1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/ip.h> 61 #include <linux/capability.h> 62 #include <linux/fcntl.h> 63 #include <linux/poll.h> 64 #include <linux/init.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 #include <linux/compat.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 #include <net/busy_poll.h> 75 76 #include <linux/socket.h> /* for sa_family_t */ 77 #include <linux/export.h> 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* Forward declarations for internal helper functions. */ 83 static int sctp_writeable(struct sock *sk); 84 static void sctp_wfree(struct sk_buff *skb); 85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 86 size_t msg_len); 87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 89 static int sctp_wait_for_accept(struct sock *sk, long timeo); 90 static void sctp_wait_for_close(struct sock *sk, long timeo); 91 static void sctp_destruct_sock(struct sock *sk); 92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 93 union sctp_addr *addr, int len); 94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf(struct sctp_association *asoc, 99 struct sctp_chunk *chunk); 100 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 101 static int sctp_autobind(struct sock *sk); 102 static void sctp_sock_migrate(struct sock *, struct sock *, 103 struct sctp_association *, sctp_socket_type_t); 104 105 static int sctp_memory_pressure; 106 static atomic_long_t sctp_memory_allocated; 107 struct percpu_counter sctp_sockets_allocated; 108 109 static void sctp_enter_memory_pressure(struct sock *sk) 110 { 111 sctp_memory_pressure = 1; 112 } 113 114 115 /* Get the sndbuf space available at the time on the association. */ 116 static inline int sctp_wspace(struct sctp_association *asoc) 117 { 118 int amt; 119 120 if (asoc->ep->sndbuf_policy) 121 amt = asoc->sndbuf_used; 122 else 123 amt = sk_wmem_alloc_get(asoc->base.sk); 124 125 if (amt >= asoc->base.sk->sk_sndbuf) { 126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 127 amt = 0; 128 else { 129 amt = sk_stream_wspace(asoc->base.sk); 130 if (amt < 0) 131 amt = 0; 132 } 133 } else { 134 amt = asoc->base.sk->sk_sndbuf - amt; 135 } 136 return amt; 137 } 138 139 /* Increment the used sndbuf space count of the corresponding association by 140 * the size of the outgoing data chunk. 141 * Also, set the skb destructor for sndbuf accounting later. 142 * 143 * Since it is always 1-1 between chunk and skb, and also a new skb is always 144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 145 * destructor in the data chunk skb for the purpose of the sndbuf space 146 * tracking. 147 */ 148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 149 { 150 struct sctp_association *asoc = chunk->asoc; 151 struct sock *sk = asoc->base.sk; 152 153 /* The sndbuf space is tracked per association. */ 154 sctp_association_hold(asoc); 155 156 skb_set_owner_w(chunk->skb, sk); 157 158 chunk->skb->destructor = sctp_wfree; 159 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 160 skb_shinfo(chunk->skb)->destructor_arg = chunk; 161 162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 163 sizeof(struct sk_buff) + 164 sizeof(struct sctp_chunk); 165 166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 167 sk->sk_wmem_queued += chunk->skb->truesize; 168 sk_mem_charge(sk, chunk->skb->truesize); 169 } 170 171 /* Verify that this is a valid address. */ 172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 173 int len) 174 { 175 struct sctp_af *af; 176 177 /* Verify basic sockaddr. */ 178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 179 if (!af) 180 return -EINVAL; 181 182 /* Is this a valid SCTP address? */ 183 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 184 return -EINVAL; 185 186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /* Look up the association by its id. If this is not a UDP-style 193 * socket, the ID field is always ignored. 194 */ 195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 196 { 197 struct sctp_association *asoc = NULL; 198 199 /* If this is not a UDP-style socket, assoc id should be ignored. */ 200 if (!sctp_style(sk, UDP)) { 201 /* Return NULL if the socket state is not ESTABLISHED. It 202 * could be a TCP-style listening socket or a socket which 203 * hasn't yet called connect() to establish an association. 204 */ 205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 206 return NULL; 207 208 /* Get the first and the only association from the list. */ 209 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 211 struct sctp_association, asocs); 212 return asoc; 213 } 214 215 /* Otherwise this is a UDP-style socket. */ 216 if (!id || (id == (sctp_assoc_t)-1)) 217 return NULL; 218 219 spin_lock_bh(&sctp_assocs_id_lock); 220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 221 spin_unlock_bh(&sctp_assocs_id_lock); 222 223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 224 return NULL; 225 226 return asoc; 227 } 228 229 /* Look up the transport from an address and an assoc id. If both address and 230 * id are specified, the associations matching the address and the id should be 231 * the same. 232 */ 233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 234 struct sockaddr_storage *addr, 235 sctp_assoc_t id) 236 { 237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 238 struct sctp_transport *transport; 239 union sctp_addr *laddr = (union sctp_addr *)addr; 240 241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 242 laddr, 243 &transport); 244 245 if (!addr_asoc) 246 return NULL; 247 248 id_asoc = sctp_id2assoc(sk, id); 249 if (id_asoc && (id_asoc != addr_asoc)) 250 return NULL; 251 252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 253 (union sctp_addr *)addr); 254 255 return transport; 256 } 257 258 /* API 3.1.2 bind() - UDP Style Syntax 259 * The syntax of bind() is, 260 * 261 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 262 * 263 * sd - the socket descriptor returned by socket(). 264 * addr - the address structure (struct sockaddr_in or struct 265 * sockaddr_in6 [RFC 2553]), 266 * addr_len - the size of the address structure. 267 */ 268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 269 { 270 int retval = 0; 271 272 lock_sock(sk); 273 274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 275 addr, addr_len); 276 277 /* Disallow binding twice. */ 278 if (!sctp_sk(sk)->ep->base.bind_addr.port) 279 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 280 addr_len); 281 else 282 retval = -EINVAL; 283 284 release_sock(sk); 285 286 return retval; 287 } 288 289 static long sctp_get_port_local(struct sock *, union sctp_addr *); 290 291 /* Verify this is a valid sockaddr. */ 292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 293 union sctp_addr *addr, int len) 294 { 295 struct sctp_af *af; 296 297 /* Check minimum size. */ 298 if (len < sizeof (struct sockaddr)) 299 return NULL; 300 301 /* V4 mapped address are really of AF_INET family */ 302 if (addr->sa.sa_family == AF_INET6 && 303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 304 if (!opt->pf->af_supported(AF_INET, opt)) 305 return NULL; 306 } else { 307 /* Does this PF support this AF? */ 308 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 309 return NULL; 310 } 311 312 /* If we get this far, af is valid. */ 313 af = sctp_get_af_specific(addr->sa.sa_family); 314 315 if (len < af->sockaddr_len) 316 return NULL; 317 318 return af; 319 } 320 321 /* Bind a local address either to an endpoint or to an association. */ 322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 323 { 324 struct net *net = sock_net(sk); 325 struct sctp_sock *sp = sctp_sk(sk); 326 struct sctp_endpoint *ep = sp->ep; 327 struct sctp_bind_addr *bp = &ep->base.bind_addr; 328 struct sctp_af *af; 329 unsigned short snum; 330 int ret = 0; 331 332 /* Common sockaddr verification. */ 333 af = sctp_sockaddr_af(sp, addr, len); 334 if (!af) { 335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 336 __func__, sk, addr, len); 337 return -EINVAL; 338 } 339 340 snum = ntohs(addr->v4.sin_port); 341 342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 343 __func__, sk, &addr->sa, bp->port, snum, len); 344 345 /* PF specific bind() address verification. */ 346 if (!sp->pf->bind_verify(sp, addr)) 347 return -EADDRNOTAVAIL; 348 349 /* We must either be unbound, or bind to the same port. 350 * It's OK to allow 0 ports if we are already bound. 351 * We'll just inhert an already bound port in this case 352 */ 353 if (bp->port) { 354 if (!snum) 355 snum = bp->port; 356 else if (snum != bp->port) { 357 pr_debug("%s: new port %d doesn't match existing port " 358 "%d\n", __func__, snum, bp->port); 359 return -EINVAL; 360 } 361 } 362 363 if (snum && snum < PROT_SOCK && 364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 365 return -EACCES; 366 367 /* See if the address matches any of the addresses we may have 368 * already bound before checking against other endpoints. 369 */ 370 if (sctp_bind_addr_match(bp, addr, sp)) 371 return -EINVAL; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 return -EADDRINUSE; 380 } 381 382 /* Refresh ephemeral port. */ 383 if (!bp->port) 384 bp->port = inet_sk(sk)->inet_num; 385 386 /* Add the address to the bind address list. 387 * Use GFP_ATOMIC since BHs will be disabled. 388 */ 389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 390 SCTP_ADDR_SRC, GFP_ATOMIC); 391 392 /* Copy back into socket for getsockname() use. */ 393 if (!ret) { 394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 395 sp->pf->to_sk_saddr(addr, sk); 396 } 397 398 return ret; 399 } 400 401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 402 * 403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 404 * at any one time. If a sender, after sending an ASCONF chunk, decides 405 * it needs to transfer another ASCONF Chunk, it MUST wait until the 406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 407 * subsequent ASCONF. Note this restriction binds each side, so at any 408 * time two ASCONF may be in-transit on any given association (one sent 409 * from each endpoint). 410 */ 411 static int sctp_send_asconf(struct sctp_association *asoc, 412 struct sctp_chunk *chunk) 413 { 414 struct net *net = sock_net(asoc->base.sk); 415 int retval = 0; 416 417 /* If there is an outstanding ASCONF chunk, queue it for later 418 * transmission. 419 */ 420 if (asoc->addip_last_asconf) { 421 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 422 goto out; 423 } 424 425 /* Hold the chunk until an ASCONF_ACK is received. */ 426 sctp_chunk_hold(chunk); 427 retval = sctp_primitive_ASCONF(net, asoc, chunk); 428 if (retval) 429 sctp_chunk_free(chunk); 430 else 431 asoc->addip_last_asconf = chunk; 432 433 out: 434 return retval; 435 } 436 437 /* Add a list of addresses as bind addresses to local endpoint or 438 * association. 439 * 440 * Basically run through each address specified in the addrs/addrcnt 441 * array/length pair, determine if it is IPv6 or IPv4 and call 442 * sctp_do_bind() on it. 443 * 444 * If any of them fails, then the operation will be reversed and the 445 * ones that were added will be removed. 446 * 447 * Only sctp_setsockopt_bindx() is supposed to call this function. 448 */ 449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 450 { 451 int cnt; 452 int retval = 0; 453 void *addr_buf; 454 struct sockaddr *sa_addr; 455 struct sctp_af *af; 456 457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 458 addrs, addrcnt); 459 460 addr_buf = addrs; 461 for (cnt = 0; cnt < addrcnt; cnt++) { 462 /* The list may contain either IPv4 or IPv6 address; 463 * determine the address length for walking thru the list. 464 */ 465 sa_addr = addr_buf; 466 af = sctp_get_af_specific(sa_addr->sa_family); 467 if (!af) { 468 retval = -EINVAL; 469 goto err_bindx_add; 470 } 471 472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 473 af->sockaddr_len); 474 475 addr_buf += af->sockaddr_len; 476 477 err_bindx_add: 478 if (retval < 0) { 479 /* Failed. Cleanup the ones that have been added */ 480 if (cnt > 0) 481 sctp_bindx_rem(sk, addrs, cnt); 482 return retval; 483 } 484 } 485 486 return retval; 487 } 488 489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 490 * associations that are part of the endpoint indicating that a list of local 491 * addresses are added to the endpoint. 492 * 493 * If any of the addresses is already in the bind address list of the 494 * association, we do not send the chunk for that association. But it will not 495 * affect other associations. 496 * 497 * Only sctp_setsockopt_bindx() is supposed to call this function. 498 */ 499 static int sctp_send_asconf_add_ip(struct sock *sk, 500 struct sockaddr *addrs, 501 int addrcnt) 502 { 503 struct net *net = sock_net(sk); 504 struct sctp_sock *sp; 505 struct sctp_endpoint *ep; 506 struct sctp_association *asoc; 507 struct sctp_bind_addr *bp; 508 struct sctp_chunk *chunk; 509 struct sctp_sockaddr_entry *laddr; 510 union sctp_addr *addr; 511 union sctp_addr saveaddr; 512 void *addr_buf; 513 struct sctp_af *af; 514 struct list_head *p; 515 int i; 516 int retval = 0; 517 518 if (!net->sctp.addip_enable) 519 return retval; 520 521 sp = sctp_sk(sk); 522 ep = sp->ep; 523 524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 525 __func__, sk, addrs, addrcnt); 526 527 list_for_each_entry(asoc, &ep->asocs, asocs) { 528 if (!asoc->peer.asconf_capable) 529 continue; 530 531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 532 continue; 533 534 if (!sctp_state(asoc, ESTABLISHED)) 535 continue; 536 537 /* Check if any address in the packed array of addresses is 538 * in the bind address list of the association. If so, 539 * do not send the asconf chunk to its peer, but continue with 540 * other associations. 541 */ 542 addr_buf = addrs; 543 for (i = 0; i < addrcnt; i++) { 544 addr = addr_buf; 545 af = sctp_get_af_specific(addr->v4.sin_family); 546 if (!af) { 547 retval = -EINVAL; 548 goto out; 549 } 550 551 if (sctp_assoc_lookup_laddr(asoc, addr)) 552 break; 553 554 addr_buf += af->sockaddr_len; 555 } 556 if (i < addrcnt) 557 continue; 558 559 /* Use the first valid address in bind addr list of 560 * association as Address Parameter of ASCONF CHUNK. 561 */ 562 bp = &asoc->base.bind_addr; 563 p = bp->address_list.next; 564 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 566 addrcnt, SCTP_PARAM_ADD_IP); 567 if (!chunk) { 568 retval = -ENOMEM; 569 goto out; 570 } 571 572 /* Add the new addresses to the bind address list with 573 * use_as_src set to 0. 574 */ 575 addr_buf = addrs; 576 for (i = 0; i < addrcnt; i++) { 577 addr = addr_buf; 578 af = sctp_get_af_specific(addr->v4.sin_family); 579 memcpy(&saveaddr, addr, af->sockaddr_len); 580 retval = sctp_add_bind_addr(bp, &saveaddr, 581 sizeof(saveaddr), 582 SCTP_ADDR_NEW, GFP_ATOMIC); 583 addr_buf += af->sockaddr_len; 584 } 585 if (asoc->src_out_of_asoc_ok) { 586 struct sctp_transport *trans; 587 588 list_for_each_entry(trans, 589 &asoc->peer.transport_addr_list, transports) { 590 /* Clear the source and route cache */ 591 dst_release(trans->dst); 592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 593 2*asoc->pathmtu, 4380)); 594 trans->ssthresh = asoc->peer.i.a_rwnd; 595 trans->rto = asoc->rto_initial; 596 sctp_max_rto(asoc, trans); 597 trans->rtt = trans->srtt = trans->rttvar = 0; 598 sctp_transport_route(trans, NULL, 599 sctp_sk(asoc->base.sk)); 600 } 601 } 602 retval = sctp_send_asconf(asoc, chunk); 603 } 604 605 out: 606 return retval; 607 } 608 609 /* Remove a list of addresses from bind addresses list. Do not remove the 610 * last address. 611 * 612 * Basically run through each address specified in the addrs/addrcnt 613 * array/length pair, determine if it is IPv6 or IPv4 and call 614 * sctp_del_bind() on it. 615 * 616 * If any of them fails, then the operation will be reversed and the 617 * ones that were removed will be added back. 618 * 619 * At least one address has to be left; if only one address is 620 * available, the operation will return -EBUSY. 621 * 622 * Only sctp_setsockopt_bindx() is supposed to call this function. 623 */ 624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 625 { 626 struct sctp_sock *sp = sctp_sk(sk); 627 struct sctp_endpoint *ep = sp->ep; 628 int cnt; 629 struct sctp_bind_addr *bp = &ep->base.bind_addr; 630 int retval = 0; 631 void *addr_buf; 632 union sctp_addr *sa_addr; 633 struct sctp_af *af; 634 635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 636 __func__, sk, addrs, addrcnt); 637 638 addr_buf = addrs; 639 for (cnt = 0; cnt < addrcnt; cnt++) { 640 /* If the bind address list is empty or if there is only one 641 * bind address, there is nothing more to be removed (we need 642 * at least one address here). 643 */ 644 if (list_empty(&bp->address_list) || 645 (sctp_list_single_entry(&bp->address_list))) { 646 retval = -EBUSY; 647 goto err_bindx_rem; 648 } 649 650 sa_addr = addr_buf; 651 af = sctp_get_af_specific(sa_addr->sa.sa_family); 652 if (!af) { 653 retval = -EINVAL; 654 goto err_bindx_rem; 655 } 656 657 if (!af->addr_valid(sa_addr, sp, NULL)) { 658 retval = -EADDRNOTAVAIL; 659 goto err_bindx_rem; 660 } 661 662 if (sa_addr->v4.sin_port && 663 sa_addr->v4.sin_port != htons(bp->port)) { 664 retval = -EINVAL; 665 goto err_bindx_rem; 666 } 667 668 if (!sa_addr->v4.sin_port) 669 sa_addr->v4.sin_port = htons(bp->port); 670 671 /* FIXME - There is probably a need to check if sk->sk_saddr and 672 * sk->sk_rcv_addr are currently set to one of the addresses to 673 * be removed. This is something which needs to be looked into 674 * when we are fixing the outstanding issues with multi-homing 675 * socket routing and failover schemes. Refer to comments in 676 * sctp_do_bind(). -daisy 677 */ 678 retval = sctp_del_bind_addr(bp, sa_addr); 679 680 addr_buf += af->sockaddr_len; 681 err_bindx_rem: 682 if (retval < 0) { 683 /* Failed. Add the ones that has been removed back */ 684 if (cnt > 0) 685 sctp_bindx_add(sk, addrs, cnt); 686 return retval; 687 } 688 } 689 690 return retval; 691 } 692 693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 694 * the associations that are part of the endpoint indicating that a list of 695 * local addresses are removed from the endpoint. 696 * 697 * If any of the addresses is already in the bind address list of the 698 * association, we do not send the chunk for that association. But it will not 699 * affect other associations. 700 * 701 * Only sctp_setsockopt_bindx() is supposed to call this function. 702 */ 703 static int sctp_send_asconf_del_ip(struct sock *sk, 704 struct sockaddr *addrs, 705 int addrcnt) 706 { 707 struct net *net = sock_net(sk); 708 struct sctp_sock *sp; 709 struct sctp_endpoint *ep; 710 struct sctp_association *asoc; 711 struct sctp_transport *transport; 712 struct sctp_bind_addr *bp; 713 struct sctp_chunk *chunk; 714 union sctp_addr *laddr; 715 void *addr_buf; 716 struct sctp_af *af; 717 struct sctp_sockaddr_entry *saddr; 718 int i; 719 int retval = 0; 720 int stored = 0; 721 722 chunk = NULL; 723 if (!net->sctp.addip_enable) 724 return retval; 725 726 sp = sctp_sk(sk); 727 ep = sp->ep; 728 729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 730 __func__, sk, addrs, addrcnt); 731 732 list_for_each_entry(asoc, &ep->asocs, asocs) { 733 734 if (!asoc->peer.asconf_capable) 735 continue; 736 737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 738 continue; 739 740 if (!sctp_state(asoc, ESTABLISHED)) 741 continue; 742 743 /* Check if any address in the packed array of addresses is 744 * not present in the bind address list of the association. 745 * If so, do not send the asconf chunk to its peer, but 746 * continue with other associations. 747 */ 748 addr_buf = addrs; 749 for (i = 0; i < addrcnt; i++) { 750 laddr = addr_buf; 751 af = sctp_get_af_specific(laddr->v4.sin_family); 752 if (!af) { 753 retval = -EINVAL; 754 goto out; 755 } 756 757 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 758 break; 759 760 addr_buf += af->sockaddr_len; 761 } 762 if (i < addrcnt) 763 continue; 764 765 /* Find one address in the association's bind address list 766 * that is not in the packed array of addresses. This is to 767 * make sure that we do not delete all the addresses in the 768 * association. 769 */ 770 bp = &asoc->base.bind_addr; 771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 772 addrcnt, sp); 773 if ((laddr == NULL) && (addrcnt == 1)) { 774 if (asoc->asconf_addr_del_pending) 775 continue; 776 asoc->asconf_addr_del_pending = 777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 778 if (asoc->asconf_addr_del_pending == NULL) { 779 retval = -ENOMEM; 780 goto out; 781 } 782 asoc->asconf_addr_del_pending->sa.sa_family = 783 addrs->sa_family; 784 asoc->asconf_addr_del_pending->v4.sin_port = 785 htons(bp->port); 786 if (addrs->sa_family == AF_INET) { 787 struct sockaddr_in *sin; 788 789 sin = (struct sockaddr_in *)addrs; 790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 791 } else if (addrs->sa_family == AF_INET6) { 792 struct sockaddr_in6 *sin6; 793 794 sin6 = (struct sockaddr_in6 *)addrs; 795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 796 } 797 798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 799 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 800 asoc->asconf_addr_del_pending); 801 802 asoc->src_out_of_asoc_ok = 1; 803 stored = 1; 804 goto skip_mkasconf; 805 } 806 807 if (laddr == NULL) 808 return -EINVAL; 809 810 /* We do not need RCU protection throughout this loop 811 * because this is done under a socket lock from the 812 * setsockopt call. 813 */ 814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 815 SCTP_PARAM_DEL_IP); 816 if (!chunk) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 821 skip_mkasconf: 822 /* Reset use_as_src flag for the addresses in the bind address 823 * list that are to be deleted. 824 */ 825 addr_buf = addrs; 826 for (i = 0; i < addrcnt; i++) { 827 laddr = addr_buf; 828 af = sctp_get_af_specific(laddr->v4.sin_family); 829 list_for_each_entry(saddr, &bp->address_list, list) { 830 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 831 saddr->state = SCTP_ADDR_DEL; 832 } 833 addr_buf += af->sockaddr_len; 834 } 835 836 /* Update the route and saddr entries for all the transports 837 * as some of the addresses in the bind address list are 838 * about to be deleted and cannot be used as source addresses. 839 */ 840 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 841 transports) { 842 dst_release(transport->dst); 843 sctp_transport_route(transport, NULL, 844 sctp_sk(asoc->base.sk)); 845 } 846 847 if (stored) 848 /* We don't need to transmit ASCONF */ 849 continue; 850 retval = sctp_send_asconf(asoc, chunk); 851 } 852 out: 853 return retval; 854 } 855 856 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 858 { 859 struct sock *sk = sctp_opt2sk(sp); 860 union sctp_addr *addr; 861 struct sctp_af *af; 862 863 /* It is safe to write port space in caller. */ 864 addr = &addrw->a; 865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 866 af = sctp_get_af_specific(addr->sa.sa_family); 867 if (!af) 868 return -EINVAL; 869 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 870 return -EINVAL; 871 872 if (addrw->state == SCTP_ADDR_NEW) 873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 874 else 875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 876 } 877 878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 879 * 880 * API 8.1 881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 882 * int flags); 883 * 884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 886 * or IPv6 addresses. 887 * 888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 889 * Section 3.1.2 for this usage. 890 * 891 * addrs is a pointer to an array of one or more socket addresses. Each 892 * address is contained in its appropriate structure (i.e. struct 893 * sockaddr_in or struct sockaddr_in6) the family of the address type 894 * must be used to distinguish the address length (note that this 895 * representation is termed a "packed array" of addresses). The caller 896 * specifies the number of addresses in the array with addrcnt. 897 * 898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 899 * -1, and sets errno to the appropriate error code. 900 * 901 * For SCTP, the port given in each socket address must be the same, or 902 * sctp_bindx() will fail, setting errno to EINVAL. 903 * 904 * The flags parameter is formed from the bitwise OR of zero or more of 905 * the following currently defined flags: 906 * 907 * SCTP_BINDX_ADD_ADDR 908 * 909 * SCTP_BINDX_REM_ADDR 910 * 911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 913 * addresses from the association. The two flags are mutually exclusive; 914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 915 * not remove all addresses from an association; sctp_bindx() will 916 * reject such an attempt with EINVAL. 917 * 918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 919 * additional addresses with an endpoint after calling bind(). Or use 920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 921 * socket is associated with so that no new association accepted will be 922 * associated with those addresses. If the endpoint supports dynamic 923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 924 * endpoint to send the appropriate message to the peer to change the 925 * peers address lists. 926 * 927 * Adding and removing addresses from a connected association is 928 * optional functionality. Implementations that do not support this 929 * functionality should return EOPNOTSUPP. 930 * 931 * Basically do nothing but copying the addresses from user to kernel 932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 934 * from userspace. 935 * 936 * We don't use copy_from_user() for optimization: we first do the 937 * sanity checks (buffer size -fast- and access check-healthy 938 * pointer); if all of those succeed, then we can alloc the memory 939 * (expensive operation) needed to copy the data to kernel. Then we do 940 * the copying without checking the user space area 941 * (__copy_from_user()). 942 * 943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 944 * it. 945 * 946 * sk The sk of the socket 947 * addrs The pointer to the addresses in user land 948 * addrssize Size of the addrs buffer 949 * op Operation to perform (add or remove, see the flags of 950 * sctp_bindx) 951 * 952 * Returns 0 if ok, <0 errno code on error. 953 */ 954 static int sctp_setsockopt_bindx(struct sock *sk, 955 struct sockaddr __user *addrs, 956 int addrs_size, int op) 957 { 958 struct sockaddr *kaddrs; 959 int err; 960 int addrcnt = 0; 961 int walk_size = 0; 962 struct sockaddr *sa_addr; 963 void *addr_buf; 964 struct sctp_af *af; 965 966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 967 __func__, sk, addrs, addrs_size, op); 968 969 if (unlikely(addrs_size <= 0)) 970 return -EINVAL; 971 972 /* Check the user passed a healthy pointer. */ 973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 974 return -EFAULT; 975 976 /* Alloc space for the address array in kernel memory. */ 977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 978 if (unlikely(!kaddrs)) 979 return -ENOMEM; 980 981 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 982 kfree(kaddrs); 983 return -EFAULT; 984 } 985 986 /* Walk through the addrs buffer and count the number of addresses. */ 987 addr_buf = kaddrs; 988 while (walk_size < addrs_size) { 989 if (walk_size + sizeof(sa_family_t) > addrs_size) { 990 kfree(kaddrs); 991 return -EINVAL; 992 } 993 994 sa_addr = addr_buf; 995 af = sctp_get_af_specific(sa_addr->sa_family); 996 997 /* If the address family is not supported or if this address 998 * causes the address buffer to overflow return EINVAL. 999 */ 1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1001 kfree(kaddrs); 1002 return -EINVAL; 1003 } 1004 addrcnt++; 1005 addr_buf += af->sockaddr_len; 1006 walk_size += af->sockaddr_len; 1007 } 1008 1009 /* Do the work. */ 1010 switch (op) { 1011 case SCTP_BINDX_ADD_ADDR: 1012 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1013 if (err) 1014 goto out; 1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1016 break; 1017 1018 case SCTP_BINDX_REM_ADDR: 1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1020 if (err) 1021 goto out; 1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1023 break; 1024 1025 default: 1026 err = -EINVAL; 1027 break; 1028 } 1029 1030 out: 1031 kfree(kaddrs); 1032 1033 return err; 1034 } 1035 1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1037 * 1038 * Common routine for handling connect() and sctp_connectx(). 1039 * Connect will come in with just a single address. 1040 */ 1041 static int __sctp_connect(struct sock *sk, 1042 struct sockaddr *kaddrs, 1043 int addrs_size, 1044 sctp_assoc_t *assoc_id) 1045 { 1046 struct net *net = sock_net(sk); 1047 struct sctp_sock *sp; 1048 struct sctp_endpoint *ep; 1049 struct sctp_association *asoc = NULL; 1050 struct sctp_association *asoc2; 1051 struct sctp_transport *transport; 1052 union sctp_addr to; 1053 sctp_scope_t scope; 1054 long timeo; 1055 int err = 0; 1056 int addrcnt = 0; 1057 int walk_size = 0; 1058 union sctp_addr *sa_addr = NULL; 1059 void *addr_buf; 1060 unsigned short port; 1061 unsigned int f_flags = 0; 1062 1063 sp = sctp_sk(sk); 1064 ep = sp->ep; 1065 1066 /* connect() cannot be done on a socket that is already in ESTABLISHED 1067 * state - UDP-style peeled off socket or a TCP-style socket that 1068 * is already connected. 1069 * It cannot be done even on a TCP-style listening socket. 