xref: /openbmc/linux/net/sctp/socket.c (revision c0605cd6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc);
97 struct percpu_counter sctp_sockets_allocated;
98 
99 static void sctp_enter_memory_pressure(struct sock *sk)
100 {
101 	sctp_memory_pressure = 1;
102 }
103 
104 
105 /* Get the sndbuf space available at the time on the association.  */
106 static inline int sctp_wspace(struct sctp_association *asoc)
107 {
108 	struct sock *sk = asoc->base.sk;
109 
110 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
111 				       : sk_stream_wspace(sk);
112 }
113 
114 /* Increment the used sndbuf space count of the corresponding association by
115  * the size of the outgoing data chunk.
116  * Also, set the skb destructor for sndbuf accounting later.
117  *
118  * Since it is always 1-1 between chunk and skb, and also a new skb is always
119  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
120  * destructor in the data chunk skb for the purpose of the sndbuf space
121  * tracking.
122  */
123 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
124 {
125 	struct sctp_association *asoc = chunk->asoc;
126 	struct sock *sk = asoc->base.sk;
127 
128 	/* The sndbuf space is tracked per association.  */
129 	sctp_association_hold(asoc);
130 
131 	if (chunk->shkey)
132 		sctp_auth_shkey_hold(chunk->shkey);
133 
134 	skb_set_owner_w(chunk->skb, sk);
135 
136 	chunk->skb->destructor = sctp_wfree;
137 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
138 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
139 
140 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
141 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
143 	sk_mem_charge(sk, chunk->skb->truesize);
144 }
145 
146 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
147 {
148 	skb_orphan(chunk->skb);
149 }
150 
151 #define traverse_and_process()	\
152 do {				\
153 	msg = chunk->msg;	\
154 	if (msg == prev_msg)	\
155 		continue;	\
156 	list_for_each_entry(c, &msg->chunks, frag_list) {	\
157 		if ((clear && asoc->base.sk == c->skb->sk) ||	\
158 		    (!clear && asoc->base.sk != c->skb->sk))	\
159 			cb(c);	\
160 	}			\
161 	prev_msg = msg;		\
162 } while (0)
163 
164 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
165 				       bool clear,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_datamsg *msg, *prev_msg = NULL;
170 	struct sctp_outq *q = &asoc->outqueue;
171 	struct sctp_chunk *chunk, *c;
172 	struct sctp_transport *t;
173 
174 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
175 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
176 			traverse_and_process();
177 
178 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
179 		traverse_and_process();
180 
181 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
182 		traverse_and_process();
183 
184 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
185 		traverse_and_process();
186 
187 	list_for_each_entry(chunk, &q->out_chunk_list, list)
188 		traverse_and_process();
189 }
190 
191 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
192 				 void (*cb)(struct sk_buff *, struct sock *))
193 
194 {
195 	struct sk_buff *skb, *tmp;
196 
197 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
198 		cb(skb, sk);
199 
200 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
201 		cb(skb, sk);
202 
203 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
204 		cb(skb, sk);
205 }
206 
207 /* Verify that this is a valid address. */
208 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
209 				   int len)
210 {
211 	struct sctp_af *af;
212 
213 	/* Verify basic sockaddr. */
214 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
215 	if (!af)
216 		return -EINVAL;
217 
218 	/* Is this a valid SCTP address?  */
219 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
220 		return -EINVAL;
221 
222 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
223 		return -EINVAL;
224 
225 	return 0;
226 }
227 
228 /* Look up the association by its id.  If this is not a UDP-style
229  * socket, the ID field is always ignored.
230  */
231 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
232 {
233 	struct sctp_association *asoc = NULL;
234 
235 	/* If this is not a UDP-style socket, assoc id should be ignored. */
236 	if (!sctp_style(sk, UDP)) {
237 		/* Return NULL if the socket state is not ESTABLISHED. It
238 		 * could be a TCP-style listening socket or a socket which
239 		 * hasn't yet called connect() to establish an association.
240 		 */
241 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
242 			return NULL;
243 
244 		/* Get the first and the only association from the list. */
245 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
246 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
247 					  struct sctp_association, asocs);
248 		return asoc;
249 	}
250 
251 	/* Otherwise this is a UDP-style socket. */
252 	if (id <= SCTP_ALL_ASSOC)
253 		return NULL;
254 
255 	spin_lock_bh(&sctp_assocs_id_lock);
256 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
257 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
258 		asoc = NULL;
259 	spin_unlock_bh(&sctp_assocs_id_lock);
260 
261 	return asoc;
262 }
263 
264 /* Look up the transport from an address and an assoc id. If both address and
265  * id are specified, the associations matching the address and the id should be
266  * the same.
267  */
268 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
269 					      struct sockaddr_storage *addr,
270 					      sctp_assoc_t id)
271 {
272 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
273 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
274 	union sctp_addr *laddr = (union sctp_addr *)addr;
275 	struct sctp_transport *transport;
276 
277 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
278 		return NULL;
279 
280 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
281 					       laddr,
282 					       &transport);
283 
284 	if (!addr_asoc)
285 		return NULL;
286 
287 	id_asoc = sctp_id2assoc(sk, id);
288 	if (id_asoc && (id_asoc != addr_asoc))
289 		return NULL;
290 
291 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
292 						(union sctp_addr *)addr);
293 
294 	return transport;
295 }
296 
297 /* API 3.1.2 bind() - UDP Style Syntax
298  * The syntax of bind() is,
299  *
300  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
301  *
302  *   sd      - the socket descriptor returned by socket().
303  *   addr    - the address structure (struct sockaddr_in or struct
304  *             sockaddr_in6 [RFC 2553]),
305  *   addr_len - the size of the address structure.
306  */
307 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
308 {
309 	int retval = 0;
310 
311 	lock_sock(sk);
312 
313 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
314 		 addr, addr_len);
315 
316 	/* Disallow binding twice. */
317 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
318 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
319 				      addr_len);
320 	else
321 		retval = -EINVAL;
322 
323 	release_sock(sk);
324 
325 	return retval;
326 }
327 
328 static int sctp_get_port_local(struct sock *, union sctp_addr *);
329 
330 /* Verify this is a valid sockaddr. */
331 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
332 					union sctp_addr *addr, int len)
333 {
334 	struct sctp_af *af;
335 
336 	/* Check minimum size.  */
337 	if (len < sizeof (struct sockaddr))
338 		return NULL;
339 
340 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
341 		return NULL;
342 
343 	if (addr->sa.sa_family == AF_INET6) {
344 		if (len < SIN6_LEN_RFC2133)
345 			return NULL;
346 		/* V4 mapped address are really of AF_INET family */
347 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
348 		    !opt->pf->af_supported(AF_INET, opt))
349 			return NULL;
350 	}
351 
352 	/* If we get this far, af is valid. */
353 	af = sctp_get_af_specific(addr->sa.sa_family);
354 
355 	if (len < af->sockaddr_len)
356 		return NULL;
357 
358 	return af;
359 }
360 
361 static void sctp_auto_asconf_init(struct sctp_sock *sp)
362 {
363 	struct net *net = sock_net(&sp->inet.sk);
364 
365 	if (net->sctp.default_auto_asconf) {
366 		spin_lock(&net->sctp.addr_wq_lock);
367 		list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
368 		spin_unlock(&net->sctp.addr_wq_lock);
369 		sp->do_auto_asconf = 1;
370 	}
371 }
372 
373 /* Bind a local address either to an endpoint or to an association.  */
374 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
375 {
376 	struct net *net = sock_net(sk);
377 	struct sctp_sock *sp = sctp_sk(sk);
378 	struct sctp_endpoint *ep = sp->ep;
379 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
380 	struct sctp_af *af;
381 	unsigned short snum;
382 	int ret = 0;
383 
384 	/* Common sockaddr verification. */
385 	af = sctp_sockaddr_af(sp, addr, len);
386 	if (!af) {
387 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
388 			 __func__, sk, addr, len);
389 		return -EINVAL;
390 	}
391 
392 	snum = ntohs(addr->v4.sin_port);
393 
394 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
395 		 __func__, sk, &addr->sa, bp->port, snum, len);
396 
397 	/* PF specific bind() address verification. */
398 	if (!sp->pf->bind_verify(sp, addr))
399 		return -EADDRNOTAVAIL;
400 
401 	/* We must either be unbound, or bind to the same port.
402 	 * It's OK to allow 0 ports if we are already bound.
403 	 * We'll just inhert an already bound port in this case
404 	 */
405 	if (bp->port) {
406 		if (!snum)
407 			snum = bp->port;
408 		else if (snum != bp->port) {
409 			pr_debug("%s: new port %d doesn't match existing port "
410 				 "%d\n", __func__, snum, bp->port);
411 			return -EINVAL;
412 		}
413 	}
414 
415 	if (snum && inet_port_requires_bind_service(net, snum) &&
416 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
417 		return -EACCES;
418 
419 	/* See if the address matches any of the addresses we may have
420 	 * already bound before checking against other endpoints.
421 	 */
422 	if (sctp_bind_addr_match(bp, addr, sp))
423 		return -EINVAL;
424 
425 	/* Make sure we are allowed to bind here.
426 	 * The function sctp_get_port_local() does duplicate address
427 	 * detection.
428 	 */
429 	addr->v4.sin_port = htons(snum);
430 	if (sctp_get_port_local(sk, addr))
431 		return -EADDRINUSE;
432 
433 	/* Refresh ephemeral port.  */
434 	if (!bp->port) {
435 		bp->port = inet_sk(sk)->inet_num;
436 		sctp_auto_asconf_init(sp);
437 	}
438 
439 	/* Add the address to the bind address list.
440 	 * Use GFP_ATOMIC since BHs will be disabled.
441 	 */
442 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
443 				 SCTP_ADDR_SRC, GFP_ATOMIC);
444 
445 	if (ret) {
446 		sctp_put_port(sk);
447 		return ret;
448 	}
449 	/* Copy back into socket for getsockname() use. */
450 	inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
451 	sp->pf->to_sk_saddr(addr, sk);
452 
453 	return ret;
454 }
455 
456  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
457  *
458  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
459  * at any one time.  If a sender, after sending an ASCONF chunk, decides
460  * it needs to transfer another ASCONF Chunk, it MUST wait until the
461  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
462  * subsequent ASCONF. Note this restriction binds each side, so at any
463  * time two ASCONF may be in-transit on any given association (one sent
464  * from each endpoint).
465  */
466 static int sctp_send_asconf(struct sctp_association *asoc,
467 			    struct sctp_chunk *chunk)
468 {
469 	int retval = 0;
470 
471 	/* If there is an outstanding ASCONF chunk, queue it for later
472 	 * transmission.
473 	 */
474 	if (asoc->addip_last_asconf) {
475 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
476 		goto out;
477 	}
478 
479 	/* Hold the chunk until an ASCONF_ACK is received. */
480 	sctp_chunk_hold(chunk);
481 	retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
482 	if (retval)
483 		sctp_chunk_free(chunk);
484 	else
485 		asoc->addip_last_asconf = chunk;
486 
487 out:
488 	return retval;
489 }
490 
491 /* Add a list of addresses as bind addresses to local endpoint or
492  * association.
493  *
494  * Basically run through each address specified in the addrs/addrcnt
495  * array/length pair, determine if it is IPv6 or IPv4 and call
496  * sctp_do_bind() on it.
497  *
498  * If any of them fails, then the operation will be reversed and the
499  * ones that were added will be removed.
500  *
501  * Only sctp_setsockopt_bindx() is supposed to call this function.
502  */
503 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
504 {
505 	int cnt;
506 	int retval = 0;
507 	void *addr_buf;
508 	struct sockaddr *sa_addr;
509 	struct sctp_af *af;
510 
511 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
512 		 addrs, addrcnt);
513 
514 	addr_buf = addrs;
515 	for (cnt = 0; cnt < addrcnt; cnt++) {
516 		/* The list may contain either IPv4 or IPv6 address;
517 		 * determine the address length for walking thru the list.
518 		 */
519 		sa_addr = addr_buf;
520 		af = sctp_get_af_specific(sa_addr->sa_family);
521 		if (!af) {
522 			retval = -EINVAL;
523 			goto err_bindx_add;
524 		}
525 
526 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
527 				      af->sockaddr_len);
528 
529 		addr_buf += af->sockaddr_len;
530 
531 err_bindx_add:
532 		if (retval < 0) {
533 			/* Failed. Cleanup the ones that have been added */
534 			if (cnt > 0)
535 				sctp_bindx_rem(sk, addrs, cnt);
536 			return retval;
537 		}
538 	}
539 
540 	return retval;
541 }
542 
543 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
544  * associations that are part of the endpoint indicating that a list of local
545  * addresses are added to the endpoint.
546  *
547  * If any of the addresses is already in the bind address list of the
548  * association, we do not send the chunk for that association.  But it will not
549  * affect other associations.
550  *
551  * Only sctp_setsockopt_bindx() is supposed to call this function.
552  */
553 static int sctp_send_asconf_add_ip(struct sock		*sk,
554 				   struct sockaddr	*addrs,
555 				   int 			addrcnt)
556 {
557 	struct sctp_sock		*sp;
558 	struct sctp_endpoint		*ep;
559 	struct sctp_association		*asoc;
560 	struct sctp_bind_addr		*bp;
561 	struct sctp_chunk		*chunk;
562 	struct sctp_sockaddr_entry	*laddr;
563 	union sctp_addr			*addr;
564 	union sctp_addr			saveaddr;
565 	void				*addr_buf;
566 	struct sctp_af			*af;
567 	struct list_head		*p;
568 	int 				i;
569 	int 				retval = 0;
570 
571 	sp = sctp_sk(sk);
572 	ep = sp->ep;
573 
574 	if (!ep->asconf_enable)
575 		return retval;
576 
577 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
578 		 __func__, sk, addrs, addrcnt);
579 
580 	list_for_each_entry(asoc, &ep->asocs, asocs) {
581 		if (!asoc->peer.asconf_capable)
582 			continue;
583 
584 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
585 			continue;
586 
587 		if (!sctp_state(asoc, ESTABLISHED))
588 			continue;
589 
590 		/* Check if any address in the packed array of addresses is
591 		 * in the bind address list of the association. If so,
592 		 * do not send the asconf chunk to its peer, but continue with
593 		 * other associations.
594 		 */
595 		addr_buf = addrs;
596 		for (i = 0; i < addrcnt; i++) {
597 			addr = addr_buf;
598 			af = sctp_get_af_specific(addr->v4.sin_family);
599 			if (!af) {
600 				retval = -EINVAL;
601 				goto out;
602 			}
603 
604 			if (sctp_assoc_lookup_laddr(asoc, addr))
605 				break;
606 
607 			addr_buf += af->sockaddr_len;
608 		}
609 		if (i < addrcnt)
610 			continue;
611 
612 		/* Use the first valid address in bind addr list of
613 		 * association as Address Parameter of ASCONF CHUNK.
614 		 */
615 		bp = &asoc->base.bind_addr;
616 		p = bp->address_list.next;
617 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
618 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
619 						   addrcnt, SCTP_PARAM_ADD_IP);
620 		if (!chunk) {
621 			retval = -ENOMEM;
622 			goto out;
623 		}
624 
625 		/* Add the new addresses to the bind address list with
626 		 * use_as_src set to 0.
627 		 */
628 		addr_buf = addrs;
629 		for (i = 0; i < addrcnt; i++) {
630 			addr = addr_buf;
631 			af = sctp_get_af_specific(addr->v4.sin_family);
632 			memcpy(&saveaddr, addr, af->sockaddr_len);
633 			retval = sctp_add_bind_addr(bp, &saveaddr,
634 						    sizeof(saveaddr),
635 						    SCTP_ADDR_NEW, GFP_ATOMIC);
636 			addr_buf += af->sockaddr_len;
637 		}
638 		if (asoc->src_out_of_asoc_ok) {
639 			struct sctp_transport *trans;
640 
641 			list_for_each_entry(trans,
642 			    &asoc->peer.transport_addr_list, transports) {
643 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
644 				    2*asoc->pathmtu, 4380));
645 				trans->ssthresh = asoc->peer.i.a_rwnd;
646 				trans->rto = asoc->rto_initial;
647 				sctp_max_rto(asoc, trans);
648 				trans->rtt = trans->srtt = trans->rttvar = 0;
649 				/* Clear the source and route cache */
650 				sctp_transport_route(trans, NULL,
651 						     sctp_sk(asoc->base.sk));
652 			}
653 		}
654 		retval = sctp_send_asconf(asoc, chunk);
655 	}
656 
657 out:
658 	return retval;
659 }
660 
661 /* Remove a list of addresses from bind addresses list.  Do not remove the
662  * last address.
663  *
664  * Basically run through each address specified in the addrs/addrcnt
665  * array/length pair, determine if it is IPv6 or IPv4 and call
666  * sctp_del_bind() on it.
667  *
668  * If any of them fails, then the operation will be reversed and the
669  * ones that were removed will be added back.
670  *
671  * At least one address has to be left; if only one address is
672  * available, the operation will return -EBUSY.
673  *
674  * Only sctp_setsockopt_bindx() is supposed to call this function.
675  */
676 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
677 {
678 	struct sctp_sock *sp = sctp_sk(sk);
679 	struct sctp_endpoint *ep = sp->ep;
680 	int cnt;
681 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
682 	int retval = 0;
683 	void *addr_buf;
684 	union sctp_addr *sa_addr;
685 	struct sctp_af *af;
686 
687 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
688 		 __func__, sk, addrs, addrcnt);
689 
690 	addr_buf = addrs;
691 	for (cnt = 0; cnt < addrcnt; cnt++) {
692 		/* If the bind address list is empty or if there is only one
693 		 * bind address, there is nothing more to be removed (we need
694 		 * at least one address here).
695 		 */
696 		if (list_empty(&bp->address_list) ||
697 		    (sctp_list_single_entry(&bp->address_list))) {
698 			retval = -EBUSY;
699 			goto err_bindx_rem;
700 		}
701 
702 		sa_addr = addr_buf;
703 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
704 		if (!af) {
705 			retval = -EINVAL;
706 			goto err_bindx_rem;
707 		}
708 
709 		if (!af->addr_valid(sa_addr, sp, NULL)) {
710 			retval = -EADDRNOTAVAIL;
711 			goto err_bindx_rem;
712 		}
713 
714 		if (sa_addr->v4.sin_port &&
715 		    sa_addr->v4.sin_port != htons(bp->port)) {
716 			retval = -EINVAL;
717 			goto err_bindx_rem;
718 		}
719 
720 		if (!sa_addr->v4.sin_port)
721 			sa_addr->v4.sin_port = htons(bp->port);
722 
723 		/* FIXME - There is probably a need to check if sk->sk_saddr and
724 		 * sk->sk_rcv_addr are currently set to one of the addresses to
725 		 * be removed. This is something which needs to be looked into
726 		 * when we are fixing the outstanding issues with multi-homing
727 		 * socket routing and failover schemes. Refer to comments in
728 		 * sctp_do_bind(). -daisy
729 		 */
730 		retval = sctp_del_bind_addr(bp, sa_addr);
731 
732 		addr_buf += af->sockaddr_len;
733 err_bindx_rem:
734 		if (retval < 0) {
735 			/* Failed. Add the ones that has been removed back */
736 			if (cnt > 0)
737 				sctp_bindx_add(sk, addrs, cnt);
738 			return retval;
739 		}
740 	}
741 
742 	return retval;
743 }
744 
745 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
746  * the associations that are part of the endpoint indicating that a list of
747  * local addresses are removed from the endpoint.
748  *
749  * If any of the addresses is already in the bind address list of the
750  * association, we do not send the chunk for that association.  But it will not
751  * affect other associations.
752  *
753  * Only sctp_setsockopt_bindx() is supposed to call this function.
754  */
755 static int sctp_send_asconf_del_ip(struct sock		*sk,
756 				   struct sockaddr	*addrs,
757 				   int			addrcnt)
758 {
759 	struct sctp_sock	*sp;
760 	struct sctp_endpoint	*ep;
761 	struct sctp_association	*asoc;
762 	struct sctp_transport	*transport;
763 	struct sctp_bind_addr	*bp;
764 	struct sctp_chunk	*chunk;
765 	union sctp_addr		*laddr;
766 	void			*addr_buf;
767 	struct sctp_af		*af;
768 	struct sctp_sockaddr_entry *saddr;
769 	int 			i;
770 	int 			retval = 0;
771 	int			stored = 0;
772 
773 	chunk = NULL;
774 	sp = sctp_sk(sk);
775 	ep = sp->ep;
776 
777 	if (!ep->asconf_enable)
778 		return retval;
779 
780 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
781 		 __func__, sk, addrs, addrcnt);
782 
783 	list_for_each_entry(asoc, &ep->asocs, asocs) {
784 
785 		if (!asoc->peer.asconf_capable)
786 			continue;
787 
788 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
789 			continue;
790 
791 		if (!sctp_state(asoc, ESTABLISHED))
792 			continue;
793 
794 		/* Check if any address in the packed array of addresses is
795 		 * not present in the bind address list of the association.
796 		 * If so, do not send the asconf chunk to its peer, but
797 		 * continue with other associations.
798 		 */
799 		addr_buf = addrs;
800 		for (i = 0; i < addrcnt; i++) {
801 			laddr = addr_buf;
802 			af = sctp_get_af_specific(laddr->v4.sin_family);
803 			if (!af) {
804 				retval = -EINVAL;
805 				goto out;
806 			}
807 
808 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
809 				break;
810 
811 			addr_buf += af->sockaddr_len;
812 		}
813 		if (i < addrcnt)
814 			continue;
815 
816 		/* Find one address in the association's bind address list
817 		 * that is not in the packed array of addresses. This is to
818 		 * make sure that we do not delete all the addresses in the
819 		 * association.
820 		 */
821 		bp = &asoc->base.bind_addr;
822 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
823 					       addrcnt, sp);
824 		if ((laddr == NULL) && (addrcnt == 1)) {
825 			if (asoc->asconf_addr_del_pending)
826 				continue;
827 			asoc->asconf_addr_del_pending =
828 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
829 			if (asoc->asconf_addr_del_pending == NULL) {
830 				retval = -ENOMEM;
831 				goto out;
832 			}
833 			asoc->asconf_addr_del_pending->sa.sa_family =
834 				    addrs->sa_family;
835 			asoc->asconf_addr_del_pending->v4.sin_port =
836 				    htons(bp->port);
837 			if (addrs->sa_family == AF_INET) {
838 				struct sockaddr_in *sin;
839 
840 				sin = (struct sockaddr_in *)addrs;
841 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
842 			} else if (addrs->sa_family == AF_INET6) {
843 				struct sockaddr_in6 *sin6;
844 
845 				sin6 = (struct sockaddr_in6 *)addrs;
846 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
847 			}
848 
849 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
850 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
851 				 asoc->asconf_addr_del_pending);
852 
853 			asoc->src_out_of_asoc_ok = 1;
854 			stored = 1;
855 			goto skip_mkasconf;
856 		}
857 
858 		if (laddr == NULL)
859 			return -EINVAL;
860 
861 		/* We do not need RCU protection throughout this loop
862 		 * because this is done under a socket lock from the
863 		 * setsockopt call.
864 		 */
865 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
866 						   SCTP_PARAM_DEL_IP);
867 		if (!chunk) {
868 			retval = -ENOMEM;
869 			goto out;
870 		}
871 
872 skip_mkasconf:
873 		/* Reset use_as_src flag for the addresses in the bind address
874 		 * list that are to be deleted.
875 		 */
876 		addr_buf = addrs;
877 		for (i = 0; i < addrcnt; i++) {
878 			laddr = addr_buf;
879 			af = sctp_get_af_specific(laddr->v4.sin_family);
880 			list_for_each_entry(saddr, &bp->address_list, list) {
881 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
882 					saddr->state = SCTP_ADDR_DEL;
883 			}
884 			addr_buf += af->sockaddr_len;
885 		}
886 
887 		/* Update the route and saddr entries for all the transports
888 		 * as some of the addresses in the bind address list are
889 		 * about to be deleted and cannot be used as source addresses.
890 		 */
891 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
892 					transports) {
893 			sctp_transport_route(transport, NULL,
894 					     sctp_sk(asoc->base.sk));
895 		}
896 
897 		if (stored)
898 			/* We don't need to transmit ASCONF */
899 			continue;
900 		retval = sctp_send_asconf(asoc, chunk);
901 	}
902 out:
903 	return retval;
904 }
905 
906 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
907 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
908 {
909 	struct sock *sk = sctp_opt2sk(sp);
910 	union sctp_addr *addr;
911 	struct sctp_af *af;
912 
913 	/* It is safe to write port space in caller. */
914 	addr = &addrw->a;
915 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
916 	af = sctp_get_af_specific(addr->sa.sa_family);
917 	if (!af)
918 		return -EINVAL;
919 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
920 		return -EINVAL;
921 
922 	if (addrw->state == SCTP_ADDR_NEW)
923 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
924 	else
925 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
926 }
927 
928 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
929  *
930  * API 8.1
931  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
932  *                int flags);
933  *
934  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
935  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
936  * or IPv6 addresses.
937  *
938  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
939  * Section 3.1.2 for this usage.
940  *
941  * addrs is a pointer to an array of one or more socket addresses. Each
942  * address is contained in its appropriate structure (i.e. struct
943  * sockaddr_in or struct sockaddr_in6) the family of the address type
944  * must be used to distinguish the address length (note that this
945  * representation is termed a "packed array" of addresses). The caller
946  * specifies the number of addresses in the array with addrcnt.
947  *
948  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
949  * -1, and sets errno to the appropriate error code.
950  *
951  * For SCTP, the port given in each socket address must be the same, or
952  * sctp_bindx() will fail, setting errno to EINVAL.
953  *
954  * The flags parameter is formed from the bitwise OR of zero or more of
955  * the following currently defined flags:
956  *
957  * SCTP_BINDX_ADD_ADDR
958  *
959  * SCTP_BINDX_REM_ADDR
960  *
961  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
962  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
963  * addresses from the association. The two flags are mutually exclusive;
964  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
965  * not remove all addresses from an association; sctp_bindx() will
966  * reject such an attempt with EINVAL.
967  *
968  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
969  * additional addresses with an endpoint after calling bind().  Or use
970  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
971  * socket is associated with so that no new association accepted will be
972  * associated with those addresses. If the endpoint supports dynamic
973  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
974  * endpoint to send the appropriate message to the peer to change the
975  * peers address lists.
976  *
977  * Adding and removing addresses from a connected association is
978  * optional functionality. Implementations that do not support this
979  * functionality should return EOPNOTSUPP.
980  *
981  * Basically do nothing but copying the addresses from user to kernel
982  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
983  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
984  * from userspace.
985  *
986  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
987  * it.
988  *
989  * sk        The sk of the socket
990  * addrs     The pointer to the addresses
991  * addrssize Size of the addrs buffer
992  * op        Operation to perform (add or remove, see the flags of
993  *           sctp_bindx)
994  *
995  * Returns 0 if ok, <0 errno code on error.
996  */
997 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
998 				 int addrs_size, int op)
999 {
1000 	int err;
1001 	int addrcnt = 0;
1002 	int walk_size = 0;
1003 	struct sockaddr *sa_addr;
1004 	void *addr_buf = addrs;
1005 	struct sctp_af *af;
1006 
1007 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1008 		 __func__, sk, addr_buf, addrs_size, op);
1009 
1010 	if (unlikely(addrs_size <= 0))
1011 		return -EINVAL;
1012 
1013 	/* Walk through the addrs buffer and count the number of addresses. */
1014 	while (walk_size < addrs_size) {
1015 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1016 			return -EINVAL;
1017 
1018 		sa_addr = addr_buf;
1019 		af = sctp_get_af_specific(sa_addr->sa_family);
1020 
1021 		/* If the address family is not supported or if this address
1022 		 * causes the address buffer to overflow return EINVAL.
1023 		 */
1024 		if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1025 			return -EINVAL;
1026 		addrcnt++;
1027 		addr_buf += af->sockaddr_len;
1028 		walk_size += af->sockaddr_len;
1029 	}
1030 
1031 	/* Do the work. */
1032 	switch (op) {
1033 	case SCTP_BINDX_ADD_ADDR:
1034 		/* Allow security module to validate bindx addresses. */
1035 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1036 						 addrs, addrs_size);
1037 		if (err)
1038 			return err;
1039 		err = sctp_bindx_add(sk, addrs, addrcnt);
1040 		if (err)
1041 			return err;
1042 		return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1043 	case SCTP_BINDX_REM_ADDR:
1044 		err = sctp_bindx_rem(sk, addrs, addrcnt);
1045 		if (err)
1046 			return err;
1047 		return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1048 
1049 	default:
1050 		return -EINVAL;
1051 	}
1052 }
1053 
1054 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1055 		int addrlen)
1056 {
1057 	int err;
1058 
1059 	lock_sock(sk);
1060 	err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1061 	release_sock(sk);
1062 	return err;
1063 }
1064 
1065 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1066 				 const union sctp_addr *daddr,
1067 				 const struct sctp_initmsg *init,
1068 				 struct sctp_transport **tp)
1069 {
1070 	struct sctp_association *asoc;
1071 	struct sock *sk = ep->base.sk;
1072 	struct net *net = sock_net(sk);
1073 	enum sctp_scope scope;
1074 	int err;
1075 
1076 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1077 		return -EADDRNOTAVAIL;
1078 
1079 	if (!ep->base.bind_addr.port) {
1080 		if (sctp_autobind(sk))
1081 			return -EAGAIN;
1082 	} else {
1083 		if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1084 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1085 			return -EACCES;
1086 	}
1087 
1088 	scope = sctp_scope(daddr);
1089 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1090 	if (!asoc)
1091 		return -ENOMEM;
1092 
1093 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1094 	if (err < 0)
1095 		goto free;
1096 
1097 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1098 	if (!*tp) {
1099 		err = -ENOMEM;
1100 		goto free;
1101 	}
1102 
1103 	if (!init)
1104 		return 0;
1105 
1106 	if (init->sinit_num_ostreams) {
1107 		__u16 outcnt = init->sinit_num_ostreams;
1108 
1109 		asoc->c.sinit_num_ostreams = outcnt;
1110 		/* outcnt has been changed, need to re-init stream */
1111 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1112 		if (err)
1113 			goto free;
1114 	}
1115 
1116 	if (init->sinit_max_instreams)
1117 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1118 
1119 	if (init->sinit_max_attempts)
1120 		asoc->max_init_attempts = init->sinit_max_attempts;
1121 
1122 	if (init->sinit_max_init_timeo)
1123 		asoc->max_init_timeo =
1124 			msecs_to_jiffies(init->sinit_max_init_timeo);
1125 
1126 	return 0;
1127 free:
1128 	sctp_association_free(asoc);
1129 	return err;
1130 }
1131 
1132 static int sctp_connect_add_peer(struct sctp_association *asoc,
1133 				 union sctp_addr *daddr, int addr_len)
1134 {
1135 	struct sctp_endpoint *ep = asoc->ep;
1136 	struct sctp_association *old;
1137 	struct sctp_transport *t;
1138 	int err;
1139 
1140 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1141 	if (err)
1142 		return err;
1143 
1144 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1145 	if (old && old != asoc)
1146 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1147 							    : -EALREADY;
1148 
1149 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1150 		return -EADDRNOTAVAIL;
1151 
1152 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1153 	if (!t)
1154 		return -ENOMEM;
1155 
1156 	return 0;
1157 }
1158 
1159 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1160  *
1161  * Common routine for handling connect() and sctp_connectx().
1162  * Connect will come in with just a single address.
1163  */
1164 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1165 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1166 {
1167 	struct sctp_sock *sp = sctp_sk(sk);
1168 	struct sctp_endpoint *ep = sp->ep;
1169 	struct sctp_transport *transport;
1170 	struct sctp_association *asoc;
1171 	void *addr_buf = kaddrs;
1172 	union sctp_addr *daddr;
1173 	struct sctp_af *af;
1174 	int walk_size, err;
1175 	long timeo;
1176 
1177 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1178 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1179 		return -EISCONN;
1180 
1181 	daddr = addr_buf;
1182 	af = sctp_get_af_specific(daddr->sa.sa_family);
1183 	if (!af || af->sockaddr_len > addrs_size)
1184 		return -EINVAL;
1185 
1186 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1187 	if (err)
1188 		return err;
1189 
1190 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1191 	if (asoc)
1192 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1193 							     : -EALREADY;
1194 
1195 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1196 	if (err)
1197 		return err;
1198 	asoc = transport->asoc;
1199 
1200 	addr_buf += af->sockaddr_len;
1201 	walk_size = af->sockaddr_len;
1202 	while (walk_size < addrs_size) {
1203 		err = -EINVAL;
1204 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1205 			goto out_free;
1206 
1207 		daddr = addr_buf;
1208 		af = sctp_get_af_specific(daddr->sa.sa_family);
1209 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1210 			goto out_free;
1211 
1212 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1213 			goto out_free;
1214 
1215 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1216 		if (err)
1217 			goto out_free;
1218 
1219 		addr_buf  += af->sockaddr_len;
1220 		walk_size += af->sockaddr_len;
1221 	}
1222 
1223 	/* In case the user of sctp_connectx() wants an association
1224 	 * id back, assign one now.
1225 	 */
1226 	if (assoc_id) {
1227 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1228 		if (err < 0)
1229 			goto out_free;
1230 	}
1231 
1232 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1233 	if (err < 0)
1234 		goto out_free;
1235 
1236 	/* Initialize sk's dport and daddr for getpeername() */
1237 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1238 	sp->pf->to_sk_daddr(daddr, sk);
1239 	sk->sk_err = 0;
1240 
1241 	if (assoc_id)
1242 		*assoc_id = asoc->assoc_id;
1243 
1244 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1245 	return sctp_wait_for_connect(asoc, &timeo);
1246 
1247 out_free:
1248 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1249 		 __func__, asoc, kaddrs, err);
1250 	sctp_association_free(asoc);
1251 	return err;
1252 }
1253 
1254 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1255  *
1256  * API 8.9
1257  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1258  * 			sctp_assoc_t *asoc);
1259  *
1260  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1261  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1262  * or IPv6 addresses.
1263  *
1264  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1265  * Section 3.1.2 for this usage.
1266  *
1267  * addrs is a pointer to an array of one or more socket addresses. Each
1268  * address is contained in its appropriate structure (i.e. struct
1269  * sockaddr_in or struct sockaddr_in6) the family of the address type
1270  * must be used to distengish the address length (note that this
1271  * representation is termed a "packed array" of addresses). The caller
1272  * specifies the number of addresses in the array with addrcnt.
1273  *
1274  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1275  * the association id of the new association.  On failure, sctp_connectx()
1276  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1277  * is not touched by the kernel.
1278  *
1279  * For SCTP, the port given in each socket address must be the same, or
1280  * sctp_connectx() will fail, setting errno to EINVAL.
1281  *
1282  * An application can use sctp_connectx to initiate an association with
1283  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1284  * allows a caller to specify multiple addresses at which a peer can be
1285  * reached.  The way the SCTP stack uses the list of addresses to set up
1286  * the association is implementation dependent.  This function only
1287  * specifies that the stack will try to make use of all the addresses in
1288  * the list when needed.
1289  *
1290  * Note that the list of addresses passed in is only used for setting up
1291  * the association.  It does not necessarily equal the set of addresses
1292  * the peer uses for the resulting association.  If the caller wants to
1293  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1294  * retrieve them after the association has been set up.
1295  *
1296  * Basically do nothing but copying the addresses from user to kernel
1297  * land and invoking either sctp_connectx(). This is used for tunneling
1298  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1299  *
1300  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1301  * it.
1302  *
1303  * sk        The sk of the socket
1304  * addrs     The pointer to the addresses
1305  * addrssize Size of the addrs buffer
1306  *
1307  * Returns >=0 if ok, <0 errno code on error.
1308  */
1309 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1310 				      int addrs_size, sctp_assoc_t *assoc_id)
1311 {
1312 	int err = 0, flags = 0;
1313 
1314 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1315 		 __func__, sk, kaddrs, addrs_size);
1316 
1317 	/* make sure the 1st addr's sa_family is accessible later */
1318 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1319 		return -EINVAL;
1320 
1321 	/* Allow security module to validate connectx addresses. */
1322 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1323 					 (struct sockaddr *)kaddrs,
1324 					  addrs_size);
1325 	if (err)
1326 		return err;
1327 
1328 	/* in-kernel sockets don't generally have a file allocated to them
1329 	 * if all they do is call sock_create_kern().
