->a_rwnd; 4329 info->sctpi_unackdata = asoc->unack_data; 4330 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4331 info->sctpi_instrms = asoc->c.sinit_max_instreams; 4332 info->sctpi_outstrms = asoc->c.sinit_num_ostreams; 4333 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4334 info->sctpi_inqueue++; 4335 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4336 info->sctpi_outqueue++; 4337 info->sctpi_overall_error = asoc->overall_error_count; 4338 info->sctpi_max_burst = asoc->max_burst; 4339 info->sctpi_maxseg = asoc->frag_point; 4340 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4341 info->sctpi_peer_tag = asoc->c.peer_vtag; 4342 4343 mask = asoc->peer.ecn_capable << 1; 4344 mask = (mask | asoc->peer.ipv4_address) << 1; 4345 mask = (mask | asoc->peer.ipv6_address) << 1; 4346 mask = (mask | asoc->peer.hostname_address) << 1; 4347 mask = (mask | asoc->peer.asconf_capable) << 1; 4348 mask = (mask | asoc->peer.prsctp_capable) << 1; 4349 mask = (mask | asoc->peer.auth_capable); 4350 info->sctpi_peer_capable = mask; 4351 mask = asoc->peer.sack_needed << 1; 4352 mask = (mask | asoc->peer.sack_generation) << 1; 4353 mask = (mask | asoc->peer.zero_window_announced); 4354 info->sctpi_peer_sack = mask; 4355 4356 info->sctpi_isacks = asoc->stats.isacks; 4357 info->sctpi_osacks = asoc->stats.osacks; 4358 info->sctpi_opackets = asoc->stats.opackets; 4359 info->sctpi_ipackets = asoc->stats.ipackets; 4360 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4361 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4362 info->sctpi_idupchunks = asoc->stats.idupchunks; 4363 info->sctpi_gapcnt = asoc->stats.gapcnt; 4364 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4365 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4366 info->sctpi_oodchunks = asoc->stats.oodchunks; 4367 info->sctpi_iodchunks = asoc->stats.iodchunks; 4368 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4369 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4370 4371 prim = asoc->peer.primary_path; 4372 memcpy(&info->sctpi_p_address, &prim->ipaddr, 4373 sizeof(struct sockaddr_storage)); 4374 info->sctpi_p_state = prim->state; 4375 info->sctpi_p_cwnd = prim->cwnd; 4376 info->sctpi_p_srtt = prim->srtt; 4377 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4378 info->sctpi_p_hbinterval = prim->hbinterval; 4379 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4380 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4381 info->sctpi_p_ssthresh = prim->ssthresh; 4382 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4383 info->sctpi_p_flight_size = prim->flight_size; 4384 info->sctpi_p_error = prim->error_count; 4385 4386 return 0; 4387 } 4388 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4389 4390 /* use callback to avoid exporting the core structure */ 4391 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4392 { 4393 int err; 4394 4395 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4396 4397 err = rhashtable_walk_start(iter); 4398 if (err && err != -EAGAIN) { 4399 rhashtable_walk_stop(iter); 4400 rhashtable_walk_exit(iter); 4401 return err; 4402 } 4403 4404 return 0; 4405 } 4406 4407 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4408 { 4409 rhashtable_walk_stop(iter); 4410 rhashtable_walk_exit(iter); 4411 } 4412 4413 struct sctp_transport *sctp_transport_get_next(struct net *net, 4414 struct rhashtable_iter *iter) 4415 { 4416 struct sctp_transport *t; 4417 4418 t = rhashtable_walk_next(iter); 4419 for (; t; t = rhashtable_walk_next(iter)) { 4420 if (IS_ERR(t)) { 4421 if (PTR_ERR(t) == -EAGAIN) 4422 continue; 4423 break; 4424 } 4425 4426 if (net_eq(sock_net(t->asoc->base.sk), net) && 4427 t->asoc->peer.primary_path == t) 4428 break; 4429 } 4430 4431 return t; 4432 } 4433 4434 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4435 struct rhashtable_iter *iter, 4436 int pos) 4437 { 4438 void *obj = SEQ_START_TOKEN; 4439 4440 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4441 !IS_ERR(obj)) 4442 pos--; 4443 4444 return obj; 4445 } 4446 4447 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4448 void *p) { 4449 int err = 0; 4450 int hash = 0; 4451 struct sctp_ep_common *epb; 4452 struct sctp_hashbucket *head; 4453 4454 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4455 hash++, head++) { 4456 read_lock(&head->lock); 4457 sctp_for_each_hentry(epb, &head->chain) { 4458 err = cb(sctp_ep(epb), p); 4459 if (err) 4460 break; 4461 } 4462 read_unlock(&head->lock); 4463 } 4464 4465 return err; 4466 } 4467 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4468 4469 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4470 struct net *net, 4471 const union sctp_addr *laddr, 4472 const union sctp_addr *paddr, void *p) 4473 { 4474 struct sctp_transport *transport; 4475 int err = -ENOENT; 4476 4477 rcu_read_lock(); 4478 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4479 if (!transport) 4480 goto out; 4481 4482 rcu_read_unlock(); 4483 err = cb(transport, p); 4484 sctp_transport_put(transport); 4485 4486 out: 4487 return err; 4488 } 4489 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4490 4491 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4492 struct net *net, int pos, void *p) { 4493 struct rhashtable_iter hti; 4494 void *obj; 4495 int err; 4496 4497 err = sctp_transport_walk_start(&hti); 4498 if (err) 4499 return err; 4500 4501 sctp_transport_get_idx(net, &hti, pos); 4502 obj = sctp_transport_get_next(net, &hti); 4503 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) { 4504 struct sctp_transport *transport = obj; 4505 4506 if (!sctp_transport_hold(transport)) 4507 continue; 4508 err = cb(transport, p); 4509 sctp_transport_put(transport); 4510 if (err) 4511 break; 4512 } 4513 sctp_transport_walk_stop(&hti); 4514 4515 return err; 4516 } 4517 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4518 4519 /* 7.2.1 Association Status (SCTP_STATUS) 4520 4521 * Applications can retrieve current status information about an 4522 * association, including association state, peer receiver window size, 4523 * number of unacked data chunks, and number of data chunks pending 4524 * receipt. This information is read-only. 4525 */ 4526 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4527 char __user *optval, 4528 int __user *optlen) 4529 { 4530 struct sctp_status status; 4531 struct sctp_association *asoc = NULL; 4532 struct sctp_transport *transport; 4533 sctp_assoc_t associd; 4534 int retval = 0; 4535 4536 if (len < sizeof(status)) { 4537 retval = -EINVAL; 4538 goto out; 4539 } 4540 4541 len = sizeof(status); 4542 if (copy_from_user(&status, optval, len)) { 4543 retval = -EFAULT; 4544 goto out; 4545 } 4546 4547 associd = status.sstat_assoc_id; 4548 asoc = sctp_id2assoc(sk, associd); 4549 if (!asoc) { 4550 retval = -EINVAL; 4551 goto out; 4552 } 4553 4554 transport = asoc->peer.primary_path; 4555 4556 status.sstat_assoc_id = sctp_assoc2id(asoc); 4557 status.sstat_state = sctp_assoc_to_state(asoc); 4558 status.sstat_rwnd = asoc->peer.rwnd; 4559 status.sstat_unackdata = asoc->unack_data; 4560 4561 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4562 status.sstat_instrms = asoc->c.sinit_max_instreams; 4563 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4564 status.sstat_fragmentation_point = asoc->frag_point; 4565 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4566 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4567 transport->af_specific->sockaddr_len); 4568 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4569 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4570 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4571 status.sstat_primary.spinfo_state = transport->state; 4572 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4573 status.sstat_primary.spinfo_srtt = transport->srtt; 4574 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4575 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4576 4577 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4578 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4579 4580 if (put_user(len, optlen)) { 4581 retval = -EFAULT; 4582 goto out; 4583 } 4584 4585 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4586 __func__, len, status.sstat_state, status.sstat_rwnd, 4587 status.sstat_assoc_id); 4588 4589 if (copy_to_user(optval, &status, len)) { 4590 retval = -EFAULT; 4591 goto out; 4592 } 4593 4594 out: 4595 return retval; 4596 } 4597 4598 4599 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4600 * 4601 * Applications can retrieve information about a specific peer address 4602 * of an association, including its reachability state, congestion 4603 * window, and retransmission timer values. This information is 4604 * read-only. 4605 */ 4606 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4607 char __user *optval, 4608 int __user *optlen) 4609 { 4610 struct sctp_paddrinfo pinfo; 4611 struct sctp_transport *transport; 4612 int retval = 0; 4613 4614 if (len < sizeof(pinfo)) { 4615 retval = -EINVAL; 4616 goto out; 4617 } 4618 4619 len = sizeof(pinfo); 4620 if (copy_from_user(&pinfo, optval, len)) { 4621 retval = -EFAULT; 4622 goto out; 4623 } 4624 4625 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4626 pinfo.spinfo_assoc_id); 4627 if (!transport) 4628 return -EINVAL; 4629 4630 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4631 pinfo.spinfo_state = transport->state; 4632 pinfo.spinfo_cwnd = transport->cwnd; 4633 pinfo.spinfo_srtt = transport->srtt; 4634 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4635 pinfo.spinfo_mtu = transport->pathmtu; 4636 4637 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4638 pinfo.spinfo_state = SCTP_ACTIVE; 4639 4640 if (put_user(len, optlen)) { 4641 retval = -EFAULT; 4642 goto out; 4643 } 4644 4645 if (copy_to_user(optval, &pinfo, len)) { 4646 retval = -EFAULT; 4647 goto out; 4648 } 4649 4650 out: 4651 return retval; 4652 } 4653 4654 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4655 * 4656 * This option is a on/off flag. If enabled no SCTP message 4657 * fragmentation will be performed. Instead if a message being sent 4658 * exceeds the current PMTU size, the message will NOT be sent and 4659 * instead a error will be indicated to the user. 4660 */ 4661 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4662 char __user *optval, int __user *optlen) 4663 { 4664 int val; 4665 4666 if (len < sizeof(int)) 4667 return -EINVAL; 4668 4669 len = sizeof(int); 4670 val = (sctp_sk(sk)->disable_fragments == 1); 4671 if (put_user(len, optlen)) 4672 return -EFAULT; 4673 if (copy_to_user(optval, &val, len)) 4674 return -EFAULT; 4675 return 0; 4676 } 4677 4678 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4679 * 4680 * This socket option is used to specify various notifications and 4681 * ancillary data the user wishes to receive. 4682 */ 4683 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4684 int __user *optlen) 4685 { 4686 if (len == 0) 4687 return -EINVAL; 4688 if (len > sizeof(struct sctp_event_subscribe)) 4689 len = sizeof(struct sctp_event_subscribe); 4690 if (put_user(len, optlen)) 4691 return -EFAULT; 4692 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4693 return -EFAULT; 4694 return 0; 4695 } 4696 4697 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4698 * 4699 * This socket option is applicable to the UDP-style socket only. When 4700 * set it will cause associations that are idle for more than the 4701 * specified number of seconds to automatically close. An association 4702 * being idle is defined an association that has NOT sent or received 4703 * user data. The special value of '0' indicates that no automatic 4704 * close of any associations should be performed. The option expects an 4705 * integer defining the number of seconds of idle time before an 4706 * association is closed. 4707 */ 4708 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4709 { 4710 /* Applicable to UDP-style socket only */ 4711 if (sctp_style(sk, TCP)) 4712 return -EOPNOTSUPP; 4713 if (len < sizeof(int)) 4714 return -EINVAL; 4715 len = sizeof(int); 4716 if (put_user(len, optlen)) 4717 return -EFAULT; 4718 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4719 return -EFAULT; 4720 return 0; 4721 } 4722 4723 /* Helper routine to branch off an association to a new socket. */ 4724 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4725 { 4726 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4727 struct sctp_sock *sp = sctp_sk(sk); 4728 struct socket *sock; 4729 int err = 0; 4730 4731 if (!asoc) 4732 return -EINVAL; 4733 4734 /* An association cannot be branched off from an already peeled-off 4735 * socket, nor is this supported for tcp style sockets. 4736 */ 4737 if (!sctp_style(sk, UDP)) 4738 return -EINVAL; 4739 4740 /* Create a new socket. */ 4741 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4742 if (err < 0) 4743 return err; 4744 4745 sctp_copy_sock(sock->sk, sk, asoc); 4746 4747 /* Make peeled-off sockets more like 1-1 accepted sockets. 4748 * Set the daddr and initialize id to something more random 4749 */ 4750 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4751 4752 /* Populate the fields of the newsk from the oldsk and migrate the 4753 * asoc to the newsk. 