1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 151 void (*cb)(struct sctp_chunk *)) 152 153 { 154 struct sctp_outq *q = &asoc->outqueue; 155 struct sctp_transport *t; 156 struct sctp_chunk *chunk; 157 158 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 159 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 160 cb(chunk); 161 162 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 163 cb(chunk); 164 165 list_for_each_entry(chunk, &q->sacked, transmitted_list) 166 cb(chunk); 167 168 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 169 cb(chunk); 170 171 list_for_each_entry(chunk, &q->out_chunk_list, list) 172 cb(chunk); 173 } 174 175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 176 void (*cb)(struct sk_buff *, struct sock *)) 177 178 { 179 struct sk_buff *skb, *tmp; 180 181 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 182 cb(skb, sk); 183 184 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 185 cb(skb, sk); 186 187 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 188 cb(skb, sk); 189 } 190 191 /* Verify that this is a valid address. */ 192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 193 int len) 194 { 195 struct sctp_af *af; 196 197 /* Verify basic sockaddr. */ 198 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 199 if (!af) 200 return -EINVAL; 201 202 /* Is this a valid SCTP address? */ 203 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 204 return -EINVAL; 205 206 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /* Look up the association by its id. If this is not a UDP-style 213 * socket, the ID field is always ignored. 214 */ 215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 216 { 217 struct sctp_association *asoc = NULL; 218 219 /* If this is not a UDP-style socket, assoc id should be ignored. */ 220 if (!sctp_style(sk, UDP)) { 221 /* Return NULL if the socket state is not ESTABLISHED. It 222 * could be a TCP-style listening socket or a socket which 223 * hasn't yet called connect() to establish an association. 224 */ 225 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 226 return NULL; 227 228 /* Get the first and the only association from the list. */ 229 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 230 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 231 struct sctp_association, asocs); 232 return asoc; 233 } 234 235 /* Otherwise this is a UDP-style socket. */ 236 if (id <= SCTP_ALL_ASSOC) 237 return NULL; 238 239 spin_lock_bh(&sctp_assocs_id_lock); 240 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 241 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 242 asoc = NULL; 243 spin_unlock_bh(&sctp_assocs_id_lock); 244 245 return asoc; 246 } 247 248 /* Look up the transport from an address and an assoc id. If both address and 249 * id are specified, the associations matching the address and the id should be 250 * the same. 251 */ 252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 253 struct sockaddr_storage *addr, 254 sctp_assoc_t id) 255 { 256 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 257 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 258 union sctp_addr *laddr = (union sctp_addr *)addr; 259 struct sctp_transport *transport; 260 261 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 262 return NULL; 263 264 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 265 laddr, 266 &transport); 267 268 if (!addr_asoc) 269 return NULL; 270 271 id_asoc = sctp_id2assoc(sk, id); 272 if (id_asoc && (id_asoc != addr_asoc)) 273 return NULL; 274 275 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 276 (union sctp_addr *)addr); 277 278 return transport; 279 } 280 281 /* API 3.1.2 bind() - UDP Style Syntax 282 * The syntax of bind() is, 283 * 284 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 285 * 286 * sd - the socket descriptor returned by socket(). 287 * addr - the address structure (struct sockaddr_in or struct 288 * sockaddr_in6 [RFC 2553]), 289 * addr_len - the size of the address structure. 290 */ 291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 292 { 293 int retval = 0; 294 295 lock_sock(sk); 296 297 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 298 addr, addr_len); 299 300 /* Disallow binding twice. */ 301 if (!sctp_sk(sk)->ep->base.bind_addr.port) 302 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 303 addr_len); 304 else 305 retval = -EINVAL; 306 307 release_sock(sk); 308 309 return retval; 310 } 311 312 static int sctp_get_port_local(struct sock *, union sctp_addr *); 313 314 /* Verify this is a valid sockaddr. */ 315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 316 union sctp_addr *addr, int len) 317 { 318 struct sctp_af *af; 319 320 /* Check minimum size. */ 321 if (len < sizeof (struct sockaddr)) 322 return NULL; 323 324 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 325 return NULL; 326 327 if (addr->sa.sa_family == AF_INET6) { 328 if (len < SIN6_LEN_RFC2133) 329 return NULL; 330 /* V4 mapped address are really of AF_INET family */ 331 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 332 !opt->pf->af_supported(AF_INET, opt)) 333 return NULL; 334 } 335 336 /* If we get this far, af is valid. */ 337 af = sctp_get_af_specific(addr->sa.sa_family); 338 339 if (len < af->sockaddr_len) 340 return NULL; 341 342 return af; 343 } 344 345 /* Bind a local address either to an endpoint or to an association. */ 346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 347 { 348 struct net *net = sock_net(sk); 349 struct sctp_sock *sp = sctp_sk(sk); 350 struct sctp_endpoint *ep = sp->ep; 351 struct sctp_bind_addr *bp = &ep->base.bind_addr; 352 struct sctp_af *af; 353 unsigned short snum; 354 int ret = 0; 355 356 /* Common sockaddr verification. */ 357 af = sctp_sockaddr_af(sp, addr, len); 358 if (!af) { 359 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 360 __func__, sk, addr, len); 361 return -EINVAL; 362 } 363 364 snum = ntohs(addr->v4.sin_port); 365 366 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 367 __func__, sk, &addr->sa, bp->port, snum, len); 368 369 /* PF specific bind() address verification. */ 370 if (!sp->pf->bind_verify(sp, addr)) 371 return -EADDRNOTAVAIL; 372 373 /* We must either be unbound, or bind to the same port. 374 * It's OK to allow 0 ports if we are already bound. 375 * We'll just inhert an already bound port in this case 376 */ 377 if (bp->port) { 378 if (!snum) 379 snum = bp->port; 380 else if (snum != bp->port) { 381 pr_debug("%s: new port %d doesn't match existing port " 382 "%d\n", __func__, snum, bp->port); 383 return -EINVAL; 384 } 385 } 386 387 if (snum && inet_port_requires_bind_service(net, snum) && 388 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 389 return -EACCES; 390 391 /* See if the address matches any of the addresses we may have 392 * already bound before checking against other endpoints. 393 */ 394 if (sctp_bind_addr_match(bp, addr, sp)) 395 return -EINVAL; 396 397 /* Make sure we are allowed to bind here. 398 * The function sctp_get_port_local() does duplicate address 399 * detection. 400 */ 401 addr->v4.sin_port = htons(snum); 402 if (sctp_get_port_local(sk, addr)) 403 return -EADDRINUSE; 404 405 /* Refresh ephemeral port. */ 406 if (!bp->port) 407 bp->port = inet_sk(sk)->inet_num; 408 409 /* Add the address to the bind address list. 410 * Use GFP_ATOMIC since BHs will be disabled. 411 */ 412 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 413 SCTP_ADDR_SRC, GFP_ATOMIC); 414 415 if (ret) { 416 sctp_put_port(sk); 417 return ret; 418 } 419 /* Copy back into socket for getsockname() use. */ 420 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 421 sp->pf->to_sk_saddr(addr, sk); 422 423 return ret; 424 } 425 426 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 427 * 428 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 429 * at any one time. If a sender, after sending an ASCONF chunk, decides 430 * it needs to transfer another ASCONF Chunk, it MUST wait until the 431 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 432 * subsequent ASCONF. Note this restriction binds each side, so at any 433 * time two ASCONF may be in-transit on any given association (one sent 434 * from each endpoint). 435 */ 436 static int sctp_send_asconf(struct sctp_association *asoc, 437 struct sctp_chunk *chunk) 438 { 439 int retval = 0; 440 441 /* If there is an outstanding ASCONF chunk, queue it for later 442 * transmission. 443 */ 444 if (asoc->addip_last_asconf) { 445 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 446 goto out; 447 } 448 449 /* Hold the chunk until an ASCONF_ACK is received. */ 450 sctp_chunk_hold(chunk); 451 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 452 if (retval) 453 sctp_chunk_free(chunk); 454 else 455 asoc->addip_last_asconf = chunk; 456 457 out: 458 return retval; 459 } 460 461 /* Add a list of addresses as bind addresses to local endpoint or 462 * association. 463 * 464 * Basically run through each address specified in the addrs/addrcnt 465 * array/length pair, determine if it is IPv6 or IPv4 and call 466 * sctp_do_bind() on it. 467 * 468 * If any of them fails, then the operation will be reversed and the 469 * ones that were added will be removed. 470 * 471 * Only sctp_setsockopt_bindx() is supposed to call this function. 472 */ 473 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 474 { 475 int cnt; 476 int retval = 0; 477 void *addr_buf; 478 struct sockaddr *sa_addr; 479 struct sctp_af *af; 480 481 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 482 addrs, addrcnt); 483 484 addr_buf = addrs; 485 for (cnt = 0; cnt < addrcnt; cnt++) { 486 /* The list may contain either IPv4 or IPv6 address; 487 * determine the address length for walking thru the list. 488 */ 489 sa_addr = addr_buf; 490 af = sctp_get_af_specific(sa_addr->sa_family); 491 if (!af) { 492 retval = -EINVAL; 493 goto err_bindx_add; 494 } 495 496 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 497 af->sockaddr_len); 498 499 addr_buf += af->sockaddr_len; 500 501 err_bindx_add: 502 if (retval < 0) { 503 /* Failed. Cleanup the ones that have been added */ 504 if (cnt > 0) 505 sctp_bindx_rem(sk, addrs, cnt); 506 return retval; 507 } 508 } 509 510 return retval; 511 } 512 513 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 514 * associations that are part of the endpoint indicating that a list of local 515 * addresses are added to the endpoint. 516 * 517 * If any of the addresses is already in the bind address list of the 518 * association, we do not send the chunk for that association. But it will not 519 * affect other associations. 520 * 521 * Only sctp_setsockopt_bindx() is supposed to call this function. 522 */ 523 static int sctp_send_asconf_add_ip(struct sock *sk, 524 struct sockaddr *addrs, 525 int addrcnt) 526 { 527 struct sctp_sock *sp; 528 struct sctp_endpoint *ep; 529 struct sctp_association *asoc; 530 struct sctp_bind_addr *bp; 531 struct sctp_chunk *chunk; 532 struct sctp_sockaddr_entry *laddr; 533 union sctp_addr *addr; 534 union sctp_addr saveaddr; 535 void *addr_buf; 536 struct sctp_af *af; 537 struct list_head *p; 538 int i; 539 int retval = 0; 540 541 sp = sctp_sk(sk); 542 ep = sp->ep; 543 544 if (!ep->asconf_enable) 545 return retval; 546 547 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 548 __func__, sk, addrs, addrcnt); 549 550 list_for_each_entry(asoc, &ep->asocs, asocs) { 551 if (!asoc->peer.asconf_capable) 552 continue; 553 554 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 555 continue; 556 557 if (!sctp_state(asoc, ESTABLISHED)) 558 continue; 559 560 /* Check if any address in the packed array of addresses is 561 * in the bind address list of the association. If so, 562 * do not send the asconf chunk to its peer, but continue with 563 * other associations. 564 */ 565 addr_buf = addrs; 566 for (i = 0; i < addrcnt; i++) { 567 addr = addr_buf; 568 af = sctp_get_af_specific(addr->v4.sin_family); 569 if (!af) { 570 retval = -EINVAL; 571 goto out; 572 } 573 574 if (sctp_assoc_lookup_laddr(asoc, addr)) 575 break; 576 577 addr_buf += af->sockaddr_len; 578 } 579 if (i < addrcnt) 580 continue; 581 582 /* Use the first valid address in bind addr list of 583 * association as Address Parameter of ASCONF CHUNK. 584 */ 585 bp = &asoc->base.bind_addr; 586 p = bp->address_list.next; 587 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 588 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 589 addrcnt, SCTP_PARAM_ADD_IP); 590 if (!chunk) { 591 retval = -ENOMEM; 592 goto out; 593 } 594 595 /* Add the new addresses to the bind address list with 596 * use_as_src set to 0. 597 */ 598 addr_buf = addrs; 599 for (i = 0; i < addrcnt; i++) { 600 addr = addr_buf; 601 af = sctp_get_af_specific(addr->v4.sin_family); 602 memcpy(&saveaddr, addr, af->sockaddr_len); 603 retval = sctp_add_bind_addr(bp, &saveaddr, 604 sizeof(saveaddr), 605 SCTP_ADDR_NEW, GFP_ATOMIC); 606 addr_buf += af->sockaddr_len; 607 } 608 if (asoc->src_out_of_asoc_ok) { 609 struct sctp_transport *trans; 610 611 list_for_each_entry(trans, 612 &asoc->peer.transport_addr_list, transports) { 613 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 614 2*asoc->pathmtu, 4380)); 615 trans->ssthresh = asoc->peer.i.a_rwnd; 616 trans->rto = asoc->rto_initial; 617 sctp_max_rto(asoc, trans); 618 trans->rtt = trans->srtt = trans->rttvar = 0; 619 /* Clear the source and route cache */ 620 sctp_transport_route(trans, NULL, 621 sctp_sk(asoc->base.sk)); 622 } 623 } 624 retval = sctp_send_asconf(asoc, chunk); 625 } 626 627 out: 628 return retval; 629 } 630 631 /* Remove a list of addresses from bind addresses list. Do not remove the 632 * last address. 633 * 634 * Basically run through each address specified in the addrs/addrcnt 635 * array/length pair, determine if it is IPv6 or IPv4 and call 636 * sctp_del_bind() on it. 637 * 638 * If any of them fails, then the operation will be reversed and the 639 * ones that were removed will be added back. 640 * 641 * At least one address has to be left; if only one address is 642 * available, the operation will return -EBUSY. 643 * 644 * Only sctp_setsockopt_bindx() is supposed to call this function. 645 */ 646 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 647 { 648 struct sctp_sock *sp = sctp_sk(sk); 649 struct sctp_endpoint *ep = sp->ep; 650 int cnt; 651 struct sctp_bind_addr *bp = &ep->base.bind_addr; 652 int retval = 0; 653 void *addr_buf; 654 union sctp_addr *sa_addr; 655 struct sctp_af *af; 656 657 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 658 __func__, sk, addrs, addrcnt); 659 660 addr_buf = addrs; 661 for (cnt = 0; cnt < addrcnt; cnt++) { 662 /* If the bind address list is empty or if there is only one 663 * bind address, there is nothing more to be removed (we need 664 * at least one address here). 665 */ 666 if (list_empty(&bp->address_list) || 667 (sctp_list_single_entry(&bp->address_list))) { 668 retval = -EBUSY; 669 goto err_bindx_rem; 670 } 671 672 sa_addr = addr_buf; 673 af = sctp_get_af_specific(sa_addr->sa.sa_family); 674 if (!af) { 675 retval = -EINVAL; 676 goto err_bindx_rem; 677 } 678 679 if (!af->addr_valid(sa_addr, sp, NULL)) { 680 retval = -EADDRNOTAVAIL; 681 goto err_bindx_rem; 682 } 683 684 if (sa_addr->v4.sin_port && 685 sa_addr->v4.sin_port != htons(bp->port)) { 686 retval = -EINVAL; 687 goto err_bindx_rem; 688 } 689 690 if (!sa_addr->v4.sin_port) 691 sa_addr->v4.sin_port = htons(bp->port); 692 693 /* FIXME - There is probably a need to check if sk->sk_saddr and 694 * sk->sk_rcv_addr are currently set to one of the addresses to 695 * be removed. This is something which needs to be looked into 696 * when we are fixing the outstanding issues with multi-homing 697 * socket routing and failover schemes. Refer to comments in 698 * sctp_do_bind(). -daisy 699 */ 700 retval = sctp_del_bind_addr(bp, sa_addr); 701 702 addr_buf += af->sockaddr_len; 703 err_bindx_rem: 704 if (retval < 0) { 705 /* Failed. Add the ones that has been removed back */ 706 if (cnt > 0) 707 sctp_bindx_add(sk, addrs, cnt); 708 return retval; 709 } 710 } 711 712 return retval; 713 } 714 715 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 716 * the associations that are part of the endpoint indicating that a list of 717 * local addresses are removed from the endpoint. 718 * 719 * If any of the addresses is already in the bind address list of the 720 * association, we do not send the chunk for that association. But it will not 721 * affect other associations. 722 * 723 * Only sctp_setsockopt_bindx() is supposed to call this function. 724 */ 725 static int sctp_send_asconf_del_ip(struct sock *sk, 726 struct sockaddr *addrs, 727 int addrcnt) 728 { 729 struct sctp_sock *sp; 730 struct sctp_endpoint *ep; 731 struct sctp_association *asoc; 732 struct sctp_transport *transport; 733 struct sctp_bind_addr *bp; 734 struct sctp_chunk *chunk; 735 union sctp_addr *laddr; 736 void *addr_buf; 737 struct sctp_af *af; 738 struct sctp_sockaddr_entry *saddr; 739 int i; 740 int retval = 0; 741 int stored = 0; 742 743 chunk = NULL; 744 sp = sctp_sk(sk); 745 ep = sp->ep; 746 747 if (!ep->asconf_enable) 748 return retval; 749 750 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 751 __func__, sk, addrs, addrcnt); 752 753 list_for_each_entry(asoc, &ep->asocs, asocs) { 754 755 if (!asoc->peer.asconf_capable) 756 continue; 757 758 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 759 continue; 760 761 if (!sctp_state(asoc, ESTABLISHED)) 762 continue; 763 764 /* Check if any address in the packed array of addresses is 765 * not present in the bind address list of the association. 766 * If so, do not send the asconf chunk to its peer, but 767 * continue with other associations. 768 */ 769 addr_buf = addrs; 770 for (i = 0; i < addrcnt; i++) { 771 laddr = addr_buf; 772 af = sctp_get_af_specific(laddr->v4.sin_family); 773 if (!af) { 774 retval = -EINVAL; 775 goto out; 776 } 777 778 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 779 break; 780 781 addr_buf += af->sockaddr_len; 782 } 783 if (i < addrcnt) 784 continue; 785 786 /* Find one address in the association's bind address list 787 * that is not in the packed array of addresses. This is to 788 * make sure that we do not delete all the addresses in the 789 * association. 790 */ 791 bp = &asoc->base.bind_addr; 792 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 793 addrcnt, sp); 794 if ((laddr == NULL) && (addrcnt == 1)) { 795 if (asoc->asconf_addr_del_pending) 796 continue; 797 asoc->asconf_addr_del_pending = 798 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 799 if (asoc->asconf_addr_del_pending == NULL) { 800 retval = -ENOMEM; 801 goto out; 802 } 803 asoc->asconf_addr_del_pending->sa.sa_family = 804 addrs->sa_family; 805 asoc->asconf_addr_del_pending->v4.sin_port = 806 htons(bp->port); 807 if (addrs->sa_family == AF_INET) { 808 struct sockaddr_in *sin; 809 810 sin = (struct sockaddr_in *)addrs; 811 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 812 } else if (addrs->sa_family == AF_INET6) { 813 struct sockaddr_in6 *sin6; 814 815 sin6 = (struct sockaddr_in6 *)addrs; 816 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 817 } 818 819 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 820 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 821 asoc->asconf_addr_del_pending); 822 823 asoc->src_out_of_asoc_ok = 1; 824 stored = 1; 825 goto skip_mkasconf; 826 } 827 828 if (laddr == NULL) 829 return -EINVAL; 830 831 /* We do not need RCU protection throughout this loop 832 * because this is done under a socket lock from the 833 * setsockopt call. 834 */ 835 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 836 SCTP_PARAM_DEL_IP); 837 if (!chunk) { 838 retval = -ENOMEM; 839 goto out; 840 } 841 842 skip_mkasconf: 843 /* Reset use_as_src flag for the addresses in the bind address 844 * list that are to be deleted. 845 */ 846 addr_buf = addrs; 847 for (i = 0; i < addrcnt; i++) { 848 laddr = addr_buf; 849 af = sctp_get_af_specific(laddr->v4.sin_family); 850 list_for_each_entry(saddr, &bp->address_list, list) { 851 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 852 saddr->state = SCTP_ADDR_DEL; 853 } 854 addr_buf += af->sockaddr_len; 855 } 856 857 /* Update the route and saddr entries for all the transports 858 * as some of the addresses in the bind address list are 859 * about to be deleted and cannot be used as source addresses. 860 */ 861 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 862 transports) { 863 sctp_transport_route(transport, NULL, 864 sctp_sk(asoc->base.sk)); 865 } 866 867 if (stored) 868 /* We don't need to transmit ASCONF */ 869 continue; 870 retval = sctp_send_asconf(asoc, chunk); 871 } 872 out: 873 return retval; 874 } 875 876 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 877 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 878 { 879 struct sock *sk = sctp_opt2sk(sp); 880 union sctp_addr *addr; 881 struct sctp_af *af; 882 883 /* It is safe to write port space in caller. */ 884 addr = &addrw->a; 885 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 886 af = sctp_get_af_specific(addr->sa.sa_family); 887 if (!af) 888 return -EINVAL; 889 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 890 return -EINVAL; 891 892 if (addrw->state == SCTP_ADDR_NEW) 893 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 894 else 895 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 896 } 897 898 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 899 * 900 * API 8.1 901 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 902 * int flags); 903 * 904 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 905 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 906 * or IPv6 addresses. 907 * 908 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 909 * Section 3.1.2 for this usage. 910 * 911 * addrs is a pointer to an array of one or more socket addresses. Each 912 * address is contained in its appropriate structure (i.e. struct 913 * sockaddr_in or struct sockaddr_in6) the family of the address type 914 * must be used to distinguish the address length (note that this 915 * representation is termed a "packed array" of addresses). The caller 916 * specifies the number of addresses in the array with addrcnt. 917 * 918 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 919 * -1, and sets errno to the appropriate error code. 920 * 921 * For SCTP, the port given in each socket address must be the same, or 922 * sctp_bindx() will fail, setting errno to EINVAL. 923 * 924 * The flags parameter is formed from the bitwise OR of zero or more of 925 * the following currently defined flags: 926 * 927 * SCTP_BINDX_ADD_ADDR 928 * 929 * SCTP_BINDX_REM_ADDR 930 * 931 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 932 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 933 * addresses from the association. The two flags are mutually exclusive; 934 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 935 * not remove all addresses from an association; sctp_bindx() will 936 * reject such an attempt with EINVAL. 937 * 938 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 939 * additional addresses with an endpoint after calling bind(). Or use 940 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 941 * socket is associated with so that no new association accepted will be 942 * associated with those addresses. If the endpoint supports dynamic 943 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 944 * endpoint to send the appropriate message to the peer to change the 945 * peers address lists. 946 * 947 * Adding and removing addresses from a connected association is 948 * optional functionality. Implementations that do not support this 949 * functionality should return EOPNOTSUPP. 950 * 951 * Basically do nothing but copying the addresses from user to kernel 952 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 953 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 954 * from userspace. 955 * 956 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 957 * it. 958 * 959 * sk The sk of the socket 960 * addrs The pointer to the addresses in user land 961 * addrssize Size of the addrs buffer 962 * op Operation to perform (add or remove, see the flags of 963 * sctp_bindx) 964 * 965 * Returns 0 if ok, <0 errno code on error. 966 */ 967 static int sctp_setsockopt_bindx(struct sock *sk, 968 struct sockaddr __user *addrs, 969 int addrs_size, int op) 970 { 971 struct sockaddr *kaddrs; 972 int err; 973 int addrcnt = 0; 974 int walk_size = 0; 975 struct sockaddr *sa_addr; 976 void *addr_buf; 977 struct sctp_af *af; 978 979 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 980 __func__, sk, addrs, addrs_size, op); 981 982 if (unlikely(addrs_size <= 0)) 983 return -EINVAL; 984 985 kaddrs = memdup_user(addrs, addrs_size); 986 if (IS_ERR(kaddrs)) 987 return PTR_ERR(kaddrs); 988 989 /* Walk through the addrs buffer and count the number of addresses. */ 990 addr_buf = kaddrs; 991 while (walk_size < addrs_size) { 992 if (walk_size + sizeof(sa_family_t) > addrs_size) { 993 kfree(kaddrs); 994 return -EINVAL; 995 } 996 997 sa_addr = addr_buf; 998 af = sctp_get_af_specific(sa_addr->sa_family); 999 1000 /* If the address family is not supported or if this address 1001 * causes the address buffer to overflow return EINVAL. 1002 */ 1003 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1004 kfree(kaddrs); 1005 return -EINVAL; 1006 } 1007 addrcnt++; 1008 addr_buf += af->sockaddr_len; 1009 walk_size += af->sockaddr_len; 1010 } 1011 1012 /* Do the work. */ 1013 switch (op) { 1014 case SCTP_BINDX_ADD_ADDR: 1015 /* Allow security module to validate bindx addresses. */ 1016 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1017 (struct sockaddr *)kaddrs, 1018 addrs_size); 1019 if (err) 1020 goto out; 1021 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1022 if (err) 1023 goto out; 1024 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1025 break; 1026 1027 case SCTP_BINDX_REM_ADDR: 1028 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1029 if (err) 1030 goto out; 1031 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1032 break; 1033 1034 default: 1035 err = -EINVAL; 1036 break; 1037 } 1038 1039 out: 1040 kfree(kaddrs); 1041 1042 return err; 1043 } 1044 1045 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1046 const union sctp_addr *daddr, 1047 const struct sctp_initmsg *init, 1048 struct sctp_transport **tp) 1049 { 1050 struct sctp_association *asoc; 1051 struct sock *sk = ep->base.sk; 1052 struct net *net = sock_net(sk); 1053 enum sctp_scope scope; 1054 int err; 1055 1056 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1057 return -EADDRNOTAVAIL; 1058 1059 if (!ep->base.bind_addr.port) { 1060 if (sctp_autobind(sk)) 1061 return -EAGAIN; 1062 } else { 1063 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1064 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1065 return -EACCES; 1066 } 1067 1068 scope = sctp_scope(daddr); 1069 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1070 if (!asoc) 1071 return -ENOMEM; 1072 1073 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1074 if (err < 0) 1075 goto free; 1076 1077 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1078 if (!*tp) { 1079 err = -ENOMEM; 1080 goto free; 1081 } 1082 1083 if (!init) 1084 return 0; 1085 1086 if (init->sinit_num_ostreams) { 1087 __u16 outcnt = init->sinit_num_ostreams; 1088 1089 asoc->c.sinit_num_ostreams = outcnt; 1090 /* outcnt has been changed, need to re-init stream */ 1091 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1092 if (err) 1093 goto free; 1094 } 1095 1096 if (init->sinit_max_instreams) 1097 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1098 1099 if (init->sinit_max_attempts) 1100 asoc->max_init_attempts = init->sinit_max_attempts; 1101 1102 if (init->sinit_max_init_timeo) 1103 asoc->max_init_timeo = 1104 msecs_to_jiffies(init->sinit_max_init_timeo); 1105 1106 return 0; 1107 free: 1108 sctp_association_free(asoc); 1109 return err; 1110 } 1111 1112 static int sctp_connect_add_peer(struct sctp_association *asoc, 1113 union sctp_addr *daddr, int addr_len) 1114 { 1115 struct sctp_endpoint *ep = asoc->ep; 1116 struct sctp_association *old; 1117 struct sctp_transport *t; 1118 int err; 1119 1120 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1121 if (err) 1122 return err; 1123 1124 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1125 if (old && old != asoc) 1126 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1127 : -EALREADY; 1128 1129 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1130 return -EADDRNOTAVAIL; 1131 1132 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1133 if (!t) 1134 return -ENOMEM; 1135 1136 return 0; 1137 } 1138 1139 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1140 * 1141 * Common routine for handling connect() and sctp_connectx(). 1142 * Connect will come in with just a single address. 