xref: /openbmc/linux/net/sctp/socket.c (revision b34e08d5)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 
75 #include <linux/socket.h> /* for sa_family_t */
76 #include <linux/export.h>
77 #include <net/sock.h>
78 #include <net/sctp/sctp.h>
79 #include <net/sctp/sm.h>
80 
81 /* Forward declarations for internal helper functions. */
82 static int sctp_writeable(struct sock *sk);
83 static void sctp_wfree(struct sk_buff *skb);
84 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
85 				size_t msg_len);
86 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
87 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
88 static int sctp_wait_for_accept(struct sock *sk, long timeo);
89 static void sctp_wait_for_close(struct sock *sk, long timeo);
90 static void sctp_destruct_sock(struct sock *sk);
91 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
92 					union sctp_addr *addr, int len);
93 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
94 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
95 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf(struct sctp_association *asoc,
98 			    struct sctp_chunk *chunk);
99 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
100 static int sctp_autobind(struct sock *sk);
101 static void sctp_sock_migrate(struct sock *, struct sock *,
102 			      struct sctp_association *, sctp_socket_type_t);
103 
104 extern struct kmem_cache *sctp_bucket_cachep;
105 extern long sysctl_sctp_mem[3];
106 extern int sysctl_sctp_rmem[3];
107 extern int sysctl_sctp_wmem[3];
108 
109 static int sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	int amt;
123 
124 	if (asoc->ep->sndbuf_policy)
125 		amt = asoc->sndbuf_used;
126 	else
127 		amt = sk_wmem_alloc_get(asoc->base.sk);
128 
129 	if (amt >= asoc->base.sk->sk_sndbuf) {
130 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
131 			amt = 0;
132 		else {
133 			amt = sk_stream_wspace(asoc->base.sk);
134 			if (amt < 0)
135 				amt = 0;
136 		}
137 	} else {
138 		amt = asoc->base.sk->sk_sndbuf - amt;
139 	}
140 	return amt;
141 }
142 
143 /* Increment the used sndbuf space count of the corresponding association by
144  * the size of the outgoing data chunk.
145  * Also, set the skb destructor for sndbuf accounting later.
146  *
147  * Since it is always 1-1 between chunk and skb, and also a new skb is always
148  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
149  * destructor in the data chunk skb for the purpose of the sndbuf space
150  * tracking.
151  */
152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
153 {
154 	struct sctp_association *asoc = chunk->asoc;
155 	struct sock *sk = asoc->base.sk;
156 
157 	/* The sndbuf space is tracked per association.  */
158 	sctp_association_hold(asoc);
159 
160 	skb_set_owner_w(chunk->skb, sk);
161 
162 	chunk->skb->destructor = sctp_wfree;
163 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
164 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
165 
166 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
167 				sizeof(struct sk_buff) +
168 				sizeof(struct sctp_chunk);
169 
170 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
171 	sk->sk_wmem_queued += chunk->skb->truesize;
172 	sk_mem_charge(sk, chunk->skb->truesize);
173 }
174 
175 /* Verify that this is a valid address. */
176 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
177 				   int len)
178 {
179 	struct sctp_af *af;
180 
181 	/* Verify basic sockaddr. */
182 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
183 	if (!af)
184 		return -EINVAL;
185 
186 	/* Is this a valid SCTP address?  */
187 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
188 		return -EINVAL;
189 
190 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 /* Look up the association by its id.  If this is not a UDP-style
197  * socket, the ID field is always ignored.
198  */
199 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
200 {
201 	struct sctp_association *asoc = NULL;
202 
203 	/* If this is not a UDP-style socket, assoc id should be ignored. */
204 	if (!sctp_style(sk, UDP)) {
205 		/* Return NULL if the socket state is not ESTABLISHED. It
206 		 * could be a TCP-style listening socket or a socket which
207 		 * hasn't yet called connect() to establish an association.
208 		 */
209 		if (!sctp_sstate(sk, ESTABLISHED))
210 			return NULL;
211 
212 		/* Get the first and the only association from the list. */
213 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
214 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
215 					  struct sctp_association, asocs);
216 		return asoc;
217 	}
218 
219 	/* Otherwise this is a UDP-style socket. */
220 	if (!id || (id == (sctp_assoc_t)-1))
221 		return NULL;
222 
223 	spin_lock_bh(&sctp_assocs_id_lock);
224 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
225 	spin_unlock_bh(&sctp_assocs_id_lock);
226 
227 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
228 		return NULL;
229 
230 	return asoc;
231 }
232 
233 /* Look up the transport from an address and an assoc id. If both address and
234  * id are specified, the associations matching the address and the id should be
235  * the same.
236  */
237 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
238 					      struct sockaddr_storage *addr,
239 					      sctp_assoc_t id)
240 {
241 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
242 	struct sctp_transport *transport;
243 	union sctp_addr *laddr = (union sctp_addr *)addr;
244 
245 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 					       laddr,
247 					       &transport);
248 
249 	if (!addr_asoc)
250 		return NULL;
251 
252 	id_asoc = sctp_id2assoc(sk, id);
253 	if (id_asoc && (id_asoc != addr_asoc))
254 		return NULL;
255 
256 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
257 						(union sctp_addr *)addr);
258 
259 	return transport;
260 }
261 
262 /* API 3.1.2 bind() - UDP Style Syntax
263  * The syntax of bind() is,
264  *
265  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
266  *
267  *   sd      - the socket descriptor returned by socket().
268  *   addr    - the address structure (struct sockaddr_in or struct
269  *             sockaddr_in6 [RFC 2553]),
270  *   addr_len - the size of the address structure.
271  */
272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273 {
274 	int retval = 0;
275 
276 	lock_sock(sk);
277 
278 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 		 addr, addr_len);
280 
281 	/* Disallow binding twice. */
282 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 				      addr_len);
285 	else
286 		retval = -EINVAL;
287 
288 	release_sock(sk);
289 
290 	return retval;
291 }
292 
293 static long sctp_get_port_local(struct sock *, union sctp_addr *);
294 
295 /* Verify this is a valid sockaddr. */
296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 					union sctp_addr *addr, int len)
298 {
299 	struct sctp_af *af;
300 
301 	/* Check minimum size.  */
302 	if (len < sizeof (struct sockaddr))
303 		return NULL;
304 
305 	/* V4 mapped address are really of AF_INET family */
306 	if (addr->sa.sa_family == AF_INET6 &&
307 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 		if (!opt->pf->af_supported(AF_INET, opt))
309 			return NULL;
310 	} else {
311 		/* Does this PF support this AF? */
312 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 			return NULL;
314 	}
315 
316 	/* If we get this far, af is valid. */
317 	af = sctp_get_af_specific(addr->sa.sa_family);
318 
319 	if (len < af->sockaddr_len)
320 		return NULL;
321 
322 	return af;
323 }
324 
325 /* Bind a local address either to an endpoint or to an association.  */
326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 {
328 	struct net *net = sock_net(sk);
329 	struct sctp_sock *sp = sctp_sk(sk);
330 	struct sctp_endpoint *ep = sp->ep;
331 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 	struct sctp_af *af;
333 	unsigned short snum;
334 	int ret = 0;
335 
336 	/* Common sockaddr verification. */
337 	af = sctp_sockaddr_af(sp, addr, len);
338 	if (!af) {
339 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 			 __func__, sk, addr, len);
341 		return -EINVAL;
342 	}
343 
344 	snum = ntohs(addr->v4.sin_port);
345 
346 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 		 __func__, sk, &addr->sa, bp->port, snum, len);
348 
349 	/* PF specific bind() address verification. */
350 	if (!sp->pf->bind_verify(sp, addr))
351 		return -EADDRNOTAVAIL;
352 
353 	/* We must either be unbound, or bind to the same port.
354 	 * It's OK to allow 0 ports if we are already bound.
355 	 * We'll just inhert an already bound port in this case
356 	 */
357 	if (bp->port) {
358 		if (!snum)
359 			snum = bp->port;
360 		else if (snum != bp->port) {
361 			pr_debug("%s: new port %d doesn't match existing port "
362 				 "%d\n", __func__, snum, bp->port);
363 			return -EINVAL;
364 		}
365 	}
366 
367 	if (snum && snum < PROT_SOCK &&
368 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 		return -EACCES;
370 
371 	/* See if the address matches any of the addresses we may have
372 	 * already bound before checking against other endpoints.
373 	 */
374 	if (sctp_bind_addr_match(bp, addr, sp))
375 		return -EINVAL;
376 
377 	/* Make sure we are allowed to bind here.
378 	 * The function sctp_get_port_local() does duplicate address
379 	 * detection.
380 	 */
381 	addr->v4.sin_port = htons(snum);
382 	if ((ret = sctp_get_port_local(sk, addr))) {
383 		return -EADDRINUSE;
384 	}
385 
386 	/* Refresh ephemeral port.  */
387 	if (!bp->port)
388 		bp->port = inet_sk(sk)->inet_num;
389 
390 	/* Add the address to the bind address list.
391 	 * Use GFP_ATOMIC since BHs will be disabled.
392 	 */
393 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
394 
395 	/* Copy back into socket for getsockname() use. */
396 	if (!ret) {
397 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
398 		af->to_sk_saddr(addr, sk);
399 	}
400 
401 	return ret;
402 }
403 
404  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
405  *
406  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
407  * at any one time.  If a sender, after sending an ASCONF chunk, decides
408  * it needs to transfer another ASCONF Chunk, it MUST wait until the
409  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
410  * subsequent ASCONF. Note this restriction binds each side, so at any
411  * time two ASCONF may be in-transit on any given association (one sent
412  * from each endpoint).
413  */
414 static int sctp_send_asconf(struct sctp_association *asoc,
415 			    struct sctp_chunk *chunk)
416 {
417 	struct net 	*net = sock_net(asoc->base.sk);
418 	int		retval = 0;
419 
420 	/* If there is an outstanding ASCONF chunk, queue it for later
421 	 * transmission.
422 	 */
423 	if (asoc->addip_last_asconf) {
424 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 		goto out;
426 	}
427 
428 	/* Hold the chunk until an ASCONF_ACK is received. */
429 	sctp_chunk_hold(chunk);
430 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
431 	if (retval)
432 		sctp_chunk_free(chunk);
433 	else
434 		asoc->addip_last_asconf = chunk;
435 
436 out:
437 	return retval;
438 }
439 
440 /* Add a list of addresses as bind addresses to local endpoint or
441  * association.
442  *
443  * Basically run through each address specified in the addrs/addrcnt
444  * array/length pair, determine if it is IPv6 or IPv4 and call
445  * sctp_do_bind() on it.
446  *
447  * If any of them fails, then the operation will be reversed and the
448  * ones that were added will be removed.
449  *
450  * Only sctp_setsockopt_bindx() is supposed to call this function.
451  */
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453 {
454 	int cnt;
455 	int retval = 0;
456 	void *addr_buf;
457 	struct sockaddr *sa_addr;
458 	struct sctp_af *af;
459 
460 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
461 		 addrs, addrcnt);
462 
463 	addr_buf = addrs;
464 	for (cnt = 0; cnt < addrcnt; cnt++) {
465 		/* The list may contain either IPv4 or IPv6 address;
466 		 * determine the address length for walking thru the list.
467 		 */
468 		sa_addr = addr_buf;
469 		af = sctp_get_af_specific(sa_addr->sa_family);
470 		if (!af) {
471 			retval = -EINVAL;
472 			goto err_bindx_add;
473 		}
474 
475 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 				      af->sockaddr_len);
477 
478 		addr_buf += af->sockaddr_len;
479 
480 err_bindx_add:
481 		if (retval < 0) {
482 			/* Failed. Cleanup the ones that have been added */
483 			if (cnt > 0)
484 				sctp_bindx_rem(sk, addrs, cnt);
485 			return retval;
486 		}
487 	}
488 
489 	return retval;
490 }
491 
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493  * associations that are part of the endpoint indicating that a list of local
494  * addresses are added to the endpoint.
495  *
496  * If any of the addresses is already in the bind address list of the
497  * association, we do not send the chunk for that association.  But it will not
498  * affect other associations.
499  *
500  * Only sctp_setsockopt_bindx() is supposed to call this function.
501  */
502 static int sctp_send_asconf_add_ip(struct sock		*sk,
503 				   struct sockaddr	*addrs,
504 				   int 			addrcnt)
505 {
506 	struct net *net = sock_net(sk);
507 	struct sctp_sock		*sp;
508 	struct sctp_endpoint		*ep;
509 	struct sctp_association		*asoc;
510 	struct sctp_bind_addr		*bp;
511 	struct sctp_chunk		*chunk;
512 	struct sctp_sockaddr_entry	*laddr;
513 	union sctp_addr			*addr;
514 	union sctp_addr			saveaddr;
515 	void				*addr_buf;
516 	struct sctp_af			*af;
517 	struct list_head		*p;
518 	int 				i;
519 	int 				retval = 0;
520 
521 	if (!net->sctp.addip_enable)
522 		return retval;
523 
524 	sp = sctp_sk(sk);
525 	ep = sp->ep;
526 
527 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
528 		 __func__, sk, addrs, addrcnt);
529 
530 	list_for_each_entry(asoc, &ep->asocs, asocs) {
531 		if (!asoc->peer.asconf_capable)
532 			continue;
533 
534 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 			continue;
536 
537 		if (!sctp_state(asoc, ESTABLISHED))
538 			continue;
539 
540 		/* Check if any address in the packed array of addresses is
541 		 * in the bind address list of the association. If so,
542 		 * do not send the asconf chunk to its peer, but continue with
543 		 * other associations.
544 		 */
545 		addr_buf = addrs;
546 		for (i = 0; i < addrcnt; i++) {
547 			addr = addr_buf;
548 			af = sctp_get_af_specific(addr->v4.sin_family);
549 			if (!af) {
550 				retval = -EINVAL;
551 				goto out;
552 			}
553 
554 			if (sctp_assoc_lookup_laddr(asoc, addr))
555 				break;
556 
557 			addr_buf += af->sockaddr_len;
558 		}
559 		if (i < addrcnt)
560 			continue;
561 
562 		/* Use the first valid address in bind addr list of
563 		 * association as Address Parameter of ASCONF CHUNK.
564 		 */
565 		bp = &asoc->base.bind_addr;
566 		p = bp->address_list.next;
567 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 						   addrcnt, SCTP_PARAM_ADD_IP);
570 		if (!chunk) {
571 			retval = -ENOMEM;
572 			goto out;
573 		}
574 
575 		/* Add the new addresses to the bind address list with
576 		 * use_as_src set to 0.
577 		 */
578 		addr_buf = addrs;
579 		for (i = 0; i < addrcnt; i++) {
580 			addr = addr_buf;
581 			af = sctp_get_af_specific(addr->v4.sin_family);
582 			memcpy(&saveaddr, addr, af->sockaddr_len);
583 			retval = sctp_add_bind_addr(bp, &saveaddr,
584 						    SCTP_ADDR_NEW, GFP_ATOMIC);
585 			addr_buf += af->sockaddr_len;
586 		}
587 		if (asoc->src_out_of_asoc_ok) {
588 			struct sctp_transport *trans;
589 
590 			list_for_each_entry(trans,
591 			    &asoc->peer.transport_addr_list, transports) {
592 				/* Clear the source and route cache */
593 				dst_release(trans->dst);
594 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
595 				    2*asoc->pathmtu, 4380));
596 				trans->ssthresh = asoc->peer.i.a_rwnd;
597 				trans->rto = asoc->rto_initial;
598 				sctp_max_rto(asoc, trans);
599 				trans->rtt = trans->srtt = trans->rttvar = 0;
600 				sctp_transport_route(trans, NULL,
601 				    sctp_sk(asoc->base.sk));
602 			}
603 		}
604 		retval = sctp_send_asconf(asoc, chunk);
605 	}
606 
607 out:
608 	return retval;
609 }
610 
611 /* Remove a list of addresses from bind addresses list.  Do not remove the
612  * last address.
613  *
614  * Basically run through each address specified in the addrs/addrcnt
615  * array/length pair, determine if it is IPv6 or IPv4 and call
616  * sctp_del_bind() on it.
617  *
618  * If any of them fails, then the operation will be reversed and the
619  * ones that were removed will be added back.
620  *
621  * At least one address has to be left; if only one address is
622  * available, the operation will return -EBUSY.
623  *
624  * Only sctp_setsockopt_bindx() is supposed to call this function.
625  */
626 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
627 {
628 	struct sctp_sock *sp = sctp_sk(sk);
629 	struct sctp_endpoint *ep = sp->ep;
630 	int cnt;
631 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
632 	int retval = 0;
633 	void *addr_buf;
634 	union sctp_addr *sa_addr;
635 	struct sctp_af *af;
636 
637 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
638 		 __func__, sk, addrs, addrcnt);
639 
640 	addr_buf = addrs;
641 	for (cnt = 0; cnt < addrcnt; cnt++) {
642 		/* If the bind address list is empty or if there is only one
643 		 * bind address, there is nothing more to be removed (we need
644 		 * at least one address here).
645 		 */
646 		if (list_empty(&bp->address_list) ||
647 		    (sctp_list_single_entry(&bp->address_list))) {
648 			retval = -EBUSY;
649 			goto err_bindx_rem;
650 		}
651 
652 		sa_addr = addr_buf;
653 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
654 		if (!af) {
655 			retval = -EINVAL;
656 			goto err_bindx_rem;
657 		}
658 
659 		if (!af->addr_valid(sa_addr, sp, NULL)) {
660 			retval = -EADDRNOTAVAIL;
661 			goto err_bindx_rem;
662 		}
663 
664 		if (sa_addr->v4.sin_port &&
665 		    sa_addr->v4.sin_port != htons(bp->port)) {
666 			retval = -EINVAL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (!sa_addr->v4.sin_port)
671 			sa_addr->v4.sin_port = htons(bp->port);
672 
673 		/* FIXME - There is probably a need to check if sk->sk_saddr and
674 		 * sk->sk_rcv_addr are currently set to one of the addresses to
675 		 * be removed. This is something which needs to be looked into
676 		 * when we are fixing the outstanding issues with multi-homing
677 		 * socket routing and failover schemes. Refer to comments in
678 		 * sctp_do_bind(). -daisy
679 		 */
680 		retval = sctp_del_bind_addr(bp, sa_addr);
681 
682 		addr_buf += af->sockaddr_len;
683 err_bindx_rem:
684 		if (retval < 0) {
685 			/* Failed. Add the ones that has been removed back */
686 			if (cnt > 0)
687 				sctp_bindx_add(sk, addrs, cnt);
688 			return retval;
689 		}
690 	}
691 
692 	return retval;
693 }
694 
695 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
696  * the associations that are part of the endpoint indicating that a list of
697  * local addresses are removed from the endpoint.
698  *
699  * If any of the addresses is already in the bind address list of the
700  * association, we do not send the chunk for that association.  But it will not
701  * affect other associations.
702  *
703  * Only sctp_setsockopt_bindx() is supposed to call this function.
704  */
705 static int sctp_send_asconf_del_ip(struct sock		*sk,
706 				   struct sockaddr	*addrs,
707 				   int			addrcnt)
708 {
709 	struct net *net = sock_net(sk);
710 	struct sctp_sock	*sp;
711 	struct sctp_endpoint	*ep;
712 	struct sctp_association	*asoc;
713 	struct sctp_transport	*transport;
714 	struct sctp_bind_addr	*bp;
715 	struct sctp_chunk	*chunk;
716 	union sctp_addr		*laddr;
717 	void			*addr_buf;
718 	struct sctp_af		*af;
719 	struct sctp_sockaddr_entry *saddr;
720 	int 			i;
721 	int 			retval = 0;
722 	int			stored = 0;
723 
724 	chunk = NULL;
725 	if (!net->sctp.addip_enable)
726 		return retval;
727 
728 	sp = sctp_sk(sk);
729 	ep = sp->ep;
730 
731 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
732 		 __func__, sk, addrs, addrcnt);
733 
734 	list_for_each_entry(asoc, &ep->asocs, asocs) {
735 
736 		if (!asoc->peer.asconf_capable)
737 			continue;
738 
739 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
740 			continue;
741 
742 		if (!sctp_state(asoc, ESTABLISHED))
743 			continue;
744 
745 		/* Check if any address in the packed array of addresses is
746 		 * not present in the bind address list of the association.
747 		 * If so, do not send the asconf chunk to its peer, but
748 		 * continue with other associations.
749 		 */
750 		addr_buf = addrs;
751 		for (i = 0; i < addrcnt; i++) {
752 			laddr = addr_buf;
753 			af = sctp_get_af_specific(laddr->v4.sin_family);
754 			if (!af) {
755 				retval = -EINVAL;
756 				goto out;
757 			}
758 
759 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
760 				break;
761 
762 			addr_buf += af->sockaddr_len;
763 		}
764 		if (i < addrcnt)
765 			continue;
766 
767 		/* Find one address in the association's bind address list
768 		 * that is not in the packed array of addresses. This is to
769 		 * make sure that we do not delete all the addresses in the
770 		 * association.
771 		 */
772 		bp = &asoc->base.bind_addr;
773 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
774 					       addrcnt, sp);
775 		if ((laddr == NULL) && (addrcnt == 1)) {
776 			if (asoc->asconf_addr_del_pending)
777 				continue;
778 			asoc->asconf_addr_del_pending =
779 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
780 			if (asoc->asconf_addr_del_pending == NULL) {
781 				retval = -ENOMEM;
782 				goto out;
783 			}
784 			asoc->asconf_addr_del_pending->sa.sa_family =
785 				    addrs->sa_family;
786 			asoc->asconf_addr_del_pending->v4.sin_port =
787 				    htons(bp->port);
788 			if (addrs->sa_family == AF_INET) {
789 				struct sockaddr_in *sin;
790 
791 				sin = (struct sockaddr_in *)addrs;
792 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
793 			} else if (addrs->sa_family == AF_INET6) {
794 				struct sockaddr_in6 *sin6;
795 
796 				sin6 = (struct sockaddr_in6 *)addrs;
797 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
798 			}
799 
800 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
801 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
802 				 asoc->asconf_addr_del_pending);
803 
804 			asoc->src_out_of_asoc_ok = 1;
805 			stored = 1;
806 			goto skip_mkasconf;
807 		}
808 
809 		if (laddr == NULL)
810 			return -EINVAL;
811 
812 		/* We do not need RCU protection throughout this loop
813 		 * because this is done under a socket lock from the
814 		 * setsockopt call.
815 		 */
816 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
817 						   SCTP_PARAM_DEL_IP);
818 		if (!chunk) {
819 			retval = -ENOMEM;
820 			goto out;
821 		}
822 
823 skip_mkasconf:
824 		/* Reset use_as_src flag for the addresses in the bind address
825 		 * list that are to be deleted.
826 		 */
827 		addr_buf = addrs;
828 		for (i = 0; i < addrcnt; i++) {
829 			laddr = addr_buf;
830 			af = sctp_get_af_specific(laddr->v4.sin_family);
831 			list_for_each_entry(saddr, &bp->address_list, list) {
832 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
833 					saddr->state = SCTP_ADDR_DEL;
834 			}
835 			addr_buf += af->sockaddr_len;
836 		}
837 
838 		/* Update the route and saddr entries for all the transports
839 		 * as some of the addresses in the bind address list are
840 		 * about to be deleted and cannot be used as source addresses.
841 		 */
842 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
843 					transports) {
844 			dst_release(transport->dst);
845 			sctp_transport_route(transport, NULL,
846 					     sctp_sk(asoc->base.sk));
847 		}
848 
849 		if (stored)
850 			/* We don't need to transmit ASCONF */
851 			continue;
852 		retval = sctp_send_asconf(asoc, chunk);
853 	}
854 out:
855 	return retval;
856 }
857 
858 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
859 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
860 {
861 	struct sock *sk = sctp_opt2sk(sp);
862 	union sctp_addr *addr;
863 	struct sctp_af *af;
864 
865 	/* It is safe to write port space in caller. */
866 	addr = &addrw->a;
867 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
868 	af = sctp_get_af_specific(addr->sa.sa_family);
869 	if (!af)
870 		return -EINVAL;
871 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
872 		return -EINVAL;
873 
874 	if (addrw->state == SCTP_ADDR_NEW)
875 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
876 	else
877 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
878 }
879 
880 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
881  *
882  * API 8.1
883  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
884  *                int flags);
885  *
886  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
887  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
888  * or IPv6 addresses.
889  *
890  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
891  * Section 3.1.2 for this usage.
892  *
893  * addrs is a pointer to an array of one or more socket addresses. Each
894  * address is contained in its appropriate structure (i.e. struct
895  * sockaddr_in or struct sockaddr_in6) the family of the address type
896  * must be used to distinguish the address length (note that this
897  * representation is termed a "packed array" of addresses). The caller
898  * specifies the number of addresses in the array with addrcnt.
899  *
900  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
901  * -1, and sets errno to the appropriate error code.
902  *
903  * For SCTP, the port given in each socket address must be the same, or
904  * sctp_bindx() will fail, setting errno to EINVAL.
905  *
906  * The flags parameter is formed from the bitwise OR of zero or more of
907  * the following currently defined flags:
908  *
909  * SCTP_BINDX_ADD_ADDR
910  *
911  * SCTP_BINDX_REM_ADDR
912  *
913  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
914  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
915  * addresses from the association. The two flags are mutually exclusive;
916  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
917  * not remove all addresses from an association; sctp_bindx() will
918  * reject such an attempt with EINVAL.
919  *
920  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
921  * additional addresses with an endpoint after calling bind().  Or use
922  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
923  * socket is associated with so that no new association accepted will be
924  * associated with those addresses. If the endpoint supports dynamic
925  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
926  * endpoint to send the appropriate message to the peer to change the
927  * peers address lists.
928  *
929  * Adding and removing addresses from a connected association is
930  * optional functionality. Implementations that do not support this
931  * functionality should return EOPNOTSUPP.
932  *
933  * Basically do nothing but copying the addresses from user to kernel
934  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
935  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
936  * from userspace.
937  *
938  * We don't use copy_from_user() for optimization: we first do the
939  * sanity checks (buffer size -fast- and access check-healthy
940  * pointer); if all of those succeed, then we can alloc the memory
941  * (expensive operation) needed to copy the data to kernel. Then we do
942  * the copying without checking the user space area
943  * (__copy_from_user()).
944  *
945  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
946  * it.
947  *
948  * sk        The sk of the socket
949  * addrs     The pointer to the addresses in user land
950  * addrssize Size of the addrs buffer
951  * op        Operation to perform (add or remove, see the flags of
952  *           sctp_bindx)
953  *
954  * Returns 0 if ok, <0 errno code on error.
955  */
956 static int sctp_setsockopt_bindx(struct sock *sk,
957 				 struct sockaddr __user *addrs,
958 				 int addrs_size, int op)
959 {
960 	struct sockaddr *kaddrs;
961 	int err;
962 	int addrcnt = 0;
963 	int walk_size = 0;
964 	struct sockaddr *sa_addr;
965 	void *addr_buf;
966 	struct sctp_af *af;
967 
968 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
969 		 __func__, sk, addrs, addrs_size, op);
970 
971 	if (unlikely(addrs_size <= 0))
972 		return -EINVAL;
973 
974 	/* Check the user passed a healthy pointer.  */
975 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
976 		return -EFAULT;
977 
978 	/* Alloc space for the address array in kernel memory.  */
979 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
980 	if (unlikely(!kaddrs))
981 		return -ENOMEM;
982 
983 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
984 		kfree(kaddrs);
985 		return -EFAULT;
986 	}
987 
988 	/* Walk through the addrs buffer and count the number of addresses. */
989 	addr_buf = kaddrs;
990 	while (walk_size < addrs_size) {
991 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
992 			kfree(kaddrs);
993 			return -EINVAL;
994 		}
995 
996 		sa_addr = addr_buf;
997 		af = sctp_get_af_specific(sa_addr->sa_family);
998 
999 		/* If the address family is not supported or if this address
1000 		 * causes the address buffer to overflow return EINVAL.