4754 */ 4755 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4756 4757 *sockp = sock; 4758 4759 return err; 4760 } 4761 EXPORT_SYMBOL(sctp_do_peeloff); 4762 4763 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4764 { 4765 sctp_peeloff_arg_t peeloff; 4766 struct socket *newsock; 4767 struct file *newfile; 4768 int retval = 0; 4769 4770 if (len < sizeof(sctp_peeloff_arg_t)) 4771 return -EINVAL; 4772 len = sizeof(sctp_peeloff_arg_t); 4773 if (copy_from_user(&peeloff, optval, len)) 4774 return -EFAULT; 4775 4776 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4777 if (retval < 0) 4778 goto out; 4779 4780 /* Map the socket to an unused fd that can be returned to the user. */ 4781 retval = get_unused_fd_flags(0); 4782 if (retval < 0) { 4783 sock_release(newsock); 4784 goto out; 4785 } 4786 4787 newfile = sock_alloc_file(newsock, 0, NULL); 4788 if (IS_ERR(newfile)) { 4789 put_unused_fd(retval); 4790 sock_release(newsock); 4791 return PTR_ERR(newfile); 4792 } 4793 4794 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4795 retval); 4796 4797 /* Return the fd mapped to the new socket. */ 4798 if (put_user(len, optlen)) { 4799 fput(newfile); 4800 put_unused_fd(retval); 4801 return -EFAULT; 4802 } 4803 peeloff.sd = retval; 4804 if (copy_to_user(optval, &peeloff, len)) { 4805 fput(newfile); 4806 put_unused_fd(retval); 4807 return -EFAULT; 4808 } 4809 fd_install(retval, newfile); 4810 out: 4811 return retval; 4812 } 4813 4814 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4815 * 4816 * Applications can enable or disable heartbeats for any peer address of 4817 * an association, modify an address's heartbeat interval, force a 4818 * heartbeat to be sent immediately, and adjust the address's maximum 4819 * number of retransmissions sent before an address is considered 4820 * unreachable. The following structure is used to access and modify an 4821 * address's parameters: 4822 * 4823 * struct sctp_paddrparams { 4824 * sctp_assoc_t spp_assoc_id; 4825 * struct sockaddr_storage spp_address; 4826 * uint32_t spp_hbinterval; 4827 * uint16_t spp_pathmaxrxt; 4828 * uint32_t spp_pathmtu; 4829 * uint32_t spp_sackdelay; 4830 * uint32_t spp_flags; 4831 * }; 4832 * 4833 * spp_assoc_id - (one-to-many style socket) This is filled in the 4834 * application, and identifies the association for 4835 * this query. 4836 * spp_address - This specifies which address is of interest. 4837 * spp_hbinterval - This contains the value of the heartbeat interval, 4838 * in milliseconds. If a value of zero 4839 * is present in this field then no changes are to 4840 * be made to this parameter. 4841 * spp_pathmaxrxt - This contains the maximum number of 4842 * retransmissions before this address shall be 4843 * considered unreachable. If a value of zero 4844 * is present in this field then no changes are to 4845 * be made to this parameter. 4846 * spp_pathmtu - When Path MTU discovery is disabled the value 4847 * specified here will be the "fixed" path mtu. 4848 * Note that if the spp_address field is empty 4849 * then all associations on this address will 4850 * have this fixed path mtu set upon them. 4851 * 4852 * spp_sackdelay - When delayed sack is enabled, this value specifies 4853 * the number of milliseconds that sacks will be delayed 4854 * for. This value will apply to all addresses of an 4855 * association if the spp_address field is empty. Note 4856 * also, that if delayed sack is enabled and this 4857 * value is set to 0, no change is made to the last 4858 * recorded delayed sack timer value. 4859 * 4860 * spp_flags - These flags are used to control various features 4861 * on an association. The flag field may contain 4862 * zero or more of the following options. 4863 * 4864 * SPP_HB_ENABLE - Enable heartbeats on the 4865 * specified address. Note that if the address 4866 * field is empty all addresses for the association 4867 * have heartbeats enabled upon them. 4868 * 4869 * SPP_HB_DISABLE - Disable heartbeats on the 4870 * speicifed address. Note that if the address 4871 * field is empty all addresses for the association 4872 * will have their heartbeats disabled. Note also 4873 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4874 * mutually exclusive, only one of these two should 4875 * be specified. Enabling both fields will have 4876 * undetermined results. 4877 * 4878 * SPP_HB_DEMAND - Request a user initiated heartbeat 4879 * to be made immediately. 4880 * 4881 * SPP_PMTUD_ENABLE - This field will enable PMTU 4882 * discovery upon the specified address. Note that 4883 * if the address feild is empty then all addresses 4884 * on the association are effected. 4885 * 4886 * SPP_PMTUD_DISABLE - This field will disable PMTU 4887 * discovery upon the specified address. Note that 4888 * if the address feild is empty then all addresses 4889 * on the association are effected. Not also that 4890 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4891 * exclusive. Enabling both will have undetermined 4892 * results. 4893 * 4894 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4895 * on delayed sack. The time specified in spp_sackdelay 4896 * is used to specify the sack delay for this address. Note 4897 * that if spp_address is empty then all addresses will 4898 * enable delayed sack and take on the sack delay 4899 * value specified in spp_sackdelay. 4900 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4901 * off delayed sack. If the spp_address field is blank then 4902 * delayed sack is disabled for the entire association. Note 4903 * also that this field is mutually exclusive to 4904 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4905 * results. 4906 */ 4907 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4908 char __user *optval, int __user *optlen) 4909 { 4910 struct sctp_paddrparams params; 4911 struct sctp_transport *trans = NULL; 4912 struct sctp_association *asoc = NULL; 4913 struct sctp_sock *sp = sctp_sk(sk); 4914 4915 if (len < sizeof(struct sctp_paddrparams)) 4916 return -EINVAL; 4917 len = sizeof(struct sctp_paddrparams); 4918 if (copy_from_user(¶ms, optval, len)) 4919 return -EFAULT; 4920 4921 /* If an address other than INADDR_ANY is specified, and 4922 * no transport is found, then the request is invalid. 4923 */ 4924 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4925 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4926 params.spp_assoc_id); 4927 if (!trans) { 4928 pr_debug("%s: failed no transport\n", __func__); 4929 return -EINVAL; 4930 } 4931 } 4932 4933 /* Get association, if assoc_id != 0 and the socket is a one 4934 * to many style socket, and an association was not found, then 4935 * the id was invalid. 4936 */ 4937 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4938 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4939 pr_debug("%s: failed no association\n", __func__); 4940 return -EINVAL; 4941 } 4942 4943 if (trans) { 4944 /* Fetch transport values. */ 4945 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4946 params.spp_pathmtu = trans->pathmtu; 4947 params.spp_pathmaxrxt = trans->pathmaxrxt; 4948 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4949 4950 /*draft-11 doesn't say what to return in spp_flags*/ 4951 params.spp_flags = trans->param_flags; 4952 } else if (asoc) { 4953 /* Fetch association values. */ 4954 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4955 params.spp_pathmtu = asoc->pathmtu; 4956 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4957 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4958 4959 /*draft-11 doesn't say what to return in spp_flags*/ 4960 params.spp_flags = asoc->param_flags; 4961 } else { 4962 /* Fetch socket values. */ 4963 params.spp_hbinterval = sp->hbinterval; 4964 params.spp_pathmtu = sp->pathmtu; 4965 params.spp_sackdelay = sp->sackdelay; 4966 params.spp_pathmaxrxt = sp->pathmaxrxt; 4967 4968 /*draft-11 doesn't say what to return in spp_flags*/ 4969 params.spp_flags = sp->param_flags; 4970 } 4971 4972 if (copy_to_user(optval, ¶ms, len)) 4973 return -EFAULT; 4974 4975 if (put_user(len, optlen)) 4976 return -EFAULT; 4977 4978 return 0; 4979 } 4980 4981 /* 4982 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4983 * 4984 * This option will effect the way delayed acks are performed. This 4985 * option allows you to get or set the delayed ack time, in 4986 * milliseconds. It also allows changing the delayed ack frequency. 4987 * Changing the frequency to 1 disables the delayed sack algorithm. If 4988 * the assoc_id is 0, then this sets or gets the endpoints default 4989 * values. If the assoc_id field is non-zero, then the set or get 4990 * effects the specified association for the one to many model (the 4991 * assoc_id field is ignored by the one to one model). Note that if 4992 * sack_delay or sack_freq are 0 when setting this option, then the 4993 * current values will remain unchanged. 4994 * 4995 * struct sctp_sack_info { 4996 * sctp_assoc_t sack_assoc_id; 4997 * uint32_t sack_delay; 4998 * uint32_t sack_freq; 4999 * }; 5000 * 5001 * sack_assoc_id - This parameter, indicates which association the user 5002 * is performing an action upon. Note that if this field's value is 5003 * zero then the endpoints default value is changed (effecting future 5004 * associations only). 5005 * 5006 * sack_delay - This parameter contains the number of milliseconds that 5007 * the user is requesting the delayed ACK timer be set to. Note that 5008 * this value is defined in the standard to be between 200 and 500 5009 * milliseconds. 5010 * 5011 * sack_freq - This parameter contains the number of packets that must 5012 * be received before a sack is sent without waiting for the delay 5013 * timer to expire. The default value for this is 2, setting this 5014 * value to 1 will disable the delayed sack algorithm. 5015 */ 5016 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5017 char __user *optval, 5018 int __user *optlen) 5019 { 5020 struct sctp_sack_info params; 5021 struct sctp_association *asoc = NULL; 5022 struct sctp_sock *sp = sctp_sk(sk); 5023 5024 if (len >= sizeof(struct sctp_sack_info)) { 5025 len = sizeof(struct sctp_sack_info); 5026 5027 if (copy_from_user(¶ms, optval, len)) 5028 return -EFAULT; 5029 } else if (len == sizeof(struct sctp_assoc_value)) { 5030 pr_warn_ratelimited(DEPRECATED 5031 "%s (pid %d) " 5032 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5033 "Use struct sctp_sack_info instead\n", 5034 current->comm, task_pid_nr(current)); 5035 if (copy_from_user(¶ms, optval, len)) 5036 return -EFAULT; 5037 } else 5038 return -EINVAL; 5039 5040 /* Get association, if sack_assoc_id != 0 and the socket is a one 5041 * to many style socket, and an association was not found, then 5042 * the id was invalid. 5043 */ 5044 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5045 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5046 return -EINVAL; 5047 5048 if (asoc) { 5049 /* Fetch association values. */ 5050 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5051 params.sack_delay = jiffies_to_msecs( 5052 asoc->sackdelay); 5053 params.sack_freq = asoc->sackfreq; 5054 5055 } else { 5056 params.sack_delay = 0; 5057 params.sack_freq = 1; 5058 } 5059 } else { 5060 /* Fetch socket values. */ 5061 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5062 params.sack_delay = sp->sackdelay; 5063 params.sack_freq = sp->sackfreq; 5064 } else { 5065 params.sack_delay = 0; 5066 params.sack_freq = 1; 5067 } 5068 } 5069 5070 if (copy_to_user(optval, ¶ms, len)) 5071 return -EFAULT; 5072 5073 if (put_user(len, optlen)) 5074 return -EFAULT; 5075 5076 return 0; 5077 } 5078 5079 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5080 * 5081 * Applications can specify protocol parameters for the default association 5082 * initialization. The option name argument to setsockopt() and getsockopt() 5083 * is SCTP_INITMSG. 5084 * 5085 * Setting initialization parameters is effective only on an unconnected 5086 * socket (for UDP-style sockets only future associations are effected 5087 * by the change). With TCP-style sockets, this option is inherited by 5088 * sockets derived from a listener socket. 