1143 */ 1144 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1145 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1146 { 1147 struct sctp_sock *sp = sctp_sk(sk); 1148 struct sctp_endpoint *ep = sp->ep; 1149 struct sctp_transport *transport; 1150 struct sctp_association *asoc; 1151 void *addr_buf = kaddrs; 1152 union sctp_addr *daddr; 1153 struct sctp_af *af; 1154 int walk_size, err; 1155 long timeo; 1156 1157 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1158 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1159 return -EISCONN; 1160 1161 daddr = addr_buf; 1162 af = sctp_get_af_specific(daddr->sa.sa_family); 1163 if (!af || af->sockaddr_len > addrs_size) 1164 return -EINVAL; 1165 1166 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1167 if (err) 1168 return err; 1169 1170 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1171 if (asoc) 1172 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1173 : -EALREADY; 1174 1175 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1176 if (err) 1177 return err; 1178 asoc = transport->asoc; 1179 1180 addr_buf += af->sockaddr_len; 1181 walk_size = af->sockaddr_len; 1182 while (walk_size < addrs_size) { 1183 err = -EINVAL; 1184 if (walk_size + sizeof(sa_family_t) > addrs_size) 1185 goto out_free; 1186 1187 daddr = addr_buf; 1188 af = sctp_get_af_specific(daddr->sa.sa_family); 1189 if (!af || af->sockaddr_len + walk_size > addrs_size) 1190 goto out_free; 1191 1192 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1193 goto out_free; 1194 1195 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1196 if (err) 1197 goto out_free; 1198 1199 addr_buf += af->sockaddr_len; 1200 walk_size += af->sockaddr_len; 1201 } 1202 1203 /* In case the user of sctp_connectx() wants an association 1204 * id back, assign one now. 1205 */ 1206 if (assoc_id) { 1207 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1208 if (err < 0) 1209 goto out_free; 1210 } 1211 1212 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1213 if (err < 0) 1214 goto out_free; 1215 1216 /* Initialize sk's dport and daddr for getpeername() */ 1217 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1218 sp->pf->to_sk_daddr(daddr, sk); 1219 sk->sk_err = 0; 1220 1221 if (assoc_id) 1222 *assoc_id = asoc->assoc_id; 1223 1224 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1225 return sctp_wait_for_connect(asoc, &timeo); 1226 1227 out_free: 1228 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1229 __func__, asoc, kaddrs, err); 1230 sctp_association_free(asoc); 1231 return err; 1232 } 1233 1234 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1235 * 1236 * API 8.9 1237 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1238 * sctp_assoc_t *asoc); 1239 * 1240 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1241 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1242 * or IPv6 addresses. 1243 * 1244 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1245 * Section 3.1.2 for this usage. 1246 * 1247 * addrs is a pointer to an array of one or more socket addresses. Each 1248 * address is contained in its appropriate structure (i.e. struct 1249 * sockaddr_in or struct sockaddr_in6) the family of the address type 1250 * must be used to distengish the address length (note that this 1251 * representation is termed a "packed array" of addresses). The caller 1252 * specifies the number of addresses in the array with addrcnt. 1253 * 1254 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1255 * the association id of the new association. On failure, sctp_connectx() 1256 * returns -1, and sets errno to the appropriate error code. The assoc_id 1257 * is not touched by the kernel. 1258 * 1259 * For SCTP, the port given in each socket address must be the same, or 1260 * sctp_connectx() will fail, setting errno to EINVAL. 1261 * 1262 * An application can use sctp_connectx to initiate an association with 1263 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1264 * allows a caller to specify multiple addresses at which a peer can be 1265 * reached. The way the SCTP stack uses the list of addresses to set up 1266 * the association is implementation dependent. This function only 1267 * specifies that the stack will try to make use of all the addresses in 1268 * the list when needed. 1269 * 1270 * Note that the list of addresses passed in is only used for setting up 1271 * the association. It does not necessarily equal the set of addresses 1272 * the peer uses for the resulting association. If the caller wants to 1273 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1274 * retrieve them after the association has been set up. 1275 * 1276 * Basically do nothing but copying the addresses from user to kernel 1277 * land and invoking either sctp_connectx(). This is used for tunneling 1278 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1279 * 1280 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1281 * it. 1282 * 1283 * sk The sk of the socket 1284 * addrs The pointer to the addresses in user land 1285 * addrssize Size of the addrs buffer 1286 * 1287 * Returns >=0 if ok, <0 errno code on error. 1288 */ 1289 static int __sctp_setsockopt_connectx(struct sock *sk, 1290 struct sockaddr __user *addrs, 1291 int addrs_size, 1292 sctp_assoc_t *assoc_id) 1293 { 1294 struct sockaddr *kaddrs; 1295 int err = 0, flags = 0; 1296 1297 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1298 __func__, sk, addrs, addrs_size); 1299 1300 /* make sure the 1st addr's sa_family is accessible later */ 1301 if (unlikely(addrs_size < sizeof(sa_family_t))) 1302 return -EINVAL; 1303 1304 kaddrs = memdup_user(addrs, addrs_size); 1305 if (IS_ERR(kaddrs)) 1306 return PTR_ERR(kaddrs); 1307 1308 /* Allow security module to validate connectx addresses. */ 1309 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1310 (struct sockaddr *)kaddrs, 1311 addrs_size); 1312 if (err) 1313 goto out_free; 1314 1315 /* in-kernel sockets don't generally have a file allocated to them 1316 * if all they do is call sock_create_kern(). 1317 */ 1318 if (sk->sk_socket->file) 1319 flags = sk->sk_socket->file->f_flags; 1320 1321 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1322 1323 out_free: 1324 kfree(kaddrs); 1325 1326 return err; 1327 } 1328 1329 /* 1330 * This is an older interface. It's kept for backward compatibility 1331 * to the option that doesn't provide association id. 1332 */ 1333 static int sctp_setsockopt_connectx_old(struct sock *sk, 1334 struct sockaddr __user *addrs, 1335 int addrs_size) 1336 { 1337 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1338 } 1339 1340 /* 1341 * New interface for the API. The since the API is done with a socket 1342 * option, to make it simple we feed back the association id is as a return 1343 * indication to the call. Error is always negative and association id is 1344 * always positive. 1345 */ 1346 static int sctp_setsockopt_connectx(struct sock *sk, 1347 struct sockaddr __user *addrs, 1348 int addrs_size) 1349 { 1350 sctp_assoc_t assoc_id = 0; 1351 int err = 0; 1352 1353 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1354 1355 if (err) 1356 return err; 1357 else 1358 return assoc_id; 1359 } 1360 1361 /* 1362 * New (hopefully final) interface for the API. 1363 * We use the sctp_getaddrs_old structure so that use-space library 1364 * can avoid any unnecessary allocations. The only different part 1365 * is that we store the actual length of the address buffer into the 1366 * addrs_num structure member. That way we can re-use the existing 1367 * code. 1368 */ 1369 #ifdef CONFIG_COMPAT 1370 struct compat_sctp_getaddrs_old { 1371 sctp_assoc_t assoc_id; 1372 s32 addr_num; 1373 compat_uptr_t addrs; /* struct sockaddr * */ 1374 }; 1375 #endif 1376 1377 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1378 char __user *optval, 1379 int __user *optlen) 1380 { 1381 struct sctp_getaddrs_old param; 1382 sctp_assoc_t assoc_id = 0; 1383 int err = 0; 1384 1385 #ifdef CONFIG_COMPAT 1386 if (in_compat_syscall()) { 1387 struct compat_sctp_getaddrs_old param32; 1388 1389 if (len < sizeof(param32)) 1390 return -EINVAL; 1391 if (copy_from_user(¶m32, optval, sizeof(param32))) 1392 return -EFAULT; 1393 1394 param.assoc_id = param32.assoc_id; 1395 param.addr_num = param32.addr_num; 1396 param.addrs = compat_ptr(param32.addrs); 1397 } else 1398 #endif 1399 { 1400 if (len < sizeof(param)) 1401 return -EINVAL; 1402 if (copy_from_user(¶m, optval, sizeof(param))) 1403 return -EFAULT; 1404 } 1405 1406 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1407 param.addrs, param.addr_num, 1408 &assoc_id); 1409 if (err == 0 || err == -EINPROGRESS) { 1410 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1411 return -EFAULT; 1412 if (put_user(sizeof(assoc_id), optlen)) 1413 return -EFAULT; 1414 } 1415 1416 return err; 1417 } 1418 1419 /* API 3.1.4 close() - UDP Style Syntax 1420 * Applications use close() to perform graceful shutdown (as described in 1421 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1422 * by a UDP-style socket. 1423 * 1424 * The syntax is 1425 * 1426 * ret = close(int sd); 1427 * 1428 * sd - the socket descriptor of the associations to be closed. 1429 * 1430 * To gracefully shutdown a specific association represented by the 1431 * UDP-style socket, an application should use the sendmsg() call, 1432 * passing no user data, but including the appropriate flag in the 1433 * ancillary data (see Section xxxx). 1434 * 1435 * If sd in the close() call is a branched-off socket representing only 1436 * one association, the shutdown is performed on that association only. 1437 * 1438 * 4.1.6 close() - TCP Style Syntax 1439 * 1440 * Applications use close() to gracefully close down an association. 1441 * 1442 * The syntax is: 1443 * 1444 * int close(int sd); 1445 * 1446 * sd - the socket descriptor of the association to be closed. 1447 * 1448 * After an application calls close() on a socket descriptor, no further 1449 * socket operations will succeed on that descriptor. 1450 * 1451 * API 7.1.4 SO_LINGER 1452 * 1453 * An application using the TCP-style socket can use this option to 1454 * perform the SCTP ABORT primitive. The linger option structure is: 1455 * 1456 * struct linger { 1457 * int l_onoff; // option on/off 1458 * int l_linger; // linger time 1459 * }; 1460 * 1461 * To enable the option, set l_onoff to 1. If the l_linger value is set 1462 * to 0, calling close() is the same as the ABORT primitive. If the 1463 * value is set to a negative value, the setsockopt() call will return 1464 * an error. If the value is set to a positive value linger_time, the 1465 * close() can be blocked for at most linger_time ms. If the graceful 1466 * shutdown phase does not finish during this period, close() will 1467 * return but the graceful shutdown phase continues in the system. 1468 */ 1469 static void sctp_close(struct sock *sk, long timeout) 1470 { 1471 struct net *net = sock_net(sk); 1472 struct sctp_endpoint *ep; 1473 struct sctp_association *asoc; 1474 struct list_head *pos, *temp; 1475 unsigned int data_was_unread; 1476 1477 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1478 1479 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1480 sk->sk_shutdown = SHUTDOWN_MASK; 1481 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1482 1483 ep = sctp_sk(sk)->ep; 1484 1485 /* Clean up any skbs sitting on the receive queue. */ 1486 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1487 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1488 1489 /* Walk all associations on an endpoint. */ 1490 list_for_each_safe(pos, temp, &ep->asocs) { 1491 asoc = list_entry(pos, struct sctp_association, asocs); 1492 1493 if (sctp_style(sk, TCP)) { 1494 /* A closed association can still be in the list if 1495 * it belongs to a TCP-style listening socket that is 1496 * not yet accepted. If so, free it. If not, send an 1497 * ABORT or SHUTDOWN based on the linger options. 1498 */ 1499 if (sctp_state(asoc, CLOSED)) { 1500 sctp_association_free(asoc); 1501 continue; 1502 } 1503 } 1504 1505 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1506 !skb_queue_empty(&asoc->ulpq.reasm) || 1507 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1508 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1509 struct sctp_chunk *chunk; 1510 1511 chunk = sctp_make_abort_user(asoc, NULL, 0); 1512 sctp_primitive_ABORT(net, asoc, chunk); 1513 } else 1514 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1515 } 1516 1517 /* On a TCP-style socket, block for at most linger_time if set. */ 1518 if (sctp_style(sk, TCP) && timeout) 1519 sctp_wait_for_close(sk, timeout); 1520 1521 /* This will run the backlog queue. */ 1522 release_sock(sk); 1523 1524 /* Supposedly, no process has access to the socket, but 1525 * the net layers still may. 1526 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1527 * held and that should be grabbed before socket lock. 1528 */ 1529 spin_lock_bh(&net->sctp.addr_wq_lock); 1530 bh_lock_sock_nested(sk); 1531 1532 /* Hold the sock, since sk_common_release() will put sock_put() 1533 * and we have just a little more cleanup. 1534 */ 1535 sock_hold(sk); 1536 sk_common_release(sk); 1537 1538 bh_unlock_sock(sk); 1539 spin_unlock_bh(&net->sctp.addr_wq_lock); 1540 1541 sock_put(sk); 1542 1543 SCTP_DBG_OBJCNT_DEC(sock); 1544 } 1545 1546 /* Handle EPIPE error. */ 1547 static int sctp_error(struct sock *sk, int flags, int err) 1548 { 1549 if (err == -EPIPE) 1550 err = sock_error(sk) ? : -EPIPE; 1551 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1552 send_sig(SIGPIPE, current, 0); 1553 return err; 1554 } 1555 1556 /* API 3.1.3 sendmsg() - UDP Style Syntax 1557 * 1558 * An application uses sendmsg() and recvmsg() calls to transmit data to 1559 * and receive data from its peer. 1560 * 1561 * ssize_t sendmsg(int socket, const struct msghdr *message, 1562 * int flags); 1563 * 1564 * socket - the socket descriptor of the endpoint. 1565 * message - pointer to the msghdr structure which contains a single 1566 * user message and possibly some ancillary data. 1567 * 1568 * See Section 5 for complete description of the data 1569 * structures. 1570 * 1571 * flags - flags sent or received with the user message, see Section 1572 * 5 for complete description of the flags. 1573 * 1574 * Note: This function could use a rewrite especially when explicit 1575 * connect support comes in. 1576 */ 1577 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1578 1579 static int sctp_msghdr_parse(const struct msghdr *msg, 1580 struct sctp_cmsgs *cmsgs); 1581 1582 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1583 struct sctp_sndrcvinfo *srinfo, 1584 const struct msghdr *msg, size_t msg_len) 1585 { 1586 __u16 sflags; 1587 int err; 1588 1589 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1590 return -EPIPE; 1591 1592 if (msg_len > sk->sk_sndbuf) 1593 return -EMSGSIZE; 1594 1595 memset(cmsgs, 0, sizeof(*cmsgs)); 1596 err = sctp_msghdr_parse(msg, cmsgs); 1597 if (err) { 1598 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1599 return err; 1600 } 1601 1602 memset(srinfo, 0, sizeof(*srinfo)); 1603 if (cmsgs->srinfo) { 1604 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1605 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1606 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1607 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1608 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1609 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1610 } 1611 1612 if (cmsgs->sinfo) { 1613 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1614 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1615 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1616 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1617 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1618 } 1619 1620 if (cmsgs->prinfo) { 1621 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1622 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1623 cmsgs->prinfo->pr_policy); 1624 } 1625 1626 sflags = srinfo->sinfo_flags; 1627 if (!sflags && msg_len) 1628 return 0; 1629 1630 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1631 return -EINVAL; 1632 1633 if (((sflags & SCTP_EOF) && msg_len > 0) || 1634 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1635 return -EINVAL; 1636 1637 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1638 return -EINVAL; 1639 1640 return 0; 1641 } 1642 1643 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1644 struct sctp_cmsgs *cmsgs, 1645 union sctp_addr *daddr, 1646 struct sctp_transport **tp) 1647 { 1648 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1649 struct sctp_association *asoc; 1650 struct cmsghdr *cmsg; 1651 __be32 flowinfo = 0; 1652 struct sctp_af *af; 1653 int err; 1654 1655 *tp = NULL; 1656 1657 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1658 return -EINVAL; 1659 1660 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1661 sctp_sstate(sk, CLOSING))) 1662 return -EADDRNOTAVAIL; 1663 1664 /* Label connection socket for first association 1-to-many 1665 * style for client sequence socket()->sendmsg(). This 1666 * needs to be done before sctp_assoc_add_peer() as that will 1667 * set up the initial packet that needs to account for any 1668 * security ip options (CIPSO/CALIPSO) added to the packet. 1669 */ 1670 af = sctp_get_af_specific(daddr->sa.sa_family); 1671 if (!af) 1672 return -EINVAL; 1673 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1674 (struct sockaddr *)daddr, 1675 af->sockaddr_len); 1676 if (err < 0) 1677 return err; 1678 1679 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1680 if (err) 1681 return err; 1682 asoc = (*tp)->asoc; 1683 1684 if (!cmsgs->addrs_msg) 1685 return 0; 1686 1687 if (daddr->sa.sa_family == AF_INET6) 1688 flowinfo = daddr->v6.sin6_flowinfo; 1689 1690 /* sendv addr list parse */ 1691 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1692 union sctp_addr _daddr; 1693 int dlen; 1694 1695 if (cmsg->cmsg_level != IPPROTO_SCTP || 1696 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1697 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1698 continue; 1699 1700 daddr = &_daddr; 1701 memset(daddr, 0, sizeof(*daddr)); 1702 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1703 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1704 if (dlen < sizeof(struct in_addr)) { 1705 err = -EINVAL; 1706 goto free; 1707 } 1708 1709 dlen = sizeof(struct in_addr); 1710 daddr->v4.sin_family = AF_INET; 1711 daddr->v4.sin_port = htons(asoc->peer.port); 1712 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1713 } else { 1714 if (dlen < sizeof(struct in6_addr)) { 1715 err = -EINVAL; 1716 goto free; 1717 } 1718 1719 dlen = sizeof(struct in6_addr); 1720 daddr->v6.sin6_flowinfo = flowinfo; 1721 daddr->v6.sin6_family = AF_INET6; 1722 daddr->v6.sin6_port = htons(asoc->peer.port); 1723 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1724 } 1725 1726 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1727 if (err) 1728 goto free; 1729 } 1730 1731 return 0; 1732 1733 free: 1734 sctp_association_free(asoc); 1735 return err; 1736 } 1737 1738 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1739 __u16 sflags, struct msghdr *msg, 1740 size_t msg_len) 1741 { 1742 struct sock *sk = asoc->base.sk; 1743 struct net *net = sock_net(sk); 1744 1745 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1746 return -EPIPE; 1747 1748 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1749 !sctp_state(asoc, ESTABLISHED)) 1750 return 0; 1751 1752 if (sflags & SCTP_EOF) { 1753 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1754 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1755 1756 return 0; 1757 } 1758 1759 if (sflags & SCTP_ABORT) { 1760 struct sctp_chunk *chunk; 1761 1762 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1763 if (!chunk) 1764 return -ENOMEM; 1765 1766 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1767 sctp_primitive_ABORT(net, asoc, chunk); 1768 iov_iter_revert(&msg->msg_iter, msg_len); 1769 1770 return 0; 1771 } 1772 1773 return 1; 1774 } 1775 1776 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1777 struct msghdr *msg, size_t msg_len, 1778 struct sctp_transport *transport, 1779 struct sctp_sndrcvinfo *sinfo) 1780 { 1781 struct sock *sk = asoc->base.sk; 1782 struct sctp_sock *sp = sctp_sk(sk); 1783 struct net *net = sock_net(sk); 1784 struct sctp_datamsg *datamsg; 1785 bool wait_connect = false; 1786 struct sctp_chunk *chunk; 1787 long timeo; 1788 int err; 1789 1790 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1791 err = -EINVAL; 1792 goto err; 1793 } 1794 1795 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1796 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1797 if (err) 1798 goto err; 1799 } 1800 1801 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1802 err = -EMSGSIZE; 1803 goto err; 1804 } 1805 1806 if (asoc->pmtu_pending) { 1807 if (sp->param_flags & SPP_PMTUD_ENABLE) 1808 sctp_assoc_sync_pmtu(asoc); 1809 asoc->pmtu_pending = 0; 1810 } 1811 1812 if (sctp_wspace(asoc) < (int)msg_len) 1813 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1814 1815 if (sk_under_memory_pressure(sk)) 1816 sk_mem_reclaim(sk); 1817 1818 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1819 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1820 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1821 if (err) 1822 goto err; 1823 } 1824 1825 if (sctp_state(asoc, CLOSED)) { 1826 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1827 if (err) 1828 goto err; 1829 1830 if (asoc->ep->intl_enable) { 1831 timeo = sock_sndtimeo(sk, 0); 1832 err = sctp_wait_for_connect(asoc, &timeo); 1833 if (err) { 1834 err = -ESRCH; 1835 goto err; 1836 } 1837 } else { 1838 wait_connect = true; 1839 } 1840 1841 pr_debug("%s: we associated primitively\n", __func__); 1842 } 1843 1844 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1845 if (IS_ERR(datamsg)) { 1846 err = PTR_ERR(datamsg); 1847 goto err; 1848 } 1849 1850 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1851 1852 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1853 sctp_chunk_hold(chunk); 1854 sctp_set_owner_w(chunk); 1855 chunk->transport = transport; 1856 } 1857 1858 err = sctp_primitive_SEND(net, asoc, datamsg); 1859 if (err) { 1860 sctp_datamsg_free(datamsg); 1861 goto err; 1862 } 1863 1864 pr_debug("%s: we sent primitively\n", __func__); 1865 1866 sctp_datamsg_put(datamsg); 1867 1868 if (unlikely(wait_connect)) { 1869 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1870 sctp_wait_for_connect(asoc, &timeo); 1871 } 1872 1873 err = msg_len; 1874 1875 err: 1876 return err; 1877 } 1878 1879 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1880 const struct msghdr *msg, 1881 struct sctp_cmsgs *cmsgs) 1882 { 1883 union sctp_addr *daddr = NULL; 1884 int err; 1885 1886 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1887 int len = msg->msg_namelen; 1888 1889 if (len > sizeof(*daddr)) 1890 len = sizeof(*daddr); 1891 1892 daddr = (union sctp_addr *)msg->msg_name; 1893 1894 err = sctp_verify_addr(sk, daddr, len); 1895 if (err) 1896 return ERR_PTR(err); 1897 } 1898 1899 return daddr; 1900 } 1901 1902 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1903 struct sctp_sndrcvinfo *sinfo, 1904 struct sctp_cmsgs *cmsgs) 1905 { 1906 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1907 sinfo->sinfo_stream = asoc->default_stream; 1908 sinfo->sinfo_ppid = asoc->default_ppid; 1909 sinfo->sinfo_context = asoc->default_context; 1910 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1911 1912 if (!cmsgs->prinfo) 1913 sinfo->sinfo_flags = asoc->default_flags; 1914 } 1915 1916 if (!cmsgs->srinfo && !cmsgs->prinfo) 1917 sinfo->sinfo_timetolive = asoc->default_timetolive; 1918 1919 if (cmsgs->authinfo) { 1920 /* Reuse sinfo_tsn to indicate that authinfo was set and 1921 * sinfo_ssn to save the keyid on tx path. 1922 */ 1923 sinfo->sinfo_tsn = 1; 1924 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1925 } 1926 } 1927 1928 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1929 { 1930 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1931 struct sctp_transport *transport = NULL; 1932 struct sctp_sndrcvinfo _sinfo, *sinfo; 1933 struct sctp_association *asoc, *tmp; 1934 struct sctp_cmsgs cmsgs; 1935 union sctp_addr *daddr; 1936 bool new = false; 1937 __u16 sflags; 1938 int err; 1939 1940 /* Parse and get snd_info */ 1941 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1942 if (err) 1943 goto out; 1944 1945 sinfo = &_sinfo; 1946 sflags = sinfo->sinfo_flags; 1947 1948 /* Get daddr from msg */ 1949 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1950 if (IS_ERR(daddr)) { 1951 err = PTR_ERR(daddr); 1952 goto out; 1953 } 1954 1955 lock_sock(sk); 1956 1957 /* SCTP_SENDALL process */ 1958 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1959 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1960 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1961 msg_len); 1962 if (err == 0) 1963 continue; 1964 if (err < 0) 1965 goto out_unlock; 1966 1967 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1968 1969 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1970 NULL, sinfo); 1971 if (err < 0) 1972 goto out_unlock; 1973 1974 iov_iter_revert(&msg->msg_iter, err); 1975 } 1976 1977 goto out_unlock; 1978 } 1979 1980 /* Get and check or create asoc */ 1981 if (daddr) { 1982 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1983 if (asoc) { 1984 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1985 msg_len); 1986 if (err <= 0) 1987 goto out_unlock; 1988 } else { 1989 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1990 &transport); 1991 if (err) 1992 goto out_unlock; 1993 1994 asoc = transport->asoc; 1995 new = true; 1996 } 1997 1998 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 1999 transport = NULL; 2000 } else { 2001 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2002 if (!asoc) { 2003 err = -EPIPE; 2004 goto out_unlock; 2005 } 2006 2007 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2008 if (err <= 0) 2009 goto out_unlock; 2010 } 2011 2012 /* Update snd_info with the asoc */ 2013 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2014 2015 /* Send msg to the asoc */ 2016 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2017 if (err < 0 && err != -ESRCH && new) 2018 sctp_association_free(asoc); 2019 2020 out_unlock: 2021 release_sock(sk); 2022 out: 2023 return sctp_error(sk, msg->msg_flags, err); 2024 } 2025 2026 /* This is an extended version of skb_pull() that removes the data from the 2027 * start of a skb even when data is spread across the list of skb's in the 2028 * frag_list. len specifies the total amount of data that needs to be removed. 2029 * when 'len' bytes could be removed from the skb, it returns 0. 2030 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2031 * could not be removed. 2032 */ 2033 static int sctp_skb_pull(struct sk_buff *skb, int len) 2034 { 2035 struct sk_buff *list; 2036 int skb_len = skb_headlen(skb); 2037 int rlen; 2038 2039 if (len <= skb_len) { 2040 __skb_pull(skb, len); 2041 return 0; 2042 } 2043 len -= skb_len; 2044 __skb_pull(skb, skb_len); 2045 2046 skb_walk_frags(skb, list) { 2047 rlen = sctp_skb_pull(list, len); 2048 skb->len -= (len-rlen); 2049 skb->data_len -= (len-rlen); 2050 2051 if (!rlen) 2052 return 0; 2053 2054 len = rlen; 2055 } 2056 2057 return len; 2058 } 2059 2060 /* API 3.1.3 recvmsg() - UDP Style Syntax 2061 * 2062 * ssize_t recvmsg(int socket, struct msghdr *message, 2063 * int flags); 2064 * 2065 * socket - the socket descriptor of the endpoint. 2066 * message - pointer to the msghdr structure which contains a single 2067 * user message and possibly some ancillary data. 2068 * 2069 * See Section 5 for complete description of the data 2070 * structures. 2071 * 2072 * flags - flags sent or received with the user message, see Section 2073 * 5 for complete description of the flags. 2074 */ 2075 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2076 int noblock, int flags, int *addr_len) 2077 { 2078 struct sctp_ulpevent *event = NULL; 2079 struct sctp_sock *sp = sctp_sk(sk); 2080 struct sk_buff *skb, *head_skb; 2081 int copied; 2082 int err = 0; 2083 int skb_len; 2084 2085 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2086 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2087 addr_len); 2088 2089 lock_sock(sk); 2090 2091 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2092 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2093 err = -ENOTCONN; 2094 goto out; 2095 } 2096 2097 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2098 if (!skb) 2099 goto out; 2100 2101 /* Get the total length of the skb including any skb's in the 2102 * frag_list. 2103 */ 2104 skb_len = skb->len; 2105 2106 copied = skb_len; 2107 if (copied > len) 2108 copied = len; 2109 2110 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2111 2112 event = sctp_skb2event(skb); 2113 2114 if (err) 2115 goto out_free; 2116 2117 if (event->chunk && event->chunk->head_skb) 2118 head_skb = event->chunk->head_skb; 2119 else 2120 head_skb = skb; 2121 sock_recv_ts_and_drops(msg, sk, head_skb); 2122 if (sctp_ulpevent_is_notification(event)) { 2123 msg->msg_flags |= MSG_NOTIFICATION; 2124 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2125 } else { 2126 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2127 } 2128 2129 /* Check if we allow SCTP_NXTINFO. */ 2130 if (sp->recvnxtinfo) 2131 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2132 /* Check if we allow SCTP_RCVINFO. */ 2133 if (sp->recvrcvinfo) 2134 sctp_ulpevent_read_rcvinfo(event, msg); 2135 /* Check if we allow SCTP_SNDRCVINFO. */ 2136 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2137 sctp_ulpevent_read_sndrcvinfo(event, msg); 2138 2139 err = copied; 2140 2141 /* If skb's length exceeds the user's buffer, update the skb and 2142 * push it back to the receive_queue so that the next call to 2143 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2144 */ 2145 if (skb_len > copied) { 2146 msg->msg_flags &= ~MSG_EOR; 2147 if (flags & MSG_PEEK) 2148 goto out_free; 2149 sctp_skb_pull(skb, copied); 2150 skb_queue_head(&sk->sk_receive_queue, skb); 2151 2152 /* When only partial message is copied to the user, increase 2153 * rwnd by that amount. If all the data in the skb is read, 2154 * rwnd is updated when the event is freed. 2155 */ 2156 if (!sctp_ulpevent_is_notification(event)) 2157 sctp_assoc_rwnd_increase(event->asoc, copied); 2158 goto out; 2159 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2160 (event->msg_flags & MSG_EOR)) 2161 msg->msg_flags |= MSG_EOR; 2162 else 2163 msg->msg_flags &= ~MSG_EOR; 2164 2165 out_free: 2166 if (flags & MSG_PEEK) { 2167 /* Release the skb reference acquired after peeking the skb in 2168 * sctp_skb_recv_datagram(). 