1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/wait.h> 58 #include <linux/time.h> 59 #include <linux/ip.h> 60 #include <linux/capability.h> 61 #include <linux/fcntl.h> 62 #include <linux/poll.h> 63 #include <linux/init.h> 64 #include <linux/crypto.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 #include <linux/compat.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 75 #include <linux/socket.h> /* for sa_family_t */ 76 #include <linux/export.h> 77 #include <net/sock.h> 78 #include <net/sctp/sctp.h> 79 #include <net/sctp/sm.h> 80 81 /* Forward declarations for internal helper functions. */ 82 static int sctp_writeable(struct sock *sk); 83 static void sctp_wfree(struct sk_buff *skb); 84 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 85 size_t msg_len); 86 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 87 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 88 static int sctp_wait_for_accept(struct sock *sk, long timeo); 89 static void sctp_wait_for_close(struct sock *sk, long timeo); 90 static void sctp_destruct_sock(struct sock *sk); 91 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 92 union sctp_addr *addr, int len); 93 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 94 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 95 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf(struct sctp_association *asoc, 98 struct sctp_chunk *chunk); 99 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 100 static int sctp_autobind(struct sock *sk); 101 static void sctp_sock_migrate(struct sock *, struct sock *, 102 struct sctp_association *, sctp_socket_type_t); 103 104 extern struct kmem_cache *sctp_bucket_cachep; 105 extern long sysctl_sctp_mem[3]; 106 extern int sysctl_sctp_rmem[3]; 107 extern int sysctl_sctp_wmem[3]; 108 109 static int sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 int amt; 123 124 if (asoc->ep->sndbuf_policy) 125 amt = asoc->sndbuf_used; 126 else 127 amt = sk_wmem_alloc_get(asoc->base.sk); 128 129 if (amt >= asoc->base.sk->sk_sndbuf) { 130 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 131 amt = 0; 132 else { 133 amt = sk_stream_wspace(asoc->base.sk); 134 if (amt < 0) 135 amt = 0; 136 } 137 } else { 138 amt = asoc->base.sk->sk_sndbuf - amt; 139 } 140 return amt; 141 } 142 143 /* Increment the used sndbuf space count of the corresponding association by 144 * the size of the outgoing data chunk. 145 * Also, set the skb destructor for sndbuf accounting later. 146 * 147 * Since it is always 1-1 between chunk and skb, and also a new skb is always 148 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 149 * destructor in the data chunk skb for the purpose of the sndbuf space 150 * tracking. 151 */ 152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 153 { 154 struct sctp_association *asoc = chunk->asoc; 155 struct sock *sk = asoc->base.sk; 156 157 /* The sndbuf space is tracked per association. */ 158 sctp_association_hold(asoc); 159 160 skb_set_owner_w(chunk->skb, sk); 161 162 chunk->skb->destructor = sctp_wfree; 163 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 164 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 165 166 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 167 sizeof(struct sk_buff) + 168 sizeof(struct sctp_chunk); 169 170 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 171 sk->sk_wmem_queued += chunk->skb->truesize; 172 sk_mem_charge(sk, chunk->skb->truesize); 173 } 174 175 /* Verify that this is a valid address. */ 176 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 177 int len) 178 { 179 struct sctp_af *af; 180 181 /* Verify basic sockaddr. */ 182 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 183 if (!af) 184 return -EINVAL; 185 186 /* Is this a valid SCTP address? */ 187 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 188 return -EINVAL; 189 190 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 /* Look up the association by its id. If this is not a UDP-style 197 * socket, the ID field is always ignored. 198 */ 199 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 200 { 201 struct sctp_association *asoc = NULL; 202 203 /* If this is not a UDP-style socket, assoc id should be ignored. */ 204 if (!sctp_style(sk, UDP)) { 205 /* Return NULL if the socket state is not ESTABLISHED. It 206 * could be a TCP-style listening socket or a socket which 207 * hasn't yet called connect() to establish an association. 208 */ 209 if (!sctp_sstate(sk, ESTABLISHED)) 210 return NULL; 211 212 /* Get the first and the only association from the list. */ 213 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 214 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 215 struct sctp_association, asocs); 216 return asoc; 217 } 218 219 /* Otherwise this is a UDP-style socket. */ 220 if (!id || (id == (sctp_assoc_t)-1)) 221 return NULL; 222 223 spin_lock_bh(&sctp_assocs_id_lock); 224 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 225 spin_unlock_bh(&sctp_assocs_id_lock); 226 227 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 228 return NULL; 229 230 return asoc; 231 } 232 233 /* Look up the transport from an address and an assoc id. If both address and 234 * id are specified, the associations matching the address and the id should be 235 * the same. 236 */ 237 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 238 struct sockaddr_storage *addr, 239 sctp_assoc_t id) 240 { 241 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 242 struct sctp_transport *transport; 243 union sctp_addr *laddr = (union sctp_addr *)addr; 244 245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 246 laddr, 247 &transport); 248 249 if (!addr_asoc) 250 return NULL; 251 252 id_asoc = sctp_id2assoc(sk, id); 253 if (id_asoc && (id_asoc != addr_asoc)) 254 return NULL; 255 256 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 257 (union sctp_addr *)addr); 258 259 return transport; 260 } 261 262 /* API 3.1.2 bind() - UDP Style Syntax 263 * The syntax of bind() is, 264 * 265 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 266 * 267 * sd - the socket descriptor returned by socket(). 268 * addr - the address structure (struct sockaddr_in or struct 269 * sockaddr_in6 [RFC 2553]), 270 * addr_len - the size of the address structure. 271 */ 272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 273 { 274 int retval = 0; 275 276 lock_sock(sk); 277 278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 279 addr, addr_len); 280 281 /* Disallow binding twice. */ 282 if (!sctp_sk(sk)->ep->base.bind_addr.port) 283 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 284 addr_len); 285 else 286 retval = -EINVAL; 287 288 release_sock(sk); 289 290 return retval; 291 } 292 293 static long sctp_get_port_local(struct sock *, union sctp_addr *); 294 295 /* Verify this is a valid sockaddr. */ 296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 297 union sctp_addr *addr, int len) 298 { 299 struct sctp_af *af; 300 301 /* Check minimum size. */ 302 if (len < sizeof (struct sockaddr)) 303 return NULL; 304 305 /* V4 mapped address are really of AF_INET family */ 306 if (addr->sa.sa_family == AF_INET6 && 307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 308 if (!opt->pf->af_supported(AF_INET, opt)) 309 return NULL; 310 } else { 311 /* Does this PF support this AF? */ 312 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 313 return NULL; 314 } 315 316 /* If we get this far, af is valid. */ 317 af = sctp_get_af_specific(addr->sa.sa_family); 318 319 if (len < af->sockaddr_len) 320 return NULL; 321 322 return af; 323 } 324 325 /* Bind a local address either to an endpoint or to an association. */ 326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 327 { 328 struct net *net = sock_net(sk); 329 struct sctp_sock *sp = sctp_sk(sk); 330 struct sctp_endpoint *ep = sp->ep; 331 struct sctp_bind_addr *bp = &ep->base.bind_addr; 332 struct sctp_af *af; 333 unsigned short snum; 334 int ret = 0; 335 336 /* Common sockaddr verification. */ 337 af = sctp_sockaddr_af(sp, addr, len); 338 if (!af) { 339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 340 __func__, sk, addr, len); 341 return -EINVAL; 342 } 343 344 snum = ntohs(addr->v4.sin_port); 345 346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 347 __func__, sk, &addr->sa, bp->port, snum, len); 348 349 /* PF specific bind() address verification. */ 350 if (!sp->pf->bind_verify(sp, addr)) 351 return -EADDRNOTAVAIL; 352 353 /* We must either be unbound, or bind to the same port. 354 * It's OK to allow 0 ports if we are already bound. 355 * We'll just inhert an already bound port in this case 356 */ 357 if (bp->port) { 358 if (!snum) 359 snum = bp->port; 360 else if (snum != bp->port) { 361 pr_debug("%s: new port %d doesn't match existing port " 362 "%d\n", __func__, snum, bp->port); 363 return -EINVAL; 364 } 365 } 366 367 if (snum && snum < PROT_SOCK && 368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 369 return -EACCES; 370 371 /* See if the address matches any of the addresses we may have 372 * already bound before checking against other endpoints. 373 */ 374 if (sctp_bind_addr_match(bp, addr, sp)) 375 return -EINVAL; 376 377 /* Make sure we are allowed to bind here. 378 * The function sctp_get_port_local() does duplicate address 379 * detection. 380 */ 381 addr->v4.sin_port = htons(snum); 382 if ((ret = sctp_get_port_local(sk, addr))) { 383 return -EADDRINUSE; 384 } 385 386 /* Refresh ephemeral port. */ 387 if (!bp->port) 388 bp->port = inet_sk(sk)->inet_num; 389 390 /* Add the address to the bind address list. 391 * Use GFP_ATOMIC since BHs will be disabled. 392 */ 393 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 394 395 /* Copy back into socket for getsockname() use. */ 396 if (!ret) { 397 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 398 af->to_sk_saddr(addr, sk); 399 } 400 401 return ret; 402 } 403 404 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 405 * 406 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 407 * at any one time. If a sender, after sending an ASCONF chunk, decides 408 * it needs to transfer another ASCONF Chunk, it MUST wait until the 409 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 410 * subsequent ASCONF. Note this restriction binds each side, so at any 411 * time two ASCONF may be in-transit on any given association (one sent 412 * from each endpoint). 413 */ 414 static int sctp_send_asconf(struct sctp_association *asoc, 415 struct sctp_chunk *chunk) 416 { 417 struct net *net = sock_net(asoc->base.sk); 418 int retval = 0; 419 420 /* If there is an outstanding ASCONF chunk, queue it for later 421 * transmission. 422 */ 423 if (asoc->addip_last_asconf) { 424 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 425 goto out; 426 } 427 428 /* Hold the chunk until an ASCONF_ACK is received. */ 429 sctp_chunk_hold(chunk); 430 retval = sctp_primitive_ASCONF(net, asoc, chunk); 431 if (retval) 432 sctp_chunk_free(chunk); 433 else 434 asoc->addip_last_asconf = chunk; 435 436 out: 437 return retval; 438 } 439 440 /* Add a list of addresses as bind addresses to local endpoint or 441 * association. 442 * 443 * Basically run through each address specified in the addrs/addrcnt 444 * array/length pair, determine if it is IPv6 or IPv4 and call 445 * sctp_do_bind() on it. 446 * 447 * If any of them fails, then the operation will be reversed and the 448 * ones that were added will be removed. 449 * 450 * Only sctp_setsockopt_bindx() is supposed to call this function. 451 */ 452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 453 { 454 int cnt; 455 int retval = 0; 456 void *addr_buf; 457 struct sockaddr *sa_addr; 458 struct sctp_af *af; 459 460 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 461 addrs, addrcnt); 462 463 addr_buf = addrs; 464 for (cnt = 0; cnt < addrcnt; cnt++) { 465 /* The list may contain either IPv4 or IPv6 address; 466 * determine the address length for walking thru the list. 467 */ 468 sa_addr = addr_buf; 469 af = sctp_get_af_specific(sa_addr->sa_family); 470 if (!af) { 471 retval = -EINVAL; 472 goto err_bindx_add; 473 } 474 475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 476 af->sockaddr_len); 477 478 addr_buf += af->sockaddr_len; 479 480 err_bindx_add: 481 if (retval < 0) { 482 /* Failed. Cleanup the ones that have been added */ 483 if (cnt > 0) 484 sctp_bindx_rem(sk, addrs, cnt); 485 return retval; 486 } 487 } 488 489 return retval; 490 } 491 492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 493 * associations that are part of the endpoint indicating that a list of local 494 * addresses are added to the endpoint. 495 * 496 * If any of the addresses is already in the bind address list of the 497 * association, we do not send the chunk for that association. But it will not 498 * affect other associations. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_send_asconf_add_ip(struct sock *sk, 503 struct sockaddr *addrs, 504 int addrcnt) 505 { 506 struct net *net = sock_net(sk); 507 struct sctp_sock *sp; 508 struct sctp_endpoint *ep; 509 struct sctp_association *asoc; 510 struct sctp_bind_addr *bp; 511 struct sctp_chunk *chunk; 512 struct sctp_sockaddr_entry *laddr; 513 union sctp_addr *addr; 514 union sctp_addr saveaddr; 515 void *addr_buf; 516 struct sctp_af *af; 517 struct list_head *p; 518 int i; 519 int retval = 0; 520 521 if (!net->sctp.addip_enable) 522 return retval; 523 524 sp = sctp_sk(sk); 525 ep = sp->ep; 526 527 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 528 __func__, sk, addrs, addrcnt); 529 530 list_for_each_entry(asoc, &ep->asocs, asocs) { 531 if (!asoc->peer.asconf_capable) 532 continue; 533 534 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 535 continue; 536 537 if (!sctp_state(asoc, ESTABLISHED)) 538 continue; 539 540 /* Check if any address in the packed array of addresses is 541 * in the bind address list of the association. If so, 542 * do not send the asconf chunk to its peer, but continue with 543 * other associations. 544 */ 545 addr_buf = addrs; 546 for (i = 0; i < addrcnt; i++) { 547 addr = addr_buf; 548 af = sctp_get_af_specific(addr->v4.sin_family); 549 if (!af) { 550 retval = -EINVAL; 551 goto out; 552 } 553 554 if (sctp_assoc_lookup_laddr(asoc, addr)) 555 break; 556 557 addr_buf += af->sockaddr_len; 558 } 559 if (i < addrcnt) 560 continue; 561 562 /* Use the first valid address in bind addr list of 563 * association as Address Parameter of ASCONF CHUNK. 564 */ 565 bp = &asoc->base.bind_addr; 566 p = bp->address_list.next; 567 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 568 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 569 addrcnt, SCTP_PARAM_ADD_IP); 570 if (!chunk) { 571 retval = -ENOMEM; 572 goto out; 573 } 574 575 /* Add the new addresses to the bind address list with 576 * use_as_src set to 0. 577 */ 578 addr_buf = addrs; 579 for (i = 0; i < addrcnt; i++) { 580 addr = addr_buf; 581 af = sctp_get_af_specific(addr->v4.sin_family); 582 memcpy(&saveaddr, addr, af->sockaddr_len); 583 retval = sctp_add_bind_addr(bp, &saveaddr, 584 SCTP_ADDR_NEW, GFP_ATOMIC); 585 addr_buf += af->sockaddr_len; 586 } 587 if (asoc->src_out_of_asoc_ok) { 588 struct sctp_transport *trans; 589 590 list_for_each_entry(trans, 591 &asoc->peer.transport_addr_list, transports) { 592 /* Clear the source and route cache */ 593 dst_release(trans->dst); 594 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 595 2*asoc->pathmtu, 4380)); 596 trans->ssthresh = asoc->peer.i.a_rwnd; 597 trans->rto = asoc->rto_initial; 598 sctp_max_rto(asoc, trans); 599 trans->rtt = trans->srtt = trans->rttvar = 0; 600 sctp_transport_route(trans, NULL, 601 sctp_sk(asoc->base.sk)); 602 } 603 } 604 retval = sctp_send_asconf(asoc, chunk); 605 } 606 607 out: 608 return retval; 609 } 610 611 /* Remove a list of addresses from bind addresses list. Do not remove the 612 * last address. 613 * 614 * Basically run through each address specified in the addrs/addrcnt 615 * array/length pair, determine if it is IPv6 or IPv4 and call 616 * sctp_del_bind() on it. 617 * 618 * If any of them fails, then the operation will be reversed and the 619 * ones that were removed will be added back. 620 * 621 * At least one address has to be left; if only one address is 622 * available, the operation will return -EBUSY. 623 * 624 * Only sctp_setsockopt_bindx() is supposed to call this function. 625 */ 626 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 627 { 628 struct sctp_sock *sp = sctp_sk(sk); 629 struct sctp_endpoint *ep = sp->ep; 630 int cnt; 631 struct sctp_bind_addr *bp = &ep->base.bind_addr; 632 int retval = 0; 633 void *addr_buf; 634 union sctp_addr *sa_addr; 635 struct sctp_af *af; 636 637 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 638 __func__, sk, addrs, addrcnt); 639 640 addr_buf = addrs; 641 for (cnt = 0; cnt < addrcnt; cnt++) { 642 /* If the bind address list is empty or if there is only one 643 * bind address, there is nothing more to be removed (we need 644 * at least one address here). 645 */ 646 if (list_empty(&bp->address_list) || 647 (sctp_list_single_entry(&bp->address_list))) { 648 retval = -EBUSY; 649 goto err_bindx_rem; 650 } 651 652 sa_addr = addr_buf; 653 af = sctp_get_af_specific(sa_addr->sa.sa_family); 654 if (!af) { 655 retval = -EINVAL; 656 goto err_bindx_rem; 657 } 658 659 if (!af->addr_valid(sa_addr, sp, NULL)) { 660 retval = -EADDRNOTAVAIL; 661 goto err_bindx_rem; 662 } 663 664 if (sa_addr->v4.sin_port && 665 sa_addr->v4.sin_port != htons(bp->port)) { 666 retval = -EINVAL; 667 goto err_bindx_rem; 668 } 669 670 if (!sa_addr->v4.sin_port) 671 sa_addr->v4.sin_port = htons(bp->port); 672 673 /* FIXME - There is probably a need to check if sk->sk_saddr and 674 * sk->sk_rcv_addr are currently set to one of the addresses to 675 * be removed. This is something which needs to be looked into 676 * when we are fixing the outstanding issues with multi-homing 677 * socket routing and failover schemes. Refer to comments in 678 * sctp_do_bind(). -daisy 679 */ 680 retval = sctp_del_bind_addr(bp, sa_addr); 681 682 addr_buf += af->sockaddr_len; 683 err_bindx_rem: 684 if (retval < 0) { 685 /* Failed. Add the ones that has been removed back */ 686 if (cnt > 0) 687 sctp_bindx_add(sk, addrs, cnt); 688 return retval; 689 } 690 } 691 692 return retval; 693 } 694 695 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 696 * the associations that are part of the endpoint indicating that a list of 697 * local addresses are removed from the endpoint. 698 * 699 * If any of the addresses is already in the bind address list of the 700 * association, we do not send the chunk for that association. But it will not 701 * affect other associations. 702 * 703 * Only sctp_setsockopt_bindx() is supposed to call this function. 704 */ 705 static int sctp_send_asconf_del_ip(struct sock *sk, 706 struct sockaddr *addrs, 707 int addrcnt) 708 { 709 struct net *net = sock_net(sk); 710 struct sctp_sock *sp; 711 struct sctp_endpoint *ep; 712 struct sctp_association *asoc; 713 struct sctp_transport *transport; 714 struct sctp_bind_addr *bp; 715 struct sctp_chunk *chunk; 716 union sctp_addr *laddr; 717 void *addr_buf; 718 struct sctp_af *af; 719 struct sctp_sockaddr_entry *saddr; 720 int i; 721 int retval = 0; 722 int stored = 0; 723 724 chunk = NULL; 725 if (!net->sctp.addip_enable) 726 return retval; 727 728 sp = sctp_sk(sk); 729 ep = sp->ep; 730 731 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 732 __func__, sk, addrs, addrcnt); 733 734 list_for_each_entry(asoc, &ep->asocs, asocs) { 735 736 if (!asoc->peer.asconf_capable) 737 continue; 738 739 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 740 continue; 741 742 if (!sctp_state(asoc, ESTABLISHED)) 743 continue; 744 745 /* Check if any address in the packed array of addresses is 746 * not present in the bind address list of the association. 747 * If so, do not send the asconf chunk to its peer, but 748 * continue with other associations. 749 */ 750 addr_buf = addrs; 751 for (i = 0; i < addrcnt; i++) { 752 laddr = addr_buf; 753 af = sctp_get_af_specific(laddr->v4.sin_family); 754 if (!af) { 755 retval = -EINVAL; 756 goto out; 757 } 758 759 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 760 break; 761 762 addr_buf += af->sockaddr_len; 763 } 764 if (i < addrcnt) 765 continue; 766 767 /* Find one address in the association's bind address list 768 * that is not in the packed array of addresses. This is to 769 * make sure that we do not delete all the addresses in the 770 * association. 771 */ 772 bp = &asoc->base.bind_addr; 773 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 774 addrcnt, sp); 775 if ((laddr == NULL) && (addrcnt == 1)) { 776 if (asoc->asconf_addr_del_pending) 777 continue; 778 asoc->asconf_addr_del_pending = 779 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 780 if (asoc->asconf_addr_del_pending == NULL) { 781 retval = -ENOMEM; 782 goto out; 783 } 784 asoc->asconf_addr_del_pending->sa.sa_family = 785 addrs->sa_family; 786 asoc->asconf_addr_del_pending->v4.sin_port = 787 htons(bp->port); 788 if (addrs->sa_family == AF_INET) { 789 struct sockaddr_in *sin; 790 791 sin = (struct sockaddr_in *)addrs; 792 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 793 } else if (addrs->sa_family == AF_INET6) { 794 struct sockaddr_in6 *sin6; 795 796 sin6 = (struct sockaddr_in6 *)addrs; 797 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 798 } 799 800 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 801 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 802 asoc->asconf_addr_del_pending); 803 804 asoc->src_out_of_asoc_ok = 1; 805 stored = 1; 806 goto skip_mkasconf; 807 } 808 809 if (laddr == NULL) 810 return -EINVAL; 811 812 /* We do not need RCU protection throughout this loop 813 * because this is done under a socket lock from the 814 * setsockopt call. 815 */ 816 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 817 SCTP_PARAM_DEL_IP); 818 if (!chunk) { 819 retval = -ENOMEM; 820 goto out; 821 } 822 823 skip_mkasconf: 824 /* Reset use_as_src flag for the addresses in the bind address 825 * list that are to be deleted. 826 */ 827 addr_buf = addrs; 828 for (i = 0; i < addrcnt; i++) { 829 laddr = addr_buf; 830 af = sctp_get_af_specific(laddr->v4.sin_family); 831 list_for_each_entry(saddr, &bp->address_list, list) { 832 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 833 saddr->state = SCTP_ADDR_DEL; 834 } 835 addr_buf += af->sockaddr_len; 836 } 837 838 /* Update the route and saddr entries for all the transports 839 * as some of the addresses in the bind address list are 840 * about to be deleted and cannot be used as source addresses. 841 */ 842 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 843 transports) { 844 dst_release(transport->dst); 845 sctp_transport_route(transport, NULL, 846 sctp_sk(asoc->base.sk)); 847 } 848 849 if (stored) 850 /* We don't need to transmit ASCONF */ 851 continue; 852 retval = sctp_send_asconf(asoc, chunk); 853 } 854 out: 855 return retval; 856 } 857 858 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 859 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 860 { 861 struct sock *sk = sctp_opt2sk(sp); 862 union sctp_addr *addr; 863 struct sctp_af *af; 864 865 /* It is safe to write port space in caller. */ 866 addr = &addrw->a; 867 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 868 af = sctp_get_af_specific(addr->sa.sa_family); 869 if (!af) 870 return -EINVAL; 871 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 872 return -EINVAL; 873 874 if (addrw->state == SCTP_ADDR_NEW) 875 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 876 else 877 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 878 } 879 880 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 881 * 882 * API 8.1 883 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 884 * int flags); 885 * 886 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 887 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 888 * or IPv6 addresses. 889 * 890 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 891 * Section 3.1.2 for this usage. 892 * 893 * addrs is a pointer to an array of one or more socket addresses. Each 894 * address is contained in its appropriate structure (i.e. struct 895 * sockaddr_in or struct sockaddr_in6) the family of the address type 896 * must be used to distinguish the address length (note that this 897 * representation is termed a "packed array" of addresses). The caller 898 * specifies the number of addresses in the array with addrcnt. 899 * 900 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 901 * -1, and sets errno to the appropriate error code. 902 * 903 * For SCTP, the port given in each socket address must be the same, or 904 * sctp_bindx() will fail, setting errno to EINVAL. 905 * 906 * The flags parameter is formed from the bitwise OR of zero or more of 907 * the following currently defined flags: 908 * 909 * SCTP_BINDX_ADD_ADDR 910 * 911 * SCTP_BINDX_REM_ADDR 912 * 913 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 914 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 915 * addresses from the association. The two flags are mutually exclusive; 916 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 917 * not remove all addresses from an association; sctp_bindx() will 918 * reject such an attempt with EINVAL. 919 * 920 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 921 * additional addresses with an endpoint after calling bind(). Or use 922 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 923 * socket is associated with so that no new association accepted will be 924 * associated with those addresses. If the endpoint supports dynamic 925 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 926 * endpoint to send the appropriate message to the peer to change the 927 * peers address lists. 928 * 929 * Adding and removing addresses from a connected association is 930 * optional functionality. Implementations that do not support this 931 * functionality should return EOPNOTSUPP. 932 * 933 * Basically do nothing but copying the addresses from user to kernel 934 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 935 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 936 * from userspace. 937 * 938 * We don't use copy_from_user() for optimization: we first do the 939 * sanity checks (buffer size -fast- and access check-healthy 940 * pointer); if all of those succeed, then we can alloc the memory 941 * (expensive operation) needed to copy the data to kernel. Then we do 942 * the copying without checking the user space area 943 * (__copy_from_user()). 944 * 945 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 946 * it. 947 * 948 * sk The sk of the socket 949 * addrs The pointer to the addresses in user land 950 * addrssize Size of the addrs buffer 951 * op Operation to perform (add or remove, see the flags of 952 * sctp_bindx) 953 * 954 * Returns 0 if ok, <0 errno code on error. 