1330 	 */
1331 	if (sk->sk_socket->file)
1332 		flags = sk->sk_socket->file->f_flags;
1333 
1334 	return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1335 }
1336 
1337 /*
1338  * This is an older interface.  It's kept for backward compatibility
1339  * to the option that doesn't provide association id.
1340  */
1341 static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 					struct sockaddr *kaddrs,
1343 					int addrs_size)
1344 {
1345 	return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1346 }
1347 
1348 /*
1349  * New interface for the API.  The since the API is done with a socket
1350  * option, to make it simple we feed back the association id is as a return
1351  * indication to the call.  Error is always negative and association id is
1352  * always positive.
1353  */
1354 static int sctp_setsockopt_connectx(struct sock *sk,
1355 				    struct sockaddr *kaddrs,
1356 				    int addrs_size)
1357 {
1358 	sctp_assoc_t assoc_id = 0;
1359 	int err = 0;
1360 
1361 	err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1362 
1363 	if (err)
1364 		return err;
1365 	else
1366 		return assoc_id;
1367 }
1368 
1369 /*
1370  * New (hopefully final) interface for the API.
1371  * We use the sctp_getaddrs_old structure so that use-space library
1372  * can avoid any unnecessary allocations. The only different part
1373  * is that we store the actual length of the address buffer into the
1374  * addrs_num structure member. That way we can re-use the existing
1375  * code.
1376  */
1377 #ifdef CONFIG_COMPAT
1378 struct compat_sctp_getaddrs_old {
1379 	sctp_assoc_t	assoc_id;
1380 	s32		addr_num;
1381 	compat_uptr_t	addrs;		/* struct sockaddr * */
1382 };
1383 #endif
1384 
1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 				     char __user *optval,
1387 				     int __user *optlen)
1388 {
1389 	struct sctp_getaddrs_old param;
1390 	sctp_assoc_t assoc_id = 0;
1391 	struct sockaddr *kaddrs;
1392 	int err = 0;
1393 
1394 #ifdef CONFIG_COMPAT
1395 	if (in_compat_syscall()) {
1396 		struct compat_sctp_getaddrs_old param32;
1397 
1398 		if (len < sizeof(param32))
1399 			return -EINVAL;
1400 		if (copy_from_user(&param32, optval, sizeof(param32)))
1401 			return -EFAULT;
1402 
1403 		param.assoc_id = param32.assoc_id;
1404 		param.addr_num = param32.addr_num;
1405 		param.addrs = compat_ptr(param32.addrs);
1406 	} else
1407 #endif
1408 	{
1409 		if (len < sizeof(param))
1410 			return -EINVAL;
1411 		if (copy_from_user(&param, optval, sizeof(param)))
1412 			return -EFAULT;
1413 	}
1414 
1415 	kaddrs = memdup_user(param.addrs, param.addr_num);
1416 	if (IS_ERR(kaddrs))
1417 		return PTR_ERR(kaddrs);
1418 
1419 	err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1420 	kfree(kaddrs);
1421 	if (err == 0 || err == -EINPROGRESS) {
1422 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1423 			return -EFAULT;
1424 		if (put_user(sizeof(assoc_id), optlen))
1425 			return -EFAULT;
1426 	}
1427 
1428 	return err;
1429 }
1430 
1431 /* API 3.1.4 close() - UDP Style Syntax
1432  * Applications use close() to perform graceful shutdown (as described in
1433  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1434  * by a UDP-style socket.
1435  *
1436  * The syntax is
1437  *
1438  *   ret = close(int sd);
1439  *
1440  *   sd      - the socket descriptor of the associations to be closed.
1441  *
1442  * To gracefully shutdown a specific association represented by the
1443  * UDP-style socket, an application should use the sendmsg() call,
1444  * passing no user data, but including the appropriate flag in the
1445  * ancillary data (see Section xxxx).
1446  *
1447  * If sd in the close() call is a branched-off socket representing only
1448  * one association, the shutdown is performed on that association only.
1449  *
1450  * 4.1.6 close() - TCP Style Syntax
1451  *
1452  * Applications use close() to gracefully close down an association.
1453  *
1454  * The syntax is:
1455  *
1456  *    int close(int sd);
1457  *
1458  *      sd      - the socket descriptor of the association to be closed.
1459  *
1460  * After an application calls close() on a socket descriptor, no further
1461  * socket operations will succeed on that descriptor.
1462  *
1463  * API 7.1.4 SO_LINGER
1464  *
1465  * An application using the TCP-style socket can use this option to
1466  * perform the SCTP ABORT primitive.  The linger option structure is:
1467  *
1468  *  struct  linger {
1469  *     int     l_onoff;                // option on/off
1470  *     int     l_linger;               // linger time
1471  * };
1472  *
1473  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1474  * to 0, calling close() is the same as the ABORT primitive.  If the
1475  * value is set to a negative value, the setsockopt() call will return
1476  * an error.  If the value is set to a positive value linger_time, the
1477  * close() can be blocked for at most linger_time ms.  If the graceful
1478  * shutdown phase does not finish during this period, close() will
1479  * return but the graceful shutdown phase continues in the system.
1480  */
1481 static void sctp_close(struct sock *sk, long timeout)
1482 {
1483 	struct net *net = sock_net(sk);
1484 	struct sctp_endpoint *ep;
1485 	struct sctp_association *asoc;
1486 	struct list_head *pos, *temp;
1487 	unsigned int data_was_unread;
1488 
1489 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1490 
1491 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1492 	sk->sk_shutdown = SHUTDOWN_MASK;
1493 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1494 
1495 	ep = sctp_sk(sk)->ep;
1496 
1497 	/* Clean up any skbs sitting on the receive queue.  */
1498 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1499 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1500 
1501 	/* Walk all associations on an endpoint.  */
1502 	list_for_each_safe(pos, temp, &ep->asocs) {
1503 		asoc = list_entry(pos, struct sctp_association, asocs);
1504 
1505 		if (sctp_style(sk, TCP)) {
1506 			/* A closed association can still be in the list if
1507 			 * it belongs to a TCP-style listening socket that is
1508 			 * not yet accepted. If so, free it. If not, send an
1509 			 * ABORT or SHUTDOWN based on the linger options.
1510 			 */
1511 			if (sctp_state(asoc, CLOSED)) {
1512 				sctp_association_free(asoc);
1513 				continue;
1514 			}
1515 		}
1516 
1517 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1518 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1519 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1520 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1521 			struct sctp_chunk *chunk;
1522 
1523 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1524 			sctp_primitive_ABORT(net, asoc, chunk);
1525 		} else
1526 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1527 	}
1528 
1529 	/* On a TCP-style socket, block for at most linger_time if set. */
1530 	if (sctp_style(sk, TCP) && timeout)
1531 		sctp_wait_for_close(sk, timeout);
1532 
1533 	/* This will run the backlog queue.  */
1534 	release_sock(sk);
1535 
1536 	/* Supposedly, no process has access to the socket, but
1537 	 * the net layers still may.
1538 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1539 	 * held and that should be grabbed before socket lock.
1540 	 */
1541 	spin_lock_bh(&net->sctp.addr_wq_lock);
1542 	bh_lock_sock_nested(sk);
1543 
1544 	/* Hold the sock, since sk_common_release() will put sock_put()
1545 	 * and we have just a little more cleanup.
1546 	 */
1547 	sock_hold(sk);
1548 	sk_common_release(sk);
1549 
1550 	bh_unlock_sock(sk);
1551 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1552 
1553 	sock_put(sk);
1554 
1555 	SCTP_DBG_OBJCNT_DEC(sock);
1556 }
1557 
1558 /* Handle EPIPE error. */
1559 static int sctp_error(struct sock *sk, int flags, int err)
1560 {
1561 	if (err == -EPIPE)
1562 		err = sock_error(sk) ? : -EPIPE;
1563 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1564 		send_sig(SIGPIPE, current, 0);
1565 	return err;
1566 }
1567 
1568 /* API 3.1.3 sendmsg() - UDP Style Syntax
1569  *
1570  * An application uses sendmsg() and recvmsg() calls to transmit data to
1571  * and receive data from its peer.
1572  *
1573  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1574  *                  int flags);
1575  *
1576  *  socket  - the socket descriptor of the endpoint.
1577  *  message - pointer to the msghdr structure which contains a single
1578  *            user message and possibly some ancillary data.
1579  *
1580  *            See Section 5 for complete description of the data
1581  *            structures.
1582  *
1583  *  flags   - flags sent or received with the user message, see Section
1584  *            5 for complete description of the flags.
1585  *
1586  * Note:  This function could use a rewrite especially when explicit
1587  * connect support comes in.
1588  */
1589 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1590 
1591 static int sctp_msghdr_parse(const struct msghdr *msg,
1592 			     struct sctp_cmsgs *cmsgs);
1593 
1594 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1595 			      struct sctp_sndrcvinfo *srinfo,
1596 			      const struct msghdr *msg, size_t msg_len)
1597 {
1598 	__u16 sflags;
1599 	int err;
1600 
1601 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1602 		return -EPIPE;
1603 
1604 	if (msg_len > sk->sk_sndbuf)
1605 		return -EMSGSIZE;
1606 
1607 	memset(cmsgs, 0, sizeof(*cmsgs));
1608 	err = sctp_msghdr_parse(msg, cmsgs);
1609 	if (err) {
1610 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1611 		return err;
1612 	}
1613 
1614 	memset(srinfo, 0, sizeof(*srinfo));
1615 	if (cmsgs->srinfo) {
1616 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1617 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1618 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1619 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1620 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1621 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1622 	}
1623 
1624 	if (cmsgs->sinfo) {
1625 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1626 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1627 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1628 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1629 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1630 	}
1631 
1632 	if (cmsgs->prinfo) {
1633 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1634 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1635 				   cmsgs->prinfo->pr_policy);
1636 	}
1637 
1638 	sflags = srinfo->sinfo_flags;
1639 	if (!sflags && msg_len)
1640 		return 0;
1641 
1642 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1643 		return -EINVAL;
1644 
1645 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1646 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1647 		return -EINVAL;
1648 
1649 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1650 		return -EINVAL;
1651 
1652 	return 0;
1653 }
1654 
1655 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1656 				 struct sctp_cmsgs *cmsgs,
1657 				 union sctp_addr *daddr,
1658 				 struct sctp_transport **tp)
1659 {
1660 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1661 	struct sctp_association *asoc;
1662 	struct cmsghdr *cmsg;
1663 	__be32 flowinfo = 0;
1664 	struct sctp_af *af;
1665 	int err;
1666 
1667 	*tp = NULL;
1668 
1669 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1670 		return -EINVAL;
1671 
1672 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1673 				    sctp_sstate(sk, CLOSING)))
1674 		return -EADDRNOTAVAIL;
1675 
1676 	/* Label connection socket for first association 1-to-many
1677 	 * style for client sequence socket()->sendmsg(). This
1678 	 * needs to be done before sctp_assoc_add_peer() as that will
1679 	 * set up the initial packet that needs to account for any
1680 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1681 	 */
1682 	af = sctp_get_af_specific(daddr->sa.sa_family);
1683 	if (!af)
1684 		return -EINVAL;
1685 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1686 					 (struct sockaddr *)daddr,
1687 					 af->sockaddr_len);
1688 	if (err < 0)
1689 		return err;
1690 
1691 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1692 	if (err)
1693 		return err;
1694 	asoc = (*tp)->asoc;
1695 
1696 	if (!cmsgs->addrs_msg)
1697 		return 0;
1698 
1699 	if (daddr->sa.sa_family == AF_INET6)
1700 		flowinfo = daddr->v6.sin6_flowinfo;
1701 
1702 	/* sendv addr list parse */
1703 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1704 		union sctp_addr _daddr;
1705 		int dlen;
1706 
1707 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1708 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1709 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1710 			continue;
1711 
1712 		daddr = &_daddr;
1713 		memset(daddr, 0, sizeof(*daddr));
1714 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1715 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1716 			if (dlen < sizeof(struct in_addr)) {
1717 				err = -EINVAL;
1718 				goto free;
1719 			}
1720 
1721 			dlen = sizeof(struct in_addr);
1722 			daddr->v4.sin_family = AF_INET;
1723 			daddr->v4.sin_port = htons(asoc->peer.port);
1724 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1725 		} else {
1726 			if (dlen < sizeof(struct in6_addr)) {
1727 				err = -EINVAL;
1728 				goto free;
1729 			}
1730 
1731 			dlen = sizeof(struct in6_addr);
1732 			daddr->v6.sin6_flowinfo = flowinfo;
1733 			daddr->v6.sin6_family = AF_INET6;
1734 			daddr->v6.sin6_port = htons(asoc->peer.port);
1735 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1736 		}
1737 
1738 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1739 		if (err)
1740 			goto free;
1741 	}
1742 
1743 	return 0;
1744 
1745 free:
1746 	sctp_association_free(asoc);
1747 	return err;
1748 }
1749 
1750 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1751 				     __u16 sflags, struct msghdr *msg,
1752 				     size_t msg_len)
1753 {
1754 	struct sock *sk = asoc->base.sk;
1755 	struct net *net = sock_net(sk);
1756 
1757 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1758 		return -EPIPE;
1759 
1760 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1761 	    !sctp_state(asoc, ESTABLISHED))
1762 		return 0;
1763 
1764 	if (sflags & SCTP_EOF) {
1765 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1766 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1767 
1768 		return 0;
1769 	}
1770 
1771 	if (sflags & SCTP_ABORT) {
1772 		struct sctp_chunk *chunk;
1773 
1774 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1775 		if (!chunk)
1776 			return -ENOMEM;
1777 
1778 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1779 		sctp_primitive_ABORT(net, asoc, chunk);
1780 		iov_iter_revert(&msg->msg_iter, msg_len);
1781 
1782 		return 0;
1783 	}
1784 
1785 	return 1;
1786 }
1787 
1788 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1789 				struct msghdr *msg, size_t msg_len,
1790 				struct sctp_transport *transport,
1791 				struct sctp_sndrcvinfo *sinfo)
1792 {
1793 	struct sock *sk = asoc->base.sk;
1794 	struct sctp_sock *sp = sctp_sk(sk);
1795 	struct net *net = sock_net(sk);
1796 	struct sctp_datamsg *datamsg;
1797 	bool wait_connect = false;
1798 	struct sctp_chunk *chunk;
1799 	long timeo;
1800 	int err;
1801 
1802 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1803 		err = -EINVAL;
1804 		goto err;
1805 	}
1806 
1807 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1808 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1809 		if (err)
1810 			goto err;
1811 	}
1812 
1813 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1814 		err = -EMSGSIZE;
1815 		goto err;
1816 	}
1817 
1818 	if (asoc->pmtu_pending) {
1819 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1820 			sctp_assoc_sync_pmtu(asoc);
1821 		asoc->pmtu_pending = 0;
1822 	}
1823 
1824 	if (sctp_wspace(asoc) < (int)msg_len)
1825 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1826 
1827 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1828 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1829 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1830 		if (err)
1831 			goto err;
1832 	}
1833 
1834 	if (sctp_state(asoc, CLOSED)) {
1835 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1836 		if (err)
1837 			goto err;
1838 
1839 		if (asoc->ep->intl_enable) {
1840 			timeo = sock_sndtimeo(sk, 0);
1841 			err = sctp_wait_for_connect(asoc, &timeo);
1842 			if (err) {
1843 				err = -ESRCH;
1844 				goto err;
1845 			}
1846 		} else {
1847 			wait_connect = true;
1848 		}
1849 
1850 		pr_debug("%s: we associated primitively\n", __func__);
1851 	}
1852 
1853 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1854 	if (IS_ERR(datamsg)) {
1855 		err = PTR_ERR(datamsg);
1856 		goto err;
1857 	}
1858 
1859 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1860 
1861 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1862 		sctp_chunk_hold(chunk);
1863 		sctp_set_owner_w(chunk);
1864 		chunk->transport = transport;
1865 	}
1866 
1867 	err = sctp_primitive_SEND(net, asoc, datamsg);
1868 	if (err) {
1869 		sctp_datamsg_free(datamsg);
1870 		goto err;
1871 	}
1872 
1873 	pr_debug("%s: we sent primitively\n", __func__);
1874 
1875 	sctp_datamsg_put(datamsg);
1876 
1877 	if (unlikely(wait_connect)) {
1878 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1879 		sctp_wait_for_connect(asoc, &timeo);
1880 	}
1881 
1882 	err = msg_len;
1883 
1884 err:
1885 	return err;
1886 }
1887 
1888 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1889 					       const struct msghdr *msg,
1890 					       struct sctp_cmsgs *cmsgs)
1891 {
1892 	union sctp_addr *daddr = NULL;
1893 	int err;
1894 
1895 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1896 		int len = msg->msg_namelen;
1897 
1898 		if (len > sizeof(*daddr))
1899 			len = sizeof(*daddr);
1900 
1901 		daddr = (union sctp_addr *)msg->msg_name;
1902 
1903 		err = sctp_verify_addr(sk, daddr, len);
1904 		if (err)
1905 			return ERR_PTR(err);
1906 	}
1907 
1908 	return daddr;
1909 }
1910 
1911 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1912 				      struct sctp_sndrcvinfo *sinfo,
1913 				      struct sctp_cmsgs *cmsgs)
1914 {
1915 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1916 		sinfo->sinfo_stream = asoc->default_stream;
1917 		sinfo->sinfo_ppid = asoc->default_ppid;
1918 		sinfo->sinfo_context = asoc->default_context;
1919 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1920 
1921 		if (!cmsgs->prinfo)
1922 			sinfo->sinfo_flags = asoc->default_flags;
1923 	}
1924 
1925 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1926 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1927 
1928 	if (cmsgs->authinfo) {
1929 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1930 		 * sinfo_ssn to save the keyid on tx path.
1931 		 */
1932 		sinfo->sinfo_tsn = 1;
1933 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1934 	}
1935 }
1936 
1937 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1938 {
1939 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1940 	struct sctp_transport *transport = NULL;
1941 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1942 	struct sctp_association *asoc, *tmp;
1943 	struct sctp_cmsgs cmsgs;
1944 	union sctp_addr *daddr;
1945 	bool new = false;
1946 	__u16 sflags;
1947 	int err;
1948 
1949 	/* Parse and get snd_info */
1950 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1951 	if (err)
1952 		goto out;
1953 
1954 	sinfo  = &_sinfo;
1955 	sflags = sinfo->sinfo_flags;
1956 
1957 	/* Get daddr from msg */
1958 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1959 	if (IS_ERR(daddr)) {
1960 		err = PTR_ERR(daddr);
1961 		goto out;
1962 	}
1963 
1964 	lock_sock(sk);
1965 
1966 	/* SCTP_SENDALL process */
1967 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1968 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1969 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1970 							msg_len);
1971 			if (err == 0)
1972 				continue;
1973 			if (err < 0)
1974 				goto out_unlock;
1975 
1976 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1977 
1978 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1979 						   NULL, sinfo);
1980 			if (err < 0)
1981 				goto out_unlock;
1982 
1983 			iov_iter_revert(&msg->msg_iter, err);
1984 		}
1985 
1986 		goto out_unlock;
1987 	}
1988 
1989 	/* Get and check or create asoc */
1990 	if (daddr) {
1991 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1992 		if (asoc) {
1993 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1994 							msg_len);
1995 			if (err <= 0)
1996 				goto out_unlock;
1997 		} else {
1998 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1999 						    &transport);
2000 			if (err)
2001 				goto out_unlock;
2002 
2003 			asoc = transport->asoc;
2004 			new = true;
2005 		}
2006 
2007 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2008 			transport = NULL;
2009 	} else {
2010 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2011 		if (!asoc) {
2012 			err = -EPIPE;
2013 			goto out_unlock;
2014 		}
2015 
2016 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2017 		if (err <= 0)
2018 			goto out_unlock;
2019 	}
2020 
2021 	/* Update snd_info with the asoc */
2022 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2023 
2024 	/* Send msg to the asoc */
2025 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2026 	if (err < 0 && err != -ESRCH && new)
2027 		sctp_association_free(asoc);
2028 
2029 out_unlock:
2030 	release_sock(sk);
2031 out:
2032 	return sctp_error(sk, msg->msg_flags, err);
2033 }
2034 
2035 /* This is an extended version of skb_pull() that removes the data from the
2036  * start of a skb even when data is spread across the list of skb's in the
2037  * frag_list. len specifies the total amount of data that needs to be removed.
2038  * when 'len' bytes could be removed from the skb, it returns 0.
2039  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2040  * could not be removed.
2041  */
2042 static int sctp_skb_pull(struct sk_buff *skb, int len)
2043 {
2044 	struct sk_buff *list;
2045 	int skb_len = skb_headlen(skb);
2046 	int rlen;
2047 
2048 	if (len <= skb_len) {
2049 		__skb_pull(skb, len);
2050 		return 0;
2051 	}
2052 	len -= skb_len;
2053 	__skb_pull(skb, skb_len);
2054 
2055 	skb_walk_frags(skb, list) {
2056 		rlen = sctp_skb_pull(list, len);
2057 		skb->len -= (len-rlen);
2058 		skb->data_len -= (len-rlen);
2059 
2060 		if (!rlen)
2061 			return 0;
2062 
2063 		len = rlen;
2064 	}
2065 
2066 	return len;
2067 }
2068 
2069 /* API 3.1.3  recvmsg() - UDP Style Syntax
2070  *
2071  *  ssize_t recvmsg(int socket, struct msghdr *message,
2072  *                    int flags);
2073  *
2074  *  socket  - the socket descriptor of the endpoint.
2075  *  message - pointer to the msghdr structure which contains a single
2076  *            user message and possibly some ancillary data.
2077  *
2078  *            See Section 5 for complete description of the data
2079  *            structures.
2080  *
2081  *  flags   - flags sent or received with the user message, see Section
2082  *            5 for complete description of the flags.
2083  */
2084 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2085 			int flags, int *addr_len)
2086 {
2087 	struct sctp_ulpevent *event = NULL;
2088 	struct sctp_sock *sp = sctp_sk(sk);
2089 	struct sk_buff *skb, *head_skb;
2090 	int copied;
2091 	int err = 0;
2092 	int skb_len;
2093 
2094 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2095 		 __func__, sk, msg, len, flags, addr_len);
2096 
2097 	lock_sock(sk);
2098 
2099 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2100 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2101 		err = -ENOTCONN;
2102 		goto out;
2103 	}
2104 
2105 	skb = sctp_skb_recv_datagram(sk, flags, &err);
2106 	if (!skb)
2107 		goto out;
2108 
2109 	/* Get the total length of the skb including any skb's in the
2110 	 * frag_list.
2111 	 */
2112 	skb_len = skb->len;
2113 
2114 	copied = skb_len;
2115 	if (copied > len)
2116 		copied = len;
2117 
2118 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2119 
2120 	event = sctp_skb2event(skb);
2121 
2122 	if (err)
2123 		goto out_free;
2124 
2125 	if (event->chunk && event->chunk->head_skb)
2126 		head_skb = event->chunk->head_skb;
2127 	else
2128 		head_skb = skb;
2129 	sock_recv_cmsgs(msg, sk, head_skb);
2130 	if (sctp_ulpevent_is_notification(event)) {
2131 		msg->msg_flags |= MSG_NOTIFICATION;
2132 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2133 	} else {
2134 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2135 	}
2136 
2137 	/* Check if we allow SCTP_NXTINFO. */
2138 	if (sp->recvnxtinfo)
2139 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2140 	/* Check if we allow SCTP_RCVINFO. */
2141 	if (sp->recvrcvinfo)
2142 		sctp_ulpevent_read_rcvinfo(event, msg);
2143 	/* Check if we allow SCTP_SNDRCVINFO. */
2144 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2145 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2146 
2147 	err = copied;
2148 
2149 	/* If skb's length exceeds the user's buffer, update the skb and
2150 	 * push it back to the receive_queue so that the next call to
2151 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2152 	 */
2153 	if (skb_len > copied) {
2154 		msg->msg_flags &= ~MSG_EOR;
2155 		if (flags & MSG_PEEK)
2156 			goto out_free;
2157 		sctp_skb_pull(skb, copied);
2158 		skb_queue_head(&sk->sk_receive_queue, skb);
2159 
2160 		/* When only partial message is copied to the user, increase
2161 		 * rwnd by that amount. If all the data in the skb is read,
2162 		 * rwnd is updated when the event is freed.
2163 		 */
2164 		if (!sctp_ulpevent_is_notification(event))
2165 			sctp_assoc_rwnd_increase(event->asoc, copied);
2166 		goto out;
2167 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2168 		   (event->msg_flags & MSG_EOR))
2169 		msg->msg_flags |= MSG_EOR;
2170 	else
2171 		msg->msg_flags &= ~MSG_EOR;
2172 
2173 out_free:
2174 	if (flags & MSG_PEEK) {
2175 		/* Release the skb reference acquired after peeking the skb in
2176 		 * sctp_skb_recv_datagram().
2177 		 */
2178 		kfree_skb(skb);
2179 	} else {
2180 		/* Free the event which includes releasing the reference to
2181 		 * the owner of the skb, freeing the skb and updating the
2182 		 * rwnd.
2183 		 */
2184 		sctp_ulpevent_free(event);
2185 	}
2186 out:
2187 	release_sock(sk);
2188 	return err;
2189 }
2190 
2191 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2192  *
2193  * This option is a on/off flag.  If enabled no SCTP message
2194  * fragmentation will be performed.  Instead if a message being sent
2195  * exceeds the current PMTU size, the message will NOT be sent and
2196  * instead a error will be indicated to the user.
2197  */
2198 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2199 					     unsigned int optlen)
2200 {
2201 	if (optlen < sizeof(int))
2202 		return -EINVAL;
2203 	sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2204 	return 0;
2205 }
2206 
2207 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2208 				  unsigned int optlen)
2209 {
2210 	struct sctp_sock *sp = sctp_sk(sk);
2211 	struct sctp_association *asoc;
2212 	int i;
2213 
2214 	if (optlen > sizeof(struct sctp_event_subscribe))
2215 		return -EINVAL;
2216 
2217 	for (i = 0; i < optlen; i++)
2218 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2219 				       sn_type[i]);
2220 
2221 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2222 		asoc->subscribe = sctp_sk(sk)->subscribe;
2223 
2224 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2225 	 * if there is no data to be sent or retransmit, the stack will
2226 	 * immediately send up this notification.
2227 	 */
2228 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2229 		struct sctp_ulpevent *event;
2230 
2231 		asoc = sctp_id2assoc(sk, 0);
2232 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2233 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2234 					GFP_USER | __GFP_NOWARN);
2235 			if (!event)
2236 				return -ENOMEM;
2237 
2238 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2239 		}
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2246  *
2247  * This socket option is applicable to the UDP-style socket only.  When
2248  * set it will cause associations that are idle for more than the
2249  * specified number of seconds to automatically close.  An association
2250  * being idle is defined an association that has NOT sent or received
2251  * user data.  The special value of '0' indicates that no automatic
2252  * close of any associations should be performed.  The option expects an
2253  * integer defining the number of seconds of idle time before an
2254  * association is closed.
2255  */
2256 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2257 				     unsigned int optlen)
2258 {
2259 	struct sctp_sock *sp = sctp_sk(sk);
2260 	struct net *net = sock_net(sk);
2261 
2262 	/* Applicable to UDP-style socket only */
2263 	if (sctp_style(sk, TCP))
2264 		return -EOPNOTSUPP;
2265 	if (optlen != sizeof(int))
2266 		return -EINVAL;
2267 
2268 	sp->autoclose = *optval;
2269 	if (sp->autoclose > net->sctp.max_autoclose)
2270 		sp->autoclose = net->sctp.max_autoclose;
2271 
2272 	return 0;
2273 }
2274 
2275 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2276  *
2277  * Applications can enable or disable heartbeats for any peer address of
2278  * an association, modify an address's heartbeat interval, force a
2279  * heartbeat to be sent immediately, and adjust the address's maximum
2280  * number of retransmissions sent before an address is considered
2281  * unreachable.  The following structure is used to access and modify an
2282  * address's parameters:
2283  *
2284  *  struct sctp_paddrparams {
2285  *     sctp_assoc_t            spp_assoc_id;
2286  *     struct sockaddr_storage spp_address;
2287  *     uint32_t                spp_hbinterval;
2288  *     uint16_t                spp_pathmaxrxt;
2289  *     uint32_t                spp_pathmtu;
2290  *     uint32_t                spp_sackdelay;
2291  *     uint32_t                spp_flags;
2292  *     uint32_t                spp_ipv6_flowlabel;
2293  *     uint8_t                 spp_dscp;
2294  * };
2295  *
2296  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2297  *                     application, and identifies the association for
2298  *                     this query.
2299  *   spp_address     - This specifies which address is of interest.
2300  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2301  *                     in milliseconds.  If a  value of zero
2302  *                     is present in this field then no changes are to
2303  *                     be made to this parameter.
2304  *   spp_pathmaxrxt  - This contains the maximum number of
2305  *                     retransmissions before this address shall be
2306  *                     considered unreachable. If a  value of zero
2307  *                     is present in this field then no changes are to
2308  *                     be made to this parameter.
2309  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2310  *                     specified here will be the "fixed" path mtu.
2311  *                     Note that if the spp_address field is empty
2312  *                     then all associations on this address will
2313  *                     have this fixed path mtu set upon them.
2314  *
2315  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2316  *                     the number of milliseconds that sacks will be delayed
2317  *                     for. This value will apply to all addresses of an
2318  *                     association if the spp_address field is empty. Note
2319  *                     also, that if delayed sack is enabled and this
2320  *                     value is set to 0, no change is made to the last
2321  *                     recorded delayed sack timer value.
2322  *
2323  *   spp_flags       - These flags are used to control various features
2324  *                     on an association. The flag field may contain
2325  *                     zero or more of the following options.
2326  *
2327  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2328  *                     specified address. Note that if the address
2329  *                     field is empty all addresses for the association
2330  *                     have heartbeats enabled upon them.
2331  *
2332  *                     SPP_HB_DISABLE - Disable heartbeats on the
2333  *                     speicifed address. Note that if the address
2334  *                     field is empty all addresses for the association
2335  *                     will have their heartbeats disabled. Note also
2336  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2337  *                     mutually exclusive, only one of these two should
2338  *                     be specified. Enabling both fields will have
2339  *                     undetermined results.
2340  *
2341  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2342  *                     to be made immediately.
2343  *
2344  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2345  *                     heartbeat delayis to be set to the value of 0
2346  *                     milliseconds.
2347  *
2348  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2349  *                     discovery upon the specified address. Note that
2350  *                     if the address feild is empty then all addresses
2351  *                     on the association are effected.
2352  *
2353  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2354  *                     discovery upon the specified address. Note that
2355  *                     if the address feild is empty then all addresses
2356  *                     on the association are effected. Not also that
2357  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2358  *                     exclusive. Enabling both will have undetermined
2359  *                     results.
2360  *
2361  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2362  *                     on delayed sack. The time specified in spp_sackdelay
2363  *                     is used to specify the sack delay for this address. Note
2364  *                     that if spp_address is empty then all addresses will
2365  *                     enable delayed sack and take on the sack delay
2366  *                     value specified in spp_sackdelay.
2367  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2368  *                     off delayed sack. If the spp_address field is blank then
2369  *                     delayed sack is disabled for the entire association. Note
2370  *                     also that this field is mutually exclusive to
2371  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2372  *                     results.
2373  *
2374  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2375  *                     setting of the IPV6 flow label value.  The value is
2376  *                     contained in the spp_ipv6_flowlabel field.
2377  *                     Upon retrieval, this flag will be set to indicate that
2378  *                     the spp_ipv6_flowlabel field has a valid value returned.
2379  *                     If a specific destination address is set (in the
2380  *                     spp_address field), then the value returned is that of
2381  *                     the address.  If just an association is specified (and
2382  *                     no address), then the association's default flow label
2383  *                     is returned.  If neither an association nor a destination
2384  *                     is specified, then the socket's default flow label is
2385  *                     returned.  For non-IPv6 sockets, this flag will be left
2386  *                     cleared.
2387  *
2388  *                     SPP_DSCP:  Setting this flag enables the setting of the
2389  *                     Differentiated Services Code Point (DSCP) value
2390  *                     associated with either the association or a specific
2391  *                     address.  The value is obtained in the spp_dscp field.
2392  *                     Upon retrieval, this flag will be set to indicate that
2393  *                     the spp_dscp field has a valid value returned.  If a
2394  *                     specific destination address is set when called (in the
2395  *                     spp_address field), then that specific destination
2396  *                     address's DSCP value is returned.  If just an association
2397  *                     is specified, then the association's default DSCP is
2398  *                     returned.  If neither an association nor a destination is
2399  *                     specified, then the socket's default DSCP is returned.
2400  *
2401  *   spp_ipv6_flowlabel
2402  *                   - This field is used in conjunction with the
2403  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2404  *                     The 20 least significant bits are used for the flow
2405  *                     label.  This setting has precedence over any IPv6-layer
2406  *                     setting.
2407  *
2408  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2409  *                     and contains the DSCP.  The 6 most significant bits are
2410  *                     used for the DSCP.  This setting has precedence over any
2411  *                     IPv4- or IPv6- layer setting.
2412  */
2413 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2414 				       struct sctp_transport   *trans,
2415 				       struct sctp_association *asoc,
2416 				       struct sctp_sock        *sp,
2417 				       int                      hb_change,
2418 				       int                      pmtud_change,
2419 				       int                      sackdelay_change)
2420 {
2421 	int error;
2422 
2423 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2424 		error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2425 							trans->asoc, trans);
2426 		if (error)
2427 			return error;
2428 	}
2429 
2430 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2431 	 * this field is ignored.  Note also that a value of zero indicates
2432 	 * the current setting should be left unchanged.
2433 	 */
2434 	if (params->spp_flags & SPP_HB_ENABLE) {
2435 
2436 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2437 		 * set.  This lets us use 0 value when this flag
2438 		 * is set.
2439 		 */
2440 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2441 			params->spp_hbinterval = 0;
2442 
2443 		if (params->spp_hbinterval ||
2444 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2445 			if (trans) {
2446 				trans->hbinterval =
2447 				    msecs_to_jiffies(params->spp_hbinterval);
2448 			} else if (asoc) {
2449 				asoc->hbinterval =
2450 				    msecs_to_jiffies(params->spp_hbinterval);
2451 			} else {
2452 				sp->hbinterval = params->spp_hbinterval;
2453 			}
2454 		}
2455 	}
2456 
2457 	if (hb_change) {
2458 		if (trans) {
2459 			trans->param_flags =
2460 				(trans->param_flags & ~SPP_HB) | hb_change;
2461 		} else if (asoc) {
2462 			asoc->param_flags =
2463 				(asoc->param_flags & ~SPP_HB) | hb_change;
2464 		} else {
2465 			sp->param_flags =
2466 				(sp->param_flags & ~SPP_HB) | hb_change;
2467 		}
2468 	}
2469 
2470 	/* When Path MTU discovery is disabled the value specified here will
2471 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2472 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2473 	 * effect).
2474 	 */
2475 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2476 		if (trans) {
2477 			trans->pathmtu = params->spp_pathmtu;
2478 			sctp_assoc_sync_pmtu(asoc);
2479 		} else if (asoc) {
2480 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2481 		} else {
2482 			sp->pathmtu = params->spp_pathmtu;
2483 		}
2484 	}
2485 
2486 	if (pmtud_change) {
2487 		if (trans) {
2488 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2489 				(params->spp_flags & SPP_PMTUD_ENABLE);
2490 			trans->param_flags =
2491 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2492 			if (update) {
2493 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2494 				sctp_assoc_sync_pmtu(asoc);
2495 			}
2496 			sctp_transport_pl_reset(trans);
2497 		} else if (asoc) {
2498 			asoc->param_flags =
2499 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2500 		} else {
2501 			sp->param_flags =
2502 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2503 		}
2504 	}
2505 
2506 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2507 	 * value of this field is ignored.  Note also that a value of zero
2508 	 * indicates the current setting should be left unchanged.
