1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 #include <net/sctp/stream_sched.h> 83 84 /* Forward declarations for internal helper functions. */ 85 static int sctp_writeable(struct sock *sk); 86 static void sctp_wfree(struct sk_buff *skb); 87 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 88 size_t msg_len); 89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 91 static int sctp_wait_for_accept(struct sock *sk, long timeo); 92 static void sctp_wait_for_close(struct sock *sk, long timeo); 93 static void sctp_destruct_sock(struct sock *sk); 94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 95 union sctp_addr *addr, int len); 96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf(struct sctp_association *asoc, 101 struct sctp_chunk *chunk); 102 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 103 static int sctp_autobind(struct sock *sk); 104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 105 struct sctp_association *assoc, 106 enum sctp_socket_type type); 107 108 static unsigned long sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 if (chunk->shkey) 160 sctp_auth_shkey_hold(chunk->shkey); 161 162 skb_set_owner_w(chunk->skb, sk); 163 164 chunk->skb->destructor = sctp_wfree; 165 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 166 skb_shinfo(chunk->skb)->destructor_arg = chunk; 167 168 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 169 sizeof(struct sk_buff) + 170 sizeof(struct sctp_chunk); 171 172 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 173 sk->sk_wmem_queued += chunk->skb->truesize; 174 sk_mem_charge(sk, chunk->skb->truesize); 175 } 176 177 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 178 { 179 skb_orphan(chunk->skb); 180 } 181 182 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 183 void (*cb)(struct sctp_chunk *)) 184 185 { 186 struct sctp_outq *q = &asoc->outqueue; 187 struct sctp_transport *t; 188 struct sctp_chunk *chunk; 189 190 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 191 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 192 cb(chunk); 193 194 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 195 cb(chunk); 196 197 list_for_each_entry(chunk, &q->sacked, transmitted_list) 198 cb(chunk); 199 200 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 201 cb(chunk); 202 203 list_for_each_entry(chunk, &q->out_chunk_list, list) 204 cb(chunk); 205 } 206 207 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 208 void (*cb)(struct sk_buff *, struct sock *)) 209 210 { 211 struct sk_buff *skb, *tmp; 212 213 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 214 cb(skb, sk); 215 216 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 217 cb(skb, sk); 218 219 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 220 cb(skb, sk); 221 } 222 223 /* Verify that this is a valid address. */ 224 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 225 int len) 226 { 227 struct sctp_af *af; 228 229 /* Verify basic sockaddr. */ 230 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 231 if (!af) 232 return -EINVAL; 233 234 /* Is this a valid SCTP address? */ 235 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 236 return -EINVAL; 237 238 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /* Look up the association by its id. If this is not a UDP-style 245 * socket, the ID field is always ignored. 246 */ 247 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 248 { 249 struct sctp_association *asoc = NULL; 250 251 /* If this is not a UDP-style socket, assoc id should be ignored. */ 252 if (!sctp_style(sk, UDP)) { 253 /* Return NULL if the socket state is not ESTABLISHED. It 254 * could be a TCP-style listening socket or a socket which 255 * hasn't yet called connect() to establish an association. 256 */ 257 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 258 return NULL; 259 260 /* Get the first and the only association from the list. */ 261 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 262 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 263 struct sctp_association, asocs); 264 return asoc; 265 } 266 267 /* Otherwise this is a UDP-style socket. */ 268 if (!id || (id == (sctp_assoc_t)-1)) 269 return NULL; 270 271 spin_lock_bh(&sctp_assocs_id_lock); 272 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 273 spin_unlock_bh(&sctp_assocs_id_lock); 274 275 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 276 return NULL; 277 278 return asoc; 279 } 280 281 /* Look up the transport from an address and an assoc id. If both address and 282 * id are specified, the associations matching the address and the id should be 283 * the same. 284 */ 285 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 286 struct sockaddr_storage *addr, 287 sctp_assoc_t id) 288 { 289 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 290 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 291 union sctp_addr *laddr = (union sctp_addr *)addr; 292 struct sctp_transport *transport; 293 294 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 295 return NULL; 296 297 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 298 laddr, 299 &transport); 300 301 if (!addr_asoc) 302 return NULL; 303 304 id_asoc = sctp_id2assoc(sk, id); 305 if (id_asoc && (id_asoc != addr_asoc)) 306 return NULL; 307 308 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 309 (union sctp_addr *)addr); 310 311 return transport; 312 } 313 314 /* API 3.1.2 bind() - UDP Style Syntax 315 * The syntax of bind() is, 316 * 317 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 318 * 319 * sd - the socket descriptor returned by socket(). 320 * addr - the address structure (struct sockaddr_in or struct 321 * sockaddr_in6 [RFC 2553]), 322 * addr_len - the size of the address structure. 323 */ 324 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 325 { 326 int retval = 0; 327 328 lock_sock(sk); 329 330 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 331 addr, addr_len); 332 333 /* Disallow binding twice. */ 334 if (!sctp_sk(sk)->ep->base.bind_addr.port) 335 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 336 addr_len); 337 else 338 retval = -EINVAL; 339 340 release_sock(sk); 341 342 return retval; 343 } 344 345 static long sctp_get_port_local(struct sock *, union sctp_addr *); 346 347 /* Verify this is a valid sockaddr. */ 348 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 349 union sctp_addr *addr, int len) 350 { 351 struct sctp_af *af; 352 353 /* Check minimum size. */ 354 if (len < sizeof (struct sockaddr)) 355 return NULL; 356 357 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 358 return NULL; 359 360 if (addr->sa.sa_family == AF_INET6) { 361 if (len < SIN6_LEN_RFC2133) 362 return NULL; 363 /* V4 mapped address are really of AF_INET family */ 364 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 365 !opt->pf->af_supported(AF_INET, opt)) 366 return NULL; 367 } 368 369 /* If we get this far, af is valid. */ 370 af = sctp_get_af_specific(addr->sa.sa_family); 371 372 if (len < af->sockaddr_len) 373 return NULL; 374 375 return af; 376 } 377 378 /* Bind a local address either to an endpoint or to an association. */ 379 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 380 { 381 struct net *net = sock_net(sk); 382 struct sctp_sock *sp = sctp_sk(sk); 383 struct sctp_endpoint *ep = sp->ep; 384 struct sctp_bind_addr *bp = &ep->base.bind_addr; 385 struct sctp_af *af; 386 unsigned short snum; 387 int ret = 0; 388 389 /* Common sockaddr verification. */ 390 af = sctp_sockaddr_af(sp, addr, len); 391 if (!af) { 392 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 393 __func__, sk, addr, len); 394 return -EINVAL; 395 } 396 397 snum = ntohs(addr->v4.sin_port); 398 399 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 400 __func__, sk, &addr->sa, bp->port, snum, len); 401 402 /* PF specific bind() address verification. */ 403 if (!sp->pf->bind_verify(sp, addr)) 404 return -EADDRNOTAVAIL; 405 406 /* We must either be unbound, or bind to the same port. 407 * It's OK to allow 0 ports if we are already bound. 408 * We'll just inhert an already bound port in this case 409 */ 410 if (bp->port) { 411 if (!snum) 412 snum = bp->port; 413 else if (snum != bp->port) { 414 pr_debug("%s: new port %d doesn't match existing port " 415 "%d\n", __func__, snum, bp->port); 416 return -EINVAL; 417 } 418 } 419 420 if (snum && snum < inet_prot_sock(net) && 421 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 422 return -EACCES; 423 424 /* See if the address matches any of the addresses we may have 425 * already bound before checking against other endpoints. 426 */ 427 if (sctp_bind_addr_match(bp, addr, sp)) 428 return -EINVAL; 429 430 /* Make sure we are allowed to bind here. 431 * The function sctp_get_port_local() does duplicate address 432 * detection. 433 */ 434 addr->v4.sin_port = htons(snum); 435 if ((ret = sctp_get_port_local(sk, addr))) { 436 return -EADDRINUSE; 437 } 438 439 /* Refresh ephemeral port. */ 440 if (!bp->port) 441 bp->port = inet_sk(sk)->inet_num; 442 443 /* Add the address to the bind address list. 444 * Use GFP_ATOMIC since BHs will be disabled. 445 */ 446 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 447 SCTP_ADDR_SRC, GFP_ATOMIC); 448 449 /* Copy back into socket for getsockname() use. */ 450 if (!ret) { 451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 452 sp->pf->to_sk_saddr(addr, sk); 453 } 454 455 return ret; 456 } 457 458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 459 * 460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 461 * at any one time. If a sender, after sending an ASCONF chunk, decides 462 * it needs to transfer another ASCONF Chunk, it MUST wait until the 463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 464 * subsequent ASCONF. Note this restriction binds each side, so at any 465 * time two ASCONF may be in-transit on any given association (one sent 466 * from each endpoint). 467 */ 468 static int sctp_send_asconf(struct sctp_association *asoc, 469 struct sctp_chunk *chunk) 470 { 471 struct net *net = sock_net(asoc->base.sk); 472 int retval = 0; 473 474 /* If there is an outstanding ASCONF chunk, queue it for later 475 * transmission. 476 */ 477 if (asoc->addip_last_asconf) { 478 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 479 goto out; 480 } 481 482 /* Hold the chunk until an ASCONF_ACK is received. */ 483 sctp_chunk_hold(chunk); 484 retval = sctp_primitive_ASCONF(net, asoc, chunk); 485 if (retval) 486 sctp_chunk_free(chunk); 487 else 488 asoc->addip_last_asconf = chunk; 489 490 out: 491 return retval; 492 } 493 494 /* Add a list of addresses as bind addresses to local endpoint or 495 * association. 496 * 497 * Basically run through each address specified in the addrs/addrcnt 498 * array/length pair, determine if it is IPv6 or IPv4 and call 499 * sctp_do_bind() on it. 500 * 501 * If any of them fails, then the operation will be reversed and the 502 * ones that were added will be removed. 503 * 504 * Only sctp_setsockopt_bindx() is supposed to call this function. 505 */ 506 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 507 { 508 int cnt; 509 int retval = 0; 510 void *addr_buf; 511 struct sockaddr *sa_addr; 512 struct sctp_af *af; 513 514 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 515 addrs, addrcnt); 516 517 addr_buf = addrs; 518 for (cnt = 0; cnt < addrcnt; cnt++) { 519 /* The list may contain either IPv4 or IPv6 address; 520 * determine the address length for walking thru the list. 521 */ 522 sa_addr = addr_buf; 523 af = sctp_get_af_specific(sa_addr->sa_family); 524 if (!af) { 525 retval = -EINVAL; 526 goto err_bindx_add; 527 } 528 529 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 530 af->sockaddr_len); 531 532 addr_buf += af->sockaddr_len; 533 534 err_bindx_add: 535 if (retval < 0) { 536 /* Failed. Cleanup the ones that have been added */ 537 if (cnt > 0) 538 sctp_bindx_rem(sk, addrs, cnt); 539 return retval; 540 } 541 } 542 543 return retval; 544 } 545 546 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 547 * associations that are part of the endpoint indicating that a list of local 548 * addresses are added to the endpoint. 549 * 550 * If any of the addresses is already in the bind address list of the 551 * association, we do not send the chunk for that association. But it will not 552 * affect other associations. 553 * 554 * Only sctp_setsockopt_bindx() is supposed to call this function. 555 */ 556 static int sctp_send_asconf_add_ip(struct sock *sk, 557 struct sockaddr *addrs, 558 int addrcnt) 559 { 560 struct net *net = sock_net(sk); 561 struct sctp_sock *sp; 562 struct sctp_endpoint *ep; 563 struct sctp_association *asoc; 564 struct sctp_bind_addr *bp; 565 struct sctp_chunk *chunk; 566 struct sctp_sockaddr_entry *laddr; 567 union sctp_addr *addr; 568 union sctp_addr saveaddr; 569 void *addr_buf; 570 struct sctp_af *af; 571 struct list_head *p; 572 int i; 573 int retval = 0; 574 575 if (!net->sctp.addip_enable) 576 return retval; 577 578 sp = sctp_sk(sk); 579 ep = sp->ep; 580 581 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 582 __func__, sk, addrs, addrcnt); 583 584 list_for_each_entry(asoc, &ep->asocs, asocs) { 585 if (!asoc->peer.asconf_capable) 586 continue; 587 588 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 589 continue; 590 591 if (!sctp_state(asoc, ESTABLISHED)) 592 continue; 593 594 /* Check if any address in the packed array of addresses is 595 * in the bind address list of the association. If so, 596 * do not send the asconf chunk to its peer, but continue with 597 * other associations. 598 */ 599 addr_buf = addrs; 600 for (i = 0; i < addrcnt; i++) { 601 addr = addr_buf; 602 af = sctp_get_af_specific(addr->v4.sin_family); 603 if (!af) { 604 retval = -EINVAL; 605 goto out; 606 } 607 608 if (sctp_assoc_lookup_laddr(asoc, addr)) 609 break; 610 611 addr_buf += af->sockaddr_len; 612 } 613 if (i < addrcnt) 614 continue; 615 616 /* Use the first valid address in bind addr list of 617 * association as Address Parameter of ASCONF CHUNK. 618 */ 619 bp = &asoc->base.bind_addr; 620 p = bp->address_list.next; 621 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 622 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 623 addrcnt, SCTP_PARAM_ADD_IP); 624 if (!chunk) { 625 retval = -ENOMEM; 626 goto out; 627 } 628 629 /* Add the new addresses to the bind address list with 630 * use_as_src set to 0. 631 */ 632 addr_buf = addrs; 633 for (i = 0; i < addrcnt; i++) { 634 addr = addr_buf; 635 af = sctp_get_af_specific(addr->v4.sin_family); 636 memcpy(&saveaddr, addr, af->sockaddr_len); 637 retval = sctp_add_bind_addr(bp, &saveaddr, 638 sizeof(saveaddr), 639 SCTP_ADDR_NEW, GFP_ATOMIC); 640 addr_buf += af->sockaddr_len; 641 } 642 if (asoc->src_out_of_asoc_ok) { 643 struct sctp_transport *trans; 644 645 list_for_each_entry(trans, 646 &asoc->peer.transport_addr_list, transports) { 647 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 648 2*asoc->pathmtu, 4380)); 649 trans->ssthresh = asoc->peer.i.a_rwnd; 650 trans->rto = asoc->rto_initial; 651 sctp_max_rto(asoc, trans); 652 trans->rtt = trans->srtt = trans->rttvar = 0; 653 /* Clear the source and route cache */ 654 sctp_transport_route(trans, NULL, 655 sctp_sk(asoc->base.sk)); 656 } 657 } 658 retval = sctp_send_asconf(asoc, chunk); 659 } 660 661 out: 662 return retval; 663 } 664 665 /* Remove a list of addresses from bind addresses list. Do not remove the 666 * last address. 667 * 668 * Basically run through each address specified in the addrs/addrcnt 669 * array/length pair, determine if it is IPv6 or IPv4 and call 670 * sctp_del_bind() on it. 671 * 672 * If any of them fails, then the operation will be reversed and the 673 * ones that were removed will be added back. 674 * 675 * At least one address has to be left; if only one address is 676 * available, the operation will return -EBUSY. 677 * 678 * Only sctp_setsockopt_bindx() is supposed to call this function. 679 */ 680 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 681 { 682 struct sctp_sock *sp = sctp_sk(sk); 683 struct sctp_endpoint *ep = sp->ep; 684 int cnt; 685 struct sctp_bind_addr *bp = &ep->base.bind_addr; 686 int retval = 0; 687 void *addr_buf; 688 union sctp_addr *sa_addr; 689 struct sctp_af *af; 690 691 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 692 __func__, sk, addrs, addrcnt); 693 694 addr_buf = addrs; 695 for (cnt = 0; cnt < addrcnt; cnt++) { 696 /* If the bind address list is empty or if there is only one 697 * bind address, there is nothing more to be removed (we need 698 * at least one address here). 699 */ 700 if (list_empty(&bp->address_list) || 701 (sctp_list_single_entry(&bp->address_list))) { 702 retval = -EBUSY; 703 goto err_bindx_rem; 704 } 705 706 sa_addr = addr_buf; 707 af = sctp_get_af_specific(sa_addr->sa.sa_family); 708 if (!af) { 709 retval = -EINVAL; 710 goto err_bindx_rem; 711 } 712 713 if (!af->addr_valid(sa_addr, sp, NULL)) { 714 retval = -EADDRNOTAVAIL; 715 goto err_bindx_rem; 716 } 717 718 if (sa_addr->v4.sin_port && 719 sa_addr->v4.sin_port != htons(bp->port)) { 720 retval = -EINVAL; 721 goto err_bindx_rem; 722 } 723 724 if (!sa_addr->v4.sin_port) 725 sa_addr->v4.sin_port = htons(bp->port); 726 727 /* FIXME - There is probably a need to check if sk->sk_saddr and 728 * sk->sk_rcv_addr are currently set to one of the addresses to 729 * be removed. This is something which needs to be looked into 730 * when we are fixing the outstanding issues with multi-homing 731 * socket routing and failover schemes. Refer to comments in 732 * sctp_do_bind(). -daisy 733 */ 734 retval = sctp_del_bind_addr(bp, sa_addr); 735 736 addr_buf += af->sockaddr_len; 737 err_bindx_rem: 738 if (retval < 0) { 739 /* Failed. Add the ones that has been removed back */ 740 if (cnt > 0) 741 sctp_bindx_add(sk, addrs, cnt); 742 return retval; 743 } 744 } 745 746 return retval; 747 } 748 749 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 750 * the associations that are part of the endpoint indicating that a list of 751 * local addresses are removed from the endpoint. 752 * 753 * If any of the addresses is already in the bind address list of the 754 * association, we do not send the chunk for that association. But it will not 755 * affect other associations. 756 * 757 * Only sctp_setsockopt_bindx() is supposed to call this function. 758 */ 759 static int sctp_send_asconf_del_ip(struct sock *sk, 760 struct sockaddr *addrs, 761 int addrcnt) 762 { 763 struct net *net = sock_net(sk); 764 struct sctp_sock *sp; 765 struct sctp_endpoint *ep; 766 struct sctp_association *asoc; 767 struct sctp_transport *transport; 768 struct sctp_bind_addr *bp; 769 struct sctp_chunk *chunk; 770 union sctp_addr *laddr; 771 void *addr_buf; 772 struct sctp_af *af; 773 struct sctp_sockaddr_entry *saddr; 774 int i; 775 int retval = 0; 776 int stored = 0; 777 778 chunk = NULL; 779 if (!net->sctp.addip_enable) 780 return retval; 781 782 sp = sctp_sk(sk); 783 ep = sp->ep; 784 785 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 786 __func__, sk, addrs, addrcnt); 787 788 list_for_each_entry(asoc, &ep->asocs, asocs) { 789 790 if (!asoc->peer.asconf_capable) 791 continue; 792 793 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 794 continue; 795 796 if (!sctp_state(asoc, ESTABLISHED)) 797 continue; 798 799 /* Check if any address in the packed array of addresses is 800 * not present in the bind address list of the association. 801 * If so, do not send the asconf chunk to its peer, but 802 * continue with other associations. 803 */ 804 addr_buf = addrs; 805 for (i = 0; i < addrcnt; i++) { 806 laddr = addr_buf; 807 af = sctp_get_af_specific(laddr->v4.sin_family); 808 if (!af) { 809 retval = -EINVAL; 810 goto out; 811 } 812 813 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 814 break; 815 816 addr_buf += af->sockaddr_len; 817 } 818 if (i < addrcnt) 819 continue; 820 821 /* Find one address in the association's bind address list 822 * that is not in the packed array of addresses. This is to 823 * make sure that we do not delete all the addresses in the 824 * association. 825 */ 826 bp = &asoc->base.bind_addr; 827 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 828 addrcnt, sp); 829 if ((laddr == NULL) && (addrcnt == 1)) { 830 if (asoc->asconf_addr_del_pending) 831 continue; 832 asoc->asconf_addr_del_pending = 833 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 834 if (asoc->asconf_addr_del_pending == NULL) { 835 retval = -ENOMEM; 836 goto out; 837 } 838 asoc->asconf_addr_del_pending->sa.sa_family = 839 addrs->sa_family; 840 asoc->asconf_addr_del_pending->v4.sin_port = 841 htons(bp->port); 842 if (addrs->sa_family == AF_INET) { 843 struct sockaddr_in *sin; 844 845 sin = (struct sockaddr_in *)addrs; 846 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 847 } else if (addrs->sa_family == AF_INET6) { 848 struct sockaddr_in6 *sin6; 849 850 sin6 = (struct sockaddr_in6 *)addrs; 851 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 852 } 853 854 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 855 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 856 asoc->asconf_addr_del_pending); 857 858 asoc->src_out_of_asoc_ok = 1; 859 stored = 1; 860 goto skip_mkasconf; 861 } 862 863 if (laddr == NULL) 864 return -EINVAL; 865 866 /* We do not need RCU protection throughout this loop 867 * because this is done under a socket lock from the 868 * setsockopt call. 869 */ 870 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 871 SCTP_PARAM_DEL_IP); 872 if (!chunk) { 873 retval = -ENOMEM; 874 goto out; 875 } 876 877 skip_mkasconf: 878 /* Reset use_as_src flag for the addresses in the bind address 879 * list that are to be deleted. 880 */ 881 addr_buf = addrs; 882 for (i = 0; i < addrcnt; i++) { 883 laddr = addr_buf; 884 af = sctp_get_af_specific(laddr->v4.sin_family); 885 list_for_each_entry(saddr, &bp->address_list, list) { 886 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 887 saddr->state = SCTP_ADDR_DEL; 888 } 889 addr_buf += af->sockaddr_len; 890 } 891 892 /* Update the route and saddr entries for all the transports 893 * as some of the addresses in the bind address list are 894 * about to be deleted and cannot be used as source addresses. 895 */ 896 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 897 transports) { 898 sctp_transport_route(transport, NULL, 899 sctp_sk(asoc->base.sk)); 900 } 901 902 if (stored) 903 /* We don't need to transmit ASCONF */ 904 continue; 905 retval = sctp_send_asconf(asoc, chunk); 906 } 907 out: 908 return retval; 909 } 910 911 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 912 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 913 { 914 struct sock *sk = sctp_opt2sk(sp); 915 union sctp_addr *addr; 916 struct sctp_af *af; 917 918 /* It is safe to write port space in caller. */ 919 addr = &addrw->a; 920 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 921 af = sctp_get_af_specific(addr->sa.sa_family); 922 if (!af) 923 return -EINVAL; 924 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 925 return -EINVAL; 926 927 if (addrw->state == SCTP_ADDR_NEW) 928 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 929 else 930 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 931 } 932 933 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 934 * 935 * API 8.1 936 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 937 * int flags); 938 * 939 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 940 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 941 * or IPv6 addresses. 942 * 943 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 944 * Section 3.1.2 for this usage. 945 * 946 * addrs is a pointer to an array of one or more socket addresses. Each 947 * address is contained in its appropriate structure (i.e. struct 948 * sockaddr_in or struct sockaddr_in6) the family of the address type 949 * must be used to distinguish the address length (note that this 950 * representation is termed a "packed array" of addresses). The caller 951 * specifies the number of addresses in the array with addrcnt. 952 * 953 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 954 * -1, and sets errno to the appropriate error code. 955 * 956 * For SCTP, the port given in each socket address must be the same, or 957 * sctp_bindx() will fail, setting errno to EINVAL. 958 * 959 * The flags parameter is formed from the bitwise OR of zero or more of 960 * the following currently defined flags: 961 * 962 * SCTP_BINDX_ADD_ADDR 963 * 964 * SCTP_BINDX_REM_ADDR 965 * 966 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 967 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 968 * addresses from the association. The two flags are mutually exclusive; 969 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 970 * not remove all addresses from an association; sctp_bindx() will 971 * reject such an attempt with EINVAL. 972 * 973 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 974 * additional addresses with an endpoint after calling bind(). Or use 975 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 976 * socket is associated with so that no new association accepted will be 977 * associated with those addresses. If the endpoint supports dynamic 978 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 979 * endpoint to send the appropriate message to the peer to change the 980 * peers address lists. 981 * 982 * Adding and removing addresses from a connected association is 983 * optional functionality. Implementations that do not support this 984 * functionality should return EOPNOTSUPP. 985 * 986 * Basically do nothing but copying the addresses from user to kernel 987 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 988 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 989 * from userspace. 990 * 991 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 992 * it. 993 * 994 * sk The sk of the socket 995 * addrs The pointer to the addresses in user land 996 * addrssize Size of the addrs buffer 997 * op Operation to perform (add or remove, see the flags of 998 * sctp_bindx) 999 * 1000 * Returns 0 if ok, <0 errno code on error. 1001 */ 1002 static int sctp_setsockopt_bindx(struct sock *sk, 1003 struct sockaddr __user *addrs, 1004 int addrs_size, int op) 1005 { 1006 struct sockaddr *kaddrs; 1007 int err; 1008 int addrcnt = 0; 1009 int walk_size = 0; 1010 struct sockaddr *sa_addr; 1011 void *addr_buf; 1012 struct sctp_af *af; 1013 1014 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1015 __func__, sk, addrs, addrs_size, op); 1016 1017 if (unlikely(addrs_size <= 0)) 1018 return -EINVAL; 1019 1020 kaddrs = vmemdup_user(addrs, addrs_size); 1021 if (unlikely(IS_ERR(kaddrs))) 1022 return PTR_ERR(kaddrs); 1023 1024 /* Walk through the addrs buffer and count the number of addresses. */ 1025 addr_buf = kaddrs; 1026 while (walk_size < addrs_size) { 1027 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1028 kvfree(kaddrs); 1029 return -EINVAL; 1030 } 1031 1032 sa_addr = addr_buf; 1033 af = sctp_get_af_specific(sa_addr->sa_family); 1034 1035 /* If the address family is not supported or if this address 1036 * causes the address buffer to overflow return EINVAL. 1037 */ 1038 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1039 kvfree(kaddrs); 1040 return -EINVAL; 1041 } 1042 addrcnt++; 1043 addr_buf += af->sockaddr_len; 1044 walk_size += af->sockaddr_len; 1045 } 1046 1047 /* Do the work. */ 1048 switch (op) { 1049 case SCTP_BINDX_ADD_ADDR: 1050 /* Allow security module to validate bindx addresses. */ 1051 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1052 (struct sockaddr *)kaddrs, 1053 addrs_size); 1054 if (err) 1055 goto out; 1056 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1057 if (err) 1058 goto out; 1059 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1060 break; 1061 1062 case SCTP_BINDX_REM_ADDR: 1063 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1064 if (err) 1065 goto out; 1066 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1067 break; 1068 1069 default: 1070 err = -EINVAL; 1071 break; 1072 } 1073 1074 out: 1075 kvfree(kaddrs); 1076 1077 return err; 1078 } 1079 1080 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1081 * 1082 * Common routine for handling connect() and sctp_connectx(). 1083 * Connect will come in with just a single address. 1084 */ 1085 static int __sctp_connect(struct sock *sk, 1086 struct sockaddr *kaddrs, 1087 int addrs_size, 1088 sctp_assoc_t *assoc_id) 1089 { 1090 struct net *net = sock_net(sk); 1091 struct sctp_sock *sp; 1092 struct sctp_endpoint *ep; 1093 struct sctp_association *asoc = NULL; 1094 struct sctp_association *asoc2; 1095 struct sctp_transport *transport; 1096 union sctp_addr to; 1097 enum sctp_scope scope; 1098 long timeo; 1099 int err = 0; 1100 int addrcnt = 0; 1101 int walk_size = 0; 1102 union sctp_addr *sa_addr = NULL; 1103 void *addr_buf; 1104 unsigned short port; 1105 unsigned int f_flags = 0; 1106 1107 sp = sctp_sk(sk); 1108 ep = sp->ep; 1109 1110 /* connect() cannot be done on a socket that is already in ESTABLISHED 1111 * state - UDP-style peeled off socket or a TCP-style socket that 1112 * is already connected. 1113 * It cannot be done even on a TCP-style listening socket. 1114 */ 1115 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1116 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1117 err = -EISCONN; 1118 goto out_free; 1119 } 1120 1121 /* Walk through the addrs buffer and count the number of addresses. */ 1122 addr_buf = kaddrs; 1123 while (walk_size < addrs_size) { 1124 struct sctp_af *af; 1125 1126 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1127 err = -EINVAL; 1128 goto out_free; 1129 } 1130 1131 sa_addr = addr_buf; 1132 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1133 1134 /* If the address family is not supported or if this address 1135 * causes the address buffer to overflow return EINVAL. 1136 */ 1137 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1138 err = -EINVAL; 1139 goto out_free; 1140 } 1141 1142 port = ntohs(sa_addr->v4.sin_port); 1143 1144 /* Save current address so we can work with it */ 1145 memcpy(&to, sa_addr, af->sockaddr_len); 1146 1147 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1148 if (err) 1149 goto out_free; 1150 1151 /* Make sure the destination port is correctly set 1152 * in all addresses. 1153 */ 1154 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1155 err = -EINVAL; 1156 goto out_free; 1157 } 1158 1159 /* Check if there already is a matching association on the 1160 * endpoint (other than the one created here). 1161 */ 1162 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1163 if (asoc2 && asoc2 != asoc) { 1164 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1165 err = -EISCONN; 1166 else 1167 err = -EALREADY; 1168 goto out_free; 1169 } 1170 1171 /* If we could not find a matching association on the endpoint, 1172 * make sure that there is no peeled-off association matching 1173 * the peer address even on another socket. 1174 */ 1175 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1176 err = -EADDRNOTAVAIL; 1177 goto out_free; 1178 } 1179 1180 if (!asoc) { 1181 /* If a bind() or sctp_bindx() is not called prior to 1182 * an sctp_connectx() call, the system picks an 1183 * ephemeral port and will choose an address set 1184 * equivalent to binding with a wildcard address. 1185 */ 1186 if (!ep->base.bind_addr.port) { 1187 if (sctp_autobind(sk)) { 1188 err = -EAGAIN; 1189 goto out_free; 1190 } 1191 } else { 1192 /* 1193 * If an unprivileged user inherits a 1-many 1194 * style socket with open associations on a 1195 * privileged port, it MAY be permitted to 1196 * accept new associations, but it SHOULD NOT 1197 * be permitted to open new associations. 