1001 		 */
1002 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003 			kfree(kaddrs);
1004 			return -EINVAL;
1005 		}
1006 		addrcnt++;
1007 		addr_buf += af->sockaddr_len;
1008 		walk_size += af->sockaddr_len;
1009 	}
1010 
1011 	/* Do the work. */
1012 	switch (op) {
1013 	case SCTP_BINDX_ADD_ADDR:
1014 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1015 		if (err)
1016 			goto out;
1017 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1018 		break;
1019 
1020 	case SCTP_BINDX_REM_ADDR:
1021 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1022 		if (err)
1023 			goto out;
1024 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1025 		break;
1026 
1027 	default:
1028 		err = -EINVAL;
1029 		break;
1030 	}
1031 
1032 out:
1033 	kfree(kaddrs);
1034 
1035 	return err;
1036 }
1037 
1038 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1039  *
1040  * Common routine for handling connect() and sctp_connectx().
1041  * Connect will come in with just a single address.
1042  */
1043 static int __sctp_connect(struct sock *sk,
1044 			  struct sockaddr *kaddrs,
1045 			  int addrs_size,
1046 			  sctp_assoc_t *assoc_id)
1047 {
1048 	struct net *net = sock_net(sk);
1049 	struct sctp_sock *sp;
1050 	struct sctp_endpoint *ep;
1051 	struct sctp_association *asoc = NULL;
1052 	struct sctp_association *asoc2;
1053 	struct sctp_transport *transport;
1054 	union sctp_addr to;
1055 	struct sctp_af *af;
1056 	sctp_scope_t scope;
1057 	long timeo;
1058 	int err = 0;
1059 	int addrcnt = 0;
1060 	int walk_size = 0;
1061 	union sctp_addr *sa_addr = NULL;
1062 	void *addr_buf;
1063 	unsigned short port;
1064 	unsigned int f_flags = 0;
1065 
1066 	sp = sctp_sk(sk);
1067 	ep = sp->ep;
1068 
1069 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1070 	 * state - UDP-style peeled off socket or a TCP-style socket that
1071 	 * is already connected.
1072 	 * It cannot be done even on a TCP-style listening socket.
1073 	 */
1074 	if (sctp_sstate(sk, ESTABLISHED) ||
1075 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1076 		err = -EISCONN;
1077 		goto out_free;
1078 	}
1079 
1080 	/* Walk through the addrs buffer and count the number of addresses. */
1081 	addr_buf = kaddrs;
1082 	while (walk_size < addrs_size) {
1083 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1084 			err = -EINVAL;
1085 			goto out_free;
1086 		}
1087 
1088 		sa_addr = addr_buf;
1089 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1090 
1091 		/* If the address family is not supported or if this address
1092 		 * causes the address buffer to overflow return EINVAL.
1093 		 */
1094 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1095 			err = -EINVAL;
1096 			goto out_free;
1097 		}
1098 
1099 		port = ntohs(sa_addr->v4.sin_port);
1100 
1101 		/* Save current address so we can work with it */
1102 		memcpy(&to, sa_addr, af->sockaddr_len);
1103 
1104 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1105 		if (err)
1106 			goto out_free;
1107 
1108 		/* Make sure the destination port is correctly set
1109 		 * in all addresses.
1110 		 */
1111 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1112 			err = -EINVAL;
1113 			goto out_free;
1114 		}
1115 
1116 		/* Check if there already is a matching association on the
1117 		 * endpoint (other than the one created here).
1118 		 */
1119 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1120 		if (asoc2 && asoc2 != asoc) {
1121 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1122 				err = -EISCONN;
1123 			else
1124 				err = -EALREADY;
1125 			goto out_free;
1126 		}
1127 
1128 		/* If we could not find a matching association on the endpoint,
1129 		 * make sure that there is no peeled-off association matching
1130 		 * the peer address even on another socket.
1131 		 */
1132 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1133 			err = -EADDRNOTAVAIL;
1134 			goto out_free;
1135 		}
1136 
1137 		if (!asoc) {
1138 			/* If a bind() or sctp_bindx() is not called prior to
1139 			 * an sctp_connectx() call, the system picks an
1140 			 * ephemeral port and will choose an address set
1141 			 * equivalent to binding with a wildcard address.
1142 			 */
1143 			if (!ep->base.bind_addr.port) {
1144 				if (sctp_autobind(sk)) {
1145 					err = -EAGAIN;
1146 					goto out_free;
1147 				}
1148 			} else {
1149 				/*
1150 				 * If an unprivileged user inherits a 1-many
1151 				 * style socket with open associations on a
1152 				 * privileged port, it MAY be permitted to
1153 				 * accept new associations, but it SHOULD NOT
1154 				 * be permitted to open new associations.
1155 				 */
1156 				if (ep->base.bind_addr.port < PROT_SOCK &&
1157 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1158 					err = -EACCES;
1159 					goto out_free;
1160 				}
1161 			}
1162 
1163 			scope = sctp_scope(&to);
1164 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1165 			if (!asoc) {
1166 				err = -ENOMEM;
1167 				goto out_free;
1168 			}
1169 
1170 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1171 							      GFP_KERNEL);
1172 			if (err < 0) {
1173 				goto out_free;
1174 			}
1175 
1176 		}
1177 
1178 		/* Prime the peer's transport structures.  */
1179 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1180 						SCTP_UNKNOWN);
1181 		if (!transport) {
1182 			err = -ENOMEM;
1183 			goto out_free;
1184 		}
1185 
1186 		addrcnt++;
1187 		addr_buf += af->sockaddr_len;
1188 		walk_size += af->sockaddr_len;
1189 	}
1190 
1191 	/* In case the user of sctp_connectx() wants an association
1192 	 * id back, assign one now.
1193 	 */
1194 	if (assoc_id) {
1195 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1196 		if (err < 0)
1197 			goto out_free;
1198 	}
1199 
1200 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1201 	if (err < 0) {
1202 		goto out_free;
1203 	}
1204 
1205 	/* Initialize sk's dport and daddr for getpeername() */
1206 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1207 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1208 	af->to_sk_daddr(sa_addr, sk);
1209 	sk->sk_err = 0;
1210 
1211 	/* in-kernel sockets don't generally have a file allocated to them
1212 	 * if all they do is call sock_create_kern().
1213 	 */
1214 	if (sk->sk_socket->file)
1215 		f_flags = sk->sk_socket->file->f_flags;
1216 
1217 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1218 
1219 	err = sctp_wait_for_connect(asoc, &timeo);
1220 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1221 		*assoc_id = asoc->assoc_id;
1222 
1223 	/* Don't free association on exit. */
1224 	asoc = NULL;
1225 
1226 out_free:
1227 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1228 		 __func__, asoc, kaddrs, err);
1229 
1230 	if (asoc) {
1231 		/* sctp_primitive_ASSOCIATE may have added this association
1232 		 * To the hash table, try to unhash it, just in case, its a noop
1233 		 * if it wasn't hashed so we're safe
1234 		 */
1235 		sctp_unhash_established(asoc);
1236 		sctp_association_free(asoc);
1237 	}
1238 	return err;
1239 }
1240 
1241 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1242  *
1243  * API 8.9
1244  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1245  * 			sctp_assoc_t *asoc);
1246  *
1247  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1248  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1249  * or IPv6 addresses.
1250  *
1251  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1252  * Section 3.1.2 for this usage.
1253  *
1254  * addrs is a pointer to an array of one or more socket addresses. Each
1255  * address is contained in its appropriate structure (i.e. struct
1256  * sockaddr_in or struct sockaddr_in6) the family of the address type
1257  * must be used to distengish the address length (note that this
1258  * representation is termed a "packed array" of addresses). The caller
1259  * specifies the number of addresses in the array with addrcnt.
1260  *
1261  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1262  * the association id of the new association.  On failure, sctp_connectx()
1263  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1264  * is not touched by the kernel.
1265  *
1266  * For SCTP, the port given in each socket address must be the same, or
1267  * sctp_connectx() will fail, setting errno to EINVAL.
1268  *
1269  * An application can use sctp_connectx to initiate an association with
1270  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1271  * allows a caller to specify multiple addresses at which a peer can be
1272  * reached.  The way the SCTP stack uses the list of addresses to set up
1273  * the association is implementation dependent.  This function only
1274  * specifies that the stack will try to make use of all the addresses in
1275  * the list when needed.
1276  *
1277  * Note that the list of addresses passed in is only used for setting up
1278  * the association.  It does not necessarily equal the set of addresses
1279  * the peer uses for the resulting association.  If the caller wants to
1280  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1281  * retrieve them after the association has been set up.
1282  *
1283  * Basically do nothing but copying the addresses from user to kernel
1284  * land and invoking either sctp_connectx(). This is used for tunneling
1285  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1286  *
1287  * We don't use copy_from_user() for optimization: we first do the
1288  * sanity checks (buffer size -fast- and access check-healthy
1289  * pointer); if all of those succeed, then we can alloc the memory
1290  * (expensive operation) needed to copy the data to kernel. Then we do
1291  * the copying without checking the user space area
1292  * (__copy_from_user()).
1293  *
1294  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295  * it.
1296  *
1297  * sk        The sk of the socket
1298  * addrs     The pointer to the addresses in user land
1299  * addrssize Size of the addrs buffer
1300  *
1301  * Returns >=0 if ok, <0 errno code on error.
1302  */
1303 static int __sctp_setsockopt_connectx(struct sock *sk,
1304 				      struct sockaddr __user *addrs,
1305 				      int addrs_size,
1306 				      sctp_assoc_t *assoc_id)
1307 {
1308 	int err = 0;
1309 	struct sockaddr *kaddrs;
1310 
1311 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1312 		 __func__, sk, addrs, addrs_size);
1313 
1314 	if (unlikely(addrs_size <= 0))
1315 		return -EINVAL;
1316 
1317 	/* Check the user passed a healthy pointer.  */
1318 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1319 		return -EFAULT;
1320 
1321 	/* Alloc space for the address array in kernel memory.  */
1322 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1323 	if (unlikely(!kaddrs))
1324 		return -ENOMEM;
1325 
1326 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 		err = -EFAULT;
1328 	} else {
1329 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 	}
1331 
1332 	kfree(kaddrs);
1333 
1334 	return err;
1335 }
1336 
1337 /*
1338  * This is an older interface.  It's kept for backward compatibility
1339  * to the option that doesn't provide association id.
1340  */
1341 static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 					struct sockaddr __user *addrs,
1343 					int addrs_size)
1344 {
1345 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346 }
1347 
1348 /*
1349  * New interface for the API.  The since the API is done with a socket
1350  * option, to make it simple we feed back the association id is as a return
1351  * indication to the call.  Error is always negative and association id is
1352  * always positive.
1353  */
1354 static int sctp_setsockopt_connectx(struct sock *sk,
1355 				    struct sockaddr __user *addrs,
1356 				    int addrs_size)
1357 {
1358 	sctp_assoc_t assoc_id = 0;
1359 	int err = 0;
1360 
1361 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362 
1363 	if (err)
1364 		return err;
1365 	else
1366 		return assoc_id;
1367 }
1368 
1369 /*
1370  * New (hopefully final) interface for the API.
1371  * We use the sctp_getaddrs_old structure so that use-space library
1372  * can avoid any unnecessary allocations. The only different part
1373  * is that we store the actual length of the address buffer into the
1374  * addrs_num structure member. That way we can re-use the existing
1375  * code.
1376  */
1377 #ifdef CONFIG_COMPAT
1378 struct compat_sctp_getaddrs_old {
1379 	sctp_assoc_t	assoc_id;
1380 	s32		addr_num;
1381 	compat_uptr_t	addrs;		/* struct sockaddr * */
1382 };
1383 #endif
1384 
1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 				     char __user *optval,
1387 				     int __user *optlen)
1388 {
1389 	struct sctp_getaddrs_old param;
1390 	sctp_assoc_t assoc_id = 0;
1391 	int err = 0;
1392 
1393 #ifdef CONFIG_COMPAT
1394 	if (is_compat_task()) {
1395 		struct compat_sctp_getaddrs_old param32;
1396 
1397 		if (len < sizeof(param32))
1398 			return -EINVAL;
1399 		if (copy_from_user(&param32, optval, sizeof(param32)))
1400 			return -EFAULT;
1401 
1402 		param.assoc_id = param32.assoc_id;
1403 		param.addr_num = param32.addr_num;
1404 		param.addrs = compat_ptr(param32.addrs);
1405 	} else
1406 #endif
1407 	{
1408 		if (len < sizeof(param))
1409 			return -EINVAL;
1410 		if (copy_from_user(&param, optval, sizeof(param)))
1411 			return -EFAULT;
1412 	}
1413 
1414 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415 					 param.addrs, param.addr_num,
1416 					 &assoc_id);
1417 	if (err == 0 || err == -EINPROGRESS) {
1418 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419 			return -EFAULT;
1420 		if (put_user(sizeof(assoc_id), optlen))
1421 			return -EFAULT;
1422 	}
1423 
1424 	return err;
1425 }
1426 
1427 /* API 3.1.4 close() - UDP Style Syntax
1428  * Applications use close() to perform graceful shutdown (as described in
1429  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430  * by a UDP-style socket.
1431  *
1432  * The syntax is
1433  *
1434  *   ret = close(int sd);
1435  *
1436  *   sd      - the socket descriptor of the associations to be closed.
1437  *
1438  * To gracefully shutdown a specific association represented by the
1439  * UDP-style socket, an application should use the sendmsg() call,
1440  * passing no user data, but including the appropriate flag in the
1441  * ancillary data (see Section xxxx).
1442  *
1443  * If sd in the close() call is a branched-off socket representing only
1444  * one association, the shutdown is performed on that association only.
1445  *
1446  * 4.1.6 close() - TCP Style Syntax
1447  *
1448  * Applications use close() to gracefully close down an association.
1449  *
1450  * The syntax is:
1451  *
1452  *    int close(int sd);
1453  *
1454  *      sd      - the socket descriptor of the association to be closed.
1455  *
1456  * After an application calls close() on a socket descriptor, no further
1457  * socket operations will succeed on that descriptor.
1458  *
1459  * API 7.1.4 SO_LINGER
1460  *
1461  * An application using the TCP-style socket can use this option to
1462  * perform the SCTP ABORT primitive.  The linger option structure is:
1463  *
1464  *  struct  linger {
1465  *     int     l_onoff;                // option on/off
1466  *     int     l_linger;               // linger time
1467  * };
1468  *
1469  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1470  * to 0, calling close() is the same as the ABORT primitive.  If the
1471  * value is set to a negative value, the setsockopt() call will return
1472  * an error.  If the value is set to a positive value linger_time, the
1473  * close() can be blocked for at most linger_time ms.  If the graceful
1474  * shutdown phase does not finish during this period, close() will
1475  * return but the graceful shutdown phase continues in the system.
1476  */
1477 static void sctp_close(struct sock *sk, long timeout)
1478 {
1479 	struct net *net = sock_net(sk);
1480 	struct sctp_endpoint *ep;
1481 	struct sctp_association *asoc;
1482 	struct list_head *pos, *temp;
1483 	unsigned int data_was_unread;
1484 
1485 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486 
1487 	lock_sock(sk);
1488 	sk->sk_shutdown = SHUTDOWN_MASK;
1489 	sk->sk_state = SCTP_SS_CLOSING;
1490 
1491 	ep = sctp_sk(sk)->ep;
1492 
1493 	/* Clean up any skbs sitting on the receive queue.  */
1494 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496 
1497 	/* Walk all associations on an endpoint.  */
1498 	list_for_each_safe(pos, temp, &ep->asocs) {
1499 		asoc = list_entry(pos, struct sctp_association, asocs);
1500 
1501 		if (sctp_style(sk, TCP)) {
1502 			/* A closed association can still be in the list if
1503 			 * it belongs to a TCP-style listening socket that is
1504 			 * not yet accepted. If so, free it. If not, send an
1505 			 * ABORT or SHUTDOWN based on the linger options.
1506 			 */
1507 			if (sctp_state(asoc, CLOSED)) {
1508 				sctp_unhash_established(asoc);
1509 				sctp_association_free(asoc);
1510 				continue;
1511 			}
1512 		}
1513 
1514 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1515 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1516 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1517 			struct sctp_chunk *chunk;
1518 
1519 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1520 			if (chunk)
1521 				sctp_primitive_ABORT(net, asoc, chunk);
1522 		} else
1523 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1524 	}
1525 
1526 	/* On a TCP-style socket, block for at most linger_time if set. */
1527 	if (sctp_style(sk, TCP) && timeout)
1528 		sctp_wait_for_close(sk, timeout);
1529 
1530 	/* This will run the backlog queue.  */
1531 	release_sock(sk);
1532 
1533 	/* Supposedly, no process has access to the socket, but
1534 	 * the net layers still may.
1535 	 */
1536 	local_bh_disable();
1537 	bh_lock_sock(sk);
1538 
1539 	/* Hold the sock, since sk_common_release() will put sock_put()
1540 	 * and we have just a little more cleanup.
1541 	 */
1542 	sock_hold(sk);
1543 	sk_common_release(sk);
1544 
1545 	bh_unlock_sock(sk);
1546 	local_bh_enable();
1547 
1548 	sock_put(sk);
1549 
1550 	SCTP_DBG_OBJCNT_DEC(sock);
1551 }
1552 
1553 /* Handle EPIPE error. */
1554 static int sctp_error(struct sock *sk, int flags, int err)
1555 {
1556 	if (err == -EPIPE)
1557 		err = sock_error(sk) ? : -EPIPE;
1558 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 		send_sig(SIGPIPE, current, 0);
1560 	return err;
1561 }
1562 
1563 /* API 3.1.3 sendmsg() - UDP Style Syntax
1564  *
1565  * An application uses sendmsg() and recvmsg() calls to transmit data to
1566  * and receive data from its peer.
1567  *
1568  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1569  *                  int flags);
1570  *
1571  *  socket  - the socket descriptor of the endpoint.
1572  *  message - pointer to the msghdr structure which contains a single
1573  *            user message and possibly some ancillary data.
1574  *
1575  *            See Section 5 for complete description of the data
1576  *            structures.
1577  *
1578  *  flags   - flags sent or received with the user message, see Section
1579  *            5 for complete description of the flags.
1580  *
1581  * Note:  This function could use a rewrite especially when explicit
1582  * connect support comes in.
1583  */
1584 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1585 
1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587 
1588 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1589 			struct msghdr *msg, size_t msg_len)
1590 {
1591 	struct net *net = sock_net(sk);
1592 	struct sctp_sock *sp;
1593 	struct sctp_endpoint *ep;
1594 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1595 	struct sctp_transport *transport, *chunk_tp;
1596 	struct sctp_chunk *chunk;
1597 	union sctp_addr to;
1598 	struct sockaddr *msg_name = NULL;
1599 	struct sctp_sndrcvinfo default_sinfo;
1600 	struct sctp_sndrcvinfo *sinfo;
1601 	struct sctp_initmsg *sinit;
1602 	sctp_assoc_t associd = 0;
1603 	sctp_cmsgs_t cmsgs = { NULL };
1604 	int err;
1605 	sctp_scope_t scope;
1606 	long timeo;
1607 	__u16 sinfo_flags = 0;
1608 	struct sctp_datamsg *datamsg;
1609 	int msg_flags = msg->msg_flags;
1610 
1611 	err = 0;
1612 	sp = sctp_sk(sk);
1613 	ep = sp->ep;
1614 
1615 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 		 msg, msg_len, ep);
1617 
1618 	/* We cannot send a message over a TCP-style listening socket. */
1619 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 		err = -EPIPE;
1621 		goto out_nounlock;
1622 	}
1623 
1624 	/* Parse out the SCTP CMSGs.  */
1625 	err = sctp_msghdr_parse(msg, &cmsgs);
1626 	if (err) {
1627 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 		goto out_nounlock;
1629 	}
1630 
1631 	/* Fetch the destination address for this packet.  This
1632 	 * address only selects the association--it is not necessarily
1633 	 * the address we will send to.
1634 	 * For a peeled-off socket, msg_name is ignored.
1635 	 */
1636 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 		int msg_namelen = msg->msg_namelen;
1638 
1639 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 				       msg_namelen);
1641 		if (err)
1642 			return err;
1643 
1644 		if (msg_namelen > sizeof(to))
1645 			msg_namelen = sizeof(to);
1646 		memcpy(&to, msg->msg_name, msg_namelen);
1647 		msg_name = msg->msg_name;
1648 	}
1649 
1650 	sinfo = cmsgs.info;
1651 	sinit = cmsgs.init;
1652 
1653 	/* Did the user specify SNDRCVINFO?  */
1654 	if (sinfo) {
1655 		sinfo_flags = sinfo->sinfo_flags;
1656 		associd = sinfo->sinfo_assoc_id;
1657 	}
1658 
1659 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1660 		 msg_len, sinfo_flags);
1661 
1662 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1663 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1664 		err = -EINVAL;
1665 		goto out_nounlock;
1666 	}
1667 
1668 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1669 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1670 	 * If SCTP_ABORT is set, the message length could be non zero with
1671 	 * the msg_iov set to the user abort reason.
1672 	 */
1673 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1674 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1675 		err = -EINVAL;
1676 		goto out_nounlock;
1677 	}
1678 
1679 	/* If SCTP_ADDR_OVER is set, there must be an address
1680 	 * specified in msg_name.
1681 	 */
1682 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1683 		err = -EINVAL;
1684 		goto out_nounlock;
1685 	}
1686 
1687 	transport = NULL;
1688 
1689 	pr_debug("%s: about to look up association\n", __func__);
1690 
1691 	lock_sock(sk);
1692 
1693 	/* If a msg_name has been specified, assume this is to be used.  */
1694 	if (msg_name) {
1695 		/* Look for a matching association on the endpoint. */
1696 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1697 		if (!asoc) {
1698 			/* If we could not find a matching association on the
1699 			 * endpoint, make sure that it is not a TCP-style
1700 			 * socket that already has an association or there is
1701 			 * no peeled-off association on another socket.
1702 			 */
1703 			if ((sctp_style(sk, TCP) &&
1704 			     sctp_sstate(sk, ESTABLISHED)) ||
1705 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1706 				err = -EADDRNOTAVAIL;
1707 				goto out_unlock;
1708 			}
1709 		}
1710 	} else {
1711 		asoc = sctp_id2assoc(sk, associd);
1712 		if (!asoc) {
1713 			err = -EPIPE;
1714 			goto out_unlock;
1715 		}
1716 	}
1717 
1718 	if (asoc) {
1719 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1720 
1721 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1722 		 * socket that has an association in CLOSED state. This can
1723 		 * happen when an accepted socket has an association that is
1724 		 * already CLOSED.
1725 		 */
1726 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1727 			err = -EPIPE;
1728 			goto out_unlock;
1729 		}
1730 
1731 		if (sinfo_flags & SCTP_EOF) {
1732 			pr_debug("%s: shutting down association:%p\n",
1733 				 __func__, asoc);
1734 
1735 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1736 			err = 0;
1737 			goto out_unlock;
1738 		}
1739 		if (sinfo_flags & SCTP_ABORT) {
1740 
1741 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1742 			if (!chunk) {
1743 				err = -ENOMEM;
1744 				goto out_unlock;
1745 			}
1746 
1747 			pr_debug("%s: aborting association:%p\n",
1748 				 __func__, asoc);
1749 
1750 			sctp_primitive_ABORT(net, asoc, chunk);
1751 			err = 0;
1752 			goto out_unlock;
1753 		}
1754 	}
1755 
1756 	/* Do we need to create the association?  */
1757 	if (!asoc) {
1758 		pr_debug("%s: there is no association yet\n", __func__);
1759 
1760 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1761 			err = -EINVAL;
1762 			goto out_unlock;
1763 		}
1764 
1765 		/* Check for invalid stream against the stream counts,
1766 		 * either the default or the user specified stream counts.
1767 		 */
1768 		if (sinfo) {
1769 			if (!sinit || !sinit->sinit_num_ostreams) {
1770 				/* Check against the defaults. */
1771 				if (sinfo->sinfo_stream >=
1772 				    sp->initmsg.sinit_num_ostreams) {
1773 					err = -EINVAL;
1774 					goto out_unlock;
1775 				}
1776 			} else {
1777 				/* Check against the requested.  */
1778 				if (sinfo->sinfo_stream >=
1779 				    sinit->sinit_num_ostreams) {
1780 					err = -EINVAL;
1781 					goto out_unlock;
1782 				}
1783 			}
1784 		}
1785 
1786 		/*
1787 		 * API 3.1.2 bind() - UDP Style Syntax
1788 		 * If a bind() or sctp_bindx() is not called prior to a
1789 		 * sendmsg() call that initiates a new association, the
1790 		 * system picks an ephemeral port and will choose an address
1791 		 * set equivalent to binding with a wildcard address.
1792 		 */
1793 		if (!ep->base.bind_addr.port) {
1794 			if (sctp_autobind(sk)) {
1795 				err = -EAGAIN;
1796 				goto out_unlock;
1797 			}
1798 		} else {
1799 			/*
1800 			 * If an unprivileged user inherits a one-to-many
1801 			 * style socket with open associations on a privileged
1802 			 * port, it MAY be permitted to accept new associations,
1803 			 * but it SHOULD NOT be permitted to open new
1804 			 * associations.
1805 			 */
1806 			if (ep->base.bind_addr.port < PROT_SOCK &&
1807 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1808 				err = -EACCES;
1809 				goto out_unlock;
1810 			}
1811 		}
1812 
1813 		scope = sctp_scope(&to);
1814 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1815 		if (!new_asoc) {
1816 			err = -ENOMEM;
1817 			goto out_unlock;
1818 		}
1819 		asoc = new_asoc;
1820 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1821 		if (err < 0) {
1822 			err = -ENOMEM;
1823 			goto out_free;
1824 		}
1825 
1826 		/* If the SCTP_INIT ancillary data is specified, set all
1827 		 * the association init values accordingly.
1828 		 */
1829 		if (sinit) {
1830 			if (sinit->sinit_num_ostreams) {
1831 				asoc->c.sinit_num_ostreams =
1832 					sinit->sinit_num_ostreams;
1833 			}
1834 			if (sinit->sinit_max_instreams) {
1835 				asoc->c.sinit_max_instreams =
1836 					sinit->sinit_max_instreams;
1837 			}
1838 			if (sinit->sinit_max_attempts) {
1839 				asoc->max_init_attempts
1840 					= sinit->sinit_max_attempts;
1841 			}
1842 			if (sinit->sinit_max_init_timeo) {
1843 				asoc->max_init_timeo =
1844 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1845 			}
1846 		}
1847 
1848 		/* Prime the peer's transport structures.  */
1849 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1850 		if (!transport) {
1851 			err = -ENOMEM;
1852 			goto out_free;
1853 		}
1854 	}
1855 
1856 	/* ASSERT: we have a valid association at this point.  */
1857 	pr_debug("%s: we have a valid association\n", __func__);
1858 
1859 	if (!sinfo) {
1860 		/* If the user didn't specify SNDRCVINFO, make up one with
1861 		 * some defaults.
1862 		 */
1863 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1864 		default_sinfo.sinfo_stream = asoc->default_stream;
1865 		default_sinfo.sinfo_flags = asoc->default_flags;
1866 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1867 		default_sinfo.sinfo_context = asoc->default_context;
1868 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1869 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1870 		sinfo = &default_sinfo;
1871 	}
1872 
1873 	/* API 7.1.7, the sndbuf size per association bounds the
1874 	 * maximum size of data that can be sent in a single send call.