2509 	 */
2510 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2511 		if (trans) {
2512 			trans->sackdelay =
2513 				msecs_to_jiffies(params->spp_sackdelay);
2514 		} else if (asoc) {
2515 			asoc->sackdelay =
2516 				msecs_to_jiffies(params->spp_sackdelay);
2517 		} else {
2518 			sp->sackdelay = params->spp_sackdelay;
2519 		}
2520 	}
2521 
2522 	if (sackdelay_change) {
2523 		if (trans) {
2524 			trans->param_flags =
2525 				(trans->param_flags & ~SPP_SACKDELAY) |
2526 				sackdelay_change;
2527 		} else if (asoc) {
2528 			asoc->param_flags =
2529 				(asoc->param_flags & ~SPP_SACKDELAY) |
2530 				sackdelay_change;
2531 		} else {
2532 			sp->param_flags =
2533 				(sp->param_flags & ~SPP_SACKDELAY) |
2534 				sackdelay_change;
2535 		}
2536 	}
2537 
2538 	/* Note that a value of zero indicates the current setting should be
2539 	   left unchanged.
2540 	 */
2541 	if (params->spp_pathmaxrxt) {
2542 		if (trans) {
2543 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2544 		} else if (asoc) {
2545 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2546 		} else {
2547 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2548 		}
2549 	}
2550 
2551 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2552 		if (trans) {
2553 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2554 				trans->flowlabel = params->spp_ipv6_flowlabel &
2555 						   SCTP_FLOWLABEL_VAL_MASK;
2556 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2557 			}
2558 		} else if (asoc) {
2559 			struct sctp_transport *t;
2560 
2561 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2562 					    transports) {
2563 				if (t->ipaddr.sa.sa_family != AF_INET6)
2564 					continue;
2565 				t->flowlabel = params->spp_ipv6_flowlabel &
2566 					       SCTP_FLOWLABEL_VAL_MASK;
2567 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2568 			}
2569 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2570 					  SCTP_FLOWLABEL_VAL_MASK;
2571 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2572 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2573 			sp->flowlabel = params->spp_ipv6_flowlabel &
2574 					SCTP_FLOWLABEL_VAL_MASK;
2575 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2576 		}
2577 	}
2578 
2579 	if (params->spp_flags & SPP_DSCP) {
2580 		if (trans) {
2581 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2582 			trans->dscp |= SCTP_DSCP_SET_MASK;
2583 		} else if (asoc) {
2584 			struct sctp_transport *t;
2585 
2586 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2587 					    transports) {
2588 				t->dscp = params->spp_dscp &
2589 					  SCTP_DSCP_VAL_MASK;
2590 				t->dscp |= SCTP_DSCP_SET_MASK;
2591 			}
2592 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2593 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2594 		} else {
2595 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2596 			sp->dscp |= SCTP_DSCP_SET_MASK;
2597 		}
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2604 					    struct sctp_paddrparams *params,
2605 					    unsigned int optlen)
2606 {
2607 	struct sctp_transport   *trans = NULL;
2608 	struct sctp_association *asoc = NULL;
2609 	struct sctp_sock        *sp = sctp_sk(sk);
2610 	int error;
2611 	int hb_change, pmtud_change, sackdelay_change;
2612 
2613 	if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2614 					    spp_ipv6_flowlabel), 4)) {
2615 		if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2616 			return -EINVAL;
2617 	} else if (optlen != sizeof(*params)) {
2618 		return -EINVAL;
2619 	}
2620 
2621 	/* Validate flags and value parameters. */
2622 	hb_change        = params->spp_flags & SPP_HB;
2623 	pmtud_change     = params->spp_flags & SPP_PMTUD;
2624 	sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2625 
2626 	if (hb_change        == SPP_HB ||
2627 	    pmtud_change     == SPP_PMTUD ||
2628 	    sackdelay_change == SPP_SACKDELAY ||
2629 	    params->spp_sackdelay > 500 ||
2630 	    (params->spp_pathmtu &&
2631 	     params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2632 		return -EINVAL;
2633 
2634 	/* If an address other than INADDR_ANY is specified, and
2635 	 * no transport is found, then the request is invalid.
2636 	 */
2637 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
2638 		trans = sctp_addr_id2transport(sk, &params->spp_address,
2639 					       params->spp_assoc_id);
2640 		if (!trans)
2641 			return -EINVAL;
2642 	}
2643 
2644 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2645 	 * socket is a one to many style socket, and an association
2646 	 * was not found, then the id was invalid.
2647 	 */
2648 	asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2649 	if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2650 	    sctp_style(sk, UDP))
2651 		return -EINVAL;
2652 
2653 	/* Heartbeat demand can only be sent on a transport or
2654 	 * association, but not a socket.
2655 	 */
2656 	if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2657 		return -EINVAL;
2658 
2659 	/* Process parameters. */
2660 	error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2661 					    hb_change, pmtud_change,
2662 					    sackdelay_change);
2663 
2664 	if (error)
2665 		return error;
2666 
2667 	/* If changes are for association, also apply parameters to each
2668 	 * transport.
2669 	 */
2670 	if (!trans && asoc) {
2671 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2672 				transports) {
2673 			sctp_apply_peer_addr_params(params, trans, asoc, sp,
2674 						    hb_change, pmtud_change,
2675 						    sackdelay_change);
2676 		}
2677 	}
2678 
2679 	return 0;
2680 }
2681 
2682 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2683 {
2684 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2685 }
2686 
2687 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2688 {
2689 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2690 }
2691 
2692 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2693 					struct sctp_association *asoc)
2694 {
2695 	struct sctp_transport *trans;
2696 
2697 	if (params->sack_delay) {
2698 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2699 		asoc->param_flags =
2700 			sctp_spp_sackdelay_enable(asoc->param_flags);
2701 	}
2702 	if (params->sack_freq == 1) {
2703 		asoc->param_flags =
2704 			sctp_spp_sackdelay_disable(asoc->param_flags);
2705 	} else if (params->sack_freq > 1) {
2706 		asoc->sackfreq = params->sack_freq;
2707 		asoc->param_flags =
2708 			sctp_spp_sackdelay_enable(asoc->param_flags);
2709 	}
2710 
2711 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2712 			    transports) {
2713 		if (params->sack_delay) {
2714 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2715 			trans->param_flags =
2716 				sctp_spp_sackdelay_enable(trans->param_flags);
2717 		}
2718 		if (params->sack_freq == 1) {
2719 			trans->param_flags =
2720 				sctp_spp_sackdelay_disable(trans->param_flags);
2721 		} else if (params->sack_freq > 1) {
2722 			trans->sackfreq = params->sack_freq;
2723 			trans->param_flags =
2724 				sctp_spp_sackdelay_enable(trans->param_flags);
2725 		}
2726 	}
2727 }
2728 
2729 /*
2730  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2731  *
2732  * This option will effect the way delayed acks are performed.  This
2733  * option allows you to get or set the delayed ack time, in
2734  * milliseconds.  It also allows changing the delayed ack frequency.
2735  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2736  * the assoc_id is 0, then this sets or gets the endpoints default
2737  * values.  If the assoc_id field is non-zero, then the set or get
2738  * effects the specified association for the one to many model (the
2739  * assoc_id field is ignored by the one to one model).  Note that if
2740  * sack_delay or sack_freq are 0 when setting this option, then the
2741  * current values will remain unchanged.
2742  *
2743  * struct sctp_sack_info {
2744  *     sctp_assoc_t            sack_assoc_id;
2745  *     uint32_t                sack_delay;
2746  *     uint32_t                sack_freq;
2747  * };
2748  *
2749  * sack_assoc_id -  This parameter, indicates which association the user
2750  *    is performing an action upon.  Note that if this field's value is
2751  *    zero then the endpoints default value is changed (effecting future
2752  *    associations only).
2753  *
2754  * sack_delay -  This parameter contains the number of milliseconds that
2755  *    the user is requesting the delayed ACK timer be set to.  Note that
2756  *    this value is defined in the standard to be between 200 and 500
2757  *    milliseconds.
2758  *
2759  * sack_freq -  This parameter contains the number of packets that must
2760  *    be received before a sack is sent without waiting for the delay
2761  *    timer to expire.  The default value for this is 2, setting this
2762  *    value to 1 will disable the delayed sack algorithm.
2763  */
2764 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2765 					 struct sctp_sack_info *params)
2766 {
2767 	struct sctp_sock *sp = sctp_sk(sk);
2768 	struct sctp_association *asoc;
2769 
2770 	/* Validate value parameter. */
2771 	if (params->sack_delay > 500)
2772 		return -EINVAL;
2773 
2774 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2775 	 * socket is a one to many style socket, and an association
2776 	 * was not found, then the id was invalid.
2777 	 */
2778 	asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2779 	if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2780 	    sctp_style(sk, UDP))
2781 		return -EINVAL;
2782 
2783 	if (asoc) {
2784 		sctp_apply_asoc_delayed_ack(params, asoc);
2785 
2786 		return 0;
2787 	}
2788 
2789 	if (sctp_style(sk, TCP))
2790 		params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2791 
2792 	if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2793 	    params->sack_assoc_id == SCTP_ALL_ASSOC) {
2794 		if (params->sack_delay) {
2795 			sp->sackdelay = params->sack_delay;
2796 			sp->param_flags =
2797 				sctp_spp_sackdelay_enable(sp->param_flags);
2798 		}
2799 		if (params->sack_freq == 1) {
2800 			sp->param_flags =
2801 				sctp_spp_sackdelay_disable(sp->param_flags);
2802 		} else if (params->sack_freq > 1) {
2803 			sp->sackfreq = params->sack_freq;
2804 			sp->param_flags =
2805 				sctp_spp_sackdelay_enable(sp->param_flags);
2806 		}
2807 	}
2808 
2809 	if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2810 	    params->sack_assoc_id == SCTP_ALL_ASSOC)
2811 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2812 			sctp_apply_asoc_delayed_ack(params, asoc);
2813 
2814 	return 0;
2815 }
2816 
2817 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2818 				       struct sctp_sack_info *params,
2819 				       unsigned int optlen)
2820 {
2821 	if (optlen == sizeof(struct sctp_assoc_value)) {
2822 		struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2823 		struct sctp_sack_info p;
2824 
2825 		pr_warn_ratelimited(DEPRECATED
2826 				    "%s (pid %d) "
2827 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2828 				    "Use struct sctp_sack_info instead\n",
2829 				    current->comm, task_pid_nr(current));
2830 
2831 		p.sack_assoc_id = v->assoc_id;
2832 		p.sack_delay = v->assoc_value;
2833 		p.sack_freq = v->assoc_value ? 0 : 1;
2834 		return __sctp_setsockopt_delayed_ack(sk, &p);
2835 	}
2836 
2837 	if (optlen != sizeof(struct sctp_sack_info))
2838 		return -EINVAL;
2839 	if (params->sack_delay == 0 && params->sack_freq == 0)
2840 		return 0;
2841 	return __sctp_setsockopt_delayed_ack(sk, params);
2842 }
2843 
2844 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2845  *
2846  * Applications can specify protocol parameters for the default association
2847  * initialization.  The option name argument to setsockopt() and getsockopt()
2848  * is SCTP_INITMSG.
2849  *
2850  * Setting initialization parameters is effective only on an unconnected
2851  * socket (for UDP-style sockets only future associations are effected
2852  * by the change).  With TCP-style sockets, this option is inherited by
2853  * sockets derived from a listener socket.
2854  */
2855 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2856 				   unsigned int optlen)
2857 {
2858 	struct sctp_sock *sp = sctp_sk(sk);
2859 
2860 	if (optlen != sizeof(struct sctp_initmsg))
2861 		return -EINVAL;
2862 
2863 	if (sinit->sinit_num_ostreams)
2864 		sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2865 	if (sinit->sinit_max_instreams)
2866 		sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2867 	if (sinit->sinit_max_attempts)
2868 		sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2869 	if (sinit->sinit_max_init_timeo)
2870 		sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2871 
2872 	return 0;
2873 }
2874 
2875 /*
2876  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2877  *
2878  *   Applications that wish to use the sendto() system call may wish to
2879  *   specify a default set of parameters that would normally be supplied
2880  *   through the inclusion of ancillary data.  This socket option allows
2881  *   such an application to set the default sctp_sndrcvinfo structure.
2882  *   The application that wishes to use this socket option simply passes
2883  *   in to this call the sctp_sndrcvinfo structure defined in Section
2884  *   5.2.2) The input parameters accepted by this call include
2885  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2886  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2887  *   to this call if the caller is using the UDP model.
2888  */
2889 static int sctp_setsockopt_default_send_param(struct sock *sk,
2890 					      struct sctp_sndrcvinfo *info,
2891 					      unsigned int optlen)
2892 {
2893 	struct sctp_sock *sp = sctp_sk(sk);
2894 	struct sctp_association *asoc;
2895 
2896 	if (optlen != sizeof(*info))
2897 		return -EINVAL;
2898 	if (info->sinfo_flags &
2899 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2900 	      SCTP_ABORT | SCTP_EOF))
2901 		return -EINVAL;
2902 
2903 	asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2904 	if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2905 	    sctp_style(sk, UDP))
2906 		return -EINVAL;
2907 
2908 	if (asoc) {
2909 		asoc->default_stream = info->sinfo_stream;
2910 		asoc->default_flags = info->sinfo_flags;
2911 		asoc->default_ppid = info->sinfo_ppid;
2912 		asoc->default_context = info->sinfo_context;
2913 		asoc->default_timetolive = info->sinfo_timetolive;
2914 
2915 		return 0;
2916 	}
2917 
2918 	if (sctp_style(sk, TCP))
2919 		info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2920 
2921 	if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2922 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2923 		sp->default_stream = info->sinfo_stream;
2924 		sp->default_flags = info->sinfo_flags;
2925 		sp->default_ppid = info->sinfo_ppid;
2926 		sp->default_context = info->sinfo_context;
2927 		sp->default_timetolive = info->sinfo_timetolive;
2928 	}
2929 
2930 	if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2931 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2932 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2933 			asoc->default_stream = info->sinfo_stream;
2934 			asoc->default_flags = info->sinfo_flags;
2935 			asoc->default_ppid = info->sinfo_ppid;
2936 			asoc->default_context = info->sinfo_context;
2937 			asoc->default_timetolive = info->sinfo_timetolive;
2938 		}
2939 	}
2940 
2941 	return 0;
2942 }
2943 
2944 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2945  * (SCTP_DEFAULT_SNDINFO)
2946  */
2947 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2948 					   struct sctp_sndinfo *info,
2949 					   unsigned int optlen)
2950 {
2951 	struct sctp_sock *sp = sctp_sk(sk);
2952 	struct sctp_association *asoc;
2953 
2954 	if (optlen != sizeof(*info))
2955 		return -EINVAL;
2956 	if (info->snd_flags &
2957 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2958 	      SCTP_ABORT | SCTP_EOF))
2959 		return -EINVAL;
2960 
2961 	asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2962 	if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2963 	    sctp_style(sk, UDP))
2964 		return -EINVAL;
2965 
2966 	if (asoc) {
2967 		asoc->default_stream = info->snd_sid;
2968 		asoc->default_flags = info->snd_flags;
2969 		asoc->default_ppid = info->snd_ppid;
2970 		asoc->default_context = info->snd_context;
2971 
2972 		return 0;
2973 	}
2974 
2975 	if (sctp_style(sk, TCP))
2976 		info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2977 
2978 	if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2979 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2980 		sp->default_stream = info->snd_sid;
2981 		sp->default_flags = info->snd_flags;
2982 		sp->default_ppid = info->snd_ppid;
2983 		sp->default_context = info->snd_context;
2984 	}
2985 
2986 	if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2987 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2988 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2989 			asoc->default_stream = info->snd_sid;
2990 			asoc->default_flags = info->snd_flags;
2991 			asoc->default_ppid = info->snd_ppid;
2992 			asoc->default_context = info->snd_context;
2993 		}
2994 	}
2995 
2996 	return 0;
2997 }
2998 
2999 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3000  *
3001  * Requests that the local SCTP stack use the enclosed peer address as
3002  * the association primary.  The enclosed address must be one of the
3003  * association peer's addresses.
3004  */
3005 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3006 					unsigned int optlen)
3007 {
3008 	struct sctp_transport *trans;
3009 	struct sctp_af *af;
3010 	int err;
3011 
3012 	if (optlen != sizeof(struct sctp_prim))
3013 		return -EINVAL;
3014 
3015 	/* Allow security module to validate address but need address len. */
3016 	af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3017 	if (!af)
3018 		return -EINVAL;
3019 
3020 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3021 					 (struct sockaddr *)&prim->ssp_addr,
3022 					 af->sockaddr_len);
3023 	if (err)
3024 		return err;
3025 
3026 	trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3027 	if (!trans)
3028 		return -EINVAL;
3029 
3030 	sctp_assoc_set_primary(trans->asoc, trans);
3031 
3032 	return 0;
3033 }
3034 
3035 /*
3036  * 7.1.5 SCTP_NODELAY
3037  *
3038  * Turn on/off any Nagle-like algorithm.  This means that packets are
3039  * generally sent as soon as possible and no unnecessary delays are
3040  * introduced, at the cost of more packets in the network.  Expects an
3041  *  integer boolean flag.
3042  */
3043 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3044 				   unsigned int optlen)
3045 {
3046 	if (optlen < sizeof(int))
3047 		return -EINVAL;
3048 	sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3049 	return 0;
3050 }
3051 
3052 /*
3053  *
3054  * 7.1.1 SCTP_RTOINFO
3055  *
3056  * The protocol parameters used to initialize and bound retransmission
3057  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3058  * and modify these parameters.
3059  * All parameters are time values, in milliseconds.  A value of 0, when
3060  * modifying the parameters, indicates that the current value should not
3061  * be changed.
3062  *
3063  */
3064 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3065 				   struct sctp_rtoinfo *rtoinfo,
3066 				   unsigned int optlen)
3067 {
3068 	struct sctp_association *asoc;
3069 	unsigned long rto_min, rto_max;
3070 	struct sctp_sock *sp = sctp_sk(sk);
3071 
3072 	if (optlen != sizeof (struct sctp_rtoinfo))
3073 		return -EINVAL;
3074 
3075 	asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3076 
3077 	/* Set the values to the specific association */
3078 	if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3079 	    sctp_style(sk, UDP))
3080 		return -EINVAL;
3081 
3082 	rto_max = rtoinfo->srto_max;
3083 	rto_min = rtoinfo->srto_min;
3084 
3085 	if (rto_max)
3086 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3087 	else
3088 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3089 
3090 	if (rto_min)
3091 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3092 	else
3093 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3094 
3095 	if (rto_min > rto_max)
3096 		return -EINVAL;
3097 
3098 	if (asoc) {
3099 		if (rtoinfo->srto_initial != 0)
3100 			asoc->rto_initial =
3101 				msecs_to_jiffies(rtoinfo->srto_initial);
3102 		asoc->rto_max = rto_max;
3103 		asoc->rto_min = rto_min;
3104 	} else {
3105 		/* If there is no association or the association-id = 0
3106 		 * set the values to the endpoint.
3107 		 */
3108 		if (rtoinfo->srto_initial != 0)
3109 			sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3110 		sp->rtoinfo.srto_max = rto_max;
3111 		sp->rtoinfo.srto_min = rto_min;
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 /*
3118  *
3119  * 7.1.2 SCTP_ASSOCINFO
3120  *
3121  * This option is used to tune the maximum retransmission attempts
3122  * of the association.
3123  * Returns an error if the new association retransmission value is
3124  * greater than the sum of the retransmission value  of the peer.
3125  * See [SCTP] for more information.
3126  *
3127  */
3128 static int sctp_setsockopt_associnfo(struct sock *sk,
3129 				     struct sctp_assocparams *assocparams,
3130 				     unsigned int optlen)
3131 {
3132 
3133 	struct sctp_association *asoc;
3134 
3135 	if (optlen != sizeof(struct sctp_assocparams))
3136 		return -EINVAL;
3137 
3138 	asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3139 
3140 	if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3141 	    sctp_style(sk, UDP))
3142 		return -EINVAL;
3143 
3144 	/* Set the values to the specific association */
3145 	if (asoc) {
3146 		if (assocparams->sasoc_asocmaxrxt != 0) {
3147 			__u32 path_sum = 0;
3148 			int   paths = 0;
3149 			struct sctp_transport *peer_addr;
3150 
3151 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3152 					transports) {
3153 				path_sum += peer_addr->pathmaxrxt;
3154 				paths++;
3155 			}
3156 
3157 			/* Only validate asocmaxrxt if we have more than
3158 			 * one path/transport.  We do this because path
3159 			 * retransmissions are only counted when we have more
3160 			 * then one path.
3161 			 */
3162 			if (paths > 1 &&
3163 			    assocparams->sasoc_asocmaxrxt > path_sum)
3164 				return -EINVAL;
3165 
3166 			asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3167 		}
3168 
3169 		if (assocparams->sasoc_cookie_life != 0)
3170 			asoc->cookie_life =
3171 				ms_to_ktime(assocparams->sasoc_cookie_life);
3172 	} else {
3173 		/* Set the values to the endpoint */
3174 		struct sctp_sock *sp = sctp_sk(sk);
3175 
3176 		if (assocparams->sasoc_asocmaxrxt != 0)
3177 			sp->assocparams.sasoc_asocmaxrxt =
3178 						assocparams->sasoc_asocmaxrxt;
3179 		if (assocparams->sasoc_cookie_life != 0)
3180 			sp->assocparams.sasoc_cookie_life =
3181 						assocparams->sasoc_cookie_life;
3182 	}
3183 	return 0;
3184 }
3185 
3186 /*
3187  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3188  *
3189  * This socket option is a boolean flag which turns on or off mapped V4
3190  * addresses.  If this option is turned on and the socket is type
3191  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3192  * If this option is turned off, then no mapping will be done of V4
3193  * addresses and a user will receive both PF_INET6 and PF_INET type
3194  * addresses on the socket.
3195  */
3196 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3197 				    unsigned int optlen)
3198 {
3199 	struct sctp_sock *sp = sctp_sk(sk);
3200 
3201 	if (optlen < sizeof(int))
3202 		return -EINVAL;
3203 	if (*val)
3204 		sp->v4mapped = 1;
3205 	else
3206 		sp->v4mapped = 0;
3207 
3208 	return 0;
3209 }
3210 
3211 /*
3212  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3213  * This option will get or set the maximum size to put in any outgoing
3214  * SCTP DATA chunk.  If a message is larger than this size it will be
3215  * fragmented by SCTP into the specified size.  Note that the underlying
3216  * SCTP implementation may fragment into smaller sized chunks when the
3217  * PMTU of the underlying association is smaller than the value set by
3218  * the user.  The default value for this option is '0' which indicates
3219  * the user is NOT limiting fragmentation and only the PMTU will effect
3220  * SCTP's choice of DATA chunk size.  Note also that values set larger
3221  * than the maximum size of an IP datagram will effectively let SCTP
3222  * control fragmentation (i.e. the same as setting this option to 0).
3223  *
3224  * The following structure is used to access and modify this parameter:
3225  *
3226  * struct sctp_assoc_value {
3227  *   sctp_assoc_t assoc_id;
3228  *   uint32_t assoc_value;
3229  * };
3230  *
3231  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3232  *    For one-to-many style sockets this parameter indicates which
3233  *    association the user is performing an action upon.  Note that if
3234  *    this field's value is zero then the endpoints default value is
3235  *    changed (effecting future associations only).
3236  * assoc_value:  This parameter specifies the maximum size in bytes.
3237  */
3238 static int sctp_setsockopt_maxseg(struct sock *sk,
3239 				  struct sctp_assoc_value *params,
3240 				  unsigned int optlen)
3241 {
3242 	struct sctp_sock *sp = sctp_sk(sk);
3243 	struct sctp_association *asoc;
3244 	sctp_assoc_t assoc_id;
3245 	int val;
3246 
3247 	if (optlen == sizeof(int)) {
3248 		pr_warn_ratelimited(DEPRECATED
3249 				    "%s (pid %d) "
3250 				    "Use of int in maxseg socket option.\n"
3251 				    "Use struct sctp_assoc_value instead\n",
3252 				    current->comm, task_pid_nr(current));
3253 		assoc_id = SCTP_FUTURE_ASSOC;
3254 		val = *(int *)params;
3255 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3256 		assoc_id = params->assoc_id;
3257 		val = params->assoc_value;
3258 	} else {
3259 		return -EINVAL;
3260 	}
3261 
3262 	asoc = sctp_id2assoc(sk, assoc_id);
3263 	if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3264 	    sctp_style(sk, UDP))
3265 		return -EINVAL;
3266 
3267 	if (val) {
3268 		int min_len, max_len;
3269 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3270 				 sizeof(struct sctp_data_chunk);
3271 
3272 		min_len = sctp_min_frag_point(sp, datasize);
3273 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3274 
3275 		if (val < min_len || val > max_len)
3276 			return -EINVAL;
3277 	}
3278 
3279 	if (asoc) {
3280 		asoc->user_frag = val;
3281 		sctp_assoc_update_frag_point(asoc);
3282 	} else {
3283 		sp->user_frag = val;
3284 	}
3285 
3286 	return 0;
3287 }
3288 
3289 
3290 /*
3291  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3292  *
3293  *   Requests that the peer mark the enclosed address as the association
3294  *   primary. The enclosed address must be one of the association's
3295  *   locally bound addresses. The following structure is used to make a
3296  *   set primary request:
3297  */
3298 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3299 					     struct sctp_setpeerprim *prim,
3300 					     unsigned int optlen)
3301 {
3302 	struct sctp_sock	*sp;
3303 	struct sctp_association	*asoc = NULL;
3304 	struct sctp_chunk	*chunk;
3305 	struct sctp_af		*af;
3306 	int 			err;
3307 
3308 	sp = sctp_sk(sk);
3309 
3310 	if (!sp->ep->asconf_enable)
3311 		return -EPERM;
3312 
3313 	if (optlen != sizeof(struct sctp_setpeerprim))
3314 		return -EINVAL;
3315 
3316 	asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3317 	if (!asoc)
3318 		return -EINVAL;
3319 
3320 	if (!asoc->peer.asconf_capable)
3321 		return -EPERM;
3322 
3323 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3324 		return -EPERM;
3325 
3326 	if (!sctp_state(asoc, ESTABLISHED))
3327 		return -ENOTCONN;
3328 
3329 	af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3330 	if (!af)
3331 		return -EINVAL;
3332 
3333 	if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3334 		return -EADDRNOTAVAIL;
3335 
3336 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3337 		return -EADDRNOTAVAIL;
3338 
3339 	/* Allow security module to validate address. */
3340 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3341 					 (struct sockaddr *)&prim->sspp_addr,
3342 					 af->sockaddr_len);
3343 	if (err)
3344 		return err;
3345 
3346 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3347 	chunk = sctp_make_asconf_set_prim(asoc,
3348 					  (union sctp_addr *)&prim->sspp_addr);
3349 	if (!chunk)
3350 		return -ENOMEM;
3351 
3352 	err = sctp_send_asconf(asoc, chunk);
3353 
3354 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3355 
3356 	return err;
3357 }
3358 
3359 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3360 					    struct sctp_setadaptation *adapt,
3361 					    unsigned int optlen)
3362 {
3363 	if (optlen != sizeof(struct sctp_setadaptation))
3364 		return -EINVAL;
3365 
3366 	sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3367 
3368 	return 0;
3369 }
3370 
3371 /*
3372  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3373  *
3374  * The context field in the sctp_sndrcvinfo structure is normally only
3375  * used when a failed message is retrieved holding the value that was
3376  * sent down on the actual send call.  This option allows the setting of
3377  * a default context on an association basis that will be received on
3378  * reading messages from the peer.  This is especially helpful in the
3379  * one-2-many model for an application to keep some reference to an
3380  * internal state machine that is processing messages on the
3381  * association.  Note that the setting of this value only effects
3382  * received messages from the peer and does not effect the value that is
3383  * saved with outbound messages.
3384  */
3385 static int sctp_setsockopt_context(struct sock *sk,
3386 				   struct sctp_assoc_value *params,
3387 				   unsigned int optlen)
3388 {
3389 	struct sctp_sock *sp = sctp_sk(sk);
3390 	struct sctp_association *asoc;
3391 
3392 	if (optlen != sizeof(struct sctp_assoc_value))
3393 		return -EINVAL;
3394 
3395 	asoc = sctp_id2assoc(sk, params->assoc_id);
3396 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3397 	    sctp_style(sk, UDP))
3398 		return -EINVAL;
3399 
3400 	if (asoc) {
3401 		asoc->default_rcv_context = params->assoc_value;
3402 
3403 		return 0;
3404 	}
3405 
3406 	if (sctp_style(sk, TCP))
3407 		params->assoc_id = SCTP_FUTURE_ASSOC;
3408 
3409 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3410 	    params->assoc_id == SCTP_ALL_ASSOC)
3411 		sp->default_rcv_context = params->assoc_value;
3412 
3413 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3414 	    params->assoc_id == SCTP_ALL_ASSOC)
3415 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3416 			asoc->default_rcv_context = params->assoc_value;
3417 
3418 	return 0;
3419 }
3420 
3421 /*
3422  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3423  *
3424  * This options will at a minimum specify if the implementation is doing
3425  * fragmented interleave.  Fragmented interleave, for a one to many
3426  * socket, is when subsequent calls to receive a message may return
3427  * parts of messages from different associations.  Some implementations
3428  * may allow you to turn this value on or off.  If so, when turned off,
3429  * no fragment interleave will occur (which will cause a head of line
3430  * blocking amongst multiple associations sharing the same one to many
3431  * socket).  When this option is turned on, then each receive call may
3432  * come from a different association (thus the user must receive data
3433  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3434  * association each receive belongs to.
3435  *
3436  * This option takes a boolean value.  A non-zero value indicates that
3437  * fragmented interleave is on.  A value of zero indicates that
3438  * fragmented interleave is off.
3439  *
3440  * Note that it is important that an implementation that allows this
3441  * option to be turned on, have it off by default.  Otherwise an unaware
3442  * application using the one to many model may become confused and act
3443  * incorrectly.
3444  */
3445 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3446 					       unsigned int optlen)
3447 {
3448 	if (optlen != sizeof(int))
3449 		return -EINVAL;
3450 
3451 	sctp_sk(sk)->frag_interleave = !!*val;
3452 
3453 	if (!sctp_sk(sk)->frag_interleave)
3454 		sctp_sk(sk)->ep->intl_enable = 0;
3455 
3456 	return 0;
3457 }
3458 
3459 /*
3460  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3461  *       (SCTP_PARTIAL_DELIVERY_POINT)
3462  *
3463  * This option will set or get the SCTP partial delivery point.  This
3464  * point is the size of a message where the partial delivery API will be
3465  * invoked to help free up rwnd space for the peer.  Setting this to a
3466  * lower value will cause partial deliveries to happen more often.  The
3467  * calls argument is an integer that sets or gets the partial delivery
3468  * point.  Note also that the call will fail if the user attempts to set
3469  * this value larger than the socket receive buffer size.
3470  *
3471  * Note that any single message having a length smaller than or equal to
3472  * the SCTP partial delivery point will be delivered in one single read
3473  * call as long as the user provided buffer is large enough to hold the
3474  * message.
3475  */
3476 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3477 						  unsigned int optlen)
3478 {
3479 	if (optlen != sizeof(u32))
3480 		return -EINVAL;
3481 
3482 	/* Note: We double the receive buffer from what the user sets
3483 	 * it to be, also initial rwnd is based on rcvbuf/2.
3484 	 */
3485 	if (*val > (sk->sk_rcvbuf >> 1))
3486 		return -EINVAL;
3487 
3488 	sctp_sk(sk)->pd_point = *val;
3489 
3490 	return 0; /* is this the right error code? */
3491 }
3492 
3493 /*
3494  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3495  *
3496  * This option will allow a user to change the maximum burst of packets
3497  * that can be emitted by this association.  Note that the default value
3498  * is 4, and some implementations may restrict this setting so that it
3499  * can only be lowered.
3500  *
3501  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3502  * future associations inheriting the socket value.
3503  */
3504 static int sctp_setsockopt_maxburst(struct sock *sk,
3505 				    struct sctp_assoc_value *params,
3506 				    unsigned int optlen)
3507 {
3508 	struct sctp_sock *sp = sctp_sk(sk);
3509 	struct sctp_association *asoc;
3510 	sctp_assoc_t assoc_id;
3511 	u32 assoc_value;
3512 
3513 	if (optlen == sizeof(int)) {
3514 		pr_warn_ratelimited(DEPRECATED
3515 				    "%s (pid %d) "
3516 				    "Use of int in max_burst socket option deprecated.\n"
3517 				    "Use struct sctp_assoc_value instead\n",
3518 				    current->comm, task_pid_nr(current));
3519 		assoc_id = SCTP_FUTURE_ASSOC;
3520 		assoc_value = *((int *)params);
3521 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3522 		assoc_id = params->assoc_id;
3523 		assoc_value = params->assoc_value;
3524 	} else
3525 		return -EINVAL;
3526 
3527 	asoc = sctp_id2assoc(sk, assoc_id);
3528 	if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3529 		return -EINVAL;
3530 
3531 	if (asoc) {
3532 		asoc->max_burst = assoc_value;
3533 
3534 		return 0;
3535 	}
3536 
3537 	if (sctp_style(sk, TCP))
3538 		assoc_id = SCTP_FUTURE_ASSOC;
3539 
3540 	if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3541 		sp->max_burst = assoc_value;
3542 
3543 	if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3544 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3545 			asoc->max_burst = assoc_value;
3546 
3547 	return 0;
3548 }
3549 
3550 /*
3551  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3552  *
3553  * This set option adds a chunk type that the user is requesting to be
3554  * received only in an authenticated way.  Changes to the list of chunks
3555  * will only effect future associations on the socket.
3556  */
3557 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3558 				      struct sctp_authchunk *val,
3559 				      unsigned int optlen)
3560 {
3561 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3562 
3563 	if (!ep->auth_enable)
3564 		return -EACCES;
3565 
3566 	if (optlen != sizeof(struct sctp_authchunk))
3567 		return -EINVAL;
3568 
3569 	switch (val->sauth_chunk) {
3570 	case SCTP_CID_INIT:
3571 	case SCTP_CID_INIT_ACK:
3572 	case SCTP_CID_SHUTDOWN_COMPLETE:
3573 	case SCTP_CID_AUTH:
3574 		return -EINVAL;
3575 	}
3576 
3577 	/* add this chunk id to the endpoint */
3578 	return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3579 }
3580 
3581 /*
3582  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3583  *
3584  * This option gets or sets the list of HMAC algorithms that the local
3585  * endpoint requires the peer to use.
3586  */
3587 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3588 				      struct sctp_hmacalgo *hmacs,
3589 				      unsigned int optlen)
3590 {
3591 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3592 	u32 idents;
3593 
3594 	if (!ep->auth_enable)
3595 		return -EACCES;
3596 
3597 	if (optlen < sizeof(struct sctp_hmacalgo))
3598 		return -EINVAL;
3599 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3600 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3601 
3602 	idents = hmacs->shmac_num_idents;
3603 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3604 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3605 		return -EINVAL;
3606 
3607 	return sctp_auth_ep_set_hmacs(ep, hmacs);
3608 }
3609 
3610 /*
3611  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3612  *
3613  * This option will set a shared secret key which is used to build an
3614  * association shared key.
3615  */
3616 static int sctp_setsockopt_auth_key(struct sock *sk,
3617 				    struct sctp_authkey *authkey,
3618 				    unsigned int optlen)
3619 {
3620 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3621 	struct sctp_association *asoc;
3622 	int ret = -EINVAL;
3623 
3624 	if (optlen <= sizeof(struct sctp_authkey))
3625 		return -EINVAL;
3626 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3627 	 * this.
3628 	 */
3629 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3630 
3631 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3632 		goto out;
3633 
3634 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3635 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3636 	    sctp_style(sk, UDP))
3637 		goto out;
3638 
3639 	if (asoc) {
3640 		ret = sctp_auth_set_key(ep, asoc, authkey);
3641 		goto out;
3642 	}
3643 
3644 	if (sctp_style(sk, TCP))
3645 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3646 
3647 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3648 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3649 		ret = sctp_auth_set_key(ep, asoc, authkey);
3650 		if (ret)
3651 			goto out;
3652 	}
3653 
3654 	ret = 0;
3655 
3656 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3657 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3658 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3659 			int res = sctp_auth_set_key(ep, asoc, authkey);
3660 
3661 			if (res && !ret)
3662 				ret = res;
3663 		}
3664 	}
3665 
3666 out:
3667 	memzero_explicit(authkey, optlen);
3668 	return ret;
3669 }
3670 
3671 /*
3672  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3673  *
3674  * This option will get or set the active shared key to be used to build
3675  * the association shared key.