5089 */ 5090 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5091 { 5092 if (len < sizeof(struct sctp_initmsg)) 5093 return -EINVAL; 5094 len = sizeof(struct sctp_initmsg); 5095 if (put_user(len, optlen)) 5096 return -EFAULT; 5097 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5098 return -EFAULT; 5099 return 0; 5100 } 5101 5102 5103 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5104 char __user *optval, int __user *optlen) 5105 { 5106 struct sctp_association *asoc; 5107 int cnt = 0; 5108 struct sctp_getaddrs getaddrs; 5109 struct sctp_transport *from; 5110 void __user *to; 5111 union sctp_addr temp; 5112 struct sctp_sock *sp = sctp_sk(sk); 5113 int addrlen; 5114 size_t space_left; 5115 int bytes_copied; 5116 5117 if (len < sizeof(struct sctp_getaddrs)) 5118 return -EINVAL; 5119 5120 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5121 return -EFAULT; 5122 5123 /* For UDP-style sockets, id specifies the association to query. */ 5124 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5125 if (!asoc) 5126 return -EINVAL; 5127 5128 to = optval + offsetof(struct sctp_getaddrs, addrs); 5129 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5130 5131 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5132 transports) { 5133 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5134 addrlen = sctp_get_pf_specific(sk->sk_family) 5135 ->addr_to_user(sp, &temp); 5136 if (space_left < addrlen) 5137 return -ENOMEM; 5138 if (copy_to_user(to, &temp, addrlen)) 5139 return -EFAULT; 5140 to += addrlen; 5141 cnt++; 5142 space_left -= addrlen; 5143 } 5144 5145 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5146 return -EFAULT; 5147 bytes_copied = ((char __user *)to) - optval; 5148 if (put_user(bytes_copied, optlen)) 5149 return -EFAULT; 5150 5151 return 0; 5152 } 5153 5154 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5155 size_t space_left, int *bytes_copied) 5156 { 5157 struct sctp_sockaddr_entry *addr; 5158 union sctp_addr temp; 5159 int cnt = 0; 5160 int addrlen; 5161 struct net *net = sock_net(sk); 5162 5163 rcu_read_lock(); 5164 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5165 if (!addr->valid) 5166 continue; 5167 5168 if ((PF_INET == sk->sk_family) && 5169 (AF_INET6 == addr->a.sa.sa_family)) 5170 continue; 5171 if ((PF_INET6 == sk->sk_family) && 5172 inet_v6_ipv6only(sk) && 5173 (AF_INET == addr->a.sa.sa_family)) 5174 continue; 5175 memcpy(&temp, &addr->a, sizeof(temp)); 5176 if (!temp.v4.sin_port) 5177 temp.v4.sin_port = htons(port); 5178 5179 addrlen = sctp_get_pf_specific(sk->sk_family) 5180 ->addr_to_user(sctp_sk(sk), &temp); 5181 5182 if (space_left < addrlen) { 5183 cnt = -ENOMEM; 5184 break; 5185 } 5186 memcpy(to, &temp, addrlen); 5187 5188 to += addrlen; 5189 cnt++; 5190 space_left -= addrlen; 5191 *bytes_copied += addrlen; 5192 } 5193 rcu_read_unlock(); 5194 5195 return cnt; 5196 } 5197 5198 5199 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5200 char __user *optval, int __user *optlen) 5201 { 5202 struct sctp_bind_addr *bp; 5203 struct sctp_association *asoc; 5204 int cnt = 0; 5205 struct sctp_getaddrs getaddrs; 5206 struct sctp_sockaddr_entry *addr; 5207 void __user *to; 5208 union sctp_addr temp; 5209 struct sctp_sock *sp = sctp_sk(sk); 5210 int addrlen; 5211 int err = 0; 5212 size_t space_left; 5213 int bytes_copied = 0; 5214 void *addrs; 5215 void *buf; 5216 5217 if (len < sizeof(struct sctp_getaddrs)) 5218 return -EINVAL; 5219 5220 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5221 return -EFAULT; 5222 5223 /* 5224 * For UDP-style sockets, id specifies the association to query. 5225 * If the id field is set to the value '0' then the locally bound 5226 * addresses are returned without regard to any particular 5227 * association. 5228 */ 5229 if (0 == getaddrs.assoc_id) { 5230 bp = &sctp_sk(sk)->ep->base.bind_addr; 5231 } else { 5232 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5233 if (!asoc) 5234 return -EINVAL; 5235 bp = &asoc->base.bind_addr; 5236 } 5237 5238 to = optval + offsetof(struct sctp_getaddrs, addrs); 5239 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5240 5241 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5242 if (!addrs) 5243 return -ENOMEM; 5244 5245 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5246 * addresses from the global local address list. 5247 */ 5248 if (sctp_list_single_entry(&bp->address_list)) { 5249 addr = list_entry(bp->address_list.next, 5250 struct sctp_sockaddr_entry, list); 5251 if (sctp_is_any(sk, &addr->a)) { 5252 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5253 space_left, &bytes_copied); 5254 if (cnt < 0) { 5255 err = cnt; 5256 goto out; 5257 } 5258 goto copy_getaddrs; 5259 } 5260 } 5261 5262 buf = addrs; 5263 /* Protection on the bound address list is not needed since 5264 * in the socket option context we hold a socket lock and 5265 * thus the bound address list can't change. 5266 */ 5267 list_for_each_entry(addr, &bp->address_list, list) { 5268 memcpy(&temp, &addr->a, sizeof(temp)); 5269 addrlen = sctp_get_pf_specific(sk->sk_family) 5270 ->addr_to_user(sp, &temp); 5271 if (space_left < addrlen) { 5272 err = -ENOMEM; /*fixme: right error?*/ 5273 goto out; 5274 } 5275 memcpy(buf, &temp, addrlen); 5276 buf += addrlen; 5277 bytes_copied += addrlen; 5278 cnt++; 5279 space_left -= addrlen; 5280 } 5281 5282 copy_getaddrs: 5283 if (copy_to_user(to, addrs, bytes_copied)) { 5284 err = -EFAULT; 5285 goto out; 5286 } 5287 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5288 err = -EFAULT; 5289 goto out; 5290 } 5291 if (put_user(bytes_copied, optlen)) 5292 err = -EFAULT; 5293 out: 5294 kfree(addrs); 5295 return err; 5296 } 5297 5298 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5299 * 5300 * Requests that the local SCTP stack use the enclosed peer address as 5301 * the association primary. The enclosed address must be one of the 5302 * association peer's addresses. 5303 */ 5304 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5305 char __user *optval, int __user *optlen) 5306 { 5307 struct sctp_prim prim; 5308 struct sctp_association *asoc; 5309 struct sctp_sock *sp = sctp_sk(sk); 5310 5311 if (len < sizeof(struct sctp_prim)) 5312 return -EINVAL; 5313 5314 len = sizeof(struct sctp_prim); 5315 5316 if (copy_from_user(&prim, optval, len)) 5317 return -EFAULT; 5318 5319 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5320 if (!asoc) 5321 return -EINVAL; 5322 5323 if (!asoc->peer.primary_path) 5324 return -ENOTCONN; 5325 5326 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5327 asoc->peer.primary_path->af_specific->sockaddr_len); 5328 5329 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5330 (union sctp_addr *)&prim.ssp_addr); 5331 5332 if (put_user(len, optlen)) 5333 return -EFAULT; 5334 if (copy_to_user(optval, &prim, len)) 5335 return -EFAULT; 5336 5337 return 0; 5338 } 5339 5340 /* 5341 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5342 * 5343 * Requests that the local endpoint set the specified Adaptation Layer 5344 * Indication parameter for all future INIT and INIT-ACK exchanges. 5345 */ 5346 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5347 char __user *optval, int __user *optlen) 5348 { 5349 struct sctp_setadaptation adaptation; 5350 5351 if (len < sizeof(struct sctp_setadaptation)) 5352 return -EINVAL; 5353 5354 len = sizeof(struct sctp_setadaptation); 5355 5356 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5357 5358 if (put_user(len, optlen)) 5359 return -EFAULT; 5360 if (copy_to_user(optval, &adaptation, len)) 5361 return -EFAULT; 5362 5363 return 0; 5364 } 5365 5366 /* 5367 * 5368 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5369 * 5370 * Applications that wish to use the sendto() system call may wish to 5371 * specify a default set of parameters that would normally be supplied 5372 * through the inclusion of ancillary data. This socket option allows 5373 * such an application to set the default sctp_sndrcvinfo structure. 5374 5375 5376 * The application that wishes to use this socket option simply passes 5377 * in to this call the sctp_sndrcvinfo structure defined in Section 5378 * 5.2.2) The input parameters accepted by this call include 5379 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5380 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5381 * to this call if the caller is using the UDP model. 5382 * 5383 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5384 */ 5385 static int sctp_getsockopt_default_send_param(struct sock *sk, 5386 int len, char __user *optval, 5387 int __user *optlen) 5388 { 5389 struct sctp_sock *sp = sctp_sk(sk); 5390 struct sctp_association *asoc; 5391 struct sctp_sndrcvinfo info; 5392 5393 if (len < sizeof(info)) 5394 return -EINVAL; 5395 5396 len = sizeof(info); 5397 5398 if (copy_from_user(&info, optval, len)) 5399 return -EFAULT; 5400 5401 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5402 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5403 return -EINVAL; 5404 if (asoc) { 5405 info.sinfo_stream = asoc->default_stream; 5406 info.sinfo_flags = asoc->default_flags; 5407 info.sinfo_ppid = asoc->default_ppid; 5408 info.sinfo_context = asoc->default_context; 5409 info.sinfo_timetolive = asoc->default_timetolive; 5410 } else { 5411 info.sinfo_stream = sp->default_stream; 5412 info.sinfo_flags = sp->default_flags; 5413 info.sinfo_ppid = sp->default_ppid; 5414 info.sinfo_context = sp->default_context; 5415 info.sinfo_timetolive = sp->default_timetolive; 5416 } 5417 5418 if (put_user(len, optlen)) 5419 return -EFAULT; 5420 if (copy_to_user(optval, &info, len)) 5421 return -EFAULT; 5422 5423 return 0; 5424 } 5425 5426 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5427 * (SCTP_DEFAULT_SNDINFO) 5428 */ 5429 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5430 char __user *optval, 5431 int __user *optlen) 5432 { 5433 struct sctp_sock *sp = sctp_sk(sk); 5434 struct sctp_association *asoc; 5435 struct sctp_sndinfo info; 5436 5437 if (len < sizeof(info)) 5438 return -EINVAL; 5439 5440 len = sizeof(info); 5441 5442 if (copy_from_user(&info, optval, len)) 5443 return -EFAULT; 5444 5445 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5446 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5447 return -EINVAL; 5448 if (asoc) { 5449 info.snd_sid = asoc->default_stream; 5450 info.snd_flags = asoc->default_flags; 5451 info.snd_ppid = asoc->default_ppid; 5452 info.snd_context = asoc->default_context; 5453 } else { 5454 info.snd_sid = sp->default_stream; 5455 info.snd_flags = sp->default_flags; 5456 info.snd_ppid = sp->default_ppid; 5457 info.snd_context = sp->default_context; 5458 } 5459 5460 if (put_user(len, optlen)) 5461 return -EFAULT; 5462 if (copy_to_user(optval, &info, len)) 5463 return -EFAULT; 5464 5465 return 0; 5466 } 5467 5468 /* 5469 * 5470 * 7.1.5 SCTP_NODELAY 5471 * 5472 * Turn on/off any Nagle-like algorithm. This means that packets are 5473 * generally sent as soon as possible and no unnecessary delays are 5474 * introduced, at the cost of more packets in the network. Expects an 5475 * integer boolean flag. 5476 */ 5477 5478 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5479 char __user *optval, int __user *optlen) 5480 { 5481 int val; 5482 5483 if (len < sizeof(int)) 5484 return -EINVAL; 5485 5486 len = sizeof(int); 5487 val = (sctp_sk(sk)->nodelay == 1); 5488 if (put_user(len, optlen)) 5489 return -EFAULT; 5490 if (copy_to_user(optval, &val, len)) 5491 return -EFAULT; 5492 return 0; 5493 } 5494 5495 /* 5496 * 5497 * 7.1.1 SCTP_RTOINFO 5498 * 5499 * The protocol parameters used to initialize and bound retransmission 5500 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5501 * and modify these parameters. 5502 * All parameters are time values, in milliseconds. A value of 0, when 5503 * modifying the parameters, indicates that the current value should not 5504 * be changed. 5505 * 5506 */ 5507 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5508 char __user *optval, 5509 int __user *optlen) { 5510 struct sctp_rtoinfo rtoinfo; 5511 struct sctp_association *asoc; 5512 5513 if (len < sizeof (struct sctp_rtoinfo)) 5514 return -EINVAL; 5515 5516 len = sizeof(struct sctp_rtoinfo); 5517 5518 if (copy_from_user(&rtoinfo, optval, len)) 5519 return -EFAULT; 5520 5521 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5522 5523 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5524 return -EINVAL; 5525 5526 /* Values corresponding to the specific association. */ 5527 if (asoc) { 5528 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5529 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5530 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5531 } else { 5532 /* Values corresponding to the endpoint. */ 5533 struct sctp_sock *sp = sctp_sk(sk); 5534 5535 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5536 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5537 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5538 } 5539 5540 if (put_user(len, optlen)) 5541 return -EFAULT; 5542 5543 if (copy_to_user(optval, &rtoinfo, len)) 5544 return -EFAULT; 5545 5546 return 0; 5547 } 5548 5549 /* 5550 * 5551 * 7.1.2 SCTP_ASSOCINFO 5552 * 5553 * This option is used to tune the maximum retransmission attempts 5554 * of the association. 5555 * Returns an error if the new association retransmission value is 5556 * greater than the sum of the retransmission value of the peer. 5557 * See [SCTP] for more information. 5558 * 5559 */ 5560 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5561 char __user *optval, 5562 int __user *optlen) 5563 { 5564 5565 struct sctp_assocparams assocparams; 5566 struct sctp_association *asoc; 5567 struct list_head *pos; 5568 int cnt = 0; 5569 5570 if (len < sizeof (struct sctp_assocparams)) 5571 return -EINVAL; 5572 5573 len = sizeof(struct sctp_assocparams); 5574 5575 if (copy_from_user(&assocparams, optval, len)) 5576 return -EFAULT; 5577 5578 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5579 5580 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5581 return -EINVAL; 5582 5583 /* Values correspoinding to the specific association */ 5584 if (asoc) { 5585 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5586 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5587 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5588 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5589 5590 list_for_each(pos, &asoc->peer.transport_addr_list) { 5591 cnt++; 5592 } 5593 5594 assocparams.sasoc_number_peer_destinations = cnt; 5595 } else { 5596 /* Values corresponding to the endpoint */ 5597 struct sctp_sock *sp = sctp_sk(sk); 5598 5599 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5600 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5601 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5602 assocparams.sasoc_cookie_life = 5603 sp->assocparams.sasoc_cookie_life; 5604 assocparams.sasoc_number_peer_destinations = 5605 sp->assocparams. 