1070 */ 1071 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1073 err = -EISCONN; 1074 goto out_free; 1075 } 1076 1077 /* Walk through the addrs buffer and count the number of addresses. */ 1078 addr_buf = kaddrs; 1079 while (walk_size < addrs_size) { 1080 struct sctp_af *af; 1081 1082 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1083 err = -EINVAL; 1084 goto out_free; 1085 } 1086 1087 sa_addr = addr_buf; 1088 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1089 1090 /* If the address family is not supported or if this address 1091 * causes the address buffer to overflow return EINVAL. 1092 */ 1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1094 err = -EINVAL; 1095 goto out_free; 1096 } 1097 1098 port = ntohs(sa_addr->v4.sin_port); 1099 1100 /* Save current address so we can work with it */ 1101 memcpy(&to, sa_addr, af->sockaddr_len); 1102 1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1104 if (err) 1105 goto out_free; 1106 1107 /* Make sure the destination port is correctly set 1108 * in all addresses. 1109 */ 1110 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1111 err = -EINVAL; 1112 goto out_free; 1113 } 1114 1115 /* Check if there already is a matching association on the 1116 * endpoint (other than the one created here). 1117 */ 1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1119 if (asoc2 && asoc2 != asoc) { 1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1121 err = -EISCONN; 1122 else 1123 err = -EALREADY; 1124 goto out_free; 1125 } 1126 1127 /* If we could not find a matching association on the endpoint, 1128 * make sure that there is no peeled-off association matching 1129 * the peer address even on another socket. 1130 */ 1131 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1132 err = -EADDRNOTAVAIL; 1133 goto out_free; 1134 } 1135 1136 if (!asoc) { 1137 /* If a bind() or sctp_bindx() is not called prior to 1138 * an sctp_connectx() call, the system picks an 1139 * ephemeral port and will choose an address set 1140 * equivalent to binding with a wildcard address. 1141 */ 1142 if (!ep->base.bind_addr.port) { 1143 if (sctp_autobind(sk)) { 1144 err = -EAGAIN; 1145 goto out_free; 1146 } 1147 } else { 1148 /* 1149 * If an unprivileged user inherits a 1-many 1150 * style socket with open associations on a 1151 * privileged port, it MAY be permitted to 1152 * accept new associations, but it SHOULD NOT 1153 * be permitted to open new associations. 1154 */ 1155 if (ep->base.bind_addr.port < PROT_SOCK && 1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1157 err = -EACCES; 1158 goto out_free; 1159 } 1160 } 1161 1162 scope = sctp_scope(&to); 1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1164 if (!asoc) { 1165 err = -ENOMEM; 1166 goto out_free; 1167 } 1168 1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1170 GFP_KERNEL); 1171 if (err < 0) { 1172 goto out_free; 1173 } 1174 1175 } 1176 1177 /* Prime the peer's transport structures. */ 1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1179 SCTP_UNKNOWN); 1180 if (!transport) { 1181 err = -ENOMEM; 1182 goto out_free; 1183 } 1184 1185 addrcnt++; 1186 addr_buf += af->sockaddr_len; 1187 walk_size += af->sockaddr_len; 1188 } 1189 1190 /* In case the user of sctp_connectx() wants an association 1191 * id back, assign one now. 1192 */ 1193 if (assoc_id) { 1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1195 if (err < 0) 1196 goto out_free; 1197 } 1198 1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1200 if (err < 0) { 1201 goto out_free; 1202 } 1203 1204 /* Initialize sk's dport and daddr for getpeername() */ 1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1206 sp->pf->to_sk_daddr(sa_addr, sk); 1207 sk->sk_err = 0; 1208 1209 /* in-kernel sockets don't generally have a file allocated to them 1210 * if all they do is call sock_create_kern(). 1211 */ 1212 if (sk->sk_socket->file) 1213 f_flags = sk->sk_socket->file->f_flags; 1214 1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1216 1217 err = sctp_wait_for_connect(asoc, &timeo); 1218 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1219 *assoc_id = asoc->assoc_id; 1220 1221 /* Don't free association on exit. */ 1222 asoc = NULL; 1223 1224 out_free: 1225 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1226 __func__, asoc, kaddrs, err); 1227 1228 if (asoc) { 1229 /* sctp_primitive_ASSOCIATE may have added this association 1230 * To the hash table, try to unhash it, just in case, its a noop 1231 * if it wasn't hashed so we're safe 1232 */ 1233 sctp_association_free(asoc); 1234 } 1235 return err; 1236 } 1237 1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1239 * 1240 * API 8.9 1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1242 * sctp_assoc_t *asoc); 1243 * 1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1246 * or IPv6 addresses. 1247 * 1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1249 * Section 3.1.2 for this usage. 1250 * 1251 * addrs is a pointer to an array of one or more socket addresses. Each 1252 * address is contained in its appropriate structure (i.e. struct 1253 * sockaddr_in or struct sockaddr_in6) the family of the address type 1254 * must be used to distengish the address length (note that this 1255 * representation is termed a "packed array" of addresses). The caller 1256 * specifies the number of addresses in the array with addrcnt. 1257 * 1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1259 * the association id of the new association. On failure, sctp_connectx() 1260 * returns -1, and sets errno to the appropriate error code. The assoc_id 1261 * is not touched by the kernel. 1262 * 1263 * For SCTP, the port given in each socket address must be the same, or 1264 * sctp_connectx() will fail, setting errno to EINVAL. 1265 * 1266 * An application can use sctp_connectx to initiate an association with 1267 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1268 * allows a caller to specify multiple addresses at which a peer can be 1269 * reached. The way the SCTP stack uses the list of addresses to set up 1270 * the association is implementation dependent. This function only 1271 * specifies that the stack will try to make use of all the addresses in 1272 * the list when needed. 1273 * 1274 * Note that the list of addresses passed in is only used for setting up 1275 * the association. It does not necessarily equal the set of addresses 1276 * the peer uses for the resulting association. If the caller wants to 1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1278 * retrieve them after the association has been set up. 1279 * 1280 * Basically do nothing but copying the addresses from user to kernel 1281 * land and invoking either sctp_connectx(). This is used for tunneling 1282 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1283 * 1284 * We don't use copy_from_user() for optimization: we first do the 1285 * sanity checks (buffer size -fast- and access check-healthy 1286 * pointer); if all of those succeed, then we can alloc the memory 1287 * (expensive operation) needed to copy the data to kernel. Then we do 1288 * the copying without checking the user space area 1289 * (__copy_from_user()). 1290 * 1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1292 * it. 1293 * 1294 * sk The sk of the socket 1295 * addrs The pointer to the addresses in user land 1296 * addrssize Size of the addrs buffer 1297 * 1298 * Returns >=0 if ok, <0 errno code on error. 1299 */ 1300 static int __sctp_setsockopt_connectx(struct sock *sk, 1301 struct sockaddr __user *addrs, 1302 int addrs_size, 1303 sctp_assoc_t *assoc_id) 1304 { 1305 struct sockaddr *kaddrs; 1306 gfp_t gfp = GFP_KERNEL; 1307 int err = 0; 1308 1309 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1310 __func__, sk, addrs, addrs_size); 1311 1312 if (unlikely(addrs_size <= 0)) 1313 return -EINVAL; 1314 1315 /* Check the user passed a healthy pointer. */ 1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1317 return -EFAULT; 1318 1319 /* Alloc space for the address array in kernel memory. */ 1320 if (sk->sk_socket->file) 1321 gfp = GFP_USER | __GFP_NOWARN; 1322 kaddrs = kmalloc(addrs_size, gfp); 1323 if (unlikely(!kaddrs)) 1324 return -ENOMEM; 1325 1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1327 err = -EFAULT; 1328 } else { 1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1330 } 1331 1332 kfree(kaddrs); 1333 1334 return err; 1335 } 1336 1337 /* 1338 * This is an older interface. It's kept for backward compatibility 1339 * to the option that doesn't provide association id. 1340 */ 1341 static int sctp_setsockopt_connectx_old(struct sock *sk, 1342 struct sockaddr __user *addrs, 1343 int addrs_size) 1344 { 1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1346 } 1347 1348 /* 1349 * New interface for the API. The since the API is done with a socket 1350 * option, to make it simple we feed back the association id is as a return 1351 * indication to the call. Error is always negative and association id is 1352 * always positive. 1353 */ 1354 static int sctp_setsockopt_connectx(struct sock *sk, 1355 struct sockaddr __user *addrs, 1356 int addrs_size) 1357 { 1358 sctp_assoc_t assoc_id = 0; 1359 int err = 0; 1360 1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1362 1363 if (err) 1364 return err; 1365 else 1366 return assoc_id; 1367 } 1368 1369 /* 1370 * New (hopefully final) interface for the API. 1371 * We use the sctp_getaddrs_old structure so that use-space library 1372 * can avoid any unnecessary allocations. The only different part 1373 * is that we store the actual length of the address buffer into the 1374 * addrs_num structure member. That way we can re-use the existing 1375 * code. 1376 */ 1377 #ifdef CONFIG_COMPAT 1378 struct compat_sctp_getaddrs_old { 1379 sctp_assoc_t assoc_id; 1380 s32 addr_num; 1381 compat_uptr_t addrs; /* struct sockaddr * */ 1382 }; 1383 #endif 1384 1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1386 char __user *optval, 1387 int __user *optlen) 1388 { 1389 struct sctp_getaddrs_old param; 1390 sctp_assoc_t assoc_id = 0; 1391 int err = 0; 1392 1393 #ifdef CONFIG_COMPAT 1394 if (in_compat_syscall()) { 1395 struct compat_sctp_getaddrs_old param32; 1396 1397 if (len < sizeof(param32)) 1398 return -EINVAL; 1399 if (copy_from_user(¶m32, optval, sizeof(param32))) 1400 return -EFAULT; 1401 1402 param.assoc_id = param32.assoc_id; 1403 param.addr_num = param32.addr_num; 1404 param.addrs = compat_ptr(param32.addrs); 1405 } else 1406 #endif 1407 { 1408 if (len < sizeof(param)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m, optval, sizeof(param))) 1411 return -EFAULT; 1412 } 1413 1414 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1415 param.addrs, param.addr_num, 1416 &assoc_id); 1417 if (err == 0 || err == -EINPROGRESS) { 1418 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1419 return -EFAULT; 1420 if (put_user(sizeof(assoc_id), optlen)) 1421 return -EFAULT; 1422 } 1423 1424 return err; 1425 } 1426 1427 /* API 3.1.4 close() - UDP Style Syntax 1428 * Applications use close() to perform graceful shutdown (as described in 1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1430 * by a UDP-style socket. 1431 * 1432 * The syntax is 1433 * 1434 * ret = close(int sd); 1435 * 1436 * sd - the socket descriptor of the associations to be closed. 1437 * 1438 * To gracefully shutdown a specific association represented by the 1439 * UDP-style socket, an application should use the sendmsg() call, 1440 * passing no user data, but including the appropriate flag in the 1441 * ancillary data (see Section xxxx). 1442 * 1443 * If sd in the close() call is a branched-off socket representing only 1444 * one association, the shutdown is performed on that association only. 1445 * 1446 * 4.1.6 close() - TCP Style Syntax 1447 * 1448 * Applications use close() to gracefully close down an association. 1449 * 1450 * The syntax is: 1451 * 1452 * int close(int sd); 1453 * 1454 * sd - the socket descriptor of the association to be closed. 1455 * 1456 * After an application calls close() on a socket descriptor, no further 1457 * socket operations will succeed on that descriptor. 1458 * 1459 * API 7.1.4 SO_LINGER 1460 * 1461 * An application using the TCP-style socket can use this option to 1462 * perform the SCTP ABORT primitive. The linger option structure is: 1463 * 1464 * struct linger { 1465 * int l_onoff; // option on/off 1466 * int l_linger; // linger time 1467 * }; 1468 * 1469 * To enable the option, set l_onoff to 1. If the l_linger value is set 1470 * to 0, calling close() is the same as the ABORT primitive. If the 1471 * value is set to a negative value, the setsockopt() call will return 1472 * an error. If the value is set to a positive value linger_time, the 1473 * close() can be blocked for at most linger_time ms. If the graceful 1474 * shutdown phase does not finish during this period, close() will 1475 * return but the graceful shutdown phase continues in the system. 1476 */ 1477 static void sctp_close(struct sock *sk, long timeout) 1478 { 1479 struct net *net = sock_net(sk); 1480 struct sctp_endpoint *ep; 1481 struct sctp_association *asoc; 1482 struct list_head *pos, *temp; 1483 unsigned int data_was_unread; 1484 1485 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1486 1487 lock_sock(sk); 1488 sk->sk_shutdown = SHUTDOWN_MASK; 1489 sk->sk_state = SCTP_SS_CLOSING; 1490 1491 ep = sctp_sk(sk)->ep; 1492 1493 /* Clean up any skbs sitting on the receive queue. */ 1494 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1495 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1496 1497 /* Walk all associations on an endpoint. */ 1498 list_for_each_safe(pos, temp, &ep->asocs) { 1499 asoc = list_entry(pos, struct sctp_association, asocs); 1500 1501 if (sctp_style(sk, TCP)) { 1502 /* A closed association can still be in the list if 1503 * it belongs to a TCP-style listening socket that is 1504 * not yet accepted. If so, free it. If not, send an 1505 * ABORT or SHUTDOWN based on the linger options. 1506 */ 1507 if (sctp_state(asoc, CLOSED)) { 1508 sctp_association_free(asoc); 1509 continue; 1510 } 1511 } 1512 1513 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1514 !skb_queue_empty(&asoc->ulpq.reasm) || 1515 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1516 struct sctp_chunk *chunk; 1517 1518 chunk = sctp_make_abort_user(asoc, NULL, 0); 1519 sctp_primitive_ABORT(net, asoc, chunk); 1520 } else 1521 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1522 } 1523 1524 /* On a TCP-style socket, block for at most linger_time if set. */ 1525 if (sctp_style(sk, TCP) && timeout) 1526 sctp_wait_for_close(sk, timeout); 1527 1528 /* This will run the backlog queue. */ 1529 release_sock(sk); 1530 1531 /* Supposedly, no process has access to the socket, but 1532 * the net layers still may. 1533 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1534 * held and that should be grabbed before socket lock. 1535 */ 1536 spin_lock_bh(&net->sctp.addr_wq_lock); 1537 bh_lock_sock(sk); 1538 1539 /* Hold the sock, since sk_common_release() will put sock_put() 1540 * and we have just a little more cleanup. 1541 */ 1542 sock_hold(sk); 1543 sk_common_release(sk); 1544 1545 bh_unlock_sock(sk); 1546 spin_unlock_bh(&net->sctp.addr_wq_lock); 1547 1548 sock_put(sk); 1549 1550 SCTP_DBG_OBJCNT_DEC(sock); 1551 } 1552 1553 /* Handle EPIPE error. */ 1554 static int sctp_error(struct sock *sk, int flags, int err) 1555 { 1556 if (err == -EPIPE) 1557 err = sock_error(sk) ? : -EPIPE; 1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1559 send_sig(SIGPIPE, current, 0); 1560 return err; 1561 } 1562 1563 /* API 3.1.3 sendmsg() - UDP Style Syntax 1564 * 1565 * An application uses sendmsg() and recvmsg() calls to transmit data to 1566 * and receive data from its peer. 1567 * 1568 * ssize_t sendmsg(int socket, const struct msghdr *message, 1569 * int flags); 1570 * 1571 * socket - the socket descriptor of the endpoint. 1572 * message - pointer to the msghdr structure which contains a single 1573 * user message and possibly some ancillary data. 1574 * 1575 * See Section 5 for complete description of the data 1576 * structures. 1577 * 1578 * flags - flags sent or received with the user message, see Section 1579 * 5 for complete description of the flags. 1580 * 1581 * Note: This function could use a rewrite especially when explicit 1582 * connect support comes in. 1583 */ 1584 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1585 1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1587 1588 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1589 { 1590 struct net *net = sock_net(sk); 1591 struct sctp_sock *sp; 1592 struct sctp_endpoint *ep; 1593 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1594 struct sctp_transport *transport, *chunk_tp; 1595 struct sctp_chunk *chunk; 1596 union sctp_addr to; 1597 struct sockaddr *msg_name = NULL; 1598 struct sctp_sndrcvinfo default_sinfo; 1599 struct sctp_sndrcvinfo *sinfo; 1600 struct sctp_initmsg *sinit; 1601 sctp_assoc_t associd = 0; 1602 sctp_cmsgs_t cmsgs = { NULL }; 1603 sctp_scope_t scope; 1604 bool fill_sinfo_ttl = false, wait_connect = false; 1605 struct sctp_datamsg *datamsg; 1606 int msg_flags = msg->msg_flags; 1607 __u16 sinfo_flags = 0; 1608 long timeo; 1609 int err; 1610 1611 err = 0; 1612 sp = sctp_sk(sk); 1613 ep = sp->ep; 1614 1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1616 msg, msg_len, ep); 1617 1618 /* We cannot send a message over a TCP-style listening socket. */ 1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1620 err = -EPIPE; 1621 goto out_nounlock; 1622 } 1623 1624 /* Parse out the SCTP CMSGs. */ 1625 err = sctp_msghdr_parse(msg, &cmsgs); 1626 if (err) { 1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1628 goto out_nounlock; 1629 } 1630 1631 /* Fetch the destination address for this packet. This 1632 * address only selects the association--it is not necessarily 1633 * the address we will send to. 1634 * For a peeled-off socket, msg_name is ignored. 1635 */ 1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1637 int msg_namelen = msg->msg_namelen; 1638 1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1640 msg_namelen); 1641 if (err) 1642 return err; 1643 1644 if (msg_namelen > sizeof(to)) 1645 msg_namelen = sizeof(to); 1646 memcpy(&to, msg->msg_name, msg_namelen); 1647 msg_name = msg->msg_name; 1648 } 1649 1650 sinit = cmsgs.init; 1651 if (cmsgs.sinfo != NULL) { 1652 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1653 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1654 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1655 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1656 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1657 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1658 1659 sinfo = &default_sinfo; 1660 fill_sinfo_ttl = true; 1661 } else { 1662 sinfo = cmsgs.srinfo; 1663 } 1664 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1665 if (sinfo) { 1666 sinfo_flags = sinfo->sinfo_flags; 1667 associd = sinfo->sinfo_assoc_id; 1668 } 1669 1670 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1671 msg_len, sinfo_flags); 1672 1673 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1674 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1675 err = -EINVAL; 1676 goto out_nounlock; 1677 } 1678 1679 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1680 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1681 * If SCTP_ABORT is set, the message length could be non zero with 1682 * the msg_iov set to the user abort reason. 1683 */ 1684 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1685 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1686 err = -EINVAL; 1687 goto out_nounlock; 1688 } 1689 1690 /* If SCTP_ADDR_OVER is set, there must be an address 1691 * specified in msg_name. 1692 */ 1693 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1694 err = -EINVAL; 1695 goto out_nounlock; 1696 } 1697 1698 transport = NULL; 1699 1700 pr_debug("%s: about to look up association\n", __func__); 1701 1702 lock_sock(sk); 1703 1704 /* If a msg_name has been specified, assume this is to be used. */ 1705 if (msg_name) { 1706 /* Look for a matching association on the endpoint. */ 1707 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1708 1709 /* If we could not find a matching association on the 1710 * endpoint, make sure that it is not a TCP-style 1711 * socket that already has an association or there is 1712 * no peeled-off association on another socket. 1713 */ 1714 if (!asoc && 1715 ((sctp_style(sk, TCP) && 1716 (sctp_sstate(sk, ESTABLISHED) || 1717 sctp_sstate(sk, CLOSING))) || 1718 sctp_endpoint_is_peeled_off(ep, &to))) { 1719 err = -EADDRNOTAVAIL; 1720 goto out_unlock; 1721 } 1722 } else { 1723 asoc = sctp_id2assoc(sk, associd); 1724 if (!asoc) { 1725 err = -EPIPE; 1726 goto out_unlock; 1727 } 1728 } 1729 1730 if (asoc) { 1731 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1732 1733 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1734 * socket that has an association in CLOSED state. This can 1735 * happen when an accepted socket has an association that is 1736 * already CLOSED. 1737 */ 1738 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1739 err = -EPIPE; 1740 goto out_unlock; 1741 } 1742 1743 if (sinfo_flags & SCTP_EOF) { 1744 pr_debug("%s: shutting down association:%p\n", 1745 __func__, asoc); 1746 1747 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1748 err = 0; 1749 goto out_unlock; 1750 } 1751 if (sinfo_flags & SCTP_ABORT) { 1752 1753 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1754 if (!chunk) { 1755 err = -ENOMEM; 1756 goto out_unlock; 1757 } 1758 1759 pr_debug("%s: aborting association:%p\n", 1760 __func__, asoc); 1761 1762 sctp_primitive_ABORT(net, asoc, chunk); 1763 err = 0; 1764 goto out_unlock; 1765 } 1766 } 1767 1768 /* Do we need to create the association? */ 1769 if (!asoc) { 1770 pr_debug("%s: there is no association yet\n", __func__); 1771 1772 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1773 err = -EINVAL; 1774 goto out_unlock; 1775 } 1776 1777 /* Check for invalid stream against the stream counts, 1778 * either the default or the user specified stream counts. 1779 */ 1780 if (sinfo) { 1781 if (!sinit || !sinit->sinit_num_ostreams) { 1782 /* Check against the defaults. */ 1783 if (sinfo->sinfo_stream >= 1784 sp->initmsg.sinit_num_ostreams) { 1785 err = -EINVAL; 1786 goto out_unlock; 1787 } 1788 } else { 1789 /* Check against the requested. */ 1790 if (sinfo->sinfo_stream >= 1791 sinit->sinit_num_ostreams) { 1792 err = -EINVAL; 1793 goto out_unlock; 1794 } 1795 } 1796 } 1797 1798 /* 1799 * API 3.1.2 bind() - UDP Style Syntax 1800 * If a bind() or sctp_bindx() is not called prior to a 1801 * sendmsg() call that initiates a new association, the 1802 * system picks an ephemeral port and will choose an address 1803 * set equivalent to binding with a wildcard address. 1804 */ 1805 if (!ep->base.bind_addr.port) { 1806 if (sctp_autobind(sk)) { 1807 err = -EAGAIN; 1808 goto out_unlock; 1809 } 1810 } else { 1811 /* 1812 * If an unprivileged user inherits a one-to-many 1813 * style socket with open associations on a privileged 1814 * port, it MAY be permitted to accept new associations, 1815 * but it SHOULD NOT be permitted to open new 1816 * associations. 1817 */ 1818 if (ep->base.bind_addr.port < PROT_SOCK && 1819 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1820 err = -EACCES; 1821 goto out_unlock; 1822 } 1823 } 1824 1825 scope = sctp_scope(&to); 1826 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1827 if (!new_asoc) { 1828 err = -ENOMEM; 1829 goto out_unlock; 1830 } 1831 asoc = new_asoc; 1832 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1833 if (err < 0) { 1834 err = -ENOMEM; 1835 goto out_free; 1836 } 1837 1838 /* If the SCTP_INIT ancillary data is specified, set all 1839 * the association init values accordingly. 1840 */ 1841 if (sinit) { 1842 if (sinit->sinit_num_ostreams) { 1843 asoc->c.sinit_num_ostreams = 1844 sinit->sinit_num_ostreams; 1845 } 1846 if (sinit->sinit_max_instreams) { 1847 asoc->c.sinit_max_instreams = 1848 sinit->sinit_max_instreams; 1849 } 1850 if (sinit->sinit_max_attempts) { 1851 asoc->max_init_attempts 1852 = sinit->sinit_max_attempts; 1853 } 1854 if (sinit->sinit_max_init_timeo) { 1855 asoc->max_init_timeo = 1856 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1857 } 1858 } 1859 1860 /* Prime the peer's transport structures. */ 1861 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1862 if (!transport) { 1863 err = -ENOMEM; 1864 goto out_free; 1865 } 1866 } 1867 1868 /* ASSERT: we have a valid association at this point. */ 1869 pr_debug("%s: we have a valid association\n", __func__); 1870 1871 if (!sinfo) { 1872 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1873 * one with some defaults. 1874 */ 1875 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1876 default_sinfo.sinfo_stream = asoc->default_stream; 1877 default_sinfo.sinfo_flags = asoc->default_flags; 1878 default_sinfo.sinfo_ppid = asoc->default_ppid; 1879 default_sinfo.sinfo_context = asoc->default_context; 1880 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1881 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1882 1883 sinfo = &default_sinfo; 1884 } else if (fill_sinfo_ttl) { 1885 /* In case SNDINFO was specified, we still need to fill 1886 * it with a default ttl from the assoc here. 1887 */ 1888 sinfo->sinfo_timetolive = asoc->default_timetolive; 1889 } 1890 1891 /* API 7.1.7, the sndbuf size per association bounds the 1892 * maximum size of data that can be sent in a single send call. 1893 */ 1894 if (msg_len > sk->sk_sndbuf) { 1895 err = -EMSGSIZE; 1896 goto out_free; 1897 } 1898 1899 if (asoc->pmtu_pending) 1900 sctp_assoc_pending_pmtu(sk, asoc); 1901 1902 /* If fragmentation is disabled and the message length exceeds the 1903 * association fragmentation point, return EMSGSIZE. The I-D 1904 * does not specify what this error is, but this looks like 1905 * a great fit. 1906 */ 1907 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1908 err = -EMSGSIZE; 1909 goto out_free; 1910 } 1911 1912 /* Check for invalid stream. */ 1913 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1914 err = -EINVAL; 1915 goto out_free; 1916 } 1917 1918 if (sctp_wspace(asoc) < msg_len) 1919 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1920 1921 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1922 if (!sctp_wspace(asoc)) { 1923 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1924 if (err) 1925 goto out_free; 1926 } 1927 1928 /* If an address is passed with the sendto/sendmsg call, it is used 1929 * to override the primary destination address in the TCP model, or 1930 * when SCTP_ADDR_OVER flag is set in the UDP model. 1931 */ 1932 if ((sctp_style(sk, TCP) && msg_name) || 1933 (sinfo_flags & SCTP_ADDR_OVER)) { 1934 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1935 if (!chunk_tp) { 1936 err = -EINVAL; 1937 goto out_free; 1938 } 1939 } else 1940 chunk_tp = NULL; 1941 1942 /* Auto-connect, if we aren't connected already. */ 1943 if (sctp_state(asoc, CLOSED)) { 1944 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1945 if (err < 0) 1946 goto out_free; 1947 1948 wait_connect = true; 1949 pr_debug("%s: we associated primitively\n", __func__); 1950 } 1951 1952 /* Break the message into multiple chunks of maximum size. */ 1953 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1954 if (IS_ERR(datamsg)) { 1955 err = PTR_ERR(datamsg); 1956 goto out_free; 1957 } 1958 1959 /* Now send the (possibly) fragmented message. */ 1960 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1961 /* Do accounting for the write space. */ 1962 sctp_set_owner_w(chunk); 1963 1964 chunk->transport = chunk_tp; 1965 } 1966 1967 /* Send it to the lower layers. Note: all chunks 1968 * must either fail or succeed. The lower layer 1969 * works that way today. Keep it that way or this 1970 * breaks. 1971 */ 1972 err = sctp_primitive_SEND(net, asoc, datamsg); 1973 sctp_datamsg_put(datamsg); 1974 /* Did the lower layer accept the chunk? */ 1975 if (err) 1976 goto out_free; 1977 1978 pr_debug("%s: we sent primitively\n", __func__); 1979 1980 err = msg_len; 1981 1982 if (unlikely(wait_connect)) { 1983 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1984 sctp_wait_for_connect(asoc, &timeo); 1985 } 1986 1987 /* If we are already past ASSOCIATE, the lower 1988 * layers are responsible for association cleanup. 1989 */ 1990 goto out_unlock; 1991 1992 out_free: 1993 if (new_asoc) 1994 sctp_association_free(asoc); 1995 out_unlock: 1996 release_sock(sk); 1997 1998 out_nounlock: 1999 return sctp_error(sk, msg_flags, err); 2000 2001 #if 0 2002 do_sock_err: 2003 if (msg_len) 2004 err = msg_len; 2005 else 2006 err = sock_error(sk); 2007 goto out; 2008 2009 do_interrupted: 2010 if (msg_len) 2011 err = msg_len; 2012 goto out; 2013 #endif /* 0 */ 2014 } 2015 2016 /* This is an extended version of skb_pull() that removes the data from the 2017 * start of a skb even when data is spread across the list of skb's in the 2018 * frag_list. len specifies the total amount of data that needs to be removed. 2019 * when 'len' bytes could be removed from the skb, it returns 0. 2020 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2021 * could not be removed. 2022 */ 2023 static int sctp_skb_pull(struct sk_buff *skb, int len) 2024 { 2025 struct sk_buff *list; 2026 int skb_len = skb_headlen(skb); 2027 int rlen; 2028 2029 if (len <= skb_len) { 2030 __skb_pull(skb, len); 2031 return 0; 2032 } 2033 len -= skb_len; 2034 __skb_pull(skb, skb_len); 2035 2036 skb_walk_frags(skb, list) { 2037 rlen = sctp_skb_pull(list, len); 2038 skb->len -= (len-rlen); 2039 skb->data_len -= (len-rlen); 2040 2041 if (!rlen) 2042 return 0; 2043 2044 len = rlen; 2045 } 2046 2047 return len; 2048 } 2049 2050 /* API 3.1.3 recvmsg() - UDP Style Syntax 2051 * 2052 * ssize_t recvmsg(int socket, struct msghdr *message, 2053 * int flags); 2054 * 2055 * socket - the socket descriptor of the endpoint. 