955 */ 956 static int sctp_setsockopt_bindx(struct sock *sk, 957 struct sockaddr __user *addrs, 958 int addrs_size, int op) 959 { 960 struct sockaddr *kaddrs; 961 int err; 962 int addrcnt = 0; 963 int walk_size = 0; 964 struct sockaddr *sa_addr; 965 void *addr_buf; 966 struct sctp_af *af; 967 968 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 969 __func__, sk, addrs, addrs_size, op); 970 971 if (unlikely(addrs_size <= 0)) 972 return -EINVAL; 973 974 /* Check the user passed a healthy pointer. */ 975 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 976 return -EFAULT; 977 978 /* Alloc space for the address array in kernel memory. */ 979 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 980 if (unlikely(!kaddrs)) 981 return -ENOMEM; 982 983 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 984 kfree(kaddrs); 985 return -EFAULT; 986 } 987 988 /* Walk through the addrs buffer and count the number of addresses. */ 989 addr_buf = kaddrs; 990 while (walk_size < addrs_size) { 991 if (walk_size + sizeof(sa_family_t) > addrs_size) { 992 kfree(kaddrs); 993 return -EINVAL; 994 } 995 996 sa_addr = addr_buf; 997 af = sctp_get_af_specific(sa_addr->sa_family); 998 999 /* If the address family is not supported or if this address 1000 * causes the address buffer to overflow return EINVAL. 1001 */ 1002 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1003 kfree(kaddrs); 1004 return -EINVAL; 1005 } 1006 addrcnt++; 1007 addr_buf += af->sockaddr_len; 1008 walk_size += af->sockaddr_len; 1009 } 1010 1011 /* Do the work. */ 1012 switch (op) { 1013 case SCTP_BINDX_ADD_ADDR: 1014 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1015 if (err) 1016 goto out; 1017 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1018 break; 1019 1020 case SCTP_BINDX_REM_ADDR: 1021 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1022 if (err) 1023 goto out; 1024 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1025 break; 1026 1027 default: 1028 err = -EINVAL; 1029 break; 1030 } 1031 1032 out: 1033 kfree(kaddrs); 1034 1035 return err; 1036 } 1037 1038 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1039 * 1040 * Common routine for handling connect() and sctp_connectx(). 1041 * Connect will come in with just a single address. 1042 */ 1043 static int __sctp_connect(struct sock *sk, 1044 struct sockaddr *kaddrs, 1045 int addrs_size, 1046 sctp_assoc_t *assoc_id) 1047 { 1048 struct net *net = sock_net(sk); 1049 struct sctp_sock *sp; 1050 struct sctp_endpoint *ep; 1051 struct sctp_association *asoc = NULL; 1052 struct sctp_association *asoc2; 1053 struct sctp_transport *transport; 1054 union sctp_addr to; 1055 struct sctp_af *af; 1056 sctp_scope_t scope; 1057 long timeo; 1058 int err = 0; 1059 int addrcnt = 0; 1060 int walk_size = 0; 1061 union sctp_addr *sa_addr = NULL; 1062 void *addr_buf; 1063 unsigned short port; 1064 unsigned int f_flags = 0; 1065 1066 sp = sctp_sk(sk); 1067 ep = sp->ep; 1068 1069 /* connect() cannot be done on a socket that is already in ESTABLISHED 1070 * state - UDP-style peeled off socket or a TCP-style socket that 1071 * is already connected. 1072 * It cannot be done even on a TCP-style listening socket. 1073 */ 1074 if (sctp_sstate(sk, ESTABLISHED) || 1075 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1076 err = -EISCONN; 1077 goto out_free; 1078 } 1079 1080 /* Walk through the addrs buffer and count the number of addresses. */ 1081 addr_buf = kaddrs; 1082 while (walk_size < addrs_size) { 1083 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1084 err = -EINVAL; 1085 goto out_free; 1086 } 1087 1088 sa_addr = addr_buf; 1089 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1090 1091 /* If the address family is not supported or if this address 1092 * causes the address buffer to overflow return EINVAL. 1093 */ 1094 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1095 err = -EINVAL; 1096 goto out_free; 1097 } 1098 1099 port = ntohs(sa_addr->v4.sin_port); 1100 1101 /* Save current address so we can work with it */ 1102 memcpy(&to, sa_addr, af->sockaddr_len); 1103 1104 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1105 if (err) 1106 goto out_free; 1107 1108 /* Make sure the destination port is correctly set 1109 * in all addresses. 1110 */ 1111 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1112 err = -EINVAL; 1113 goto out_free; 1114 } 1115 1116 /* Check if there already is a matching association on the 1117 * endpoint (other than the one created here). 1118 */ 1119 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1120 if (asoc2 && asoc2 != asoc) { 1121 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1122 err = -EISCONN; 1123 else 1124 err = -EALREADY; 1125 goto out_free; 1126 } 1127 1128 /* If we could not find a matching association on the endpoint, 1129 * make sure that there is no peeled-off association matching 1130 * the peer address even on another socket. 1131 */ 1132 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1133 err = -EADDRNOTAVAIL; 1134 goto out_free; 1135 } 1136 1137 if (!asoc) { 1138 /* If a bind() or sctp_bindx() is not called prior to 1139 * an sctp_connectx() call, the system picks an 1140 * ephemeral port and will choose an address set 1141 * equivalent to binding with a wildcard address. 1142 */ 1143 if (!ep->base.bind_addr.port) { 1144 if (sctp_autobind(sk)) { 1145 err = -EAGAIN; 1146 goto out_free; 1147 } 1148 } else { 1149 /* 1150 * If an unprivileged user inherits a 1-many 1151 * style socket with open associations on a 1152 * privileged port, it MAY be permitted to 1153 * accept new associations, but it SHOULD NOT 1154 * be permitted to open new associations. 1155 */ 1156 if (ep->base.bind_addr.port < PROT_SOCK && 1157 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1158 err = -EACCES; 1159 goto out_free; 1160 } 1161 } 1162 1163 scope = sctp_scope(&to); 1164 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1165 if (!asoc) { 1166 err = -ENOMEM; 1167 goto out_free; 1168 } 1169 1170 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1171 GFP_KERNEL); 1172 if (err < 0) { 1173 goto out_free; 1174 } 1175 1176 } 1177 1178 /* Prime the peer's transport structures. */ 1179 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1180 SCTP_UNKNOWN); 1181 if (!transport) { 1182 err = -ENOMEM; 1183 goto out_free; 1184 } 1185 1186 addrcnt++; 1187 addr_buf += af->sockaddr_len; 1188 walk_size += af->sockaddr_len; 1189 } 1190 1191 /* In case the user of sctp_connectx() wants an association 1192 * id back, assign one now. 1193 */ 1194 if (assoc_id) { 1195 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1196 if (err < 0) 1197 goto out_free; 1198 } 1199 1200 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1201 if (err < 0) { 1202 goto out_free; 1203 } 1204 1205 /* Initialize sk's dport and daddr for getpeername() */ 1206 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1207 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1208 af->to_sk_daddr(sa_addr, sk); 1209 sk->sk_err = 0; 1210 1211 /* in-kernel sockets don't generally have a file allocated to them 1212 * if all they do is call sock_create_kern(). 1213 */ 1214 if (sk->sk_socket->file) 1215 f_flags = sk->sk_socket->file->f_flags; 1216 1217 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1218 1219 err = sctp_wait_for_connect(asoc, &timeo); 1220 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1221 *assoc_id = asoc->assoc_id; 1222 1223 /* Don't free association on exit. */ 1224 asoc = NULL; 1225 1226 out_free: 1227 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1228 __func__, asoc, kaddrs, err); 1229 1230 if (asoc) { 1231 /* sctp_primitive_ASSOCIATE may have added this association 1232 * To the hash table, try to unhash it, just in case, its a noop 1233 * if it wasn't hashed so we're safe 1234 */ 1235 sctp_unhash_established(asoc); 1236 sctp_association_free(asoc); 1237 } 1238 return err; 1239 } 1240 1241 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1242 * 1243 * API 8.9 1244 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1245 * sctp_assoc_t *asoc); 1246 * 1247 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1248 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1249 * or IPv6 addresses. 1250 * 1251 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1252 * Section 3.1.2 for this usage. 1253 * 1254 * addrs is a pointer to an array of one or more socket addresses. Each 1255 * address is contained in its appropriate structure (i.e. struct 1256 * sockaddr_in or struct sockaddr_in6) the family of the address type 1257 * must be used to distengish the address length (note that this 1258 * representation is termed a "packed array" of addresses). The caller 1259 * specifies the number of addresses in the array with addrcnt. 1260 * 1261 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1262 * the association id of the new association. On failure, sctp_connectx() 1263 * returns -1, and sets errno to the appropriate error code. The assoc_id 1264 * is not touched by the kernel. 1265 * 1266 * For SCTP, the port given in each socket address must be the same, or 1267 * sctp_connectx() will fail, setting errno to EINVAL. 1268 * 1269 * An application can use sctp_connectx to initiate an association with 1270 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1271 * allows a caller to specify multiple addresses at which a peer can be 1272 * reached. The way the SCTP stack uses the list of addresses to set up 1273 * the association is implementation dependent. This function only 1274 * specifies that the stack will try to make use of all the addresses in 1275 * the list when needed. 1276 * 1277 * Note that the list of addresses passed in is only used for setting up 1278 * the association. It does not necessarily equal the set of addresses 1279 * the peer uses for the resulting association. If the caller wants to 1280 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1281 * retrieve them after the association has been set up. 1282 * 1283 * Basically do nothing but copying the addresses from user to kernel 1284 * land and invoking either sctp_connectx(). This is used for tunneling 1285 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1286 * 1287 * We don't use copy_from_user() for optimization: we first do the 1288 * sanity checks (buffer size -fast- and access check-healthy 1289 * pointer); if all of those succeed, then we can alloc the memory 1290 * (expensive operation) needed to copy the data to kernel. Then we do 1291 * the copying without checking the user space area 1292 * (__copy_from_user()). 1293 * 1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1295 * it. 1296 * 1297 * sk The sk of the socket 1298 * addrs The pointer to the addresses in user land 1299 * addrssize Size of the addrs buffer 1300 * 1301 * Returns >=0 if ok, <0 errno code on error. 1302 */ 1303 static int __sctp_setsockopt_connectx(struct sock *sk, 1304 struct sockaddr __user *addrs, 1305 int addrs_size, 1306 sctp_assoc_t *assoc_id) 1307 { 1308 int err = 0; 1309 struct sockaddr *kaddrs; 1310 1311 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1312 __func__, sk, addrs, addrs_size); 1313 1314 if (unlikely(addrs_size <= 0)) 1315 return -EINVAL; 1316 1317 /* Check the user passed a healthy pointer. */ 1318 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1319 return -EFAULT; 1320 1321 /* Alloc space for the address array in kernel memory. */ 1322 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1323 if (unlikely(!kaddrs)) 1324 return -ENOMEM; 1325 1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1327 err = -EFAULT; 1328 } else { 1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1330 } 1331 1332 kfree(kaddrs); 1333 1334 return err; 1335 } 1336 1337 /* 1338 * This is an older interface. It's kept for backward compatibility 1339 * to the option that doesn't provide association id. 1340 */ 1341 static int sctp_setsockopt_connectx_old(struct sock *sk, 1342 struct sockaddr __user *addrs, 1343 int addrs_size) 1344 { 1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1346 } 1347 1348 /* 1349 * New interface for the API. The since the API is done with a socket 1350 * option, to make it simple we feed back the association id is as a return 1351 * indication to the call. Error is always negative and association id is 1352 * always positive. 1353 */ 1354 static int sctp_setsockopt_connectx(struct sock *sk, 1355 struct sockaddr __user *addrs, 1356 int addrs_size) 1357 { 1358 sctp_assoc_t assoc_id = 0; 1359 int err = 0; 1360 1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1362 1363 if (err) 1364 return err; 1365 else 1366 return assoc_id; 1367 } 1368 1369 /* 1370 * New (hopefully final) interface for the API. 1371 * We use the sctp_getaddrs_old structure so that use-space library 1372 * can avoid any unnecessary allocations. The only different part 1373 * is that we store the actual length of the address buffer into the 1374 * addrs_num structure member. That way we can re-use the existing 1375 * code. 1376 */ 1377 #ifdef CONFIG_COMPAT 1378 struct compat_sctp_getaddrs_old { 1379 sctp_assoc_t assoc_id; 1380 s32 addr_num; 1381 compat_uptr_t addrs; /* struct sockaddr * */ 1382 }; 1383 #endif 1384 1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1386 char __user *optval, 1387 int __user *optlen) 1388 { 1389 struct sctp_getaddrs_old param; 1390 sctp_assoc_t assoc_id = 0; 1391 int err = 0; 1392 1393 #ifdef CONFIG_COMPAT 1394 if (is_compat_task()) { 1395 struct compat_sctp_getaddrs_old param32; 1396 1397 if (len < sizeof(param32)) 1398 return -EINVAL; 1399 if (copy_from_user(¶m32, optval, sizeof(param32))) 1400 return -EFAULT; 1401 1402 param.assoc_id = param32.assoc_id; 1403 param.addr_num = param32.addr_num; 1404 param.addrs = compat_ptr(param32.addrs); 1405 } else 1406 #endif 1407 { 1408 if (len < sizeof(param)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m, optval, sizeof(param))) 1411 return -EFAULT; 1412 } 1413 1414 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1415 param.addrs, param.addr_num, 1416 &assoc_id); 1417 if (err == 0 || err == -EINPROGRESS) { 1418 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1419 return -EFAULT; 1420 if (put_user(sizeof(assoc_id), optlen)) 1421 return -EFAULT; 1422 } 1423 1424 return err; 1425 } 1426 1427 /* API 3.1.4 close() - UDP Style Syntax 1428 * Applications use close() to perform graceful shutdown (as described in 1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1430 * by a UDP-style socket. 1431 * 1432 * The syntax is 1433 * 1434 * ret = close(int sd); 1435 * 1436 * sd - the socket descriptor of the associations to be closed. 1437 * 1438 * To gracefully shutdown a specific association represented by the 1439 * UDP-style socket, an application should use the sendmsg() call, 1440 * passing no user data, but including the appropriate flag in the 1441 * ancillary data (see Section xxxx). 1442 * 1443 * If sd in the close() call is a branched-off socket representing only 1444 * one association, the shutdown is performed on that association only. 1445 * 1446 * 4.1.6 close() - TCP Style Syntax 1447 * 1448 * Applications use close() to gracefully close down an association. 1449 * 1450 * The syntax is: 1451 * 1452 * int close(int sd); 1453 * 1454 * sd - the socket descriptor of the association to be closed. 1455 * 1456 * After an application calls close() on a socket descriptor, no further 1457 * socket operations will succeed on that descriptor. 1458 * 1459 * API 7.1.4 SO_LINGER 1460 * 1461 * An application using the TCP-style socket can use this option to 1462 * perform the SCTP ABORT primitive. The linger option structure is: 1463 * 1464 * struct linger { 1465 * int l_onoff; // option on/off 1466 * int l_linger; // linger time 1467 * }; 1468 * 1469 * To enable the option, set l_onoff to 1. If the l_linger value is set 1470 * to 0, calling close() is the same as the ABORT primitive. If the 1471 * value is set to a negative value, the setsockopt() call will return 1472 * an error. If the value is set to a positive value linger_time, the 1473 * close() can be blocked for at most linger_time ms. If the graceful 1474 * shutdown phase does not finish during this period, close() will 1475 * return but the graceful shutdown phase continues in the system. 1476 */ 1477 static void sctp_close(struct sock *sk, long timeout) 1478 { 1479 struct net *net = sock_net(sk); 1480 struct sctp_endpoint *ep; 1481 struct sctp_association *asoc; 1482 struct list_head *pos, *temp; 1483 unsigned int data_was_unread; 1484 1485 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1486 1487 lock_sock(sk); 1488 sk->sk_shutdown = SHUTDOWN_MASK; 1489 sk->sk_state = SCTP_SS_CLOSING; 1490 1491 ep = sctp_sk(sk)->ep; 1492 1493 /* Clean up any skbs sitting on the receive queue. */ 1494 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1495 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1496 1497 /* Walk all associations on an endpoint. */ 1498 list_for_each_safe(pos, temp, &ep->asocs) { 1499 asoc = list_entry(pos, struct sctp_association, asocs); 1500 1501 if (sctp_style(sk, TCP)) { 1502 /* A closed association can still be in the list if 1503 * it belongs to a TCP-style listening socket that is 1504 * not yet accepted. If so, free it. If not, send an 1505 * ABORT or SHUTDOWN based on the linger options. 1506 */ 1507 if (sctp_state(asoc, CLOSED)) { 1508 sctp_unhash_established(asoc); 1509 sctp_association_free(asoc); 1510 continue; 1511 } 1512 } 1513 1514 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1515 !skb_queue_empty(&asoc->ulpq.reasm) || 1516 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1517 struct sctp_chunk *chunk; 1518 1519 chunk = sctp_make_abort_user(asoc, NULL, 0); 1520 if (chunk) 1521 sctp_primitive_ABORT(net, asoc, chunk); 1522 } else 1523 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1524 } 1525 1526 /* On a TCP-style socket, block for at most linger_time if set. */ 1527 if (sctp_style(sk, TCP) && timeout) 1528 sctp_wait_for_close(sk, timeout); 1529 1530 /* This will run the backlog queue. */ 1531 release_sock(sk); 1532 1533 /* Supposedly, no process has access to the socket, but 1534 * the net layers still may. 1535 */ 1536 local_bh_disable(); 1537 bh_lock_sock(sk); 1538 1539 /* Hold the sock, since sk_common_release() will put sock_put() 1540 * and we have just a little more cleanup. 1541 */ 1542 sock_hold(sk); 1543 sk_common_release(sk); 1544 1545 bh_unlock_sock(sk); 1546 local_bh_enable(); 1547 1548 sock_put(sk); 1549 1550 SCTP_DBG_OBJCNT_DEC(sock); 1551 } 1552 1553 /* Handle EPIPE error. */ 1554 static int sctp_error(struct sock *sk, int flags, int err) 1555 { 1556 if (err == -EPIPE) 1557 err = sock_error(sk) ? : -EPIPE; 1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1559 send_sig(SIGPIPE, current, 0); 1560 return err; 1561 } 1562 1563 /* API 3.1.3 sendmsg() - UDP Style Syntax 1564 * 1565 * An application uses sendmsg() and recvmsg() calls to transmit data to 1566 * and receive data from its peer. 1567 * 1568 * ssize_t sendmsg(int socket, const struct msghdr *message, 1569 * int flags); 1570 * 1571 * socket - the socket descriptor of the endpoint. 1572 * message - pointer to the msghdr structure which contains a single 1573 * user message and possibly some ancillary data. 1574 * 1575 * See Section 5 for complete description of the data 1576 * structures. 1577 * 1578 * flags - flags sent or received with the user message, see Section 1579 * 5 for complete description of the flags. 1580 * 1581 * Note: This function could use a rewrite especially when explicit 1582 * connect support comes in. 1583 */ 1584 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1585 1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1587 1588 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1589 struct msghdr *msg, size_t msg_len) 1590 { 1591 struct net *net = sock_net(sk); 1592 struct sctp_sock *sp; 1593 struct sctp_endpoint *ep; 1594 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1595 struct sctp_transport *transport, *chunk_tp; 1596 struct sctp_chunk *chunk; 1597 union sctp_addr to; 1598 struct sockaddr *msg_name = NULL; 1599 struct sctp_sndrcvinfo default_sinfo; 1600 struct sctp_sndrcvinfo *sinfo; 1601 struct sctp_initmsg *sinit; 1602 sctp_assoc_t associd = 0; 1603 sctp_cmsgs_t cmsgs = { NULL }; 1604 int err; 1605 sctp_scope_t scope; 1606 long timeo; 1607 __u16 sinfo_flags = 0; 1608 struct sctp_datamsg *datamsg; 1609 int msg_flags = msg->msg_flags; 1610 1611 err = 0; 1612 sp = sctp_sk(sk); 1613 ep = sp->ep; 1614 1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1616 msg, msg_len, ep); 1617 1618 /* We cannot send a message over a TCP-style listening socket. */ 1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1620 err = -EPIPE; 1621 goto out_nounlock; 1622 } 1623 1624 /* Parse out the SCTP CMSGs. */ 1625 err = sctp_msghdr_parse(msg, &cmsgs); 1626 if (err) { 1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1628 goto out_nounlock; 1629 } 1630 1631 /* Fetch the destination address for this packet. This 1632 * address only selects the association--it is not necessarily 1633 * the address we will send to. 1634 * For a peeled-off socket, msg_name is ignored. 1635 */ 1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1637 int msg_namelen = msg->msg_namelen; 1638 1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1640 msg_namelen); 1641 if (err) 1642 return err; 1643 1644 if (msg_namelen > sizeof(to)) 1645 msg_namelen = sizeof(to); 1646 memcpy(&to, msg->msg_name, msg_namelen); 1647 msg_name = msg->msg_name; 1648 } 1649 1650 sinfo = cmsgs.info; 1651 sinit = cmsgs.init; 1652 1653 /* Did the user specify SNDRCVINFO? */ 1654 if (sinfo) { 1655 sinfo_flags = sinfo->sinfo_flags; 1656 associd = sinfo->sinfo_assoc_id; 1657 } 1658 1659 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1660 msg_len, sinfo_flags); 1661 1662 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1663 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1664 err = -EINVAL; 1665 goto out_nounlock; 1666 } 1667 1668 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1669 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1670 * If SCTP_ABORT is set, the message length could be non zero with 1671 * the msg_iov set to the user abort reason. 1672 */ 1673 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1674 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1675 err = -EINVAL; 1676 goto out_nounlock; 1677 } 1678 1679 /* If SCTP_ADDR_OVER is set, there must be an address 1680 * specified in msg_name. 1681 */ 1682 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1683 err = -EINVAL; 1684 goto out_nounlock; 1685 } 1686 1687 transport = NULL; 1688 1689 pr_debug("%s: about to look up association\n", __func__); 1690 1691 lock_sock(sk); 1692 1693 /* If a msg_name has been specified, assume this is to be used. */ 1694 if (msg_name) { 1695 /* Look for a matching association on the endpoint. */ 1696 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1697 if (!asoc) { 1698 /* If we could not find a matching association on the 1699 * endpoint, make sure that it is not a TCP-style 1700 * socket that already has an association or there is 1701 * no peeled-off association on another socket. 1702 */ 1703 if ((sctp_style(sk, TCP) && 1704 sctp_sstate(sk, ESTABLISHED)) || 1705 sctp_endpoint_is_peeled_off(ep, &to)) { 1706 err = -EADDRNOTAVAIL; 1707 goto out_unlock; 1708 } 1709 } 1710 } else { 1711 asoc = sctp_id2assoc(sk, associd); 1712 if (!asoc) { 1713 err = -EPIPE; 1714 goto out_unlock; 1715 } 1716 } 1717 1718 if (asoc) { 1719 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1720 1721 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1722 * socket that has an association in CLOSED state. This can 1723 * happen when an accepted socket has an association that is 1724 * already CLOSED. 1725 */ 1726 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1727 err = -EPIPE; 1728 goto out_unlock; 1729 } 1730 1731 if (sinfo_flags & SCTP_EOF) { 1732 pr_debug("%s: shutting down association:%p\n", 1733 __func__, asoc); 1734 1735 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1736 err = 0; 1737 goto out_unlock; 1738 } 1739 if (sinfo_flags & SCTP_ABORT) { 1740 1741 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1742 if (!chunk) { 1743 err = -ENOMEM; 1744 goto out_unlock; 1745 } 1746 1747 pr_debug("%s: aborting association:%p\n", 1748 __func__, asoc); 1749 1750 sctp_primitive_ABORT(net, asoc, chunk); 1751 err = 0; 1752 goto out_unlock; 1753 } 1754 } 1755 1756 /* Do we need to create the association? */ 1757 if (!asoc) { 1758 pr_debug("%s: there is no association yet\n", __func__); 1759 1760 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1761 err = -EINVAL; 1762 goto out_unlock; 1763 } 1764 1765 /* Check for invalid stream against the stream counts, 1766 * either the default or the user specified stream counts. 1767 */ 1768 if (sinfo) { 1769 if (!sinit || !sinit->sinit_num_ostreams) { 1770 /* Check against the defaults. */ 1771 if (sinfo->sinfo_stream >= 1772 sp->initmsg.sinit_num_ostreams) { 1773 err = -EINVAL; 1774 goto out_unlock; 1775 } 1776 } else { 1777 /* Check against the requested. */ 1778 if (sinfo->sinfo_stream >= 1779 sinit->sinit_num_ostreams) { 1780 err = -EINVAL; 1781 goto out_unlock; 1782 } 1783 } 1784 } 1785 1786 /* 1787 * API 3.1.2 bind() - UDP Style Syntax 1788 * If a bind() or sctp_bindx() is not called prior to a 1789 * sendmsg() call that initiates a new association, the 1790 * system picks an ephemeral port and will choose an address 1791 * set equivalent to binding with a wildcard address. 1792 */ 1793 if (!ep->base.bind_addr.port) { 1794 if (sctp_autobind(sk)) { 1795 err = -EAGAIN; 1796 goto out_unlock; 1797 } 1798 } else { 1799 /* 1800 * If an unprivileged user inherits a one-to-many 1801 * style socket with open associations on a privileged 1802 * port, it MAY be permitted to accept new associations, 1803 * but it SHOULD NOT be permitted to open new 1804 * associations. 1805 */ 1806 if (ep->base.bind_addr.port < PROT_SOCK && 1807 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1808 err = -EACCES; 1809 goto out_unlock; 1810 } 1811 } 1812 1813 scope = sctp_scope(&to); 1814 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1815 if (!new_asoc) { 1816 err = -ENOMEM; 1817 goto out_unlock; 1818 } 1819 asoc = new_asoc; 1820 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1821 if (err < 0) { 1822 err = -ENOMEM; 1823 goto out_free; 1824 } 1825 1826 /* If the SCTP_INIT ancillary data is specified, set all 1827 * the association init values accordingly. 1828 */ 1829 if (sinit) { 1830 if (sinit->sinit_num_ostreams) { 1831 asoc->c.sinit_num_ostreams = 1832 sinit->sinit_num_ostreams; 1833 } 1834 if (sinit->sinit_max_instreams) { 1835 asoc->c.sinit_max_instreams = 1836 sinit->sinit_max_instreams; 1837 } 1838 if (sinit->sinit_max_attempts) { 1839 asoc->max_init_attempts 1840 = sinit->sinit_max_attempts; 1841 } 1842 if (sinit->sinit_max_init_timeo) { 1843 asoc->max_init_timeo = 1844 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1845 } 1846 } 1847 1848 /* Prime the peer's transport structures. */ 1849 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1850 if (!transport) { 1851 err = -ENOMEM; 1852 goto out_free; 1853 } 1854 } 1855 1856 /* ASSERT: we have a valid association at this point. */ 1857 pr_debug("%s: we have a valid association\n", __func__); 1858 1859 if (!sinfo) { 1860 /* If the user didn't specify SNDRCVINFO, make up one with 1861 * some defaults. 