5606 sasoc_number_peer_destinations; 5607 } 5608 5609 if (put_user(len, optlen)) 5610 return -EFAULT; 5611 5612 if (copy_to_user(optval, &assocparams, len)) 5613 return -EFAULT; 5614 5615 return 0; 5616 } 5617 5618 /* 5619 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5620 * 5621 * This socket option is a boolean flag which turns on or off mapped V4 5622 * addresses. If this option is turned on and the socket is type 5623 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5624 * If this option is turned off, then no mapping will be done of V4 5625 * addresses and a user will receive both PF_INET6 and PF_INET type 5626 * addresses on the socket. 5627 */ 5628 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5629 char __user *optval, int __user *optlen) 5630 { 5631 int val; 5632 struct sctp_sock *sp = sctp_sk(sk); 5633 5634 if (len < sizeof(int)) 5635 return -EINVAL; 5636 5637 len = sizeof(int); 5638 val = sp->v4mapped; 5639 if (put_user(len, optlen)) 5640 return -EFAULT; 5641 if (copy_to_user(optval, &val, len)) 5642 return -EFAULT; 5643 5644 return 0; 5645 } 5646 5647 /* 5648 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5649 * (chapter and verse is quoted at sctp_setsockopt_context()) 5650 */ 5651 static int sctp_getsockopt_context(struct sock *sk, int len, 5652 char __user *optval, int __user *optlen) 5653 { 5654 struct sctp_assoc_value params; 5655 struct sctp_sock *sp; 5656 struct sctp_association *asoc; 5657 5658 if (len < sizeof(struct sctp_assoc_value)) 5659 return -EINVAL; 5660 5661 len = sizeof(struct sctp_assoc_value); 5662 5663 if (copy_from_user(¶ms, optval, len)) 5664 return -EFAULT; 5665 5666 sp = sctp_sk(sk); 5667 5668 if (params.assoc_id != 0) { 5669 asoc = sctp_id2assoc(sk, params.assoc_id); 5670 if (!asoc) 5671 return -EINVAL; 5672 params.assoc_value = asoc->default_rcv_context; 5673 } else { 5674 params.assoc_value = sp->default_rcv_context; 5675 } 5676 5677 if (put_user(len, optlen)) 5678 return -EFAULT; 5679 if (copy_to_user(optval, ¶ms, len)) 5680 return -EFAULT; 5681 5682 return 0; 5683 } 5684 5685 /* 5686 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5687 * This option will get or set the maximum size to put in any outgoing 5688 * SCTP DATA chunk. If a message is larger than this size it will be 5689 * fragmented by SCTP into the specified size. Note that the underlying 5690 * SCTP implementation may fragment into smaller sized chunks when the 5691 * PMTU of the underlying association is smaller than the value set by 5692 * the user. The default value for this option is '0' which indicates 5693 * the user is NOT limiting fragmentation and only the PMTU will effect 5694 * SCTP's choice of DATA chunk size. Note also that values set larger 5695 * than the maximum size of an IP datagram will effectively let SCTP 5696 * control fragmentation (i.e. the same as setting this option to 0). 5697 * 5698 * The following structure is used to access and modify this parameter: 5699 * 5700 * struct sctp_assoc_value { 5701 * sctp_assoc_t assoc_id; 5702 * uint32_t assoc_value; 5703 * }; 5704 * 5705 * assoc_id: This parameter is ignored for one-to-one style sockets. 5706 * For one-to-many style sockets this parameter indicates which 5707 * association the user is performing an action upon. Note that if 5708 * this field's value is zero then the endpoints default value is 5709 * changed (effecting future associations only). 5710 * assoc_value: This parameter specifies the maximum size in bytes. 5711 */ 5712 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5713 char __user *optval, int __user *optlen) 5714 { 5715 struct sctp_assoc_value params; 5716 struct sctp_association *asoc; 5717 5718 if (len == sizeof(int)) { 5719 pr_warn_ratelimited(DEPRECATED 5720 "%s (pid %d) " 5721 "Use of int in maxseg socket option.\n" 5722 "Use struct sctp_assoc_value instead\n", 5723 current->comm, task_pid_nr(current)); 5724 params.assoc_id = 0; 5725 } else if (len >= sizeof(struct sctp_assoc_value)) { 5726 len = sizeof(struct sctp_assoc_value); 5727 if (copy_from_user(¶ms, optval, sizeof(params))) 5728 return -EFAULT; 5729 } else 5730 return -EINVAL; 5731 5732 asoc = sctp_id2assoc(sk, params.assoc_id); 5733 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5734 return -EINVAL; 5735 5736 if (asoc) 5737 params.assoc_value = asoc->frag_point; 5738 else 5739 params.assoc_value = sctp_sk(sk)->user_frag; 5740 5741 if (put_user(len, optlen)) 5742 return -EFAULT; 5743 if (len == sizeof(int)) { 5744 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5745 return -EFAULT; 5746 } else { 5747 if (copy_to_user(optval, ¶ms, len)) 5748 return -EFAULT; 5749 } 5750 5751 return 0; 5752 } 5753 5754 /* 5755 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5756 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5757 */ 5758 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5759 char __user *optval, int __user *optlen) 5760 { 5761 int val; 5762 5763 if (len < sizeof(int)) 5764 return -EINVAL; 5765 5766 len = sizeof(int); 5767 5768 val = sctp_sk(sk)->frag_interleave; 5769 if (put_user(len, optlen)) 5770 return -EFAULT; 5771 if (copy_to_user(optval, &val, len)) 5772 return -EFAULT; 5773 5774 return 0; 5775 } 5776 5777 /* 5778 * 7.1.25. Set or Get the sctp partial delivery point 5779 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5780 */ 5781 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5782 char __user *optval, 5783 int __user *optlen) 5784 { 5785 u32 val; 5786 5787 if (len < sizeof(u32)) 5788 return -EINVAL; 5789 5790 len = sizeof(u32); 5791 5792 val = sctp_sk(sk)->pd_point; 5793 if (put_user(len, optlen)) 5794 return -EFAULT; 5795 if (copy_to_user(optval, &val, len)) 5796 return -EFAULT; 5797 5798 return 0; 5799 } 5800 5801 /* 5802 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5803 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5804 */ 5805 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5806 char __user *optval, 5807 int __user *optlen) 5808 { 5809 struct sctp_assoc_value params; 5810 struct sctp_sock *sp; 5811 struct sctp_association *asoc; 5812 5813 if (len == sizeof(int)) { 5814 pr_warn_ratelimited(DEPRECATED 5815 "%s (pid %d) " 5816 "Use of int in max_burst socket option.\n" 5817 "Use struct sctp_assoc_value instead\n", 5818 current->comm, task_pid_nr(current)); 5819 params.assoc_id = 0; 5820 } else if (len >= sizeof(struct sctp_assoc_value)) { 5821 len = sizeof(struct sctp_assoc_value); 5822 if (copy_from_user(¶ms, optval, len)) 5823 return -EFAULT; 5824 } else 5825 return -EINVAL; 5826 5827 sp = sctp_sk(sk); 5828 5829 if (params.assoc_id != 0) { 5830 asoc = sctp_id2assoc(sk, params.assoc_id); 5831 if (!asoc) 5832 return -EINVAL; 5833 params.assoc_value = asoc->max_burst; 5834 } else 5835 params.assoc_value = sp->max_burst; 5836 5837 if (len == sizeof(int)) { 5838 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5839 return -EFAULT; 5840 } else { 5841 if (copy_to_user(optval, ¶ms, len)) 5842 return -EFAULT; 5843 } 5844 5845 return 0; 5846 5847 } 5848 5849 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5850 char __user *optval, int __user *optlen) 5851 { 5852 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5853 struct sctp_hmacalgo __user *p = (void __user *)optval; 5854 struct sctp_hmac_algo_param *hmacs; 5855 __u16 data_len = 0; 5856 u32 num_idents; 5857 int i; 5858 5859 if (!ep->auth_enable) 5860 return -EACCES; 5861 5862 hmacs = ep->auth_hmacs_list; 5863 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5864 5865 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5866 return -EINVAL; 5867 5868 len = sizeof(struct sctp_hmacalgo) + data_len; 5869 num_idents = data_len / sizeof(u16); 5870 5871 if (put_user(len, optlen)) 5872 return -EFAULT; 5873 if (put_user(num_idents, &p->shmac_num_idents)) 5874 return -EFAULT; 5875 for (i = 0; i < num_idents; i++) { 5876 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 5877 5878 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 5879 return -EFAULT; 5880 } 5881 return 0; 5882 } 5883 5884 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5885 char __user *optval, int __user *optlen) 5886 { 5887 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5888 struct sctp_authkeyid val; 5889 struct sctp_association *asoc; 5890 5891 if (!ep->auth_enable) 5892 return -EACCES; 5893 5894 if (len < sizeof(struct sctp_authkeyid)) 5895 return -EINVAL; 5896 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5897 return -EFAULT; 5898 5899 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5900 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5901 return -EINVAL; 5902 5903 if (asoc) 5904 val.scact_keynumber = asoc->active_key_id; 5905 else 5906 val.scact_keynumber = ep->active_key_id; 5907 5908 len = sizeof(struct sctp_authkeyid); 5909 if (put_user(len, optlen)) 5910 return -EFAULT; 5911 if (copy_to_user(optval, &val, len)) 5912 return -EFAULT; 5913 5914 return 0; 5915 } 5916 5917 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5918 char __user *optval, int __user *optlen) 5919 { 5920 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5921 struct sctp_authchunks __user *p = (void __user *)optval; 5922 struct sctp_authchunks val; 5923 struct sctp_association *asoc; 5924 struct sctp_chunks_param *ch; 5925 u32 num_chunks = 0; 5926 char __user *to; 5927 5928 if (!ep->auth_enable) 5929 return -EACCES; 5930 5931 if (len < sizeof(struct sctp_authchunks)) 5932 return -EINVAL; 5933 5934 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5935 return -EFAULT; 5936 5937 to = p->gauth_chunks; 5938 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5939 if (!asoc) 5940 return -EINVAL; 5941 5942 ch = asoc->peer.peer_chunks; 5943 if (!ch) 5944 goto num; 5945 5946 /* See if the user provided enough room for all the data */ 5947 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5948 if (len < num_chunks) 5949 return -EINVAL; 5950 5951 if (copy_to_user(to, ch->chunks, num_chunks)) 5952 return -EFAULT; 5953 num: 5954 len = sizeof(struct sctp_authchunks) + num_chunks; 5955 if (put_user(len, optlen)) 5956 return -EFAULT; 5957 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5958 return -EFAULT; 5959 return 0; 5960 } 5961 5962 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5963 char __user *optval, int __user *optlen) 5964 { 5965 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5966 struct sctp_authchunks __user *p = (void __user *)optval; 5967 struct sctp_authchunks val; 5968 struct sctp_association *asoc; 5969 struct sctp_chunks_param *ch; 5970 u32 num_chunks = 0; 5971 char __user *to; 5972 5973 if (!ep->auth_enable) 5974 return -EACCES; 5975 5976 if (len < sizeof(struct sctp_authchunks)) 5977 return -EINVAL; 5978 5979 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5980 return -EFAULT; 5981 5982 to = p->gauth_chunks; 5983 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5984 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5985 return -EINVAL; 5986 5987 if (asoc) 5988 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 5989 else 5990 ch = ep->auth_chunk_list; 5991 5992 if (!ch) 5993 goto num; 5994 5995 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5996 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5997 return -EINVAL; 5998 5999 if (copy_to_user(to, ch->chunks, num_chunks)) 6000 return -EFAULT; 6001 num: 6002 len = sizeof(struct sctp_authchunks) + num_chunks; 6003 if (put_user(len, optlen)) 6004 return -EFAULT; 6005 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6006 return -EFAULT; 6007 6008 return 0; 6009 } 6010 6011 /* 6012 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6013 * This option gets the current number of associations that are attached 6014 * to a one-to-many style socket. The option value is an uint32_t. 6015 */ 6016 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6017 char __user *optval, int __user *optlen) 6018 { 6019 struct sctp_sock *sp = sctp_sk(sk); 6020 struct sctp_association *asoc; 6021 u32 val = 0; 6022 6023 if (sctp_style(sk, TCP)) 6024 return -EOPNOTSUPP; 6025 6026 if (len < sizeof(u32)) 6027 return -EINVAL; 6028 6029 len = sizeof(u32); 6030 6031 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6032 val++; 6033 } 6034 6035 if (put_user(len, optlen)) 6036 return -EFAULT; 6037 if (copy_to_user(optval, &val, len)) 6038 return -EFAULT; 6039 6040 return 0; 6041 } 6042 6043 /* 6044 * 8.1.23 SCTP_AUTO_ASCONF 6045 * See the corresponding setsockopt entry as description 6046 */ 6047 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6048 char __user *optval, int __user *optlen) 6049 { 6050 int val = 0; 6051 6052 if (len < sizeof(int)) 6053 return -EINVAL; 6054 6055 len = sizeof(int); 6056 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6057 val = 1; 6058 if (put_user(len, optlen)) 6059 return -EFAULT; 6060 if (copy_to_user(optval, &val, len)) 6061 return -EFAULT; 6062 return 0; 6063 } 6064 6065 /* 6066 * 8.2.6. Get the Current Identifiers of Associations 6067 * (SCTP_GET_ASSOC_ID_LIST) 6068 * 6069 * This option gets the current list of SCTP association identifiers of 6070 * the SCTP associations handled by a one-to-many style socket. 