2056 * message - pointer to the msghdr structure which contains a single 2057 * user message and possibly some ancillary data. 2058 * 2059 * See Section 5 for complete description of the data 2060 * structures. 2061 * 2062 * flags - flags sent or received with the user message, see Section 2063 * 5 for complete description of the flags. 2064 */ 2065 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2066 int noblock, int flags, int *addr_len) 2067 { 2068 struct sctp_ulpevent *event = NULL; 2069 struct sctp_sock *sp = sctp_sk(sk); 2070 struct sk_buff *skb, *head_skb; 2071 int copied; 2072 int err = 0; 2073 int skb_len; 2074 2075 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2076 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2077 addr_len); 2078 2079 lock_sock(sk); 2080 2081 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2082 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2083 err = -ENOTCONN; 2084 goto out; 2085 } 2086 2087 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2088 if (!skb) 2089 goto out; 2090 2091 /* Get the total length of the skb including any skb's in the 2092 * frag_list. 2093 */ 2094 skb_len = skb->len; 2095 2096 copied = skb_len; 2097 if (copied > len) 2098 copied = len; 2099 2100 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2101 2102 event = sctp_skb2event(skb); 2103 2104 if (err) 2105 goto out_free; 2106 2107 if (event->chunk && event->chunk->head_skb) 2108 head_skb = event->chunk->head_skb; 2109 else 2110 head_skb = skb; 2111 sock_recv_ts_and_drops(msg, sk, head_skb); 2112 if (sctp_ulpevent_is_notification(event)) { 2113 msg->msg_flags |= MSG_NOTIFICATION; 2114 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2115 } else { 2116 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2117 } 2118 2119 /* Check if we allow SCTP_NXTINFO. */ 2120 if (sp->recvnxtinfo) 2121 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2122 /* Check if we allow SCTP_RCVINFO. */ 2123 if (sp->recvrcvinfo) 2124 sctp_ulpevent_read_rcvinfo(event, msg); 2125 /* Check if we allow SCTP_SNDRCVINFO. */ 2126 if (sp->subscribe.sctp_data_io_event) 2127 sctp_ulpevent_read_sndrcvinfo(event, msg); 2128 2129 err = copied; 2130 2131 /* If skb's length exceeds the user's buffer, update the skb and 2132 * push it back to the receive_queue so that the next call to 2133 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2134 */ 2135 if (skb_len > copied) { 2136 msg->msg_flags &= ~MSG_EOR; 2137 if (flags & MSG_PEEK) 2138 goto out_free; 2139 sctp_skb_pull(skb, copied); 2140 skb_queue_head(&sk->sk_receive_queue, skb); 2141 2142 /* When only partial message is copied to the user, increase 2143 * rwnd by that amount. If all the data in the skb is read, 2144 * rwnd is updated when the event is freed. 2145 */ 2146 if (!sctp_ulpevent_is_notification(event)) 2147 sctp_assoc_rwnd_increase(event->asoc, copied); 2148 goto out; 2149 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2150 (event->msg_flags & MSG_EOR)) 2151 msg->msg_flags |= MSG_EOR; 2152 else 2153 msg->msg_flags &= ~MSG_EOR; 2154 2155 out_free: 2156 if (flags & MSG_PEEK) { 2157 /* Release the skb reference acquired after peeking the skb in 2158 * sctp_skb_recv_datagram(). 2159 */ 2160 kfree_skb(skb); 2161 } else { 2162 /* Free the event which includes releasing the reference to 2163 * the owner of the skb, freeing the skb and updating the 2164 * rwnd. 2165 */ 2166 sctp_ulpevent_free(event); 2167 } 2168 out: 2169 release_sock(sk); 2170 return err; 2171 } 2172 2173 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2174 * 2175 * This option is a on/off flag. If enabled no SCTP message 2176 * fragmentation will be performed. Instead if a message being sent 2177 * exceeds the current PMTU size, the message will NOT be sent and 2178 * instead a error will be indicated to the user. 2179 */ 2180 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2181 char __user *optval, 2182 unsigned int optlen) 2183 { 2184 int val; 2185 2186 if (optlen < sizeof(int)) 2187 return -EINVAL; 2188 2189 if (get_user(val, (int __user *)optval)) 2190 return -EFAULT; 2191 2192 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2193 2194 return 0; 2195 } 2196 2197 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2198 unsigned int optlen) 2199 { 2200 struct sctp_association *asoc; 2201 struct sctp_ulpevent *event; 2202 2203 if (optlen > sizeof(struct sctp_event_subscribe)) 2204 return -EINVAL; 2205 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2206 return -EFAULT; 2207 2208 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2209 * if there is no data to be sent or retransmit, the stack will 2210 * immediately send up this notification. 2211 */ 2212 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2213 &sctp_sk(sk)->subscribe)) { 2214 asoc = sctp_id2assoc(sk, 0); 2215 2216 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2217 event = sctp_ulpevent_make_sender_dry_event(asoc, 2218 GFP_ATOMIC); 2219 if (!event) 2220 return -ENOMEM; 2221 2222 sctp_ulpq_tail_event(&asoc->ulpq, event); 2223 } 2224 } 2225 2226 return 0; 2227 } 2228 2229 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2230 * 2231 * This socket option is applicable to the UDP-style socket only. When 2232 * set it will cause associations that are idle for more than the 2233 * specified number of seconds to automatically close. An association 2234 * being idle is defined an association that has NOT sent or received 2235 * user data. The special value of '0' indicates that no automatic 2236 * close of any associations should be performed. The option expects an 2237 * integer defining the number of seconds of idle time before an 2238 * association is closed. 2239 */ 2240 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2241 unsigned int optlen) 2242 { 2243 struct sctp_sock *sp = sctp_sk(sk); 2244 struct net *net = sock_net(sk); 2245 2246 /* Applicable to UDP-style socket only */ 2247 if (sctp_style(sk, TCP)) 2248 return -EOPNOTSUPP; 2249 if (optlen != sizeof(int)) 2250 return -EINVAL; 2251 if (copy_from_user(&sp->autoclose, optval, optlen)) 2252 return -EFAULT; 2253 2254 if (sp->autoclose > net->sctp.max_autoclose) 2255 sp->autoclose = net->sctp.max_autoclose; 2256 2257 return 0; 2258 } 2259 2260 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2261 * 2262 * Applications can enable or disable heartbeats for any peer address of 2263 * an association, modify an address's heartbeat interval, force a 2264 * heartbeat to be sent immediately, and adjust the address's maximum 2265 * number of retransmissions sent before an address is considered 2266 * unreachable. The following structure is used to access and modify an 2267 * address's parameters: 2268 * 2269 * struct sctp_paddrparams { 2270 * sctp_assoc_t spp_assoc_id; 2271 * struct sockaddr_storage spp_address; 2272 * uint32_t spp_hbinterval; 2273 * uint16_t spp_pathmaxrxt; 2274 * uint32_t spp_pathmtu; 2275 * uint32_t spp_sackdelay; 2276 * uint32_t spp_flags; 2277 * }; 2278 * 2279 * spp_assoc_id - (one-to-many style socket) This is filled in the 2280 * application, and identifies the association for 2281 * this query. 2282 * spp_address - This specifies which address is of interest. 2283 * spp_hbinterval - This contains the value of the heartbeat interval, 2284 * in milliseconds. If a value of zero 2285 * is present in this field then no changes are to 2286 * be made to this parameter. 2287 * spp_pathmaxrxt - This contains the maximum number of 2288 * retransmissions before this address shall be 2289 * considered unreachable. If a value of zero 2290 * is present in this field then no changes are to 2291 * be made to this parameter. 2292 * spp_pathmtu - When Path MTU discovery is disabled the value 2293 * specified here will be the "fixed" path mtu. 2294 * Note that if the spp_address field is empty 2295 * then all associations on this address will 2296 * have this fixed path mtu set upon them. 2297 * 2298 * spp_sackdelay - When delayed sack is enabled, this value specifies 2299 * the number of milliseconds that sacks will be delayed 2300 * for. This value will apply to all addresses of an 2301 * association if the spp_address field is empty. Note 2302 * also, that if delayed sack is enabled and this 2303 * value is set to 0, no change is made to the last 2304 * recorded delayed sack timer value. 2305 * 2306 * spp_flags - These flags are used to control various features 2307 * on an association. The flag field may contain 2308 * zero or more of the following options. 2309 * 2310 * SPP_HB_ENABLE - Enable heartbeats on the 2311 * specified address. Note that if the address 2312 * field is empty all addresses for the association 2313 * have heartbeats enabled upon them. 2314 * 2315 * SPP_HB_DISABLE - Disable heartbeats on the 2316 * speicifed address. Note that if the address 2317 * field is empty all addresses for the association 2318 * will have their heartbeats disabled. Note also 2319 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2320 * mutually exclusive, only one of these two should 2321 * be specified. Enabling both fields will have 2322 * undetermined results. 2323 * 2324 * SPP_HB_DEMAND - Request a user initiated heartbeat 2325 * to be made immediately. 2326 * 2327 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2328 * heartbeat delayis to be set to the value of 0 2329 * milliseconds. 2330 * 2331 * SPP_PMTUD_ENABLE - This field will enable PMTU 2332 * discovery upon the specified address. Note that 2333 * if the address feild is empty then all addresses 2334 * on the association are effected. 2335 * 2336 * SPP_PMTUD_DISABLE - This field will disable PMTU 2337 * discovery upon the specified address. Note that 2338 * if the address feild is empty then all addresses 2339 * on the association are effected. Not also that 2340 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2341 * exclusive. Enabling both will have undetermined 2342 * results. 2343 * 2344 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2345 * on delayed sack. The time specified in spp_sackdelay 2346 * is used to specify the sack delay for this address. Note 2347 * that if spp_address is empty then all addresses will 2348 * enable delayed sack and take on the sack delay 2349 * value specified in spp_sackdelay. 2350 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2351 * off delayed sack. If the spp_address field is blank then 2352 * delayed sack is disabled for the entire association. Note 2353 * also that this field is mutually exclusive to 2354 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2355 * results. 2356 */ 2357 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2358 struct sctp_transport *trans, 2359 struct sctp_association *asoc, 2360 struct sctp_sock *sp, 2361 int hb_change, 2362 int pmtud_change, 2363 int sackdelay_change) 2364 { 2365 int error; 2366 2367 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2368 struct net *net = sock_net(trans->asoc->base.sk); 2369 2370 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2371 if (error) 2372 return error; 2373 } 2374 2375 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2376 * this field is ignored. Note also that a value of zero indicates 2377 * the current setting should be left unchanged. 2378 */ 2379 if (params->spp_flags & SPP_HB_ENABLE) { 2380 2381 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2382 * set. This lets us use 0 value when this flag 2383 * is set. 2384 */ 2385 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2386 params->spp_hbinterval = 0; 2387 2388 if (params->spp_hbinterval || 2389 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2390 if (trans) { 2391 trans->hbinterval = 2392 msecs_to_jiffies(params->spp_hbinterval); 2393 } else if (asoc) { 2394 asoc->hbinterval = 2395 msecs_to_jiffies(params->spp_hbinterval); 2396 } else { 2397 sp->hbinterval = params->spp_hbinterval; 2398 } 2399 } 2400 } 2401 2402 if (hb_change) { 2403 if (trans) { 2404 trans->param_flags = 2405 (trans->param_flags & ~SPP_HB) | hb_change; 2406 } else if (asoc) { 2407 asoc->param_flags = 2408 (asoc->param_flags & ~SPP_HB) | hb_change; 2409 } else { 2410 sp->param_flags = 2411 (sp->param_flags & ~SPP_HB) | hb_change; 2412 } 2413 } 2414 2415 /* When Path MTU discovery is disabled the value specified here will 2416 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2417 * include the flag SPP_PMTUD_DISABLE for this field to have any 2418 * effect). 2419 */ 2420 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2421 if (trans) { 2422 trans->pathmtu = params->spp_pathmtu; 2423 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2424 } else if (asoc) { 2425 asoc->pathmtu = params->spp_pathmtu; 2426 sctp_frag_point(asoc, params->spp_pathmtu); 2427 } else { 2428 sp->pathmtu = params->spp_pathmtu; 2429 } 2430 } 2431 2432 if (pmtud_change) { 2433 if (trans) { 2434 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2435 (params->spp_flags & SPP_PMTUD_ENABLE); 2436 trans->param_flags = 2437 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2438 if (update) { 2439 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2440 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2441 } 2442 } else if (asoc) { 2443 asoc->param_flags = 2444 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2445 } else { 2446 sp->param_flags = 2447 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2448 } 2449 } 2450 2451 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2452 * value of this field is ignored. Note also that a value of zero 2453 * indicates the current setting should be left unchanged. 2454 */ 2455 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2456 if (trans) { 2457 trans->sackdelay = 2458 msecs_to_jiffies(params->spp_sackdelay); 2459 } else if (asoc) { 2460 asoc->sackdelay = 2461 msecs_to_jiffies(params->spp_sackdelay); 2462 } else { 2463 sp->sackdelay = params->spp_sackdelay; 2464 } 2465 } 2466 2467 if (sackdelay_change) { 2468 if (trans) { 2469 trans->param_flags = 2470 (trans->param_flags & ~SPP_SACKDELAY) | 2471 sackdelay_change; 2472 } else if (asoc) { 2473 asoc->param_flags = 2474 (asoc->param_flags & ~SPP_SACKDELAY) | 2475 sackdelay_change; 2476 } else { 2477 sp->param_flags = 2478 (sp->param_flags & ~SPP_SACKDELAY) | 2479 sackdelay_change; 2480 } 2481 } 2482 2483 /* Note that a value of zero indicates the current setting should be 2484 left unchanged. 2485 */ 2486 if (params->spp_pathmaxrxt) { 2487 if (trans) { 2488 trans->pathmaxrxt = params->spp_pathmaxrxt; 2489 } else if (asoc) { 2490 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2491 } else { 2492 sp->pathmaxrxt = params->spp_pathmaxrxt; 2493 } 2494 } 2495 2496 return 0; 2497 } 2498 2499 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2500 char __user *optval, 2501 unsigned int optlen) 2502 { 2503 struct sctp_paddrparams params; 2504 struct sctp_transport *trans = NULL; 2505 struct sctp_association *asoc = NULL; 2506 struct sctp_sock *sp = sctp_sk(sk); 2507 int error; 2508 int hb_change, pmtud_change, sackdelay_change; 2509 2510 if (optlen != sizeof(struct sctp_paddrparams)) 2511 return -EINVAL; 2512 2513 if (copy_from_user(¶ms, optval, optlen)) 2514 return -EFAULT; 2515 2516 /* Validate flags and value parameters. */ 2517 hb_change = params.spp_flags & SPP_HB; 2518 pmtud_change = params.spp_flags & SPP_PMTUD; 2519 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2520 2521 if (hb_change == SPP_HB || 2522 pmtud_change == SPP_PMTUD || 2523 sackdelay_change == SPP_SACKDELAY || 2524 params.spp_sackdelay > 500 || 2525 (params.spp_pathmtu && 2526 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2527 return -EINVAL; 2528 2529 /* If an address other than INADDR_ANY is specified, and 2530 * no transport is found, then the request is invalid. 2531 */ 2532 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2533 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2534 params.spp_assoc_id); 2535 if (!trans) 2536 return -EINVAL; 2537 } 2538 2539 /* Get association, if assoc_id != 0 and the socket is a one 2540 * to many style socket, and an association was not found, then 2541 * the id was invalid. 2542 */ 2543 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2544 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2545 return -EINVAL; 2546 2547 /* Heartbeat demand can only be sent on a transport or 2548 * association, but not a socket. 2549 */ 2550 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2551 return -EINVAL; 2552 2553 /* Process parameters. */ 2554 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2555 hb_change, pmtud_change, 2556 sackdelay_change); 2557 2558 if (error) 2559 return error; 2560 2561 /* If changes are for association, also apply parameters to each 2562 * transport. 2563 */ 2564 if (!trans && asoc) { 2565 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2566 transports) { 2567 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2568 hb_change, pmtud_change, 2569 sackdelay_change); 2570 } 2571 } 2572 2573 return 0; 2574 } 2575 2576 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2577 { 2578 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2579 } 2580 2581 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2582 { 2583 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2584 } 2585 2586 /* 2587 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2588 * 2589 * This option will effect the way delayed acks are performed. This 2590 * option allows you to get or set the delayed ack time, in 2591 * milliseconds. It also allows changing the delayed ack frequency. 2592 * Changing the frequency to 1 disables the delayed sack algorithm. If 2593 * the assoc_id is 0, then this sets or gets the endpoints default 2594 * values. If the assoc_id field is non-zero, then the set or get 2595 * effects the specified association for the one to many model (the 2596 * assoc_id field is ignored by the one to one model). Note that if 2597 * sack_delay or sack_freq are 0 when setting this option, then the 2598 * current values will remain unchanged. 2599 * 2600 * struct sctp_sack_info { 2601 * sctp_assoc_t sack_assoc_id; 2602 * uint32_t sack_delay; 2603 * uint32_t sack_freq; 2604 * }; 2605 * 2606 * sack_assoc_id - This parameter, indicates which association the user 2607 * is performing an action upon. Note that if this field's value is 2608 * zero then the endpoints default value is changed (effecting future 2609 * associations only). 2610 * 2611 * sack_delay - This parameter contains the number of milliseconds that 2612 * the user is requesting the delayed ACK timer be set to. Note that 2613 * this value is defined in the standard to be between 200 and 500 2614 * milliseconds. 2615 * 2616 * sack_freq - This parameter contains the number of packets that must 2617 * be received before a sack is sent without waiting for the delay 2618 * timer to expire. The default value for this is 2, setting this 2619 * value to 1 will disable the delayed sack algorithm. 2620 */ 2621 2622 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2623 char __user *optval, unsigned int optlen) 2624 { 2625 struct sctp_sack_info params; 2626 struct sctp_transport *trans = NULL; 2627 struct sctp_association *asoc = NULL; 2628 struct sctp_sock *sp = sctp_sk(sk); 2629 2630 if (optlen == sizeof(struct sctp_sack_info)) { 2631 if (copy_from_user(¶ms, optval, optlen)) 2632 return -EFAULT; 2633 2634 if (params.sack_delay == 0 && params.sack_freq == 0) 2635 return 0; 2636 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2637 pr_warn_ratelimited(DEPRECATED 2638 "%s (pid %d) " 2639 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2640 "Use struct sctp_sack_info instead\n", 2641 current->comm, task_pid_nr(current)); 2642 if (copy_from_user(¶ms, optval, optlen)) 2643 return -EFAULT; 2644 2645 if (params.sack_delay == 0) 2646 params.sack_freq = 1; 2647 else 2648 params.sack_freq = 0; 2649 } else 2650 return -EINVAL; 2651 2652 /* Validate value parameter. */ 2653 if (params.sack_delay > 500) 2654 return -EINVAL; 2655 2656 /* Get association, if sack_assoc_id != 0 and the socket is a one 2657 * to many style socket, and an association was not found, then 2658 * the id was invalid. 2659 */ 2660 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2661 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2662 return -EINVAL; 2663 2664 if (params.sack_delay) { 2665 if (asoc) { 2666 asoc->sackdelay = 2667 msecs_to_jiffies(params.sack_delay); 2668 asoc->param_flags = 2669 sctp_spp_sackdelay_enable(asoc->param_flags); 2670 } else { 2671 sp->sackdelay = params.sack_delay; 2672 sp->param_flags = 2673 sctp_spp_sackdelay_enable(sp->param_flags); 2674 } 2675 } 2676 2677 if (params.sack_freq == 1) { 2678 if (asoc) { 2679 asoc->param_flags = 2680 sctp_spp_sackdelay_disable(asoc->param_flags); 2681 } else { 2682 sp->param_flags = 2683 sctp_spp_sackdelay_disable(sp->param_flags); 2684 } 2685 } else if (params.sack_freq > 1) { 2686 if (asoc) { 2687 asoc->sackfreq = params.sack_freq; 2688 asoc->param_flags = 2689 sctp_spp_sackdelay_enable(asoc->param_flags); 2690 } else { 2691 sp->sackfreq = params.sack_freq; 2692 sp->param_flags = 2693 sctp_spp_sackdelay_enable(sp->param_flags); 2694 } 2695 } 2696 2697 /* If change is for association, also apply to each transport. */ 2698 if (asoc) { 2699 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2700 transports) { 2701 if (params.sack_delay) { 2702 trans->sackdelay = 2703 msecs_to_jiffies(params.sack_delay); 2704 trans->param_flags = 2705 sctp_spp_sackdelay_enable(trans->param_flags); 2706 } 2707 if (params.sack_freq == 1) { 2708 trans->param_flags = 2709 sctp_spp_sackdelay_disable(trans->param_flags); 2710 } else if (params.sack_freq > 1) { 2711 trans->sackfreq = params.sack_freq; 2712 trans->param_flags = 2713 sctp_spp_sackdelay_enable(trans->param_flags); 2714 } 2715 } 2716 } 2717 2718 return 0; 2719 } 2720 2721 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2722 * 2723 * Applications can specify protocol parameters for the default association 2724 * initialization. The option name argument to setsockopt() and getsockopt() 2725 * is SCTP_INITMSG. 2726 * 2727 * Setting initialization parameters is effective only on an unconnected 2728 * socket (for UDP-style sockets only future associations are effected 2729 * by the change). With TCP-style sockets, this option is inherited by 2730 * sockets derived from a listener socket. 2731 */ 2732 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2733 { 2734 struct sctp_initmsg sinit; 2735 struct sctp_sock *sp = sctp_sk(sk); 2736 2737 if (optlen != sizeof(struct sctp_initmsg)) 2738 return -EINVAL; 2739 if (copy_from_user(&sinit, optval, optlen)) 2740 return -EFAULT; 2741 2742 if (sinit.sinit_num_ostreams) 2743 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2744 if (sinit.sinit_max_instreams) 2745 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2746 if (sinit.sinit_max_attempts) 2747 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2748 if (sinit.sinit_max_init_timeo) 2749 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2750 2751 return 0; 2752 } 2753 2754 /* 2755 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2756 * 2757 * Applications that wish to use the sendto() system call may wish to 2758 * specify a default set of parameters that would normally be supplied 2759 * through the inclusion of ancillary data. This socket option allows 2760 * such an application to set the default sctp_sndrcvinfo structure. 2761 * The application that wishes to use this socket option simply passes 2762 * in to this call the sctp_sndrcvinfo structure defined in Section 2763 * 5.2.2) The input parameters accepted by this call include 2764 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2765 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2766 * to this call if the caller is using the UDP model. 2767 */ 2768 static int sctp_setsockopt_default_send_param(struct sock *sk, 2769 char __user *optval, 2770 unsigned int optlen) 2771 { 2772 struct sctp_sock *sp = sctp_sk(sk); 2773 struct sctp_association *asoc; 2774 struct sctp_sndrcvinfo info; 2775 2776 if (optlen != sizeof(info)) 2777 return -EINVAL; 2778 if (copy_from_user(&info, optval, optlen)) 2779 return -EFAULT; 2780 if (info.sinfo_flags & 2781 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2782 SCTP_ABORT | SCTP_EOF)) 2783 return -EINVAL; 2784 2785 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2786 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2787 return -EINVAL; 2788 if (asoc) { 2789 asoc->default_stream = info.sinfo_stream; 2790 asoc->default_flags = info.sinfo_flags; 2791 asoc->default_ppid = info.sinfo_ppid; 2792 asoc->default_context = info.sinfo_context; 2793 asoc->default_timetolive = info.sinfo_timetolive; 2794 } else { 2795 sp->default_stream = info.sinfo_stream; 2796 sp->default_flags = info.sinfo_flags; 2797 sp->default_ppid = info.sinfo_ppid; 2798 sp->default_context = info.sinfo_context; 2799 sp->default_timetolive = info.sinfo_timetolive; 2800 } 2801 2802 return 0; 2803 } 2804 2805 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2806 * (SCTP_DEFAULT_SNDINFO) 2807 */ 2808 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2809 char __user *optval, 2810 unsigned int optlen) 2811 { 2812 struct sctp_sock *sp = sctp_sk(sk); 2813 struct sctp_association *asoc; 2814 struct sctp_sndinfo info; 2815 2816 if (optlen != sizeof(info)) 2817 return -EINVAL; 2818 if (copy_from_user(&info, optval, optlen)) 2819 return -EFAULT; 2820 if (info.snd_flags & 2821 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2822 SCTP_ABORT | SCTP_EOF)) 2823 return -EINVAL; 2824 2825 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2826 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2827 return -EINVAL; 2828 if (asoc) { 2829 asoc->default_stream = info.snd_sid; 2830 asoc->default_flags = info.snd_flags; 2831 asoc->default_ppid = info.snd_ppid; 2832 asoc->default_context = info.snd_context; 2833 } else { 2834 sp->default_stream = info.snd_sid; 2835 sp->default_flags = info.snd_flags; 2836 sp->default_ppid = info.snd_ppid; 2837 sp->default_context = info.snd_context; 2838 } 2839 2840 return 0; 2841 } 2842 2843 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2844 * 2845 * Requests that the local SCTP stack use the enclosed peer address as 2846 * the association primary. The enclosed address must be one of the 2847 * association peer's addresses. 2848 */ 2849 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2850 unsigned int optlen) 2851 { 2852 struct sctp_prim prim; 2853 struct sctp_transport *trans; 2854 2855 if (optlen != sizeof(struct sctp_prim)) 2856 return -EINVAL; 2857 2858 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2859 return -EFAULT; 2860 2861 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2862 if (!trans) 2863 return -EINVAL; 2864 2865 sctp_assoc_set_primary(trans->asoc, trans); 2866 2867 return 0; 2868 } 2869 2870 /* 2871 * 7.1.5 SCTP_NODELAY 2872 * 2873 * Turn on/off any Nagle-like algorithm. This means that packets are 2874 * generally sent as soon as possible and no unnecessary delays are 2875 * introduced, at the cost of more packets in the network. Expects an 2876 * integer boolean flag. 2877 */ 2878 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2879 unsigned int optlen) 2880 { 2881 int val; 2882 2883 if (optlen < sizeof(int)) 2884 return -EINVAL; 2885 if (get_user(val, (int __user *)optval)) 2886 return -EFAULT; 2887 2888 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2889 return 0; 2890 } 2891 2892 /* 2893 * 2894 * 7.1.1 SCTP_RTOINFO 2895 * 2896 * The protocol parameters used to initialize and bound retransmission 2897 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2898 * and modify these parameters. 2899 * All parameters are time values, in milliseconds. A value of 0, when 2900 * modifying the parameters, indicates that the current value should not 2901 * be changed. 2902 * 2903 */ 2904 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2905 { 2906 struct sctp_rtoinfo rtoinfo; 2907 struct sctp_association *asoc; 2908 unsigned long rto_min, rto_max; 2909 struct sctp_sock *sp = sctp_sk(sk); 2910 2911 if (optlen != sizeof (struct sctp_rtoinfo)) 2912 return -EINVAL; 2913 2914 if (copy_from_user(&rtoinfo, optval, optlen)) 2915 return -EFAULT; 2916 2917 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2918 2919 /* Set the values to the specific association */ 2920 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2921 return -EINVAL; 2922 2923 rto_max = rtoinfo.srto_max; 2924 rto_min = rtoinfo.srto_min; 2925 2926 if (rto_max) 2927 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2928 else 2929 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2930 2931 if (rto_min) 2932 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2933 else 2934 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2935 2936 if (rto_min > rto_max) 2937 return -EINVAL; 2938 2939 if (asoc) { 2940 if (rtoinfo.srto_initial != 0) 2941 asoc->rto_initial = 2942 msecs_to_jiffies(rtoinfo.srto_initial); 2943 asoc->rto_max = rto_max; 2944 asoc->rto_min = rto_min; 2945 } else { 2946 /* If there is no association or the association-id = 0 2947 * set the values to the endpoint. 