1198 */ 1199 if (ep->base.bind_addr.port < 1200 inet_prot_sock(net) && 1201 !ns_capable(net->user_ns, 1202 CAP_NET_BIND_SERVICE)) { 1203 err = -EACCES; 1204 goto out_free; 1205 } 1206 } 1207 1208 scope = sctp_scope(&to); 1209 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1210 if (!asoc) { 1211 err = -ENOMEM; 1212 goto out_free; 1213 } 1214 1215 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1216 GFP_KERNEL); 1217 if (err < 0) { 1218 goto out_free; 1219 } 1220 1221 } 1222 1223 /* Prime the peer's transport structures. */ 1224 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1225 SCTP_UNKNOWN); 1226 if (!transport) { 1227 err = -ENOMEM; 1228 goto out_free; 1229 } 1230 1231 addrcnt++; 1232 addr_buf += af->sockaddr_len; 1233 walk_size += af->sockaddr_len; 1234 } 1235 1236 /* In case the user of sctp_connectx() wants an association 1237 * id back, assign one now. 1238 */ 1239 if (assoc_id) { 1240 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1241 if (err < 0) 1242 goto out_free; 1243 } 1244 1245 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1246 if (err < 0) { 1247 goto out_free; 1248 } 1249 1250 /* Initialize sk's dport and daddr for getpeername() */ 1251 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1252 sp->pf->to_sk_daddr(sa_addr, sk); 1253 sk->sk_err = 0; 1254 1255 /* in-kernel sockets don't generally have a file allocated to them 1256 * if all they do is call sock_create_kern(). 1257 */ 1258 if (sk->sk_socket->file) 1259 f_flags = sk->sk_socket->file->f_flags; 1260 1261 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1262 1263 if (assoc_id) 1264 *assoc_id = asoc->assoc_id; 1265 1266 err = sctp_wait_for_connect(asoc, &timeo); 1267 /* Note: the asoc may be freed after the return of 1268 * sctp_wait_for_connect. 1269 */ 1270 1271 /* Don't free association on exit. */ 1272 asoc = NULL; 1273 1274 out_free: 1275 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1276 __func__, asoc, kaddrs, err); 1277 1278 if (asoc) { 1279 /* sctp_primitive_ASSOCIATE may have added this association 1280 * To the hash table, try to unhash it, just in case, its a noop 1281 * if it wasn't hashed so we're safe 1282 */ 1283 sctp_association_free(asoc); 1284 } 1285 return err; 1286 } 1287 1288 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1289 * 1290 * API 8.9 1291 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1292 * sctp_assoc_t *asoc); 1293 * 1294 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1295 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1296 * or IPv6 addresses. 1297 * 1298 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1299 * Section 3.1.2 for this usage. 1300 * 1301 * addrs is a pointer to an array of one or more socket addresses. Each 1302 * address is contained in its appropriate structure (i.e. struct 1303 * sockaddr_in or struct sockaddr_in6) the family of the address type 1304 * must be used to distengish the address length (note that this 1305 * representation is termed a "packed array" of addresses). The caller 1306 * specifies the number of addresses in the array with addrcnt. 1307 * 1308 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1309 * the association id of the new association. On failure, sctp_connectx() 1310 * returns -1, and sets errno to the appropriate error code. The assoc_id 1311 * is not touched by the kernel. 1312 * 1313 * For SCTP, the port given in each socket address must be the same, or 1314 * sctp_connectx() will fail, setting errno to EINVAL. 1315 * 1316 * An application can use sctp_connectx to initiate an association with 1317 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1318 * allows a caller to specify multiple addresses at which a peer can be 1319 * reached. The way the SCTP stack uses the list of addresses to set up 1320 * the association is implementation dependent. This function only 1321 * specifies that the stack will try to make use of all the addresses in 1322 * the list when needed. 1323 * 1324 * Note that the list of addresses passed in is only used for setting up 1325 * the association. It does not necessarily equal the set of addresses 1326 * the peer uses for the resulting association. If the caller wants to 1327 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1328 * retrieve them after the association has been set up. 1329 * 1330 * Basically do nothing but copying the addresses from user to kernel 1331 * land and invoking either sctp_connectx(). This is used for tunneling 1332 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1333 * 1334 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1335 * it. 1336 * 1337 * sk The sk of the socket 1338 * addrs The pointer to the addresses in user land 1339 * addrssize Size of the addrs buffer 1340 * 1341 * Returns >=0 if ok, <0 errno code on error. 1342 */ 1343 static int __sctp_setsockopt_connectx(struct sock *sk, 1344 struct sockaddr __user *addrs, 1345 int addrs_size, 1346 sctp_assoc_t *assoc_id) 1347 { 1348 struct sockaddr *kaddrs; 1349 int err = 0; 1350 1351 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1352 __func__, sk, addrs, addrs_size); 1353 1354 if (unlikely(addrs_size <= 0)) 1355 return -EINVAL; 1356 1357 kaddrs = vmemdup_user(addrs, addrs_size); 1358 if (unlikely(IS_ERR(kaddrs))) 1359 return PTR_ERR(kaddrs); 1360 1361 /* Allow security module to validate connectx addresses. */ 1362 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1363 (struct sockaddr *)kaddrs, 1364 addrs_size); 1365 if (err) 1366 goto out_free; 1367 1368 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1369 1370 out_free: 1371 kvfree(kaddrs); 1372 1373 return err; 1374 } 1375 1376 /* 1377 * This is an older interface. It's kept for backward compatibility 1378 * to the option that doesn't provide association id. 1379 */ 1380 static int sctp_setsockopt_connectx_old(struct sock *sk, 1381 struct sockaddr __user *addrs, 1382 int addrs_size) 1383 { 1384 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1385 } 1386 1387 /* 1388 * New interface for the API. The since the API is done with a socket 1389 * option, to make it simple we feed back the association id is as a return 1390 * indication to the call. Error is always negative and association id is 1391 * always positive. 1392 */ 1393 static int sctp_setsockopt_connectx(struct sock *sk, 1394 struct sockaddr __user *addrs, 1395 int addrs_size) 1396 { 1397 sctp_assoc_t assoc_id = 0; 1398 int err = 0; 1399 1400 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1401 1402 if (err) 1403 return err; 1404 else 1405 return assoc_id; 1406 } 1407 1408 /* 1409 * New (hopefully final) interface for the API. 1410 * We use the sctp_getaddrs_old structure so that use-space library 1411 * can avoid any unnecessary allocations. The only different part 1412 * is that we store the actual length of the address buffer into the 1413 * addrs_num structure member. That way we can re-use the existing 1414 * code. 1415 */ 1416 #ifdef CONFIG_COMPAT 1417 struct compat_sctp_getaddrs_old { 1418 sctp_assoc_t assoc_id; 1419 s32 addr_num; 1420 compat_uptr_t addrs; /* struct sockaddr * */ 1421 }; 1422 #endif 1423 1424 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1425 char __user *optval, 1426 int __user *optlen) 1427 { 1428 struct sctp_getaddrs_old param; 1429 sctp_assoc_t assoc_id = 0; 1430 int err = 0; 1431 1432 #ifdef CONFIG_COMPAT 1433 if (in_compat_syscall()) { 1434 struct compat_sctp_getaddrs_old param32; 1435 1436 if (len < sizeof(param32)) 1437 return -EINVAL; 1438 if (copy_from_user(¶m32, optval, sizeof(param32))) 1439 return -EFAULT; 1440 1441 param.assoc_id = param32.assoc_id; 1442 param.addr_num = param32.addr_num; 1443 param.addrs = compat_ptr(param32.addrs); 1444 } else 1445 #endif 1446 { 1447 if (len < sizeof(param)) 1448 return -EINVAL; 1449 if (copy_from_user(¶m, optval, sizeof(param))) 1450 return -EFAULT; 1451 } 1452 1453 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1454 param.addrs, param.addr_num, 1455 &assoc_id); 1456 if (err == 0 || err == -EINPROGRESS) { 1457 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1458 return -EFAULT; 1459 if (put_user(sizeof(assoc_id), optlen)) 1460 return -EFAULT; 1461 } 1462 1463 return err; 1464 } 1465 1466 /* API 3.1.4 close() - UDP Style Syntax 1467 * Applications use close() to perform graceful shutdown (as described in 1468 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1469 * by a UDP-style socket. 1470 * 1471 * The syntax is 1472 * 1473 * ret = close(int sd); 1474 * 1475 * sd - the socket descriptor of the associations to be closed. 1476 * 1477 * To gracefully shutdown a specific association represented by the 1478 * UDP-style socket, an application should use the sendmsg() call, 1479 * passing no user data, but including the appropriate flag in the 1480 * ancillary data (see Section xxxx). 1481 * 1482 * If sd in the close() call is a branched-off socket representing only 1483 * one association, the shutdown is performed on that association only. 1484 * 1485 * 4.1.6 close() - TCP Style Syntax 1486 * 1487 * Applications use close() to gracefully close down an association. 1488 * 1489 * The syntax is: 1490 * 1491 * int close(int sd); 1492 * 1493 * sd - the socket descriptor of the association to be closed. 1494 * 1495 * After an application calls close() on a socket descriptor, no further 1496 * socket operations will succeed on that descriptor. 1497 * 1498 * API 7.1.4 SO_LINGER 1499 * 1500 * An application using the TCP-style socket can use this option to 1501 * perform the SCTP ABORT primitive. The linger option structure is: 1502 * 1503 * struct linger { 1504 * int l_onoff; // option on/off 1505 * int l_linger; // linger time 1506 * }; 1507 * 1508 * To enable the option, set l_onoff to 1. If the l_linger value is set 1509 * to 0, calling close() is the same as the ABORT primitive. If the 1510 * value is set to a negative value, the setsockopt() call will return 1511 * an error. If the value is set to a positive value linger_time, the 1512 * close() can be blocked for at most linger_time ms. If the graceful 1513 * shutdown phase does not finish during this period, close() will 1514 * return but the graceful shutdown phase continues in the system. 1515 */ 1516 static void sctp_close(struct sock *sk, long timeout) 1517 { 1518 struct net *net = sock_net(sk); 1519 struct sctp_endpoint *ep; 1520 struct sctp_association *asoc; 1521 struct list_head *pos, *temp; 1522 unsigned int data_was_unread; 1523 1524 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1525 1526 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1527 sk->sk_shutdown = SHUTDOWN_MASK; 1528 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1529 1530 ep = sctp_sk(sk)->ep; 1531 1532 /* Clean up any skbs sitting on the receive queue. */ 1533 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1534 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1535 1536 /* Walk all associations on an endpoint. */ 1537 list_for_each_safe(pos, temp, &ep->asocs) { 1538 asoc = list_entry(pos, struct sctp_association, asocs); 1539 1540 if (sctp_style(sk, TCP)) { 1541 /* A closed association can still be in the list if 1542 * it belongs to a TCP-style listening socket that is 1543 * not yet accepted. If so, free it. If not, send an 1544 * ABORT or SHUTDOWN based on the linger options. 1545 */ 1546 if (sctp_state(asoc, CLOSED)) { 1547 sctp_association_free(asoc); 1548 continue; 1549 } 1550 } 1551 1552 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1553 !skb_queue_empty(&asoc->ulpq.reasm) || 1554 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1555 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1556 struct sctp_chunk *chunk; 1557 1558 chunk = sctp_make_abort_user(asoc, NULL, 0); 1559 sctp_primitive_ABORT(net, asoc, chunk); 1560 } else 1561 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1562 } 1563 1564 /* On a TCP-style socket, block for at most linger_time if set. */ 1565 if (sctp_style(sk, TCP) && timeout) 1566 sctp_wait_for_close(sk, timeout); 1567 1568 /* This will run the backlog queue. */ 1569 release_sock(sk); 1570 1571 /* Supposedly, no process has access to the socket, but 1572 * the net layers still may. 1573 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1574 * held and that should be grabbed before socket lock. 1575 */ 1576 spin_lock_bh(&net->sctp.addr_wq_lock); 1577 bh_lock_sock_nested(sk); 1578 1579 /* Hold the sock, since sk_common_release() will put sock_put() 1580 * and we have just a little more cleanup. 1581 */ 1582 sock_hold(sk); 1583 sk_common_release(sk); 1584 1585 bh_unlock_sock(sk); 1586 spin_unlock_bh(&net->sctp.addr_wq_lock); 1587 1588 sock_put(sk); 1589 1590 SCTP_DBG_OBJCNT_DEC(sock); 1591 } 1592 1593 /* Handle EPIPE error. */ 1594 static int sctp_error(struct sock *sk, int flags, int err) 1595 { 1596 if (err == -EPIPE) 1597 err = sock_error(sk) ? : -EPIPE; 1598 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1599 send_sig(SIGPIPE, current, 0); 1600 return err; 1601 } 1602 1603 /* API 3.1.3 sendmsg() - UDP Style Syntax 1604 * 1605 * An application uses sendmsg() and recvmsg() calls to transmit data to 1606 * and receive data from its peer. 1607 * 1608 * ssize_t sendmsg(int socket, const struct msghdr *message, 1609 * int flags); 1610 * 1611 * socket - the socket descriptor of the endpoint. 1612 * message - pointer to the msghdr structure which contains a single 1613 * user message and possibly some ancillary data. 1614 * 1615 * See Section 5 for complete description of the data 1616 * structures. 1617 * 1618 * flags - flags sent or received with the user message, see Section 1619 * 5 for complete description of the flags. 1620 * 1621 * Note: This function could use a rewrite especially when explicit 1622 * connect support comes in. 1623 */ 1624 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1625 1626 static int sctp_msghdr_parse(const struct msghdr *msg, 1627 struct sctp_cmsgs *cmsgs); 1628 1629 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1630 struct sctp_sndrcvinfo *srinfo, 1631 const struct msghdr *msg, size_t msg_len) 1632 { 1633 __u16 sflags; 1634 int err; 1635 1636 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1637 return -EPIPE; 1638 1639 if (msg_len > sk->sk_sndbuf) 1640 return -EMSGSIZE; 1641 1642 memset(cmsgs, 0, sizeof(*cmsgs)); 1643 err = sctp_msghdr_parse(msg, cmsgs); 1644 if (err) { 1645 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1646 return err; 1647 } 1648 1649 memset(srinfo, 0, sizeof(*srinfo)); 1650 if (cmsgs->srinfo) { 1651 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1652 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1653 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1654 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1655 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1656 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1657 } 1658 1659 if (cmsgs->sinfo) { 1660 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1661 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1662 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1663 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1664 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1665 } 1666 1667 if (cmsgs->prinfo) { 1668 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1669 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1670 cmsgs->prinfo->pr_policy); 1671 } 1672 1673 sflags = srinfo->sinfo_flags; 1674 if (!sflags && msg_len) 1675 return 0; 1676 1677 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1678 return -EINVAL; 1679 1680 if (((sflags & SCTP_EOF) && msg_len > 0) || 1681 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1682 return -EINVAL; 1683 1684 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1685 return -EINVAL; 1686 1687 return 0; 1688 } 1689 1690 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1691 struct sctp_cmsgs *cmsgs, 1692 union sctp_addr *daddr, 1693 struct sctp_transport **tp) 1694 { 1695 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1696 struct net *net = sock_net(sk); 1697 struct sctp_association *asoc; 1698 enum sctp_scope scope; 1699 struct cmsghdr *cmsg; 1700 struct sctp_af *af; 1701 int err; 1702 1703 *tp = NULL; 1704 1705 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1706 return -EINVAL; 1707 1708 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1709 sctp_sstate(sk, CLOSING))) 1710 return -EADDRNOTAVAIL; 1711 1712 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1713 return -EADDRNOTAVAIL; 1714 1715 if (!ep->base.bind_addr.port) { 1716 if (sctp_autobind(sk)) 1717 return -EAGAIN; 1718 } else { 1719 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1720 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1721 return -EACCES; 1722 } 1723 1724 scope = sctp_scope(daddr); 1725 1726 /* Label connection socket for first association 1-to-many 1727 * style for client sequence socket()->sendmsg(). This 1728 * needs to be done before sctp_assoc_add_peer() as that will 1729 * set up the initial packet that needs to account for any 1730 * security ip options (CIPSO/CALIPSO) added to the packet. 1731 */ 1732 af = sctp_get_af_specific(daddr->sa.sa_family); 1733 if (!af) 1734 return -EINVAL; 1735 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1736 (struct sockaddr *)daddr, 1737 af->sockaddr_len); 1738 if (err < 0) 1739 return err; 1740 1741 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1742 if (!asoc) 1743 return -ENOMEM; 1744 1745 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1746 err = -ENOMEM; 1747 goto free; 1748 } 1749 1750 if (cmsgs->init) { 1751 struct sctp_initmsg *init = cmsgs->init; 1752 1753 if (init->sinit_num_ostreams) { 1754 __u16 outcnt = init->sinit_num_ostreams; 1755 1756 asoc->c.sinit_num_ostreams = outcnt; 1757 /* outcnt has been changed, need to re-init stream */ 1758 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1759 GFP_KERNEL); 1760 if (err) 1761 goto free; 1762 } 1763 1764 if (init->sinit_max_instreams) 1765 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1766 1767 if (init->sinit_max_attempts) 1768 asoc->max_init_attempts = init->sinit_max_attempts; 1769 1770 if (init->sinit_max_init_timeo) 1771 asoc->max_init_timeo = 1772 msecs_to_jiffies(init->sinit_max_init_timeo); 1773 } 1774 1775 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1776 if (!*tp) { 1777 err = -ENOMEM; 1778 goto free; 1779 } 1780 1781 if (!cmsgs->addrs_msg) 1782 return 0; 1783 1784 /* sendv addr list parse */ 1785 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1786 struct sctp_transport *transport; 1787 struct sctp_association *old; 1788 union sctp_addr _daddr; 1789 int dlen; 1790 1791 if (cmsg->cmsg_level != IPPROTO_SCTP || 1792 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1793 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1794 continue; 1795 1796 daddr = &_daddr; 1797 memset(daddr, 0, sizeof(*daddr)); 1798 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1799 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1800 if (dlen < sizeof(struct in_addr)) { 1801 err = -EINVAL; 1802 goto free; 1803 } 1804 1805 dlen = sizeof(struct in_addr); 1806 daddr->v4.sin_family = AF_INET; 1807 daddr->v4.sin_port = htons(asoc->peer.port); 1808 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1809 } else { 1810 if (dlen < sizeof(struct in6_addr)) { 1811 err = -EINVAL; 1812 goto free; 1813 } 1814 1815 dlen = sizeof(struct in6_addr); 1816 daddr->v6.sin6_family = AF_INET6; 1817 daddr->v6.sin6_port = htons(asoc->peer.port); 1818 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1819 } 1820 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1821 if (err) 1822 goto free; 1823 1824 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1825 if (old && old != asoc) { 1826 if (old->state >= SCTP_STATE_ESTABLISHED) 1827 err = -EISCONN; 1828 else 1829 err = -EALREADY; 1830 goto free; 1831 } 1832 1833 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1834 err = -EADDRNOTAVAIL; 1835 goto free; 1836 } 1837 1838 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1839 SCTP_UNKNOWN); 1840 if (!transport) { 1841 err = -ENOMEM; 1842 goto free; 1843 } 1844 } 1845 1846 return 0; 1847 1848 free: 1849 sctp_association_free(asoc); 1850 return err; 1851 } 1852 1853 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1854 __u16 sflags, struct msghdr *msg, 1855 size_t msg_len) 1856 { 1857 struct sock *sk = asoc->base.sk; 1858 struct net *net = sock_net(sk); 1859 1860 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1861 return -EPIPE; 1862 1863 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1864 !sctp_state(asoc, ESTABLISHED)) 1865 return 0; 1866 1867 if (sflags & SCTP_EOF) { 1868 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1869 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1870 1871 return 0; 1872 } 1873 1874 if (sflags & SCTP_ABORT) { 1875 struct sctp_chunk *chunk; 1876 1877 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1878 if (!chunk) 1879 return -ENOMEM; 1880 1881 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1882 sctp_primitive_ABORT(net, asoc, chunk); 1883 1884 return 0; 1885 } 1886 1887 return 1; 1888 } 1889 1890 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1891 struct msghdr *msg, size_t msg_len, 1892 struct sctp_transport *transport, 1893 struct sctp_sndrcvinfo *sinfo) 1894 { 1895 struct sock *sk = asoc->base.sk; 1896 struct sctp_sock *sp = sctp_sk(sk); 1897 struct net *net = sock_net(sk); 1898 struct sctp_datamsg *datamsg; 1899 bool wait_connect = false; 1900 struct sctp_chunk *chunk; 1901 long timeo; 1902 int err; 1903 1904 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1905 err = -EINVAL; 1906 goto err; 1907 } 1908 1909 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1910 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1911 if (err) 1912 goto err; 1913 } 1914 1915 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1916 err = -EMSGSIZE; 1917 goto err; 1918 } 1919 1920 if (asoc->pmtu_pending) { 1921 if (sp->param_flags & SPP_PMTUD_ENABLE) 1922 sctp_assoc_sync_pmtu(asoc); 1923 asoc->pmtu_pending = 0; 1924 } 1925 1926 if (sctp_wspace(asoc) < msg_len) 1927 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1928 1929 if (!sctp_wspace(asoc)) { 1930 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1931 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1932 if (err) 1933 goto err; 1934 } 1935 1936 if (sctp_state(asoc, CLOSED)) { 1937 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1938 if (err) 1939 goto err; 1940 1941 if (sp->strm_interleave) { 1942 timeo = sock_sndtimeo(sk, 0); 1943 err = sctp_wait_for_connect(asoc, &timeo); 1944 if (err) 1945 goto err; 1946 } else { 1947 wait_connect = true; 1948 } 1949 1950 pr_debug("%s: we associated primitively\n", __func__); 1951 } 1952 1953 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1954 if (IS_ERR(datamsg)) { 1955 err = PTR_ERR(datamsg); 1956 goto err; 1957 } 1958 1959 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1960 1961 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1962 sctp_chunk_hold(chunk); 1963 sctp_set_owner_w(chunk); 1964 chunk->transport = transport; 1965 } 1966 1967 err = sctp_primitive_SEND(net, asoc, datamsg); 1968 if (err) { 1969 sctp_datamsg_free(datamsg); 1970 goto err; 1971 } 1972 1973 pr_debug("%s: we sent primitively\n", __func__); 1974 1975 sctp_datamsg_put(datamsg); 1976 1977 if (unlikely(wait_connect)) { 1978 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1979 sctp_wait_for_connect(asoc, &timeo); 1980 } 1981 1982 err = msg_len; 1983 1984 err: 1985 return err; 1986 } 1987 1988 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1989 const struct msghdr *msg, 1990 struct sctp_cmsgs *cmsgs) 1991 { 1992 union sctp_addr *daddr = NULL; 1993 int err; 1994 1995 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1996 int len = msg->msg_namelen; 1997 1998 if (len > sizeof(*daddr)) 1999 len = sizeof(*daddr); 2000 2001 daddr = (union sctp_addr *)msg->msg_name; 2002 2003 err = sctp_verify_addr(sk, daddr, len); 2004 if (err) 2005 return ERR_PTR(err); 2006 } 2007 2008 return daddr; 2009 } 2010 2011 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2012 struct sctp_sndrcvinfo *sinfo, 2013 struct sctp_cmsgs *cmsgs) 2014 { 2015 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2016 sinfo->sinfo_stream = asoc->default_stream; 2017 sinfo->sinfo_ppid = asoc->default_ppid; 2018 sinfo->sinfo_context = asoc->default_context; 2019 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2020 2021 if (!cmsgs->prinfo) 2022 sinfo->sinfo_flags = asoc->default_flags; 2023 } 2024 2025 if (!cmsgs->srinfo && !cmsgs->prinfo) 2026 sinfo->sinfo_timetolive = asoc->default_timetolive; 2027 2028 if (cmsgs->authinfo) { 2029 /* Reuse sinfo_tsn to indicate that authinfo was set and 2030 * sinfo_ssn to save the keyid on tx path. 2031 */ 2032 sinfo->sinfo_tsn = 1; 2033 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2034 } 2035 } 2036 2037 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2038 { 2039 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2040 struct sctp_transport *transport = NULL; 2041 struct sctp_sndrcvinfo _sinfo, *sinfo; 2042 struct sctp_association *asoc; 2043 struct sctp_cmsgs cmsgs; 2044 union sctp_addr *daddr; 2045 bool new = false; 2046 __u16 sflags; 2047 int err; 2048 2049 /* Parse and get snd_info */ 2050 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2051 if (err) 2052 goto out; 2053 2054 sinfo = &_sinfo; 2055 sflags = sinfo->sinfo_flags; 2056 2057 /* Get daddr from msg */ 2058 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2059 if (IS_ERR(daddr)) { 2060 err = PTR_ERR(daddr); 2061 goto out; 2062 } 2063 2064 lock_sock(sk); 2065 2066 /* SCTP_SENDALL process */ 2067 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2068 list_for_each_entry(asoc, &ep->asocs, asocs) { 2069 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2070 msg_len); 2071 if (err == 0) 2072 continue; 2073 if (err < 0) 2074 goto out_unlock; 2075 2076 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2077 2078 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2079 NULL, sinfo); 2080 if (err < 0) 2081 goto out_unlock; 2082 2083 iov_iter_revert(&msg->msg_iter, err); 2084 } 2085 2086 goto out_unlock; 2087 } 2088 2089 /* Get and check or create asoc */ 2090 if (daddr) { 2091 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2092 if (asoc) { 2093 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2094 msg_len); 2095 if (err <= 0) 2096 goto out_unlock; 2097 } else { 2098 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2099 &transport); 2100 if (err) 2101 goto out_unlock; 2102 2103 asoc = transport->asoc; 2104 new = true; 2105 } 2106 2107 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2108 transport = NULL; 2109 } else { 2110 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2111 if (!asoc) { 2112 err = -EPIPE; 2113 goto out_unlock; 2114 } 2115 2116 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2117 if (err <= 0) 2118 goto out_unlock; 2119 } 2120 2121 /* Update snd_info with the asoc */ 2122 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2123 2124 /* Send msg to the asoc */ 2125 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2126 if (err < 0 && err != -ESRCH && new) 2127 sctp_association_free(asoc); 2128 2129 out_unlock: 2130 release_sock(sk); 2131 out: 2132 return sctp_error(sk, msg->msg_flags, err); 2133 } 2134 2135 /* This is an extended version of skb_pull() that removes the data from the 2136 * start of a skb even when data is spread across the list of skb's in the 2137 * frag_list. len specifies the total amount of data that needs to be removed. 2138 * when 'len' bytes could be removed from the skb, it returns 0. 2139 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2140 * could not be removed. 2141 */ 2142 static int sctp_skb_pull(struct sk_buff *skb, int len) 2143 { 2144 struct sk_buff *list; 2145 int skb_len = skb_headlen(skb); 2146 int rlen; 2147 2148 if (len <= skb_len) { 2149 __skb_pull(skb, len); 2150 return 0; 2151 } 2152 len -= skb_len; 2153 __skb_pull(skb, skb_len); 2154 2155 skb_walk_frags(skb, list) { 2156 rlen = sctp_skb_pull(list, len); 2157 skb->len -= (len-rlen); 2158 skb->data_len -= (len-rlen); 2159 2160 if (!rlen) 2161 return 0; 2162 2163 len = rlen; 2164 } 2165 2166 return len; 2167 } 2168 2169 /* API 3.1.3 recvmsg() - UDP Style Syntax 2170 * 2171 * ssize_t recvmsg(int socket, struct msghdr *message, 2172 * int flags); 2173 * 2174 * socket - the socket descriptor of the endpoint. 2175 * message - pointer to the msghdr structure which contains a single 2176 * user message and possibly some ancillary data. 2177 * 2178 * See Section 5 for complete description of the data 2179 * structures. 2180 * 2181 * flags - flags sent or received with the user message, see Section 2182 * 5 for complete description of the flags. 2183 */ 2184 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2185 int noblock, int flags, int *addr_len) 2186 { 2187 struct sctp_ulpevent *event = NULL; 2188 struct sctp_sock *sp = sctp_sk(sk); 2189 struct sk_buff *skb, *head_skb; 2190 int copied; 2191 int err = 0; 2192 int skb_len; 2193 2194 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2195 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2196 addr_len); 2197 2198 lock_sock(sk); 2199 2200 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2201 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2202 err = -ENOTCONN; 2203 goto out; 2204 } 2205 2206 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2207 if (!skb) 2208 goto out; 2209 2210 /* Get the total length of the skb including any skb's in the 2211 * frag_list. 2212 */ 2213 skb_len = skb->len; 2214 2215 copied = skb_len; 2216 if (copied > len) 2217 copied = len; 2218 2219 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2220 2221 event = sctp_skb2event(skb); 2222 2223 if (err) 2224 goto out_free; 2225 2226 if (event->chunk && event->chunk->head_skb) 2227 head_skb = event->chunk->head_skb; 2228 else 2229 head_skb = skb; 2230 sock_recv_ts_and_drops(msg, sk, head_skb); 2231 if (sctp_ulpevent_is_notification(event)) { 2232 msg->msg_flags |= MSG_NOTIFICATION; 2233 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2234 } else { 2235 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2236 } 2237 2238 /* Check if we allow SCTP_NXTINFO. */ 2239 if (sp->recvnxtinfo) 2240 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2241 /* Check if we allow SCTP_RCVINFO. */ 2242 if (sp->recvrcvinfo) 2243 sctp_ulpevent_read_rcvinfo(event, msg); 2244 /* Check if we allow SCTP_SNDRCVINFO. */ 2245 if (sp->subscribe.sctp_data_io_event) 2246 sctp_ulpevent_read_sndrcvinfo(event, msg); 2247 2248 err = copied; 2249 2250 /* If skb's length exceeds the user's buffer, update the skb and 2251 * push it back to the receive_queue so that the next call to 2252 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2253 */ 2254 if (skb_len > copied) { 2255 msg->msg_flags &= ~MSG_EOR; 2256 if (flags & MSG_PEEK) 2257 goto out_free; 2258 sctp_skb_pull(skb, copied); 2259 skb_queue_head(&sk->sk_receive_queue, skb); 2260 2261 /* When only partial message is copied to the user, increase 2262 * rwnd by that amount. If all the data in the skb is read, 2263 * rwnd is updated when the event is freed. 2264 */ 2265 if (!sctp_ulpevent_is_notification(event)) 2266 sctp_assoc_rwnd_increase(event->asoc, copied); 2267 goto out; 2268 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2269 (event->msg_flags & MSG_EOR)) 2270 msg->msg_flags |= MSG_EOR; 2271 else 2272 msg->msg_flags &= ~MSG_EOR; 2273 2274 out_free: 2275 if (flags & MSG_PEEK) { 2276 /* Release the skb reference acquired after peeking the skb in 2277 * sctp_skb_recv_datagram(). 2278 */ 2279 kfree_skb(skb); 2280 } else { 2281 /* Free the event which includes releasing the reference to 2282 * the owner of the skb, freeing the skb and updating the 2283 * rwnd. 2284 */ 2285 sctp_ulpevent_free(event); 2286 } 2287 out: 2288 release_sock(sk); 2289 return err; 2290 } 2291 2292 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2293 * 2294 * This option is a on/off flag. If enabled no SCTP message 2295 * fragmentation will be performed. Instead if a message being sent 2296 * exceeds the current PMTU size, the message will NOT be sent and 2297 * instead a error will be indicated to the user. 2298 */ 2299 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2300 char __user *optval, 2301 unsigned int optlen) 2302 { 2303 int val; 2304 2305 if (optlen < sizeof(int)) 2306 return -EINVAL; 2307 2308 if (get_user(val, (int __user *)optval)) 2309 return -EFAULT; 2310 2311 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2312 2313 return 0; 2314 } 2315 2316 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2317 unsigned int optlen) 2318 { 2319 struct sctp_association *asoc; 2320 struct sctp_ulpevent *event; 2321 2322 if (optlen > sizeof(struct sctp_event_subscribe)) 2323 return -EINVAL; 2324 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2325 return -EFAULT; 2326 2327 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2328 * if there is no data to be sent or retransmit, the stack will 2329 * immediately send up this notification. 