1862 */ 1863 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1864 default_sinfo.sinfo_stream = asoc->default_stream; 1865 default_sinfo.sinfo_flags = asoc->default_flags; 1866 default_sinfo.sinfo_ppid = asoc->default_ppid; 1867 default_sinfo.sinfo_context = asoc->default_context; 1868 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1869 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1870 sinfo = &default_sinfo; 1871 } 1872 1873 /* API 7.1.7, the sndbuf size per association bounds the 1874 * maximum size of data that can be sent in a single send call. 1875 */ 1876 if (msg_len > sk->sk_sndbuf) { 1877 err = -EMSGSIZE; 1878 goto out_free; 1879 } 1880 1881 if (asoc->pmtu_pending) 1882 sctp_assoc_pending_pmtu(sk, asoc); 1883 1884 /* If fragmentation is disabled and the message length exceeds the 1885 * association fragmentation point, return EMSGSIZE. The I-D 1886 * does not specify what this error is, but this looks like 1887 * a great fit. 1888 */ 1889 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1890 err = -EMSGSIZE; 1891 goto out_free; 1892 } 1893 1894 /* Check for invalid stream. */ 1895 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1896 err = -EINVAL; 1897 goto out_free; 1898 } 1899 1900 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1901 if (!sctp_wspace(asoc)) { 1902 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1903 if (err) 1904 goto out_free; 1905 } 1906 1907 /* If an address is passed with the sendto/sendmsg call, it is used 1908 * to override the primary destination address in the TCP model, or 1909 * when SCTP_ADDR_OVER flag is set in the UDP model. 1910 */ 1911 if ((sctp_style(sk, TCP) && msg_name) || 1912 (sinfo_flags & SCTP_ADDR_OVER)) { 1913 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1914 if (!chunk_tp) { 1915 err = -EINVAL; 1916 goto out_free; 1917 } 1918 } else 1919 chunk_tp = NULL; 1920 1921 /* Auto-connect, if we aren't connected already. */ 1922 if (sctp_state(asoc, CLOSED)) { 1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1924 if (err < 0) 1925 goto out_free; 1926 1927 pr_debug("%s: we associated primitively\n", __func__); 1928 } 1929 1930 /* Break the message into multiple chunks of maximum size. */ 1931 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1932 if (IS_ERR(datamsg)) { 1933 err = PTR_ERR(datamsg); 1934 goto out_free; 1935 } 1936 1937 /* Now send the (possibly) fragmented message. */ 1938 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1939 sctp_chunk_hold(chunk); 1940 1941 /* Do accounting for the write space. */ 1942 sctp_set_owner_w(chunk); 1943 1944 chunk->transport = chunk_tp; 1945 } 1946 1947 /* Send it to the lower layers. Note: all chunks 1948 * must either fail or succeed. The lower layer 1949 * works that way today. Keep it that way or this 1950 * breaks. 1951 */ 1952 err = sctp_primitive_SEND(net, asoc, datamsg); 1953 /* Did the lower layer accept the chunk? */ 1954 if (err) { 1955 sctp_datamsg_free(datamsg); 1956 goto out_free; 1957 } 1958 1959 pr_debug("%s: we sent primitively\n", __func__); 1960 1961 sctp_datamsg_put(datamsg); 1962 err = msg_len; 1963 1964 /* If we are already past ASSOCIATE, the lower 1965 * layers are responsible for association cleanup. 1966 */ 1967 goto out_unlock; 1968 1969 out_free: 1970 if (new_asoc) { 1971 sctp_unhash_established(asoc); 1972 sctp_association_free(asoc); 1973 } 1974 out_unlock: 1975 release_sock(sk); 1976 1977 out_nounlock: 1978 return sctp_error(sk, msg_flags, err); 1979 1980 #if 0 1981 do_sock_err: 1982 if (msg_len) 1983 err = msg_len; 1984 else 1985 err = sock_error(sk); 1986 goto out; 1987 1988 do_interrupted: 1989 if (msg_len) 1990 err = msg_len; 1991 goto out; 1992 #endif /* 0 */ 1993 } 1994 1995 /* This is an extended version of skb_pull() that removes the data from the 1996 * start of a skb even when data is spread across the list of skb's in the 1997 * frag_list. len specifies the total amount of data that needs to be removed. 1998 * when 'len' bytes could be removed from the skb, it returns 0. 1999 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2000 * could not be removed. 2001 */ 2002 static int sctp_skb_pull(struct sk_buff *skb, int len) 2003 { 2004 struct sk_buff *list; 2005 int skb_len = skb_headlen(skb); 2006 int rlen; 2007 2008 if (len <= skb_len) { 2009 __skb_pull(skb, len); 2010 return 0; 2011 } 2012 len -= skb_len; 2013 __skb_pull(skb, skb_len); 2014 2015 skb_walk_frags(skb, list) { 2016 rlen = sctp_skb_pull(list, len); 2017 skb->len -= (len-rlen); 2018 skb->data_len -= (len-rlen); 2019 2020 if (!rlen) 2021 return 0; 2022 2023 len = rlen; 2024 } 2025 2026 return len; 2027 } 2028 2029 /* API 3.1.3 recvmsg() - UDP Style Syntax 2030 * 2031 * ssize_t recvmsg(int socket, struct msghdr *message, 2032 * int flags); 2033 * 2034 * socket - the socket descriptor of the endpoint. 2035 * message - pointer to the msghdr structure which contains a single 2036 * user message and possibly some ancillary data. 2037 * 2038 * See Section 5 for complete description of the data 2039 * structures. 2040 * 2041 * flags - flags sent or received with the user message, see Section 2042 * 5 for complete description of the flags. 2043 */ 2044 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2045 2046 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2047 struct msghdr *msg, size_t len, int noblock, 2048 int flags, int *addr_len) 2049 { 2050 struct sctp_ulpevent *event = NULL; 2051 struct sctp_sock *sp = sctp_sk(sk); 2052 struct sk_buff *skb; 2053 int copied; 2054 int err = 0; 2055 int skb_len; 2056 2057 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2058 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2059 addr_len); 2060 2061 lock_sock(sk); 2062 2063 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2064 err = -ENOTCONN; 2065 goto out; 2066 } 2067 2068 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2069 if (!skb) 2070 goto out; 2071 2072 /* Get the total length of the skb including any skb's in the 2073 * frag_list. 2074 */ 2075 skb_len = skb->len; 2076 2077 copied = skb_len; 2078 if (copied > len) 2079 copied = len; 2080 2081 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2082 2083 event = sctp_skb2event(skb); 2084 2085 if (err) 2086 goto out_free; 2087 2088 sock_recv_ts_and_drops(msg, sk, skb); 2089 if (sctp_ulpevent_is_notification(event)) { 2090 msg->msg_flags |= MSG_NOTIFICATION; 2091 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2092 } else { 2093 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2094 } 2095 2096 /* Check if we allow SCTP_SNDRCVINFO. */ 2097 if (sp->subscribe.sctp_data_io_event) 2098 sctp_ulpevent_read_sndrcvinfo(event, msg); 2099 #if 0 2100 /* FIXME: we should be calling IP/IPv6 layers. */ 2101 if (sk->sk_protinfo.af_inet.cmsg_flags) 2102 ip_cmsg_recv(msg, skb); 2103 #endif 2104 2105 err = copied; 2106 2107 /* If skb's length exceeds the user's buffer, update the skb and 2108 * push it back to the receive_queue so that the next call to 2109 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2110 */ 2111 if (skb_len > copied) { 2112 msg->msg_flags &= ~MSG_EOR; 2113 if (flags & MSG_PEEK) 2114 goto out_free; 2115 sctp_skb_pull(skb, copied); 2116 skb_queue_head(&sk->sk_receive_queue, skb); 2117 2118 goto out; 2119 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2120 (event->msg_flags & MSG_EOR)) 2121 msg->msg_flags |= MSG_EOR; 2122 else 2123 msg->msg_flags &= ~MSG_EOR; 2124 2125 out_free: 2126 if (flags & MSG_PEEK) { 2127 /* Release the skb reference acquired after peeking the skb in 2128 * sctp_skb_recv_datagram(). 2129 */ 2130 kfree_skb(skb); 2131 } else { 2132 /* Free the event which includes releasing the reference to 2133 * the owner of the skb, freeing the skb and updating the 2134 * rwnd. 2135 */ 2136 sctp_ulpevent_free(event); 2137 } 2138 out: 2139 release_sock(sk); 2140 return err; 2141 } 2142 2143 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2144 * 2145 * This option is a on/off flag. If enabled no SCTP message 2146 * fragmentation will be performed. Instead if a message being sent 2147 * exceeds the current PMTU size, the message will NOT be sent and 2148 * instead a error will be indicated to the user. 2149 */ 2150 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2151 char __user *optval, 2152 unsigned int optlen) 2153 { 2154 int val; 2155 2156 if (optlen < sizeof(int)) 2157 return -EINVAL; 2158 2159 if (get_user(val, (int __user *)optval)) 2160 return -EFAULT; 2161 2162 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2163 2164 return 0; 2165 } 2166 2167 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2168 unsigned int optlen) 2169 { 2170 struct sctp_association *asoc; 2171 struct sctp_ulpevent *event; 2172 2173 if (optlen > sizeof(struct sctp_event_subscribe)) 2174 return -EINVAL; 2175 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2176 return -EFAULT; 2177 2178 /* 2179 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2180 * if there is no data to be sent or retransmit, the stack will 2181 * immediately send up this notification. 2182 */ 2183 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2184 &sctp_sk(sk)->subscribe)) { 2185 asoc = sctp_id2assoc(sk, 0); 2186 2187 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2188 event = sctp_ulpevent_make_sender_dry_event(asoc, 2189 GFP_ATOMIC); 2190 if (!event) 2191 return -ENOMEM; 2192 2193 sctp_ulpq_tail_event(&asoc->ulpq, event); 2194 } 2195 } 2196 2197 return 0; 2198 } 2199 2200 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2201 * 2202 * This socket option is applicable to the UDP-style socket only. When 2203 * set it will cause associations that are idle for more than the 2204 * specified number of seconds to automatically close. An association 2205 * being idle is defined an association that has NOT sent or received 2206 * user data. The special value of '0' indicates that no automatic 2207 * close of any associations should be performed. The option expects an 2208 * integer defining the number of seconds of idle time before an 2209 * association is closed. 2210 */ 2211 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2212 unsigned int optlen) 2213 { 2214 struct sctp_sock *sp = sctp_sk(sk); 2215 struct net *net = sock_net(sk); 2216 2217 /* Applicable to UDP-style socket only */ 2218 if (sctp_style(sk, TCP)) 2219 return -EOPNOTSUPP; 2220 if (optlen != sizeof(int)) 2221 return -EINVAL; 2222 if (copy_from_user(&sp->autoclose, optval, optlen)) 2223 return -EFAULT; 2224 2225 if (sp->autoclose > net->sctp.max_autoclose) 2226 sp->autoclose = net->sctp.max_autoclose; 2227 2228 return 0; 2229 } 2230 2231 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2232 * 2233 * Applications can enable or disable heartbeats for any peer address of 2234 * an association, modify an address's heartbeat interval, force a 2235 * heartbeat to be sent immediately, and adjust the address's maximum 2236 * number of retransmissions sent before an address is considered 2237 * unreachable. The following structure is used to access and modify an 2238 * address's parameters: 2239 * 2240 * struct sctp_paddrparams { 2241 * sctp_assoc_t spp_assoc_id; 2242 * struct sockaddr_storage spp_address; 2243 * uint32_t spp_hbinterval; 2244 * uint16_t spp_pathmaxrxt; 2245 * uint32_t spp_pathmtu; 2246 * uint32_t spp_sackdelay; 2247 * uint32_t spp_flags; 2248 * }; 2249 * 2250 * spp_assoc_id - (one-to-many style socket) This is filled in the 2251 * application, and identifies the association for 2252 * this query. 2253 * spp_address - This specifies which address is of interest. 2254 * spp_hbinterval - This contains the value of the heartbeat interval, 2255 * in milliseconds. If a value of zero 2256 * is present in this field then no changes are to 2257 * be made to this parameter. 2258 * spp_pathmaxrxt - This contains the maximum number of 2259 * retransmissions before this address shall be 2260 * considered unreachable. If a value of zero 2261 * is present in this field then no changes are to 2262 * be made to this parameter. 2263 * spp_pathmtu - When Path MTU discovery is disabled the value 2264 * specified here will be the "fixed" path mtu. 2265 * Note that if the spp_address field is empty 2266 * then all associations on this address will 2267 * have this fixed path mtu set upon them. 2268 * 2269 * spp_sackdelay - When delayed sack is enabled, this value specifies 2270 * the number of milliseconds that sacks will be delayed 2271 * for. This value will apply to all addresses of an 2272 * association if the spp_address field is empty. Note 2273 * also, that if delayed sack is enabled and this 2274 * value is set to 0, no change is made to the last 2275 * recorded delayed sack timer value. 2276 * 2277 * spp_flags - These flags are used to control various features 2278 * on an association. The flag field may contain 2279 * zero or more of the following options. 2280 * 2281 * SPP_HB_ENABLE - Enable heartbeats on the 2282 * specified address. Note that if the address 2283 * field is empty all addresses for the association 2284 * have heartbeats enabled upon them. 2285 * 2286 * SPP_HB_DISABLE - Disable heartbeats on the 2287 * speicifed address. Note that if the address 2288 * field is empty all addresses for the association 2289 * will have their heartbeats disabled. Note also 2290 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2291 * mutually exclusive, only one of these two should 2292 * be specified. Enabling both fields will have 2293 * undetermined results. 2294 * 2295 * SPP_HB_DEMAND - Request a user initiated heartbeat 2296 * to be made immediately. 2297 * 2298 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2299 * heartbeat delayis to be set to the value of 0 2300 * milliseconds. 2301 * 2302 * SPP_PMTUD_ENABLE - This field will enable PMTU 2303 * discovery upon the specified address. Note that 2304 * if the address feild is empty then all addresses 2305 * on the association are effected. 2306 * 2307 * SPP_PMTUD_DISABLE - This field will disable PMTU 2308 * discovery upon the specified address. Note that 2309 * if the address feild is empty then all addresses 2310 * on the association are effected. Not also that 2311 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2312 * exclusive. Enabling both will have undetermined 2313 * results. 2314 * 2315 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2316 * on delayed sack. The time specified in spp_sackdelay 2317 * is used to specify the sack delay for this address. Note 2318 * that if spp_address is empty then all addresses will 2319 * enable delayed sack and take on the sack delay 2320 * value specified in spp_sackdelay. 2321 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2322 * off delayed sack. If the spp_address field is blank then 2323 * delayed sack is disabled for the entire association. Note 2324 * also that this field is mutually exclusive to 2325 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2326 * results. 2327 */ 2328 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2329 struct sctp_transport *trans, 2330 struct sctp_association *asoc, 2331 struct sctp_sock *sp, 2332 int hb_change, 2333 int pmtud_change, 2334 int sackdelay_change) 2335 { 2336 int error; 2337 2338 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2339 struct net *net = sock_net(trans->asoc->base.sk); 2340 2341 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2342 if (error) 2343 return error; 2344 } 2345 2346 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2347 * this field is ignored. Note also that a value of zero indicates 2348 * the current setting should be left unchanged. 2349 */ 2350 if (params->spp_flags & SPP_HB_ENABLE) { 2351 2352 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2353 * set. This lets us use 0 value when this flag 2354 * is set. 2355 */ 2356 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2357 params->spp_hbinterval = 0; 2358 2359 if (params->spp_hbinterval || 2360 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2361 if (trans) { 2362 trans->hbinterval = 2363 msecs_to_jiffies(params->spp_hbinterval); 2364 } else if (asoc) { 2365 asoc->hbinterval = 2366 msecs_to_jiffies(params->spp_hbinterval); 2367 } else { 2368 sp->hbinterval = params->spp_hbinterval; 2369 } 2370 } 2371 } 2372 2373 if (hb_change) { 2374 if (trans) { 2375 trans->param_flags = 2376 (trans->param_flags & ~SPP_HB) | hb_change; 2377 } else if (asoc) { 2378 asoc->param_flags = 2379 (asoc->param_flags & ~SPP_HB) | hb_change; 2380 } else { 2381 sp->param_flags = 2382 (sp->param_flags & ~SPP_HB) | hb_change; 2383 } 2384 } 2385 2386 /* When Path MTU discovery is disabled the value specified here will 2387 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2388 * include the flag SPP_PMTUD_DISABLE for this field to have any 2389 * effect). 2390 */ 2391 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2392 if (trans) { 2393 trans->pathmtu = params->spp_pathmtu; 2394 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2395 } else if (asoc) { 2396 asoc->pathmtu = params->spp_pathmtu; 2397 sctp_frag_point(asoc, params->spp_pathmtu); 2398 } else { 2399 sp->pathmtu = params->spp_pathmtu; 2400 } 2401 } 2402 2403 if (pmtud_change) { 2404 if (trans) { 2405 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2406 (params->spp_flags & SPP_PMTUD_ENABLE); 2407 trans->param_flags = 2408 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2409 if (update) { 2410 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2411 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2412 } 2413 } else if (asoc) { 2414 asoc->param_flags = 2415 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2416 } else { 2417 sp->param_flags = 2418 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2419 } 2420 } 2421 2422 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2423 * value of this field is ignored. Note also that a value of zero 2424 * indicates the current setting should be left unchanged. 2425 */ 2426 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2427 if (trans) { 2428 trans->sackdelay = 2429 msecs_to_jiffies(params->spp_sackdelay); 2430 } else if (asoc) { 2431 asoc->sackdelay = 2432 msecs_to_jiffies(params->spp_sackdelay); 2433 } else { 2434 sp->sackdelay = params->spp_sackdelay; 2435 } 2436 } 2437 2438 if (sackdelay_change) { 2439 if (trans) { 2440 trans->param_flags = 2441 (trans->param_flags & ~SPP_SACKDELAY) | 2442 sackdelay_change; 2443 } else if (asoc) { 2444 asoc->param_flags = 2445 (asoc->param_flags & ~SPP_SACKDELAY) | 2446 sackdelay_change; 2447 } else { 2448 sp->param_flags = 2449 (sp->param_flags & ~SPP_SACKDELAY) | 2450 sackdelay_change; 2451 } 2452 } 2453 2454 /* Note that a value of zero indicates the current setting should be 2455 left unchanged. 2456 */ 2457 if (params->spp_pathmaxrxt) { 2458 if (trans) { 2459 trans->pathmaxrxt = params->spp_pathmaxrxt; 2460 } else if (asoc) { 2461 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2462 } else { 2463 sp->pathmaxrxt = params->spp_pathmaxrxt; 2464 } 2465 } 2466 2467 return 0; 2468 } 2469 2470 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2471 char __user *optval, 2472 unsigned int optlen) 2473 { 2474 struct sctp_paddrparams params; 2475 struct sctp_transport *trans = NULL; 2476 struct sctp_association *asoc = NULL; 2477 struct sctp_sock *sp = sctp_sk(sk); 2478 int error; 2479 int hb_change, pmtud_change, sackdelay_change; 2480 2481 if (optlen != sizeof(struct sctp_paddrparams)) 2482 return -EINVAL; 2483 2484 if (copy_from_user(¶ms, optval, optlen)) 2485 return -EFAULT; 2486 2487 /* Validate flags and value parameters. */ 2488 hb_change = params.spp_flags & SPP_HB; 2489 pmtud_change = params.spp_flags & SPP_PMTUD; 2490 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2491 2492 if (hb_change == SPP_HB || 2493 pmtud_change == SPP_PMTUD || 2494 sackdelay_change == SPP_SACKDELAY || 2495 params.spp_sackdelay > 500 || 2496 (params.spp_pathmtu && 2497 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2498 return -EINVAL; 2499 2500 /* If an address other than INADDR_ANY is specified, and 2501 * no transport is found, then the request is invalid. 2502 */ 2503 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2504 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2505 params.spp_assoc_id); 2506 if (!trans) 2507 return -EINVAL; 2508 } 2509 2510 /* Get association, if assoc_id != 0 and the socket is a one 2511 * to many style socket, and an association was not found, then 2512 * the id was invalid. 2513 */ 2514 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2515 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2516 return -EINVAL; 2517 2518 /* Heartbeat demand can only be sent on a transport or 2519 * association, but not a socket. 2520 */ 2521 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2522 return -EINVAL; 2523 2524 /* Process parameters. */ 2525 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2526 hb_change, pmtud_change, 2527 sackdelay_change); 2528 2529 if (error) 2530 return error; 2531 2532 /* If changes are for association, also apply parameters to each 2533 * transport. 2534 */ 2535 if (!trans && asoc) { 2536 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2537 transports) { 2538 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2539 hb_change, pmtud_change, 2540 sackdelay_change); 2541 } 2542 } 2543 2544 return 0; 2545 } 2546 2547 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2548 { 2549 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2550 } 2551 2552 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2553 { 2554 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2555 } 2556 2557 /* 2558 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2559 * 2560 * This option will effect the way delayed acks are performed. This 2561 * option allows you to get or set the delayed ack time, in 2562 * milliseconds. It also allows changing the delayed ack frequency. 2563 * Changing the frequency to 1 disables the delayed sack algorithm. If 2564 * the assoc_id is 0, then this sets or gets the endpoints default 2565 * values. If the assoc_id field is non-zero, then the set or get 2566 * effects the specified association for the one to many model (the 2567 * assoc_id field is ignored by the one to one model). Note that if 2568 * sack_delay or sack_freq are 0 when setting this option, then the 2569 * current values will remain unchanged. 2570 * 2571 * struct sctp_sack_info { 2572 * sctp_assoc_t sack_assoc_id; 2573 * uint32_t sack_delay; 2574 * uint32_t sack_freq; 2575 * }; 2576 * 2577 * sack_assoc_id - This parameter, indicates which association the user 2578 * is performing an action upon. Note that if this field's value is 2579 * zero then the endpoints default value is changed (effecting future 2580 * associations only). 2581 * 2582 * sack_delay - This parameter contains the number of milliseconds that 2583 * the user is requesting the delayed ACK timer be set to. Note that 2584 * this value is defined in the standard to be between 200 and 500 2585 * milliseconds. 2586 * 2587 * sack_freq - This parameter contains the number of packets that must 2588 * be received before a sack is sent without waiting for the delay 2589 * timer to expire. The default value for this is 2, setting this 2590 * value to 1 will disable the delayed sack algorithm. 2591 */ 2592 2593 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2594 char __user *optval, unsigned int optlen) 2595 { 2596 struct sctp_sack_info params; 2597 struct sctp_transport *trans = NULL; 2598 struct sctp_association *asoc = NULL; 2599 struct sctp_sock *sp = sctp_sk(sk); 2600 2601 if (optlen == sizeof(struct sctp_sack_info)) { 2602 if (copy_from_user(¶ms, optval, optlen)) 2603 return -EFAULT; 2604 2605 if (params.sack_delay == 0 && params.sack_freq == 0) 2606 return 0; 2607 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2608 pr_warn_ratelimited(DEPRECATED 2609 "%s (pid %d) " 2610 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2611 "Use struct sctp_sack_info instead\n", 2612 current->comm, task_pid_nr(current)); 2613 if (copy_from_user(¶ms, optval, optlen)) 2614 return -EFAULT; 2615 2616 if (params.sack_delay == 0) 2617 params.sack_freq = 1; 2618 else 2619 params.sack_freq = 0; 2620 } else 2621 return -EINVAL; 2622 2623 /* Validate value parameter. */ 2624 if (params.sack_delay > 500) 2625 return -EINVAL; 2626 2627 /* Get association, if sack_assoc_id != 0 and the socket is a one 2628 * to many style socket, and an association was not found, then 2629 * the id was invalid. 2630 */ 2631 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2632 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2633 return -EINVAL; 2634 2635 if (params.sack_delay) { 2636 if (asoc) { 2637 asoc->sackdelay = 2638 msecs_to_jiffies(params.sack_delay); 2639 asoc->param_flags = 2640 sctp_spp_sackdelay_enable(asoc->param_flags); 2641 } else { 2642 sp->sackdelay = params.sack_delay; 2643 sp->param_flags = 2644 sctp_spp_sackdelay_enable(sp->param_flags); 2645 } 2646 } 2647 2648 if (params.sack_freq == 1) { 2649 if (asoc) { 2650 asoc->param_flags = 2651 sctp_spp_sackdelay_disable(asoc->param_flags); 2652 } else { 2653 sp->param_flags = 2654 sctp_spp_sackdelay_disable(sp->param_flags); 2655 } 2656 } else if (params.sack_freq > 1) { 2657 if (asoc) { 2658 asoc->sackfreq = params.sack_freq; 2659 asoc->param_flags = 2660 sctp_spp_sackdelay_enable(asoc->param_flags); 2661 } else { 2662 sp->sackfreq = params.sack_freq; 2663 sp->param_flags = 2664 sctp_spp_sackdelay_enable(sp->param_flags); 2665 } 2666 } 2667 2668 /* If change is for association, also apply to each transport. */ 2669 if (asoc) { 2670 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2671 transports) { 2672 if (params.sack_delay) { 2673 trans->sackdelay = 2674 msecs_to_jiffies(params.sack_delay); 2675 trans->param_flags = 2676 sctp_spp_sackdelay_enable(trans->param_flags); 2677 } 2678 if (params.sack_freq == 1) { 2679 trans->param_flags = 2680 sctp_spp_sackdelay_disable(trans->param_flags); 2681 } else if (params.sack_freq > 1) { 2682 trans->sackfreq = params.sack_freq; 2683 trans->param_flags = 2684 sctp_spp_sackdelay_enable(trans->param_flags); 2685 } 2686 } 2687 } 2688 2689 return 0; 2690 } 2691 2692 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2693 * 2694 * Applications can specify protocol parameters for the default association 2695 * initialization. The option name argument to setsockopt() and getsockopt() 2696 * is SCTP_INITMSG. 2697 * 2698 * Setting initialization parameters is effective only on an unconnected 2699 * socket (for UDP-style sockets only future associations are effected 2700 * by the change). With TCP-style sockets, this option is inherited by 2701 * sockets derived from a listener socket. 