2169 */ 2170 kfree_skb(skb); 2171 } else { 2172 /* Free the event which includes releasing the reference to 2173 * the owner of the skb, freeing the skb and updating the 2174 * rwnd. 2175 */ 2176 sctp_ulpevent_free(event); 2177 } 2178 out: 2179 release_sock(sk); 2180 return err; 2181 } 2182 2183 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2184 * 2185 * This option is a on/off flag. If enabled no SCTP message 2186 * fragmentation will be performed. Instead if a message being sent 2187 * exceeds the current PMTU size, the message will NOT be sent and 2188 * instead a error will be indicated to the user. 2189 */ 2190 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2191 char __user *optval, 2192 unsigned int optlen) 2193 { 2194 int val; 2195 2196 if (optlen < sizeof(int)) 2197 return -EINVAL; 2198 2199 if (get_user(val, (int __user *)optval)) 2200 return -EFAULT; 2201 2202 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2203 2204 return 0; 2205 } 2206 2207 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2208 unsigned int optlen) 2209 { 2210 struct sctp_event_subscribe subscribe; 2211 __u8 *sn_type = (__u8 *)&subscribe; 2212 struct sctp_sock *sp = sctp_sk(sk); 2213 struct sctp_association *asoc; 2214 int i; 2215 2216 if (optlen > sizeof(struct sctp_event_subscribe)) 2217 return -EINVAL; 2218 2219 if (copy_from_user(&subscribe, optval, optlen)) 2220 return -EFAULT; 2221 2222 for (i = 0; i < optlen; i++) 2223 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2224 sn_type[i]); 2225 2226 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2227 asoc->subscribe = sctp_sk(sk)->subscribe; 2228 2229 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2230 * if there is no data to be sent or retransmit, the stack will 2231 * immediately send up this notification. 2232 */ 2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2234 struct sctp_ulpevent *event; 2235 2236 asoc = sctp_id2assoc(sk, 0); 2237 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2238 event = sctp_ulpevent_make_sender_dry_event(asoc, 2239 GFP_USER | __GFP_NOWARN); 2240 if (!event) 2241 return -ENOMEM; 2242 2243 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2244 } 2245 } 2246 2247 return 0; 2248 } 2249 2250 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2251 * 2252 * This socket option is applicable to the UDP-style socket only. When 2253 * set it will cause associations that are idle for more than the 2254 * specified number of seconds to automatically close. An association 2255 * being idle is defined an association that has NOT sent or received 2256 * user data. The special value of '0' indicates that no automatic 2257 * close of any associations should be performed. The option expects an 2258 * integer defining the number of seconds of idle time before an 2259 * association is closed. 2260 */ 2261 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2262 unsigned int optlen) 2263 { 2264 struct sctp_sock *sp = sctp_sk(sk); 2265 struct net *net = sock_net(sk); 2266 2267 /* Applicable to UDP-style socket only */ 2268 if (sctp_style(sk, TCP)) 2269 return -EOPNOTSUPP; 2270 if (optlen != sizeof(int)) 2271 return -EINVAL; 2272 if (copy_from_user(&sp->autoclose, optval, optlen)) 2273 return -EFAULT; 2274 2275 if (sp->autoclose > net->sctp.max_autoclose) 2276 sp->autoclose = net->sctp.max_autoclose; 2277 2278 return 0; 2279 } 2280 2281 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2282 * 2283 * Applications can enable or disable heartbeats for any peer address of 2284 * an association, modify an address's heartbeat interval, force a 2285 * heartbeat to be sent immediately, and adjust the address's maximum 2286 * number of retransmissions sent before an address is considered 2287 * unreachable. The following structure is used to access and modify an 2288 * address's parameters: 2289 * 2290 * struct sctp_paddrparams { 2291 * sctp_assoc_t spp_assoc_id; 2292 * struct sockaddr_storage spp_address; 2293 * uint32_t spp_hbinterval; 2294 * uint16_t spp_pathmaxrxt; 2295 * uint32_t spp_pathmtu; 2296 * uint32_t spp_sackdelay; 2297 * uint32_t spp_flags; 2298 * uint32_t spp_ipv6_flowlabel; 2299 * uint8_t spp_dscp; 2300 * }; 2301 * 2302 * spp_assoc_id - (one-to-many style socket) This is filled in the 2303 * application, and identifies the association for 2304 * this query. 2305 * spp_address - This specifies which address is of interest. 2306 * spp_hbinterval - This contains the value of the heartbeat interval, 2307 * in milliseconds. If a value of zero 2308 * is present in this field then no changes are to 2309 * be made to this parameter. 2310 * spp_pathmaxrxt - This contains the maximum number of 2311 * retransmissions before this address shall be 2312 * considered unreachable. If a value of zero 2313 * is present in this field then no changes are to 2314 * be made to this parameter. 2315 * spp_pathmtu - When Path MTU discovery is disabled the value 2316 * specified here will be the "fixed" path mtu. 2317 * Note that if the spp_address field is empty 2318 * then all associations on this address will 2319 * have this fixed path mtu set upon them. 2320 * 2321 * spp_sackdelay - When delayed sack is enabled, this value specifies 2322 * the number of milliseconds that sacks will be delayed 2323 * for. This value will apply to all addresses of an 2324 * association if the spp_address field is empty. Note 2325 * also, that if delayed sack is enabled and this 2326 * value is set to 0, no change is made to the last 2327 * recorded delayed sack timer value. 2328 * 2329 * spp_flags - These flags are used to control various features 2330 * on an association. The flag field may contain 2331 * zero or more of the following options. 2332 * 2333 * SPP_HB_ENABLE - Enable heartbeats on the 2334 * specified address. Note that if the address 2335 * field is empty all addresses for the association 2336 * have heartbeats enabled upon them. 2337 * 2338 * SPP_HB_DISABLE - Disable heartbeats on the 2339 * speicifed address. Note that if the address 2340 * field is empty all addresses for the association 2341 * will have their heartbeats disabled. Note also 2342 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2343 * mutually exclusive, only one of these two should 2344 * be specified. Enabling both fields will have 2345 * undetermined results. 2346 * 2347 * SPP_HB_DEMAND - Request a user initiated heartbeat 2348 * to be made immediately. 2349 * 2350 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2351 * heartbeat delayis to be set to the value of 0 2352 * milliseconds. 2353 * 2354 * SPP_PMTUD_ENABLE - This field will enable PMTU 2355 * discovery upon the specified address. Note that 2356 * if the address feild is empty then all addresses 2357 * on the association are effected. 2358 * 2359 * SPP_PMTUD_DISABLE - This field will disable PMTU 2360 * discovery upon the specified address. Note that 2361 * if the address feild is empty then all addresses 2362 * on the association are effected. Not also that 2363 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2364 * exclusive. Enabling both will have undetermined 2365 * results. 2366 * 2367 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2368 * on delayed sack. The time specified in spp_sackdelay 2369 * is used to specify the sack delay for this address. Note 2370 * that if spp_address is empty then all addresses will 2371 * enable delayed sack and take on the sack delay 2372 * value specified in spp_sackdelay. 2373 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2374 * off delayed sack. If the spp_address field is blank then 2375 * delayed sack is disabled for the entire association. Note 2376 * also that this field is mutually exclusive to 2377 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2378 * results. 2379 * 2380 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2381 * setting of the IPV6 flow label value. The value is 2382 * contained in the spp_ipv6_flowlabel field. 2383 * Upon retrieval, this flag will be set to indicate that 2384 * the spp_ipv6_flowlabel field has a valid value returned. 2385 * If a specific destination address is set (in the 2386 * spp_address field), then the value returned is that of 2387 * the address. If just an association is specified (and 2388 * no address), then the association's default flow label 2389 * is returned. If neither an association nor a destination 2390 * is specified, then the socket's default flow label is 2391 * returned. For non-IPv6 sockets, this flag will be left 2392 * cleared. 2393 * 2394 * SPP_DSCP: Setting this flag enables the setting of the 2395 * Differentiated Services Code Point (DSCP) value 2396 * associated with either the association or a specific 2397 * address. The value is obtained in the spp_dscp field. 2398 * Upon retrieval, this flag will be set to indicate that 2399 * the spp_dscp field has a valid value returned. If a 2400 * specific destination address is set when called (in the 2401 * spp_address field), then that specific destination 2402 * address's DSCP value is returned. If just an association 2403 * is specified, then the association's default DSCP is 2404 * returned. If neither an association nor a destination is 2405 * specified, then the socket's default DSCP is returned. 2406 * 2407 * spp_ipv6_flowlabel 2408 * - This field is used in conjunction with the 2409 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2410 * The 20 least significant bits are used for the flow 2411 * label. This setting has precedence over any IPv6-layer 2412 * setting. 2413 * 2414 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2415 * and contains the DSCP. The 6 most significant bits are 2416 * used for the DSCP. This setting has precedence over any 2417 * IPv4- or IPv6- layer setting. 2418 */ 2419 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2420 struct sctp_transport *trans, 2421 struct sctp_association *asoc, 2422 struct sctp_sock *sp, 2423 int hb_change, 2424 int pmtud_change, 2425 int sackdelay_change) 2426 { 2427 int error; 2428 2429 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2430 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2431 trans->asoc, trans); 2432 if (error) 2433 return error; 2434 } 2435 2436 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2437 * this field is ignored. Note also that a value of zero indicates 2438 * the current setting should be left unchanged. 2439 */ 2440 if (params->spp_flags & SPP_HB_ENABLE) { 2441 2442 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2443 * set. This lets us use 0 value when this flag 2444 * is set. 2445 */ 2446 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2447 params->spp_hbinterval = 0; 2448 2449 if (params->spp_hbinterval || 2450 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2451 if (trans) { 2452 trans->hbinterval = 2453 msecs_to_jiffies(params->spp_hbinterval); 2454 } else if (asoc) { 2455 asoc->hbinterval = 2456 msecs_to_jiffies(params->spp_hbinterval); 2457 } else { 2458 sp->hbinterval = params->spp_hbinterval; 2459 } 2460 } 2461 } 2462 2463 if (hb_change) { 2464 if (trans) { 2465 trans->param_flags = 2466 (trans->param_flags & ~SPP_HB) | hb_change; 2467 } else if (asoc) { 2468 asoc->param_flags = 2469 (asoc->param_flags & ~SPP_HB) | hb_change; 2470 } else { 2471 sp->param_flags = 2472 (sp->param_flags & ~SPP_HB) | hb_change; 2473 } 2474 } 2475 2476 /* When Path MTU discovery is disabled the value specified here will 2477 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2478 * include the flag SPP_PMTUD_DISABLE for this field to have any 2479 * effect). 2480 */ 2481 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2482 if (trans) { 2483 trans->pathmtu = params->spp_pathmtu; 2484 sctp_assoc_sync_pmtu(asoc); 2485 } else if (asoc) { 2486 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2487 } else { 2488 sp->pathmtu = params->spp_pathmtu; 2489 } 2490 } 2491 2492 if (pmtud_change) { 2493 if (trans) { 2494 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2495 (params->spp_flags & SPP_PMTUD_ENABLE); 2496 trans->param_flags = 2497 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2498 if (update) { 2499 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2500 sctp_assoc_sync_pmtu(asoc); 2501 } 2502 } else if (asoc) { 2503 asoc->param_flags = 2504 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2505 } else { 2506 sp->param_flags = 2507 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2508 } 2509 } 2510 2511 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2512 * value of this field is ignored. Note also that a value of zero 2513 * indicates the current setting should be left unchanged. 2514 */ 2515 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2516 if (trans) { 2517 trans->sackdelay = 2518 msecs_to_jiffies(params->spp_sackdelay); 2519 } else if (asoc) { 2520 asoc->sackdelay = 2521 msecs_to_jiffies(params->spp_sackdelay); 2522 } else { 2523 sp->sackdelay = params->spp_sackdelay; 2524 } 2525 } 2526 2527 if (sackdelay_change) { 2528 if (trans) { 2529 trans->param_flags = 2530 (trans->param_flags & ~SPP_SACKDELAY) | 2531 sackdelay_change; 2532 } else if (asoc) { 2533 asoc->param_flags = 2534 (asoc->param_flags & ~SPP_SACKDELAY) | 2535 sackdelay_change; 2536 } else { 2537 sp->param_flags = 2538 (sp->param_flags & ~SPP_SACKDELAY) | 2539 sackdelay_change; 2540 } 2541 } 2542 2543 /* Note that a value of zero indicates the current setting should be 2544 left unchanged. 2545 */ 2546 if (params->spp_pathmaxrxt) { 2547 if (trans) { 2548 trans->pathmaxrxt = params->spp_pathmaxrxt; 2549 } else if (asoc) { 2550 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2551 } else { 2552 sp->pathmaxrxt = params->spp_pathmaxrxt; 2553 } 2554 } 2555 2556 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2557 if (trans) { 2558 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2559 trans->flowlabel = params->spp_ipv6_flowlabel & 2560 SCTP_FLOWLABEL_VAL_MASK; 2561 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2562 } 2563 } else if (asoc) { 2564 struct sctp_transport *t; 2565 2566 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2567 transports) { 2568 if (t->ipaddr.sa.sa_family != AF_INET6) 2569 continue; 2570 t->flowlabel = params->spp_ipv6_flowlabel & 2571 SCTP_FLOWLABEL_VAL_MASK; 2572 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2573 } 2574 asoc->flowlabel = params->spp_ipv6_flowlabel & 2575 SCTP_FLOWLABEL_VAL_MASK; 2576 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2577 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2578 sp->flowlabel = params->spp_ipv6_flowlabel & 2579 SCTP_FLOWLABEL_VAL_MASK; 2580 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2581 } 2582 } 2583 2584 if (params->spp_flags & SPP_DSCP) { 2585 if (trans) { 2586 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2587 trans->dscp |= SCTP_DSCP_SET_MASK; 2588 } else if (asoc) { 2589 struct sctp_transport *t; 2590 2591 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2592 transports) { 2593 t->dscp = params->spp_dscp & 2594 SCTP_DSCP_VAL_MASK; 2595 t->dscp |= SCTP_DSCP_SET_MASK; 2596 } 2597 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2598 asoc->dscp |= SCTP_DSCP_SET_MASK; 2599 } else { 2600 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2601 sp->dscp |= SCTP_DSCP_SET_MASK; 2602 } 2603 } 2604 2605 return 0; 2606 } 2607 2608 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2609 char __user *optval, 2610 unsigned int optlen) 2611 { 2612 struct sctp_paddrparams params; 2613 struct sctp_transport *trans = NULL; 2614 struct sctp_association *asoc = NULL; 2615 struct sctp_sock *sp = sctp_sk(sk); 2616 int error; 2617 int hb_change, pmtud_change, sackdelay_change; 2618 2619 if (optlen == sizeof(params)) { 2620 if (copy_from_user(¶ms, optval, optlen)) 2621 return -EFAULT; 2622 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2623 spp_ipv6_flowlabel), 4)) { 2624 if (copy_from_user(¶ms, optval, optlen)) 2625 return -EFAULT; 2626 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2627 return -EINVAL; 2628 } else { 2629 return -EINVAL; 2630 } 2631 2632 /* Validate flags and value parameters. */ 2633 hb_change = params.spp_flags & SPP_HB; 2634 pmtud_change = params.spp_flags & SPP_PMTUD; 2635 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2636 2637 if (hb_change == SPP_HB || 2638 pmtud_change == SPP_PMTUD || 2639 sackdelay_change == SPP_SACKDELAY || 2640 params.spp_sackdelay > 500 || 2641 (params.spp_pathmtu && 2642 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2643 return -EINVAL; 2644 2645 /* If an address other than INADDR_ANY is specified, and 2646 * no transport is found, then the request is invalid. 2647 */ 2648 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2649 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2650 params.spp_assoc_id); 2651 if (!trans) 2652 return -EINVAL; 2653 } 2654 2655 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2656 * socket is a one to many style socket, and an association 2657 * was not found, then the id was invalid. 2658 */ 2659 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2660 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2661 sctp_style(sk, UDP)) 2662 return -EINVAL; 2663 2664 /* Heartbeat demand can only be sent on a transport or 2665 * association, but not a socket. 2666 */ 2667 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2668 return -EINVAL; 2669 2670 /* Process parameters. */ 2671 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2672 hb_change, pmtud_change, 2673 sackdelay_change); 2674 2675 if (error) 2676 return error; 2677 2678 /* If changes are for association, also apply parameters to each 2679 * transport. 2680 */ 2681 if (!trans && asoc) { 2682 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2683 transports) { 2684 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2685 hb_change, pmtud_change, 2686 sackdelay_change); 2687 } 2688 } 2689 2690 return 0; 2691 } 2692 2693 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2694 { 2695 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2696 } 2697 2698 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2699 { 2700 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2701 } 2702 2703 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2704 struct sctp_association *asoc) 2705 { 2706 struct sctp_transport *trans; 2707 2708 if (params->sack_delay) { 2709 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2710 asoc->param_flags = 2711 sctp_spp_sackdelay_enable(asoc->param_flags); 2712 } 2713 if (params->sack_freq == 1) { 2714 asoc->param_flags = 2715 sctp_spp_sackdelay_disable(asoc->param_flags); 2716 } else if (params->sack_freq > 1) { 2717 asoc->sackfreq = params->sack_freq; 2718 asoc->param_flags = 2719 sctp_spp_sackdelay_enable(asoc->param_flags); 2720 } 2721 2722 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2723 transports) { 2724 if (params->sack_delay) { 2725 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2726 trans->param_flags = 2727 sctp_spp_sackdelay_enable(trans->param_flags); 2728 } 2729 if (params->sack_freq == 1) { 2730 trans->param_flags = 2731 sctp_spp_sackdelay_disable(trans->param_flags); 2732 } else if (params->sack_freq > 1) { 2733 trans->sackfreq = params->sack_freq; 2734 trans->param_flags = 2735 sctp_spp_sackdelay_enable(trans->param_flags); 2736 } 2737 } 2738 } 2739 2740 /* 2741 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2742 * 2743 * This option will effect the way delayed acks are performed. This 2744 * option allows you to get or set the delayed ack time, in 2745 * milliseconds. It also allows changing the delayed ack frequency. 2746 * Changing the frequency to 1 disables the delayed sack algorithm. If 2747 * the assoc_id is 0, then this sets or gets the endpoints default 2748 * values. If the assoc_id field is non-zero, then the set or get 2749 * effects the specified association for the one to many model (the 2750 * assoc_id field is ignored by the one to one model). Note that if 2751 * sack_delay or sack_freq are 0 when setting this option, then the 2752 * current values will remain unchanged. 2753 * 2754 * struct sctp_sack_info { 2755 * sctp_assoc_t sack_assoc_id; 2756 * uint32_t sack_delay; 2757 * uint32_t sack_freq; 2758 * }; 2759 * 2760 * sack_assoc_id - This parameter, indicates which association the user 2761 * is performing an action upon. Note that if this field's value is 2762 * zero then the endpoints default value is changed (effecting future 2763 * associations only). 2764 * 2765 * sack_delay - This parameter contains the number of milliseconds that 2766 * the user is requesting the delayed ACK timer be set to. Note that 2767 * this value is defined in the standard to be between 200 and 500 2768 * milliseconds. 2769 * 2770 * sack_freq - This parameter contains the number of packets that must 2771 * be received before a sack is sent without waiting for the delay 2772 * timer to expire. The default value for this is 2, setting this 2773 * value to 1 will disable the delayed sack algorithm. 2774 */ 2775 2776 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2777 char __user *optval, unsigned int optlen) 2778 { 2779 struct sctp_sock *sp = sctp_sk(sk); 2780 struct sctp_association *asoc; 2781 struct sctp_sack_info params; 2782 2783 if (optlen == sizeof(struct sctp_sack_info)) { 2784 if (copy_from_user(¶ms, optval, optlen)) 2785 return -EFAULT; 2786 2787 if (params.sack_delay == 0 && params.sack_freq == 0) 2788 return 0; 2789 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2790 pr_warn_ratelimited(DEPRECATED 2791 "%s (pid %d) " 2792 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2793 "Use struct sctp_sack_info instead\n", 2794 current->comm, task_pid_nr(current)); 2795 if (copy_from_user(¶ms, optval, optlen)) 2796 return -EFAULT; 2797 2798 if (params.sack_delay == 0) 2799 params.sack_freq = 1; 2800 else 2801 params.sack_freq = 0; 2802 } else 2803 return -EINVAL; 2804 2805 /* Validate value parameter. */ 2806 if (params.sack_delay > 500) 2807 return -EINVAL; 2808 2809 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2810 * socket is a one to many style socket, and an association 2811 * was not found, then the id was invalid. 2812 */ 2813 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2814 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2815 sctp_style(sk, UDP)) 2816 return -EINVAL; 2817 2818 if (asoc) { 2819 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2820 2821 return 0; 2822 } 2823 2824 if (sctp_style(sk, TCP)) 2825 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2826 2827 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2828 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2829 if (params.sack_delay) { 2830 sp->sackdelay = params.sack_delay; 2831 sp->param_flags = 2832 sctp_spp_sackdelay_enable(sp->param_flags); 2833 } 2834 if (params.sack_freq == 1) { 2835 sp->param_flags = 2836 sctp_spp_sackdelay_disable(sp->param_flags); 2837 } else if (params.sack_freq > 1) { 2838 sp->sackfreq = params.sack_freq; 2839 sp->param_flags = 2840 sctp_spp_sackdelay_enable(sp->param_flags); 2841 } 2842 } 2843 2844 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2845 params.sack_assoc_id == SCTP_ALL_ASSOC) 2846 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2847 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2848 2849 return 0; 2850 } 2851 2852 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2853 * 2854 * Applications can specify protocol parameters for the default association 2855 * initialization. The option name argument to setsockopt() and getsockopt() 2856 * is SCTP_INITMSG. 2857 * 2858 * Setting initialization parameters is effective only on an unconnected 2859 * socket (for UDP-style sockets only future associations are effected 2860 * by the change). With TCP-style sockets, this option is inherited by 2861 * sockets derived from a listener socket. 2862 */ 2863 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2864 { 2865 struct sctp_initmsg sinit; 2866 struct sctp_sock *sp = sctp_sk(sk); 2867 2868 if (optlen != sizeof(struct sctp_initmsg)) 2869 return -EINVAL; 2870 if (copy_from_user(&sinit, optval, optlen)) 2871 return -EFAULT; 2872 2873 if (sinit.sinit_num_ostreams) 2874 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2875 if (sinit.sinit_max_instreams) 2876 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2877 if (sinit.sinit_max_attempts) 2878 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2879 if (sinit.sinit_max_init_timeo) 2880 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2881 2882 return 0; 2883 } 2884 2885 /* 2886 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2887 * 2888 * Applications that wish to use the sendto() system call may wish to 2889 * specify a default set of parameters that would normally be supplied 2890 * through the inclusion of ancillary data. This socket option allows 2891 * such an application to set the default sctp_sndrcvinfo structure. 2892 * The application that wishes to use this socket option simply passes 2893 * in to this call the sctp_sndrcvinfo structure defined in Section 2894 * 5.2.2) The input parameters accepted by this call include 2895 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2896 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2897 * to this call if the caller is using the UDP model. 2898 */ 2899 static int sctp_setsockopt_default_send_param(struct sock *sk, 2900 char __user *optval, 2901 unsigned int optlen) 2902 { 2903 struct sctp_sock *sp = sctp_sk(sk); 2904 struct sctp_association *asoc; 2905 struct sctp_sndrcvinfo info; 2906 2907 if (optlen != sizeof(info)) 2908 return -EINVAL; 2909 if (copy_from_user(&info, optval, optlen)) 2910 return -EFAULT; 2911 if (info.sinfo_flags & 2912 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2913 SCTP_ABORT | SCTP_EOF)) 2914 return -EINVAL; 2915 2916 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2917 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 2918 sctp_style(sk, UDP)) 2919 return -EINVAL; 2920 2921 if (asoc) { 2922 asoc->default_stream = info.sinfo_stream; 2923 asoc->default_flags = info.sinfo_flags; 2924 asoc->default_ppid = info.sinfo_ppid; 2925 asoc->default_context = info.sinfo_context; 2926 asoc->default_timetolive = info.sinfo_timetolive; 2927 2928 return 0; 2929 } 2930 2931 if (sctp_style(sk, TCP)) 2932 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2933 2934 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2935 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2936 sp->default_stream = info.sinfo_stream; 2937 sp->default_flags = info.sinfo_flags; 2938 sp->default_ppid = info.sinfo_ppid; 2939 sp->default_context = info.sinfo_context; 2940 sp->default_timetolive = info.sinfo_timetolive; 2941 } 2942 2943 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2944 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2945 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2946 asoc->default_stream = info.sinfo_stream; 2947 asoc->default_flags = info.sinfo_flags; 2948 asoc->default_ppid = info.sinfo_ppid; 2949 asoc->default_context = info.sinfo_context; 2950 asoc->default_timetolive = info.sinfo_timetolive; 2951 } 2952 } 2953 2954 return 0; 2955 } 2956 2957 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2958 * (SCTP_DEFAULT_SNDINFO) 2959 */ 2960 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2961 char __user *optval, 2962 unsigned int optlen) 2963 { 2964 struct sctp_sock *sp = sctp_sk(sk); 2965 struct sctp_association *asoc; 2966 struct sctp_sndinfo info; 2967 2968 if (optlen != sizeof(info)) 2969 return -EINVAL; 2970 if (copy_from_user(&info, optval, optlen)) 2971 return -EFAULT; 2972 if (info.snd_flags & 2973 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2974 SCTP_ABORT | SCTP_EOF)) 2975 return -EINVAL; 2976 2977 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2978 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 2979 sctp_style(sk, UDP)) 2980 return -EINVAL; 2981 2982 if (asoc) { 2983 asoc->default_stream = info.snd_sid; 2984 asoc->default_flags = info.snd_flags; 2985 asoc->default_ppid = info.snd_ppid; 2986 asoc->default_context = info.snd_context; 2987 2988 return 0; 2989 } 2990 2991 if (sctp_style(sk, TCP)) 2992 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 2993 2994 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 2995 info.snd_assoc_id == SCTP_ALL_ASSOC) { 2996 sp->default_stream = info.snd_sid; 2997 sp->default_flags = info.snd_flags; 2998 sp->default_ppid = info.snd_ppid; 2999 sp->default_context = info.snd_context; 3000 } 3001 3002 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3003 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3004 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3005 asoc->default_stream = info.snd_sid; 3006 asoc->default_flags = info.snd_flags; 3007 asoc->default_ppid = info.snd_ppid; 3008 asoc->default_context = info.snd_context; 3009 } 3010 } 3011 3012 return 0; 3013 } 3014 3015 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3016 * 3017 * Requests that the local SCTP stack use the enclosed peer address as 3018 * the association primary. The enclosed address must be one of the 3019 * association peer's addresses. 