2330 */ 2331 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2332 &sctp_sk(sk)->subscribe)) { 2333 asoc = sctp_id2assoc(sk, 0); 2334 2335 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2336 event = sctp_ulpevent_make_sender_dry_event(asoc, 2337 GFP_USER | __GFP_NOWARN); 2338 if (!event) 2339 return -ENOMEM; 2340 2341 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2342 } 2343 } 2344 2345 return 0; 2346 } 2347 2348 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2349 * 2350 * This socket option is applicable to the UDP-style socket only. When 2351 * set it will cause associations that are idle for more than the 2352 * specified number of seconds to automatically close. An association 2353 * being idle is defined an association that has NOT sent or received 2354 * user data. The special value of '0' indicates that no automatic 2355 * close of any associations should be performed. The option expects an 2356 * integer defining the number of seconds of idle time before an 2357 * association is closed. 2358 */ 2359 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2360 unsigned int optlen) 2361 { 2362 struct sctp_sock *sp = sctp_sk(sk); 2363 struct net *net = sock_net(sk); 2364 2365 /* Applicable to UDP-style socket only */ 2366 if (sctp_style(sk, TCP)) 2367 return -EOPNOTSUPP; 2368 if (optlen != sizeof(int)) 2369 return -EINVAL; 2370 if (copy_from_user(&sp->autoclose, optval, optlen)) 2371 return -EFAULT; 2372 2373 if (sp->autoclose > net->sctp.max_autoclose) 2374 sp->autoclose = net->sctp.max_autoclose; 2375 2376 return 0; 2377 } 2378 2379 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2380 * 2381 * Applications can enable or disable heartbeats for any peer address of 2382 * an association, modify an address's heartbeat interval, force a 2383 * heartbeat to be sent immediately, and adjust the address's maximum 2384 * number of retransmissions sent before an address is considered 2385 * unreachable. The following structure is used to access and modify an 2386 * address's parameters: 2387 * 2388 * struct sctp_paddrparams { 2389 * sctp_assoc_t spp_assoc_id; 2390 * struct sockaddr_storage spp_address; 2391 * uint32_t spp_hbinterval; 2392 * uint16_t spp_pathmaxrxt; 2393 * uint32_t spp_pathmtu; 2394 * uint32_t spp_sackdelay; 2395 * uint32_t spp_flags; 2396 * }; 2397 * 2398 * spp_assoc_id - (one-to-many style socket) This is filled in the 2399 * application, and identifies the association for 2400 * this query. 2401 * spp_address - This specifies which address is of interest. 2402 * spp_hbinterval - This contains the value of the heartbeat interval, 2403 * in milliseconds. If a value of zero 2404 * is present in this field then no changes are to 2405 * be made to this parameter. 2406 * spp_pathmaxrxt - This contains the maximum number of 2407 * retransmissions before this address shall be 2408 * considered unreachable. If a value of zero 2409 * is present in this field then no changes are to 2410 * be made to this parameter. 2411 * spp_pathmtu - When Path MTU discovery is disabled the value 2412 * specified here will be the "fixed" path mtu. 2413 * Note that if the spp_address field is empty 2414 * then all associations on this address will 2415 * have this fixed path mtu set upon them. 2416 * 2417 * spp_sackdelay - When delayed sack is enabled, this value specifies 2418 * the number of milliseconds that sacks will be delayed 2419 * for. This value will apply to all addresses of an 2420 * association if the spp_address field is empty. Note 2421 * also, that if delayed sack is enabled and this 2422 * value is set to 0, no change is made to the last 2423 * recorded delayed sack timer value. 2424 * 2425 * spp_flags - These flags are used to control various features 2426 * on an association. The flag field may contain 2427 * zero or more of the following options. 2428 * 2429 * SPP_HB_ENABLE - Enable heartbeats on the 2430 * specified address. Note that if the address 2431 * field is empty all addresses for the association 2432 * have heartbeats enabled upon them. 2433 * 2434 * SPP_HB_DISABLE - Disable heartbeats on the 2435 * speicifed address. Note that if the address 2436 * field is empty all addresses for the association 2437 * will have their heartbeats disabled. Note also 2438 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2439 * mutually exclusive, only one of these two should 2440 * be specified. Enabling both fields will have 2441 * undetermined results. 2442 * 2443 * SPP_HB_DEMAND - Request a user initiated heartbeat 2444 * to be made immediately. 2445 * 2446 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2447 * heartbeat delayis to be set to the value of 0 2448 * milliseconds. 2449 * 2450 * SPP_PMTUD_ENABLE - This field will enable PMTU 2451 * discovery upon the specified address. Note that 2452 * if the address feild is empty then all addresses 2453 * on the association are effected. 2454 * 2455 * SPP_PMTUD_DISABLE - This field will disable PMTU 2456 * discovery upon the specified address. Note that 2457 * if the address feild is empty then all addresses 2458 * on the association are effected. Not also that 2459 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2460 * exclusive. Enabling both will have undetermined 2461 * results. 2462 * 2463 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2464 * on delayed sack. The time specified in spp_sackdelay 2465 * is used to specify the sack delay for this address. Note 2466 * that if spp_address is empty then all addresses will 2467 * enable delayed sack and take on the sack delay 2468 * value specified in spp_sackdelay. 2469 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2470 * off delayed sack. If the spp_address field is blank then 2471 * delayed sack is disabled for the entire association. Note 2472 * also that this field is mutually exclusive to 2473 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2474 * results. 2475 */ 2476 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2477 struct sctp_transport *trans, 2478 struct sctp_association *asoc, 2479 struct sctp_sock *sp, 2480 int hb_change, 2481 int pmtud_change, 2482 int sackdelay_change) 2483 { 2484 int error; 2485 2486 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2487 struct net *net = sock_net(trans->asoc->base.sk); 2488 2489 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2490 if (error) 2491 return error; 2492 } 2493 2494 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2495 * this field is ignored. Note also that a value of zero indicates 2496 * the current setting should be left unchanged. 2497 */ 2498 if (params->spp_flags & SPP_HB_ENABLE) { 2499 2500 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2501 * set. This lets us use 0 value when this flag 2502 * is set. 2503 */ 2504 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2505 params->spp_hbinterval = 0; 2506 2507 if (params->spp_hbinterval || 2508 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2509 if (trans) { 2510 trans->hbinterval = 2511 msecs_to_jiffies(params->spp_hbinterval); 2512 } else if (asoc) { 2513 asoc->hbinterval = 2514 msecs_to_jiffies(params->spp_hbinterval); 2515 } else { 2516 sp->hbinterval = params->spp_hbinterval; 2517 } 2518 } 2519 } 2520 2521 if (hb_change) { 2522 if (trans) { 2523 trans->param_flags = 2524 (trans->param_flags & ~SPP_HB) | hb_change; 2525 } else if (asoc) { 2526 asoc->param_flags = 2527 (asoc->param_flags & ~SPP_HB) | hb_change; 2528 } else { 2529 sp->param_flags = 2530 (sp->param_flags & ~SPP_HB) | hb_change; 2531 } 2532 } 2533 2534 /* When Path MTU discovery is disabled the value specified here will 2535 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2536 * include the flag SPP_PMTUD_DISABLE for this field to have any 2537 * effect). 2538 */ 2539 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2540 if (trans) { 2541 trans->pathmtu = params->spp_pathmtu; 2542 sctp_assoc_sync_pmtu(asoc); 2543 } else if (asoc) { 2544 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2545 } else { 2546 sp->pathmtu = params->spp_pathmtu; 2547 } 2548 } 2549 2550 if (pmtud_change) { 2551 if (trans) { 2552 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2553 (params->spp_flags & SPP_PMTUD_ENABLE); 2554 trans->param_flags = 2555 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2556 if (update) { 2557 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2558 sctp_assoc_sync_pmtu(asoc); 2559 } 2560 } else if (asoc) { 2561 asoc->param_flags = 2562 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2563 } else { 2564 sp->param_flags = 2565 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2566 } 2567 } 2568 2569 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2570 * value of this field is ignored. Note also that a value of zero 2571 * indicates the current setting should be left unchanged. 2572 */ 2573 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2574 if (trans) { 2575 trans->sackdelay = 2576 msecs_to_jiffies(params->spp_sackdelay); 2577 } else if (asoc) { 2578 asoc->sackdelay = 2579 msecs_to_jiffies(params->spp_sackdelay); 2580 } else { 2581 sp->sackdelay = params->spp_sackdelay; 2582 } 2583 } 2584 2585 if (sackdelay_change) { 2586 if (trans) { 2587 trans->param_flags = 2588 (trans->param_flags & ~SPP_SACKDELAY) | 2589 sackdelay_change; 2590 } else if (asoc) { 2591 asoc->param_flags = 2592 (asoc->param_flags & ~SPP_SACKDELAY) | 2593 sackdelay_change; 2594 } else { 2595 sp->param_flags = 2596 (sp->param_flags & ~SPP_SACKDELAY) | 2597 sackdelay_change; 2598 } 2599 } 2600 2601 /* Note that a value of zero indicates the current setting should be 2602 left unchanged. 2603 */ 2604 if (params->spp_pathmaxrxt) { 2605 if (trans) { 2606 trans->pathmaxrxt = params->spp_pathmaxrxt; 2607 } else if (asoc) { 2608 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2609 } else { 2610 sp->pathmaxrxt = params->spp_pathmaxrxt; 2611 } 2612 } 2613 2614 return 0; 2615 } 2616 2617 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2618 char __user *optval, 2619 unsigned int optlen) 2620 { 2621 struct sctp_paddrparams params; 2622 struct sctp_transport *trans = NULL; 2623 struct sctp_association *asoc = NULL; 2624 struct sctp_sock *sp = sctp_sk(sk); 2625 int error; 2626 int hb_change, pmtud_change, sackdelay_change; 2627 2628 if (optlen != sizeof(struct sctp_paddrparams)) 2629 return -EINVAL; 2630 2631 if (copy_from_user(¶ms, optval, optlen)) 2632 return -EFAULT; 2633 2634 /* Validate flags and value parameters. */ 2635 hb_change = params.spp_flags & SPP_HB; 2636 pmtud_change = params.spp_flags & SPP_PMTUD; 2637 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2638 2639 if (hb_change == SPP_HB || 2640 pmtud_change == SPP_PMTUD || 2641 sackdelay_change == SPP_SACKDELAY || 2642 params.spp_sackdelay > 500 || 2643 (params.spp_pathmtu && 2644 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2645 return -EINVAL; 2646 2647 /* If an address other than INADDR_ANY is specified, and 2648 * no transport is found, then the request is invalid. 2649 */ 2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2651 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2652 params.spp_assoc_id); 2653 if (!trans) 2654 return -EINVAL; 2655 } 2656 2657 /* Get association, if assoc_id != 0 and the socket is a one 2658 * to many style socket, and an association was not found, then 2659 * the id was invalid. 2660 */ 2661 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2662 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2663 return -EINVAL; 2664 2665 /* Heartbeat demand can only be sent on a transport or 2666 * association, but not a socket. 2667 */ 2668 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2669 return -EINVAL; 2670 2671 /* Process parameters. */ 2672 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2673 hb_change, pmtud_change, 2674 sackdelay_change); 2675 2676 if (error) 2677 return error; 2678 2679 /* If changes are for association, also apply parameters to each 2680 * transport. 2681 */ 2682 if (!trans && asoc) { 2683 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2684 transports) { 2685 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2686 hb_change, pmtud_change, 2687 sackdelay_change); 2688 } 2689 } 2690 2691 return 0; 2692 } 2693 2694 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2695 { 2696 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2697 } 2698 2699 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2700 { 2701 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2702 } 2703 2704 /* 2705 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2706 * 2707 * This option will effect the way delayed acks are performed. This 2708 * option allows you to get or set the delayed ack time, in 2709 * milliseconds. It also allows changing the delayed ack frequency. 2710 * Changing the frequency to 1 disables the delayed sack algorithm. If 2711 * the assoc_id is 0, then this sets or gets the endpoints default 2712 * values. If the assoc_id field is non-zero, then the set or get 2713 * effects the specified association for the one to many model (the 2714 * assoc_id field is ignored by the one to one model). Note that if 2715 * sack_delay or sack_freq are 0 when setting this option, then the 2716 * current values will remain unchanged. 2717 * 2718 * struct sctp_sack_info { 2719 * sctp_assoc_t sack_assoc_id; 2720 * uint32_t sack_delay; 2721 * uint32_t sack_freq; 2722 * }; 2723 * 2724 * sack_assoc_id - This parameter, indicates which association the user 2725 * is performing an action upon. Note that if this field's value is 2726 * zero then the endpoints default value is changed (effecting future 2727 * associations only). 2728 * 2729 * sack_delay - This parameter contains the number of milliseconds that 2730 * the user is requesting the delayed ACK timer be set to. Note that 2731 * this value is defined in the standard to be between 200 and 500 2732 * milliseconds. 2733 * 2734 * sack_freq - This parameter contains the number of packets that must 2735 * be received before a sack is sent without waiting for the delay 2736 * timer to expire. The default value for this is 2, setting this 2737 * value to 1 will disable the delayed sack algorithm. 2738 */ 2739 2740 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2741 char __user *optval, unsigned int optlen) 2742 { 2743 struct sctp_sack_info params; 2744 struct sctp_transport *trans = NULL; 2745 struct sctp_association *asoc = NULL; 2746 struct sctp_sock *sp = sctp_sk(sk); 2747 2748 if (optlen == sizeof(struct sctp_sack_info)) { 2749 if (copy_from_user(¶ms, optval, optlen)) 2750 return -EFAULT; 2751 2752 if (params.sack_delay == 0 && params.sack_freq == 0) 2753 return 0; 2754 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2755 pr_warn_ratelimited(DEPRECATED 2756 "%s (pid %d) " 2757 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2758 "Use struct sctp_sack_info instead\n", 2759 current->comm, task_pid_nr(current)); 2760 if (copy_from_user(¶ms, optval, optlen)) 2761 return -EFAULT; 2762 2763 if (params.sack_delay == 0) 2764 params.sack_freq = 1; 2765 else 2766 params.sack_freq = 0; 2767 } else 2768 return -EINVAL; 2769 2770 /* Validate value parameter. */ 2771 if (params.sack_delay > 500) 2772 return -EINVAL; 2773 2774 /* Get association, if sack_assoc_id != 0 and the socket is a one 2775 * to many style socket, and an association was not found, then 2776 * the id was invalid. 2777 */ 2778 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2779 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2780 return -EINVAL; 2781 2782 if (params.sack_delay) { 2783 if (asoc) { 2784 asoc->sackdelay = 2785 msecs_to_jiffies(params.sack_delay); 2786 asoc->param_flags = 2787 sctp_spp_sackdelay_enable(asoc->param_flags); 2788 } else { 2789 sp->sackdelay = params.sack_delay; 2790 sp->param_flags = 2791 sctp_spp_sackdelay_enable(sp->param_flags); 2792 } 2793 } 2794 2795 if (params.sack_freq == 1) { 2796 if (asoc) { 2797 asoc->param_flags = 2798 sctp_spp_sackdelay_disable(asoc->param_flags); 2799 } else { 2800 sp->param_flags = 2801 sctp_spp_sackdelay_disable(sp->param_flags); 2802 } 2803 } else if (params.sack_freq > 1) { 2804 if (asoc) { 2805 asoc->sackfreq = params.sack_freq; 2806 asoc->param_flags = 2807 sctp_spp_sackdelay_enable(asoc->param_flags); 2808 } else { 2809 sp->sackfreq = params.sack_freq; 2810 sp->param_flags = 2811 sctp_spp_sackdelay_enable(sp->param_flags); 2812 } 2813 } 2814 2815 /* If change is for association, also apply to each transport. */ 2816 if (asoc) { 2817 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2818 transports) { 2819 if (params.sack_delay) { 2820 trans->sackdelay = 2821 msecs_to_jiffies(params.sack_delay); 2822 trans->param_flags = 2823 sctp_spp_sackdelay_enable(trans->param_flags); 2824 } 2825 if (params.sack_freq == 1) { 2826 trans->param_flags = 2827 sctp_spp_sackdelay_disable(trans->param_flags); 2828 } else if (params.sack_freq > 1) { 2829 trans->sackfreq = params.sack_freq; 2830 trans->param_flags = 2831 sctp_spp_sackdelay_enable(trans->param_flags); 2832 } 2833 } 2834 } 2835 2836 return 0; 2837 } 2838 2839 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2840 * 2841 * Applications can specify protocol parameters for the default association 2842 * initialization. The option name argument to setsockopt() and getsockopt() 2843 * is SCTP_INITMSG. 2844 * 2845 * Setting initialization parameters is effective only on an unconnected 2846 * socket (for UDP-style sockets only future associations are effected 2847 * by the change). With TCP-style sockets, this option is inherited by 2848 * sockets derived from a listener socket. 2849 */ 2850 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2851 { 2852 struct sctp_initmsg sinit; 2853 struct sctp_sock *sp = sctp_sk(sk); 2854 2855 if (optlen != sizeof(struct sctp_initmsg)) 2856 return -EINVAL; 2857 if (copy_from_user(&sinit, optval, optlen)) 2858 return -EFAULT; 2859 2860 if (sinit.sinit_num_ostreams) 2861 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2862 if (sinit.sinit_max_instreams) 2863 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2864 if (sinit.sinit_max_attempts) 2865 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2866 if (sinit.sinit_max_init_timeo) 2867 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2868 2869 return 0; 2870 } 2871 2872 /* 2873 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2874 * 2875 * Applications that wish to use the sendto() system call may wish to 2876 * specify a default set of parameters that would normally be supplied 2877 * through the inclusion of ancillary data. This socket option allows 2878 * such an application to set the default sctp_sndrcvinfo structure. 2879 * The application that wishes to use this socket option simply passes 2880 * in to this call the sctp_sndrcvinfo structure defined in Section 2881 * 5.2.2) The input parameters accepted by this call include 2882 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2883 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2884 * to this call if the caller is using the UDP model. 2885 */ 2886 static int sctp_setsockopt_default_send_param(struct sock *sk, 2887 char __user *optval, 2888 unsigned int optlen) 2889 { 2890 struct sctp_sock *sp = sctp_sk(sk); 2891 struct sctp_association *asoc; 2892 struct sctp_sndrcvinfo info; 2893 2894 if (optlen != sizeof(info)) 2895 return -EINVAL; 2896 if (copy_from_user(&info, optval, optlen)) 2897 return -EFAULT; 2898 if (info.sinfo_flags & 2899 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2900 SCTP_ABORT | SCTP_EOF)) 2901 return -EINVAL; 2902 2903 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2904 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2905 return -EINVAL; 2906 if (asoc) { 2907 asoc->default_stream = info.sinfo_stream; 2908 asoc->default_flags = info.sinfo_flags; 2909 asoc->default_ppid = info.sinfo_ppid; 2910 asoc->default_context = info.sinfo_context; 2911 asoc->default_timetolive = info.sinfo_timetolive; 2912 } else { 2913 sp->default_stream = info.sinfo_stream; 2914 sp->default_flags = info.sinfo_flags; 2915 sp->default_ppid = info.sinfo_ppid; 2916 sp->default_context = info.sinfo_context; 2917 sp->default_timetolive = info.sinfo_timetolive; 2918 } 2919 2920 return 0; 2921 } 2922 2923 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2924 * (SCTP_DEFAULT_SNDINFO) 2925 */ 2926 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2927 char __user *optval, 2928 unsigned int optlen) 2929 { 2930 struct sctp_sock *sp = sctp_sk(sk); 2931 struct sctp_association *asoc; 2932 struct sctp_sndinfo info; 2933 2934 if (optlen != sizeof(info)) 2935 return -EINVAL; 2936 if (copy_from_user(&info, optval, optlen)) 2937 return -EFAULT; 2938 if (info.snd_flags & 2939 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2940 SCTP_ABORT | SCTP_EOF)) 2941 return -EINVAL; 2942 2943 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2944 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2945 return -EINVAL; 2946 if (asoc) { 2947 asoc->default_stream = info.snd_sid; 2948 asoc->default_flags = info.snd_flags; 2949 asoc->default_ppid = info.snd_ppid; 2950 asoc->default_context = info.snd_context; 2951 } else { 2952 sp->default_stream = info.snd_sid; 2953 sp->default_flags = info.snd_flags; 2954 sp->default_ppid = info.snd_ppid; 2955 sp->default_context = info.snd_context; 2956 } 2957 2958 return 0; 2959 } 2960 2961 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2962 * 2963 * Requests that the local SCTP stack use the enclosed peer address as 2964 * the association primary. The enclosed address must be one of the 2965 * association peer's addresses. 2966 */ 2967 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2968 unsigned int optlen) 2969 { 2970 struct sctp_prim prim; 2971 struct sctp_transport *trans; 2972 struct sctp_af *af; 2973 int err; 2974 2975 if (optlen != sizeof(struct sctp_prim)) 2976 return -EINVAL; 2977 2978 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2979 return -EFAULT; 2980 2981 /* Allow security module to validate address but need address len. */ 2982 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 2983 if (!af) 2984 return -EINVAL; 2985 2986 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 2987 (struct sockaddr *)&prim.ssp_addr, 2988 af->sockaddr_len); 2989 if (err) 2990 return err; 2991 2992 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2993 if (!trans) 2994 return -EINVAL; 2995 2996 sctp_assoc_set_primary(trans->asoc, trans); 2997 2998 return 0; 2999 } 3000 3001 /* 3002 * 7.1.5 SCTP_NODELAY 3003 * 3004 * Turn on/off any Nagle-like algorithm. This means that packets are 3005 * generally sent as soon as possible and no unnecessary delays are 3006 * introduced, at the cost of more packets in the network. Expects an 3007 * integer boolean flag. 3008 */ 3009 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3010 unsigned int optlen) 3011 { 3012 int val; 3013 3014 if (optlen < sizeof(int)) 3015 return -EINVAL; 3016 if (get_user(val, (int __user *)optval)) 3017 return -EFAULT; 3018 3019 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3020 return 0; 3021 } 3022 3023 /* 3024 * 3025 * 7.1.1 SCTP_RTOINFO 3026 * 3027 * The protocol parameters used to initialize and bound retransmission 3028 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3029 * and modify these parameters. 3030 * All parameters are time values, in milliseconds. A value of 0, when 3031 * modifying the parameters, indicates that the current value should not 3032 * be changed. 3033 * 3034 */ 3035 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3036 { 3037 struct sctp_rtoinfo rtoinfo; 3038 struct sctp_association *asoc; 3039 unsigned long rto_min, rto_max; 3040 struct sctp_sock *sp = sctp_sk(sk); 3041 3042 if (optlen != sizeof (struct sctp_rtoinfo)) 3043 return -EINVAL; 3044 3045 if (copy_from_user(&rtoinfo, optval, optlen)) 3046 return -EFAULT; 3047 3048 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3049 3050 /* Set the values to the specific association */ 3051 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3052 return -EINVAL; 3053 3054 rto_max = rtoinfo.srto_max; 3055 rto_min = rtoinfo.srto_min; 3056 3057 if (rto_max) 3058 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3059 else 3060 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3061 3062 if (rto_min) 3063 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3064 else 3065 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3066 3067 if (rto_min > rto_max) 3068 return -EINVAL; 3069 3070 if (asoc) { 3071 if (rtoinfo.srto_initial != 0) 3072 asoc->rto_initial = 3073 msecs_to_jiffies(rtoinfo.srto_initial); 3074 asoc->rto_max = rto_max; 3075 asoc->rto_min = rto_min; 3076 } else { 3077 /* If there is no association or the association-id = 0 3078 * set the values to the endpoint. 3079 */ 3080 if (rtoinfo.srto_initial != 0) 3081 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3082 sp->rtoinfo.srto_max = rto_max; 3083 sp->rtoinfo.srto_min = rto_min; 3084 } 3085 3086 return 0; 3087 } 3088 3089 /* 3090 * 3091 * 7.1.2 SCTP_ASSOCINFO 3092 * 3093 * This option is used to tune the maximum retransmission attempts 3094 * of the association. 3095 * Returns an error if the new association retransmission value is 3096 * greater than the sum of the retransmission value of the peer. 3097 * See [SCTP] for more information. 3098 * 3099 */ 3100 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3101 { 3102 3103 struct sctp_assocparams assocparams; 3104 struct sctp_association *asoc; 3105 3106 if (optlen != sizeof(struct sctp_assocparams)) 3107 return -EINVAL; 3108 if (copy_from_user(&assocparams, optval, optlen)) 3109 return -EFAULT; 3110 3111 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3112 3113 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3114 return -EINVAL; 3115 3116 /* Set the values to the specific association */ 3117 if (asoc) { 3118 if (assocparams.sasoc_asocmaxrxt != 0) { 3119 __u32 path_sum = 0; 3120 int paths = 0; 3121 struct sctp_transport *peer_addr; 3122 3123 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3124 transports) { 3125 path_sum += peer_addr->pathmaxrxt; 3126 paths++; 3127 } 3128 3129 /* Only validate asocmaxrxt if we have more than 3130 * one path/transport. We do this because path 3131 * retransmissions are only counted when we have more 3132 * then one path. 3133 */ 3134 if (paths > 1 && 3135 assocparams.sasoc_asocmaxrxt > path_sum) 3136 return -EINVAL; 3137 3138 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3139 } 3140 3141 if (assocparams.sasoc_cookie_life != 0) 3142 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3143 } else { 3144 /* Set the values to the endpoint */ 3145 struct sctp_sock *sp = sctp_sk(sk); 3146 3147 if (assocparams.sasoc_asocmaxrxt != 0) 3148 sp->assocparams.sasoc_asocmaxrxt = 3149 assocparams.sasoc_asocmaxrxt; 3150 if (assocparams.sasoc_cookie_life != 0) 3151 sp->assocparams.sasoc_cookie_life = 3152 assocparams.sasoc_cookie_life; 3153 } 3154 return 0; 3155 } 3156 3157 /* 3158 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3159 * 3160 * This socket option is a boolean flag which turns on or off mapped V4 3161 * addresses. If this option is turned on and the socket is type 3162 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3163 * If this option is turned off, then no mapping will be done of V4 3164 * addresses and a user will receive both PF_INET6 and PF_INET type 3165 * addresses on the socket. 3166 */ 3167 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3168 { 3169 int val; 3170 struct sctp_sock *sp = sctp_sk(sk); 3171 3172 if (optlen < sizeof(int)) 3173 return -EINVAL; 3174 if (get_user(val, (int __user *)optval)) 3175 return -EFAULT; 3176 if (val) 3177 sp->v4mapped = 1; 3178 else 3179 sp->v4mapped = 0; 3180 3181 return 0; 3182 } 3183 3184 /* 3185 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3186 * This option will get or set the maximum size to put in any outgoing 3187 * SCTP DATA chunk. If a message is larger than this size it will be 3188 * fragmented by SCTP into the specified size. Note that the underlying 3189 * SCTP implementation may fragment into smaller sized chunks when the 3190 * PMTU of the underlying association is smaller than the value set by 3191 * the user. The default value for this option is '0' which indicates 3192 * the user is NOT limiting fragmentation and only the PMTU will effect 3193 * SCTP's choice of DATA chunk size. Note also that values set larger 3194 * than the maximum size of an IP datagram will effectively let SCTP 3195 * control fragmentation (i.e. the same as setting this option to 0). 3196 * 3197 * The following structure is used to access and modify this parameter: 3198 * 3199 * struct sctp_assoc_value { 3200 * sctp_assoc_t assoc_id; 3201 * uint32_t assoc_value; 3202 * }; 3203 * 3204 * assoc_id: This parameter is ignored for one-to-one style sockets. 3205 * For one-to-many style sockets this parameter indicates which 3206 * association the user is performing an action upon. Note that if 3207 * this field's value is zero then the endpoints default value is 3208 * changed (effecting future associations only). 3209 * assoc_value: This parameter specifies the maximum size in bytes. 3210 */ 3211 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3212 { 3213 struct sctp_sock *sp = sctp_sk(sk); 3214 struct sctp_assoc_value params; 3215 struct sctp_association *asoc; 3216 int val; 3217 3218 if (optlen == sizeof(int)) { 3219 pr_warn_ratelimited(DEPRECATED 3220 "%s (pid %d) " 3221 "Use of int in maxseg socket option.