2702 */ 2703 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2704 { 2705 struct sctp_initmsg sinit; 2706 struct sctp_sock *sp = sctp_sk(sk); 2707 2708 if (optlen != sizeof(struct sctp_initmsg)) 2709 return -EINVAL; 2710 if (copy_from_user(&sinit, optval, optlen)) 2711 return -EFAULT; 2712 2713 if (sinit.sinit_num_ostreams) 2714 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2715 if (sinit.sinit_max_instreams) 2716 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2717 if (sinit.sinit_max_attempts) 2718 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2719 if (sinit.sinit_max_init_timeo) 2720 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2721 2722 return 0; 2723 } 2724 2725 /* 2726 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2727 * 2728 * Applications that wish to use the sendto() system call may wish to 2729 * specify a default set of parameters that would normally be supplied 2730 * through the inclusion of ancillary data. This socket option allows 2731 * such an application to set the default sctp_sndrcvinfo structure. 2732 * The application that wishes to use this socket option simply passes 2733 * in to this call the sctp_sndrcvinfo structure defined in Section 2734 * 5.2.2) The input parameters accepted by this call include 2735 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2736 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2737 * to this call if the caller is using the UDP model. 2738 */ 2739 static int sctp_setsockopt_default_send_param(struct sock *sk, 2740 char __user *optval, 2741 unsigned int optlen) 2742 { 2743 struct sctp_sndrcvinfo info; 2744 struct sctp_association *asoc; 2745 struct sctp_sock *sp = sctp_sk(sk); 2746 2747 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2748 return -EINVAL; 2749 if (copy_from_user(&info, optval, optlen)) 2750 return -EFAULT; 2751 2752 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2753 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2754 return -EINVAL; 2755 2756 if (asoc) { 2757 asoc->default_stream = info.sinfo_stream; 2758 asoc->default_flags = info.sinfo_flags; 2759 asoc->default_ppid = info.sinfo_ppid; 2760 asoc->default_context = info.sinfo_context; 2761 asoc->default_timetolive = info.sinfo_timetolive; 2762 } else { 2763 sp->default_stream = info.sinfo_stream; 2764 sp->default_flags = info.sinfo_flags; 2765 sp->default_ppid = info.sinfo_ppid; 2766 sp->default_context = info.sinfo_context; 2767 sp->default_timetolive = info.sinfo_timetolive; 2768 } 2769 2770 return 0; 2771 } 2772 2773 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2774 * 2775 * Requests that the local SCTP stack use the enclosed peer address as 2776 * the association primary. The enclosed address must be one of the 2777 * association peer's addresses. 2778 */ 2779 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2780 unsigned int optlen) 2781 { 2782 struct sctp_prim prim; 2783 struct sctp_transport *trans; 2784 2785 if (optlen != sizeof(struct sctp_prim)) 2786 return -EINVAL; 2787 2788 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2789 return -EFAULT; 2790 2791 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2792 if (!trans) 2793 return -EINVAL; 2794 2795 sctp_assoc_set_primary(trans->asoc, trans); 2796 2797 return 0; 2798 } 2799 2800 /* 2801 * 7.1.5 SCTP_NODELAY 2802 * 2803 * Turn on/off any Nagle-like algorithm. This means that packets are 2804 * generally sent as soon as possible and no unnecessary delays are 2805 * introduced, at the cost of more packets in the network. Expects an 2806 * integer boolean flag. 2807 */ 2808 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2809 unsigned int optlen) 2810 { 2811 int val; 2812 2813 if (optlen < sizeof(int)) 2814 return -EINVAL; 2815 if (get_user(val, (int __user *)optval)) 2816 return -EFAULT; 2817 2818 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2819 return 0; 2820 } 2821 2822 /* 2823 * 2824 * 7.1.1 SCTP_RTOINFO 2825 * 2826 * The protocol parameters used to initialize and bound retransmission 2827 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2828 * and modify these parameters. 2829 * All parameters are time values, in milliseconds. A value of 0, when 2830 * modifying the parameters, indicates that the current value should not 2831 * be changed. 2832 * 2833 */ 2834 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2835 { 2836 struct sctp_rtoinfo rtoinfo; 2837 struct sctp_association *asoc; 2838 unsigned long rto_min, rto_max; 2839 struct sctp_sock *sp = sctp_sk(sk); 2840 2841 if (optlen != sizeof (struct sctp_rtoinfo)) 2842 return -EINVAL; 2843 2844 if (copy_from_user(&rtoinfo, optval, optlen)) 2845 return -EFAULT; 2846 2847 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2848 2849 /* Set the values to the specific association */ 2850 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2851 return -EINVAL; 2852 2853 rto_max = rtoinfo.srto_max; 2854 rto_min = rtoinfo.srto_min; 2855 2856 if (rto_max) 2857 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2858 else 2859 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2860 2861 if (rto_min) 2862 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2863 else 2864 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2865 2866 if (rto_min > rto_max) 2867 return -EINVAL; 2868 2869 if (asoc) { 2870 if (rtoinfo.srto_initial != 0) 2871 asoc->rto_initial = 2872 msecs_to_jiffies(rtoinfo.srto_initial); 2873 asoc->rto_max = rto_max; 2874 asoc->rto_min = rto_min; 2875 } else { 2876 /* If there is no association or the association-id = 0 2877 * set the values to the endpoint. 2878 */ 2879 if (rtoinfo.srto_initial != 0) 2880 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2881 sp->rtoinfo.srto_max = rto_max; 2882 sp->rtoinfo.srto_min = rto_min; 2883 } 2884 2885 return 0; 2886 } 2887 2888 /* 2889 * 2890 * 7.1.2 SCTP_ASSOCINFO 2891 * 2892 * This option is used to tune the maximum retransmission attempts 2893 * of the association. 2894 * Returns an error if the new association retransmission value is 2895 * greater than the sum of the retransmission value of the peer. 2896 * See [SCTP] for more information. 2897 * 2898 */ 2899 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2900 { 2901 2902 struct sctp_assocparams assocparams; 2903 struct sctp_association *asoc; 2904 2905 if (optlen != sizeof(struct sctp_assocparams)) 2906 return -EINVAL; 2907 if (copy_from_user(&assocparams, optval, optlen)) 2908 return -EFAULT; 2909 2910 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2911 2912 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2913 return -EINVAL; 2914 2915 /* Set the values to the specific association */ 2916 if (asoc) { 2917 if (assocparams.sasoc_asocmaxrxt != 0) { 2918 __u32 path_sum = 0; 2919 int paths = 0; 2920 struct sctp_transport *peer_addr; 2921 2922 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2923 transports) { 2924 path_sum += peer_addr->pathmaxrxt; 2925 paths++; 2926 } 2927 2928 /* Only validate asocmaxrxt if we have more than 2929 * one path/transport. We do this because path 2930 * retransmissions are only counted when we have more 2931 * then one path. 2932 */ 2933 if (paths > 1 && 2934 assocparams.sasoc_asocmaxrxt > path_sum) 2935 return -EINVAL; 2936 2937 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2938 } 2939 2940 if (assocparams.sasoc_cookie_life != 0) 2941 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 2942 } else { 2943 /* Set the values to the endpoint */ 2944 struct sctp_sock *sp = sctp_sk(sk); 2945 2946 if (assocparams.sasoc_asocmaxrxt != 0) 2947 sp->assocparams.sasoc_asocmaxrxt = 2948 assocparams.sasoc_asocmaxrxt; 2949 if (assocparams.sasoc_cookie_life != 0) 2950 sp->assocparams.sasoc_cookie_life = 2951 assocparams.sasoc_cookie_life; 2952 } 2953 return 0; 2954 } 2955 2956 /* 2957 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2958 * 2959 * This socket option is a boolean flag which turns on or off mapped V4 2960 * addresses. If this option is turned on and the socket is type 2961 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2962 * If this option is turned off, then no mapping will be done of V4 2963 * addresses and a user will receive both PF_INET6 and PF_INET type 2964 * addresses on the socket. 2965 */ 2966 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2967 { 2968 int val; 2969 struct sctp_sock *sp = sctp_sk(sk); 2970 2971 if (optlen < sizeof(int)) 2972 return -EINVAL; 2973 if (get_user(val, (int __user *)optval)) 2974 return -EFAULT; 2975 if (val) 2976 sp->v4mapped = 1; 2977 else 2978 sp->v4mapped = 0; 2979 2980 return 0; 2981 } 2982 2983 /* 2984 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2985 * This option will get or set the maximum size to put in any outgoing 2986 * SCTP DATA chunk. If a message is larger than this size it will be 2987 * fragmented by SCTP into the specified size. Note that the underlying 2988 * SCTP implementation may fragment into smaller sized chunks when the 2989 * PMTU of the underlying association is smaller than the value set by 2990 * the user. The default value for this option is '0' which indicates 2991 * the user is NOT limiting fragmentation and only the PMTU will effect 2992 * SCTP's choice of DATA chunk size. Note also that values set larger 2993 * than the maximum size of an IP datagram will effectively let SCTP 2994 * control fragmentation (i.e. the same as setting this option to 0). 2995 * 2996 * The following structure is used to access and modify this parameter: 2997 * 2998 * struct sctp_assoc_value { 2999 * sctp_assoc_t assoc_id; 3000 * uint32_t assoc_value; 3001 * }; 3002 * 3003 * assoc_id: This parameter is ignored for one-to-one style sockets. 3004 * For one-to-many style sockets this parameter indicates which 3005 * association the user is performing an action upon. Note that if 3006 * this field's value is zero then the endpoints default value is 3007 * changed (effecting future associations only). 3008 * assoc_value: This parameter specifies the maximum size in bytes. 3009 */ 3010 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3011 { 3012 struct sctp_assoc_value params; 3013 struct sctp_association *asoc; 3014 struct sctp_sock *sp = sctp_sk(sk); 3015 int val; 3016 3017 if (optlen == sizeof(int)) { 3018 pr_warn_ratelimited(DEPRECATED 3019 "%s (pid %d) " 3020 "Use of int in maxseg socket option.\n" 3021 "Use struct sctp_assoc_value instead\n", 3022 current->comm, task_pid_nr(current)); 3023 if (copy_from_user(&val, optval, optlen)) 3024 return -EFAULT; 3025 params.assoc_id = 0; 3026 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3027 if (copy_from_user(¶ms, optval, optlen)) 3028 return -EFAULT; 3029 val = params.assoc_value; 3030 } else 3031 return -EINVAL; 3032 3033 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3034 return -EINVAL; 3035 3036 asoc = sctp_id2assoc(sk, params.assoc_id); 3037 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3038 return -EINVAL; 3039 3040 if (asoc) { 3041 if (val == 0) { 3042 val = asoc->pathmtu; 3043 val -= sp->pf->af->net_header_len; 3044 val -= sizeof(struct sctphdr) + 3045 sizeof(struct sctp_data_chunk); 3046 } 3047 asoc->user_frag = val; 3048 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3049 } else { 3050 sp->user_frag = val; 3051 } 3052 3053 return 0; 3054 } 3055 3056 3057 /* 3058 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3059 * 3060 * Requests that the peer mark the enclosed address as the association 3061 * primary. The enclosed address must be one of the association's 3062 * locally bound addresses. The following structure is used to make a 3063 * set primary request: 3064 */ 3065 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3066 unsigned int optlen) 3067 { 3068 struct net *net = sock_net(sk); 3069 struct sctp_sock *sp; 3070 struct sctp_association *asoc = NULL; 3071 struct sctp_setpeerprim prim; 3072 struct sctp_chunk *chunk; 3073 struct sctp_af *af; 3074 int err; 3075 3076 sp = sctp_sk(sk); 3077 3078 if (!net->sctp.addip_enable) 3079 return -EPERM; 3080 3081 if (optlen != sizeof(struct sctp_setpeerprim)) 3082 return -EINVAL; 3083 3084 if (copy_from_user(&prim, optval, optlen)) 3085 return -EFAULT; 3086 3087 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3088 if (!asoc) 3089 return -EINVAL; 3090 3091 if (!asoc->peer.asconf_capable) 3092 return -EPERM; 3093 3094 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3095 return -EPERM; 3096 3097 if (!sctp_state(asoc, ESTABLISHED)) 3098 return -ENOTCONN; 3099 3100 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3101 if (!af) 3102 return -EINVAL; 3103 3104 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3105 return -EADDRNOTAVAIL; 3106 3107 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3108 return -EADDRNOTAVAIL; 3109 3110 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3111 chunk = sctp_make_asconf_set_prim(asoc, 3112 (union sctp_addr *)&prim.sspp_addr); 3113 if (!chunk) 3114 return -ENOMEM; 3115 3116 err = sctp_send_asconf(asoc, chunk); 3117 3118 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3119 3120 return err; 3121 } 3122 3123 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3124 unsigned int optlen) 3125 { 3126 struct sctp_setadaptation adaptation; 3127 3128 if (optlen != sizeof(struct sctp_setadaptation)) 3129 return -EINVAL; 3130 if (copy_from_user(&adaptation, optval, optlen)) 3131 return -EFAULT; 3132 3133 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3134 3135 return 0; 3136 } 3137 3138 /* 3139 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3140 * 3141 * The context field in the sctp_sndrcvinfo structure is normally only 3142 * used when a failed message is retrieved holding the value that was 3143 * sent down on the actual send call. This option allows the setting of 3144 * a default context on an association basis that will be received on 3145 * reading messages from the peer. This is especially helpful in the 3146 * one-2-many model for an application to keep some reference to an 3147 * internal state machine that is processing messages on the 3148 * association. Note that the setting of this value only effects 3149 * received messages from the peer and does not effect the value that is 3150 * saved with outbound messages. 3151 */ 3152 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3153 unsigned int optlen) 3154 { 3155 struct sctp_assoc_value params; 3156 struct sctp_sock *sp; 3157 struct sctp_association *asoc; 3158 3159 if (optlen != sizeof(struct sctp_assoc_value)) 3160 return -EINVAL; 3161 if (copy_from_user(¶ms, optval, optlen)) 3162 return -EFAULT; 3163 3164 sp = sctp_sk(sk); 3165 3166 if (params.assoc_id != 0) { 3167 asoc = sctp_id2assoc(sk, params.assoc_id); 3168 if (!asoc) 3169 return -EINVAL; 3170 asoc->default_rcv_context = params.assoc_value; 3171 } else { 3172 sp->default_rcv_context = params.assoc_value; 3173 } 3174 3175 return 0; 3176 } 3177 3178 /* 3179 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3180 * 3181 * This options will at a minimum specify if the implementation is doing 3182 * fragmented interleave. Fragmented interleave, for a one to many 3183 * socket, is when subsequent calls to receive a message may return 3184 * parts of messages from different associations. Some implementations 3185 * may allow you to turn this value on or off. If so, when turned off, 3186 * no fragment interleave will occur (which will cause a head of line 3187 * blocking amongst multiple associations sharing the same one to many 3188 * socket). When this option is turned on, then each receive call may 3189 * come from a different association (thus the user must receive data 3190 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3191 * association each receive belongs to. 3192 * 3193 * This option takes a boolean value. A non-zero value indicates that 3194 * fragmented interleave is on. A value of zero indicates that 3195 * fragmented interleave is off. 3196 * 3197 * Note that it is important that an implementation that allows this 3198 * option to be turned on, have it off by default. Otherwise an unaware 3199 * application using the one to many model may become confused and act 3200 * incorrectly. 3201 */ 3202 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3203 char __user *optval, 3204 unsigned int optlen) 3205 { 3206 int val; 3207 3208 if (optlen != sizeof(int)) 3209 return -EINVAL; 3210 if (get_user(val, (int __user *)optval)) 3211 return -EFAULT; 3212 3213 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3214 3215 return 0; 3216 } 3217 3218 /* 3219 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3220 * (SCTP_PARTIAL_DELIVERY_POINT) 3221 * 3222 * This option will set or get the SCTP partial delivery point. This 3223 * point is the size of a message where the partial delivery API will be 3224 * invoked to help free up rwnd space for the peer. Setting this to a 3225 * lower value will cause partial deliveries to happen more often. The 3226 * calls argument is an integer that sets or gets the partial delivery 3227 * point. Note also that the call will fail if the user attempts to set 3228 * this value larger than the socket receive buffer size. 3229 * 3230 * Note that any single message having a length smaller than or equal to 3231 * the SCTP partial delivery point will be delivered in one single read 3232 * call as long as the user provided buffer is large enough to hold the 3233 * message. 3234 */ 3235 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3236 char __user *optval, 3237 unsigned int optlen) 3238 { 3239 u32 val; 3240 3241 if (optlen != sizeof(u32)) 3242 return -EINVAL; 3243 if (get_user(val, (int __user *)optval)) 3244 return -EFAULT; 3245 3246 /* Note: We double the receive buffer from what the user sets 3247 * it to be, also initial rwnd is based on rcvbuf/2. 3248 */ 3249 if (val > (sk->sk_rcvbuf >> 1)) 3250 return -EINVAL; 3251 3252 sctp_sk(sk)->pd_point = val; 3253 3254 return 0; /* is this the right error code? */ 3255 } 3256 3257 /* 3258 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3259 * 3260 * This option will allow a user to change the maximum burst of packets 3261 * that can be emitted by this association. Note that the default value 3262 * is 4, and some implementations may restrict this setting so that it 3263 * can only be lowered. 3264 * 3265 * NOTE: This text doesn't seem right. Do this on a socket basis with 3266 * future associations inheriting the socket value. 3267 */ 3268 static int sctp_setsockopt_maxburst(struct sock *sk, 3269 char __user *optval, 3270 unsigned int optlen) 3271 { 3272 struct sctp_assoc_value params; 3273 struct sctp_sock *sp; 3274 struct sctp_association *asoc; 3275 int val; 3276 int assoc_id = 0; 3277 3278 if (optlen == sizeof(int)) { 3279 pr_warn_ratelimited(DEPRECATED 3280 "%s (pid %d) " 3281 "Use of int in max_burst socket option deprecated.\n" 3282 "Use struct sctp_assoc_value instead\n", 3283 current->comm, task_pid_nr(current)); 3284 if (copy_from_user(&val, optval, optlen)) 3285 return -EFAULT; 3286 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3287 if (copy_from_user(¶ms, optval, optlen)) 3288 return -EFAULT; 3289 val = params.assoc_value; 3290 assoc_id = params.assoc_id; 3291 } else 3292 return -EINVAL; 3293 3294 sp = sctp_sk(sk); 3295 3296 if (assoc_id != 0) { 3297 asoc = sctp_id2assoc(sk, assoc_id); 3298 if (!asoc) 3299 return -EINVAL; 3300 asoc->max_burst = val; 3301 } else 3302 sp->max_burst = val; 3303 3304 return 0; 3305 } 3306 3307 /* 3308 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3309 * 3310 * This set option adds a chunk type that the user is requesting to be 3311 * received only in an authenticated way. Changes to the list of chunks 3312 * will only effect future associations on the socket. 3313 */ 3314 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3315 char __user *optval, 3316 unsigned int optlen) 3317 { 3318 struct net *net = sock_net(sk); 3319 struct sctp_authchunk val; 3320 3321 if (!net->sctp.auth_enable) 3322 return -EACCES; 3323 3324 if (optlen != sizeof(struct sctp_authchunk)) 3325 return -EINVAL; 3326 if (copy_from_user(&val, optval, optlen)) 3327 return -EFAULT; 3328 3329 switch (val.sauth_chunk) { 3330 case SCTP_CID_INIT: 3331 case SCTP_CID_INIT_ACK: 3332 case SCTP_CID_SHUTDOWN_COMPLETE: 3333 case SCTP_CID_AUTH: 3334 return -EINVAL; 3335 } 3336 3337 /* add this chunk id to the endpoint */ 3338 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3339 } 3340 3341 /* 3342 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3343 * 3344 * This option gets or sets the list of HMAC algorithms that the local 3345 * endpoint requires the peer to use. 3346 */ 3347 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3348 char __user *optval, 3349 unsigned int optlen) 3350 { 3351 struct net *net = sock_net(sk); 3352 struct sctp_hmacalgo *hmacs; 3353 u32 idents; 3354 int err; 3355 3356 if (!net->sctp.auth_enable) 3357 return -EACCES; 3358 3359 if (optlen < sizeof(struct sctp_hmacalgo)) 3360 return -EINVAL; 3361 3362 hmacs = memdup_user(optval, optlen); 3363 if (IS_ERR(hmacs)) 3364 return PTR_ERR(hmacs); 3365 3366 idents = hmacs->shmac_num_idents; 3367 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3368 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3369 err = -EINVAL; 3370 goto out; 3371 } 3372 3373 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3374 out: 3375 kfree(hmacs); 3376 return err; 3377 } 3378 3379 /* 3380 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3381 * 3382 * This option will set a shared secret key which is used to build an 3383 * association shared key. 3384 */ 3385 static int sctp_setsockopt_auth_key(struct sock *sk, 3386 char __user *optval, 3387 unsigned int optlen) 3388 { 3389 struct net *net = sock_net(sk); 3390 struct sctp_authkey *authkey; 3391 struct sctp_association *asoc; 3392 int ret; 3393 3394 if (!net->sctp.auth_enable) 3395 return -EACCES; 3396 3397 if (optlen <= sizeof(struct sctp_authkey)) 3398 return -EINVAL; 3399 3400 authkey = memdup_user(optval, optlen); 3401 if (IS_ERR(authkey)) 3402 return PTR_ERR(authkey); 3403 3404 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3405 ret = -EINVAL; 3406 goto out; 3407 } 3408 3409 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3410 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3411 ret = -EINVAL; 3412 goto out; 3413 } 3414 3415 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3416 out: 3417 kzfree(authkey); 3418 return ret; 3419 } 3420 3421 /* 3422 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3423 * 3424 * This option will get or set the active shared key to be used to build 3425 * the association shared key. 3426 */ 3427 static int sctp_setsockopt_active_key(struct sock *sk, 3428 char __user *optval, 3429 unsigned int optlen) 3430 { 3431 struct net *net = sock_net(sk); 3432 struct sctp_authkeyid val; 3433 struct sctp_association *asoc; 3434 3435 if (!net->sctp.auth_enable) 3436 return -EACCES; 3437 3438 if (optlen != sizeof(struct sctp_authkeyid)) 3439 return -EINVAL; 3440 if (copy_from_user(&val, optval, optlen)) 3441 return -EFAULT; 3442 3443 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3444 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3445 return -EINVAL; 3446 3447 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3448 val.scact_keynumber); 3449 } 3450 3451 /* 3452 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3453 * 3454 * This set option will delete a shared secret key from use. 3455 */ 3456 static int sctp_setsockopt_del_key(struct sock *sk, 3457 char __user *optval, 3458 unsigned int optlen) 3459 { 3460 struct net *net = sock_net(sk); 3461 struct sctp_authkeyid val; 3462 struct sctp_association *asoc; 3463 3464 if (!net->sctp.auth_enable) 3465 return -EACCES; 3466 3467 if (optlen != sizeof(struct sctp_authkeyid)) 3468 return -EINVAL; 3469 if (copy_from_user(&val, optval, optlen)) 3470 return -EFAULT; 3471 3472 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3473 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3474 return -EINVAL; 3475 3476 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3477 val.scact_keynumber); 3478 3479 } 3480 3481 /* 3482 * 8.1.23 SCTP_AUTO_ASCONF 3483 * 3484 * This option will enable or disable the use of the automatic generation of 3485 * ASCONF chunks to add and delete addresses to an existing association. Note 3486 * that this option has two caveats namely: a) it only affects sockets that 3487 * are bound to all addresses available to the SCTP stack, and b) the system 3488 * administrator may have an overriding control that turns the ASCONF feature 3489 * off no matter what setting the socket option may have. 3490 * This option expects an integer boolean flag, where a non-zero value turns on 3491 * the option, and a zero value turns off the option. 3492 * Note. In this implementation, socket operation overrides default parameter 3493 * being set by sysctl as well as FreeBSD implementation 3494 */ 3495 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3496 unsigned int optlen) 3497 { 3498 int val; 3499 struct sctp_sock *sp = sctp_sk(sk); 3500 3501 if (optlen < sizeof(int)) 3502 return -EINVAL; 3503 if (get_user(val, (int __user *)optval)) 3504 return -EFAULT; 3505 if (!sctp_is_ep_boundall(sk) && val) 3506 return -EINVAL; 3507 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3508 return 0; 3509 3510 if (val == 0 && sp->do_auto_asconf) { 3511 list_del(&sp->auto_asconf_list); 3512 sp->do_auto_asconf = 0; 3513 } else if (val && !sp->do_auto_asconf) { 3514 list_add_tail(&sp->auto_asconf_list, 3515 &sock_net(sk)->sctp.auto_asconf_splist); 3516 sp->do_auto_asconf = 1; 3517 } 3518 return 0; 3519 } 3520 3521 3522 /* 3523 * SCTP_PEER_ADDR_THLDS 3524 * 3525 * This option allows us to alter the partially failed threshold for one or all 3526 * transports in an association. See Section 6.1 of: 3527 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3528 */ 3529 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3530 char __user *optval, 3531 unsigned int optlen) 3532 { 3533 struct sctp_paddrthlds val; 3534 struct sctp_transport *trans; 3535 struct sctp_association *asoc; 3536 3537 if (optlen < sizeof(struct sctp_paddrthlds)) 3538 return -EINVAL; 3539 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3540 sizeof(struct sctp_paddrthlds))) 3541 return -EFAULT; 3542 3543 3544 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3545 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3546 if (!asoc) 3547 return -ENOENT; 3548 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3549 transports) { 3550 if (val.spt_pathmaxrxt) 3551 trans->pathmaxrxt = val.spt_pathmaxrxt; 3552 trans->pf_retrans = val.spt_pathpfthld; 3553 } 3554 3555 if (val.spt_pathmaxrxt) 3556 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3557 asoc->pf_retrans = val.spt_pathpfthld; 3558 } else { 3559 trans = sctp_addr_id2transport(sk, &val.spt_address, 3560 val.spt_assoc_id); 3561 if (!trans) 3562 return -ENOENT; 3563 3564 if (val.spt_pathmaxrxt) 3565 trans->pathmaxrxt = val.spt_pathmaxrxt; 3566 trans->pf_retrans = val.spt_pathpfthld; 3567 } 3568 3569 return 0; 3570 } 3571 3572 /* API 6.2 setsockopt(), getsockopt() 3573 * 3574 * Applications use setsockopt() and getsockopt() to set or retrieve 3575 * socket options. Socket options are used to change the default 3576 * behavior of sockets calls. They are described in Section 7. 