3676  */
3677 static int sctp_setsockopt_active_key(struct sock *sk,
3678 				      struct sctp_authkeyid *val,
3679 				      unsigned int optlen)
3680 {
3681 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3682 	struct sctp_association *asoc;
3683 	int ret = 0;
3684 
3685 	if (optlen != sizeof(struct sctp_authkeyid))
3686 		return -EINVAL;
3687 
3688 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3689 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3690 	    sctp_style(sk, UDP))
3691 		return -EINVAL;
3692 
3693 	if (asoc)
3694 		return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3695 
3696 	if (sctp_style(sk, TCP))
3697 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3698 
3699 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3700 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3701 		ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3702 		if (ret)
3703 			return ret;
3704 	}
3705 
3706 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3707 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3708 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3709 			int res = sctp_auth_set_active_key(ep, asoc,
3710 							   val->scact_keynumber);
3711 
3712 			if (res && !ret)
3713 				ret = res;
3714 		}
3715 	}
3716 
3717 	return ret;
3718 }
3719 
3720 /*
3721  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3722  *
3723  * This set option will delete a shared secret key from use.
3724  */
3725 static int sctp_setsockopt_del_key(struct sock *sk,
3726 				   struct sctp_authkeyid *val,
3727 				   unsigned int optlen)
3728 {
3729 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3730 	struct sctp_association *asoc;
3731 	int ret = 0;
3732 
3733 	if (optlen != sizeof(struct sctp_authkeyid))
3734 		return -EINVAL;
3735 
3736 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3737 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3738 	    sctp_style(sk, UDP))
3739 		return -EINVAL;
3740 
3741 	if (asoc)
3742 		return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3743 
3744 	if (sctp_style(sk, TCP))
3745 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3746 
3747 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3748 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3749 		ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3750 		if (ret)
3751 			return ret;
3752 	}
3753 
3754 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3755 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3756 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3757 			int res = sctp_auth_del_key_id(ep, asoc,
3758 						       val->scact_keynumber);
3759 
3760 			if (res && !ret)
3761 				ret = res;
3762 		}
3763 	}
3764 
3765 	return ret;
3766 }
3767 
3768 /*
3769  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3770  *
3771  * This set option will deactivate a shared secret key.
3772  */
3773 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3774 					  struct sctp_authkeyid *val,
3775 					  unsigned int optlen)
3776 {
3777 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3778 	struct sctp_association *asoc;
3779 	int ret = 0;
3780 
3781 	if (optlen != sizeof(struct sctp_authkeyid))
3782 		return -EINVAL;
3783 
3784 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3785 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3786 	    sctp_style(sk, UDP))
3787 		return -EINVAL;
3788 
3789 	if (asoc)
3790 		return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3791 
3792 	if (sctp_style(sk, TCP))
3793 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3794 
3795 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3796 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3797 		ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3798 		if (ret)
3799 			return ret;
3800 	}
3801 
3802 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3803 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3804 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3805 			int res = sctp_auth_deact_key_id(ep, asoc,
3806 							 val->scact_keynumber);
3807 
3808 			if (res && !ret)
3809 				ret = res;
3810 		}
3811 	}
3812 
3813 	return ret;
3814 }
3815 
3816 /*
3817  * 8.1.23 SCTP_AUTO_ASCONF
3818  *
3819  * This option will enable or disable the use of the automatic generation of
3820  * ASCONF chunks to add and delete addresses to an existing association.  Note
3821  * that this option has two caveats namely: a) it only affects sockets that
3822  * are bound to all addresses available to the SCTP stack, and b) the system
3823  * administrator may have an overriding control that turns the ASCONF feature
3824  * off no matter what setting the socket option may have.
3825  * This option expects an integer boolean flag, where a non-zero value turns on
3826  * the option, and a zero value turns off the option.
3827  * Note. In this implementation, socket operation overrides default parameter
3828  * being set by sysctl as well as FreeBSD implementation
3829  */
3830 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3831 					unsigned int optlen)
3832 {
3833 	struct sctp_sock *sp = sctp_sk(sk);
3834 
3835 	if (optlen < sizeof(int))
3836 		return -EINVAL;
3837 	if (!sctp_is_ep_boundall(sk) && *val)
3838 		return -EINVAL;
3839 	if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3840 		return 0;
3841 
3842 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3843 	if (*val == 0 && sp->do_auto_asconf) {
3844 		list_del(&sp->auto_asconf_list);
3845 		sp->do_auto_asconf = 0;
3846 	} else if (*val && !sp->do_auto_asconf) {
3847 		list_add_tail(&sp->auto_asconf_list,
3848 		    &sock_net(sk)->sctp.auto_asconf_splist);
3849 		sp->do_auto_asconf = 1;
3850 	}
3851 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3852 	return 0;
3853 }
3854 
3855 /*
3856  * SCTP_PEER_ADDR_THLDS
3857  *
3858  * This option allows us to alter the partially failed threshold for one or all
3859  * transports in an association.  See Section 6.1 of:
3860  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3861  */
3862 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3863 					    struct sctp_paddrthlds_v2 *val,
3864 					    unsigned int optlen, bool v2)
3865 {
3866 	struct sctp_transport *trans;
3867 	struct sctp_association *asoc;
3868 	int len;
3869 
3870 	len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3871 	if (optlen < len)
3872 		return -EINVAL;
3873 
3874 	if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3875 		return -EINVAL;
3876 
3877 	if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3878 		trans = sctp_addr_id2transport(sk, &val->spt_address,
3879 					       val->spt_assoc_id);
3880 		if (!trans)
3881 			return -ENOENT;
3882 
3883 		if (val->spt_pathmaxrxt)
3884 			trans->pathmaxrxt = val->spt_pathmaxrxt;
3885 		if (v2)
3886 			trans->ps_retrans = val->spt_pathcpthld;
3887 		trans->pf_retrans = val->spt_pathpfthld;
3888 
3889 		return 0;
3890 	}
3891 
3892 	asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3893 	if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3894 	    sctp_style(sk, UDP))
3895 		return -EINVAL;
3896 
3897 	if (asoc) {
3898 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3899 				    transports) {
3900 			if (val->spt_pathmaxrxt)
3901 				trans->pathmaxrxt = val->spt_pathmaxrxt;
3902 			if (v2)
3903 				trans->ps_retrans = val->spt_pathcpthld;
3904 			trans->pf_retrans = val->spt_pathpfthld;
3905 		}
3906 
3907 		if (val->spt_pathmaxrxt)
3908 			asoc->pathmaxrxt = val->spt_pathmaxrxt;
3909 		if (v2)
3910 			asoc->ps_retrans = val->spt_pathcpthld;
3911 		asoc->pf_retrans = val->spt_pathpfthld;
3912 	} else {
3913 		struct sctp_sock *sp = sctp_sk(sk);
3914 
3915 		if (val->spt_pathmaxrxt)
3916 			sp->pathmaxrxt = val->spt_pathmaxrxt;
3917 		if (v2)
3918 			sp->ps_retrans = val->spt_pathcpthld;
3919 		sp->pf_retrans = val->spt_pathpfthld;
3920 	}
3921 
3922 	return 0;
3923 }
3924 
3925 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3926 				       unsigned int optlen)
3927 {
3928 	if (optlen < sizeof(int))
3929 		return -EINVAL;
3930 
3931 	sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3932 
3933 	return 0;
3934 }
3935 
3936 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3937 				       unsigned int optlen)
3938 {
3939 	if (optlen < sizeof(int))
3940 		return -EINVAL;
3941 
3942 	sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3943 
3944 	return 0;
3945 }
3946 
3947 static int sctp_setsockopt_pr_supported(struct sock *sk,
3948 					struct sctp_assoc_value *params,
3949 					unsigned int optlen)
3950 {
3951 	struct sctp_association *asoc;
3952 
3953 	if (optlen != sizeof(*params))
3954 		return -EINVAL;
3955 
3956 	asoc = sctp_id2assoc(sk, params->assoc_id);
3957 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3958 	    sctp_style(sk, UDP))
3959 		return -EINVAL;
3960 
3961 	sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3962 
3963 	return 0;
3964 }
3965 
3966 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3967 					  struct sctp_default_prinfo *info,
3968 					  unsigned int optlen)
3969 {
3970 	struct sctp_sock *sp = sctp_sk(sk);
3971 	struct sctp_association *asoc;
3972 	int retval = -EINVAL;
3973 
3974 	if (optlen != sizeof(*info))
3975 		goto out;
3976 
3977 	if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3978 		goto out;
3979 
3980 	if (info->pr_policy == SCTP_PR_SCTP_NONE)
3981 		info->pr_value = 0;
3982 
3983 	asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3984 	if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3985 	    sctp_style(sk, UDP))
3986 		goto out;
3987 
3988 	retval = 0;
3989 
3990 	if (asoc) {
3991 		SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3992 		asoc->default_timetolive = info->pr_value;
3993 		goto out;
3994 	}
3995 
3996 	if (sctp_style(sk, TCP))
3997 		info->pr_assoc_id = SCTP_FUTURE_ASSOC;
3998 
3999 	if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4000 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
4001 		SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4002 		sp->default_timetolive = info->pr_value;
4003 	}
4004 
4005 	if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4006 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
4007 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4008 			SCTP_PR_SET_POLICY(asoc->default_flags,
4009 					   info->pr_policy);
4010 			asoc->default_timetolive = info->pr_value;
4011 		}
4012 	}
4013 
4014 out:
4015 	return retval;
4016 }
4017 
4018 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4019 					      struct sctp_assoc_value *params,
4020 					      unsigned int optlen)
4021 {
4022 	struct sctp_association *asoc;
4023 	int retval = -EINVAL;
4024 
4025 	if (optlen != sizeof(*params))
4026 		goto out;
4027 
4028 	asoc = sctp_id2assoc(sk, params->assoc_id);
4029 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4030 	    sctp_style(sk, UDP))
4031 		goto out;
4032 
4033 	sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4034 
4035 	retval = 0;
4036 
4037 out:
4038 	return retval;
4039 }
4040 
4041 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4042 					   struct sctp_assoc_value *params,
4043 					   unsigned int optlen)
4044 {
4045 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4046 	struct sctp_association *asoc;
4047 	int retval = -EINVAL;
4048 
4049 	if (optlen != sizeof(*params))
4050 		goto out;
4051 
4052 	if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4053 		goto out;
4054 
4055 	asoc = sctp_id2assoc(sk, params->assoc_id);
4056 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4057 	    sctp_style(sk, UDP))
4058 		goto out;
4059 
4060 	retval = 0;
4061 
4062 	if (asoc) {
4063 		asoc->strreset_enable = params->assoc_value;
4064 		goto out;
4065 	}
4066 
4067 	if (sctp_style(sk, TCP))
4068 		params->assoc_id = SCTP_FUTURE_ASSOC;
4069 
4070 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4071 	    params->assoc_id == SCTP_ALL_ASSOC)
4072 		ep->strreset_enable = params->assoc_value;
4073 
4074 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4075 	    params->assoc_id == SCTP_ALL_ASSOC)
4076 		list_for_each_entry(asoc, &ep->asocs, asocs)
4077 			asoc->strreset_enable = params->assoc_value;
4078 
4079 out:
4080 	return retval;
4081 }
4082 
4083 static int sctp_setsockopt_reset_streams(struct sock *sk,
4084 					 struct sctp_reset_streams *params,
4085 					 unsigned int optlen)
4086 {
4087 	struct sctp_association *asoc;
4088 
4089 	if (optlen < sizeof(*params))
4090 		return -EINVAL;
4091 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4092 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4093 					     sizeof(__u16) * sizeof(*params));
4094 
4095 	if (params->srs_number_streams * sizeof(__u16) >
4096 	    optlen - sizeof(*params))
4097 		return -EINVAL;
4098 
4099 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4100 	if (!asoc)
4101 		return -EINVAL;
4102 
4103 	return sctp_send_reset_streams(asoc, params);
4104 }
4105 
4106 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4107 				       unsigned int optlen)
4108 {
4109 	struct sctp_association *asoc;
4110 
4111 	if (optlen != sizeof(*associd))
4112 		return -EINVAL;
4113 
4114 	asoc = sctp_id2assoc(sk, *associd);
4115 	if (!asoc)
4116 		return -EINVAL;
4117 
4118 	return sctp_send_reset_assoc(asoc);
4119 }
4120 
4121 static int sctp_setsockopt_add_streams(struct sock *sk,
4122 				       struct sctp_add_streams *params,
4123 				       unsigned int optlen)
4124 {
4125 	struct sctp_association *asoc;
4126 
4127 	if (optlen != sizeof(*params))
4128 		return -EINVAL;
4129 
4130 	asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4131 	if (!asoc)
4132 		return -EINVAL;
4133 
4134 	return sctp_send_add_streams(asoc, params);
4135 }
4136 
4137 static int sctp_setsockopt_scheduler(struct sock *sk,
4138 				     struct sctp_assoc_value *params,
4139 				     unsigned int optlen)
4140 {
4141 	struct sctp_sock *sp = sctp_sk(sk);
4142 	struct sctp_association *asoc;
4143 	int retval = 0;
4144 
4145 	if (optlen < sizeof(*params))
4146 		return -EINVAL;
4147 
4148 	if (params->assoc_value > SCTP_SS_MAX)
4149 		return -EINVAL;
4150 
4151 	asoc = sctp_id2assoc(sk, params->assoc_id);
4152 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4153 	    sctp_style(sk, UDP))
4154 		return -EINVAL;
4155 
4156 	if (asoc)
4157 		return sctp_sched_set_sched(asoc, params->assoc_value);
4158 
4159 	if (sctp_style(sk, TCP))
4160 		params->assoc_id = SCTP_FUTURE_ASSOC;
4161 
4162 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4163 	    params->assoc_id == SCTP_ALL_ASSOC)
4164 		sp->default_ss = params->assoc_value;
4165 
4166 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4167 	    params->assoc_id == SCTP_ALL_ASSOC) {
4168 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4169 			int ret = sctp_sched_set_sched(asoc,
4170 						       params->assoc_value);
4171 
4172 			if (ret && !retval)
4173 				retval = ret;
4174 		}
4175 	}
4176 
4177 	return retval;
4178 }
4179 
4180 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4181 					   struct sctp_stream_value *params,
4182 					   unsigned int optlen)
4183 {
4184 	struct sctp_association *asoc;
4185 	int retval = -EINVAL;
4186 
4187 	if (optlen < sizeof(*params))
4188 		goto out;
4189 
4190 	asoc = sctp_id2assoc(sk, params->assoc_id);
4191 	if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4192 	    sctp_style(sk, UDP))
4193 		goto out;
4194 
4195 	if (asoc) {
4196 		retval = sctp_sched_set_value(asoc, params->stream_id,
4197 					      params->stream_value, GFP_KERNEL);
4198 		goto out;
4199 	}
4200 
4201 	retval = 0;
4202 
4203 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4204 		int ret = sctp_sched_set_value(asoc, params->stream_id,
4205 					       params->stream_value,
4206 					       GFP_KERNEL);
4207 		if (ret && !retval) /* try to return the 1st error. */
4208 			retval = ret;
4209 	}
4210 
4211 out:
4212 	return retval;
4213 }
4214 
4215 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4216 						  struct sctp_assoc_value *p,
4217 						  unsigned int optlen)
4218 {
4219 	struct sctp_sock *sp = sctp_sk(sk);
4220 	struct sctp_association *asoc;
4221 
4222 	if (optlen < sizeof(*p))
4223 		return -EINVAL;
4224 
4225 	asoc = sctp_id2assoc(sk, p->assoc_id);
4226 	if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4227 		return -EINVAL;
4228 
4229 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4230 		return -EPERM;
4231 	}
4232 
4233 	sp->ep->intl_enable = !!p->assoc_value;
4234 	return 0;
4235 }
4236 
4237 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4238 				      unsigned int optlen)
4239 {
4240 	if (!sctp_style(sk, TCP))
4241 		return -EOPNOTSUPP;
4242 
4243 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4244 		return -EFAULT;
4245 
4246 	if (optlen < sizeof(int))
4247 		return -EINVAL;
4248 
4249 	sctp_sk(sk)->reuse = !!*val;
4250 
4251 	return 0;
4252 }
4253 
4254 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4255 					struct sctp_association *asoc)
4256 {
4257 	struct sctp_ulpevent *event;
4258 
4259 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4260 
4261 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4262 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4263 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4264 					GFP_USER | __GFP_NOWARN);
4265 			if (!event)
4266 				return -ENOMEM;
4267 
4268 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4269 		}
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4276 				 unsigned int optlen)
4277 {
4278 	struct sctp_sock *sp = sctp_sk(sk);
4279 	struct sctp_association *asoc;
4280 	int retval = 0;
4281 
4282 	if (optlen < sizeof(*param))
4283 		return -EINVAL;
4284 
4285 	if (param->se_type < SCTP_SN_TYPE_BASE ||
4286 	    param->se_type > SCTP_SN_TYPE_MAX)
4287 		return -EINVAL;
4288 
4289 	asoc = sctp_id2assoc(sk, param->se_assoc_id);
4290 	if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4291 	    sctp_style(sk, UDP))
4292 		return -EINVAL;
4293 
4294 	if (asoc)
4295 		return sctp_assoc_ulpevent_type_set(param, asoc);
4296 
4297 	if (sctp_style(sk, TCP))
4298 		param->se_assoc_id = SCTP_FUTURE_ASSOC;
4299 
4300 	if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4301 	    param->se_assoc_id == SCTP_ALL_ASSOC)
4302 		sctp_ulpevent_type_set(&sp->subscribe,
4303 				       param->se_type, param->se_on);
4304 
4305 	if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4306 	    param->se_assoc_id == SCTP_ALL_ASSOC) {
4307 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4308 			int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4309 
4310 			if (ret && !retval)
4311 				retval = ret;
4312 		}
4313 	}
4314 
4315 	return retval;
4316 }
4317 
4318 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4319 					    struct sctp_assoc_value *params,
4320 					    unsigned int optlen)
4321 {
4322 	struct sctp_association *asoc;
4323 	struct sctp_endpoint *ep;
4324 	int retval = -EINVAL;
4325 
4326 	if (optlen != sizeof(*params))
4327 		goto out;
4328 
4329 	asoc = sctp_id2assoc(sk, params->assoc_id);
4330 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4331 	    sctp_style(sk, UDP))
4332 		goto out;
4333 
4334 	ep = sctp_sk(sk)->ep;
4335 	ep->asconf_enable = !!params->assoc_value;
4336 
4337 	if (ep->asconf_enable && ep->auth_enable) {
4338 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4339 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4340 	}
4341 
4342 	retval = 0;
4343 
4344 out:
4345 	return retval;
4346 }
4347 
4348 static int sctp_setsockopt_auth_supported(struct sock *sk,
4349 					  struct sctp_assoc_value *params,
4350 					  unsigned int optlen)
4351 {
4352 	struct sctp_association *asoc;
4353 	struct sctp_endpoint *ep;
4354 	int retval = -EINVAL;
4355 
4356 	if (optlen != sizeof(*params))
4357 		goto out;
4358 
4359 	asoc = sctp_id2assoc(sk, params->assoc_id);
4360 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4361 	    sctp_style(sk, UDP))
4362 		goto out;
4363 
4364 	ep = sctp_sk(sk)->ep;
4365 	if (params->assoc_value) {
4366 		retval = sctp_auth_init(ep, GFP_KERNEL);
4367 		if (retval)
4368 			goto out;
4369 		if (ep->asconf_enable) {
4370 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4371 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4372 		}
4373 	}
4374 
4375 	ep->auth_enable = !!params->assoc_value;
4376 	retval = 0;
4377 
4378 out:
4379 	return retval;
4380 }
4381 
4382 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4383 					 struct sctp_assoc_value *params,
4384 					 unsigned int optlen)
4385 {
4386 	struct sctp_association *asoc;
4387 	int retval = -EINVAL;
4388 
4389 	if (optlen != sizeof(*params))
4390 		goto out;
4391 
4392 	asoc = sctp_id2assoc(sk, params->assoc_id);
4393 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4394 	    sctp_style(sk, UDP))
4395 		goto out;
4396 
4397 	sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4398 	retval = 0;
4399 
4400 out:
4401 	return retval;
4402 }
4403 
4404 static int sctp_setsockopt_pf_expose(struct sock *sk,
4405 				     struct sctp_assoc_value *params,
4406 				     unsigned int optlen)
4407 {
4408 	struct sctp_association *asoc;
4409 	int retval = -EINVAL;
4410 
4411 	if (optlen != sizeof(*params))
4412 		goto out;
4413 
4414 	if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4415 		goto out;
4416 
4417 	asoc = sctp_id2assoc(sk, params->assoc_id);
4418 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4419 	    sctp_style(sk, UDP))
4420 		goto out;
4421 
4422 	if (asoc)
4423 		asoc->pf_expose = params->assoc_value;
4424 	else
4425 		sctp_sk(sk)->pf_expose = params->assoc_value;
4426 	retval = 0;
4427 
4428 out:
4429 	return retval;
4430 }
4431 
4432 static int sctp_setsockopt_encap_port(struct sock *sk,
4433 				      struct sctp_udpencaps *encap,
4434 				      unsigned int optlen)
4435 {
4436 	struct sctp_association *asoc;
4437 	struct sctp_transport *t;
4438 	__be16 encap_port;
4439 
4440 	if (optlen != sizeof(*encap))
4441 		return -EINVAL;
4442 
4443 	/* If an address other than INADDR_ANY is specified, and
4444 	 * no transport is found, then the request is invalid.
4445 	 */
4446 	encap_port = (__force __be16)encap->sue_port;
4447 	if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4448 		t = sctp_addr_id2transport(sk, &encap->sue_address,
4449 					   encap->sue_assoc_id);
4450 		if (!t)
4451 			return -EINVAL;
4452 
4453 		t->encap_port = encap_port;
4454 		return 0;
4455 	}
4456 
4457 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4458 	 * socket is a one to many style socket, and an association
4459 	 * was not found, then the id was invalid.
4460 	 */
4461 	asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4462 	if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4463 	    sctp_style(sk, UDP))
4464 		return -EINVAL;
4465 
4466 	/* If changes are for association, also apply encap_port to
4467 	 * each transport.
4468 	 */
4469 	if (asoc) {
4470 		list_for_each_entry(t, &asoc->peer.transport_addr_list,
4471 				    transports)
4472 			t->encap_port = encap_port;
4473 
4474 		asoc->encap_port = encap_port;
4475 		return 0;
4476 	}
4477 
4478 	sctp_sk(sk)->encap_port = encap_port;
4479 	return 0;
4480 }
4481 
4482 static int sctp_setsockopt_probe_interval(struct sock *sk,
4483 					  struct sctp_probeinterval *params,
4484 					  unsigned int optlen)
4485 {
4486 	struct sctp_association *asoc;
4487 	struct sctp_transport *t;
4488 	__u32 probe_interval;
4489 
4490 	if (optlen != sizeof(*params))
4491 		return -EINVAL;
4492 
4493 	probe_interval = params->spi_interval;
4494 	if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4495 		return -EINVAL;
4496 
4497 	/* If an address other than INADDR_ANY is specified, and
4498 	 * no transport is found, then the request is invalid.
4499 	 */
4500 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spi_address)) {
4501 		t = sctp_addr_id2transport(sk, &params->spi_address,
4502 					   params->spi_assoc_id);
4503 		if (!t)
4504 			return -EINVAL;
4505 
4506 		t->probe_interval = msecs_to_jiffies(probe_interval);
4507 		sctp_transport_pl_reset(t);
4508 		return 0;
4509 	}
4510 
4511 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4512 	 * socket is a one to many style socket, and an association
4513 	 * was not found, then the id was invalid.
4514 	 */
4515 	asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4516 	if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4517 	    sctp_style(sk, UDP))
4518 		return -EINVAL;
4519 
4520 	/* If changes are for association, also apply probe_interval to
4521 	 * each transport.
4522 	 */
4523 	if (asoc) {
4524 		list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4525 			t->probe_interval = msecs_to_jiffies(probe_interval);
4526 			sctp_transport_pl_reset(t);
4527 		}
4528 
4529 		asoc->probe_interval = msecs_to_jiffies(probe_interval);
4530 		return 0;
4531 	}
4532 
4533 	sctp_sk(sk)->probe_interval = probe_interval;
4534 	return 0;
4535 }
4536 
4537 /* API 6.2 setsockopt(), getsockopt()
4538  *
4539  * Applications use setsockopt() and getsockopt() to set or retrieve
4540  * socket options.  Socket options are used to change the default
4541  * behavior of sockets calls.  They are described in Section 7.
4542  *
4543  * The syntax is:
4544  *
4545  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4546  *                    int __user *optlen);
4547  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4548  *                    int optlen);
4549  *
4550  *   sd      - the socket descript.
4551  *   level   - set to IPPROTO_SCTP for all SCTP options.
4552  *   optname - the option name.
4553  *   optval  - the buffer to store the value of the option.
4554  *   optlen  - the size of the buffer.
4555  */
4556 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4557 			   sockptr_t optval, unsigned int optlen)
4558 {
4559 	void *kopt = NULL;
4560 	int retval = 0;
4561 
4562 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4563 
4564 	/* I can hardly begin to describe how wrong this is.  This is
4565 	 * so broken as to be worse than useless.  The API draft
4566 	 * REALLY is NOT helpful here...  I am not convinced that the
4567 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4568 	 * are at all well-founded.
4569 	 */
4570 	if (level != SOL_SCTP) {
4571 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4572 
4573 		return af->setsockopt(sk, level, optname, optval, optlen);
4574 	}
4575 
4576 	if (optlen > 0) {
4577 		/* Trim it to the biggest size sctp sockopt may need if necessary */
4578 		optlen = min_t(unsigned int, optlen,
4579 			       PAGE_ALIGN(USHRT_MAX +
4580 					  sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4581 		kopt = memdup_sockptr(optval, optlen);
4582 		if (IS_ERR(kopt))
4583 			return PTR_ERR(kopt);
4584 	}
4585 
4586 	lock_sock(sk);
4587 
4588 	switch (optname) {
4589 	case SCTP_SOCKOPT_BINDX_ADD:
4590 		/* 'optlen' is the size of the addresses buffer. */
4591 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4592 					       SCTP_BINDX_ADD_ADDR);
4593 		break;
4594 
4595 	case SCTP_SOCKOPT_BINDX_REM:
4596 		/* 'optlen' is the size of the addresses buffer. */
4597 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4598 					       SCTP_BINDX_REM_ADDR);
4599 		break;
4600 
4601 	case SCTP_SOCKOPT_CONNECTX_OLD:
4602 		/* 'optlen' is the size of the addresses buffer. */
4603 		retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4604 		break;
4605 
4606 	case SCTP_SOCKOPT_CONNECTX:
4607 		/* 'optlen' is the size of the addresses buffer. */
4608 		retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4609 		break;
4610 
4611 	case SCTP_DISABLE_FRAGMENTS:
4612 		retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4613 		break;
4614 
4615 	case SCTP_EVENTS:
4616 		retval = sctp_setsockopt_events(sk, kopt, optlen);
4617 		break;
4618 
4619 	case SCTP_AUTOCLOSE:
4620 		retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4621 		break;
4622 
4623 	case SCTP_PEER_ADDR_PARAMS:
4624 		retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4625 		break;
4626 
4627 	case SCTP_DELAYED_SACK:
4628 		retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4629 		break;
4630 	case SCTP_PARTIAL_DELIVERY_POINT:
4631 		retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4632 		break;
4633 
4634 	case SCTP_INITMSG:
4635 		retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4636 		break;
4637 	case SCTP_DEFAULT_SEND_PARAM:
4638 		retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4639 		break;
4640 	case SCTP_DEFAULT_SNDINFO:
4641 		retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4642 		break;
4643 	case SCTP_PRIMARY_ADDR:
4644 		retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4645 		break;
4646 	case SCTP_SET_PEER_PRIMARY_ADDR:
4647 		retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4648 		break;
4649 	case SCTP_NODELAY:
4650 		retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4651 		break;
4652 	case SCTP_RTOINFO:
4653 		retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4654 		break;
4655 	case SCTP_ASSOCINFO:
4656 		retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4657 		break;
4658 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4659 		retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4660 		break;
4661 	case SCTP_MAXSEG:
4662 		retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4663 		break;
4664 	case SCTP_ADAPTATION_LAYER:
4665 		retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4666 		break;
4667 	case SCTP_CONTEXT:
4668 		retval = sctp_setsockopt_context(sk, kopt, optlen);
4669 		break;
4670 	case SCTP_FRAGMENT_INTERLEAVE:
4671 		retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4672 		break;
4673 	case SCTP_MAX_BURST:
4674 		retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4675 		break;
4676 	case SCTP_AUTH_CHUNK:
4677 		retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4678 		break;
4679 	case SCTP_HMAC_IDENT:
4680 		retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4681 		break;
4682 	case SCTP_AUTH_KEY:
4683 		retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4684 		break;
4685 	case SCTP_AUTH_ACTIVE_KEY:
4686 		retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4687 		break;
4688 	case SCTP_AUTH_DELETE_KEY:
4689 		retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4690 		break;
4691 	case SCTP_AUTH_DEACTIVATE_KEY:
4692 		retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4693 		break;
4694 	case SCTP_AUTO_ASCONF:
4695 		retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4696 		break;
4697 	case SCTP_PEER_ADDR_THLDS:
4698 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4699 							  false);
4700 		break;
4701 	case SCTP_PEER_ADDR_THLDS_V2:
4702 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4703 							  true);
4704 		break;
4705 	case SCTP_RECVRCVINFO:
4706 		retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4707 		break;
4708 	case SCTP_RECVNXTINFO:
4709 		retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4710 		break;
4711 	case SCTP_PR_SUPPORTED:
4712 		retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4713 		break;
4714 	case SCTP_DEFAULT_PRINFO:
4715 		retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4716 		break;
4717 	case SCTP_RECONFIG_SUPPORTED:
4718 		retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4719 		break;
4720 	case SCTP_ENABLE_STREAM_RESET:
4721 		retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4722 		break;
4723 	case SCTP_RESET_STREAMS:
4724 		retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4725 		break;
4726 	case SCTP_RESET_ASSOC:
4727 		retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4728 		break;
4729 	case SCTP_ADD_STREAMS:
4730 		retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4731 		break;
4732 	case SCTP_STREAM_SCHEDULER:
4733 		retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4734 		break;
4735 	case SCTP_STREAM_SCHEDULER_VALUE:
4736 		retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4737 		break;
4738 	case SCTP_INTERLEAVING_SUPPORTED:
4739 		retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4740 								optlen);
4741 		break;
4742 	case SCTP_REUSE_PORT:
4743 		retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4744 		break;
4745 	case SCTP_EVENT:
4746 		retval = sctp_setsockopt_event(sk, kopt, optlen);
4747 		break;
4748 	case SCTP_ASCONF_SUPPORTED:
4749 		retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4750 		break;
4751 	case SCTP_AUTH_SUPPORTED:
4752 		retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4753 		break;
4754 	case SCTP_ECN_SUPPORTED:
4755 		retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4756 		break;
4757 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4758 		retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4759 		break;
4760 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
4761 		retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4762 		break;
4763 	case SCTP_PLPMTUD_PROBE_INTERVAL:
4764 		retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4765 		break;
4766 	default:
4767 		retval = -ENOPROTOOPT;
4768 		break;
4769 	}
4770 
4771 	release_sock(sk);
4772 	kfree(kopt);
4773 	return retval;
4774 }
4775 
4776 /* API 3.1.6 connect() - UDP Style Syntax
4777  *
4778  * An application may use the connect() call in the UDP model to initiate an
4779  * association without sending data.
4780  *
4781  * The syntax is:
4782  *
4783  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4784  *
4785  * sd: the socket descriptor to have a new association added to.
4786  *
4787  * nam: the address structure (either struct sockaddr_in or struct
4788  *    sockaddr_in6 defined in RFC2553 [7]).
4789  *
4790  * len: the size of the address.
4791  */
4792 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4793 			int addr_len, int flags)
4794 {
4795 	struct sctp_af *af;
4796 	int err = -EINVAL;
4797 
4798 	lock_sock(sk);
4799 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4800 		 addr, addr_len);
4801 
4802 	/* Validate addr_len before calling common connect/connectx routine. */
4803 	af = sctp_get_af_specific(addr->sa_family);
4804 	if (af && addr_len >= af->sockaddr_len)
4805 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4806 
4807 	release_sock(sk);
4808 	return err;
4809 }
4810 
4811 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4812 		      int addr_len, int flags)
4813 {
4814 	if (addr_len < sizeof(uaddr->sa_family))
4815 		return -EINVAL;
4816 
4817 	if (uaddr->sa_family == AF_UNSPEC)
4818 		return -EOPNOTSUPP;
4819 
4820 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4821 }
4822 
4823 /* FIXME: Write comments. */
4824 static int sctp_disconnect(struct sock *sk, int flags)
4825 {
4826 	return -EOPNOTSUPP; /* STUB */
4827 }
4828 
4829 /* 4.1.4 accept() - TCP Style Syntax
4830  *
4831  * Applications use accept() call to remove an established SCTP
4832  * association from the accept queue of the endpoint.  A new socket
4833  * descriptor will be returned from accept() to represent the newly
4834  * formed association.
4835  */
4836 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4837 {
4838 	struct sctp_sock *sp;
4839 	struct sctp_endpoint *ep;
4840 	struct sock *newsk = NULL;
4841 	struct sctp_association *asoc;
4842 	long timeo;
4843 	int error = 0;
4844 
4845 	lock_sock(sk);
4846 
4847 	sp = sctp_sk(sk);
4848 	ep = sp->ep;
4849 
4850 	if (!sctp_style(sk, TCP)) {
4851 		error = -EOPNOTSUPP;
4852 		goto out;
4853 	}
4854 
4855 	if (!sctp_sstate(sk, LISTENING)) {
4856 		error = -EINVAL;
4857 		goto out;
4858 	}
4859 
4860 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4861 
4862 	error = sctp_wait_for_accept(sk, timeo);
4863 	if (error)
4864 		goto out;
4865 
4866 	/* We treat the list of associations on the endpoint as the accept
4867 	 * queue and pick the first association on the list.
4868 	 */
4869 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4870 
4871 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4872 	if (!newsk) {
4873 		error = -ENOMEM;
4874 		goto out;
4875 	}
4876 
4877 	/* Populate the fields of the newsk from the oldsk and migrate the
4878 	 * asoc to the newsk.
4879 	 */
4880 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4881 	if (error) {
4882 		sk_common_release(newsk);
4883 		newsk = NULL;
4884 	}
4885 
4886 out:
4887 	release_sock(sk);
4888 	*err = error;
4889 	return newsk;
4890 }
4891 
4892 /* The SCTP ioctl handler. */
4893 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4894 {
4895 	int rc = -ENOTCONN;
4896 
4897 	lock_sock(sk);
4898 
4899 	/*
4900 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4901 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4902 	 */
4903 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4904 		goto out;
4905 
4906 	switch (cmd) {
4907 	case SIOCINQ: {
4908 		struct sk_buff *skb;
4909 		unsigned int amount = 0;
4910 
4911 		skb = skb_peek(&sk->sk_receive_queue);
4912 		if (skb != NULL) {
4913 			/*
4914 			 * We will only return the amount of this packet since
4915 			 * that is all that will be read.
4916 			 */
4917 			amount = skb->len;
4918 		}
4919 		rc = put_user(amount, (int __user *)arg);
4920 		break;
4921 	}
4922 	default:
4923 		rc = -ENOIOCTLCMD;
4924 		break;
4925 	}
4926 out:
4927 	release_sock(sk);
4928 	return rc;
4929 }
4930 
4931 /* This is the function which gets called during socket creation to
4932  * initialized the SCTP-specific portion of the sock.
4933  * The sock structure should already be zero-filled memory.