6071 */ 6072 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6073 char __user *optval, int __user *optlen) 6074 { 6075 struct sctp_sock *sp = sctp_sk(sk); 6076 struct sctp_association *asoc; 6077 struct sctp_assoc_ids *ids; 6078 u32 num = 0; 6079 6080 if (sctp_style(sk, TCP)) 6081 return -EOPNOTSUPP; 6082 6083 if (len < sizeof(struct sctp_assoc_ids)) 6084 return -EINVAL; 6085 6086 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6087 num++; 6088 } 6089 6090 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6091 return -EINVAL; 6092 6093 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6094 6095 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6096 if (unlikely(!ids)) 6097 return -ENOMEM; 6098 6099 ids->gaids_number_of_ids = num; 6100 num = 0; 6101 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6102 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6103 } 6104 6105 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6106 kfree(ids); 6107 return -EFAULT; 6108 } 6109 6110 kfree(ids); 6111 return 0; 6112 } 6113 6114 /* 6115 * SCTP_PEER_ADDR_THLDS 6116 * 6117 * This option allows us to fetch the partially failed threshold for one or all 6118 * transports in an association. See Section 6.1 of: 6119 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6120 */ 6121 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6122 char __user *optval, 6123 int len, 6124 int __user *optlen) 6125 { 6126 struct sctp_paddrthlds val; 6127 struct sctp_transport *trans; 6128 struct sctp_association *asoc; 6129 6130 if (len < sizeof(struct sctp_paddrthlds)) 6131 return -EINVAL; 6132 len = sizeof(struct sctp_paddrthlds); 6133 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6134 return -EFAULT; 6135 6136 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6137 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6138 if (!asoc) 6139 return -ENOENT; 6140 6141 val.spt_pathpfthld = asoc->pf_retrans; 6142 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6143 } else { 6144 trans = sctp_addr_id2transport(sk, &val.spt_address, 6145 val.spt_assoc_id); 6146 if (!trans) 6147 return -ENOENT; 6148 6149 val.spt_pathmaxrxt = trans->pathmaxrxt; 6150 val.spt_pathpfthld = trans->pf_retrans; 6151 } 6152 6153 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6154 return -EFAULT; 6155 6156 return 0; 6157 } 6158 6159 /* 6160 * SCTP_GET_ASSOC_STATS 6161 * 6162 * This option retrieves local per endpoint statistics. It is modeled 6163 * after OpenSolaris' implementation 6164 */ 6165 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6166 char __user *optval, 6167 int __user *optlen) 6168 { 6169 struct sctp_assoc_stats sas; 6170 struct sctp_association *asoc = NULL; 6171 6172 /* User must provide at least the assoc id */ 6173 if (len < sizeof(sctp_assoc_t)) 6174 return -EINVAL; 6175 6176 /* Allow the struct to grow and fill in as much as possible */ 6177 len = min_t(size_t, len, sizeof(sas)); 6178 6179 if (copy_from_user(&sas, optval, len)) 6180 return -EFAULT; 6181 6182 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6183 if (!asoc) 6184 return -EINVAL; 6185 6186 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6187 sas.sas_gapcnt = asoc->stats.gapcnt; 6188 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6189 sas.sas_osacks = asoc->stats.osacks; 6190 sas.sas_isacks = asoc->stats.isacks; 6191 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6192 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6193 sas.sas_oodchunks = asoc->stats.oodchunks; 6194 sas.sas_iodchunks = asoc->stats.iodchunks; 6195 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6196 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6197 sas.sas_idupchunks = asoc->stats.idupchunks; 6198 sas.sas_opackets = asoc->stats.opackets; 6199 sas.sas_ipackets = asoc->stats.ipackets; 6200 6201 /* New high max rto observed, will return 0 if not a single 6202 * RTO update took place. obs_rto_ipaddr will be bogus 6203 * in such a case 6204 */ 6205 sas.sas_maxrto = asoc->stats.max_obs_rto; 6206 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6207 sizeof(struct sockaddr_storage)); 6208 6209 /* Mark beginning of a new observation period */ 6210 asoc->stats.max_obs_rto = asoc->rto_min; 6211 6212 if (put_user(len, optlen)) 6213 return -EFAULT; 6214 6215 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6216 6217 if (copy_to_user(optval, &sas, len)) 6218 return -EFAULT; 6219 6220 return 0; 6221 } 6222 6223 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6224 char __user *optval, 6225 int __user *optlen) 6226 { 6227 int val = 0; 6228 6229 if (len < sizeof(int)) 6230 return -EINVAL; 6231 6232 len = sizeof(int); 6233 if (sctp_sk(sk)->recvrcvinfo) 6234 val = 1; 6235 if (put_user(len, optlen)) 6236 return -EFAULT; 6237 if (copy_to_user(optval, &val, len)) 6238 return -EFAULT; 6239 6240 return 0; 6241 } 6242 6243 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6244 char __user *optval, 6245 int __user *optlen) 6246 { 6247 int val = 0; 6248 6249 if (len < sizeof(int)) 6250 return -EINVAL; 6251 6252 len = sizeof(int); 6253 if (sctp_sk(sk)->recvnxtinfo) 6254 val = 1; 6255 if (put_user(len, optlen)) 6256 return -EFAULT; 6257 if (copy_to_user(optval, &val, len)) 6258 return -EFAULT; 6259 6260 return 0; 6261 } 6262 6263 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6264 char __user *optval, 6265 int __user *optlen) 6266 { 6267 struct sctp_assoc_value params; 6268 struct sctp_association *asoc; 6269 int retval = -EFAULT; 6270 6271 if (len < sizeof(params)) { 6272 retval = -EINVAL; 6273 goto out; 6274 } 6275 6276 len = sizeof(params); 6277 if (copy_from_user(¶ms, optval, len)) 6278 goto out; 6279 6280 asoc = sctp_id2assoc(sk, params.assoc_id); 6281 if (asoc) { 6282 params.assoc_value = asoc->prsctp_enable; 6283 } else if (!params.assoc_id) { 6284 struct sctp_sock *sp = sctp_sk(sk); 6285 6286 params.assoc_value = sp->ep->prsctp_enable; 6287 } else { 6288 retval = -EINVAL; 6289 goto out; 6290 } 6291 6292 if (put_user(len, optlen)) 6293 goto out; 6294 6295 if (copy_to_user(optval, ¶ms, len)) 6296 goto out; 6297 6298 retval = 0; 6299 6300 out: 6301 return retval; 6302 } 6303 6304 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6305 char __user *optval, 6306 int __user *optlen) 6307 { 6308 struct sctp_default_prinfo info; 6309 struct sctp_association *asoc; 6310 int retval = -EFAULT; 6311 6312 if (len < sizeof(info)) { 6313 retval = -EINVAL; 6314 goto out; 6315 } 6316 6317 len = sizeof(info); 6318 if (copy_from_user(&info, optval, len)) 6319 goto out; 6320 6321 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6322 if (asoc) { 6323 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6324 info.pr_value = asoc->default_timetolive; 6325 } else if (!info.pr_assoc_id) { 6326 struct sctp_sock *sp = sctp_sk(sk); 6327 6328 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6329 info.pr_value = sp->default_timetolive; 6330 } else { 6331 retval = -EINVAL; 6332 goto out; 6333 } 6334 6335 if (put_user(len, optlen)) 6336 goto out; 6337 6338 if (copy_to_user(optval, &info, len)) 6339 goto out; 6340 6341 retval = 0; 6342 6343 out: 6344 return retval; 6345 } 6346 6347 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6348 char __user *optval, 6349 int __user *optlen) 6350 { 6351 struct sctp_prstatus params; 6352 struct sctp_association *asoc; 6353 int policy; 6354 int retval = -EINVAL; 6355 6356 if (len < sizeof(params)) 6357 goto out; 6358 6359 len = sizeof(params); 6360 if (copy_from_user(¶ms, optval, len)) { 6361 retval = -EFAULT; 6362 goto out; 6363 } 6364 6365 policy = params.sprstat_policy; 6366 if (policy & ~SCTP_PR_SCTP_MASK) 6367 goto out; 6368 6369 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6370 if (!asoc) 6371 goto out; 6372 6373 if (policy == SCTP_PR_SCTP_NONE) { 6374 params.sprstat_abandoned_unsent = 0; 6375 params.sprstat_abandoned_sent = 0; 6376 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6377 params.sprstat_abandoned_unsent += 6378 asoc->abandoned_unsent[policy]; 6379 params.sprstat_abandoned_sent += 6380 asoc->abandoned_sent[policy]; 6381 } 6382 } else { 6383 params.sprstat_abandoned_unsent = 6384 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6385 params.sprstat_abandoned_sent = 6386 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6387 } 6388 6389 if (put_user(len, optlen)) { 6390 retval = -EFAULT; 6391 goto out; 6392 } 6393 6394 if (copy_to_user(optval, ¶ms, len)) { 6395 retval = -EFAULT; 6396 goto out; 6397 } 6398 6399 retval = 0; 6400 6401 out: 6402 return retval; 6403 } 6404 6405 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6406 char __user *optval, int __user *optlen) 6407 { 6408 int retval = 0; 6409 int len; 6410 6411 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6412 6413 /* I can hardly begin to describe how wrong this is. This is 6414 * so broken as to be worse than useless. The API draft 6415 * REALLY is NOT helpful here... I am not convinced that the 6416 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6417 * are at all well-founded. 6418 */ 6419 if (level != SOL_SCTP) { 6420 struct sctp_af *af = sctp_sk(sk)->pf->af; 6421 6422 retval = af->getsockopt(sk, level, optname, optval, optlen); 6423 return retval; 6424 } 6425 6426 if (get_user(len, optlen)) 6427 return -EFAULT; 6428 6429 if (len < 0) 6430 return -EINVAL; 6431 6432 lock_sock(sk); 6433 6434 switch (optname) { 6435 case SCTP_STATUS: 6436 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6437 break; 6438 case SCTP_DISABLE_FRAGMENTS: 6439 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6440 optlen); 6441 break; 6442 case SCTP_EVENTS: 6443 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6444 break; 6445 case SCTP_AUTOCLOSE: 6446 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6447 break; 6448 case SCTP_SOCKOPT_PEELOFF: 6449 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6450 break; 6451 case SCTP_PEER_ADDR_PARAMS: 6452 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6453 optlen); 6454 break; 6455 case SCTP_DELAYED_SACK: 6456 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6457 optlen); 6458 break; 6459 case SCTP_INITMSG: 6460 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6461 break; 6462 case SCTP_GET_PEER_ADDRS: 6463 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6464 optlen); 6465 break; 6466 case SCTP_GET_LOCAL_ADDRS: 6467 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6468 optlen); 6469 break; 6470 case SCTP_SOCKOPT_CONNECTX3: 6471 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6472 break; 6473 case SCTP_DEFAULT_SEND_PARAM: 6474 retval = sctp_getsockopt_default_send_param(sk, len, 6475 optval, optlen); 6476 break; 6477 case SCTP_DEFAULT_SNDINFO: 6478 retval = sctp_getsockopt_default_sndinfo(sk, len, 6479 optval, optlen); 6480 break; 6481 case SCTP_PRIMARY_ADDR: 6482 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6483 break; 6484 case SCTP_NODELAY: 6485 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6486 break; 6487 case SCTP_RTOINFO: 6488 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6489 break; 6490 case SCTP_ASSOCINFO: 6491 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6492 break; 6493 case SCTP_I_WANT_MAPPED_V4_ADDR: 6494 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6495 break; 6496 case SCTP_MAXSEG: 6497 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6498 break; 6499 case SCTP_GET_PEER_ADDR_INFO: 6500 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6501 optlen); 6502 break; 6503 case SCTP_ADAPTATION_LAYER: 6504 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6505 optlen); 6506 break; 6507 case SCTP_CONTEXT: 6508 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6509 break; 6510 case SCTP_FRAGMENT_INTERLEAVE: 6511 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6512 optlen); 6513 break; 6514 case SCTP_PARTIAL_DELIVERY_POINT: 6515 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6516 optlen); 6517 break; 6518 case SCTP_MAX_BURST: 6519 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6520 break; 6521 case SCTP_AUTH_KEY: 6522 case SCTP_AUTH_CHUNK: 6523 case SCTP_AUTH_DELETE_KEY: 6524 retval = -EOPNOTSUPP; 6525 break; 6526 case SCTP_HMAC_IDENT: 6527 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6528 break; 6529 case SCTP_AUTH_ACTIVE_KEY: 6530 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6531 break; 6532 case SCTP_PEER_AUTH_CHUNKS: 6533 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6534 optlen); 6535 break; 6536 case SCTP_LOCAL_AUTH_CHUNKS: 6537 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6538 optlen); 6539 break; 6540 case SCTP_GET_ASSOC_NUMBER: 6541 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6542 break; 6543 case SCTP_GET_ASSOC_ID_LIST: 6544 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6545 break; 6546 case SCTP_AUTO_ASCONF: 6547 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6548 break; 6549 case SCTP_PEER_ADDR_THLDS: 6550 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6551 break; 6552 case SCTP_GET_ASSOC_STATS: 6553 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6554 break; 6555 case SCTP_RECVRCVINFO: 6556 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6557 break; 6558 case SCTP_RECVNXTINFO: 6559 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6560 break; 6561 case SCTP_PR_SUPPORTED: 6562 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6563 break; 6564 case SCTP_DEFAULT_PRINFO: 6565 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6566 optlen); 6567 break; 6568 case SCTP_PR_ASSOC_STATUS: 6569 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6570 optlen); 6571 break; 6572 default: 6573 retval = -ENOPROTOOPT; 6574 break; 6575 } 6576 6577 release_sock(sk); 6578 return retval; 6579 } 6580 6581 static int sctp_hash(struct sock *sk) 6582 { 6583 /* STUB */ 6584 return 0; 6585 } 6586 6587 static void sctp_unhash(struct sock *sk) 6588 { 6589 /* STUB */ 6590 } 6591 6592 /* Check if port is acceptable. Possibly find first available port. 6593 * 6594 * The port hash table (contained in the 'global' SCTP protocol storage 6595 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6596 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6597 * list (the list number is the port number hashed out, so as you 6598 * would expect from a hash function, all the ports in a given list have 6599 * such a number that hashes out to the same list number; you were 6600 * expecting that, right?); so each list has a set of ports, with a 6601 * link to the socket (struct sock) that uses it, the port number and 6602 * a fastreuse flag (FIXME: NPI ipg). 