3577 * 3578 * The syntax is: 3579 * 3580 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3581 * int __user *optlen); 3582 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3583 * int optlen); 3584 * 3585 * sd - the socket descript. 3586 * level - set to IPPROTO_SCTP for all SCTP options. 3587 * optname - the option name. 3588 * optval - the buffer to store the value of the option. 3589 * optlen - the size of the buffer. 3590 */ 3591 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3592 char __user *optval, unsigned int optlen) 3593 { 3594 int retval = 0; 3595 3596 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3597 3598 /* I can hardly begin to describe how wrong this is. This is 3599 * so broken as to be worse than useless. The API draft 3600 * REALLY is NOT helpful here... I am not convinced that the 3601 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3602 * are at all well-founded. 3603 */ 3604 if (level != SOL_SCTP) { 3605 struct sctp_af *af = sctp_sk(sk)->pf->af; 3606 retval = af->setsockopt(sk, level, optname, optval, optlen); 3607 goto out_nounlock; 3608 } 3609 3610 lock_sock(sk); 3611 3612 switch (optname) { 3613 case SCTP_SOCKOPT_BINDX_ADD: 3614 /* 'optlen' is the size of the addresses buffer. */ 3615 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3616 optlen, SCTP_BINDX_ADD_ADDR); 3617 break; 3618 3619 case SCTP_SOCKOPT_BINDX_REM: 3620 /* 'optlen' is the size of the addresses buffer. */ 3621 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3622 optlen, SCTP_BINDX_REM_ADDR); 3623 break; 3624 3625 case SCTP_SOCKOPT_CONNECTX_OLD: 3626 /* 'optlen' is the size of the addresses buffer. */ 3627 retval = sctp_setsockopt_connectx_old(sk, 3628 (struct sockaddr __user *)optval, 3629 optlen); 3630 break; 3631 3632 case SCTP_SOCKOPT_CONNECTX: 3633 /* 'optlen' is the size of the addresses buffer. */ 3634 retval = sctp_setsockopt_connectx(sk, 3635 (struct sockaddr __user *)optval, 3636 optlen); 3637 break; 3638 3639 case SCTP_DISABLE_FRAGMENTS: 3640 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3641 break; 3642 3643 case SCTP_EVENTS: 3644 retval = sctp_setsockopt_events(sk, optval, optlen); 3645 break; 3646 3647 case SCTP_AUTOCLOSE: 3648 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3649 break; 3650 3651 case SCTP_PEER_ADDR_PARAMS: 3652 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3653 break; 3654 3655 case SCTP_DELAYED_SACK: 3656 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3657 break; 3658 case SCTP_PARTIAL_DELIVERY_POINT: 3659 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3660 break; 3661 3662 case SCTP_INITMSG: 3663 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3664 break; 3665 case SCTP_DEFAULT_SEND_PARAM: 3666 retval = sctp_setsockopt_default_send_param(sk, optval, 3667 optlen); 3668 break; 3669 case SCTP_PRIMARY_ADDR: 3670 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3671 break; 3672 case SCTP_SET_PEER_PRIMARY_ADDR: 3673 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3674 break; 3675 case SCTP_NODELAY: 3676 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3677 break; 3678 case SCTP_RTOINFO: 3679 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3680 break; 3681 case SCTP_ASSOCINFO: 3682 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3683 break; 3684 case SCTP_I_WANT_MAPPED_V4_ADDR: 3685 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3686 break; 3687 case SCTP_MAXSEG: 3688 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3689 break; 3690 case SCTP_ADAPTATION_LAYER: 3691 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3692 break; 3693 case SCTP_CONTEXT: 3694 retval = sctp_setsockopt_context(sk, optval, optlen); 3695 break; 3696 case SCTP_FRAGMENT_INTERLEAVE: 3697 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3698 break; 3699 case SCTP_MAX_BURST: 3700 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3701 break; 3702 case SCTP_AUTH_CHUNK: 3703 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3704 break; 3705 case SCTP_HMAC_IDENT: 3706 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3707 break; 3708 case SCTP_AUTH_KEY: 3709 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3710 break; 3711 case SCTP_AUTH_ACTIVE_KEY: 3712 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3713 break; 3714 case SCTP_AUTH_DELETE_KEY: 3715 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3716 break; 3717 case SCTP_AUTO_ASCONF: 3718 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3719 break; 3720 case SCTP_PEER_ADDR_THLDS: 3721 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3722 break; 3723 default: 3724 retval = -ENOPROTOOPT; 3725 break; 3726 } 3727 3728 release_sock(sk); 3729 3730 out_nounlock: 3731 return retval; 3732 } 3733 3734 /* API 3.1.6 connect() - UDP Style Syntax 3735 * 3736 * An application may use the connect() call in the UDP model to initiate an 3737 * association without sending data. 3738 * 3739 * The syntax is: 3740 * 3741 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3742 * 3743 * sd: the socket descriptor to have a new association added to. 3744 * 3745 * nam: the address structure (either struct sockaddr_in or struct 3746 * sockaddr_in6 defined in RFC2553 [7]). 3747 * 3748 * len: the size of the address. 3749 */ 3750 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3751 int addr_len) 3752 { 3753 int err = 0; 3754 struct sctp_af *af; 3755 3756 lock_sock(sk); 3757 3758 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3759 addr, addr_len); 3760 3761 /* Validate addr_len before calling common connect/connectx routine. */ 3762 af = sctp_get_af_specific(addr->sa_family); 3763 if (!af || addr_len < af->sockaddr_len) { 3764 err = -EINVAL; 3765 } else { 3766 /* Pass correct addr len to common routine (so it knows there 3767 * is only one address being passed. 3768 */ 3769 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3770 } 3771 3772 release_sock(sk); 3773 return err; 3774 } 3775 3776 /* FIXME: Write comments. */ 3777 static int sctp_disconnect(struct sock *sk, int flags) 3778 { 3779 return -EOPNOTSUPP; /* STUB */ 3780 } 3781 3782 /* 4.1.4 accept() - TCP Style Syntax 3783 * 3784 * Applications use accept() call to remove an established SCTP 3785 * association from the accept queue of the endpoint. A new socket 3786 * descriptor will be returned from accept() to represent the newly 3787 * formed association. 3788 */ 3789 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3790 { 3791 struct sctp_sock *sp; 3792 struct sctp_endpoint *ep; 3793 struct sock *newsk = NULL; 3794 struct sctp_association *asoc; 3795 long timeo; 3796 int error = 0; 3797 3798 lock_sock(sk); 3799 3800 sp = sctp_sk(sk); 3801 ep = sp->ep; 3802 3803 if (!sctp_style(sk, TCP)) { 3804 error = -EOPNOTSUPP; 3805 goto out; 3806 } 3807 3808 if (!sctp_sstate(sk, LISTENING)) { 3809 error = -EINVAL; 3810 goto out; 3811 } 3812 3813 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3814 3815 error = sctp_wait_for_accept(sk, timeo); 3816 if (error) 3817 goto out; 3818 3819 /* We treat the list of associations on the endpoint as the accept 3820 * queue and pick the first association on the list. 3821 */ 3822 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3823 3824 newsk = sp->pf->create_accept_sk(sk, asoc); 3825 if (!newsk) { 3826 error = -ENOMEM; 3827 goto out; 3828 } 3829 3830 /* Populate the fields of the newsk from the oldsk and migrate the 3831 * asoc to the newsk. 3832 */ 3833 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3834 3835 out: 3836 release_sock(sk); 3837 *err = error; 3838 return newsk; 3839 } 3840 3841 /* The SCTP ioctl handler. */ 3842 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3843 { 3844 int rc = -ENOTCONN; 3845 3846 lock_sock(sk); 3847 3848 /* 3849 * SEQPACKET-style sockets in LISTENING state are valid, for 3850 * SCTP, so only discard TCP-style sockets in LISTENING state. 3851 */ 3852 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3853 goto out; 3854 3855 switch (cmd) { 3856 case SIOCINQ: { 3857 struct sk_buff *skb; 3858 unsigned int amount = 0; 3859 3860 skb = skb_peek(&sk->sk_receive_queue); 3861 if (skb != NULL) { 3862 /* 3863 * We will only return the amount of this packet since 3864 * that is all that will be read. 3865 */ 3866 amount = skb->len; 3867 } 3868 rc = put_user(amount, (int __user *)arg); 3869 break; 3870 } 3871 default: 3872 rc = -ENOIOCTLCMD; 3873 break; 3874 } 3875 out: 3876 release_sock(sk); 3877 return rc; 3878 } 3879 3880 /* This is the function which gets called during socket creation to 3881 * initialized the SCTP-specific portion of the sock. 3882 * The sock structure should already be zero-filled memory. 3883 */ 3884 static int sctp_init_sock(struct sock *sk) 3885 { 3886 struct net *net = sock_net(sk); 3887 struct sctp_sock *sp; 3888 3889 pr_debug("%s: sk:%p\n", __func__, sk); 3890 3891 sp = sctp_sk(sk); 3892 3893 /* Initialize the SCTP per socket area. */ 3894 switch (sk->sk_type) { 3895 case SOCK_SEQPACKET: 3896 sp->type = SCTP_SOCKET_UDP; 3897 break; 3898 case SOCK_STREAM: 3899 sp->type = SCTP_SOCKET_TCP; 3900 break; 3901 default: 3902 return -ESOCKTNOSUPPORT; 3903 } 3904 3905 /* Initialize default send parameters. These parameters can be 3906 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3907 */ 3908 sp->default_stream = 0; 3909 sp->default_ppid = 0; 3910 sp->default_flags = 0; 3911 sp->default_context = 0; 3912 sp->default_timetolive = 0; 3913 3914 sp->default_rcv_context = 0; 3915 sp->max_burst = net->sctp.max_burst; 3916 3917 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 3918 3919 /* Initialize default setup parameters. These parameters 3920 * can be modified with the SCTP_INITMSG socket option or 3921 * overridden by the SCTP_INIT CMSG. 3922 */ 3923 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3924 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3925 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 3926 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 3927 3928 /* Initialize default RTO related parameters. These parameters can 3929 * be modified for with the SCTP_RTOINFO socket option. 3930 */ 3931 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 3932 sp->rtoinfo.srto_max = net->sctp.rto_max; 3933 sp->rtoinfo.srto_min = net->sctp.rto_min; 3934 3935 /* Initialize default association related parameters. These parameters 3936 * can be modified with the SCTP_ASSOCINFO socket option. 3937 */ 3938 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 3939 sp->assocparams.sasoc_number_peer_destinations = 0; 3940 sp->assocparams.sasoc_peer_rwnd = 0; 3941 sp->assocparams.sasoc_local_rwnd = 0; 3942 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 3943 3944 /* Initialize default event subscriptions. By default, all the 3945 * options are off. 3946 */ 3947 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3948 3949 /* Default Peer Address Parameters. These defaults can 3950 * be modified via SCTP_PEER_ADDR_PARAMS 3951 */ 3952 sp->hbinterval = net->sctp.hb_interval; 3953 sp->pathmaxrxt = net->sctp.max_retrans_path; 3954 sp->pathmtu = 0; /* allow default discovery */ 3955 sp->sackdelay = net->sctp.sack_timeout; 3956 sp->sackfreq = 2; 3957 sp->param_flags = SPP_HB_ENABLE | 3958 SPP_PMTUD_ENABLE | 3959 SPP_SACKDELAY_ENABLE; 3960 3961 /* If enabled no SCTP message fragmentation will be performed. 3962 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3963 */ 3964 sp->disable_fragments = 0; 3965 3966 /* Enable Nagle algorithm by default. */ 3967 sp->nodelay = 0; 3968 3969 /* Enable by default. */ 3970 sp->v4mapped = 1; 3971 3972 /* Auto-close idle associations after the configured 3973 * number of seconds. A value of 0 disables this 3974 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3975 * for UDP-style sockets only. 3976 */ 3977 sp->autoclose = 0; 3978 3979 /* User specified fragmentation limit. */ 3980 sp->user_frag = 0; 3981 3982 sp->adaptation_ind = 0; 3983 3984 sp->pf = sctp_get_pf_specific(sk->sk_family); 3985 3986 /* Control variables for partial data delivery. */ 3987 atomic_set(&sp->pd_mode, 0); 3988 skb_queue_head_init(&sp->pd_lobby); 3989 sp->frag_interleave = 0; 3990 3991 /* Create a per socket endpoint structure. Even if we 3992 * change the data structure relationships, this may still 3993 * be useful for storing pre-connect address information. 3994 */ 3995 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 3996 if (!sp->ep) 3997 return -ENOMEM; 3998 3999 sp->hmac = NULL; 4000 4001 sk->sk_destruct = sctp_destruct_sock; 4002 4003 SCTP_DBG_OBJCNT_INC(sock); 4004 4005 local_bh_disable(); 4006 percpu_counter_inc(&sctp_sockets_allocated); 4007 sock_prot_inuse_add(net, sk->sk_prot, 1); 4008 if (net->sctp.default_auto_asconf) { 4009 list_add_tail(&sp->auto_asconf_list, 4010 &net->sctp.auto_asconf_splist); 4011 sp->do_auto_asconf = 1; 4012 } else 4013 sp->do_auto_asconf = 0; 4014 local_bh_enable(); 4015 4016 return 0; 4017 } 4018 4019 /* Cleanup any SCTP per socket resources. */ 4020 static void sctp_destroy_sock(struct sock *sk) 4021 { 4022 struct sctp_sock *sp; 4023 4024 pr_debug("%s: sk:%p\n", __func__, sk); 4025 4026 /* Release our hold on the endpoint. */ 4027 sp = sctp_sk(sk); 4028 /* This could happen during socket init, thus we bail out 4029 * early, since the rest of the below is not setup either. 4030 */ 4031 if (sp->ep == NULL) 4032 return; 4033 4034 if (sp->do_auto_asconf) { 4035 sp->do_auto_asconf = 0; 4036 list_del(&sp->auto_asconf_list); 4037 } 4038 sctp_endpoint_free(sp->ep); 4039 local_bh_disable(); 4040 percpu_counter_dec(&sctp_sockets_allocated); 4041 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4042 local_bh_enable(); 4043 } 4044 4045 /* Triggered when there are no references on the socket anymore */ 4046 static void sctp_destruct_sock(struct sock *sk) 4047 { 4048 struct sctp_sock *sp = sctp_sk(sk); 4049 4050 /* Free up the HMAC transform. */ 4051 crypto_free_hash(sp->hmac); 4052 4053 inet_sock_destruct(sk); 4054 } 4055 4056 /* API 4.1.7 shutdown() - TCP Style Syntax 4057 * int shutdown(int socket, int how); 4058 * 4059 * sd - the socket descriptor of the association to be closed. 4060 * how - Specifies the type of shutdown. The values are 4061 * as follows: 4062 * SHUT_RD 4063 * Disables further receive operations. No SCTP 4064 * protocol action is taken. 4065 * SHUT_WR 4066 * Disables further send operations, and initiates 4067 * the SCTP shutdown sequence. 4068 * SHUT_RDWR 4069 * Disables further send and receive operations 4070 * and initiates the SCTP shutdown sequence. 4071 */ 4072 static void sctp_shutdown(struct sock *sk, int how) 4073 { 4074 struct net *net = sock_net(sk); 4075 struct sctp_endpoint *ep; 4076 struct sctp_association *asoc; 4077 4078 if (!sctp_style(sk, TCP)) 4079 return; 4080 4081 if (how & SEND_SHUTDOWN) { 4082 ep = sctp_sk(sk)->ep; 4083 if (!list_empty(&ep->asocs)) { 4084 asoc = list_entry(ep->asocs.next, 4085 struct sctp_association, asocs); 4086 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4087 } 4088 } 4089 } 4090 4091 /* 7.2.1 Association Status (SCTP_STATUS) 4092 4093 * Applications can retrieve current status information about an 4094 * association, including association state, peer receiver window size, 4095 * number of unacked data chunks, and number of data chunks pending 4096 * receipt. This information is read-only. 4097 */ 4098 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4099 char __user *optval, 4100 int __user *optlen) 4101 { 4102 struct sctp_status status; 4103 struct sctp_association *asoc = NULL; 4104 struct sctp_transport *transport; 4105 sctp_assoc_t associd; 4106 int retval = 0; 4107 4108 if (len < sizeof(status)) { 4109 retval = -EINVAL; 4110 goto out; 4111 } 4112 4113 len = sizeof(status); 4114 if (copy_from_user(&status, optval, len)) { 4115 retval = -EFAULT; 4116 goto out; 4117 } 4118 4119 associd = status.sstat_assoc_id; 4120 asoc = sctp_id2assoc(sk, associd); 4121 if (!asoc) { 4122 retval = -EINVAL; 4123 goto out; 4124 } 4125 4126 transport = asoc->peer.primary_path; 4127 4128 status.sstat_assoc_id = sctp_assoc2id(asoc); 4129 status.sstat_state = asoc->state; 4130 status.sstat_rwnd = asoc->peer.rwnd; 4131 status.sstat_unackdata = asoc->unack_data; 4132 4133 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4134 status.sstat_instrms = asoc->c.sinit_max_instreams; 4135 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4136 status.sstat_fragmentation_point = asoc->frag_point; 4137 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4138 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4139 transport->af_specific->sockaddr_len); 4140 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4141 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4142 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4143 status.sstat_primary.spinfo_state = transport->state; 4144 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4145 status.sstat_primary.spinfo_srtt = transport->srtt; 4146 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4147 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4148 4149 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4150 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4151 4152 if (put_user(len, optlen)) { 4153 retval = -EFAULT; 4154 goto out; 4155 } 4156 4157 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4158 __func__, len, status.sstat_state, status.sstat_rwnd, 4159 status.sstat_assoc_id); 4160 4161 if (copy_to_user(optval, &status, len)) { 4162 retval = -EFAULT; 4163 goto out; 4164 } 4165 4166 out: 4167 return retval; 4168 } 4169 4170 4171 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4172 * 4173 * Applications can retrieve information about a specific peer address 4174 * of an association, including its reachability state, congestion 4175 * window, and retransmission timer values. This information is 4176 * read-only. 4177 */ 4178 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4179 char __user *optval, 4180 int __user *optlen) 4181 { 4182 struct sctp_paddrinfo pinfo; 4183 struct sctp_transport *transport; 4184 int retval = 0; 4185 4186 if (len < sizeof(pinfo)) { 4187 retval = -EINVAL; 4188 goto out; 4189 } 4190 4191 len = sizeof(pinfo); 4192 if (copy_from_user(&pinfo, optval, len)) { 4193 retval = -EFAULT; 4194 goto out; 4195 } 4196 4197 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4198 pinfo.spinfo_assoc_id); 4199 if (!transport) 4200 return -EINVAL; 4201 4202 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4203 pinfo.spinfo_state = transport->state; 4204 pinfo.spinfo_cwnd = transport->cwnd; 4205 pinfo.spinfo_srtt = transport->srtt; 4206 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4207 pinfo.spinfo_mtu = transport->pathmtu; 4208 4209 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4210 pinfo.spinfo_state = SCTP_ACTIVE; 4211 4212 if (put_user(len, optlen)) { 4213 retval = -EFAULT; 4214 goto out; 4215 } 4216 4217 if (copy_to_user(optval, &pinfo, len)) { 4218 retval = -EFAULT; 4219 goto out; 4220 } 4221 4222 out: 4223 return retval; 4224 } 4225 4226 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4227 * 4228 * This option is a on/off flag. If enabled no SCTP message 4229 * fragmentation will be performed. Instead if a message being sent 4230 * exceeds the current PMTU size, the message will NOT be sent and 4231 * instead a error will be indicated to the user. 4232 */ 4233 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4234 char __user *optval, int __user *optlen) 4235 { 4236 int val; 4237 4238 if (len < sizeof(int)) 4239 return -EINVAL; 4240 4241 len = sizeof(int); 4242 val = (sctp_sk(sk)->disable_fragments == 1); 4243 if (put_user(len, optlen)) 4244 return -EFAULT; 4245 if (copy_to_user(optval, &val, len)) 4246 return -EFAULT; 4247 return 0; 4248 } 4249 4250 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4251 * 4252 * This socket option is used to specify various notifications and 4253 * ancillary data the user wishes to receive. 4254 */ 4255 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4256 int __user *optlen) 4257 { 4258 if (len <= 0) 4259 return -EINVAL; 4260 if (len > sizeof(struct sctp_event_subscribe)) 4261 len = sizeof(struct sctp_event_subscribe); 4262 if (put_user(len, optlen)) 4263 return -EFAULT; 4264 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4265 return -EFAULT; 4266 return 0; 4267 } 4268 4269 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4270 * 4271 * This socket option is applicable to the UDP-style socket only. When 4272 * set it will cause associations that are idle for more than the 4273 * specified number of seconds to automatically close. An association 4274 * being idle is defined an association that has NOT sent or received 4275 * user data. The special value of '0' indicates that no automatic 4276 * close of any associations should be performed. The option expects an 4277 * integer defining the number of seconds of idle time before an 4278 * association is closed. 4279 */ 4280 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4281 { 4282 /* Applicable to UDP-style socket only */ 4283 if (sctp_style(sk, TCP)) 4284 return -EOPNOTSUPP; 4285 if (len < sizeof(int)) 4286 return -EINVAL; 4287 len = sizeof(int); 4288 if (put_user(len, optlen)) 4289 return -EFAULT; 4290 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4291 return -EFAULT; 4292 return 0; 4293 } 4294 4295 /* Helper routine to branch off an association to a new socket. */ 4296 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4297 { 4298 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4299 struct socket *sock; 4300 struct sctp_af *af; 4301 int err = 0; 4302 4303 if (!asoc) 4304 return -EINVAL; 4305 4306 /* An association cannot be branched off from an already peeled-off 4307 * socket, nor is this supported for tcp style sockets. 4308 */ 4309 if (!sctp_style(sk, UDP)) 4310 return -EINVAL; 4311 4312 /* Create a new socket. */ 4313 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4314 if (err < 0) 4315 return err; 4316 4317 sctp_copy_sock(sock->sk, sk, asoc); 4318 4319 /* Make peeled-off sockets more like 1-1 accepted sockets. 4320 * Set the daddr and initialize id to something more random 4321 */ 4322 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4323 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4324 4325 /* Populate the fields of the newsk from the oldsk and migrate the 4326 * asoc to the newsk. 4327 */ 4328 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4329 4330 *sockp = sock; 4331 4332 return err; 4333 } 4334 EXPORT_SYMBOL(sctp_do_peeloff); 4335 4336 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4337 { 4338 sctp_peeloff_arg_t peeloff; 4339 struct socket *newsock; 4340 struct file *newfile; 4341 int retval = 0; 4342 4343 if (len < sizeof(sctp_peeloff_arg_t)) 4344 return -EINVAL; 4345 len = sizeof(sctp_peeloff_arg_t); 4346 if (copy_from_user(&peeloff, optval, len)) 4347 return -EFAULT; 4348 4349 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4350 if (retval < 0) 4351 goto out; 4352 4353 /* Map the socket to an unused fd that can be returned to the user. */ 4354 retval = get_unused_fd_flags(0); 4355 if (retval < 0) { 4356 sock_release(newsock); 4357 goto out; 4358 } 4359 4360 newfile = sock_alloc_file(newsock, 0, NULL); 4361 if (unlikely(IS_ERR(newfile))) { 4362 put_unused_fd(retval); 4363 sock_release(newsock); 4364 return PTR_ERR(newfile); 4365 } 4366 4367 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4368 retval); 4369 4370 /* Return the fd mapped to the new socket. */ 4371 if (put_user(len, optlen)) { 4372 fput(newfile); 4373 put_unused_fd(retval); 4374 return -EFAULT; 4375 } 4376 peeloff.sd = retval; 4377 if (copy_to_user(optval, &peeloff, len)) { 4378 fput(newfile); 4379 put_unused_fd(retval); 4380 return -EFAULT; 4381 } 4382 fd_install(retval, newfile); 4383 out: 4384 return retval; 4385 } 4386 4387 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4388 * 4389 * Applications can enable or disable heartbeats for any peer address of 4390 * an association, modify an address's heartbeat interval, force a 4391 * heartbeat to be sent immediately, and adjust the address's maximum 4392 * number of retransmissions sent before an address is considered 4393 * unreachable. The following structure is used to access and modify an 4394 * address's parameters: 4395 * 4396 * struct sctp_paddrparams { 4397 * sctp_assoc_t spp_assoc_id; 4398 * struct sockaddr_storage spp_address; 4399 * uint32_t spp_hbinterval; 4400 * uint16_t spp_pathmaxrxt; 4401 * uint32_t spp_pathmtu; 4402 * uint32_t spp_sackdelay; 4403 * uint32_t spp_flags; 4404 * }; 4405 * 4406 * spp_assoc_id - (one-to-many style socket) This is filled in the 4407 * application, and identifies the association for 4408 * this query. 4409 * spp_address - This specifies which address is of interest. 4410 * spp_hbinterval - This contains the value of the heartbeat interval, 4411 * in milliseconds. If a value of zero 4412 * is present in this field then no changes are to 4413 * be made to this parameter. 4414 * spp_pathmaxrxt - This contains the maximum number of 4415 * retransmissions before this address shall be 4416 * considered unreachable. If a value of zero 4417 * is present in this field then no changes are to 4418 * be made to this parameter. 4419 * spp_pathmtu - When Path MTU discovery is disabled the value 4420 * specified here will be the "fixed" path mtu. 4421 * Note that if the spp_address field is empty 4422 * then all associations on this address will 4423 * have this fixed path mtu set upon them. 4424 * 4425 * spp_sackdelay - When delayed sack is enabled, this value specifies 4426 * the number of milliseconds that sacks will be delayed 4427 * for. This value will apply to all addresses of an 4428 * association if the spp_address field is empty. Note 4429 * also, that if delayed sack is enabled and this 4430 * value is set to 0, no change is made to the last 4431 * recorded delayed sack timer value. 4432 * 4433 * spp_flags - These flags are used to control various features 4434 * on an association. The flag field may contain 4435 * zero or more of the following options. 4436 * 4437 * SPP_HB_ENABLE - Enable heartbeats on the 4438 * specified address. Note that if the address 4439 * field is empty all addresses for the association 4440 * have heartbeats enabled upon them. 4441 * 4442 * SPP_HB_DISABLE - Disable heartbeats on the 4443 * speicifed address. Note that if the address 4444 * field is empty all addresses for the association 4445 * will have their heartbeats disabled. Note also 4446 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4447 * mutually exclusive, only one of these two should 4448 * be specified. Enabling both fields will have 4449 * undetermined results. 4450 * 4451 * SPP_HB_DEMAND - Request a user initiated heartbeat 4452 * to be made immediately. 4453 * 4454 * SPP_PMTUD_ENABLE - This field will enable PMTU 4455 * discovery upon the specified address. Note that 4456 * if the address feild is empty then all addresses 4457 * on the association are effected. 