4934  */
4935 static int sctp_init_sock(struct sock *sk)
4936 {
4937 	struct net *net = sock_net(sk);
4938 	struct sctp_sock *sp;
4939 
4940 	pr_debug("%s: sk:%p\n", __func__, sk);
4941 
4942 	sp = sctp_sk(sk);
4943 
4944 	/* Initialize the SCTP per socket area.  */
4945 	switch (sk->sk_type) {
4946 	case SOCK_SEQPACKET:
4947 		sp->type = SCTP_SOCKET_UDP;
4948 		break;
4949 	case SOCK_STREAM:
4950 		sp->type = SCTP_SOCKET_TCP;
4951 		break;
4952 	default:
4953 		return -ESOCKTNOSUPPORT;
4954 	}
4955 
4956 	sk->sk_gso_type = SKB_GSO_SCTP;
4957 
4958 	/* Initialize default send parameters. These parameters can be
4959 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4960 	 */
4961 	sp->default_stream = 0;
4962 	sp->default_ppid = 0;
4963 	sp->default_flags = 0;
4964 	sp->default_context = 0;
4965 	sp->default_timetolive = 0;
4966 
4967 	sp->default_rcv_context = 0;
4968 	sp->max_burst = net->sctp.max_burst;
4969 
4970 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4971 
4972 	/* Initialize default setup parameters. These parameters
4973 	 * can be modified with the SCTP_INITMSG socket option or
4974 	 * overridden by the SCTP_INIT CMSG.
4975 	 */
4976 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4977 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4978 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4979 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4980 
4981 	/* Initialize default RTO related parameters.  These parameters can
4982 	 * be modified for with the SCTP_RTOINFO socket option.
4983 	 */
4984 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4985 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4986 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4987 
4988 	/* Initialize default association related parameters. These parameters
4989 	 * can be modified with the SCTP_ASSOCINFO socket option.
4990 	 */
4991 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4992 	sp->assocparams.sasoc_number_peer_destinations = 0;
4993 	sp->assocparams.sasoc_peer_rwnd = 0;
4994 	sp->assocparams.sasoc_local_rwnd = 0;
4995 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4996 
4997 	/* Initialize default event subscriptions. By default, all the
4998 	 * options are off.
4999 	 */
5000 	sp->subscribe = 0;
5001 
5002 	/* Default Peer Address Parameters.  These defaults can
5003 	 * be modified via SCTP_PEER_ADDR_PARAMS
5004 	 */
5005 	sp->hbinterval  = net->sctp.hb_interval;
5006 	sp->udp_port    = htons(net->sctp.udp_port);
5007 	sp->encap_port  = htons(net->sctp.encap_port);
5008 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5009 	sp->pf_retrans  = net->sctp.pf_retrans;
5010 	sp->ps_retrans  = net->sctp.ps_retrans;
5011 	sp->pf_expose   = net->sctp.pf_expose;
5012 	sp->pathmtu     = 0; /* allow default discovery */
5013 	sp->sackdelay   = net->sctp.sack_timeout;
5014 	sp->sackfreq	= 2;
5015 	sp->param_flags = SPP_HB_ENABLE |
5016 			  SPP_PMTUD_ENABLE |
5017 			  SPP_SACKDELAY_ENABLE;
5018 	sp->default_ss = SCTP_SS_DEFAULT;
5019 
5020 	/* If enabled no SCTP message fragmentation will be performed.
5021 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5022 	 */
5023 	sp->disable_fragments = 0;
5024 
5025 	/* Enable Nagle algorithm by default.  */
5026 	sp->nodelay           = 0;
5027 
5028 	sp->recvrcvinfo = 0;
5029 	sp->recvnxtinfo = 0;
5030 
5031 	/* Enable by default. */
5032 	sp->v4mapped          = 1;
5033 
5034 	/* Auto-close idle associations after the configured
5035 	 * number of seconds.  A value of 0 disables this
5036 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5037 	 * for UDP-style sockets only.
5038 	 */
5039 	sp->autoclose         = 0;
5040 
5041 	/* User specified fragmentation limit. */
5042 	sp->user_frag         = 0;
5043 
5044 	sp->adaptation_ind = 0;
5045 
5046 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5047 
5048 	/* Control variables for partial data delivery. */
5049 	atomic_set(&sp->pd_mode, 0);
5050 	skb_queue_head_init(&sp->pd_lobby);
5051 	sp->frag_interleave = 0;
5052 	sp->probe_interval = net->sctp.probe_interval;
5053 
5054 	/* Create a per socket endpoint structure.  Even if we
5055 	 * change the data structure relationships, this may still
5056 	 * be useful for storing pre-connect address information.
5057 	 */
5058 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5059 	if (!sp->ep)
5060 		return -ENOMEM;
5061 
5062 	sp->hmac = NULL;
5063 
5064 	sk->sk_destruct = sctp_destruct_sock;
5065 
5066 	SCTP_DBG_OBJCNT_INC(sock);
5067 
5068 	sk_sockets_allocated_inc(sk);
5069 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5070 
5071 	return 0;
5072 }
5073 
5074 /* Cleanup any SCTP per socket resources. Must be called with
5075  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5076  */
5077 static void sctp_destroy_sock(struct sock *sk)
5078 {
5079 	struct sctp_sock *sp;
5080 
5081 	pr_debug("%s: sk:%p\n", __func__, sk);
5082 
5083 	/* Release our hold on the endpoint. */
5084 	sp = sctp_sk(sk);
5085 	/* This could happen during socket init, thus we bail out
5086 	 * early, since the rest of the below is not setup either.
5087 	 */
5088 	if (sp->ep == NULL)
5089 		return;
5090 
5091 	if (sp->do_auto_asconf) {
5092 		sp->do_auto_asconf = 0;
5093 		list_del(&sp->auto_asconf_list);
5094 	}
5095 	sctp_endpoint_free(sp->ep);
5096 	sk_sockets_allocated_dec(sk);
5097 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5098 }
5099 
5100 /* Triggered when there are no references on the socket anymore */
5101 static void sctp_destruct_sock(struct sock *sk)
5102 {
5103 	struct sctp_sock *sp = sctp_sk(sk);
5104 
5105 	/* Free up the HMAC transform. */
5106 	crypto_free_shash(sp->hmac);
5107 
5108 	inet_sock_destruct(sk);
5109 }
5110 
5111 /* API 4.1.7 shutdown() - TCP Style Syntax
5112  *     int shutdown(int socket, int how);
5113  *
5114  *     sd      - the socket descriptor of the association to be closed.
5115  *     how     - Specifies the type of shutdown.  The  values  are
5116  *               as follows:
5117  *               SHUT_RD
5118  *                     Disables further receive operations. No SCTP
5119  *                     protocol action is taken.
5120  *               SHUT_WR
5121  *                     Disables further send operations, and initiates
5122  *                     the SCTP shutdown sequence.
5123  *               SHUT_RDWR
5124  *                     Disables further send  and  receive  operations
5125  *                     and initiates the SCTP shutdown sequence.
5126  */
5127 static void sctp_shutdown(struct sock *sk, int how)
5128 {
5129 	struct net *net = sock_net(sk);
5130 	struct sctp_endpoint *ep;
5131 
5132 	if (!sctp_style(sk, TCP))
5133 		return;
5134 
5135 	ep = sctp_sk(sk)->ep;
5136 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5137 		struct sctp_association *asoc;
5138 
5139 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5140 		asoc = list_entry(ep->asocs.next,
5141 				  struct sctp_association, asocs);
5142 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5143 	}
5144 }
5145 
5146 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5147 		       struct sctp_info *info)
5148 {
5149 	struct sctp_transport *prim;
5150 	struct list_head *pos;
5151 	int mask;
5152 
5153 	memset(info, 0, sizeof(*info));
5154 	if (!asoc) {
5155 		struct sctp_sock *sp = sctp_sk(sk);
5156 
5157 		info->sctpi_s_autoclose = sp->autoclose;
5158 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5159 		info->sctpi_s_pd_point = sp->pd_point;
5160 		info->sctpi_s_nodelay = sp->nodelay;
5161 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5162 		info->sctpi_s_v4mapped = sp->v4mapped;
5163 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5164 		info->sctpi_s_type = sp->type;
5165 
5166 		return 0;
5167 	}
5168 
5169 	info->sctpi_tag = asoc->c.my_vtag;
5170 	info->sctpi_state = asoc->state;
5171 	info->sctpi_rwnd = asoc->a_rwnd;
5172 	info->sctpi_unackdata = asoc->unack_data;
5173 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5174 	info->sctpi_instrms = asoc->stream.incnt;
5175 	info->sctpi_outstrms = asoc->stream.outcnt;
5176 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5177 		info->sctpi_inqueue++;
5178 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5179 		info->sctpi_outqueue++;
5180 	info->sctpi_overall_error = asoc->overall_error_count;
5181 	info->sctpi_max_burst = asoc->max_burst;
5182 	info->sctpi_maxseg = asoc->frag_point;
5183 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5184 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5185 
5186 	mask = asoc->peer.ecn_capable << 1;
5187 	mask = (mask | asoc->peer.ipv4_address) << 1;
5188 	mask = (mask | asoc->peer.ipv6_address) << 1;
5189 	mask = (mask | asoc->peer.hostname_address) << 1;
5190 	mask = (mask | asoc->peer.asconf_capable) << 1;
5191 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5192 	mask = (mask | asoc->peer.auth_capable);
5193 	info->sctpi_peer_capable = mask;
5194 	mask = asoc->peer.sack_needed << 1;
5195 	mask = (mask | asoc->peer.sack_generation) << 1;
5196 	mask = (mask | asoc->peer.zero_window_announced);
5197 	info->sctpi_peer_sack = mask;
5198 
5199 	info->sctpi_isacks = asoc->stats.isacks;
5200 	info->sctpi_osacks = asoc->stats.osacks;
5201 	info->sctpi_opackets = asoc->stats.opackets;
5202 	info->sctpi_ipackets = asoc->stats.ipackets;
5203 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5204 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5205 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5206 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5207 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5208 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5209 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5210 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5211 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5212 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5213 
5214 	prim = asoc->peer.primary_path;
5215 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5216 	info->sctpi_p_state = prim->state;
5217 	info->sctpi_p_cwnd = prim->cwnd;
5218 	info->sctpi_p_srtt = prim->srtt;
5219 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5220 	info->sctpi_p_hbinterval = prim->hbinterval;
5221 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5222 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5223 	info->sctpi_p_ssthresh = prim->ssthresh;
5224 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5225 	info->sctpi_p_flight_size = prim->flight_size;
5226 	info->sctpi_p_error = prim->error_count;
5227 
5228 	return 0;
5229 }
5230 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5231 
5232 /* use callback to avoid exporting the core structure */
5233 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5234 {
5235 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5236 
5237 	rhashtable_walk_start(iter);
5238 }
5239 
5240 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5241 {
5242 	rhashtable_walk_stop(iter);
5243 	rhashtable_walk_exit(iter);
5244 }
5245 
5246 struct sctp_transport *sctp_transport_get_next(struct net *net,
5247 					       struct rhashtable_iter *iter)
5248 {
5249 	struct sctp_transport *t;
5250 
5251 	t = rhashtable_walk_next(iter);
5252 	for (; t; t = rhashtable_walk_next(iter)) {
5253 		if (IS_ERR(t)) {
5254 			if (PTR_ERR(t) == -EAGAIN)
5255 				continue;
5256 			break;
5257 		}
5258 
5259 		if (!sctp_transport_hold(t))
5260 			continue;
5261 
5262 		if (net_eq(t->asoc->base.net, net) &&
5263 		    t->asoc->peer.primary_path == t)
5264 			break;
5265 
5266 		sctp_transport_put(t);
5267 	}
5268 
5269 	return t;
5270 }
5271 
5272 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5273 					      struct rhashtable_iter *iter,
5274 					      int pos)
5275 {
5276 	struct sctp_transport *t;
5277 
5278 	if (!pos)
5279 		return SEQ_START_TOKEN;
5280 
5281 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5282 		if (!--pos)
5283 			break;
5284 		sctp_transport_put(t);
5285 	}
5286 
5287 	return t;
5288 }
5289 
5290 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5291 			   void *p) {
5292 	int err = 0;
5293 	int hash = 0;
5294 	struct sctp_endpoint *ep;
5295 	struct sctp_hashbucket *head;
5296 
5297 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5298 	     hash++, head++) {
5299 		read_lock_bh(&head->lock);
5300 		sctp_for_each_hentry(ep, &head->chain) {
5301 			err = cb(ep, p);
5302 			if (err)
5303 				break;
5304 		}
5305 		read_unlock_bh(&head->lock);
5306 	}
5307 
5308 	return err;
5309 }
5310 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5311 
5312 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5313 				  const union sctp_addr *laddr,
5314 				  const union sctp_addr *paddr, void *p)
5315 {
5316 	struct sctp_transport *transport;
5317 	struct sctp_endpoint *ep;
5318 	int err = -ENOENT;
5319 
5320 	rcu_read_lock();
5321 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5322 	if (!transport) {
5323 		rcu_read_unlock();
5324 		return err;
5325 	}
5326 	ep = transport->asoc->ep;
5327 	if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5328 		sctp_transport_put(transport);
5329 		rcu_read_unlock();
5330 		return err;
5331 	}
5332 	rcu_read_unlock();
5333 
5334 	err = cb(ep, transport, p);
5335 	sctp_endpoint_put(ep);
5336 	sctp_transport_put(transport);
5337 	return err;
5338 }
5339 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5340 
5341 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5342 				    struct net *net, int *pos, void *p)
5343 {
5344 	struct rhashtable_iter hti;
5345 	struct sctp_transport *tsp;
5346 	struct sctp_endpoint *ep;
5347 	int ret;
5348 
5349 again:
5350 	ret = 0;
5351 	sctp_transport_walk_start(&hti);
5352 
5353 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5354 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5355 		ep = tsp->asoc->ep;
5356 		if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5357 			ret = cb(ep, tsp, p);
5358 			if (ret)
5359 				break;
5360 			sctp_endpoint_put(ep);
5361 		}
5362 		(*pos)++;
5363 		sctp_transport_put(tsp);
5364 	}
5365 	sctp_transport_walk_stop(&hti);
5366 
5367 	if (ret) {
5368 		if (cb_done && !cb_done(ep, tsp, p)) {
5369 			(*pos)++;
5370 			sctp_endpoint_put(ep);
5371 			sctp_transport_put(tsp);
5372 			goto again;
5373 		}
5374 		sctp_endpoint_put(ep);
5375 		sctp_transport_put(tsp);
5376 	}
5377 
5378 	return ret;
5379 }
5380 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5381 
5382 /* 7.2.1 Association Status (SCTP_STATUS)
5383 
5384  * Applications can retrieve current status information about an
5385  * association, including association state, peer receiver window size,
5386  * number of unacked data chunks, and number of data chunks pending
5387  * receipt.  This information is read-only.
5388  */
5389 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5390 				       char __user *optval,
5391 				       int __user *optlen)
5392 {
5393 	struct sctp_status status;
5394 	struct sctp_association *asoc = NULL;
5395 	struct sctp_transport *transport;
5396 	sctp_assoc_t associd;
5397 	int retval = 0;
5398 
5399 	if (len < sizeof(status)) {
5400 		retval = -EINVAL;
5401 		goto out;
5402 	}
5403 
5404 	len = sizeof(status);
5405 	if (copy_from_user(&status, optval, len)) {
5406 		retval = -EFAULT;
5407 		goto out;
5408 	}
5409 
5410 	associd = status.sstat_assoc_id;
5411 	asoc = sctp_id2assoc(sk, associd);
5412 	if (!asoc) {
5413 		retval = -EINVAL;
5414 		goto out;
5415 	}
5416 
5417 	transport = asoc->peer.primary_path;
5418 
5419 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5420 	status.sstat_state = sctp_assoc_to_state(asoc);
5421 	status.sstat_rwnd =  asoc->peer.rwnd;
5422 	status.sstat_unackdata = asoc->unack_data;
5423 
5424 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5425 	status.sstat_instrms = asoc->stream.incnt;
5426 	status.sstat_outstrms = asoc->stream.outcnt;
5427 	status.sstat_fragmentation_point = asoc->frag_point;
5428 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5429 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5430 			transport->af_specific->sockaddr_len);
5431 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5432 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5433 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5434 	status.sstat_primary.spinfo_state = transport->state;
5435 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5436 	status.sstat_primary.spinfo_srtt = transport->srtt;
5437 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5438 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5439 
5440 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5441 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5442 
5443 	if (put_user(len, optlen)) {
5444 		retval = -EFAULT;
5445 		goto out;
5446 	}
5447 
5448 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5449 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5450 		 status.sstat_assoc_id);
5451 
5452 	if (copy_to_user(optval, &status, len)) {
5453 		retval = -EFAULT;
5454 		goto out;
5455 	}
5456 
5457 out:
5458 	return retval;
5459 }
5460 
5461 
5462 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5463  *
5464  * Applications can retrieve information about a specific peer address
5465  * of an association, including its reachability state, congestion
5466  * window, and retransmission timer values.  This information is
5467  * read-only.
5468  */
5469 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5470 					  char __user *optval,
5471 					  int __user *optlen)
5472 {
5473 	struct sctp_paddrinfo pinfo;
5474 	struct sctp_transport *transport;
5475 	int retval = 0;
5476 
5477 	if (len < sizeof(pinfo)) {
5478 		retval = -EINVAL;
5479 		goto out;
5480 	}
5481 
5482 	len = sizeof(pinfo);
5483 	if (copy_from_user(&pinfo, optval, len)) {
5484 		retval = -EFAULT;
5485 		goto out;
5486 	}
5487 
5488 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5489 					   pinfo.spinfo_assoc_id);
5490 	if (!transport) {
5491 		retval = -EINVAL;
5492 		goto out;
5493 	}
5494 
5495 	if (transport->state == SCTP_PF &&
5496 	    transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5497 		retval = -EACCES;
5498 		goto out;
5499 	}
5500 
5501 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5502 	pinfo.spinfo_state = transport->state;
5503 	pinfo.spinfo_cwnd = transport->cwnd;
5504 	pinfo.spinfo_srtt = transport->srtt;
5505 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5506 	pinfo.spinfo_mtu = transport->pathmtu;
5507 
5508 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5509 		pinfo.spinfo_state = SCTP_ACTIVE;
5510 
5511 	if (put_user(len, optlen)) {
5512 		retval = -EFAULT;
5513 		goto out;
5514 	}
5515 
5516 	if (copy_to_user(optval, &pinfo, len)) {
5517 		retval = -EFAULT;
5518 		goto out;
5519 	}
5520 
5521 out:
5522 	return retval;
5523 }
5524 
5525 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5526  *
5527  * This option is a on/off flag.  If enabled no SCTP message
5528  * fragmentation will be performed.  Instead if a message being sent
5529  * exceeds the current PMTU size, the message will NOT be sent and
5530  * instead a error will be indicated to the user.
5531  */
5532 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5533 					char __user *optval, int __user *optlen)
5534 {
5535 	int val;
5536 
5537 	if (len < sizeof(int))
5538 		return -EINVAL;
5539 
5540 	len = sizeof(int);
5541 	val = (sctp_sk(sk)->disable_fragments == 1);
5542 	if (put_user(len, optlen))
5543 		return -EFAULT;
5544 	if (copy_to_user(optval, &val, len))
5545 		return -EFAULT;
5546 	return 0;
5547 }
5548 
5549 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5550  *
5551  * This socket option is used to specify various notifications and
5552  * ancillary data the user wishes to receive.
5553  */
5554 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5555 				  int __user *optlen)
5556 {
5557 	struct sctp_event_subscribe subscribe;
5558 	__u8 *sn_type = (__u8 *)&subscribe;
5559 	int i;
5560 
5561 	if (len == 0)
5562 		return -EINVAL;
5563 	if (len > sizeof(struct sctp_event_subscribe))
5564 		len = sizeof(struct sctp_event_subscribe);
5565 	if (put_user(len, optlen))
5566 		return -EFAULT;
5567 
5568 	for (i = 0; i < len; i++)
5569 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5570 							SCTP_SN_TYPE_BASE + i);
5571 
5572 	if (copy_to_user(optval, &subscribe, len))
5573 		return -EFAULT;
5574 
5575 	return 0;
5576 }
5577 
5578 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5579  *
5580  * This socket option is applicable to the UDP-style socket only.  When
5581  * set it will cause associations that are idle for more than the
5582  * specified number of seconds to automatically close.  An association
5583  * being idle is defined an association that has NOT sent or received
5584  * user data.  The special value of '0' indicates that no automatic
5585  * close of any associations should be performed.  The option expects an
5586  * integer defining the number of seconds of idle time before an
5587  * association is closed.
5588  */
5589 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5590 {
5591 	/* Applicable to UDP-style socket only */
5592 	if (sctp_style(sk, TCP))
5593 		return -EOPNOTSUPP;
5594 	if (len < sizeof(int))
5595 		return -EINVAL;
5596 	len = sizeof(int);
5597 	if (put_user(len, optlen))
5598 		return -EFAULT;
5599 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5600 		return -EFAULT;
5601 	return 0;
5602 }
5603 
5604 /* Helper routine to branch off an association to a new socket.  */
5605 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5606 {
5607 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5608 	struct sctp_sock *sp = sctp_sk(sk);
5609 	struct socket *sock;
5610 	int err = 0;
5611 
5612 	/* Do not peel off from one netns to another one. */
5613 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5614 		return -EINVAL;
5615 
5616 	if (!asoc)
5617 		return -EINVAL;
5618 
5619 	/* An association cannot be branched off from an already peeled-off
5620 	 * socket, nor is this supported for tcp style sockets.
5621 	 */
5622 	if (!sctp_style(sk, UDP))
5623 		return -EINVAL;
5624 
5625 	/* Create a new socket.  */
5626 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5627 	if (err < 0)
5628 		return err;
5629 
5630 	sctp_copy_sock(sock->sk, sk, asoc);
5631 
5632 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5633 	 * Set the daddr and initialize id to something more random and also
5634 	 * copy over any ip options.
5635 	 */
5636 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5637 	sp->pf->copy_ip_options(sk, sock->sk);
5638 
5639 	/* Populate the fields of the newsk from the oldsk and migrate the
5640 	 * asoc to the newsk.
5641 	 */
5642 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5643 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5644 	if (err) {
5645 		sock_release(sock);
5646 		sock = NULL;
5647 	}
5648 
5649 	*sockp = sock;
5650 
5651 	return err;
5652 }
5653 EXPORT_SYMBOL(sctp_do_peeloff);
5654 
5655 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5656 					  struct file **newfile, unsigned flags)
5657 {
5658 	struct socket *newsock;
5659 	int retval;
5660 
5661 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5662 	if (retval < 0)
5663 		goto out;
5664 
5665 	/* Map the socket to an unused fd that can be returned to the user.  */
5666 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5667 	if (retval < 0) {
5668 		sock_release(newsock);
5669 		goto out;
5670 	}
5671 
5672 	*newfile = sock_alloc_file(newsock, 0, NULL);
5673 	if (IS_ERR(*newfile)) {
5674 		put_unused_fd(retval);
5675 		retval = PTR_ERR(*newfile);
5676 		*newfile = NULL;
5677 		return retval;
5678 	}
5679 
5680 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5681 		 retval);
5682 
5683 	peeloff->sd = retval;
5684 
5685 	if (flags & SOCK_NONBLOCK)
5686 		(*newfile)->f_flags |= O_NONBLOCK;
5687 out:
5688 	return retval;
5689 }
5690 
5691 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5692 {
5693 	sctp_peeloff_arg_t peeloff;
5694 	struct file *newfile = NULL;
5695 	int retval = 0;
5696 
5697 	if (len < sizeof(sctp_peeloff_arg_t))
5698 		return -EINVAL;
5699 	len = sizeof(sctp_peeloff_arg_t);
5700 	if (copy_from_user(&peeloff, optval, len))
5701 		return -EFAULT;
5702 
5703 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5704 	if (retval < 0)
5705 		goto out;
5706 
5707 	/* Return the fd mapped to the new socket.  */
5708 	if (put_user(len, optlen)) {
5709 		fput(newfile);
5710 		put_unused_fd(retval);
5711 		return -EFAULT;
5712 	}
5713 
5714 	if (copy_to_user(optval, &peeloff, len)) {
5715 		fput(newfile);
5716 		put_unused_fd(retval);
5717 		return -EFAULT;
5718 	}
5719 	fd_install(retval, newfile);
5720 out:
5721 	return retval;
5722 }
5723 
5724 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5725 					 char __user *optval, int __user *optlen)
5726 {
5727 	sctp_peeloff_flags_arg_t peeloff;
5728 	struct file *newfile = NULL;
5729 	int retval = 0;
5730 
5731 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5732 		return -EINVAL;
5733 	len = sizeof(sctp_peeloff_flags_arg_t);
5734 	if (copy_from_user(&peeloff, optval, len))
5735 		return -EFAULT;
5736 
5737 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5738 						&newfile, peeloff.flags);
5739 	if (retval < 0)
5740 		goto out;
5741 
5742 	/* Return the fd mapped to the new socket.  */
5743 	if (put_user(len, optlen)) {
5744 		fput(newfile);
5745 		put_unused_fd(retval);
5746 		return -EFAULT;
5747 	}
5748 
5749 	if (copy_to_user(optval, &peeloff, len)) {
5750 		fput(newfile);
5751 		put_unused_fd(retval);
5752 		return -EFAULT;
5753 	}
5754 	fd_install(retval, newfile);
5755 out:
5756 	return retval;
5757 }
5758 
5759 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5760  *
5761  * Applications can enable or disable heartbeats for any peer address of
5762  * an association, modify an address's heartbeat interval, force a
5763  * heartbeat to be sent immediately, and adjust the address's maximum
5764  * number of retransmissions sent before an address is considered
5765  * unreachable.  The following structure is used to access and modify an
5766  * address's parameters:
5767  *
5768  *  struct sctp_paddrparams {
5769  *     sctp_assoc_t            spp_assoc_id;
5770  *     struct sockaddr_storage spp_address;
5771  *     uint32_t                spp_hbinterval;
5772  *     uint16_t                spp_pathmaxrxt;
5773  *     uint32_t                spp_pathmtu;
5774  *     uint32_t                spp_sackdelay;
5775  *     uint32_t                spp_flags;
5776  * };
5777  *
5778  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5779  *                     application, and identifies the association for
5780  *                     this query.
5781  *   spp_address     - This specifies which address is of interest.
5782  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5783  *                     in milliseconds.  If a  value of zero
5784  *                     is present in this field then no changes are to
5785  *                     be made to this parameter.
5786  *   spp_pathmaxrxt  - This contains the maximum number of
5787  *                     retransmissions before this address shall be
5788  *                     considered unreachable. If a  value of zero
5789  *                     is present in this field then no changes are to
5790  *                     be made to this parameter.
5791  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5792  *                     specified here will be the "fixed" path mtu.
5793  *                     Note that if the spp_address field is empty
5794  *                     then all associations on this address will
5795  *                     have this fixed path mtu set upon them.
5796  *
5797  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5798  *                     the number of milliseconds that sacks will be delayed
5799  *                     for. This value will apply to all addresses of an
5800  *                     association if the spp_address field is empty. Note
5801  *                     also, that if delayed sack is enabled and this
5802  *                     value is set to 0, no change is made to the last
5803  *                     recorded delayed sack timer value.
5804  *
5805  *   spp_flags       - These flags are used to control various features
5806  *                     on an association. The flag field may contain
5807  *                     zero or more of the following options.
5808  *
5809  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5810  *                     specified address. Note that if the address
5811  *                     field is empty all addresses for the association
5812  *                     have heartbeats enabled upon them.
5813  *
5814  *                     SPP_HB_DISABLE - Disable heartbeats on the
5815  *                     speicifed address. Note that if the address
5816  *                     field is empty all addresses for the association
5817  *                     will have their heartbeats disabled. Note also
5818  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5819  *                     mutually exclusive, only one of these two should
5820  *                     be specified. Enabling both fields will have
5821  *                     undetermined results.
5822  *
5823  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5824  *                     to be made immediately.
5825  *
5826  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5827  *                     discovery upon the specified address. Note that
5828  *                     if the address feild is empty then all addresses
5829  *                     on the association are effected.
5830  *
5831  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5832  *                     discovery upon the specified address. Note that
5833  *                     if the address feild is empty then all addresses
5834  *                     on the association are effected. Not also that
5835  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5836  *                     exclusive. Enabling both will have undetermined
5837  *                     results.
5838  *
5839  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5840  *                     on delayed sack. The time specified in spp_sackdelay
5841  *                     is used to specify the sack delay for this address. Note
5842  *                     that if spp_address is empty then all addresses will
5843  *                     enable delayed sack and take on the sack delay
5844  *                     value specified in spp_sackdelay.
5845  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5846  *                     off delayed sack. If the spp_address field is blank then
5847  *                     delayed sack is disabled for the entire association. Note
5848  *                     also that this field is mutually exclusive to
5849  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5850  *                     results.
5851  *
5852  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5853  *                     setting of the IPV6 flow label value.  The value is
5854  *                     contained in the spp_ipv6_flowlabel field.
5855  *                     Upon retrieval, this flag will be set to indicate that
5856  *                     the spp_ipv6_flowlabel field has a valid value returned.
5857  *                     If a specific destination address is set (in the
5858  *                     spp_address field), then the value returned is that of
5859  *                     the address.  If just an association is specified (and
5860  *                     no address), then the association's default flow label
5861  *                     is returned.  If neither an association nor a destination
5862  *                     is specified, then the socket's default flow label is
5863  *                     returned.  For non-IPv6 sockets, this flag will be left
5864  *                     cleared.
5865  *
5866  *                     SPP_DSCP:  Setting this flag enables the setting of the
5867  *                     Differentiated Services Code Point (DSCP) value
5868  *                     associated with either the association or a specific
5869  *                     address.  The value is obtained in the spp_dscp field.
5870  *                     Upon retrieval, this flag will be set to indicate that
5871  *                     the spp_dscp field has a valid value returned.  If a
5872  *                     specific destination address is set when called (in the
5873  *                     spp_address field), then that specific destination
5874  *                     address's DSCP value is returned.  If just an association
5875  *                     is specified, then the association's default DSCP is
5876  *                     returned.  If neither an association nor a destination is
5877  *                     specified, then the socket's default DSCP is returned.
5878  *
5879  *   spp_ipv6_flowlabel
5880  *                   - This field is used in conjunction with the
5881  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5882  *                     The 20 least significant bits are used for the flow
5883  *                     label.  This setting has precedence over any IPv6-layer
5884  *                     setting.
5885  *
5886  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5887  *                     and contains the DSCP.  The 6 most significant bits are
5888  *                     used for the DSCP.  This setting has precedence over any
5889  *                     IPv4- or IPv6- layer setting.
5890  */
5891 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5892 					    char __user *optval, int __user *optlen)
5893 {
5894 	struct sctp_paddrparams  params;
5895 	struct sctp_transport   *trans = NULL;
5896 	struct sctp_association *asoc = NULL;
5897 	struct sctp_sock        *sp = sctp_sk(sk);
5898 
5899 	if (len >= sizeof(params))
5900 		len = sizeof(params);
5901 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5902 				       spp_ipv6_flowlabel), 4))
5903 		len = ALIGN(offsetof(struct sctp_paddrparams,
5904 				     spp_ipv6_flowlabel), 4);
5905 	else
5906 		return -EINVAL;
5907 
5908 	if (copy_from_user(&params, optval, len))
5909 		return -EFAULT;
5910 
5911 	/* If an address other than INADDR_ANY is specified, and
5912 	 * no transport is found, then the request is invalid.
5913 	 */
5914 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5915 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5916 					       params.spp_assoc_id);
5917 		if (!trans) {
5918 			pr_debug("%s: failed no transport\n", __func__);
5919 			return -EINVAL;
5920 		}
5921 	}
5922 
5923 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5924 	 * socket is a one to many style socket, and an association
5925 	 * was not found, then the id was invalid.
5926 	 */
5927 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5928 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5929 	    sctp_style(sk, UDP)) {
5930 		pr_debug("%s: failed no association\n", __func__);
5931 		return -EINVAL;
5932 	}
5933 
5934 	if (trans) {
5935 		/* Fetch transport values. */
5936 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5937 		params.spp_pathmtu    = trans->pathmtu;
5938 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5939 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5940 
5941 		/*draft-11 doesn't say what to return in spp_flags*/
5942 		params.spp_flags      = trans->param_flags;
5943 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5944 			params.spp_ipv6_flowlabel = trans->flowlabel &
5945 						    SCTP_FLOWLABEL_VAL_MASK;
5946 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5947 		}
5948 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5949 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5950 			params.spp_flags |= SPP_DSCP;
5951 		}
5952 	} else if (asoc) {
5953 		/* Fetch association values. */
5954 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5955 		params.spp_pathmtu    = asoc->pathmtu;
5956 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5957 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5958 
5959 		/*draft-11 doesn't say what to return in spp_flags*/
5960 		params.spp_flags      = asoc->param_flags;
5961 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5962 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5963 						    SCTP_FLOWLABEL_VAL_MASK;
5964 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5965 		}
5966 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5967 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5968 			params.spp_flags |= SPP_DSCP;
5969 		}
5970 	} else {
5971 		/* Fetch socket values. */
5972 		params.spp_hbinterval = sp->hbinterval;
5973 		params.spp_pathmtu    = sp->pathmtu;
5974 		params.spp_sackdelay  = sp->sackdelay;
5975 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5976 
5977 		/*draft-11 doesn't say what to return in spp_flags*/
5978 		params.spp_flags      = sp->param_flags;
5979 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5980 			params.spp_ipv6_flowlabel = sp->flowlabel &
5981 						    SCTP_FLOWLABEL_VAL_MASK;
5982 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5983 		}
5984 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5985 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5986 			params.spp_flags |= SPP_DSCP;
5987 		}
5988 	}
5989 
5990 	if (copy_to_user(optval, &params, len))
5991 		return -EFAULT;
5992 
5993 	if (put_user(len, optlen))
5994 		return -EFAULT;
5995 
5996 	return 0;
5997 }
5998 
5999 /*
6000  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
6001  *
6002  * This option will effect the way delayed acks are performed.  This
6003  * option allows you to get or set the delayed ack time, in
6004  * milliseconds.  It also allows changing the delayed ack frequency.
6005  * Changing the frequency to 1 disables the delayed sack algorithm.  If
6006  * the assoc_id is 0, then this sets or gets the endpoints default
6007  * values.  If the assoc_id field is non-zero, then the set or get
6008  * effects the specified association for the one to many model (the
6009  * assoc_id field is ignored by the one to one model).  Note that if
6010  * sack_delay or sack_freq are 0 when setting this option, then the
6011  * current values will remain unchanged.
6012  *
6013  * struct sctp_sack_info {
6014  *     sctp_assoc_t            sack_assoc_id;
6015  *     uint32_t                sack_delay;
6016  *     uint32_t                sack_freq;
6017  * };
6018  *
6019  * sack_assoc_id -  This parameter, indicates which association the user
6020  *    is performing an action upon.  Note that if this field's value is
6021  *    zero then the endpoints default value is changed (effecting future
6022  *    associations only).
6023  *
6024  * sack_delay -  This parameter contains the number of milliseconds that
6025  *    the user is requesting the delayed ACK timer be set to.  Note that
6026  *    this value is defined in the standard to be between 200 and 500
6027  *    milliseconds.
6028  *
6029  * sack_freq -  This parameter contains the number of packets that must
6030  *    be received before a sack is sent without waiting for the delay
6031  *    timer to expire.  The default value for this is 2, setting this
6032  *    value to 1 will disable the delayed sack algorithm.
6033  */
6034 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6035 					    char __user *optval,
6036 					    int __user *optlen)
6037 {
6038 	struct sctp_sack_info    params;
6039 	struct sctp_association *asoc = NULL;
6040 	struct sctp_sock        *sp = sctp_sk(sk);
6041 
6042 	if (len >= sizeof(struct sctp_sack_info)) {
6043 		len = sizeof(struct sctp_sack_info);
6044 
6045 		if (copy_from_user(&params, optval, len))
6046 			return -EFAULT;
6047 	} else if (len == sizeof(struct sctp_assoc_value)) {
6048 		pr_warn_ratelimited(DEPRECATED
6049 				    "%s (pid %d) "
6050 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6051 				    "Use struct sctp_sack_info instead\n",
6052 				    current->comm, task_pid_nr(current));
6053 		if (copy_from_user(&params, optval, len))
6054 			return -EFAULT;
6055 	} else
6056 		return -EINVAL;
6057 
6058 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6059 	 * socket is a one to many style socket, and an association
6060 	 * was not found, then the id was invalid.