\n" 3222 "Use struct sctp_assoc_value instead\n", 3223 current->comm, task_pid_nr(current)); 3224 if (copy_from_user(&val, optval, optlen)) 3225 return -EFAULT; 3226 params.assoc_id = 0; 3227 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3228 if (copy_from_user(¶ms, optval, optlen)) 3229 return -EFAULT; 3230 val = params.assoc_value; 3231 } else { 3232 return -EINVAL; 3233 } 3234 3235 asoc = sctp_id2assoc(sk, params.assoc_id); 3236 3237 if (val) { 3238 int min_len, max_len; 3239 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3240 sizeof(struct sctp_data_chunk); 3241 3242 min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT, 3243 datasize); 3244 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3245 3246 if (val < min_len || val > max_len) 3247 return -EINVAL; 3248 } 3249 3250 if (asoc) { 3251 asoc->user_frag = val; 3252 sctp_assoc_update_frag_point(asoc); 3253 } else { 3254 if (params.assoc_id && sctp_style(sk, UDP)) 3255 return -EINVAL; 3256 sp->user_frag = val; 3257 } 3258 3259 return 0; 3260 } 3261 3262 3263 /* 3264 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3265 * 3266 * Requests that the peer mark the enclosed address as the association 3267 * primary. The enclosed address must be one of the association's 3268 * locally bound addresses. The following structure is used to make a 3269 * set primary request: 3270 */ 3271 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3272 unsigned int optlen) 3273 { 3274 struct net *net = sock_net(sk); 3275 struct sctp_sock *sp; 3276 struct sctp_association *asoc = NULL; 3277 struct sctp_setpeerprim prim; 3278 struct sctp_chunk *chunk; 3279 struct sctp_af *af; 3280 int err; 3281 3282 sp = sctp_sk(sk); 3283 3284 if (!net->sctp.addip_enable) 3285 return -EPERM; 3286 3287 if (optlen != sizeof(struct sctp_setpeerprim)) 3288 return -EINVAL; 3289 3290 if (copy_from_user(&prim, optval, optlen)) 3291 return -EFAULT; 3292 3293 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3294 if (!asoc) 3295 return -EINVAL; 3296 3297 if (!asoc->peer.asconf_capable) 3298 return -EPERM; 3299 3300 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3301 return -EPERM; 3302 3303 if (!sctp_state(asoc, ESTABLISHED)) 3304 return -ENOTCONN; 3305 3306 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3307 if (!af) 3308 return -EINVAL; 3309 3310 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3311 return -EADDRNOTAVAIL; 3312 3313 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3314 return -EADDRNOTAVAIL; 3315 3316 /* Allow security module to validate address. */ 3317 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3318 (struct sockaddr *)&prim.sspp_addr, 3319 af->sockaddr_len); 3320 if (err) 3321 return err; 3322 3323 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3324 chunk = sctp_make_asconf_set_prim(asoc, 3325 (union sctp_addr *)&prim.sspp_addr); 3326 if (!chunk) 3327 return -ENOMEM; 3328 3329 err = sctp_send_asconf(asoc, chunk); 3330 3331 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3332 3333 return err; 3334 } 3335 3336 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3337 unsigned int optlen) 3338 { 3339 struct sctp_setadaptation adaptation; 3340 3341 if (optlen != sizeof(struct sctp_setadaptation)) 3342 return -EINVAL; 3343 if (copy_from_user(&adaptation, optval, optlen)) 3344 return -EFAULT; 3345 3346 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3347 3348 return 0; 3349 } 3350 3351 /* 3352 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3353 * 3354 * The context field in the sctp_sndrcvinfo structure is normally only 3355 * used when a failed message is retrieved holding the value that was 3356 * sent down on the actual send call. This option allows the setting of 3357 * a default context on an association basis that will be received on 3358 * reading messages from the peer. This is especially helpful in the 3359 * one-2-many model for an application to keep some reference to an 3360 * internal state machine that is processing messages on the 3361 * association. Note that the setting of this value only effects 3362 * received messages from the peer and does not effect the value that is 3363 * saved with outbound messages. 3364 */ 3365 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3366 unsigned int optlen) 3367 { 3368 struct sctp_assoc_value params; 3369 struct sctp_sock *sp; 3370 struct sctp_association *asoc; 3371 3372 if (optlen != sizeof(struct sctp_assoc_value)) 3373 return -EINVAL; 3374 if (copy_from_user(¶ms, optval, optlen)) 3375 return -EFAULT; 3376 3377 sp = sctp_sk(sk); 3378 3379 if (params.assoc_id != 0) { 3380 asoc = sctp_id2assoc(sk, params.assoc_id); 3381 if (!asoc) 3382 return -EINVAL; 3383 asoc->default_rcv_context = params.assoc_value; 3384 } else { 3385 sp->default_rcv_context = params.assoc_value; 3386 } 3387 3388 return 0; 3389 } 3390 3391 /* 3392 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3393 * 3394 * This options will at a minimum specify if the implementation is doing 3395 * fragmented interleave. Fragmented interleave, for a one to many 3396 * socket, is when subsequent calls to receive a message may return 3397 * parts of messages from different associations. Some implementations 3398 * may allow you to turn this value on or off. If so, when turned off, 3399 * no fragment interleave will occur (which will cause a head of line 3400 * blocking amongst multiple associations sharing the same one to many 3401 * socket). When this option is turned on, then each receive call may 3402 * come from a different association (thus the user must receive data 3403 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3404 * association each receive belongs to. 3405 * 3406 * This option takes a boolean value. A non-zero value indicates that 3407 * fragmented interleave is on. A value of zero indicates that 3408 * fragmented interleave is off. 3409 * 3410 * Note that it is important that an implementation that allows this 3411 * option to be turned on, have it off by default. Otherwise an unaware 3412 * application using the one to many model may become confused and act 3413 * incorrectly. 3414 */ 3415 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3416 char __user *optval, 3417 unsigned int optlen) 3418 { 3419 int val; 3420 3421 if (optlen != sizeof(int)) 3422 return -EINVAL; 3423 if (get_user(val, (int __user *)optval)) 3424 return -EFAULT; 3425 3426 sctp_sk(sk)->frag_interleave = !!val; 3427 3428 if (!sctp_sk(sk)->frag_interleave) 3429 sctp_sk(sk)->strm_interleave = 0; 3430 3431 return 0; 3432 } 3433 3434 /* 3435 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3436 * (SCTP_PARTIAL_DELIVERY_POINT) 3437 * 3438 * This option will set or get the SCTP partial delivery point. This 3439 * point is the size of a message where the partial delivery API will be 3440 * invoked to help free up rwnd space for the peer. Setting this to a 3441 * lower value will cause partial deliveries to happen more often. The 3442 * calls argument is an integer that sets or gets the partial delivery 3443 * point. Note also that the call will fail if the user attempts to set 3444 * this value larger than the socket receive buffer size. 3445 * 3446 * Note that any single message having a length smaller than or equal to 3447 * the SCTP partial delivery point will be delivered in one single read 3448 * call as long as the user provided buffer is large enough to hold the 3449 * message. 3450 */ 3451 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3452 char __user *optval, 3453 unsigned int optlen) 3454 { 3455 u32 val; 3456 3457 if (optlen != sizeof(u32)) 3458 return -EINVAL; 3459 if (get_user(val, (int __user *)optval)) 3460 return -EFAULT; 3461 3462 /* Note: We double the receive buffer from what the user sets 3463 * it to be, also initial rwnd is based on rcvbuf/2. 3464 */ 3465 if (val > (sk->sk_rcvbuf >> 1)) 3466 return -EINVAL; 3467 3468 sctp_sk(sk)->pd_point = val; 3469 3470 return 0; /* is this the right error code? */ 3471 } 3472 3473 /* 3474 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3475 * 3476 * This option will allow a user to change the maximum burst of packets 3477 * that can be emitted by this association. Note that the default value 3478 * is 4, and some implementations may restrict this setting so that it 3479 * can only be lowered. 3480 * 3481 * NOTE: This text doesn't seem right. Do this on a socket basis with 3482 * future associations inheriting the socket value. 3483 */ 3484 static int sctp_setsockopt_maxburst(struct sock *sk, 3485 char __user *optval, 3486 unsigned int optlen) 3487 { 3488 struct sctp_assoc_value params; 3489 struct sctp_sock *sp; 3490 struct sctp_association *asoc; 3491 int val; 3492 int assoc_id = 0; 3493 3494 if (optlen == sizeof(int)) { 3495 pr_warn_ratelimited(DEPRECATED 3496 "%s (pid %d) " 3497 "Use of int in max_burst socket option deprecated.\n" 3498 "Use struct sctp_assoc_value instead\n", 3499 current->comm, task_pid_nr(current)); 3500 if (copy_from_user(&val, optval, optlen)) 3501 return -EFAULT; 3502 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3503 if (copy_from_user(¶ms, optval, optlen)) 3504 return -EFAULT; 3505 val = params.assoc_value; 3506 assoc_id = params.assoc_id; 3507 } else 3508 return -EINVAL; 3509 3510 sp = sctp_sk(sk); 3511 3512 if (assoc_id != 0) { 3513 asoc = sctp_id2assoc(sk, assoc_id); 3514 if (!asoc) 3515 return -EINVAL; 3516 asoc->max_burst = val; 3517 } else 3518 sp->max_burst = val; 3519 3520 return 0; 3521 } 3522 3523 /* 3524 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3525 * 3526 * This set option adds a chunk type that the user is requesting to be 3527 * received only in an authenticated way. Changes to the list of chunks 3528 * will only effect future associations on the socket. 3529 */ 3530 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3531 char __user *optval, 3532 unsigned int optlen) 3533 { 3534 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3535 struct sctp_authchunk val; 3536 3537 if (!ep->auth_enable) 3538 return -EACCES; 3539 3540 if (optlen != sizeof(struct sctp_authchunk)) 3541 return -EINVAL; 3542 if (copy_from_user(&val, optval, optlen)) 3543 return -EFAULT; 3544 3545 switch (val.sauth_chunk) { 3546 case SCTP_CID_INIT: 3547 case SCTP_CID_INIT_ACK: 3548 case SCTP_CID_SHUTDOWN_COMPLETE: 3549 case SCTP_CID_AUTH: 3550 return -EINVAL; 3551 } 3552 3553 /* add this chunk id to the endpoint */ 3554 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3555 } 3556 3557 /* 3558 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3559 * 3560 * This option gets or sets the list of HMAC algorithms that the local 3561 * endpoint requires the peer to use. 3562 */ 3563 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3564 char __user *optval, 3565 unsigned int optlen) 3566 { 3567 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3568 struct sctp_hmacalgo *hmacs; 3569 u32 idents; 3570 int err; 3571 3572 if (!ep->auth_enable) 3573 return -EACCES; 3574 3575 if (optlen < sizeof(struct sctp_hmacalgo)) 3576 return -EINVAL; 3577 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3578 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3579 3580 hmacs = memdup_user(optval, optlen); 3581 if (IS_ERR(hmacs)) 3582 return PTR_ERR(hmacs); 3583 3584 idents = hmacs->shmac_num_idents; 3585 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3586 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3587 err = -EINVAL; 3588 goto out; 3589 } 3590 3591 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3592 out: 3593 kfree(hmacs); 3594 return err; 3595 } 3596 3597 /* 3598 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3599 * 3600 * This option will set a shared secret key which is used to build an 3601 * association shared key. 3602 */ 3603 static int sctp_setsockopt_auth_key(struct sock *sk, 3604 char __user *optval, 3605 unsigned int optlen) 3606 { 3607 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3608 struct sctp_authkey *authkey; 3609 struct sctp_association *asoc; 3610 int ret; 3611 3612 if (!ep->auth_enable) 3613 return -EACCES; 3614 3615 if (optlen <= sizeof(struct sctp_authkey)) 3616 return -EINVAL; 3617 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3618 * this. 3619 */ 3620 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3621 sizeof(struct sctp_authkey)); 3622 3623 authkey = memdup_user(optval, optlen); 3624 if (IS_ERR(authkey)) 3625 return PTR_ERR(authkey); 3626 3627 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3628 ret = -EINVAL; 3629 goto out; 3630 } 3631 3632 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3633 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3634 ret = -EINVAL; 3635 goto out; 3636 } 3637 3638 ret = sctp_auth_set_key(ep, asoc, authkey); 3639 out: 3640 kzfree(authkey); 3641 return ret; 3642 } 3643 3644 /* 3645 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3646 * 3647 * This option will get or set the active shared key to be used to build 3648 * the association shared key. 3649 */ 3650 static int sctp_setsockopt_active_key(struct sock *sk, 3651 char __user *optval, 3652 unsigned int optlen) 3653 { 3654 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3655 struct sctp_authkeyid val; 3656 struct sctp_association *asoc; 3657 3658 if (!ep->auth_enable) 3659 return -EACCES; 3660 3661 if (optlen != sizeof(struct sctp_authkeyid)) 3662 return -EINVAL; 3663 if (copy_from_user(&val, optval, optlen)) 3664 return -EFAULT; 3665 3666 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3667 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3668 return -EINVAL; 3669 3670 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3671 } 3672 3673 /* 3674 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3675 * 3676 * This set option will delete a shared secret key from use. 3677 */ 3678 static int sctp_setsockopt_del_key(struct sock *sk, 3679 char __user *optval, 3680 unsigned int optlen) 3681 { 3682 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3683 struct sctp_authkeyid val; 3684 struct sctp_association *asoc; 3685 3686 if (!ep->auth_enable) 3687 return -EACCES; 3688 3689 if (optlen != sizeof(struct sctp_authkeyid)) 3690 return -EINVAL; 3691 if (copy_from_user(&val, optval, optlen)) 3692 return -EFAULT; 3693 3694 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3695 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3696 return -EINVAL; 3697 3698 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3699 3700 } 3701 3702 /* 3703 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3704 * 3705 * This set option will deactivate a shared secret key. 3706 */ 3707 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3708 unsigned int optlen) 3709 { 3710 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3711 struct sctp_authkeyid val; 3712 struct sctp_association *asoc; 3713 3714 if (!ep->auth_enable) 3715 return -EACCES; 3716 3717 if (optlen != sizeof(struct sctp_authkeyid)) 3718 return -EINVAL; 3719 if (copy_from_user(&val, optval, optlen)) 3720 return -EFAULT; 3721 3722 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3723 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3724 return -EINVAL; 3725 3726 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3727 } 3728 3729 /* 3730 * 8.1.23 SCTP_AUTO_ASCONF 3731 * 3732 * This option will enable or disable the use of the automatic generation of 3733 * ASCONF chunks to add and delete addresses to an existing association. Note 3734 * that this option has two caveats namely: a) it only affects sockets that 3735 * are bound to all addresses available to the SCTP stack, and b) the system 3736 * administrator may have an overriding control that turns the ASCONF feature 3737 * off no matter what setting the socket option may have. 3738 * This option expects an integer boolean flag, where a non-zero value turns on 3739 * the option, and a zero value turns off the option. 3740 * Note. In this implementation, socket operation overrides default parameter 3741 * being set by sysctl as well as FreeBSD implementation 3742 */ 3743 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3744 unsigned int optlen) 3745 { 3746 int val; 3747 struct sctp_sock *sp = sctp_sk(sk); 3748 3749 if (optlen < sizeof(int)) 3750 return -EINVAL; 3751 if (get_user(val, (int __user *)optval)) 3752 return -EFAULT; 3753 if (!sctp_is_ep_boundall(sk) && val) 3754 return -EINVAL; 3755 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3756 return 0; 3757 3758 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3759 if (val == 0 && sp->do_auto_asconf) { 3760 list_del(&sp->auto_asconf_list); 3761 sp->do_auto_asconf = 0; 3762 } else if (val && !sp->do_auto_asconf) { 3763 list_add_tail(&sp->auto_asconf_list, 3764 &sock_net(sk)->sctp.auto_asconf_splist); 3765 sp->do_auto_asconf = 1; 3766 } 3767 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3768 return 0; 3769 } 3770 3771 /* 3772 * SCTP_PEER_ADDR_THLDS 3773 * 3774 * This option allows us to alter the partially failed threshold for one or all 3775 * transports in an association. See Section 6.1 of: 3776 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3777 */ 3778 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3779 char __user *optval, 3780 unsigned int optlen) 3781 { 3782 struct sctp_paddrthlds val; 3783 struct sctp_transport *trans; 3784 struct sctp_association *asoc; 3785 3786 if (optlen < sizeof(struct sctp_paddrthlds)) 3787 return -EINVAL; 3788 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3789 sizeof(struct sctp_paddrthlds))) 3790 return -EFAULT; 3791 3792 3793 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3794 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3795 if (!asoc) 3796 return -ENOENT; 3797 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3798 transports) { 3799 if (val.spt_pathmaxrxt) 3800 trans->pathmaxrxt = val.spt_pathmaxrxt; 3801 trans->pf_retrans = val.spt_pathpfthld; 3802 } 3803 3804 if (val.spt_pathmaxrxt) 3805 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3806 asoc->pf_retrans = val.spt_pathpfthld; 3807 } else { 3808 trans = sctp_addr_id2transport(sk, &val.spt_address, 3809 val.spt_assoc_id); 3810 if (!trans) 3811 return -ENOENT; 3812 3813 if (val.spt_pathmaxrxt) 3814 trans->pathmaxrxt = val.spt_pathmaxrxt; 3815 trans->pf_retrans = val.spt_pathpfthld; 3816 } 3817 3818 return 0; 3819 } 3820 3821 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3822 char __user *optval, 3823 unsigned int optlen) 3824 { 3825 int val; 3826 3827 if (optlen < sizeof(int)) 3828 return -EINVAL; 3829 if (get_user(val, (int __user *) optval)) 3830 return -EFAULT; 3831 3832 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3833 3834 return 0; 3835 } 3836 3837 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3838 char __user *optval, 3839 unsigned int optlen) 3840 { 3841 int val; 3842 3843 if (optlen < sizeof(int)) 3844 return -EINVAL; 3845 if (get_user(val, (int __user *) optval)) 3846 return -EFAULT; 3847 3848 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3849 3850 return 0; 3851 } 3852 3853 static int sctp_setsockopt_pr_supported(struct sock *sk, 3854 char __user *optval, 3855 unsigned int optlen) 3856 { 3857 struct sctp_assoc_value params; 3858 struct sctp_association *asoc; 3859 int retval = -EINVAL; 3860 3861 if (optlen != sizeof(params)) 3862 goto out; 3863 3864 if (copy_from_user(¶ms, optval, optlen)) { 3865 retval = -EFAULT; 3866 goto out; 3867 } 3868 3869 asoc = sctp_id2assoc(sk, params.assoc_id); 3870 if (asoc) { 3871 asoc->prsctp_enable = !!params.assoc_value; 3872 } else if (!params.assoc_id) { 3873 struct sctp_sock *sp = sctp_sk(sk); 3874 3875 sp->ep->prsctp_enable = !!params.assoc_value; 3876 } else { 3877 goto out; 3878 } 3879 3880 retval = 0; 3881 3882 out: 3883 return retval; 3884 } 3885 3886 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3887 char __user *optval, 3888 unsigned int optlen) 3889 { 3890 struct sctp_default_prinfo info; 3891 struct sctp_association *asoc; 3892 int retval = -EINVAL; 3893 3894 if (optlen != sizeof(info)) 3895 goto out; 3896 3897 if (copy_from_user(&info, optval, sizeof(info))) { 3898 retval = -EFAULT; 3899 goto out; 3900 } 3901 3902 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3903 goto out; 3904 3905 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3906 info.pr_value = 0; 3907 3908 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3909 if (asoc) { 3910 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3911 asoc->default_timetolive = info.pr_value; 3912 } else if (!info.pr_assoc_id) { 3913 struct sctp_sock *sp = sctp_sk(sk); 3914 3915 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3916 sp->default_timetolive = info.pr_value; 3917 } else { 3918 goto out; 3919 } 3920 3921 retval = 0; 3922 3923 out: 3924 return retval; 3925 } 3926 3927 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3928 char __user *optval, 3929 unsigned int optlen) 3930 { 3931 struct sctp_assoc_value params; 3932 struct sctp_association *asoc; 3933 int retval = -EINVAL; 3934 3935 if (optlen != sizeof(params)) 3936 goto out; 3937 3938 if (copy_from_user(¶ms, optval, optlen)) { 3939 retval = -EFAULT; 3940 goto out; 3941 } 3942 3943 asoc = sctp_id2assoc(sk, params.assoc_id); 3944 if (asoc) { 3945 asoc->reconf_enable = !!params.assoc_value; 3946 } else if (!params.assoc_id) { 3947 struct sctp_sock *sp = sctp_sk(sk); 3948 3949 sp->ep->reconf_enable = !!params.assoc_value; 3950 } else { 3951 goto out; 3952 } 3953 3954 retval = 0; 3955 3956 out: 3957 return retval; 3958 } 3959 3960 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3961 char __user *optval, 3962 unsigned int optlen) 3963 { 3964 struct sctp_assoc_value params; 3965 struct sctp_association *asoc; 3966 int retval = -EINVAL; 3967 3968 if (optlen != sizeof(params)) 3969 goto out; 3970 3971 if (copy_from_user(¶ms, optval, optlen)) { 3972 retval = -EFAULT; 3973 goto out; 3974 } 3975 3976 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3977 goto out; 3978 3979 asoc = sctp_id2assoc(sk, params.assoc_id); 3980 if (asoc) { 3981 asoc->strreset_enable = params.assoc_value; 3982 } else if (!params.assoc_id) { 3983 struct sctp_sock *sp = sctp_sk(sk); 3984 3985 sp->ep->strreset_enable = params.assoc_value; 3986 } else { 3987 goto out; 3988 } 3989 3990 retval = 0; 3991 3992 out: 3993 return retval; 3994 } 3995 3996 static int sctp_setsockopt_reset_streams(struct sock *sk, 3997 char __user *optval, 3998 unsigned int optlen) 3999 { 4000 struct sctp_reset_streams *params; 4001 struct sctp_association *asoc; 4002 int retval = -EINVAL; 4003 4004 if (optlen < sizeof(*params)) 4005 return -EINVAL; 4006 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4007 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4008 sizeof(__u16) * sizeof(*params)); 4009 4010 params = memdup_user(optval, optlen); 4011 if (IS_ERR(params)) 4012 return PTR_ERR(params); 4013 4014 if (params->srs_number_streams * sizeof(__u16) > 4015 optlen - sizeof(*params)) 4016 goto out; 4017 4018 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4019 if (!asoc) 4020 goto out; 4021 4022 retval = sctp_send_reset_streams(asoc, params); 4023 4024 out: 4025 kfree(params); 4026 return retval; 4027 } 4028 4029 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4030 char __user *optval, 4031 unsigned int optlen) 4032 { 4033 struct sctp_association *asoc; 4034 sctp_assoc_t associd; 4035 int retval = -EINVAL; 4036 4037 if (optlen != sizeof(associd)) 4038 goto out; 4039 4040 if (copy_from_user(&associd, optval, optlen)) { 4041 retval = -EFAULT; 4042 goto out; 4043 } 4044 4045 asoc = sctp_id2assoc(sk, associd); 4046 if (!asoc) 4047 goto out; 4048 4049 retval = sctp_send_reset_assoc(asoc); 4050 4051 out: 4052 return retval; 4053 } 4054 4055 static int sctp_setsockopt_add_streams(struct sock *sk, 4056 char __user *optval, 4057 unsigned int optlen) 4058 { 4059 struct sctp_association *asoc; 4060 struct sctp_add_streams params; 4061 int retval = -EINVAL; 4062 4063 if (optlen != sizeof(params)) 4064 goto out; 4065 4066 if (copy_from_user(¶ms, optval, optlen)) { 4067 retval = -EFAULT; 4068 goto out; 4069 } 4070 4071 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4072 if (!asoc) 4073 goto out; 4074 4075 retval = sctp_send_add_streams(asoc, ¶ms); 4076 4077 out: 4078 return retval; 4079 } 4080 4081 static int sctp_setsockopt_scheduler(struct sock *sk, 4082 char __user *optval, 4083 unsigned int optlen) 4084 { 4085 struct sctp_association *asoc; 4086 struct sctp_assoc_value params; 4087 int retval = -EINVAL; 4088 4089 if (optlen < sizeof(params)) 4090 goto out; 4091 4092 optlen = sizeof(params); 4093 if (copy_from_user(¶ms, optval, optlen)) { 4094 retval = -EFAULT; 4095 goto out; 4096 } 4097 4098 if (params.assoc_value > SCTP_SS_MAX) 4099 goto out; 4100 4101 asoc = sctp_id2assoc(sk, params.assoc_id); 4102 if (!asoc) 4103 goto out; 4104 4105 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4106 4107 out: 4108 return retval; 4109 } 4110 4111 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4112 char __user *optval, 4113 unsigned int optlen) 4114 { 4115 struct sctp_association *asoc; 4116 struct sctp_stream_value params; 4117 int retval = -EINVAL; 4118 4119 if (optlen < sizeof(params)) 4120 goto out; 4121 4122 optlen = sizeof(params); 4123 if (copy_from_user(¶ms, optval, optlen)) { 4124 retval = -EFAULT; 4125 goto out; 4126 } 4127 4128 asoc = sctp_id2assoc(sk, params.assoc_id); 4129 if (!asoc) 4130 goto out; 4131 4132 retval = sctp_sched_set_value(asoc, params.stream_id, 4133 params.stream_value, GFP_KERNEL); 4134 4135 out: 4136 return retval; 4137 } 4138 4139 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4140 char __user *optval, 4141 unsigned int optlen) 4142 { 4143 struct sctp_sock *sp = sctp_sk(sk); 4144 struct net *net = sock_net(sk); 4145 struct sctp_assoc_value params; 4146 int retval = -EINVAL; 4147 4148 if (optlen < sizeof(params)) 4149 goto out; 4150 4151 optlen = sizeof(params); 4152 if (copy_from_user(¶ms, optval, optlen)) { 4153 retval = -EFAULT; 4154 goto out; 4155 } 4156 4157 if (params.assoc_id) 4158 goto out; 4159 4160 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4161 retval = -EPERM; 4162 goto out; 4163 } 4164 4165 sp->strm_interleave = !!params.assoc_value; 4166 4167 retval = 0; 4168 4169 out: 4170 return retval; 4171 } 4172 4173 /* API 6.2 setsockopt(), getsockopt() 4174 * 4175 * Applications use setsockopt() and getsockopt() to set or retrieve 4176 * socket options. Socket options are used to change the default 4177 * behavior of sockets calls. They are described in Section 7. 4178 * 4179 * The syntax is: 4180 * 4181 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4182 * int __user *optlen); 4183 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4184 * int optlen); 4185 * 4186 * sd - the socket descript. 4187 * level - set to IPPROTO_SCTP for all SCTP options. 4188 * optname - the option name. 4189 * optval - the buffer to store the value of the option. 4190 * optlen - the size of the buffer. 4191 */ 4192 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4193 char __user *optval, unsigned int optlen) 4194 { 4195 int retval = 0; 4196 4197 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4198 4199 /* I can hardly begin to describe how wrong this is. This is 4200 * so broken as to be worse than useless. The API draft 4201 * REALLY is NOT helpful here... I am not convinced that the 4202 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4203 * are at all well-founded. 4204 */ 4205 if (level != SOL_SCTP) { 4206 struct sctp_af *af = sctp_sk(sk)->pf->af; 4207 retval = af->setsockopt(sk, level, optname, optval, optlen); 4208 goto out_nounlock; 4209 } 4210 4211 lock_sock(sk); 4212 4213 switch (optname) { 4214 case SCTP_SOCKOPT_BINDX_ADD: 4215 /* 'optlen' is the size of the addresses buffer. */ 4216 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4217 optlen, SCTP_BINDX_ADD_ADDR); 4218 break; 4219 4220 case SCTP_SOCKOPT_BINDX_REM: 4221 /* 'optlen' is the size of the addresses buffer. */ 4222 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4223 optlen, SCTP_BINDX_REM_ADDR); 4224 break; 4225 4226 case SCTP_SOCKOPT_CONNECTX_OLD: 4227 /* 'optlen' is the size of the addresses buffer. */ 4228 retval = sctp_setsockopt_connectx_old(sk, 4229 (struct sockaddr __user *)optval, 4230 optlen); 4231 break; 4232 4233 case SCTP_SOCKOPT_CONNECTX: 4234 /* 'optlen' is the size of the addresses buffer. */ 4235 retval = sctp_setsockopt_connectx(sk, 4236 (struct sockaddr __user *)optval, 4237 optlen); 4238 break; 4239 4240 case SCTP_DISABLE_FRAGMENTS: 4241 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4242 break; 4243 4244 case SCTP_EVENTS: 4245 retval = sctp_setsockopt_events(sk, optval, optlen); 4246 break; 4247 4248 case SCTP_AUTOCLOSE: 4249 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4250 break; 4251 4252 case SCTP_PEER_ADDR_PARAMS: 4253 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4254 break; 4255 4256 case SCTP_DELAYED_SACK: 4257 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4258 break; 4259 case SCTP_PARTIAL_DELIVERY_POINT: 4260 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4261 break; 4262 4263 case SCTP_INITMSG: 4264 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4265 break; 4266 case SCTP_DEFAULT_SEND_PARAM: 4267 retval = sctp_setsockopt_default_send_param(sk, optval, 4268 optlen); 4269 break; 4270 case SCTP_DEFAULT_SNDINFO: 4271 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4272 break; 4273 case SCTP_PRIMARY_ADDR: 4274 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4275 break; 4276 case SCTP_SET_PEER_PRIMARY_ADDR: 4277 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4278 break; 4279 case SCTP_NODELAY: 4280 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4281 break; 4282 case SCTP_RTOINFO: 4283 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4284 break; 4285 case SCTP_ASSOCINFO: 4286 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4287 break; 4288 case SCTP_I_WANT_MAPPED_V4_ADDR: 4289 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4290 break; 4291 case SCTP_MAXSEG: 4292 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4293 break; 4294 case SCTP_ADAPTATION_LAYER: 4295 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4296 break; 4297 case SCTP_CONTEXT: 4298 retval = sctp_setsockopt_context(sk, optval, optlen); 4299 break; 4300 case SCTP_FRAGMENT_INTERLEAVE: 4301 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4302 break; 4303 case SCTP_MAX_BURST: 4304 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4305 break; 4306 case SCTP_AUTH_CHUNK: 4307 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4308 break; 4309 case SCTP_HMAC_IDENT: 4310 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4311 break; 4312 case SCTP_AUTH_KEY: 4313 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4314 break; 4315 case SCTP_AUTH_ACTIVE_KEY: 4316 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4317 break; 4318 case SCTP_AUTH_DELETE_KEY: 4319 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4320 break; 4321 case SCTP_AUTH_DEACTIVATE_KEY: 4322 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4323 break; 4324 case SCTP_AUTO_ASCONF: 4325 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4326 break; 4327 case SCTP_PEER_ADDR_THLDS: 4328 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4329 break; 4330 case SCTP_RECVRCVINFO: 4331 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4332 break; 4333 case SCTP_RECVNXTINFO: 4334 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4335 break; 4336 case SCTP_PR_SUPPORTED: 4337 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4338 break; 4339 case SCTP_DEFAULT_PRINFO: 4340 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4341 break; 4342 case SCTP_RECONFIG_SUPPORTED: 4343 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4344 break; 4345 case SCTP_ENABLE_STREAM_RESET: 4346 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4347 break; 4348 case SCTP_RESET_STREAMS: 4349 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4350 break; 4351 case SCTP_RESET_ASSOC: 4352 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4353 break; 4354 case SCTP_ADD_STREAMS: 4355 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4356 break; 4357 case SCTP_STREAM_SCHEDULER: 4358 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4359 break; 4360 case SCTP_STREAM_SCHEDULER_VALUE: 4361 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4362 break; 4363 case SCTP_INTERLEAVING_SUPPORTED: 4364 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4365 optlen); 4366 break; 4367 default: 4368 retval = -ENOPROTOOPT; 4369 break; 4370 } 4371 4372 release_sock(sk); 4373 4374 out_nounlock: 4375 return retval; 4376 } 4377 4378 /* API 3.1.6 connect() - UDP Style Syntax 4379 * 4380 * An application may use the connect() call in the UDP model to initiate an 4381 * association without sending data. 4382 * 4383 * The syntax is: 4384 * 4385 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4386 * 4387 * sd: the socket descriptor to have a new association added to. 4388 * 4389 * nam: the address structure (either struct sockaddr_in or struct 4390 * sockaddr_in6 defined in RFC2553 [7]). 4391 * 4392 * len: the size of the address. 4393 */ 4394 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4395 int addr_len) 4396 { 4397 int err = 0; 4398 struct sctp_af *af; 4399 4400 lock_sock(sk); 4401 4402 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4403 addr, addr_len); 4404 4405 /* Validate addr_len before calling common connect/connectx routine. */ 4406 af = sctp_get_af_specific(addr->sa_family); 4407 if (!af || addr_len < af->sockaddr_len) { 4408 err = -EINVAL; 4409 } else { 4410 /* Pass correct addr len to common routine (so it knows there 4411 * is only one address being passed. 