4458 * 4459 * SPP_PMTUD_DISABLE - This field will disable PMTU 4460 * discovery upon the specified address. Note that 4461 * if the address feild is empty then all addresses 4462 * on the association are effected. Not also that 4463 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4464 * exclusive. Enabling both will have undetermined 4465 * results. 4466 * 4467 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4468 * on delayed sack. The time specified in spp_sackdelay 4469 * is used to specify the sack delay for this address. Note 4470 * that if spp_address is empty then all addresses will 4471 * enable delayed sack and take on the sack delay 4472 * value specified in spp_sackdelay. 4473 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4474 * off delayed sack. If the spp_address field is blank then 4475 * delayed sack is disabled for the entire association. Note 4476 * also that this field is mutually exclusive to 4477 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4478 * results. 4479 */ 4480 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4481 char __user *optval, int __user *optlen) 4482 { 4483 struct sctp_paddrparams params; 4484 struct sctp_transport *trans = NULL; 4485 struct sctp_association *asoc = NULL; 4486 struct sctp_sock *sp = sctp_sk(sk); 4487 4488 if (len < sizeof(struct sctp_paddrparams)) 4489 return -EINVAL; 4490 len = sizeof(struct sctp_paddrparams); 4491 if (copy_from_user(¶ms, optval, len)) 4492 return -EFAULT; 4493 4494 /* If an address other than INADDR_ANY is specified, and 4495 * no transport is found, then the request is invalid. 4496 */ 4497 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4498 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4499 params.spp_assoc_id); 4500 if (!trans) { 4501 pr_debug("%s: failed no transport\n", __func__); 4502 return -EINVAL; 4503 } 4504 } 4505 4506 /* Get association, if assoc_id != 0 and the socket is a one 4507 * to many style socket, and an association was not found, then 4508 * the id was invalid. 4509 */ 4510 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4511 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4512 pr_debug("%s: failed no association\n", __func__); 4513 return -EINVAL; 4514 } 4515 4516 if (trans) { 4517 /* Fetch transport values. */ 4518 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4519 params.spp_pathmtu = trans->pathmtu; 4520 params.spp_pathmaxrxt = trans->pathmaxrxt; 4521 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4522 4523 /*draft-11 doesn't say what to return in spp_flags*/ 4524 params.spp_flags = trans->param_flags; 4525 } else if (asoc) { 4526 /* Fetch association values. */ 4527 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4528 params.spp_pathmtu = asoc->pathmtu; 4529 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4530 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4531 4532 /*draft-11 doesn't say what to return in spp_flags*/ 4533 params.spp_flags = asoc->param_flags; 4534 } else { 4535 /* Fetch socket values. */ 4536 params.spp_hbinterval = sp->hbinterval; 4537 params.spp_pathmtu = sp->pathmtu; 4538 params.spp_sackdelay = sp->sackdelay; 4539 params.spp_pathmaxrxt = sp->pathmaxrxt; 4540 4541 /*draft-11 doesn't say what to return in spp_flags*/ 4542 params.spp_flags = sp->param_flags; 4543 } 4544 4545 if (copy_to_user(optval, ¶ms, len)) 4546 return -EFAULT; 4547 4548 if (put_user(len, optlen)) 4549 return -EFAULT; 4550 4551 return 0; 4552 } 4553 4554 /* 4555 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4556 * 4557 * This option will effect the way delayed acks are performed. This 4558 * option allows you to get or set the delayed ack time, in 4559 * milliseconds. It also allows changing the delayed ack frequency. 4560 * Changing the frequency to 1 disables the delayed sack algorithm. If 4561 * the assoc_id is 0, then this sets or gets the endpoints default 4562 * values. If the assoc_id field is non-zero, then the set or get 4563 * effects the specified association for the one to many model (the 4564 * assoc_id field is ignored by the one to one model). Note that if 4565 * sack_delay or sack_freq are 0 when setting this option, then the 4566 * current values will remain unchanged. 4567 * 4568 * struct sctp_sack_info { 4569 * sctp_assoc_t sack_assoc_id; 4570 * uint32_t sack_delay; 4571 * uint32_t sack_freq; 4572 * }; 4573 * 4574 * sack_assoc_id - This parameter, indicates which association the user 4575 * is performing an action upon. Note that if this field's value is 4576 * zero then the endpoints default value is changed (effecting future 4577 * associations only). 4578 * 4579 * sack_delay - This parameter contains the number of milliseconds that 4580 * the user is requesting the delayed ACK timer be set to. Note that 4581 * this value is defined in the standard to be between 200 and 500 4582 * milliseconds. 4583 * 4584 * sack_freq - This parameter contains the number of packets that must 4585 * be received before a sack is sent without waiting for the delay 4586 * timer to expire. The default value for this is 2, setting this 4587 * value to 1 will disable the delayed sack algorithm. 4588 */ 4589 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4590 char __user *optval, 4591 int __user *optlen) 4592 { 4593 struct sctp_sack_info params; 4594 struct sctp_association *asoc = NULL; 4595 struct sctp_sock *sp = sctp_sk(sk); 4596 4597 if (len >= sizeof(struct sctp_sack_info)) { 4598 len = sizeof(struct sctp_sack_info); 4599 4600 if (copy_from_user(¶ms, optval, len)) 4601 return -EFAULT; 4602 } else if (len == sizeof(struct sctp_assoc_value)) { 4603 pr_warn_ratelimited(DEPRECATED 4604 "%s (pid %d) " 4605 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 4606 "Use struct sctp_sack_info instead\n", 4607 current->comm, task_pid_nr(current)); 4608 if (copy_from_user(¶ms, optval, len)) 4609 return -EFAULT; 4610 } else 4611 return -EINVAL; 4612 4613 /* Get association, if sack_assoc_id != 0 and the socket is a one 4614 * to many style socket, and an association was not found, then 4615 * the id was invalid. 4616 */ 4617 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4618 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4619 return -EINVAL; 4620 4621 if (asoc) { 4622 /* Fetch association values. */ 4623 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4624 params.sack_delay = jiffies_to_msecs( 4625 asoc->sackdelay); 4626 params.sack_freq = asoc->sackfreq; 4627 4628 } else { 4629 params.sack_delay = 0; 4630 params.sack_freq = 1; 4631 } 4632 } else { 4633 /* Fetch socket values. */ 4634 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4635 params.sack_delay = sp->sackdelay; 4636 params.sack_freq = sp->sackfreq; 4637 } else { 4638 params.sack_delay = 0; 4639 params.sack_freq = 1; 4640 } 4641 } 4642 4643 if (copy_to_user(optval, ¶ms, len)) 4644 return -EFAULT; 4645 4646 if (put_user(len, optlen)) 4647 return -EFAULT; 4648 4649 return 0; 4650 } 4651 4652 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4653 * 4654 * Applications can specify protocol parameters for the default association 4655 * initialization. The option name argument to setsockopt() and getsockopt() 4656 * is SCTP_INITMSG. 4657 * 4658 * Setting initialization parameters is effective only on an unconnected 4659 * socket (for UDP-style sockets only future associations are effected 4660 * by the change). With TCP-style sockets, this option is inherited by 4661 * sockets derived from a listener socket. 4662 */ 4663 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4664 { 4665 if (len < sizeof(struct sctp_initmsg)) 4666 return -EINVAL; 4667 len = sizeof(struct sctp_initmsg); 4668 if (put_user(len, optlen)) 4669 return -EFAULT; 4670 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4671 return -EFAULT; 4672 return 0; 4673 } 4674 4675 4676 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4677 char __user *optval, int __user *optlen) 4678 { 4679 struct sctp_association *asoc; 4680 int cnt = 0; 4681 struct sctp_getaddrs getaddrs; 4682 struct sctp_transport *from; 4683 void __user *to; 4684 union sctp_addr temp; 4685 struct sctp_sock *sp = sctp_sk(sk); 4686 int addrlen; 4687 size_t space_left; 4688 int bytes_copied; 4689 4690 if (len < sizeof(struct sctp_getaddrs)) 4691 return -EINVAL; 4692 4693 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4694 return -EFAULT; 4695 4696 /* For UDP-style sockets, id specifies the association to query. */ 4697 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4698 if (!asoc) 4699 return -EINVAL; 4700 4701 to = optval + offsetof(struct sctp_getaddrs, addrs); 4702 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4703 4704 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4705 transports) { 4706 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4707 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4708 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4709 if (space_left < addrlen) 4710 return -ENOMEM; 4711 if (copy_to_user(to, &temp, addrlen)) 4712 return -EFAULT; 4713 to += addrlen; 4714 cnt++; 4715 space_left -= addrlen; 4716 } 4717 4718 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4719 return -EFAULT; 4720 bytes_copied = ((char __user *)to) - optval; 4721 if (put_user(bytes_copied, optlen)) 4722 return -EFAULT; 4723 4724 return 0; 4725 } 4726 4727 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4728 size_t space_left, int *bytes_copied) 4729 { 4730 struct sctp_sockaddr_entry *addr; 4731 union sctp_addr temp; 4732 int cnt = 0; 4733 int addrlen; 4734 struct net *net = sock_net(sk); 4735 4736 rcu_read_lock(); 4737 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4738 if (!addr->valid) 4739 continue; 4740 4741 if ((PF_INET == sk->sk_family) && 4742 (AF_INET6 == addr->a.sa.sa_family)) 4743 continue; 4744 if ((PF_INET6 == sk->sk_family) && 4745 inet_v6_ipv6only(sk) && 4746 (AF_INET == addr->a.sa.sa_family)) 4747 continue; 4748 memcpy(&temp, &addr->a, sizeof(temp)); 4749 if (!temp.v4.sin_port) 4750 temp.v4.sin_port = htons(port); 4751 4752 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4753 &temp); 4754 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4755 if (space_left < addrlen) { 4756 cnt = -ENOMEM; 4757 break; 4758 } 4759 memcpy(to, &temp, addrlen); 4760 4761 to += addrlen; 4762 cnt++; 4763 space_left -= addrlen; 4764 *bytes_copied += addrlen; 4765 } 4766 rcu_read_unlock(); 4767 4768 return cnt; 4769 } 4770 4771 4772 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4773 char __user *optval, int __user *optlen) 4774 { 4775 struct sctp_bind_addr *bp; 4776 struct sctp_association *asoc; 4777 int cnt = 0; 4778 struct sctp_getaddrs getaddrs; 4779 struct sctp_sockaddr_entry *addr; 4780 void __user *to; 4781 union sctp_addr temp; 4782 struct sctp_sock *sp = sctp_sk(sk); 4783 int addrlen; 4784 int err = 0; 4785 size_t space_left; 4786 int bytes_copied = 0; 4787 void *addrs; 4788 void *buf; 4789 4790 if (len < sizeof(struct sctp_getaddrs)) 4791 return -EINVAL; 4792 4793 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4794 return -EFAULT; 4795 4796 /* 4797 * For UDP-style sockets, id specifies the association to query. 4798 * If the id field is set to the value '0' then the locally bound 4799 * addresses are returned without regard to any particular 4800 * association. 4801 */ 4802 if (0 == getaddrs.assoc_id) { 4803 bp = &sctp_sk(sk)->ep->base.bind_addr; 4804 } else { 4805 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4806 if (!asoc) 4807 return -EINVAL; 4808 bp = &asoc->base.bind_addr; 4809 } 4810 4811 to = optval + offsetof(struct sctp_getaddrs, addrs); 4812 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4813 4814 addrs = kmalloc(space_left, GFP_KERNEL); 4815 if (!addrs) 4816 return -ENOMEM; 4817 4818 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4819 * addresses from the global local address list. 4820 */ 4821 if (sctp_list_single_entry(&bp->address_list)) { 4822 addr = list_entry(bp->address_list.next, 4823 struct sctp_sockaddr_entry, list); 4824 if (sctp_is_any(sk, &addr->a)) { 4825 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4826 space_left, &bytes_copied); 4827 if (cnt < 0) { 4828 err = cnt; 4829 goto out; 4830 } 4831 goto copy_getaddrs; 4832 } 4833 } 4834 4835 buf = addrs; 4836 /* Protection on the bound address list is not needed since 4837 * in the socket option context we hold a socket lock and 4838 * thus the bound address list can't change. 4839 */ 4840 list_for_each_entry(addr, &bp->address_list, list) { 4841 memcpy(&temp, &addr->a, sizeof(temp)); 4842 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4843 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4844 if (space_left < addrlen) { 4845 err = -ENOMEM; /*fixme: right error?*/ 4846 goto out; 4847 } 4848 memcpy(buf, &temp, addrlen); 4849 buf += addrlen; 4850 bytes_copied += addrlen; 4851 cnt++; 4852 space_left -= addrlen; 4853 } 4854 4855 copy_getaddrs: 4856 if (copy_to_user(to, addrs, bytes_copied)) { 4857 err = -EFAULT; 4858 goto out; 4859 } 4860 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4861 err = -EFAULT; 4862 goto out; 4863 } 4864 if (put_user(bytes_copied, optlen)) 4865 err = -EFAULT; 4866 out: 4867 kfree(addrs); 4868 return err; 4869 } 4870 4871 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4872 * 4873 * Requests that the local SCTP stack use the enclosed peer address as 4874 * the association primary. The enclosed address must be one of the 4875 * association peer's addresses. 4876 */ 4877 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4878 char __user *optval, int __user *optlen) 4879 { 4880 struct sctp_prim prim; 4881 struct sctp_association *asoc; 4882 struct sctp_sock *sp = sctp_sk(sk); 4883 4884 if (len < sizeof(struct sctp_prim)) 4885 return -EINVAL; 4886 4887 len = sizeof(struct sctp_prim); 4888 4889 if (copy_from_user(&prim, optval, len)) 4890 return -EFAULT; 4891 4892 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4893 if (!asoc) 4894 return -EINVAL; 4895 4896 if (!asoc->peer.primary_path) 4897 return -ENOTCONN; 4898 4899 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4900 asoc->peer.primary_path->af_specific->sockaddr_len); 4901 4902 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4903 (union sctp_addr *)&prim.ssp_addr); 4904 4905 if (put_user(len, optlen)) 4906 return -EFAULT; 4907 if (copy_to_user(optval, &prim, len)) 4908 return -EFAULT; 4909 4910 return 0; 4911 } 4912 4913 /* 4914 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4915 * 4916 * Requests that the local endpoint set the specified Adaptation Layer 4917 * Indication parameter for all future INIT and INIT-ACK exchanges. 4918 */ 4919 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4920 char __user *optval, int __user *optlen) 4921 { 4922 struct sctp_setadaptation adaptation; 4923 4924 if (len < sizeof(struct sctp_setadaptation)) 4925 return -EINVAL; 4926 4927 len = sizeof(struct sctp_setadaptation); 4928 4929 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4930 4931 if (put_user(len, optlen)) 4932 return -EFAULT; 4933 if (copy_to_user(optval, &adaptation, len)) 4934 return -EFAULT; 4935 4936 return 0; 4937 } 4938 4939 /* 4940 * 4941 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4942 * 4943 * Applications that wish to use the sendto() system call may wish to 4944 * specify a default set of parameters that would normally be supplied 4945 * through the inclusion of ancillary data. This socket option allows 4946 * such an application to set the default sctp_sndrcvinfo structure. 4947 4948 4949 * The application that wishes to use this socket option simply passes 4950 * in to this call the sctp_sndrcvinfo structure defined in Section 4951 * 5.2.2) The input parameters accepted by this call include 4952 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4953 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4954 * to this call if the caller is using the UDP model. 4955 * 4956 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4957 */ 4958 static int sctp_getsockopt_default_send_param(struct sock *sk, 4959 int len, char __user *optval, 4960 int __user *optlen) 4961 { 4962 struct sctp_sndrcvinfo info; 4963 struct sctp_association *asoc; 4964 struct sctp_sock *sp = sctp_sk(sk); 4965 4966 if (len < sizeof(struct sctp_sndrcvinfo)) 4967 return -EINVAL; 4968 4969 len = sizeof(struct sctp_sndrcvinfo); 4970 4971 if (copy_from_user(&info, optval, len)) 4972 return -EFAULT; 4973 4974 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4975 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4976 return -EINVAL; 4977 4978 if (asoc) { 4979 info.sinfo_stream = asoc->default_stream; 4980 info.sinfo_flags = asoc->default_flags; 4981 info.sinfo_ppid = asoc->default_ppid; 4982 info.sinfo_context = asoc->default_context; 4983 info.sinfo_timetolive = asoc->default_timetolive; 4984 } else { 4985 info.sinfo_stream = sp->default_stream; 4986 info.sinfo_flags = sp->default_flags; 4987 info.sinfo_ppid = sp->default_ppid; 4988 info.sinfo_context = sp->default_context; 4989 info.sinfo_timetolive = sp->default_timetolive; 4990 } 4991 4992 if (put_user(len, optlen)) 4993 return -EFAULT; 4994 if (copy_to_user(optval, &info, len)) 4995 return -EFAULT; 4996 4997 return 0; 4998 } 4999 5000 /* 5001 * 5002 * 7.1.5 SCTP_NODELAY 5003 * 5004 * Turn on/off any Nagle-like algorithm. This means that packets are 5005 * generally sent as soon as possible and no unnecessary delays are 5006 * introduced, at the cost of more packets in the network. Expects an 5007 * integer boolean flag. 5008 */ 5009 5010 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5011 char __user *optval, int __user *optlen) 5012 { 5013 int val; 5014 5015 if (len < sizeof(int)) 5016 return -EINVAL; 5017 5018 len = sizeof(int); 5019 val = (sctp_sk(sk)->nodelay == 1); 5020 if (put_user(len, optlen)) 5021 return -EFAULT; 5022 if (copy_to_user(optval, &val, len)) 5023 return -EFAULT; 5024 return 0; 5025 } 5026 5027 /* 5028 * 5029 * 7.1.1 SCTP_RTOINFO 5030 * 5031 * The protocol parameters used to initialize and bound retransmission 5032 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5033 * and modify these parameters. 5034 * All parameters are time values, in milliseconds. A value of 0, when 5035 * modifying the parameters, indicates that the current value should not 5036 * be changed. 5037 * 5038 */ 5039 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5040 char __user *optval, 5041 int __user *optlen) { 5042 struct sctp_rtoinfo rtoinfo; 5043 struct sctp_association *asoc; 5044 5045 if (len < sizeof (struct sctp_rtoinfo)) 5046 return -EINVAL; 5047 5048 len = sizeof(struct sctp_rtoinfo); 5049 5050 if (copy_from_user(&rtoinfo, optval, len)) 5051 return -EFAULT; 5052 5053 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5054 5055 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5056 return -EINVAL; 5057 5058 /* Values corresponding to the specific association. */ 5059 if (asoc) { 5060 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5061 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5062 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5063 } else { 5064 /* Values corresponding to the endpoint. */ 5065 struct sctp_sock *sp = sctp_sk(sk); 5066 5067 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5068 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5069 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5070 } 5071 5072 if (put_user(len, optlen)) 5073 return -EFAULT; 5074 5075 if (copy_to_user(optval, &rtoinfo, len)) 5076 return -EFAULT; 5077 5078 return 0; 5079 } 5080 5081 /* 5082 * 5083 * 7.1.2 SCTP_ASSOCINFO 5084 * 5085 * This option is used to tune the maximum retransmission attempts 5086 * of the association. 5087 * Returns an error if the new association retransmission value is 5088 * greater than the sum of the retransmission value of the peer. 5089 * See [SCTP] for more information. 5090 * 5091 */ 5092 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5093 char __user *optval, 5094 int __user *optlen) 5095 { 5096 5097 struct sctp_assocparams assocparams; 5098 struct sctp_association *asoc; 5099 struct list_head *pos; 5100 int cnt = 0; 5101 5102 if (len < sizeof (struct sctp_assocparams)) 5103 return -EINVAL; 5104 5105 len = sizeof(struct sctp_assocparams); 5106 5107 if (copy_from_user(&assocparams, optval, len)) 5108 return -EFAULT; 5109 5110 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5111 5112 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5113 return -EINVAL; 5114 5115 /* Values correspoinding to the specific association */ 5116 if (asoc) { 5117 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5118 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5119 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5120 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5121 5122 list_for_each(pos, &asoc->peer.transport_addr_list) { 5123 cnt++; 5124 } 5125 5126 assocparams.sasoc_number_peer_destinations = cnt; 5127 } else { 5128 /* Values corresponding to the endpoint */ 5129 struct sctp_sock *sp = sctp_sk(sk); 5130 5131 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5132 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5133 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5134 assocparams.sasoc_cookie_life = 5135 sp->assocparams.sasoc_cookie_life; 5136 assocparams.sasoc_number_peer_destinations = 5137 sp->assocparams. 5138 sasoc_number_peer_destinations; 5139 } 5140 5141 if (put_user(len, optlen)) 5142 return -EFAULT; 5143 5144 if (copy_to_user(optval, &assocparams, len)) 5145 return -EFAULT; 5146 5147 return 0; 5148 } 5149 5150 /* 5151 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5152 * 5153 * This socket option is a boolean flag which turns on or off mapped V4 5154 * addresses. If this option is turned on and the socket is type 5155 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5156 * If this option is turned off, then no mapping will be done of V4 5157 * addresses and a user will receive both PF_INET6 and PF_INET type 5158 * addresses on the socket. 5159 */ 5160 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5161 char __user *optval, int __user *optlen) 5162 { 5163 int val; 5164 struct sctp_sock *sp = sctp_sk(sk); 5165 5166 if (len < sizeof(int)) 5167 return -EINVAL; 5168 5169 len = sizeof(int); 5170 val = sp->v4mapped; 5171 if (put_user(len, optlen)) 5172 return -EFAULT; 5173 if (copy_to_user(optval, &val, len)) 5174 return -EFAULT; 5175 5176 return 0; 5177 } 5178 5179 /* 5180 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5181 * (chapter and verse is quoted at sctp_setsockopt_context()) 5182 */ 5183 static int sctp_getsockopt_context(struct sock *sk, int len, 5184 char __user *optval, int __user *optlen) 5185 { 5186 struct sctp_assoc_value params; 5187 struct sctp_sock *sp; 5188 struct sctp_association *asoc; 5189 5190 if (len < sizeof(struct sctp_assoc_value)) 5191 return -EINVAL; 5192 5193 len = sizeof(struct sctp_assoc_value); 5194 5195 if (copy_from_user(¶ms, optval, len)) 5196 return -EFAULT; 5197 5198 sp = sctp_sk(sk); 5199 5200 if (params.assoc_id != 0) { 5201 asoc = sctp_id2assoc(sk, params.assoc_id); 5202 if (!asoc) 5203 return -EINVAL; 5204 params.assoc_value = asoc->default_rcv_context; 5205 } else { 5206 params.assoc_value = sp->default_rcv_context; 5207 } 5208 5209 if (put_user(len, optlen)) 5210 return -EFAULT; 5211 if (copy_to_user(optval, ¶ms, len)) 5212 return -EFAULT; 5213 5214 return 0; 5215 } 5216 5217 /* 5218 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5219 * This option will get or set the maximum size to put in any outgoing 5220 * SCTP DATA chunk. If a message is larger than this size it will be 5221 * fragmented by SCTP into the specified size. Note that the underlying 5222 * SCTP implementation may fragment into smaller sized chunks when the 5223 * PMTU of the underlying association is smaller than the value set by 5224 * the user. The default value for this option is '0' which indicates 5225 * the user is NOT limiting fragmentation and only the PMTU will effect 5226 * SCTP's choice of DATA chunk size. Note also that values set larger 5227 * than the maximum size of an IP datagram will effectively let SCTP 5228 * control fragmentation (i.e. the same as setting this option to 0). 5229 * 5230 * The following structure is used to access and modify this parameter: 5231 * 5232 * struct sctp_assoc_value { 5233 * sctp_assoc_t assoc_id; 5234 * uint32_t assoc_value; 5235 * }; 5236 * 5237 * assoc_id: This parameter is ignored for one-to-one style sockets. 5238 * For one-to-many style sockets this parameter indicates which 5239 * association the user is performing an action upon. Note that if 5240 * this field's value is zero then the endpoints default value is 5241 * changed (effecting future associations only). 5242 * assoc_value: This parameter specifies the maximum size in bytes. 5243 */ 5244 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5245 char __user *optval, int __user *optlen) 5246 { 5247 struct sctp_assoc_value params; 5248 struct sctp_association *asoc; 5249 5250 if (len == sizeof(int)) { 5251 pr_warn_ratelimited(DEPRECATED 5252 "%s (pid %d) " 5253 "Use of int in maxseg socket option.\n" 5254 "Use struct sctp_assoc_value instead\n", 5255 current->comm, task_pid_nr(current)); 5256 params.assoc_id = 0; 5257 } else if (len >= sizeof(struct sctp_assoc_value)) { 5258 len = sizeof(struct sctp_assoc_value); 5259 if (copy_from_user(¶ms, optval, sizeof(params))) 5260 return -EFAULT; 5261 } else 5262 return -EINVAL; 5263 5264 asoc = sctp_id2assoc(sk, params.assoc_id); 5265 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5266 return -EINVAL; 5267 5268 if (asoc) 5269 params.assoc_value = asoc->frag_point; 5270 else 5271 params.assoc_value = sctp_sk(sk)->user_frag; 5272 5273 if (put_user(len, optlen)) 5274 return -EFAULT; 5275 if (len == sizeof(int)) { 5276 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5277 return -EFAULT; 5278 } else { 5279 if (copy_to_user(optval, ¶ms, len)) 5280 return -EFAULT; 5281 } 5282 5283 return 0; 5284 } 5285 5286 /* 5287 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5288 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5289 */ 5290 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5291 char __user *optval, int __user *optlen) 5292 { 5293 int val; 5294 5295 if (len < sizeof(int)) 5296 return -EINVAL; 5297 5298 len = sizeof(int); 5299 5300 val = sctp_sk(sk)->frag_interleave; 5301 if (put_user(len, optlen)) 5302 return -EFAULT; 5303 if (copy_to_user(optval, &val, len)) 5304 return -EFAULT; 5305 5306 return 0; 5307 } 5308 5309 /* 5310 * 7.1.25. Set or Get the sctp partial delivery point 5311 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5312 */ 5313 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5314 char __user *optval, 5315 int __user *optlen) 5316 { 5317 u32 val; 5318 5319 if (len < sizeof(u32)) 5320 return -EINVAL; 5321 5322 len = sizeof(u32); 5323 5324 val = sctp_sk(sk)->pd_point; 5325 if (put_user(len, optlen)) 5326 return -EFAULT; 5327 if (copy_to_user(optval, &val, len)) 5328 return -EFAULT; 5329 5330 return 0; 5331 } 5332 5333 /* 5334 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5335 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5336 */ 5337 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5338 char __user *optval, 5339 int __user *optlen) 5340 { 5341 struct sctp_assoc_value params; 5342 struct sctp_sock *sp; 5343 struct sctp_association *asoc; 5344 5345 if (len == sizeof(int)) { 5346 pr_warn_ratelimited(DEPRECATED 5347 "%s (pid %d) " 5348 "Use of int in max_burst socket option.