6603 */ 6604 static struct sctp_bind_bucket *sctp_bucket_create( 6605 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6606 6607 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6608 { 6609 struct sctp_bind_hashbucket *head; /* hash list */ 6610 struct sctp_bind_bucket *pp; 6611 unsigned short snum; 6612 int ret; 6613 6614 snum = ntohs(addr->v4.sin_port); 6615 6616 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6617 6618 local_bh_disable(); 6619 6620 if (snum == 0) { 6621 /* Search for an available port. */ 6622 int low, high, remaining, index; 6623 unsigned int rover; 6624 struct net *net = sock_net(sk); 6625 6626 inet_get_local_port_range(net, &low, &high); 6627 remaining = (high - low) + 1; 6628 rover = prandom_u32() % remaining + low; 6629 6630 do { 6631 rover++; 6632 if ((rover < low) || (rover > high)) 6633 rover = low; 6634 if (inet_is_local_reserved_port(net, rover)) 6635 continue; 6636 index = sctp_phashfn(sock_net(sk), rover); 6637 head = &sctp_port_hashtable[index]; 6638 spin_lock(&head->lock); 6639 sctp_for_each_hentry(pp, &head->chain) 6640 if ((pp->port == rover) && 6641 net_eq(sock_net(sk), pp->net)) 6642 goto next; 6643 break; 6644 next: 6645 spin_unlock(&head->lock); 6646 } while (--remaining > 0); 6647 6648 /* Exhausted local port range during search? */ 6649 ret = 1; 6650 if (remaining <= 0) 6651 goto fail; 6652 6653 /* OK, here is the one we will use. HEAD (the port 6654 * hash table list entry) is non-NULL and we hold it's 6655 * mutex. 6656 */ 6657 snum = rover; 6658 } else { 6659 /* We are given an specific port number; we verify 6660 * that it is not being used. If it is used, we will 6661 * exahust the search in the hash list corresponding 6662 * to the port number (snum) - we detect that with the 6663 * port iterator, pp being NULL. 6664 */ 6665 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6666 spin_lock(&head->lock); 6667 sctp_for_each_hentry(pp, &head->chain) { 6668 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6669 goto pp_found; 6670 } 6671 } 6672 pp = NULL; 6673 goto pp_not_found; 6674 pp_found: 6675 if (!hlist_empty(&pp->owner)) { 6676 /* We had a port hash table hit - there is an 6677 * available port (pp != NULL) and it is being 6678 * used by other socket (pp->owner not empty); that other 6679 * socket is going to be sk2. 6680 */ 6681 int reuse = sk->sk_reuse; 6682 struct sock *sk2; 6683 6684 pr_debug("%s: found a possible match\n", __func__); 6685 6686 if (pp->fastreuse && sk->sk_reuse && 6687 sk->sk_state != SCTP_SS_LISTENING) 6688 goto success; 6689 6690 /* Run through the list of sockets bound to the port 6691 * (pp->port) [via the pointers bind_next and 6692 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6693 * we get the endpoint they describe and run through 6694 * the endpoint's list of IP (v4 or v6) addresses, 6695 * comparing each of the addresses with the address of 6696 * the socket sk. If we find a match, then that means 6697 * that this port/socket (sk) combination are already 6698 * in an endpoint. 6699 */ 6700 sk_for_each_bound(sk2, &pp->owner) { 6701 struct sctp_endpoint *ep2; 6702 ep2 = sctp_sk(sk2)->ep; 6703 6704 if (sk == sk2 || 6705 (reuse && sk2->sk_reuse && 6706 sk2->sk_state != SCTP_SS_LISTENING)) 6707 continue; 6708 6709 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6710 sctp_sk(sk2), sctp_sk(sk))) { 6711 ret = (long)sk2; 6712 goto fail_unlock; 6713 } 6714 } 6715 6716 pr_debug("%s: found a match\n", __func__); 6717 } 6718 pp_not_found: 6719 /* If there was a hash table miss, create a new port. */ 6720 ret = 1; 6721 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6722 goto fail_unlock; 6723 6724 /* In either case (hit or miss), make sure fastreuse is 1 only 6725 * if sk->sk_reuse is too (that is, if the caller requested 6726 * SO_REUSEADDR on this socket -sk-). 6727 */ 6728 if (hlist_empty(&pp->owner)) { 6729 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6730 pp->fastreuse = 1; 6731 else 6732 pp->fastreuse = 0; 6733 } else if (pp->fastreuse && 6734 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6735 pp->fastreuse = 0; 6736 6737 /* We are set, so fill up all the data in the hash table 6738 * entry, tie the socket list information with the rest of the 6739 * sockets FIXME: Blurry, NPI (ipg). 6740 */ 6741 success: 6742 if (!sctp_sk(sk)->bind_hash) { 6743 inet_sk(sk)->inet_num = snum; 6744 sk_add_bind_node(sk, &pp->owner); 6745 sctp_sk(sk)->bind_hash = pp; 6746 } 6747 ret = 0; 6748 6749 fail_unlock: 6750 spin_unlock(&head->lock); 6751 6752 fail: 6753 local_bh_enable(); 6754 return ret; 6755 } 6756 6757 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6758 * port is requested. 6759 */ 6760 static int sctp_get_port(struct sock *sk, unsigned short snum) 6761 { 6762 union sctp_addr addr; 6763 struct sctp_af *af = sctp_sk(sk)->pf->af; 6764 6765 /* Set up a dummy address struct from the sk. */ 6766 af->from_sk(&addr, sk); 6767 addr.v4.sin_port = htons(snum); 6768 6769 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6770 return !!sctp_get_port_local(sk, &addr); 6771 } 6772 6773 /* 6774 * Move a socket to LISTENING state. 6775 */ 6776 static int sctp_listen_start(struct sock *sk, int backlog) 6777 { 6778 struct sctp_sock *sp = sctp_sk(sk); 6779 struct sctp_endpoint *ep = sp->ep; 6780 struct crypto_shash *tfm = NULL; 6781 char alg[32]; 6782 6783 /* Allocate HMAC for generating cookie. */ 6784 if (!sp->hmac && sp->sctp_hmac_alg) { 6785 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6786 tfm = crypto_alloc_shash(alg, 0, 0); 6787 if (IS_ERR(tfm)) { 6788 net_info_ratelimited("failed to load transform for %s: %ld\n", 6789 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6790 return -ENOSYS; 6791 } 6792 sctp_sk(sk)->hmac = tfm; 6793 } 6794 6795 /* 6796 * If a bind() or sctp_bindx() is not called prior to a listen() 6797 * call that allows new associations to be accepted, the system 6798 * picks an ephemeral port and will choose an address set equivalent 6799 * to binding with a wildcard address. 6800 * 6801 * This is not currently spelled out in the SCTP sockets 6802 * extensions draft, but follows the practice as seen in TCP 6803 * sockets. 6804 * 6805 */ 6806 sk->sk_state = SCTP_SS_LISTENING; 6807 if (!ep->base.bind_addr.port) { 6808 if (sctp_autobind(sk)) 6809 return -EAGAIN; 6810 } else { 6811 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6812 sk->sk_state = SCTP_SS_CLOSED; 6813 return -EADDRINUSE; 6814 } 6815 } 6816 6817 sk->sk_max_ack_backlog = backlog; 6818 sctp_hash_endpoint(ep); 6819 return 0; 6820 } 6821 6822 /* 6823 * 4.1.3 / 5.1.3 listen() 6824 * 6825 * By default, new associations are not accepted for UDP style sockets. 6826 * An application uses listen() to mark a socket as being able to 6827 * accept new associations. 6828 * 6829 * On TCP style sockets, applications use listen() to ready the SCTP 6830 * endpoint for accepting inbound associations. 6831 * 6832 * On both types of endpoints a backlog of '0' disables listening. 6833 * 6834 * Move a socket to LISTENING state. 6835 */ 6836 int sctp_inet_listen(struct socket *sock, int backlog) 6837 { 6838 struct sock *sk = sock->sk; 6839 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6840 int err = -EINVAL; 6841 6842 if (unlikely(backlog < 0)) 6843 return err; 6844 6845 lock_sock(sk); 6846 6847 /* Peeled-off sockets are not allowed to listen(). */ 6848 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6849 goto out; 6850 6851 if (sock->state != SS_UNCONNECTED) 6852 goto out; 6853 6854 /* If backlog is zero, disable listening. */ 6855 if (!backlog) { 6856 if (sctp_sstate(sk, CLOSED)) 6857 goto out; 6858 6859 err = 0; 6860 sctp_unhash_endpoint(ep); 6861 sk->sk_state = SCTP_SS_CLOSED; 6862 if (sk->sk_reuse) 6863 sctp_sk(sk)->bind_hash->fastreuse = 1; 6864 goto out; 6865 } 6866 6867 /* If we are already listening, just update the backlog */ 6868 if (sctp_sstate(sk, LISTENING)) 6869 sk->sk_max_ack_backlog = backlog; 6870 else { 6871 err = sctp_listen_start(sk, backlog); 6872 if (err) 6873 goto out; 6874 } 6875 6876 err = 0; 6877 out: 6878 release_sock(sk); 6879 return err; 6880 } 6881 6882 /* 6883 * This function is done by modeling the current datagram_poll() and the 6884 * tcp_poll(). Note that, based on these implementations, we don't 6885 * lock the socket in this function, even though it seems that, 6886 * ideally, locking or some other mechanisms can be used to ensure 6887 * the integrity of the counters (sndbuf and wmem_alloc) used 6888 * in this place. We assume that we don't need locks either until proven 6889 * otherwise. 6890 * 6891 * Another thing to note is that we include the Async I/O support 6892 * here, again, by modeling the current TCP/UDP code. We don't have 6893 * a good way to test with it yet. 6894 */ 6895 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6896 { 6897 struct sock *sk = sock->sk; 6898 struct sctp_sock *sp = sctp_sk(sk); 6899 unsigned int mask; 6900 6901 poll_wait(file, sk_sleep(sk), wait); 6902 6903 sock_rps_record_flow(sk); 6904 6905 /* A TCP-style listening socket becomes readable when the accept queue 6906 * is not empty. 6907 */ 6908 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6909 return (!list_empty(&sp->ep->asocs)) ? 6910 (POLLIN | POLLRDNORM) : 0; 6911 6912 mask = 0; 6913 6914 /* Is there any exceptional events? */ 6915 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6916 mask |= POLLERR | 6917 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6918 if (sk->sk_shutdown & RCV_SHUTDOWN) 6919 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6920 if (sk->sk_shutdown == SHUTDOWN_MASK) 6921 mask |= POLLHUP; 6922 6923 /* Is it readable? Reconsider this code with TCP-style support. */ 6924 if (!skb_queue_empty(&sk->sk_receive_queue)) 6925 mask |= POLLIN | POLLRDNORM; 6926 6927 /* The association is either gone or not ready. */ 6928 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6929 return mask; 6930 6931 /* Is it writable? */ 6932 if (sctp_writeable(sk)) { 6933 mask |= POLLOUT | POLLWRNORM; 6934 } else { 6935 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 6936 /* 6937 * Since the socket is not locked, the buffer 6938 * might be made available after the writeable check and 6939 * before the bit is set. This could cause a lost I/O 6940 * signal. tcp_poll() has a race breaker for this race 6941 * condition. Based on their implementation, we put 6942 * in the following code to cover it as well. 6943 */ 6944 if (sctp_writeable(sk)) 6945 mask |= POLLOUT | POLLWRNORM; 6946 } 6947 return mask; 6948 } 6949 6950 /******************************************************************** 6951 * 2nd Level Abstractions 6952 ********************************************************************/ 6953 6954 static struct sctp_bind_bucket *sctp_bucket_create( 6955 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6956 { 6957 struct sctp_bind_bucket *pp; 6958 6959 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6960 if (pp) { 6961 SCTP_DBG_OBJCNT_INC(bind_bucket); 6962 pp->port = snum; 6963 pp->fastreuse = 0; 6964 INIT_HLIST_HEAD(&pp->owner); 6965 pp->net = net; 6966 hlist_add_head(&pp->node, &head->chain); 6967 } 6968 return pp; 6969 } 6970 6971 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6972 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6973 { 6974 if (pp && hlist_empty(&pp->owner)) { 6975 __hlist_del(&pp->node); 6976 kmem_cache_free(sctp_bucket_cachep, pp); 6977 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6978 } 6979 } 6980 6981 /* Release this socket's reference to a local port. */ 6982 static inline void __sctp_put_port(struct sock *sk) 6983 { 6984 struct sctp_bind_hashbucket *head = 6985 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6986 inet_sk(sk)->inet_num)]; 6987 struct sctp_bind_bucket *pp; 6988 6989 spin_lock(&head->lock); 6990 pp = sctp_sk(sk)->bind_hash; 6991 __sk_del_bind_node(sk); 6992 sctp_sk(sk)->bind_hash = NULL; 6993 inet_sk(sk)->inet_num = 0; 6994 sctp_bucket_destroy(pp); 6995 spin_unlock(&head->lock); 6996 } 6997 6998 void sctp_put_port(struct sock *sk) 6999 { 7000 local_bh_disable(); 7001 __sctp_put_port(sk); 7002 local_bh_enable(); 7003 } 7004 7005 /* 7006 * The system picks an ephemeral port and choose an address set equivalent 7007 * to binding with a wildcard address. 