4412 */ 4413 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4414 } 4415 4416 release_sock(sk); 4417 return err; 4418 } 4419 4420 /* FIXME: Write comments. */ 4421 static int sctp_disconnect(struct sock *sk, int flags) 4422 { 4423 return -EOPNOTSUPP; /* STUB */ 4424 } 4425 4426 /* 4.1.4 accept() - TCP Style Syntax 4427 * 4428 * Applications use accept() call to remove an established SCTP 4429 * association from the accept queue of the endpoint. A new socket 4430 * descriptor will be returned from accept() to represent the newly 4431 * formed association. 4432 */ 4433 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4434 { 4435 struct sctp_sock *sp; 4436 struct sctp_endpoint *ep; 4437 struct sock *newsk = NULL; 4438 struct sctp_association *asoc; 4439 long timeo; 4440 int error = 0; 4441 4442 lock_sock(sk); 4443 4444 sp = sctp_sk(sk); 4445 ep = sp->ep; 4446 4447 if (!sctp_style(sk, TCP)) { 4448 error = -EOPNOTSUPP; 4449 goto out; 4450 } 4451 4452 if (!sctp_sstate(sk, LISTENING)) { 4453 error = -EINVAL; 4454 goto out; 4455 } 4456 4457 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4458 4459 error = sctp_wait_for_accept(sk, timeo); 4460 if (error) 4461 goto out; 4462 4463 /* We treat the list of associations on the endpoint as the accept 4464 * queue and pick the first association on the list. 4465 */ 4466 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4467 4468 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4469 if (!newsk) { 4470 error = -ENOMEM; 4471 goto out; 4472 } 4473 4474 /* Populate the fields of the newsk from the oldsk and migrate the 4475 * asoc to the newsk. 4476 */ 4477 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4478 4479 out: 4480 release_sock(sk); 4481 *err = error; 4482 return newsk; 4483 } 4484 4485 /* The SCTP ioctl handler. */ 4486 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4487 { 4488 int rc = -ENOTCONN; 4489 4490 lock_sock(sk); 4491 4492 /* 4493 * SEQPACKET-style sockets in LISTENING state are valid, for 4494 * SCTP, so only discard TCP-style sockets in LISTENING state. 4495 */ 4496 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4497 goto out; 4498 4499 switch (cmd) { 4500 case SIOCINQ: { 4501 struct sk_buff *skb; 4502 unsigned int amount = 0; 4503 4504 skb = skb_peek(&sk->sk_receive_queue); 4505 if (skb != NULL) { 4506 /* 4507 * We will only return the amount of this packet since 4508 * that is all that will be read. 4509 */ 4510 amount = skb->len; 4511 } 4512 rc = put_user(amount, (int __user *)arg); 4513 break; 4514 } 4515 default: 4516 rc = -ENOIOCTLCMD; 4517 break; 4518 } 4519 out: 4520 release_sock(sk); 4521 return rc; 4522 } 4523 4524 /* This is the function which gets called during socket creation to 4525 * initialized the SCTP-specific portion of the sock. 4526 * The sock structure should already be zero-filled memory. 4527 */ 4528 static int sctp_init_sock(struct sock *sk) 4529 { 4530 struct net *net = sock_net(sk); 4531 struct sctp_sock *sp; 4532 4533 pr_debug("%s: sk:%p\n", __func__, sk); 4534 4535 sp = sctp_sk(sk); 4536 4537 /* Initialize the SCTP per socket area. */ 4538 switch (sk->sk_type) { 4539 case SOCK_SEQPACKET: 4540 sp->type = SCTP_SOCKET_UDP; 4541 break; 4542 case SOCK_STREAM: 4543 sp->type = SCTP_SOCKET_TCP; 4544 break; 4545 default: 4546 return -ESOCKTNOSUPPORT; 4547 } 4548 4549 sk->sk_gso_type = SKB_GSO_SCTP; 4550 4551 /* Initialize default send parameters. These parameters can be 4552 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4553 */ 4554 sp->default_stream = 0; 4555 sp->default_ppid = 0; 4556 sp->default_flags = 0; 4557 sp->default_context = 0; 4558 sp->default_timetolive = 0; 4559 4560 sp->default_rcv_context = 0; 4561 sp->max_burst = net->sctp.max_burst; 4562 4563 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4564 4565 /* Initialize default setup parameters. These parameters 4566 * can be modified with the SCTP_INITMSG socket option or 4567 * overridden by the SCTP_INIT CMSG. 4568 */ 4569 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4570 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4571 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4572 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4573 4574 /* Initialize default RTO related parameters. These parameters can 4575 * be modified for with the SCTP_RTOINFO socket option. 4576 */ 4577 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4578 sp->rtoinfo.srto_max = net->sctp.rto_max; 4579 sp->rtoinfo.srto_min = net->sctp.rto_min; 4580 4581 /* Initialize default association related parameters. These parameters 4582 * can be modified with the SCTP_ASSOCINFO socket option. 4583 */ 4584 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4585 sp->assocparams.sasoc_number_peer_destinations = 0; 4586 sp->assocparams.sasoc_peer_rwnd = 0; 4587 sp->assocparams.sasoc_local_rwnd = 0; 4588 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4589 4590 /* Initialize default event subscriptions. By default, all the 4591 * options are off. 4592 */ 4593 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4594 4595 /* Default Peer Address Parameters. These defaults can 4596 * be modified via SCTP_PEER_ADDR_PARAMS 4597 */ 4598 sp->hbinterval = net->sctp.hb_interval; 4599 sp->pathmaxrxt = net->sctp.max_retrans_path; 4600 sp->pathmtu = 0; /* allow default discovery */ 4601 sp->sackdelay = net->sctp.sack_timeout; 4602 sp->sackfreq = 2; 4603 sp->param_flags = SPP_HB_ENABLE | 4604 SPP_PMTUD_ENABLE | 4605 SPP_SACKDELAY_ENABLE; 4606 4607 /* If enabled no SCTP message fragmentation will be performed. 4608 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4609 */ 4610 sp->disable_fragments = 0; 4611 4612 /* Enable Nagle algorithm by default. */ 4613 sp->nodelay = 0; 4614 4615 sp->recvrcvinfo = 0; 4616 sp->recvnxtinfo = 0; 4617 4618 /* Enable by default. */ 4619 sp->v4mapped = 1; 4620 4621 /* Auto-close idle associations after the configured 4622 * number of seconds. A value of 0 disables this 4623 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4624 * for UDP-style sockets only. 4625 */ 4626 sp->autoclose = 0; 4627 4628 /* User specified fragmentation limit. */ 4629 sp->user_frag = 0; 4630 4631 sp->adaptation_ind = 0; 4632 4633 sp->pf = sctp_get_pf_specific(sk->sk_family); 4634 4635 /* Control variables for partial data delivery. */ 4636 atomic_set(&sp->pd_mode, 0); 4637 skb_queue_head_init(&sp->pd_lobby); 4638 sp->frag_interleave = 0; 4639 4640 /* Create a per socket endpoint structure. Even if we 4641 * change the data structure relationships, this may still 4642 * be useful for storing pre-connect address information. 4643 */ 4644 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4645 if (!sp->ep) 4646 return -ENOMEM; 4647 4648 sp->hmac = NULL; 4649 4650 sk->sk_destruct = sctp_destruct_sock; 4651 4652 SCTP_DBG_OBJCNT_INC(sock); 4653 4654 local_bh_disable(); 4655 sk_sockets_allocated_inc(sk); 4656 sock_prot_inuse_add(net, sk->sk_prot, 1); 4657 4658 /* Nothing can fail after this block, otherwise 4659 * sctp_destroy_sock() will be called without addr_wq_lock held 4660 */ 4661 if (net->sctp.default_auto_asconf) { 4662 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4663 list_add_tail(&sp->auto_asconf_list, 4664 &net->sctp.auto_asconf_splist); 4665 sp->do_auto_asconf = 1; 4666 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4667 } else { 4668 sp->do_auto_asconf = 0; 4669 } 4670 4671 local_bh_enable(); 4672 4673 return 0; 4674 } 4675 4676 /* Cleanup any SCTP per socket resources. Must be called with 4677 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4678 */ 4679 static void sctp_destroy_sock(struct sock *sk) 4680 { 4681 struct sctp_sock *sp; 4682 4683 pr_debug("%s: sk:%p\n", __func__, sk); 4684 4685 /* Release our hold on the endpoint. */ 4686 sp = sctp_sk(sk); 4687 /* This could happen during socket init, thus we bail out 4688 * early, since the rest of the below is not setup either. 4689 */ 4690 if (sp->ep == NULL) 4691 return; 4692 4693 if (sp->do_auto_asconf) { 4694 sp->do_auto_asconf = 0; 4695 list_del(&sp->auto_asconf_list); 4696 } 4697 sctp_endpoint_free(sp->ep); 4698 local_bh_disable(); 4699 sk_sockets_allocated_dec(sk); 4700 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4701 local_bh_enable(); 4702 } 4703 4704 /* Triggered when there are no references on the socket anymore */ 4705 static void sctp_destruct_sock(struct sock *sk) 4706 { 4707 struct sctp_sock *sp = sctp_sk(sk); 4708 4709 /* Free up the HMAC transform. */ 4710 crypto_free_shash(sp->hmac); 4711 4712 inet_sock_destruct(sk); 4713 } 4714 4715 /* API 4.1.7 shutdown() - TCP Style Syntax 4716 * int shutdown(int socket, int how); 4717 * 4718 * sd - the socket descriptor of the association to be closed. 4719 * how - Specifies the type of shutdown. The values are 4720 * as follows: 4721 * SHUT_RD 4722 * Disables further receive operations. No SCTP 4723 * protocol action is taken. 4724 * SHUT_WR 4725 * Disables further send operations, and initiates 4726 * the SCTP shutdown sequence. 4727 * SHUT_RDWR 4728 * Disables further send and receive operations 4729 * and initiates the SCTP shutdown sequence. 4730 */ 4731 static void sctp_shutdown(struct sock *sk, int how) 4732 { 4733 struct net *net = sock_net(sk); 4734 struct sctp_endpoint *ep; 4735 4736 if (!sctp_style(sk, TCP)) 4737 return; 4738 4739 ep = sctp_sk(sk)->ep; 4740 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4741 struct sctp_association *asoc; 4742 4743 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4744 asoc = list_entry(ep->asocs.next, 4745 struct sctp_association, asocs); 4746 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4747 } 4748 } 4749 4750 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4751 struct sctp_info *info) 4752 { 4753 struct sctp_transport *prim; 4754 struct list_head *pos; 4755 int mask; 4756 4757 memset(info, 0, sizeof(*info)); 4758 if (!asoc) { 4759 struct sctp_sock *sp = sctp_sk(sk); 4760 4761 info->sctpi_s_autoclose = sp->autoclose; 4762 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4763 info->sctpi_s_pd_point = sp->pd_point; 4764 info->sctpi_s_nodelay = sp->nodelay; 4765 info->sctpi_s_disable_fragments = sp->disable_fragments; 4766 info->sctpi_s_v4mapped = sp->v4mapped; 4767 info->sctpi_s_frag_interleave = sp->frag_interleave; 4768 info->sctpi_s_type = sp->type; 4769 4770 return 0; 4771 } 4772 4773 info->sctpi_tag = asoc->c.my_vtag; 4774 info->sctpi_state = asoc->state; 4775 info->sctpi_rwnd = asoc->a_rwnd; 4776 info->sctpi_unackdata = asoc->unack_data; 4777 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4778 info->sctpi_instrms = asoc->stream.incnt; 4779 info->sctpi_outstrms = asoc->stream.outcnt; 4780 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4781 info->sctpi_inqueue++; 4782 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4783 info->sctpi_outqueue++; 4784 info->sctpi_overall_error = asoc->overall_error_count; 4785 info->sctpi_max_burst = asoc->max_burst; 4786 info->sctpi_maxseg = asoc->frag_point; 4787 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4788 info->sctpi_peer_tag = asoc->c.peer_vtag; 4789 4790 mask = asoc->peer.ecn_capable << 1; 4791 mask = (mask | asoc->peer.ipv4_address) << 1; 4792 mask = (mask | asoc->peer.ipv6_address) << 1; 4793 mask = (mask | asoc->peer.hostname_address) << 1; 4794 mask = (mask | asoc->peer.asconf_capable) << 1; 4795 mask = (mask | asoc->peer.prsctp_capable) << 1; 4796 mask = (mask | asoc->peer.auth_capable); 4797 info->sctpi_peer_capable = mask; 4798 mask = asoc->peer.sack_needed << 1; 4799 mask = (mask | asoc->peer.sack_generation) << 1; 4800 mask = (mask | asoc->peer.zero_window_announced); 4801 info->sctpi_peer_sack = mask; 4802 4803 info->sctpi_isacks = asoc->stats.isacks; 4804 info->sctpi_osacks = asoc->stats.osacks; 4805 info->sctpi_opackets = asoc->stats.opackets; 4806 info->sctpi_ipackets = asoc->stats.ipackets; 4807 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4808 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4809 info->sctpi_idupchunks = asoc->stats.idupchunks; 4810 info->sctpi_gapcnt = asoc->stats.gapcnt; 4811 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4812 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4813 info->sctpi_oodchunks = asoc->stats.oodchunks; 4814 info->sctpi_iodchunks = asoc->stats.iodchunks; 4815 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4816 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4817 4818 prim = asoc->peer.primary_path; 4819 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4820 info->sctpi_p_state = prim->state; 4821 info->sctpi_p_cwnd = prim->cwnd; 4822 info->sctpi_p_srtt = prim->srtt; 4823 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4824 info->sctpi_p_hbinterval = prim->hbinterval; 4825 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4826 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4827 info->sctpi_p_ssthresh = prim->ssthresh; 4828 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4829 info->sctpi_p_flight_size = prim->flight_size; 4830 info->sctpi_p_error = prim->error_count; 4831 4832 return 0; 4833 } 4834 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4835 4836 /* use callback to avoid exporting the core structure */ 4837 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4838 { 4839 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4840 4841 rhashtable_walk_start(iter); 4842 } 4843 4844 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4845 { 4846 rhashtable_walk_stop(iter); 4847 rhashtable_walk_exit(iter); 4848 } 4849 4850 struct sctp_transport *sctp_transport_get_next(struct net *net, 4851 struct rhashtable_iter *iter) 4852 { 4853 struct sctp_transport *t; 4854 4855 t = rhashtable_walk_next(iter); 4856 for (; t; t = rhashtable_walk_next(iter)) { 4857 if (IS_ERR(t)) { 4858 if (PTR_ERR(t) == -EAGAIN) 4859 continue; 4860 break; 4861 } 4862 4863 if (net_eq(sock_net(t->asoc->base.sk), net) && 4864 t->asoc->peer.primary_path == t) 4865 break; 4866 } 4867 4868 return t; 4869 } 4870 4871 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4872 struct rhashtable_iter *iter, 4873 int pos) 4874 { 4875 void *obj = SEQ_START_TOKEN; 4876 4877 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4878 !IS_ERR(obj)) 4879 pos--; 4880 4881 return obj; 4882 } 4883 4884 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4885 void *p) { 4886 int err = 0; 4887 int hash = 0; 4888 struct sctp_ep_common *epb; 4889 struct sctp_hashbucket *head; 4890 4891 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4892 hash++, head++) { 4893 read_lock_bh(&head->lock); 4894 sctp_for_each_hentry(epb, &head->chain) { 4895 err = cb(sctp_ep(epb), p); 4896 if (err) 4897 break; 4898 } 4899 read_unlock_bh(&head->lock); 4900 } 4901 4902 return err; 4903 } 4904 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4905 4906 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4907 struct net *net, 4908 const union sctp_addr *laddr, 4909 const union sctp_addr *paddr, void *p) 4910 { 4911 struct sctp_transport *transport; 4912 int err; 4913 4914 rcu_read_lock(); 4915 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4916 rcu_read_unlock(); 4917 if (!transport) 4918 return -ENOENT; 4919 4920 err = cb(transport, p); 4921 sctp_transport_put(transport); 4922 4923 return err; 4924 } 4925 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4926 4927 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4928 int (*cb_done)(struct sctp_transport *, void *), 4929 struct net *net, int *pos, void *p) { 4930 struct rhashtable_iter hti; 4931 struct sctp_transport *tsp; 4932 int ret; 4933 4934 again: 4935 ret = 0; 4936 sctp_transport_walk_start(&hti); 4937 4938 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4939 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4940 if (!sctp_transport_hold(tsp)) 4941 continue; 4942 ret = cb(tsp, p); 4943 if (ret) 4944 break; 4945 (*pos)++; 4946 sctp_transport_put(tsp); 4947 } 4948 sctp_transport_walk_stop(&hti); 4949 4950 if (ret) { 4951 if (cb_done && !cb_done(tsp, p)) { 4952 (*pos)++; 4953 sctp_transport_put(tsp); 4954 goto again; 4955 } 4956 sctp_transport_put(tsp); 4957 } 4958 4959 return ret; 4960 } 4961 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4962 4963 /* 7.2.1 Association Status (SCTP_STATUS) 4964 4965 * Applications can retrieve current status information about an 4966 * association, including association state, peer receiver window size, 4967 * number of unacked data chunks, and number of data chunks pending 4968 * receipt. This information is read-only. 4969 */ 4970 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4971 char __user *optval, 4972 int __user *optlen) 4973 { 4974 struct sctp_status status; 4975 struct sctp_association *asoc = NULL; 4976 struct sctp_transport *transport; 4977 sctp_assoc_t associd; 4978 int retval = 0; 4979 4980 if (len < sizeof(status)) { 4981 retval = -EINVAL; 4982 goto out; 4983 } 4984 4985 len = sizeof(status); 4986 if (copy_from_user(&status, optval, len)) { 4987 retval = -EFAULT; 4988 goto out; 4989 } 4990 4991 associd = status.sstat_assoc_id; 4992 asoc = sctp_id2assoc(sk, associd); 4993 if (!asoc) { 4994 retval = -EINVAL; 4995 goto out; 4996 } 4997 4998 transport = asoc->peer.primary_path; 4999 5000 status.sstat_assoc_id = sctp_assoc2id(asoc); 5001 status.sstat_state = sctp_assoc_to_state(asoc); 5002 status.sstat_rwnd = asoc->peer.rwnd; 5003 status.sstat_unackdata = asoc->unack_data; 5004 5005 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5006 status.sstat_instrms = asoc->stream.incnt; 5007 status.sstat_outstrms = asoc->stream.outcnt; 5008 status.sstat_fragmentation_point = asoc->frag_point; 5009 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5010 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5011 transport->af_specific->sockaddr_len); 5012 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5013 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5014 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5015 status.sstat_primary.spinfo_state = transport->state; 5016 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5017 status.sstat_primary.spinfo_srtt = transport->srtt; 5018 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5019 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5020 5021 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5022 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5023 5024 if (put_user(len, optlen)) { 5025 retval = -EFAULT; 5026 goto out; 5027 } 5028 5029 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5030 __func__, len, status.sstat_state, status.sstat_rwnd, 5031 status.sstat_assoc_id); 5032 5033 if (copy_to_user(optval, &status, len)) { 5034 retval = -EFAULT; 5035 goto out; 5036 } 5037 5038 out: 5039 return retval; 5040 } 5041 5042 5043 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5044 * 5045 * Applications can retrieve information about a specific peer address 5046 * of an association, including its reachability state, congestion 5047 * window, and retransmission timer values. This information is 5048 * read-only. 5049 */ 5050 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5051 char __user *optval, 5052 int __user *optlen) 5053 { 5054 struct sctp_paddrinfo pinfo; 5055 struct sctp_transport *transport; 5056 int retval = 0; 5057 5058 if (len < sizeof(pinfo)) { 5059 retval = -EINVAL; 5060 goto out; 5061 } 5062 5063 len = sizeof(pinfo); 5064 if (copy_from_user(&pinfo, optval, len)) { 5065 retval = -EFAULT; 5066 goto out; 5067 } 5068 5069 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5070 pinfo.spinfo_assoc_id); 5071 if (!transport) 5072 return -EINVAL; 5073 5074 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5075 pinfo.spinfo_state = transport->state; 5076 pinfo.spinfo_cwnd = transport->cwnd; 5077 pinfo.spinfo_srtt = transport->srtt; 5078 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5079 pinfo.spinfo_mtu = transport->pathmtu; 5080 5081 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5082 pinfo.spinfo_state = SCTP_ACTIVE; 5083 5084 if (put_user(len, optlen)) { 5085 retval = -EFAULT; 5086 goto out; 5087 } 5088 5089 if (copy_to_user(optval, &pinfo, len)) { 5090 retval = -EFAULT; 5091 goto out; 5092 } 5093 5094 out: 5095 return retval; 5096 } 5097 5098 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5099 * 5100 * This option is a on/off flag. If enabled no SCTP message 5101 * fragmentation will be performed. Instead if a message being sent 5102 * exceeds the current PMTU size, the message will NOT be sent and 5103 * instead a error will be indicated to the user. 5104 */ 5105 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5106 char __user *optval, int __user *optlen) 5107 { 5108 int val; 5109 5110 if (len < sizeof(int)) 5111 return -EINVAL; 5112 5113 len = sizeof(int); 5114 val = (sctp_sk(sk)->disable_fragments == 1); 5115 if (put_user(len, optlen)) 5116 return -EFAULT; 5117 if (copy_to_user(optval, &val, len)) 5118 return -EFAULT; 5119 return 0; 5120 } 5121 5122 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5123 * 5124 * This socket option is used to specify various notifications and 5125 * ancillary data the user wishes to receive. 5126 */ 5127 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5128 int __user *optlen) 5129 { 5130 if (len == 0) 5131 return -EINVAL; 5132 if (len > sizeof(struct sctp_event_subscribe)) 5133 len = sizeof(struct sctp_event_subscribe); 5134 if (put_user(len, optlen)) 5135 return -EFAULT; 5136 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5137 return -EFAULT; 5138 return 0; 5139 } 5140 5141 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5142 * 5143 * This socket option is applicable to the UDP-style socket only. When 5144 * set it will cause associations that are idle for more than the 5145 * specified number of seconds to automatically close. An association 5146 * being idle is defined an association that has NOT sent or received 5147 * user data. The special value of '0' indicates that no automatic 5148 * close of any associations should be performed. The option expects an 5149 * integer defining the number of seconds of idle time before an 5150 * association is closed. 5151 */ 5152 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5153 { 5154 /* Applicable to UDP-style socket only */ 5155 if (sctp_style(sk, TCP)) 5156 return -EOPNOTSUPP; 5157 if (len < sizeof(int)) 5158 return -EINVAL; 5159 len = sizeof(int); 5160 if (put_user(len, optlen)) 5161 return -EFAULT; 5162 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5163 return -EFAULT; 5164 return 0; 5165 } 5166 5167 /* Helper routine to branch off an association to a new socket. */ 5168 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5169 { 5170 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5171 struct sctp_sock *sp = sctp_sk(sk); 5172 struct socket *sock; 5173 int err = 0; 5174 5175 /* Do not peel off from one netns to another one. */ 5176 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5177 return -EINVAL; 5178 5179 if (!asoc) 5180 return -EINVAL; 5181 5182 /* An association cannot be branched off from an already peeled-off 5183 * socket, nor is this supported for tcp style sockets. 5184 */ 5185 if (!sctp_style(sk, UDP)) 5186 return -EINVAL; 5187 5188 /* Create a new socket. */ 5189 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5190 if (err < 0) 5191 return err; 5192 5193 sctp_copy_sock(sock->sk, sk, asoc); 5194 5195 /* Make peeled-off sockets more like 1-1 accepted sockets. 5196 * Set the daddr and initialize id to something more random and also 5197 * copy over any ip options. 5198 */ 5199 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5200 sp->pf->copy_ip_options(sk, sock->sk); 5201 5202 /* Populate the fields of the newsk from the oldsk and migrate the 5203 * asoc to the newsk. 5204 */ 5205 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5206 5207 *sockp = sock; 5208 5209 return err; 5210 } 5211 EXPORT_SYMBOL(sctp_do_peeloff); 5212 5213 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5214 struct file **newfile, unsigned flags) 5215 { 5216 struct socket *newsock; 5217 int retval; 5218 5219 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5220 if (retval < 0) 5221 goto out; 5222 5223 /* Map the socket to an unused fd that can be returned to the user. */ 5224 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5225 if (retval < 0) { 5226 sock_release(newsock); 5227 goto out; 5228 } 5229 5230 *newfile = sock_alloc_file(newsock, 0, NULL); 5231 if (IS_ERR(*newfile)) { 5232 put_unused_fd(retval); 5233 retval = PTR_ERR(*newfile); 5234 *newfile = NULL; 5235 return retval; 5236 } 5237 5238 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5239 retval); 5240 5241 peeloff->sd = retval; 5242 5243 if (flags & SOCK_NONBLOCK) 5244 (*newfile)->f_flags |= O_NONBLOCK; 5245 out: 5246 return retval; 5247 } 5248 5249 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5250 { 5251 sctp_peeloff_arg_t peeloff; 5252 struct file *newfile = NULL; 5253 int retval = 0; 5254 5255 if (len < sizeof(sctp_peeloff_arg_t)) 5256 return -EINVAL; 5257 len = sizeof(sctp_peeloff_arg_t); 5258 if (copy_from_user(&peeloff, optval, len)) 5259 return -EFAULT; 5260 5261 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5262 if (retval < 0) 5263 goto out; 5264 5265 /* Return the fd mapped to the new socket. */ 5266 if (put_user(len, optlen)) { 5267 fput(newfile); 5268 put_unused_fd(retval); 5269 return -EFAULT; 5270 } 5271 5272 if (copy_to_user(optval, &peeloff, len)) { 5273 fput(newfile); 5274 put_unused_fd(retval); 5275 return -EFAULT; 5276 } 5277 fd_install(retval, newfile); 5278 out: 5279 return retval; 5280 } 5281 5282 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5283 char __user *optval, int __user *optlen) 5284 { 5285 sctp_peeloff_flags_arg_t peeloff; 5286 struct file *newfile = NULL; 5287 int retval = 0; 5288 5289 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5290 return -EINVAL; 5291 len = sizeof(sctp_peeloff_flags_arg_t); 5292 if (copy_from_user(&peeloff, optval, len)) 5293 return -EFAULT; 5294 5295 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5296 &newfile, peeloff.flags); 5297 if (retval < 0) 5298 goto out; 5299 5300 /* Return the fd mapped to the new socket. */ 5301 if (put_user(len, optlen)) { 5302 fput(newfile); 5303 put_unused_fd(retval); 5304 return -EFAULT; 5305 } 5306 5307 if (copy_to_user(optval, &peeloff, len)) { 5308 fput(newfile); 5309 put_unused_fd(retval); 5310 return -EFAULT; 5311 } 5312 fd_install(retval, newfile); 5313 out: 5314 return retval; 5315 } 5316 5317 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5318 * 5319 * Applications can enable or disable heartbeats for any peer address of 5320 * an association, modify an address's heartbeat interval, force a 5321 * heartbeat to be sent immediately, and adjust the address's maximum 5322 * number of retransmissions sent before an address is considered 5323 * unreachable. The following structure is used to access and modify an 5324 * address's parameters: 5325 * 5326 * struct sctp_paddrparams { 5327 * sctp_assoc_t spp_assoc_id; 5328 * struct sockaddr_storage spp_address; 5329 * uint32_t spp_hbinterval; 5330 * uint16_t spp_pathmaxrxt; 5331 * uint32_t spp_pathmtu; 5332 * uint32_t spp_sackdelay; 5333 * uint32_t spp_flags; 5334 * }; 5335 * 5336 * spp_assoc_id - (one-to-many style socket) This is filled in the 5337 * application, and identifies the association for 5338 * this query. 5339 * spp_address - This specifies which address is of interest. 5340 * spp_hbinterval - This contains the value of the heartbeat interval, 5341 * in milliseconds. If a value of zero 5342 * is present in this field then no changes are to 5343 * be made to this parameter. 5344 * spp_pathmaxrxt - This contains the maximum number of 5345 * retransmissions before this address shall be 5346 * considered unreachable. If a value of zero 5347 * is present in this field then no changes are to 5348 * be made to this parameter. 5349 * spp_pathmtu - When Path MTU discovery is disabled the value 5350 * specified here will be the "fixed" path mtu. 5351 * Note that if the spp_address field is empty 5352 * then all associations on this address will 5353 * have this fixed path mtu set upon them. 5354 * 5355 * spp_sackdelay - When delayed sack is enabled, this value specifies 5356 * the number of milliseconds that sacks will be delayed 5357 * for. This value will apply to all addresses of an 5358 * association if the spp_address field is empty. Note 5359 * also, that if delayed sack is enabled and this 5360 * value is set to 0, no change is made to the last 5361 * recorded delayed sack timer value. 5362 * 5363 * spp_flags - These flags are used to control various features 5364 * on an association. The flag field may contain 5365 * zero or more of the following options. 5366 * 5367 * SPP_HB_ENABLE - Enable heartbeats on the 5368 * specified address. Note that if the address 5369 * field is empty all addresses for the association 5370 * have heartbeats enabled upon them. 5371 * 5372 * SPP_HB_DISABLE - Disable heartbeats on the 5373 * speicifed address. Note that if the address 5374 * field is empty all addresses for the association 5375 * will have their heartbeats disabled. Note also 5376 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5377 * mutually exclusive, only one of these two should 5378 * be specified. Enabling both fields will have 5379 * undetermined results. 5380 * 5381 * SPP_HB_DEMAND - Request a user initiated heartbeat 5382 * to be made immediately. 5383 * 5384 * SPP_PMTUD_ENABLE - This field will enable PMTU 5385 * discovery upon the specified address. Note that 5386 * if the address feild is empty then all addresses 5387 * on the association are effected. 5388 * 5389 * SPP_PMTUD_DISABLE - This field will disable PMTU 5390 * discovery upon the specified address. Note that 5391 * if the address feild is empty then all addresses 5392 * on the association are effected. Not also that 5393 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5394 * exclusive. Enabling both will have undetermined 5395 * results. 5396 * 5397 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5398 * on delayed sack. The time specified in spp_sackdelay 5399 * is used to specify the sack delay for this address. Note 5400 * that if spp_address is empty then all addresses will 5401 * enable delayed sack and take on the sack delay 5402 * value specified in spp_sackdelay. 5403 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5404 * off delayed sack. If the spp_address field is blank then 5405 * delayed sack is disabled for the entire association. Note 5406 * also that this field is mutually exclusive to 5407 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5408 * results. 5409 */ 5410 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5411 char __user *optval, int __user *optlen) 5412 { 5413 struct sctp_paddrparams params; 5414 struct sctp_transport *trans = NULL; 5415 struct sctp_association *asoc = NULL; 5416 struct sctp_sock *sp = sctp_sk(sk); 5417 5418 if (len < sizeof(struct sctp_paddrparams)) 5419 return -EINVAL; 5420 len = sizeof(struct sctp_paddrparams); 5421 if (copy_from_user(¶ms, optval, len)) 5422 return -EFAULT; 5423 5424 /* If an address other than INADDR_ANY is specified, and 5425 * no transport is found, then the request is invalid. 5426 */ 5427 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5428 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5429 params.spp_assoc_id); 5430 if (!trans) { 5431 pr_debug("%s: failed no transport\n", __func__); 5432 return -EINVAL; 5433 } 5434 } 5435 5436 /* Get association, if assoc_id != 0 and the socket is a one 5437 * to many style socket, and an association was not found, then 5438 * the id was invalid. 