1875 	 */
1876 	if (msg_len > sk->sk_sndbuf) {
1877 		err = -EMSGSIZE;
1878 		goto out_free;
1879 	}
1880 
1881 	if (asoc->pmtu_pending)
1882 		sctp_assoc_pending_pmtu(sk, asoc);
1883 
1884 	/* If fragmentation is disabled and the message length exceeds the
1885 	 * association fragmentation point, return EMSGSIZE.  The I-D
1886 	 * does not specify what this error is, but this looks like
1887 	 * a great fit.
1888 	 */
1889 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1890 		err = -EMSGSIZE;
1891 		goto out_free;
1892 	}
1893 
1894 	/* Check for invalid stream. */
1895 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1896 		err = -EINVAL;
1897 		goto out_free;
1898 	}
1899 
1900 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1901 	if (!sctp_wspace(asoc)) {
1902 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1903 		if (err)
1904 			goto out_free;
1905 	}
1906 
1907 	/* If an address is passed with the sendto/sendmsg call, it is used
1908 	 * to override the primary destination address in the TCP model, or
1909 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1910 	 */
1911 	if ((sctp_style(sk, TCP) && msg_name) ||
1912 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1913 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1914 		if (!chunk_tp) {
1915 			err = -EINVAL;
1916 			goto out_free;
1917 		}
1918 	} else
1919 		chunk_tp = NULL;
1920 
1921 	/* Auto-connect, if we aren't connected already. */
1922 	if (sctp_state(asoc, CLOSED)) {
1923 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 		if (err < 0)
1925 			goto out_free;
1926 
1927 		pr_debug("%s: we associated primitively\n", __func__);
1928 	}
1929 
1930 	/* Break the message into multiple chunks of maximum size. */
1931 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1932 	if (IS_ERR(datamsg)) {
1933 		err = PTR_ERR(datamsg);
1934 		goto out_free;
1935 	}
1936 
1937 	/* Now send the (possibly) fragmented message. */
1938 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1939 		sctp_chunk_hold(chunk);
1940 
1941 		/* Do accounting for the write space.  */
1942 		sctp_set_owner_w(chunk);
1943 
1944 		chunk->transport = chunk_tp;
1945 	}
1946 
1947 	/* Send it to the lower layers.  Note:  all chunks
1948 	 * must either fail or succeed.   The lower layer
1949 	 * works that way today.  Keep it that way or this
1950 	 * breaks.
1951 	 */
1952 	err = sctp_primitive_SEND(net, asoc, datamsg);
1953 	/* Did the lower layer accept the chunk? */
1954 	if (err) {
1955 		sctp_datamsg_free(datamsg);
1956 		goto out_free;
1957 	}
1958 
1959 	pr_debug("%s: we sent primitively\n", __func__);
1960 
1961 	sctp_datamsg_put(datamsg);
1962 	err = msg_len;
1963 
1964 	/* If we are already past ASSOCIATE, the lower
1965 	 * layers are responsible for association cleanup.
1966 	 */
1967 	goto out_unlock;
1968 
1969 out_free:
1970 	if (new_asoc) {
1971 		sctp_unhash_established(asoc);
1972 		sctp_association_free(asoc);
1973 	}
1974 out_unlock:
1975 	release_sock(sk);
1976 
1977 out_nounlock:
1978 	return sctp_error(sk, msg_flags, err);
1979 
1980 #if 0
1981 do_sock_err:
1982 	if (msg_len)
1983 		err = msg_len;
1984 	else
1985 		err = sock_error(sk);
1986 	goto out;
1987 
1988 do_interrupted:
1989 	if (msg_len)
1990 		err = msg_len;
1991 	goto out;
1992 #endif /* 0 */
1993 }
1994 
1995 /* This is an extended version of skb_pull() that removes the data from the
1996  * start of a skb even when data is spread across the list of skb's in the
1997  * frag_list. len specifies the total amount of data that needs to be removed.
1998  * when 'len' bytes could be removed from the skb, it returns 0.
1999  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2000  * could not be removed.
2001  */
2002 static int sctp_skb_pull(struct sk_buff *skb, int len)
2003 {
2004 	struct sk_buff *list;
2005 	int skb_len = skb_headlen(skb);
2006 	int rlen;
2007 
2008 	if (len <= skb_len) {
2009 		__skb_pull(skb, len);
2010 		return 0;
2011 	}
2012 	len -= skb_len;
2013 	__skb_pull(skb, skb_len);
2014 
2015 	skb_walk_frags(skb, list) {
2016 		rlen = sctp_skb_pull(list, len);
2017 		skb->len -= (len-rlen);
2018 		skb->data_len -= (len-rlen);
2019 
2020 		if (!rlen)
2021 			return 0;
2022 
2023 		len = rlen;
2024 	}
2025 
2026 	return len;
2027 }
2028 
2029 /* API 3.1.3  recvmsg() - UDP Style Syntax
2030  *
2031  *  ssize_t recvmsg(int socket, struct msghdr *message,
2032  *                    int flags);
2033  *
2034  *  socket  - the socket descriptor of the endpoint.
2035  *  message - pointer to the msghdr structure which contains a single
2036  *            user message and possibly some ancillary data.
2037  *
2038  *            See Section 5 for complete description of the data
2039  *            structures.
2040  *
2041  *  flags   - flags sent or received with the user message, see Section
2042  *            5 for complete description of the flags.
2043  */
2044 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2045 
2046 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2047 			struct msghdr *msg, size_t len, int noblock,
2048 			int flags, int *addr_len)
2049 {
2050 	struct sctp_ulpevent *event = NULL;
2051 	struct sctp_sock *sp = sctp_sk(sk);
2052 	struct sk_buff *skb;
2053 	int copied;
2054 	int err = 0;
2055 	int skb_len;
2056 
2057 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2058 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2059 		 addr_len);
2060 
2061 	lock_sock(sk);
2062 
2063 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2064 		err = -ENOTCONN;
2065 		goto out;
2066 	}
2067 
2068 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2069 	if (!skb)
2070 		goto out;
2071 
2072 	/* Get the total length of the skb including any skb's in the
2073 	 * frag_list.
2074 	 */
2075 	skb_len = skb->len;
2076 
2077 	copied = skb_len;
2078 	if (copied > len)
2079 		copied = len;
2080 
2081 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2082 
2083 	event = sctp_skb2event(skb);
2084 
2085 	if (err)
2086 		goto out_free;
2087 
2088 	sock_recv_ts_and_drops(msg, sk, skb);
2089 	if (sctp_ulpevent_is_notification(event)) {
2090 		msg->msg_flags |= MSG_NOTIFICATION;
2091 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2092 	} else {
2093 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2094 	}
2095 
2096 	/* Check if we allow SCTP_SNDRCVINFO. */
2097 	if (sp->subscribe.sctp_data_io_event)
2098 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2099 #if 0
2100 	/* FIXME: we should be calling IP/IPv6 layers.  */
2101 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2102 		ip_cmsg_recv(msg, skb);
2103 #endif
2104 
2105 	err = copied;
2106 
2107 	/* If skb's length exceeds the user's buffer, update the skb and
2108 	 * push it back to the receive_queue so that the next call to
2109 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2110 	 */
2111 	if (skb_len > copied) {
2112 		msg->msg_flags &= ~MSG_EOR;
2113 		if (flags & MSG_PEEK)
2114 			goto out_free;
2115 		sctp_skb_pull(skb, copied);
2116 		skb_queue_head(&sk->sk_receive_queue, skb);
2117 
2118 		goto out;
2119 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2120 		   (event->msg_flags & MSG_EOR))
2121 		msg->msg_flags |= MSG_EOR;
2122 	else
2123 		msg->msg_flags &= ~MSG_EOR;
2124 
2125 out_free:
2126 	if (flags & MSG_PEEK) {
2127 		/* Release the skb reference acquired after peeking the skb in
2128 		 * sctp_skb_recv_datagram().
2129 		 */
2130 		kfree_skb(skb);
2131 	} else {
2132 		/* Free the event which includes releasing the reference to
2133 		 * the owner of the skb, freeing the skb and updating the
2134 		 * rwnd.
2135 		 */
2136 		sctp_ulpevent_free(event);
2137 	}
2138 out:
2139 	release_sock(sk);
2140 	return err;
2141 }
2142 
2143 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2144  *
2145  * This option is a on/off flag.  If enabled no SCTP message
2146  * fragmentation will be performed.  Instead if a message being sent
2147  * exceeds the current PMTU size, the message will NOT be sent and
2148  * instead a error will be indicated to the user.
2149  */
2150 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2151 					     char __user *optval,
2152 					     unsigned int optlen)
2153 {
2154 	int val;
2155 
2156 	if (optlen < sizeof(int))
2157 		return -EINVAL;
2158 
2159 	if (get_user(val, (int __user *)optval))
2160 		return -EFAULT;
2161 
2162 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2163 
2164 	return 0;
2165 }
2166 
2167 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2168 				  unsigned int optlen)
2169 {
2170 	struct sctp_association *asoc;
2171 	struct sctp_ulpevent *event;
2172 
2173 	if (optlen > sizeof(struct sctp_event_subscribe))
2174 		return -EINVAL;
2175 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2176 		return -EFAULT;
2177 
2178 	/*
2179 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2180 	 * if there is no data to be sent or retransmit, the stack will
2181 	 * immediately send up this notification.
2182 	 */
2183 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2184 				       &sctp_sk(sk)->subscribe)) {
2185 		asoc = sctp_id2assoc(sk, 0);
2186 
2187 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2188 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2189 					GFP_ATOMIC);
2190 			if (!event)
2191 				return -ENOMEM;
2192 
2193 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2194 		}
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2201  *
2202  * This socket option is applicable to the UDP-style socket only.  When
2203  * set it will cause associations that are idle for more than the
2204  * specified number of seconds to automatically close.  An association
2205  * being idle is defined an association that has NOT sent or received
2206  * user data.  The special value of '0' indicates that no automatic
2207  * close of any associations should be performed.  The option expects an
2208  * integer defining the number of seconds of idle time before an
2209  * association is closed.
2210  */
2211 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2212 				     unsigned int optlen)
2213 {
2214 	struct sctp_sock *sp = sctp_sk(sk);
2215 	struct net *net = sock_net(sk);
2216 
2217 	/* Applicable to UDP-style socket only */
2218 	if (sctp_style(sk, TCP))
2219 		return -EOPNOTSUPP;
2220 	if (optlen != sizeof(int))
2221 		return -EINVAL;
2222 	if (copy_from_user(&sp->autoclose, optval, optlen))
2223 		return -EFAULT;
2224 
2225 	if (sp->autoclose > net->sctp.max_autoclose)
2226 		sp->autoclose = net->sctp.max_autoclose;
2227 
2228 	return 0;
2229 }
2230 
2231 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2232  *
2233  * Applications can enable or disable heartbeats for any peer address of
2234  * an association, modify an address's heartbeat interval, force a
2235  * heartbeat to be sent immediately, and adjust the address's maximum
2236  * number of retransmissions sent before an address is considered
2237  * unreachable.  The following structure is used to access and modify an
2238  * address's parameters:
2239  *
2240  *  struct sctp_paddrparams {
2241  *     sctp_assoc_t            spp_assoc_id;
2242  *     struct sockaddr_storage spp_address;
2243  *     uint32_t                spp_hbinterval;
2244  *     uint16_t                spp_pathmaxrxt;
2245  *     uint32_t                spp_pathmtu;
2246  *     uint32_t                spp_sackdelay;
2247  *     uint32_t                spp_flags;
2248  * };
2249  *
2250  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2251  *                     application, and identifies the association for
2252  *                     this query.
2253  *   spp_address     - This specifies which address is of interest.
2254  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2255  *                     in milliseconds.  If a  value of zero
2256  *                     is present in this field then no changes are to
2257  *                     be made to this parameter.
2258  *   spp_pathmaxrxt  - This contains the maximum number of
2259  *                     retransmissions before this address shall be
2260  *                     considered unreachable. If a  value of zero
2261  *                     is present in this field then no changes are to
2262  *                     be made to this parameter.
2263  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2264  *                     specified here will be the "fixed" path mtu.
2265  *                     Note that if the spp_address field is empty
2266  *                     then all associations on this address will
2267  *                     have this fixed path mtu set upon them.
2268  *
2269  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2270  *                     the number of milliseconds that sacks will be delayed
2271  *                     for. This value will apply to all addresses of an
2272  *                     association if the spp_address field is empty. Note
2273  *                     also, that if delayed sack is enabled and this
2274  *                     value is set to 0, no change is made to the last
2275  *                     recorded delayed sack timer value.
2276  *
2277  *   spp_flags       - These flags are used to control various features
2278  *                     on an association. The flag field may contain
2279  *                     zero or more of the following options.
2280  *
2281  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2282  *                     specified address. Note that if the address
2283  *                     field is empty all addresses for the association
2284  *                     have heartbeats enabled upon them.
2285  *
2286  *                     SPP_HB_DISABLE - Disable heartbeats on the
2287  *                     speicifed address. Note that if the address
2288  *                     field is empty all addresses for the association
2289  *                     will have their heartbeats disabled. Note also
2290  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2291  *                     mutually exclusive, only one of these two should
2292  *                     be specified. Enabling both fields will have
2293  *                     undetermined results.
2294  *
2295  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2296  *                     to be made immediately.
2297  *
2298  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2299  *                     heartbeat delayis to be set to the value of 0
2300  *                     milliseconds.
2301  *
2302  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2303  *                     discovery upon the specified address. Note that
2304  *                     if the address feild is empty then all addresses
2305  *                     on the association are effected.
2306  *
2307  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2308  *                     discovery upon the specified address. Note that
2309  *                     if the address feild is empty then all addresses
2310  *                     on the association are effected. Not also that
2311  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2312  *                     exclusive. Enabling both will have undetermined
2313  *                     results.
2314  *
2315  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2316  *                     on delayed sack. The time specified in spp_sackdelay
2317  *                     is used to specify the sack delay for this address. Note
2318  *                     that if spp_address is empty then all addresses will
2319  *                     enable delayed sack and take on the sack delay
2320  *                     value specified in spp_sackdelay.
2321  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2322  *                     off delayed sack. If the spp_address field is blank then
2323  *                     delayed sack is disabled for the entire association. Note
2324  *                     also that this field is mutually exclusive to
2325  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2326  *                     results.
2327  */
2328 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2329 				       struct sctp_transport   *trans,
2330 				       struct sctp_association *asoc,
2331 				       struct sctp_sock        *sp,
2332 				       int                      hb_change,
2333 				       int                      pmtud_change,
2334 				       int                      sackdelay_change)
2335 {
2336 	int error;
2337 
2338 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2339 		struct net *net = sock_net(trans->asoc->base.sk);
2340 
2341 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2342 		if (error)
2343 			return error;
2344 	}
2345 
2346 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2347 	 * this field is ignored.  Note also that a value of zero indicates
2348 	 * the current setting should be left unchanged.
2349 	 */
2350 	if (params->spp_flags & SPP_HB_ENABLE) {
2351 
2352 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2353 		 * set.  This lets us use 0 value when this flag
2354 		 * is set.
2355 		 */
2356 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2357 			params->spp_hbinterval = 0;
2358 
2359 		if (params->spp_hbinterval ||
2360 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2361 			if (trans) {
2362 				trans->hbinterval =
2363 				    msecs_to_jiffies(params->spp_hbinterval);
2364 			} else if (asoc) {
2365 				asoc->hbinterval =
2366 				    msecs_to_jiffies(params->spp_hbinterval);
2367 			} else {
2368 				sp->hbinterval = params->spp_hbinterval;
2369 			}
2370 		}
2371 	}
2372 
2373 	if (hb_change) {
2374 		if (trans) {
2375 			trans->param_flags =
2376 				(trans->param_flags & ~SPP_HB) | hb_change;
2377 		} else if (asoc) {
2378 			asoc->param_flags =
2379 				(asoc->param_flags & ~SPP_HB) | hb_change;
2380 		} else {
2381 			sp->param_flags =
2382 				(sp->param_flags & ~SPP_HB) | hb_change;
2383 		}
2384 	}
2385 
2386 	/* When Path MTU discovery is disabled the value specified here will
2387 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2388 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2389 	 * effect).
2390 	 */
2391 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2392 		if (trans) {
2393 			trans->pathmtu = params->spp_pathmtu;
2394 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2395 		} else if (asoc) {
2396 			asoc->pathmtu = params->spp_pathmtu;
2397 			sctp_frag_point(asoc, params->spp_pathmtu);
2398 		} else {
2399 			sp->pathmtu = params->spp_pathmtu;
2400 		}
2401 	}
2402 
2403 	if (pmtud_change) {
2404 		if (trans) {
2405 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2406 				(params->spp_flags & SPP_PMTUD_ENABLE);
2407 			trans->param_flags =
2408 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2409 			if (update) {
2410 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2411 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2412 			}
2413 		} else if (asoc) {
2414 			asoc->param_flags =
2415 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2416 		} else {
2417 			sp->param_flags =
2418 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2419 		}
2420 	}
2421 
2422 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2423 	 * value of this field is ignored.  Note also that a value of zero
2424 	 * indicates the current setting should be left unchanged.
2425 	 */
2426 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2427 		if (trans) {
2428 			trans->sackdelay =
2429 				msecs_to_jiffies(params->spp_sackdelay);
2430 		} else if (asoc) {
2431 			asoc->sackdelay =
2432 				msecs_to_jiffies(params->spp_sackdelay);
2433 		} else {
2434 			sp->sackdelay = params->spp_sackdelay;
2435 		}
2436 	}
2437 
2438 	if (sackdelay_change) {
2439 		if (trans) {
2440 			trans->param_flags =
2441 				(trans->param_flags & ~SPP_SACKDELAY) |
2442 				sackdelay_change;
2443 		} else if (asoc) {
2444 			asoc->param_flags =
2445 				(asoc->param_flags & ~SPP_SACKDELAY) |
2446 				sackdelay_change;
2447 		} else {
2448 			sp->param_flags =
2449 				(sp->param_flags & ~SPP_SACKDELAY) |
2450 				sackdelay_change;
2451 		}
2452 	}
2453 
2454 	/* Note that a value of zero indicates the current setting should be
2455 	   left unchanged.
2456 	 */
2457 	if (params->spp_pathmaxrxt) {
2458 		if (trans) {
2459 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2460 		} else if (asoc) {
2461 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2462 		} else {
2463 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2464 		}
2465 	}
2466 
2467 	return 0;
2468 }
2469 
2470 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2471 					    char __user *optval,
2472 					    unsigned int optlen)
2473 {
2474 	struct sctp_paddrparams  params;
2475 	struct sctp_transport   *trans = NULL;
2476 	struct sctp_association *asoc = NULL;
2477 	struct sctp_sock        *sp = sctp_sk(sk);
2478 	int error;
2479 	int hb_change, pmtud_change, sackdelay_change;
2480 
2481 	if (optlen != sizeof(struct sctp_paddrparams))
2482 		return -EINVAL;
2483 
2484 	if (copy_from_user(&params, optval, optlen))
2485 		return -EFAULT;
2486 
2487 	/* Validate flags and value parameters. */
2488 	hb_change        = params.spp_flags & SPP_HB;
2489 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2490 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2491 
2492 	if (hb_change        == SPP_HB ||
2493 	    pmtud_change     == SPP_PMTUD ||
2494 	    sackdelay_change == SPP_SACKDELAY ||
2495 	    params.spp_sackdelay > 500 ||
2496 	    (params.spp_pathmtu &&
2497 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2498 		return -EINVAL;
2499 
2500 	/* If an address other than INADDR_ANY is specified, and
2501 	 * no transport is found, then the request is invalid.
2502 	 */
2503 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2504 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2505 					       params.spp_assoc_id);
2506 		if (!trans)
2507 			return -EINVAL;
2508 	}
2509 
2510 	/* Get association, if assoc_id != 0 and the socket is a one
2511 	 * to many style socket, and an association was not found, then
2512 	 * the id was invalid.
2513 	 */
2514 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2515 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2516 		return -EINVAL;
2517 
2518 	/* Heartbeat demand can only be sent on a transport or
2519 	 * association, but not a socket.
2520 	 */
2521 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2522 		return -EINVAL;
2523 
2524 	/* Process parameters. */
2525 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2526 					    hb_change, pmtud_change,
2527 					    sackdelay_change);
2528 
2529 	if (error)
2530 		return error;
2531 
2532 	/* If changes are for association, also apply parameters to each
2533 	 * transport.
2534 	 */
2535 	if (!trans && asoc) {
2536 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2537 				transports) {
2538 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2539 						    hb_change, pmtud_change,
2540 						    sackdelay_change);
2541 		}
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2548 {
2549 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2550 }
2551 
2552 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2553 {
2554 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2555 }
2556 
2557 /*
2558  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2559  *
2560  * This option will effect the way delayed acks are performed.  This
2561  * option allows you to get or set the delayed ack time, in
2562  * milliseconds.  It also allows changing the delayed ack frequency.
2563  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2564  * the assoc_id is 0, then this sets or gets the endpoints default
2565  * values.  If the assoc_id field is non-zero, then the set or get
2566  * effects the specified association for the one to many model (the
2567  * assoc_id field is ignored by the one to one model).  Note that if
2568  * sack_delay or sack_freq are 0 when setting this option, then the
2569  * current values will remain unchanged.
2570  *
2571  * struct sctp_sack_info {
2572  *     sctp_assoc_t            sack_assoc_id;
2573  *     uint32_t                sack_delay;
2574  *     uint32_t                sack_freq;
2575  * };
2576  *
2577  * sack_assoc_id -  This parameter, indicates which association the user
2578  *    is performing an action upon.  Note that if this field's value is
2579  *    zero then the endpoints default value is changed (effecting future
2580  *    associations only).
2581  *
2582  * sack_delay -  This parameter contains the number of milliseconds that
2583  *    the user is requesting the delayed ACK timer be set to.  Note that
2584  *    this value is defined in the standard to be between 200 and 500
2585  *    milliseconds.
2586  *
2587  * sack_freq -  This parameter contains the number of packets that must
2588  *    be received before a sack is sent without waiting for the delay
2589  *    timer to expire.  The default value for this is 2, setting this
2590  *    value to 1 will disable the delayed sack algorithm.
2591  */
2592 
2593 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2594 				       char __user *optval, unsigned int optlen)
2595 {
2596 	struct sctp_sack_info    params;
2597 	struct sctp_transport   *trans = NULL;
2598 	struct sctp_association *asoc = NULL;
2599 	struct sctp_sock        *sp = sctp_sk(sk);
2600 
2601 	if (optlen == sizeof(struct sctp_sack_info)) {
2602 		if (copy_from_user(&params, optval, optlen))
2603 			return -EFAULT;
2604 
2605 		if (params.sack_delay == 0 && params.sack_freq == 0)
2606 			return 0;
2607 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2608 		pr_warn_ratelimited(DEPRECATED
2609 				    "%s (pid %d) "
2610 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2611 				    "Use struct sctp_sack_info instead\n",
2612 				    current->comm, task_pid_nr(current));
2613 		if (copy_from_user(&params, optval, optlen))
2614 			return -EFAULT;
2615 
2616 		if (params.sack_delay == 0)
2617 			params.sack_freq = 1;
2618 		else
2619 			params.sack_freq = 0;
2620 	} else
2621 		return -EINVAL;
2622 
2623 	/* Validate value parameter. */
2624 	if (params.sack_delay > 500)
2625 		return -EINVAL;
2626 
2627 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2628 	 * to many style socket, and an association was not found, then
2629 	 * the id was invalid.
2630 	 */
2631 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2632 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2633 		return -EINVAL;
2634 
2635 	if (params.sack_delay) {
2636 		if (asoc) {
2637 			asoc->sackdelay =
2638 				msecs_to_jiffies(params.sack_delay);
2639 			asoc->param_flags =
2640 				sctp_spp_sackdelay_enable(asoc->param_flags);
2641 		} else {
2642 			sp->sackdelay = params.sack_delay;
2643 			sp->param_flags =
2644 				sctp_spp_sackdelay_enable(sp->param_flags);
2645 		}
2646 	}
2647 
2648 	if (params.sack_freq == 1) {
2649 		if (asoc) {
2650 			asoc->param_flags =
2651 				sctp_spp_sackdelay_disable(asoc->param_flags);
2652 		} else {
2653 			sp->param_flags =
2654 				sctp_spp_sackdelay_disable(sp->param_flags);
2655 		}
2656 	} else if (params.sack_freq > 1) {
2657 		if (asoc) {
2658 			asoc->sackfreq = params.sack_freq;
2659 			asoc->param_flags =
2660 				sctp_spp_sackdelay_enable(asoc->param_flags);
2661 		} else {
2662 			sp->sackfreq = params.sack_freq;
2663 			sp->param_flags =
2664 				sctp_spp_sackdelay_enable(sp->param_flags);
2665 		}
2666 	}
2667 
2668 	/* If change is for association, also apply to each transport. */
2669 	if (asoc) {
2670 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2671 				transports) {
2672 			if (params.sack_delay) {
2673 				trans->sackdelay =
2674 					msecs_to_jiffies(params.sack_delay);
2675 				trans->param_flags =
2676 					sctp_spp_sackdelay_enable(trans->param_flags);
2677 			}
2678 			if (params.sack_freq == 1) {
2679 				trans->param_flags =
2680 					sctp_spp_sackdelay_disable(trans->param_flags);
2681 			} else if (params.sack_freq > 1) {
2682 				trans->sackfreq = params.sack_freq;
2683 				trans->param_flags =
2684 					sctp_spp_sackdelay_enable(trans->param_flags);
2685 			}
2686 		}
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2693  *
2694  * Applications can specify protocol parameters for the default association
2695  * initialization.  The option name argument to setsockopt() and getsockopt()
2696  * is SCTP_INITMSG.
2697  *
2698  * Setting initialization parameters is effective only on an unconnected
2699  * socket (for UDP-style sockets only future associations are effected
2700  * by the change).  With TCP-style sockets, this option is inherited by
2701  * sockets derived from a listener socket.
2702  */
2703 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2704 {
2705 	struct sctp_initmsg sinit;
2706 	struct sctp_sock *sp = sctp_sk(sk);
2707 
2708 	if (optlen != sizeof(struct sctp_initmsg))
2709 		return -EINVAL;
2710 	if (copy_from_user(&sinit, optval, optlen))
2711 		return -EFAULT;
2712 
2713 	if (sinit.sinit_num_ostreams)
2714 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2715 	if (sinit.sinit_max_instreams)
2716 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2717 	if (sinit.sinit_max_attempts)
2718 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2719 	if (sinit.sinit_max_init_timeo)
2720 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2721 
2722 	return 0;
2723 }
2724 
2725 /*
2726  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2727  *
2728  *   Applications that wish to use the sendto() system call may wish to
2729  *   specify a default set of parameters that would normally be supplied
2730  *   through the inclusion of ancillary data.  This socket option allows
2731  *   such an application to set the default sctp_sndrcvinfo structure.
2732  *   The application that wishes to use this socket option simply passes
2733  *   in to this call the sctp_sndrcvinfo structure defined in Section
2734  *   5.2.2) The input parameters accepted by this call include
2735  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2736  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2737  *   to this call if the caller is using the UDP model.