2948 */ 2949 if (rtoinfo.srto_initial != 0) 2950 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2951 sp->rtoinfo.srto_max = rto_max; 2952 sp->rtoinfo.srto_min = rto_min; 2953 } 2954 2955 return 0; 2956 } 2957 2958 /* 2959 * 2960 * 7.1.2 SCTP_ASSOCINFO 2961 * 2962 * This option is used to tune the maximum retransmission attempts 2963 * of the association. 2964 * Returns an error if the new association retransmission value is 2965 * greater than the sum of the retransmission value of the peer. 2966 * See [SCTP] for more information. 2967 * 2968 */ 2969 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2970 { 2971 2972 struct sctp_assocparams assocparams; 2973 struct sctp_association *asoc; 2974 2975 if (optlen != sizeof(struct sctp_assocparams)) 2976 return -EINVAL; 2977 if (copy_from_user(&assocparams, optval, optlen)) 2978 return -EFAULT; 2979 2980 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2981 2982 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2983 return -EINVAL; 2984 2985 /* Set the values to the specific association */ 2986 if (asoc) { 2987 if (assocparams.sasoc_asocmaxrxt != 0) { 2988 __u32 path_sum = 0; 2989 int paths = 0; 2990 struct sctp_transport *peer_addr; 2991 2992 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2993 transports) { 2994 path_sum += peer_addr->pathmaxrxt; 2995 paths++; 2996 } 2997 2998 /* Only validate asocmaxrxt if we have more than 2999 * one path/transport. We do this because path 3000 * retransmissions are only counted when we have more 3001 * then one path. 3002 */ 3003 if (paths > 1 && 3004 assocparams.sasoc_asocmaxrxt > path_sum) 3005 return -EINVAL; 3006 3007 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3008 } 3009 3010 if (assocparams.sasoc_cookie_life != 0) 3011 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3012 } else { 3013 /* Set the values to the endpoint */ 3014 struct sctp_sock *sp = sctp_sk(sk); 3015 3016 if (assocparams.sasoc_asocmaxrxt != 0) 3017 sp->assocparams.sasoc_asocmaxrxt = 3018 assocparams.sasoc_asocmaxrxt; 3019 if (assocparams.sasoc_cookie_life != 0) 3020 sp->assocparams.sasoc_cookie_life = 3021 assocparams.sasoc_cookie_life; 3022 } 3023 return 0; 3024 } 3025 3026 /* 3027 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3028 * 3029 * This socket option is a boolean flag which turns on or off mapped V4 3030 * addresses. If this option is turned on and the socket is type 3031 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3032 * If this option is turned off, then no mapping will be done of V4 3033 * addresses and a user will receive both PF_INET6 and PF_INET type 3034 * addresses on the socket. 3035 */ 3036 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3037 { 3038 int val; 3039 struct sctp_sock *sp = sctp_sk(sk); 3040 3041 if (optlen < sizeof(int)) 3042 return -EINVAL; 3043 if (get_user(val, (int __user *)optval)) 3044 return -EFAULT; 3045 if (val) 3046 sp->v4mapped = 1; 3047 else 3048 sp->v4mapped = 0; 3049 3050 return 0; 3051 } 3052 3053 /* 3054 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3055 * This option will get or set the maximum size to put in any outgoing 3056 * SCTP DATA chunk. If a message is larger than this size it will be 3057 * fragmented by SCTP into the specified size. Note that the underlying 3058 * SCTP implementation may fragment into smaller sized chunks when the 3059 * PMTU of the underlying association is smaller than the value set by 3060 * the user. The default value for this option is '0' which indicates 3061 * the user is NOT limiting fragmentation and only the PMTU will effect 3062 * SCTP's choice of DATA chunk size. Note also that values set larger 3063 * than the maximum size of an IP datagram will effectively let SCTP 3064 * control fragmentation (i.e. the same as setting this option to 0). 3065 * 3066 * The following structure is used to access and modify this parameter: 3067 * 3068 * struct sctp_assoc_value { 3069 * sctp_assoc_t assoc_id; 3070 * uint32_t assoc_value; 3071 * }; 3072 * 3073 * assoc_id: This parameter is ignored for one-to-one style sockets. 3074 * For one-to-many style sockets this parameter indicates which 3075 * association the user is performing an action upon. Note that if 3076 * this field's value is zero then the endpoints default value is 3077 * changed (effecting future associations only). 3078 * assoc_value: This parameter specifies the maximum size in bytes. 3079 */ 3080 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3081 { 3082 struct sctp_assoc_value params; 3083 struct sctp_association *asoc; 3084 struct sctp_sock *sp = sctp_sk(sk); 3085 int val; 3086 3087 if (optlen == sizeof(int)) { 3088 pr_warn_ratelimited(DEPRECATED 3089 "%s (pid %d) " 3090 "Use of int in maxseg socket option.\n" 3091 "Use struct sctp_assoc_value instead\n", 3092 current->comm, task_pid_nr(current)); 3093 if (copy_from_user(&val, optval, optlen)) 3094 return -EFAULT; 3095 params.assoc_id = 0; 3096 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3097 if (copy_from_user(¶ms, optval, optlen)) 3098 return -EFAULT; 3099 val = params.assoc_value; 3100 } else 3101 return -EINVAL; 3102 3103 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3104 return -EINVAL; 3105 3106 asoc = sctp_id2assoc(sk, params.assoc_id); 3107 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3108 return -EINVAL; 3109 3110 if (asoc) { 3111 if (val == 0) { 3112 val = asoc->pathmtu; 3113 val -= sp->pf->af->net_header_len; 3114 val -= sizeof(struct sctphdr) + 3115 sizeof(struct sctp_data_chunk); 3116 } 3117 asoc->user_frag = val; 3118 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3119 } else { 3120 sp->user_frag = val; 3121 } 3122 3123 return 0; 3124 } 3125 3126 3127 /* 3128 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3129 * 3130 * Requests that the peer mark the enclosed address as the association 3131 * primary. The enclosed address must be one of the association's 3132 * locally bound addresses. The following structure is used to make a 3133 * set primary request: 3134 */ 3135 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3136 unsigned int optlen) 3137 { 3138 struct net *net = sock_net(sk); 3139 struct sctp_sock *sp; 3140 struct sctp_association *asoc = NULL; 3141 struct sctp_setpeerprim prim; 3142 struct sctp_chunk *chunk; 3143 struct sctp_af *af; 3144 int err; 3145 3146 sp = sctp_sk(sk); 3147 3148 if (!net->sctp.addip_enable) 3149 return -EPERM; 3150 3151 if (optlen != sizeof(struct sctp_setpeerprim)) 3152 return -EINVAL; 3153 3154 if (copy_from_user(&prim, optval, optlen)) 3155 return -EFAULT; 3156 3157 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3158 if (!asoc) 3159 return -EINVAL; 3160 3161 if (!asoc->peer.asconf_capable) 3162 return -EPERM; 3163 3164 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3165 return -EPERM; 3166 3167 if (!sctp_state(asoc, ESTABLISHED)) 3168 return -ENOTCONN; 3169 3170 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3171 if (!af) 3172 return -EINVAL; 3173 3174 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3175 return -EADDRNOTAVAIL; 3176 3177 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3178 return -EADDRNOTAVAIL; 3179 3180 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3181 chunk = sctp_make_asconf_set_prim(asoc, 3182 (union sctp_addr *)&prim.sspp_addr); 3183 if (!chunk) 3184 return -ENOMEM; 3185 3186 err = sctp_send_asconf(asoc, chunk); 3187 3188 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3189 3190 return err; 3191 } 3192 3193 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3194 unsigned int optlen) 3195 { 3196 struct sctp_setadaptation adaptation; 3197 3198 if (optlen != sizeof(struct sctp_setadaptation)) 3199 return -EINVAL; 3200 if (copy_from_user(&adaptation, optval, optlen)) 3201 return -EFAULT; 3202 3203 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3204 3205 return 0; 3206 } 3207 3208 /* 3209 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3210 * 3211 * The context field in the sctp_sndrcvinfo structure is normally only 3212 * used when a failed message is retrieved holding the value that was 3213 * sent down on the actual send call. This option allows the setting of 3214 * a default context on an association basis that will be received on 3215 * reading messages from the peer. This is especially helpful in the 3216 * one-2-many model for an application to keep some reference to an 3217 * internal state machine that is processing messages on the 3218 * association. Note that the setting of this value only effects 3219 * received messages from the peer and does not effect the value that is 3220 * saved with outbound messages. 3221 */ 3222 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3223 unsigned int optlen) 3224 { 3225 struct sctp_assoc_value params; 3226 struct sctp_sock *sp; 3227 struct sctp_association *asoc; 3228 3229 if (optlen != sizeof(struct sctp_assoc_value)) 3230 return -EINVAL; 3231 if (copy_from_user(¶ms, optval, optlen)) 3232 return -EFAULT; 3233 3234 sp = sctp_sk(sk); 3235 3236 if (params.assoc_id != 0) { 3237 asoc = sctp_id2assoc(sk, params.assoc_id); 3238 if (!asoc) 3239 return -EINVAL; 3240 asoc->default_rcv_context = params.assoc_value; 3241 } else { 3242 sp->default_rcv_context = params.assoc_value; 3243 } 3244 3245 return 0; 3246 } 3247 3248 /* 3249 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3250 * 3251 * This options will at a minimum specify if the implementation is doing 3252 * fragmented interleave. Fragmented interleave, for a one to many 3253 * socket, is when subsequent calls to receive a message may return 3254 * parts of messages from different associations. Some implementations 3255 * may allow you to turn this value on or off. If so, when turned off, 3256 * no fragment interleave will occur (which will cause a head of line 3257 * blocking amongst multiple associations sharing the same one to many 3258 * socket). When this option is turned on, then each receive call may 3259 * come from a different association (thus the user must receive data 3260 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3261 * association each receive belongs to. 3262 * 3263 * This option takes a boolean value. A non-zero value indicates that 3264 * fragmented interleave is on. A value of zero indicates that 3265 * fragmented interleave is off. 3266 * 3267 * Note that it is important that an implementation that allows this 3268 * option to be turned on, have it off by default. Otherwise an unaware 3269 * application using the one to many model may become confused and act 3270 * incorrectly. 3271 */ 3272 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3273 char __user *optval, 3274 unsigned int optlen) 3275 { 3276 int val; 3277 3278 if (optlen != sizeof(int)) 3279 return -EINVAL; 3280 if (get_user(val, (int __user *)optval)) 3281 return -EFAULT; 3282 3283 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3284 3285 return 0; 3286 } 3287 3288 /* 3289 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3290 * (SCTP_PARTIAL_DELIVERY_POINT) 3291 * 3292 * This option will set or get the SCTP partial delivery point. This 3293 * point is the size of a message where the partial delivery API will be 3294 * invoked to help free up rwnd space for the peer. Setting this to a 3295 * lower value will cause partial deliveries to happen more often. The 3296 * calls argument is an integer that sets or gets the partial delivery 3297 * point. Note also that the call will fail if the user attempts to set 3298 * this value larger than the socket receive buffer size. 3299 * 3300 * Note that any single message having a length smaller than or equal to 3301 * the SCTP partial delivery point will be delivered in one single read 3302 * call as long as the user provided buffer is large enough to hold the 3303 * message. 3304 */ 3305 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3306 char __user *optval, 3307 unsigned int optlen) 3308 { 3309 u32 val; 3310 3311 if (optlen != sizeof(u32)) 3312 return -EINVAL; 3313 if (get_user(val, (int __user *)optval)) 3314 return -EFAULT; 3315 3316 /* Note: We double the receive buffer from what the user sets 3317 * it to be, also initial rwnd is based on rcvbuf/2. 3318 */ 3319 if (val > (sk->sk_rcvbuf >> 1)) 3320 return -EINVAL; 3321 3322 sctp_sk(sk)->pd_point = val; 3323 3324 return 0; /* is this the right error code? */ 3325 } 3326 3327 /* 3328 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3329 * 3330 * This option will allow a user to change the maximum burst of packets 3331 * that can be emitted by this association. Note that the default value 3332 * is 4, and some implementations may restrict this setting so that it 3333 * can only be lowered. 3334 * 3335 * NOTE: This text doesn't seem right. Do this on a socket basis with 3336 * future associations inheriting the socket value. 3337 */ 3338 static int sctp_setsockopt_maxburst(struct sock *sk, 3339 char __user *optval, 3340 unsigned int optlen) 3341 { 3342 struct sctp_assoc_value params; 3343 struct sctp_sock *sp; 3344 struct sctp_association *asoc; 3345 int val; 3346 int assoc_id = 0; 3347 3348 if (optlen == sizeof(int)) { 3349 pr_warn_ratelimited(DEPRECATED 3350 "%s (pid %d) " 3351 "Use of int in max_burst socket option deprecated.\n" 3352 "Use struct sctp_assoc_value instead\n", 3353 current->comm, task_pid_nr(current)); 3354 if (copy_from_user(&val, optval, optlen)) 3355 return -EFAULT; 3356 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3357 if (copy_from_user(¶ms, optval, optlen)) 3358 return -EFAULT; 3359 val = params.assoc_value; 3360 assoc_id = params.assoc_id; 3361 } else 3362 return -EINVAL; 3363 3364 sp = sctp_sk(sk); 3365 3366 if (assoc_id != 0) { 3367 asoc = sctp_id2assoc(sk, assoc_id); 3368 if (!asoc) 3369 return -EINVAL; 3370 asoc->max_burst = val; 3371 } else 3372 sp->max_burst = val; 3373 3374 return 0; 3375 } 3376 3377 /* 3378 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3379 * 3380 * This set option adds a chunk type that the user is requesting to be 3381 * received only in an authenticated way. Changes to the list of chunks 3382 * will only effect future associations on the socket. 3383 */ 3384 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3385 char __user *optval, 3386 unsigned int optlen) 3387 { 3388 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3389 struct sctp_authchunk val; 3390 3391 if (!ep->auth_enable) 3392 return -EACCES; 3393 3394 if (optlen != sizeof(struct sctp_authchunk)) 3395 return -EINVAL; 3396 if (copy_from_user(&val, optval, optlen)) 3397 return -EFAULT; 3398 3399 switch (val.sauth_chunk) { 3400 case SCTP_CID_INIT: 3401 case SCTP_CID_INIT_ACK: 3402 case SCTP_CID_SHUTDOWN_COMPLETE: 3403 case SCTP_CID_AUTH: 3404 return -EINVAL; 3405 } 3406 3407 /* add this chunk id to the endpoint */ 3408 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3409 } 3410 3411 /* 3412 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3413 * 3414 * This option gets or sets the list of HMAC algorithms that the local 3415 * endpoint requires the peer to use. 3416 */ 3417 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3418 char __user *optval, 3419 unsigned int optlen) 3420 { 3421 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3422 struct sctp_hmacalgo *hmacs; 3423 u32 idents; 3424 int err; 3425 3426 if (!ep->auth_enable) 3427 return -EACCES; 3428 3429 if (optlen < sizeof(struct sctp_hmacalgo)) 3430 return -EINVAL; 3431 3432 hmacs = memdup_user(optval, optlen); 3433 if (IS_ERR(hmacs)) 3434 return PTR_ERR(hmacs); 3435 3436 idents = hmacs->shmac_num_idents; 3437 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3438 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3439 err = -EINVAL; 3440 goto out; 3441 } 3442 3443 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3444 out: 3445 kfree(hmacs); 3446 return err; 3447 } 3448 3449 /* 3450 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3451 * 3452 * This option will set a shared secret key which is used to build an 3453 * association shared key. 3454 */ 3455 static int sctp_setsockopt_auth_key(struct sock *sk, 3456 char __user *optval, 3457 unsigned int optlen) 3458 { 3459 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3460 struct sctp_authkey *authkey; 3461 struct sctp_association *asoc; 3462 int ret; 3463 3464 if (!ep->auth_enable) 3465 return -EACCES; 3466 3467 if (optlen <= sizeof(struct sctp_authkey)) 3468 return -EINVAL; 3469 3470 authkey = memdup_user(optval, optlen); 3471 if (IS_ERR(authkey)) 3472 return PTR_ERR(authkey); 3473 3474 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3475 ret = -EINVAL; 3476 goto out; 3477 } 3478 3479 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3480 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3481 ret = -EINVAL; 3482 goto out; 3483 } 3484 3485 ret = sctp_auth_set_key(ep, asoc, authkey); 3486 out: 3487 kzfree(authkey); 3488 return ret; 3489 } 3490 3491 /* 3492 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3493 * 3494 * This option will get or set the active shared key to be used to build 3495 * the association shared key. 3496 */ 3497 static int sctp_setsockopt_active_key(struct sock *sk, 3498 char __user *optval, 3499 unsigned int optlen) 3500 { 3501 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3502 struct sctp_authkeyid val; 3503 struct sctp_association *asoc; 3504 3505 if (!ep->auth_enable) 3506 return -EACCES; 3507 3508 if (optlen != sizeof(struct sctp_authkeyid)) 3509 return -EINVAL; 3510 if (copy_from_user(&val, optval, optlen)) 3511 return -EFAULT; 3512 3513 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3514 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3515 return -EINVAL; 3516 3517 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3518 } 3519 3520 /* 3521 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3522 * 3523 * This set option will delete a shared secret key from use. 3524 */ 3525 static int sctp_setsockopt_del_key(struct sock *sk, 3526 char __user *optval, 3527 unsigned int optlen) 3528 { 3529 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3530 struct sctp_authkeyid val; 3531 struct sctp_association *asoc; 3532 3533 if (!ep->auth_enable) 3534 return -EACCES; 3535 3536 if (optlen != sizeof(struct sctp_authkeyid)) 3537 return -EINVAL; 3538 if (copy_from_user(&val, optval, optlen)) 3539 return -EFAULT; 3540 3541 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3542 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3543 return -EINVAL; 3544 3545 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3546 3547 } 3548 3549 /* 3550 * 8.1.23 SCTP_AUTO_ASCONF 3551 * 3552 * This option will enable or disable the use of the automatic generation of 3553 * ASCONF chunks to add and delete addresses to an existing association. Note 3554 * that this option has two caveats namely: a) it only affects sockets that 3555 * are bound to all addresses available to the SCTP stack, and b) the system 3556 * administrator may have an overriding control that turns the ASCONF feature 3557 * off no matter what setting the socket option may have. 3558 * This option expects an integer boolean flag, where a non-zero value turns on 3559 * the option, and a zero value turns off the option. 3560 * Note. In this implementation, socket operation overrides default parameter 3561 * being set by sysctl as well as FreeBSD implementation 3562 */ 3563 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3564 unsigned int optlen) 3565 { 3566 int val; 3567 struct sctp_sock *sp = sctp_sk(sk); 3568 3569 if (optlen < sizeof(int)) 3570 return -EINVAL; 3571 if (get_user(val, (int __user *)optval)) 3572 return -EFAULT; 3573 if (!sctp_is_ep_boundall(sk) && val) 3574 return -EINVAL; 3575 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3576 return 0; 3577 3578 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3579 if (val == 0 && sp->do_auto_asconf) { 3580 list_del(&sp->auto_asconf_list); 3581 sp->do_auto_asconf = 0; 3582 } else if (val && !sp->do_auto_asconf) { 3583 list_add_tail(&sp->auto_asconf_list, 3584 &sock_net(sk)->sctp.auto_asconf_splist); 3585 sp->do_auto_asconf = 1; 3586 } 3587 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3588 return 0; 3589 } 3590 3591 /* 3592 * SCTP_PEER_ADDR_THLDS 3593 * 3594 * This option allows us to alter the partially failed threshold for one or all 3595 * transports in an association. See Section 6.1 of: 3596 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3597 */ 3598 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3599 char __user *optval, 3600 unsigned int optlen) 3601 { 3602 struct sctp_paddrthlds val; 3603 struct sctp_transport *trans; 3604 struct sctp_association *asoc; 3605 3606 if (optlen < sizeof(struct sctp_paddrthlds)) 3607 return -EINVAL; 3608 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3609 sizeof(struct sctp_paddrthlds))) 3610 return -EFAULT; 3611 3612 3613 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3614 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3615 if (!asoc) 3616 return -ENOENT; 3617 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3618 transports) { 3619 if (val.spt_pathmaxrxt) 3620 trans->pathmaxrxt = val.spt_pathmaxrxt; 3621 trans->pf_retrans = val.spt_pathpfthld; 3622 } 3623 3624 if (val.spt_pathmaxrxt) 3625 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3626 asoc->pf_retrans = val.spt_pathpfthld; 3627 } else { 3628 trans = sctp_addr_id2transport(sk, &val.spt_address, 3629 val.spt_assoc_id); 3630 if (!trans) 3631 return -ENOENT; 3632 3633 if (val.spt_pathmaxrxt) 3634 trans->pathmaxrxt = val.spt_pathmaxrxt; 3635 trans->pf_retrans = val.spt_pathpfthld; 3636 } 3637 3638 return 0; 3639 } 3640 3641 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3642 char __user *optval, 3643 unsigned int optlen) 3644 { 3645 int val; 3646 3647 if (optlen < sizeof(int)) 3648 return -EINVAL; 3649 if (get_user(val, (int __user *) optval)) 3650 return -EFAULT; 3651 3652 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3653 3654 return 0; 3655 } 3656 3657 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3658 char __user *optval, 3659 unsigned int optlen) 3660 { 3661 int val; 3662 3663 if (optlen < sizeof(int)) 3664 return -EINVAL; 3665 if (get_user(val, (int __user *) optval)) 3666 return -EFAULT; 3667 3668 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3669 3670 return 0; 3671 } 3672 3673 static int sctp_setsockopt_pr_supported(struct sock *sk, 3674 char __user *optval, 3675 unsigned int optlen) 3676 { 3677 struct sctp_assoc_value params; 3678 struct sctp_association *asoc; 3679 int retval = -EINVAL; 3680 3681 if (optlen != sizeof(params)) 3682 goto out; 3683 3684 if (copy_from_user(¶ms, optval, optlen)) { 3685 retval = -EFAULT; 3686 goto out; 3687 } 3688 3689 asoc = sctp_id2assoc(sk, params.assoc_id); 3690 if (asoc) { 3691 asoc->prsctp_enable = !!params.assoc_value; 3692 } else if (!params.assoc_id) { 3693 struct sctp_sock *sp = sctp_sk(sk); 3694 3695 sp->ep->prsctp_enable = !!params.assoc_value; 3696 } else { 3697 goto out; 3698 } 3699 3700 retval = 0; 3701 3702 out: 3703 return retval; 3704 } 3705 3706 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3707 char __user *optval, 3708 unsigned int optlen) 3709 { 3710 struct sctp_default_prinfo info; 3711 struct sctp_association *asoc; 3712 int retval = -EINVAL; 3713 3714 if (optlen != sizeof(info)) 3715 goto out; 3716 3717 if (copy_from_user(&info, optval, sizeof(info))) { 3718 retval = -EFAULT; 3719 goto out; 3720 } 3721 3722 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3723 goto out; 3724 3725 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3726 info.pr_value = 0; 3727 3728 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3729 if (asoc) { 3730 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3731 asoc->default_timetolive = info.pr_value; 3732 } else if (!info.pr_assoc_id) { 3733 struct sctp_sock *sp = sctp_sk(sk); 3734 3735 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3736 sp->default_timetolive = info.pr_value; 3737 } else { 3738 goto out; 3739 } 3740 3741 retval = 0; 3742 3743 out: 3744 return retval; 3745 } 3746 3747 /* API 6.2 setsockopt(), getsockopt() 3748 * 3749 * Applications use setsockopt() and getsockopt() to set or retrieve 3750 * socket options. Socket options are used to change the default 3751 * behavior of sockets calls. They are described in Section 7. 3752 * 3753 * The syntax is: 3754 * 3755 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3756 * int __user *optlen); 3757 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3758 * int optlen); 3759 * 3760 * sd - the socket descript. 3761 * level - set to IPPROTO_SCTP for all SCTP options. 3762 * optname - the option name. 3763 * optval - the buffer to store the value of the option. 3764 * optlen - the size of the buffer. 3765 */ 3766 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3767 char __user *optval, unsigned int optlen) 3768 { 3769 int retval = 0; 3770 3771 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3772 3773 /* I can hardly begin to describe how wrong this is. This is 3774 * so broken as to be worse than useless. The API draft 3775 * REALLY is NOT helpful here... I am not convinced that the 3776 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3777 * are at all well-founded. 3778 */ 3779 if (level != SOL_SCTP) { 3780 struct sctp_af *af = sctp_sk(sk)->pf->af; 3781 retval = af->setsockopt(sk, level, optname, optval, optlen); 3782 goto out_nounlock; 3783 } 3784 3785 lock_sock(sk); 3786 3787 switch (optname) { 3788 case SCTP_SOCKOPT_BINDX_ADD: 3789 /* 'optlen' is the size of the addresses buffer. */ 3790 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3791 optlen, SCTP_BINDX_ADD_ADDR); 3792 break; 3793 3794 case SCTP_SOCKOPT_BINDX_REM: 3795 /* 'optlen' is the size of the addresses buffer. */ 3796 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3797 optlen, SCTP_BINDX_REM_ADDR); 3798 break; 3799 3800 case SCTP_SOCKOPT_CONNECTX_OLD: 3801 /* 'optlen' is the size of the addresses buffer. */ 3802 retval = sctp_setsockopt_connectx_old(sk, 3803 (struct sockaddr __user *)optval, 3804 optlen); 3805 break; 3806 3807 case SCTP_SOCKOPT_CONNECTX: 3808 /* 'optlen' is the size of the addresses buffer. */ 3809 retval = sctp_setsockopt_connectx(sk, 3810 (struct sockaddr __user *)optval, 3811 optlen); 3812 break; 3813 3814 case SCTP_DISABLE_FRAGMENTS: 3815 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3816 break; 3817 3818 case SCTP_EVENTS: 3819 retval = sctp_setsockopt_events(sk, optval, optlen); 3820 break; 3821 3822 case SCTP_AUTOCLOSE: 3823 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3824 break; 3825 3826 case SCTP_PEER_ADDR_PARAMS: 3827 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3828 break; 3829 3830 case SCTP_DELAYED_SACK: 3831 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3832 break; 3833 case SCTP_PARTIAL_DELIVERY_POINT: 3834 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3835 break; 3836 3837 case SCTP_INITMSG: 3838 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3839 break; 3840 case SCTP_DEFAULT_SEND_PARAM: 3841 retval = sctp_setsockopt_default_send_param(sk, optval, 3842 optlen); 3843 break; 3844 case SCTP_DEFAULT_SNDINFO: 3845 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3846 break; 3847 case SCTP_PRIMARY_ADDR: 3848 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3849 break; 3850 case SCTP_SET_PEER_PRIMARY_ADDR: 3851 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3852 break; 3853 case SCTP_NODELAY: 3854 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3855 break; 3856 case SCTP_RTOINFO: 3857 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3858 break; 3859 case SCTP_ASSOCINFO: 3860 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3861 break; 3862 case SCTP_I_WANT_MAPPED_V4_ADDR: 3863 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3864 break; 3865 case SCTP_MAXSEG: 3866 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3867 break; 3868 case SCTP_ADAPTATION_LAYER: 3869 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3870 break; 3871 case SCTP_CONTEXT: 3872 retval = sctp_setsockopt_context(sk, optval, optlen); 3873 break; 3874 case SCTP_FRAGMENT_INTERLEAVE: 3875 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3876 break; 3877 case SCTP_MAX_BURST: 3878 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3879 break; 3880 case SCTP_AUTH_CHUNK: 3881 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3882 break; 3883 case SCTP_HMAC_IDENT: 3884 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3885 break; 3886 case SCTP_AUTH_KEY: 3887 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3888 break; 3889 case SCTP_AUTH_ACTIVE_KEY: 3890 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3891 break; 3892 case SCTP_AUTH_DELETE_KEY: 3893 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3894 break; 3895 case SCTP_AUTO_ASCONF: 3896 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3897 break; 3898 case SCTP_PEER_ADDR_THLDS: 3899 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3900 break; 3901 case SCTP_RECVRCVINFO: 3902 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 3903 break; 3904 case SCTP_RECVNXTINFO: 3905 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 3906 break; 3907 case SCTP_PR_SUPPORTED: 3908 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 3909 break; 3910 case SCTP_DEFAULT_PRINFO: 3911 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 3912 break; 3913 default: 3914 retval = -ENOPROTOOPT; 3915 break; 3916 } 3917 3918 release_sock(sk); 3919 3920 out_nounlock: 3921 return retval; 3922 } 3923 3924 /* API 3.1.6 connect() - UDP Style Syntax 3925 * 3926 * An application may use the connect() call in the UDP model to initiate an 3927 * association without sending data. 3928 * 3929 * The syntax is: 3930 * 3931 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3932 * 3933 * sd: the socket descriptor to have a new association added to. 3934 * 3935 * nam: the address structure (either struct sockaddr_in or struct 3936 * sockaddr_in6 defined in RFC2553 [7]). 