5439 */ 5440 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5441 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5442 pr_debug("%s: failed no association\n", __func__); 5443 return -EINVAL; 5444 } 5445 5446 if (trans) { 5447 /* Fetch transport values. */ 5448 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5449 params.spp_pathmtu = trans->pathmtu; 5450 params.spp_pathmaxrxt = trans->pathmaxrxt; 5451 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5452 5453 /*draft-11 doesn't say what to return in spp_flags*/ 5454 params.spp_flags = trans->param_flags; 5455 } else if (asoc) { 5456 /* Fetch association values. */ 5457 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5458 params.spp_pathmtu = asoc->pathmtu; 5459 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5460 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5461 5462 /*draft-11 doesn't say what to return in spp_flags*/ 5463 params.spp_flags = asoc->param_flags; 5464 } else { 5465 /* Fetch socket values. */ 5466 params.spp_hbinterval = sp->hbinterval; 5467 params.spp_pathmtu = sp->pathmtu; 5468 params.spp_sackdelay = sp->sackdelay; 5469 params.spp_pathmaxrxt = sp->pathmaxrxt; 5470 5471 /*draft-11 doesn't say what to return in spp_flags*/ 5472 params.spp_flags = sp->param_flags; 5473 } 5474 5475 if (copy_to_user(optval, ¶ms, len)) 5476 return -EFAULT; 5477 5478 if (put_user(len, optlen)) 5479 return -EFAULT; 5480 5481 return 0; 5482 } 5483 5484 /* 5485 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5486 * 5487 * This option will effect the way delayed acks are performed. This 5488 * option allows you to get or set the delayed ack time, in 5489 * milliseconds. It also allows changing the delayed ack frequency. 5490 * Changing the frequency to 1 disables the delayed sack algorithm. If 5491 * the assoc_id is 0, then this sets or gets the endpoints default 5492 * values. If the assoc_id field is non-zero, then the set or get 5493 * effects the specified association for the one to many model (the 5494 * assoc_id field is ignored by the one to one model). Note that if 5495 * sack_delay or sack_freq are 0 when setting this option, then the 5496 * current values will remain unchanged. 5497 * 5498 * struct sctp_sack_info { 5499 * sctp_assoc_t sack_assoc_id; 5500 * uint32_t sack_delay; 5501 * uint32_t sack_freq; 5502 * }; 5503 * 5504 * sack_assoc_id - This parameter, indicates which association the user 5505 * is performing an action upon. Note that if this field's value is 5506 * zero then the endpoints default value is changed (effecting future 5507 * associations only). 5508 * 5509 * sack_delay - This parameter contains the number of milliseconds that 5510 * the user is requesting the delayed ACK timer be set to. Note that 5511 * this value is defined in the standard to be between 200 and 500 5512 * milliseconds. 5513 * 5514 * sack_freq - This parameter contains the number of packets that must 5515 * be received before a sack is sent without waiting for the delay 5516 * timer to expire. The default value for this is 2, setting this 5517 * value to 1 will disable the delayed sack algorithm. 5518 */ 5519 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5520 char __user *optval, 5521 int __user *optlen) 5522 { 5523 struct sctp_sack_info params; 5524 struct sctp_association *asoc = NULL; 5525 struct sctp_sock *sp = sctp_sk(sk); 5526 5527 if (len >= sizeof(struct sctp_sack_info)) { 5528 len = sizeof(struct sctp_sack_info); 5529 5530 if (copy_from_user(¶ms, optval, len)) 5531 return -EFAULT; 5532 } else if (len == sizeof(struct sctp_assoc_value)) { 5533 pr_warn_ratelimited(DEPRECATED 5534 "%s (pid %d) " 5535 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5536 "Use struct sctp_sack_info instead\n", 5537 current->comm, task_pid_nr(current)); 5538 if (copy_from_user(¶ms, optval, len)) 5539 return -EFAULT; 5540 } else 5541 return -EINVAL; 5542 5543 /* Get association, if sack_assoc_id != 0 and the socket is a one 5544 * to many style socket, and an association was not found, then 5545 * the id was invalid. 5546 */ 5547 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5548 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5549 return -EINVAL; 5550 5551 if (asoc) { 5552 /* Fetch association values. */ 5553 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5554 params.sack_delay = jiffies_to_msecs( 5555 asoc->sackdelay); 5556 params.sack_freq = asoc->sackfreq; 5557 5558 } else { 5559 params.sack_delay = 0; 5560 params.sack_freq = 1; 5561 } 5562 } else { 5563 /* Fetch socket values. */ 5564 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5565 params.sack_delay = sp->sackdelay; 5566 params.sack_freq = sp->sackfreq; 5567 } else { 5568 params.sack_delay = 0; 5569 params.sack_freq = 1; 5570 } 5571 } 5572 5573 if (copy_to_user(optval, ¶ms, len)) 5574 return -EFAULT; 5575 5576 if (put_user(len, optlen)) 5577 return -EFAULT; 5578 5579 return 0; 5580 } 5581 5582 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5583 * 5584 * Applications can specify protocol parameters for the default association 5585 * initialization. The option name argument to setsockopt() and getsockopt() 5586 * is SCTP_INITMSG. 5587 * 5588 * Setting initialization parameters is effective only on an unconnected 5589 * socket (for UDP-style sockets only future associations are effected 5590 * by the change). With TCP-style sockets, this option is inherited by 5591 * sockets derived from a listener socket. 5592 */ 5593 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5594 { 5595 if (len < sizeof(struct sctp_initmsg)) 5596 return -EINVAL; 5597 len = sizeof(struct sctp_initmsg); 5598 if (put_user(len, optlen)) 5599 return -EFAULT; 5600 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5601 return -EFAULT; 5602 return 0; 5603 } 5604 5605 5606 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5607 char __user *optval, int __user *optlen) 5608 { 5609 struct sctp_association *asoc; 5610 int cnt = 0; 5611 struct sctp_getaddrs getaddrs; 5612 struct sctp_transport *from; 5613 void __user *to; 5614 union sctp_addr temp; 5615 struct sctp_sock *sp = sctp_sk(sk); 5616 int addrlen; 5617 size_t space_left; 5618 int bytes_copied; 5619 5620 if (len < sizeof(struct sctp_getaddrs)) 5621 return -EINVAL; 5622 5623 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5624 return -EFAULT; 5625 5626 /* For UDP-style sockets, id specifies the association to query. */ 5627 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5628 if (!asoc) 5629 return -EINVAL; 5630 5631 to = optval + offsetof(struct sctp_getaddrs, addrs); 5632 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5633 5634 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5635 transports) { 5636 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5637 addrlen = sctp_get_pf_specific(sk->sk_family) 5638 ->addr_to_user(sp, &temp); 5639 if (space_left < addrlen) 5640 return -ENOMEM; 5641 if (copy_to_user(to, &temp, addrlen)) 5642 return -EFAULT; 5643 to += addrlen; 5644 cnt++; 5645 space_left -= addrlen; 5646 } 5647 5648 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5649 return -EFAULT; 5650 bytes_copied = ((char __user *)to) - optval; 5651 if (put_user(bytes_copied, optlen)) 5652 return -EFAULT; 5653 5654 return 0; 5655 } 5656 5657 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5658 size_t space_left, int *bytes_copied) 5659 { 5660 struct sctp_sockaddr_entry *addr; 5661 union sctp_addr temp; 5662 int cnt = 0; 5663 int addrlen; 5664 struct net *net = sock_net(sk); 5665 5666 rcu_read_lock(); 5667 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5668 if (!addr->valid) 5669 continue; 5670 5671 if ((PF_INET == sk->sk_family) && 5672 (AF_INET6 == addr->a.sa.sa_family)) 5673 continue; 5674 if ((PF_INET6 == sk->sk_family) && 5675 inet_v6_ipv6only(sk) && 5676 (AF_INET == addr->a.sa.sa_family)) 5677 continue; 5678 memcpy(&temp, &addr->a, sizeof(temp)); 5679 if (!temp.v4.sin_port) 5680 temp.v4.sin_port = htons(port); 5681 5682 addrlen = sctp_get_pf_specific(sk->sk_family) 5683 ->addr_to_user(sctp_sk(sk), &temp); 5684 5685 if (space_left < addrlen) { 5686 cnt = -ENOMEM; 5687 break; 5688 } 5689 memcpy(to, &temp, addrlen); 5690 5691 to += addrlen; 5692 cnt++; 5693 space_left -= addrlen; 5694 *bytes_copied += addrlen; 5695 } 5696 rcu_read_unlock(); 5697 5698 return cnt; 5699 } 5700 5701 5702 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5703 char __user *optval, int __user *optlen) 5704 { 5705 struct sctp_bind_addr *bp; 5706 struct sctp_association *asoc; 5707 int cnt = 0; 5708 struct sctp_getaddrs getaddrs; 5709 struct sctp_sockaddr_entry *addr; 5710 void __user *to; 5711 union sctp_addr temp; 5712 struct sctp_sock *sp = sctp_sk(sk); 5713 int addrlen; 5714 int err = 0; 5715 size_t space_left; 5716 int bytes_copied = 0; 5717 void *addrs; 5718 void *buf; 5719 5720 if (len < sizeof(struct sctp_getaddrs)) 5721 return -EINVAL; 5722 5723 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5724 return -EFAULT; 5725 5726 /* 5727 * For UDP-style sockets, id specifies the association to query. 5728 * If the id field is set to the value '0' then the locally bound 5729 * addresses are returned without regard to any particular 5730 * association. 5731 */ 5732 if (0 == getaddrs.assoc_id) { 5733 bp = &sctp_sk(sk)->ep->base.bind_addr; 5734 } else { 5735 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5736 if (!asoc) 5737 return -EINVAL; 5738 bp = &asoc->base.bind_addr; 5739 } 5740 5741 to = optval + offsetof(struct sctp_getaddrs, addrs); 5742 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5743 5744 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5745 if (!addrs) 5746 return -ENOMEM; 5747 5748 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5749 * addresses from the global local address list. 5750 */ 5751 if (sctp_list_single_entry(&bp->address_list)) { 5752 addr = list_entry(bp->address_list.next, 5753 struct sctp_sockaddr_entry, list); 5754 if (sctp_is_any(sk, &addr->a)) { 5755 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5756 space_left, &bytes_copied); 5757 if (cnt < 0) { 5758 err = cnt; 5759 goto out; 5760 } 5761 goto copy_getaddrs; 5762 } 5763 } 5764 5765 buf = addrs; 5766 /* Protection on the bound address list is not needed since 5767 * in the socket option context we hold a socket lock and 5768 * thus the bound address list can't change. 5769 */ 5770 list_for_each_entry(addr, &bp->address_list, list) { 5771 memcpy(&temp, &addr->a, sizeof(temp)); 5772 addrlen = sctp_get_pf_specific(sk->sk_family) 5773 ->addr_to_user(sp, &temp); 5774 if (space_left < addrlen) { 5775 err = -ENOMEM; /*fixme: right error?*/ 5776 goto out; 5777 } 5778 memcpy(buf, &temp, addrlen); 5779 buf += addrlen; 5780 bytes_copied += addrlen; 5781 cnt++; 5782 space_left -= addrlen; 5783 } 5784 5785 copy_getaddrs: 5786 if (copy_to_user(to, addrs, bytes_copied)) { 5787 err = -EFAULT; 5788 goto out; 5789 } 5790 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5791 err = -EFAULT; 5792 goto out; 5793 } 5794 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5795 * but we can't change it anymore. 5796 */ 5797 if (put_user(bytes_copied, optlen)) 5798 err = -EFAULT; 5799 out: 5800 kfree(addrs); 5801 return err; 5802 } 5803 5804 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5805 * 5806 * Requests that the local SCTP stack use the enclosed peer address as 5807 * the association primary. The enclosed address must be one of the 5808 * association peer's addresses. 5809 */ 5810 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5811 char __user *optval, int __user *optlen) 5812 { 5813 struct sctp_prim prim; 5814 struct sctp_association *asoc; 5815 struct sctp_sock *sp = sctp_sk(sk); 5816 5817 if (len < sizeof(struct sctp_prim)) 5818 return -EINVAL; 5819 5820 len = sizeof(struct sctp_prim); 5821 5822 if (copy_from_user(&prim, optval, len)) 5823 return -EFAULT; 5824 5825 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5826 if (!asoc) 5827 return -EINVAL; 5828 5829 if (!asoc->peer.primary_path) 5830 return -ENOTCONN; 5831 5832 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5833 asoc->peer.primary_path->af_specific->sockaddr_len); 5834 5835 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5836 (union sctp_addr *)&prim.ssp_addr); 5837 5838 if (put_user(len, optlen)) 5839 return -EFAULT; 5840 if (copy_to_user(optval, &prim, len)) 5841 return -EFAULT; 5842 5843 return 0; 5844 } 5845 5846 /* 5847 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5848 * 5849 * Requests that the local endpoint set the specified Adaptation Layer 5850 * Indication parameter for all future INIT and INIT-ACK exchanges. 5851 */ 5852 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5853 char __user *optval, int __user *optlen) 5854 { 5855 struct sctp_setadaptation adaptation; 5856 5857 if (len < sizeof(struct sctp_setadaptation)) 5858 return -EINVAL; 5859 5860 len = sizeof(struct sctp_setadaptation); 5861 5862 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5863 5864 if (put_user(len, optlen)) 5865 return -EFAULT; 5866 if (copy_to_user(optval, &adaptation, len)) 5867 return -EFAULT; 5868 5869 return 0; 5870 } 5871 5872 /* 5873 * 5874 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5875 * 5876 * Applications that wish to use the sendto() system call may wish to 5877 * specify a default set of parameters that would normally be supplied 5878 * through the inclusion of ancillary data. This socket option allows 5879 * such an application to set the default sctp_sndrcvinfo structure. 5880 5881 5882 * The application that wishes to use this socket option simply passes 5883 * in to this call the sctp_sndrcvinfo structure defined in Section 5884 * 5.2.2) The input parameters accepted by this call include 5885 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5886 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5887 * to this call if the caller is using the UDP model. 5888 * 5889 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5890 */ 5891 static int sctp_getsockopt_default_send_param(struct sock *sk, 5892 int len, char __user *optval, 5893 int __user *optlen) 5894 { 5895 struct sctp_sock *sp = sctp_sk(sk); 5896 struct sctp_association *asoc; 5897 struct sctp_sndrcvinfo info; 5898 5899 if (len < sizeof(info)) 5900 return -EINVAL; 5901 5902 len = sizeof(info); 5903 5904 if (copy_from_user(&info, optval, len)) 5905 return -EFAULT; 5906 5907 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5908 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5909 return -EINVAL; 5910 if (asoc) { 5911 info.sinfo_stream = asoc->default_stream; 5912 info.sinfo_flags = asoc->default_flags; 5913 info.sinfo_ppid = asoc->default_ppid; 5914 info.sinfo_context = asoc->default_context; 5915 info.sinfo_timetolive = asoc->default_timetolive; 5916 } else { 5917 info.sinfo_stream = sp->default_stream; 5918 info.sinfo_flags = sp->default_flags; 5919 info.sinfo_ppid = sp->default_ppid; 5920 info.sinfo_context = sp->default_context; 5921 info.sinfo_timetolive = sp->default_timetolive; 5922 } 5923 5924 if (put_user(len, optlen)) 5925 return -EFAULT; 5926 if (copy_to_user(optval, &info, len)) 5927 return -EFAULT; 5928 5929 return 0; 5930 } 5931 5932 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5933 * (SCTP_DEFAULT_SNDINFO) 5934 */ 5935 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5936 char __user *optval, 5937 int __user *optlen) 5938 { 5939 struct sctp_sock *sp = sctp_sk(sk); 5940 struct sctp_association *asoc; 5941 struct sctp_sndinfo info; 5942 5943 if (len < sizeof(info)) 5944 return -EINVAL; 5945 5946 len = sizeof(info); 5947 5948 if (copy_from_user(&info, optval, len)) 5949 return -EFAULT; 5950 5951 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5952 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5953 return -EINVAL; 5954 if (asoc) { 5955 info.snd_sid = asoc->default_stream; 5956 info.snd_flags = asoc->default_flags; 5957 info.snd_ppid = asoc->default_ppid; 5958 info.snd_context = asoc->default_context; 5959 } else { 5960 info.snd_sid = sp->default_stream; 5961 info.snd_flags = sp->default_flags; 5962 info.snd_ppid = sp->default_ppid; 5963 info.snd_context = sp->default_context; 5964 } 5965 5966 if (put_user(len, optlen)) 5967 return -EFAULT; 5968 if (copy_to_user(optval, &info, len)) 5969 return -EFAULT; 5970 5971 return 0; 5972 } 5973 5974 /* 5975 * 5976 * 7.1.5 SCTP_NODELAY 5977 * 5978 * Turn on/off any Nagle-like algorithm. This means that packets are 5979 * generally sent as soon as possible and no unnecessary delays are 5980 * introduced, at the cost of more packets in the network. Expects an 5981 * integer boolean flag. 5982 */ 5983 5984 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5985 char __user *optval, int __user *optlen) 5986 { 5987 int val; 5988 5989 if (len < sizeof(int)) 5990 return -EINVAL; 5991 5992 len = sizeof(int); 5993 val = (sctp_sk(sk)->nodelay == 1); 5994 if (put_user(len, optlen)) 5995 return -EFAULT; 5996 if (copy_to_user(optval, &val, len)) 5997 return -EFAULT; 5998 return 0; 5999 } 6000 6001 /* 6002 * 6003 * 7.1.1 SCTP_RTOINFO 6004 * 6005 * The protocol parameters used to initialize and bound retransmission 6006 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6007 * and modify these parameters. 6008 * All parameters are time values, in milliseconds. A value of 0, when 6009 * modifying the parameters, indicates that the current value should not 6010 * be changed. 6011 * 6012 */ 6013 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6014 char __user *optval, 6015 int __user *optlen) { 6016 struct sctp_rtoinfo rtoinfo; 6017 struct sctp_association *asoc; 6018 6019 if (len < sizeof (struct sctp_rtoinfo)) 6020 return -EINVAL; 6021 6022 len = sizeof(struct sctp_rtoinfo); 6023 6024 if (copy_from_user(&rtoinfo, optval, len)) 6025 return -EFAULT; 6026 6027 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6028 6029 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6030 return -EINVAL; 6031 6032 /* Values corresponding to the specific association. */ 6033 if (asoc) { 6034 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6035 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6036 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6037 } else { 6038 /* Values corresponding to the endpoint. */ 6039 struct sctp_sock *sp = sctp_sk(sk); 6040 6041 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6042 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6043 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6044 } 6045 6046 if (put_user(len, optlen)) 6047 return -EFAULT; 6048 6049 if (copy_to_user(optval, &rtoinfo, len)) 6050 return -EFAULT; 6051 6052 return 0; 6053 } 6054 6055 /* 6056 * 6057 * 7.1.2 SCTP_ASSOCINFO 6058 * 6059 * This option is used to tune the maximum retransmission attempts 6060 * of the association. 6061 * Returns an error if the new association retransmission value is 6062 * greater than the sum of the retransmission value of the peer. 6063 * See [SCTP] for more information. 6064 * 6065 */ 6066 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6067 char __user *optval, 6068 int __user *optlen) 6069 { 6070 6071 struct sctp_assocparams assocparams; 6072 struct sctp_association *asoc; 6073 struct list_head *pos; 6074 int cnt = 0; 6075 6076 if (len < sizeof (struct sctp_assocparams)) 6077 return -EINVAL; 6078 6079 len = sizeof(struct sctp_assocparams); 6080 6081 if (copy_from_user(&assocparams, optval, len)) 6082 return -EFAULT; 6083 6084 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6085 6086 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6087 return -EINVAL; 6088 6089 /* Values correspoinding to the specific association */ 6090 if (asoc) { 6091 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6092 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6093 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6094 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6095 6096 list_for_each(pos, &asoc->peer.transport_addr_list) { 6097 cnt++; 6098 } 6099 6100 assocparams.sasoc_number_peer_destinations = cnt; 6101 } else { 6102 /* Values corresponding to the endpoint */ 6103 struct sctp_sock *sp = sctp_sk(sk); 6104 6105 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6106 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6107 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6108 assocparams.sasoc_cookie_life = 6109 sp->assocparams.sasoc_cookie_life; 6110 assocparams.sasoc_number_peer_destinations = 6111 sp->assocparams. 6112 sasoc_number_peer_destinations; 6113 } 6114 6115 if (put_user(len, optlen)) 6116 return -EFAULT; 6117 6118 if (copy_to_user(optval, &assocparams, len)) 6119 return -EFAULT; 6120 6121 return 0; 6122 } 6123 6124 /* 6125 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6126 * 6127 * This socket option is a boolean flag which turns on or off mapped V4 6128 * addresses. If this option is turned on and the socket is type 6129 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6130 * If this option is turned off, then no mapping will be done of V4 6131 * addresses and a user will receive both PF_INET6 and PF_INET type 6132 * addresses on the socket. 6133 */ 6134 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6135 char __user *optval, int __user *optlen) 6136 { 6137 int val; 6138 struct sctp_sock *sp = sctp_sk(sk); 6139 6140 if (len < sizeof(int)) 6141 return -EINVAL; 6142 6143 len = sizeof(int); 6144 val = sp->v4mapped; 6145 if (put_user(len, optlen)) 6146 return -EFAULT; 6147 if (copy_to_user(optval, &val, len)) 6148 return -EFAULT; 6149 6150 return 0; 6151 } 6152 6153 /* 6154 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6155 * (chapter and verse is quoted at sctp_setsockopt_context()) 6156 */ 6157 static int sctp_getsockopt_context(struct sock *sk, int len, 6158 char __user *optval, int __user *optlen) 6159 { 6160 struct sctp_assoc_value params; 6161 struct sctp_sock *sp; 6162 struct sctp_association *asoc; 6163 6164 if (len < sizeof(struct sctp_assoc_value)) 6165 return -EINVAL; 6166 6167 len = sizeof(struct sctp_assoc_value); 6168 6169 if (copy_from_user(¶ms, optval, len)) 6170 return -EFAULT; 6171 6172 sp = sctp_sk(sk); 6173 6174 if (params.assoc_id != 0) { 6175 asoc = sctp_id2assoc(sk, params.assoc_id); 6176 if (!asoc) 6177 return -EINVAL; 6178 params.assoc_value = asoc->default_rcv_context; 6179 } else { 6180 params.assoc_value = sp->default_rcv_context; 6181 } 6182 6183 if (put_user(len, optlen)) 6184 return -EFAULT; 6185 if (copy_to_user(optval, ¶ms, len)) 6186 return -EFAULT; 6187 6188 return 0; 6189 } 6190 6191 /* 6192 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6193 * This option will get or set the maximum size to put in any outgoing 6194 * SCTP DATA chunk. If a message is larger than this size it will be 6195 * fragmented by SCTP into the specified size. Note that the underlying 6196 * SCTP implementation may fragment into smaller sized chunks when the 6197 * PMTU of the underlying association is smaller than the value set by 6198 * the user. The default value for this option is '0' which indicates 6199 * the user is NOT limiting fragmentation and only the PMTU will effect 6200 * SCTP's choice of DATA chunk size. Note also that values set larger 6201 * than the maximum size of an IP datagram will effectively let SCTP 6202 * control fragmentation (i.e. the same as setting this option to 0). 6203 * 6204 * The following structure is used to access and modify this parameter: 6205 * 6206 * struct sctp_assoc_value { 6207 * sctp_assoc_t assoc_id; 6208 * uint32_t assoc_value; 6209 * }; 6210 * 6211 * assoc_id: This parameter is ignored for one-to-one style sockets. 6212 * For one-to-many style sockets this parameter indicates which 6213 * association the user is performing an action upon. Note that if 6214 * this field's value is zero then the endpoints default value is 6215 * changed (effecting future associations only). 6216 * assoc_value: This parameter specifies the maximum size in bytes. 6217 */ 6218 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6219 char __user *optval, int __user *optlen) 6220 { 6221 struct sctp_assoc_value params; 6222 struct sctp_association *asoc; 6223 6224 if (len == sizeof(int)) { 6225 pr_warn_ratelimited(DEPRECATED 6226 "%s (pid %d) " 6227 "Use of int in maxseg socket option.\n" 6228 "Use struct sctp_assoc_value instead\n", 6229 current->comm, task_pid_nr(current)); 6230 params.assoc_id = 0; 6231 } else if (len >= sizeof(struct sctp_assoc_value)) { 6232 len = sizeof(struct sctp_assoc_value); 6233 if (copy_from_user(¶ms, optval, len)) 6234 return -EFAULT; 6235 } else 6236 return -EINVAL; 6237 6238 asoc = sctp_id2assoc(sk, params.assoc_id); 6239 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6240 return -EINVAL; 6241 6242 if (asoc) 6243 params.assoc_value = asoc->frag_point; 6244 else 6245 params.assoc_value = sctp_sk(sk)->user_frag; 6246 6247 if (put_user(len, optlen)) 6248 return -EFAULT; 6249 if (len == sizeof(int)) { 6250 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6251 return -EFAULT; 6252 } else { 6253 if (copy_to_user(optval, ¶ms, len)) 6254 return -EFAULT; 6255 } 6256 6257 return 0; 6258 } 6259 6260 /* 6261 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6262 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6263 */ 6264 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6265 char __user *optval, int __user *optlen) 6266 { 6267 int val; 6268 6269 if (len < sizeof(int)) 6270 return -EINVAL; 6271 6272 len = sizeof(int); 6273 6274 val = sctp_sk(sk)->frag_interleave; 6275 if (put_user(len, optlen)) 6276 return -EFAULT; 6277 if (copy_to_user(optval, &val, len)) 6278 return -EFAULT; 6279 6280 return 0; 6281 } 6282 6283 /* 6284 * 7.1.25. Set or Get the sctp partial delivery point 6285 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6286 */ 6287 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6288 char __user *optval, 6289 int __user *optlen) 6290 { 6291 u32 val; 6292 6293 if (len < sizeof(u32)) 6294 return -EINVAL; 6295 6296 len = sizeof(u32); 6297 6298 val = sctp_sk(sk)->pd_point; 6299 if (put_user(len, optlen)) 6300 return -EFAULT; 6301 if (copy_to_user(optval, &val, len)) 6302 return -EFAULT; 6303 6304 return 0; 6305 } 6306 6307 /* 6308 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6309 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6310 */ 6311 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6312 char __user *optval, 6313 int __user *optlen) 6314 { 6315 struct sctp_assoc_value params; 6316 struct sctp_sock *sp; 6317 struct sctp_association *asoc; 6318 6319 if (len == sizeof(int)) { 6320 pr_warn_ratelimited(DEPRECATED 6321 "%s (pid %d) " 6322 "Use of int in max_burst socket option.\n" 6323 "Use struct sctp_assoc_value instead\n", 6324 current->comm, task_pid_nr(current)); 6325 params.assoc_id = 0; 6326 } else if (len >= sizeof(struct sctp_assoc_value)) { 6327 len = sizeof(struct sctp_assoc_value); 6328 if (copy_from_user(¶ms, optval, len)) 6329 return -EFAULT; 6330 } else 6331 return -EINVAL; 6332 6333 sp = sctp_sk(sk); 6334 6335 if (params.assoc_id != 0) { 6336 asoc = sctp_id2assoc(sk, params.assoc_id); 6337 if (!asoc) 6338 return -EINVAL; 6339 params.assoc_value = asoc->max_burst; 6340 } else 6341 params.assoc_value = sp->max_burst; 6342 6343 if (len == sizeof(int)) { 6344 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6345 return -EFAULT; 6346 } else { 6347 if (copy_to_user(optval, ¶ms, len)) 6348 return -EFAULT; 6349 } 6350 6351 return 0; 6352 6353 } 6354 6355 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6356 char __user *optval, int __user *optlen) 6357 { 6358 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6359 struct sctp_hmacalgo __user *p = (void __user *)optval; 6360 struct sctp_hmac_algo_param *hmacs; 6361 __u16 data_len = 0; 6362 u32 num_idents; 6363 int i; 6364 6365 if (!ep->auth_enable) 6366 return -EACCES; 6367 6368 hmacs = ep->auth_hmacs_list; 6369 data_len = ntohs(hmacs->param_hdr.length) - 6370 sizeof(struct sctp_paramhdr); 6371 6372 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6373 return -EINVAL; 6374 6375 len = sizeof(struct sctp_hmacalgo) + data_len; 6376 num_idents = data_len / sizeof(u16); 6377 6378 if (put_user(len, optlen)) 6379 return -EFAULT; 6380 if (put_user(num_idents, &p->shmac_num_idents)) 6381 return -EFAULT; 6382 for (i = 0; i < num_idents; i++) { 6383 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6384 6385 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6386 return -EFAULT; 6387 } 6388 return 0; 6389 } 6390 6391 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6392 char __user *optval, int __user *optlen) 6393 { 6394 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6395 struct sctp_authkeyid val; 6396 struct sctp_association *asoc; 6397 6398 if (!ep->auth_enable) 6399 return -EACCES; 6400 6401 if (len < sizeof(struct sctp_authkeyid)) 6402 return -EINVAL; 6403 6404 len = sizeof(struct sctp_authkeyid); 6405 if (copy_from_user(&val, optval, len)) 6406 return -EFAULT; 6407 6408 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6409 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6410 return -EINVAL; 6411 6412 if (asoc) 6413 val.scact_keynumber = asoc->active_key_id; 6414 else 6415 val.scact_keynumber = ep->active_key_id; 6416 6417 if (put_user(len, optlen)) 6418 return -EFAULT; 6419 if (copy_to_user(optval, &val, len)) 6420 return -EFAULT; 6421 6422 return 0; 6423 } 6424 6425 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6426 char __user *optval, int __user *optlen) 6427 { 6428 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6429 struct sctp_authchunks __user *p = (void __user *)optval; 6430 struct sctp_authchunks val; 6431 struct sctp_association *asoc; 6432 struct sctp_chunks_param *ch; 6433 u32 num_chunks = 0; 6434 char __user *to; 6435 6436 if (!ep->auth_enable) 6437 return -EACCES; 6438 6439 if (len < sizeof(struct sctp_authchunks)) 6440 return -EINVAL; 6441 6442 if (copy_from_user(&val, optval, sizeof(val))) 6443 return -EFAULT; 6444 6445 to = p->gauth_chunks; 6446 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6447 if (!asoc) 6448 return -EINVAL; 6449 6450 ch = asoc->peer.peer_chunks; 6451 if (!ch) 6452 goto num; 6453 6454 /* See if the user provided enough room for all the data */ 6455 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6456 if (len < num_chunks) 6457 return -EINVAL; 6458 6459 if (copy_to_user(to, ch->chunks, num_chunks)) 6460 return -EFAULT; 6461 num: 6462 len = sizeof(struct sctp_authchunks) + num_chunks; 6463 if (put_user(len, optlen)) 6464 return -EFAULT; 6465 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6466 return -EFAULT; 6467 return 0; 6468 } 6469 6470 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6471 char __user *optval, int __user *optlen) 6472 { 6473 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6474 struct sctp_authchunks __user *p = (void __user *)optval; 6475 struct sctp_authchunks val; 6476 struct sctp_association *asoc; 6477 struct sctp_chunks_param *ch; 6478 u32 num_chunks = 0; 6479 char __user *to; 6480 6481 if (!ep->auth_enable) 6482 return -EACCES; 6483 6484 if (len < sizeof(struct sctp_authchunks)) 6485 return -EINVAL; 6486 6487 if (copy_from_user(&val, optval, sizeof(val))) 6488 return -EFAULT; 6489 6490 to = p->gauth_chunks; 6491 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6492 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6493 return -EINVAL; 6494 6495 if (asoc) 6496 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6497 else 6498 ch = ep->auth_chunk_list; 6499 6500 if (!ch) 6501 goto num; 6502 6503 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6504 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6505 return -EINVAL; 6506 6507 if (copy_to_user(to, ch->chunks, num_chunks)) 6508 return -EFAULT; 6509 num: 6510 len = sizeof(struct sctp_authchunks) + num_chunks; 6511 if (put_user(len, optlen)) 6512 return -EFAULT; 6513 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6514 return -EFAULT; 6515 6516 return 0; 6517 } 6518 6519 /* 6520 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6521 * This option gets the current number of associations that are attached 6522 * to a one-to-many style socket. The option value is an uint32_t. 6523 */ 6524 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6525 char __user *optval, int __user *optlen) 6526 { 6527 struct sctp_sock *sp = sctp_sk(sk); 6528 struct sctp_association *asoc; 6529 u32 val = 0; 6530 6531 if (sctp_style(sk, TCP)) 6532 return -EOPNOTSUPP; 6533 6534 if (len < sizeof(u32)) 6535 return -EINVAL; 6536 6537 len = sizeof(u32); 6538 6539 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6540 val++; 6541 } 6542 6543 if (put_user(len, optlen)) 6544 return -EFAULT; 6545 if (copy_to_user(optval, &val, len)) 6546 return -EFAULT; 6547 6548 return 0; 6549 } 6550 6551 /* 6552 * 8.1.23 SCTP_AUTO_ASCONF 6553 * See the corresponding setsockopt entry as description 6554 */ 6555 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6556 char __user *optval, int __user *optlen) 6557 { 6558 int val = 0; 6559 6560 if (len < sizeof(int)) 6561 return -EINVAL; 6562 6563 len = sizeof(int); 6564 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6565 val = 1; 6566 if (put_user(len, optlen)) 6567 return -EFAULT; 6568 if (copy_to_user(optval, &val, len)) 6569 return -EFAULT; 6570 return 0; 6571 } 6572 6573 /* 6574 * 8.2.6. Get the Current Identifiers of Associations 6575 * (SCTP_GET_ASSOC_ID_LIST) 6576 * 6577 * This option gets the current list of SCTP association identifiers of 6578 * the SCTP associations handled by a one-to-many style socket. 