2738  */
2739 static int sctp_setsockopt_default_send_param(struct sock *sk,
2740 					      char __user *optval,
2741 					      unsigned int optlen)
2742 {
2743 	struct sctp_sndrcvinfo info;
2744 	struct sctp_association *asoc;
2745 	struct sctp_sock *sp = sctp_sk(sk);
2746 
2747 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2748 		return -EINVAL;
2749 	if (copy_from_user(&info, optval, optlen))
2750 		return -EFAULT;
2751 
2752 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2753 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2754 		return -EINVAL;
2755 
2756 	if (asoc) {
2757 		asoc->default_stream = info.sinfo_stream;
2758 		asoc->default_flags = info.sinfo_flags;
2759 		asoc->default_ppid = info.sinfo_ppid;
2760 		asoc->default_context = info.sinfo_context;
2761 		asoc->default_timetolive = info.sinfo_timetolive;
2762 	} else {
2763 		sp->default_stream = info.sinfo_stream;
2764 		sp->default_flags = info.sinfo_flags;
2765 		sp->default_ppid = info.sinfo_ppid;
2766 		sp->default_context = info.sinfo_context;
2767 		sp->default_timetolive = info.sinfo_timetolive;
2768 	}
2769 
2770 	return 0;
2771 }
2772 
2773 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2774  *
2775  * Requests that the local SCTP stack use the enclosed peer address as
2776  * the association primary.  The enclosed address must be one of the
2777  * association peer's addresses.
2778  */
2779 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2780 					unsigned int optlen)
2781 {
2782 	struct sctp_prim prim;
2783 	struct sctp_transport *trans;
2784 
2785 	if (optlen != sizeof(struct sctp_prim))
2786 		return -EINVAL;
2787 
2788 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2789 		return -EFAULT;
2790 
2791 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2792 	if (!trans)
2793 		return -EINVAL;
2794 
2795 	sctp_assoc_set_primary(trans->asoc, trans);
2796 
2797 	return 0;
2798 }
2799 
2800 /*
2801  * 7.1.5 SCTP_NODELAY
2802  *
2803  * Turn on/off any Nagle-like algorithm.  This means that packets are
2804  * generally sent as soon as possible and no unnecessary delays are
2805  * introduced, at the cost of more packets in the network.  Expects an
2806  *  integer boolean flag.
2807  */
2808 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2809 				   unsigned int optlen)
2810 {
2811 	int val;
2812 
2813 	if (optlen < sizeof(int))
2814 		return -EINVAL;
2815 	if (get_user(val, (int __user *)optval))
2816 		return -EFAULT;
2817 
2818 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2819 	return 0;
2820 }
2821 
2822 /*
2823  *
2824  * 7.1.1 SCTP_RTOINFO
2825  *
2826  * The protocol parameters used to initialize and bound retransmission
2827  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2828  * and modify these parameters.
2829  * All parameters are time values, in milliseconds.  A value of 0, when
2830  * modifying the parameters, indicates that the current value should not
2831  * be changed.
2832  *
2833  */
2834 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2835 {
2836 	struct sctp_rtoinfo rtoinfo;
2837 	struct sctp_association *asoc;
2838 	unsigned long rto_min, rto_max;
2839 	struct sctp_sock *sp = sctp_sk(sk);
2840 
2841 	if (optlen != sizeof (struct sctp_rtoinfo))
2842 		return -EINVAL;
2843 
2844 	if (copy_from_user(&rtoinfo, optval, optlen))
2845 		return -EFAULT;
2846 
2847 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2848 
2849 	/* Set the values to the specific association */
2850 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2851 		return -EINVAL;
2852 
2853 	rto_max = rtoinfo.srto_max;
2854 	rto_min = rtoinfo.srto_min;
2855 
2856 	if (rto_max)
2857 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2858 	else
2859 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2860 
2861 	if (rto_min)
2862 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2863 	else
2864 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2865 
2866 	if (rto_min > rto_max)
2867 		return -EINVAL;
2868 
2869 	if (asoc) {
2870 		if (rtoinfo.srto_initial != 0)
2871 			asoc->rto_initial =
2872 				msecs_to_jiffies(rtoinfo.srto_initial);
2873 		asoc->rto_max = rto_max;
2874 		asoc->rto_min = rto_min;
2875 	} else {
2876 		/* If there is no association or the association-id = 0
2877 		 * set the values to the endpoint.
2878 		 */
2879 		if (rtoinfo.srto_initial != 0)
2880 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2881 		sp->rtoinfo.srto_max = rto_max;
2882 		sp->rtoinfo.srto_min = rto_min;
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 /*
2889  *
2890  * 7.1.2 SCTP_ASSOCINFO
2891  *
2892  * This option is used to tune the maximum retransmission attempts
2893  * of the association.
2894  * Returns an error if the new association retransmission value is
2895  * greater than the sum of the retransmission value  of the peer.
2896  * See [SCTP] for more information.
2897  *
2898  */
2899 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2900 {
2901 
2902 	struct sctp_assocparams assocparams;
2903 	struct sctp_association *asoc;
2904 
2905 	if (optlen != sizeof(struct sctp_assocparams))
2906 		return -EINVAL;
2907 	if (copy_from_user(&assocparams, optval, optlen))
2908 		return -EFAULT;
2909 
2910 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2911 
2912 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2913 		return -EINVAL;
2914 
2915 	/* Set the values to the specific association */
2916 	if (asoc) {
2917 		if (assocparams.sasoc_asocmaxrxt != 0) {
2918 			__u32 path_sum = 0;
2919 			int   paths = 0;
2920 			struct sctp_transport *peer_addr;
2921 
2922 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2923 					transports) {
2924 				path_sum += peer_addr->pathmaxrxt;
2925 				paths++;
2926 			}
2927 
2928 			/* Only validate asocmaxrxt if we have more than
2929 			 * one path/transport.  We do this because path
2930 			 * retransmissions are only counted when we have more
2931 			 * then one path.
2932 			 */
2933 			if (paths > 1 &&
2934 			    assocparams.sasoc_asocmaxrxt > path_sum)
2935 				return -EINVAL;
2936 
2937 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2938 		}
2939 
2940 		if (assocparams.sasoc_cookie_life != 0)
2941 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2942 	} else {
2943 		/* Set the values to the endpoint */
2944 		struct sctp_sock *sp = sctp_sk(sk);
2945 
2946 		if (assocparams.sasoc_asocmaxrxt != 0)
2947 			sp->assocparams.sasoc_asocmaxrxt =
2948 						assocparams.sasoc_asocmaxrxt;
2949 		if (assocparams.sasoc_cookie_life != 0)
2950 			sp->assocparams.sasoc_cookie_life =
2951 						assocparams.sasoc_cookie_life;
2952 	}
2953 	return 0;
2954 }
2955 
2956 /*
2957  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2958  *
2959  * This socket option is a boolean flag which turns on or off mapped V4
2960  * addresses.  If this option is turned on and the socket is type
2961  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2962  * If this option is turned off, then no mapping will be done of V4
2963  * addresses and a user will receive both PF_INET6 and PF_INET type
2964  * addresses on the socket.
2965  */
2966 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2967 {
2968 	int val;
2969 	struct sctp_sock *sp = sctp_sk(sk);
2970 
2971 	if (optlen < sizeof(int))
2972 		return -EINVAL;
2973 	if (get_user(val, (int __user *)optval))
2974 		return -EFAULT;
2975 	if (val)
2976 		sp->v4mapped = 1;
2977 	else
2978 		sp->v4mapped = 0;
2979 
2980 	return 0;
2981 }
2982 
2983 /*
2984  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2985  * This option will get or set the maximum size to put in any outgoing
2986  * SCTP DATA chunk.  If a message is larger than this size it will be
2987  * fragmented by SCTP into the specified size.  Note that the underlying
2988  * SCTP implementation may fragment into smaller sized chunks when the
2989  * PMTU of the underlying association is smaller than the value set by
2990  * the user.  The default value for this option is '0' which indicates
2991  * the user is NOT limiting fragmentation and only the PMTU will effect
2992  * SCTP's choice of DATA chunk size.  Note also that values set larger
2993  * than the maximum size of an IP datagram will effectively let SCTP
2994  * control fragmentation (i.e. the same as setting this option to 0).
2995  *
2996  * The following structure is used to access and modify this parameter:
2997  *
2998  * struct sctp_assoc_value {
2999  *   sctp_assoc_t assoc_id;
3000  *   uint32_t assoc_value;
3001  * };
3002  *
3003  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3004  *    For one-to-many style sockets this parameter indicates which
3005  *    association the user is performing an action upon.  Note that if
3006  *    this field's value is zero then the endpoints default value is
3007  *    changed (effecting future associations only).
3008  * assoc_value:  This parameter specifies the maximum size in bytes.
3009  */
3010 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3011 {
3012 	struct sctp_assoc_value params;
3013 	struct sctp_association *asoc;
3014 	struct sctp_sock *sp = sctp_sk(sk);
3015 	int val;
3016 
3017 	if (optlen == sizeof(int)) {
3018 		pr_warn_ratelimited(DEPRECATED
3019 				    "%s (pid %d) "
3020 				    "Use of int in maxseg socket option.\n"
3021 				    "Use struct sctp_assoc_value instead\n",
3022 				    current->comm, task_pid_nr(current));
3023 		if (copy_from_user(&val, optval, optlen))
3024 			return -EFAULT;
3025 		params.assoc_id = 0;
3026 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3027 		if (copy_from_user(&params, optval, optlen))
3028 			return -EFAULT;
3029 		val = params.assoc_value;
3030 	} else
3031 		return -EINVAL;
3032 
3033 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3034 		return -EINVAL;
3035 
3036 	asoc = sctp_id2assoc(sk, params.assoc_id);
3037 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3038 		return -EINVAL;
3039 
3040 	if (asoc) {
3041 		if (val == 0) {
3042 			val = asoc->pathmtu;
3043 			val -= sp->pf->af->net_header_len;
3044 			val -= sizeof(struct sctphdr) +
3045 					sizeof(struct sctp_data_chunk);
3046 		}
3047 		asoc->user_frag = val;
3048 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3049 	} else {
3050 		sp->user_frag = val;
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 
3057 /*
3058  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3059  *
3060  *   Requests that the peer mark the enclosed address as the association
3061  *   primary. The enclosed address must be one of the association's
3062  *   locally bound addresses. The following structure is used to make a
3063  *   set primary request:
3064  */
3065 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3066 					     unsigned int optlen)
3067 {
3068 	struct net *net = sock_net(sk);
3069 	struct sctp_sock	*sp;
3070 	struct sctp_association	*asoc = NULL;
3071 	struct sctp_setpeerprim	prim;
3072 	struct sctp_chunk	*chunk;
3073 	struct sctp_af		*af;
3074 	int 			err;
3075 
3076 	sp = sctp_sk(sk);
3077 
3078 	if (!net->sctp.addip_enable)
3079 		return -EPERM;
3080 
3081 	if (optlen != sizeof(struct sctp_setpeerprim))
3082 		return -EINVAL;
3083 
3084 	if (copy_from_user(&prim, optval, optlen))
3085 		return -EFAULT;
3086 
3087 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3088 	if (!asoc)
3089 		return -EINVAL;
3090 
3091 	if (!asoc->peer.asconf_capable)
3092 		return -EPERM;
3093 
3094 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3095 		return -EPERM;
3096 
3097 	if (!sctp_state(asoc, ESTABLISHED))
3098 		return -ENOTCONN;
3099 
3100 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3101 	if (!af)
3102 		return -EINVAL;
3103 
3104 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3105 		return -EADDRNOTAVAIL;
3106 
3107 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3108 		return -EADDRNOTAVAIL;
3109 
3110 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3111 	chunk = sctp_make_asconf_set_prim(asoc,
3112 					  (union sctp_addr *)&prim.sspp_addr);
3113 	if (!chunk)
3114 		return -ENOMEM;
3115 
3116 	err = sctp_send_asconf(asoc, chunk);
3117 
3118 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3119 
3120 	return err;
3121 }
3122 
3123 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3124 					    unsigned int optlen)
3125 {
3126 	struct sctp_setadaptation adaptation;
3127 
3128 	if (optlen != sizeof(struct sctp_setadaptation))
3129 		return -EINVAL;
3130 	if (copy_from_user(&adaptation, optval, optlen))
3131 		return -EFAULT;
3132 
3133 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3134 
3135 	return 0;
3136 }
3137 
3138 /*
3139  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3140  *
3141  * The context field in the sctp_sndrcvinfo structure is normally only
3142  * used when a failed message is retrieved holding the value that was
3143  * sent down on the actual send call.  This option allows the setting of
3144  * a default context on an association basis that will be received on
3145  * reading messages from the peer.  This is especially helpful in the
3146  * one-2-many model for an application to keep some reference to an
3147  * internal state machine that is processing messages on the
3148  * association.  Note that the setting of this value only effects
3149  * received messages from the peer and does not effect the value that is
3150  * saved with outbound messages.
3151  */
3152 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3153 				   unsigned int optlen)
3154 {
3155 	struct sctp_assoc_value params;
3156 	struct sctp_sock *sp;
3157 	struct sctp_association *asoc;
3158 
3159 	if (optlen != sizeof(struct sctp_assoc_value))
3160 		return -EINVAL;
3161 	if (copy_from_user(&params, optval, optlen))
3162 		return -EFAULT;
3163 
3164 	sp = sctp_sk(sk);
3165 
3166 	if (params.assoc_id != 0) {
3167 		asoc = sctp_id2assoc(sk, params.assoc_id);
3168 		if (!asoc)
3169 			return -EINVAL;
3170 		asoc->default_rcv_context = params.assoc_value;
3171 	} else {
3172 		sp->default_rcv_context = params.assoc_value;
3173 	}
3174 
3175 	return 0;
3176 }
3177 
3178 /*
3179  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3180  *
3181  * This options will at a minimum specify if the implementation is doing
3182  * fragmented interleave.  Fragmented interleave, for a one to many
3183  * socket, is when subsequent calls to receive a message may return
3184  * parts of messages from different associations.  Some implementations
3185  * may allow you to turn this value on or off.  If so, when turned off,
3186  * no fragment interleave will occur (which will cause a head of line
3187  * blocking amongst multiple associations sharing the same one to many
3188  * socket).  When this option is turned on, then each receive call may
3189  * come from a different association (thus the user must receive data
3190  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3191  * association each receive belongs to.
3192  *
3193  * This option takes a boolean value.  A non-zero value indicates that
3194  * fragmented interleave is on.  A value of zero indicates that
3195  * fragmented interleave is off.
3196  *
3197  * Note that it is important that an implementation that allows this
3198  * option to be turned on, have it off by default.  Otherwise an unaware
3199  * application using the one to many model may become confused and act
3200  * incorrectly.
3201  */
3202 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3203 					       char __user *optval,
3204 					       unsigned int optlen)
3205 {
3206 	int val;
3207 
3208 	if (optlen != sizeof(int))
3209 		return -EINVAL;
3210 	if (get_user(val, (int __user *)optval))
3211 		return -EFAULT;
3212 
3213 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3214 
3215 	return 0;
3216 }
3217 
3218 /*
3219  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3220  *       (SCTP_PARTIAL_DELIVERY_POINT)
3221  *
3222  * This option will set or get the SCTP partial delivery point.  This
3223  * point is the size of a message where the partial delivery API will be
3224  * invoked to help free up rwnd space for the peer.  Setting this to a
3225  * lower value will cause partial deliveries to happen more often.  The
3226  * calls argument is an integer that sets or gets the partial delivery
3227  * point.  Note also that the call will fail if the user attempts to set
3228  * this value larger than the socket receive buffer size.
3229  *
3230  * Note that any single message having a length smaller than or equal to
3231  * the SCTP partial delivery point will be delivered in one single read
3232  * call as long as the user provided buffer is large enough to hold the
3233  * message.
3234  */
3235 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3236 						  char __user *optval,
3237 						  unsigned int optlen)
3238 {
3239 	u32 val;
3240 
3241 	if (optlen != sizeof(u32))
3242 		return -EINVAL;
3243 	if (get_user(val, (int __user *)optval))
3244 		return -EFAULT;
3245 
3246 	/* Note: We double the receive buffer from what the user sets
3247 	 * it to be, also initial rwnd is based on rcvbuf/2.
3248 	 */
3249 	if (val > (sk->sk_rcvbuf >> 1))
3250 		return -EINVAL;
3251 
3252 	sctp_sk(sk)->pd_point = val;
3253 
3254 	return 0; /* is this the right error code? */
3255 }
3256 
3257 /*
3258  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3259  *
3260  * This option will allow a user to change the maximum burst of packets
3261  * that can be emitted by this association.  Note that the default value
3262  * is 4, and some implementations may restrict this setting so that it
3263  * can only be lowered.
3264  *
3265  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3266  * future associations inheriting the socket value.
3267  */
3268 static int sctp_setsockopt_maxburst(struct sock *sk,
3269 				    char __user *optval,
3270 				    unsigned int optlen)
3271 {
3272 	struct sctp_assoc_value params;
3273 	struct sctp_sock *sp;
3274 	struct sctp_association *asoc;
3275 	int val;
3276 	int assoc_id = 0;
3277 
3278 	if (optlen == sizeof(int)) {
3279 		pr_warn_ratelimited(DEPRECATED
3280 				    "%s (pid %d) "
3281 				    "Use of int in max_burst socket option deprecated.\n"
3282 				    "Use struct sctp_assoc_value instead\n",
3283 				    current->comm, task_pid_nr(current));
3284 		if (copy_from_user(&val, optval, optlen))
3285 			return -EFAULT;
3286 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3287 		if (copy_from_user(&params, optval, optlen))
3288 			return -EFAULT;
3289 		val = params.assoc_value;
3290 		assoc_id = params.assoc_id;
3291 	} else
3292 		return -EINVAL;
3293 
3294 	sp = sctp_sk(sk);
3295 
3296 	if (assoc_id != 0) {
3297 		asoc = sctp_id2assoc(sk, assoc_id);
3298 		if (!asoc)
3299 			return -EINVAL;
3300 		asoc->max_burst = val;
3301 	} else
3302 		sp->max_burst = val;
3303 
3304 	return 0;
3305 }
3306 
3307 /*
3308  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3309  *
3310  * This set option adds a chunk type that the user is requesting to be
3311  * received only in an authenticated way.  Changes to the list of chunks
3312  * will only effect future associations on the socket.
3313  */
3314 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3315 				      char __user *optval,
3316 				      unsigned int optlen)
3317 {
3318 	struct net *net = sock_net(sk);
3319 	struct sctp_authchunk val;
3320 
3321 	if (!net->sctp.auth_enable)
3322 		return -EACCES;
3323 
3324 	if (optlen != sizeof(struct sctp_authchunk))
3325 		return -EINVAL;
3326 	if (copy_from_user(&val, optval, optlen))
3327 		return -EFAULT;
3328 
3329 	switch (val.sauth_chunk) {
3330 	case SCTP_CID_INIT:
3331 	case SCTP_CID_INIT_ACK:
3332 	case SCTP_CID_SHUTDOWN_COMPLETE:
3333 	case SCTP_CID_AUTH:
3334 		return -EINVAL;
3335 	}
3336 
3337 	/* add this chunk id to the endpoint */
3338 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3339 }
3340 
3341 /*
3342  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3343  *
3344  * This option gets or sets the list of HMAC algorithms that the local
3345  * endpoint requires the peer to use.
3346  */
3347 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3348 				      char __user *optval,
3349 				      unsigned int optlen)
3350 {
3351 	struct net *net = sock_net(sk);
3352 	struct sctp_hmacalgo *hmacs;
3353 	u32 idents;
3354 	int err;
3355 
3356 	if (!net->sctp.auth_enable)
3357 		return -EACCES;
3358 
3359 	if (optlen < sizeof(struct sctp_hmacalgo))
3360 		return -EINVAL;
3361 
3362 	hmacs = memdup_user(optval, optlen);
3363 	if (IS_ERR(hmacs))
3364 		return PTR_ERR(hmacs);
3365 
3366 	idents = hmacs->shmac_num_idents;
3367 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3368 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3369 		err = -EINVAL;
3370 		goto out;
3371 	}
3372 
3373 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3374 out:
3375 	kfree(hmacs);
3376 	return err;
3377 }
3378 
3379 /*
3380  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3381  *
3382  * This option will set a shared secret key which is used to build an
3383  * association shared key.
3384  */
3385 static int sctp_setsockopt_auth_key(struct sock *sk,
3386 				    char __user *optval,
3387 				    unsigned int optlen)
3388 {
3389 	struct net *net = sock_net(sk);
3390 	struct sctp_authkey *authkey;
3391 	struct sctp_association *asoc;
3392 	int ret;
3393 
3394 	if (!net->sctp.auth_enable)
3395 		return -EACCES;
3396 
3397 	if (optlen <= sizeof(struct sctp_authkey))
3398 		return -EINVAL;
3399 
3400 	authkey = memdup_user(optval, optlen);
3401 	if (IS_ERR(authkey))
3402 		return PTR_ERR(authkey);
3403 
3404 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3405 		ret = -EINVAL;
3406 		goto out;
3407 	}
3408 
3409 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3410 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3411 		ret = -EINVAL;
3412 		goto out;
3413 	}
3414 
3415 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3416 out:
3417 	kzfree(authkey);
3418 	return ret;
3419 }
3420 
3421 /*
3422  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3423  *
3424  * This option will get or set the active shared key to be used to build
3425  * the association shared key.
3426  */
3427 static int sctp_setsockopt_active_key(struct sock *sk,
3428 				      char __user *optval,
3429 				      unsigned int optlen)
3430 {
3431 	struct net *net = sock_net(sk);
3432 	struct sctp_authkeyid val;
3433 	struct sctp_association *asoc;
3434 
3435 	if (!net->sctp.auth_enable)
3436 		return -EACCES;
3437 
3438 	if (optlen != sizeof(struct sctp_authkeyid))
3439 		return -EINVAL;
3440 	if (copy_from_user(&val, optval, optlen))
3441 		return -EFAULT;
3442 
3443 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3444 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3445 		return -EINVAL;
3446 
3447 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3448 					val.scact_keynumber);
3449 }
3450 
3451 /*
3452  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3453  *
3454  * This set option will delete a shared secret key from use.
3455  */
3456 static int sctp_setsockopt_del_key(struct sock *sk,
3457 				   char __user *optval,
3458 				   unsigned int optlen)
3459 {
3460 	struct net *net = sock_net(sk);
3461 	struct sctp_authkeyid val;
3462 	struct sctp_association *asoc;
3463 
3464 	if (!net->sctp.auth_enable)
3465 		return -EACCES;
3466 
3467 	if (optlen != sizeof(struct sctp_authkeyid))
3468 		return -EINVAL;
3469 	if (copy_from_user(&val, optval, optlen))
3470 		return -EFAULT;
3471 
3472 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3473 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3474 		return -EINVAL;
3475 
3476 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3477 				    val.scact_keynumber);
3478 
3479 }
3480 
3481 /*
3482  * 8.1.23 SCTP_AUTO_ASCONF
3483  *
3484  * This option will enable or disable the use of the automatic generation of
3485  * ASCONF chunks to add and delete addresses to an existing association.  Note
3486  * that this option has two caveats namely: a) it only affects sockets that
3487  * are bound to all addresses available to the SCTP stack, and b) the system
3488  * administrator may have an overriding control that turns the ASCONF feature
3489  * off no matter what setting the socket option may have.
3490  * This option expects an integer boolean flag, where a non-zero value turns on
3491  * the option, and a zero value turns off the option.
3492  * Note. In this implementation, socket operation overrides default parameter
3493  * being set by sysctl as well as FreeBSD implementation
3494  */
3495 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3496 					unsigned int optlen)
3497 {
3498 	int val;
3499 	struct sctp_sock *sp = sctp_sk(sk);
3500 
3501 	if (optlen < sizeof(int))
3502 		return -EINVAL;
3503 	if (get_user(val, (int __user *)optval))
3504 		return -EFAULT;
3505 	if (!sctp_is_ep_boundall(sk) && val)
3506 		return -EINVAL;
3507 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3508 		return 0;
3509 
3510 	if (val == 0 && sp->do_auto_asconf) {
3511 		list_del(&sp->auto_asconf_list);
3512 		sp->do_auto_asconf = 0;
3513 	} else if (val && !sp->do_auto_asconf) {
3514 		list_add_tail(&sp->auto_asconf_list,
3515 		    &sock_net(sk)->sctp.auto_asconf_splist);
3516 		sp->do_auto_asconf = 1;
3517 	}
3518 	return 0;
3519 }
3520 
3521 
3522 /*
3523  * SCTP_PEER_ADDR_THLDS
3524  *
3525  * This option allows us to alter the partially failed threshold for one or all
3526  * transports in an association.  See Section 6.1 of:
3527  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3528  */
3529 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3530 					    char __user *optval,
3531 					    unsigned int optlen)
3532 {
3533 	struct sctp_paddrthlds val;
3534 	struct sctp_transport *trans;
3535 	struct sctp_association *asoc;
3536 
3537 	if (optlen < sizeof(struct sctp_paddrthlds))
3538 		return -EINVAL;
3539 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3540 			   sizeof(struct sctp_paddrthlds)))
3541 		return -EFAULT;
3542 
3543 
3544 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3545 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3546 		if (!asoc)
3547 			return -ENOENT;
3548 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3549 				    transports) {
3550 			if (val.spt_pathmaxrxt)
3551 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3552 			trans->pf_retrans = val.spt_pathpfthld;
3553 		}
3554 
3555 		if (val.spt_pathmaxrxt)
3556 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3557 		asoc->pf_retrans = val.spt_pathpfthld;
3558 	} else {
3559 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3560 					       val.spt_assoc_id);
3561 		if (!trans)
3562 			return -ENOENT;
3563 
3564 		if (val.spt_pathmaxrxt)
3565 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3566 		trans->pf_retrans = val.spt_pathpfthld;
3567 	}
3568 
3569 	return 0;
3570 }
3571 
3572 /* API 6.2 setsockopt(), getsockopt()
3573  *
3574  * Applications use setsockopt() and getsockopt() to set or retrieve
3575  * socket options.  Socket options are used to change the default
3576  * behavior of sockets calls.  They are described in Section 7.
3577  *
3578  * The syntax is:
3579  *
3580  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3581  *                    int __user *optlen);
3582  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3583  *                    int optlen);
3584  *
3585  *   sd      - the socket descript.
3586  *   level   - set to IPPROTO_SCTP for all SCTP options.
3587  *   optname - the option name.
3588  *   optval  - the buffer to store the value of the option.
3589  *   optlen  - the size of the buffer.
3590  */
3591 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3592 			   char __user *optval, unsigned int optlen)
3593 {
3594 	int retval = 0;
3595 
3596 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3597 
3598 	/* I can hardly begin to describe how wrong this is.  This is
3599 	 * so broken as to be worse than useless.  The API draft
3600 	 * REALLY is NOT helpful here...  I am not convinced that the
3601 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3602 	 * are at all well-founded.