\n" 5349 "Use struct sctp_assoc_value instead\n", 5350 current->comm, task_pid_nr(current)); 5351 params.assoc_id = 0; 5352 } else if (len >= sizeof(struct sctp_assoc_value)) { 5353 len = sizeof(struct sctp_assoc_value); 5354 if (copy_from_user(¶ms, optval, len)) 5355 return -EFAULT; 5356 } else 5357 return -EINVAL; 5358 5359 sp = sctp_sk(sk); 5360 5361 if (params.assoc_id != 0) { 5362 asoc = sctp_id2assoc(sk, params.assoc_id); 5363 if (!asoc) 5364 return -EINVAL; 5365 params.assoc_value = asoc->max_burst; 5366 } else 5367 params.assoc_value = sp->max_burst; 5368 5369 if (len == sizeof(int)) { 5370 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5371 return -EFAULT; 5372 } else { 5373 if (copy_to_user(optval, ¶ms, len)) 5374 return -EFAULT; 5375 } 5376 5377 return 0; 5378 5379 } 5380 5381 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5382 char __user *optval, int __user *optlen) 5383 { 5384 struct net *net = sock_net(sk); 5385 struct sctp_hmacalgo __user *p = (void __user *)optval; 5386 struct sctp_hmac_algo_param *hmacs; 5387 __u16 data_len = 0; 5388 u32 num_idents; 5389 5390 if (!net->sctp.auth_enable) 5391 return -EACCES; 5392 5393 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5394 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5395 5396 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5397 return -EINVAL; 5398 5399 len = sizeof(struct sctp_hmacalgo) + data_len; 5400 num_idents = data_len / sizeof(u16); 5401 5402 if (put_user(len, optlen)) 5403 return -EFAULT; 5404 if (put_user(num_idents, &p->shmac_num_idents)) 5405 return -EFAULT; 5406 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5407 return -EFAULT; 5408 return 0; 5409 } 5410 5411 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5412 char __user *optval, int __user *optlen) 5413 { 5414 struct net *net = sock_net(sk); 5415 struct sctp_authkeyid val; 5416 struct sctp_association *asoc; 5417 5418 if (!net->sctp.auth_enable) 5419 return -EACCES; 5420 5421 if (len < sizeof(struct sctp_authkeyid)) 5422 return -EINVAL; 5423 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5424 return -EFAULT; 5425 5426 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5427 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5428 return -EINVAL; 5429 5430 if (asoc) 5431 val.scact_keynumber = asoc->active_key_id; 5432 else 5433 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5434 5435 len = sizeof(struct sctp_authkeyid); 5436 if (put_user(len, optlen)) 5437 return -EFAULT; 5438 if (copy_to_user(optval, &val, len)) 5439 return -EFAULT; 5440 5441 return 0; 5442 } 5443 5444 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5445 char __user *optval, int __user *optlen) 5446 { 5447 struct net *net = sock_net(sk); 5448 struct sctp_authchunks __user *p = (void __user *)optval; 5449 struct sctp_authchunks val; 5450 struct sctp_association *asoc; 5451 struct sctp_chunks_param *ch; 5452 u32 num_chunks = 0; 5453 char __user *to; 5454 5455 if (!net->sctp.auth_enable) 5456 return -EACCES; 5457 5458 if (len < sizeof(struct sctp_authchunks)) 5459 return -EINVAL; 5460 5461 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5462 return -EFAULT; 5463 5464 to = p->gauth_chunks; 5465 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5466 if (!asoc) 5467 return -EINVAL; 5468 5469 ch = asoc->peer.peer_chunks; 5470 if (!ch) 5471 goto num; 5472 5473 /* See if the user provided enough room for all the data */ 5474 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5475 if (len < num_chunks) 5476 return -EINVAL; 5477 5478 if (copy_to_user(to, ch->chunks, num_chunks)) 5479 return -EFAULT; 5480 num: 5481 len = sizeof(struct sctp_authchunks) + num_chunks; 5482 if (put_user(len, optlen)) 5483 return -EFAULT; 5484 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5485 return -EFAULT; 5486 return 0; 5487 } 5488 5489 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5490 char __user *optval, int __user *optlen) 5491 { 5492 struct net *net = sock_net(sk); 5493 struct sctp_authchunks __user *p = (void __user *)optval; 5494 struct sctp_authchunks val; 5495 struct sctp_association *asoc; 5496 struct sctp_chunks_param *ch; 5497 u32 num_chunks = 0; 5498 char __user *to; 5499 5500 if (!net->sctp.auth_enable) 5501 return -EACCES; 5502 5503 if (len < sizeof(struct sctp_authchunks)) 5504 return -EINVAL; 5505 5506 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5507 return -EFAULT; 5508 5509 to = p->gauth_chunks; 5510 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5511 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5512 return -EINVAL; 5513 5514 if (asoc) 5515 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 5516 else 5517 ch = sctp_sk(sk)->ep->auth_chunk_list; 5518 5519 if (!ch) 5520 goto num; 5521 5522 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5523 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5524 return -EINVAL; 5525 5526 if (copy_to_user(to, ch->chunks, num_chunks)) 5527 return -EFAULT; 5528 num: 5529 len = sizeof(struct sctp_authchunks) + num_chunks; 5530 if (put_user(len, optlen)) 5531 return -EFAULT; 5532 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5533 return -EFAULT; 5534 5535 return 0; 5536 } 5537 5538 /* 5539 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5540 * This option gets the current number of associations that are attached 5541 * to a one-to-many style socket. The option value is an uint32_t. 5542 */ 5543 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5544 char __user *optval, int __user *optlen) 5545 { 5546 struct sctp_sock *sp = sctp_sk(sk); 5547 struct sctp_association *asoc; 5548 u32 val = 0; 5549 5550 if (sctp_style(sk, TCP)) 5551 return -EOPNOTSUPP; 5552 5553 if (len < sizeof(u32)) 5554 return -EINVAL; 5555 5556 len = sizeof(u32); 5557 5558 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5559 val++; 5560 } 5561 5562 if (put_user(len, optlen)) 5563 return -EFAULT; 5564 if (copy_to_user(optval, &val, len)) 5565 return -EFAULT; 5566 5567 return 0; 5568 } 5569 5570 /* 5571 * 8.1.23 SCTP_AUTO_ASCONF 5572 * See the corresponding setsockopt entry as description 5573 */ 5574 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5575 char __user *optval, int __user *optlen) 5576 { 5577 int val = 0; 5578 5579 if (len < sizeof(int)) 5580 return -EINVAL; 5581 5582 len = sizeof(int); 5583 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5584 val = 1; 5585 if (put_user(len, optlen)) 5586 return -EFAULT; 5587 if (copy_to_user(optval, &val, len)) 5588 return -EFAULT; 5589 return 0; 5590 } 5591 5592 /* 5593 * 8.2.6. Get the Current Identifiers of Associations 5594 * (SCTP_GET_ASSOC_ID_LIST) 5595 * 5596 * This option gets the current list of SCTP association identifiers of 5597 * the SCTP associations handled by a one-to-many style socket. 5598 */ 5599 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5600 char __user *optval, int __user *optlen) 5601 { 5602 struct sctp_sock *sp = sctp_sk(sk); 5603 struct sctp_association *asoc; 5604 struct sctp_assoc_ids *ids; 5605 u32 num = 0; 5606 5607 if (sctp_style(sk, TCP)) 5608 return -EOPNOTSUPP; 5609 5610 if (len < sizeof(struct sctp_assoc_ids)) 5611 return -EINVAL; 5612 5613 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5614 num++; 5615 } 5616 5617 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5618 return -EINVAL; 5619 5620 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5621 5622 ids = kmalloc(len, GFP_KERNEL); 5623 if (unlikely(!ids)) 5624 return -ENOMEM; 5625 5626 ids->gaids_number_of_ids = num; 5627 num = 0; 5628 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5629 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5630 } 5631 5632 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5633 kfree(ids); 5634 return -EFAULT; 5635 } 5636 5637 kfree(ids); 5638 return 0; 5639 } 5640 5641 /* 5642 * SCTP_PEER_ADDR_THLDS 5643 * 5644 * This option allows us to fetch the partially failed threshold for one or all 5645 * transports in an association. See Section 6.1 of: 5646 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5647 */ 5648 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5649 char __user *optval, 5650 int len, 5651 int __user *optlen) 5652 { 5653 struct sctp_paddrthlds val; 5654 struct sctp_transport *trans; 5655 struct sctp_association *asoc; 5656 5657 if (len < sizeof(struct sctp_paddrthlds)) 5658 return -EINVAL; 5659 len = sizeof(struct sctp_paddrthlds); 5660 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5661 return -EFAULT; 5662 5663 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5664 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5665 if (!asoc) 5666 return -ENOENT; 5667 5668 val.spt_pathpfthld = asoc->pf_retrans; 5669 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5670 } else { 5671 trans = sctp_addr_id2transport(sk, &val.spt_address, 5672 val.spt_assoc_id); 5673 if (!trans) 5674 return -ENOENT; 5675 5676 val.spt_pathmaxrxt = trans->pathmaxrxt; 5677 val.spt_pathpfthld = trans->pf_retrans; 5678 } 5679 5680 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5681 return -EFAULT; 5682 5683 return 0; 5684 } 5685 5686 /* 5687 * SCTP_GET_ASSOC_STATS 5688 * 5689 * This option retrieves local per endpoint statistics. It is modeled 5690 * after OpenSolaris' implementation 5691 */ 5692 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5693 char __user *optval, 5694 int __user *optlen) 5695 { 5696 struct sctp_assoc_stats sas; 5697 struct sctp_association *asoc = NULL; 5698 5699 /* User must provide at least the assoc id */ 5700 if (len < sizeof(sctp_assoc_t)) 5701 return -EINVAL; 5702 5703 /* Allow the struct to grow and fill in as much as possible */ 5704 len = min_t(size_t, len, sizeof(sas)); 5705 5706 if (copy_from_user(&sas, optval, len)) 5707 return -EFAULT; 5708 5709 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5710 if (!asoc) 5711 return -EINVAL; 5712 5713 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5714 sas.sas_gapcnt = asoc->stats.gapcnt; 5715 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5716 sas.sas_osacks = asoc->stats.osacks; 5717 sas.sas_isacks = asoc->stats.isacks; 5718 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5719 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5720 sas.sas_oodchunks = asoc->stats.oodchunks; 5721 sas.sas_iodchunks = asoc->stats.iodchunks; 5722 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5723 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5724 sas.sas_idupchunks = asoc->stats.idupchunks; 5725 sas.sas_opackets = asoc->stats.opackets; 5726 sas.sas_ipackets = asoc->stats.ipackets; 5727 5728 /* New high max rto observed, will return 0 if not a single 5729 * RTO update took place. obs_rto_ipaddr will be bogus 5730 * in such a case 5731 */ 5732 sas.sas_maxrto = asoc->stats.max_obs_rto; 5733 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5734 sizeof(struct sockaddr_storage)); 5735 5736 /* Mark beginning of a new observation period */ 5737 asoc->stats.max_obs_rto = asoc->rto_min; 5738 5739 if (put_user(len, optlen)) 5740 return -EFAULT; 5741 5742 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 5743 5744 if (copy_to_user(optval, &sas, len)) 5745 return -EFAULT; 5746 5747 return 0; 5748 } 5749 5750 static int sctp_getsockopt(struct sock *sk, int level, int optname, 5751 char __user *optval, int __user *optlen) 5752 { 5753 int retval = 0; 5754 int len; 5755 5756 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 5757 5758 /* I can hardly begin to describe how wrong this is. This is 5759 * so broken as to be worse than useless. The API draft 5760 * REALLY is NOT helpful here... I am not convinced that the 5761 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5762 * are at all well-founded. 5763 */ 5764 if (level != SOL_SCTP) { 5765 struct sctp_af *af = sctp_sk(sk)->pf->af; 5766 5767 retval = af->getsockopt(sk, level, optname, optval, optlen); 5768 return retval; 5769 } 5770 5771 if (get_user(len, optlen)) 5772 return -EFAULT; 5773 5774 lock_sock(sk); 5775 5776 switch (optname) { 5777 case SCTP_STATUS: 5778 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5779 break; 5780 case SCTP_DISABLE_FRAGMENTS: 5781 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5782 optlen); 5783 break; 5784 case SCTP_EVENTS: 5785 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5786 break; 5787 case SCTP_AUTOCLOSE: 5788 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5789 break; 5790 case SCTP_SOCKOPT_PEELOFF: 5791 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5792 break; 5793 case SCTP_PEER_ADDR_PARAMS: 5794 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5795 optlen); 5796 break; 5797 case SCTP_DELAYED_SACK: 5798 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5799 optlen); 5800 break; 5801 case SCTP_INITMSG: 5802 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5803 break; 5804 case SCTP_GET_PEER_ADDRS: 5805 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5806 optlen); 5807 break; 5808 case SCTP_GET_LOCAL_ADDRS: 5809 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5810 optlen); 5811 break; 5812 case SCTP_SOCKOPT_CONNECTX3: 5813 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5814 break; 5815 case SCTP_DEFAULT_SEND_PARAM: 5816 retval = sctp_getsockopt_default_send_param(sk, len, 5817 optval, optlen); 5818 break; 5819 case SCTP_PRIMARY_ADDR: 5820 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5821 break; 5822 case SCTP_NODELAY: 5823 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5824 break; 5825 case SCTP_RTOINFO: 5826 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5827 break; 5828 case SCTP_ASSOCINFO: 5829 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5830 break; 5831 case SCTP_I_WANT_MAPPED_V4_ADDR: 5832 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5833 break; 5834 case SCTP_MAXSEG: 5835 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5836 break; 5837 case SCTP_GET_PEER_ADDR_INFO: 5838 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5839 optlen); 5840 break; 5841 case SCTP_ADAPTATION_LAYER: 5842 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5843 optlen); 5844 break; 5845 case SCTP_CONTEXT: 5846 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5847 break; 5848 case SCTP_FRAGMENT_INTERLEAVE: 5849 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5850 optlen); 5851 break; 5852 case SCTP_PARTIAL_DELIVERY_POINT: 5853 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5854 optlen); 5855 break; 5856 case SCTP_MAX_BURST: 5857 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5858 break; 5859 case SCTP_AUTH_KEY: 5860 case SCTP_AUTH_CHUNK: 5861 case SCTP_AUTH_DELETE_KEY: 5862 retval = -EOPNOTSUPP; 5863 break; 5864 case SCTP_HMAC_IDENT: 5865 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5866 break; 5867 case SCTP_AUTH_ACTIVE_KEY: 5868 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5869 break; 5870 case SCTP_PEER_AUTH_CHUNKS: 5871 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5872 optlen); 5873 break; 5874 case SCTP_LOCAL_AUTH_CHUNKS: 5875 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5876 optlen); 5877 break; 5878 case SCTP_GET_ASSOC_NUMBER: 5879 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5880 break; 5881 case SCTP_GET_ASSOC_ID_LIST: 5882 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5883 break; 5884 case SCTP_AUTO_ASCONF: 5885 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5886 break; 5887 case SCTP_PEER_ADDR_THLDS: 5888 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 5889 break; 5890 case SCTP_GET_ASSOC_STATS: 5891 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 5892 break; 5893 default: 5894 retval = -ENOPROTOOPT; 5895 break; 5896 } 5897 5898 release_sock(sk); 5899 return retval; 5900 } 5901 5902 static void sctp_hash(struct sock *sk) 5903 { 5904 /* STUB */ 5905 } 5906 5907 static void sctp_unhash(struct sock *sk) 5908 { 5909 /* STUB */ 5910 } 5911 5912 /* Check if port is acceptable. Possibly find first available port. 5913 * 5914 * The port hash table (contained in the 'global' SCTP protocol storage 5915 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5916 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5917 * list (the list number is the port number hashed out, so as you 5918 * would expect from a hash function, all the ports in a given list have 5919 * such a number that hashes out to the same list number; you were 5920 * expecting that, right?); so each list has a set of ports, with a 5921 * link to the socket (struct sock) that uses it, the port number and 5922 * a fastreuse flag (FIXME: NPI ipg). 5923 */ 5924 static struct sctp_bind_bucket *sctp_bucket_create( 5925 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 5926 5927 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5928 { 5929 struct sctp_bind_hashbucket *head; /* hash list */ 5930 struct sctp_bind_bucket *pp; 5931 unsigned short snum; 5932 int ret; 5933 5934 snum = ntohs(addr->v4.sin_port); 5935 5936 pr_debug("%s: begins, snum:%d\n", __func__, snum); 5937 5938 local_bh_disable(); 5939 5940 if (snum == 0) { 5941 /* Search for an available port. */ 5942 int low, high, remaining, index; 5943 unsigned int rover; 5944 5945 inet_get_local_port_range(sock_net(sk), &low, &high); 5946 remaining = (high - low) + 1; 5947 rover = prandom_u32() % remaining + low; 5948 5949 do { 5950 rover++; 5951 if ((rover < low) || (rover > high)) 5952 rover = low; 5953 if (inet_is_reserved_local_port(rover)) 5954 continue; 5955 index = sctp_phashfn(sock_net(sk), rover); 5956 head = &sctp_port_hashtable[index]; 5957 spin_lock(&head->lock); 5958 sctp_for_each_hentry(pp, &head->chain) 5959 if ((pp->port == rover) && 5960 net_eq(sock_net(sk), pp->net)) 5961 goto next; 5962 break; 5963 next: 5964 spin_unlock(&head->lock); 5965 } while (--remaining > 0); 5966 5967 /* Exhausted local port range during search? */ 5968 ret = 1; 5969 if (remaining <= 0) 5970 goto fail; 5971 5972 /* OK, here is the one we will use. HEAD (the port 5973 * hash table list entry) is non-NULL and we hold it's 5974 * mutex. 5975 */ 5976 snum = rover; 5977 } else { 5978 /* We are given an specific port number; we verify 5979 * that it is not being used. If it is used, we will 5980 * exahust the search in the hash list corresponding 5981 * to the port number (snum) - we detect that with the 5982 * port iterator, pp being NULL. 5983 */ 5984 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 5985 spin_lock(&head->lock); 5986 sctp_for_each_hentry(pp, &head->chain) { 5987 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 5988 goto pp_found; 5989 } 5990 } 5991 pp = NULL; 5992 goto pp_not_found; 5993 pp_found: 5994 if (!hlist_empty(&pp->owner)) { 5995 /* We had a port hash table hit - there is an 5996 * available port (pp != NULL) and it is being 5997 * used by other socket (pp->owner not empty); that other 5998 * socket is going to be sk2. 5999 */ 6000 int reuse = sk->sk_reuse; 6001 struct sock *sk2; 6002 6003 pr_debug("%s: found a possible match\n", __func__); 6004 6005 if (pp->fastreuse && sk->sk_reuse && 6006 sk->sk_state != SCTP_SS_LISTENING) 6007 goto success; 6008 6009 /* Run through the list of sockets bound to the port 6010 * (pp->port) [via the pointers bind_next and 6011 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6012 * we get the endpoint they describe and run through 6013 * the endpoint's list of IP (v4 or v6) addresses, 6014 * comparing each of the addresses with the address of 6015 * the socket sk. If we find a match, then that means 6016 * that this port/socket (sk) combination are already 6017 * in an endpoint. 6018 */ 6019 sk_for_each_bound(sk2, &pp->owner) { 6020 struct sctp_endpoint *ep2; 6021 ep2 = sctp_sk(sk2)->ep; 6022 6023 if (sk == sk2 || 6024 (reuse && sk2->sk_reuse && 6025 sk2->sk_state != SCTP_SS_LISTENING)) 6026 continue; 6027 6028 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6029 sctp_sk(sk2), sctp_sk(sk))) { 6030 ret = (long)sk2; 6031 goto fail_unlock; 6032 } 6033 } 6034 6035 pr_debug("%s: found a match\n", __func__); 6036 } 6037 pp_not_found: 6038 /* If there was a hash table miss, create a new port. */ 6039 ret = 1; 6040 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6041 goto fail_unlock; 6042 6043 /* In either case (hit or miss), make sure fastreuse is 1 only 6044 * if sk->sk_reuse is too (that is, if the caller requested 6045 * SO_REUSEADDR on this socket -sk-). 6046 */ 6047 if (hlist_empty(&pp->owner)) { 6048 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6049 pp->fastreuse = 1; 6050 else 6051 pp->fastreuse = 0; 6052 } else if (pp->fastreuse && 6053 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6054 pp->fastreuse = 0; 6055 6056 /* We are set, so fill up all the data in the hash table 6057 * entry, tie the socket list information with the rest of the 6058 * sockets FIXME: Blurry, NPI (ipg). 6059 */ 6060 success: 6061 if (!sctp_sk(sk)->bind_hash) { 6062 inet_sk(sk)->inet_num = snum; 6063 sk_add_bind_node(sk, &pp->owner); 6064 sctp_sk(sk)->bind_hash = pp; 6065 } 6066 ret = 0; 6067 6068 fail_unlock: 6069 spin_unlock(&head->lock); 6070 6071 fail: 6072 local_bh_enable(); 6073 return ret; 6074 } 6075 6076 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6077 * port is requested. 6078 */ 6079 static int sctp_get_port(struct sock *sk, unsigned short snum) 6080 { 6081 union sctp_addr addr; 6082 struct sctp_af *af = sctp_sk(sk)->pf->af; 6083 6084 /* Set up a dummy address struct from the sk. */ 6085 af->from_sk(&addr, sk); 6086 addr.v4.sin_port = htons(snum); 6087 6088 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6089 return !!sctp_get_port_local(sk, &addr); 6090 } 6091 6092 /* 6093 * Move a socket to LISTENING state. 6094 */ 6095 static int sctp_listen_start(struct sock *sk, int backlog) 6096 { 6097 struct sctp_sock *sp = sctp_sk(sk); 6098 struct sctp_endpoint *ep = sp->ep; 6099 struct crypto_hash *tfm = NULL; 6100 char alg[32]; 6101 6102 /* Allocate HMAC for generating cookie. */ 6103 if (!sp->hmac && sp->sctp_hmac_alg) { 6104 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6105 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6106 if (IS_ERR(tfm)) { 6107 net_info_ratelimited("failed to load transform for %s: %ld\n", 6108 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6109 return -ENOSYS; 6110 } 6111 sctp_sk(sk)->hmac = tfm; 6112 } 6113 6114 /* 6115 * If a bind() or sctp_bindx() is not called prior to a listen() 6116 * call that allows new associations to be accepted, the system 6117 * picks an ephemeral port and will choose an address set equivalent 6118 * to binding with a wildcard address. 6119 * 6120 * This is not currently spelled out in the SCTP sockets 6121 * extensions draft, but follows the practice as seen in TCP 6122 * sockets. 6123 * 6124 */ 6125 sk->sk_state = SCTP_SS_LISTENING; 6126 if (!ep->base.bind_addr.port) { 6127 if (sctp_autobind(sk)) 6128 return -EAGAIN; 6129 } else { 6130 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6131 sk->sk_state = SCTP_SS_CLOSED; 6132 return -EADDRINUSE; 6133 } 6134 } 6135 6136 sk->sk_max_ack_backlog = backlog; 6137 sctp_hash_endpoint(ep); 6138 return 0; 6139 } 6140 6141 /* 6142 * 4.1.3 / 5.1.3 listen() 6143 * 6144 * By default, new associations are not accepted for UDP style sockets. 6145 * An application uses listen() to mark a socket as being able to 6146 * accept new associations. 6147 * 6148 * On TCP style sockets, applications use listen() to ready the SCTP 6149 * endpoint for accepting inbound associations. 6150 * 6151 * On both types of endpoints a backlog of '0' disables listening. 6152 * 6153 * Move a socket to LISTENING state. 6154 */ 6155 int sctp_inet_listen(struct socket *sock, int backlog) 6156 { 6157 struct sock *sk = sock->sk; 6158 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6159 int err = -EINVAL; 6160 6161 if (unlikely(backlog < 0)) 6162 return err; 6163 6164 lock_sock(sk); 6165 6166 /* Peeled-off sockets are not allowed to listen(). */ 6167 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6168 goto out; 6169 6170 if (sock->state != SS_UNCONNECTED) 6171 goto out; 6172 6173 /* If backlog is zero, disable listening. */ 6174 if (!backlog) { 6175 if (sctp_sstate(sk, CLOSED)) 6176 goto out; 6177 6178 err = 0; 6179 sctp_unhash_endpoint(ep); 6180 sk->sk_state = SCTP_SS_CLOSED; 6181 if (sk->sk_reuse) 6182 sctp_sk(sk)->bind_hash->fastreuse = 1; 6183 goto out; 6184 } 6185 6186 /* If we are already listening, just update the backlog */ 6187 if (sctp_sstate(sk, LISTENING)) 6188 sk->sk_max_ack_backlog = backlog; 6189 else { 6190 err = sctp_listen_start(sk, backlog); 6191 if (err) 6192 goto out; 6193 } 6194 6195 err = 0; 6196 out: 6197 release_sock(sk); 6198 return err; 6199 } 6200 6201 /* 6202 * This function is done by modeling the current datagram_poll() and the 6203 * tcp_poll(). Note that, based on these implementations, we don't 6204 * lock the socket in this function, even though it seems that, 6205 * ideally, locking or some other mechanisms can be used to ensure 6206 * the integrity of the counters (sndbuf and wmem_alloc) used 6207 * in this place. We assume that we don't need locks either until proven 6208 * otherwise. 6209 * 6210 * Another thing to note is that we include the Async I/O support 6211 * here, again, by modeling the current TCP/UDP code. We don't have 6212 * a good way to test with it yet. 6213 */ 6214 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6215 { 6216 struct sock *sk = sock->sk; 6217 struct sctp_sock *sp = sctp_sk(sk); 6218 unsigned int mask; 6219 6220 poll_wait(file, sk_sleep(sk), wait); 6221 6222 /* A TCP-style listening socket becomes readable when the accept queue 6223 * is not empty. 6224 */ 6225 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6226 return (!list_empty(&sp->ep->asocs)) ? 