6579 */ 6580 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6581 char __user *optval, int __user *optlen) 6582 { 6583 struct sctp_sock *sp = sctp_sk(sk); 6584 struct sctp_association *asoc; 6585 struct sctp_assoc_ids *ids; 6586 u32 num = 0; 6587 6588 if (sctp_style(sk, TCP)) 6589 return -EOPNOTSUPP; 6590 6591 if (len < sizeof(struct sctp_assoc_ids)) 6592 return -EINVAL; 6593 6594 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6595 num++; 6596 } 6597 6598 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6599 return -EINVAL; 6600 6601 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6602 6603 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6604 if (unlikely(!ids)) 6605 return -ENOMEM; 6606 6607 ids->gaids_number_of_ids = num; 6608 num = 0; 6609 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6610 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6611 } 6612 6613 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6614 kfree(ids); 6615 return -EFAULT; 6616 } 6617 6618 kfree(ids); 6619 return 0; 6620 } 6621 6622 /* 6623 * SCTP_PEER_ADDR_THLDS 6624 * 6625 * This option allows us to fetch the partially failed threshold for one or all 6626 * transports in an association. See Section 6.1 of: 6627 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6628 */ 6629 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6630 char __user *optval, 6631 int len, 6632 int __user *optlen) 6633 { 6634 struct sctp_paddrthlds val; 6635 struct sctp_transport *trans; 6636 struct sctp_association *asoc; 6637 6638 if (len < sizeof(struct sctp_paddrthlds)) 6639 return -EINVAL; 6640 len = sizeof(struct sctp_paddrthlds); 6641 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6642 return -EFAULT; 6643 6644 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6645 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6646 if (!asoc) 6647 return -ENOENT; 6648 6649 val.spt_pathpfthld = asoc->pf_retrans; 6650 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6651 } else { 6652 trans = sctp_addr_id2transport(sk, &val.spt_address, 6653 val.spt_assoc_id); 6654 if (!trans) 6655 return -ENOENT; 6656 6657 val.spt_pathmaxrxt = trans->pathmaxrxt; 6658 val.spt_pathpfthld = trans->pf_retrans; 6659 } 6660 6661 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6662 return -EFAULT; 6663 6664 return 0; 6665 } 6666 6667 /* 6668 * SCTP_GET_ASSOC_STATS 6669 * 6670 * This option retrieves local per endpoint statistics. It is modeled 6671 * after OpenSolaris' implementation 6672 */ 6673 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6674 char __user *optval, 6675 int __user *optlen) 6676 { 6677 struct sctp_assoc_stats sas; 6678 struct sctp_association *asoc = NULL; 6679 6680 /* User must provide at least the assoc id */ 6681 if (len < sizeof(sctp_assoc_t)) 6682 return -EINVAL; 6683 6684 /* Allow the struct to grow and fill in as much as possible */ 6685 len = min_t(size_t, len, sizeof(sas)); 6686 6687 if (copy_from_user(&sas, optval, len)) 6688 return -EFAULT; 6689 6690 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6691 if (!asoc) 6692 return -EINVAL; 6693 6694 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6695 sas.sas_gapcnt = asoc->stats.gapcnt; 6696 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6697 sas.sas_osacks = asoc->stats.osacks; 6698 sas.sas_isacks = asoc->stats.isacks; 6699 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6700 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6701 sas.sas_oodchunks = asoc->stats.oodchunks; 6702 sas.sas_iodchunks = asoc->stats.iodchunks; 6703 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6704 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6705 sas.sas_idupchunks = asoc->stats.idupchunks; 6706 sas.sas_opackets = asoc->stats.opackets; 6707 sas.sas_ipackets = asoc->stats.ipackets; 6708 6709 /* New high max rto observed, will return 0 if not a single 6710 * RTO update took place. obs_rto_ipaddr will be bogus 6711 * in such a case 6712 */ 6713 sas.sas_maxrto = asoc->stats.max_obs_rto; 6714 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6715 sizeof(struct sockaddr_storage)); 6716 6717 /* Mark beginning of a new observation period */ 6718 asoc->stats.max_obs_rto = asoc->rto_min; 6719 6720 if (put_user(len, optlen)) 6721 return -EFAULT; 6722 6723 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6724 6725 if (copy_to_user(optval, &sas, len)) 6726 return -EFAULT; 6727 6728 return 0; 6729 } 6730 6731 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6732 char __user *optval, 6733 int __user *optlen) 6734 { 6735 int val = 0; 6736 6737 if (len < sizeof(int)) 6738 return -EINVAL; 6739 6740 len = sizeof(int); 6741 if (sctp_sk(sk)->recvrcvinfo) 6742 val = 1; 6743 if (put_user(len, optlen)) 6744 return -EFAULT; 6745 if (copy_to_user(optval, &val, len)) 6746 return -EFAULT; 6747 6748 return 0; 6749 } 6750 6751 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6752 char __user *optval, 6753 int __user *optlen) 6754 { 6755 int val = 0; 6756 6757 if (len < sizeof(int)) 6758 return -EINVAL; 6759 6760 len = sizeof(int); 6761 if (sctp_sk(sk)->recvnxtinfo) 6762 val = 1; 6763 if (put_user(len, optlen)) 6764 return -EFAULT; 6765 if (copy_to_user(optval, &val, len)) 6766 return -EFAULT; 6767 6768 return 0; 6769 } 6770 6771 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6772 char __user *optval, 6773 int __user *optlen) 6774 { 6775 struct sctp_assoc_value params; 6776 struct sctp_association *asoc; 6777 int retval = -EFAULT; 6778 6779 if (len < sizeof(params)) { 6780 retval = -EINVAL; 6781 goto out; 6782 } 6783 6784 len = sizeof(params); 6785 if (copy_from_user(¶ms, optval, len)) 6786 goto out; 6787 6788 asoc = sctp_id2assoc(sk, params.assoc_id); 6789 if (asoc) { 6790 params.assoc_value = asoc->prsctp_enable; 6791 } else if (!params.assoc_id) { 6792 struct sctp_sock *sp = sctp_sk(sk); 6793 6794 params.assoc_value = sp->ep->prsctp_enable; 6795 } else { 6796 retval = -EINVAL; 6797 goto out; 6798 } 6799 6800 if (put_user(len, optlen)) 6801 goto out; 6802 6803 if (copy_to_user(optval, ¶ms, len)) 6804 goto out; 6805 6806 retval = 0; 6807 6808 out: 6809 return retval; 6810 } 6811 6812 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6813 char __user *optval, 6814 int __user *optlen) 6815 { 6816 struct sctp_default_prinfo info; 6817 struct sctp_association *asoc; 6818 int retval = -EFAULT; 6819 6820 if (len < sizeof(info)) { 6821 retval = -EINVAL; 6822 goto out; 6823 } 6824 6825 len = sizeof(info); 6826 if (copy_from_user(&info, optval, len)) 6827 goto out; 6828 6829 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6830 if (asoc) { 6831 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6832 info.pr_value = asoc->default_timetolive; 6833 } else if (!info.pr_assoc_id) { 6834 struct sctp_sock *sp = sctp_sk(sk); 6835 6836 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6837 info.pr_value = sp->default_timetolive; 6838 } else { 6839 retval = -EINVAL; 6840 goto out; 6841 } 6842 6843 if (put_user(len, optlen)) 6844 goto out; 6845 6846 if (copy_to_user(optval, &info, len)) 6847 goto out; 6848 6849 retval = 0; 6850 6851 out: 6852 return retval; 6853 } 6854 6855 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6856 char __user *optval, 6857 int __user *optlen) 6858 { 6859 struct sctp_prstatus params; 6860 struct sctp_association *asoc; 6861 int policy; 6862 int retval = -EINVAL; 6863 6864 if (len < sizeof(params)) 6865 goto out; 6866 6867 len = sizeof(params); 6868 if (copy_from_user(¶ms, optval, len)) { 6869 retval = -EFAULT; 6870 goto out; 6871 } 6872 6873 policy = params.sprstat_policy; 6874 if (policy & ~SCTP_PR_SCTP_MASK) 6875 goto out; 6876 6877 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6878 if (!asoc) 6879 goto out; 6880 6881 if (policy == SCTP_PR_SCTP_NONE) { 6882 params.sprstat_abandoned_unsent = 0; 6883 params.sprstat_abandoned_sent = 0; 6884 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6885 params.sprstat_abandoned_unsent += 6886 asoc->abandoned_unsent[policy]; 6887 params.sprstat_abandoned_sent += 6888 asoc->abandoned_sent[policy]; 6889 } 6890 } else { 6891 params.sprstat_abandoned_unsent = 6892 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6893 params.sprstat_abandoned_sent = 6894 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6895 } 6896 6897 if (put_user(len, optlen)) { 6898 retval = -EFAULT; 6899 goto out; 6900 } 6901 6902 if (copy_to_user(optval, ¶ms, len)) { 6903 retval = -EFAULT; 6904 goto out; 6905 } 6906 6907 retval = 0; 6908 6909 out: 6910 return retval; 6911 } 6912 6913 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6914 char __user *optval, 6915 int __user *optlen) 6916 { 6917 struct sctp_stream_out_ext *streamoute; 6918 struct sctp_association *asoc; 6919 struct sctp_prstatus params; 6920 int retval = -EINVAL; 6921 int policy; 6922 6923 if (len < sizeof(params)) 6924 goto out; 6925 6926 len = sizeof(params); 6927 if (copy_from_user(¶ms, optval, len)) { 6928 retval = -EFAULT; 6929 goto out; 6930 } 6931 6932 policy = params.sprstat_policy; 6933 if (policy & ~SCTP_PR_SCTP_MASK) 6934 goto out; 6935 6936 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6937 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6938 goto out; 6939 6940 streamoute = asoc->stream.out[params.sprstat_sid].ext; 6941 if (!streamoute) { 6942 /* Not allocated yet, means all stats are 0 */ 6943 params.sprstat_abandoned_unsent = 0; 6944 params.sprstat_abandoned_sent = 0; 6945 retval = 0; 6946 goto out; 6947 } 6948 6949 if (policy == SCTP_PR_SCTP_NONE) { 6950 params.sprstat_abandoned_unsent = 0; 6951 params.sprstat_abandoned_sent = 0; 6952 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6953 params.sprstat_abandoned_unsent += 6954 streamoute->abandoned_unsent[policy]; 6955 params.sprstat_abandoned_sent += 6956 streamoute->abandoned_sent[policy]; 6957 } 6958 } else { 6959 params.sprstat_abandoned_unsent = 6960 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6961 params.sprstat_abandoned_sent = 6962 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6963 } 6964 6965 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6966 retval = -EFAULT; 6967 goto out; 6968 } 6969 6970 retval = 0; 6971 6972 out: 6973 return retval; 6974 } 6975 6976 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6977 char __user *optval, 6978 int __user *optlen) 6979 { 6980 struct sctp_assoc_value params; 6981 struct sctp_association *asoc; 6982 int retval = -EFAULT; 6983 6984 if (len < sizeof(params)) { 6985 retval = -EINVAL; 6986 goto out; 6987 } 6988 6989 len = sizeof(params); 6990 if (copy_from_user(¶ms, optval, len)) 6991 goto out; 6992 6993 asoc = sctp_id2assoc(sk, params.assoc_id); 6994 if (asoc) { 6995 params.assoc_value = asoc->reconf_enable; 6996 } else if (!params.assoc_id) { 6997 struct sctp_sock *sp = sctp_sk(sk); 6998 6999 params.assoc_value = sp->ep->reconf_enable; 7000 } else { 7001 retval = -EINVAL; 7002 goto out; 7003 } 7004 7005 if (put_user(len, optlen)) 7006 goto out; 7007 7008 if (copy_to_user(optval, ¶ms, len)) 7009 goto out; 7010 7011 retval = 0; 7012 7013 out: 7014 return retval; 7015 } 7016 7017 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7018 char __user *optval, 7019 int __user *optlen) 7020 { 7021 struct sctp_assoc_value params; 7022 struct sctp_association *asoc; 7023 int retval = -EFAULT; 7024 7025 if (len < sizeof(params)) { 7026 retval = -EINVAL; 7027 goto out; 7028 } 7029 7030 len = sizeof(params); 7031 if (copy_from_user(¶ms, optval, len)) 7032 goto out; 7033 7034 asoc = sctp_id2assoc(sk, params.assoc_id); 7035 if (asoc) { 7036 params.assoc_value = asoc->strreset_enable; 7037 } else if (!params.assoc_id) { 7038 struct sctp_sock *sp = sctp_sk(sk); 7039 7040 params.assoc_value = sp->ep->strreset_enable; 7041 } else { 7042 retval = -EINVAL; 7043 goto out; 7044 } 7045 7046 if (put_user(len, optlen)) 7047 goto out; 7048 7049 if (copy_to_user(optval, ¶ms, len)) 7050 goto out; 7051 7052 retval = 0; 7053 7054 out: 7055 return retval; 7056 } 7057 7058 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7059 char __user *optval, 7060 int __user *optlen) 7061 { 7062 struct sctp_assoc_value params; 7063 struct sctp_association *asoc; 7064 int retval = -EFAULT; 7065 7066 if (len < sizeof(params)) { 7067 retval = -EINVAL; 7068 goto out; 7069 } 7070 7071 len = sizeof(params); 7072 if (copy_from_user(¶ms, optval, len)) 7073 goto out; 7074 7075 asoc = sctp_id2assoc(sk, params.assoc_id); 7076 if (!asoc) { 7077 retval = -EINVAL; 7078 goto out; 7079 } 7080 7081 params.assoc_value = sctp_sched_get_sched(asoc); 7082 7083 if (put_user(len, optlen)) 7084 goto out; 7085 7086 if (copy_to_user(optval, ¶ms, len)) 7087 goto out; 7088 7089 retval = 0; 7090 7091 out: 7092 return retval; 7093 } 7094 7095 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7096 char __user *optval, 7097 int __user *optlen) 7098 { 7099 struct sctp_stream_value params; 7100 struct sctp_association *asoc; 7101 int retval = -EFAULT; 7102 7103 if (len < sizeof(params)) { 7104 retval = -EINVAL; 7105 goto out; 7106 } 7107 7108 len = sizeof(params); 7109 if (copy_from_user(¶ms, optval, len)) 7110 goto out; 7111 7112 asoc = sctp_id2assoc(sk, params.assoc_id); 7113 if (!asoc) { 7114 retval = -EINVAL; 7115 goto out; 7116 } 7117 7118 retval = sctp_sched_get_value(asoc, params.stream_id, 7119 ¶ms.stream_value); 7120 if (retval) 7121 goto out; 7122 7123 if (put_user(len, optlen)) { 7124 retval = -EFAULT; 7125 goto out; 7126 } 7127 7128 if (copy_to_user(optval, ¶ms, len)) { 7129 retval = -EFAULT; 7130 goto out; 7131 } 7132 7133 out: 7134 return retval; 7135 } 7136 7137 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7138 char __user *optval, 7139 int __user *optlen) 7140 { 7141 struct sctp_assoc_value params; 7142 struct sctp_association *asoc; 7143 int retval = -EFAULT; 7144 7145 if (len < sizeof(params)) { 7146 retval = -EINVAL; 7147 goto out; 7148 } 7149 7150 len = sizeof(params); 7151 if (copy_from_user(¶ms, optval, len)) 7152 goto out; 7153 7154 asoc = sctp_id2assoc(sk, params.assoc_id); 7155 if (asoc) { 7156 params.assoc_value = asoc->intl_enable; 7157 } else if (!params.assoc_id) { 7158 struct sctp_sock *sp = sctp_sk(sk); 7159 7160 params.assoc_value = sp->strm_interleave; 7161 } else { 7162 retval = -EINVAL; 7163 goto out; 7164 } 7165 7166 if (put_user(len, optlen)) 7167 goto out; 7168 7169 if (copy_to_user(optval, ¶ms, len)) 7170 goto out; 7171 7172 retval = 0; 7173 7174 out: 7175 return retval; 7176 } 7177 7178 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7179 char __user *optval, int __user *optlen) 7180 { 7181 int retval = 0; 7182 int len; 7183 7184 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7185 7186 /* I can hardly begin to describe how wrong this is. This is 7187 * so broken as to be worse than useless. The API draft 7188 * REALLY is NOT helpful here... I am not convinced that the 7189 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7190 * are at all well-founded. 7191 */ 7192 if (level != SOL_SCTP) { 7193 struct sctp_af *af = sctp_sk(sk)->pf->af; 7194 7195 retval = af->getsockopt(sk, level, optname, optval, optlen); 7196 return retval; 7197 } 7198 7199 if (get_user(len, optlen)) 7200 return -EFAULT; 7201 7202 if (len < 0) 7203 return -EINVAL; 7204 7205 lock_sock(sk); 7206 7207 switch (optname) { 7208 case SCTP_STATUS: 7209 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7210 break; 7211 case SCTP_DISABLE_FRAGMENTS: 7212 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7213 optlen); 7214 break; 7215 case SCTP_EVENTS: 7216 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7217 break; 7218 case SCTP_AUTOCLOSE: 7219 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7220 break; 7221 case SCTP_SOCKOPT_PEELOFF: 7222 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7223 break; 7224 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7225 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7226 break; 7227 case SCTP_PEER_ADDR_PARAMS: 7228 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7229 optlen); 7230 break; 7231 case SCTP_DELAYED_SACK: 7232 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7233 optlen); 7234 break; 7235 case SCTP_INITMSG: 7236 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7237 break; 7238 case SCTP_GET_PEER_ADDRS: 7239 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7240 optlen); 7241 break; 7242 case SCTP_GET_LOCAL_ADDRS: 7243 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7244 optlen); 7245 break; 7246 case SCTP_SOCKOPT_CONNECTX3: 7247 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7248 break; 7249 case SCTP_DEFAULT_SEND_PARAM: 7250 retval = sctp_getsockopt_default_send_param(sk, len, 7251 optval, optlen); 7252 break; 7253 case SCTP_DEFAULT_SNDINFO: 7254 retval = sctp_getsockopt_default_sndinfo(sk, len, 7255 optval, optlen); 7256 break; 7257 case SCTP_PRIMARY_ADDR: 7258 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7259 break; 7260 case SCTP_NODELAY: 7261 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7262 break; 7263 case SCTP_RTOINFO: 7264 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7265 break; 7266 case SCTP_ASSOCINFO: 7267 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7268 break; 7269 case SCTP_I_WANT_MAPPED_V4_ADDR: 7270 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7271 break; 7272 case SCTP_MAXSEG: 7273 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7274 break; 7275 case SCTP_GET_PEER_ADDR_INFO: 7276 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7277 optlen); 7278 break; 7279 case SCTP_ADAPTATION_LAYER: 7280 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7281 optlen); 7282 break; 7283 case SCTP_CONTEXT: 7284 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7285 break; 7286 case SCTP_FRAGMENT_INTERLEAVE: 7287 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7288 optlen); 7289 break; 7290 case SCTP_PARTIAL_DELIVERY_POINT: 7291 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7292 optlen); 7293 break; 7294 case SCTP_MAX_BURST: 7295 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7296 break; 7297 case SCTP_AUTH_KEY: 7298 case SCTP_AUTH_CHUNK: 7299 case SCTP_AUTH_DELETE_KEY: 7300 case SCTP_AUTH_DEACTIVATE_KEY: 7301 retval = -EOPNOTSUPP; 7302 break; 7303 case SCTP_HMAC_IDENT: 7304 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7305 break; 7306 case SCTP_AUTH_ACTIVE_KEY: 7307 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7308 break; 7309 case SCTP_PEER_AUTH_CHUNKS: 7310 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7311 optlen); 7312 break; 7313 case SCTP_LOCAL_AUTH_CHUNKS: 7314 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7315 optlen); 7316 break; 7317 case SCTP_GET_ASSOC_NUMBER: 7318 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7319 break; 7320 case SCTP_GET_ASSOC_ID_LIST: 7321 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7322 break; 7323 case SCTP_AUTO_ASCONF: 7324 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7325 break; 7326 case SCTP_PEER_ADDR_THLDS: 7327 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7328 break; 7329 case SCTP_GET_ASSOC_STATS: 7330 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7331 break; 7332 case SCTP_RECVRCVINFO: 7333 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7334 break; 7335 case SCTP_RECVNXTINFO: 7336 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7337 break; 7338 case SCTP_PR_SUPPORTED: 7339 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7340 break; 7341 case SCTP_DEFAULT_PRINFO: 7342 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7343 optlen); 7344 break; 7345 case SCTP_PR_ASSOC_STATUS: 7346 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7347 optlen); 7348 break; 7349 case SCTP_PR_STREAM_STATUS: 7350 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7351 optlen); 7352 break; 7353 case SCTP_RECONFIG_SUPPORTED: 7354 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7355 optlen); 7356 break; 7357 case SCTP_ENABLE_STREAM_RESET: 7358 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7359 optlen); 7360 break; 7361 case SCTP_STREAM_SCHEDULER: 7362 retval = sctp_getsockopt_scheduler(sk, len, optval, 7363 optlen); 7364 break; 7365 case SCTP_STREAM_SCHEDULER_VALUE: 7366 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7367 optlen); 7368 break; 7369 case SCTP_INTERLEAVING_SUPPORTED: 7370 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7371 optlen); 7372 break; 7373 default: 7374 retval = -ENOPROTOOPT; 7375 break; 7376 } 7377 7378 release_sock(sk); 7379 return retval; 7380 } 7381 7382 static int sctp_hash(struct sock *sk) 7383 { 7384 /* STUB */ 7385 return 0; 7386 } 7387 7388 static void sctp_unhash(struct sock *sk) 7389 { 7390 /* STUB */ 7391 } 7392 7393 /* Check if port is acceptable. Possibly find first available port. 7394 * 7395 * The port hash table (contained in the 'global' SCTP protocol storage 7396 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7397 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7398 * list (the list number is the port number hashed out, so as you 7399 * would expect from a hash function, all the ports in a given list have 7400 * such a number that hashes out to the same list number; you were 7401 * expecting that, right?); so each list has a set of ports, with a 7402 * link to the socket (struct sock) that uses it, the port number and 7403 * a fastreuse flag (FIXME: NPI ipg). 7404 */ 7405 static struct sctp_bind_bucket *sctp_bucket_create( 7406 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7407 7408 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7409 { 7410 struct sctp_bind_hashbucket *head; /* hash list */ 7411 struct sctp_bind_bucket *pp; 7412 unsigned short snum; 7413 int ret; 7414 7415 snum = ntohs(addr->v4.sin_port); 7416 7417 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7418 7419 local_bh_disable(); 7420 7421 if (snum == 0) { 7422 /* Search for an available port. */ 7423 int low, high, remaining, index; 7424 unsigned int rover; 7425 struct net *net = sock_net(sk); 7426 7427 inet_get_local_port_range(net, &low, &high); 7428 remaining = (high - low) + 1; 7429 rover = prandom_u32() % remaining + low; 7430 7431 do { 7432 rover++; 7433 if ((rover < low) || (rover > high)) 7434 rover = low; 7435 if (inet_is_local_reserved_port(net, rover)) 7436 continue; 7437 index = sctp_phashfn(sock_net(sk), rover); 7438 head = &sctp_port_hashtable[index]; 7439 spin_lock(&head->lock); 7440 sctp_for_each_hentry(pp, &head->chain) 7441 if ((pp->port == rover) && 7442 net_eq(sock_net(sk), pp->net)) 7443 goto next; 7444 break; 7445 next: 7446 spin_unlock(&head->lock); 7447 } while (--remaining > 0); 7448 7449 /* Exhausted local port range during search? */ 7450 ret = 1; 7451 if (remaining <= 0) 7452 goto fail; 7453 7454 /* OK, here is the one we will use. HEAD (the port 7455 * hash table list entry) is non-NULL and we hold it's 7456 * mutex. 7457 */ 7458 snum = rover; 7459 } else { 7460 /* We are given an specific port number; we verify 7461 * that it is not being used. If it is used, we will 7462 * exahust the search in the hash list corresponding 7463 * to the port number (snum) - we detect that with the 7464 * port iterator, pp being NULL. 7465 */ 7466 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7467 spin_lock(&head->lock); 7468 sctp_for_each_hentry(pp, &head->chain) { 7469 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7470 goto pp_found; 7471 } 7472 } 7473 pp = NULL; 7474 goto pp_not_found; 7475 pp_found: 7476 if (!hlist_empty(&pp->owner)) { 7477 /* We had a port hash table hit - there is an 7478 * available port (pp != NULL) and it is being 7479 * used by other socket (pp->owner not empty); that other 7480 * socket is going to be sk2. 7481 */ 7482 int reuse = sk->sk_reuse; 7483 struct sock *sk2; 7484 7485 pr_debug("%s: found a possible match\n", __func__); 7486 7487 if (pp->fastreuse && sk->sk_reuse && 7488 sk->sk_state != SCTP_SS_LISTENING) 7489 goto success; 7490 7491 /* Run through the list of sockets bound to the port 7492 * (pp->port) [via the pointers bind_next and 7493 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7494 * we get the endpoint they describe and run through 7495 * the endpoint's list of IP (v4 or v6) addresses, 7496 * comparing each of the addresses with the address of 7497 * the socket sk. If we find a match, then that means 7498 * that this port/socket (sk) combination are already 7499 * in an endpoint. 7500 */ 7501 sk_for_each_bound(sk2, &pp->owner) { 7502 struct sctp_endpoint *ep2; 7503 ep2 = sctp_sk(sk2)->ep; 7504 7505 if (sk == sk2 || 7506 (reuse && sk2->sk_reuse && 7507 sk2->sk_state != SCTP_SS_LISTENING)) 7508 continue; 7509 7510 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7511 sctp_sk(sk2), sctp_sk(sk))) { 7512 ret = (long)sk2; 7513 goto fail_unlock; 7514 } 7515 } 7516 7517 pr_debug("%s: found a match\n", __func__); 7518 } 7519 pp_not_found: 7520 /* If there was a hash table miss, create a new port. */ 7521 ret = 1; 7522 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7523 goto fail_unlock; 7524 7525 /* In either case (hit or miss), make sure fastreuse is 1 only 7526 * if sk->sk_reuse is too (that is, if the caller requested 7527 * SO_REUSEADDR on this socket -sk-). 7528 */ 7529 if (hlist_empty(&pp->owner)) { 7530 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7531 pp->fastreuse = 1; 7532 else 7533 pp->fastreuse = 0; 7534 } else if (pp->fastreuse && 7535 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7536 pp->fastreuse = 0; 7537 7538 /* We are set, so fill up all the data in the hash table 7539 * entry, tie the socket list information with the rest of the 7540 * sockets FIXME: Blurry, NPI (ipg). 7541 */ 7542 success: 7543 if (!sctp_sk(sk)->bind_hash) { 7544 inet_sk(sk)->inet_num = snum; 7545 sk_add_bind_node(sk, &pp->owner); 7546 sctp_sk(sk)->bind_hash = pp; 7547 } 7548 ret = 0; 7549 7550 fail_unlock: 7551 spin_unlock(&head->lock); 7552 7553 fail: 7554 local_bh_enable(); 7555 return ret; 7556 } 7557 7558 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7559 * port is requested. 7560 */ 7561 static int sctp_get_port(struct sock *sk, unsigned short snum) 7562 { 7563 union sctp_addr addr; 7564 struct sctp_af *af = sctp_sk(sk)->pf->af; 7565 7566 /* Set up a dummy address struct from the sk. */ 7567 af->from_sk(&addr, sk); 7568 addr.v4.sin_port = htons(snum); 7569 7570 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7571 return !!sctp_get_port_local(sk, &addr); 7572 } 7573 7574 /* 7575 * Move a socket to LISTENING state. 7576 */ 7577 static int sctp_listen_start(struct sock *sk, int backlog) 7578 { 7579 struct sctp_sock *sp = sctp_sk(sk); 7580 struct sctp_endpoint *ep = sp->ep; 7581 struct crypto_shash *tfm = NULL; 7582 char alg[32]; 7583 7584 /* Allocate HMAC for generating cookie. */ 7585 if (!sp->hmac && sp->sctp_hmac_alg) { 7586 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7587 tfm = crypto_alloc_shash(alg, 0, 0); 7588 if (IS_ERR(tfm)) { 7589 net_info_ratelimited("failed to load transform for %s: %ld\n", 7590 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7591 return -ENOSYS; 7592 } 7593 sctp_sk(sk)->hmac = tfm; 7594 } 7595 7596 /* 7597 * If a bind() or sctp_bindx() is not called prior to a listen() 7598 * call that allows new associations to be accepted, the system 7599 * picks an ephemeral port and will choose an address set equivalent 7600 * to binding with a wildcard address. 7601 * 7602 * This is not currently spelled out in the SCTP sockets 7603 * extensions draft, but follows the practice as seen in TCP 7604 * sockets. 7605 * 7606 */ 7607 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7608 if (!ep->base.bind_addr.port) { 7609 if (sctp_autobind(sk)) 7610 return -EAGAIN; 7611 } else { 7612 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7613 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7614 return -EADDRINUSE; 7615 } 7616 } 7617 7618 sk->sk_max_ack_backlog = backlog; 7619 sctp_hash_endpoint(ep); 7620 return 0; 7621 } 7622 7623 /* 7624 * 4.1.3 / 5.1.3 listen() 7625 * 7626 * By default, new associations are not accepted for UDP style sockets. 7627 * An application uses listen() to mark a socket as being able to 7628 * accept new associations. 7629 * 7630 * On TCP style sockets, applications use listen() to ready the SCTP 7631 * endpoint for accepting inbound associations. 7632 * 7633 * On both types of endpoints a backlog of '0' disables listening. 7634 * 7635 * Move a socket to LISTENING state. 7636 */ 7637 int sctp_inet_listen(struct socket *sock, int backlog) 7638 { 7639 struct sock *sk = sock->sk; 7640 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7641 int err = -EINVAL; 7642 7643 if (unlikely(backlog < 0)) 7644 return err; 7645 7646 lock_sock(sk); 7647 7648 /* Peeled-off sockets are not allowed to listen(). */ 7649 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7650 goto out; 7651 7652 if (sock->state != SS_UNCONNECTED) 7653 goto out; 7654 7655 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7656 goto out; 7657 7658 /* If backlog is zero, disable listening. */ 7659 if (!backlog) { 7660 if (sctp_sstate(sk, CLOSED)) 7661 goto out; 7662 7663 err = 0; 7664 sctp_unhash_endpoint(ep); 7665 sk->sk_state = SCTP_SS_CLOSED; 7666 if (sk->sk_reuse) 7667 sctp_sk(sk)->bind_hash->fastreuse = 1; 7668 goto out; 7669 } 7670 7671 /* If we are already listening, just update the backlog */ 7672 if (sctp_sstate(sk, LISTENING)) 7673 sk->sk_max_ack_backlog = backlog; 7674 else { 7675 err = sctp_listen_start(sk, backlog); 7676 if (err) 7677 goto out; 7678 } 7679 7680 err = 0; 7681 out: 7682 release_sock(sk); 7683 return err; 7684 } 7685 7686 /* 7687 * This function is done by modeling the current datagram_poll() and the 7688 * tcp_poll(). Note that, based on these implementations, we don't 7689 * lock the socket in this function, even though it seems that, 7690 * ideally, locking or some other mechanisms can be used to ensure 7691 * the integrity of the counters (sndbuf and wmem_alloc) used 7692 * in this place. We assume that we don't need locks either until proven 7693 * otherwise. 7694 * 7695 * Another thing to note is that we include the Async I/O support 7696 * here, again, by modeling the current TCP/UDP code. We don't have 7697 * a good way to test with it yet. 7698 */ 7699 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7700 { 7701 struct sock *sk = sock->sk; 7702 struct sctp_sock *sp = sctp_sk(sk); 7703 __poll_t mask; 7704 7705 poll_wait(file, sk_sleep(sk), wait); 7706 7707 sock_rps_record_flow(sk); 7708 7709 /* A TCP-style listening socket becomes readable when the accept queue 7710 * is not empty. 7711 */ 7712 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7713 return (!list_empty(&sp->ep->asocs)) ? 