6061 	 */
6062 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6063 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6064 	    sctp_style(sk, UDP))
6065 		return -EINVAL;
6066 
6067 	if (asoc) {
6068 		/* Fetch association values. */
6069 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6070 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6071 			params.sack_freq = asoc->sackfreq;
6072 
6073 		} else {
6074 			params.sack_delay = 0;
6075 			params.sack_freq = 1;
6076 		}
6077 	} else {
6078 		/* Fetch socket values. */
6079 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6080 			params.sack_delay  = sp->sackdelay;
6081 			params.sack_freq = sp->sackfreq;
6082 		} else {
6083 			params.sack_delay  = 0;
6084 			params.sack_freq = 1;
6085 		}
6086 	}
6087 
6088 	if (copy_to_user(optval, &params, len))
6089 		return -EFAULT;
6090 
6091 	if (put_user(len, optlen))
6092 		return -EFAULT;
6093 
6094 	return 0;
6095 }
6096 
6097 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6098  *
6099  * Applications can specify protocol parameters for the default association
6100  * initialization.  The option name argument to setsockopt() and getsockopt()
6101  * is SCTP_INITMSG.
6102  *
6103  * Setting initialization parameters is effective only on an unconnected
6104  * socket (for UDP-style sockets only future associations are effected
6105  * by the change).  With TCP-style sockets, this option is inherited by
6106  * sockets derived from a listener socket.
6107  */
6108 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6109 {
6110 	if (len < sizeof(struct sctp_initmsg))
6111 		return -EINVAL;
6112 	len = sizeof(struct sctp_initmsg);
6113 	if (put_user(len, optlen))
6114 		return -EFAULT;
6115 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6116 		return -EFAULT;
6117 	return 0;
6118 }
6119 
6120 
6121 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6122 				      char __user *optval, int __user *optlen)
6123 {
6124 	struct sctp_association *asoc;
6125 	int cnt = 0;
6126 	struct sctp_getaddrs getaddrs;
6127 	struct sctp_transport *from;
6128 	void __user *to;
6129 	union sctp_addr temp;
6130 	struct sctp_sock *sp = sctp_sk(sk);
6131 	int addrlen;
6132 	size_t space_left;
6133 	int bytes_copied;
6134 
6135 	if (len < sizeof(struct sctp_getaddrs))
6136 		return -EINVAL;
6137 
6138 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6139 		return -EFAULT;
6140 
6141 	/* For UDP-style sockets, id specifies the association to query.  */
6142 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6143 	if (!asoc)
6144 		return -EINVAL;
6145 
6146 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6147 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6148 
6149 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6150 				transports) {
6151 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6152 		addrlen = sctp_get_pf_specific(sk->sk_family)
6153 			      ->addr_to_user(sp, &temp);
6154 		if (space_left < addrlen)
6155 			return -ENOMEM;
6156 		if (copy_to_user(to, &temp, addrlen))
6157 			return -EFAULT;
6158 		to += addrlen;
6159 		cnt++;
6160 		space_left -= addrlen;
6161 	}
6162 
6163 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6164 		return -EFAULT;
6165 	bytes_copied = ((char __user *)to) - optval;
6166 	if (put_user(bytes_copied, optlen))
6167 		return -EFAULT;
6168 
6169 	return 0;
6170 }
6171 
6172 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6173 			    size_t space_left, int *bytes_copied)
6174 {
6175 	struct sctp_sockaddr_entry *addr;
6176 	union sctp_addr temp;
6177 	int cnt = 0;
6178 	int addrlen;
6179 	struct net *net = sock_net(sk);
6180 
6181 	rcu_read_lock();
6182 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6183 		if (!addr->valid)
6184 			continue;
6185 
6186 		if ((PF_INET == sk->sk_family) &&
6187 		    (AF_INET6 == addr->a.sa.sa_family))
6188 			continue;
6189 		if ((PF_INET6 == sk->sk_family) &&
6190 		    inet_v6_ipv6only(sk) &&
6191 		    (AF_INET == addr->a.sa.sa_family))
6192 			continue;
6193 		memcpy(&temp, &addr->a, sizeof(temp));
6194 		if (!temp.v4.sin_port)
6195 			temp.v4.sin_port = htons(port);
6196 
6197 		addrlen = sctp_get_pf_specific(sk->sk_family)
6198 			      ->addr_to_user(sctp_sk(sk), &temp);
6199 
6200 		if (space_left < addrlen) {
6201 			cnt =  -ENOMEM;
6202 			break;
6203 		}
6204 		memcpy(to, &temp, addrlen);
6205 
6206 		to += addrlen;
6207 		cnt++;
6208 		space_left -= addrlen;
6209 		*bytes_copied += addrlen;
6210 	}
6211 	rcu_read_unlock();
6212 
6213 	return cnt;
6214 }
6215 
6216 
6217 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6218 				       char __user *optval, int __user *optlen)
6219 {
6220 	struct sctp_bind_addr *bp;
6221 	struct sctp_association *asoc;
6222 	int cnt = 0;
6223 	struct sctp_getaddrs getaddrs;
6224 	struct sctp_sockaddr_entry *addr;
6225 	void __user *to;
6226 	union sctp_addr temp;
6227 	struct sctp_sock *sp = sctp_sk(sk);
6228 	int addrlen;
6229 	int err = 0;
6230 	size_t space_left;
6231 	int bytes_copied = 0;
6232 	void *addrs;
6233 	void *buf;
6234 
6235 	if (len < sizeof(struct sctp_getaddrs))
6236 		return -EINVAL;
6237 
6238 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6239 		return -EFAULT;
6240 
6241 	/*
6242 	 *  For UDP-style sockets, id specifies the association to query.
6243 	 *  If the id field is set to the value '0' then the locally bound
6244 	 *  addresses are returned without regard to any particular
6245 	 *  association.
6246 	 */
6247 	if (0 == getaddrs.assoc_id) {
6248 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6249 	} else {
6250 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6251 		if (!asoc)
6252 			return -EINVAL;
6253 		bp = &asoc->base.bind_addr;
6254 	}
6255 
6256 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6257 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6258 
6259 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6260 	if (!addrs)
6261 		return -ENOMEM;
6262 
6263 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6264 	 * addresses from the global local address list.
6265 	 */
6266 	if (sctp_list_single_entry(&bp->address_list)) {
6267 		addr = list_entry(bp->address_list.next,
6268 				  struct sctp_sockaddr_entry, list);
6269 		if (sctp_is_any(sk, &addr->a)) {
6270 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6271 						space_left, &bytes_copied);
6272 			if (cnt < 0) {
6273 				err = cnt;
6274 				goto out;
6275 			}
6276 			goto copy_getaddrs;
6277 		}
6278 	}
6279 
6280 	buf = addrs;
6281 	/* Protection on the bound address list is not needed since
6282 	 * in the socket option context we hold a socket lock and
6283 	 * thus the bound address list can't change.
6284 	 */
6285 	list_for_each_entry(addr, &bp->address_list, list) {
6286 		memcpy(&temp, &addr->a, sizeof(temp));
6287 		addrlen = sctp_get_pf_specific(sk->sk_family)
6288 			      ->addr_to_user(sp, &temp);
6289 		if (space_left < addrlen) {
6290 			err =  -ENOMEM; /*fixme: right error?*/
6291 			goto out;
6292 		}
6293 		memcpy(buf, &temp, addrlen);
6294 		buf += addrlen;
6295 		bytes_copied += addrlen;
6296 		cnt++;
6297 		space_left -= addrlen;
6298 	}
6299 
6300 copy_getaddrs:
6301 	if (copy_to_user(to, addrs, bytes_copied)) {
6302 		err = -EFAULT;
6303 		goto out;
6304 	}
6305 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6306 		err = -EFAULT;
6307 		goto out;
6308 	}
6309 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6310 	 * but we can't change it anymore.
6311 	 */
6312 	if (put_user(bytes_copied, optlen))
6313 		err = -EFAULT;
6314 out:
6315 	kfree(addrs);
6316 	return err;
6317 }
6318 
6319 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6320  *
6321  * Requests that the local SCTP stack use the enclosed peer address as
6322  * the association primary.  The enclosed address must be one of the
6323  * association peer's addresses.
6324  */
6325 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6326 					char __user *optval, int __user *optlen)
6327 {
6328 	struct sctp_prim prim;
6329 	struct sctp_association *asoc;
6330 	struct sctp_sock *sp = sctp_sk(sk);
6331 
6332 	if (len < sizeof(struct sctp_prim))
6333 		return -EINVAL;
6334 
6335 	len = sizeof(struct sctp_prim);
6336 
6337 	if (copy_from_user(&prim, optval, len))
6338 		return -EFAULT;
6339 
6340 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6341 	if (!asoc)
6342 		return -EINVAL;
6343 
6344 	if (!asoc->peer.primary_path)
6345 		return -ENOTCONN;
6346 
6347 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6348 		asoc->peer.primary_path->af_specific->sockaddr_len);
6349 
6350 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6351 			(union sctp_addr *)&prim.ssp_addr);
6352 
6353 	if (put_user(len, optlen))
6354 		return -EFAULT;
6355 	if (copy_to_user(optval, &prim, len))
6356 		return -EFAULT;
6357 
6358 	return 0;
6359 }
6360 
6361 /*
6362  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6363  *
6364  * Requests that the local endpoint set the specified Adaptation Layer
6365  * Indication parameter for all future INIT and INIT-ACK exchanges.
6366  */
6367 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6368 				  char __user *optval, int __user *optlen)
6369 {
6370 	struct sctp_setadaptation adaptation;
6371 
6372 	if (len < sizeof(struct sctp_setadaptation))
6373 		return -EINVAL;
6374 
6375 	len = sizeof(struct sctp_setadaptation);
6376 
6377 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6378 
6379 	if (put_user(len, optlen))
6380 		return -EFAULT;
6381 	if (copy_to_user(optval, &adaptation, len))
6382 		return -EFAULT;
6383 
6384 	return 0;
6385 }
6386 
6387 /*
6388  *
6389  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6390  *
6391  *   Applications that wish to use the sendto() system call may wish to
6392  *   specify a default set of parameters that would normally be supplied
6393  *   through the inclusion of ancillary data.  This socket option allows
6394  *   such an application to set the default sctp_sndrcvinfo structure.
6395 
6396 
6397  *   The application that wishes to use this socket option simply passes
6398  *   in to this call the sctp_sndrcvinfo structure defined in Section
6399  *   5.2.2) The input parameters accepted by this call include
6400  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6401  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6402  *   to this call if the caller is using the UDP model.
6403  *
6404  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6405  */
6406 static int sctp_getsockopt_default_send_param(struct sock *sk,
6407 					int len, char __user *optval,
6408 					int __user *optlen)
6409 {
6410 	struct sctp_sock *sp = sctp_sk(sk);
6411 	struct sctp_association *asoc;
6412 	struct sctp_sndrcvinfo info;
6413 
6414 	if (len < sizeof(info))
6415 		return -EINVAL;
6416 
6417 	len = sizeof(info);
6418 
6419 	if (copy_from_user(&info, optval, len))
6420 		return -EFAULT;
6421 
6422 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6423 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6424 	    sctp_style(sk, UDP))
6425 		return -EINVAL;
6426 
6427 	if (asoc) {
6428 		info.sinfo_stream = asoc->default_stream;
6429 		info.sinfo_flags = asoc->default_flags;
6430 		info.sinfo_ppid = asoc->default_ppid;
6431 		info.sinfo_context = asoc->default_context;
6432 		info.sinfo_timetolive = asoc->default_timetolive;
6433 	} else {
6434 		info.sinfo_stream = sp->default_stream;
6435 		info.sinfo_flags = sp->default_flags;
6436 		info.sinfo_ppid = sp->default_ppid;
6437 		info.sinfo_context = sp->default_context;
6438 		info.sinfo_timetolive = sp->default_timetolive;
6439 	}
6440 
6441 	if (put_user(len, optlen))
6442 		return -EFAULT;
6443 	if (copy_to_user(optval, &info, len))
6444 		return -EFAULT;
6445 
6446 	return 0;
6447 }
6448 
6449 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6450  * (SCTP_DEFAULT_SNDINFO)
6451  */
6452 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6453 					   char __user *optval,
6454 					   int __user *optlen)
6455 {
6456 	struct sctp_sock *sp = sctp_sk(sk);
6457 	struct sctp_association *asoc;
6458 	struct sctp_sndinfo info;
6459 
6460 	if (len < sizeof(info))
6461 		return -EINVAL;
6462 
6463 	len = sizeof(info);
6464 
6465 	if (copy_from_user(&info, optval, len))
6466 		return -EFAULT;
6467 
6468 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6469 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6470 	    sctp_style(sk, UDP))
6471 		return -EINVAL;
6472 
6473 	if (asoc) {
6474 		info.snd_sid = asoc->default_stream;
6475 		info.snd_flags = asoc->default_flags;
6476 		info.snd_ppid = asoc->default_ppid;
6477 		info.snd_context = asoc->default_context;
6478 	} else {
6479 		info.snd_sid = sp->default_stream;
6480 		info.snd_flags = sp->default_flags;
6481 		info.snd_ppid = sp->default_ppid;
6482 		info.snd_context = sp->default_context;
6483 	}
6484 
6485 	if (put_user(len, optlen))
6486 		return -EFAULT;
6487 	if (copy_to_user(optval, &info, len))
6488 		return -EFAULT;
6489 
6490 	return 0;
6491 }
6492 
6493 /*
6494  *
6495  * 7.1.5 SCTP_NODELAY
6496  *
6497  * Turn on/off any Nagle-like algorithm.  This means that packets are
6498  * generally sent as soon as possible and no unnecessary delays are
6499  * introduced, at the cost of more packets in the network.  Expects an
6500  * integer boolean flag.
6501  */
6502 
6503 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6504 				   char __user *optval, int __user *optlen)
6505 {
6506 	int val;
6507 
6508 	if (len < sizeof(int))
6509 		return -EINVAL;
6510 
6511 	len = sizeof(int);
6512 	val = (sctp_sk(sk)->nodelay == 1);
6513 	if (put_user(len, optlen))
6514 		return -EFAULT;
6515 	if (copy_to_user(optval, &val, len))
6516 		return -EFAULT;
6517 	return 0;
6518 }
6519 
6520 /*
6521  *
6522  * 7.1.1 SCTP_RTOINFO
6523  *
6524  * The protocol parameters used to initialize and bound retransmission
6525  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6526  * and modify these parameters.
6527  * All parameters are time values, in milliseconds.  A value of 0, when
6528  * modifying the parameters, indicates that the current value should not
6529  * be changed.
6530  *
6531  */
6532 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6533 				char __user *optval,
6534 				int __user *optlen) {
6535 	struct sctp_rtoinfo rtoinfo;
6536 	struct sctp_association *asoc;
6537 
6538 	if (len < sizeof (struct sctp_rtoinfo))
6539 		return -EINVAL;
6540 
6541 	len = sizeof(struct sctp_rtoinfo);
6542 
6543 	if (copy_from_user(&rtoinfo, optval, len))
6544 		return -EFAULT;
6545 
6546 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6547 
6548 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6549 	    sctp_style(sk, UDP))
6550 		return -EINVAL;
6551 
6552 	/* Values corresponding to the specific association. */
6553 	if (asoc) {
6554 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6555 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6556 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6557 	} else {
6558 		/* Values corresponding to the endpoint. */
6559 		struct sctp_sock *sp = sctp_sk(sk);
6560 
6561 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6562 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6563 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6564 	}
6565 
6566 	if (put_user(len, optlen))
6567 		return -EFAULT;
6568 
6569 	if (copy_to_user(optval, &rtoinfo, len))
6570 		return -EFAULT;
6571 
6572 	return 0;
6573 }
6574 
6575 /*
6576  *
6577  * 7.1.2 SCTP_ASSOCINFO
6578  *
6579  * This option is used to tune the maximum retransmission attempts
6580  * of the association.
6581  * Returns an error if the new association retransmission value is
6582  * greater than the sum of the retransmission value  of the peer.
6583  * See [SCTP] for more information.
6584  *
6585  */
6586 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6587 				     char __user *optval,
6588 				     int __user *optlen)
6589 {
6590 
6591 	struct sctp_assocparams assocparams;
6592 	struct sctp_association *asoc;
6593 	struct list_head *pos;
6594 	int cnt = 0;
6595 
6596 	if (len < sizeof (struct sctp_assocparams))
6597 		return -EINVAL;
6598 
6599 	len = sizeof(struct sctp_assocparams);
6600 
6601 	if (copy_from_user(&assocparams, optval, len))
6602 		return -EFAULT;
6603 
6604 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6605 
6606 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6607 	    sctp_style(sk, UDP))
6608 		return -EINVAL;
6609 
6610 	/* Values correspoinding to the specific association */
6611 	if (asoc) {
6612 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6613 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6614 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6615 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6616 
6617 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6618 			cnt++;
6619 		}
6620 
6621 		assocparams.sasoc_number_peer_destinations = cnt;
6622 	} else {
6623 		/* Values corresponding to the endpoint */
6624 		struct sctp_sock *sp = sctp_sk(sk);
6625 
6626 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6627 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6628 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6629 		assocparams.sasoc_cookie_life =
6630 					sp->assocparams.sasoc_cookie_life;
6631 		assocparams.sasoc_number_peer_destinations =
6632 					sp->assocparams.
6633 					sasoc_number_peer_destinations;
6634 	}
6635 
6636 	if (put_user(len, optlen))
6637 		return -EFAULT;
6638 
6639 	if (copy_to_user(optval, &assocparams, len))
6640 		return -EFAULT;
6641 
6642 	return 0;
6643 }
6644 
6645 /*
6646  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6647  *
6648  * This socket option is a boolean flag which turns on or off mapped V4
6649  * addresses.  If this option is turned on and the socket is type
6650  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6651  * If this option is turned off, then no mapping will be done of V4
6652  * addresses and a user will receive both PF_INET6 and PF_INET type
6653  * addresses on the socket.
6654  */
6655 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6656 				    char __user *optval, int __user *optlen)
6657 {
6658 	int val;
6659 	struct sctp_sock *sp = sctp_sk(sk);
6660 
6661 	if (len < sizeof(int))
6662 		return -EINVAL;
6663 
6664 	len = sizeof(int);
6665 	val = sp->v4mapped;
6666 	if (put_user(len, optlen))
6667 		return -EFAULT;
6668 	if (copy_to_user(optval, &val, len))
6669 		return -EFAULT;
6670 
6671 	return 0;
6672 }
6673 
6674 /*
6675  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6676  * (chapter and verse is quoted at sctp_setsockopt_context())
6677  */
6678 static int sctp_getsockopt_context(struct sock *sk, int len,
6679 				   char __user *optval, int __user *optlen)
6680 {
6681 	struct sctp_assoc_value params;
6682 	struct sctp_association *asoc;
6683 
6684 	if (len < sizeof(struct sctp_assoc_value))
6685 		return -EINVAL;
6686 
6687 	len = sizeof(struct sctp_assoc_value);
6688 
6689 	if (copy_from_user(&params, optval, len))
6690 		return -EFAULT;
6691 
6692 	asoc = sctp_id2assoc(sk, params.assoc_id);
6693 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6694 	    sctp_style(sk, UDP))
6695 		return -EINVAL;
6696 
6697 	params.assoc_value = asoc ? asoc->default_rcv_context
6698 				  : sctp_sk(sk)->default_rcv_context;
6699 
6700 	if (put_user(len, optlen))
6701 		return -EFAULT;
6702 	if (copy_to_user(optval, &params, len))
6703 		return -EFAULT;
6704 
6705 	return 0;
6706 }
6707 
6708 /*
6709  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6710  * This option will get or set the maximum size to put in any outgoing
6711  * SCTP DATA chunk.  If a message is larger than this size it will be
6712  * fragmented by SCTP into the specified size.  Note that the underlying
6713  * SCTP implementation may fragment into smaller sized chunks when the
6714  * PMTU of the underlying association is smaller than the value set by
6715  * the user.  The default value for this option is '0' which indicates
6716  * the user is NOT limiting fragmentation and only the PMTU will effect
6717  * SCTP's choice of DATA chunk size.  Note also that values set larger
6718  * than the maximum size of an IP datagram will effectively let SCTP
6719  * control fragmentation (i.e. the same as setting this option to 0).
6720  *
6721  * The following structure is used to access and modify this parameter:
6722  *
6723  * struct sctp_assoc_value {
6724  *   sctp_assoc_t assoc_id;
6725  *   uint32_t assoc_value;
6726  * };
6727  *
6728  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6729  *    For one-to-many style sockets this parameter indicates which
6730  *    association the user is performing an action upon.  Note that if
6731  *    this field's value is zero then the endpoints default value is
6732  *    changed (effecting future associations only).
6733  * assoc_value:  This parameter specifies the maximum size in bytes.
6734  */
6735 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6736 				  char __user *optval, int __user *optlen)
6737 {
6738 	struct sctp_assoc_value params;
6739 	struct sctp_association *asoc;
6740 
6741 	if (len == sizeof(int)) {
6742 		pr_warn_ratelimited(DEPRECATED
6743 				    "%s (pid %d) "
6744 				    "Use of int in maxseg socket option.\n"
6745 				    "Use struct sctp_assoc_value instead\n",
6746 				    current->comm, task_pid_nr(current));
6747 		params.assoc_id = SCTP_FUTURE_ASSOC;
6748 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6749 		len = sizeof(struct sctp_assoc_value);
6750 		if (copy_from_user(&params, optval, len))
6751 			return -EFAULT;
6752 	} else
6753 		return -EINVAL;
6754 
6755 	asoc = sctp_id2assoc(sk, params.assoc_id);
6756 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6757 	    sctp_style(sk, UDP))
6758 		return -EINVAL;
6759 
6760 	if (asoc)
6761 		params.assoc_value = asoc->frag_point;
6762 	else
6763 		params.assoc_value = sctp_sk(sk)->user_frag;
6764 
6765 	if (put_user(len, optlen))
6766 		return -EFAULT;
6767 	if (len == sizeof(int)) {
6768 		if (copy_to_user(optval, &params.assoc_value, len))
6769 			return -EFAULT;
6770 	} else {
6771 		if (copy_to_user(optval, &params, len))
6772 			return -EFAULT;
6773 	}
6774 
6775 	return 0;
6776 }
6777 
6778 /*
6779  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6780  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6781  */
6782 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6783 					       char __user *optval, int __user *optlen)
6784 {
6785 	int val;
6786 
6787 	if (len < sizeof(int))
6788 		return -EINVAL;
6789 
6790 	len = sizeof(int);
6791 
6792 	val = sctp_sk(sk)->frag_interleave;
6793 	if (put_user(len, optlen))
6794 		return -EFAULT;
6795 	if (copy_to_user(optval, &val, len))
6796 		return -EFAULT;
6797 
6798 	return 0;
6799 }
6800 
6801 /*
6802  * 7.1.25.  Set or Get the sctp partial delivery point
6803  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6804  */
6805 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6806 						  char __user *optval,
6807 						  int __user *optlen)
6808 {
6809 	u32 val;
6810 
6811 	if (len < sizeof(u32))
6812 		return -EINVAL;
6813 
6814 	len = sizeof(u32);
6815 
6816 	val = sctp_sk(sk)->pd_point;
6817 	if (put_user(len, optlen))
6818 		return -EFAULT;
6819 	if (copy_to_user(optval, &val, len))
6820 		return -EFAULT;
6821 
6822 	return 0;
6823 }
6824 
6825 /*
6826  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6827  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6828  */
6829 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6830 				    char __user *optval,
6831 				    int __user *optlen)
6832 {
6833 	struct sctp_assoc_value params;
6834 	struct sctp_association *asoc;
6835 
6836 	if (len == sizeof(int)) {
6837 		pr_warn_ratelimited(DEPRECATED
6838 				    "%s (pid %d) "
6839 				    "Use of int in max_burst socket option.\n"
6840 				    "Use struct sctp_assoc_value instead\n",
6841 				    current->comm, task_pid_nr(current));
6842 		params.assoc_id = SCTP_FUTURE_ASSOC;
6843 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6844 		len = sizeof(struct sctp_assoc_value);
6845 		if (copy_from_user(&params, optval, len))
6846 			return -EFAULT;
6847 	} else
6848 		return -EINVAL;
6849 
6850 	asoc = sctp_id2assoc(sk, params.assoc_id);
6851 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6852 	    sctp_style(sk, UDP))
6853 		return -EINVAL;
6854 
6855 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6856 
6857 	if (len == sizeof(int)) {
6858 		if (copy_to_user(optval, &params.assoc_value, len))
6859 			return -EFAULT;
6860 	} else {
6861 		if (copy_to_user(optval, &params, len))
6862 			return -EFAULT;
6863 	}
6864 
6865 	return 0;
6866 
6867 }
6868 
6869 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6870 				    char __user *optval, int __user *optlen)
6871 {
6872 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6873 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6874 	struct sctp_hmac_algo_param *hmacs;
6875 	__u16 data_len = 0;
6876 	u32 num_idents;
6877 	int i;
6878 
6879 	if (!ep->auth_enable)
6880 		return -EACCES;
6881 
6882 	hmacs = ep->auth_hmacs_list;
6883 	data_len = ntohs(hmacs->param_hdr.length) -
6884 		   sizeof(struct sctp_paramhdr);
6885 
6886 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6887 		return -EINVAL;
6888 
6889 	len = sizeof(struct sctp_hmacalgo) + data_len;
6890 	num_idents = data_len / sizeof(u16);
6891 
6892 	if (put_user(len, optlen))
6893 		return -EFAULT;
6894 	if (put_user(num_idents, &p->shmac_num_idents))
6895 		return -EFAULT;
6896 	for (i = 0; i < num_idents; i++) {
6897 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6898 
6899 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6900 			return -EFAULT;
6901 	}
6902 	return 0;
6903 }
6904 
6905 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6906 				    char __user *optval, int __user *optlen)
6907 {
6908 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6909 	struct sctp_authkeyid val;
6910 	struct sctp_association *asoc;
6911 
6912 	if (len < sizeof(struct sctp_authkeyid))
6913 		return -EINVAL;
6914 
6915 	len = sizeof(struct sctp_authkeyid);
6916 	if (copy_from_user(&val, optval, len))
6917 		return -EFAULT;
6918 
6919 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6920 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6921 		return -EINVAL;
6922 
6923 	if (asoc) {
6924 		if (!asoc->peer.auth_capable)
6925 			return -EACCES;
6926 		val.scact_keynumber = asoc->active_key_id;
6927 	} else {
6928 		if (!ep->auth_enable)
6929 			return -EACCES;
6930 		val.scact_keynumber = ep->active_key_id;
6931 	}
6932 
6933 	if (put_user(len, optlen))
6934 		return -EFAULT;
6935 	if (copy_to_user(optval, &val, len))
6936 		return -EFAULT;
6937 
6938 	return 0;
6939 }
6940 
6941 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6942 				    char __user *optval, int __user *optlen)
6943 {
6944 	struct sctp_authchunks __user *p = (void __user *)optval;
6945 	struct sctp_authchunks val;
6946 	struct sctp_association *asoc;
6947 	struct sctp_chunks_param *ch;
6948 	u32    num_chunks = 0;
6949 	char __user *to;
6950 
6951 	if (len < sizeof(struct sctp_authchunks))
6952 		return -EINVAL;
6953 
6954 	if (copy_from_user(&val, optval, sizeof(val)))
6955 		return -EFAULT;
6956 
6957 	to = p->gauth_chunks;
6958 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6959 	if (!asoc)
6960 		return -EINVAL;
6961 
6962 	if (!asoc->peer.auth_capable)
6963 		return -EACCES;
6964 
6965 	ch = asoc->peer.peer_chunks;
6966 	if (!ch)
6967 		goto num;
6968 
6969 	/* See if the user provided enough room for all the data */
6970 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6971 	if (len < num_chunks)
6972 		return -EINVAL;
6973 
6974 	if (copy_to_user(to, ch->chunks, num_chunks))
6975 		return -EFAULT;
6976 num:
6977 	len = sizeof(struct sctp_authchunks) + num_chunks;
6978 	if (put_user(len, optlen))
6979 		return -EFAULT;
6980 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6981 		return -EFAULT;
6982 	return 0;
6983 }
6984 
6985 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6986 				    char __user *optval, int __user *optlen)
6987 {
6988 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6989 	struct sctp_authchunks __user *p = (void __user *)optval;
6990 	struct sctp_authchunks val;
6991 	struct sctp_association *asoc;
6992 	struct sctp_chunks_param *ch;
6993 	u32    num_chunks = 0;
6994 	char __user *to;
6995 
6996 	if (len < sizeof(struct sctp_authchunks))
6997 		return -EINVAL;
6998 
6999 	if (copy_from_user(&val, optval, sizeof(val)))
7000 		return -EFAULT;
7001 
7002 	to = p->gauth_chunks;
7003 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7004 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7005 	    sctp_style(sk, UDP))
7006 		return -EINVAL;
7007 
7008 	if (asoc) {
7009 		if (!asoc->peer.auth_capable)
7010 			return -EACCES;
7011 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7012 	} else {
7013 		if (!ep->auth_enable)
7014 			return -EACCES;
7015 		ch = ep->auth_chunk_list;
7016 	}
7017 	if (!ch)
7018 		goto num;
7019 
7020 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7021 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7022 		return -EINVAL;
7023 
7024 	if (copy_to_user(to, ch->chunks, num_chunks))
7025 		return -EFAULT;
7026 num:
7027 	len = sizeof(struct sctp_authchunks) + num_chunks;
7028 	if (put_user(len, optlen))
7029 		return -EFAULT;
7030 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7031 		return -EFAULT;
7032 
7033 	return 0;
7034 }
7035 
7036 /*
7037  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7038  * This option gets the current number of associations that are attached
7039  * to a one-to-many style socket.  The option value is an uint32_t.
7040  */
7041 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7042 				    char __user *optval, int __user *optlen)
7043 {
7044 	struct sctp_sock *sp = sctp_sk(sk);
7045 	struct sctp_association *asoc;
7046 	u32 val = 0;
7047 
7048 	if (sctp_style(sk, TCP))
7049 		return -EOPNOTSUPP;
7050 
7051 	if (len < sizeof(u32))
7052 		return -EINVAL;
7053 
7054 	len = sizeof(u32);
7055 
7056 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7057 		val++;
7058 	}
7059 
7060 	if (put_user(len, optlen))
7061 		return -EFAULT;
7062 	if (copy_to_user(optval, &val, len))
7063 		return -EFAULT;
7064 
7065 	return 0;
7066 }
7067 
7068 /*
7069  * 8.1.23 SCTP_AUTO_ASCONF
7070  * See the corresponding setsockopt entry as description
7071  */
7072 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7073 				   char __user *optval, int __user *optlen)
7074 {
7075 	int val = 0;
7076 
7077 	if (len < sizeof(int))
7078 		return -EINVAL;
7079 
7080 	len = sizeof(int);
7081 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7082 		val = 1;
7083 	if (put_user(len, optlen))
7084 		return -EFAULT;
7085 	if (copy_to_user(optval, &val, len))
7086 		return -EFAULT;
7087 	return 0;
7088 }
7089 
7090 /*
7091  * 8.2.6. Get the Current Identifiers of Associations
7092  *        (SCTP_GET_ASSOC_ID_LIST)
7093  *
7094  * This option gets the current list of SCTP association identifiers of
7095  * the SCTP associations handled by a one-to-many style socket.