3603 	 */
3604 	if (level != SOL_SCTP) {
3605 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3606 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3607 		goto out_nounlock;
3608 	}
3609 
3610 	lock_sock(sk);
3611 
3612 	switch (optname) {
3613 	case SCTP_SOCKOPT_BINDX_ADD:
3614 		/* 'optlen' is the size of the addresses buffer. */
3615 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3616 					       optlen, SCTP_BINDX_ADD_ADDR);
3617 		break;
3618 
3619 	case SCTP_SOCKOPT_BINDX_REM:
3620 		/* 'optlen' is the size of the addresses buffer. */
3621 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3622 					       optlen, SCTP_BINDX_REM_ADDR);
3623 		break;
3624 
3625 	case SCTP_SOCKOPT_CONNECTX_OLD:
3626 		/* 'optlen' is the size of the addresses buffer. */
3627 		retval = sctp_setsockopt_connectx_old(sk,
3628 					    (struct sockaddr __user *)optval,
3629 					    optlen);
3630 		break;
3631 
3632 	case SCTP_SOCKOPT_CONNECTX:
3633 		/* 'optlen' is the size of the addresses buffer. */
3634 		retval = sctp_setsockopt_connectx(sk,
3635 					    (struct sockaddr __user *)optval,
3636 					    optlen);
3637 		break;
3638 
3639 	case SCTP_DISABLE_FRAGMENTS:
3640 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3641 		break;
3642 
3643 	case SCTP_EVENTS:
3644 		retval = sctp_setsockopt_events(sk, optval, optlen);
3645 		break;
3646 
3647 	case SCTP_AUTOCLOSE:
3648 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3649 		break;
3650 
3651 	case SCTP_PEER_ADDR_PARAMS:
3652 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3653 		break;
3654 
3655 	case SCTP_DELAYED_SACK:
3656 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3657 		break;
3658 	case SCTP_PARTIAL_DELIVERY_POINT:
3659 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3660 		break;
3661 
3662 	case SCTP_INITMSG:
3663 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3664 		break;
3665 	case SCTP_DEFAULT_SEND_PARAM:
3666 		retval = sctp_setsockopt_default_send_param(sk, optval,
3667 							    optlen);
3668 		break;
3669 	case SCTP_PRIMARY_ADDR:
3670 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3671 		break;
3672 	case SCTP_SET_PEER_PRIMARY_ADDR:
3673 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3674 		break;
3675 	case SCTP_NODELAY:
3676 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3677 		break;
3678 	case SCTP_RTOINFO:
3679 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3680 		break;
3681 	case SCTP_ASSOCINFO:
3682 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3683 		break;
3684 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3685 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3686 		break;
3687 	case SCTP_MAXSEG:
3688 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3689 		break;
3690 	case SCTP_ADAPTATION_LAYER:
3691 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3692 		break;
3693 	case SCTP_CONTEXT:
3694 		retval = sctp_setsockopt_context(sk, optval, optlen);
3695 		break;
3696 	case SCTP_FRAGMENT_INTERLEAVE:
3697 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3698 		break;
3699 	case SCTP_MAX_BURST:
3700 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3701 		break;
3702 	case SCTP_AUTH_CHUNK:
3703 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3704 		break;
3705 	case SCTP_HMAC_IDENT:
3706 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3707 		break;
3708 	case SCTP_AUTH_KEY:
3709 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3710 		break;
3711 	case SCTP_AUTH_ACTIVE_KEY:
3712 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3713 		break;
3714 	case SCTP_AUTH_DELETE_KEY:
3715 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3716 		break;
3717 	case SCTP_AUTO_ASCONF:
3718 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3719 		break;
3720 	case SCTP_PEER_ADDR_THLDS:
3721 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3722 		break;
3723 	default:
3724 		retval = -ENOPROTOOPT;
3725 		break;
3726 	}
3727 
3728 	release_sock(sk);
3729 
3730 out_nounlock:
3731 	return retval;
3732 }
3733 
3734 /* API 3.1.6 connect() - UDP Style Syntax
3735  *
3736  * An application may use the connect() call in the UDP model to initiate an
3737  * association without sending data.
3738  *
3739  * The syntax is:
3740  *
3741  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3742  *
3743  * sd: the socket descriptor to have a new association added to.
3744  *
3745  * nam: the address structure (either struct sockaddr_in or struct
3746  *    sockaddr_in6 defined in RFC2553 [7]).
3747  *
3748  * len: the size of the address.
3749  */
3750 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3751 			int addr_len)
3752 {
3753 	int err = 0;
3754 	struct sctp_af *af;
3755 
3756 	lock_sock(sk);
3757 
3758 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3759 		 addr, addr_len);
3760 
3761 	/* Validate addr_len before calling common connect/connectx routine. */
3762 	af = sctp_get_af_specific(addr->sa_family);
3763 	if (!af || addr_len < af->sockaddr_len) {
3764 		err = -EINVAL;
3765 	} else {
3766 		/* Pass correct addr len to common routine (so it knows there
3767 		 * is only one address being passed.
3768 		 */
3769 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3770 	}
3771 
3772 	release_sock(sk);
3773 	return err;
3774 }
3775 
3776 /* FIXME: Write comments. */
3777 static int sctp_disconnect(struct sock *sk, int flags)
3778 {
3779 	return -EOPNOTSUPP; /* STUB */
3780 }
3781 
3782 /* 4.1.4 accept() - TCP Style Syntax
3783  *
3784  * Applications use accept() call to remove an established SCTP
3785  * association from the accept queue of the endpoint.  A new socket
3786  * descriptor will be returned from accept() to represent the newly
3787  * formed association.
3788  */
3789 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3790 {
3791 	struct sctp_sock *sp;
3792 	struct sctp_endpoint *ep;
3793 	struct sock *newsk = NULL;
3794 	struct sctp_association *asoc;
3795 	long timeo;
3796 	int error = 0;
3797 
3798 	lock_sock(sk);
3799 
3800 	sp = sctp_sk(sk);
3801 	ep = sp->ep;
3802 
3803 	if (!sctp_style(sk, TCP)) {
3804 		error = -EOPNOTSUPP;
3805 		goto out;
3806 	}
3807 
3808 	if (!sctp_sstate(sk, LISTENING)) {
3809 		error = -EINVAL;
3810 		goto out;
3811 	}
3812 
3813 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3814 
3815 	error = sctp_wait_for_accept(sk, timeo);
3816 	if (error)
3817 		goto out;
3818 
3819 	/* We treat the list of associations on the endpoint as the accept
3820 	 * queue and pick the first association on the list.
3821 	 */
3822 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3823 
3824 	newsk = sp->pf->create_accept_sk(sk, asoc);
3825 	if (!newsk) {
3826 		error = -ENOMEM;
3827 		goto out;
3828 	}
3829 
3830 	/* Populate the fields of the newsk from the oldsk and migrate the
3831 	 * asoc to the newsk.
3832 	 */
3833 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3834 
3835 out:
3836 	release_sock(sk);
3837 	*err = error;
3838 	return newsk;
3839 }
3840 
3841 /* The SCTP ioctl handler. */
3842 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3843 {
3844 	int rc = -ENOTCONN;
3845 
3846 	lock_sock(sk);
3847 
3848 	/*
3849 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3850 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3851 	 */
3852 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3853 		goto out;
3854 
3855 	switch (cmd) {
3856 	case SIOCINQ: {
3857 		struct sk_buff *skb;
3858 		unsigned int amount = 0;
3859 
3860 		skb = skb_peek(&sk->sk_receive_queue);
3861 		if (skb != NULL) {
3862 			/*
3863 			 * We will only return the amount of this packet since
3864 			 * that is all that will be read.
3865 			 */
3866 			amount = skb->len;
3867 		}
3868 		rc = put_user(amount, (int __user *)arg);
3869 		break;
3870 	}
3871 	default:
3872 		rc = -ENOIOCTLCMD;
3873 		break;
3874 	}
3875 out:
3876 	release_sock(sk);
3877 	return rc;
3878 }
3879 
3880 /* This is the function which gets called during socket creation to
3881  * initialized the SCTP-specific portion of the sock.
3882  * The sock structure should already be zero-filled memory.
3883  */
3884 static int sctp_init_sock(struct sock *sk)
3885 {
3886 	struct net *net = sock_net(sk);
3887 	struct sctp_sock *sp;
3888 
3889 	pr_debug("%s: sk:%p\n", __func__, sk);
3890 
3891 	sp = sctp_sk(sk);
3892 
3893 	/* Initialize the SCTP per socket area.  */
3894 	switch (sk->sk_type) {
3895 	case SOCK_SEQPACKET:
3896 		sp->type = SCTP_SOCKET_UDP;
3897 		break;
3898 	case SOCK_STREAM:
3899 		sp->type = SCTP_SOCKET_TCP;
3900 		break;
3901 	default:
3902 		return -ESOCKTNOSUPPORT;
3903 	}
3904 
3905 	/* Initialize default send parameters. These parameters can be
3906 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3907 	 */
3908 	sp->default_stream = 0;
3909 	sp->default_ppid = 0;
3910 	sp->default_flags = 0;
3911 	sp->default_context = 0;
3912 	sp->default_timetolive = 0;
3913 
3914 	sp->default_rcv_context = 0;
3915 	sp->max_burst = net->sctp.max_burst;
3916 
3917 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3918 
3919 	/* Initialize default setup parameters. These parameters
3920 	 * can be modified with the SCTP_INITMSG socket option or
3921 	 * overridden by the SCTP_INIT CMSG.
3922 	 */
3923 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3924 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3925 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3926 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3927 
3928 	/* Initialize default RTO related parameters.  These parameters can
3929 	 * be modified for with the SCTP_RTOINFO socket option.
3930 	 */
3931 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3932 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3933 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3934 
3935 	/* Initialize default association related parameters. These parameters
3936 	 * can be modified with the SCTP_ASSOCINFO socket option.
3937 	 */
3938 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3939 	sp->assocparams.sasoc_number_peer_destinations = 0;
3940 	sp->assocparams.sasoc_peer_rwnd = 0;
3941 	sp->assocparams.sasoc_local_rwnd = 0;
3942 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3943 
3944 	/* Initialize default event subscriptions. By default, all the
3945 	 * options are off.
3946 	 */
3947 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3948 
3949 	/* Default Peer Address Parameters.  These defaults can
3950 	 * be modified via SCTP_PEER_ADDR_PARAMS
3951 	 */
3952 	sp->hbinterval  = net->sctp.hb_interval;
3953 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3954 	sp->pathmtu     = 0; /* allow default discovery */
3955 	sp->sackdelay   = net->sctp.sack_timeout;
3956 	sp->sackfreq	= 2;
3957 	sp->param_flags = SPP_HB_ENABLE |
3958 			  SPP_PMTUD_ENABLE |
3959 			  SPP_SACKDELAY_ENABLE;
3960 
3961 	/* If enabled no SCTP message fragmentation will be performed.
3962 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3963 	 */
3964 	sp->disable_fragments = 0;
3965 
3966 	/* Enable Nagle algorithm by default.  */
3967 	sp->nodelay           = 0;
3968 
3969 	/* Enable by default. */
3970 	sp->v4mapped          = 1;
3971 
3972 	/* Auto-close idle associations after the configured
3973 	 * number of seconds.  A value of 0 disables this
3974 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3975 	 * for UDP-style sockets only.
3976 	 */
3977 	sp->autoclose         = 0;
3978 
3979 	/* User specified fragmentation limit. */
3980 	sp->user_frag         = 0;
3981 
3982 	sp->adaptation_ind = 0;
3983 
3984 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3985 
3986 	/* Control variables for partial data delivery. */
3987 	atomic_set(&sp->pd_mode, 0);
3988 	skb_queue_head_init(&sp->pd_lobby);
3989 	sp->frag_interleave = 0;
3990 
3991 	/* Create a per socket endpoint structure.  Even if we
3992 	 * change the data structure relationships, this may still
3993 	 * be useful for storing pre-connect address information.
3994 	 */
3995 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
3996 	if (!sp->ep)
3997 		return -ENOMEM;
3998 
3999 	sp->hmac = NULL;
4000 
4001 	sk->sk_destruct = sctp_destruct_sock;
4002 
4003 	SCTP_DBG_OBJCNT_INC(sock);
4004 
4005 	local_bh_disable();
4006 	percpu_counter_inc(&sctp_sockets_allocated);
4007 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4008 	if (net->sctp.default_auto_asconf) {
4009 		list_add_tail(&sp->auto_asconf_list,
4010 		    &net->sctp.auto_asconf_splist);
4011 		sp->do_auto_asconf = 1;
4012 	} else
4013 		sp->do_auto_asconf = 0;
4014 	local_bh_enable();
4015 
4016 	return 0;
4017 }
4018 
4019 /* Cleanup any SCTP per socket resources.  */
4020 static void sctp_destroy_sock(struct sock *sk)
4021 {
4022 	struct sctp_sock *sp;
4023 
4024 	pr_debug("%s: sk:%p\n", __func__, sk);
4025 
4026 	/* Release our hold on the endpoint. */
4027 	sp = sctp_sk(sk);
4028 	/* This could happen during socket init, thus we bail out
4029 	 * early, since the rest of the below is not setup either.
4030 	 */
4031 	if (sp->ep == NULL)
4032 		return;
4033 
4034 	if (sp->do_auto_asconf) {
4035 		sp->do_auto_asconf = 0;
4036 		list_del(&sp->auto_asconf_list);
4037 	}
4038 	sctp_endpoint_free(sp->ep);
4039 	local_bh_disable();
4040 	percpu_counter_dec(&sctp_sockets_allocated);
4041 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4042 	local_bh_enable();
4043 }
4044 
4045 /* Triggered when there are no references on the socket anymore */
4046 static void sctp_destruct_sock(struct sock *sk)
4047 {
4048 	struct sctp_sock *sp = sctp_sk(sk);
4049 
4050 	/* Free up the HMAC transform. */
4051 	crypto_free_hash(sp->hmac);
4052 
4053 	inet_sock_destruct(sk);
4054 }
4055 
4056 /* API 4.1.7 shutdown() - TCP Style Syntax
4057  *     int shutdown(int socket, int how);
4058  *
4059  *     sd      - the socket descriptor of the association to be closed.
4060  *     how     - Specifies the type of shutdown.  The  values  are
4061  *               as follows:
4062  *               SHUT_RD
4063  *                     Disables further receive operations. No SCTP
4064  *                     protocol action is taken.
4065  *               SHUT_WR
4066  *                     Disables further send operations, and initiates
4067  *                     the SCTP shutdown sequence.
4068  *               SHUT_RDWR
4069  *                     Disables further send  and  receive  operations
4070  *                     and initiates the SCTP shutdown sequence.
4071  */
4072 static void sctp_shutdown(struct sock *sk, int how)
4073 {
4074 	struct net *net = sock_net(sk);
4075 	struct sctp_endpoint *ep;
4076 	struct sctp_association *asoc;
4077 
4078 	if (!sctp_style(sk, TCP))
4079 		return;
4080 
4081 	if (how & SEND_SHUTDOWN) {
4082 		ep = sctp_sk(sk)->ep;
4083 		if (!list_empty(&ep->asocs)) {
4084 			asoc = list_entry(ep->asocs.next,
4085 					  struct sctp_association, asocs);
4086 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4087 		}
4088 	}
4089 }
4090 
4091 /* 7.2.1 Association Status (SCTP_STATUS)
4092 
4093  * Applications can retrieve current status information about an
4094  * association, including association state, peer receiver window size,
4095  * number of unacked data chunks, and number of data chunks pending
4096  * receipt.  This information is read-only.
4097  */
4098 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4099 				       char __user *optval,
4100 				       int __user *optlen)
4101 {
4102 	struct sctp_status status;
4103 	struct sctp_association *asoc = NULL;
4104 	struct sctp_transport *transport;
4105 	sctp_assoc_t associd;
4106 	int retval = 0;
4107 
4108 	if (len < sizeof(status)) {
4109 		retval = -EINVAL;
4110 		goto out;
4111 	}
4112 
4113 	len = sizeof(status);
4114 	if (copy_from_user(&status, optval, len)) {
4115 		retval = -EFAULT;
4116 		goto out;
4117 	}
4118 
4119 	associd = status.sstat_assoc_id;
4120 	asoc = sctp_id2assoc(sk, associd);
4121 	if (!asoc) {
4122 		retval = -EINVAL;
4123 		goto out;
4124 	}
4125 
4126 	transport = asoc->peer.primary_path;
4127 
4128 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4129 	status.sstat_state = asoc->state;
4130 	status.sstat_rwnd =  asoc->peer.rwnd;
4131 	status.sstat_unackdata = asoc->unack_data;
4132 
4133 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4134 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4135 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4136 	status.sstat_fragmentation_point = asoc->frag_point;
4137 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4138 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4139 			transport->af_specific->sockaddr_len);
4140 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4141 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4142 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4143 	status.sstat_primary.spinfo_state = transport->state;
4144 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4145 	status.sstat_primary.spinfo_srtt = transport->srtt;
4146 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4147 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4148 
4149 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4150 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4151 
4152 	if (put_user(len, optlen)) {
4153 		retval = -EFAULT;
4154 		goto out;
4155 	}
4156 
4157 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4158 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4159 		 status.sstat_assoc_id);
4160 
4161 	if (copy_to_user(optval, &status, len)) {
4162 		retval = -EFAULT;
4163 		goto out;
4164 	}
4165 
4166 out:
4167 	return retval;
4168 }
4169 
4170 
4171 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4172  *
4173  * Applications can retrieve information about a specific peer address
4174  * of an association, including its reachability state, congestion
4175  * window, and retransmission timer values.  This information is
4176  * read-only.
4177  */
4178 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4179 					  char __user *optval,
4180 					  int __user *optlen)
4181 {
4182 	struct sctp_paddrinfo pinfo;
4183 	struct sctp_transport *transport;
4184 	int retval = 0;
4185 
4186 	if (len < sizeof(pinfo)) {
4187 		retval = -EINVAL;
4188 		goto out;
4189 	}
4190 
4191 	len = sizeof(pinfo);
4192 	if (copy_from_user(&pinfo, optval, len)) {
4193 		retval = -EFAULT;
4194 		goto out;
4195 	}
4196 
4197 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4198 					   pinfo.spinfo_assoc_id);
4199 	if (!transport)
4200 		return -EINVAL;
4201 
4202 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4203 	pinfo.spinfo_state = transport->state;
4204 	pinfo.spinfo_cwnd = transport->cwnd;
4205 	pinfo.spinfo_srtt = transport->srtt;
4206 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4207 	pinfo.spinfo_mtu = transport->pathmtu;
4208 
4209 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4210 		pinfo.spinfo_state = SCTP_ACTIVE;
4211 
4212 	if (put_user(len, optlen)) {
4213 		retval = -EFAULT;
4214 		goto out;
4215 	}
4216 
4217 	if (copy_to_user(optval, &pinfo, len)) {
4218 		retval = -EFAULT;
4219 		goto out;
4220 	}
4221 
4222 out:
4223 	return retval;
4224 }
4225 
4226 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4227  *
4228  * This option is a on/off flag.  If enabled no SCTP message
4229  * fragmentation will be performed.  Instead if a message being sent
4230  * exceeds the current PMTU size, the message will NOT be sent and
4231  * instead a error will be indicated to the user.
4232  */
4233 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4234 					char __user *optval, int __user *optlen)
4235 {
4236 	int val;
4237 
4238 	if (len < sizeof(int))
4239 		return -EINVAL;
4240 
4241 	len = sizeof(int);
4242 	val = (sctp_sk(sk)->disable_fragments == 1);
4243 	if (put_user(len, optlen))
4244 		return -EFAULT;
4245 	if (copy_to_user(optval, &val, len))
4246 		return -EFAULT;
4247 	return 0;
4248 }
4249 
4250 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4251  *
4252  * This socket option is used to specify various notifications and
4253  * ancillary data the user wishes to receive.
4254  */
4255 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4256 				  int __user *optlen)
4257 {
4258 	if (len <= 0)
4259 		return -EINVAL;
4260 	if (len > sizeof(struct sctp_event_subscribe))
4261 		len = sizeof(struct sctp_event_subscribe);
4262 	if (put_user(len, optlen))
4263 		return -EFAULT;
4264 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4265 		return -EFAULT;
4266 	return 0;
4267 }
4268 
4269 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4270  *
4271  * This socket option is applicable to the UDP-style socket only.  When
4272  * set it will cause associations that are idle for more than the
4273  * specified number of seconds to automatically close.  An association
4274  * being idle is defined an association that has NOT sent or received
4275  * user data.  The special value of '0' indicates that no automatic
4276  * close of any associations should be performed.  The option expects an
4277  * integer defining the number of seconds of idle time before an
4278  * association is closed.
4279  */
4280 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4281 {
4282 	/* Applicable to UDP-style socket only */
4283 	if (sctp_style(sk, TCP))
4284 		return -EOPNOTSUPP;
4285 	if (len < sizeof(int))
4286 		return -EINVAL;
4287 	len = sizeof(int);
4288 	if (put_user(len, optlen))
4289 		return -EFAULT;
4290 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4291 		return -EFAULT;
4292 	return 0;
4293 }
4294 
4295 /* Helper routine to branch off an association to a new socket.  */
4296 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4297 {
4298 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4299 	struct socket *sock;
4300 	struct sctp_af *af;
4301 	int err = 0;
4302 
4303 	if (!asoc)
4304 		return -EINVAL;
4305 
4306 	/* An association cannot be branched off from an already peeled-off
4307 	 * socket, nor is this supported for tcp style sockets.
4308 	 */
4309 	if (!sctp_style(sk, UDP))
4310 		return -EINVAL;
4311 
4312 	/* Create a new socket.  */
4313 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4314 	if (err < 0)
4315 		return err;
4316 
4317 	sctp_copy_sock(sock->sk, sk, asoc);
4318 
4319 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4320 	 * Set the daddr and initialize id to something more random
4321 	 */
4322 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4323 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4324 
4325 	/* Populate the fields of the newsk from the oldsk and migrate the
4326 	 * asoc to the newsk.
4327 	 */
4328 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4329 
4330 	*sockp = sock;
4331 
4332 	return err;
4333 }
4334 EXPORT_SYMBOL(sctp_do_peeloff);
4335 
4336 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4337 {
4338 	sctp_peeloff_arg_t peeloff;
4339 	struct socket *newsock;
4340 	struct file *newfile;
4341 	int retval = 0;
4342 
4343 	if (len < sizeof(sctp_peeloff_arg_t))
4344 		return -EINVAL;
4345 	len = sizeof(sctp_peeloff_arg_t);
4346 	if (copy_from_user(&peeloff, optval, len))
4347 		return -EFAULT;
4348 
4349 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4350 	if (retval < 0)
4351 		goto out;
4352 
4353 	/* Map the socket to an unused fd that can be returned to the user.  */
4354 	retval = get_unused_fd_flags(0);
4355 	if (retval < 0) {
4356 		sock_release(newsock);
4357 		goto out;
4358 	}
4359 
4360 	newfile = sock_alloc_file(newsock, 0, NULL);
4361 	if (unlikely(IS_ERR(newfile))) {
4362 		put_unused_fd(retval);
4363 		sock_release(newsock);
4364 		return PTR_ERR(newfile);
4365 	}
4366 
4367 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4368 		 retval);
4369 
4370 	/* Return the fd mapped to the new socket.  */
4371 	if (put_user(len, optlen)) {
4372 		fput(newfile);
4373 		put_unused_fd(retval);
4374 		return -EFAULT;
4375 	}
4376 	peeloff.sd = retval;
4377 	if (copy_to_user(optval, &peeloff, len)) {
4378 		fput(newfile);
4379 		put_unused_fd(retval);
4380 		return -EFAULT;
4381 	}
4382 	fd_install(retval, newfile);
4383 out:
4384 	return retval;
4385 }
4386 
4387 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4388  *
4389  * Applications can enable or disable heartbeats for any peer address of
4390  * an association, modify an address's heartbeat interval, force a
4391  * heartbeat to be sent immediately, and adjust the address's maximum
4392  * number of retransmissions sent before an address is considered
4393  * unreachable.  The following structure is used to access and modify an
4394  * address's parameters:
4395  *
4396  *  struct sctp_paddrparams {
4397  *     sctp_assoc_t            spp_assoc_id;
4398  *     struct sockaddr_storage spp_address;
4399  *     uint32_t                spp_hbinterval;
4400  *     uint16_t                spp_pathmaxrxt;
4401  *     uint32_t                spp_pathmtu;
4402  *     uint32_t                spp_sackdelay;
4403  *     uint32_t                spp_flags;
4404  * };
4405  *
4406  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4407  *                     application, and identifies the association for
4408  *                     this query.
4409  *   spp_address     - This specifies which address is of interest.
4410  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4411  *                     in milliseconds.  If a  value of zero
4412  *                     is present in this field then no changes are to
4413  *                     be made to this parameter.
4414  *   spp_pathmaxrxt  - This contains the maximum number of
4415  *                     retransmissions before this address shall be
4416  *                     considered unreachable. If a  value of zero
4417  *                     is present in this field then no changes are to
4418  *                     be made to this parameter.
4419  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4420  *                     specified here will be the "fixed" path mtu.
4421  *                     Note that if the spp_address field is empty
4422  *                     then all associations on this address will
4423  *                     have this fixed path mtu set upon them.
4424  *
4425  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4426  *                     the number of milliseconds that sacks will be delayed
4427  *                     for. This value will apply to all addresses of an
4428  *                     association if the spp_address field is empty. Note
4429  *                     also, that if delayed sack is enabled and this
4430  *                     value is set to 0, no change is made to the last
4431  *                     recorded delayed sack timer value.
4432  *
4433  *   spp_flags       - These flags are used to control various features
4434  *                     on an association. The flag field may contain
4435  *                     zero or more of the following options.
4436  *
4437  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4438  *                     specified address. Note that if the address
4439  *                     field is empty all addresses for the association
4440  *                     have heartbeats enabled upon them.
4441  *
4442  *                     SPP_HB_DISABLE - Disable heartbeats on the
4443  *                     speicifed address. Note that if the address
4444  *                     field is empty all addresses for the association
4445  *                     will have their heartbeats disabled. Note also
4446  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4447  *                     mutually exclusive, only one of these two should
4448  *                     be specified. Enabling both fields will have
4449  *                     undetermined results.
4450  *
4451  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4452  *                     to be made immediately.
4453  *
4454  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4455  *                     discovery upon the specified address. Note that
4456  *                     if the address feild is empty then all addresses
4457  *                     on the association are effected.
4458  *
4459  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4460  *                     discovery upon the specified address. Note that
4461  *                     if the address feild is empty then all addresses
4462  *                     on the association are effected. Not also that
4463  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4464  *                     exclusive. Enabling both will have undetermined
4465  *                     results.
4466  *
4467  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4468  *                     on delayed sack. The time specified in spp_sackdelay
4469  *                     is used to specify the sack delay for this address. Note
4470  *                     that if spp_address is empty then all addresses will
4471  *                     enable delayed sack and take on the sack delay
4472  *                     value specified in spp_sackdelay.
4473  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4474  *                     off delayed sack. If the spp_address field is blank then
4475  *                     delayed sack is disabled for the entire association. Note
4476  *                     also that this field is mutually exclusive to
4477  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4478  *                     results.
4479  */
4480 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4481 					    char __user *optval, int __user *optlen)
4482 {
4483 	struct sctp_paddrparams  params;
4484 	struct sctp_transport   *trans = NULL;
4485 	struct sctp_association *asoc = NULL;
4486 	struct sctp_sock        *sp = sctp_sk(sk);
4487 
4488 	if (len < sizeof(struct sctp_paddrparams))
4489 		return -EINVAL;
4490 	len = sizeof(struct sctp_paddrparams);
4491 	if (copy_from_user(&params, optval, len))
4492 		return -EFAULT;
4493 
4494 	/* If an address other than INADDR_ANY is specified, and
4495 	 * no transport is found, then the request is invalid.
4496 	 */
4497 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4498 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4499 					       params.spp_assoc_id);
4500 		if (!trans) {
4501 			pr_debug("%s: failed no transport\n", __func__);
4502 			return -EINVAL;
4503 		}
4504 	}
4505 
4506 	/* Get association, if assoc_id != 0 and the socket is a one
4507 	 * to many style socket, and an association was not found, then
4508 	 * the id was invalid.