7714 (EPOLLIN | EPOLLRDNORM) : 0; 7715 7716 mask = 0; 7717 7718 /* Is there any exceptional events? */ 7719 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7720 mask |= EPOLLERR | 7721 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7722 if (sk->sk_shutdown & RCV_SHUTDOWN) 7723 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7724 if (sk->sk_shutdown == SHUTDOWN_MASK) 7725 mask |= EPOLLHUP; 7726 7727 /* Is it readable? Reconsider this code with TCP-style support. */ 7728 if (!skb_queue_empty(&sk->sk_receive_queue)) 7729 mask |= EPOLLIN | EPOLLRDNORM; 7730 7731 /* The association is either gone or not ready. */ 7732 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7733 return mask; 7734 7735 /* Is it writable? */ 7736 if (sctp_writeable(sk)) { 7737 mask |= EPOLLOUT | EPOLLWRNORM; 7738 } else { 7739 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7740 /* 7741 * Since the socket is not locked, the buffer 7742 * might be made available after the writeable check and 7743 * before the bit is set. This could cause a lost I/O 7744 * signal. tcp_poll() has a race breaker for this race 7745 * condition. Based on their implementation, we put 7746 * in the following code to cover it as well. 7747 */ 7748 if (sctp_writeable(sk)) 7749 mask |= EPOLLOUT | EPOLLWRNORM; 7750 } 7751 return mask; 7752 } 7753 7754 /******************************************************************** 7755 * 2nd Level Abstractions 7756 ********************************************************************/ 7757 7758 static struct sctp_bind_bucket *sctp_bucket_create( 7759 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7760 { 7761 struct sctp_bind_bucket *pp; 7762 7763 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7764 if (pp) { 7765 SCTP_DBG_OBJCNT_INC(bind_bucket); 7766 pp->port = snum; 7767 pp->fastreuse = 0; 7768 INIT_HLIST_HEAD(&pp->owner); 7769 pp->net = net; 7770 hlist_add_head(&pp->node, &head->chain); 7771 } 7772 return pp; 7773 } 7774 7775 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7776 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7777 { 7778 if (pp && hlist_empty(&pp->owner)) { 7779 __hlist_del(&pp->node); 7780 kmem_cache_free(sctp_bucket_cachep, pp); 7781 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7782 } 7783 } 7784 7785 /* Release this socket's reference to a local port. */ 7786 static inline void __sctp_put_port(struct sock *sk) 7787 { 7788 struct sctp_bind_hashbucket *head = 7789 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7790 inet_sk(sk)->inet_num)]; 7791 struct sctp_bind_bucket *pp; 7792 7793 spin_lock(&head->lock); 7794 pp = sctp_sk(sk)->bind_hash; 7795 __sk_del_bind_node(sk); 7796 sctp_sk(sk)->bind_hash = NULL; 7797 inet_sk(sk)->inet_num = 0; 7798 sctp_bucket_destroy(pp); 7799 spin_unlock(&head->lock); 7800 } 7801 7802 void sctp_put_port(struct sock *sk) 7803 { 7804 local_bh_disable(); 7805 __sctp_put_port(sk); 7806 local_bh_enable(); 7807 } 7808 7809 /* 7810 * The system picks an ephemeral port and choose an address set equivalent 7811 * to binding with a wildcard address. 7812 * One of those addresses will be the primary address for the association. 7813 * This automatically enables the multihoming capability of SCTP. 7814 */ 7815 static int sctp_autobind(struct sock *sk) 7816 { 7817 union sctp_addr autoaddr; 7818 struct sctp_af *af; 7819 __be16 port; 7820 7821 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7822 af = sctp_sk(sk)->pf->af; 7823 7824 port = htons(inet_sk(sk)->inet_num); 7825 af->inaddr_any(&autoaddr, port); 7826 7827 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7828 } 7829 7830 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7831 * 7832 * From RFC 2292 7833 * 4.2 The cmsghdr Structure * 7834 * 7835 * When ancillary data is sent or received, any number of ancillary data 7836 * objects can be specified by the msg_control and msg_controllen members of 7837 * the msghdr structure, because each object is preceded by 7838 * a cmsghdr structure defining the object's length (the cmsg_len member). 7839 * Historically Berkeley-derived implementations have passed only one object 7840 * at a time, but this API allows multiple objects to be 7841 * passed in a single call to sendmsg() or recvmsg(). The following example 7842 * shows two ancillary data objects in a control buffer. 7843 * 7844 * |<--------------------------- msg_controllen -------------------------->| 7845 * | | 7846 * 7847 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7848 * 7849 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7850 * | | | 7851 * 7852 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7853 * 7854 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7855 * | | | | | 7856 * 7857 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7858 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7859 * 7860 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7861 * 7862 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7863 * ^ 7864 * | 7865 * 7866 * msg_control 7867 * points here 7868 */ 7869 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7870 { 7871 struct msghdr *my_msg = (struct msghdr *)msg; 7872 struct cmsghdr *cmsg; 7873 7874 for_each_cmsghdr(cmsg, my_msg) { 7875 if (!CMSG_OK(my_msg, cmsg)) 7876 return -EINVAL; 7877 7878 /* Should we parse this header or ignore? */ 7879 if (cmsg->cmsg_level != IPPROTO_SCTP) 7880 continue; 7881 7882 /* Strictly check lengths following example in SCM code. */ 7883 switch (cmsg->cmsg_type) { 7884 case SCTP_INIT: 7885 /* SCTP Socket API Extension 7886 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7887 * 7888 * This cmsghdr structure provides information for 7889 * initializing new SCTP associations with sendmsg(). 7890 * The SCTP_INITMSG socket option uses this same data 7891 * structure. This structure is not used for 7892 * recvmsg(). 7893 * 7894 * cmsg_level cmsg_type cmsg_data[] 7895 * ------------ ------------ ---------------------- 7896 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7897 */ 7898 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7899 return -EINVAL; 7900 7901 cmsgs->init = CMSG_DATA(cmsg); 7902 break; 7903 7904 case SCTP_SNDRCV: 7905 /* SCTP Socket API Extension 7906 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7907 * 7908 * This cmsghdr structure specifies SCTP options for 7909 * sendmsg() and describes SCTP header information 7910 * about a received message through recvmsg(). 7911 * 7912 * cmsg_level cmsg_type cmsg_data[] 7913 * ------------ ------------ ---------------------- 7914 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7915 */ 7916 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7917 return -EINVAL; 7918 7919 cmsgs->srinfo = CMSG_DATA(cmsg); 7920 7921 if (cmsgs->srinfo->sinfo_flags & 7922 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7923 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7924 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7925 return -EINVAL; 7926 break; 7927 7928 case SCTP_SNDINFO: 7929 /* SCTP Socket API Extension 7930 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7931 * 7932 * This cmsghdr structure specifies SCTP options for 7933 * sendmsg(). This structure and SCTP_RCVINFO replaces 7934 * SCTP_SNDRCV which has been deprecated. 7935 * 7936 * cmsg_level cmsg_type cmsg_data[] 7937 * ------------ ------------ --------------------- 7938 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7939 */ 7940 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7941 return -EINVAL; 7942 7943 cmsgs->sinfo = CMSG_DATA(cmsg); 7944 7945 if (cmsgs->sinfo->snd_flags & 7946 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7947 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7948 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7949 return -EINVAL; 7950 break; 7951 case SCTP_PRINFO: 7952 /* SCTP Socket API Extension 7953 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 7954 * 7955 * This cmsghdr structure specifies SCTP options for sendmsg(). 7956 * 7957 * cmsg_level cmsg_type cmsg_data[] 7958 * ------------ ------------ --------------------- 7959 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 7960 */ 7961 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 7962 return -EINVAL; 7963 7964 cmsgs->prinfo = CMSG_DATA(cmsg); 7965 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 7966 return -EINVAL; 7967 7968 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 7969 cmsgs->prinfo->pr_value = 0; 7970 break; 7971 case SCTP_AUTHINFO: 7972 /* SCTP Socket API Extension 7973 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 7974 * 7975 * This cmsghdr structure specifies SCTP options for sendmsg(). 7976 * 7977 * cmsg_level cmsg_type cmsg_data[] 7978 * ------------ ------------ --------------------- 7979 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 7980 */ 7981 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 7982 return -EINVAL; 7983 7984 cmsgs->authinfo = CMSG_DATA(cmsg); 7985 break; 7986 case SCTP_DSTADDRV4: 7987 case SCTP_DSTADDRV6: 7988 /* SCTP Socket API Extension 7989 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 7990 * 7991 * This cmsghdr structure specifies SCTP options for sendmsg(). 7992 * 7993 * cmsg_level cmsg_type cmsg_data[] 7994 * ------------ ------------ --------------------- 7995 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 7996 * ------------ ------------ --------------------- 7997 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 7998 */ 7999 cmsgs->addrs_msg = my_msg; 8000 break; 8001 default: 8002 return -EINVAL; 8003 } 8004 } 8005 8006 return 0; 8007 } 8008 8009 /* 8010 * Wait for a packet.. 8011 * Note: This function is the same function as in core/datagram.c 8012 * with a few modifications to make lksctp work. 8013 */ 8014 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8015 { 8016 int error; 8017 DEFINE_WAIT(wait); 8018 8019 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8020 8021 /* Socket errors? */ 8022 error = sock_error(sk); 8023 if (error) 8024 goto out; 8025 8026 if (!skb_queue_empty(&sk->sk_receive_queue)) 8027 goto ready; 8028 8029 /* Socket shut down? */ 8030 if (sk->sk_shutdown & RCV_SHUTDOWN) 8031 goto out; 8032 8033 /* Sequenced packets can come disconnected. If so we report the 8034 * problem. 8035 */ 8036 error = -ENOTCONN; 8037 8038 /* Is there a good reason to think that we may receive some data? */ 8039 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8040 goto out; 8041 8042 /* Handle signals. */ 8043 if (signal_pending(current)) 8044 goto interrupted; 8045 8046 /* Let another process have a go. Since we are going to sleep 8047 * anyway. Note: This may cause odd behaviors if the message 8048 * does not fit in the user's buffer, but this seems to be the 8049 * only way to honor MSG_DONTWAIT realistically. 8050 */ 8051 release_sock(sk); 8052 *timeo_p = schedule_timeout(*timeo_p); 8053 lock_sock(sk); 8054 8055 ready: 8056 finish_wait(sk_sleep(sk), &wait); 8057 return 0; 8058 8059 interrupted: 8060 error = sock_intr_errno(*timeo_p); 8061 8062 out: 8063 finish_wait(sk_sleep(sk), &wait); 8064 *err = error; 8065 return error; 8066 } 8067 8068 /* Receive a datagram. 8069 * Note: This is pretty much the same routine as in core/datagram.c 8070 * with a few changes to make lksctp work. 8071 */ 8072 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8073 int noblock, int *err) 8074 { 8075 int error; 8076 struct sk_buff *skb; 8077 long timeo; 8078 8079 timeo = sock_rcvtimeo(sk, noblock); 8080 8081 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8082 MAX_SCHEDULE_TIMEOUT); 8083 8084 do { 8085 /* Again only user level code calls this function, 8086 * so nothing interrupt level 8087 * will suddenly eat the receive_queue. 8088 * 8089 * Look at current nfs client by the way... 8090 * However, this function was correct in any case. 8) 8091 */ 8092 if (flags & MSG_PEEK) { 8093 skb = skb_peek(&sk->sk_receive_queue); 8094 if (skb) 8095 refcount_inc(&skb->users); 8096 } else { 8097 skb = __skb_dequeue(&sk->sk_receive_queue); 8098 } 8099 8100 if (skb) 8101 return skb; 8102 8103 /* Caller is allowed not to check sk->sk_err before calling. */ 8104 error = sock_error(sk); 8105 if (error) 8106 goto no_packet; 8107 8108 if (sk->sk_shutdown & RCV_SHUTDOWN) 8109 break; 8110 8111 if (sk_can_busy_loop(sk)) { 8112 sk_busy_loop(sk, noblock); 8113 8114 if (!skb_queue_empty(&sk->sk_receive_queue)) 8115 continue; 8116 } 8117 8118 /* User doesn't want to wait. */ 8119 error = -EAGAIN; 8120 if (!timeo) 8121 goto no_packet; 8122 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8123 8124 return NULL; 8125 8126 no_packet: 8127 *err = error; 8128 return NULL; 8129 } 8130 8131 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8132 static void __sctp_write_space(struct sctp_association *asoc) 8133 { 8134 struct sock *sk = asoc->base.sk; 8135 8136 if (sctp_wspace(asoc) <= 0) 8137 return; 8138 8139 if (waitqueue_active(&asoc->wait)) 8140 wake_up_interruptible(&asoc->wait); 8141 8142 if (sctp_writeable(sk)) { 8143 struct socket_wq *wq; 8144 8145 rcu_read_lock(); 8146 wq = rcu_dereference(sk->sk_wq); 8147 if (wq) { 8148 if (waitqueue_active(&wq->wait)) 8149 wake_up_interruptible(&wq->wait); 8150 8151 /* Note that we try to include the Async I/O support 8152 * here by modeling from the current TCP/UDP code. 8153 * We have not tested with it yet. 8154 */ 8155 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8156 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8157 } 8158 rcu_read_unlock(); 8159 } 8160 } 8161 8162 static void sctp_wake_up_waiters(struct sock *sk, 8163 struct sctp_association *asoc) 8164 { 8165 struct sctp_association *tmp = asoc; 8166 8167 /* We do accounting for the sndbuf space per association, 8168 * so we only need to wake our own association. 8169 */ 8170 if (asoc->ep->sndbuf_policy) 8171 return __sctp_write_space(asoc); 8172 8173 /* If association goes down and is just flushing its 8174 * outq, then just normally notify others. 8175 */ 8176 if (asoc->base.dead) 8177 return sctp_write_space(sk); 8178 8179 /* Accounting for the sndbuf space is per socket, so we 8180 * need to wake up others, try to be fair and in case of 8181 * other associations, let them have a go first instead 8182 * of just doing a sctp_write_space() call. 8183 * 8184 * Note that we reach sctp_wake_up_waiters() only when 8185 * associations free up queued chunks, thus we are under 8186 * lock and the list of associations on a socket is 8187 * guaranteed not to change. 8188 */ 8189 for (tmp = list_next_entry(tmp, asocs); 1; 8190 tmp = list_next_entry(tmp, asocs)) { 8191 /* Manually skip the head element. */ 8192 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8193 continue; 8194 /* Wake up association. */ 8195 __sctp_write_space(tmp); 8196 /* We've reached the end. */ 8197 if (tmp == asoc) 8198 break; 8199 } 8200 } 8201 8202 /* Do accounting for the sndbuf space. 8203 * Decrement the used sndbuf space of the corresponding association by the 8204 * data size which was just transmitted(freed). 8205 */ 8206 static void sctp_wfree(struct sk_buff *skb) 8207 { 8208 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8209 struct sctp_association *asoc = chunk->asoc; 8210 struct sock *sk = asoc->base.sk; 8211 8212 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 8213 sizeof(struct sk_buff) + 8214 sizeof(struct sctp_chunk); 8215 8216 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 8217 8218 /* 8219 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 8220 */ 8221 sk->sk_wmem_queued -= skb->truesize; 8222 sk_mem_uncharge(sk, skb->truesize); 8223 8224 if (chunk->shkey) { 8225 struct sctp_shared_key *shkey = chunk->shkey; 8226 8227 /* refcnt == 2 and !list_empty mean after this release, it's 8228 * not being used anywhere, and it's time to notify userland 8229 * that this shkey can be freed if it's been deactivated. 8230 */ 8231 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8232 refcount_read(&shkey->refcnt) == 2) { 8233 struct sctp_ulpevent *ev; 8234 8235 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8236 SCTP_AUTH_FREE_KEY, 8237 GFP_KERNEL); 8238 if (ev) 8239 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8240 } 8241 sctp_auth_shkey_release(chunk->shkey); 8242 } 8243 8244 sock_wfree(skb); 8245 sctp_wake_up_waiters(sk, asoc); 8246 8247 sctp_association_put(asoc); 8248 } 8249 8250 /* Do accounting for the receive space on the socket. 8251 * Accounting for the association is done in ulpevent.c 8252 * We set this as a destructor for the cloned data skbs so that 8253 * accounting is done at the correct time. 8254 */ 8255 void sctp_sock_rfree(struct sk_buff *skb) 8256 { 8257 struct sock *sk = skb->sk; 8258 struct sctp_ulpevent *event = sctp_skb2event(skb); 8259 8260 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8261 8262 /* 8263 * Mimic the behavior of sock_rfree 8264 */ 8265 sk_mem_uncharge(sk, event->rmem_len); 8266 } 8267 8268 8269 /* Helper function to wait for space in the sndbuf. */ 8270 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8271 size_t msg_len) 8272 { 8273 struct sock *sk = asoc->base.sk; 8274 long current_timeo = *timeo_p; 8275 DEFINE_WAIT(wait); 8276 int err = 0; 8277 8278 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8279 *timeo_p, msg_len); 8280 8281 /* Increment the association's refcnt. */ 8282 sctp_association_hold(asoc); 8283 8284 /* Wait on the association specific sndbuf space. */ 8285 for (;;) { 8286 prepare_to_wait_exclusive(&asoc->wait, &wait, 8287 TASK_INTERRUPTIBLE); 8288 if (asoc->base.dead) 8289 goto do_dead; 8290 if (!*timeo_p) 8291 goto do_nonblock; 8292 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8293 goto do_error; 8294 if (signal_pending(current)) 8295 goto do_interrupted; 8296 if (msg_len <= sctp_wspace(asoc)) 8297 break; 8298 8299 /* Let another process have a go. Since we are going 8300 * to sleep anyway. 8301 */ 8302 release_sock(sk); 8303 current_timeo = schedule_timeout(current_timeo); 8304 lock_sock(sk); 8305 if (sk != asoc->base.sk) 8306 goto do_error; 8307 8308 *timeo_p = current_timeo; 8309 } 8310 8311 out: 8312 finish_wait(&asoc->wait, &wait); 8313 8314 /* Release the association's refcnt. */ 8315 sctp_association_put(asoc); 8316 8317 return err; 8318 8319 do_dead: 8320 err = -ESRCH; 8321 goto out; 8322 8323 do_error: 8324 err = -EPIPE; 8325 goto out; 8326 8327 do_interrupted: 8328 err = sock_intr_errno(*timeo_p); 8329 goto out; 8330 8331 do_nonblock: 8332 err = -EAGAIN; 8333 goto out; 8334 } 8335 8336 void sctp_data_ready(struct sock *sk) 8337 { 8338 struct socket_wq *wq; 8339 8340 rcu_read_lock(); 8341 wq = rcu_dereference(sk->sk_wq); 8342 if (skwq_has_sleeper(wq)) 8343 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8344 EPOLLRDNORM | EPOLLRDBAND); 8345 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8346 rcu_read_unlock(); 8347 } 8348 8349 /* If socket sndbuf has changed, wake up all per association waiters. */ 8350 void sctp_write_space(struct sock *sk) 8351 { 8352 struct sctp_association *asoc; 8353 8354 /* Wake up the tasks in each wait queue. */ 8355 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8356 __sctp_write_space(asoc); 8357 } 8358 } 8359 8360 /* Is there any sndbuf space available on the socket? 8361 * 8362 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8363 * associations on the same socket. For a UDP-style socket with 8364 * multiple associations, it is possible for it to be "unwriteable" 8365 * prematurely. I assume that this is acceptable because 8366 * a premature "unwriteable" is better than an accidental "writeable" which 8367 * would cause an unwanted block under certain circumstances. For the 1-1 8368 * UDP-style sockets or TCP-style sockets, this code should work. 8369 * - Daisy 8370 */ 8371 static int sctp_writeable(struct sock *sk) 8372 { 8373 int amt = 0; 8374 8375 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8376 if (amt < 0) 8377 amt = 0; 8378 return amt; 8379 } 8380 8381 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8382 * returns immediately with EINPROGRESS. 8383 */ 8384 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8385 { 8386 struct sock *sk = asoc->base.sk; 8387 int err = 0; 8388 long current_timeo = *timeo_p; 8389 DEFINE_WAIT(wait); 8390 8391 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8392 8393 /* Increment the association's refcnt. */ 8394 sctp_association_hold(asoc); 8395 8396 for (;;) { 8397 prepare_to_wait_exclusive(&asoc->wait, &wait, 8398 TASK_INTERRUPTIBLE); 8399 if (!*timeo_p) 8400 goto do_nonblock; 8401 if (sk->sk_shutdown & RCV_SHUTDOWN) 8402 break; 8403 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8404 asoc->base.dead) 8405 goto do_error; 8406 if (signal_pending(current)) 8407 goto do_interrupted; 8408 8409 if (sctp_state(asoc, ESTABLISHED)) 8410 break; 8411 8412 /* Let another process have a go. Since we are going 8413 * to sleep anyway. 8414 */ 8415 release_sock(sk); 8416 current_timeo = schedule_timeout(current_timeo); 8417 lock_sock(sk); 8418 8419 *timeo_p = current_timeo; 8420 } 8421 8422 out: 8423 finish_wait(&asoc->wait, &wait); 8424 8425 /* Release the association's refcnt. */ 8426 sctp_association_put(asoc); 8427 8428 return err; 8429 8430 do_error: 8431 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8432 err = -ETIMEDOUT; 8433 else 8434 err = -ECONNREFUSED; 8435 goto out; 8436 8437 do_interrupted: 8438 err = sock_intr_errno(*timeo_p); 8439 goto out; 8440 8441 do_nonblock: 8442 err = -EINPROGRESS; 8443 goto out; 8444 } 8445 8446 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8447 { 8448 struct sctp_endpoint *ep; 8449 int err = 0; 8450 DEFINE_WAIT(wait); 8451 8452 ep = sctp_sk(sk)->ep; 8453 8454 8455 for (;;) { 8456 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8457 TASK_INTERRUPTIBLE); 8458 8459 if (list_empty(&ep->asocs)) { 8460 release_sock(sk); 8461 timeo = schedule_timeout(timeo); 8462 lock_sock(sk); 8463 } 8464 8465 err = -EINVAL; 8466 if (!sctp_sstate(sk, LISTENING)) 8467 break; 8468 8469 err = 0; 8470 if (!list_empty(&ep->asocs)) 8471 break; 8472 8473 err = sock_intr_errno(timeo); 8474 if (signal_pending(current)) 8475 break; 8476 8477 err = -EAGAIN; 8478 if (!timeo) 8479 break; 8480 } 8481 8482 finish_wait(sk_sleep(sk), &wait); 8483 8484 return err; 8485 } 8486 8487 static void sctp_wait_for_close(struct sock *sk, long timeout) 8488 { 8489 DEFINE_WAIT(wait); 8490 8491 do { 8492 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8493 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8494 break; 8495 release_sock(sk); 8496 timeout = schedule_timeout(timeout); 8497 lock_sock(sk); 8498 } while (!signal_pending(current) && timeout); 8499 8500 finish_wait(sk_sleep(sk), &wait); 8501 } 8502 8503 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8504 { 8505 struct sk_buff *frag; 8506 8507 if (!skb->data_len) 8508 goto done; 8509 8510 /* Don't forget the fragments. */ 8511 skb_walk_frags(skb, frag) 8512 sctp_skb_set_owner_r_frag(frag, sk); 8513 8514 done: 8515 sctp_skb_set_owner_r(skb, sk); 8516 } 8517 8518 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8519 struct sctp_association *asoc) 8520 { 8521 struct inet_sock *inet = inet_sk(sk); 8522 struct inet_sock *newinet; 8523 struct sctp_sock *sp = sctp_sk(sk); 8524 struct sctp_endpoint *ep = sp->ep; 8525 8526 newsk->sk_type = sk->sk_type; 8527 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8528 newsk->sk_flags = sk->sk_flags; 8529 newsk->sk_tsflags = sk->sk_tsflags; 8530 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8531 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8532 newsk->sk_reuse = sk->sk_reuse; 8533 8534 newsk->sk_shutdown = sk->sk_shutdown; 8535 newsk->sk_destruct = sctp_destruct_sock; 8536 newsk->sk_family = sk->sk_family; 8537 newsk->sk_protocol = IPPROTO_SCTP; 8538 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8539 newsk->sk_sndbuf = sk->sk_sndbuf; 8540 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8541 newsk->sk_lingertime = sk->sk_lingertime; 8542 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8543 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8544 newsk->sk_rxhash = sk->sk_rxhash; 8545 8546 newinet = inet_sk(newsk); 8547 8548 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8549 * getsockname() and getpeername() 8550 */ 8551 newinet->inet_sport = inet->inet_sport; 8552 newinet->inet_saddr = inet->inet_saddr; 8553 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8554 newinet->inet_dport = htons(asoc->peer.port); 8555 newinet->pmtudisc = inet->pmtudisc; 8556 newinet->inet_id = asoc->next_tsn ^ jiffies; 8557 8558 newinet->uc_ttl = inet->uc_ttl; 8559 newinet->mc_loop = 1; 8560 newinet->mc_ttl = 1; 8561 newinet->mc_index = 0; 8562 newinet->mc_list = NULL; 8563 8564 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8565 net_enable_timestamp(); 8566 8567 /* Set newsk security attributes from orginal sk and connection 8568 * security attribute from ep. 8569 */ 8570 security_sctp_sk_clone(ep, sk, newsk); 8571 } 8572 8573 static inline void sctp_copy_descendant(struct sock *sk_to, 8574 const struct sock *sk_from) 8575 { 8576 int ancestor_size = sizeof(struct inet_sock) + 8577 sizeof(struct sctp_sock) - 8578 offsetof(struct sctp_sock, auto_asconf_list); 8579 8580 if (sk_from->sk_family == PF_INET6) 8581 ancestor_size += sizeof(struct ipv6_pinfo); 8582 8583 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8584 } 8585 8586 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8587 * and its messages to the newsk. 8588 */ 8589 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8590 struct sctp_association *assoc, 8591 enum sctp_socket_type type) 8592 { 8593 struct sctp_sock *oldsp = sctp_sk(oldsk); 8594 struct sctp_sock *newsp = sctp_sk(newsk); 8595 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8596 struct sctp_endpoint *newep = newsp->ep; 8597 struct sk_buff *skb, *tmp; 8598 struct sctp_ulpevent *event; 8599 struct sctp_bind_hashbucket *head; 8600 8601 /* Migrate socket buffer sizes and all the socket level options to the 8602 * new socket. 8603 */ 8604 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8605 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8606 /* Brute force copy old sctp opt. */ 8607 sctp_copy_descendant(newsk, oldsk); 8608 8609 /* Restore the ep value that was overwritten with the above structure 8610 * copy. 8611 */ 8612 newsp->ep = newep; 8613 newsp->hmac = NULL; 8614 8615 /* Hook this new socket in to the bind_hash list. */ 8616 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8617 inet_sk(oldsk)->inet_num)]; 8618 spin_lock_bh(&head->lock); 8619 pp = sctp_sk(oldsk)->bind_hash; 8620 sk_add_bind_node(newsk, &pp->owner); 8621 sctp_sk(newsk)->bind_hash = pp; 8622 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8623 spin_unlock_bh(&head->lock); 8624 8625 /* Copy the bind_addr list from the original endpoint to the new 8626 * endpoint so that we can handle restarts properly 8627 */ 8628 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8629 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8630 8631 /* Move any messages in the old socket's receive queue that are for the 8632 * peeled off association to the new socket's receive queue. 8633 */ 8634 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8635 event = sctp_skb2event(skb); 8636 if (event->asoc == assoc) { 8637 __skb_unlink(skb, &oldsk->sk_receive_queue); 8638 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8639 sctp_skb_set_owner_r_frag(skb, newsk); 8640 } 8641 } 8642 8643 /* Clean up any messages pending delivery due to partial 8644 * delivery. Three cases: 8645 * 1) No partial deliver; no work. 8646 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8647 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8648 */ 8649 skb_queue_head_init(&newsp->pd_lobby); 8650 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8651 8652 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8653 struct sk_buff_head *queue; 8654 8655 /* Decide which queue to move pd_lobby skbs to. */ 8656 if (assoc->ulpq.pd_mode) { 8657 queue = &newsp->pd_lobby; 8658 } else 8659 queue = &newsk->sk_receive_queue; 8660 8661 /* Walk through the pd_lobby, looking for skbs that 8662 * need moved to the new socket. 8663 */ 8664 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8665 event = sctp_skb2event(skb); 8666 if (event->asoc == assoc) { 8667 __skb_unlink(skb, &oldsp->pd_lobby); 8668 __skb_queue_tail(queue, skb); 8669 sctp_skb_set_owner_r_frag(skb, newsk); 8670 } 8671 } 8672 8673 /* Clear up any skbs waiting for the partial 8674 * delivery to finish. 8675 */ 8676 if (assoc->ulpq.pd_mode) 8677 sctp_clear_pd(oldsk, NULL); 8678 8679 } 8680 8681 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8682 8683 /* Set the type of socket to indicate that it is peeled off from the 8684 * original UDP-style socket or created with the accept() call on a 8685 * TCP-style socket.. 8686 */ 8687 newsp->type = type; 8688 8689 /* Mark the new socket "in-use" by the user so that any packets 8690 * that may arrive on the association after we've moved it are 8691 * queued to the backlog. This prevents a potential race between 8692 * backlog processing on the old socket and new-packet processing 8693 * on the new socket. 8694 * 8695 * The caller has just allocated newsk so we can guarantee that other 8696 * paths won't try to lock it and then oldsk. 8697 */ 8698 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8699 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8700 sctp_assoc_migrate(assoc, newsk); 8701 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8702 8703 /* If the association on the newsk is already closed before accept() 8704 * is called, set RCV_SHUTDOWN flag. 8705 */ 8706 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8707 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8708 newsk->sk_shutdown |= RCV_SHUTDOWN; 8709 } else { 8710 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8711 } 8712 8713 release_sock(newsk); 8714 } 8715 8716 8717 /* This proto struct describes the ULP interface for SCTP. */ 8718 struct proto sctp_prot = { 8719 .name = "SCTP", 8720 .owner = THIS_MODULE, 8721 .close = sctp_close, 8722 .connect = sctp_connect, 8723 .disconnect = sctp_disconnect, 8724 .accept = sctp_accept, 8725 .ioctl = sctp_ioctl, 8726 .init = sctp_init_sock, 8727 .destroy = sctp_destroy_sock, 8728 .shutdown = sctp_shutdown, 8729 .setsockopt = sctp_setsockopt, 8730 .getsockopt = sctp_getsockopt, 8731 .sendmsg = sctp_sendmsg, 8732 .recvmsg = sctp_recvmsg, 8733 .bind = sctp_bind, 8734 .backlog_rcv = sctp_backlog_rcv, 8735 .hash = sctp_hash, 8736 .unhash = sctp_unhash, 8737 .get_port = sctp_get_port, 8738 .obj_size = sizeof(struct sctp_sock), 8739 .useroffset = offsetof(struct sctp_sock, subscribe), 8740 .usersize = offsetof(struct sctp_sock, initmsg) - 8741 offsetof(struct sctp_sock, subscribe) + 8742 sizeof_field(struct sctp_sock, initmsg), 8743 .sysctl_mem = sysctl_sctp_mem, 8744 .sysctl_rmem = sysctl_sctp_rmem, 8745 .sysctl_wmem = sysctl_sctp_wmem, 8746 .memory_pressure = &sctp_memory_pressure, 8747 .enter_memory_pressure = sctp_enter_memory_pressure, 8748 .memory_allocated = &sctp_memory_allocated, 8749 .sockets_allocated = &sctp_sockets_allocated, 8750 }; 8751 8752 #if IS_ENABLED(CONFIG_IPV6) 8753 8754 #include <net/transp_v6.h> 8755 static void sctp_v6_destroy_sock(struct sock *sk) 8756 { 8757 sctp_destroy_sock(sk); 8758 inet6_destroy_sock(sk); 8759 } 8760 8761 struct proto sctpv6_prot = { 8762 .name = "SCTPv6", 8763 .owner = THIS_MODULE, 8764 .close = sctp_close, 8765 .connect = sctp_connect, 8766 .disconnect = sctp_disconnect, 8767 .accept = sctp_accept, 8768 .ioctl = sctp_ioctl, 8769 .init = sctp_init_sock, 8770 .destroy = sctp_v6_destroy_sock, 8771 .shutdown = sctp_shutdown, 8772 .setsockopt = sctp_setsockopt, 8773 .getsockopt = sctp_getsockopt, 8774 .sendmsg = sctp_sendmsg, 8775 .recvmsg = sctp_recvmsg, 8776 .bind = sctp_bind, 8777 .backlog_rcv = sctp_backlog_rcv, 8778 .hash = sctp_hash, 8779 .unhash = sctp_unhash, 8780 .get_port = sctp_get_port, 8781 .obj_size = sizeof(struct sctp6_sock), 8782 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 8783 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 8784 offsetof(struct sctp6_sock, sctp.subscribe) + 8785 sizeof_field(struct sctp6_sock, sctp.initmsg), 8786 .sysctl_mem = sysctl_sctp_mem, 8787 .sysctl_rmem = sysctl_sctp_rmem, 8788 .sysctl_wmem = sysctl_sctp_wmem, 8789 .memory_pressure = &sctp_memory_pressure, 8790 .enter_memory_pressure = sctp_enter_memory_pressure, 8791 .memory_allocated = &sctp_memory_allocated, 8792 .sockets_allocated = &sctp_sockets_allocated, 8793 }; 8794 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8795