3020 */ 3021 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3022 unsigned int optlen) 3023 { 3024 struct sctp_prim prim; 3025 struct sctp_transport *trans; 3026 struct sctp_af *af; 3027 int err; 3028 3029 if (optlen != sizeof(struct sctp_prim)) 3030 return -EINVAL; 3031 3032 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3033 return -EFAULT; 3034 3035 /* Allow security module to validate address but need address len. */ 3036 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3037 if (!af) 3038 return -EINVAL; 3039 3040 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3041 (struct sockaddr *)&prim.ssp_addr, 3042 af->sockaddr_len); 3043 if (err) 3044 return err; 3045 3046 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3047 if (!trans) 3048 return -EINVAL; 3049 3050 sctp_assoc_set_primary(trans->asoc, trans); 3051 3052 return 0; 3053 } 3054 3055 /* 3056 * 7.1.5 SCTP_NODELAY 3057 * 3058 * Turn on/off any Nagle-like algorithm. This means that packets are 3059 * generally sent as soon as possible and no unnecessary delays are 3060 * introduced, at the cost of more packets in the network. Expects an 3061 * integer boolean flag. 3062 */ 3063 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3064 unsigned int optlen) 3065 { 3066 int val; 3067 3068 if (optlen < sizeof(int)) 3069 return -EINVAL; 3070 if (get_user(val, (int __user *)optval)) 3071 return -EFAULT; 3072 3073 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3074 return 0; 3075 } 3076 3077 /* 3078 * 3079 * 7.1.1 SCTP_RTOINFO 3080 * 3081 * The protocol parameters used to initialize and bound retransmission 3082 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3083 * and modify these parameters. 3084 * All parameters are time values, in milliseconds. A value of 0, when 3085 * modifying the parameters, indicates that the current value should not 3086 * be changed. 3087 * 3088 */ 3089 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3090 { 3091 struct sctp_rtoinfo rtoinfo; 3092 struct sctp_association *asoc; 3093 unsigned long rto_min, rto_max; 3094 struct sctp_sock *sp = sctp_sk(sk); 3095 3096 if (optlen != sizeof (struct sctp_rtoinfo)) 3097 return -EINVAL; 3098 3099 if (copy_from_user(&rtoinfo, optval, optlen)) 3100 return -EFAULT; 3101 3102 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3103 3104 /* Set the values to the specific association */ 3105 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3106 sctp_style(sk, UDP)) 3107 return -EINVAL; 3108 3109 rto_max = rtoinfo.srto_max; 3110 rto_min = rtoinfo.srto_min; 3111 3112 if (rto_max) 3113 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3114 else 3115 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3116 3117 if (rto_min) 3118 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3119 else 3120 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3121 3122 if (rto_min > rto_max) 3123 return -EINVAL; 3124 3125 if (asoc) { 3126 if (rtoinfo.srto_initial != 0) 3127 asoc->rto_initial = 3128 msecs_to_jiffies(rtoinfo.srto_initial); 3129 asoc->rto_max = rto_max; 3130 asoc->rto_min = rto_min; 3131 } else { 3132 /* If there is no association or the association-id = 0 3133 * set the values to the endpoint. 3134 */ 3135 if (rtoinfo.srto_initial != 0) 3136 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3137 sp->rtoinfo.srto_max = rto_max; 3138 sp->rtoinfo.srto_min = rto_min; 3139 } 3140 3141 return 0; 3142 } 3143 3144 /* 3145 * 3146 * 7.1.2 SCTP_ASSOCINFO 3147 * 3148 * This option is used to tune the maximum retransmission attempts 3149 * of the association. 3150 * Returns an error if the new association retransmission value is 3151 * greater than the sum of the retransmission value of the peer. 3152 * See [SCTP] for more information. 3153 * 3154 */ 3155 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3156 { 3157 3158 struct sctp_assocparams assocparams; 3159 struct sctp_association *asoc; 3160 3161 if (optlen != sizeof(struct sctp_assocparams)) 3162 return -EINVAL; 3163 if (copy_from_user(&assocparams, optval, optlen)) 3164 return -EFAULT; 3165 3166 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3167 3168 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3169 sctp_style(sk, UDP)) 3170 return -EINVAL; 3171 3172 /* Set the values to the specific association */ 3173 if (asoc) { 3174 if (assocparams.sasoc_asocmaxrxt != 0) { 3175 __u32 path_sum = 0; 3176 int paths = 0; 3177 struct sctp_transport *peer_addr; 3178 3179 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3180 transports) { 3181 path_sum += peer_addr->pathmaxrxt; 3182 paths++; 3183 } 3184 3185 /* Only validate asocmaxrxt if we have more than 3186 * one path/transport. We do this because path 3187 * retransmissions are only counted when we have more 3188 * then one path. 3189 */ 3190 if (paths > 1 && 3191 assocparams.sasoc_asocmaxrxt > path_sum) 3192 return -EINVAL; 3193 3194 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3195 } 3196 3197 if (assocparams.sasoc_cookie_life != 0) 3198 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3199 } else { 3200 /* Set the values to the endpoint */ 3201 struct sctp_sock *sp = sctp_sk(sk); 3202 3203 if (assocparams.sasoc_asocmaxrxt != 0) 3204 sp->assocparams.sasoc_asocmaxrxt = 3205 assocparams.sasoc_asocmaxrxt; 3206 if (assocparams.sasoc_cookie_life != 0) 3207 sp->assocparams.sasoc_cookie_life = 3208 assocparams.sasoc_cookie_life; 3209 } 3210 return 0; 3211 } 3212 3213 /* 3214 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3215 * 3216 * This socket option is a boolean flag which turns on or off mapped V4 3217 * addresses. If this option is turned on and the socket is type 3218 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3219 * If this option is turned off, then no mapping will be done of V4 3220 * addresses and a user will receive both PF_INET6 and PF_INET type 3221 * addresses on the socket. 3222 */ 3223 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3224 { 3225 int val; 3226 struct sctp_sock *sp = sctp_sk(sk); 3227 3228 if (optlen < sizeof(int)) 3229 return -EINVAL; 3230 if (get_user(val, (int __user *)optval)) 3231 return -EFAULT; 3232 if (val) 3233 sp->v4mapped = 1; 3234 else 3235 sp->v4mapped = 0; 3236 3237 return 0; 3238 } 3239 3240 /* 3241 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3242 * This option will get or set the maximum size to put in any outgoing 3243 * SCTP DATA chunk. If a message is larger than this size it will be 3244 * fragmented by SCTP into the specified size. Note that the underlying 3245 * SCTP implementation may fragment into smaller sized chunks when the 3246 * PMTU of the underlying association is smaller than the value set by 3247 * the user. The default value for this option is '0' which indicates 3248 * the user is NOT limiting fragmentation and only the PMTU will effect 3249 * SCTP's choice of DATA chunk size. Note also that values set larger 3250 * than the maximum size of an IP datagram will effectively let SCTP 3251 * control fragmentation (i.e. the same as setting this option to 0). 3252 * 3253 * The following structure is used to access and modify this parameter: 3254 * 3255 * struct sctp_assoc_value { 3256 * sctp_assoc_t assoc_id; 3257 * uint32_t assoc_value; 3258 * }; 3259 * 3260 * assoc_id: This parameter is ignored for one-to-one style sockets. 3261 * For one-to-many style sockets this parameter indicates which 3262 * association the user is performing an action upon. Note that if 3263 * this field's value is zero then the endpoints default value is 3264 * changed (effecting future associations only). 3265 * assoc_value: This parameter specifies the maximum size in bytes. 3266 */ 3267 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3268 { 3269 struct sctp_sock *sp = sctp_sk(sk); 3270 struct sctp_assoc_value params; 3271 struct sctp_association *asoc; 3272 int val; 3273 3274 if (optlen == sizeof(int)) { 3275 pr_warn_ratelimited(DEPRECATED 3276 "%s (pid %d) " 3277 "Use of int in maxseg socket option.\n" 3278 "Use struct sctp_assoc_value instead\n", 3279 current->comm, task_pid_nr(current)); 3280 if (copy_from_user(&val, optval, optlen)) 3281 return -EFAULT; 3282 params.assoc_id = SCTP_FUTURE_ASSOC; 3283 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3284 if (copy_from_user(¶ms, optval, optlen)) 3285 return -EFAULT; 3286 val = params.assoc_value; 3287 } else { 3288 return -EINVAL; 3289 } 3290 3291 asoc = sctp_id2assoc(sk, params.assoc_id); 3292 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3293 sctp_style(sk, UDP)) 3294 return -EINVAL; 3295 3296 if (val) { 3297 int min_len, max_len; 3298 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3299 sizeof(struct sctp_data_chunk); 3300 3301 min_len = sctp_min_frag_point(sp, datasize); 3302 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3303 3304 if (val < min_len || val > max_len) 3305 return -EINVAL; 3306 } 3307 3308 if (asoc) { 3309 asoc->user_frag = val; 3310 sctp_assoc_update_frag_point(asoc); 3311 } else { 3312 sp->user_frag = val; 3313 } 3314 3315 return 0; 3316 } 3317 3318 3319 /* 3320 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3321 * 3322 * Requests that the peer mark the enclosed address as the association 3323 * primary. The enclosed address must be one of the association's 3324 * locally bound addresses. The following structure is used to make a 3325 * set primary request: 3326 */ 3327 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3328 unsigned int optlen) 3329 { 3330 struct sctp_sock *sp; 3331 struct sctp_association *asoc = NULL; 3332 struct sctp_setpeerprim prim; 3333 struct sctp_chunk *chunk; 3334 struct sctp_af *af; 3335 int err; 3336 3337 sp = sctp_sk(sk); 3338 3339 if (!sp->ep->asconf_enable) 3340 return -EPERM; 3341 3342 if (optlen != sizeof(struct sctp_setpeerprim)) 3343 return -EINVAL; 3344 3345 if (copy_from_user(&prim, optval, optlen)) 3346 return -EFAULT; 3347 3348 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3349 if (!asoc) 3350 return -EINVAL; 3351 3352 if (!asoc->peer.asconf_capable) 3353 return -EPERM; 3354 3355 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3356 return -EPERM; 3357 3358 if (!sctp_state(asoc, ESTABLISHED)) 3359 return -ENOTCONN; 3360 3361 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3362 if (!af) 3363 return -EINVAL; 3364 3365 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3366 return -EADDRNOTAVAIL; 3367 3368 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3369 return -EADDRNOTAVAIL; 3370 3371 /* Allow security module to validate address. */ 3372 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3373 (struct sockaddr *)&prim.sspp_addr, 3374 af->sockaddr_len); 3375 if (err) 3376 return err; 3377 3378 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3379 chunk = sctp_make_asconf_set_prim(asoc, 3380 (union sctp_addr *)&prim.sspp_addr); 3381 if (!chunk) 3382 return -ENOMEM; 3383 3384 err = sctp_send_asconf(asoc, chunk); 3385 3386 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3387 3388 return err; 3389 } 3390 3391 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3392 unsigned int optlen) 3393 { 3394 struct sctp_setadaptation adaptation; 3395 3396 if (optlen != sizeof(struct sctp_setadaptation)) 3397 return -EINVAL; 3398 if (copy_from_user(&adaptation, optval, optlen)) 3399 return -EFAULT; 3400 3401 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3402 3403 return 0; 3404 } 3405 3406 /* 3407 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3408 * 3409 * The context field in the sctp_sndrcvinfo structure is normally only 3410 * used when a failed message is retrieved holding the value that was 3411 * sent down on the actual send call. This option allows the setting of 3412 * a default context on an association basis that will be received on 3413 * reading messages from the peer. This is especially helpful in the 3414 * one-2-many model for an application to keep some reference to an 3415 * internal state machine that is processing messages on the 3416 * association. Note that the setting of this value only effects 3417 * received messages from the peer and does not effect the value that is 3418 * saved with outbound messages. 3419 */ 3420 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3421 unsigned int optlen) 3422 { 3423 struct sctp_sock *sp = sctp_sk(sk); 3424 struct sctp_assoc_value params; 3425 struct sctp_association *asoc; 3426 3427 if (optlen != sizeof(struct sctp_assoc_value)) 3428 return -EINVAL; 3429 if (copy_from_user(¶ms, optval, optlen)) 3430 return -EFAULT; 3431 3432 asoc = sctp_id2assoc(sk, params.assoc_id); 3433 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3434 sctp_style(sk, UDP)) 3435 return -EINVAL; 3436 3437 if (asoc) { 3438 asoc->default_rcv_context = params.assoc_value; 3439 3440 return 0; 3441 } 3442 3443 if (sctp_style(sk, TCP)) 3444 params.assoc_id = SCTP_FUTURE_ASSOC; 3445 3446 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3447 params.assoc_id == SCTP_ALL_ASSOC) 3448 sp->default_rcv_context = params.assoc_value; 3449 3450 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3451 params.assoc_id == SCTP_ALL_ASSOC) 3452 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3453 asoc->default_rcv_context = params.assoc_value; 3454 3455 return 0; 3456 } 3457 3458 /* 3459 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3460 * 3461 * This options will at a minimum specify if the implementation is doing 3462 * fragmented interleave. Fragmented interleave, for a one to many 3463 * socket, is when subsequent calls to receive a message may return 3464 * parts of messages from different associations. Some implementations 3465 * may allow you to turn this value on or off. If so, when turned off, 3466 * no fragment interleave will occur (which will cause a head of line 3467 * blocking amongst multiple associations sharing the same one to many 3468 * socket). When this option is turned on, then each receive call may 3469 * come from a different association (thus the user must receive data 3470 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3471 * association each receive belongs to. 3472 * 3473 * This option takes a boolean value. A non-zero value indicates that 3474 * fragmented interleave is on. A value of zero indicates that 3475 * fragmented interleave is off. 3476 * 3477 * Note that it is important that an implementation that allows this 3478 * option to be turned on, have it off by default. Otherwise an unaware 3479 * application using the one to many model may become confused and act 3480 * incorrectly. 3481 */ 3482 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3483 char __user *optval, 3484 unsigned int optlen) 3485 { 3486 int val; 3487 3488 if (optlen != sizeof(int)) 3489 return -EINVAL; 3490 if (get_user(val, (int __user *)optval)) 3491 return -EFAULT; 3492 3493 sctp_sk(sk)->frag_interleave = !!val; 3494 3495 if (!sctp_sk(sk)->frag_interleave) 3496 sctp_sk(sk)->ep->intl_enable = 0; 3497 3498 return 0; 3499 } 3500 3501 /* 3502 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3503 * (SCTP_PARTIAL_DELIVERY_POINT) 3504 * 3505 * This option will set or get the SCTP partial delivery point. This 3506 * point is the size of a message where the partial delivery API will be 3507 * invoked to help free up rwnd space for the peer. Setting this to a 3508 * lower value will cause partial deliveries to happen more often. The 3509 * calls argument is an integer that sets or gets the partial delivery 3510 * point. Note also that the call will fail if the user attempts to set 3511 * this value larger than the socket receive buffer size. 3512 * 3513 * Note that any single message having a length smaller than or equal to 3514 * the SCTP partial delivery point will be delivered in one single read 3515 * call as long as the user provided buffer is large enough to hold the 3516 * message. 3517 */ 3518 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3519 char __user *optval, 3520 unsigned int optlen) 3521 { 3522 u32 val; 3523 3524 if (optlen != sizeof(u32)) 3525 return -EINVAL; 3526 if (get_user(val, (int __user *)optval)) 3527 return -EFAULT; 3528 3529 /* Note: We double the receive buffer from what the user sets 3530 * it to be, also initial rwnd is based on rcvbuf/2. 3531 */ 3532 if (val > (sk->sk_rcvbuf >> 1)) 3533 return -EINVAL; 3534 3535 sctp_sk(sk)->pd_point = val; 3536 3537 return 0; /* is this the right error code? */ 3538 } 3539 3540 /* 3541 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3542 * 3543 * This option will allow a user to change the maximum burst of packets 3544 * that can be emitted by this association. Note that the default value 3545 * is 4, and some implementations may restrict this setting so that it 3546 * can only be lowered. 3547 * 3548 * NOTE: This text doesn't seem right. Do this on a socket basis with 3549 * future associations inheriting the socket value. 3550 */ 3551 static int sctp_setsockopt_maxburst(struct sock *sk, 3552 char __user *optval, 3553 unsigned int optlen) 3554 { 3555 struct sctp_sock *sp = sctp_sk(sk); 3556 struct sctp_assoc_value params; 3557 struct sctp_association *asoc; 3558 3559 if (optlen == sizeof(int)) { 3560 pr_warn_ratelimited(DEPRECATED 3561 "%s (pid %d) " 3562 "Use of int in max_burst socket option deprecated.\n" 3563 "Use struct sctp_assoc_value instead\n", 3564 current->comm, task_pid_nr(current)); 3565 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3566 return -EFAULT; 3567 params.assoc_id = SCTP_FUTURE_ASSOC; 3568 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3569 if (copy_from_user(¶ms, optval, optlen)) 3570 return -EFAULT; 3571 } else 3572 return -EINVAL; 3573 3574 asoc = sctp_id2assoc(sk, params.assoc_id); 3575 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3576 sctp_style(sk, UDP)) 3577 return -EINVAL; 3578 3579 if (asoc) { 3580 asoc->max_burst = params.assoc_value; 3581 3582 return 0; 3583 } 3584 3585 if (sctp_style(sk, TCP)) 3586 params.assoc_id = SCTP_FUTURE_ASSOC; 3587 3588 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3589 params.assoc_id == SCTP_ALL_ASSOC) 3590 sp->max_burst = params.assoc_value; 3591 3592 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3593 params.assoc_id == SCTP_ALL_ASSOC) 3594 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3595 asoc->max_burst = params.assoc_value; 3596 3597 return 0; 3598 } 3599 3600 /* 3601 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3602 * 3603 * This set option adds a chunk type that the user is requesting to be 3604 * received only in an authenticated way. Changes to the list of chunks 3605 * will only effect future associations on the socket. 3606 */ 3607 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3608 char __user *optval, 3609 unsigned int optlen) 3610 { 3611 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3612 struct sctp_authchunk val; 3613 3614 if (!ep->auth_enable) 3615 return -EACCES; 3616 3617 if (optlen != sizeof(struct sctp_authchunk)) 3618 return -EINVAL; 3619 if (copy_from_user(&val, optval, optlen)) 3620 return -EFAULT; 3621 3622 switch (val.sauth_chunk) { 3623 case SCTP_CID_INIT: 3624 case SCTP_CID_INIT_ACK: 3625 case SCTP_CID_SHUTDOWN_COMPLETE: 3626 case SCTP_CID_AUTH: 3627 return -EINVAL; 3628 } 3629 3630 /* add this chunk id to the endpoint */ 3631 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3632 } 3633 3634 /* 3635 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3636 * 3637 * This option gets or sets the list of HMAC algorithms that the local 3638 * endpoint requires the peer to use. 3639 */ 3640 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3641 char __user *optval, 3642 unsigned int optlen) 3643 { 3644 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3645 struct sctp_hmacalgo *hmacs; 3646 u32 idents; 3647 int err; 3648 3649 if (!ep->auth_enable) 3650 return -EACCES; 3651 3652 if (optlen < sizeof(struct sctp_hmacalgo)) 3653 return -EINVAL; 3654 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3655 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3656 3657 hmacs = memdup_user(optval, optlen); 3658 if (IS_ERR(hmacs)) 3659 return PTR_ERR(hmacs); 3660 3661 idents = hmacs->shmac_num_idents; 3662 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3663 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3664 err = -EINVAL; 3665 goto out; 3666 } 3667 3668 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3669 out: 3670 kfree(hmacs); 3671 return err; 3672 } 3673 3674 /* 3675 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3676 * 3677 * This option will set a shared secret key which is used to build an 3678 * association shared key. 3679 */ 3680 static int sctp_setsockopt_auth_key(struct sock *sk, 3681 char __user *optval, 3682 unsigned int optlen) 3683 { 3684 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3685 struct sctp_authkey *authkey; 3686 struct sctp_association *asoc; 3687 int ret = -EINVAL; 3688 3689 if (optlen <= sizeof(struct sctp_authkey)) 3690 return -EINVAL; 3691 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3692 * this. 3693 */ 3694 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3695 3696 authkey = memdup_user(optval, optlen); 3697 if (IS_ERR(authkey)) 3698 return PTR_ERR(authkey); 3699 3700 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3701 goto out; 3702 3703 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3704 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3705 sctp_style(sk, UDP)) 3706 goto out; 3707 3708 if (asoc) { 3709 ret = sctp_auth_set_key(ep, asoc, authkey); 3710 goto out; 3711 } 3712 3713 if (sctp_style(sk, TCP)) 3714 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3715 3716 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3717 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3718 ret = sctp_auth_set_key(ep, asoc, authkey); 3719 if (ret) 3720 goto out; 3721 } 3722 3723 ret = 0; 3724 3725 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3726 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3727 list_for_each_entry(asoc, &ep->asocs, asocs) { 3728 int res = sctp_auth_set_key(ep, asoc, authkey); 3729 3730 if (res && !ret) 3731 ret = res; 3732 } 3733 } 3734 3735 out: 3736 kzfree(authkey); 3737 return ret; 3738 } 3739 3740 /* 3741 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3742 * 3743 * This option will get or set the active shared key to be used to build 3744 * the association shared key. 3745 */ 3746 static int sctp_setsockopt_active_key(struct sock *sk, 3747 char __user *optval, 3748 unsigned int optlen) 3749 { 3750 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3751 struct sctp_association *asoc; 3752 struct sctp_authkeyid val; 3753 int ret = 0; 3754 3755 if (optlen != sizeof(struct sctp_authkeyid)) 3756 return -EINVAL; 3757 if (copy_from_user(&val, optval, optlen)) 3758 return -EFAULT; 3759 3760 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3761 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3762 sctp_style(sk, UDP)) 3763 return -EINVAL; 3764 3765 if (asoc) 3766 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3767 3768 if (sctp_style(sk, TCP)) 3769 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3770 3771 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3772 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3773 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3774 if (ret) 3775 return ret; 3776 } 3777 3778 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3779 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3780 list_for_each_entry(asoc, &ep->asocs, asocs) { 3781 int res = sctp_auth_set_active_key(ep, asoc, 3782 val.scact_keynumber); 3783 3784 if (res && !ret) 3785 ret = res; 3786 } 3787 } 3788 3789 return ret; 3790 } 3791 3792 /* 3793 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3794 * 3795 * This set option will delete a shared secret key from use. 3796 */ 3797 static int sctp_setsockopt_del_key(struct sock *sk, 3798 char __user *optval, 3799 unsigned int optlen) 3800 { 3801 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3802 struct sctp_association *asoc; 3803 struct sctp_authkeyid val; 3804 int ret = 0; 3805 3806 if (optlen != sizeof(struct sctp_authkeyid)) 3807 return -EINVAL; 3808 if (copy_from_user(&val, optval, optlen)) 3809 return -EFAULT; 3810 3811 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3812 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3813 sctp_style(sk, UDP)) 3814 return -EINVAL; 3815 3816 if (asoc) 3817 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3818 3819 if (sctp_style(sk, TCP)) 3820 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3821 3822 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3823 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3824 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3825 if (ret) 3826 return ret; 3827 } 3828 3829 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3830 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3831 list_for_each_entry(asoc, &ep->asocs, asocs) { 3832 int res = sctp_auth_del_key_id(ep, asoc, 3833 val.scact_keynumber); 3834 3835 if (res && !ret) 3836 ret = res; 3837 } 3838 } 3839 3840 return ret; 3841 } 3842 3843 /* 3844 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3845 * 3846 * This set option will deactivate a shared secret key. 3847 */ 3848 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3849 unsigned int optlen) 3850 { 3851 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3852 struct sctp_association *asoc; 3853 struct sctp_authkeyid val; 3854 int ret = 0; 3855 3856 if (optlen != sizeof(struct sctp_authkeyid)) 3857 return -EINVAL; 3858 if (copy_from_user(&val, optval, optlen)) 3859 return -EFAULT; 3860 3861 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3862 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3863 sctp_style(sk, UDP)) 3864 return -EINVAL; 3865 3866 if (asoc) 3867 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3868 3869 if (sctp_style(sk, TCP)) 3870 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3871 3872 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3873 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3874 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3875 if (ret) 3876 return ret; 3877 } 3878 3879 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3880 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3881 list_for_each_entry(asoc, &ep->asocs, asocs) { 3882 int res = sctp_auth_deact_key_id(ep, asoc, 3883 val.scact_keynumber); 3884 3885 if (res && !ret) 3886 ret = res; 3887 } 3888 } 3889 3890 return ret; 3891 } 3892 3893 /* 3894 * 8.1.23 SCTP_AUTO_ASCONF 3895 * 3896 * This option will enable or disable the use of the automatic generation of 3897 * ASCONF chunks to add and delete addresses to an existing association. Note 3898 * that this option has two caveats namely: a) it only affects sockets that 3899 * are bound to all addresses available to the SCTP stack, and b) the system 3900 * administrator may have an overriding control that turns the ASCONF feature 3901 * off no matter what setting the socket option may have. 3902 * This option expects an integer boolean flag, where a non-zero value turns on 3903 * the option, and a zero value turns off the option. 