7096  */
7097 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7098 				    char __user *optval, int __user *optlen)
7099 {
7100 	struct sctp_sock *sp = sctp_sk(sk);
7101 	struct sctp_association *asoc;
7102 	struct sctp_assoc_ids *ids;
7103 	u32 num = 0;
7104 
7105 	if (sctp_style(sk, TCP))
7106 		return -EOPNOTSUPP;
7107 
7108 	if (len < sizeof(struct sctp_assoc_ids))
7109 		return -EINVAL;
7110 
7111 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7112 		num++;
7113 	}
7114 
7115 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7116 		return -EINVAL;
7117 
7118 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7119 
7120 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7121 	if (unlikely(!ids))
7122 		return -ENOMEM;
7123 
7124 	ids->gaids_number_of_ids = num;
7125 	num = 0;
7126 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7127 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7128 	}
7129 
7130 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7131 		kfree(ids);
7132 		return -EFAULT;
7133 	}
7134 
7135 	kfree(ids);
7136 	return 0;
7137 }
7138 
7139 /*
7140  * SCTP_PEER_ADDR_THLDS
7141  *
7142  * This option allows us to fetch the partially failed threshold for one or all
7143  * transports in an association.  See Section 6.1 of:
7144  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7145  */
7146 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7147 					    char __user *optval, int len,
7148 					    int __user *optlen, bool v2)
7149 {
7150 	struct sctp_paddrthlds_v2 val;
7151 	struct sctp_transport *trans;
7152 	struct sctp_association *asoc;
7153 	int min;
7154 
7155 	min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7156 	if (len < min)
7157 		return -EINVAL;
7158 	len = min;
7159 	if (copy_from_user(&val, optval, len))
7160 		return -EFAULT;
7161 
7162 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7163 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7164 					       val.spt_assoc_id);
7165 		if (!trans)
7166 			return -ENOENT;
7167 
7168 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7169 		val.spt_pathpfthld = trans->pf_retrans;
7170 		val.spt_pathcpthld = trans->ps_retrans;
7171 
7172 		goto out;
7173 	}
7174 
7175 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7176 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7177 	    sctp_style(sk, UDP))
7178 		return -EINVAL;
7179 
7180 	if (asoc) {
7181 		val.spt_pathpfthld = asoc->pf_retrans;
7182 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7183 		val.spt_pathcpthld = asoc->ps_retrans;
7184 	} else {
7185 		struct sctp_sock *sp = sctp_sk(sk);
7186 
7187 		val.spt_pathpfthld = sp->pf_retrans;
7188 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7189 		val.spt_pathcpthld = sp->ps_retrans;
7190 	}
7191 
7192 out:
7193 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7194 		return -EFAULT;
7195 
7196 	return 0;
7197 }
7198 
7199 /*
7200  * SCTP_GET_ASSOC_STATS
7201  *
7202  * This option retrieves local per endpoint statistics. It is modeled
7203  * after OpenSolaris' implementation
7204  */
7205 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7206 				       char __user *optval,
7207 				       int __user *optlen)
7208 {
7209 	struct sctp_assoc_stats sas;
7210 	struct sctp_association *asoc = NULL;
7211 
7212 	/* User must provide at least the assoc id */
7213 	if (len < sizeof(sctp_assoc_t))
7214 		return -EINVAL;
7215 
7216 	/* Allow the struct to grow and fill in as much as possible */
7217 	len = min_t(size_t, len, sizeof(sas));
7218 
7219 	if (copy_from_user(&sas, optval, len))
7220 		return -EFAULT;
7221 
7222 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7223 	if (!asoc)
7224 		return -EINVAL;
7225 
7226 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7227 	sas.sas_gapcnt = asoc->stats.gapcnt;
7228 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7229 	sas.sas_osacks = asoc->stats.osacks;
7230 	sas.sas_isacks = asoc->stats.isacks;
7231 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7232 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7233 	sas.sas_oodchunks = asoc->stats.oodchunks;
7234 	sas.sas_iodchunks = asoc->stats.iodchunks;
7235 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7236 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7237 	sas.sas_idupchunks = asoc->stats.idupchunks;
7238 	sas.sas_opackets = asoc->stats.opackets;
7239 	sas.sas_ipackets = asoc->stats.ipackets;
7240 
7241 	/* New high max rto observed, will return 0 if not a single
7242 	 * RTO update took place. obs_rto_ipaddr will be bogus
7243 	 * in such a case
7244 	 */
7245 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7246 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7247 		sizeof(struct sockaddr_storage));
7248 
7249 	/* Mark beginning of a new observation period */
7250 	asoc->stats.max_obs_rto = asoc->rto_min;
7251 
7252 	if (put_user(len, optlen))
7253 		return -EFAULT;
7254 
7255 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7256 
7257 	if (copy_to_user(optval, &sas, len))
7258 		return -EFAULT;
7259 
7260 	return 0;
7261 }
7262 
7263 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7264 				       char __user *optval,
7265 				       int __user *optlen)
7266 {
7267 	int val = 0;
7268 
7269 	if (len < sizeof(int))
7270 		return -EINVAL;
7271 
7272 	len = sizeof(int);
7273 	if (sctp_sk(sk)->recvrcvinfo)
7274 		val = 1;
7275 	if (put_user(len, optlen))
7276 		return -EFAULT;
7277 	if (copy_to_user(optval, &val, len))
7278 		return -EFAULT;
7279 
7280 	return 0;
7281 }
7282 
7283 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7284 				       char __user *optval,
7285 				       int __user *optlen)
7286 {
7287 	int val = 0;
7288 
7289 	if (len < sizeof(int))
7290 		return -EINVAL;
7291 
7292 	len = sizeof(int);
7293 	if (sctp_sk(sk)->recvnxtinfo)
7294 		val = 1;
7295 	if (put_user(len, optlen))
7296 		return -EFAULT;
7297 	if (copy_to_user(optval, &val, len))
7298 		return -EFAULT;
7299 
7300 	return 0;
7301 }
7302 
7303 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7304 					char __user *optval,
7305 					int __user *optlen)
7306 {
7307 	struct sctp_assoc_value params;
7308 	struct sctp_association *asoc;
7309 	int retval = -EFAULT;
7310 
7311 	if (len < sizeof(params)) {
7312 		retval = -EINVAL;
7313 		goto out;
7314 	}
7315 
7316 	len = sizeof(params);
7317 	if (copy_from_user(&params, optval, len))
7318 		goto out;
7319 
7320 	asoc = sctp_id2assoc(sk, params.assoc_id);
7321 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7322 	    sctp_style(sk, UDP)) {
7323 		retval = -EINVAL;
7324 		goto out;
7325 	}
7326 
7327 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7328 				  : sctp_sk(sk)->ep->prsctp_enable;
7329 
7330 	if (put_user(len, optlen))
7331 		goto out;
7332 
7333 	if (copy_to_user(optval, &params, len))
7334 		goto out;
7335 
7336 	retval = 0;
7337 
7338 out:
7339 	return retval;
7340 }
7341 
7342 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7343 					  char __user *optval,
7344 					  int __user *optlen)
7345 {
7346 	struct sctp_default_prinfo info;
7347 	struct sctp_association *asoc;
7348 	int retval = -EFAULT;
7349 
7350 	if (len < sizeof(info)) {
7351 		retval = -EINVAL;
7352 		goto out;
7353 	}
7354 
7355 	len = sizeof(info);
7356 	if (copy_from_user(&info, optval, len))
7357 		goto out;
7358 
7359 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7360 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7361 	    sctp_style(sk, UDP)) {
7362 		retval = -EINVAL;
7363 		goto out;
7364 	}
7365 
7366 	if (asoc) {
7367 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7368 		info.pr_value = asoc->default_timetolive;
7369 	} else {
7370 		struct sctp_sock *sp = sctp_sk(sk);
7371 
7372 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7373 		info.pr_value = sp->default_timetolive;
7374 	}
7375 
7376 	if (put_user(len, optlen))
7377 		goto out;
7378 
7379 	if (copy_to_user(optval, &info, len))
7380 		goto out;
7381 
7382 	retval = 0;
7383 
7384 out:
7385 	return retval;
7386 }
7387 
7388 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7389 					  char __user *optval,
7390 					  int __user *optlen)
7391 {
7392 	struct sctp_prstatus params;
7393 	struct sctp_association *asoc;
7394 	int policy;
7395 	int retval = -EINVAL;
7396 
7397 	if (len < sizeof(params))
7398 		goto out;
7399 
7400 	len = sizeof(params);
7401 	if (copy_from_user(&params, optval, len)) {
7402 		retval = -EFAULT;
7403 		goto out;
7404 	}
7405 
7406 	policy = params.sprstat_policy;
7407 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7408 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7409 		goto out;
7410 
7411 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7412 	if (!asoc)
7413 		goto out;
7414 
7415 	if (policy == SCTP_PR_SCTP_ALL) {
7416 		params.sprstat_abandoned_unsent = 0;
7417 		params.sprstat_abandoned_sent = 0;
7418 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7419 			params.sprstat_abandoned_unsent +=
7420 				asoc->abandoned_unsent[policy];
7421 			params.sprstat_abandoned_sent +=
7422 				asoc->abandoned_sent[policy];
7423 		}
7424 	} else {
7425 		params.sprstat_abandoned_unsent =
7426 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7427 		params.sprstat_abandoned_sent =
7428 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7429 	}
7430 
7431 	if (put_user(len, optlen)) {
7432 		retval = -EFAULT;
7433 		goto out;
7434 	}
7435 
7436 	if (copy_to_user(optval, &params, len)) {
7437 		retval = -EFAULT;
7438 		goto out;
7439 	}
7440 
7441 	retval = 0;
7442 
7443 out:
7444 	return retval;
7445 }
7446 
7447 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7448 					   char __user *optval,
7449 					   int __user *optlen)
7450 {
7451 	struct sctp_stream_out_ext *streamoute;
7452 	struct sctp_association *asoc;
7453 	struct sctp_prstatus params;
7454 	int retval = -EINVAL;
7455 	int policy;
7456 
7457 	if (len < sizeof(params))
7458 		goto out;
7459 
7460 	len = sizeof(params);
7461 	if (copy_from_user(&params, optval, len)) {
7462 		retval = -EFAULT;
7463 		goto out;
7464 	}
7465 
7466 	policy = params.sprstat_policy;
7467 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7468 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7469 		goto out;
7470 
7471 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7472 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7473 		goto out;
7474 
7475 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7476 	if (!streamoute) {
7477 		/* Not allocated yet, means all stats are 0 */
7478 		params.sprstat_abandoned_unsent = 0;
7479 		params.sprstat_abandoned_sent = 0;
7480 		retval = 0;
7481 		goto out;
7482 	}
7483 
7484 	if (policy == SCTP_PR_SCTP_ALL) {
7485 		params.sprstat_abandoned_unsent = 0;
7486 		params.sprstat_abandoned_sent = 0;
7487 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7488 			params.sprstat_abandoned_unsent +=
7489 				streamoute->abandoned_unsent[policy];
7490 			params.sprstat_abandoned_sent +=
7491 				streamoute->abandoned_sent[policy];
7492 		}
7493 	} else {
7494 		params.sprstat_abandoned_unsent =
7495 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7496 		params.sprstat_abandoned_sent =
7497 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7498 	}
7499 
7500 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7501 		retval = -EFAULT;
7502 		goto out;
7503 	}
7504 
7505 	retval = 0;
7506 
7507 out:
7508 	return retval;
7509 }
7510 
7511 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7512 					      char __user *optval,
7513 					      int __user *optlen)
7514 {
7515 	struct sctp_assoc_value params;
7516 	struct sctp_association *asoc;
7517 	int retval = -EFAULT;
7518 
7519 	if (len < sizeof(params)) {
7520 		retval = -EINVAL;
7521 		goto out;
7522 	}
7523 
7524 	len = sizeof(params);
7525 	if (copy_from_user(&params, optval, len))
7526 		goto out;
7527 
7528 	asoc = sctp_id2assoc(sk, params.assoc_id);
7529 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7530 	    sctp_style(sk, UDP)) {
7531 		retval = -EINVAL;
7532 		goto out;
7533 	}
7534 
7535 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7536 				  : sctp_sk(sk)->ep->reconf_enable;
7537 
7538 	if (put_user(len, optlen))
7539 		goto out;
7540 
7541 	if (copy_to_user(optval, &params, len))
7542 		goto out;
7543 
7544 	retval = 0;
7545 
7546 out:
7547 	return retval;
7548 }
7549 
7550 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7551 					   char __user *optval,
7552 					   int __user *optlen)
7553 {
7554 	struct sctp_assoc_value params;
7555 	struct sctp_association *asoc;
7556 	int retval = -EFAULT;
7557 
7558 	if (len < sizeof(params)) {
7559 		retval = -EINVAL;
7560 		goto out;
7561 	}
7562 
7563 	len = sizeof(params);
7564 	if (copy_from_user(&params, optval, len))
7565 		goto out;
7566 
7567 	asoc = sctp_id2assoc(sk, params.assoc_id);
7568 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7569 	    sctp_style(sk, UDP)) {
7570 		retval = -EINVAL;
7571 		goto out;
7572 	}
7573 
7574 	params.assoc_value = asoc ? asoc->strreset_enable
7575 				  : sctp_sk(sk)->ep->strreset_enable;
7576 
7577 	if (put_user(len, optlen))
7578 		goto out;
7579 
7580 	if (copy_to_user(optval, &params, len))
7581 		goto out;
7582 
7583 	retval = 0;
7584 
7585 out:
7586 	return retval;
7587 }
7588 
7589 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7590 				     char __user *optval,
7591 				     int __user *optlen)
7592 {
7593 	struct sctp_assoc_value params;
7594 	struct sctp_association *asoc;
7595 	int retval = -EFAULT;
7596 
7597 	if (len < sizeof(params)) {
7598 		retval = -EINVAL;
7599 		goto out;
7600 	}
7601 
7602 	len = sizeof(params);
7603 	if (copy_from_user(&params, optval, len))
7604 		goto out;
7605 
7606 	asoc = sctp_id2assoc(sk, params.assoc_id);
7607 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7608 	    sctp_style(sk, UDP)) {
7609 		retval = -EINVAL;
7610 		goto out;
7611 	}
7612 
7613 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7614 				  : sctp_sk(sk)->default_ss;
7615 
7616 	if (put_user(len, optlen))
7617 		goto out;
7618 
7619 	if (copy_to_user(optval, &params, len))
7620 		goto out;
7621 
7622 	retval = 0;
7623 
7624 out:
7625 	return retval;
7626 }
7627 
7628 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7629 					   char __user *optval,
7630 					   int __user *optlen)
7631 {
7632 	struct sctp_stream_value params;
7633 	struct sctp_association *asoc;
7634 	int retval = -EFAULT;
7635 
7636 	if (len < sizeof(params)) {
7637 		retval = -EINVAL;
7638 		goto out;
7639 	}
7640 
7641 	len = sizeof(params);
7642 	if (copy_from_user(&params, optval, len))
7643 		goto out;
7644 
7645 	asoc = sctp_id2assoc(sk, params.assoc_id);
7646 	if (!asoc) {
7647 		retval = -EINVAL;
7648 		goto out;
7649 	}
7650 
7651 	retval = sctp_sched_get_value(asoc, params.stream_id,
7652 				      &params.stream_value);
7653 	if (retval)
7654 		goto out;
7655 
7656 	if (put_user(len, optlen)) {
7657 		retval = -EFAULT;
7658 		goto out;
7659 	}
7660 
7661 	if (copy_to_user(optval, &params, len)) {
7662 		retval = -EFAULT;
7663 		goto out;
7664 	}
7665 
7666 out:
7667 	return retval;
7668 }
7669 
7670 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7671 						  char __user *optval,
7672 						  int __user *optlen)
7673 {
7674 	struct sctp_assoc_value params;
7675 	struct sctp_association *asoc;
7676 	int retval = -EFAULT;
7677 
7678 	if (len < sizeof(params)) {
7679 		retval = -EINVAL;
7680 		goto out;
7681 	}
7682 
7683 	len = sizeof(params);
7684 	if (copy_from_user(&params, optval, len))
7685 		goto out;
7686 
7687 	asoc = sctp_id2assoc(sk, params.assoc_id);
7688 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7689 	    sctp_style(sk, UDP)) {
7690 		retval = -EINVAL;
7691 		goto out;
7692 	}
7693 
7694 	params.assoc_value = asoc ? asoc->peer.intl_capable
7695 				  : sctp_sk(sk)->ep->intl_enable;
7696 
7697 	if (put_user(len, optlen))
7698 		goto out;
7699 
7700 	if (copy_to_user(optval, &params, len))
7701 		goto out;
7702 
7703 	retval = 0;
7704 
7705 out:
7706 	return retval;
7707 }
7708 
7709 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7710 				      char __user *optval,
7711 				      int __user *optlen)
7712 {
7713 	int val;
7714 
7715 	if (len < sizeof(int))
7716 		return -EINVAL;
7717 
7718 	len = sizeof(int);
7719 	val = sctp_sk(sk)->reuse;
7720 	if (put_user(len, optlen))
7721 		return -EFAULT;
7722 
7723 	if (copy_to_user(optval, &val, len))
7724 		return -EFAULT;
7725 
7726 	return 0;
7727 }
7728 
7729 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7730 				 int __user *optlen)
7731 {
7732 	struct sctp_association *asoc;
7733 	struct sctp_event param;
7734 	__u16 subscribe;
7735 
7736 	if (len < sizeof(param))
7737 		return -EINVAL;
7738 
7739 	len = sizeof(param);
7740 	if (copy_from_user(&param, optval, len))
7741 		return -EFAULT;
7742 
7743 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7744 	    param.se_type > SCTP_SN_TYPE_MAX)
7745 		return -EINVAL;
7746 
7747 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7748 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7749 	    sctp_style(sk, UDP))
7750 		return -EINVAL;
7751 
7752 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7753 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7754 
7755 	if (put_user(len, optlen))
7756 		return -EFAULT;
7757 
7758 	if (copy_to_user(optval, &param, len))
7759 		return -EFAULT;
7760 
7761 	return 0;
7762 }
7763 
7764 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7765 					    char __user *optval,
7766 					    int __user *optlen)
7767 {
7768 	struct sctp_assoc_value params;
7769 	struct sctp_association *asoc;
7770 	int retval = -EFAULT;
7771 
7772 	if (len < sizeof(params)) {
7773 		retval = -EINVAL;
7774 		goto out;
7775 	}
7776 
7777 	len = sizeof(params);
7778 	if (copy_from_user(&params, optval, len))
7779 		goto out;
7780 
7781 	asoc = sctp_id2assoc(sk, params.assoc_id);
7782 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7783 	    sctp_style(sk, UDP)) {
7784 		retval = -EINVAL;
7785 		goto out;
7786 	}
7787 
7788 	params.assoc_value = asoc ? asoc->peer.asconf_capable
7789 				  : sctp_sk(sk)->ep->asconf_enable;
7790 
7791 	if (put_user(len, optlen))
7792 		goto out;
7793 
7794 	if (copy_to_user(optval, &params, len))
7795 		goto out;
7796 
7797 	retval = 0;
7798 
7799 out:
7800 	return retval;
7801 }
7802 
7803 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7804 					  char __user *optval,
7805 					  int __user *optlen)
7806 {
7807 	struct sctp_assoc_value params;
7808 	struct sctp_association *asoc;
7809 	int retval = -EFAULT;
7810 
7811 	if (len < sizeof(params)) {
7812 		retval = -EINVAL;
7813 		goto out;
7814 	}
7815 
7816 	len = sizeof(params);
7817 	if (copy_from_user(&params, optval, len))
7818 		goto out;
7819 
7820 	asoc = sctp_id2assoc(sk, params.assoc_id);
7821 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7822 	    sctp_style(sk, UDP)) {
7823 		retval = -EINVAL;
7824 		goto out;
7825 	}
7826 
7827 	params.assoc_value = asoc ? asoc->peer.auth_capable
7828 				  : sctp_sk(sk)->ep->auth_enable;
7829 
7830 	if (put_user(len, optlen))
7831 		goto out;
7832 
7833 	if (copy_to_user(optval, &params, len))
7834 		goto out;
7835 
7836 	retval = 0;
7837 
7838 out:
7839 	return retval;
7840 }
7841 
7842 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7843 					 char __user *optval,
7844 					 int __user *optlen)
7845 {
7846 	struct sctp_assoc_value params;
7847 	struct sctp_association *asoc;
7848 	int retval = -EFAULT;
7849 
7850 	if (len < sizeof(params)) {
7851 		retval = -EINVAL;
7852 		goto out;
7853 	}
7854 
7855 	len = sizeof(params);
7856 	if (copy_from_user(&params, optval, len))
7857 		goto out;
7858 
7859 	asoc = sctp_id2assoc(sk, params.assoc_id);
7860 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7861 	    sctp_style(sk, UDP)) {
7862 		retval = -EINVAL;
7863 		goto out;
7864 	}
7865 
7866 	params.assoc_value = asoc ? asoc->peer.ecn_capable
7867 				  : sctp_sk(sk)->ep->ecn_enable;
7868 
7869 	if (put_user(len, optlen))
7870 		goto out;
7871 
7872 	if (copy_to_user(optval, &params, len))
7873 		goto out;
7874 
7875 	retval = 0;
7876 
7877 out:
7878 	return retval;
7879 }
7880 
7881 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7882 				     char __user *optval,
7883 				     int __user *optlen)
7884 {
7885 	struct sctp_assoc_value params;
7886 	struct sctp_association *asoc;
7887 	int retval = -EFAULT;
7888 
7889 	if (len < sizeof(params)) {
7890 		retval = -EINVAL;
7891 		goto out;
7892 	}
7893 
7894 	len = sizeof(params);
7895 	if (copy_from_user(&params, optval, len))
7896 		goto out;
7897 
7898 	asoc = sctp_id2assoc(sk, params.assoc_id);
7899 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7900 	    sctp_style(sk, UDP)) {
7901 		retval = -EINVAL;
7902 		goto out;
7903 	}
7904 
7905 	params.assoc_value = asoc ? asoc->pf_expose
7906 				  : sctp_sk(sk)->pf_expose;
7907 
7908 	if (put_user(len, optlen))
7909 		goto out;
7910 
7911 	if (copy_to_user(optval, &params, len))
7912 		goto out;
7913 
7914 	retval = 0;
7915 
7916 out:
7917 	return retval;
7918 }
7919 
7920 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7921 				      char __user *optval, int __user *optlen)
7922 {
7923 	struct sctp_association *asoc;
7924 	struct sctp_udpencaps encap;
7925 	struct sctp_transport *t;
7926 	__be16 encap_port;
7927 
7928 	if (len < sizeof(encap))
7929 		return -EINVAL;
7930 
7931 	len = sizeof(encap);
7932 	if (copy_from_user(&encap, optval, len))
7933 		return -EFAULT;
7934 
7935 	/* If an address other than INADDR_ANY is specified, and
7936 	 * no transport is found, then the request is invalid.
7937 	 */
7938 	if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7939 		t = sctp_addr_id2transport(sk, &encap.sue_address,
7940 					   encap.sue_assoc_id);
7941 		if (!t) {
7942 			pr_debug("%s: failed no transport\n", __func__);
7943 			return -EINVAL;
7944 		}
7945 
7946 		encap_port = t->encap_port;
7947 		goto out;
7948 	}
7949 
7950 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7951 	 * socket is a one to many style socket, and an association
7952 	 * was not found, then the id was invalid.
7953 	 */
7954 	asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7955 	if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7956 	    sctp_style(sk, UDP)) {
7957 		pr_debug("%s: failed no association\n", __func__);
7958 		return -EINVAL;
7959 	}
7960 
7961 	if (asoc) {
7962 		encap_port = asoc->encap_port;
7963 		goto out;
7964 	}
7965 
7966 	encap_port = sctp_sk(sk)->encap_port;
7967 
7968 out:
7969 	encap.sue_port = (__force uint16_t)encap_port;
7970 	if (copy_to_user(optval, &encap, len))
7971 		return -EFAULT;
7972 
7973 	if (put_user(len, optlen))
7974 		return -EFAULT;
7975 
7976 	return 0;
7977 }
7978 
7979 static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7980 					  char __user *optval,
7981 					  int __user *optlen)
7982 {
7983 	struct sctp_probeinterval params;
7984 	struct sctp_association *asoc;
7985 	struct sctp_transport *t;
7986 	__u32 probe_interval;
7987 
7988 	if (len < sizeof(params))
7989 		return -EINVAL;
7990 
7991 	len = sizeof(params);
7992 	if (copy_from_user(&params, optval, len))
7993 		return -EFAULT;
7994 
7995 	/* If an address other than INADDR_ANY is specified, and
7996 	 * no transport is found, then the request is invalid.
7997 	 */
7998 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spi_address)) {
7999 		t = sctp_addr_id2transport(sk, &params.spi_address,
8000 					   params.spi_assoc_id);
8001 		if (!t) {
8002 			pr_debug("%s: failed no transport\n", __func__);
8003 			return -EINVAL;
8004 		}
8005 
8006 		probe_interval = jiffies_to_msecs(t->probe_interval);
8007 		goto out;
8008 	}
8009 
8010 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8011 	 * socket is a one to many style socket, and an association
8012 	 * was not found, then the id was invalid.
8013 	 */
8014 	asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8015 	if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8016 	    sctp_style(sk, UDP)) {
8017 		pr_debug("%s: failed no association\n", __func__);
8018 		return -EINVAL;
8019 	}
8020 
8021 	if (asoc) {
8022 		probe_interval = jiffies_to_msecs(asoc->probe_interval);
8023 		goto out;
8024 	}
8025 
8026 	probe_interval = sctp_sk(sk)->probe_interval;
8027 
8028 out:
8029 	params.spi_interval = probe_interval;
8030 	if (copy_to_user(optval, &params, len))
8031 		return -EFAULT;
8032 
8033 	if (put_user(len, optlen))
8034 		return -EFAULT;
8035 
8036 	return 0;
8037 }
8038 
8039 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8040 			   char __user *optval, int __user *optlen)
8041 {
8042 	int retval = 0;
8043 	int len;
8044 
8045 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8046 
8047 	/* I can hardly begin to describe how wrong this is.  This is
8048 	 * so broken as to be worse than useless.  The API draft
8049 	 * REALLY is NOT helpful here...  I am not convinced that the
8050 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8051 	 * are at all well-founded.
8052 	 */
8053 	if (level != SOL_SCTP) {
8054 		struct sctp_af *af = sctp_sk(sk)->pf->af;
8055 
8056 		retval = af->getsockopt(sk, level, optname, optval, optlen);
8057 		return retval;
8058 	}
8059 
8060 	if (get_user(len, optlen))
8061 		return -EFAULT;
8062 
8063 	if (len < 0)
8064 		return -EINVAL;
8065 
8066 	lock_sock(sk);
8067 
8068 	switch (optname) {
8069 	case SCTP_STATUS:
8070 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8071 		break;
8072 	case SCTP_DISABLE_FRAGMENTS:
8073 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8074 							   optlen);
8075 		break;
8076 	case SCTP_EVENTS:
8077 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
8078 		break;
8079 	case SCTP_AUTOCLOSE:
8080 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8081 		break;
8082 	case SCTP_SOCKOPT_PEELOFF:
8083 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8084 		break;
8085 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
8086 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8087 		break;
8088 	case SCTP_PEER_ADDR_PARAMS:
8089 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8090 							  optlen);
8091 		break;
8092 	case SCTP_DELAYED_SACK:
8093 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8094 							  optlen);
8095 		break;
8096 	case SCTP_INITMSG:
8097 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8098 		break;
8099 	case SCTP_GET_PEER_ADDRS:
8100 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8101 						    optlen);
8102 		break;
8103 	case SCTP_GET_LOCAL_ADDRS:
8104 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
8105 						     optlen);
8106 		break;
8107 	case SCTP_SOCKOPT_CONNECTX3:
8108 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8109 		break;
8110 	case SCTP_DEFAULT_SEND_PARAM:
8111 		retval = sctp_getsockopt_default_send_param(sk, len,
8112 							    optval, optlen);
8113 		break;
8114 	case SCTP_DEFAULT_SNDINFO:
8115 		retval = sctp_getsockopt_default_sndinfo(sk, len,
8116 							 optval, optlen);
8117 		break;
8118 	case SCTP_PRIMARY_ADDR:
8119 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8120 		break;
8121 	case SCTP_NODELAY:
8122 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8123 		break;
8124 	case SCTP_RTOINFO:
8125 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8126 		break;
8127 	case SCTP_ASSOCINFO:
8128 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8129 		break;
8130 	case SCTP_I_WANT_MAPPED_V4_ADDR:
8131 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8132 		break;
8133 	case SCTP_MAXSEG:
8134 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8135 		break;
8136 	case SCTP_GET_PEER_ADDR_INFO:
8137 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8138 							optlen);
8139 		break;
8140 	case SCTP_ADAPTATION_LAYER:
8141 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8142 							optlen);
8143 		break;
8144 	case SCTP_CONTEXT:
8145 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
8146 		break;
8147 	case SCTP_FRAGMENT_INTERLEAVE:
8148 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8149 							     optlen);
8150 		break;
8151 	case SCTP_PARTIAL_DELIVERY_POINT:
8152 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8153 								optlen);
8154 		break;
8155 	case SCTP_MAX_BURST:
8156 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8157 		break;
8158 	case SCTP_AUTH_KEY:
8159 	case SCTP_AUTH_CHUNK:
8160 	case SCTP_AUTH_DELETE_KEY:
8161 	case SCTP_AUTH_DEACTIVATE_KEY:
8162 		retval = -EOPNOTSUPP;
8163 		break;
8164 	case SCTP_HMAC_IDENT:
8165 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8166 		break;
8167 	case SCTP_AUTH_ACTIVE_KEY:
8168 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8169 		break;
8170 	case SCTP_PEER_AUTH_CHUNKS:
8171 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8172 							optlen);
8173 		break;
8174 	case SCTP_LOCAL_AUTH_CHUNKS:
8175 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8176 							optlen);
8177 		break;
8178 	case SCTP_GET_ASSOC_NUMBER:
8179 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8180 		break;
8181 	case SCTP_GET_ASSOC_ID_LIST:
8182 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8183 		break;
8184 	case SCTP_AUTO_ASCONF:
8185 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8186 		break;
8187 	case SCTP_PEER_ADDR_THLDS:
8188 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8189 							  optlen, false);
8190 		break;
8191 	case SCTP_PEER_ADDR_THLDS_V2:
8192 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8193 							  optlen, true);
8194 		break;
8195 	case SCTP_GET_ASSOC_STATS:
8196 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8197 		break;
8198 	case SCTP_RECVRCVINFO:
8199 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8200 		break;
8201 	case SCTP_RECVNXTINFO:
8202 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8203 		break;
8204 	case SCTP_PR_SUPPORTED:
8205 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8206 		break;
8207 	case SCTP_DEFAULT_PRINFO:
8208 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8209 							optlen);
8210 		break;
8211 	case SCTP_PR_ASSOC_STATUS:
8212 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8213 							optlen);
8214 		break;
8215 	case SCTP_PR_STREAM_STATUS:
8216 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8217 							 optlen);
8218 		break;
8219 	case SCTP_RECONFIG_SUPPORTED:
8220 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8221 							    optlen);
8222 		break;
8223 	case SCTP_ENABLE_STREAM_RESET:
8224 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8225 							 optlen);
8226 		break;
8227 	case SCTP_STREAM_SCHEDULER:
8228 		retval = sctp_getsockopt_scheduler(sk, len, optval,
8229 						   optlen);
8230 		break;
8231 	case SCTP_STREAM_SCHEDULER_VALUE:
8232 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8233 							 optlen);
8234 		break;
8235 	case SCTP_INTERLEAVING_SUPPORTED:
8236 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8237 								optlen);
8238 		break;
8239 	case SCTP_REUSE_PORT:
8240 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8241 		break;
8242 	case SCTP_EVENT:
8243 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
8244 		break;
8245 	case SCTP_ASCONF_SUPPORTED:
8246 		retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8247 							  optlen);
8248 		break;
8249 	case SCTP_AUTH_SUPPORTED:
8250 		retval = sctp_getsockopt_auth_supported(sk, len, optval,
8251 							optlen);
8252 		break;
8253 	case SCTP_ECN_SUPPORTED:
8254 		retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8255 		break;
8256 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8257 		retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8258 		break;
8259 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
8260 		retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8261 		break;
8262 	case SCTP_PLPMTUD_PROBE_INTERVAL:
8263 		retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8264 		break;
8265 	default:
8266 		retval = -ENOPROTOOPT;
8267 		break;
8268 	}
8269 
8270 	release_sock(sk);
8271 	return retval;
8272 }
8273 
8274 static int sctp_hash(struct sock *sk)
8275 {
8276 	/* STUB */
8277 	return 0;
8278 }
8279 
8280 static void sctp_unhash(struct sock *sk)
8281 {
8282 	/* STUB */
8283 }
8284 
8285 /* Check if port is acceptable.  Possibly find first available port.
8286  *
8287  * The port hash table (contained in the 'global' SCTP protocol storage
8288  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8289  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8290  * list (the list number is the port number hashed out, so as you
8291  * would expect from a hash function, all the ports in a given list have
8292  * such a number that hashes out to the same list number; you were
8293  * expecting that, right?); so each list has a set of ports, with a
8294  * link to the socket (struct sock) that uses it, the port number and
8295  * a fastreuse flag (FIXME: NPI ipg).
8296  */
8297 static struct sctp_bind_bucket *sctp_bucket_create(
8298 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8299 
8300 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8301 {
8302 	struct sctp_sock *sp = sctp_sk(sk);
8303 	bool reuse = (sk->sk_reuse || sp->reuse);
8304 	struct sctp_bind_hashbucket *head; /* hash list */
8305 	struct net *net = sock_net(sk);
8306 	kuid_t uid = sock_i_uid(sk);
8307 	struct sctp_bind_bucket *pp;
8308 	unsigned short snum;
8309 	int ret;
8310 
8311 	snum = ntohs(addr->v4.sin_port);
8312 
8313 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8314 
8315 	if (snum == 0) {
8316 		/* Search for an available port. */
8317 		int low, high, remaining, index;
8318 		unsigned int rover;
8319 
8320 		inet_get_local_port_range(net, &low, &high);
8321 		remaining = (high - low) + 1;
8322 		rover = prandom_u32_max(remaining) + low;
8323 
8324 		do {
8325 			rover++;
8326 			if ((rover < low) || (rover > high))
8327 				rover = low;
8328 			if (inet_is_local_reserved_port(net, rover))
8329 				continue;
8330 			index = sctp_phashfn(net, rover);
8331 			head = &sctp_port_hashtable[index];
8332 			spin_lock_bh(&head->lock);
8333 			sctp_for_each_hentry(pp, &head->chain)
8334 				if ((pp->port == rover) &&
8335 				    net_eq(net, pp->net))
8336 					goto next;
8337 			break;
8338 		next:
8339 			spin_unlock_bh(&head->lock);
8340 			cond_resched();
8341 		} while (--remaining > 0);
8342 
8343 		/* Exhausted local port range during search? */
8344 		ret = 1;
8345 		if (remaining <= 0)
8346 			return ret;
8347 
8348 		/* OK, here is the one we will use.  HEAD (the port
8349 		 * hash table list entry) is non-NULL and we hold it's
8350 		 * mutex.
8351 		 */
8352 		snum = rover;
8353 	} else {
8354 		/* We are given an specific port number; we verify
8355 		 * that it is not being used. If it is used, we will
8356 		 * exahust the search in the hash list corresponding
8357 		 * to the port number (snum) - we detect that with the
8358 		 * port iterator, pp being NULL.
8359 		 */
8360 		head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8361 		spin_lock_bh(&head->lock);
8362 		sctp_for_each_hentry(pp, &head->chain) {
8363 			if ((pp->port == snum) && net_eq(pp->net, net))
8364 				goto pp_found;
8365 		}
8366 	}
8367 	pp = NULL;
8368 	goto pp_not_found;
8369 pp_found:
8370 	if (!hlist_empty(&pp->owner)) {
8371 		/* We had a port hash table hit - there is an
8372 		 * available port (pp != NULL) and it is being
8373 		 * used by other socket (pp->owner not empty); that other
8374 		 * socket is going to be sk2.
8375 		 */
8376 		struct sock *sk2;
8377 
8378 		pr_debug("%s: found a possible match\n", __func__);
8379 
8380 		if ((pp->fastreuse && reuse &&
8381 		     sk->sk_state != SCTP_SS_LISTENING) ||
8382 		    (pp->fastreuseport && sk->sk_reuseport &&
8383 		     uid_eq(pp->fastuid, uid)))
8384 			goto success;
8385 
8386 		/* Run through the list of sockets bound to the port
8387 		 * (pp->port) [via the pointers bind_next and
8388 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8389 		 * we get the endpoint they describe and run through
8390 		 * the endpoint's list of IP (v4 or v6) addresses,
8391 		 * comparing each of the addresses with the address of
8392 		 * the socket sk. If we find a match, then that means
8393 		 * that this port/socket (sk) combination are already
8394 		 * in an endpoint.
8395 		 */
8396 		sk_for_each_bound(sk2, &pp->owner) {
8397 			struct sctp_sock *sp2 = sctp_sk(sk2);
8398 			struct sctp_endpoint *ep2 = sp2->ep;
8399 
8400 			if (sk == sk2 ||
8401 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8402 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8403 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8404 			     uid_eq(uid, sock_i_uid(sk2))))
8405 				continue;
8406 
8407 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8408 						    addr, sp2, sp)) {
8409 				ret = 1;
8410 				goto fail_unlock;
8411 			}
8412 		}
8413 
8414 		pr_debug("%s: found a match\n", __func__);
8415 	}
8416 pp_not_found:
8417 	/* If there was a hash table miss, create a new port.  */
8418 	ret = 1;
8419 	if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8420 		goto fail_unlock;
8421 
8422 	/* In either case (hit or miss), make sure fastreuse is 1 only
8423 	 * if sk->sk_reuse is too (that is, if the caller requested
8424 	 * SO_REUSEADDR on this socket -sk-).
8425 	 */
8426 	if (hlist_empty(&pp->owner)) {
8427 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8428 			pp->fastreuse = 1;
8429 		else
8430 			pp->fastreuse = 0;
8431 
8432 		if (sk->sk_reuseport) {
8433 			pp->fastreuseport = 1;
8434 			pp->fastuid = uid;
8435 		} else {
8436 			pp->fastreuseport = 0;
8437 		}
8438 	} else {
8439 		if (pp->fastreuse &&
8440 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8441 			pp->fastreuse = 0;
8442 
8443 		if (pp->fastreuseport &&
8444 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8445 			pp->fastreuseport = 0;
8446 	}
8447 
8448 	/* We are set, so fill up all the data in the hash table
8449 	 * entry, tie the socket list information with the rest of the
8450 	 * sockets FIXME: Blurry, NPI (ipg).
8451 	 */
8452 success:
8453 	if (!sp->bind_hash) {
8454 		inet_sk(sk)->inet_num = snum;
8455 		sk_add_bind_node(sk, &pp->owner);
8456 		sp->bind_hash = pp;
8457 	}
8458 	ret = 0;
8459 
8460 fail_unlock:
8461 	spin_unlock_bh(&head->lock);
8462 	return ret;
8463 }
8464 
8465 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8466  * port is requested.
8467  */
8468 static int sctp_get_port(struct sock *sk, unsigned short snum)
8469 {
8470 	union sctp_addr addr;
8471 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8472 
8473 	/* Set up a dummy address struct from the sk. */
8474 	af->from_sk(&addr, sk);
8475 	addr.v4.sin_port = htons(snum);
8476 
8477 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8478 	return sctp_get_port_local(sk, &addr);
8479 }
8480 
8481 /*
8482  *  Move a socket to LISTENING state.
8483  */
8484 static int sctp_listen_start(struct sock *sk, int backlog)
8485 {
8486 	struct sctp_sock *sp = sctp_sk(sk);
8487 	struct sctp_endpoint *ep = sp->ep;
8488 	struct crypto_shash *tfm = NULL;
8489 	char alg[32];
8490 
8491 	/* Allocate HMAC for generating cookie. */
8492 	if (!sp->hmac && sp->sctp_hmac_alg) {
8493 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8494 		tfm = crypto_alloc_shash(alg, 0, 0);
8495 		if (IS_ERR(tfm)) {
8496 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8497 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8498 			return -ENOSYS;
8499 		}
8500 		sctp_sk(sk)->hmac = tfm;
8501 	}
8502 
8503 	/*
8504 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8505 	 * call that allows new associations to be accepted, the system
8506 	 * picks an ephemeral port and will choose an address set equivalent
8507 	 * to binding with a wildcard address.
8508 	 *
8509 	 * This is not currently spelled out in the SCTP sockets
8510 	 * extensions draft, but follows the practice as seen in TCP
8511 	 * sockets.
8512 	 *
8513 	 */
8514 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8515 	if (!ep->base.bind_addr.port) {
8516 		if (sctp_autobind(sk))
8517 			return -EAGAIN;
8518 	} else {
8519 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8520 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8521 			return -EADDRINUSE;
8522 		}
8523 	}
8524 
8525 	WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8526 	return sctp_hash_endpoint(ep);
8527 }
8528 
8529 /*
8530  * 4.1.3 / 5.1.3 listen()
8531  *
8532  *   By default, new associations are not accepted for UDP style sockets.
8533  *   An application uses listen() to mark a socket as being able to
8534  *   accept new associations.
8535  *
8536  *   On TCP style sockets, applications use listen() to ready the SCTP
8537  *   endpoint for accepting inbound associations.
8538  *
8539  *   On both types of endpoints a backlog of '0' disables listening.
8540  *
8541  *  Move a socket to LISTENING state.