3937 * 3938 * len: the size of the address. 3939 */ 3940 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3941 int addr_len) 3942 { 3943 int err = 0; 3944 struct sctp_af *af; 3945 3946 lock_sock(sk); 3947 3948 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3949 addr, addr_len); 3950 3951 /* Validate addr_len before calling common connect/connectx routine. */ 3952 af = sctp_get_af_specific(addr->sa_family); 3953 if (!af || addr_len < af->sockaddr_len) { 3954 err = -EINVAL; 3955 } else { 3956 /* Pass correct addr len to common routine (so it knows there 3957 * is only one address being passed. 3958 */ 3959 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3960 } 3961 3962 release_sock(sk); 3963 return err; 3964 } 3965 3966 /* FIXME: Write comments. */ 3967 static int sctp_disconnect(struct sock *sk, int flags) 3968 { 3969 return -EOPNOTSUPP; /* STUB */ 3970 } 3971 3972 /* 4.1.4 accept() - TCP Style Syntax 3973 * 3974 * Applications use accept() call to remove an established SCTP 3975 * association from the accept queue of the endpoint. A new socket 3976 * descriptor will be returned from accept() to represent the newly 3977 * formed association. 3978 */ 3979 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3980 { 3981 struct sctp_sock *sp; 3982 struct sctp_endpoint *ep; 3983 struct sock *newsk = NULL; 3984 struct sctp_association *asoc; 3985 long timeo; 3986 int error = 0; 3987 3988 lock_sock(sk); 3989 3990 sp = sctp_sk(sk); 3991 ep = sp->ep; 3992 3993 if (!sctp_style(sk, TCP)) { 3994 error = -EOPNOTSUPP; 3995 goto out; 3996 } 3997 3998 if (!sctp_sstate(sk, LISTENING)) { 3999 error = -EINVAL; 4000 goto out; 4001 } 4002 4003 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4004 4005 error = sctp_wait_for_accept(sk, timeo); 4006 if (error) 4007 goto out; 4008 4009 /* We treat the list of associations on the endpoint as the accept 4010 * queue and pick the first association on the list. 4011 */ 4012 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4013 4014 newsk = sp->pf->create_accept_sk(sk, asoc); 4015 if (!newsk) { 4016 error = -ENOMEM; 4017 goto out; 4018 } 4019 4020 /* Populate the fields of the newsk from the oldsk and migrate the 4021 * asoc to the newsk. 4022 */ 4023 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4024 4025 out: 4026 release_sock(sk); 4027 *err = error; 4028 return newsk; 4029 } 4030 4031 /* The SCTP ioctl handler. */ 4032 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4033 { 4034 int rc = -ENOTCONN; 4035 4036 lock_sock(sk); 4037 4038 /* 4039 * SEQPACKET-style sockets in LISTENING state are valid, for 4040 * SCTP, so only discard TCP-style sockets in LISTENING state. 4041 */ 4042 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4043 goto out; 4044 4045 switch (cmd) { 4046 case SIOCINQ: { 4047 struct sk_buff *skb; 4048 unsigned int amount = 0; 4049 4050 skb = skb_peek(&sk->sk_receive_queue); 4051 if (skb != NULL) { 4052 /* 4053 * We will only return the amount of this packet since 4054 * that is all that will be read. 4055 */ 4056 amount = skb->len; 4057 } 4058 rc = put_user(amount, (int __user *)arg); 4059 break; 4060 } 4061 default: 4062 rc = -ENOIOCTLCMD; 4063 break; 4064 } 4065 out: 4066 release_sock(sk); 4067 return rc; 4068 } 4069 4070 /* This is the function which gets called during socket creation to 4071 * initialized the SCTP-specific portion of the sock. 4072 * The sock structure should already be zero-filled memory. 4073 */ 4074 static int sctp_init_sock(struct sock *sk) 4075 { 4076 struct net *net = sock_net(sk); 4077 struct sctp_sock *sp; 4078 4079 pr_debug("%s: sk:%p\n", __func__, sk); 4080 4081 sp = sctp_sk(sk); 4082 4083 /* Initialize the SCTP per socket area. */ 4084 switch (sk->sk_type) { 4085 case SOCK_SEQPACKET: 4086 sp->type = SCTP_SOCKET_UDP; 4087 break; 4088 case SOCK_STREAM: 4089 sp->type = SCTP_SOCKET_TCP; 4090 break; 4091 default: 4092 return -ESOCKTNOSUPPORT; 4093 } 4094 4095 sk->sk_gso_type = SKB_GSO_SCTP; 4096 4097 /* Initialize default send parameters. These parameters can be 4098 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4099 */ 4100 sp->default_stream = 0; 4101 sp->default_ppid = 0; 4102 sp->default_flags = 0; 4103 sp->default_context = 0; 4104 sp->default_timetolive = 0; 4105 4106 sp->default_rcv_context = 0; 4107 sp->max_burst = net->sctp.max_burst; 4108 4109 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4110 4111 /* Initialize default setup parameters. These parameters 4112 * can be modified with the SCTP_INITMSG socket option or 4113 * overridden by the SCTP_INIT CMSG. 4114 */ 4115 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4116 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4117 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4118 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4119 4120 /* Initialize default RTO related parameters. These parameters can 4121 * be modified for with the SCTP_RTOINFO socket option. 4122 */ 4123 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4124 sp->rtoinfo.srto_max = net->sctp.rto_max; 4125 sp->rtoinfo.srto_min = net->sctp.rto_min; 4126 4127 /* Initialize default association related parameters. These parameters 4128 * can be modified with the SCTP_ASSOCINFO socket option. 4129 */ 4130 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4131 sp->assocparams.sasoc_number_peer_destinations = 0; 4132 sp->assocparams.sasoc_peer_rwnd = 0; 4133 sp->assocparams.sasoc_local_rwnd = 0; 4134 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4135 4136 /* Initialize default event subscriptions. By default, all the 4137 * options are off. 4138 */ 4139 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4140 4141 /* Default Peer Address Parameters. These defaults can 4142 * be modified via SCTP_PEER_ADDR_PARAMS 4143 */ 4144 sp->hbinterval = net->sctp.hb_interval; 4145 sp->pathmaxrxt = net->sctp.max_retrans_path; 4146 sp->pathmtu = 0; /* allow default discovery */ 4147 sp->sackdelay = net->sctp.sack_timeout; 4148 sp->sackfreq = 2; 4149 sp->param_flags = SPP_HB_ENABLE | 4150 SPP_PMTUD_ENABLE | 4151 SPP_SACKDELAY_ENABLE; 4152 4153 /* If enabled no SCTP message fragmentation will be performed. 4154 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4155 */ 4156 sp->disable_fragments = 0; 4157 4158 /* Enable Nagle algorithm by default. */ 4159 sp->nodelay = 0; 4160 4161 sp->recvrcvinfo = 0; 4162 sp->recvnxtinfo = 0; 4163 4164 /* Enable by default. */ 4165 sp->v4mapped = 1; 4166 4167 /* Auto-close idle associations after the configured 4168 * number of seconds. A value of 0 disables this 4169 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4170 * for UDP-style sockets only. 4171 */ 4172 sp->autoclose = 0; 4173 4174 /* User specified fragmentation limit. */ 4175 sp->user_frag = 0; 4176 4177 sp->adaptation_ind = 0; 4178 4179 sp->pf = sctp_get_pf_specific(sk->sk_family); 4180 4181 /* Control variables for partial data delivery. */ 4182 atomic_set(&sp->pd_mode, 0); 4183 skb_queue_head_init(&sp->pd_lobby); 4184 sp->frag_interleave = 0; 4185 4186 /* Create a per socket endpoint structure. Even if we 4187 * change the data structure relationships, this may still 4188 * be useful for storing pre-connect address information. 4189 */ 4190 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4191 if (!sp->ep) 4192 return -ENOMEM; 4193 4194 sp->hmac = NULL; 4195 4196 sk->sk_destruct = sctp_destruct_sock; 4197 4198 SCTP_DBG_OBJCNT_INC(sock); 4199 4200 local_bh_disable(); 4201 percpu_counter_inc(&sctp_sockets_allocated); 4202 sock_prot_inuse_add(net, sk->sk_prot, 1); 4203 4204 /* Nothing can fail after this block, otherwise 4205 * sctp_destroy_sock() will be called without addr_wq_lock held 4206 */ 4207 if (net->sctp.default_auto_asconf) { 4208 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4209 list_add_tail(&sp->auto_asconf_list, 4210 &net->sctp.auto_asconf_splist); 4211 sp->do_auto_asconf = 1; 4212 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4213 } else { 4214 sp->do_auto_asconf = 0; 4215 } 4216 4217 local_bh_enable(); 4218 4219 return 0; 4220 } 4221 4222 /* Cleanup any SCTP per socket resources. Must be called with 4223 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4224 */ 4225 static void sctp_destroy_sock(struct sock *sk) 4226 { 4227 struct sctp_sock *sp; 4228 4229 pr_debug("%s: sk:%p\n", __func__, sk); 4230 4231 /* Release our hold on the endpoint. */ 4232 sp = sctp_sk(sk); 4233 /* This could happen during socket init, thus we bail out 4234 * early, since the rest of the below is not setup either. 4235 */ 4236 if (sp->ep == NULL) 4237 return; 4238 4239 if (sp->do_auto_asconf) { 4240 sp->do_auto_asconf = 0; 4241 list_del(&sp->auto_asconf_list); 4242 } 4243 sctp_endpoint_free(sp->ep); 4244 local_bh_disable(); 4245 percpu_counter_dec(&sctp_sockets_allocated); 4246 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4247 local_bh_enable(); 4248 } 4249 4250 /* Triggered when there are no references on the socket anymore */ 4251 static void sctp_destruct_sock(struct sock *sk) 4252 { 4253 struct sctp_sock *sp = sctp_sk(sk); 4254 4255 /* Free up the HMAC transform. */ 4256 crypto_free_shash(sp->hmac); 4257 4258 inet_sock_destruct(sk); 4259 } 4260 4261 /* API 4.1.7 shutdown() - TCP Style Syntax 4262 * int shutdown(int socket, int how); 4263 * 4264 * sd - the socket descriptor of the association to be closed. 4265 * how - Specifies the type of shutdown. The values are 4266 * as follows: 4267 * SHUT_RD 4268 * Disables further receive operations. No SCTP 4269 * protocol action is taken. 4270 * SHUT_WR 4271 * Disables further send operations, and initiates 4272 * the SCTP shutdown sequence. 4273 * SHUT_RDWR 4274 * Disables further send and receive operations 4275 * and initiates the SCTP shutdown sequence. 4276 */ 4277 static void sctp_shutdown(struct sock *sk, int how) 4278 { 4279 struct net *net = sock_net(sk); 4280 struct sctp_endpoint *ep; 4281 struct sctp_association *asoc; 4282 4283 if (!sctp_style(sk, TCP)) 4284 return; 4285 4286 if (how & SEND_SHUTDOWN) { 4287 sk->sk_state = SCTP_SS_CLOSING; 4288 ep = sctp_sk(sk)->ep; 4289 if (!list_empty(&ep->asocs)) { 4290 asoc = list_entry(ep->asocs.next, 4291 struct sctp_association, asocs); 4292 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4293 } 4294 } 4295 } 4296 4297 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4298 struct sctp_info *info) 4299 { 4300 struct sctp_transport *prim; 4301 struct list_head *pos; 4302 int mask; 4303 4304 memset(info, 0, sizeof(*info)); 4305 if (!asoc) { 4306 struct sctp_sock *sp = sctp_sk(sk); 4307 4308 info->sctpi_s_autoclose = sp->autoclose; 4309 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4310 info->sctpi_s_pd_point = sp->pd_point; 4311 info->sctpi_s_nodelay = sp->nodelay; 4312 info->sctpi_s_disable_fragments = sp->disable_fragments; 4313 info->sctpi_s_v4mapped = sp->v4mapped; 4314 info->sctpi_s_frag_interleave = sp->frag_interleave; 4315 info->sctpi_s_type = sp->type; 4316 4317 return 0; 4318 } 4319 4320 info->sctpi_tag = asoc->c.my_vtag; 4321 info->sctpi_state = asoc->state; 4322 info->sctpi_rwnd = asoc->a_rwnd; 4323 info->sctpi_unackdata = asoc->unack_data; 4324 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4325 info->sctpi_instrms = asoc->c.sinit_max_instreams; 4326 info->sctpi_outstrms = asoc->c.sinit_num_ostreams; 4327 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4328 info->sctpi_inqueue++; 4329 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4330 info->sctpi_outqueue++; 4331 info->sctpi_overall_error = asoc->overall_error_count; 4332 info->sctpi_max_burst = asoc->max_burst; 4333 info->sctpi_maxseg = asoc->frag_point; 4334 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4335 info->sctpi_peer_tag = asoc->c.peer_vtag; 4336 4337 mask = asoc->peer.ecn_capable << 1; 4338 mask = (mask | asoc->peer.ipv4_address) << 1; 4339 mask = (mask | asoc->peer.ipv6_address) << 1; 4340 mask = (mask | asoc->peer.hostname_address) << 1; 4341 mask = (mask | asoc->peer.asconf_capable) << 1; 4342 mask = (mask | asoc->peer.prsctp_capable) << 1; 4343 mask = (mask | asoc->peer.auth_capable); 4344 info->sctpi_peer_capable = mask; 4345 mask = asoc->peer.sack_needed << 1; 4346 mask = (mask | asoc->peer.sack_generation) << 1; 4347 mask = (mask | asoc->peer.zero_window_announced); 4348 info->sctpi_peer_sack = mask; 4349 4350 info->sctpi_isacks = asoc->stats.isacks; 4351 info->sctpi_osacks = asoc->stats.osacks; 4352 info->sctpi_opackets = asoc->stats.opackets; 4353 info->sctpi_ipackets = asoc->stats.ipackets; 4354 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4355 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4356 info->sctpi_idupchunks = asoc->stats.idupchunks; 4357 info->sctpi_gapcnt = asoc->stats.gapcnt; 4358 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4359 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4360 info->sctpi_oodchunks = asoc->stats.oodchunks; 4361 info->sctpi_iodchunks = asoc->stats.iodchunks; 4362 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4363 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4364 4365 prim = asoc->peer.primary_path; 4366 memcpy(&info->sctpi_p_address, &prim->ipaddr, 4367 sizeof(struct sockaddr_storage)); 4368 info->sctpi_p_state = prim->state; 4369 info->sctpi_p_cwnd = prim->cwnd; 4370 info->sctpi_p_srtt = prim->srtt; 4371 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4372 info->sctpi_p_hbinterval = prim->hbinterval; 4373 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4374 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4375 info->sctpi_p_ssthresh = prim->ssthresh; 4376 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4377 info->sctpi_p_flight_size = prim->flight_size; 4378 info->sctpi_p_error = prim->error_count; 4379 4380 return 0; 4381 } 4382 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4383 4384 /* use callback to avoid exporting the core structure */ 4385 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4386 { 4387 int err; 4388 4389 err = rhashtable_walk_init(&sctp_transport_hashtable, iter, 4390 GFP_KERNEL); 4391 if (err) 4392 return err; 4393 4394 err = rhashtable_walk_start(iter); 4395 if (err && err != -EAGAIN) { 4396 rhashtable_walk_stop(iter); 4397 rhashtable_walk_exit(iter); 4398 return err; 4399 } 4400 4401 return 0; 4402 } 4403 4404 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4405 { 4406 rhashtable_walk_stop(iter); 4407 rhashtable_walk_exit(iter); 4408 } 4409 4410 struct sctp_transport *sctp_transport_get_next(struct net *net, 4411 struct rhashtable_iter *iter) 4412 { 4413 struct sctp_transport *t; 4414 4415 t = rhashtable_walk_next(iter); 4416 for (; t; t = rhashtable_walk_next(iter)) { 4417 if (IS_ERR(t)) { 4418 if (PTR_ERR(t) == -EAGAIN) 4419 continue; 4420 break; 4421 } 4422 4423 if (net_eq(sock_net(t->asoc->base.sk), net) && 4424 t->asoc->peer.primary_path == t) 4425 break; 4426 } 4427 4428 return t; 4429 } 4430 4431 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4432 struct rhashtable_iter *iter, 4433 int pos) 4434 { 4435 void *obj = SEQ_START_TOKEN; 4436 4437 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4438 !IS_ERR(obj)) 4439 pos--; 4440 4441 return obj; 4442 } 4443 4444 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4445 void *p) { 4446 int err = 0; 4447 int hash = 0; 4448 struct sctp_ep_common *epb; 4449 struct sctp_hashbucket *head; 4450 4451 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4452 hash++, head++) { 4453 read_lock(&head->lock); 4454 sctp_for_each_hentry(epb, &head->chain) { 4455 err = cb(sctp_ep(epb), p); 4456 if (err) 4457 break; 4458 } 4459 read_unlock(&head->lock); 4460 } 4461 4462 return err; 4463 } 4464 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4465 4466 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4467 struct net *net, 4468 const union sctp_addr *laddr, 4469 const union sctp_addr *paddr, void *p) 4470 { 4471 struct sctp_transport *transport; 4472 int err = 0; 4473 4474 rcu_read_lock(); 4475 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4476 if (!transport || !sctp_transport_hold(transport)) 4477 goto out; 4478 err = cb(transport, p); 4479 sctp_transport_put(transport); 4480 4481 out: 4482 rcu_read_unlock(); 4483 return err; 4484 } 4485 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4486 4487 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4488 struct net *net, int pos, void *p) { 4489 struct rhashtable_iter hti; 4490 void *obj; 4491 int err; 4492 4493 err = sctp_transport_walk_start(&hti); 4494 if (err) 4495 return err; 4496 4497 sctp_transport_get_idx(net, &hti, pos); 4498 obj = sctp_transport_get_next(net, &hti); 4499 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) { 4500 struct sctp_transport *transport = obj; 4501 4502 if (!sctp_transport_hold(transport)) 4503 continue; 4504 err = cb(transport, p); 4505 sctp_transport_put(transport); 4506 if (err) 4507 break; 4508 } 4509 sctp_transport_walk_stop(&hti); 4510 4511 return err; 4512 } 4513 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4514 4515 /* 7.2.1 Association Status (SCTP_STATUS) 4516 4517 * Applications can retrieve current status information about an 4518 * association, including association state, peer receiver window size, 4519 * number of unacked data chunks, and number of data chunks pending 4520 * receipt. This information is read-only. 4521 */ 4522 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4523 char __user *optval, 4524 int __user *optlen) 4525 { 4526 struct sctp_status status; 4527 struct sctp_association *asoc = NULL; 4528 struct sctp_transport *transport; 4529 sctp_assoc_t associd; 4530 int retval = 0; 4531 4532 if (len < sizeof(status)) { 4533 retval = -EINVAL; 4534 goto out; 4535 } 4536 4537 len = sizeof(status); 4538 if (copy_from_user(&status, optval, len)) { 4539 retval = -EFAULT; 4540 goto out; 4541 } 4542 4543 associd = status.sstat_assoc_id; 4544 asoc = sctp_id2assoc(sk, associd); 4545 if (!asoc) { 4546 retval = -EINVAL; 4547 goto out; 4548 } 4549 4550 transport = asoc->peer.primary_path; 4551 4552 status.sstat_assoc_id = sctp_assoc2id(asoc); 4553 status.sstat_state = sctp_assoc_to_state(asoc); 4554 status.sstat_rwnd = asoc->peer.rwnd; 4555 status.sstat_unackdata = asoc->unack_data; 4556 4557 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4558 status.sstat_instrms = asoc->c.sinit_max_instreams; 4559 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4560 status.sstat_fragmentation_point = asoc->frag_point; 4561 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4562 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4563 transport->af_specific->sockaddr_len); 4564 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4565 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4566 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4567 status.sstat_primary.spinfo_state = transport->state; 4568 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4569 status.sstat_primary.spinfo_srtt = transport->srtt; 4570 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4571 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4572 4573 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4574 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4575 4576 if (put_user(len, optlen)) { 4577 retval = -EFAULT; 4578 goto out; 4579 } 4580 4581 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4582 __func__, len, status.sstat_state, status.sstat_rwnd, 4583 status.sstat_assoc_id); 4584 4585 if (copy_to_user(optval, &status, len)) { 4586 retval = -EFAULT; 4587 goto out; 4588 } 4589 4590 out: 4591 return retval; 4592 } 4593 4594 4595 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4596 * 4597 * Applications can retrieve information about a specific peer address 4598 * of an association, including its reachability state, congestion 4599 * window, and retransmission timer values. This information is 4600 * read-only. 4601 */ 4602 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4603 char __user *optval, 4604 int __user *optlen) 4605 { 4606 struct sctp_paddrinfo pinfo; 4607 struct sctp_transport *transport; 4608 int retval = 0; 4609 4610 if (len < sizeof(pinfo)) { 4611 retval = -EINVAL; 4612 goto out; 4613 } 4614 4615 len = sizeof(pinfo); 4616 if (copy_from_user(&pinfo, optval, len)) { 4617 retval = -EFAULT; 4618 goto out; 4619 } 4620 4621 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4622 pinfo.spinfo_assoc_id); 4623 if (!transport) 4624 return -EINVAL; 4625 4626 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4627 pinfo.spinfo_state = transport->state; 4628 pinfo.spinfo_cwnd = transport->cwnd; 4629 pinfo.spinfo_srtt = transport->srtt; 4630 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4631 pinfo.spinfo_mtu = transport->pathmtu; 4632 4633 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4634 pinfo.spinfo_state = SCTP_ACTIVE; 4635 4636 if (put_user(len, optlen)) { 4637 retval = -EFAULT; 4638 goto out; 4639 } 4640 4641 if (copy_to_user(optval, &pinfo, len)) { 4642 retval = -EFAULT; 4643 goto out; 4644 } 4645 4646 out: 4647 return retval; 4648 } 4649 4650 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4651 * 4652 * This option is a on/off flag. If enabled no SCTP message 4653 * fragmentation will be performed. Instead if a message being sent 4654 * exceeds the current PMTU size, the message will NOT be sent and 4655 * instead a error will be indicated to the user. 4656 */ 4657 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4658 char __user *optval, int __user *optlen) 4659 { 4660 int val; 4661 4662 if (len < sizeof(int)) 4663 return -EINVAL; 4664 4665 len = sizeof(int); 4666 val = (sctp_sk(sk)->disable_fragments == 1); 4667 if (put_user(len, optlen)) 4668 return -EFAULT; 4669 if (copy_to_user(optval, &val, len)) 4670 return -EFAULT; 4671 return 0; 4672 } 4673 4674 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4675 * 4676 * This socket option is used to specify various notifications and 4677 * ancillary data the user wishes to receive. 4678 */ 4679 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4680 int __user *optlen) 4681 { 4682 if (len <= 0) 4683 return -EINVAL; 4684 if (len > sizeof(struct sctp_event_subscribe)) 4685 len = sizeof(struct sctp_event_subscribe); 4686 if (put_user(len, optlen)) 4687 return -EFAULT; 4688 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4689 return -EFAULT; 4690 return 0; 4691 } 4692 4693 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4694 * 4695 * This socket option is applicable to the UDP-style socket only. When 4696 * set it will cause associations that are idle for more than the 4697 * specified number of seconds to automatically close. An association 4698 * being idle is defined an association that has NOT sent or received 4699 * user data. The special value of '0' indicates that no automatic 4700 * close of any associations should be performed. The option expects an 4701 * integer defining the number of seconds of idle time before an 4702 * association is closed. 4703 */ 4704 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4705 { 4706 /* Applicable to UDP-style socket only */ 4707 if (sctp_style(sk, TCP)) 4708 return -EOPNOTSUPP; 4709 if (len < sizeof(int)) 4710 return -EINVAL; 4711 len = sizeof(int); 4712 if (put_user(len, optlen)) 4713 return -EFAULT; 4714 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4715 return -EFAULT; 4716 return 0; 4717 } 4718 4719 /* Helper routine to branch off an association to a new socket. */ 4720 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4721 { 4722 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4723 struct sctp_sock *sp = sctp_sk(sk); 4724 struct socket *sock; 4725 int err = 0; 4726 4727 if (!asoc) 4728 return -EINVAL; 4729 4730 /* An association cannot be branched off from an already peeled-off 4731 * socket, nor is this supported for tcp style sockets. 4732 */ 4733 if (!sctp_style(sk, UDP)) 4734 return -EINVAL; 4735 4736 /* Create a new socket. */ 4737 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4738 if (err < 0) 4739 return err; 4740 4741 sctp_copy_sock(sock->sk, sk, asoc); 4742 4743 /* Make peeled-off sockets more like 1-1 accepted sockets. 4744 * Set the daddr and initialize id to something more random 4745 */ 4746 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4747 4748 /* Populate the fields of the newsk from the oldsk and migrate the 4749 * asoc to the newsk. 4750 */ 4751 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4752 4753 *sockp = sock; 4754 4755 return err; 4756 } 4757 EXPORT_SYMBOL(sctp_do_peeloff); 4758 4759 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4760 { 4761 sctp_peeloff_arg_t peeloff; 4762 struct socket *newsock; 4763 struct file *newfile; 4764 int retval = 0; 4765 4766 if (len < sizeof(sctp_peeloff_arg_t)) 4767 return -EINVAL; 4768 len = sizeof(sctp_peeloff_arg_t); 4769 if (copy_from_user(&peeloff, optval, len)) 4770 return -EFAULT; 4771 4772 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4773 if (retval < 0) 4774 goto out; 4775 4776 /* Map the socket to an unused fd that can be returned to the user. */ 4777 retval = get_unused_fd_flags(0); 4778 if (retval < 0) { 4779 sock_release(newsock); 4780 goto out; 4781 } 4782 4783 newfile = sock_alloc_file(newsock, 0, NULL); 4784 if (IS_ERR(newfile)) { 4785 put_unused_fd(retval); 4786 sock_release(newsock); 4787 return PTR_ERR(newfile); 4788 } 4789 4790 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4791 retval); 4792 4793 /* Return the fd mapped to the new socket. */ 4794 if (put_user(len, optlen)) { 4795 fput(newfile); 4796 put_unused_fd(retval); 4797 return -EFAULT; 4798 } 4799 peeloff.sd = retval; 4800 if (copy_to_user(optval, &peeloff, len)) { 4801 fput(newfile); 4802 put_unused_fd(retval); 4803 return -EFAULT; 4804 } 4805 fd_install(retval, newfile); 4806 out: 4807 return retval; 4808 } 4809 4810 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4811 * 4812 * Applications can enable or disable heartbeats for any peer address of 4813 * an association, modify an address's heartbeat interval, force a 4814 * heartbeat to be sent immediately, and adjust the address's maximum 4815 * number of retransmissions sent before an address is considered 4816 * unreachable. The following structure is used to access and modify an 4817 * address's parameters: 4818 * 4819 * struct sctp_paddrparams { 4820 * sctp_assoc_t spp_assoc_id; 4821 * struct sockaddr_storage spp_address; 4822 * uint32_t spp_hbinterval; 4823 * uint16_t spp_pathmaxrxt; 4824 * uint32_t spp_pathmtu; 4825 * uint32_t spp_sackdelay; 4826 * uint32_t spp_flags; 4827 * }; 4828 * 4829 * spp_assoc_id - (one-to-many style socket) This is filled in the 4830 * application, and identifies the association for 4831 * this query. 4832 * spp_address - This specifies which address is of interest. 4833 * spp_hbinterval - This contains the value of the heartbeat interval, 4834 * in milliseconds. If a value of zero 4835 * is present in this field then no changes are to 4836 * be made to this parameter. 4837 * spp_pathmaxrxt - This contains the maximum number of 4838 * retransmissions before this address shall be 4839 * considered unreachable. If a value of zero 4840 * is present in this field then no changes are to 4841 * be made to this parameter. 4842 * spp_pathmtu - When Path MTU discovery is disabled the value 4843 * specified here will be the "fixed" path mtu. 4844 * Note that if the spp_address field is empty 4845 * then all associations on this address will 4846 * have this fixed path mtu set upon them. 4847 * 4848 * spp_sackdelay - When delayed sack is enabled, this value specifies 4849 * the number of milliseconds that sacks will be delayed 4850 * for. This value will apply to all addresses of an 4851 * association if the spp_address field is empty. Note 4852 * also, that if delayed sack is enabled and this 4853 * value is set to 0, no change is made to the last 4854 * recorded delayed sack timer value. 4855 * 4856 * spp_flags - These flags are used to control various features 4857 * on an association. The flag field may contain 4858 * zero or more of the following options. 4859 * 4860 * SPP_HB_ENABLE - Enable heartbeats on the 4861 * specified address. Note that if the address 4862 * field is empty all addresses for the association 4863 * have heartbeats enabled upon them. 4864 * 4865 * SPP_HB_DISABLE - Disable heartbeats on the 4866 * speicifed address. Note that if the address 4867 * field is empty all addresses for the association 4868 * will have their heartbeats disabled. Note also 4869 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4870 * mutually exclusive, only one of these two should 4871 * be specified. Enabling both fields will have 4872 * undetermined results. 4873 * 4874 * SPP_HB_DEMAND - Request a user initiated heartbeat 4875 * to be made immediately. 4876 * 4877 * SPP_PMTUD_ENABLE - This field will enable PMTU 4878 * discovery upon the specified address. Note that 4879 * if the address feild is empty then all addresses 4880 * on the association are effected. 