3904 * Note. In this implementation, socket operation overrides default parameter 3905 * being set by sysctl as well as FreeBSD implementation 3906 */ 3907 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3908 unsigned int optlen) 3909 { 3910 int val; 3911 struct sctp_sock *sp = sctp_sk(sk); 3912 3913 if (optlen < sizeof(int)) 3914 return -EINVAL; 3915 if (get_user(val, (int __user *)optval)) 3916 return -EFAULT; 3917 if (!sctp_is_ep_boundall(sk) && val) 3918 return -EINVAL; 3919 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3920 return 0; 3921 3922 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3923 if (val == 0 && sp->do_auto_asconf) { 3924 list_del(&sp->auto_asconf_list); 3925 sp->do_auto_asconf = 0; 3926 } else if (val && !sp->do_auto_asconf) { 3927 list_add_tail(&sp->auto_asconf_list, 3928 &sock_net(sk)->sctp.auto_asconf_splist); 3929 sp->do_auto_asconf = 1; 3930 } 3931 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3932 return 0; 3933 } 3934 3935 /* 3936 * SCTP_PEER_ADDR_THLDS 3937 * 3938 * This option allows us to alter the partially failed threshold for one or all 3939 * transports in an association. See Section 6.1 of: 3940 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3941 */ 3942 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3943 char __user *optval, 3944 unsigned int optlen, bool v2) 3945 { 3946 struct sctp_paddrthlds_v2 val; 3947 struct sctp_transport *trans; 3948 struct sctp_association *asoc; 3949 int len; 3950 3951 len = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 3952 if (optlen < len) 3953 return -EINVAL; 3954 if (copy_from_user(&val, optval, len)) 3955 return -EFAULT; 3956 3957 if (v2 && val.spt_pathpfthld > val.spt_pathcpthld) 3958 return -EINVAL; 3959 3960 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3961 trans = sctp_addr_id2transport(sk, &val.spt_address, 3962 val.spt_assoc_id); 3963 if (!trans) 3964 return -ENOENT; 3965 3966 if (val.spt_pathmaxrxt) 3967 trans->pathmaxrxt = val.spt_pathmaxrxt; 3968 if (v2) 3969 trans->ps_retrans = val.spt_pathcpthld; 3970 trans->pf_retrans = val.spt_pathpfthld; 3971 3972 return 0; 3973 } 3974 3975 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3976 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 3977 sctp_style(sk, UDP)) 3978 return -EINVAL; 3979 3980 if (asoc) { 3981 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3982 transports) { 3983 if (val.spt_pathmaxrxt) 3984 trans->pathmaxrxt = val.spt_pathmaxrxt; 3985 if (v2) 3986 trans->ps_retrans = val.spt_pathcpthld; 3987 trans->pf_retrans = val.spt_pathpfthld; 3988 } 3989 3990 if (val.spt_pathmaxrxt) 3991 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3992 if (v2) 3993 asoc->ps_retrans = val.spt_pathcpthld; 3994 asoc->pf_retrans = val.spt_pathpfthld; 3995 } else { 3996 struct sctp_sock *sp = sctp_sk(sk); 3997 3998 if (val.spt_pathmaxrxt) 3999 sp->pathmaxrxt = val.spt_pathmaxrxt; 4000 if (v2) 4001 sp->ps_retrans = val.spt_pathcpthld; 4002 sp->pf_retrans = val.spt_pathpfthld; 4003 } 4004 4005 return 0; 4006 } 4007 4008 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4009 char __user *optval, 4010 unsigned int optlen) 4011 { 4012 int val; 4013 4014 if (optlen < sizeof(int)) 4015 return -EINVAL; 4016 if (get_user(val, (int __user *) optval)) 4017 return -EFAULT; 4018 4019 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4020 4021 return 0; 4022 } 4023 4024 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4025 char __user *optval, 4026 unsigned int optlen) 4027 { 4028 int val; 4029 4030 if (optlen < sizeof(int)) 4031 return -EINVAL; 4032 if (get_user(val, (int __user *) optval)) 4033 return -EFAULT; 4034 4035 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4036 4037 return 0; 4038 } 4039 4040 static int sctp_setsockopt_pr_supported(struct sock *sk, 4041 char __user *optval, 4042 unsigned int optlen) 4043 { 4044 struct sctp_assoc_value params; 4045 struct sctp_association *asoc; 4046 4047 if (optlen != sizeof(params)) 4048 return -EINVAL; 4049 4050 if (copy_from_user(¶ms, optval, optlen)) 4051 return -EFAULT; 4052 4053 asoc = sctp_id2assoc(sk, params.assoc_id); 4054 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4055 sctp_style(sk, UDP)) 4056 return -EINVAL; 4057 4058 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4059 4060 return 0; 4061 } 4062 4063 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4064 char __user *optval, 4065 unsigned int optlen) 4066 { 4067 struct sctp_sock *sp = sctp_sk(sk); 4068 struct sctp_default_prinfo info; 4069 struct sctp_association *asoc; 4070 int retval = -EINVAL; 4071 4072 if (optlen != sizeof(info)) 4073 goto out; 4074 4075 if (copy_from_user(&info, optval, sizeof(info))) { 4076 retval = -EFAULT; 4077 goto out; 4078 } 4079 4080 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4081 goto out; 4082 4083 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4084 info.pr_value = 0; 4085 4086 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4087 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4088 sctp_style(sk, UDP)) 4089 goto out; 4090 4091 retval = 0; 4092 4093 if (asoc) { 4094 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4095 asoc->default_timetolive = info.pr_value; 4096 goto out; 4097 } 4098 4099 if (sctp_style(sk, TCP)) 4100 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4101 4102 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4103 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4104 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4105 sp->default_timetolive = info.pr_value; 4106 } 4107 4108 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4109 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4110 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4111 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4112 asoc->default_timetolive = info.pr_value; 4113 } 4114 } 4115 4116 out: 4117 return retval; 4118 } 4119 4120 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4121 char __user *optval, 4122 unsigned int optlen) 4123 { 4124 struct sctp_assoc_value params; 4125 struct sctp_association *asoc; 4126 int retval = -EINVAL; 4127 4128 if (optlen != sizeof(params)) 4129 goto out; 4130 4131 if (copy_from_user(¶ms, optval, optlen)) { 4132 retval = -EFAULT; 4133 goto out; 4134 } 4135 4136 asoc = sctp_id2assoc(sk, params.assoc_id); 4137 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4138 sctp_style(sk, UDP)) 4139 goto out; 4140 4141 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4142 4143 retval = 0; 4144 4145 out: 4146 return retval; 4147 } 4148 4149 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4150 char __user *optval, 4151 unsigned int optlen) 4152 { 4153 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4154 struct sctp_assoc_value params; 4155 struct sctp_association *asoc; 4156 int retval = -EINVAL; 4157 4158 if (optlen != sizeof(params)) 4159 goto out; 4160 4161 if (copy_from_user(¶ms, optval, optlen)) { 4162 retval = -EFAULT; 4163 goto out; 4164 } 4165 4166 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4167 goto out; 4168 4169 asoc = sctp_id2assoc(sk, params.assoc_id); 4170 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4171 sctp_style(sk, UDP)) 4172 goto out; 4173 4174 retval = 0; 4175 4176 if (asoc) { 4177 asoc->strreset_enable = params.assoc_value; 4178 goto out; 4179 } 4180 4181 if (sctp_style(sk, TCP)) 4182 params.assoc_id = SCTP_FUTURE_ASSOC; 4183 4184 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4185 params.assoc_id == SCTP_ALL_ASSOC) 4186 ep->strreset_enable = params.assoc_value; 4187 4188 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4189 params.assoc_id == SCTP_ALL_ASSOC) 4190 list_for_each_entry(asoc, &ep->asocs, asocs) 4191 asoc->strreset_enable = params.assoc_value; 4192 4193 out: 4194 return retval; 4195 } 4196 4197 static int sctp_setsockopt_reset_streams(struct sock *sk, 4198 char __user *optval, 4199 unsigned int optlen) 4200 { 4201 struct sctp_reset_streams *params; 4202 struct sctp_association *asoc; 4203 int retval = -EINVAL; 4204 4205 if (optlen < sizeof(*params)) 4206 return -EINVAL; 4207 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4208 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4209 sizeof(__u16) * sizeof(*params)); 4210 4211 params = memdup_user(optval, optlen); 4212 if (IS_ERR(params)) 4213 return PTR_ERR(params); 4214 4215 if (params->srs_number_streams * sizeof(__u16) > 4216 optlen - sizeof(*params)) 4217 goto out; 4218 4219 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4220 if (!asoc) 4221 goto out; 4222 4223 retval = sctp_send_reset_streams(asoc, params); 4224 4225 out: 4226 kfree(params); 4227 return retval; 4228 } 4229 4230 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4231 char __user *optval, 4232 unsigned int optlen) 4233 { 4234 struct sctp_association *asoc; 4235 sctp_assoc_t associd; 4236 int retval = -EINVAL; 4237 4238 if (optlen != sizeof(associd)) 4239 goto out; 4240 4241 if (copy_from_user(&associd, optval, optlen)) { 4242 retval = -EFAULT; 4243 goto out; 4244 } 4245 4246 asoc = sctp_id2assoc(sk, associd); 4247 if (!asoc) 4248 goto out; 4249 4250 retval = sctp_send_reset_assoc(asoc); 4251 4252 out: 4253 return retval; 4254 } 4255 4256 static int sctp_setsockopt_add_streams(struct sock *sk, 4257 char __user *optval, 4258 unsigned int optlen) 4259 { 4260 struct sctp_association *asoc; 4261 struct sctp_add_streams params; 4262 int retval = -EINVAL; 4263 4264 if (optlen != sizeof(params)) 4265 goto out; 4266 4267 if (copy_from_user(¶ms, optval, optlen)) { 4268 retval = -EFAULT; 4269 goto out; 4270 } 4271 4272 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4273 if (!asoc) 4274 goto out; 4275 4276 retval = sctp_send_add_streams(asoc, ¶ms); 4277 4278 out: 4279 return retval; 4280 } 4281 4282 static int sctp_setsockopt_scheduler(struct sock *sk, 4283 char __user *optval, 4284 unsigned int optlen) 4285 { 4286 struct sctp_sock *sp = sctp_sk(sk); 4287 struct sctp_association *asoc; 4288 struct sctp_assoc_value params; 4289 int retval = 0; 4290 4291 if (optlen < sizeof(params)) 4292 return -EINVAL; 4293 4294 optlen = sizeof(params); 4295 if (copy_from_user(¶ms, optval, optlen)) 4296 return -EFAULT; 4297 4298 if (params.assoc_value > SCTP_SS_MAX) 4299 return -EINVAL; 4300 4301 asoc = sctp_id2assoc(sk, params.assoc_id); 4302 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4303 sctp_style(sk, UDP)) 4304 return -EINVAL; 4305 4306 if (asoc) 4307 return sctp_sched_set_sched(asoc, params.assoc_value); 4308 4309 if (sctp_style(sk, TCP)) 4310 params.assoc_id = SCTP_FUTURE_ASSOC; 4311 4312 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4313 params.assoc_id == SCTP_ALL_ASSOC) 4314 sp->default_ss = params.assoc_value; 4315 4316 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4317 params.assoc_id == SCTP_ALL_ASSOC) { 4318 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4319 int ret = sctp_sched_set_sched(asoc, 4320 params.assoc_value); 4321 4322 if (ret && !retval) 4323 retval = ret; 4324 } 4325 } 4326 4327 return retval; 4328 } 4329 4330 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4331 char __user *optval, 4332 unsigned int optlen) 4333 { 4334 struct sctp_stream_value params; 4335 struct sctp_association *asoc; 4336 int retval = -EINVAL; 4337 4338 if (optlen < sizeof(params)) 4339 goto out; 4340 4341 optlen = sizeof(params); 4342 if (copy_from_user(¶ms, optval, optlen)) { 4343 retval = -EFAULT; 4344 goto out; 4345 } 4346 4347 asoc = sctp_id2assoc(sk, params.assoc_id); 4348 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4349 sctp_style(sk, UDP)) 4350 goto out; 4351 4352 if (asoc) { 4353 retval = sctp_sched_set_value(asoc, params.stream_id, 4354 params.stream_value, GFP_KERNEL); 4355 goto out; 4356 } 4357 4358 retval = 0; 4359 4360 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4361 int ret = sctp_sched_set_value(asoc, params.stream_id, 4362 params.stream_value, GFP_KERNEL); 4363 if (ret && !retval) /* try to return the 1st error. */ 4364 retval = ret; 4365 } 4366 4367 out: 4368 return retval; 4369 } 4370 4371 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4372 char __user *optval, 4373 unsigned int optlen) 4374 { 4375 struct sctp_sock *sp = sctp_sk(sk); 4376 struct sctp_assoc_value params; 4377 struct sctp_association *asoc; 4378 int retval = -EINVAL; 4379 4380 if (optlen < sizeof(params)) 4381 goto out; 4382 4383 optlen = sizeof(params); 4384 if (copy_from_user(¶ms, optval, optlen)) { 4385 retval = -EFAULT; 4386 goto out; 4387 } 4388 4389 asoc = sctp_id2assoc(sk, params.assoc_id); 4390 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4391 sctp_style(sk, UDP)) 4392 goto out; 4393 4394 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4395 retval = -EPERM; 4396 goto out; 4397 } 4398 4399 sp->ep->intl_enable = !!params.assoc_value; 4400 4401 retval = 0; 4402 4403 out: 4404 return retval; 4405 } 4406 4407 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4408 unsigned int optlen) 4409 { 4410 int val; 4411 4412 if (!sctp_style(sk, TCP)) 4413 return -EOPNOTSUPP; 4414 4415 if (sctp_sk(sk)->ep->base.bind_addr.port) 4416 return -EFAULT; 4417 4418 if (optlen < sizeof(int)) 4419 return -EINVAL; 4420 4421 if (get_user(val, (int __user *)optval)) 4422 return -EFAULT; 4423 4424 sctp_sk(sk)->reuse = !!val; 4425 4426 return 0; 4427 } 4428 4429 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4430 struct sctp_association *asoc) 4431 { 4432 struct sctp_ulpevent *event; 4433 4434 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4435 4436 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4437 if (sctp_outq_is_empty(&asoc->outqueue)) { 4438 event = sctp_ulpevent_make_sender_dry_event(asoc, 4439 GFP_USER | __GFP_NOWARN); 4440 if (!event) 4441 return -ENOMEM; 4442 4443 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4444 } 4445 } 4446 4447 return 0; 4448 } 4449 4450 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4451 unsigned int optlen) 4452 { 4453 struct sctp_sock *sp = sctp_sk(sk); 4454 struct sctp_association *asoc; 4455 struct sctp_event param; 4456 int retval = 0; 4457 4458 if (optlen < sizeof(param)) 4459 return -EINVAL; 4460 4461 optlen = sizeof(param); 4462 if (copy_from_user(¶m, optval, optlen)) 4463 return -EFAULT; 4464 4465 if (param.se_type < SCTP_SN_TYPE_BASE || 4466 param.se_type > SCTP_SN_TYPE_MAX) 4467 return -EINVAL; 4468 4469 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4470 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4471 sctp_style(sk, UDP)) 4472 return -EINVAL; 4473 4474 if (asoc) 4475 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4476 4477 if (sctp_style(sk, TCP)) 4478 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4479 4480 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4481 param.se_assoc_id == SCTP_ALL_ASSOC) 4482 sctp_ulpevent_type_set(&sp->subscribe, 4483 param.se_type, param.se_on); 4484 4485 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4486 param.se_assoc_id == SCTP_ALL_ASSOC) { 4487 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4488 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4489 4490 if (ret && !retval) 4491 retval = ret; 4492 } 4493 } 4494 4495 return retval; 4496 } 4497 4498 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4499 char __user *optval, 4500 unsigned int optlen) 4501 { 4502 struct sctp_assoc_value params; 4503 struct sctp_association *asoc; 4504 struct sctp_endpoint *ep; 4505 int retval = -EINVAL; 4506 4507 if (optlen != sizeof(params)) 4508 goto out; 4509 4510 if (copy_from_user(¶ms, optval, optlen)) { 4511 retval = -EFAULT; 4512 goto out; 4513 } 4514 4515 asoc = sctp_id2assoc(sk, params.assoc_id); 4516 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4517 sctp_style(sk, UDP)) 4518 goto out; 4519 4520 ep = sctp_sk(sk)->ep; 4521 ep->asconf_enable = !!params.assoc_value; 4522 4523 if (ep->asconf_enable && ep->auth_enable) { 4524 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4525 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4526 } 4527 4528 retval = 0; 4529 4530 out: 4531 return retval; 4532 } 4533 4534 static int sctp_setsockopt_auth_supported(struct sock *sk, 4535 char __user *optval, 4536 unsigned int optlen) 4537 { 4538 struct sctp_assoc_value params; 4539 struct sctp_association *asoc; 4540 struct sctp_endpoint *ep; 4541 int retval = -EINVAL; 4542 4543 if (optlen != sizeof(params)) 4544 goto out; 4545 4546 if (copy_from_user(¶ms, optval, optlen)) { 4547 retval = -EFAULT; 4548 goto out; 4549 } 4550 4551 asoc = sctp_id2assoc(sk, params.assoc_id); 4552 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4553 sctp_style(sk, UDP)) 4554 goto out; 4555 4556 ep = sctp_sk(sk)->ep; 4557 if (params.assoc_value) { 4558 retval = sctp_auth_init(ep, GFP_KERNEL); 4559 if (retval) 4560 goto out; 4561 if (ep->asconf_enable) { 4562 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4563 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4564 } 4565 } 4566 4567 ep->auth_enable = !!params.assoc_value; 4568 retval = 0; 4569 4570 out: 4571 return retval; 4572 } 4573 4574 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4575 char __user *optval, 4576 unsigned int optlen) 4577 { 4578 struct sctp_assoc_value params; 4579 struct sctp_association *asoc; 4580 int retval = -EINVAL; 4581 4582 if (optlen != sizeof(params)) 4583 goto out; 4584 4585 if (copy_from_user(¶ms, optval, optlen)) { 4586 retval = -EFAULT; 4587 goto out; 4588 } 4589 4590 asoc = sctp_id2assoc(sk, params.assoc_id); 4591 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4592 sctp_style(sk, UDP)) 4593 goto out; 4594 4595 sctp_sk(sk)->ep->ecn_enable = !!params.assoc_value; 4596 retval = 0; 4597 4598 out: 4599 return retval; 4600 } 4601 4602 static int sctp_setsockopt_pf_expose(struct sock *sk, 4603 char __user *optval, 4604 unsigned int optlen) 4605 { 4606 struct sctp_assoc_value params; 4607 struct sctp_association *asoc; 4608 int retval = -EINVAL; 4609 4610 if (optlen != sizeof(params)) 4611 goto out; 4612 4613 if (copy_from_user(¶ms, optval, optlen)) { 4614 retval = -EFAULT; 4615 goto out; 4616 } 4617 4618 if (params.assoc_value > SCTP_PF_EXPOSE_MAX) 4619 goto out; 4620 4621 asoc = sctp_id2assoc(sk, params.assoc_id); 4622 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4623 sctp_style(sk, UDP)) 4624 goto out; 4625 4626 if (asoc) 4627 asoc->pf_expose = params.assoc_value; 4628 else 4629 sctp_sk(sk)->pf_expose = params.assoc_value; 4630 retval = 0; 4631 4632 out: 4633 return retval; 4634 } 4635 4636 /* API 6.2 setsockopt(), getsockopt() 4637 * 4638 * Applications use setsockopt() and getsockopt() to set or retrieve 4639 * socket options. Socket options are used to change the default 4640 * behavior of sockets calls. They are described in Section 7. 4641 * 4642 * The syntax is: 4643 * 4644 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4645 * int __user *optlen); 4646 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4647 * int optlen); 4648 * 4649 * sd - the socket descript. 4650 * level - set to IPPROTO_SCTP for all SCTP options. 4651 * optname - the option name. 4652 * optval - the buffer to store the value of the option. 4653 * optlen - the size of the buffer. 4654 */ 4655 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4656 char __user *optval, unsigned int optlen) 4657 { 4658 int retval = 0; 4659 4660 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4661 4662 /* I can hardly begin to describe how wrong this is. This is 4663 * so broken as to be worse than useless. The API draft 4664 * REALLY is NOT helpful here... I am not convinced that the 4665 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4666 * are at all well-founded. 4667 */ 4668 if (level != SOL_SCTP) { 4669 struct sctp_af *af = sctp_sk(sk)->pf->af; 4670 retval = af->setsockopt(sk, level, optname, optval, optlen); 4671 goto out_nounlock; 4672 } 4673 4674 lock_sock(sk); 4675 4676 switch (optname) { 4677 case SCTP_SOCKOPT_BINDX_ADD: 4678 /* 'optlen' is the size of the addresses buffer. */ 4679 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4680 optlen, SCTP_BINDX_ADD_ADDR); 4681 break; 4682 4683 case SCTP_SOCKOPT_BINDX_REM: 4684 /* 'optlen' is the size of the addresses buffer. */ 4685 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4686 optlen, SCTP_BINDX_REM_ADDR); 4687 break; 4688 4689 case SCTP_SOCKOPT_CONNECTX_OLD: 4690 /* 'optlen' is the size of the addresses buffer. */ 4691 retval = sctp_setsockopt_connectx_old(sk, 4692 (struct sockaddr __user *)optval, 4693 optlen); 4694 break; 4695 4696 case SCTP_SOCKOPT_CONNECTX: 4697 /* 'optlen' is the size of the addresses buffer. */ 4698 retval = sctp_setsockopt_connectx(sk, 4699 (struct sockaddr __user *)optval, 4700 optlen); 4701 break; 4702 4703 case SCTP_DISABLE_FRAGMENTS: 4704 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4705 break; 4706 4707 case SCTP_EVENTS: 4708 retval = sctp_setsockopt_events(sk, optval, optlen); 4709 break; 4710 4711 case SCTP_AUTOCLOSE: 4712 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4713 break; 4714 4715 case SCTP_PEER_ADDR_PARAMS: 4716 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4717 break; 4718 4719 case SCTP_DELAYED_SACK: 4720 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4721 break; 4722 case SCTP_PARTIAL_DELIVERY_POINT: 4723 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4724 break; 4725 4726 case SCTP_INITMSG: 4727 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4728 break; 4729 case SCTP_DEFAULT_SEND_PARAM: 4730 retval = sctp_setsockopt_default_send_param(sk, optval, 4731 optlen); 4732 break; 4733 case SCTP_DEFAULT_SNDINFO: 4734 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4735 break; 4736 case SCTP_PRIMARY_ADDR: 4737 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4738 break; 4739 case SCTP_SET_PEER_PRIMARY_ADDR: 4740 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4741 break; 4742 case SCTP_NODELAY: 4743 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4744 break; 4745 case SCTP_RTOINFO: 4746 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4747 break; 4748 case SCTP_ASSOCINFO: 4749 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4750 break; 4751 case SCTP_I_WANT_MAPPED_V4_ADDR: 4752 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4753 break; 4754 case SCTP_MAXSEG: 4755 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4756 break; 4757 case SCTP_ADAPTATION_LAYER: 4758 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4759 break; 4760 case SCTP_CONTEXT: 4761 retval = sctp_setsockopt_context(sk, optval, optlen); 4762 break; 4763 case SCTP_FRAGMENT_INTERLEAVE: 4764 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4765 break; 4766 case SCTP_MAX_BURST: 4767 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4768 break; 4769 case SCTP_AUTH_CHUNK: 4770 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4771 break; 4772 case SCTP_HMAC_IDENT: 4773 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4774 break; 4775 case SCTP_AUTH_KEY: 4776 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4777 break; 4778 case SCTP_AUTH_ACTIVE_KEY: 4779 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4780 break; 4781 case SCTP_AUTH_DELETE_KEY: 4782 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4783 break; 4784 case SCTP_AUTH_DEACTIVATE_KEY: 4785 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4786 break; 4787 case SCTP_AUTO_ASCONF: 4788 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4789 break; 4790 case SCTP_PEER_ADDR_THLDS: 4791 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen, 4792 false); 4793 break; 4794 case SCTP_PEER_ADDR_THLDS_V2: 4795 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen, 4796 true); 4797 break; 4798 case SCTP_RECVRCVINFO: 4799 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4800 break; 4801 case SCTP_RECVNXTINFO: 4802 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4803 break; 4804 case SCTP_PR_SUPPORTED: 4805 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4806 break; 4807 case SCTP_DEFAULT_PRINFO: 4808 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4809 break; 4810 case SCTP_RECONFIG_SUPPORTED: 4811 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4812 break; 4813 case SCTP_ENABLE_STREAM_RESET: 4814 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4815 break; 4816 case SCTP_RESET_STREAMS: 4817 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4818 break; 4819 case SCTP_RESET_ASSOC: 4820 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4821 break; 4822 case SCTP_ADD_STREAMS: 4823 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4824 break; 4825 case SCTP_STREAM_SCHEDULER: 4826 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4827 break; 4828 case SCTP_STREAM_SCHEDULER_VALUE: 4829 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4830 break; 4831 case SCTP_INTERLEAVING_SUPPORTED: 4832 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4833 optlen); 4834 break; 4835 case SCTP_REUSE_PORT: 4836 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4837 break; 4838 case SCTP_EVENT: 4839 retval = sctp_setsockopt_event(sk, optval, optlen); 4840 break; 4841 case SCTP_ASCONF_SUPPORTED: 4842 retval = sctp_setsockopt_asconf_supported(sk, optval, optlen); 4843 break; 4844 case SCTP_AUTH_SUPPORTED: 4845 retval = sctp_setsockopt_auth_supported(sk, optval, optlen); 4846 break; 4847 case SCTP_ECN_SUPPORTED: 4848 retval = sctp_setsockopt_ecn_supported(sk, optval, optlen); 4849 break; 4850 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4851 retval = sctp_setsockopt_pf_expose(sk, optval, optlen); 4852 break; 4853 default: 4854 retval = -ENOPROTOOPT; 4855 break; 4856 } 4857 4858 release_sock(sk); 4859 4860 out_nounlock: 4861 return retval; 4862 } 4863 4864 /* API 3.1.6 connect() - UDP Style Syntax 4865 * 4866 * An application may use the connect() call in the UDP model to initiate an 4867 * association without sending data. 4868 * 4869 * The syntax is: 4870 * 4871 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4872 * 4873 * sd: the socket descriptor to have a new association added to. 4874 * 4875 * nam: the address structure (either struct sockaddr_in or struct 4876 * sockaddr_in6 defined in RFC2553 [7]). 4877 * 4878 * len: the size of the address. 4879 */ 4880 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4881 int addr_len, int flags) 4882 { 4883 struct sctp_af *af; 4884 int err = -EINVAL; 4885 4886 lock_sock(sk); 4887 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4888 addr, addr_len); 4889 4890 /* Validate addr_len before calling common connect/connectx routine. */ 4891 af = sctp_get_af_specific(addr->sa_family); 4892 if (af && addr_len >= af->sockaddr_len) 4893 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4894 4895 release_sock(sk); 4896 return err; 4897 } 4898 4899 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4900 int addr_len, int flags) 4901 { 4902 if (addr_len < sizeof(uaddr->sa_family)) 4903 return -EINVAL; 4904 4905 if (uaddr->sa_family == AF_UNSPEC) 4906 return -EOPNOTSUPP; 4907 4908 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4909 } 4910 4911 /* FIXME: Write comments. */ 4912 static int sctp_disconnect(struct sock *sk, int flags) 4913 { 4914 return -EOPNOTSUPP; /* STUB */ 4915 } 4916 4917 /* 4.1.4 accept() - TCP Style Syntax 4918 * 4919 * Applications use accept() call to remove an established SCTP 4920 * association from the accept queue of the endpoint. A new socket 4921 * descriptor will be returned from accept() to represent the newly 4922 * formed association. 4923 */ 4924 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4925 { 4926 struct sctp_sock *sp; 4927 struct sctp_endpoint *ep; 4928 struct sock *newsk = NULL; 4929 struct sctp_association *asoc; 4930 long timeo; 4931 int error = 0; 4932 4933 lock_sock(sk); 4934 4935 sp = sctp_sk(sk); 4936 ep = sp->ep; 4937 4938 if (!sctp_style(sk, TCP)) { 4939 error = -EOPNOTSUPP; 4940 goto out; 4941 } 4942 4943 if (!sctp_sstate(sk, LISTENING)) { 4944 error = -EINVAL; 4945 goto out; 4946 } 4947 4948 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4949 4950 error = sctp_wait_for_accept(sk, timeo); 4951 if (error) 4952 goto out; 4953 4954 /* We treat the list of associations on the endpoint as the accept 4955 * queue and pick the first association on the list. 4956 */ 4957 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4958 4959 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4960 if (!newsk) { 4961 error = -ENOMEM; 4962 goto out; 4963 } 4964 4965 /* Populate the fields of the newsk from the oldsk and migrate the 4966 * asoc to the newsk. 4967 */ 4968 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4969 if (error) { 4970 sk_common_release(newsk); 4971 newsk = NULL; 4972 } 4973 4974 out: 4975 release_sock(sk); 4976 *err = error; 4977 return newsk; 4978 } 4979 4980 /* The SCTP ioctl handler. */ 4981 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4982 { 4983 int rc = -ENOTCONN; 4984 4985 lock_sock(sk); 4986 4987 /* 4988 * SEQPACKET-style sockets in LISTENING state are valid, for 4989 * SCTP, so only discard TCP-style sockets in LISTENING state. 4990 */ 4991 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4992 goto out; 4993 4994 switch (cmd) { 4995 case SIOCINQ: { 4996 struct sk_buff *skb; 4997 unsigned int amount = 0; 4998 4999 skb = skb_peek(&sk->sk_receive_queue); 5000 if (skb != NULL) { 5001 /* 5002 * We will only return the amount of this packet since 5003 * that is all that will be read. 5004 */ 5005 amount = skb->len; 5006 } 5007 rc = put_user(amount, (int __user *)arg); 5008 break; 5009 } 5010 default: 5011 rc = -ENOIOCTLCMD; 5012 break; 5013 } 5014 out: 5015 release_sock(sk); 5016 return rc; 5017 } 5018 5019 /* This is the function which gets called during socket creation to 5020 * initialized the SCTP-specific portion of the sock. 5021 * The sock structure should already be zero-filled memory. 5022 */ 5023 static int sctp_init_sock(struct sock *sk) 5024 { 5025 struct net *net = sock_net(sk); 5026 struct sctp_sock *sp; 5027 5028 pr_debug("%s: sk:%p\n", __func__, sk); 5029 5030 sp = sctp_sk(sk); 5031 5032 /* Initialize the SCTP per socket area. */ 5033 switch (sk->sk_type) { 5034 case SOCK_SEQPACKET: 5035 sp->type = SCTP_SOCKET_UDP; 5036 break; 5037 case SOCK_STREAM: 5038 sp->type = SCTP_SOCKET_TCP; 5039 break; 5040 default: 5041 return -ESOCKTNOSUPPORT; 5042 } 5043 5044 sk->sk_gso_type = SKB_GSO_SCTP; 5045 5046 /* Initialize default send parameters. These parameters can be 5047 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5048 */ 5049 sp->default_stream = 0; 5050 sp->default_ppid = 0; 5051 sp->default_flags = 0; 5052 sp->default_context = 0; 5053 sp->default_timetolive = 0; 5054 5055 sp->default_rcv_context = 0; 5056 sp->max_burst = net->sctp.max_burst; 5057 5058 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5059 5060 /* Initialize default setup parameters. These parameters 5061 * can be modified with the SCTP_INITMSG socket option or 5062 * overridden by the SCTP_INIT CMSG. 5063 */ 5064 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5065 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5066 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5067 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5068 5069 /* Initialize default RTO related parameters. These parameters can 5070 * be modified for with the SCTP_RTOINFO socket option. 5071 */ 5072 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5073 sp->rtoinfo.srto_max = net->sctp.rto_max; 5074 sp->rtoinfo.srto_min = net->sctp.rto_min; 5075 5076 /* Initialize default association related parameters. These parameters 5077 * can be modified with the SCTP_ASSOCINFO socket option. 5078 */ 5079 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5080 sp->assocparams.sasoc_number_peer_destinations = 0; 5081 sp->assocparams.sasoc_peer_rwnd = 0; 5082 sp->assocparams.sasoc_local_rwnd = 0; 5083 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5084 5085 /* Initialize default event subscriptions. By default, all the 5086 * options are off. 5087 */ 5088 sp->subscribe = 0; 5089 5090 /* Default Peer Address Parameters. These defaults can 5091 * be modified via SCTP_PEER_ADDR_PARAMS 5092 */ 5093 sp->hbinterval = net->sctp.hb_interval; 5094 sp->pathmaxrxt = net->sctp.max_retrans_path; 5095 sp->pf_retrans = net->sctp.pf_retrans; 5096 sp->ps_retrans = net->sctp.ps_retrans; 5097 sp->pf_expose = net->sctp.pf_expose; 5098 sp->pathmtu = 0; /* allow default discovery */ 5099 sp->sackdelay = net->sctp.sack_timeout; 5100 sp->sackfreq = 2; 5101 sp->param_flags = SPP_HB_ENABLE | 5102 SPP_PMTUD_ENABLE | 5103 SPP_SACKDELAY_ENABLE; 5104 sp->default_ss = SCTP_SS_DEFAULT; 5105 5106 /* If enabled no SCTP message fragmentation will be performed. 5107 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5108 */ 5109 sp->disable_fragments = 0; 5110 5111 /* Enable Nagle algorithm by default. */ 5112 sp->nodelay = 0; 5113 5114 sp->recvrcvinfo = 0; 5115 sp->recvnxtinfo = 0; 5116 5117 /* Enable by default. */ 5118 sp->v4mapped = 1; 5119 5120 /* Auto-close idle associations after the configured 5121 * number of seconds. A value of 0 disables this 5122 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5123 * for UDP-style sockets only. 5124 */ 5125 sp->autoclose = 0; 5126 5127 /* User specified fragmentation limit. */ 5128 sp->user_frag = 0; 5129 5130 sp->adaptation_ind = 0; 5131 5132 sp->pf = sctp_get_pf_specific(sk->sk_family); 5133 5134 /* Control variables for partial data delivery. */ 5135 atomic_set(&sp->pd_mode, 0); 5136 skb_queue_head_init(&sp->pd_lobby); 5137 sp->frag_interleave = 0; 5138 5139 /* Create a per socket endpoint structure. Even if we 5140 * change the data structure relationships, this may still 5141 * be useful for storing pre-connect address information. 