7008 * One of those addresses will be the primary address for the association. 7009 * This automatically enables the multihoming capability of SCTP. 7010 */ 7011 static int sctp_autobind(struct sock *sk) 7012 { 7013 union sctp_addr autoaddr; 7014 struct sctp_af *af; 7015 __be16 port; 7016 7017 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7018 af = sctp_sk(sk)->pf->af; 7019 7020 port = htons(inet_sk(sk)->inet_num); 7021 af->inaddr_any(&autoaddr, port); 7022 7023 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7024 } 7025 7026 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7027 * 7028 * From RFC 2292 7029 * 4.2 The cmsghdr Structure * 7030 * 7031 * When ancillary data is sent or received, any number of ancillary data 7032 * objects can be specified by the msg_control and msg_controllen members of 7033 * the msghdr structure, because each object is preceded by 7034 * a cmsghdr structure defining the object's length (the cmsg_len member). 7035 * Historically Berkeley-derived implementations have passed only one object 7036 * at a time, but this API allows multiple objects to be 7037 * passed in a single call to sendmsg() or recvmsg(). The following example 7038 * shows two ancillary data objects in a control buffer. 7039 * 7040 * |<--------------------------- msg_controllen -------------------------->| 7041 * | | 7042 * 7043 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7044 * 7045 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7046 * | | | 7047 * 7048 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7049 * 7050 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7051 * | | | | | 7052 * 7053 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7054 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7055 * 7056 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7057 * 7058 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7059 * ^ 7060 * | 7061 * 7062 * msg_control 7063 * points here 7064 */ 7065 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 7066 { 7067 struct cmsghdr *cmsg; 7068 struct msghdr *my_msg = (struct msghdr *)msg; 7069 7070 for_each_cmsghdr(cmsg, my_msg) { 7071 if (!CMSG_OK(my_msg, cmsg)) 7072 return -EINVAL; 7073 7074 /* Should we parse this header or ignore? */ 7075 if (cmsg->cmsg_level != IPPROTO_SCTP) 7076 continue; 7077 7078 /* Strictly check lengths following example in SCM code. */ 7079 switch (cmsg->cmsg_type) { 7080 case SCTP_INIT: 7081 /* SCTP Socket API Extension 7082 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7083 * 7084 * This cmsghdr structure provides information for 7085 * initializing new SCTP associations with sendmsg(). 7086 * The SCTP_INITMSG socket option uses this same data 7087 * structure. This structure is not used for 7088 * recvmsg(). 7089 * 7090 * cmsg_level cmsg_type cmsg_data[] 7091 * ------------ ------------ ---------------------- 7092 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7093 */ 7094 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7095 return -EINVAL; 7096 7097 cmsgs->init = CMSG_DATA(cmsg); 7098 break; 7099 7100 case SCTP_SNDRCV: 7101 /* SCTP Socket API Extension 7102 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7103 * 7104 * This cmsghdr structure specifies SCTP options for 7105 * sendmsg() and describes SCTP header information 7106 * about a received message through recvmsg(). 7107 * 7108 * cmsg_level cmsg_type cmsg_data[] 7109 * ------------ ------------ ---------------------- 7110 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7111 */ 7112 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7113 return -EINVAL; 7114 7115 cmsgs->srinfo = CMSG_DATA(cmsg); 7116 7117 if (cmsgs->srinfo->sinfo_flags & 7118 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7119 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7120 SCTP_ABORT | SCTP_EOF)) 7121 return -EINVAL; 7122 break; 7123 7124 case SCTP_SNDINFO: 7125 /* SCTP Socket API Extension 7126 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7127 * 7128 * This cmsghdr structure specifies SCTP options for 7129 * sendmsg(). This structure and SCTP_RCVINFO replaces 7130 * SCTP_SNDRCV which has been deprecated. 7131 * 7132 * cmsg_level cmsg_type cmsg_data[] 7133 * ------------ ------------ --------------------- 7134 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7135 */ 7136 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7137 return -EINVAL; 7138 7139 cmsgs->sinfo = CMSG_DATA(cmsg); 7140 7141 if (cmsgs->sinfo->snd_flags & 7142 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7143 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7144 SCTP_ABORT | SCTP_EOF)) 7145 return -EINVAL; 7146 break; 7147 default: 7148 return -EINVAL; 7149 } 7150 } 7151 7152 return 0; 7153 } 7154 7155 /* 7156 * Wait for a packet.. 7157 * Note: This function is the same function as in core/datagram.c 7158 * with a few modifications to make lksctp work. 7159 */ 7160 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7161 { 7162 int error; 7163 DEFINE_WAIT(wait); 7164 7165 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7166 7167 /* Socket errors? */ 7168 error = sock_error(sk); 7169 if (error) 7170 goto out; 7171 7172 if (!skb_queue_empty(&sk->sk_receive_queue)) 7173 goto ready; 7174 7175 /* Socket shut down? */ 7176 if (sk->sk_shutdown & RCV_SHUTDOWN) 7177 goto out; 7178 7179 /* Sequenced packets can come disconnected. If so we report the 7180 * problem. 7181 */ 7182 error = -ENOTCONN; 7183 7184 /* Is there a good reason to think that we may receive some data? */ 7185 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7186 goto out; 7187 7188 /* Handle signals. */ 7189 if (signal_pending(current)) 7190 goto interrupted; 7191 7192 /* Let another process have a go. Since we are going to sleep 7193 * anyway. Note: This may cause odd behaviors if the message 7194 * does not fit in the user's buffer, but this seems to be the 7195 * only way to honor MSG_DONTWAIT realistically. 7196 */ 7197 release_sock(sk); 7198 *timeo_p = schedule_timeout(*timeo_p); 7199 lock_sock(sk); 7200 7201 ready: 7202 finish_wait(sk_sleep(sk), &wait); 7203 return 0; 7204 7205 interrupted: 7206 error = sock_intr_errno(*timeo_p); 7207 7208 out: 7209 finish_wait(sk_sleep(sk), &wait); 7210 *err = error; 7211 return error; 7212 } 7213 7214 /* Receive a datagram. 7215 * Note: This is pretty much the same routine as in core/datagram.c 7216 * with a few changes to make lksctp work. 7217 */ 7218 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7219 int noblock, int *err) 7220 { 7221 int error; 7222 struct sk_buff *skb; 7223 long timeo; 7224 7225 timeo = sock_rcvtimeo(sk, noblock); 7226 7227 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7228 MAX_SCHEDULE_TIMEOUT); 7229 7230 do { 7231 /* Again only user level code calls this function, 7232 * so nothing interrupt level 7233 * will suddenly eat the receive_queue. 7234 * 7235 * Look at current nfs client by the way... 7236 * However, this function was correct in any case. 8) 7237 */ 7238 if (flags & MSG_PEEK) { 7239 skb = skb_peek(&sk->sk_receive_queue); 7240 if (skb) 7241 atomic_inc(&skb->users); 7242 } else { 7243 skb = __skb_dequeue(&sk->sk_receive_queue); 7244 } 7245 7246 if (skb) 7247 return skb; 7248 7249 /* Caller is allowed not to check sk->sk_err before calling. */ 7250 error = sock_error(sk); 7251 if (error) 7252 goto no_packet; 7253 7254 if (sk->sk_shutdown & RCV_SHUTDOWN) 7255 break; 7256 7257 if (sk_can_busy_loop(sk) && 7258 sk_busy_loop(sk, noblock)) 7259 continue; 7260 7261 /* User doesn't want to wait. */ 7262 error = -EAGAIN; 7263 if (!timeo) 7264 goto no_packet; 7265 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7266 7267 return NULL; 7268 7269 no_packet: 7270 *err = error; 7271 return NULL; 7272 } 7273 7274 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7275 static void __sctp_write_space(struct sctp_association *asoc) 7276 { 7277 struct sock *sk = asoc->base.sk; 7278 7279 if (sctp_wspace(asoc) <= 0) 7280 return; 7281 7282 if (waitqueue_active(&asoc->wait)) 7283 wake_up_interruptible(&asoc->wait); 7284 7285 if (sctp_writeable(sk)) { 7286 struct socket_wq *wq; 7287 7288 rcu_read_lock(); 7289 wq = rcu_dereference(sk->sk_wq); 7290 if (wq) { 7291 if (waitqueue_active(&wq->wait)) 7292 wake_up_interruptible(&wq->wait); 7293 7294 /* Note that we try to include the Async I/O support 7295 * here by modeling from the current TCP/UDP code. 7296 * We have not tested with it yet. 7297 */ 7298 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7299 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7300 } 7301 rcu_read_unlock(); 7302 } 7303 } 7304 7305 static void sctp_wake_up_waiters(struct sock *sk, 7306 struct sctp_association *asoc) 7307 { 7308 struct sctp_association *tmp = asoc; 7309 7310 /* We do accounting for the sndbuf space per association, 7311 * so we only need to wake our own association. 7312 */ 7313 if (asoc->ep->sndbuf_policy) 7314 return __sctp_write_space(asoc); 7315 7316 /* If association goes down and is just flushing its 7317 * outq, then just normally notify others. 7318 */ 7319 if (asoc->base.dead) 7320 return sctp_write_space(sk); 7321 7322 /* Accounting for the sndbuf space is per socket, so we 7323 * need to wake up others, try to be fair and in case of 7324 * other associations, let them have a go first instead 7325 * of just doing a sctp_write_space() call. 7326 * 7327 * Note that we reach sctp_wake_up_waiters() only when 7328 * associations free up queued chunks, thus we are under 7329 * lock and the list of associations on a socket is 7330 * guaranteed not to change. 7331 */ 7332 for (tmp = list_next_entry(tmp, asocs); 1; 7333 tmp = list_next_entry(tmp, asocs)) { 7334 /* Manually skip the head element. */ 7335 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7336 continue; 7337 /* Wake up association. */ 7338 __sctp_write_space(tmp); 7339 /* We've reached the end. */ 7340 if (tmp == asoc) 7341 break; 7342 } 7343 } 7344 7345 /* Do accounting for the sndbuf space. 7346 * Decrement the used sndbuf space of the corresponding association by the 7347 * data size which was just transmitted(freed). 7348 */ 7349 static void sctp_wfree(struct sk_buff *skb) 7350 { 7351 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7352 struct sctp_association *asoc = chunk->asoc; 7353 struct sock *sk = asoc->base.sk; 7354 7355 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7356 sizeof(struct sk_buff) + 7357 sizeof(struct sctp_chunk); 7358 7359 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 7360 7361 /* 7362 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7363 */ 7364 sk->sk_wmem_queued -= skb->truesize; 7365 sk_mem_uncharge(sk, skb->truesize); 7366 7367 sock_wfree(skb); 7368 sctp_wake_up_waiters(sk, asoc); 7369 7370 sctp_association_put(asoc); 7371 } 7372 7373 /* Do accounting for the receive space on the socket. 7374 * Accounting for the association is done in ulpevent.c 7375 * We set this as a destructor for the cloned data skbs so that 7376 * accounting is done at the correct time. 7377 */ 7378 void sctp_sock_rfree(struct sk_buff *skb) 7379 { 7380 struct sock *sk = skb->sk; 7381 struct sctp_ulpevent *event = sctp_skb2event(skb); 7382 7383 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7384 7385 /* 7386 * Mimic the behavior of sock_rfree 7387 */ 7388 sk_mem_uncharge(sk, event->rmem_len); 7389 } 7390 7391 7392 /* Helper function to wait for space in the sndbuf. */ 7393 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7394 size_t msg_len) 7395 { 7396 struct sock *sk = asoc->base.sk; 7397 int err = 0; 7398 long current_timeo = *timeo_p; 7399 DEFINE_WAIT(wait); 7400 7401 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7402 *timeo_p, msg_len); 7403 7404 /* Increment the association's refcnt. */ 7405 sctp_association_hold(asoc); 7406 7407 /* Wait on the association specific sndbuf space. */ 7408 for (;;) { 7409 prepare_to_wait_exclusive(&asoc->wait, &wait, 7410 TASK_INTERRUPTIBLE); 7411 if (!*timeo_p) 7412 goto do_nonblock; 7413 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7414 asoc->base.dead) 7415 goto do_error; 7416 if (signal_pending(current)) 7417 goto do_interrupted; 7418 if (msg_len <= sctp_wspace(asoc)) 7419 break; 7420 7421 /* Let another process have a go. Since we are going 7422 * to sleep anyway. 7423 */ 7424 release_sock(sk); 7425 current_timeo = schedule_timeout(current_timeo); 7426 BUG_ON(sk != asoc->base.sk); 7427 lock_sock(sk); 7428 7429 *timeo_p = current_timeo; 7430 } 7431 7432 out: 7433 finish_wait(&asoc->wait, &wait); 7434 7435 /* Release the association's refcnt. */ 7436 sctp_association_put(asoc); 7437 7438 return err; 7439 7440 do_error: 7441 err = -EPIPE; 7442 goto out; 7443 7444 do_interrupted: 7445 err = sock_intr_errno(*timeo_p); 7446 goto out; 7447 7448 do_nonblock: 7449 err = -EAGAIN; 7450 goto out; 7451 } 7452 7453 void sctp_data_ready(struct sock *sk) 7454 { 7455 struct socket_wq *wq; 7456 7457 rcu_read_lock(); 7458 wq = rcu_dereference(sk->sk_wq); 7459 if (skwq_has_sleeper(wq)) 7460 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7461 POLLRDNORM | POLLRDBAND); 7462 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7463 rcu_read_unlock(); 7464 } 7465 7466 /* If socket sndbuf has changed, wake up all per association waiters. */ 7467 void sctp_write_space(struct sock *sk) 7468 { 7469 struct sctp_association *asoc; 7470 7471 /* Wake up the tasks in each wait queue. */ 7472 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7473 __sctp_write_space(asoc); 7474 } 7475 } 7476 7477 /* Is there any sndbuf space available on the socket? 