4509 	 */
4510 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4511 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4512 		pr_debug("%s: failed no association\n", __func__);
4513 		return -EINVAL;
4514 	}
4515 
4516 	if (trans) {
4517 		/* Fetch transport values. */
4518 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4519 		params.spp_pathmtu    = trans->pathmtu;
4520 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4521 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4522 
4523 		/*draft-11 doesn't say what to return in spp_flags*/
4524 		params.spp_flags      = trans->param_flags;
4525 	} else if (asoc) {
4526 		/* Fetch association values. */
4527 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4528 		params.spp_pathmtu    = asoc->pathmtu;
4529 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4530 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4531 
4532 		/*draft-11 doesn't say what to return in spp_flags*/
4533 		params.spp_flags      = asoc->param_flags;
4534 	} else {
4535 		/* Fetch socket values. */
4536 		params.spp_hbinterval = sp->hbinterval;
4537 		params.spp_pathmtu    = sp->pathmtu;
4538 		params.spp_sackdelay  = sp->sackdelay;
4539 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4540 
4541 		/*draft-11 doesn't say what to return in spp_flags*/
4542 		params.spp_flags      = sp->param_flags;
4543 	}
4544 
4545 	if (copy_to_user(optval, &params, len))
4546 		return -EFAULT;
4547 
4548 	if (put_user(len, optlen))
4549 		return -EFAULT;
4550 
4551 	return 0;
4552 }
4553 
4554 /*
4555  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4556  *
4557  * This option will effect the way delayed acks are performed.  This
4558  * option allows you to get or set the delayed ack time, in
4559  * milliseconds.  It also allows changing the delayed ack frequency.
4560  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4561  * the assoc_id is 0, then this sets or gets the endpoints default
4562  * values.  If the assoc_id field is non-zero, then the set or get
4563  * effects the specified association for the one to many model (the
4564  * assoc_id field is ignored by the one to one model).  Note that if
4565  * sack_delay or sack_freq are 0 when setting this option, then the
4566  * current values will remain unchanged.
4567  *
4568  * struct sctp_sack_info {
4569  *     sctp_assoc_t            sack_assoc_id;
4570  *     uint32_t                sack_delay;
4571  *     uint32_t                sack_freq;
4572  * };
4573  *
4574  * sack_assoc_id -  This parameter, indicates which association the user
4575  *    is performing an action upon.  Note that if this field's value is
4576  *    zero then the endpoints default value is changed (effecting future
4577  *    associations only).
4578  *
4579  * sack_delay -  This parameter contains the number of milliseconds that
4580  *    the user is requesting the delayed ACK timer be set to.  Note that
4581  *    this value is defined in the standard to be between 200 and 500
4582  *    milliseconds.
4583  *
4584  * sack_freq -  This parameter contains the number of packets that must
4585  *    be received before a sack is sent without waiting for the delay
4586  *    timer to expire.  The default value for this is 2, setting this
4587  *    value to 1 will disable the delayed sack algorithm.
4588  */
4589 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4590 					    char __user *optval,
4591 					    int __user *optlen)
4592 {
4593 	struct sctp_sack_info    params;
4594 	struct sctp_association *asoc = NULL;
4595 	struct sctp_sock        *sp = sctp_sk(sk);
4596 
4597 	if (len >= sizeof(struct sctp_sack_info)) {
4598 		len = sizeof(struct sctp_sack_info);
4599 
4600 		if (copy_from_user(&params, optval, len))
4601 			return -EFAULT;
4602 	} else if (len == sizeof(struct sctp_assoc_value)) {
4603 		pr_warn_ratelimited(DEPRECATED
4604 				    "%s (pid %d) "
4605 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4606 				    "Use struct sctp_sack_info instead\n",
4607 				    current->comm, task_pid_nr(current));
4608 		if (copy_from_user(&params, optval, len))
4609 			return -EFAULT;
4610 	} else
4611 		return -EINVAL;
4612 
4613 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4614 	 * to many style socket, and an association was not found, then
4615 	 * the id was invalid.
4616 	 */
4617 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4618 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4619 		return -EINVAL;
4620 
4621 	if (asoc) {
4622 		/* Fetch association values. */
4623 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4624 			params.sack_delay = jiffies_to_msecs(
4625 				asoc->sackdelay);
4626 			params.sack_freq = asoc->sackfreq;
4627 
4628 		} else {
4629 			params.sack_delay = 0;
4630 			params.sack_freq = 1;
4631 		}
4632 	} else {
4633 		/* Fetch socket values. */
4634 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4635 			params.sack_delay  = sp->sackdelay;
4636 			params.sack_freq = sp->sackfreq;
4637 		} else {
4638 			params.sack_delay  = 0;
4639 			params.sack_freq = 1;
4640 		}
4641 	}
4642 
4643 	if (copy_to_user(optval, &params, len))
4644 		return -EFAULT;
4645 
4646 	if (put_user(len, optlen))
4647 		return -EFAULT;
4648 
4649 	return 0;
4650 }
4651 
4652 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4653  *
4654  * Applications can specify protocol parameters for the default association
4655  * initialization.  The option name argument to setsockopt() and getsockopt()
4656  * is SCTP_INITMSG.
4657  *
4658  * Setting initialization parameters is effective only on an unconnected
4659  * socket (for UDP-style sockets only future associations are effected
4660  * by the change).  With TCP-style sockets, this option is inherited by
4661  * sockets derived from a listener socket.
4662  */
4663 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4664 {
4665 	if (len < sizeof(struct sctp_initmsg))
4666 		return -EINVAL;
4667 	len = sizeof(struct sctp_initmsg);
4668 	if (put_user(len, optlen))
4669 		return -EFAULT;
4670 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4671 		return -EFAULT;
4672 	return 0;
4673 }
4674 
4675 
4676 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4677 				      char __user *optval, int __user *optlen)
4678 {
4679 	struct sctp_association *asoc;
4680 	int cnt = 0;
4681 	struct sctp_getaddrs getaddrs;
4682 	struct sctp_transport *from;
4683 	void __user *to;
4684 	union sctp_addr temp;
4685 	struct sctp_sock *sp = sctp_sk(sk);
4686 	int addrlen;
4687 	size_t space_left;
4688 	int bytes_copied;
4689 
4690 	if (len < sizeof(struct sctp_getaddrs))
4691 		return -EINVAL;
4692 
4693 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4694 		return -EFAULT;
4695 
4696 	/* For UDP-style sockets, id specifies the association to query.  */
4697 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4698 	if (!asoc)
4699 		return -EINVAL;
4700 
4701 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4702 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4703 
4704 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4705 				transports) {
4706 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4707 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4708 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4709 		if (space_left < addrlen)
4710 			return -ENOMEM;
4711 		if (copy_to_user(to, &temp, addrlen))
4712 			return -EFAULT;
4713 		to += addrlen;
4714 		cnt++;
4715 		space_left -= addrlen;
4716 	}
4717 
4718 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4719 		return -EFAULT;
4720 	bytes_copied = ((char __user *)to) - optval;
4721 	if (put_user(bytes_copied, optlen))
4722 		return -EFAULT;
4723 
4724 	return 0;
4725 }
4726 
4727 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4728 			    size_t space_left, int *bytes_copied)
4729 {
4730 	struct sctp_sockaddr_entry *addr;
4731 	union sctp_addr temp;
4732 	int cnt = 0;
4733 	int addrlen;
4734 	struct net *net = sock_net(sk);
4735 
4736 	rcu_read_lock();
4737 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4738 		if (!addr->valid)
4739 			continue;
4740 
4741 		if ((PF_INET == sk->sk_family) &&
4742 		    (AF_INET6 == addr->a.sa.sa_family))
4743 			continue;
4744 		if ((PF_INET6 == sk->sk_family) &&
4745 		    inet_v6_ipv6only(sk) &&
4746 		    (AF_INET == addr->a.sa.sa_family))
4747 			continue;
4748 		memcpy(&temp, &addr->a, sizeof(temp));
4749 		if (!temp.v4.sin_port)
4750 			temp.v4.sin_port = htons(port);
4751 
4752 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4753 								&temp);
4754 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4755 		if (space_left < addrlen) {
4756 			cnt =  -ENOMEM;
4757 			break;
4758 		}
4759 		memcpy(to, &temp, addrlen);
4760 
4761 		to += addrlen;
4762 		cnt++;
4763 		space_left -= addrlen;
4764 		*bytes_copied += addrlen;
4765 	}
4766 	rcu_read_unlock();
4767 
4768 	return cnt;
4769 }
4770 
4771 
4772 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4773 				       char __user *optval, int __user *optlen)
4774 {
4775 	struct sctp_bind_addr *bp;
4776 	struct sctp_association *asoc;
4777 	int cnt = 0;
4778 	struct sctp_getaddrs getaddrs;
4779 	struct sctp_sockaddr_entry *addr;
4780 	void __user *to;
4781 	union sctp_addr temp;
4782 	struct sctp_sock *sp = sctp_sk(sk);
4783 	int addrlen;
4784 	int err = 0;
4785 	size_t space_left;
4786 	int bytes_copied = 0;
4787 	void *addrs;
4788 	void *buf;
4789 
4790 	if (len < sizeof(struct sctp_getaddrs))
4791 		return -EINVAL;
4792 
4793 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4794 		return -EFAULT;
4795 
4796 	/*
4797 	 *  For UDP-style sockets, id specifies the association to query.
4798 	 *  If the id field is set to the value '0' then the locally bound
4799 	 *  addresses are returned without regard to any particular
4800 	 *  association.
4801 	 */
4802 	if (0 == getaddrs.assoc_id) {
4803 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4804 	} else {
4805 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4806 		if (!asoc)
4807 			return -EINVAL;
4808 		bp = &asoc->base.bind_addr;
4809 	}
4810 
4811 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4812 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4813 
4814 	addrs = kmalloc(space_left, GFP_KERNEL);
4815 	if (!addrs)
4816 		return -ENOMEM;
4817 
4818 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4819 	 * addresses from the global local address list.
4820 	 */
4821 	if (sctp_list_single_entry(&bp->address_list)) {
4822 		addr = list_entry(bp->address_list.next,
4823 				  struct sctp_sockaddr_entry, list);
4824 		if (sctp_is_any(sk, &addr->a)) {
4825 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4826 						space_left, &bytes_copied);
4827 			if (cnt < 0) {
4828 				err = cnt;
4829 				goto out;
4830 			}
4831 			goto copy_getaddrs;
4832 		}
4833 	}
4834 
4835 	buf = addrs;
4836 	/* Protection on the bound address list is not needed since
4837 	 * in the socket option context we hold a socket lock and
4838 	 * thus the bound address list can't change.
4839 	 */
4840 	list_for_each_entry(addr, &bp->address_list, list) {
4841 		memcpy(&temp, &addr->a, sizeof(temp));
4842 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4843 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4844 		if (space_left < addrlen) {
4845 			err =  -ENOMEM; /*fixme: right error?*/
4846 			goto out;
4847 		}
4848 		memcpy(buf, &temp, addrlen);
4849 		buf += addrlen;
4850 		bytes_copied += addrlen;
4851 		cnt++;
4852 		space_left -= addrlen;
4853 	}
4854 
4855 copy_getaddrs:
4856 	if (copy_to_user(to, addrs, bytes_copied)) {
4857 		err = -EFAULT;
4858 		goto out;
4859 	}
4860 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4861 		err = -EFAULT;
4862 		goto out;
4863 	}
4864 	if (put_user(bytes_copied, optlen))
4865 		err = -EFAULT;
4866 out:
4867 	kfree(addrs);
4868 	return err;
4869 }
4870 
4871 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4872  *
4873  * Requests that the local SCTP stack use the enclosed peer address as
4874  * the association primary.  The enclosed address must be one of the
4875  * association peer's addresses.
4876  */
4877 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4878 					char __user *optval, int __user *optlen)
4879 {
4880 	struct sctp_prim prim;
4881 	struct sctp_association *asoc;
4882 	struct sctp_sock *sp = sctp_sk(sk);
4883 
4884 	if (len < sizeof(struct sctp_prim))
4885 		return -EINVAL;
4886 
4887 	len = sizeof(struct sctp_prim);
4888 
4889 	if (copy_from_user(&prim, optval, len))
4890 		return -EFAULT;
4891 
4892 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4893 	if (!asoc)
4894 		return -EINVAL;
4895 
4896 	if (!asoc->peer.primary_path)
4897 		return -ENOTCONN;
4898 
4899 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4900 		asoc->peer.primary_path->af_specific->sockaddr_len);
4901 
4902 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4903 			(union sctp_addr *)&prim.ssp_addr);
4904 
4905 	if (put_user(len, optlen))
4906 		return -EFAULT;
4907 	if (copy_to_user(optval, &prim, len))
4908 		return -EFAULT;
4909 
4910 	return 0;
4911 }
4912 
4913 /*
4914  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4915  *
4916  * Requests that the local endpoint set the specified Adaptation Layer
4917  * Indication parameter for all future INIT and INIT-ACK exchanges.
4918  */
4919 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4920 				  char __user *optval, int __user *optlen)
4921 {
4922 	struct sctp_setadaptation adaptation;
4923 
4924 	if (len < sizeof(struct sctp_setadaptation))
4925 		return -EINVAL;
4926 
4927 	len = sizeof(struct sctp_setadaptation);
4928 
4929 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4930 
4931 	if (put_user(len, optlen))
4932 		return -EFAULT;
4933 	if (copy_to_user(optval, &adaptation, len))
4934 		return -EFAULT;
4935 
4936 	return 0;
4937 }
4938 
4939 /*
4940  *
4941  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4942  *
4943  *   Applications that wish to use the sendto() system call may wish to
4944  *   specify a default set of parameters that would normally be supplied
4945  *   through the inclusion of ancillary data.  This socket option allows
4946  *   such an application to set the default sctp_sndrcvinfo structure.
4947 
4948 
4949  *   The application that wishes to use this socket option simply passes
4950  *   in to this call the sctp_sndrcvinfo structure defined in Section
4951  *   5.2.2) The input parameters accepted by this call include
4952  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4953  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4954  *   to this call if the caller is using the UDP model.
4955  *
4956  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4957  */
4958 static int sctp_getsockopt_default_send_param(struct sock *sk,
4959 					int len, char __user *optval,
4960 					int __user *optlen)
4961 {
4962 	struct sctp_sndrcvinfo info;
4963 	struct sctp_association *asoc;
4964 	struct sctp_sock *sp = sctp_sk(sk);
4965 
4966 	if (len < sizeof(struct sctp_sndrcvinfo))
4967 		return -EINVAL;
4968 
4969 	len = sizeof(struct sctp_sndrcvinfo);
4970 
4971 	if (copy_from_user(&info, optval, len))
4972 		return -EFAULT;
4973 
4974 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4975 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4976 		return -EINVAL;
4977 
4978 	if (asoc) {
4979 		info.sinfo_stream = asoc->default_stream;
4980 		info.sinfo_flags = asoc->default_flags;
4981 		info.sinfo_ppid = asoc->default_ppid;
4982 		info.sinfo_context = asoc->default_context;
4983 		info.sinfo_timetolive = asoc->default_timetolive;
4984 	} else {
4985 		info.sinfo_stream = sp->default_stream;
4986 		info.sinfo_flags = sp->default_flags;
4987 		info.sinfo_ppid = sp->default_ppid;
4988 		info.sinfo_context = sp->default_context;
4989 		info.sinfo_timetolive = sp->default_timetolive;
4990 	}
4991 
4992 	if (put_user(len, optlen))
4993 		return -EFAULT;
4994 	if (copy_to_user(optval, &info, len))
4995 		return -EFAULT;
4996 
4997 	return 0;
4998 }
4999 
5000 /*
5001  *
5002  * 7.1.5 SCTP_NODELAY
5003  *
5004  * Turn on/off any Nagle-like algorithm.  This means that packets are
5005  * generally sent as soon as possible and no unnecessary delays are
5006  * introduced, at the cost of more packets in the network.  Expects an
5007  * integer boolean flag.
5008  */
5009 
5010 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5011 				   char __user *optval, int __user *optlen)
5012 {
5013 	int val;
5014 
5015 	if (len < sizeof(int))
5016 		return -EINVAL;
5017 
5018 	len = sizeof(int);
5019 	val = (sctp_sk(sk)->nodelay == 1);
5020 	if (put_user(len, optlen))
5021 		return -EFAULT;
5022 	if (copy_to_user(optval, &val, len))
5023 		return -EFAULT;
5024 	return 0;
5025 }
5026 
5027 /*
5028  *
5029  * 7.1.1 SCTP_RTOINFO
5030  *
5031  * The protocol parameters used to initialize and bound retransmission
5032  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5033  * and modify these parameters.
5034  * All parameters are time values, in milliseconds.  A value of 0, when
5035  * modifying the parameters, indicates that the current value should not
5036  * be changed.
5037  *
5038  */
5039 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5040 				char __user *optval,
5041 				int __user *optlen) {
5042 	struct sctp_rtoinfo rtoinfo;
5043 	struct sctp_association *asoc;
5044 
5045 	if (len < sizeof (struct sctp_rtoinfo))
5046 		return -EINVAL;
5047 
5048 	len = sizeof(struct sctp_rtoinfo);
5049 
5050 	if (copy_from_user(&rtoinfo, optval, len))
5051 		return -EFAULT;
5052 
5053 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5054 
5055 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5056 		return -EINVAL;
5057 
5058 	/* Values corresponding to the specific association. */
5059 	if (asoc) {
5060 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5061 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5062 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5063 	} else {
5064 		/* Values corresponding to the endpoint. */
5065 		struct sctp_sock *sp = sctp_sk(sk);
5066 
5067 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5068 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5069 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5070 	}
5071 
5072 	if (put_user(len, optlen))
5073 		return -EFAULT;
5074 
5075 	if (copy_to_user(optval, &rtoinfo, len))
5076 		return -EFAULT;
5077 
5078 	return 0;
5079 }
5080 
5081 /*
5082  *
5083  * 7.1.2 SCTP_ASSOCINFO
5084  *
5085  * This option is used to tune the maximum retransmission attempts
5086  * of the association.
5087  * Returns an error if the new association retransmission value is
5088  * greater than the sum of the retransmission value  of the peer.
5089  * See [SCTP] for more information.
5090  *
5091  */
5092 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5093 				     char __user *optval,
5094 				     int __user *optlen)
5095 {
5096 
5097 	struct sctp_assocparams assocparams;
5098 	struct sctp_association *asoc;
5099 	struct list_head *pos;
5100 	int cnt = 0;
5101 
5102 	if (len < sizeof (struct sctp_assocparams))
5103 		return -EINVAL;
5104 
5105 	len = sizeof(struct sctp_assocparams);
5106 
5107 	if (copy_from_user(&assocparams, optval, len))
5108 		return -EFAULT;
5109 
5110 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5111 
5112 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5113 		return -EINVAL;
5114 
5115 	/* Values correspoinding to the specific association */
5116 	if (asoc) {
5117 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5118 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5119 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5120 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5121 
5122 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5123 			cnt++;
5124 		}
5125 
5126 		assocparams.sasoc_number_peer_destinations = cnt;
5127 	} else {
5128 		/* Values corresponding to the endpoint */
5129 		struct sctp_sock *sp = sctp_sk(sk);
5130 
5131 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5132 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5133 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5134 		assocparams.sasoc_cookie_life =
5135 					sp->assocparams.sasoc_cookie_life;
5136 		assocparams.sasoc_number_peer_destinations =
5137 					sp->assocparams.
5138 					sasoc_number_peer_destinations;
5139 	}
5140 
5141 	if (put_user(len, optlen))
5142 		return -EFAULT;
5143 
5144 	if (copy_to_user(optval, &assocparams, len))
5145 		return -EFAULT;
5146 
5147 	return 0;
5148 }
5149 
5150 /*
5151  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5152  *
5153  * This socket option is a boolean flag which turns on or off mapped V4
5154  * addresses.  If this option is turned on and the socket is type
5155  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5156  * If this option is turned off, then no mapping will be done of V4
5157  * addresses and a user will receive both PF_INET6 and PF_INET type
5158  * addresses on the socket.
5159  */
5160 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5161 				    char __user *optval, int __user *optlen)
5162 {
5163 	int val;
5164 	struct sctp_sock *sp = sctp_sk(sk);
5165 
5166 	if (len < sizeof(int))
5167 		return -EINVAL;
5168 
5169 	len = sizeof(int);
5170 	val = sp->v4mapped;
5171 	if (put_user(len, optlen))
5172 		return -EFAULT;
5173 	if (copy_to_user(optval, &val, len))
5174 		return -EFAULT;
5175 
5176 	return 0;
5177 }
5178 
5179 /*
5180  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5181  * (chapter and verse is quoted at sctp_setsockopt_context())
5182  */
5183 static int sctp_getsockopt_context(struct sock *sk, int len,
5184 				   char __user *optval, int __user *optlen)
5185 {
5186 	struct sctp_assoc_value params;
5187 	struct sctp_sock *sp;
5188 	struct sctp_association *asoc;
5189 
5190 	if (len < sizeof(struct sctp_assoc_value))
5191 		return -EINVAL;
5192 
5193 	len = sizeof(struct sctp_assoc_value);
5194 
5195 	if (copy_from_user(&params, optval, len))
5196 		return -EFAULT;
5197 
5198 	sp = sctp_sk(sk);
5199 
5200 	if (params.assoc_id != 0) {
5201 		asoc = sctp_id2assoc(sk, params.assoc_id);
5202 		if (!asoc)
5203 			return -EINVAL;
5204 		params.assoc_value = asoc->default_rcv_context;
5205 	} else {
5206 		params.assoc_value = sp->default_rcv_context;
5207 	}
5208 
5209 	if (put_user(len, optlen))
5210 		return -EFAULT;
5211 	if (copy_to_user(optval, &params, len))
5212 		return -EFAULT;
5213 
5214 	return 0;
5215 }
5216 
5217 /*
5218  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5219  * This option will get or set the maximum size to put in any outgoing
5220  * SCTP DATA chunk.  If a message is larger than this size it will be
5221  * fragmented by SCTP into the specified size.  Note that the underlying
5222  * SCTP implementation may fragment into smaller sized chunks when the
5223  * PMTU of the underlying association is smaller than the value set by
5224  * the user.  The default value for this option is '0' which indicates
5225  * the user is NOT limiting fragmentation and only the PMTU will effect
5226  * SCTP's choice of DATA chunk size.  Note also that values set larger
5227  * than the maximum size of an IP datagram will effectively let SCTP
5228  * control fragmentation (i.e. the same as setting this option to 0).
5229  *
5230  * The following structure is used to access and modify this parameter:
5231  *
5232  * struct sctp_assoc_value {
5233  *   sctp_assoc_t assoc_id;
5234  *   uint32_t assoc_value;
5235  * };
5236  *
5237  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5238  *    For one-to-many style sockets this parameter indicates which
5239  *    association the user is performing an action upon.  Note that if
5240  *    this field's value is zero then the endpoints default value is
5241  *    changed (effecting future associations only).
5242  * assoc_value:  This parameter specifies the maximum size in bytes.
5243  */
5244 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5245 				  char __user *optval, int __user *optlen)
5246 {
5247 	struct sctp_assoc_value params;
5248 	struct sctp_association *asoc;
5249 
5250 	if (len == sizeof(int)) {
5251 		pr_warn_ratelimited(DEPRECATED
5252 				    "%s (pid %d) "
5253 				    "Use of int in maxseg socket option.\n"
5254 				    "Use struct sctp_assoc_value instead\n",
5255 				    current->comm, task_pid_nr(current));
5256 		params.assoc_id = 0;
5257 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5258 		len = sizeof(struct sctp_assoc_value);
5259 		if (copy_from_user(&params, optval, sizeof(params)))
5260 			return -EFAULT;
5261 	} else
5262 		return -EINVAL;
5263 
5264 	asoc = sctp_id2assoc(sk, params.assoc_id);
5265 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5266 		return -EINVAL;
5267 
5268 	if (asoc)
5269 		params.assoc_value = asoc->frag_point;
5270 	else
5271 		params.assoc_value = sctp_sk(sk)->user_frag;
5272 
5273 	if (put_user(len, optlen))
5274 		return -EFAULT;
5275 	if (len == sizeof(int)) {
5276 		if (copy_to_user(optval, &params.assoc_value, len))
5277 			return -EFAULT;
5278 	} else {
5279 		if (copy_to_user(optval, &params, len))
5280 			return -EFAULT;
5281 	}
5282 
5283 	return 0;
5284 }
5285 
5286 /*
5287  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5288  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5289  */
5290 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5291 					       char __user *optval, int __user *optlen)
5292 {
5293 	int val;
5294 
5295 	if (len < sizeof(int))
5296 		return -EINVAL;
5297 
5298 	len = sizeof(int);
5299 
5300 	val = sctp_sk(sk)->frag_interleave;
5301 	if (put_user(len, optlen))
5302 		return -EFAULT;
5303 	if (copy_to_user(optval, &val, len))
5304 		return -EFAULT;
5305 
5306 	return 0;
5307 }
5308 
5309 /*
5310  * 7.1.25.  Set or Get the sctp partial delivery point
5311  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5312  */
5313 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5314 						  char __user *optval,
5315 						  int __user *optlen)
5316 {
5317 	u32 val;
5318 
5319 	if (len < sizeof(u32))
5320 		return -EINVAL;
5321 
5322 	len = sizeof(u32);
5323 
5324 	val = sctp_sk(sk)->pd_point;
5325 	if (put_user(len, optlen))
5326 		return -EFAULT;
5327 	if (copy_to_user(optval, &val, len))
5328 		return -EFAULT;
5329 
5330 	return 0;
5331 }
5332 
5333 /*
5334  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5335  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5336  */
5337 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5338 				    char __user *optval,
5339 				    int __user *optlen)
5340 {
5341 	struct sctp_assoc_value params;
5342 	struct sctp_sock *sp;
5343 	struct sctp_association *asoc;
5344 
5345 	if (len == sizeof(int)) {
5346 		pr_warn_ratelimited(DEPRECATED
5347 				    "%s (pid %d) "
5348 				    "Use of int in max_burst socket option.\n"
5349 				    "Use struct sctp_assoc_value instead\n",
5350 				    current->comm, task_pid_nr(current));
5351 		params.assoc_id = 0;
5352 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5353 		len = sizeof(struct sctp_assoc_value);
5354 		if (copy_from_user(&params, optval, len))
5355 			return -EFAULT;
5356 	} else
5357 		return -EINVAL;
5358 
5359 	sp = sctp_sk(sk);
5360 
5361 	if (params.assoc_id != 0) {
5362 		asoc = sctp_id2assoc(sk, params.assoc_id);
5363 		if (!asoc)
5364 			return -EINVAL;
5365 		params.assoc_value = asoc->max_burst;
5366 	} else
5367 		params.assoc_value = sp->max_burst;
5368 
5369 	if (len == sizeof(int)) {
5370 		if (copy_to_user(optval, &params.assoc_value, len))
5371 			return -EFAULT;
5372 	} else {
5373 		if (copy_to_user(optval, &params, len))
5374 			return -EFAULT;
5375 	}
5376 
5377 	return 0;
5378 
5379 }
5380 
5381 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5382 				    char __user *optval, int __user *optlen)
5383 {
5384 	struct net *net = sock_net(sk);
5385 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5386 	struct sctp_hmac_algo_param *hmacs;
5387 	__u16 data_len = 0;
5388 	u32 num_idents;
5389 
5390 	if (!net->sctp.auth_enable)
5391 		return -EACCES;
5392 
5393 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5394 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5395 
5396 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5397 		return -EINVAL;
5398 
5399 	len = sizeof(struct sctp_hmacalgo) + data_len;
5400 	num_idents = data_len / sizeof(u16);
5401 
5402 	if (put_user(len, optlen))
5403 		return -EFAULT;
5404 	if (put_user(num_idents, &p->shmac_num_idents))
5405 		return -EFAULT;
5406 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5407 		return -EFAULT;
5408 	return 0;
5409 }
5410 
5411 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5412 				    char __user *optval, int __user *optlen)
5413 {
5414 	struct net *net = sock_net(sk);
5415 	struct sctp_authkeyid val;
5416 	struct sctp_association *asoc;
5417 
5418 	if (!net->sctp.auth_enable)
5419 		return -EACCES;
5420 
5421 	if (len < sizeof(struct sctp_authkeyid))
5422 		return -EINVAL;
5423 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5424 		return -EFAULT;
5425 
5426 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5427 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5428 		return -EINVAL;
5429 
5430 	if (asoc)
5431 		val.scact_keynumber = asoc->active_key_id;
5432 	else
5433 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5434 
5435 	len = sizeof(struct sctp_authkeyid);
5436 	if (put_user(len, optlen))
5437 		return -EFAULT;
5438 	if (copy_to_user(optval, &val, len))
5439 		return -EFAULT;
5440 
5441 	return 0;
5442 }
5443 
5444 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5445 				    char __user *optval, int __user *optlen)
5446 {
5447 	struct net *net = sock_net(sk);
5448 	struct sctp_authchunks __user *p = (void __user *)optval;
5449 	struct sctp_authchunks val;
5450 	struct sctp_association *asoc;
5451 	struct sctp_chunks_param *ch;
5452 	u32    num_chunks = 0;
5453 	char __user *to;
5454 
5455 	if (!net->sctp.auth_enable)
5456 		return -EACCES;
5457 
5458 	if (len < sizeof(struct sctp_authchunks))
5459 		return -EINVAL;
5460 
5461 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5462 		return -EFAULT;
5463 
5464 	to = p->gauth_chunks;
5465 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5466 	if (!asoc)
5467 		return -EINVAL;
5468 
5469 	ch = asoc->peer.peer_chunks;
5470 	if (!ch)
5471 		goto num;
5472 
5473 	/* See if the user provided enough room for all the data */
5474 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5475 	if (len < num_chunks)
5476 		return -EINVAL;
5477 
5478 	if (copy_to_user(to, ch->chunks, num_chunks))
5479 		return -EFAULT;
5480 num:
5481 	len = sizeof(struct sctp_authchunks) + num_chunks;
5482 	if (put_user(len, optlen))
5483 		return -EFAULT;
5484 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5485 		return -EFAULT;
5486 	return 0;
5487 }
5488 
5489 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5490 				    char __user *optval, int __user *optlen)
5491 {
5492 	struct net *net = sock_net(sk);
5493 	struct sctp_authchunks __user *p = (void __user *)optval;
5494 	struct sctp_authchunks val;
5495 	struct sctp_association *asoc;
5496 	struct sctp_chunks_param *ch;
5497 	u32    num_chunks = 0;
5498 	char __user *to;
5499 
5500 	if (!net->sctp.auth_enable)
5501 		return -EACCES;
5502 
5503 	if (len < sizeof(struct sctp_authchunks))
5504 		return -EINVAL;
5505 
5506 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5507 		return -EFAULT;
5508 
5509 	to = p->gauth_chunks;
5510 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5511 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5512 		return -EINVAL;
5513 
5514 	if (asoc)
5515 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5516 	else
5517 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5518 
5519 	if (!ch)
5520 		goto num;
5521 
5522 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5523 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5524 		return -EINVAL;
5525 
5526 	if (copy_to_user(to, ch->chunks, num_chunks))
5527 		return -EFAULT;
5528 num:
5529 	len = sizeof(struct sctp_authchunks) + num_chunks;
5530 	if (put_user(len, optlen))
5531 		return -EFAULT;
5532 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5533 		return -EFAULT;
5534 
5535 	return 0;
5536 }
5537 
5538 /*
5539  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5540  * This option gets the current number of associations that are attached
5541  * to a one-to-many style socket.  The option value is an uint32_t.