8542  */
8543 int sctp_inet_listen(struct socket *sock, int backlog)
8544 {
8545 	struct sock *sk = sock->sk;
8546 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8547 	int err = -EINVAL;
8548 
8549 	if (unlikely(backlog < 0))
8550 		return err;
8551 
8552 	lock_sock(sk);
8553 
8554 	/* Peeled-off sockets are not allowed to listen().  */
8555 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8556 		goto out;
8557 
8558 	if (sock->state != SS_UNCONNECTED)
8559 		goto out;
8560 
8561 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8562 		goto out;
8563 
8564 	/* If backlog is zero, disable listening. */
8565 	if (!backlog) {
8566 		if (sctp_sstate(sk, CLOSED))
8567 			goto out;
8568 
8569 		err = 0;
8570 		sctp_unhash_endpoint(ep);
8571 		sk->sk_state = SCTP_SS_CLOSED;
8572 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8573 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8574 		goto out;
8575 	}
8576 
8577 	/* If we are already listening, just update the backlog */
8578 	if (sctp_sstate(sk, LISTENING))
8579 		WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8580 	else {
8581 		err = sctp_listen_start(sk, backlog);
8582 		if (err)
8583 			goto out;
8584 	}
8585 
8586 	err = 0;
8587 out:
8588 	release_sock(sk);
8589 	return err;
8590 }
8591 
8592 /*
8593  * This function is done by modeling the current datagram_poll() and the
8594  * tcp_poll().  Note that, based on these implementations, we don't
8595  * lock the socket in this function, even though it seems that,
8596  * ideally, locking or some other mechanisms can be used to ensure
8597  * the integrity of the counters (sndbuf and wmem_alloc) used
8598  * in this place.  We assume that we don't need locks either until proven
8599  * otherwise.
8600  *
8601  * Another thing to note is that we include the Async I/O support
8602  * here, again, by modeling the current TCP/UDP code.  We don't have
8603  * a good way to test with it yet.
8604  */
8605 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8606 {
8607 	struct sock *sk = sock->sk;
8608 	struct sctp_sock *sp = sctp_sk(sk);
8609 	__poll_t mask;
8610 
8611 	poll_wait(file, sk_sleep(sk), wait);
8612 
8613 	sock_rps_record_flow(sk);
8614 
8615 	/* A TCP-style listening socket becomes readable when the accept queue
8616 	 * is not empty.
8617 	 */
8618 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8619 		return (!list_empty(&sp->ep->asocs)) ?
8620 			(EPOLLIN | EPOLLRDNORM) : 0;
8621 
8622 	mask = 0;
8623 
8624 	/* Is there any exceptional events?  */
8625 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8626 		mask |= EPOLLERR |
8627 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8628 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8629 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8630 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8631 		mask |= EPOLLHUP;
8632 
8633 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8634 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8635 		mask |= EPOLLIN | EPOLLRDNORM;
8636 
8637 	/* The association is either gone or not ready.  */
8638 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8639 		return mask;
8640 
8641 	/* Is it writable?  */
8642 	if (sctp_writeable(sk)) {
8643 		mask |= EPOLLOUT | EPOLLWRNORM;
8644 	} else {
8645 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8646 		/*
8647 		 * Since the socket is not locked, the buffer
8648 		 * might be made available after the writeable check and
8649 		 * before the bit is set.  This could cause a lost I/O
8650 		 * signal.  tcp_poll() has a race breaker for this race
8651 		 * condition.  Based on their implementation, we put
8652 		 * in the following code to cover it as well.
8653 		 */
8654 		if (sctp_writeable(sk))
8655 			mask |= EPOLLOUT | EPOLLWRNORM;
8656 	}
8657 	return mask;
8658 }
8659 
8660 /********************************************************************
8661  * 2nd Level Abstractions
8662  ********************************************************************/
8663 
8664 static struct sctp_bind_bucket *sctp_bucket_create(
8665 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8666 {
8667 	struct sctp_bind_bucket *pp;
8668 
8669 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8670 	if (pp) {
8671 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8672 		pp->port = snum;
8673 		pp->fastreuse = 0;
8674 		INIT_HLIST_HEAD(&pp->owner);
8675 		pp->net = net;
8676 		hlist_add_head(&pp->node, &head->chain);
8677 	}
8678 	return pp;
8679 }
8680 
8681 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8682 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8683 {
8684 	if (pp && hlist_empty(&pp->owner)) {
8685 		__hlist_del(&pp->node);
8686 		kmem_cache_free(sctp_bucket_cachep, pp);
8687 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8688 	}
8689 }
8690 
8691 /* Release this socket's reference to a local port.  */
8692 static inline void __sctp_put_port(struct sock *sk)
8693 {
8694 	struct sctp_bind_hashbucket *head =
8695 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8696 						  inet_sk(sk)->inet_num)];
8697 	struct sctp_bind_bucket *pp;
8698 
8699 	spin_lock(&head->lock);
8700 	pp = sctp_sk(sk)->bind_hash;
8701 	__sk_del_bind_node(sk);
8702 	sctp_sk(sk)->bind_hash = NULL;
8703 	inet_sk(sk)->inet_num = 0;
8704 	sctp_bucket_destroy(pp);
8705 	spin_unlock(&head->lock);
8706 }
8707 
8708 void sctp_put_port(struct sock *sk)
8709 {
8710 	local_bh_disable();
8711 	__sctp_put_port(sk);
8712 	local_bh_enable();
8713 }
8714 
8715 /*
8716  * The system picks an ephemeral port and choose an address set equivalent
8717  * to binding with a wildcard address.
8718  * One of those addresses will be the primary address for the association.
8719  * This automatically enables the multihoming capability of SCTP.
8720  */
8721 static int sctp_autobind(struct sock *sk)
8722 {
8723 	union sctp_addr autoaddr;
8724 	struct sctp_af *af;
8725 	__be16 port;
8726 
8727 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8728 	af = sctp_sk(sk)->pf->af;
8729 
8730 	port = htons(inet_sk(sk)->inet_num);
8731 	af->inaddr_any(&autoaddr, port);
8732 
8733 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8734 }
8735 
8736 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8737  *
8738  * From RFC 2292
8739  * 4.2 The cmsghdr Structure *
8740  *
8741  * When ancillary data is sent or received, any number of ancillary data
8742  * objects can be specified by the msg_control and msg_controllen members of
8743  * the msghdr structure, because each object is preceded by
8744  * a cmsghdr structure defining the object's length (the cmsg_len member).
8745  * Historically Berkeley-derived implementations have passed only one object
8746  * at a time, but this API allows multiple objects to be
8747  * passed in a single call to sendmsg() or recvmsg(). The following example
8748  * shows two ancillary data objects in a control buffer.
8749  *
8750  *   |<--------------------------- msg_controllen -------------------------->|
8751  *   |                                                                       |
8752  *
8753  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8754  *
8755  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8756  *   |                                   |                                   |
8757  *
8758  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8759  *
8760  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8761  *   |                                |  |                                |  |
8762  *
8763  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8764  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8765  *
8766  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8767  *
8768  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8769  *    ^
8770  *    |
8771  *
8772  * msg_control
8773  * points here
8774  */
8775 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8776 {
8777 	struct msghdr *my_msg = (struct msghdr *)msg;
8778 	struct cmsghdr *cmsg;
8779 
8780 	for_each_cmsghdr(cmsg, my_msg) {
8781 		if (!CMSG_OK(my_msg, cmsg))
8782 			return -EINVAL;
8783 
8784 		/* Should we parse this header or ignore?  */
8785 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8786 			continue;
8787 
8788 		/* Strictly check lengths following example in SCM code.  */
8789 		switch (cmsg->cmsg_type) {
8790 		case SCTP_INIT:
8791 			/* SCTP Socket API Extension
8792 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8793 			 *
8794 			 * This cmsghdr structure provides information for
8795 			 * initializing new SCTP associations with sendmsg().
8796 			 * The SCTP_INITMSG socket option uses this same data
8797 			 * structure.  This structure is not used for
8798 			 * recvmsg().
8799 			 *
8800 			 * cmsg_level    cmsg_type      cmsg_data[]
8801 			 * ------------  ------------   ----------------------
8802 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8803 			 */
8804 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8805 				return -EINVAL;
8806 
8807 			cmsgs->init = CMSG_DATA(cmsg);
8808 			break;
8809 
8810 		case SCTP_SNDRCV:
8811 			/* SCTP Socket API Extension
8812 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8813 			 *
8814 			 * This cmsghdr structure specifies SCTP options for
8815 			 * sendmsg() and describes SCTP header information
8816 			 * about a received message through recvmsg().
8817 			 *
8818 			 * cmsg_level    cmsg_type      cmsg_data[]
8819 			 * ------------  ------------   ----------------------
8820 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8821 			 */
8822 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8823 				return -EINVAL;
8824 
8825 			cmsgs->srinfo = CMSG_DATA(cmsg);
8826 
8827 			if (cmsgs->srinfo->sinfo_flags &
8828 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8829 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8830 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8831 				return -EINVAL;
8832 			break;
8833 
8834 		case SCTP_SNDINFO:
8835 			/* SCTP Socket API Extension
8836 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8837 			 *
8838 			 * This cmsghdr structure specifies SCTP options for
8839 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8840 			 * SCTP_SNDRCV which has been deprecated.
8841 			 *
8842 			 * cmsg_level    cmsg_type      cmsg_data[]
8843 			 * ------------  ------------   ---------------------
8844 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8845 			 */
8846 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8847 				return -EINVAL;
8848 
8849 			cmsgs->sinfo = CMSG_DATA(cmsg);
8850 
8851 			if (cmsgs->sinfo->snd_flags &
8852 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8853 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8854 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8855 				return -EINVAL;
8856 			break;
8857 		case SCTP_PRINFO:
8858 			/* SCTP Socket API Extension
8859 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8860 			 *
8861 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8862 			 *
8863 			 * cmsg_level    cmsg_type      cmsg_data[]
8864 			 * ------------  ------------   ---------------------
8865 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8866 			 */
8867 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8868 				return -EINVAL;
8869 
8870 			cmsgs->prinfo = CMSG_DATA(cmsg);
8871 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8872 				return -EINVAL;
8873 
8874 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8875 				cmsgs->prinfo->pr_value = 0;
8876 			break;
8877 		case SCTP_AUTHINFO:
8878 			/* SCTP Socket API Extension
8879 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8880 			 *
8881 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8882 			 *
8883 			 * cmsg_level    cmsg_type      cmsg_data[]
8884 			 * ------------  ------------   ---------------------
8885 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8886 			 */
8887 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8888 				return -EINVAL;
8889 
8890 			cmsgs->authinfo = CMSG_DATA(cmsg);
8891 			break;
8892 		case SCTP_DSTADDRV4:
8893 		case SCTP_DSTADDRV6:
8894 			/* SCTP Socket API Extension
8895 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8896 			 *
8897 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8898 			 *
8899 			 * cmsg_level    cmsg_type         cmsg_data[]
8900 			 * ------------  ------------   ---------------------
8901 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8902 			 * ------------  ------------   ---------------------
8903 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8904 			 */
8905 			cmsgs->addrs_msg = my_msg;
8906 			break;
8907 		default:
8908 			return -EINVAL;
8909 		}
8910 	}
8911 
8912 	return 0;
8913 }
8914 
8915 /*
8916  * Wait for a packet..
8917  * Note: This function is the same function as in core/datagram.c
8918  * with a few modifications to make lksctp work.
8919  */
8920 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8921 {
8922 	int error;
8923 	DEFINE_WAIT(wait);
8924 
8925 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8926 
8927 	/* Socket errors? */
8928 	error = sock_error(sk);
8929 	if (error)
8930 		goto out;
8931 
8932 	if (!skb_queue_empty(&sk->sk_receive_queue))
8933 		goto ready;
8934 
8935 	/* Socket shut down?  */
8936 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8937 		goto out;
8938 
8939 	/* Sequenced packets can come disconnected.  If so we report the
8940 	 * problem.
8941 	 */
8942 	error = -ENOTCONN;
8943 
8944 	/* Is there a good reason to think that we may receive some data?  */
8945 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8946 		goto out;
8947 
8948 	/* Handle signals.  */
8949 	if (signal_pending(current))
8950 		goto interrupted;
8951 
8952 	/* Let another process have a go.  Since we are going to sleep
8953 	 * anyway.  Note: This may cause odd behaviors if the message
8954 	 * does not fit in the user's buffer, but this seems to be the
8955 	 * only way to honor MSG_DONTWAIT realistically.
8956 	 */
8957 	release_sock(sk);
8958 	*timeo_p = schedule_timeout(*timeo_p);
8959 	lock_sock(sk);
8960 
8961 ready:
8962 	finish_wait(sk_sleep(sk), &wait);
8963 	return 0;
8964 
8965 interrupted:
8966 	error = sock_intr_errno(*timeo_p);
8967 
8968 out:
8969 	finish_wait(sk_sleep(sk), &wait);
8970 	*err = error;
8971 	return error;
8972 }
8973 
8974 /* Receive a datagram.
8975  * Note: This is pretty much the same routine as in core/datagram.c
8976  * with a few changes to make lksctp work.
8977  */
8978 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
8979 {
8980 	int error;
8981 	struct sk_buff *skb;
8982 	long timeo;
8983 
8984 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
8985 
8986 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8987 		 MAX_SCHEDULE_TIMEOUT);
8988 
8989 	do {
8990 		/* Again only user level code calls this function,
8991 		 * so nothing interrupt level
8992 		 * will suddenly eat the receive_queue.
8993 		 *
8994 		 *  Look at current nfs client by the way...
8995 		 *  However, this function was correct in any case. 8)
8996 		 */
8997 		if (flags & MSG_PEEK) {
8998 			skb = skb_peek(&sk->sk_receive_queue);
8999 			if (skb)
9000 				refcount_inc(&skb->users);
9001 		} else {
9002 			skb = __skb_dequeue(&sk->sk_receive_queue);
9003 		}
9004 
9005 		if (skb)
9006 			return skb;
9007 
9008 		/* Caller is allowed not to check sk->sk_err before calling. */
9009 		error = sock_error(sk);
9010 		if (error)
9011 			goto no_packet;
9012 
9013 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9014 			break;
9015 
9016 		if (sk_can_busy_loop(sk)) {
9017 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
9018 
9019 			if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9020 				continue;
9021 		}
9022 
9023 		/* User doesn't want to wait.  */
9024 		error = -EAGAIN;
9025 		if (!timeo)
9026 			goto no_packet;
9027 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9028 
9029 	return NULL;
9030 
9031 no_packet:
9032 	*err = error;
9033 	return NULL;
9034 }
9035 
9036 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
9037 static void __sctp_write_space(struct sctp_association *asoc)
9038 {
9039 	struct sock *sk = asoc->base.sk;
9040 
9041 	if (sctp_wspace(asoc) <= 0)
9042 		return;
9043 
9044 	if (waitqueue_active(&asoc->wait))
9045 		wake_up_interruptible(&asoc->wait);
9046 
9047 	if (sctp_writeable(sk)) {
9048 		struct socket_wq *wq;
9049 
9050 		rcu_read_lock();
9051 		wq = rcu_dereference(sk->sk_wq);
9052 		if (wq) {
9053 			if (waitqueue_active(&wq->wait))
9054 				wake_up_interruptible(&wq->wait);
9055 
9056 			/* Note that we try to include the Async I/O support
9057 			 * here by modeling from the current TCP/UDP code.
9058 			 * We have not tested with it yet.
9059 			 */
9060 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9061 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9062 		}
9063 		rcu_read_unlock();
9064 	}
9065 }
9066 
9067 static void sctp_wake_up_waiters(struct sock *sk,
9068 				 struct sctp_association *asoc)
9069 {
9070 	struct sctp_association *tmp = asoc;
9071 
9072 	/* We do accounting for the sndbuf space per association,
9073 	 * so we only need to wake our own association.
9074 	 */
9075 	if (asoc->ep->sndbuf_policy)
9076 		return __sctp_write_space(asoc);
9077 
9078 	/* If association goes down and is just flushing its
9079 	 * outq, then just normally notify others.
9080 	 */
9081 	if (asoc->base.dead)
9082 		return sctp_write_space(sk);
9083 
9084 	/* Accounting for the sndbuf space is per socket, so we
9085 	 * need to wake up others, try to be fair and in case of
9086 	 * other associations, let them have a go first instead
9087 	 * of just doing a sctp_write_space() call.
9088 	 *
9089 	 * Note that we reach sctp_wake_up_waiters() only when
9090 	 * associations free up queued chunks, thus we are under
9091 	 * lock and the list of associations on a socket is
9092 	 * guaranteed not to change.
9093 	 */
9094 	for (tmp = list_next_entry(tmp, asocs); 1;
9095 	     tmp = list_next_entry(tmp, asocs)) {
9096 		/* Manually skip the head element. */
9097 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9098 			continue;
9099 		/* Wake up association. */
9100 		__sctp_write_space(tmp);
9101 		/* We've reached the end. */
9102 		if (tmp == asoc)
9103 			break;
9104 	}
9105 }
9106 
9107 /* Do accounting for the sndbuf space.
9108  * Decrement the used sndbuf space of the corresponding association by the
9109  * data size which was just transmitted(freed).
9110  */
9111 static void sctp_wfree(struct sk_buff *skb)
9112 {
9113 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9114 	struct sctp_association *asoc = chunk->asoc;
9115 	struct sock *sk = asoc->base.sk;
9116 
9117 	sk_mem_uncharge(sk, skb->truesize);
9118 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
9119 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9120 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9121 				      &sk->sk_wmem_alloc));
9122 
9123 	if (chunk->shkey) {
9124 		struct sctp_shared_key *shkey = chunk->shkey;
9125 
9126 		/* refcnt == 2 and !list_empty mean after this release, it's
9127 		 * not being used anywhere, and it's time to notify userland
9128 		 * that this shkey can be freed if it's been deactivated.
9129 		 */
9130 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9131 		    refcount_read(&shkey->refcnt) == 2) {
9132 			struct sctp_ulpevent *ev;
9133 
9134 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9135 							SCTP_AUTH_FREE_KEY,
9136 							GFP_KERNEL);
9137 			if (ev)
9138 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9139 		}
9140 		sctp_auth_shkey_release(chunk->shkey);
9141 	}
9142 
9143 	sock_wfree(skb);
9144 	sctp_wake_up_waiters(sk, asoc);
9145 
9146 	sctp_association_put(asoc);
9147 }
9148 
9149 /* Do accounting for the receive space on the socket.
9150  * Accounting for the association is done in ulpevent.c
9151  * We set this as a destructor for the cloned data skbs so that
9152  * accounting is done at the correct time.
9153  */
9154 void sctp_sock_rfree(struct sk_buff *skb)
9155 {
9156 	struct sock *sk = skb->sk;
9157 	struct sctp_ulpevent *event = sctp_skb2event(skb);
9158 
9159 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9160 
9161 	/*
9162 	 * Mimic the behavior of sock_rfree
9163 	 */
9164 	sk_mem_uncharge(sk, event->rmem_len);
9165 }
9166 
9167 
9168 /* Helper function to wait for space in the sndbuf.  */
9169 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9170 				size_t msg_len)
9171 {
9172 	struct sock *sk = asoc->base.sk;
9173 	long current_timeo = *timeo_p;
9174 	DEFINE_WAIT(wait);
9175 	int err = 0;
9176 
9177 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9178 		 *timeo_p, msg_len);
9179 
9180 	/* Increment the association's refcnt.  */
9181 	sctp_association_hold(asoc);
9182 
9183 	/* Wait on the association specific sndbuf space. */
9184 	for (;;) {
9185 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9186 					  TASK_INTERRUPTIBLE);
9187 		if (asoc->base.dead)
9188 			goto do_dead;
9189 		if (!*timeo_p)
9190 			goto do_nonblock;
9191 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9192 			goto do_error;
9193 		if (signal_pending(current))
9194 			goto do_interrupted;
9195 		if ((int)msg_len <= sctp_wspace(asoc) &&
9196 		    sk_wmem_schedule(sk, msg_len))
9197 			break;
9198 
9199 		/* Let another process have a go.  Since we are going
9200 		 * to sleep anyway.
9201 		 */
9202 		release_sock(sk);
9203 		current_timeo = schedule_timeout(current_timeo);
9204 		lock_sock(sk);
9205 		if (sk != asoc->base.sk)
9206 			goto do_error;
9207 
9208 		*timeo_p = current_timeo;
9209 	}
9210 
9211 out:
9212 	finish_wait(&asoc->wait, &wait);
9213 
9214 	/* Release the association's refcnt.  */
9215 	sctp_association_put(asoc);
9216 
9217 	return err;
9218 
9219 do_dead:
9220 	err = -ESRCH;
9221 	goto out;
9222 
9223 do_error:
9224 	err = -EPIPE;
9225 	goto out;
9226 
9227 do_interrupted:
9228 	err = sock_intr_errno(*timeo_p);
9229 	goto out;
9230 
9231 do_nonblock:
9232 	err = -EAGAIN;
9233 	goto out;
9234 }
9235 
9236 void sctp_data_ready(struct sock *sk)
9237 {
9238 	struct socket_wq *wq;
9239 
9240 	rcu_read_lock();
9241 	wq = rcu_dereference(sk->sk_wq);
9242 	if (skwq_has_sleeper(wq))
9243 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9244 						EPOLLRDNORM | EPOLLRDBAND);
9245 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9246 	rcu_read_unlock();
9247 }
9248 
9249 /* If socket sndbuf has changed, wake up all per association waiters.  */
9250 void sctp_write_space(struct sock *sk)
9251 {
9252 	struct sctp_association *asoc;
9253 
9254 	/* Wake up the tasks in each wait queue.  */
9255 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9256 		__sctp_write_space(asoc);
9257 	}
9258 }
9259 
9260 /* Is there any sndbuf space available on the socket?
9261  *
9262  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9263  * associations on the same socket.  For a UDP-style socket with
9264  * multiple associations, it is possible for it to be "unwriteable"
9265  * prematurely.  I assume that this is acceptable because
9266  * a premature "unwriteable" is better than an accidental "writeable" which
9267  * would cause an unwanted block under certain circumstances.  For the 1-1
9268  * UDP-style sockets or TCP-style sockets, this code should work.
9269  *  - Daisy
9270  */
9271 static bool sctp_writeable(struct sock *sk)
9272 {
9273 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9274 }
9275 
9276 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9277  * returns immediately with EINPROGRESS.
9278  */
9279 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9280 {
9281 	struct sock *sk = asoc->base.sk;
9282 	int err = 0;
9283 	long current_timeo = *timeo_p;
9284 	DEFINE_WAIT(wait);
9285 
9286 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9287 
9288 	/* Increment the association's refcnt.  */
9289 	sctp_association_hold(asoc);
9290 
9291 	for (;;) {
9292 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9293 					  TASK_INTERRUPTIBLE);
9294 		if (!*timeo_p)
9295 			goto do_nonblock;
9296 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9297 			break;
9298 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9299 		    asoc->base.dead)
9300 			goto do_error;
9301 		if (signal_pending(current))
9302 			goto do_interrupted;
9303 
9304 		if (sctp_state(asoc, ESTABLISHED))
9305 			break;
9306 
9307 		/* Let another process have a go.  Since we are going
9308 		 * to sleep anyway.
9309 		 */
9310 		release_sock(sk);
9311 		current_timeo = schedule_timeout(current_timeo);
9312 		lock_sock(sk);
9313 
9314 		*timeo_p = current_timeo;
9315 	}
9316 
9317 out:
9318 	finish_wait(&asoc->wait, &wait);
9319 
9320 	/* Release the association's refcnt.  */
9321 	sctp_association_put(asoc);
9322 
9323 	return err;
9324 
9325 do_error:
9326 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9327 		err = -ETIMEDOUT;
9328 	else
9329 		err = -ECONNREFUSED;
9330 	goto out;
9331 
9332 do_interrupted:
9333 	err = sock_intr_errno(*timeo_p);
9334 	goto out;
9335 
9336 do_nonblock:
9337 	err = -EINPROGRESS;
9338 	goto out;
9339 }
9340 
9341 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9342 {
9343 	struct sctp_endpoint *ep;
9344 	int err = 0;
9345 	DEFINE_WAIT(wait);
9346 
9347 	ep = sctp_sk(sk)->ep;
9348 
9349 
9350 	for (;;) {
9351 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9352 					  TASK_INTERRUPTIBLE);
9353 
9354 		if (list_empty(&ep->asocs)) {
9355 			release_sock(sk);
9356 			timeo = schedule_timeout(timeo);
9357 			lock_sock(sk);
9358 		}
9359 
9360 		err = -EINVAL;
9361 		if (!sctp_sstate(sk, LISTENING))
9362 			break;
9363 
9364 		err = 0;
9365 		if (!list_empty(&ep->asocs))
9366 			break;
9367 
9368 		err = sock_intr_errno(timeo);
9369 		if (signal_pending(current))
9370 			break;
9371 
9372 		err = -EAGAIN;
9373 		if (!timeo)
9374 			break;
9375 	}
9376 
9377 	finish_wait(sk_sleep(sk), &wait);
9378 
9379 	return err;
9380 }
9381 
9382 static void sctp_wait_for_close(struct sock *sk, long timeout)
9383 {
9384 	DEFINE_WAIT(wait);
9385 
9386 	do {
9387 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9388 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9389 			break;
9390 		release_sock(sk);
9391 		timeout = schedule_timeout(timeout);
9392 		lock_sock(sk);
9393 	} while (!signal_pending(current) && timeout);
9394 
9395 	finish_wait(sk_sleep(sk), &wait);
9396 }
9397 
9398 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9399 {
9400 	struct sk_buff *frag;
9401 
9402 	if (!skb->data_len)
9403 		goto done;
9404 
9405 	/* Don't forget the fragments. */
9406 	skb_walk_frags(skb, frag)
9407 		sctp_skb_set_owner_r_frag(frag, sk);
9408 
9409 done:
9410 	sctp_skb_set_owner_r(skb, sk);
9411 }
9412 
9413 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9414 		    struct sctp_association *asoc)
9415 {
9416 	struct inet_sock *inet = inet_sk(sk);
9417 	struct inet_sock *newinet;
9418 	struct sctp_sock *sp = sctp_sk(sk);
9419 
9420 	newsk->sk_type = sk->sk_type;
9421 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9422 	newsk->sk_flags = sk->sk_flags;
9423 	newsk->sk_tsflags = sk->sk_tsflags;
9424 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9425 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9426 	newsk->sk_reuse = sk->sk_reuse;
9427 	sctp_sk(newsk)->reuse = sp->reuse;
9428 
9429 	newsk->sk_shutdown = sk->sk_shutdown;
9430 	newsk->sk_destruct = sctp_destruct_sock;
9431 	newsk->sk_family = sk->sk_family;
9432 	newsk->sk_protocol = IPPROTO_SCTP;
9433 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9434 	newsk->sk_sndbuf = sk->sk_sndbuf;
9435 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9436 	newsk->sk_lingertime = sk->sk_lingertime;
9437 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9438 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9439 	newsk->sk_rxhash = sk->sk_rxhash;
9440 
9441 	newinet = inet_sk(newsk);
9442 
9443 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9444 	 * getsockname() and getpeername()
9445 	 */
9446 	newinet->inet_sport = inet->inet_sport;
9447 	newinet->inet_saddr = inet->inet_saddr;
9448 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9449 	newinet->inet_dport = htons(asoc->peer.port);
9450 	newinet->pmtudisc = inet->pmtudisc;
9451 	newinet->inet_id = get_random_u16();
9452 
9453 	newinet->uc_ttl = inet->uc_ttl;
9454 	newinet->mc_loop = 1;
9455 	newinet->mc_ttl = 1;
9456 	newinet->mc_index = 0;
9457 	newinet->mc_list = NULL;
9458 
9459 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9460 		net_enable_timestamp();
9461 
9462 	/* Set newsk security attributes from original sk and connection
9463 	 * security attribute from asoc.
9464 	 */
9465 	security_sctp_sk_clone(asoc, sk, newsk);
9466 }
9467 
9468 static inline void sctp_copy_descendant(struct sock *sk_to,
9469 					const struct sock *sk_from)
9470 {
9471 	size_t ancestor_size = sizeof(struct inet_sock);
9472 
9473 	ancestor_size += sk_from->sk_prot->obj_size;
9474 	ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9475 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9476 }
9477 
9478 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9479  * and its messages to the newsk.
9480  */
9481 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9482 			     struct sctp_association *assoc,
9483 			     enum sctp_socket_type type)
9484 {
9485 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9486 	struct sctp_sock *newsp = sctp_sk(newsk);
9487 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9488 	struct sctp_endpoint *newep = newsp->ep;
9489 	struct sk_buff *skb, *tmp;
9490 	struct sctp_ulpevent *event;
9491 	struct sctp_bind_hashbucket *head;
9492 	int err;
9493 
9494 	/* Migrate socket buffer sizes and all the socket level options to the
9495 	 * new socket.
9496 	 */
9497 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9498 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9499 	/* Brute force copy old sctp opt. */
9500 	sctp_copy_descendant(newsk, oldsk);
9501 
9502 	/* Restore the ep value that was overwritten with the above structure
9503 	 * copy.
9504 	 */
9505 	newsp->ep = newep;
9506 	newsp->hmac = NULL;
9507 
9508 	/* Hook this new socket in to the bind_hash list. */
9509 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9510 						 inet_sk(oldsk)->inet_num)];
9511 	spin_lock_bh(&head->lock);
9512 	pp = sctp_sk(oldsk)->bind_hash;
9513 	sk_add_bind_node(newsk, &pp->owner);
9514 	sctp_sk(newsk)->bind_hash = pp;
9515 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9516 	spin_unlock_bh(&head->lock);
9517 
9518 	/* Copy the bind_addr list from the original endpoint to the new
9519 	 * endpoint so that we can handle restarts properly
9520 	 */
9521 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9522 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9523 	if (err)
9524 		return err;
9525 
9526 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9527 	 * that net->sctp.auth_enable has been changed to 0 by users and
9528 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9529 	 */
9530 	if (oldsp->ep->auth_hmacs) {
9531 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9532 		if (err)
9533 			return err;
9534 	}
9535 
9536 	sctp_auto_asconf_init(newsp);
9537 
9538 	/* Move any messages in the old socket's receive queue that are for the
9539 	 * peeled off association to the new socket's receive queue.
9540 	 */
9541 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9542 		event = sctp_skb2event(skb);
9543 		if (event->asoc == assoc) {
9544 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9545 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9546 			sctp_skb_set_owner_r_frag(skb, newsk);
9547 		}
9548 	}
9549 
9550 	/* Clean up any messages pending delivery due to partial
9551 	 * delivery.   Three cases:
9552 	 * 1) No partial deliver;  no work.
9553 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9554 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9555 	 */
9556 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9557 
9558 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9559 		struct sk_buff_head *queue;
9560 
9561 		/* Decide which queue to move pd_lobby skbs to. */
9562 		if (assoc->ulpq.pd_mode) {
9563 			queue = &newsp->pd_lobby;
9564 		} else
9565 			queue = &newsk->sk_receive_queue;
9566 
9567 		/* Walk through the pd_lobby, looking for skbs that
9568 		 * need moved to the new socket.
9569 		 */
9570 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9571 			event = sctp_skb2event(skb);
9572 			if (event->asoc == assoc) {
9573 				__skb_unlink(skb, &oldsp->pd_lobby);
9574 				__skb_queue_tail(queue, skb);
9575 				sctp_skb_set_owner_r_frag(skb, newsk);
9576 			}
9577 		}
9578 
9579 		/* Clear up any skbs waiting for the partial
9580 		 * delivery to finish.
9581 		 */
9582 		if (assoc->ulpq.pd_mode)
9583 			sctp_clear_pd(oldsk, NULL);
9584 
9585 	}
9586 
9587 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9588 
9589 	/* Set the type of socket to indicate that it is peeled off from the
9590 	 * original UDP-style socket or created with the accept() call on a
9591 	 * TCP-style socket..
9592 	 */
9593 	newsp->type = type;
9594 
9595 	/* Mark the new socket "in-use" by the user so that any packets
9596 	 * that may arrive on the association after we've moved it are
9597 	 * queued to the backlog.  This prevents a potential race between
9598 	 * backlog processing on the old socket and new-packet processing
9599 	 * on the new socket.
9600 	 *
9601 	 * The caller has just allocated newsk so we can guarantee that other
9602 	 * paths won't try to lock it and then oldsk.
9603 	 */
9604 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9605 	sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9606 	sctp_assoc_migrate(assoc, newsk);
9607 	sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9608 
9609 	/* If the association on the newsk is already closed before accept()
9610 	 * is called, set RCV_SHUTDOWN flag.
9611 	 */
9612 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9613 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9614 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9615 	} else {
9616 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9617 	}
9618 
9619 	release_sock(newsk);
9620 
9621 	return 0;
9622 }
9623 
9624 
9625 /* This proto struct describes the ULP interface for SCTP.  */
9626 struct proto sctp_prot = {
9627 	.name        =	"SCTP",
9628 	.owner       =	THIS_MODULE,
9629 	.close       =	sctp_close,
9630 	.disconnect  =	sctp_disconnect,
9631 	.accept      =	sctp_accept,
9632 	.ioctl       =	sctp_ioctl,
9633 	.init        =	sctp_init_sock,
9634 	.destroy     =	sctp_destroy_sock,
9635 	.shutdown    =	sctp_shutdown,
9636 	.setsockopt  =	sctp_setsockopt,
9637 	.getsockopt  =	sctp_getsockopt,
9638 	.sendmsg     =	sctp_sendmsg,
9639 	.recvmsg     =	sctp_recvmsg,
9640 	.bind        =	sctp_bind,
9641 	.bind_add    =  sctp_bind_add,
9642 	.backlog_rcv =	sctp_backlog_rcv,
9643 	.hash        =	sctp_hash,
9644 	.unhash      =	sctp_unhash,
9645 	.no_autobind =	true,
9646 	.obj_size    =  sizeof(struct sctp_sock),
9647 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9648 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9649 				offsetof(struct sctp_sock, subscribe) +
9650 				sizeof_field(struct sctp_sock, initmsg),
9651 	.sysctl_mem  =  sysctl_sctp_mem,
9652 	.sysctl_rmem =  sysctl_sctp_rmem,
9653 	.sysctl_wmem =  sysctl_sctp_wmem,
9654 	.memory_pressure = &sctp_memory_pressure,
9655 	.enter_memory_pressure = sctp_enter_memory_pressure,
9656 
9657 	.memory_allocated = &sctp_memory_allocated,
9658 	.per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9659 
9660 	.sockets_allocated = &sctp_sockets_allocated,
9661 };
9662 
9663 #if IS_ENABLED(CONFIG_IPV6)
9664 
9665 #include <net/transp_v6.h>
9666 static void sctp_v6_destroy_sock(struct sock *sk)
9667 {
9668 	sctp_destroy_sock(sk);
9669 	inet6_destroy_sock(sk);
9670 }
9671 
9672 struct proto sctpv6_prot = {
9673 	.name		= "SCTPv6",
9674 	.owner		= THIS_MODULE,
9675 	.close		= sctp_close,
9676 	.disconnect	= sctp_disconnect,
9677 	.accept		= sctp_accept,
9678 	.ioctl		= sctp_ioctl,
9679 	.init		= sctp_init_sock,
9680 	.destroy	= sctp_v6_destroy_sock,
9681 	.shutdown	= sctp_shutdown,
9682 	.setsockopt	= sctp_setsockopt,
9683 	.getsockopt	= sctp_getsockopt,
9684 	.sendmsg	= sctp_sendmsg,
9685 	.recvmsg	= sctp_recvmsg,
9686 	.bind		= sctp_bind,
9687 	.bind_add	= sctp_bind_add,
9688 	.backlog_rcv	= sctp_backlog_rcv,
9689 	.hash		= sctp_hash,
9690 	.unhash		= sctp_unhash,
9691 	.no_autobind	= true,
9692 	.obj_size	= sizeof(struct sctp6_sock),
9693 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9694 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9695 				offsetof(struct sctp6_sock, sctp.subscribe) +
9696 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9697 	.sysctl_mem	= sysctl_sctp_mem,
9698 	.sysctl_rmem	= sysctl_sctp_rmem,
9699 	.sysctl_wmem	= sysctl_sctp_wmem,
9700 	.memory_pressure = &sctp_memory_pressure,
9701 	.enter_memory_pressure = sctp_enter_memory_pressure,
9702 
9703 	.memory_allocated = &sctp_memory_allocated,
9704 	.per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9705 
9706 	.sockets_allocated = &sctp_sockets_allocated,
9707 };
9708 #endif /* IS_ENABLED(CONFIG_IPV6) */
9709