5142 */ 5143 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5144 if (!sp->ep) 5145 return -ENOMEM; 5146 5147 sp->hmac = NULL; 5148 5149 sk->sk_destruct = sctp_destruct_sock; 5150 5151 SCTP_DBG_OBJCNT_INC(sock); 5152 5153 local_bh_disable(); 5154 sk_sockets_allocated_inc(sk); 5155 sock_prot_inuse_add(net, sk->sk_prot, 1); 5156 5157 /* Nothing can fail after this block, otherwise 5158 * sctp_destroy_sock() will be called without addr_wq_lock held 5159 */ 5160 if (net->sctp.default_auto_asconf) { 5161 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5162 list_add_tail(&sp->auto_asconf_list, 5163 &net->sctp.auto_asconf_splist); 5164 sp->do_auto_asconf = 1; 5165 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5166 } else { 5167 sp->do_auto_asconf = 0; 5168 } 5169 5170 local_bh_enable(); 5171 5172 return 0; 5173 } 5174 5175 /* Cleanup any SCTP per socket resources. Must be called with 5176 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5177 */ 5178 static void sctp_destroy_sock(struct sock *sk) 5179 { 5180 struct sctp_sock *sp; 5181 5182 pr_debug("%s: sk:%p\n", __func__, sk); 5183 5184 /* Release our hold on the endpoint. */ 5185 sp = sctp_sk(sk); 5186 /* This could happen during socket init, thus we bail out 5187 * early, since the rest of the below is not setup either. 5188 */ 5189 if (sp->ep == NULL) 5190 return; 5191 5192 if (sp->do_auto_asconf) { 5193 sp->do_auto_asconf = 0; 5194 list_del(&sp->auto_asconf_list); 5195 } 5196 sctp_endpoint_free(sp->ep); 5197 local_bh_disable(); 5198 sk_sockets_allocated_dec(sk); 5199 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5200 local_bh_enable(); 5201 } 5202 5203 /* Triggered when there are no references on the socket anymore */ 5204 static void sctp_destruct_sock(struct sock *sk) 5205 { 5206 struct sctp_sock *sp = sctp_sk(sk); 5207 5208 /* Free up the HMAC transform. */ 5209 crypto_free_shash(sp->hmac); 5210 5211 inet_sock_destruct(sk); 5212 } 5213 5214 /* API 4.1.7 shutdown() - TCP Style Syntax 5215 * int shutdown(int socket, int how); 5216 * 5217 * sd - the socket descriptor of the association to be closed. 5218 * how - Specifies the type of shutdown. The values are 5219 * as follows: 5220 * SHUT_RD 5221 * Disables further receive operations. No SCTP 5222 * protocol action is taken. 5223 * SHUT_WR 5224 * Disables further send operations, and initiates 5225 * the SCTP shutdown sequence. 5226 * SHUT_RDWR 5227 * Disables further send and receive operations 5228 * and initiates the SCTP shutdown sequence. 5229 */ 5230 static void sctp_shutdown(struct sock *sk, int how) 5231 { 5232 struct net *net = sock_net(sk); 5233 struct sctp_endpoint *ep; 5234 5235 if (!sctp_style(sk, TCP)) 5236 return; 5237 5238 ep = sctp_sk(sk)->ep; 5239 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5240 struct sctp_association *asoc; 5241 5242 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5243 asoc = list_entry(ep->asocs.next, 5244 struct sctp_association, asocs); 5245 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5246 } 5247 } 5248 5249 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5250 struct sctp_info *info) 5251 { 5252 struct sctp_transport *prim; 5253 struct list_head *pos; 5254 int mask; 5255 5256 memset(info, 0, sizeof(*info)); 5257 if (!asoc) { 5258 struct sctp_sock *sp = sctp_sk(sk); 5259 5260 info->sctpi_s_autoclose = sp->autoclose; 5261 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5262 info->sctpi_s_pd_point = sp->pd_point; 5263 info->sctpi_s_nodelay = sp->nodelay; 5264 info->sctpi_s_disable_fragments = sp->disable_fragments; 5265 info->sctpi_s_v4mapped = sp->v4mapped; 5266 info->sctpi_s_frag_interleave = sp->frag_interleave; 5267 info->sctpi_s_type = sp->type; 5268 5269 return 0; 5270 } 5271 5272 info->sctpi_tag = asoc->c.my_vtag; 5273 info->sctpi_state = asoc->state; 5274 info->sctpi_rwnd = asoc->a_rwnd; 5275 info->sctpi_unackdata = asoc->unack_data; 5276 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5277 info->sctpi_instrms = asoc->stream.incnt; 5278 info->sctpi_outstrms = asoc->stream.outcnt; 5279 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5280 info->sctpi_inqueue++; 5281 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5282 info->sctpi_outqueue++; 5283 info->sctpi_overall_error = asoc->overall_error_count; 5284 info->sctpi_max_burst = asoc->max_burst; 5285 info->sctpi_maxseg = asoc->frag_point; 5286 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5287 info->sctpi_peer_tag = asoc->c.peer_vtag; 5288 5289 mask = asoc->peer.ecn_capable << 1; 5290 mask = (mask | asoc->peer.ipv4_address) << 1; 5291 mask = (mask | asoc->peer.ipv6_address) << 1; 5292 mask = (mask | asoc->peer.hostname_address) << 1; 5293 mask = (mask | asoc->peer.asconf_capable) << 1; 5294 mask = (mask | asoc->peer.prsctp_capable) << 1; 5295 mask = (mask | asoc->peer.auth_capable); 5296 info->sctpi_peer_capable = mask; 5297 mask = asoc->peer.sack_needed << 1; 5298 mask = (mask | asoc->peer.sack_generation) << 1; 5299 mask = (mask | asoc->peer.zero_window_announced); 5300 info->sctpi_peer_sack = mask; 5301 5302 info->sctpi_isacks = asoc->stats.isacks; 5303 info->sctpi_osacks = asoc->stats.osacks; 5304 info->sctpi_opackets = asoc->stats.opackets; 5305 info->sctpi_ipackets = asoc->stats.ipackets; 5306 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5307 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5308 info->sctpi_idupchunks = asoc->stats.idupchunks; 5309 info->sctpi_gapcnt = asoc->stats.gapcnt; 5310 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5311 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5312 info->sctpi_oodchunks = asoc->stats.oodchunks; 5313 info->sctpi_iodchunks = asoc->stats.iodchunks; 5314 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5315 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5316 5317 prim = asoc->peer.primary_path; 5318 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5319 info->sctpi_p_state = prim->state; 5320 info->sctpi_p_cwnd = prim->cwnd; 5321 info->sctpi_p_srtt = prim->srtt; 5322 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5323 info->sctpi_p_hbinterval = prim->hbinterval; 5324 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5325 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5326 info->sctpi_p_ssthresh = prim->ssthresh; 5327 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5328 info->sctpi_p_flight_size = prim->flight_size; 5329 info->sctpi_p_error = prim->error_count; 5330 5331 return 0; 5332 } 5333 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5334 5335 /* use callback to avoid exporting the core structure */ 5336 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5337 { 5338 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5339 5340 rhashtable_walk_start(iter); 5341 } 5342 5343 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5344 { 5345 rhashtable_walk_stop(iter); 5346 rhashtable_walk_exit(iter); 5347 } 5348 5349 struct sctp_transport *sctp_transport_get_next(struct net *net, 5350 struct rhashtable_iter *iter) 5351 { 5352 struct sctp_transport *t; 5353 5354 t = rhashtable_walk_next(iter); 5355 for (; t; t = rhashtable_walk_next(iter)) { 5356 if (IS_ERR(t)) { 5357 if (PTR_ERR(t) == -EAGAIN) 5358 continue; 5359 break; 5360 } 5361 5362 if (!sctp_transport_hold(t)) 5363 continue; 5364 5365 if (net_eq(t->asoc->base.net, net) && 5366 t->asoc->peer.primary_path == t) 5367 break; 5368 5369 sctp_transport_put(t); 5370 } 5371 5372 return t; 5373 } 5374 5375 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5376 struct rhashtable_iter *iter, 5377 int pos) 5378 { 5379 struct sctp_transport *t; 5380 5381 if (!pos) 5382 return SEQ_START_TOKEN; 5383 5384 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5385 if (!--pos) 5386 break; 5387 sctp_transport_put(t); 5388 } 5389 5390 return t; 5391 } 5392 5393 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5394 void *p) { 5395 int err = 0; 5396 int hash = 0; 5397 struct sctp_ep_common *epb; 5398 struct sctp_hashbucket *head; 5399 5400 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5401 hash++, head++) { 5402 read_lock_bh(&head->lock); 5403 sctp_for_each_hentry(epb, &head->chain) { 5404 err = cb(sctp_ep(epb), p); 5405 if (err) 5406 break; 5407 } 5408 read_unlock_bh(&head->lock); 5409 } 5410 5411 return err; 5412 } 5413 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5414 5415 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5416 struct net *net, 5417 const union sctp_addr *laddr, 5418 const union sctp_addr *paddr, void *p) 5419 { 5420 struct sctp_transport *transport; 5421 int err; 5422 5423 rcu_read_lock(); 5424 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5425 rcu_read_unlock(); 5426 if (!transport) 5427 return -ENOENT; 5428 5429 err = cb(transport, p); 5430 sctp_transport_put(transport); 5431 5432 return err; 5433 } 5434 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5435 5436 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5437 int (*cb_done)(struct sctp_transport *, void *), 5438 struct net *net, int *pos, void *p) { 5439 struct rhashtable_iter hti; 5440 struct sctp_transport *tsp; 5441 int ret; 5442 5443 again: 5444 ret = 0; 5445 sctp_transport_walk_start(&hti); 5446 5447 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5448 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5449 ret = cb(tsp, p); 5450 if (ret) 5451 break; 5452 (*pos)++; 5453 sctp_transport_put(tsp); 5454 } 5455 sctp_transport_walk_stop(&hti); 5456 5457 if (ret) { 5458 if (cb_done && !cb_done(tsp, p)) { 5459 (*pos)++; 5460 sctp_transport_put(tsp); 5461 goto again; 5462 } 5463 sctp_transport_put(tsp); 5464 } 5465 5466 return ret; 5467 } 5468 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5469 5470 /* 7.2.1 Association Status (SCTP_STATUS) 5471 5472 * Applications can retrieve current status information about an 5473 * association, including association state, peer receiver window size, 5474 * number of unacked data chunks, and number of data chunks pending 5475 * receipt. This information is read-only. 5476 */ 5477 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5478 char __user *optval, 5479 int __user *optlen) 5480 { 5481 struct sctp_status status; 5482 struct sctp_association *asoc = NULL; 5483 struct sctp_transport *transport; 5484 sctp_assoc_t associd; 5485 int retval = 0; 5486 5487 if (len < sizeof(status)) { 5488 retval = -EINVAL; 5489 goto out; 5490 } 5491 5492 len = sizeof(status); 5493 if (copy_from_user(&status, optval, len)) { 5494 retval = -EFAULT; 5495 goto out; 5496 } 5497 5498 associd = status.sstat_assoc_id; 5499 asoc = sctp_id2assoc(sk, associd); 5500 if (!asoc) { 5501 retval = -EINVAL; 5502 goto out; 5503 } 5504 5505 transport = asoc->peer.primary_path; 5506 5507 status.sstat_assoc_id = sctp_assoc2id(asoc); 5508 status.sstat_state = sctp_assoc_to_state(asoc); 5509 status.sstat_rwnd = asoc->peer.rwnd; 5510 status.sstat_unackdata = asoc->unack_data; 5511 5512 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5513 status.sstat_instrms = asoc->stream.incnt; 5514 status.sstat_outstrms = asoc->stream.outcnt; 5515 status.sstat_fragmentation_point = asoc->frag_point; 5516 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5517 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5518 transport->af_specific->sockaddr_len); 5519 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5520 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5521 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5522 status.sstat_primary.spinfo_state = transport->state; 5523 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5524 status.sstat_primary.spinfo_srtt = transport->srtt; 5525 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5526 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5527 5528 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5529 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5530 5531 if (put_user(len, optlen)) { 5532 retval = -EFAULT; 5533 goto out; 5534 } 5535 5536 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5537 __func__, len, status.sstat_state, status.sstat_rwnd, 5538 status.sstat_assoc_id); 5539 5540 if (copy_to_user(optval, &status, len)) { 5541 retval = -EFAULT; 5542 goto out; 5543 } 5544 5545 out: 5546 return retval; 5547 } 5548 5549 5550 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5551 * 5552 * Applications can retrieve information about a specific peer address 5553 * of an association, including its reachability state, congestion 5554 * window, and retransmission timer values. This information is 5555 * read-only. 5556 */ 5557 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5558 char __user *optval, 5559 int __user *optlen) 5560 { 5561 struct sctp_paddrinfo pinfo; 5562 struct sctp_transport *transport; 5563 int retval = 0; 5564 5565 if (len < sizeof(pinfo)) { 5566 retval = -EINVAL; 5567 goto out; 5568 } 5569 5570 len = sizeof(pinfo); 5571 if (copy_from_user(&pinfo, optval, len)) { 5572 retval = -EFAULT; 5573 goto out; 5574 } 5575 5576 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5577 pinfo.spinfo_assoc_id); 5578 if (!transport) { 5579 retval = -EINVAL; 5580 goto out; 5581 } 5582 5583 if (transport->state == SCTP_PF && 5584 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5585 retval = -EACCES; 5586 goto out; 5587 } 5588 5589 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5590 pinfo.spinfo_state = transport->state; 5591 pinfo.spinfo_cwnd = transport->cwnd; 5592 pinfo.spinfo_srtt = transport->srtt; 5593 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5594 pinfo.spinfo_mtu = transport->pathmtu; 5595 5596 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5597 pinfo.spinfo_state = SCTP_ACTIVE; 5598 5599 if (put_user(len, optlen)) { 5600 retval = -EFAULT; 5601 goto out; 5602 } 5603 5604 if (copy_to_user(optval, &pinfo, len)) { 5605 retval = -EFAULT; 5606 goto out; 5607 } 5608 5609 out: 5610 return retval; 5611 } 5612 5613 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5614 * 5615 * This option is a on/off flag. If enabled no SCTP message 5616 * fragmentation will be performed. Instead if a message being sent 5617 * exceeds the current PMTU size, the message will NOT be sent and 5618 * instead a error will be indicated to the user. 5619 */ 5620 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5621 char __user *optval, int __user *optlen) 5622 { 5623 int val; 5624 5625 if (len < sizeof(int)) 5626 return -EINVAL; 5627 5628 len = sizeof(int); 5629 val = (sctp_sk(sk)->disable_fragments == 1); 5630 if (put_user(len, optlen)) 5631 return -EFAULT; 5632 if (copy_to_user(optval, &val, len)) 5633 return -EFAULT; 5634 return 0; 5635 } 5636 5637 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5638 * 5639 * This socket option is used to specify various notifications and 5640 * ancillary data the user wishes to receive. 5641 */ 5642 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5643 int __user *optlen) 5644 { 5645 struct sctp_event_subscribe subscribe; 5646 __u8 *sn_type = (__u8 *)&subscribe; 5647 int i; 5648 5649 if (len == 0) 5650 return -EINVAL; 5651 if (len > sizeof(struct sctp_event_subscribe)) 5652 len = sizeof(struct sctp_event_subscribe); 5653 if (put_user(len, optlen)) 5654 return -EFAULT; 5655 5656 for (i = 0; i < len; i++) 5657 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5658 SCTP_SN_TYPE_BASE + i); 5659 5660 if (copy_to_user(optval, &subscribe, len)) 5661 return -EFAULT; 5662 5663 return 0; 5664 } 5665 5666 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5667 * 5668 * This socket option is applicable to the UDP-style socket only. When 5669 * set it will cause associations that are idle for more than the 5670 * specified number of seconds to automatically close. An association 5671 * being idle is defined an association that has NOT sent or received 5672 * user data. The special value of '0' indicates that no automatic 5673 * close of any associations should be performed. The option expects an 5674 * integer defining the number of seconds of idle time before an 5675 * association is closed. 5676 */ 5677 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5678 { 5679 /* Applicable to UDP-style socket only */ 5680 if (sctp_style(sk, TCP)) 5681 return -EOPNOTSUPP; 5682 if (len < sizeof(int)) 5683 return -EINVAL; 5684 len = sizeof(int); 5685 if (put_user(len, optlen)) 5686 return -EFAULT; 5687 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5688 return -EFAULT; 5689 return 0; 5690 } 5691 5692 /* Helper routine to branch off an association to a new socket. */ 5693 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5694 { 5695 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5696 struct sctp_sock *sp = sctp_sk(sk); 5697 struct socket *sock; 5698 int err = 0; 5699 5700 /* Do not peel off from one netns to another one. */ 5701 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5702 return -EINVAL; 5703 5704 if (!asoc) 5705 return -EINVAL; 5706 5707 /* An association cannot be branched off from an already peeled-off 5708 * socket, nor is this supported for tcp style sockets. 5709 */ 5710 if (!sctp_style(sk, UDP)) 5711 return -EINVAL; 5712 5713 /* Create a new socket. */ 5714 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5715 if (err < 0) 5716 return err; 5717 5718 sctp_copy_sock(sock->sk, sk, asoc); 5719 5720 /* Make peeled-off sockets more like 1-1 accepted sockets. 5721 * Set the daddr and initialize id to something more random and also 5722 * copy over any ip options. 5723 */ 5724 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5725 sp->pf->copy_ip_options(sk, sock->sk); 5726 5727 /* Populate the fields of the newsk from the oldsk and migrate the 5728 * asoc to the newsk. 5729 */ 5730 err = sctp_sock_migrate(sk, sock->sk, asoc, 5731 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5732 if (err) { 5733 sock_release(sock); 5734 sock = NULL; 5735 } 5736 5737 *sockp = sock; 5738 5739 return err; 5740 } 5741 EXPORT_SYMBOL(sctp_do_peeloff); 5742 5743 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5744 struct file **newfile, unsigned flags) 5745 { 5746 struct socket *newsock; 5747 int retval; 5748 5749 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5750 if (retval < 0) 5751 goto out; 5752 5753 /* Map the socket to an unused fd that can be returned to the user. */ 5754 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5755 if (retval < 0) { 5756 sock_release(newsock); 5757 goto out; 5758 } 5759 5760 *newfile = sock_alloc_file(newsock, 0, NULL); 5761 if (IS_ERR(*newfile)) { 5762 put_unused_fd(retval); 5763 retval = PTR_ERR(*newfile); 5764 *newfile = NULL; 5765 return retval; 5766 } 5767 5768 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5769 retval); 5770 5771 peeloff->sd = retval; 5772 5773 if (flags & SOCK_NONBLOCK) 5774 (*newfile)->f_flags |= O_NONBLOCK; 5775 out: 5776 return retval; 5777 } 5778 5779 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5780 { 5781 sctp_peeloff_arg_t peeloff; 5782 struct file *newfile = NULL; 5783 int retval = 0; 5784 5785 if (len < sizeof(sctp_peeloff_arg_t)) 5786 return -EINVAL; 5787 len = sizeof(sctp_peeloff_arg_t); 5788 if (copy_from_user(&peeloff, optval, len)) 5789 return -EFAULT; 5790 5791 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5792 if (retval < 0) 5793 goto out; 5794 5795 /* Return the fd mapped to the new socket. */ 5796 if (put_user(len, optlen)) { 5797 fput(newfile); 5798 put_unused_fd(retval); 5799 return -EFAULT; 5800 } 5801 5802 if (copy_to_user(optval, &peeloff, len)) { 5803 fput(newfile); 5804 put_unused_fd(retval); 5805 return -EFAULT; 5806 } 5807 fd_install(retval, newfile); 5808 out: 5809 return retval; 5810 } 5811 5812 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5813 char __user *optval, int __user *optlen) 5814 { 5815 sctp_peeloff_flags_arg_t peeloff; 5816 struct file *newfile = NULL; 5817 int retval = 0; 5818 5819 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5820 return -EINVAL; 5821 len = sizeof(sctp_peeloff_flags_arg_t); 5822 if (copy_from_user(&peeloff, optval, len)) 5823 return -EFAULT; 5824 5825 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5826 &newfile, peeloff.flags); 5827 if (retval < 0) 5828 goto out; 5829 5830 /* Return the fd mapped to the new socket. */ 5831 if (put_user(len, optlen)) { 5832 fput(newfile); 5833 put_unused_fd(retval); 5834 return -EFAULT; 5835 } 5836 5837 if (copy_to_user(optval, &peeloff, len)) { 5838 fput(newfile); 5839 put_unused_fd(retval); 5840 return -EFAULT; 5841 } 5842 fd_install(retval, newfile); 5843 out: 5844 return retval; 5845 } 5846 5847 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5848 * 5849 * Applications can enable or disable heartbeats for any peer address of 5850 * an association, modify an address's heartbeat interval, force a 5851 * heartbeat to be sent immediately, and adjust the address's maximum 5852 * number of retransmissions sent before an address is considered 5853 * unreachable. The following structure is used to access and modify an 5854 * address's parameters: 5855 * 5856 * struct sctp_paddrparams { 5857 * sctp_assoc_t spp_assoc_id; 5858 * struct sockaddr_storage spp_address; 5859 * uint32_t spp_hbinterval; 5860 * uint16_t spp_pathmaxrxt; 5861 * uint32_t spp_pathmtu; 5862 * uint32_t spp_sackdelay; 5863 * uint32_t spp_flags; 5864 * }; 5865 * 5866 * spp_assoc_id - (one-to-many style socket) This is filled in the 5867 * application, and identifies the association for 5868 * this query. 5869 * spp_address - This specifies which address is of interest. 5870 * spp_hbinterval - This contains the value of the heartbeat interval, 5871 * in milliseconds. If a value of zero 5872 * is present in this field then no changes are to 5873 * be made to this parameter. 5874 * spp_pathmaxrxt - This contains the maximum number of 5875 * retransmissions before this address shall be 5876 * considered unreachable. If a value of zero 5877 * is present in this field then no changes are to 5878 * be made to this parameter. 5879 * spp_pathmtu - When Path MTU discovery is disabled the value 5880 * specified here will be the "fixed" path mtu. 5881 * Note that if the spp_address field is empty 5882 * then all associations on this address will 5883 * have this fixed path mtu set upon them. 5884 * 5885 * spp_sackdelay - When delayed sack is enabled, this value specifies 5886 * the number of milliseconds that sacks will be delayed 5887 * for. This value will apply to all addresses of an 5888 * association if the spp_address field is empty. Note 5889 * also, that if delayed sack is enabled and this 5890 * value is set to 0, no change is made to the last 5891 * recorded delayed sack timer value. 5892 * 5893 * spp_flags - These flags are used to control various features 5894 * on an association. The flag field may contain 5895 * zero or more of the following options. 5896 * 5897 * SPP_HB_ENABLE - Enable heartbeats on the 5898 * specified address. Note that if the address 5899 * field is empty all addresses for the association 5900 * have heartbeats enabled upon them. 5901 * 5902 * SPP_HB_DISABLE - Disable heartbeats on the 5903 * speicifed address. Note that if the address 5904 * field is empty all addresses for the association 5905 * will have their heartbeats disabled. Note also 5906 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5907 * mutually exclusive, only one of these two should 5908 * be specified. Enabling both fields will have 5909 * undetermined results. 5910 * 5911 * SPP_HB_DEMAND - Request a user initiated heartbeat 5912 * to be made immediately. 5913 * 5914 * SPP_PMTUD_ENABLE - This field will enable PMTU 5915 * discovery upon the specified address. Note that 5916 * if the address feild is empty then all addresses 5917 * on the association are effected. 5918 * 5919 * SPP_PMTUD_DISABLE - This field will disable PMTU 5920 * discovery upon the specified address. Note that 5921 * if the address feild is empty then all addresses 5922 * on the association are effected. Not also that 5923 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5924 * exclusive. Enabling both will have undetermined 5925 * results. 5926 * 5927 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5928 * on delayed sack. The time specified in spp_sackdelay 5929 * is used to specify the sack delay for this address. Note 5930 * that if spp_address is empty then all addresses will 5931 * enable delayed sack and take on the sack delay 5932 * value specified in spp_sackdelay. 5933 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5934 * off delayed sack. If the spp_address field is blank then 5935 * delayed sack is disabled for the entire association. Note 5936 * also that this field is mutually exclusive to 5937 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5938 * results. 5939 * 5940 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5941 * setting of the IPV6 flow label value. The value is 5942 * contained in the spp_ipv6_flowlabel field. 5943 * Upon retrieval, this flag will be set to indicate that 5944 * the spp_ipv6_flowlabel field has a valid value returned. 5945 * If a specific destination address is set (in the 5946 * spp_address field), then the value returned is that of 5947 * the address. If just an association is specified (and 5948 * no address), then the association's default flow label 5949 * is returned. If neither an association nor a destination 5950 * is specified, then the socket's default flow label is 5951 * returned. For non-IPv6 sockets, this flag will be left 5952 * cleared. 5953 * 5954 * SPP_DSCP: Setting this flag enables the setting of the 5955 * Differentiated Services Code Point (DSCP) value 5956 * associated with either the association or a specific 5957 * address. The value is obtained in the spp_dscp field. 5958 * Upon retrieval, this flag will be set to indicate that 5959 * the spp_dscp field has a valid value returned. If a 5960 * specific destination address is set when called (in the 5961 * spp_address field), then that specific destination 5962 * address's DSCP value is returned. If just an association 5963 * is specified, then the association's default DSCP is 5964 * returned. If neither an association nor a destination is 5965 * specified, then the socket's default DSCP is returned. 5966 * 5967 * spp_ipv6_flowlabel 5968 * - This field is used in conjunction with the 5969 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5970 * The 20 least significant bits are used for the flow 5971 * label. This setting has precedence over any IPv6-layer 5972 * setting. 5973 * 5974 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5975 * and contains the DSCP. The 6 most significant bits are 5976 * used for the DSCP. This setting has precedence over any 5977 * IPv4- or IPv6- layer setting. 5978 */ 5979 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5980 char __user *optval, int __user *optlen) 5981 { 5982 struct sctp_paddrparams params; 5983 struct sctp_transport *trans = NULL; 5984 struct sctp_association *asoc = NULL; 5985 struct sctp_sock *sp = sctp_sk(sk); 5986 5987 if (len >= sizeof(params)) 5988 len = sizeof(params); 5989 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5990 spp_ipv6_flowlabel), 4)) 5991 len = ALIGN(offsetof(struct sctp_paddrparams, 5992 spp_ipv6_flowlabel), 4); 5993 else 5994 return -EINVAL; 5995 5996 if (copy_from_user(¶ms, optval, len)) 5997 return -EFAULT; 5998 5999 /* If an address other than INADDR_ANY is specified, and 6000 * no transport is found, then the request is invalid. 6001 */ 6002 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 6003 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 6004 params.spp_assoc_id); 6005 if (!trans) { 6006 pr_debug("%s: failed no transport\n", __func__); 6007 return -EINVAL; 6008 } 6009 } 6010 6011 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 6012 * socket is a one to many style socket, and an association 6013 * was not found, then the id was invalid. 6014 */ 6015 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 6016 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 6017 sctp_style(sk, UDP)) { 6018 pr_debug("%s: failed no association\n", __func__); 6019 return -EINVAL; 6020 } 6021 6022 if (trans) { 6023 /* Fetch transport values. */ 6024 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 6025 params.spp_pathmtu = trans->pathmtu; 6026 params.spp_pathmaxrxt = trans->pathmaxrxt; 6027 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 6028 6029 /*draft-11 doesn't say what to return in spp_flags*/ 6030 params.spp_flags = trans->param_flags; 6031 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6032 params.spp_ipv6_flowlabel = trans->flowlabel & 6033 SCTP_FLOWLABEL_VAL_MASK; 6034 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6035 } 6036 if (trans->dscp & SCTP_DSCP_SET_MASK) { 6037 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 6038 params.spp_flags |= SPP_DSCP; 6039 } 6040 } else if (asoc) { 6041 /* Fetch association values. */ 6042 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6043 params.spp_pathmtu = asoc->pathmtu; 6044 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6045 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6046 6047 /*draft-11 doesn't say what to return in spp_flags*/ 6048 params.spp_flags = asoc->param_flags; 6049 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6050 params.spp_ipv6_flowlabel = asoc->flowlabel & 6051 SCTP_FLOWLABEL_VAL_MASK; 6052 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6053 } 6054 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6055 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6056 params.spp_flags |= SPP_DSCP; 6057 } 6058 } else { 6059 /* Fetch socket values. */ 6060 params.spp_hbinterval = sp->hbinterval; 6061 params.spp_pathmtu = sp->pathmtu; 6062 params.spp_sackdelay = sp->sackdelay; 6063 params.spp_pathmaxrxt = sp->pathmaxrxt; 6064 6065 /*draft-11 doesn't say what to return in spp_flags*/ 6066 params.spp_flags = sp->param_flags; 6067 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6068 params.spp_ipv6_flowlabel = sp->flowlabel & 6069 SCTP_FLOWLABEL_VAL_MASK; 6070 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6071 } 6072 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6073 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6074 params.spp_flags |= SPP_DSCP; 6075 } 6076 } 6077 6078 if (copy_to_user(optval, ¶ms, len)) 6079 return -EFAULT; 6080 6081 if (put_user(len, optlen)) 6082 return -EFAULT; 6083 6084 return 0; 6085 } 6086 6087 /* 6088 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6089 * 6090 * This option will effect the way delayed acks are performed. This 6091 * option allows you to get or set the delayed ack time, in 6092 * milliseconds. It also allows changing the delayed ack frequency. 