5542  */
5543 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5544 				    char __user *optval, int __user *optlen)
5545 {
5546 	struct sctp_sock *sp = sctp_sk(sk);
5547 	struct sctp_association *asoc;
5548 	u32 val = 0;
5549 
5550 	if (sctp_style(sk, TCP))
5551 		return -EOPNOTSUPP;
5552 
5553 	if (len < sizeof(u32))
5554 		return -EINVAL;
5555 
5556 	len = sizeof(u32);
5557 
5558 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5559 		val++;
5560 	}
5561 
5562 	if (put_user(len, optlen))
5563 		return -EFAULT;
5564 	if (copy_to_user(optval, &val, len))
5565 		return -EFAULT;
5566 
5567 	return 0;
5568 }
5569 
5570 /*
5571  * 8.1.23 SCTP_AUTO_ASCONF
5572  * See the corresponding setsockopt entry as description
5573  */
5574 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5575 				   char __user *optval, int __user *optlen)
5576 {
5577 	int val = 0;
5578 
5579 	if (len < sizeof(int))
5580 		return -EINVAL;
5581 
5582 	len = sizeof(int);
5583 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5584 		val = 1;
5585 	if (put_user(len, optlen))
5586 		return -EFAULT;
5587 	if (copy_to_user(optval, &val, len))
5588 		return -EFAULT;
5589 	return 0;
5590 }
5591 
5592 /*
5593  * 8.2.6. Get the Current Identifiers of Associations
5594  *        (SCTP_GET_ASSOC_ID_LIST)
5595  *
5596  * This option gets the current list of SCTP association identifiers of
5597  * the SCTP associations handled by a one-to-many style socket.
5598  */
5599 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5600 				    char __user *optval, int __user *optlen)
5601 {
5602 	struct sctp_sock *sp = sctp_sk(sk);
5603 	struct sctp_association *asoc;
5604 	struct sctp_assoc_ids *ids;
5605 	u32 num = 0;
5606 
5607 	if (sctp_style(sk, TCP))
5608 		return -EOPNOTSUPP;
5609 
5610 	if (len < sizeof(struct sctp_assoc_ids))
5611 		return -EINVAL;
5612 
5613 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5614 		num++;
5615 	}
5616 
5617 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5618 		return -EINVAL;
5619 
5620 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5621 
5622 	ids = kmalloc(len, GFP_KERNEL);
5623 	if (unlikely(!ids))
5624 		return -ENOMEM;
5625 
5626 	ids->gaids_number_of_ids = num;
5627 	num = 0;
5628 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5629 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5630 	}
5631 
5632 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5633 		kfree(ids);
5634 		return -EFAULT;
5635 	}
5636 
5637 	kfree(ids);
5638 	return 0;
5639 }
5640 
5641 /*
5642  * SCTP_PEER_ADDR_THLDS
5643  *
5644  * This option allows us to fetch the partially failed threshold for one or all
5645  * transports in an association.  See Section 6.1 of:
5646  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5647  */
5648 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5649 					    char __user *optval,
5650 					    int len,
5651 					    int __user *optlen)
5652 {
5653 	struct sctp_paddrthlds val;
5654 	struct sctp_transport *trans;
5655 	struct sctp_association *asoc;
5656 
5657 	if (len < sizeof(struct sctp_paddrthlds))
5658 		return -EINVAL;
5659 	len = sizeof(struct sctp_paddrthlds);
5660 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5661 		return -EFAULT;
5662 
5663 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5664 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5665 		if (!asoc)
5666 			return -ENOENT;
5667 
5668 		val.spt_pathpfthld = asoc->pf_retrans;
5669 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5670 	} else {
5671 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5672 					       val.spt_assoc_id);
5673 		if (!trans)
5674 			return -ENOENT;
5675 
5676 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5677 		val.spt_pathpfthld = trans->pf_retrans;
5678 	}
5679 
5680 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5681 		return -EFAULT;
5682 
5683 	return 0;
5684 }
5685 
5686 /*
5687  * SCTP_GET_ASSOC_STATS
5688  *
5689  * This option retrieves local per endpoint statistics. It is modeled
5690  * after OpenSolaris' implementation
5691  */
5692 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5693 				       char __user *optval,
5694 				       int __user *optlen)
5695 {
5696 	struct sctp_assoc_stats sas;
5697 	struct sctp_association *asoc = NULL;
5698 
5699 	/* User must provide at least the assoc id */
5700 	if (len < sizeof(sctp_assoc_t))
5701 		return -EINVAL;
5702 
5703 	/* Allow the struct to grow and fill in as much as possible */
5704 	len = min_t(size_t, len, sizeof(sas));
5705 
5706 	if (copy_from_user(&sas, optval, len))
5707 		return -EFAULT;
5708 
5709 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5710 	if (!asoc)
5711 		return -EINVAL;
5712 
5713 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5714 	sas.sas_gapcnt = asoc->stats.gapcnt;
5715 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5716 	sas.sas_osacks = asoc->stats.osacks;
5717 	sas.sas_isacks = asoc->stats.isacks;
5718 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5719 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5720 	sas.sas_oodchunks = asoc->stats.oodchunks;
5721 	sas.sas_iodchunks = asoc->stats.iodchunks;
5722 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5723 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5724 	sas.sas_idupchunks = asoc->stats.idupchunks;
5725 	sas.sas_opackets = asoc->stats.opackets;
5726 	sas.sas_ipackets = asoc->stats.ipackets;
5727 
5728 	/* New high max rto observed, will return 0 if not a single
5729 	 * RTO update took place. obs_rto_ipaddr will be bogus
5730 	 * in such a case
5731 	 */
5732 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5733 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5734 		sizeof(struct sockaddr_storage));
5735 
5736 	/* Mark beginning of a new observation period */
5737 	asoc->stats.max_obs_rto = asoc->rto_min;
5738 
5739 	if (put_user(len, optlen))
5740 		return -EFAULT;
5741 
5742 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5743 
5744 	if (copy_to_user(optval, &sas, len))
5745 		return -EFAULT;
5746 
5747 	return 0;
5748 }
5749 
5750 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5751 			   char __user *optval, int __user *optlen)
5752 {
5753 	int retval = 0;
5754 	int len;
5755 
5756 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5757 
5758 	/* I can hardly begin to describe how wrong this is.  This is
5759 	 * so broken as to be worse than useless.  The API draft
5760 	 * REALLY is NOT helpful here...  I am not convinced that the
5761 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5762 	 * are at all well-founded.
5763 	 */
5764 	if (level != SOL_SCTP) {
5765 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5766 
5767 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5768 		return retval;
5769 	}
5770 
5771 	if (get_user(len, optlen))
5772 		return -EFAULT;
5773 
5774 	lock_sock(sk);
5775 
5776 	switch (optname) {
5777 	case SCTP_STATUS:
5778 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5779 		break;
5780 	case SCTP_DISABLE_FRAGMENTS:
5781 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5782 							   optlen);
5783 		break;
5784 	case SCTP_EVENTS:
5785 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5786 		break;
5787 	case SCTP_AUTOCLOSE:
5788 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5789 		break;
5790 	case SCTP_SOCKOPT_PEELOFF:
5791 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5792 		break;
5793 	case SCTP_PEER_ADDR_PARAMS:
5794 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5795 							  optlen);
5796 		break;
5797 	case SCTP_DELAYED_SACK:
5798 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5799 							  optlen);
5800 		break;
5801 	case SCTP_INITMSG:
5802 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5803 		break;
5804 	case SCTP_GET_PEER_ADDRS:
5805 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5806 						    optlen);
5807 		break;
5808 	case SCTP_GET_LOCAL_ADDRS:
5809 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5810 						     optlen);
5811 		break;
5812 	case SCTP_SOCKOPT_CONNECTX3:
5813 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5814 		break;
5815 	case SCTP_DEFAULT_SEND_PARAM:
5816 		retval = sctp_getsockopt_default_send_param(sk, len,
5817 							    optval, optlen);
5818 		break;
5819 	case SCTP_PRIMARY_ADDR:
5820 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5821 		break;
5822 	case SCTP_NODELAY:
5823 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5824 		break;
5825 	case SCTP_RTOINFO:
5826 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5827 		break;
5828 	case SCTP_ASSOCINFO:
5829 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5830 		break;
5831 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5832 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5833 		break;
5834 	case SCTP_MAXSEG:
5835 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5836 		break;
5837 	case SCTP_GET_PEER_ADDR_INFO:
5838 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5839 							optlen);
5840 		break;
5841 	case SCTP_ADAPTATION_LAYER:
5842 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5843 							optlen);
5844 		break;
5845 	case SCTP_CONTEXT:
5846 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5847 		break;
5848 	case SCTP_FRAGMENT_INTERLEAVE:
5849 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5850 							     optlen);
5851 		break;
5852 	case SCTP_PARTIAL_DELIVERY_POINT:
5853 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5854 								optlen);
5855 		break;
5856 	case SCTP_MAX_BURST:
5857 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5858 		break;
5859 	case SCTP_AUTH_KEY:
5860 	case SCTP_AUTH_CHUNK:
5861 	case SCTP_AUTH_DELETE_KEY:
5862 		retval = -EOPNOTSUPP;
5863 		break;
5864 	case SCTP_HMAC_IDENT:
5865 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5866 		break;
5867 	case SCTP_AUTH_ACTIVE_KEY:
5868 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5869 		break;
5870 	case SCTP_PEER_AUTH_CHUNKS:
5871 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5872 							optlen);
5873 		break;
5874 	case SCTP_LOCAL_AUTH_CHUNKS:
5875 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5876 							optlen);
5877 		break;
5878 	case SCTP_GET_ASSOC_NUMBER:
5879 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5880 		break;
5881 	case SCTP_GET_ASSOC_ID_LIST:
5882 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5883 		break;
5884 	case SCTP_AUTO_ASCONF:
5885 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5886 		break;
5887 	case SCTP_PEER_ADDR_THLDS:
5888 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5889 		break;
5890 	case SCTP_GET_ASSOC_STATS:
5891 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5892 		break;
5893 	default:
5894 		retval = -ENOPROTOOPT;
5895 		break;
5896 	}
5897 
5898 	release_sock(sk);
5899 	return retval;
5900 }
5901 
5902 static void sctp_hash(struct sock *sk)
5903 {
5904 	/* STUB */
5905 }
5906 
5907 static void sctp_unhash(struct sock *sk)
5908 {
5909 	/* STUB */
5910 }
5911 
5912 /* Check if port is acceptable.  Possibly find first available port.
5913  *
5914  * The port hash table (contained in the 'global' SCTP protocol storage
5915  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5916  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5917  * list (the list number is the port number hashed out, so as you
5918  * would expect from a hash function, all the ports in a given list have
5919  * such a number that hashes out to the same list number; you were
5920  * expecting that, right?); so each list has a set of ports, with a
5921  * link to the socket (struct sock) that uses it, the port number and
5922  * a fastreuse flag (FIXME: NPI ipg).
5923  */
5924 static struct sctp_bind_bucket *sctp_bucket_create(
5925 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5926 
5927 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5928 {
5929 	struct sctp_bind_hashbucket *head; /* hash list */
5930 	struct sctp_bind_bucket *pp;
5931 	unsigned short snum;
5932 	int ret;
5933 
5934 	snum = ntohs(addr->v4.sin_port);
5935 
5936 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5937 
5938 	local_bh_disable();
5939 
5940 	if (snum == 0) {
5941 		/* Search for an available port. */
5942 		int low, high, remaining, index;
5943 		unsigned int rover;
5944 
5945 		inet_get_local_port_range(sock_net(sk), &low, &high);
5946 		remaining = (high - low) + 1;
5947 		rover = prandom_u32() % remaining + low;
5948 
5949 		do {
5950 			rover++;
5951 			if ((rover < low) || (rover > high))
5952 				rover = low;
5953 			if (inet_is_reserved_local_port(rover))
5954 				continue;
5955 			index = sctp_phashfn(sock_net(sk), rover);
5956 			head = &sctp_port_hashtable[index];
5957 			spin_lock(&head->lock);
5958 			sctp_for_each_hentry(pp, &head->chain)
5959 				if ((pp->port == rover) &&
5960 				    net_eq(sock_net(sk), pp->net))
5961 					goto next;
5962 			break;
5963 		next:
5964 			spin_unlock(&head->lock);
5965 		} while (--remaining > 0);
5966 
5967 		/* Exhausted local port range during search? */
5968 		ret = 1;
5969 		if (remaining <= 0)
5970 			goto fail;
5971 
5972 		/* OK, here is the one we will use.  HEAD (the port
5973 		 * hash table list entry) is non-NULL and we hold it's
5974 		 * mutex.
5975 		 */
5976 		snum = rover;
5977 	} else {
5978 		/* We are given an specific port number; we verify
5979 		 * that it is not being used. If it is used, we will
5980 		 * exahust the search in the hash list corresponding
5981 		 * to the port number (snum) - we detect that with the
5982 		 * port iterator, pp being NULL.
5983 		 */
5984 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5985 		spin_lock(&head->lock);
5986 		sctp_for_each_hentry(pp, &head->chain) {
5987 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5988 				goto pp_found;
5989 		}
5990 	}
5991 	pp = NULL;
5992 	goto pp_not_found;
5993 pp_found:
5994 	if (!hlist_empty(&pp->owner)) {
5995 		/* We had a port hash table hit - there is an
5996 		 * available port (pp != NULL) and it is being
5997 		 * used by other socket (pp->owner not empty); that other
5998 		 * socket is going to be sk2.
5999 		 */
6000 		int reuse = sk->sk_reuse;
6001 		struct sock *sk2;
6002 
6003 		pr_debug("%s: found a possible match\n", __func__);
6004 
6005 		if (pp->fastreuse && sk->sk_reuse &&
6006 			sk->sk_state != SCTP_SS_LISTENING)
6007 			goto success;
6008 
6009 		/* Run through the list of sockets bound to the port
6010 		 * (pp->port) [via the pointers bind_next and
6011 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6012 		 * we get the endpoint they describe and run through
6013 		 * the endpoint's list of IP (v4 or v6) addresses,
6014 		 * comparing each of the addresses with the address of
6015 		 * the socket sk. If we find a match, then that means
6016 		 * that this port/socket (sk) combination are already
6017 		 * in an endpoint.
6018 		 */
6019 		sk_for_each_bound(sk2, &pp->owner) {
6020 			struct sctp_endpoint *ep2;
6021 			ep2 = sctp_sk(sk2)->ep;
6022 
6023 			if (sk == sk2 ||
6024 			    (reuse && sk2->sk_reuse &&
6025 			     sk2->sk_state != SCTP_SS_LISTENING))
6026 				continue;
6027 
6028 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6029 						 sctp_sk(sk2), sctp_sk(sk))) {
6030 				ret = (long)sk2;
6031 				goto fail_unlock;
6032 			}
6033 		}
6034 
6035 		pr_debug("%s: found a match\n", __func__);
6036 	}
6037 pp_not_found:
6038 	/* If there was a hash table miss, create a new port.  */
6039 	ret = 1;
6040 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6041 		goto fail_unlock;
6042 
6043 	/* In either case (hit or miss), make sure fastreuse is 1 only
6044 	 * if sk->sk_reuse is too (that is, if the caller requested
6045 	 * SO_REUSEADDR on this socket -sk-).
6046 	 */
6047 	if (hlist_empty(&pp->owner)) {
6048 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6049 			pp->fastreuse = 1;
6050 		else
6051 			pp->fastreuse = 0;
6052 	} else if (pp->fastreuse &&
6053 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6054 		pp->fastreuse = 0;
6055 
6056 	/* We are set, so fill up all the data in the hash table
6057 	 * entry, tie the socket list information with the rest of the
6058 	 * sockets FIXME: Blurry, NPI (ipg).
6059 	 */
6060 success:
6061 	if (!sctp_sk(sk)->bind_hash) {
6062 		inet_sk(sk)->inet_num = snum;
6063 		sk_add_bind_node(sk, &pp->owner);
6064 		sctp_sk(sk)->bind_hash = pp;
6065 	}
6066 	ret = 0;
6067 
6068 fail_unlock:
6069 	spin_unlock(&head->lock);
6070 
6071 fail:
6072 	local_bh_enable();
6073 	return ret;
6074 }
6075 
6076 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6077  * port is requested.
6078  */
6079 static int sctp_get_port(struct sock *sk, unsigned short snum)
6080 {
6081 	union sctp_addr addr;
6082 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6083 
6084 	/* Set up a dummy address struct from the sk. */
6085 	af->from_sk(&addr, sk);
6086 	addr.v4.sin_port = htons(snum);
6087 
6088 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6089 	return !!sctp_get_port_local(sk, &addr);
6090 }
6091 
6092 /*
6093  *  Move a socket to LISTENING state.
6094  */
6095 static int sctp_listen_start(struct sock *sk, int backlog)
6096 {
6097 	struct sctp_sock *sp = sctp_sk(sk);
6098 	struct sctp_endpoint *ep = sp->ep;
6099 	struct crypto_hash *tfm = NULL;
6100 	char alg[32];
6101 
6102 	/* Allocate HMAC for generating cookie. */
6103 	if (!sp->hmac && sp->sctp_hmac_alg) {
6104 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6105 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6106 		if (IS_ERR(tfm)) {
6107 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6108 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6109 			return -ENOSYS;
6110 		}
6111 		sctp_sk(sk)->hmac = tfm;
6112 	}
6113 
6114 	/*
6115 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6116 	 * call that allows new associations to be accepted, the system
6117 	 * picks an ephemeral port and will choose an address set equivalent
6118 	 * to binding with a wildcard address.
6119 	 *
6120 	 * This is not currently spelled out in the SCTP sockets
6121 	 * extensions draft, but follows the practice as seen in TCP
6122 	 * sockets.
6123 	 *
6124 	 */
6125 	sk->sk_state = SCTP_SS_LISTENING;
6126 	if (!ep->base.bind_addr.port) {
6127 		if (sctp_autobind(sk))
6128 			return -EAGAIN;
6129 	} else {
6130 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6131 			sk->sk_state = SCTP_SS_CLOSED;
6132 			return -EADDRINUSE;
6133 		}
6134 	}
6135 
6136 	sk->sk_max_ack_backlog = backlog;
6137 	sctp_hash_endpoint(ep);
6138 	return 0;
6139 }
6140 
6141 /*
6142  * 4.1.3 / 5.1.3 listen()
6143  *
6144  *   By default, new associations are not accepted for UDP style sockets.
6145  *   An application uses listen() to mark a socket as being able to
6146  *   accept new associations.
6147  *
6148  *   On TCP style sockets, applications use listen() to ready the SCTP
6149  *   endpoint for accepting inbound associations.
6150  *
6151  *   On both types of endpoints a backlog of '0' disables listening.
6152  *
6153  *  Move a socket to LISTENING state.
6154  */
6155 int sctp_inet_listen(struct socket *sock, int backlog)
6156 {
6157 	struct sock *sk = sock->sk;
6158 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6159 	int err = -EINVAL;
6160 
6161 	if (unlikely(backlog < 0))
6162 		return err;
6163 
6164 	lock_sock(sk);
6165 
6166 	/* Peeled-off sockets are not allowed to listen().  */
6167 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6168 		goto out;
6169 
6170 	if (sock->state != SS_UNCONNECTED)
6171 		goto out;
6172 
6173 	/* If backlog is zero, disable listening. */
6174 	if (!backlog) {
6175 		if (sctp_sstate(sk, CLOSED))
6176 			goto out;
6177 
6178 		err = 0;
6179 		sctp_unhash_endpoint(ep);
6180 		sk->sk_state = SCTP_SS_CLOSED;
6181 		if (sk->sk_reuse)
6182 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6183 		goto out;
6184 	}
6185 
6186 	/* If we are already listening, just update the backlog */
6187 	if (sctp_sstate(sk, LISTENING))
6188 		sk->sk_max_ack_backlog = backlog;
6189 	else {
6190 		err = sctp_listen_start(sk, backlog);
6191 		if (err)
6192 			goto out;
6193 	}
6194 
6195 	err = 0;
6196 out:
6197 	release_sock(sk);
6198 	return err;
6199 }
6200 
6201 /*
6202  * This function is done by modeling the current datagram_poll() and the
6203  * tcp_poll().  Note that, based on these implementations, we don't
6204  * lock the socket in this function, even though it seems that,
6205  * ideally, locking or some other mechanisms can be used to ensure
6206  * the integrity of the counters (sndbuf and wmem_alloc) used
6207  * in this place.  We assume that we don't need locks either until proven
6208  * otherwise.
6209  *
6210  * Another thing to note is that we include the Async I/O support
6211  * here, again, by modeling the current TCP/UDP code.  We don't have
6212  * a good way to test with it yet.
6213  */
6214 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6215 {
6216 	struct sock *sk = sock->sk;
6217 	struct sctp_sock *sp = sctp_sk(sk);
6218 	unsigned int mask;
6219 
6220 	poll_wait(file, sk_sleep(sk), wait);
6221 
6222 	/* A TCP-style listening socket becomes readable when the accept queue
6223 	 * is not empty.
6224 	 */
6225 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6226 		return (!list_empty(&sp->ep->asocs)) ?
6227 			(POLLIN | POLLRDNORM) : 0;
6228 
6229 	mask = 0;
6230 
6231 	/* Is there any exceptional events?  */
6232 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6233 		mask |= POLLERR |
6234 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6235 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6236 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6237 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6238 		mask |= POLLHUP;
6239 
6240 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6241 	if (!skb_queue_empty(&sk->sk_receive_queue))
6242 		mask |= POLLIN | POLLRDNORM;
6243 
6244 	/* The association is either gone or not ready.  */
6245 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6246 		return mask;
6247 
6248 	/* Is it writable?  */
6249 	if (sctp_writeable(sk)) {
6250 		mask |= POLLOUT | POLLWRNORM;
6251 	} else {
6252 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6253 		/*
6254 		 * Since the socket is not locked, the buffer
6255 		 * might be made available after the writeable check and
6256 		 * before the bit is set.  This could cause a lost I/O
6257 		 * signal.  tcp_poll() has a race breaker for this race
6258 		 * condition.  Based on their implementation, we put
6259 		 * in the following code to cover it as well.
6260 		 */
6261 		if (sctp_writeable(sk))
6262 			mask |= POLLOUT | POLLWRNORM;
6263 	}
6264 	return mask;
6265 }
6266 
6267 /********************************************************************
6268  * 2nd Level Abstractions
6269  ********************************************************************/
6270 
6271 static struct sctp_bind_bucket *sctp_bucket_create(
6272 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6273 {
6274 	struct sctp_bind_bucket *pp;
6275 
6276 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6277 	if (pp) {
6278 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6279 		pp->port = snum;
6280 		pp->fastreuse = 0;
6281 		INIT_HLIST_HEAD(&pp->owner);
6282 		pp->net = net;
6283 		hlist_add_head(&pp->node, &head->chain);
6284 	}
6285 	return pp;
6286 }
6287 
6288 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6289 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6290 {
6291 	if (pp && hlist_empty(&pp->owner)) {
6292 		__hlist_del(&pp->node);
6293 		kmem_cache_free(sctp_bucket_cachep, pp);
6294 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6295 	}
6296 }
6297 
6298 /* Release this socket's reference to a local port.  */
6299 static inline void __sctp_put_port(struct sock *sk)
6300 {
6301 	struct sctp_bind_hashbucket *head =
6302 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6303 						  inet_sk(sk)->inet_num)];
6304 	struct sctp_bind_bucket *pp;
6305 
6306 	spin_lock(&head->lock);
6307 	pp = sctp_sk(sk)->bind_hash;
6308 	__sk_del_bind_node(sk);
6309 	sctp_sk(sk)->bind_hash = NULL;
6310 	inet_sk(sk)->inet_num = 0;
6311 	sctp_bucket_destroy(pp);
6312 	spin_unlock(&head->lock);
6313 }
6314 
6315 void sctp_put_port(struct sock *sk)
6316 {
6317 	local_bh_disable();
6318 	__sctp_put_port(sk);
6319 	local_bh_enable();
6320 }
6321 
6322 /*
6323  * The system picks an ephemeral port and choose an address set equivalent
6324  * to binding with a wildcard address.