4881 * 4882 * SPP_PMTUD_DISABLE - This field will disable PMTU 4883 * discovery upon the specified address. Note that 4884 * if the address feild is empty then all addresses 4885 * on the association are effected. Not also that 4886 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4887 * exclusive. Enabling both will have undetermined 4888 * results. 4889 * 4890 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4891 * on delayed sack. The time specified in spp_sackdelay 4892 * is used to specify the sack delay for this address. Note 4893 * that if spp_address is empty then all addresses will 4894 * enable delayed sack and take on the sack delay 4895 * value specified in spp_sackdelay. 4896 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4897 * off delayed sack. If the spp_address field is blank then 4898 * delayed sack is disabled for the entire association. Note 4899 * also that this field is mutually exclusive to 4900 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4901 * results. 4902 */ 4903 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4904 char __user *optval, int __user *optlen) 4905 { 4906 struct sctp_paddrparams params; 4907 struct sctp_transport *trans = NULL; 4908 struct sctp_association *asoc = NULL; 4909 struct sctp_sock *sp = sctp_sk(sk); 4910 4911 if (len < sizeof(struct sctp_paddrparams)) 4912 return -EINVAL; 4913 len = sizeof(struct sctp_paddrparams); 4914 if (copy_from_user(¶ms, optval, len)) 4915 return -EFAULT; 4916 4917 /* If an address other than INADDR_ANY is specified, and 4918 * no transport is found, then the request is invalid. 4919 */ 4920 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4921 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4922 params.spp_assoc_id); 4923 if (!trans) { 4924 pr_debug("%s: failed no transport\n", __func__); 4925 return -EINVAL; 4926 } 4927 } 4928 4929 /* Get association, if assoc_id != 0 and the socket is a one 4930 * to many style socket, and an association was not found, then 4931 * the id was invalid. 4932 */ 4933 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4934 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4935 pr_debug("%s: failed no association\n", __func__); 4936 return -EINVAL; 4937 } 4938 4939 if (trans) { 4940 /* Fetch transport values. */ 4941 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4942 params.spp_pathmtu = trans->pathmtu; 4943 params.spp_pathmaxrxt = trans->pathmaxrxt; 4944 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4945 4946 /*draft-11 doesn't say what to return in spp_flags*/ 4947 params.spp_flags = trans->param_flags; 4948 } else if (asoc) { 4949 /* Fetch association values. */ 4950 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4951 params.spp_pathmtu = asoc->pathmtu; 4952 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4953 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4954 4955 /*draft-11 doesn't say what to return in spp_flags*/ 4956 params.spp_flags = asoc->param_flags; 4957 } else { 4958 /* Fetch socket values. */ 4959 params.spp_hbinterval = sp->hbinterval; 4960 params.spp_pathmtu = sp->pathmtu; 4961 params.spp_sackdelay = sp->sackdelay; 4962 params.spp_pathmaxrxt = sp->pathmaxrxt; 4963 4964 /*draft-11 doesn't say what to return in spp_flags*/ 4965 params.spp_flags = sp->param_flags; 4966 } 4967 4968 if (copy_to_user(optval, ¶ms, len)) 4969 return -EFAULT; 4970 4971 if (put_user(len, optlen)) 4972 return -EFAULT; 4973 4974 return 0; 4975 } 4976 4977 /* 4978 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4979 * 4980 * This option will effect the way delayed acks are performed. This 4981 * option allows you to get or set the delayed ack time, in 4982 * milliseconds. It also allows changing the delayed ack frequency. 4983 * Changing the frequency to 1 disables the delayed sack algorithm. If 4984 * the assoc_id is 0, then this sets or gets the endpoints default 4985 * values. If the assoc_id field is non-zero, then the set or get 4986 * effects the specified association for the one to many model (the 4987 * assoc_id field is ignored by the one to one model). Note that if 4988 * sack_delay or sack_freq are 0 when setting this option, then the 4989 * current values will remain unchanged. 4990 * 4991 * struct sctp_sack_info { 4992 * sctp_assoc_t sack_assoc_id; 4993 * uint32_t sack_delay; 4994 * uint32_t sack_freq; 4995 * }; 4996 * 4997 * sack_assoc_id - This parameter, indicates which association the user 4998 * is performing an action upon. Note that if this field's value is 4999 * zero then the endpoints default value is changed (effecting future 5000 * associations only). 5001 * 5002 * sack_delay - This parameter contains the number of milliseconds that 5003 * the user is requesting the delayed ACK timer be set to. Note that 5004 * this value is defined in the standard to be between 200 and 500 5005 * milliseconds. 5006 * 5007 * sack_freq - This parameter contains the number of packets that must 5008 * be received before a sack is sent without waiting for the delay 5009 * timer to expire. The default value for this is 2, setting this 5010 * value to 1 will disable the delayed sack algorithm. 5011 */ 5012 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5013 char __user *optval, 5014 int __user *optlen) 5015 { 5016 struct sctp_sack_info params; 5017 struct sctp_association *asoc = NULL; 5018 struct sctp_sock *sp = sctp_sk(sk); 5019 5020 if (len >= sizeof(struct sctp_sack_info)) { 5021 len = sizeof(struct sctp_sack_info); 5022 5023 if (copy_from_user(¶ms, optval, len)) 5024 return -EFAULT; 5025 } else if (len == sizeof(struct sctp_assoc_value)) { 5026 pr_warn_ratelimited(DEPRECATED 5027 "%s (pid %d) " 5028 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5029 "Use struct sctp_sack_info instead\n", 5030 current->comm, task_pid_nr(current)); 5031 if (copy_from_user(¶ms, optval, len)) 5032 return -EFAULT; 5033 } else 5034 return -EINVAL; 5035 5036 /* Get association, if sack_assoc_id != 0 and the socket is a one 5037 * to many style socket, and an association was not found, then 5038 * the id was invalid. 5039 */ 5040 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5041 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5042 return -EINVAL; 5043 5044 if (asoc) { 5045 /* Fetch association values. */ 5046 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5047 params.sack_delay = jiffies_to_msecs( 5048 asoc->sackdelay); 5049 params.sack_freq = asoc->sackfreq; 5050 5051 } else { 5052 params.sack_delay = 0; 5053 params.sack_freq = 1; 5054 } 5055 } else { 5056 /* Fetch socket values. */ 5057 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5058 params.sack_delay = sp->sackdelay; 5059 params.sack_freq = sp->sackfreq; 5060 } else { 5061 params.sack_delay = 0; 5062 params.sack_freq = 1; 5063 } 5064 } 5065 5066 if (copy_to_user(optval, ¶ms, len)) 5067 return -EFAULT; 5068 5069 if (put_user(len, optlen)) 5070 return -EFAULT; 5071 5072 return 0; 5073 } 5074 5075 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5076 * 5077 * Applications can specify protocol parameters for the default association 5078 * initialization. The option name argument to setsockopt() and getsockopt() 5079 * is SCTP_INITMSG. 5080 * 5081 * Setting initialization parameters is effective only on an unconnected 5082 * socket (for UDP-style sockets only future associations are effected 5083 * by the change). With TCP-style sockets, this option is inherited by 5084 * sockets derived from a listener socket. 5085 */ 5086 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5087 { 5088 if (len < sizeof(struct sctp_initmsg)) 5089 return -EINVAL; 5090 len = sizeof(struct sctp_initmsg); 5091 if (put_user(len, optlen)) 5092 return -EFAULT; 5093 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5094 return -EFAULT; 5095 return 0; 5096 } 5097 5098 5099 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5100 char __user *optval, int __user *optlen) 5101 { 5102 struct sctp_association *asoc; 5103 int cnt = 0; 5104 struct sctp_getaddrs getaddrs; 5105 struct sctp_transport *from; 5106 void __user *to; 5107 union sctp_addr temp; 5108 struct sctp_sock *sp = sctp_sk(sk); 5109 int addrlen; 5110 size_t space_left; 5111 int bytes_copied; 5112 5113 if (len < sizeof(struct sctp_getaddrs)) 5114 return -EINVAL; 5115 5116 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5117 return -EFAULT; 5118 5119 /* For UDP-style sockets, id specifies the association to query. */ 5120 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5121 if (!asoc) 5122 return -EINVAL; 5123 5124 to = optval + offsetof(struct sctp_getaddrs, addrs); 5125 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5126 5127 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5128 transports) { 5129 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5130 addrlen = sctp_get_pf_specific(sk->sk_family) 5131 ->addr_to_user(sp, &temp); 5132 if (space_left < addrlen) 5133 return -ENOMEM; 5134 if (copy_to_user(to, &temp, addrlen)) 5135 return -EFAULT; 5136 to += addrlen; 5137 cnt++; 5138 space_left -= addrlen; 5139 } 5140 5141 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5142 return -EFAULT; 5143 bytes_copied = ((char __user *)to) - optval; 5144 if (put_user(bytes_copied, optlen)) 5145 return -EFAULT; 5146 5147 return 0; 5148 } 5149 5150 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5151 size_t space_left, int *bytes_copied) 5152 { 5153 struct sctp_sockaddr_entry *addr; 5154 union sctp_addr temp; 5155 int cnt = 0; 5156 int addrlen; 5157 struct net *net = sock_net(sk); 5158 5159 rcu_read_lock(); 5160 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5161 if (!addr->valid) 5162 continue; 5163 5164 if ((PF_INET == sk->sk_family) && 5165 (AF_INET6 == addr->a.sa.sa_family)) 5166 continue; 5167 if ((PF_INET6 == sk->sk_family) && 5168 inet_v6_ipv6only(sk) && 5169 (AF_INET == addr->a.sa.sa_family)) 5170 continue; 5171 memcpy(&temp, &addr->a, sizeof(temp)); 5172 if (!temp.v4.sin_port) 5173 temp.v4.sin_port = htons(port); 5174 5175 addrlen = sctp_get_pf_specific(sk->sk_family) 5176 ->addr_to_user(sctp_sk(sk), &temp); 5177 5178 if (space_left < addrlen) { 5179 cnt = -ENOMEM; 5180 break; 5181 } 5182 memcpy(to, &temp, addrlen); 5183 5184 to += addrlen; 5185 cnt++; 5186 space_left -= addrlen; 5187 *bytes_copied += addrlen; 5188 } 5189 rcu_read_unlock(); 5190 5191 return cnt; 5192 } 5193 5194 5195 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5196 char __user *optval, int __user *optlen) 5197 { 5198 struct sctp_bind_addr *bp; 5199 struct sctp_association *asoc; 5200 int cnt = 0; 5201 struct sctp_getaddrs getaddrs; 5202 struct sctp_sockaddr_entry *addr; 5203 void __user *to; 5204 union sctp_addr temp; 5205 struct sctp_sock *sp = sctp_sk(sk); 5206 int addrlen; 5207 int err = 0; 5208 size_t space_left; 5209 int bytes_copied = 0; 5210 void *addrs; 5211 void *buf; 5212 5213 if (len < sizeof(struct sctp_getaddrs)) 5214 return -EINVAL; 5215 5216 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5217 return -EFAULT; 5218 5219 /* 5220 * For UDP-style sockets, id specifies the association to query. 5221 * If the id field is set to the value '0' then the locally bound 5222 * addresses are returned without regard to any particular 5223 * association. 5224 */ 5225 if (0 == getaddrs.assoc_id) { 5226 bp = &sctp_sk(sk)->ep->base.bind_addr; 5227 } else { 5228 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5229 if (!asoc) 5230 return -EINVAL; 5231 bp = &asoc->base.bind_addr; 5232 } 5233 5234 to = optval + offsetof(struct sctp_getaddrs, addrs); 5235 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5236 5237 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5238 if (!addrs) 5239 return -ENOMEM; 5240 5241 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5242 * addresses from the global local address list. 5243 */ 5244 if (sctp_list_single_entry(&bp->address_list)) { 5245 addr = list_entry(bp->address_list.next, 5246 struct sctp_sockaddr_entry, list); 5247 if (sctp_is_any(sk, &addr->a)) { 5248 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5249 space_left, &bytes_copied); 5250 if (cnt < 0) { 5251 err = cnt; 5252 goto out; 5253 } 5254 goto copy_getaddrs; 5255 } 5256 } 5257 5258 buf = addrs; 5259 /* Protection on the bound address list is not needed since 5260 * in the socket option context we hold a socket lock and 5261 * thus the bound address list can't change. 5262 */ 5263 list_for_each_entry(addr, &bp->address_list, list) { 5264 memcpy(&temp, &addr->a, sizeof(temp)); 5265 addrlen = sctp_get_pf_specific(sk->sk_family) 5266 ->addr_to_user(sp, &temp); 5267 if (space_left < addrlen) { 5268 err = -ENOMEM; /*fixme: right error?*/ 5269 goto out; 5270 } 5271 memcpy(buf, &temp, addrlen); 5272 buf += addrlen; 5273 bytes_copied += addrlen; 5274 cnt++; 5275 space_left -= addrlen; 5276 } 5277 5278 copy_getaddrs: 5279 if (copy_to_user(to, addrs, bytes_copied)) { 5280 err = -EFAULT; 5281 goto out; 5282 } 5283 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5284 err = -EFAULT; 5285 goto out; 5286 } 5287 if (put_user(bytes_copied, optlen)) 5288 err = -EFAULT; 5289 out: 5290 kfree(addrs); 5291 return err; 5292 } 5293 5294 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5295 * 5296 * Requests that the local SCTP stack use the enclosed peer address as 5297 * the association primary. The enclosed address must be one of the 5298 * association peer's addresses. 5299 */ 5300 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5301 char __user *optval, int __user *optlen) 5302 { 5303 struct sctp_prim prim; 5304 struct sctp_association *asoc; 5305 struct sctp_sock *sp = sctp_sk(sk); 5306 5307 if (len < sizeof(struct sctp_prim)) 5308 return -EINVAL; 5309 5310 len = sizeof(struct sctp_prim); 5311 5312 if (copy_from_user(&prim, optval, len)) 5313 return -EFAULT; 5314 5315 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5316 if (!asoc) 5317 return -EINVAL; 5318 5319 if (!asoc->peer.primary_path) 5320 return -ENOTCONN; 5321 5322 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5323 asoc->peer.primary_path->af_specific->sockaddr_len); 5324 5325 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5326 (union sctp_addr *)&prim.ssp_addr); 5327 5328 if (put_user(len, optlen)) 5329 return -EFAULT; 5330 if (copy_to_user(optval, &prim, len)) 5331 return -EFAULT; 5332 5333 return 0; 5334 } 5335 5336 /* 5337 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5338 * 5339 * Requests that the local endpoint set the specified Adaptation Layer 5340 * Indication parameter for all future INIT and INIT-ACK exchanges. 5341 */ 5342 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5343 char __user *optval, int __user *optlen) 5344 { 5345 struct sctp_setadaptation adaptation; 5346 5347 if (len < sizeof(struct sctp_setadaptation)) 5348 return -EINVAL; 5349 5350 len = sizeof(struct sctp_setadaptation); 5351 5352 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5353 5354 if (put_user(len, optlen)) 5355 return -EFAULT; 5356 if (copy_to_user(optval, &adaptation, len)) 5357 return -EFAULT; 5358 5359 return 0; 5360 } 5361 5362 /* 5363 * 5364 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5365 * 5366 * Applications that wish to use the sendto() system call may wish to 5367 * specify a default set of parameters that would normally be supplied 5368 * through the inclusion of ancillary data. This socket option allows 5369 * such an application to set the default sctp_sndrcvinfo structure. 5370 5371 5372 * The application that wishes to use this socket option simply passes 5373 * in to this call the sctp_sndrcvinfo structure defined in Section 5374 * 5.2.2) The input parameters accepted by this call include 5375 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5376 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5377 * to this call if the caller is using the UDP model. 5378 * 5379 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5380 */ 5381 static int sctp_getsockopt_default_send_param(struct sock *sk, 5382 int len, char __user *optval, 5383 int __user *optlen) 5384 { 5385 struct sctp_sock *sp = sctp_sk(sk); 5386 struct sctp_association *asoc; 5387 struct sctp_sndrcvinfo info; 5388 5389 if (len < sizeof(info)) 5390 return -EINVAL; 5391 5392 len = sizeof(info); 5393 5394 if (copy_from_user(&info, optval, len)) 5395 return -EFAULT; 5396 5397 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5398 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5399 return -EINVAL; 5400 if (asoc) { 5401 info.sinfo_stream = asoc->default_stream; 5402 info.sinfo_flags = asoc->default_flags; 5403 info.sinfo_ppid = asoc->default_ppid; 5404 info.sinfo_context = asoc->default_context; 5405 info.sinfo_timetolive = asoc->default_timetolive; 5406 } else { 5407 info.sinfo_stream = sp->default_stream; 5408 info.sinfo_flags = sp->default_flags; 5409 info.sinfo_ppid = sp->default_ppid; 5410 info.sinfo_context = sp->default_context; 5411 info.sinfo_timetolive = sp->default_timetolive; 5412 } 5413 5414 if (put_user(len, optlen)) 5415 return -EFAULT; 5416 if (copy_to_user(optval, &info, len)) 5417 return -EFAULT; 5418 5419 return 0; 5420 } 5421 5422 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5423 * (SCTP_DEFAULT_SNDINFO) 5424 */ 5425 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5426 char __user *optval, 5427 int __user *optlen) 5428 { 5429 struct sctp_sock *sp = sctp_sk(sk); 5430 struct sctp_association *asoc; 5431 struct sctp_sndinfo info; 5432 5433 if (len < sizeof(info)) 5434 return -EINVAL; 5435 5436 len = sizeof(info); 5437 5438 if (copy_from_user(&info, optval, len)) 5439 return -EFAULT; 5440 5441 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5442 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5443 return -EINVAL; 5444 if (asoc) { 5445 info.snd_sid = asoc->default_stream; 5446 info.snd_flags = asoc->default_flags; 5447 info.snd_ppid = asoc->default_ppid; 5448 info.snd_context = asoc->default_context; 5449 } else { 5450 info.snd_sid = sp->default_stream; 5451 info.snd_flags = sp->default_flags; 5452 info.snd_ppid = sp->default_ppid; 5453 info.snd_context = sp->default_context; 5454 } 5455 5456 if (put_user(len, optlen)) 5457 return -EFAULT; 5458 if (copy_to_user(optval, &info, len)) 5459 return -EFAULT; 5460 5461 return 0; 5462 } 5463 5464 /* 5465 * 5466 * 7.1.5 SCTP_NODELAY 5467 * 5468 * Turn on/off any Nagle-like algorithm. This means that packets are 5469 * generally sent as soon as possible and no unnecessary delays are 5470 * introduced, at the cost of more packets in the network. Expects an 5471 * integer boolean flag. 5472 */ 5473 5474 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5475 char __user *optval, int __user *optlen) 5476 { 5477 int val; 5478 5479 if (len < sizeof(int)) 5480 return -EINVAL; 5481 5482 len = sizeof(int); 5483 val = (sctp_sk(sk)->nodelay == 1); 5484 if (put_user(len, optlen)) 5485 return -EFAULT; 5486 if (copy_to_user(optval, &val, len)) 5487 return -EFAULT; 5488 return 0; 5489 } 5490 5491 /* 5492 * 5493 * 7.1.1 SCTP_RTOINFO 5494 * 5495 * The protocol parameters used to initialize and bound retransmission 5496 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5497 * and modify these parameters. 5498 * All parameters are time values, in milliseconds. A value of 0, when 5499 * modifying the parameters, indicates that the current value should not 5500 * be changed. 5501 * 5502 */ 5503 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5504 char __user *optval, 5505 int __user *optlen) { 5506 struct sctp_rtoinfo rtoinfo; 5507 struct sctp_association *asoc; 5508 5509 if (len < sizeof (struct sctp_rtoinfo)) 5510 return -EINVAL; 5511 5512 len = sizeof(struct sctp_rtoinfo); 5513 5514 if (copy_from_user(&rtoinfo, optval, len)) 5515 return -EFAULT; 5516 5517 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5518 5519 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5520 return -EINVAL; 5521 5522 /* Values corresponding to the specific association. */ 5523 if (asoc) { 5524 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5525 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5526 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5527 } else { 5528 /* Values corresponding to the endpoint. */ 5529 struct sctp_sock *sp = sctp_sk(sk); 5530 5531 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5532 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5533 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5534 } 5535 5536 if (put_user(len, optlen)) 5537 return -EFAULT; 5538 5539 if (copy_to_user(optval, &rtoinfo, len)) 5540 return -EFAULT; 5541 5542 return 0; 5543 } 5544 5545 /* 5546 * 5547 * 7.1.2 SCTP_ASSOCINFO 5548 * 5549 * This option is used to tune the maximum retransmission attempts 5550 * of the association. 5551 * Returns an error if the new association retransmission value is 5552 * greater than the sum of the retransmission value of the peer. 5553 * See [SCTP] for more information. 5554 * 5555 */ 5556 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5557 char __user *optval, 5558 int __user *optlen) 5559 { 5560 5561 struct sctp_assocparams assocparams; 5562 struct sctp_association *asoc; 5563 struct list_head *pos; 5564 int cnt = 0; 5565 5566 if (len < sizeof (struct sctp_assocparams)) 5567 return -EINVAL; 5568 5569 len = sizeof(struct sctp_assocparams); 5570 5571 if (copy_from_user(&assocparams, optval, len)) 5572 return -EFAULT; 5573 5574 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5575 5576 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5577 return -EINVAL; 5578 5579 /* Values correspoinding to the specific association */ 5580 if (asoc) { 5581 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5582 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5583 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5584 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5585 5586 list_for_each(pos, &asoc->peer.transport_addr_list) { 5587 cnt++; 5588 } 5589 5590 assocparams.sasoc_number_peer_destinations = cnt; 5591 } else { 5592 /* Values corresponding to the endpoint */ 5593 struct sctp_sock *sp = sctp_sk(sk); 5594 5595 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5596 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5597 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5598 assocparams.sasoc_cookie_life = 5599 sp->assocparams.sasoc_cookie_life; 5600 assocparams.sasoc_number_peer_destinations = 5601 sp->assocparams. 5602 sasoc_number_peer_destinations; 5603 } 5604 5605 if (put_user(len, optlen)) 5606 return -EFAULT; 5607 5608 if (copy_to_user(optval, &assocparams, len)) 5609 return -EFAULT; 5610 5611 return 0; 5612 } 5613 5614 /* 5615 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5616 * 5617 * This socket option is a boolean flag which turns on or off mapped V4 5618 * addresses. If this option is turned on and the socket is type 5619 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5620 * If this option is turned off, then no mapping will be done of V4 5621 * addresses and a user will receive both PF_INET6 and PF_INET type 5622 * addresses on the socket. 5623 */ 5624 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5625 char __user *optval, int __user *optlen) 5626 { 5627 int val; 5628 struct sctp_sock *sp = sctp_sk(sk); 5629 5630 if (len < sizeof(int)) 5631 return -EINVAL; 5632 5633 len = sizeof(int); 5634 val = sp->v4mapped; 5635 if (put_user(len, optlen)) 5636 return -EFAULT; 5637 if (copy_to_user(optval, &val, len)) 5638 return -EFAULT; 5639 5640 return 0; 5641 } 5642 5643 /* 5644 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5645 * (chapter and verse is quoted at sctp_setsockopt_context()) 5646 */ 5647 static int sctp_getsockopt_context(struct sock *sk, int len, 5648 char __user *optval, int __user *optlen) 5649 { 5650 struct sctp_assoc_value params; 5651 struct sctp_sock *sp; 5652 struct sctp_association *asoc; 5653 5654 if (len < sizeof(struct sctp_assoc_value)) 5655 return -EINVAL; 5656 5657 len = sizeof(struct sctp_assoc_value); 5658 5659 if (copy_from_user(¶ms, optval, len)) 5660 return -EFAULT; 5661 5662 sp = sctp_sk(sk); 5663 5664 if (params.assoc_id != 0) { 5665 asoc = sctp_id2assoc(sk, params.assoc_id); 5666 if (!asoc) 5667 return -EINVAL; 5668 params.assoc_value = asoc->default_rcv_context; 5669 } else { 5670 params.assoc_value = sp->default_rcv_context; 5671 } 5672 5673 if (put_user(len, optlen)) 5674 return -EFAULT; 5675 if (copy_to_user(optval, ¶ms, len)) 5676 return -EFAULT; 5677 5678 return 0; 5679 } 5680 5681 /* 5682 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5683 * This option will get or set the maximum size to put in any outgoing 5684 * SCTP DATA chunk. If a message is larger than this size it will be 5685 * fragmented by SCTP into the specified size. Note that the underlying 5686 * SCTP implementation may fragment into smaller sized chunks when the 5687 * PMTU of the underlying association is smaller than the value set by 5688 * the user. The default value for this option is '0' which indicates 5689 * the user is NOT limiting fragmentation and only the PMTU will effect 5690 * SCTP's choice of DATA chunk size. Note also that values set larger 5691 * than the maximum size of an IP datagram will effectively let SCTP 5692 * control fragmentation (i.e. the same as setting this option to 0). 5693 * 5694 * The following structure is used to access and modify this parameter: 5695 * 5696 * struct sctp_assoc_value { 5697 * sctp_assoc_t assoc_id; 5698 * uint32_t assoc_value; 5699 * }; 5700 * 5701 * assoc_id: This parameter is ignored for one-to-one style sockets. 5702 * For one-to-many style sockets this parameter indicates which 5703 * association the user is performing an action upon. Note that if 5704 * this field's value is zero then the endpoints default value is 5705 * changed (effecting future associations only). 5706 * assoc_value: This parameter specifies the maximum size in bytes. 5707 */ 5708 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5709 char __user *optval, int __user *optlen) 5710 { 5711 struct sctp_assoc_value params; 5712 struct sctp_association *asoc; 5713 5714 if (len == sizeof(int)) { 5715 pr_warn_ratelimited(DEPRECATED 5716 "%s (pid %d) " 5717 "Use of int in maxseg socket option.\n" 5718 "Use struct sctp_assoc_value instead\n", 5719 current->comm, task_pid_nr(current)); 5720 params.assoc_id = 0; 5721 } else if (len >= sizeof(struct sctp_assoc_value)) { 5722 len = sizeof(struct sctp_assoc_value); 5723 if (copy_from_user(¶ms, optval, sizeof(params))) 5724 return -EFAULT; 5725 } else 5726 return -EINVAL; 5727 5728 asoc = sctp_id2assoc(sk, params.assoc_id); 5729 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5730 return -EINVAL; 5731 5732 if (asoc) 5733 params.assoc_value = asoc->frag_point; 5734 else 5735 params.assoc_value = sctp_sk(sk)->user_frag; 5736 5737 if (put_user(len, optlen)) 5738 return -EFAULT; 5739 if (len == sizeof(int)) { 5740 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5741 return -EFAULT; 5742 } else { 5743 if (copy_to_user(optval, ¶ms, len)) 5744 return -EFAULT; 5745 } 5746 5747 return 0; 5748 } 5749 5750 /* 5751 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5752 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5753 */ 5754 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5755 char __user *optval, int __user *optlen) 5756 { 5757 int val; 5758 5759 if (len < sizeof(int)) 5760 return -EINVAL; 5761 5762 len = sizeof(int); 5763 5764 val = sctp_sk(sk)->frag_interleave; 5765 if (put_user(len, optlen)) 5766 return -EFAULT; 5767 if (copy_to_user(optval, &val, len)) 5768 return -EFAULT; 5769 5770 return 0; 5771 } 5772 5773 /* 5774 * 7.1.25. Set or Get the sctp partial delivery point 5775 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5776 */ 5777 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5778 char __user *optval, 5779 int __user *optlen) 5780 { 5781 u32 val; 5782 5783 if (len < sizeof(u32)) 5784 return -EINVAL; 5785 5786 len = sizeof(u32); 5787 5788 val = sctp_sk(sk)->pd_point; 5789 if (put_user(len, optlen)) 5790 return -EFAULT; 5791 if (copy_to_user(optval, &val, len)) 5792 return -EFAULT; 5793 5794 return 0; 5795 } 5796 5797 /* 5798 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5799 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5800 */ 5801 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5802 char __user *optval, 5803 int __user *optlen) 5804 { 5805 struct sctp_assoc_value params; 5806 struct sctp_sock *sp; 5807 struct sctp_association *asoc; 5808 5809 if (len == sizeof(int)) { 5810 pr_warn_ratelimited(DEPRECATED 5811 "%s (pid %d) " 5812 "Use of int in max_burst socket option.