6093 * Changing the frequency to 1 disables the delayed sack algorithm. If 6094 * the assoc_id is 0, then this sets or gets the endpoints default 6095 * values. If the assoc_id field is non-zero, then the set or get 6096 * effects the specified association for the one to many model (the 6097 * assoc_id field is ignored by the one to one model). Note that if 6098 * sack_delay or sack_freq are 0 when setting this option, then the 6099 * current values will remain unchanged. 6100 * 6101 * struct sctp_sack_info { 6102 * sctp_assoc_t sack_assoc_id; 6103 * uint32_t sack_delay; 6104 * uint32_t sack_freq; 6105 * }; 6106 * 6107 * sack_assoc_id - This parameter, indicates which association the user 6108 * is performing an action upon. Note that if this field's value is 6109 * zero then the endpoints default value is changed (effecting future 6110 * associations only). 6111 * 6112 * sack_delay - This parameter contains the number of milliseconds that 6113 * the user is requesting the delayed ACK timer be set to. Note that 6114 * this value is defined in the standard to be between 200 and 500 6115 * milliseconds. 6116 * 6117 * sack_freq - This parameter contains the number of packets that must 6118 * be received before a sack is sent without waiting for the delay 6119 * timer to expire. The default value for this is 2, setting this 6120 * value to 1 will disable the delayed sack algorithm. 6121 */ 6122 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6123 char __user *optval, 6124 int __user *optlen) 6125 { 6126 struct sctp_sack_info params; 6127 struct sctp_association *asoc = NULL; 6128 struct sctp_sock *sp = sctp_sk(sk); 6129 6130 if (len >= sizeof(struct sctp_sack_info)) { 6131 len = sizeof(struct sctp_sack_info); 6132 6133 if (copy_from_user(¶ms, optval, len)) 6134 return -EFAULT; 6135 } else if (len == sizeof(struct sctp_assoc_value)) { 6136 pr_warn_ratelimited(DEPRECATED 6137 "%s (pid %d) " 6138 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6139 "Use struct sctp_sack_info instead\n", 6140 current->comm, task_pid_nr(current)); 6141 if (copy_from_user(¶ms, optval, len)) 6142 return -EFAULT; 6143 } else 6144 return -EINVAL; 6145 6146 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6147 * socket is a one to many style socket, and an association 6148 * was not found, then the id was invalid. 6149 */ 6150 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6151 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6152 sctp_style(sk, UDP)) 6153 return -EINVAL; 6154 6155 if (asoc) { 6156 /* Fetch association values. */ 6157 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6158 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6159 params.sack_freq = asoc->sackfreq; 6160 6161 } else { 6162 params.sack_delay = 0; 6163 params.sack_freq = 1; 6164 } 6165 } else { 6166 /* Fetch socket values. */ 6167 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6168 params.sack_delay = sp->sackdelay; 6169 params.sack_freq = sp->sackfreq; 6170 } else { 6171 params.sack_delay = 0; 6172 params.sack_freq = 1; 6173 } 6174 } 6175 6176 if (copy_to_user(optval, ¶ms, len)) 6177 return -EFAULT; 6178 6179 if (put_user(len, optlen)) 6180 return -EFAULT; 6181 6182 return 0; 6183 } 6184 6185 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6186 * 6187 * Applications can specify protocol parameters for the default association 6188 * initialization. The option name argument to setsockopt() and getsockopt() 6189 * is SCTP_INITMSG. 6190 * 6191 * Setting initialization parameters is effective only on an unconnected 6192 * socket (for UDP-style sockets only future associations are effected 6193 * by the change). With TCP-style sockets, this option is inherited by 6194 * sockets derived from a listener socket. 6195 */ 6196 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6197 { 6198 if (len < sizeof(struct sctp_initmsg)) 6199 return -EINVAL; 6200 len = sizeof(struct sctp_initmsg); 6201 if (put_user(len, optlen)) 6202 return -EFAULT; 6203 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6204 return -EFAULT; 6205 return 0; 6206 } 6207 6208 6209 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6210 char __user *optval, int __user *optlen) 6211 { 6212 struct sctp_association *asoc; 6213 int cnt = 0; 6214 struct sctp_getaddrs getaddrs; 6215 struct sctp_transport *from; 6216 void __user *to; 6217 union sctp_addr temp; 6218 struct sctp_sock *sp = sctp_sk(sk); 6219 int addrlen; 6220 size_t space_left; 6221 int bytes_copied; 6222 6223 if (len < sizeof(struct sctp_getaddrs)) 6224 return -EINVAL; 6225 6226 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6227 return -EFAULT; 6228 6229 /* For UDP-style sockets, id specifies the association to query. */ 6230 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6231 if (!asoc) 6232 return -EINVAL; 6233 6234 to = optval + offsetof(struct sctp_getaddrs, addrs); 6235 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6236 6237 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6238 transports) { 6239 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6240 addrlen = sctp_get_pf_specific(sk->sk_family) 6241 ->addr_to_user(sp, &temp); 6242 if (space_left < addrlen) 6243 return -ENOMEM; 6244 if (copy_to_user(to, &temp, addrlen)) 6245 return -EFAULT; 6246 to += addrlen; 6247 cnt++; 6248 space_left -= addrlen; 6249 } 6250 6251 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6252 return -EFAULT; 6253 bytes_copied = ((char __user *)to) - optval; 6254 if (put_user(bytes_copied, optlen)) 6255 return -EFAULT; 6256 6257 return 0; 6258 } 6259 6260 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6261 size_t space_left, int *bytes_copied) 6262 { 6263 struct sctp_sockaddr_entry *addr; 6264 union sctp_addr temp; 6265 int cnt = 0; 6266 int addrlen; 6267 struct net *net = sock_net(sk); 6268 6269 rcu_read_lock(); 6270 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6271 if (!addr->valid) 6272 continue; 6273 6274 if ((PF_INET == sk->sk_family) && 6275 (AF_INET6 == addr->a.sa.sa_family)) 6276 continue; 6277 if ((PF_INET6 == sk->sk_family) && 6278 inet_v6_ipv6only(sk) && 6279 (AF_INET == addr->a.sa.sa_family)) 6280 continue; 6281 memcpy(&temp, &addr->a, sizeof(temp)); 6282 if (!temp.v4.sin_port) 6283 temp.v4.sin_port = htons(port); 6284 6285 addrlen = sctp_get_pf_specific(sk->sk_family) 6286 ->addr_to_user(sctp_sk(sk), &temp); 6287 6288 if (space_left < addrlen) { 6289 cnt = -ENOMEM; 6290 break; 6291 } 6292 memcpy(to, &temp, addrlen); 6293 6294 to += addrlen; 6295 cnt++; 6296 space_left -= addrlen; 6297 *bytes_copied += addrlen; 6298 } 6299 rcu_read_unlock(); 6300 6301 return cnt; 6302 } 6303 6304 6305 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6306 char __user *optval, int __user *optlen) 6307 { 6308 struct sctp_bind_addr *bp; 6309 struct sctp_association *asoc; 6310 int cnt = 0; 6311 struct sctp_getaddrs getaddrs; 6312 struct sctp_sockaddr_entry *addr; 6313 void __user *to; 6314 union sctp_addr temp; 6315 struct sctp_sock *sp = sctp_sk(sk); 6316 int addrlen; 6317 int err = 0; 6318 size_t space_left; 6319 int bytes_copied = 0; 6320 void *addrs; 6321 void *buf; 6322 6323 if (len < sizeof(struct sctp_getaddrs)) 6324 return -EINVAL; 6325 6326 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6327 return -EFAULT; 6328 6329 /* 6330 * For UDP-style sockets, id specifies the association to query. 6331 * If the id field is set to the value '0' then the locally bound 6332 * addresses are returned without regard to any particular 6333 * association. 6334 */ 6335 if (0 == getaddrs.assoc_id) { 6336 bp = &sctp_sk(sk)->ep->base.bind_addr; 6337 } else { 6338 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6339 if (!asoc) 6340 return -EINVAL; 6341 bp = &asoc->base.bind_addr; 6342 } 6343 6344 to = optval + offsetof(struct sctp_getaddrs, addrs); 6345 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6346 6347 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6348 if (!addrs) 6349 return -ENOMEM; 6350 6351 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6352 * addresses from the global local address list. 6353 */ 6354 if (sctp_list_single_entry(&bp->address_list)) { 6355 addr = list_entry(bp->address_list.next, 6356 struct sctp_sockaddr_entry, list); 6357 if (sctp_is_any(sk, &addr->a)) { 6358 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6359 space_left, &bytes_copied); 6360 if (cnt < 0) { 6361 err = cnt; 6362 goto out; 6363 } 6364 goto copy_getaddrs; 6365 } 6366 } 6367 6368 buf = addrs; 6369 /* Protection on the bound address list is not needed since 6370 * in the socket option context we hold a socket lock and 6371 * thus the bound address list can't change. 6372 */ 6373 list_for_each_entry(addr, &bp->address_list, list) { 6374 memcpy(&temp, &addr->a, sizeof(temp)); 6375 addrlen = sctp_get_pf_specific(sk->sk_family) 6376 ->addr_to_user(sp, &temp); 6377 if (space_left < addrlen) { 6378 err = -ENOMEM; /*fixme: right error?*/ 6379 goto out; 6380 } 6381 memcpy(buf, &temp, addrlen); 6382 buf += addrlen; 6383 bytes_copied += addrlen; 6384 cnt++; 6385 space_left -= addrlen; 6386 } 6387 6388 copy_getaddrs: 6389 if (copy_to_user(to, addrs, bytes_copied)) { 6390 err = -EFAULT; 6391 goto out; 6392 } 6393 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6394 err = -EFAULT; 6395 goto out; 6396 } 6397 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6398 * but we can't change it anymore. 6399 */ 6400 if (put_user(bytes_copied, optlen)) 6401 err = -EFAULT; 6402 out: 6403 kfree(addrs); 6404 return err; 6405 } 6406 6407 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6408 * 6409 * Requests that the local SCTP stack use the enclosed peer address as 6410 * the association primary. The enclosed address must be one of the 6411 * association peer's addresses. 6412 */ 6413 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6414 char __user *optval, int __user *optlen) 6415 { 6416 struct sctp_prim prim; 6417 struct sctp_association *asoc; 6418 struct sctp_sock *sp = sctp_sk(sk); 6419 6420 if (len < sizeof(struct sctp_prim)) 6421 return -EINVAL; 6422 6423 len = sizeof(struct sctp_prim); 6424 6425 if (copy_from_user(&prim, optval, len)) 6426 return -EFAULT; 6427 6428 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6429 if (!asoc) 6430 return -EINVAL; 6431 6432 if (!asoc->peer.primary_path) 6433 return -ENOTCONN; 6434 6435 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6436 asoc->peer.primary_path->af_specific->sockaddr_len); 6437 6438 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6439 (union sctp_addr *)&prim.ssp_addr); 6440 6441 if (put_user(len, optlen)) 6442 return -EFAULT; 6443 if (copy_to_user(optval, &prim, len)) 6444 return -EFAULT; 6445 6446 return 0; 6447 } 6448 6449 /* 6450 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6451 * 6452 * Requests that the local endpoint set the specified Adaptation Layer 6453 * Indication parameter for all future INIT and INIT-ACK exchanges. 6454 */ 6455 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6456 char __user *optval, int __user *optlen) 6457 { 6458 struct sctp_setadaptation adaptation; 6459 6460 if (len < sizeof(struct sctp_setadaptation)) 6461 return -EINVAL; 6462 6463 len = sizeof(struct sctp_setadaptation); 6464 6465 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6466 6467 if (put_user(len, optlen)) 6468 return -EFAULT; 6469 if (copy_to_user(optval, &adaptation, len)) 6470 return -EFAULT; 6471 6472 return 0; 6473 } 6474 6475 /* 6476 * 6477 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6478 * 6479 * Applications that wish to use the sendto() system call may wish to 6480 * specify a default set of parameters that would normally be supplied 6481 * through the inclusion of ancillary data. This socket option allows 6482 * such an application to set the default sctp_sndrcvinfo structure. 6483 6484 6485 * The application that wishes to use this socket option simply passes 6486 * in to this call the sctp_sndrcvinfo structure defined in Section 6487 * 5.2.2) The input parameters accepted by this call include 6488 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6489 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6490 * to this call if the caller is using the UDP model. 6491 * 6492 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6493 */ 6494 static int sctp_getsockopt_default_send_param(struct sock *sk, 6495 int len, char __user *optval, 6496 int __user *optlen) 6497 { 6498 struct sctp_sock *sp = sctp_sk(sk); 6499 struct sctp_association *asoc; 6500 struct sctp_sndrcvinfo info; 6501 6502 if (len < sizeof(info)) 6503 return -EINVAL; 6504 6505 len = sizeof(info); 6506 6507 if (copy_from_user(&info, optval, len)) 6508 return -EFAULT; 6509 6510 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6511 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6512 sctp_style(sk, UDP)) 6513 return -EINVAL; 6514 6515 if (asoc) { 6516 info.sinfo_stream = asoc->default_stream; 6517 info.sinfo_flags = asoc->default_flags; 6518 info.sinfo_ppid = asoc->default_ppid; 6519 info.sinfo_context = asoc->default_context; 6520 info.sinfo_timetolive = asoc->default_timetolive; 6521 } else { 6522 info.sinfo_stream = sp->default_stream; 6523 info.sinfo_flags = sp->default_flags; 6524 info.sinfo_ppid = sp->default_ppid; 6525 info.sinfo_context = sp->default_context; 6526 info.sinfo_timetolive = sp->default_timetolive; 6527 } 6528 6529 if (put_user(len, optlen)) 6530 return -EFAULT; 6531 if (copy_to_user(optval, &info, len)) 6532 return -EFAULT; 6533 6534 return 0; 6535 } 6536 6537 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6538 * (SCTP_DEFAULT_SNDINFO) 6539 */ 6540 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6541 char __user *optval, 6542 int __user *optlen) 6543 { 6544 struct sctp_sock *sp = sctp_sk(sk); 6545 struct sctp_association *asoc; 6546 struct sctp_sndinfo info; 6547 6548 if (len < sizeof(info)) 6549 return -EINVAL; 6550 6551 len = sizeof(info); 6552 6553 if (copy_from_user(&info, optval, len)) 6554 return -EFAULT; 6555 6556 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6557 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6558 sctp_style(sk, UDP)) 6559 return -EINVAL; 6560 6561 if (asoc) { 6562 info.snd_sid = asoc->default_stream; 6563 info.snd_flags = asoc->default_flags; 6564 info.snd_ppid = asoc->default_ppid; 6565 info.snd_context = asoc->default_context; 6566 } else { 6567 info.snd_sid = sp->default_stream; 6568 info.snd_flags = sp->default_flags; 6569 info.snd_ppid = sp->default_ppid; 6570 info.snd_context = sp->default_context; 6571 } 6572 6573 if (put_user(len, optlen)) 6574 return -EFAULT; 6575 if (copy_to_user(optval, &info, len)) 6576 return -EFAULT; 6577 6578 return 0; 6579 } 6580 6581 /* 6582 * 6583 * 7.1.5 SCTP_NODELAY 6584 * 6585 * Turn on/off any Nagle-like algorithm. This means that packets are 6586 * generally sent as soon as possible and no unnecessary delays are 6587 * introduced, at the cost of more packets in the network. Expects an 6588 * integer boolean flag. 6589 */ 6590 6591 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6592 char __user *optval, int __user *optlen) 6593 { 6594 int val; 6595 6596 if (len < sizeof(int)) 6597 return -EINVAL; 6598 6599 len = sizeof(int); 6600 val = (sctp_sk(sk)->nodelay == 1); 6601 if (put_user(len, optlen)) 6602 return -EFAULT; 6603 if (copy_to_user(optval, &val, len)) 6604 return -EFAULT; 6605 return 0; 6606 } 6607 6608 /* 6609 * 6610 * 7.1.1 SCTP_RTOINFO 6611 * 6612 * The protocol parameters used to initialize and bound retransmission 6613 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6614 * and modify these parameters. 6615 * All parameters are time values, in milliseconds. A value of 0, when 6616 * modifying the parameters, indicates that the current value should not 6617 * be changed. 6618 * 6619 */ 6620 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6621 char __user *optval, 6622 int __user *optlen) { 6623 struct sctp_rtoinfo rtoinfo; 6624 struct sctp_association *asoc; 6625 6626 if (len < sizeof (struct sctp_rtoinfo)) 6627 return -EINVAL; 6628 6629 len = sizeof(struct sctp_rtoinfo); 6630 6631 if (copy_from_user(&rtoinfo, optval, len)) 6632 return -EFAULT; 6633 6634 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6635 6636 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6637 sctp_style(sk, UDP)) 6638 return -EINVAL; 6639 6640 /* Values corresponding to the specific association. */ 6641 if (asoc) { 6642 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6643 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6644 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6645 } else { 6646 /* Values corresponding to the endpoint. */ 6647 struct sctp_sock *sp = sctp_sk(sk); 6648 6649 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6650 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6651 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6652 } 6653 6654 if (put_user(len, optlen)) 6655 return -EFAULT; 6656 6657 if (copy_to_user(optval, &rtoinfo, len)) 6658 return -EFAULT; 6659 6660 return 0; 6661 } 6662 6663 /* 6664 * 6665 * 7.1.2 SCTP_ASSOCINFO 6666 * 6667 * This option is used to tune the maximum retransmission attempts 6668 * of the association. 6669 * Returns an error if the new association retransmission value is 6670 * greater than the sum of the retransmission value of the peer. 6671 * See [SCTP] for more information. 6672 * 6673 */ 6674 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6675 char __user *optval, 6676 int __user *optlen) 6677 { 6678 6679 struct sctp_assocparams assocparams; 6680 struct sctp_association *asoc; 6681 struct list_head *pos; 6682 int cnt = 0; 6683 6684 if (len < sizeof (struct sctp_assocparams)) 6685 return -EINVAL; 6686 6687 len = sizeof(struct sctp_assocparams); 6688 6689 if (copy_from_user(&assocparams, optval, len)) 6690 return -EFAULT; 6691 6692 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6693 6694 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6695 sctp_style(sk, UDP)) 6696 return -EINVAL; 6697 6698 /* Values correspoinding to the specific association */ 6699 if (asoc) { 6700 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6701 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6702 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6703 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6704 6705 list_for_each(pos, &asoc->peer.transport_addr_list) { 6706 cnt++; 6707 } 6708 6709 assocparams.sasoc_number_peer_destinations = cnt; 6710 } else { 6711 /* Values corresponding to the endpoint */ 6712 struct sctp_sock *sp = sctp_sk(sk); 6713 6714 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6715 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6716 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6717 assocparams.sasoc_cookie_life = 6718 sp->assocparams.sasoc_cookie_life; 6719 assocparams.sasoc_number_peer_destinations = 6720 sp->assocparams. 6721 sasoc_number_peer_destinations; 6722 } 6723 6724 if (put_user(len, optlen)) 6725 return -EFAULT; 6726 6727 if (copy_to_user(optval, &assocparams, len)) 6728 return -EFAULT; 6729 6730 return 0; 6731 } 6732 6733 /* 6734 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6735 * 6736 * This socket option is a boolean flag which turns on or off mapped V4 6737 * addresses. If this option is turned on and the socket is type 6738 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6739 * If this option is turned off, then no mapping will be done of V4 6740 * addresses and a user will receive both PF_INET6 and PF_INET type 6741 * addresses on the socket. 6742 */ 6743 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6744 char __user *optval, int __user *optlen) 6745 { 6746 int val; 6747 struct sctp_sock *sp = sctp_sk(sk); 6748 6749 if (len < sizeof(int)) 6750 return -EINVAL; 6751 6752 len = sizeof(int); 6753 val = sp->v4mapped; 6754 if (put_user(len, optlen)) 6755 return -EFAULT; 6756 if (copy_to_user(optval, &val, len)) 6757 return -EFAULT; 6758 6759 return 0; 6760 } 6761 6762 /* 6763 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6764 * (chapter and verse is quoted at sctp_setsockopt_context()) 6765 */ 6766 static int sctp_getsockopt_context(struct sock *sk, int len, 6767 char __user *optval, int __user *optlen) 6768 { 6769 struct sctp_assoc_value params; 6770 struct sctp_association *asoc; 6771 6772 if (len < sizeof(struct sctp_assoc_value)) 6773 return -EINVAL; 6774 6775 len = sizeof(struct sctp_assoc_value); 6776 6777 if (copy_from_user(¶ms, optval, len)) 6778 return -EFAULT; 6779 6780 asoc = sctp_id2assoc(sk, params.assoc_id); 6781 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6782 sctp_style(sk, UDP)) 6783 return -EINVAL; 6784 6785 params.assoc_value = asoc ? asoc->default_rcv_context 6786 : sctp_sk(sk)->default_rcv_context; 6787 6788 if (put_user(len, optlen)) 6789 return -EFAULT; 6790 if (copy_to_user(optval, ¶ms, len)) 6791 return -EFAULT; 6792 6793 return 0; 6794 } 6795 6796 /* 6797 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6798 * This option will get or set the maximum size to put in any outgoing 6799 * SCTP DATA chunk. If a message is larger than this size it will be 6800 * fragmented by SCTP into the specified size. Note that the underlying 6801 * SCTP implementation may fragment into smaller sized chunks when the 6802 * PMTU of the underlying association is smaller than the value set by 6803 * the user. The default value for this option is '0' which indicates 6804 * the user is NOT limiting fragmentation and only the PMTU will effect 6805 * SCTP's choice of DATA chunk size. Note also that values set larger 6806 * than the maximum size of an IP datagram will effectively let SCTP 6807 * control fragmentation (i.e. the same as setting this option to 0). 6808 * 6809 * The following structure is used to access and modify this parameter: 6810 * 6811 * struct sctp_assoc_value { 6812 * sctp_assoc_t assoc_id; 6813 * uint32_t assoc_value; 6814 * }; 6815 * 6816 * assoc_id: This parameter is ignored for one-to-one style sockets. 6817 * For one-to-many style sockets this parameter indicates which 6818 * association the user is performing an action upon. Note that if 6819 * this field's value is zero then the endpoints default value is 6820 * changed (effecting future associations only). 6821 * assoc_value: This parameter specifies the maximum size in bytes. 6822 */ 6823 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6824 char __user *optval, int __user *optlen) 6825 { 6826 struct sctp_assoc_value params; 6827 struct sctp_association *asoc; 6828 6829 if (len == sizeof(int)) { 6830 pr_warn_ratelimited(DEPRECATED 6831 "%s (pid %d) " 6832 "Use of int in maxseg socket option.\n" 6833 "Use struct sctp_assoc_value instead\n", 6834 current->comm, task_pid_nr(current)); 6835 params.assoc_id = SCTP_FUTURE_ASSOC; 6836 } else if (len >= sizeof(struct sctp_assoc_value)) { 6837 len = sizeof(struct sctp_assoc_value); 6838 if (copy_from_user(¶ms, optval, len)) 6839 return -EFAULT; 6840 } else 6841 return -EINVAL; 6842 6843 asoc = sctp_id2assoc(sk, params.assoc_id); 6844 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6845 sctp_style(sk, UDP)) 6846 return -EINVAL; 6847 6848 if (asoc) 6849 params.assoc_value = asoc->frag_point; 6850 else 6851 params.assoc_value = sctp_sk(sk)->user_frag; 6852 6853 if (put_user(len, optlen)) 6854 return -EFAULT; 6855 if (len == sizeof(int)) { 6856 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6857 return -EFAULT; 6858 } else { 6859 if (copy_to_user(optval, ¶ms, len)) 6860 return -EFAULT; 6861 } 6862 6863 return 0; 6864 } 6865 6866 /* 6867 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6868 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6869 */ 6870 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6871 char __user *optval, int __user *optlen) 6872 { 6873 int val; 6874 6875 if (len < sizeof(int)) 6876 return -EINVAL; 6877 6878 len = sizeof(int); 6879 6880 val = sctp_sk(sk)->frag_interleave; 6881 if (put_user(len, optlen)) 6882 return -EFAULT; 6883 if (copy_to_user(optval, &val, len)) 6884 return -EFAULT; 6885 6886 return 0; 6887 } 6888 6889 /* 6890 * 7.1.25. Set or Get the sctp partial delivery point 6891 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6892 */ 6893 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6894 char __user *optval, 6895 int __user *optlen) 6896 { 6897 u32 val; 6898 6899 if (len < sizeof(u32)) 6900 return -EINVAL; 6901 6902 len = sizeof(u32); 6903 6904 val = sctp_sk(sk)->pd_point; 6905 if (put_user(len, optlen)) 6906 return -EFAULT; 6907 if (copy_to_user(optval, &val, len)) 6908 return -EFAULT; 6909 6910 return 0; 6911 } 6912 6913 /* 6914 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6915 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6916 */ 6917 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6918 char __user *optval, 6919 int __user *optlen) 6920 { 6921 struct sctp_assoc_value params; 6922 struct sctp_association *asoc; 6923 6924 if (len == sizeof(int)) { 6925 pr_warn_ratelimited(DEPRECATED 6926 "%s (pid %d) " 6927 "Use of int in max_burst socket option.