6325  * One of those addresses will be the primary address for the association.
6326  * This automatically enables the multihoming capability of SCTP.
6327  */
6328 static int sctp_autobind(struct sock *sk)
6329 {
6330 	union sctp_addr autoaddr;
6331 	struct sctp_af *af;
6332 	__be16 port;
6333 
6334 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6335 	af = sctp_sk(sk)->pf->af;
6336 
6337 	port = htons(inet_sk(sk)->inet_num);
6338 	af->inaddr_any(&autoaddr, port);
6339 
6340 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6341 }
6342 
6343 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6344  *
6345  * From RFC 2292
6346  * 4.2 The cmsghdr Structure *
6347  *
6348  * When ancillary data is sent or received, any number of ancillary data
6349  * objects can be specified by the msg_control and msg_controllen members of
6350  * the msghdr structure, because each object is preceded by
6351  * a cmsghdr structure defining the object's length (the cmsg_len member).
6352  * Historically Berkeley-derived implementations have passed only one object
6353  * at a time, but this API allows multiple objects to be
6354  * passed in a single call to sendmsg() or recvmsg(). The following example
6355  * shows two ancillary data objects in a control buffer.
6356  *
6357  *   |<--------------------------- msg_controllen -------------------------->|
6358  *   |                                                                       |
6359  *
6360  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6361  *
6362  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6363  *   |                                   |                                   |
6364  *
6365  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6366  *
6367  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6368  *   |                                |  |                                |  |
6369  *
6370  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6371  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6372  *
6373  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6374  *
6375  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6376  *    ^
6377  *    |
6378  *
6379  * msg_control
6380  * points here
6381  */
6382 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6383 {
6384 	struct cmsghdr *cmsg;
6385 	struct msghdr *my_msg = (struct msghdr *)msg;
6386 
6387 	for (cmsg = CMSG_FIRSTHDR(msg);
6388 	     cmsg != NULL;
6389 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6390 		if (!CMSG_OK(my_msg, cmsg))
6391 			return -EINVAL;
6392 
6393 		/* Should we parse this header or ignore?  */
6394 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6395 			continue;
6396 
6397 		/* Strictly check lengths following example in SCM code.  */
6398 		switch (cmsg->cmsg_type) {
6399 		case SCTP_INIT:
6400 			/* SCTP Socket API Extension
6401 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6402 			 *
6403 			 * This cmsghdr structure provides information for
6404 			 * initializing new SCTP associations with sendmsg().
6405 			 * The SCTP_INITMSG socket option uses this same data
6406 			 * structure.  This structure is not used for
6407 			 * recvmsg().
6408 			 *
6409 			 * cmsg_level    cmsg_type      cmsg_data[]
6410 			 * ------------  ------------   ----------------------
6411 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6412 			 */
6413 			if (cmsg->cmsg_len !=
6414 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6415 				return -EINVAL;
6416 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6417 			break;
6418 
6419 		case SCTP_SNDRCV:
6420 			/* SCTP Socket API Extension
6421 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6422 			 *
6423 			 * This cmsghdr structure specifies SCTP options for
6424 			 * sendmsg() and describes SCTP header information
6425 			 * about a received message through recvmsg().
6426 			 *
6427 			 * cmsg_level    cmsg_type      cmsg_data[]
6428 			 * ------------  ------------   ----------------------
6429 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6430 			 */
6431 			if (cmsg->cmsg_len !=
6432 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6433 				return -EINVAL;
6434 
6435 			cmsgs->info =
6436 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6437 
6438 			/* Minimally, validate the sinfo_flags. */
6439 			if (cmsgs->info->sinfo_flags &
6440 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6441 			      SCTP_ABORT | SCTP_EOF))
6442 				return -EINVAL;
6443 			break;
6444 
6445 		default:
6446 			return -EINVAL;
6447 		}
6448 	}
6449 	return 0;
6450 }
6451 
6452 /*
6453  * Wait for a packet..
6454  * Note: This function is the same function as in core/datagram.c
6455  * with a few modifications to make lksctp work.
6456  */
6457 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6458 {
6459 	int error;
6460 	DEFINE_WAIT(wait);
6461 
6462 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6463 
6464 	/* Socket errors? */
6465 	error = sock_error(sk);
6466 	if (error)
6467 		goto out;
6468 
6469 	if (!skb_queue_empty(&sk->sk_receive_queue))
6470 		goto ready;
6471 
6472 	/* Socket shut down?  */
6473 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6474 		goto out;
6475 
6476 	/* Sequenced packets can come disconnected.  If so we report the
6477 	 * problem.
6478 	 */
6479 	error = -ENOTCONN;
6480 
6481 	/* Is there a good reason to think that we may receive some data?  */
6482 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6483 		goto out;
6484 
6485 	/* Handle signals.  */
6486 	if (signal_pending(current))
6487 		goto interrupted;
6488 
6489 	/* Let another process have a go.  Since we are going to sleep
6490 	 * anyway.  Note: This may cause odd behaviors if the message
6491 	 * does not fit in the user's buffer, but this seems to be the
6492 	 * only way to honor MSG_DONTWAIT realistically.
6493 	 */
6494 	release_sock(sk);
6495 	*timeo_p = schedule_timeout(*timeo_p);
6496 	lock_sock(sk);
6497 
6498 ready:
6499 	finish_wait(sk_sleep(sk), &wait);
6500 	return 0;
6501 
6502 interrupted:
6503 	error = sock_intr_errno(*timeo_p);
6504 
6505 out:
6506 	finish_wait(sk_sleep(sk), &wait);
6507 	*err = error;
6508 	return error;
6509 }
6510 
6511 /* Receive a datagram.
6512  * Note: This is pretty much the same routine as in core/datagram.c
6513  * with a few changes to make lksctp work.
6514  */
6515 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6516 					      int noblock, int *err)
6517 {
6518 	int error;
6519 	struct sk_buff *skb;
6520 	long timeo;
6521 
6522 	timeo = sock_rcvtimeo(sk, noblock);
6523 
6524 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6525 		 MAX_SCHEDULE_TIMEOUT);
6526 
6527 	do {
6528 		/* Again only user level code calls this function,
6529 		 * so nothing interrupt level
6530 		 * will suddenly eat the receive_queue.
6531 		 *
6532 		 *  Look at current nfs client by the way...
6533 		 *  However, this function was correct in any case. 8)
6534 		 */
6535 		if (flags & MSG_PEEK) {
6536 			spin_lock_bh(&sk->sk_receive_queue.lock);
6537 			skb = skb_peek(&sk->sk_receive_queue);
6538 			if (skb)
6539 				atomic_inc(&skb->users);
6540 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6541 		} else {
6542 			skb = skb_dequeue(&sk->sk_receive_queue);
6543 		}
6544 
6545 		if (skb)
6546 			return skb;
6547 
6548 		/* Caller is allowed not to check sk->sk_err before calling. */
6549 		error = sock_error(sk);
6550 		if (error)
6551 			goto no_packet;
6552 
6553 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6554 			break;
6555 
6556 		/* User doesn't want to wait.  */
6557 		error = -EAGAIN;
6558 		if (!timeo)
6559 			goto no_packet;
6560 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6561 
6562 	return NULL;
6563 
6564 no_packet:
6565 	*err = error;
6566 	return NULL;
6567 }
6568 
6569 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6570 static void __sctp_write_space(struct sctp_association *asoc)
6571 {
6572 	struct sock *sk = asoc->base.sk;
6573 	struct socket *sock = sk->sk_socket;
6574 
6575 	if ((sctp_wspace(asoc) > 0) && sock) {
6576 		if (waitqueue_active(&asoc->wait))
6577 			wake_up_interruptible(&asoc->wait);
6578 
6579 		if (sctp_writeable(sk)) {
6580 			wait_queue_head_t *wq = sk_sleep(sk);
6581 
6582 			if (wq && waitqueue_active(wq))
6583 				wake_up_interruptible(wq);
6584 
6585 			/* Note that we try to include the Async I/O support
6586 			 * here by modeling from the current TCP/UDP code.
6587 			 * We have not tested with it yet.
6588 			 */
6589 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6590 				sock_wake_async(sock,
6591 						SOCK_WAKE_SPACE, POLL_OUT);
6592 		}
6593 	}
6594 }
6595 
6596 static void sctp_wake_up_waiters(struct sock *sk,
6597 				 struct sctp_association *asoc)
6598 {
6599 	struct sctp_association *tmp = asoc;
6600 
6601 	/* We do accounting for the sndbuf space per association,
6602 	 * so we only need to wake our own association.
6603 	 */
6604 	if (asoc->ep->sndbuf_policy)
6605 		return __sctp_write_space(asoc);
6606 
6607 	/* If association goes down and is just flushing its
6608 	 * outq, then just normally notify others.
6609 	 */
6610 	if (asoc->base.dead)
6611 		return sctp_write_space(sk);
6612 
6613 	/* Accounting for the sndbuf space is per socket, so we
6614 	 * need to wake up others, try to be fair and in case of
6615 	 * other associations, let them have a go first instead
6616 	 * of just doing a sctp_write_space() call.
6617 	 *
6618 	 * Note that we reach sctp_wake_up_waiters() only when
6619 	 * associations free up queued chunks, thus we are under
6620 	 * lock and the list of associations on a socket is
6621 	 * guaranteed not to change.
6622 	 */
6623 	for (tmp = list_next_entry(tmp, asocs); 1;
6624 	     tmp = list_next_entry(tmp, asocs)) {
6625 		/* Manually skip the head element. */
6626 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6627 			continue;
6628 		/* Wake up association. */
6629 		__sctp_write_space(tmp);
6630 		/* We've reached the end. */
6631 		if (tmp == asoc)
6632 			break;
6633 	}
6634 }
6635 
6636 /* Do accounting for the sndbuf space.
6637  * Decrement the used sndbuf space of the corresponding association by the
6638  * data size which was just transmitted(freed).
6639  */
6640 static void sctp_wfree(struct sk_buff *skb)
6641 {
6642 	struct sctp_association *asoc;
6643 	struct sctp_chunk *chunk;
6644 	struct sock *sk;
6645 
6646 	/* Get the saved chunk pointer.  */
6647 	chunk = *((struct sctp_chunk **)(skb->cb));
6648 	asoc = chunk->asoc;
6649 	sk = asoc->base.sk;
6650 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6651 				sizeof(struct sk_buff) +
6652 				sizeof(struct sctp_chunk);
6653 
6654 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6655 
6656 	/*
6657 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6658 	 */
6659 	sk->sk_wmem_queued   -= skb->truesize;
6660 	sk_mem_uncharge(sk, skb->truesize);
6661 
6662 	sock_wfree(skb);
6663 	sctp_wake_up_waiters(sk, asoc);
6664 
6665 	sctp_association_put(asoc);
6666 }
6667 
6668 /* Do accounting for the receive space on the socket.
6669  * Accounting for the association is done in ulpevent.c
6670  * We set this as a destructor for the cloned data skbs so that
6671  * accounting is done at the correct time.
6672  */
6673 void sctp_sock_rfree(struct sk_buff *skb)
6674 {
6675 	struct sock *sk = skb->sk;
6676 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6677 
6678 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6679 
6680 	/*
6681 	 * Mimic the behavior of sock_rfree
6682 	 */
6683 	sk_mem_uncharge(sk, event->rmem_len);
6684 }
6685 
6686 
6687 /* Helper function to wait for space in the sndbuf.  */
6688 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6689 				size_t msg_len)
6690 {
6691 	struct sock *sk = asoc->base.sk;
6692 	int err = 0;
6693 	long current_timeo = *timeo_p;
6694 	DEFINE_WAIT(wait);
6695 
6696 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6697 		 *timeo_p, msg_len);
6698 
6699 	/* Increment the association's refcnt.  */
6700 	sctp_association_hold(asoc);
6701 
6702 	/* Wait on the association specific sndbuf space. */
6703 	for (;;) {
6704 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6705 					  TASK_INTERRUPTIBLE);
6706 		if (!*timeo_p)
6707 			goto do_nonblock;
6708 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6709 		    asoc->base.dead)
6710 			goto do_error;
6711 		if (signal_pending(current))
6712 			goto do_interrupted;
6713 		if (msg_len <= sctp_wspace(asoc))
6714 			break;
6715 
6716 		/* Let another process have a go.  Since we are going
6717 		 * to sleep anyway.
6718 		 */
6719 		release_sock(sk);
6720 		current_timeo = schedule_timeout(current_timeo);
6721 		BUG_ON(sk != asoc->base.sk);
6722 		lock_sock(sk);
6723 
6724 		*timeo_p = current_timeo;
6725 	}
6726 
6727 out:
6728 	finish_wait(&asoc->wait, &wait);
6729 
6730 	/* Release the association's refcnt.  */
6731 	sctp_association_put(asoc);
6732 
6733 	return err;
6734 
6735 do_error:
6736 	err = -EPIPE;
6737 	goto out;
6738 
6739 do_interrupted:
6740 	err = sock_intr_errno(*timeo_p);
6741 	goto out;
6742 
6743 do_nonblock:
6744 	err = -EAGAIN;
6745 	goto out;
6746 }
6747 
6748 void sctp_data_ready(struct sock *sk)
6749 {
6750 	struct socket_wq *wq;
6751 
6752 	rcu_read_lock();
6753 	wq = rcu_dereference(sk->sk_wq);
6754 	if (wq_has_sleeper(wq))
6755 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6756 						POLLRDNORM | POLLRDBAND);
6757 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6758 	rcu_read_unlock();
6759 }
6760 
6761 /* If socket sndbuf has changed, wake up all per association waiters.  */
6762 void sctp_write_space(struct sock *sk)
6763 {
6764 	struct sctp_association *asoc;
6765 
6766 	/* Wake up the tasks in each wait queue.  */
6767 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6768 		__sctp_write_space(asoc);
6769 	}
6770 }
6771 
6772 /* Is there any sndbuf space available on the socket?
6773  *
6774  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6775  * associations on the same socket.  For a UDP-style socket with
6776  * multiple associations, it is possible for it to be "unwriteable"
6777  * prematurely.  I assume that this is acceptable because
6778  * a premature "unwriteable" is better than an accidental "writeable" which
6779  * would cause an unwanted block under certain circumstances.  For the 1-1
6780  * UDP-style sockets or TCP-style sockets, this code should work.
6781  *  - Daisy
6782  */
6783 static int sctp_writeable(struct sock *sk)
6784 {
6785 	int amt = 0;
6786 
6787 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6788 	if (amt < 0)
6789 		amt = 0;
6790 	return amt;
6791 }
6792 
6793 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6794  * returns immediately with EINPROGRESS.
6795  */
6796 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6797 {
6798 	struct sock *sk = asoc->base.sk;
6799 	int err = 0;
6800 	long current_timeo = *timeo_p;
6801 	DEFINE_WAIT(wait);
6802 
6803 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6804 
6805 	/* Increment the association's refcnt.  */
6806 	sctp_association_hold(asoc);
6807 
6808 	for (;;) {
6809 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6810 					  TASK_INTERRUPTIBLE);
6811 		if (!*timeo_p)
6812 			goto do_nonblock;
6813 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6814 			break;
6815 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6816 		    asoc->base.dead)
6817 			goto do_error;
6818 		if (signal_pending(current))
6819 			goto do_interrupted;
6820 
6821 		if (sctp_state(asoc, ESTABLISHED))
6822 			break;
6823 
6824 		/* Let another process have a go.  Since we are going
6825 		 * to sleep anyway.
6826 		 */
6827 		release_sock(sk);
6828 		current_timeo = schedule_timeout(current_timeo);
6829 		lock_sock(sk);
6830 
6831 		*timeo_p = current_timeo;
6832 	}
6833 
6834 out:
6835 	finish_wait(&asoc->wait, &wait);
6836 
6837 	/* Release the association's refcnt.  */
6838 	sctp_association_put(asoc);
6839 
6840 	return err;
6841 
6842 do_error:
6843 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6844 		err = -ETIMEDOUT;
6845 	else
6846 		err = -ECONNREFUSED;
6847 	goto out;
6848 
6849 do_interrupted:
6850 	err = sock_intr_errno(*timeo_p);
6851 	goto out;
6852 
6853 do_nonblock:
6854 	err = -EINPROGRESS;
6855 	goto out;
6856 }
6857 
6858 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6859 {
6860 	struct sctp_endpoint *ep;
6861 	int err = 0;
6862 	DEFINE_WAIT(wait);
6863 
6864 	ep = sctp_sk(sk)->ep;
6865 
6866 
6867 	for (;;) {
6868 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6869 					  TASK_INTERRUPTIBLE);
6870 
6871 		if (list_empty(&ep->asocs)) {
6872 			release_sock(sk);
6873 			timeo = schedule_timeout(timeo);
6874 			lock_sock(sk);
6875 		}
6876 
6877 		err = -EINVAL;
6878 		if (!sctp_sstate(sk, LISTENING))
6879 			break;
6880 
6881 		err = 0;
6882 		if (!list_empty(&ep->asocs))
6883 			break;
6884 
6885 		err = sock_intr_errno(timeo);
6886 		if (signal_pending(current))
6887 			break;
6888 
6889 		err = -EAGAIN;
6890 		if (!timeo)
6891 			break;
6892 	}
6893 
6894 	finish_wait(sk_sleep(sk), &wait);
6895 
6896 	return err;
6897 }
6898 
6899 static void sctp_wait_for_close(struct sock *sk, long timeout)
6900 {
6901 	DEFINE_WAIT(wait);
6902 
6903 	do {
6904 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6905 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6906 			break;
6907 		release_sock(sk);
6908 		timeout = schedule_timeout(timeout);
6909 		lock_sock(sk);
6910 	} while (!signal_pending(current) && timeout);
6911 
6912 	finish_wait(sk_sleep(sk), &wait);
6913 }
6914 
6915 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6916 {
6917 	struct sk_buff *frag;
6918 
6919 	if (!skb->data_len)
6920 		goto done;
6921 
6922 	/* Don't forget the fragments. */
6923 	skb_walk_frags(skb, frag)
6924 		sctp_skb_set_owner_r_frag(frag, sk);
6925 
6926 done:
6927 	sctp_skb_set_owner_r(skb, sk);
6928 }
6929 
6930 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6931 		    struct sctp_association *asoc)
6932 {
6933 	struct inet_sock *inet = inet_sk(sk);
6934 	struct inet_sock *newinet;
6935 
6936 	newsk->sk_type = sk->sk_type;
6937 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6938 	newsk->sk_flags = sk->sk_flags;
6939 	newsk->sk_no_check = sk->sk_no_check;
6940 	newsk->sk_reuse = sk->sk_reuse;
6941 
6942 	newsk->sk_shutdown = sk->sk_shutdown;
6943 	newsk->sk_destruct = sctp_destruct_sock;
6944 	newsk->sk_family = sk->sk_family;
6945 	newsk->sk_protocol = IPPROTO_SCTP;
6946 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6947 	newsk->sk_sndbuf = sk->sk_sndbuf;
6948 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6949 	newsk->sk_lingertime = sk->sk_lingertime;
6950 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6951 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6952 
6953 	newinet = inet_sk(newsk);
6954 
6955 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6956 	 * getsockname() and getpeername()
6957 	 */
6958 	newinet->inet_sport = inet->inet_sport;
6959 	newinet->inet_saddr = inet->inet_saddr;
6960 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6961 	newinet->inet_dport = htons(asoc->peer.port);
6962 	newinet->pmtudisc = inet->pmtudisc;
6963 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6964 
6965 	newinet->uc_ttl = inet->uc_ttl;
6966 	newinet->mc_loop = 1;
6967 	newinet->mc_ttl = 1;
6968 	newinet->mc_index = 0;
6969 	newinet->mc_list = NULL;
6970 }
6971 
6972 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6973  * and its messages to the newsk.
6974  */
6975 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6976 			      struct sctp_association *assoc,
6977 			      sctp_socket_type_t type)
6978 {
6979 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6980 	struct sctp_sock *newsp = sctp_sk(newsk);
6981 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6982 	struct sctp_endpoint *newep = newsp->ep;
6983 	struct sk_buff *skb, *tmp;
6984 	struct sctp_ulpevent *event;
6985 	struct sctp_bind_hashbucket *head;
6986 	struct list_head tmplist;
6987 
6988 	/* Migrate socket buffer sizes and all the socket level options to the
6989 	 * new socket.
6990 	 */
6991 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6992 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6993 	/* Brute force copy old sctp opt. */
6994 	if (oldsp->do_auto_asconf) {
6995 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6996 		inet_sk_copy_descendant(newsk, oldsk);
6997 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6998 	} else
6999 		inet_sk_copy_descendant(newsk, oldsk);
7000 
7001 	/* Restore the ep value that was overwritten with the above structure
7002 	 * copy.
7003 	 */
7004 	newsp->ep = newep;
7005 	newsp->hmac = NULL;
7006 
7007 	/* Hook this new socket in to the bind_hash list. */
7008 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7009 						 inet_sk(oldsk)->inet_num)];
7010 	local_bh_disable();
7011 	spin_lock(&head->lock);
7012 	pp = sctp_sk(oldsk)->bind_hash;
7013 	sk_add_bind_node(newsk, &pp->owner);
7014 	sctp_sk(newsk)->bind_hash = pp;
7015 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7016 	spin_unlock(&head->lock);
7017 	local_bh_enable();
7018 
7019 	/* Copy the bind_addr list from the original endpoint to the new
7020 	 * endpoint so that we can handle restarts properly
7021 	 */
7022 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7023 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7024 
7025 	/* Move any messages in the old socket's receive queue that are for the
7026 	 * peeled off association to the new socket's receive queue.
7027 	 */
7028 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7029 		event = sctp_skb2event(skb);
7030 		if (event->asoc == assoc) {
7031 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7032 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7033 			sctp_skb_set_owner_r_frag(skb, newsk);
7034 		}
7035 	}
7036 
7037 	/* Clean up any messages pending delivery due to partial
7038 	 * delivery.   Three cases:
7039 	 * 1) No partial deliver;  no work.
7040 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7041 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7042 	 */
7043 	skb_queue_head_init(&newsp->pd_lobby);
7044 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7045 
7046 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7047 		struct sk_buff_head *queue;
7048 
7049 		/* Decide which queue to move pd_lobby skbs to. */
7050 		if (assoc->ulpq.pd_mode) {
7051 			queue = &newsp->pd_lobby;
7052 		} else
7053 			queue = &newsk->sk_receive_queue;
7054 
7055 		/* Walk through the pd_lobby, looking for skbs that
7056 		 * need moved to the new socket.
7057 		 */
7058 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7059 			event = sctp_skb2event(skb);
7060 			if (event->asoc == assoc) {
7061 				__skb_unlink(skb, &oldsp->pd_lobby);
7062 				__skb_queue_tail(queue, skb);
7063 				sctp_skb_set_owner_r_frag(skb, newsk);
7064 			}
7065 		}
7066 
7067 		/* Clear up any skbs waiting for the partial
7068 		 * delivery to finish.
7069 		 */
7070 		if (assoc->ulpq.pd_mode)
7071 			sctp_clear_pd(oldsk, NULL);
7072 
7073 	}
7074 
7075 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7076 		sctp_skb_set_owner_r_frag(skb, newsk);
7077 
7078 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7079 		sctp_skb_set_owner_r_frag(skb, newsk);
7080 
7081 	/* Set the type of socket to indicate that it is peeled off from the
7082 	 * original UDP-style socket or created with the accept() call on a
7083 	 * TCP-style socket..
7084 	 */
7085 	newsp->type = type;
7086 
7087 	/* Mark the new socket "in-use" by the user so that any packets
7088 	 * that may arrive on the association after we've moved it are
7089 	 * queued to the backlog.  This prevents a potential race between
7090 	 * backlog processing on the old socket and new-packet processing
7091 	 * on the new socket.
7092 	 *
7093 	 * The caller has just allocated newsk so we can guarantee that other
7094 	 * paths won't try to lock it and then oldsk.
7095 	 */
7096 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7097 	sctp_assoc_migrate(assoc, newsk);
7098 
7099 	/* If the association on the newsk is already closed before accept()
7100 	 * is called, set RCV_SHUTDOWN flag.
7101 	 */
7102 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7103 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7104 
7105 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7106 	release_sock(newsk);
7107 }
7108 
7109 
7110 /* This proto struct describes the ULP interface for SCTP.  */
7111 struct proto sctp_prot = {
7112 	.name        =	"SCTP",
7113 	.owner       =	THIS_MODULE,
7114 	.close       =	sctp_close,
7115 	.connect     =	sctp_connect,
7116 	.disconnect  =	sctp_disconnect,
7117 	.accept      =	sctp_accept,
7118 	.ioctl       =	sctp_ioctl,
7119 	.init        =	sctp_init_sock,
7120 	.destroy     =	sctp_destroy_sock,
7121 	.shutdown    =	sctp_shutdown,
7122 	.setsockopt  =	sctp_setsockopt,
7123 	.getsockopt  =	sctp_getsockopt,
7124 	.sendmsg     =	sctp_sendmsg,
7125 	.recvmsg     =	sctp_recvmsg,
7126 	.bind        =	sctp_bind,
7127 	.backlog_rcv =	sctp_backlog_rcv,
7128 	.hash        =	sctp_hash,
7129 	.unhash      =	sctp_unhash,
7130 	.get_port    =	sctp_get_port,
7131 	.obj_size    =  sizeof(struct sctp_sock),
7132 	.sysctl_mem  =  sysctl_sctp_mem,
7133 	.sysctl_rmem =  sysctl_sctp_rmem,
7134 	.sysctl_wmem =  sysctl_sctp_wmem,
7135 	.memory_pressure = &sctp_memory_pressure,
7136 	.enter_memory_pressure = sctp_enter_memory_pressure,
7137 	.memory_allocated = &sctp_memory_allocated,
7138 	.sockets_allocated = &sctp_sockets_allocated,
7139 };
7140 
7141 #if IS_ENABLED(CONFIG_IPV6)
7142 
7143 struct proto sctpv6_prot = {
7144 	.name		= "SCTPv6",
7145 	.owner		= THIS_MODULE,
7146 	.close		= sctp_close,
7147 	.connect	= sctp_connect,
7148 	.disconnect	= sctp_disconnect,
7149 	.accept		= sctp_accept,
7150 	.ioctl		= sctp_ioctl,
7151 	.init		= sctp_init_sock,
7152 	.destroy	= sctp_destroy_sock,
7153 	.shutdown	= sctp_shutdown,
7154 	.setsockopt	= sctp_setsockopt,
7155 	.getsockopt	= sctp_getsockopt,
7156 	.sendmsg	= sctp_sendmsg,
7157 	.recvmsg	= sctp_recvmsg,
7158 	.bind		= sctp_bind,
7159 	.backlog_rcv	= sctp_backlog_rcv,
7160 	.hash		= sctp_hash,
7161 	.unhash		= sctp_unhash,
7162 	.get_port	= sctp_get_port,
7163 	.obj_size	= sizeof(struct sctp6_sock),
7164 	.sysctl_mem	= sysctl_sctp_mem,
7165 	.sysctl_rmem	= sysctl_sctp_rmem,
7166 	.sysctl_wmem	= sysctl_sctp_wmem,
7167 	.memory_pressure = &sctp_memory_pressure,
7168 	.enter_memory_pressure = sctp_enter_memory_pressure,
7169 	.memory_allocated = &sctp_memory_allocated,
7170 	.sockets_allocated = &sctp_sockets_allocated,
7171 };
7172 #endif /* IS_ENABLED(CONFIG_IPV6) */
7173