\n" 5813 "Use struct sctp_assoc_value instead\n", 5814 current->comm, task_pid_nr(current)); 5815 params.assoc_id = 0; 5816 } else if (len >= sizeof(struct sctp_assoc_value)) { 5817 len = sizeof(struct sctp_assoc_value); 5818 if (copy_from_user(¶ms, optval, len)) 5819 return -EFAULT; 5820 } else 5821 return -EINVAL; 5822 5823 sp = sctp_sk(sk); 5824 5825 if (params.assoc_id != 0) { 5826 asoc = sctp_id2assoc(sk, params.assoc_id); 5827 if (!asoc) 5828 return -EINVAL; 5829 params.assoc_value = asoc->max_burst; 5830 } else 5831 params.assoc_value = sp->max_burst; 5832 5833 if (len == sizeof(int)) { 5834 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5835 return -EFAULT; 5836 } else { 5837 if (copy_to_user(optval, ¶ms, len)) 5838 return -EFAULT; 5839 } 5840 5841 return 0; 5842 5843 } 5844 5845 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5846 char __user *optval, int __user *optlen) 5847 { 5848 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5849 struct sctp_hmacalgo __user *p = (void __user *)optval; 5850 struct sctp_hmac_algo_param *hmacs; 5851 __u16 data_len = 0; 5852 u32 num_idents; 5853 int i; 5854 5855 if (!ep->auth_enable) 5856 return -EACCES; 5857 5858 hmacs = ep->auth_hmacs_list; 5859 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5860 5861 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5862 return -EINVAL; 5863 5864 len = sizeof(struct sctp_hmacalgo) + data_len; 5865 num_idents = data_len / sizeof(u16); 5866 5867 if (put_user(len, optlen)) 5868 return -EFAULT; 5869 if (put_user(num_idents, &p->shmac_num_idents)) 5870 return -EFAULT; 5871 for (i = 0; i < num_idents; i++) { 5872 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 5873 5874 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 5875 return -EFAULT; 5876 } 5877 return 0; 5878 } 5879 5880 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5881 char __user *optval, int __user *optlen) 5882 { 5883 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5884 struct sctp_authkeyid val; 5885 struct sctp_association *asoc; 5886 5887 if (!ep->auth_enable) 5888 return -EACCES; 5889 5890 if (len < sizeof(struct sctp_authkeyid)) 5891 return -EINVAL; 5892 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5893 return -EFAULT; 5894 5895 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5896 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5897 return -EINVAL; 5898 5899 if (asoc) 5900 val.scact_keynumber = asoc->active_key_id; 5901 else 5902 val.scact_keynumber = ep->active_key_id; 5903 5904 len = sizeof(struct sctp_authkeyid); 5905 if (put_user(len, optlen)) 5906 return -EFAULT; 5907 if (copy_to_user(optval, &val, len)) 5908 return -EFAULT; 5909 5910 return 0; 5911 } 5912 5913 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5914 char __user *optval, int __user *optlen) 5915 { 5916 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5917 struct sctp_authchunks __user *p = (void __user *)optval; 5918 struct sctp_authchunks val; 5919 struct sctp_association *asoc; 5920 struct sctp_chunks_param *ch; 5921 u32 num_chunks = 0; 5922 char __user *to; 5923 5924 if (!ep->auth_enable) 5925 return -EACCES; 5926 5927 if (len < sizeof(struct sctp_authchunks)) 5928 return -EINVAL; 5929 5930 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5931 return -EFAULT; 5932 5933 to = p->gauth_chunks; 5934 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5935 if (!asoc) 5936 return -EINVAL; 5937 5938 ch = asoc->peer.peer_chunks; 5939 if (!ch) 5940 goto num; 5941 5942 /* See if the user provided enough room for all the data */ 5943 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5944 if (len < num_chunks) 5945 return -EINVAL; 5946 5947 if (copy_to_user(to, ch->chunks, num_chunks)) 5948 return -EFAULT; 5949 num: 5950 len = sizeof(struct sctp_authchunks) + num_chunks; 5951 if (put_user(len, optlen)) 5952 return -EFAULT; 5953 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5954 return -EFAULT; 5955 return 0; 5956 } 5957 5958 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5959 char __user *optval, int __user *optlen) 5960 { 5961 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5962 struct sctp_authchunks __user *p = (void __user *)optval; 5963 struct sctp_authchunks val; 5964 struct sctp_association *asoc; 5965 struct sctp_chunks_param *ch; 5966 u32 num_chunks = 0; 5967 char __user *to; 5968 5969 if (!ep->auth_enable) 5970 return -EACCES; 5971 5972 if (len < sizeof(struct sctp_authchunks)) 5973 return -EINVAL; 5974 5975 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5976 return -EFAULT; 5977 5978 to = p->gauth_chunks; 5979 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5980 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5981 return -EINVAL; 5982 5983 if (asoc) 5984 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 5985 else 5986 ch = ep->auth_chunk_list; 5987 5988 if (!ch) 5989 goto num; 5990 5991 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5992 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5993 return -EINVAL; 5994 5995 if (copy_to_user(to, ch->chunks, num_chunks)) 5996 return -EFAULT; 5997 num: 5998 len = sizeof(struct sctp_authchunks) + num_chunks; 5999 if (put_user(len, optlen)) 6000 return -EFAULT; 6001 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6002 return -EFAULT; 6003 6004 return 0; 6005 } 6006 6007 /* 6008 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6009 * This option gets the current number of associations that are attached 6010 * to a one-to-many style socket. The option value is an uint32_t. 6011 */ 6012 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6013 char __user *optval, int __user *optlen) 6014 { 6015 struct sctp_sock *sp = sctp_sk(sk); 6016 struct sctp_association *asoc; 6017 u32 val = 0; 6018 6019 if (sctp_style(sk, TCP)) 6020 return -EOPNOTSUPP; 6021 6022 if (len < sizeof(u32)) 6023 return -EINVAL; 6024 6025 len = sizeof(u32); 6026 6027 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6028 val++; 6029 } 6030 6031 if (put_user(len, optlen)) 6032 return -EFAULT; 6033 if (copy_to_user(optval, &val, len)) 6034 return -EFAULT; 6035 6036 return 0; 6037 } 6038 6039 /* 6040 * 8.1.23 SCTP_AUTO_ASCONF 6041 * See the corresponding setsockopt entry as description 6042 */ 6043 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6044 char __user *optval, int __user *optlen) 6045 { 6046 int val = 0; 6047 6048 if (len < sizeof(int)) 6049 return -EINVAL; 6050 6051 len = sizeof(int); 6052 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6053 val = 1; 6054 if (put_user(len, optlen)) 6055 return -EFAULT; 6056 if (copy_to_user(optval, &val, len)) 6057 return -EFAULT; 6058 return 0; 6059 } 6060 6061 /* 6062 * 8.2.6. Get the Current Identifiers of Associations 6063 * (SCTP_GET_ASSOC_ID_LIST) 6064 * 6065 * This option gets the current list of SCTP association identifiers of 6066 * the SCTP associations handled by a one-to-many style socket. 6067 */ 6068 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6069 char __user *optval, int __user *optlen) 6070 { 6071 struct sctp_sock *sp = sctp_sk(sk); 6072 struct sctp_association *asoc; 6073 struct sctp_assoc_ids *ids; 6074 u32 num = 0; 6075 6076 if (sctp_style(sk, TCP)) 6077 return -EOPNOTSUPP; 6078 6079 if (len < sizeof(struct sctp_assoc_ids)) 6080 return -EINVAL; 6081 6082 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6083 num++; 6084 } 6085 6086 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6087 return -EINVAL; 6088 6089 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6090 6091 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6092 if (unlikely(!ids)) 6093 return -ENOMEM; 6094 6095 ids->gaids_number_of_ids = num; 6096 num = 0; 6097 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6098 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6099 } 6100 6101 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6102 kfree(ids); 6103 return -EFAULT; 6104 } 6105 6106 kfree(ids); 6107 return 0; 6108 } 6109 6110 /* 6111 * SCTP_PEER_ADDR_THLDS 6112 * 6113 * This option allows us to fetch the partially failed threshold for one or all 6114 * transports in an association. See Section 6.1 of: 6115 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6116 */ 6117 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6118 char __user *optval, 6119 int len, 6120 int __user *optlen) 6121 { 6122 struct sctp_paddrthlds val; 6123 struct sctp_transport *trans; 6124 struct sctp_association *asoc; 6125 6126 if (len < sizeof(struct sctp_paddrthlds)) 6127 return -EINVAL; 6128 len = sizeof(struct sctp_paddrthlds); 6129 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6130 return -EFAULT; 6131 6132 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6133 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6134 if (!asoc) 6135 return -ENOENT; 6136 6137 val.spt_pathpfthld = asoc->pf_retrans; 6138 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6139 } else { 6140 trans = sctp_addr_id2transport(sk, &val.spt_address, 6141 val.spt_assoc_id); 6142 if (!trans) 6143 return -ENOENT; 6144 6145 val.spt_pathmaxrxt = trans->pathmaxrxt; 6146 val.spt_pathpfthld = trans->pf_retrans; 6147 } 6148 6149 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6150 return -EFAULT; 6151 6152 return 0; 6153 } 6154 6155 /* 6156 * SCTP_GET_ASSOC_STATS 6157 * 6158 * This option retrieves local per endpoint statistics. It is modeled 6159 * after OpenSolaris' implementation 6160 */ 6161 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6162 char __user *optval, 6163 int __user *optlen) 6164 { 6165 struct sctp_assoc_stats sas; 6166 struct sctp_association *asoc = NULL; 6167 6168 /* User must provide at least the assoc id */ 6169 if (len < sizeof(sctp_assoc_t)) 6170 return -EINVAL; 6171 6172 /* Allow the struct to grow and fill in as much as possible */ 6173 len = min_t(size_t, len, sizeof(sas)); 6174 6175 if (copy_from_user(&sas, optval, len)) 6176 return -EFAULT; 6177 6178 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6179 if (!asoc) 6180 return -EINVAL; 6181 6182 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6183 sas.sas_gapcnt = asoc->stats.gapcnt; 6184 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6185 sas.sas_osacks = asoc->stats.osacks; 6186 sas.sas_isacks = asoc->stats.isacks; 6187 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6188 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6189 sas.sas_oodchunks = asoc->stats.oodchunks; 6190 sas.sas_iodchunks = asoc->stats.iodchunks; 6191 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6192 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6193 sas.sas_idupchunks = asoc->stats.idupchunks; 6194 sas.sas_opackets = asoc->stats.opackets; 6195 sas.sas_ipackets = asoc->stats.ipackets; 6196 6197 /* New high max rto observed, will return 0 if not a single 6198 * RTO update took place. obs_rto_ipaddr will be bogus 6199 * in such a case 6200 */ 6201 sas.sas_maxrto = asoc->stats.max_obs_rto; 6202 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6203 sizeof(struct sockaddr_storage)); 6204 6205 /* Mark beginning of a new observation period */ 6206 asoc->stats.max_obs_rto = asoc->rto_min; 6207 6208 if (put_user(len, optlen)) 6209 return -EFAULT; 6210 6211 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6212 6213 if (copy_to_user(optval, &sas, len)) 6214 return -EFAULT; 6215 6216 return 0; 6217 } 6218 6219 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6220 char __user *optval, 6221 int __user *optlen) 6222 { 6223 int val = 0; 6224 6225 if (len < sizeof(int)) 6226 return -EINVAL; 6227 6228 len = sizeof(int); 6229 if (sctp_sk(sk)->recvrcvinfo) 6230 val = 1; 6231 if (put_user(len, optlen)) 6232 return -EFAULT; 6233 if (copy_to_user(optval, &val, len)) 6234 return -EFAULT; 6235 6236 return 0; 6237 } 6238 6239 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6240 char __user *optval, 6241 int __user *optlen) 6242 { 6243 int val = 0; 6244 6245 if (len < sizeof(int)) 6246 return -EINVAL; 6247 6248 len = sizeof(int); 6249 if (sctp_sk(sk)->recvnxtinfo) 6250 val = 1; 6251 if (put_user(len, optlen)) 6252 return -EFAULT; 6253 if (copy_to_user(optval, &val, len)) 6254 return -EFAULT; 6255 6256 return 0; 6257 } 6258 6259 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6260 char __user *optval, 6261 int __user *optlen) 6262 { 6263 struct sctp_assoc_value params; 6264 struct sctp_association *asoc; 6265 int retval = -EFAULT; 6266 6267 if (len < sizeof(params)) { 6268 retval = -EINVAL; 6269 goto out; 6270 } 6271 6272 len = sizeof(params); 6273 if (copy_from_user(¶ms, optval, len)) 6274 goto out; 6275 6276 asoc = sctp_id2assoc(sk, params.assoc_id); 6277 if (asoc) { 6278 params.assoc_value = asoc->prsctp_enable; 6279 } else if (!params.assoc_id) { 6280 struct sctp_sock *sp = sctp_sk(sk); 6281 6282 params.assoc_value = sp->ep->prsctp_enable; 6283 } else { 6284 retval = -EINVAL; 6285 goto out; 6286 } 6287 6288 if (put_user(len, optlen)) 6289 goto out; 6290 6291 if (copy_to_user(optval, ¶ms, len)) 6292 goto out; 6293 6294 retval = 0; 6295 6296 out: 6297 return retval; 6298 } 6299 6300 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6301 char __user *optval, 6302 int __user *optlen) 6303 { 6304 struct sctp_default_prinfo info; 6305 struct sctp_association *asoc; 6306 int retval = -EFAULT; 6307 6308 if (len < sizeof(info)) { 6309 retval = -EINVAL; 6310 goto out; 6311 } 6312 6313 len = sizeof(info); 6314 if (copy_from_user(&info, optval, len)) 6315 goto out; 6316 6317 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6318 if (asoc) { 6319 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6320 info.pr_value = asoc->default_timetolive; 6321 } else if (!info.pr_assoc_id) { 6322 struct sctp_sock *sp = sctp_sk(sk); 6323 6324 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6325 info.pr_value = sp->default_timetolive; 6326 } else { 6327 retval = -EINVAL; 6328 goto out; 6329 } 6330 6331 if (put_user(len, optlen)) 6332 goto out; 6333 6334 if (copy_to_user(optval, &info, len)) 6335 goto out; 6336 6337 retval = 0; 6338 6339 out: 6340 return retval; 6341 } 6342 6343 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6344 char __user *optval, 6345 int __user *optlen) 6346 { 6347 struct sctp_prstatus params; 6348 struct sctp_association *asoc; 6349 int policy; 6350 int retval = -EINVAL; 6351 6352 if (len < sizeof(params)) 6353 goto out; 6354 6355 len = sizeof(params); 6356 if (copy_from_user(¶ms, optval, len)) { 6357 retval = -EFAULT; 6358 goto out; 6359 } 6360 6361 policy = params.sprstat_policy; 6362 if (policy & ~SCTP_PR_SCTP_MASK) 6363 goto out; 6364 6365 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6366 if (!asoc) 6367 goto out; 6368 6369 if (policy == SCTP_PR_SCTP_NONE) { 6370 params.sprstat_abandoned_unsent = 0; 6371 params.sprstat_abandoned_sent = 0; 6372 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6373 params.sprstat_abandoned_unsent += 6374 asoc->abandoned_unsent[policy]; 6375 params.sprstat_abandoned_sent += 6376 asoc->abandoned_sent[policy]; 6377 } 6378 } else { 6379 params.sprstat_abandoned_unsent = 6380 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6381 params.sprstat_abandoned_sent = 6382 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6383 } 6384 6385 if (put_user(len, optlen)) { 6386 retval = -EFAULT; 6387 goto out; 6388 } 6389 6390 if (copy_to_user(optval, ¶ms, len)) { 6391 retval = -EFAULT; 6392 goto out; 6393 } 6394 6395 retval = 0; 6396 6397 out: 6398 return retval; 6399 } 6400 6401 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6402 char __user *optval, int __user *optlen) 6403 { 6404 int retval = 0; 6405 int len; 6406 6407 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6408 6409 /* I can hardly begin to describe how wrong this is. This is 6410 * so broken as to be worse than useless. The API draft 6411 * REALLY is NOT helpful here... I am not convinced that the 6412 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6413 * are at all well-founded. 6414 */ 6415 if (level != SOL_SCTP) { 6416 struct sctp_af *af = sctp_sk(sk)->pf->af; 6417 6418 retval = af->getsockopt(sk, level, optname, optval, optlen); 6419 return retval; 6420 } 6421 6422 if (get_user(len, optlen)) 6423 return -EFAULT; 6424 6425 lock_sock(sk); 6426 6427 switch (optname) { 6428 case SCTP_STATUS: 6429 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6430 break; 6431 case SCTP_DISABLE_FRAGMENTS: 6432 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6433 optlen); 6434 break; 6435 case SCTP_EVENTS: 6436 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6437 break; 6438 case SCTP_AUTOCLOSE: 6439 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6440 break; 6441 case SCTP_SOCKOPT_PEELOFF: 6442 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6443 break; 6444 case SCTP_PEER_ADDR_PARAMS: 6445 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6446 optlen); 6447 break; 6448 case SCTP_DELAYED_SACK: 6449 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6450 optlen); 6451 break; 6452 case SCTP_INITMSG: 6453 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6454 break; 6455 case SCTP_GET_PEER_ADDRS: 6456 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6457 optlen); 6458 break; 6459 case SCTP_GET_LOCAL_ADDRS: 6460 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6461 optlen); 6462 break; 6463 case SCTP_SOCKOPT_CONNECTX3: 6464 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6465 break; 6466 case SCTP_DEFAULT_SEND_PARAM: 6467 retval = sctp_getsockopt_default_send_param(sk, len, 6468 optval, optlen); 6469 break; 6470 case SCTP_DEFAULT_SNDINFO: 6471 retval = sctp_getsockopt_default_sndinfo(sk, len, 6472 optval, optlen); 6473 break; 6474 case SCTP_PRIMARY_ADDR: 6475 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6476 break; 6477 case SCTP_NODELAY: 6478 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6479 break; 6480 case SCTP_RTOINFO: 6481 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6482 break; 6483 case SCTP_ASSOCINFO: 6484 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6485 break; 6486 case SCTP_I_WANT_MAPPED_V4_ADDR: 6487 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6488 break; 6489 case SCTP_MAXSEG: 6490 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6491 break; 6492 case SCTP_GET_PEER_ADDR_INFO: 6493 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6494 optlen); 6495 break; 6496 case SCTP_ADAPTATION_LAYER: 6497 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6498 optlen); 6499 break; 6500 case SCTP_CONTEXT: 6501 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6502 break; 6503 case SCTP_FRAGMENT_INTERLEAVE: 6504 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6505 optlen); 6506 break; 6507 case SCTP_PARTIAL_DELIVERY_POINT: 6508 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6509 optlen); 6510 break; 6511 case SCTP_MAX_BURST: 6512 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6513 break; 6514 case SCTP_AUTH_KEY: 6515 case SCTP_AUTH_CHUNK: 6516 case SCTP_AUTH_DELETE_KEY: 6517 retval = -EOPNOTSUPP; 6518 break; 6519 case SCTP_HMAC_IDENT: 6520 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6521 break; 6522 case SCTP_AUTH_ACTIVE_KEY: 6523 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6524 break; 6525 case SCTP_PEER_AUTH_CHUNKS: 6526 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6527 optlen); 6528 break; 6529 case SCTP_LOCAL_AUTH_CHUNKS: 6530 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6531 optlen); 6532 break; 6533 case SCTP_GET_ASSOC_NUMBER: 6534 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6535 break; 6536 case SCTP_GET_ASSOC_ID_LIST: 6537 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6538 break; 6539 case SCTP_AUTO_ASCONF: 6540 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6541 break; 6542 case SCTP_PEER_ADDR_THLDS: 6543 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6544 break; 6545 case SCTP_GET_ASSOC_STATS: 6546 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6547 break; 6548 case SCTP_RECVRCVINFO: 6549 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6550 break; 6551 case SCTP_RECVNXTINFO: 6552 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6553 break; 6554 case SCTP_PR_SUPPORTED: 6555 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6556 break; 6557 case SCTP_DEFAULT_PRINFO: 6558 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6559 optlen); 6560 break; 6561 case SCTP_PR_ASSOC_STATUS: 6562 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6563 optlen); 6564 break; 6565 default: 6566 retval = -ENOPROTOOPT; 6567 break; 6568 } 6569 6570 release_sock(sk); 6571 return retval; 6572 } 6573 6574 static int sctp_hash(struct sock *sk) 6575 { 6576 /* STUB */ 6577 return 0; 6578 } 6579 6580 static void sctp_unhash(struct sock *sk) 6581 { 6582 /* STUB */ 6583 } 6584 6585 /* Check if port is acceptable. Possibly find first available port. 6586 * 6587 * The port hash table (contained in the 'global' SCTP protocol storage 6588 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6589 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6590 * list (the list number is the port number hashed out, so as you 6591 * would expect from a hash function, all the ports in a given list have 6592 * such a number that hashes out to the same list number; you were 6593 * expecting that, right?); so each list has a set of ports, with a 6594 * link to the socket (struct sock) that uses it, the port number and 6595 * a fastreuse flag (FIXME: NPI ipg). 6596 */ 6597 static struct sctp_bind_bucket *sctp_bucket_create( 6598 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6599 6600 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6601 { 6602 struct sctp_bind_hashbucket *head; /* hash list */ 6603 struct sctp_bind_bucket *pp; 6604 unsigned short snum; 6605 int ret; 6606 6607 snum = ntohs(addr->v4.sin_port); 6608 6609 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6610 6611 local_bh_disable(); 6612 6613 if (snum == 0) { 6614 /* Search for an available port. */ 6615 int low, high, remaining, index; 6616 unsigned int rover; 6617 struct net *net = sock_net(sk); 6618 6619 inet_get_local_port_range(net, &low, &high); 6620 remaining = (high - low) + 1; 6621 rover = prandom_u32() % remaining + low; 6622 6623 do { 6624 rover++; 6625 if ((rover < low) || (rover > high)) 6626 rover = low; 6627 if (inet_is_local_reserved_port(net, rover)) 6628 continue; 6629 index = sctp_phashfn(sock_net(sk), rover); 6630 head = &sctp_port_hashtable[index]; 6631 spin_lock(&head->lock); 6632 sctp_for_each_hentry(pp, &head->chain) 6633 if ((pp->port == rover) && 6634 net_eq(sock_net(sk), pp->net)) 6635 goto next; 6636 break; 6637 next: 6638 spin_unlock(&head->lock); 6639 } while (--remaining > 0); 6640 6641 /* Exhausted local port range during search? */ 6642 ret = 1; 6643 if (remaining <= 0) 6644 goto fail; 6645 6646 /* OK, here is the one we will use. HEAD (the port 6647 * hash table list entry) is non-NULL and we hold it's 6648 * mutex. 6649 */ 6650 snum = rover; 6651 } else { 6652 /* We are given an specific port number; we verify 6653 * that it is not being used. If it is used, we will 6654 * exahust the search in the hash list corresponding 6655 * to the port number (snum) - we detect that with the 6656 * port iterator, pp being NULL. 6657 */ 6658 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6659 spin_lock(&head->lock); 6660 sctp_for_each_hentry(pp, &head->chain) { 6661 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6662 goto pp_found; 6663 } 6664 } 6665 pp = NULL; 6666 goto pp_not_found; 6667 pp_found: 6668 if (!hlist_empty(&pp->owner)) { 6669 /* We had a port hash table hit - there is an 6670 * available port (pp != NULL) and it is being 6671 * used by other socket (pp->owner not empty); that other 6672 * socket is going to be sk2. 6673 */ 6674 int reuse = sk->sk_reuse; 6675 struct sock *sk2; 6676 6677 pr_debug("%s: found a possible match\n", __func__); 6678 6679 if (pp->fastreuse && sk->sk_reuse && 6680 sk->sk_state != SCTP_SS_LISTENING) 6681 goto success; 6682 6683 /* Run through the list of sockets bound to the port 6684 * (pp->port) [via the pointers bind_next and 6685 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6686 * we get the endpoint they describe and run through 6687 * the endpoint's list of IP (v4 or v6) addresses, 6688 * comparing each of the addresses with the address of 6689 * the socket sk. If we find a match, then that means 6690 * that this port/socket (sk) combination are already 6691 * in an endpoint. 6692 */ 6693 sk_for_each_bound(sk2, &pp->owner) { 6694 struct sctp_endpoint *ep2; 6695 ep2 = sctp_sk(sk2)->ep; 6696 6697 if (sk == sk2 || 6698 (reuse && sk2->sk_reuse && 6699 sk2->sk_state != SCTP_SS_LISTENING)) 6700 continue; 6701 6702 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6703 sctp_sk(sk2), sctp_sk(sk))) { 6704 ret = (long)sk2; 6705 goto fail_unlock; 6706 } 6707 } 6708 6709 pr_debug("%s: found a match\n", __func__); 6710 } 6711 pp_not_found: 6712 /* If there was a hash table miss, create a new port. */ 6713 ret = 1; 6714 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6715 goto fail_unlock; 6716 6717 /* In either case (hit or miss), make sure fastreuse is 1 only 6718 * if sk->sk_reuse is too (that is, if the caller requested 6719 * SO_REUSEADDR on this socket -sk-). 6720 */ 6721 if (hlist_empty(&pp->owner)) { 6722 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6723 pp->fastreuse = 1; 6724 else 6725 pp->fastreuse = 0; 6726 } else if (pp->fastreuse && 6727 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6728 pp->fastreuse = 0; 6729 6730 /* We are set, so fill up all the data in the hash table 6731 * entry, tie the socket list information with the rest of the 6732 * sockets FIXME: Blurry, NPI (ipg). 6733 */ 6734 success: 6735 if (!sctp_sk(sk)->bind_hash) { 6736 inet_sk(sk)->inet_num = snum; 6737 sk_add_bind_node(sk, &pp->owner); 6738 sctp_sk(sk)->bind_hash = pp; 6739 } 6740 ret = 0; 6741 6742 fail_unlock: 6743 spin_unlock(&head->lock); 6744 6745 fail: 6746 local_bh_enable(); 6747 return ret; 6748 } 6749 6750 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6751 * port is requested. 6752 */ 6753 static int sctp_get_port(struct sock *sk, unsigned short snum) 6754 { 6755 union sctp_addr addr; 6756 struct sctp_af *af = sctp_sk(sk)->pf->af; 6757 6758 /* Set up a dummy address struct from the sk. */ 6759 af->from_sk(&addr, sk); 6760 addr.v4.sin_port = htons(snum); 6761 6762 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6763 return !!sctp_get_port_local(sk, &addr); 6764 } 6765 6766 /* 6767 * Move a socket to LISTENING state. 6768 */ 6769 static int sctp_listen_start(struct sock *sk, int backlog) 6770 { 6771 struct sctp_sock *sp = sctp_sk(sk); 6772 struct sctp_endpoint *ep = sp->ep; 6773 struct crypto_shash *tfm = NULL; 6774 char alg[32]; 6775 6776 /* Allocate HMAC for generating cookie. */ 6777 if (!sp->hmac && sp->sctp_hmac_alg) { 6778 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6779 tfm = crypto_alloc_shash(alg, 0, 0); 6780 if (IS_ERR(tfm)) { 6781 net_info_ratelimited("failed to load transform for %s: %ld\n", 6782 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6783 return -ENOSYS; 6784 } 6785 sctp_sk(sk)->hmac = tfm; 6786 } 6787 6788 /* 6789 * If a bind() or sctp_bindx() is not called prior to a listen() 6790 * call that allows new associations to be accepted, the system 6791 * picks an ephemeral port and will choose an address set equivalent 6792 * to binding with a wildcard address. 6793 * 6794 * This is not currently spelled out in the SCTP sockets 6795 * extensions draft, but follows the practice as seen in TCP 6796 * sockets. 6797 * 6798 */ 6799 sk->sk_state = SCTP_SS_LISTENING; 6800 if (!ep->base.bind_addr.port) { 6801 if (sctp_autobind(sk)) 6802 return -EAGAIN; 6803 } else { 6804 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6805 sk->sk_state = SCTP_SS_CLOSED; 6806 return -EADDRINUSE; 6807 } 6808 } 6809 6810 sk->sk_max_ack_backlog = backlog; 6811 sctp_hash_endpoint(ep); 6812 return 0; 6813 } 6814 6815 /* 6816 * 4.1.3 / 5.1.3 listen() 6817 * 6818 * By default, new associations are not accepted for UDP style sockets. 6819 * An application uses listen() to mark a socket as being able to 6820 * accept new associations. 6821 * 6822 * On TCP style sockets, applications use listen() to ready the SCTP 6823 * endpoint for accepting inbound associations. 6824 * 6825 * On both types of endpoints a backlog of '0' disables listening. 6826 * 6827 * Move a socket to LISTENING state. 6828 */ 6829 int sctp_inet_listen(struct socket *sock, int backlog) 6830 { 6831 struct sock *sk = sock->sk; 6832 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6833 int err = -EINVAL; 6834 6835 if (unlikely(backlog < 0)) 6836 return err; 6837 6838 lock_sock(sk); 6839 6840 /* Peeled-off sockets are not allowed to listen(). */ 6841 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6842 goto out; 6843 6844 if (sock->state != SS_UNCONNECTED) 6845 goto out; 6846 6847 /* If backlog is zero, disable listening. */ 6848 if (!backlog) { 6849 if (sctp_sstate(sk, CLOSED)) 6850 goto out; 6851 6852 err = 0; 6853 sctp_unhash_endpoint(ep); 6854 sk->sk_state = SCTP_SS_CLOSED; 6855 if (sk->sk_reuse) 6856 sctp_sk(sk)->bind_hash->fastreuse = 1; 6857 goto out; 6858 } 6859 6860 /* If we are already listening, just update the backlog */ 6861 if (sctp_sstate(sk, LISTENING)) 6862 sk->sk_max_ack_backlog = backlog; 6863 else { 6864 err = sctp_listen_start(sk, backlog); 6865 if (err) 6866 goto out; 6867 } 6868 6869 err = 0; 6870 out: 6871 release_sock(sk); 6872 return err; 6873 } 6874 6875 /* 6876 * This function is done by modeling the current datagram_poll() and the 6877 * tcp_poll(). Note that, based on these implementations, we don't 6878 * lock the socket in this function, even though it seems that, 6879 * ideally, locking or some other mechanisms can be used to ensure 6880 * the integrity of the counters (sndbuf and wmem_alloc) used 6881 * in this place. We assume that we don't need locks either until proven 6882 * otherwise. 6883 * 6884 * Another thing to note is that we include the Async I/O support 6885 * here, again, by modeling the current TCP/UDP code. We don't have 6886 * a good way to test with it yet. 6887 */ 6888 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6889 { 6890 struct sock *sk = sock->sk; 6891 struct sctp_sock *sp = sctp_sk(sk); 6892 unsigned int mask; 6893 6894 poll_wait(file, sk_sleep(sk), wait); 6895 6896 sock_rps_record_flow(sk); 6897 6898 /* A TCP-style listening socket becomes readable when the accept queue 6899 * is not empty. 