7478 * 7479 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7480 * associations on the same socket. For a UDP-style socket with 7481 * multiple associations, it is possible for it to be "unwriteable" 7482 * prematurely. I assume that this is acceptable because 7483 * a premature "unwriteable" is better than an accidental "writeable" which 7484 * would cause an unwanted block under certain circumstances. For the 1-1 7485 * UDP-style sockets or TCP-style sockets, this code should work. 7486 * - Daisy 7487 */ 7488 static int sctp_writeable(struct sock *sk) 7489 { 7490 int amt = 0; 7491 7492 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7493 if (amt < 0) 7494 amt = 0; 7495 return amt; 7496 } 7497 7498 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7499 * returns immediately with EINPROGRESS. 7500 */ 7501 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7502 { 7503 struct sock *sk = asoc->base.sk; 7504 int err = 0; 7505 long current_timeo = *timeo_p; 7506 DEFINE_WAIT(wait); 7507 7508 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7509 7510 /* Increment the association's refcnt. */ 7511 sctp_association_hold(asoc); 7512 7513 for (;;) { 7514 prepare_to_wait_exclusive(&asoc->wait, &wait, 7515 TASK_INTERRUPTIBLE); 7516 if (!*timeo_p) 7517 goto do_nonblock; 7518 if (sk->sk_shutdown & RCV_SHUTDOWN) 7519 break; 7520 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7521 asoc->base.dead) 7522 goto do_error; 7523 if (signal_pending(current)) 7524 goto do_interrupted; 7525 7526 if (sctp_state(asoc, ESTABLISHED)) 7527 break; 7528 7529 /* Let another process have a go. Since we are going 7530 * to sleep anyway. 7531 */ 7532 release_sock(sk); 7533 current_timeo = schedule_timeout(current_timeo); 7534 lock_sock(sk); 7535 7536 *timeo_p = current_timeo; 7537 } 7538 7539 out: 7540 finish_wait(&asoc->wait, &wait); 7541 7542 /* Release the association's refcnt. */ 7543 sctp_association_put(asoc); 7544 7545 return err; 7546 7547 do_error: 7548 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7549 err = -ETIMEDOUT; 7550 else 7551 err = -ECONNREFUSED; 7552 goto out; 7553 7554 do_interrupted: 7555 err = sock_intr_errno(*timeo_p); 7556 goto out; 7557 7558 do_nonblock: 7559 err = -EINPROGRESS; 7560 goto out; 7561 } 7562 7563 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7564 { 7565 struct sctp_endpoint *ep; 7566 int err = 0; 7567 DEFINE_WAIT(wait); 7568 7569 ep = sctp_sk(sk)->ep; 7570 7571 7572 for (;;) { 7573 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7574 TASK_INTERRUPTIBLE); 7575 7576 if (list_empty(&ep->asocs)) { 7577 release_sock(sk); 7578 timeo = schedule_timeout(timeo); 7579 lock_sock(sk); 7580 } 7581 7582 err = -EINVAL; 7583 if (!sctp_sstate(sk, LISTENING)) 7584 break; 7585 7586 err = 0; 7587 if (!list_empty(&ep->asocs)) 7588 break; 7589 7590 err = sock_intr_errno(timeo); 7591 if (signal_pending(current)) 7592 break; 7593 7594 err = -EAGAIN; 7595 if (!timeo) 7596 break; 7597 } 7598 7599 finish_wait(sk_sleep(sk), &wait); 7600 7601 return err; 7602 } 7603 7604 static void sctp_wait_for_close(struct sock *sk, long timeout) 7605 { 7606 DEFINE_WAIT(wait); 7607 7608 do { 7609 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7610 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7611 break; 7612 release_sock(sk); 7613 timeout = schedule_timeout(timeout); 7614 lock_sock(sk); 7615 } while (!signal_pending(current) && timeout); 7616 7617 finish_wait(sk_sleep(sk), &wait); 7618 } 7619 7620 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7621 { 7622 struct sk_buff *frag; 7623 7624 if (!skb->data_len) 7625 goto done; 7626 7627 /* Don't forget the fragments. */ 7628 skb_walk_frags(skb, frag) 7629 sctp_skb_set_owner_r_frag(frag, sk); 7630 7631 done: 7632 sctp_skb_set_owner_r(skb, sk); 7633 } 7634 7635 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7636 struct sctp_association *asoc) 7637 { 7638 struct inet_sock *inet = inet_sk(sk); 7639 struct inet_sock *newinet; 7640 7641 newsk->sk_type = sk->sk_type; 7642 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7643 newsk->sk_flags = sk->sk_flags; 7644 newsk->sk_tsflags = sk->sk_tsflags; 7645 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7646 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7647 newsk->sk_reuse = sk->sk_reuse; 7648 7649 newsk->sk_shutdown = sk->sk_shutdown; 7650 newsk->sk_destruct = sctp_destruct_sock; 7651 newsk->sk_family = sk->sk_family; 7652 newsk->sk_protocol = IPPROTO_SCTP; 7653 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7654 newsk->sk_sndbuf = sk->sk_sndbuf; 7655 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7656 newsk->sk_lingertime = sk->sk_lingertime; 7657 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7658 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7659 newsk->sk_rxhash = sk->sk_rxhash; 7660 7661 newinet = inet_sk(newsk); 7662 7663 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7664 * getsockname() and getpeername() 7665 */ 7666 newinet->inet_sport = inet->inet_sport; 7667 newinet->inet_saddr = inet->inet_saddr; 7668 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7669 newinet->inet_dport = htons(asoc->peer.port); 7670 newinet->pmtudisc = inet->pmtudisc; 7671 newinet->inet_id = asoc->next_tsn ^ jiffies; 7672 7673 newinet->uc_ttl = inet->uc_ttl; 7674 newinet->mc_loop = 1; 7675 newinet->mc_ttl = 1; 7676 newinet->mc_index = 0; 7677 newinet->mc_list = NULL; 7678 7679 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 7680 net_enable_timestamp(); 7681 7682 security_sk_clone(sk, newsk); 7683 } 7684 7685 static inline void sctp_copy_descendant(struct sock *sk_to, 7686 const struct sock *sk_from) 7687 { 7688 int ancestor_size = sizeof(struct inet_sock) + 7689 sizeof(struct sctp_sock) - 7690 offsetof(struct sctp_sock, auto_asconf_list); 7691 7692 if (sk_from->sk_family == PF_INET6) 7693 ancestor_size += sizeof(struct ipv6_pinfo); 7694 7695 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 7696 } 7697 7698 /* Populate the fields of the newsk from the oldsk and migrate the assoc 7699 * and its messages to the newsk. 7700 */ 7701 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7702 struct sctp_association *assoc, 7703 sctp_socket_type_t type) 7704 { 7705 struct sctp_sock *oldsp = sctp_sk(oldsk); 7706 struct sctp_sock *newsp = sctp_sk(newsk); 7707 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7708 struct sctp_endpoint *newep = newsp->ep; 7709 struct sk_buff *skb, *tmp; 7710 struct sctp_ulpevent *event; 7711 struct sctp_bind_hashbucket *head; 7712 7713 /* Migrate socket buffer sizes and all the socket level options to the 7714 * new socket. 7715 */ 7716 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7717 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7718 /* Brute force copy old sctp opt. */ 7719 sctp_copy_descendant(newsk, oldsk); 7720 7721 /* Restore the ep value that was overwritten with the above structure 7722 * copy. 7723 */ 7724 newsp->ep = newep; 7725 newsp->hmac = NULL; 7726 7727 /* Hook this new socket in to the bind_hash list. */ 7728 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7729 inet_sk(oldsk)->inet_num)]; 7730 spin_lock_bh(&head->lock); 7731 pp = sctp_sk(oldsk)->bind_hash; 7732 sk_add_bind_node(newsk, &pp->owner); 7733 sctp_sk(newsk)->bind_hash = pp; 7734 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7735 spin_unlock_bh(&head->lock); 7736 7737 /* Copy the bind_addr list from the original endpoint to the new 7738 * endpoint so that we can handle restarts properly 7739 */ 7740 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7741 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7742 7743 /* Move any messages in the old socket's receive queue that are for the 7744 * peeled off association to the new socket's receive queue. 7745 */ 7746 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7747 event = sctp_skb2event(skb); 7748 if (event->asoc == assoc) { 7749 __skb_unlink(skb, &oldsk->sk_receive_queue); 7750 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7751 sctp_skb_set_owner_r_frag(skb, newsk); 7752 } 7753 } 7754 7755 /* Clean up any messages pending delivery due to partial 7756 * delivery. Three cases: 7757 * 1) No partial deliver; no work. 7758 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7759 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7760 */ 7761 skb_queue_head_init(&newsp->pd_lobby); 7762 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7763 7764 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7765 struct sk_buff_head *queue; 7766 7767 /* Decide which queue to move pd_lobby skbs to. */ 7768 if (assoc->ulpq.pd_mode) { 7769 queue = &newsp->pd_lobby; 7770 } else 7771 queue = &newsk->sk_receive_queue; 7772 7773 /* Walk through the pd_lobby, looking for skbs that 7774 * need moved to the new socket. 7775 */ 7776 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7777 event = sctp_skb2event(skb); 7778 if (event->asoc == assoc) { 7779 __skb_unlink(skb, &oldsp->pd_lobby); 7780 __skb_queue_tail(queue, skb); 7781 sctp_skb_set_owner_r_frag(skb, newsk); 7782 } 7783 } 7784 7785 /* Clear up any skbs waiting for the partial 7786 * delivery to finish. 7787 */ 7788 if (assoc->ulpq.pd_mode) 7789 sctp_clear_pd(oldsk, NULL); 7790 7791 } 7792 7793 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7794 sctp_skb_set_owner_r_frag(skb, newsk); 7795 7796 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7797 sctp_skb_set_owner_r_frag(skb, newsk); 7798 7799 /* Set the type of socket to indicate that it is peeled off from the 7800 * original UDP-style socket or created with the accept() call on a 7801 * TCP-style socket.. 7802 */ 7803 newsp->type = type; 7804 7805 /* Mark the new socket "in-use" by the user so that any packets 7806 * that may arrive on the association after we've moved it are 7807 * queued to the backlog. This prevents a potential race between 7808 * backlog processing on the old socket and new-packet processing 7809 * on the new socket. 7810 * 7811 * The caller has just allocated newsk so we can guarantee that other 7812 * paths won't try to lock it and then oldsk. 7813 */ 7814 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7815 sctp_assoc_migrate(assoc, newsk); 7816 7817 /* If the association on the newsk is already closed before accept() 7818 * is called, set RCV_SHUTDOWN flag. 7819 */ 7820 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 7821 newsk->sk_state = SCTP_SS_CLOSED; 7822 newsk->sk_shutdown |= RCV_SHUTDOWN; 7823 } else { 7824 newsk->sk_state = SCTP_SS_ESTABLISHED; 7825 } 7826 7827 release_sock(newsk); 7828 } 7829 7830 7831 /* This proto struct describes the ULP interface for SCTP. */ 7832 struct proto sctp_prot = { 7833 .name = "SCTP", 7834 .owner = THIS_MODULE, 7835 .close = sctp_close, 7836 .connect = sctp_connect, 7837 .disconnect = sctp_disconnect, 7838 .accept = sctp_accept, 7839 .ioctl = sctp_ioctl, 7840 .init = sctp_init_sock, 7841 .destroy = sctp_destroy_sock, 7842 .shutdown = sctp_shutdown, 7843 .setsockopt = sctp_setsockopt, 7844 .getsockopt = sctp_getsockopt, 7845 .sendmsg = sctp_sendmsg, 7846 .recvmsg = sctp_recvmsg, 7847 .bind = sctp_bind, 7848 .backlog_rcv = sctp_backlog_rcv, 7849 .hash = sctp_hash, 7850 .unhash = sctp_unhash, 7851 .get_port = sctp_get_port, 7852 .obj_size = sizeof(struct sctp_sock), 7853 .sysctl_mem = sysctl_sctp_mem, 7854 .sysctl_rmem = sysctl_sctp_rmem, 7855 .sysctl_wmem = sysctl_sctp_wmem, 7856 .memory_pressure = &sctp_memory_pressure, 7857 .enter_memory_pressure = sctp_enter_memory_pressure, 7858 .memory_allocated = &sctp_memory_allocated, 7859 .sockets_allocated = &sctp_sockets_allocated, 7860 }; 7861 7862 #if IS_ENABLED(CONFIG_IPV6) 7863 7864 #include <net/transp_v6.h> 7865 static void sctp_v6_destroy_sock(struct sock *sk) 7866 { 7867 sctp_destroy_sock(sk); 7868 inet6_destroy_sock(sk); 7869 } 7870 7871 struct proto sctpv6_prot = { 7872 .name = "SCTPv6", 7873 .owner = THIS_MODULE, 7874 .close = sctp_close, 7875 .connect = sctp_connect, 7876 .disconnect = sctp_disconnect, 7877 .accept = sctp_accept, 7878 .ioctl = sctp_ioctl, 7879 .init = sctp_init_sock, 7880 .destroy = sctp_v6_destroy_sock, 7881 .shutdown = sctp_shutdown, 7882 .setsockopt = sctp_setsockopt, 7883 .getsockopt = sctp_getsockopt, 7884 .sendmsg = sctp_sendmsg, 7885 .recvmsg = sctp_recvmsg, 7886 .bind = sctp_bind, 7887 .backlog_rcv = sctp_backlog_rcv, 7888 .hash = sctp_hash, 7889 .unhash = sctp_unhash, 7890 .get_port = sctp_get_port, 7891 .obj_size = sizeof(struct sctp6_sock), 7892 .sysctl_mem = sysctl_sctp_mem, 7893 .sysctl_rmem = sysctl_sctp_rmem, 7894 .sysctl_wmem = sysctl_sctp_wmem, 7895 .memory_pressure = &sctp_memory_pressure, 7896 .enter_memory_pressure = sctp_enter_memory_pressure, 7897 .memory_allocated = &sctp_memory_allocated, 7898 .sockets_allocated = &sctp_sockets_allocated, 7899 }; 7900 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7901