6227 (POLLIN | POLLRDNORM) : 0; 6228 6229 mask = 0; 6230 6231 /* Is there any exceptional events? */ 6232 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6233 mask |= POLLERR | 6234 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6235 if (sk->sk_shutdown & RCV_SHUTDOWN) 6236 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6237 if (sk->sk_shutdown == SHUTDOWN_MASK) 6238 mask |= POLLHUP; 6239 6240 /* Is it readable? Reconsider this code with TCP-style support. */ 6241 if (!skb_queue_empty(&sk->sk_receive_queue)) 6242 mask |= POLLIN | POLLRDNORM; 6243 6244 /* The association is either gone or not ready. */ 6245 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6246 return mask; 6247 6248 /* Is it writable? */ 6249 if (sctp_writeable(sk)) { 6250 mask |= POLLOUT | POLLWRNORM; 6251 } else { 6252 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6253 /* 6254 * Since the socket is not locked, the buffer 6255 * might be made available after the writeable check and 6256 * before the bit is set. This could cause a lost I/O 6257 * signal. tcp_poll() has a race breaker for this race 6258 * condition. Based on their implementation, we put 6259 * in the following code to cover it as well. 6260 */ 6261 if (sctp_writeable(sk)) 6262 mask |= POLLOUT | POLLWRNORM; 6263 } 6264 return mask; 6265 } 6266 6267 /******************************************************************** 6268 * 2nd Level Abstractions 6269 ********************************************************************/ 6270 6271 static struct sctp_bind_bucket *sctp_bucket_create( 6272 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6273 { 6274 struct sctp_bind_bucket *pp; 6275 6276 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6277 if (pp) { 6278 SCTP_DBG_OBJCNT_INC(bind_bucket); 6279 pp->port = snum; 6280 pp->fastreuse = 0; 6281 INIT_HLIST_HEAD(&pp->owner); 6282 pp->net = net; 6283 hlist_add_head(&pp->node, &head->chain); 6284 } 6285 return pp; 6286 } 6287 6288 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6289 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6290 { 6291 if (pp && hlist_empty(&pp->owner)) { 6292 __hlist_del(&pp->node); 6293 kmem_cache_free(sctp_bucket_cachep, pp); 6294 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6295 } 6296 } 6297 6298 /* Release this socket's reference to a local port. */ 6299 static inline void __sctp_put_port(struct sock *sk) 6300 { 6301 struct sctp_bind_hashbucket *head = 6302 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6303 inet_sk(sk)->inet_num)]; 6304 struct sctp_bind_bucket *pp; 6305 6306 spin_lock(&head->lock); 6307 pp = sctp_sk(sk)->bind_hash; 6308 __sk_del_bind_node(sk); 6309 sctp_sk(sk)->bind_hash = NULL; 6310 inet_sk(sk)->inet_num = 0; 6311 sctp_bucket_destroy(pp); 6312 spin_unlock(&head->lock); 6313 } 6314 6315 void sctp_put_port(struct sock *sk) 6316 { 6317 local_bh_disable(); 6318 __sctp_put_port(sk); 6319 local_bh_enable(); 6320 } 6321 6322 /* 6323 * The system picks an ephemeral port and choose an address set equivalent 6324 * to binding with a wildcard address. 6325 * One of those addresses will be the primary address for the association. 6326 * This automatically enables the multihoming capability of SCTP. 6327 */ 6328 static int sctp_autobind(struct sock *sk) 6329 { 6330 union sctp_addr autoaddr; 6331 struct sctp_af *af; 6332 __be16 port; 6333 6334 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6335 af = sctp_sk(sk)->pf->af; 6336 6337 port = htons(inet_sk(sk)->inet_num); 6338 af->inaddr_any(&autoaddr, port); 6339 6340 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6341 } 6342 6343 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6344 * 6345 * From RFC 2292 6346 * 4.2 The cmsghdr Structure * 6347 * 6348 * When ancillary data is sent or received, any number of ancillary data 6349 * objects can be specified by the msg_control and msg_controllen members of 6350 * the msghdr structure, because each object is preceded by 6351 * a cmsghdr structure defining the object's length (the cmsg_len member). 6352 * Historically Berkeley-derived implementations have passed only one object 6353 * at a time, but this API allows multiple objects to be 6354 * passed in a single call to sendmsg() or recvmsg(). The following example 6355 * shows two ancillary data objects in a control buffer. 6356 * 6357 * |<--------------------------- msg_controllen -------------------------->| 6358 * | | 6359 * 6360 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6361 * 6362 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6363 * | | | 6364 * 6365 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6366 * 6367 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6368 * | | | | | 6369 * 6370 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6371 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6372 * 6373 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6374 * 6375 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6376 * ^ 6377 * | 6378 * 6379 * msg_control 6380 * points here 6381 */ 6382 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 6383 { 6384 struct cmsghdr *cmsg; 6385 struct msghdr *my_msg = (struct msghdr *)msg; 6386 6387 for (cmsg = CMSG_FIRSTHDR(msg); 6388 cmsg != NULL; 6389 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6390 if (!CMSG_OK(my_msg, cmsg)) 6391 return -EINVAL; 6392 6393 /* Should we parse this header or ignore? */ 6394 if (cmsg->cmsg_level != IPPROTO_SCTP) 6395 continue; 6396 6397 /* Strictly check lengths following example in SCM code. */ 6398 switch (cmsg->cmsg_type) { 6399 case SCTP_INIT: 6400 /* SCTP Socket API Extension 6401 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6402 * 6403 * This cmsghdr structure provides information for 6404 * initializing new SCTP associations with sendmsg(). 6405 * The SCTP_INITMSG socket option uses this same data 6406 * structure. This structure is not used for 6407 * recvmsg(). 6408 * 6409 * cmsg_level cmsg_type cmsg_data[] 6410 * ------------ ------------ ---------------------- 6411 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6412 */ 6413 if (cmsg->cmsg_len != 6414 CMSG_LEN(sizeof(struct sctp_initmsg))) 6415 return -EINVAL; 6416 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6417 break; 6418 6419 case SCTP_SNDRCV: 6420 /* SCTP Socket API Extension 6421 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6422 * 6423 * This cmsghdr structure specifies SCTP options for 6424 * sendmsg() and describes SCTP header information 6425 * about a received message through recvmsg(). 6426 * 6427 * cmsg_level cmsg_type cmsg_data[] 6428 * ------------ ------------ ---------------------- 6429 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6430 */ 6431 if (cmsg->cmsg_len != 6432 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6433 return -EINVAL; 6434 6435 cmsgs->info = 6436 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6437 6438 /* Minimally, validate the sinfo_flags. */ 6439 if (cmsgs->info->sinfo_flags & 6440 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6441 SCTP_ABORT | SCTP_EOF)) 6442 return -EINVAL; 6443 break; 6444 6445 default: 6446 return -EINVAL; 6447 } 6448 } 6449 return 0; 6450 } 6451 6452 /* 6453 * Wait for a packet.. 6454 * Note: This function is the same function as in core/datagram.c 6455 * with a few modifications to make lksctp work. 6456 */ 6457 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 6458 { 6459 int error; 6460 DEFINE_WAIT(wait); 6461 6462 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6463 6464 /* Socket errors? */ 6465 error = sock_error(sk); 6466 if (error) 6467 goto out; 6468 6469 if (!skb_queue_empty(&sk->sk_receive_queue)) 6470 goto ready; 6471 6472 /* Socket shut down? */ 6473 if (sk->sk_shutdown & RCV_SHUTDOWN) 6474 goto out; 6475 6476 /* Sequenced packets can come disconnected. If so we report the 6477 * problem. 6478 */ 6479 error = -ENOTCONN; 6480 6481 /* Is there a good reason to think that we may receive some data? */ 6482 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6483 goto out; 6484 6485 /* Handle signals. */ 6486 if (signal_pending(current)) 6487 goto interrupted; 6488 6489 /* Let another process have a go. Since we are going to sleep 6490 * anyway. Note: This may cause odd behaviors if the message 6491 * does not fit in the user's buffer, but this seems to be the 6492 * only way to honor MSG_DONTWAIT realistically. 6493 */ 6494 release_sock(sk); 6495 *timeo_p = schedule_timeout(*timeo_p); 6496 lock_sock(sk); 6497 6498 ready: 6499 finish_wait(sk_sleep(sk), &wait); 6500 return 0; 6501 6502 interrupted: 6503 error = sock_intr_errno(*timeo_p); 6504 6505 out: 6506 finish_wait(sk_sleep(sk), &wait); 6507 *err = error; 6508 return error; 6509 } 6510 6511 /* Receive a datagram. 6512 * Note: This is pretty much the same routine as in core/datagram.c 6513 * with a few changes to make lksctp work. 6514 */ 6515 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6516 int noblock, int *err) 6517 { 6518 int error; 6519 struct sk_buff *skb; 6520 long timeo; 6521 6522 timeo = sock_rcvtimeo(sk, noblock); 6523 6524 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 6525 MAX_SCHEDULE_TIMEOUT); 6526 6527 do { 6528 /* Again only user level code calls this function, 6529 * so nothing interrupt level 6530 * will suddenly eat the receive_queue. 6531 * 6532 * Look at current nfs client by the way... 6533 * However, this function was correct in any case. 8) 6534 */ 6535 if (flags & MSG_PEEK) { 6536 spin_lock_bh(&sk->sk_receive_queue.lock); 6537 skb = skb_peek(&sk->sk_receive_queue); 6538 if (skb) 6539 atomic_inc(&skb->users); 6540 spin_unlock_bh(&sk->sk_receive_queue.lock); 6541 } else { 6542 skb = skb_dequeue(&sk->sk_receive_queue); 6543 } 6544 6545 if (skb) 6546 return skb; 6547 6548 /* Caller is allowed not to check sk->sk_err before calling. */ 6549 error = sock_error(sk); 6550 if (error) 6551 goto no_packet; 6552 6553 if (sk->sk_shutdown & RCV_SHUTDOWN) 6554 break; 6555 6556 /* User doesn't want to wait. */ 6557 error = -EAGAIN; 6558 if (!timeo) 6559 goto no_packet; 6560 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6561 6562 return NULL; 6563 6564 no_packet: 6565 *err = error; 6566 return NULL; 6567 } 6568 6569 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6570 static void __sctp_write_space(struct sctp_association *asoc) 6571 { 6572 struct sock *sk = asoc->base.sk; 6573 struct socket *sock = sk->sk_socket; 6574 6575 if ((sctp_wspace(asoc) > 0) && sock) { 6576 if (waitqueue_active(&asoc->wait)) 6577 wake_up_interruptible(&asoc->wait); 6578 6579 if (sctp_writeable(sk)) { 6580 wait_queue_head_t *wq = sk_sleep(sk); 6581 6582 if (wq && waitqueue_active(wq)) 6583 wake_up_interruptible(wq); 6584 6585 /* Note that we try to include the Async I/O support 6586 * here by modeling from the current TCP/UDP code. 6587 * We have not tested with it yet. 6588 */ 6589 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6590 sock_wake_async(sock, 6591 SOCK_WAKE_SPACE, POLL_OUT); 6592 } 6593 } 6594 } 6595 6596 static void sctp_wake_up_waiters(struct sock *sk, 6597 struct sctp_association *asoc) 6598 { 6599 struct sctp_association *tmp = asoc; 6600 6601 /* We do accounting for the sndbuf space per association, 6602 * so we only need to wake our own association. 6603 */ 6604 if (asoc->ep->sndbuf_policy) 6605 return __sctp_write_space(asoc); 6606 6607 /* If association goes down and is just flushing its 6608 * outq, then just normally notify others. 6609 */ 6610 if (asoc->base.dead) 6611 return sctp_write_space(sk); 6612 6613 /* Accounting for the sndbuf space is per socket, so we 6614 * need to wake up others, try to be fair and in case of 6615 * other associations, let them have a go first instead 6616 * of just doing a sctp_write_space() call. 6617 * 6618 * Note that we reach sctp_wake_up_waiters() only when 6619 * associations free up queued chunks, thus we are under 6620 * lock and the list of associations on a socket is 6621 * guaranteed not to change. 6622 */ 6623 for (tmp = list_next_entry(tmp, asocs); 1; 6624 tmp = list_next_entry(tmp, asocs)) { 6625 /* Manually skip the head element. */ 6626 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 6627 continue; 6628 /* Wake up association. */ 6629 __sctp_write_space(tmp); 6630 /* We've reached the end. */ 6631 if (tmp == asoc) 6632 break; 6633 } 6634 } 6635 6636 /* Do accounting for the sndbuf space. 6637 * Decrement the used sndbuf space of the corresponding association by the 6638 * data size which was just transmitted(freed). 6639 */ 6640 static void sctp_wfree(struct sk_buff *skb) 6641 { 6642 struct sctp_association *asoc; 6643 struct sctp_chunk *chunk; 6644 struct sock *sk; 6645 6646 /* Get the saved chunk pointer. */ 6647 chunk = *((struct sctp_chunk **)(skb->cb)); 6648 asoc = chunk->asoc; 6649 sk = asoc->base.sk; 6650 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6651 sizeof(struct sk_buff) + 6652 sizeof(struct sctp_chunk); 6653 6654 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6655 6656 /* 6657 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6658 */ 6659 sk->sk_wmem_queued -= skb->truesize; 6660 sk_mem_uncharge(sk, skb->truesize); 6661 6662 sock_wfree(skb); 6663 sctp_wake_up_waiters(sk, asoc); 6664 6665 sctp_association_put(asoc); 6666 } 6667 6668 /* Do accounting for the receive space on the socket. 6669 * Accounting for the association is done in ulpevent.c 6670 * We set this as a destructor for the cloned data skbs so that 6671 * accounting is done at the correct time. 6672 */ 6673 void sctp_sock_rfree(struct sk_buff *skb) 6674 { 6675 struct sock *sk = skb->sk; 6676 struct sctp_ulpevent *event = sctp_skb2event(skb); 6677 6678 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6679 6680 /* 6681 * Mimic the behavior of sock_rfree 6682 */ 6683 sk_mem_uncharge(sk, event->rmem_len); 6684 } 6685 6686 6687 /* Helper function to wait for space in the sndbuf. */ 6688 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6689 size_t msg_len) 6690 { 6691 struct sock *sk = asoc->base.sk; 6692 int err = 0; 6693 long current_timeo = *timeo_p; 6694 DEFINE_WAIT(wait); 6695 6696 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 6697 *timeo_p, msg_len); 6698 6699 /* Increment the association's refcnt. */ 6700 sctp_association_hold(asoc); 6701 6702 /* Wait on the association specific sndbuf space. */ 6703 for (;;) { 6704 prepare_to_wait_exclusive(&asoc->wait, &wait, 6705 TASK_INTERRUPTIBLE); 6706 if (!*timeo_p) 6707 goto do_nonblock; 6708 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6709 asoc->base.dead) 6710 goto do_error; 6711 if (signal_pending(current)) 6712 goto do_interrupted; 6713 if (msg_len <= sctp_wspace(asoc)) 6714 break; 6715 6716 /* Let another process have a go. Since we are going 6717 * to sleep anyway. 6718 */ 6719 release_sock(sk); 6720 current_timeo = schedule_timeout(current_timeo); 6721 BUG_ON(sk != asoc->base.sk); 6722 lock_sock(sk); 6723 6724 *timeo_p = current_timeo; 6725 } 6726 6727 out: 6728 finish_wait(&asoc->wait, &wait); 6729 6730 /* Release the association's refcnt. */ 6731 sctp_association_put(asoc); 6732 6733 return err; 6734 6735 do_error: 6736 err = -EPIPE; 6737 goto out; 6738 6739 do_interrupted: 6740 err = sock_intr_errno(*timeo_p); 6741 goto out; 6742 6743 do_nonblock: 6744 err = -EAGAIN; 6745 goto out; 6746 } 6747 6748 void sctp_data_ready(struct sock *sk) 6749 { 6750 struct socket_wq *wq; 6751 6752 rcu_read_lock(); 6753 wq = rcu_dereference(sk->sk_wq); 6754 if (wq_has_sleeper(wq)) 6755 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6756 POLLRDNORM | POLLRDBAND); 6757 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6758 rcu_read_unlock(); 6759 } 6760 6761 /* If socket sndbuf has changed, wake up all per association waiters. */ 6762 void sctp_write_space(struct sock *sk) 6763 { 6764 struct sctp_association *asoc; 6765 6766 /* Wake up the tasks in each wait queue. */ 6767 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6768 __sctp_write_space(asoc); 6769 } 6770 } 6771 6772 /* Is there any sndbuf space available on the socket? 6773 * 6774 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6775 * associations on the same socket. For a UDP-style socket with 6776 * multiple associations, it is possible for it to be "unwriteable" 6777 * prematurely. I assume that this is acceptable because 6778 * a premature "unwriteable" is better than an accidental "writeable" which 6779 * would cause an unwanted block under certain circumstances. For the 1-1 6780 * UDP-style sockets or TCP-style sockets, this code should work. 6781 * - Daisy 6782 */ 6783 static int sctp_writeable(struct sock *sk) 6784 { 6785 int amt = 0; 6786 6787 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6788 if (amt < 0) 6789 amt = 0; 6790 return amt; 6791 } 6792 6793 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6794 * returns immediately with EINPROGRESS. 6795 */ 6796 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6797 { 6798 struct sock *sk = asoc->base.sk; 6799 int err = 0; 6800 long current_timeo = *timeo_p; 6801 DEFINE_WAIT(wait); 6802 6803 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 6804 6805 /* Increment the association's refcnt. */ 6806 sctp_association_hold(asoc); 6807 6808 for (;;) { 6809 prepare_to_wait_exclusive(&asoc->wait, &wait, 6810 TASK_INTERRUPTIBLE); 6811 if (!*timeo_p) 6812 goto do_nonblock; 6813 if (sk->sk_shutdown & RCV_SHUTDOWN) 6814 break; 6815 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6816 asoc->base.dead) 6817 goto do_error; 6818 if (signal_pending(current)) 6819 goto do_interrupted; 6820 6821 if (sctp_state(asoc, ESTABLISHED)) 6822 break; 6823 6824 /* Let another process have a go. Since we are going 6825 * to sleep anyway. 6826 */ 6827 release_sock(sk); 6828 current_timeo = schedule_timeout(current_timeo); 6829 lock_sock(sk); 6830 6831 *timeo_p = current_timeo; 6832 } 6833 6834 out: 6835 finish_wait(&asoc->wait, &wait); 6836 6837 /* Release the association's refcnt. */ 6838 sctp_association_put(asoc); 6839 6840 return err; 6841 6842 do_error: 6843 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6844 err = -ETIMEDOUT; 6845 else 6846 err = -ECONNREFUSED; 6847 goto out; 6848 6849 do_interrupted: 6850 err = sock_intr_errno(*timeo_p); 6851 goto out; 6852 6853 do_nonblock: 6854 err = -EINPROGRESS; 6855 goto out; 6856 } 6857 6858 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6859 { 6860 struct sctp_endpoint *ep; 6861 int err = 0; 6862 DEFINE_WAIT(wait); 6863 6864 ep = sctp_sk(sk)->ep; 6865 6866 6867 for (;;) { 6868 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6869 TASK_INTERRUPTIBLE); 6870 6871 if (list_empty(&ep->asocs)) { 6872 release_sock(sk); 6873 timeo = schedule_timeout(timeo); 6874 lock_sock(sk); 6875 } 6876 6877 err = -EINVAL; 6878 if (!sctp_sstate(sk, LISTENING)) 6879 break; 6880 6881 err = 0; 6882 if (!list_empty(&ep->asocs)) 6883 break; 6884 6885 err = sock_intr_errno(timeo); 6886 if (signal_pending(current)) 6887 break; 6888 6889 err = -EAGAIN; 6890 if (!timeo) 6891 break; 6892 } 6893 6894 finish_wait(sk_sleep(sk), &wait); 6895 6896 return err; 6897 } 6898 6899 static void sctp_wait_for_close(struct sock *sk, long timeout) 6900 { 6901 DEFINE_WAIT(wait); 6902 6903 do { 6904 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6905 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6906 break; 6907 release_sock(sk); 6908 timeout = schedule_timeout(timeout); 6909 lock_sock(sk); 6910 } while (!signal_pending(current) && timeout); 6911 6912 finish_wait(sk_sleep(sk), &wait); 6913 } 6914 6915 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6916 { 6917 struct sk_buff *frag; 6918 6919 if (!skb->data_len) 6920 goto done; 6921 6922 /* Don't forget the fragments. */ 6923 skb_walk_frags(skb, frag) 6924 sctp_skb_set_owner_r_frag(frag, sk); 6925 6926 done: 6927 sctp_skb_set_owner_r(skb, sk); 6928 } 6929 6930 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6931 struct sctp_association *asoc) 6932 { 6933 struct inet_sock *inet = inet_sk(sk); 6934 struct inet_sock *newinet; 6935 6936 newsk->sk_type = sk->sk_type; 6937 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6938 newsk->sk_flags = sk->sk_flags; 6939 newsk->sk_no_check = sk->sk_no_check; 6940 newsk->sk_reuse = sk->sk_reuse; 6941 6942 newsk->sk_shutdown = sk->sk_shutdown; 6943 newsk->sk_destruct = sctp_destruct_sock; 6944 newsk->sk_family = sk->sk_family; 6945 newsk->sk_protocol = IPPROTO_SCTP; 6946 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6947 newsk->sk_sndbuf = sk->sk_sndbuf; 6948 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6949 newsk->sk_lingertime = sk->sk_lingertime; 6950 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6951 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6952 6953 newinet = inet_sk(newsk); 6954 6955 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6956 * getsockname() and getpeername() 6957 */ 6958 newinet->inet_sport = inet->inet_sport; 6959 newinet->inet_saddr = inet->inet_saddr; 6960 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6961 newinet->inet_dport = htons(asoc->peer.port); 6962 newinet->pmtudisc = inet->pmtudisc; 6963 newinet->inet_id = asoc->next_tsn ^ jiffies; 6964 6965 newinet->uc_ttl = inet->uc_ttl; 6966 newinet->mc_loop = 1; 6967 newinet->mc_ttl = 1; 6968 newinet->mc_index = 0; 6969 newinet->mc_list = NULL; 6970 } 6971 6972 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6973 * and its messages to the newsk. 6974 */ 6975 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6976 struct sctp_association *assoc, 6977 sctp_socket_type_t type) 6978 { 6979 struct sctp_sock *oldsp = sctp_sk(oldsk); 6980 struct sctp_sock *newsp = sctp_sk(newsk); 6981 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6982 struct sctp_endpoint *newep = newsp->ep; 6983 struct sk_buff *skb, *tmp; 6984 struct sctp_ulpevent *event; 6985 struct sctp_bind_hashbucket *head; 6986 struct list_head tmplist; 6987 6988 /* Migrate socket buffer sizes and all the socket level options to the 6989 * new socket. 6990 */ 6991 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6992 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6993 /* Brute force copy old sctp opt. */ 6994 if (oldsp->do_auto_asconf) { 6995 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6996 inet_sk_copy_descendant(newsk, oldsk); 6997 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6998 } else 6999 inet_sk_copy_descendant(newsk, oldsk); 7000 7001 /* Restore the ep value that was overwritten with the above structure 7002 * copy. 7003 */ 7004 newsp->ep = newep; 7005 newsp->hmac = NULL; 7006 7007 /* Hook this new socket in to the bind_hash list. */ 7008 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7009 inet_sk(oldsk)->inet_num)]; 7010 local_bh_disable(); 7011 spin_lock(&head->lock); 7012 pp = sctp_sk(oldsk)->bind_hash; 7013 sk_add_bind_node(newsk, &pp->owner); 7014 sctp_sk(newsk)->bind_hash = pp; 7015 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7016 spin_unlock(&head->lock); 7017 local_bh_enable(); 7018 7019 /* Copy the bind_addr list from the original endpoint to the new 7020 * endpoint so that we can handle restarts properly 7021 */ 7022 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7023 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7024 7025 /* Move any messages in the old socket's receive queue that are for the 7026 * peeled off association to the new socket's receive queue. 7027 */ 7028 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7029 event = sctp_skb2event(skb); 7030 if (event->asoc == assoc) { 7031 __skb_unlink(skb, &oldsk->sk_receive_queue); 7032 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7033 sctp_skb_set_owner_r_frag(skb, newsk); 7034 } 7035 } 7036 7037 /* Clean up any messages pending delivery due to partial 7038 * delivery. Three cases: 7039 * 1) No partial deliver; no work. 7040 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7041 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7042 */ 7043 skb_queue_head_init(&newsp->pd_lobby); 7044 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7045 7046 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7047 struct sk_buff_head *queue; 7048 7049 /* Decide which queue to move pd_lobby skbs to. */ 7050 if (assoc->ulpq.pd_mode) { 7051 queue = &newsp->pd_lobby; 7052 } else 7053 queue = &newsk->sk_receive_queue; 7054 7055 /* Walk through the pd_lobby, looking for skbs that 7056 * need moved to the new socket. 7057 */ 7058 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7059 event = sctp_skb2event(skb); 7060 if (event->asoc == assoc) { 7061 __skb_unlink(skb, &oldsp->pd_lobby); 7062 __skb_queue_tail(queue, skb); 7063 sctp_skb_set_owner_r_frag(skb, newsk); 7064 } 7065 } 7066 7067 /* Clear up any skbs waiting for the partial 7068 * delivery to finish. 7069 */ 7070 if (assoc->ulpq.pd_mode) 7071 sctp_clear_pd(oldsk, NULL); 7072 7073 } 7074 7075 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7076 sctp_skb_set_owner_r_frag(skb, newsk); 7077 7078 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7079 sctp_skb_set_owner_r_frag(skb, newsk); 7080 7081 /* Set the type of socket to indicate that it is peeled off from the 7082 * original UDP-style socket or created with the accept() call on a 7083 * TCP-style socket.. 7084 */ 7085 newsp->type = type; 7086 7087 /* Mark the new socket "in-use" by the user so that any packets 7088 * that may arrive on the association after we've moved it are 7089 * queued to the backlog. This prevents a potential race between 7090 * backlog processing on the old socket and new-packet processing 7091 * on the new socket. 7092 * 7093 * The caller has just allocated newsk so we can guarantee that other 7094 * paths won't try to lock it and then oldsk. 7095 */ 7096 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7097 sctp_assoc_migrate(assoc, newsk); 7098 7099 /* If the association on the newsk is already closed before accept() 7100 * is called, set RCV_SHUTDOWN flag. 7101 */ 7102 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7103 newsk->sk_shutdown |= RCV_SHUTDOWN; 7104 7105 newsk->sk_state = SCTP_SS_ESTABLISHED; 7106 release_sock(newsk); 7107 } 7108 7109 7110 /* This proto struct describes the ULP interface for SCTP. */ 7111 struct proto sctp_prot = { 7112 .name = "SCTP", 7113 .owner = THIS_MODULE, 7114 .close = sctp_close, 7115 .connect = sctp_connect, 7116 .disconnect = sctp_disconnect, 7117 .accept = sctp_accept, 7118 .ioctl = sctp_ioctl, 7119 .init = sctp_init_sock, 7120 .destroy = sctp_destroy_sock, 7121 .shutdown = sctp_shutdown, 7122 .setsockopt = sctp_setsockopt, 7123 .getsockopt = sctp_getsockopt, 7124 .sendmsg = sctp_sendmsg, 7125 .recvmsg = sctp_recvmsg, 7126 .bind = sctp_bind, 7127 .backlog_rcv = sctp_backlog_rcv, 7128 .hash = sctp_hash, 7129 .unhash = sctp_unhash, 7130 .get_port = sctp_get_port, 7131 .obj_size = sizeof(struct sctp_sock), 7132 .sysctl_mem = sysctl_sctp_mem, 7133 .sysctl_rmem = sysctl_sctp_rmem, 7134 .sysctl_wmem = sysctl_sctp_wmem, 7135 .memory_pressure = &sctp_memory_pressure, 7136 .enter_memory_pressure = sctp_enter_memory_pressure, 7137 .memory_allocated = &sctp_memory_allocated, 7138 .sockets_allocated = &sctp_sockets_allocated, 7139 }; 7140 7141 #if IS_ENABLED(CONFIG_IPV6) 7142 7143 struct proto sctpv6_prot = { 7144 .name = "SCTPv6", 7145 .owner = THIS_MODULE, 7146 .close = sctp_close, 7147 .connect = sctp_connect, 7148 .disconnect = sctp_disconnect, 7149 .accept = sctp_accept, 7150 .ioctl = sctp_ioctl, 7151 .init = sctp_init_sock, 7152 .destroy = sctp_destroy_sock, 7153 .shutdown = sctp_shutdown, 7154 .setsockopt = sctp_setsockopt, 7155 .getsockopt = sctp_getsockopt, 7156 .sendmsg = sctp_sendmsg, 7157 .recvmsg = sctp_recvmsg, 7158 .bind = sctp_bind, 7159 .backlog_rcv = sctp_backlog_rcv, 7160 .hash = sctp_hash, 7161 .unhash = sctp_unhash, 7162 .get_port = sctp_get_port, 7163 .obj_size = sizeof(struct sctp6_sock), 7164 .sysctl_mem = sysctl_sctp_mem, 7165 .sysctl_rmem = sysctl_sctp_rmem, 7166 .sysctl_wmem = sysctl_sctp_wmem, 7167 .memory_pressure = &sctp_memory_pressure, 7168 .enter_memory_pressure = sctp_enter_memory_pressure, 7169 .memory_allocated = &sctp_memory_allocated, 7170 .sockets_allocated = &sctp_sockets_allocated, 7171 }; 7172 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7173