6900 */ 6901 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6902 return (!list_empty(&sp->ep->asocs)) ? 6903 (POLLIN | POLLRDNORM) : 0; 6904 6905 mask = 0; 6906 6907 /* Is there any exceptional events? */ 6908 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6909 mask |= POLLERR | 6910 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6911 if (sk->sk_shutdown & RCV_SHUTDOWN) 6912 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6913 if (sk->sk_shutdown == SHUTDOWN_MASK) 6914 mask |= POLLHUP; 6915 6916 /* Is it readable? Reconsider this code with TCP-style support. */ 6917 if (!skb_queue_empty(&sk->sk_receive_queue)) 6918 mask |= POLLIN | POLLRDNORM; 6919 6920 /* The association is either gone or not ready. */ 6921 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6922 return mask; 6923 6924 /* Is it writable? */ 6925 if (sctp_writeable(sk)) { 6926 mask |= POLLOUT | POLLWRNORM; 6927 } else { 6928 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 6929 /* 6930 * Since the socket is not locked, the buffer 6931 * might be made available after the writeable check and 6932 * before the bit is set. This could cause a lost I/O 6933 * signal. tcp_poll() has a race breaker for this race 6934 * condition. Based on their implementation, we put 6935 * in the following code to cover it as well. 6936 */ 6937 if (sctp_writeable(sk)) 6938 mask |= POLLOUT | POLLWRNORM; 6939 } 6940 return mask; 6941 } 6942 6943 /******************************************************************** 6944 * 2nd Level Abstractions 6945 ********************************************************************/ 6946 6947 static struct sctp_bind_bucket *sctp_bucket_create( 6948 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6949 { 6950 struct sctp_bind_bucket *pp; 6951 6952 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6953 if (pp) { 6954 SCTP_DBG_OBJCNT_INC(bind_bucket); 6955 pp->port = snum; 6956 pp->fastreuse = 0; 6957 INIT_HLIST_HEAD(&pp->owner); 6958 pp->net = net; 6959 hlist_add_head(&pp->node, &head->chain); 6960 } 6961 return pp; 6962 } 6963 6964 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6965 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6966 { 6967 if (pp && hlist_empty(&pp->owner)) { 6968 __hlist_del(&pp->node); 6969 kmem_cache_free(sctp_bucket_cachep, pp); 6970 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6971 } 6972 } 6973 6974 /* Release this socket's reference to a local port. */ 6975 static inline void __sctp_put_port(struct sock *sk) 6976 { 6977 struct sctp_bind_hashbucket *head = 6978 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6979 inet_sk(sk)->inet_num)]; 6980 struct sctp_bind_bucket *pp; 6981 6982 spin_lock(&head->lock); 6983 pp = sctp_sk(sk)->bind_hash; 6984 __sk_del_bind_node(sk); 6985 sctp_sk(sk)->bind_hash = NULL; 6986 inet_sk(sk)->inet_num = 0; 6987 sctp_bucket_destroy(pp); 6988 spin_unlock(&head->lock); 6989 } 6990 6991 void sctp_put_port(struct sock *sk) 6992 { 6993 local_bh_disable(); 6994 __sctp_put_port(sk); 6995 local_bh_enable(); 6996 } 6997 6998 /* 6999 * The system picks an ephemeral port and choose an address set equivalent 7000 * to binding with a wildcard address. 7001 * One of those addresses will be the primary address for the association. 7002 * This automatically enables the multihoming capability of SCTP. 7003 */ 7004 static int sctp_autobind(struct sock *sk) 7005 { 7006 union sctp_addr autoaddr; 7007 struct sctp_af *af; 7008 __be16 port; 7009 7010 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7011 af = sctp_sk(sk)->pf->af; 7012 7013 port = htons(inet_sk(sk)->inet_num); 7014 af->inaddr_any(&autoaddr, port); 7015 7016 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7017 } 7018 7019 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7020 * 7021 * From RFC 2292 7022 * 4.2 The cmsghdr Structure * 7023 * 7024 * When ancillary data is sent or received, any number of ancillary data 7025 * objects can be specified by the msg_control and msg_controllen members of 7026 * the msghdr structure, because each object is preceded by 7027 * a cmsghdr structure defining the object's length (the cmsg_len member). 7028 * Historically Berkeley-derived implementations have passed only one object 7029 * at a time, but this API allows multiple objects to be 7030 * passed in a single call to sendmsg() or recvmsg(). The following example 7031 * shows two ancillary data objects in a control buffer. 7032 * 7033 * |<--------------------------- msg_controllen -------------------------->| 7034 * | | 7035 * 7036 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7037 * 7038 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7039 * | | | 7040 * 7041 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7042 * 7043 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7044 * | | | | | 7045 * 7046 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7047 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7048 * 7049 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7050 * 7051 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7052 * ^ 7053 * | 7054 * 7055 * msg_control 7056 * points here 7057 */ 7058 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 7059 { 7060 struct cmsghdr *cmsg; 7061 struct msghdr *my_msg = (struct msghdr *)msg; 7062 7063 for_each_cmsghdr(cmsg, my_msg) { 7064 if (!CMSG_OK(my_msg, cmsg)) 7065 return -EINVAL; 7066 7067 /* Should we parse this header or ignore? */ 7068 if (cmsg->cmsg_level != IPPROTO_SCTP) 7069 continue; 7070 7071 /* Strictly check lengths following example in SCM code. */ 7072 switch (cmsg->cmsg_type) { 7073 case SCTP_INIT: 7074 /* SCTP Socket API Extension 7075 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7076 * 7077 * This cmsghdr structure provides information for 7078 * initializing new SCTP associations with sendmsg(). 7079 * The SCTP_INITMSG socket option uses this same data 7080 * structure. This structure is not used for 7081 * recvmsg(). 7082 * 7083 * cmsg_level cmsg_type cmsg_data[] 7084 * ------------ ------------ ---------------------- 7085 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7086 */ 7087 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7088 return -EINVAL; 7089 7090 cmsgs->init = CMSG_DATA(cmsg); 7091 break; 7092 7093 case SCTP_SNDRCV: 7094 /* SCTP Socket API Extension 7095 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7096 * 7097 * This cmsghdr structure specifies SCTP options for 7098 * sendmsg() and describes SCTP header information 7099 * about a received message through recvmsg(). 7100 * 7101 * cmsg_level cmsg_type cmsg_data[] 7102 * ------------ ------------ ---------------------- 7103 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7104 */ 7105 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7106 return -EINVAL; 7107 7108 cmsgs->srinfo = CMSG_DATA(cmsg); 7109 7110 if (cmsgs->srinfo->sinfo_flags & 7111 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7112 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7113 SCTP_ABORT | SCTP_EOF)) 7114 return -EINVAL; 7115 break; 7116 7117 case SCTP_SNDINFO: 7118 /* SCTP Socket API Extension 7119 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7120 * 7121 * This cmsghdr structure specifies SCTP options for 7122 * sendmsg(). This structure and SCTP_RCVINFO replaces 7123 * SCTP_SNDRCV which has been deprecated. 7124 * 7125 * cmsg_level cmsg_type cmsg_data[] 7126 * ------------ ------------ --------------------- 7127 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7128 */ 7129 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7130 return -EINVAL; 7131 7132 cmsgs->sinfo = CMSG_DATA(cmsg); 7133 7134 if (cmsgs->sinfo->snd_flags & 7135 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7136 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7137 SCTP_ABORT | SCTP_EOF)) 7138 return -EINVAL; 7139 break; 7140 default: 7141 return -EINVAL; 7142 } 7143 } 7144 7145 return 0; 7146 } 7147 7148 /* 7149 * Wait for a packet.. 7150 * Note: This function is the same function as in core/datagram.c 7151 * with a few modifications to make lksctp work. 7152 */ 7153 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7154 { 7155 int error; 7156 DEFINE_WAIT(wait); 7157 7158 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7159 7160 /* Socket errors? */ 7161 error = sock_error(sk); 7162 if (error) 7163 goto out; 7164 7165 if (!skb_queue_empty(&sk->sk_receive_queue)) 7166 goto ready; 7167 7168 /* Socket shut down? */ 7169 if (sk->sk_shutdown & RCV_SHUTDOWN) 7170 goto out; 7171 7172 /* Sequenced packets can come disconnected. If so we report the 7173 * problem. 7174 */ 7175 error = -ENOTCONN; 7176 7177 /* Is there a good reason to think that we may receive some data? */ 7178 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7179 goto out; 7180 7181 /* Handle signals. */ 7182 if (signal_pending(current)) 7183 goto interrupted; 7184 7185 /* Let another process have a go. Since we are going to sleep 7186 * anyway. Note: This may cause odd behaviors if the message 7187 * does not fit in the user's buffer, but this seems to be the 7188 * only way to honor MSG_DONTWAIT realistically. 7189 */ 7190 release_sock(sk); 7191 *timeo_p = schedule_timeout(*timeo_p); 7192 lock_sock(sk); 7193 7194 ready: 7195 finish_wait(sk_sleep(sk), &wait); 7196 return 0; 7197 7198 interrupted: 7199 error = sock_intr_errno(*timeo_p); 7200 7201 out: 7202 finish_wait(sk_sleep(sk), &wait); 7203 *err = error; 7204 return error; 7205 } 7206 7207 /* Receive a datagram. 7208 * Note: This is pretty much the same routine as in core/datagram.c 7209 * with a few changes to make lksctp work. 7210 */ 7211 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7212 int noblock, int *err) 7213 { 7214 int error; 7215 struct sk_buff *skb; 7216 long timeo; 7217 7218 timeo = sock_rcvtimeo(sk, noblock); 7219 7220 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7221 MAX_SCHEDULE_TIMEOUT); 7222 7223 do { 7224 /* Again only user level code calls this function, 7225 * so nothing interrupt level 7226 * will suddenly eat the receive_queue. 7227 * 7228 * Look at current nfs client by the way... 7229 * However, this function was correct in any case. 8) 7230 */ 7231 if (flags & MSG_PEEK) { 7232 skb = skb_peek(&sk->sk_receive_queue); 7233 if (skb) 7234 atomic_inc(&skb->users); 7235 } else { 7236 skb = __skb_dequeue(&sk->sk_receive_queue); 7237 } 7238 7239 if (skb) 7240 return skb; 7241 7242 /* Caller is allowed not to check sk->sk_err before calling. */ 7243 error = sock_error(sk); 7244 if (error) 7245 goto no_packet; 7246 7247 if (sk->sk_shutdown & RCV_SHUTDOWN) 7248 break; 7249 7250 if (sk_can_busy_loop(sk) && 7251 sk_busy_loop(sk, noblock)) 7252 continue; 7253 7254 /* User doesn't want to wait. */ 7255 error = -EAGAIN; 7256 if (!timeo) 7257 goto no_packet; 7258 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7259 7260 return NULL; 7261 7262 no_packet: 7263 *err = error; 7264 return NULL; 7265 } 7266 7267 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7268 static void __sctp_write_space(struct sctp_association *asoc) 7269 { 7270 struct sock *sk = asoc->base.sk; 7271 7272 if (sctp_wspace(asoc) <= 0) 7273 return; 7274 7275 if (waitqueue_active(&asoc->wait)) 7276 wake_up_interruptible(&asoc->wait); 7277 7278 if (sctp_writeable(sk)) { 7279 struct socket_wq *wq; 7280 7281 rcu_read_lock(); 7282 wq = rcu_dereference(sk->sk_wq); 7283 if (wq) { 7284 if (waitqueue_active(&wq->wait)) 7285 wake_up_interruptible(&wq->wait); 7286 7287 /* Note that we try to include the Async I/O support 7288 * here by modeling from the current TCP/UDP code. 7289 * We have not tested with it yet. 7290 */ 7291 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7292 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7293 } 7294 rcu_read_unlock(); 7295 } 7296 } 7297 7298 static void sctp_wake_up_waiters(struct sock *sk, 7299 struct sctp_association *asoc) 7300 { 7301 struct sctp_association *tmp = asoc; 7302 7303 /* We do accounting for the sndbuf space per association, 7304 * so we only need to wake our own association. 7305 */ 7306 if (asoc->ep->sndbuf_policy) 7307 return __sctp_write_space(asoc); 7308 7309 /* If association goes down and is just flushing its 7310 * outq, then just normally notify others. 7311 */ 7312 if (asoc->base.dead) 7313 return sctp_write_space(sk); 7314 7315 /* Accounting for the sndbuf space is per socket, so we 7316 * need to wake up others, try to be fair and in case of 7317 * other associations, let them have a go first instead 7318 * of just doing a sctp_write_space() call. 7319 * 7320 * Note that we reach sctp_wake_up_waiters() only when 7321 * associations free up queued chunks, thus we are under 7322 * lock and the list of associations on a socket is 7323 * guaranteed not to change. 7324 */ 7325 for (tmp = list_next_entry(tmp, asocs); 1; 7326 tmp = list_next_entry(tmp, asocs)) { 7327 /* Manually skip the head element. */ 7328 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7329 continue; 7330 /* Wake up association. */ 7331 __sctp_write_space(tmp); 7332 /* We've reached the end. */ 7333 if (tmp == asoc) 7334 break; 7335 } 7336 } 7337 7338 /* Do accounting for the sndbuf space. 7339 * Decrement the used sndbuf space of the corresponding association by the 7340 * data size which was just transmitted(freed). 7341 */ 7342 static void sctp_wfree(struct sk_buff *skb) 7343 { 7344 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7345 struct sctp_association *asoc = chunk->asoc; 7346 struct sock *sk = asoc->base.sk; 7347 7348 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7349 sizeof(struct sk_buff) + 7350 sizeof(struct sctp_chunk); 7351 7352 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 7353 7354 /* 7355 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7356 */ 7357 sk->sk_wmem_queued -= skb->truesize; 7358 sk_mem_uncharge(sk, skb->truesize); 7359 7360 sock_wfree(skb); 7361 sctp_wake_up_waiters(sk, asoc); 7362 7363 sctp_association_put(asoc); 7364 } 7365 7366 /* Do accounting for the receive space on the socket. 7367 * Accounting for the association is done in ulpevent.c 7368 * We set this as a destructor for the cloned data skbs so that 7369 * accounting is done at the correct time. 7370 */ 7371 void sctp_sock_rfree(struct sk_buff *skb) 7372 { 7373 struct sock *sk = skb->sk; 7374 struct sctp_ulpevent *event = sctp_skb2event(skb); 7375 7376 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7377 7378 /* 7379 * Mimic the behavior of sock_rfree 7380 */ 7381 sk_mem_uncharge(sk, event->rmem_len); 7382 } 7383 7384 7385 /* Helper function to wait for space in the sndbuf. */ 7386 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7387 size_t msg_len) 7388 { 7389 struct sock *sk = asoc->base.sk; 7390 int err = 0; 7391 long current_timeo = *timeo_p; 7392 DEFINE_WAIT(wait); 7393 7394 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7395 *timeo_p, msg_len); 7396 7397 /* Increment the association's refcnt. */ 7398 sctp_association_hold(asoc); 7399 7400 /* Wait on the association specific sndbuf space. */ 7401 for (;;) { 7402 prepare_to_wait_exclusive(&asoc->wait, &wait, 7403 TASK_INTERRUPTIBLE); 7404 if (!*timeo_p) 7405 goto do_nonblock; 7406 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7407 asoc->base.dead) 7408 goto do_error; 7409 if (signal_pending(current)) 7410 goto do_interrupted; 7411 if (msg_len <= sctp_wspace(asoc)) 7412 break; 7413 7414 /* Let another process have a go. Since we are going 7415 * to sleep anyway. 7416 */ 7417 release_sock(sk); 7418 current_timeo = schedule_timeout(current_timeo); 7419 BUG_ON(sk != asoc->base.sk); 7420 lock_sock(sk); 7421 7422 *timeo_p = current_timeo; 7423 } 7424 7425 out: 7426 finish_wait(&asoc->wait, &wait); 7427 7428 /* Release the association's refcnt. */ 7429 sctp_association_put(asoc); 7430 7431 return err; 7432 7433 do_error: 7434 err = -EPIPE; 7435 goto out; 7436 7437 do_interrupted: 7438 err = sock_intr_errno(*timeo_p); 7439 goto out; 7440 7441 do_nonblock: 7442 err = -EAGAIN; 7443 goto out; 7444 } 7445 7446 void sctp_data_ready(struct sock *sk) 7447 { 7448 struct socket_wq *wq; 7449 7450 rcu_read_lock(); 7451 wq = rcu_dereference(sk->sk_wq); 7452 if (skwq_has_sleeper(wq)) 7453 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7454 POLLRDNORM | POLLRDBAND); 7455 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7456 rcu_read_unlock(); 7457 } 7458 7459 /* If socket sndbuf has changed, wake up all per association waiters. */ 7460 void sctp_write_space(struct sock *sk) 7461 { 7462 struct sctp_association *asoc; 7463 7464 /* Wake up the tasks in each wait queue. */ 7465 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7466 __sctp_write_space(asoc); 7467 } 7468 } 7469 7470 /* Is there any sndbuf space available on the socket? 7471 * 7472 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7473 * associations on the same socket. For a UDP-style socket with 7474 * multiple associations, it is possible for it to be "unwriteable" 7475 * prematurely. I assume that this is acceptable because 7476 * a premature "unwriteable" is better than an accidental "writeable" which 7477 * would cause an unwanted block under certain circumstances. For the 1-1 7478 * UDP-style sockets or TCP-style sockets, this code should work. 7479 * - Daisy 7480 */ 7481 static int sctp_writeable(struct sock *sk) 7482 { 7483 int amt = 0; 7484 7485 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7486 if (amt < 0) 7487 amt = 0; 7488 return amt; 7489 } 7490 7491 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7492 * returns immediately with EINPROGRESS. 7493 */ 7494 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7495 { 7496 struct sock *sk = asoc->base.sk; 7497 int err = 0; 7498 long current_timeo = *timeo_p; 7499 DEFINE_WAIT(wait); 7500 7501 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7502 7503 /* Increment the association's refcnt. */ 7504 sctp_association_hold(asoc); 7505 7506 for (;;) { 7507 prepare_to_wait_exclusive(&asoc->wait, &wait, 7508 TASK_INTERRUPTIBLE); 7509 if (!*timeo_p) 7510 goto do_nonblock; 7511 if (sk->sk_shutdown & RCV_SHUTDOWN) 7512 break; 7513 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7514 asoc->base.dead) 7515 goto do_error; 7516 if (signal_pending(current)) 7517 goto do_interrupted; 7518 7519 if (sctp_state(asoc, ESTABLISHED)) 7520 break; 7521 7522 /* Let another process have a go. Since we are going 7523 * to sleep anyway. 7524 */ 7525 release_sock(sk); 7526 current_timeo = schedule_timeout(current_timeo); 7527 lock_sock(sk); 7528 7529 *timeo_p = current_timeo; 7530 } 7531 7532 out: 7533 finish_wait(&asoc->wait, &wait); 7534 7535 /* Release the association's refcnt. */ 7536 sctp_association_put(asoc); 7537 7538 return err; 7539 7540 do_error: 7541 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7542 err = -ETIMEDOUT; 7543 else 7544 err = -ECONNREFUSED; 7545 goto out; 7546 7547 do_interrupted: 7548 err = sock_intr_errno(*timeo_p); 7549 goto out; 7550 7551 do_nonblock: 7552 err = -EINPROGRESS; 7553 goto out; 7554 } 7555 7556 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7557 { 7558 struct sctp_endpoint *ep; 7559 int err = 0; 7560 DEFINE_WAIT(wait); 7561 7562 ep = sctp_sk(sk)->ep; 7563 7564 7565 for (;;) { 7566 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7567 TASK_INTERRUPTIBLE); 7568 7569 if (list_empty(&ep->asocs)) { 7570 release_sock(sk); 7571 timeo = schedule_timeout(timeo); 7572 lock_sock(sk); 7573 } 7574 7575 err = -EINVAL; 7576 if (!sctp_sstate(sk, LISTENING)) 7577 break; 7578 7579 err = 0; 7580 if (!list_empty(&ep->asocs)) 7581 break; 7582 7583 err = sock_intr_errno(timeo); 7584 if (signal_pending(current)) 7585 break; 7586 7587 err = -EAGAIN; 7588 if (!timeo) 7589 break; 7590 } 7591 7592 finish_wait(sk_sleep(sk), &wait); 7593 7594 return err; 7595 } 7596 7597 static void sctp_wait_for_close(struct sock *sk, long timeout) 7598 { 7599 DEFINE_WAIT(wait); 7600 7601 do { 7602 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7603 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7604 break; 7605 release_sock(sk); 7606 timeout = schedule_timeout(timeout); 7607 lock_sock(sk); 7608 } while (!signal_pending(current) && timeout); 7609 7610 finish_wait(sk_sleep(sk), &wait); 7611 } 7612 7613 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7614 { 7615 struct sk_buff *frag; 7616 7617 if (!skb->data_len) 7618 goto done; 7619 7620 /* Don't forget the fragments. */ 7621 skb_walk_frags(skb, frag) 7622 sctp_skb_set_owner_r_frag(frag, sk); 7623 7624 done: 7625 sctp_skb_set_owner_r(skb, sk); 7626 } 7627 7628 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7629 struct sctp_association *asoc) 7630 { 7631 struct inet_sock *inet = inet_sk(sk); 7632 struct inet_sock *newinet; 7633 7634 newsk->sk_type = sk->sk_type; 7635 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7636 newsk->sk_flags = sk->sk_flags; 7637 newsk->sk_tsflags = sk->sk_tsflags; 7638 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7639 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7640 newsk->sk_reuse = sk->sk_reuse; 7641 7642 newsk->sk_shutdown = sk->sk_shutdown; 7643 newsk->sk_destruct = sctp_destruct_sock; 7644 newsk->sk_family = sk->sk_family; 7645 newsk->sk_protocol = IPPROTO_SCTP; 7646 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7647 newsk->sk_sndbuf = sk->sk_sndbuf; 7648 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7649 newsk->sk_lingertime = sk->sk_lingertime; 7650 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7651 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7652 newsk->sk_rxhash = sk->sk_rxhash; 7653 7654 newinet = inet_sk(newsk); 7655 7656 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7657 * getsockname() and getpeername() 7658 */ 7659 newinet->inet_sport = inet->inet_sport; 7660 newinet->inet_saddr = inet->inet_saddr; 7661 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7662 newinet->inet_dport = htons(asoc->peer.port); 7663 newinet->pmtudisc = inet->pmtudisc; 7664 newinet->inet_id = asoc->next_tsn ^ jiffies; 7665 7666 newinet->uc_ttl = inet->uc_ttl; 7667 newinet->mc_loop = 1; 7668 newinet->mc_ttl = 1; 7669 newinet->mc_index = 0; 7670 newinet->mc_list = NULL; 7671 7672 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 7673 net_enable_timestamp(); 7674 7675 security_sk_clone(sk, newsk); 7676 } 7677 7678 static inline void sctp_copy_descendant(struct sock *sk_to, 7679 const struct sock *sk_from) 7680 { 7681 int ancestor_size = sizeof(struct inet_sock) + 7682 sizeof(struct sctp_sock) - 7683 offsetof(struct sctp_sock, auto_asconf_list); 7684 7685 if (sk_from->sk_family == PF_INET6) 7686 ancestor_size += sizeof(struct ipv6_pinfo); 7687 7688 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 7689 } 7690 7691 /* Populate the fields of the newsk from the oldsk and migrate the assoc 7692 * and its messages to the newsk. 7693 */ 7694 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7695 struct sctp_association *assoc, 7696 sctp_socket_type_t type) 7697 { 7698 struct sctp_sock *oldsp = sctp_sk(oldsk); 7699 struct sctp_sock *newsp = sctp_sk(newsk); 7700 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7701 struct sctp_endpoint *newep = newsp->ep; 7702 struct sk_buff *skb, *tmp; 7703 struct sctp_ulpevent *event; 7704 struct sctp_bind_hashbucket *head; 7705 7706 /* Migrate socket buffer sizes and all the socket level options to the 7707 * new socket. 7708 */ 7709 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7710 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7711 /* Brute force copy old sctp opt. */ 7712 sctp_copy_descendant(newsk, oldsk); 7713 7714 /* Restore the ep value that was overwritten with the above structure 7715 * copy. 7716 */ 7717 newsp->ep = newep; 7718 newsp->hmac = NULL; 7719 7720 /* Hook this new socket in to the bind_hash list. */ 7721 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7722 inet_sk(oldsk)->inet_num)]; 7723 spin_lock_bh(&head->lock); 7724 pp = sctp_sk(oldsk)->bind_hash; 7725 sk_add_bind_node(newsk, &pp->owner); 7726 sctp_sk(newsk)->bind_hash = pp; 7727 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7728 spin_unlock_bh(&head->lock); 7729 7730 /* Copy the bind_addr list from the original endpoint to the new 7731 * endpoint so that we can handle restarts properly 7732 */ 7733 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7734 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7735 7736 /* Move any messages in the old socket's receive queue that are for the 7737 * peeled off association to the new socket's receive queue. 7738 */ 7739 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7740 event = sctp_skb2event(skb); 7741 if (event->asoc == assoc) { 7742 __skb_unlink(skb, &oldsk->sk_receive_queue); 7743 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7744 sctp_skb_set_owner_r_frag(skb, newsk); 7745 } 7746 } 7747 7748 /* Clean up any messages pending delivery due to partial 7749 * delivery. Three cases: 7750 * 1) No partial deliver; no work. 7751 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7752 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7753 */ 7754 skb_queue_head_init(&newsp->pd_lobby); 7755 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7756 7757 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7758 struct sk_buff_head *queue; 7759 7760 /* Decide which queue to move pd_lobby skbs to. */ 7761 if (assoc->ulpq.pd_mode) { 7762 queue = &newsp->pd_lobby; 7763 } else 7764 queue = &newsk->sk_receive_queue; 7765 7766 /* Walk through the pd_lobby, looking for skbs that 7767 * need moved to the new socket. 7768 */ 7769 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7770 event = sctp_skb2event(skb); 7771 if (event->asoc == assoc) { 7772 __skb_unlink(skb, &oldsp->pd_lobby); 7773 __skb_queue_tail(queue, skb); 7774 sctp_skb_set_owner_r_frag(skb, newsk); 7775 } 7776 } 7777 7778 /* Clear up any skbs waiting for the partial 7779 * delivery to finish. 7780 */ 7781 if (assoc->ulpq.pd_mode) 7782 sctp_clear_pd(oldsk, NULL); 7783 7784 } 7785 7786 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7787 sctp_skb_set_owner_r_frag(skb, newsk); 7788 7789 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7790 sctp_skb_set_owner_r_frag(skb, newsk); 7791 7792 /* Set the type of socket to indicate that it is peeled off from the 7793 * original UDP-style socket or created with the accept() call on a 7794 * TCP-style socket.. 7795 */ 7796 newsp->type = type; 7797 7798 /* Mark the new socket "in-use" by the user so that any packets 7799 * that may arrive on the association after we've moved it are 7800 * queued to the backlog. This prevents a potential race between 7801 * backlog processing on the old socket and new-packet processing 7802 * on the new socket. 7803 * 7804 * The caller has just allocated newsk so we can guarantee that other 7805 * paths won't try to lock it and then oldsk. 7806 */ 7807 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7808 sctp_assoc_migrate(assoc, newsk); 7809 7810 /* If the association on the newsk is already closed before accept() 7811 * is called, set RCV_SHUTDOWN flag. 7812 */ 7813 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 7814 newsk->sk_state = SCTP_SS_CLOSED; 7815 newsk->sk_shutdown |= RCV_SHUTDOWN; 7816 } else { 7817 newsk->sk_state = SCTP_SS_ESTABLISHED; 7818 } 7819 7820 release_sock(newsk); 7821 } 7822 7823 7824 /* This proto struct describes the ULP interface for SCTP. */ 7825 struct proto sctp_prot = { 7826 .name = "SCTP", 7827 .owner = THIS_MODULE, 7828 .close = sctp_close, 7829 .connect = sctp_connect, 7830 .disconnect = sctp_disconnect, 7831 .accept = sctp_accept, 7832 .ioctl = sctp_ioctl, 7833 .init = sctp_init_sock, 7834 .destroy = sctp_destroy_sock, 7835 .shutdown = sctp_shutdown, 7836 .setsockopt = sctp_setsockopt, 7837 .getsockopt = sctp_getsockopt, 7838 .sendmsg = sctp_sendmsg, 7839 .recvmsg = sctp_recvmsg, 7840 .bind = sctp_bind, 7841 .backlog_rcv = sctp_backlog_rcv, 7842 .hash = sctp_hash, 7843 .unhash = sctp_unhash, 7844 .get_port = sctp_get_port, 7845 .obj_size = sizeof(struct sctp_sock), 7846 .sysctl_mem = sysctl_sctp_mem, 7847 .sysctl_rmem = sysctl_sctp_rmem, 7848 .sysctl_wmem = sysctl_sctp_wmem, 7849 .memory_pressure = &sctp_memory_pressure, 7850 .enter_memory_pressure = sctp_enter_memory_pressure, 7851 .memory_allocated = &sctp_memory_allocated, 7852 .sockets_allocated = &sctp_sockets_allocated, 7853 }; 7854 7855 #if IS_ENABLED(CONFIG_IPV6) 7856 7857 #include <net/transp_v6.h> 7858 static void sctp_v6_destroy_sock(struct sock *sk) 7859 { 7860 sctp_destroy_sock(sk); 7861 inet6_destroy_sock(sk); 7862 } 7863 7864 struct proto sctpv6_prot = { 7865 .name = "SCTPv6", 7866 .owner = THIS_MODULE, 7867 .close = sctp_close, 7868 .connect = sctp_connect, 7869 .disconnect = sctp_disconnect, 7870 .accept = sctp_accept, 7871 .ioctl = sctp_ioctl, 7872 .init = sctp_init_sock, 7873 .destroy = sctp_v6_destroy_sock, 7874 .shutdown = sctp_shutdown, 7875 .setsockopt = sctp_setsockopt, 7876 .getsockopt = sctp_getsockopt, 7877 .sendmsg = sctp_sendmsg, 7878 .recvmsg = sctp_recvmsg, 7879 .bind = sctp_bind, 7880 .backlog_rcv = sctp_backlog_rcv, 7881 .hash = sctp_hash, 7882 .unhash = sctp_unhash, 7883 .get_port = sctp_get_port, 7884 .obj_size = sizeof(struct sctp6_sock), 7885 .sysctl_mem = sysctl_sctp_mem, 7886 .sysctl_rmem = sysctl_sctp_rmem, 7887 .sysctl_wmem = sysctl_sctp_wmem, 7888 .memory_pressure = &sctp_memory_pressure, 7889 .enter_memory_pressure = sctp_enter_memory_pressure, 7890 .memory_allocated = &sctp_memory_allocated, 7891 .sockets_allocated = &sctp_sockets_allocated, 7892 }; 7893 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7894