\n" 6928 "Use struct sctp_assoc_value instead\n", 6929 current->comm, task_pid_nr(current)); 6930 params.assoc_id = SCTP_FUTURE_ASSOC; 6931 } else if (len >= sizeof(struct sctp_assoc_value)) { 6932 len = sizeof(struct sctp_assoc_value); 6933 if (copy_from_user(¶ms, optval, len)) 6934 return -EFAULT; 6935 } else 6936 return -EINVAL; 6937 6938 asoc = sctp_id2assoc(sk, params.assoc_id); 6939 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6940 sctp_style(sk, UDP)) 6941 return -EINVAL; 6942 6943 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6944 6945 if (len == sizeof(int)) { 6946 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6947 return -EFAULT; 6948 } else { 6949 if (copy_to_user(optval, ¶ms, len)) 6950 return -EFAULT; 6951 } 6952 6953 return 0; 6954 6955 } 6956 6957 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6958 char __user *optval, int __user *optlen) 6959 { 6960 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6961 struct sctp_hmacalgo __user *p = (void __user *)optval; 6962 struct sctp_hmac_algo_param *hmacs; 6963 __u16 data_len = 0; 6964 u32 num_idents; 6965 int i; 6966 6967 if (!ep->auth_enable) 6968 return -EACCES; 6969 6970 hmacs = ep->auth_hmacs_list; 6971 data_len = ntohs(hmacs->param_hdr.length) - 6972 sizeof(struct sctp_paramhdr); 6973 6974 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6975 return -EINVAL; 6976 6977 len = sizeof(struct sctp_hmacalgo) + data_len; 6978 num_idents = data_len / sizeof(u16); 6979 6980 if (put_user(len, optlen)) 6981 return -EFAULT; 6982 if (put_user(num_idents, &p->shmac_num_idents)) 6983 return -EFAULT; 6984 for (i = 0; i < num_idents; i++) { 6985 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6986 6987 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6988 return -EFAULT; 6989 } 6990 return 0; 6991 } 6992 6993 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6994 char __user *optval, int __user *optlen) 6995 { 6996 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6997 struct sctp_authkeyid val; 6998 struct sctp_association *asoc; 6999 7000 if (len < sizeof(struct sctp_authkeyid)) 7001 return -EINVAL; 7002 7003 len = sizeof(struct sctp_authkeyid); 7004 if (copy_from_user(&val, optval, len)) 7005 return -EFAULT; 7006 7007 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 7008 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 7009 return -EINVAL; 7010 7011 if (asoc) { 7012 if (!asoc->peer.auth_capable) 7013 return -EACCES; 7014 val.scact_keynumber = asoc->active_key_id; 7015 } else { 7016 if (!ep->auth_enable) 7017 return -EACCES; 7018 val.scact_keynumber = ep->active_key_id; 7019 } 7020 7021 if (put_user(len, optlen)) 7022 return -EFAULT; 7023 if (copy_to_user(optval, &val, len)) 7024 return -EFAULT; 7025 7026 return 0; 7027 } 7028 7029 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 7030 char __user *optval, int __user *optlen) 7031 { 7032 struct sctp_authchunks __user *p = (void __user *)optval; 7033 struct sctp_authchunks val; 7034 struct sctp_association *asoc; 7035 struct sctp_chunks_param *ch; 7036 u32 num_chunks = 0; 7037 char __user *to; 7038 7039 if (len < sizeof(struct sctp_authchunks)) 7040 return -EINVAL; 7041 7042 if (copy_from_user(&val, optval, sizeof(val))) 7043 return -EFAULT; 7044 7045 to = p->gauth_chunks; 7046 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7047 if (!asoc) 7048 return -EINVAL; 7049 7050 if (!asoc->peer.auth_capable) 7051 return -EACCES; 7052 7053 ch = asoc->peer.peer_chunks; 7054 if (!ch) 7055 goto num; 7056 7057 /* See if the user provided enough room for all the data */ 7058 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7059 if (len < num_chunks) 7060 return -EINVAL; 7061 7062 if (copy_to_user(to, ch->chunks, num_chunks)) 7063 return -EFAULT; 7064 num: 7065 len = sizeof(struct sctp_authchunks) + num_chunks; 7066 if (put_user(len, optlen)) 7067 return -EFAULT; 7068 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7069 return -EFAULT; 7070 return 0; 7071 } 7072 7073 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7074 char __user *optval, int __user *optlen) 7075 { 7076 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7077 struct sctp_authchunks __user *p = (void __user *)optval; 7078 struct sctp_authchunks val; 7079 struct sctp_association *asoc; 7080 struct sctp_chunks_param *ch; 7081 u32 num_chunks = 0; 7082 char __user *to; 7083 7084 if (len < sizeof(struct sctp_authchunks)) 7085 return -EINVAL; 7086 7087 if (copy_from_user(&val, optval, sizeof(val))) 7088 return -EFAULT; 7089 7090 to = p->gauth_chunks; 7091 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7092 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7093 sctp_style(sk, UDP)) 7094 return -EINVAL; 7095 7096 if (asoc) { 7097 if (!asoc->peer.auth_capable) 7098 return -EACCES; 7099 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7100 } else { 7101 if (!ep->auth_enable) 7102 return -EACCES; 7103 ch = ep->auth_chunk_list; 7104 } 7105 if (!ch) 7106 goto num; 7107 7108 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7109 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7110 return -EINVAL; 7111 7112 if (copy_to_user(to, ch->chunks, num_chunks)) 7113 return -EFAULT; 7114 num: 7115 len = sizeof(struct sctp_authchunks) + num_chunks; 7116 if (put_user(len, optlen)) 7117 return -EFAULT; 7118 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7119 return -EFAULT; 7120 7121 return 0; 7122 } 7123 7124 /* 7125 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7126 * This option gets the current number of associations that are attached 7127 * to a one-to-many style socket. The option value is an uint32_t. 7128 */ 7129 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7130 char __user *optval, int __user *optlen) 7131 { 7132 struct sctp_sock *sp = sctp_sk(sk); 7133 struct sctp_association *asoc; 7134 u32 val = 0; 7135 7136 if (sctp_style(sk, TCP)) 7137 return -EOPNOTSUPP; 7138 7139 if (len < sizeof(u32)) 7140 return -EINVAL; 7141 7142 len = sizeof(u32); 7143 7144 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7145 val++; 7146 } 7147 7148 if (put_user(len, optlen)) 7149 return -EFAULT; 7150 if (copy_to_user(optval, &val, len)) 7151 return -EFAULT; 7152 7153 return 0; 7154 } 7155 7156 /* 7157 * 8.1.23 SCTP_AUTO_ASCONF 7158 * See the corresponding setsockopt entry as description 7159 */ 7160 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7161 char __user *optval, int __user *optlen) 7162 { 7163 int val = 0; 7164 7165 if (len < sizeof(int)) 7166 return -EINVAL; 7167 7168 len = sizeof(int); 7169 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7170 val = 1; 7171 if (put_user(len, optlen)) 7172 return -EFAULT; 7173 if (copy_to_user(optval, &val, len)) 7174 return -EFAULT; 7175 return 0; 7176 } 7177 7178 /* 7179 * 8.2.6. Get the Current Identifiers of Associations 7180 * (SCTP_GET_ASSOC_ID_LIST) 7181 * 7182 * This option gets the current list of SCTP association identifiers of 7183 * the SCTP associations handled by a one-to-many style socket. 7184 */ 7185 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7186 char __user *optval, int __user *optlen) 7187 { 7188 struct sctp_sock *sp = sctp_sk(sk); 7189 struct sctp_association *asoc; 7190 struct sctp_assoc_ids *ids; 7191 u32 num = 0; 7192 7193 if (sctp_style(sk, TCP)) 7194 return -EOPNOTSUPP; 7195 7196 if (len < sizeof(struct sctp_assoc_ids)) 7197 return -EINVAL; 7198 7199 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7200 num++; 7201 } 7202 7203 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7204 return -EINVAL; 7205 7206 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7207 7208 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7209 if (unlikely(!ids)) 7210 return -ENOMEM; 7211 7212 ids->gaids_number_of_ids = num; 7213 num = 0; 7214 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7215 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7216 } 7217 7218 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7219 kfree(ids); 7220 return -EFAULT; 7221 } 7222 7223 kfree(ids); 7224 return 0; 7225 } 7226 7227 /* 7228 * SCTP_PEER_ADDR_THLDS 7229 * 7230 * This option allows us to fetch the partially failed threshold for one or all 7231 * transports in an association. See Section 6.1 of: 7232 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7233 */ 7234 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7235 char __user *optval, int len, 7236 int __user *optlen, bool v2) 7237 { 7238 struct sctp_paddrthlds_v2 val; 7239 struct sctp_transport *trans; 7240 struct sctp_association *asoc; 7241 int min; 7242 7243 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7244 if (len < min) 7245 return -EINVAL; 7246 len = min; 7247 if (copy_from_user(&val, optval, len)) 7248 return -EFAULT; 7249 7250 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7251 trans = sctp_addr_id2transport(sk, &val.spt_address, 7252 val.spt_assoc_id); 7253 if (!trans) 7254 return -ENOENT; 7255 7256 val.spt_pathmaxrxt = trans->pathmaxrxt; 7257 val.spt_pathpfthld = trans->pf_retrans; 7258 val.spt_pathcpthld = trans->ps_retrans; 7259 7260 goto out; 7261 } 7262 7263 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7264 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7265 sctp_style(sk, UDP)) 7266 return -EINVAL; 7267 7268 if (asoc) { 7269 val.spt_pathpfthld = asoc->pf_retrans; 7270 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7271 val.spt_pathcpthld = asoc->ps_retrans; 7272 } else { 7273 struct sctp_sock *sp = sctp_sk(sk); 7274 7275 val.spt_pathpfthld = sp->pf_retrans; 7276 val.spt_pathmaxrxt = sp->pathmaxrxt; 7277 val.spt_pathcpthld = sp->ps_retrans; 7278 } 7279 7280 out: 7281 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7282 return -EFAULT; 7283 7284 return 0; 7285 } 7286 7287 /* 7288 * SCTP_GET_ASSOC_STATS 7289 * 7290 * This option retrieves local per endpoint statistics. It is modeled 7291 * after OpenSolaris' implementation 7292 */ 7293 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7294 char __user *optval, 7295 int __user *optlen) 7296 { 7297 struct sctp_assoc_stats sas; 7298 struct sctp_association *asoc = NULL; 7299 7300 /* User must provide at least the assoc id */ 7301 if (len < sizeof(sctp_assoc_t)) 7302 return -EINVAL; 7303 7304 /* Allow the struct to grow and fill in as much as possible */ 7305 len = min_t(size_t, len, sizeof(sas)); 7306 7307 if (copy_from_user(&sas, optval, len)) 7308 return -EFAULT; 7309 7310 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7311 if (!asoc) 7312 return -EINVAL; 7313 7314 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7315 sas.sas_gapcnt = asoc->stats.gapcnt; 7316 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7317 sas.sas_osacks = asoc->stats.osacks; 7318 sas.sas_isacks = asoc->stats.isacks; 7319 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7320 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7321 sas.sas_oodchunks = asoc->stats.oodchunks; 7322 sas.sas_iodchunks = asoc->stats.iodchunks; 7323 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7324 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7325 sas.sas_idupchunks = asoc->stats.idupchunks; 7326 sas.sas_opackets = asoc->stats.opackets; 7327 sas.sas_ipackets = asoc->stats.ipackets; 7328 7329 /* New high max rto observed, will return 0 if not a single 7330 * RTO update took place. obs_rto_ipaddr will be bogus 7331 * in such a case 7332 */ 7333 sas.sas_maxrto = asoc->stats.max_obs_rto; 7334 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7335 sizeof(struct sockaddr_storage)); 7336 7337 /* Mark beginning of a new observation period */ 7338 asoc->stats.max_obs_rto = asoc->rto_min; 7339 7340 if (put_user(len, optlen)) 7341 return -EFAULT; 7342 7343 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7344 7345 if (copy_to_user(optval, &sas, len)) 7346 return -EFAULT; 7347 7348 return 0; 7349 } 7350 7351 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7352 char __user *optval, 7353 int __user *optlen) 7354 { 7355 int val = 0; 7356 7357 if (len < sizeof(int)) 7358 return -EINVAL; 7359 7360 len = sizeof(int); 7361 if (sctp_sk(sk)->recvrcvinfo) 7362 val = 1; 7363 if (put_user(len, optlen)) 7364 return -EFAULT; 7365 if (copy_to_user(optval, &val, len)) 7366 return -EFAULT; 7367 7368 return 0; 7369 } 7370 7371 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7372 char __user *optval, 7373 int __user *optlen) 7374 { 7375 int val = 0; 7376 7377 if (len < sizeof(int)) 7378 return -EINVAL; 7379 7380 len = sizeof(int); 7381 if (sctp_sk(sk)->recvnxtinfo) 7382 val = 1; 7383 if (put_user(len, optlen)) 7384 return -EFAULT; 7385 if (copy_to_user(optval, &val, len)) 7386 return -EFAULT; 7387 7388 return 0; 7389 } 7390 7391 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7392 char __user *optval, 7393 int __user *optlen) 7394 { 7395 struct sctp_assoc_value params; 7396 struct sctp_association *asoc; 7397 int retval = -EFAULT; 7398 7399 if (len < sizeof(params)) { 7400 retval = -EINVAL; 7401 goto out; 7402 } 7403 7404 len = sizeof(params); 7405 if (copy_from_user(¶ms, optval, len)) 7406 goto out; 7407 7408 asoc = sctp_id2assoc(sk, params.assoc_id); 7409 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7410 sctp_style(sk, UDP)) { 7411 retval = -EINVAL; 7412 goto out; 7413 } 7414 7415 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7416 : sctp_sk(sk)->ep->prsctp_enable; 7417 7418 if (put_user(len, optlen)) 7419 goto out; 7420 7421 if (copy_to_user(optval, ¶ms, len)) 7422 goto out; 7423 7424 retval = 0; 7425 7426 out: 7427 return retval; 7428 } 7429 7430 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7431 char __user *optval, 7432 int __user *optlen) 7433 { 7434 struct sctp_default_prinfo info; 7435 struct sctp_association *asoc; 7436 int retval = -EFAULT; 7437 7438 if (len < sizeof(info)) { 7439 retval = -EINVAL; 7440 goto out; 7441 } 7442 7443 len = sizeof(info); 7444 if (copy_from_user(&info, optval, len)) 7445 goto out; 7446 7447 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7448 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7449 sctp_style(sk, UDP)) { 7450 retval = -EINVAL; 7451 goto out; 7452 } 7453 7454 if (asoc) { 7455 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7456 info.pr_value = asoc->default_timetolive; 7457 } else { 7458 struct sctp_sock *sp = sctp_sk(sk); 7459 7460 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7461 info.pr_value = sp->default_timetolive; 7462 } 7463 7464 if (put_user(len, optlen)) 7465 goto out; 7466 7467 if (copy_to_user(optval, &info, len)) 7468 goto out; 7469 7470 retval = 0; 7471 7472 out: 7473 return retval; 7474 } 7475 7476 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7477 char __user *optval, 7478 int __user *optlen) 7479 { 7480 struct sctp_prstatus params; 7481 struct sctp_association *asoc; 7482 int policy; 7483 int retval = -EINVAL; 7484 7485 if (len < sizeof(params)) 7486 goto out; 7487 7488 len = sizeof(params); 7489 if (copy_from_user(¶ms, optval, len)) { 7490 retval = -EFAULT; 7491 goto out; 7492 } 7493 7494 policy = params.sprstat_policy; 7495 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7496 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7497 goto out; 7498 7499 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7500 if (!asoc) 7501 goto out; 7502 7503 if (policy == SCTP_PR_SCTP_ALL) { 7504 params.sprstat_abandoned_unsent = 0; 7505 params.sprstat_abandoned_sent = 0; 7506 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7507 params.sprstat_abandoned_unsent += 7508 asoc->abandoned_unsent[policy]; 7509 params.sprstat_abandoned_sent += 7510 asoc->abandoned_sent[policy]; 7511 } 7512 } else { 7513 params.sprstat_abandoned_unsent = 7514 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7515 params.sprstat_abandoned_sent = 7516 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7517 } 7518 7519 if (put_user(len, optlen)) { 7520 retval = -EFAULT; 7521 goto out; 7522 } 7523 7524 if (copy_to_user(optval, ¶ms, len)) { 7525 retval = -EFAULT; 7526 goto out; 7527 } 7528 7529 retval = 0; 7530 7531 out: 7532 return retval; 7533 } 7534 7535 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7536 char __user *optval, 7537 int __user *optlen) 7538 { 7539 struct sctp_stream_out_ext *streamoute; 7540 struct sctp_association *asoc; 7541 struct sctp_prstatus params; 7542 int retval = -EINVAL; 7543 int policy; 7544 7545 if (len < sizeof(params)) 7546 goto out; 7547 7548 len = sizeof(params); 7549 if (copy_from_user(¶ms, optval, len)) { 7550 retval = -EFAULT; 7551 goto out; 7552 } 7553 7554 policy = params.sprstat_policy; 7555 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7556 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7557 goto out; 7558 7559 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7560 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7561 goto out; 7562 7563 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7564 if (!streamoute) { 7565 /* Not allocated yet, means all stats are 0 */ 7566 params.sprstat_abandoned_unsent = 0; 7567 params.sprstat_abandoned_sent = 0; 7568 retval = 0; 7569 goto out; 7570 } 7571 7572 if (policy == SCTP_PR_SCTP_ALL) { 7573 params.sprstat_abandoned_unsent = 0; 7574 params.sprstat_abandoned_sent = 0; 7575 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7576 params.sprstat_abandoned_unsent += 7577 streamoute->abandoned_unsent[policy]; 7578 params.sprstat_abandoned_sent += 7579 streamoute->abandoned_sent[policy]; 7580 } 7581 } else { 7582 params.sprstat_abandoned_unsent = 7583 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7584 params.sprstat_abandoned_sent = 7585 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7586 } 7587 7588 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7589 retval = -EFAULT; 7590 goto out; 7591 } 7592 7593 retval = 0; 7594 7595 out: 7596 return retval; 7597 } 7598 7599 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7600 char __user *optval, 7601 int __user *optlen) 7602 { 7603 struct sctp_assoc_value params; 7604 struct sctp_association *asoc; 7605 int retval = -EFAULT; 7606 7607 if (len < sizeof(params)) { 7608 retval = -EINVAL; 7609 goto out; 7610 } 7611 7612 len = sizeof(params); 7613 if (copy_from_user(¶ms, optval, len)) 7614 goto out; 7615 7616 asoc = sctp_id2assoc(sk, params.assoc_id); 7617 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7618 sctp_style(sk, UDP)) { 7619 retval = -EINVAL; 7620 goto out; 7621 } 7622 7623 params.assoc_value = asoc ? asoc->peer.reconf_capable 7624 : sctp_sk(sk)->ep->reconf_enable; 7625 7626 if (put_user(len, optlen)) 7627 goto out; 7628 7629 if (copy_to_user(optval, ¶ms, len)) 7630 goto out; 7631 7632 retval = 0; 7633 7634 out: 7635 return retval; 7636 } 7637 7638 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7639 char __user *optval, 7640 int __user *optlen) 7641 { 7642 struct sctp_assoc_value params; 7643 struct sctp_association *asoc; 7644 int retval = -EFAULT; 7645 7646 if (len < sizeof(params)) { 7647 retval = -EINVAL; 7648 goto out; 7649 } 7650 7651 len = sizeof(params); 7652 if (copy_from_user(¶ms, optval, len)) 7653 goto out; 7654 7655 asoc = sctp_id2assoc(sk, params.assoc_id); 7656 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7657 sctp_style(sk, UDP)) { 7658 retval = -EINVAL; 7659 goto out; 7660 } 7661 7662 params.assoc_value = asoc ? asoc->strreset_enable 7663 : sctp_sk(sk)->ep->strreset_enable; 7664 7665 if (put_user(len, optlen)) 7666 goto out; 7667 7668 if (copy_to_user(optval, ¶ms, len)) 7669 goto out; 7670 7671 retval = 0; 7672 7673 out: 7674 return retval; 7675 } 7676 7677 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7678 char __user *optval, 7679 int __user *optlen) 7680 { 7681 struct sctp_assoc_value params; 7682 struct sctp_association *asoc; 7683 int retval = -EFAULT; 7684 7685 if (len < sizeof(params)) { 7686 retval = -EINVAL; 7687 goto out; 7688 } 7689 7690 len = sizeof(params); 7691 if (copy_from_user(¶ms, optval, len)) 7692 goto out; 7693 7694 asoc = sctp_id2assoc(sk, params.assoc_id); 7695 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7696 sctp_style(sk, UDP)) { 7697 retval = -EINVAL; 7698 goto out; 7699 } 7700 7701 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7702 : sctp_sk(sk)->default_ss; 7703 7704 if (put_user(len, optlen)) 7705 goto out; 7706 7707 if (copy_to_user(optval, ¶ms, len)) 7708 goto out; 7709 7710 retval = 0; 7711 7712 out: 7713 return retval; 7714 } 7715 7716 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7717 char __user *optval, 7718 int __user *optlen) 7719 { 7720 struct sctp_stream_value params; 7721 struct sctp_association *asoc; 7722 int retval = -EFAULT; 7723 7724 if (len < sizeof(params)) { 7725 retval = -EINVAL; 7726 goto out; 7727 } 7728 7729 len = sizeof(params); 7730 if (copy_from_user(¶ms, optval, len)) 7731 goto out; 7732 7733 asoc = sctp_id2assoc(sk, params.assoc_id); 7734 if (!asoc) { 7735 retval = -EINVAL; 7736 goto out; 7737 } 7738 7739 retval = sctp_sched_get_value(asoc, params.stream_id, 7740 ¶ms.stream_value); 7741 if (retval) 7742 goto out; 7743 7744 if (put_user(len, optlen)) { 7745 retval = -EFAULT; 7746 goto out; 7747 } 7748 7749 if (copy_to_user(optval, ¶ms, len)) { 7750 retval = -EFAULT; 7751 goto out; 7752 } 7753 7754 out: 7755 return retval; 7756 } 7757 7758 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7759 char __user *optval, 7760 int __user *optlen) 7761 { 7762 struct sctp_assoc_value params; 7763 struct sctp_association *asoc; 7764 int retval = -EFAULT; 7765 7766 if (len < sizeof(params)) { 7767 retval = -EINVAL; 7768 goto out; 7769 } 7770 7771 len = sizeof(params); 7772 if (copy_from_user(¶ms, optval, len)) 7773 goto out; 7774 7775 asoc = sctp_id2assoc(sk, params.assoc_id); 7776 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7777 sctp_style(sk, UDP)) { 7778 retval = -EINVAL; 7779 goto out; 7780 } 7781 7782 params.assoc_value = asoc ? asoc->peer.intl_capable 7783 : sctp_sk(sk)->ep->intl_enable; 7784 7785 if (put_user(len, optlen)) 7786 goto out; 7787 7788 if (copy_to_user(optval, ¶ms, len)) 7789 goto out; 7790 7791 retval = 0; 7792 7793 out: 7794 return retval; 7795 } 7796 7797 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7798 char __user *optval, 7799 int __user *optlen) 7800 { 7801 int val; 7802 7803 if (len < sizeof(int)) 7804 return -EINVAL; 7805 7806 len = sizeof(int); 7807 val = sctp_sk(sk)->reuse; 7808 if (put_user(len, optlen)) 7809 return -EFAULT; 7810 7811 if (copy_to_user(optval, &val, len)) 7812 return -EFAULT; 7813 7814 return 0; 7815 } 7816 7817 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7818 int __user *optlen) 7819 { 7820 struct sctp_association *asoc; 7821 struct sctp_event param; 7822 __u16 subscribe; 7823 7824 if (len < sizeof(param)) 7825 return -EINVAL; 7826 7827 len = sizeof(param); 7828 if (copy_from_user(¶m, optval, len)) 7829 return -EFAULT; 7830 7831 if (param.se_type < SCTP_SN_TYPE_BASE || 7832 param.se_type > SCTP_SN_TYPE_MAX) 7833 return -EINVAL; 7834 7835 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7836 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7837 sctp_style(sk, UDP)) 7838 return -EINVAL; 7839 7840 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7841 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7842 7843 if (put_user(len, optlen)) 7844 return -EFAULT; 7845 7846 if (copy_to_user(optval, ¶m, len)) 7847 return -EFAULT; 7848 7849 return 0; 7850 } 7851 7852 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7853 char __user *optval, 7854 int __user *optlen) 7855 { 7856 struct sctp_assoc_value params; 7857 struct sctp_association *asoc; 7858 int retval = -EFAULT; 7859 7860 if (len < sizeof(params)) { 7861 retval = -EINVAL; 7862 goto out; 7863 } 7864 7865 len = sizeof(params); 7866 if (copy_from_user(¶ms, optval, len)) 7867 goto out; 7868 7869 asoc = sctp_id2assoc(sk, params.assoc_id); 7870 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7871 sctp_style(sk, UDP)) { 7872 retval = -EINVAL; 7873 goto out; 7874 } 7875 7876 params.assoc_value = asoc ? asoc->peer.asconf_capable 7877 : sctp_sk(sk)->ep->asconf_enable; 7878 7879 if (put_user(len, optlen)) 7880 goto out; 7881 7882 if (copy_to_user(optval, ¶ms, len)) 7883 goto out; 7884 7885 retval = 0; 7886 7887 out: 7888 return retval; 7889 } 7890 7891 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7892 char __user *optval, 7893 int __user *optlen) 7894 { 7895 struct sctp_assoc_value params; 7896 struct sctp_association *asoc; 7897 int retval = -EFAULT; 7898 7899 if (len < sizeof(params)) { 7900 retval = -EINVAL; 7901 goto out; 7902 } 7903 7904 len = sizeof(params); 7905 if (copy_from_user(¶ms, optval, len)) 7906 goto out; 7907 7908 asoc = sctp_id2assoc(sk, params.assoc_id); 7909 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7910 sctp_style(sk, UDP)) { 7911 retval = -EINVAL; 7912 goto out; 7913 } 7914 7915 params.assoc_value = asoc ? asoc->peer.auth_capable 7916 : sctp_sk(sk)->ep->auth_enable; 7917 7918 if (put_user(len, optlen)) 7919 goto out; 7920 7921 if (copy_to_user(optval, ¶ms, len)) 7922 goto out; 7923 7924 retval = 0; 7925 7926 out: 7927 return retval; 7928 } 7929 7930 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7931 char __user *optval, 7932 int __user *optlen) 7933 { 7934 struct sctp_assoc_value params; 7935 struct sctp_association *asoc; 7936 int retval = -EFAULT; 7937 7938 if (len < sizeof(params)) { 7939 retval = -EINVAL; 7940 goto out; 7941 } 7942 7943 len = sizeof(params); 7944 if (copy_from_user(¶ms, optval, len)) 7945 goto out; 7946 7947 asoc = sctp_id2assoc(sk, params.assoc_id); 7948 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7949 sctp_style(sk, UDP)) { 7950 retval = -EINVAL; 7951 goto out; 7952 } 7953 7954 params.assoc_value = asoc ? asoc->peer.ecn_capable 7955 : sctp_sk(sk)->ep->ecn_enable; 7956 7957 if (put_user(len, optlen)) 7958 goto out; 7959 7960 if (copy_to_user(optval, ¶ms, len)) 7961 goto out; 7962 7963 retval = 0; 7964 7965 out: 7966 return retval; 7967 } 7968 7969 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7970 char __user *optval, 7971 int __user *optlen) 7972 { 7973 struct sctp_assoc_value params; 7974 struct sctp_association *asoc; 7975 int retval = -EFAULT; 7976 7977 if (len < sizeof(params)) { 7978 retval = -EINVAL; 7979 goto out; 7980 } 7981 7982 len = sizeof(params); 7983 if (copy_from_user(¶ms, optval, len)) 7984 goto out; 7985 7986 asoc = sctp_id2assoc(sk, params.assoc_id); 7987 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7988 sctp_style(sk, UDP)) { 7989 retval = -EINVAL; 7990 goto out; 7991 } 7992 7993 params.assoc_value = asoc ? asoc->pf_expose 7994 : sctp_sk(sk)->pf_expose; 7995 7996 if (put_user(len, optlen)) 7997 goto out; 7998 7999 if (copy_to_user(optval, ¶ms, len)) 8000 goto out; 8001 8002 retval = 0; 8003 8004 out: 8005 return retval; 8006 } 8007 8008 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8009 char __user *optval, int __user *optlen) 8010 { 8011 int retval = 0; 8012 int len; 8013 8014 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8015 8016 /* I can hardly begin to describe how wrong this is. This is 8017 * so broken as to be worse than useless. The API draft 8018 * REALLY is NOT helpful here... I am not convinced that the 8019 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8020 * are at all well-founded. 8021 */ 8022 if (level != SOL_SCTP) { 8023 struct sctp_af *af = sctp_sk(sk)->pf->af; 8024 8025 retval = af->getsockopt(sk, level, optname, optval, optlen); 8026 return retval; 8027 } 8028 8029 if (get_user(len, optlen)) 8030 return -EFAULT; 8031 8032 if (len < 0) 8033 return -EINVAL; 8034 8035 lock_sock(sk); 8036 8037 switch (optname) { 8038 case SCTP_STATUS: 8039 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8040 break; 8041 case SCTP_DISABLE_FRAGMENTS: 8042 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8043 optlen); 8044 break; 8045 case SCTP_EVENTS: 8046 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8047 break; 8048 case SCTP_AUTOCLOSE: 8049 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8050 break; 8051 case SCTP_SOCKOPT_PEELOFF: 8052 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8053 break; 8054 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8055 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8056 break; 8057 case SCTP_PEER_ADDR_PARAMS: 8058 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8059 optlen); 8060 break; 8061 case SCTP_DELAYED_SACK: 8062 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8063 optlen); 8064 break; 8065 case SCTP_INITMSG: 8066 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8067 break; 8068 case SCTP_GET_PEER_ADDRS: 8069 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8070 optlen); 8071 break; 8072 case SCTP_GET_LOCAL_ADDRS: 8073 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8074 optlen); 8075 break; 8076 case SCTP_SOCKOPT_CONNECTX3: 8077 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8078 break; 8079 case SCTP_DEFAULT_SEND_PARAM: 8080 retval = sctp_getsockopt_default_send_param(sk, len, 8081 optval, optlen); 8082 break; 8083 case SCTP_DEFAULT_SNDINFO: 8084 retval = sctp_getsockopt_default_sndinfo(sk, len, 8085 optval, optlen); 8086 break; 8087 case SCTP_PRIMARY_ADDR: 8088 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8089 break; 8090 case SCTP_NODELAY: 8091 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8092 break; 8093 case SCTP_RTOINFO: 8094 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8095 break; 8096 case SCTP_ASSOCINFO: 8097 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8098 break; 8099 case SCTP_I_WANT_MAPPED_V4_ADDR: 8100 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8101 break; 8102 case SCTP_MAXSEG: 8103 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8104 break; 8105 case SCTP_GET_PEER_ADDR_INFO: 8106 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8107 optlen); 8108 break; 8109 case SCTP_ADAPTATION_LAYER: 8110 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8111 optlen); 8112 break; 8113 case SCTP_CONTEXT: 8114 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8115 break; 8116 case SCTP_FRAGMENT_INTERLEAVE: 8117 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8118 optlen); 8119 break; 8120 case SCTP_PARTIAL_DELIVERY_POINT: 8121 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8122 optlen); 8123 break; 8124 case SCTP_MAX_BURST: 8125 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8126 break; 8127 case SCTP_AUTH_KEY: 8128 case SCTP_AUTH_CHUNK: 8129 case SCTP_AUTH_DELETE_KEY: 8130 case SCTP_AUTH_DEACTIVATE_KEY: 8131 retval = -EOPNOTSUPP; 8132 break; 8133 case SCTP_HMAC_IDENT: 8134 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8135 break; 8136 case SCTP_AUTH_ACTIVE_KEY: 8137 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8138 break; 8139 case SCTP_PEER_AUTH_CHUNKS: 8140 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8141 optlen); 8142 break; 8143 case SCTP_LOCAL_AUTH_CHUNKS: 8144 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8145 optlen); 8146 break; 8147 case SCTP_GET_ASSOC_NUMBER: 8148 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8149 break; 8150 case SCTP_GET_ASSOC_ID_LIST: 8151 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8152 break; 8153 case SCTP_AUTO_ASCONF: 8154 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8155 break; 8156 case SCTP_PEER_ADDR_THLDS: 8157 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8158 optlen, false); 8159 break; 8160 case SCTP_PEER_ADDR_THLDS_V2: 8161 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8162 optlen, true); 8163 break; 8164 case SCTP_GET_ASSOC_STATS: 8165 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8166 break; 8167 case SCTP_RECVRCVINFO: 8168 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8169 break; 8170 case SCTP_RECVNXTINFO: 8171 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8172 break; 8173 case SCTP_PR_SUPPORTED: 8174 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8175 break; 8176 case SCTP_DEFAULT_PRINFO: 8177 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8178 optlen); 8179 break; 8180 case SCTP_PR_ASSOC_STATUS: 8181 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8182 optlen); 8183 break; 8184 case SCTP_PR_STREAM_STATUS: 8185 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8186 optlen); 8187 break; 8188 case SCTP_RECONFIG_SUPPORTED: 8189 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8190 optlen); 8191 break; 8192 case SCTP_ENABLE_STREAM_RESET: 8193 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8194 optlen); 8195 break; 8196 case SCTP_STREAM_SCHEDULER: 8197 retval = sctp_getsockopt_scheduler(sk, len, optval, 8198 optlen); 8199 break; 8200 case SCTP_STREAM_SCHEDULER_VALUE: 8201 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8202 optlen); 8203 break; 8204 case SCTP_INTERLEAVING_SUPPORTED: 8205 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8206 optlen); 8207 break; 8208 case SCTP_REUSE_PORT: 8209 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8210 break; 8211 case SCTP_EVENT: 8212 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8213 break; 8214 case SCTP_ASCONF_SUPPORTED: 8215 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8216 optlen); 8217 break; 8218 case SCTP_AUTH_SUPPORTED: 8219 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8220 optlen); 8221 break; 8222 case SCTP_ECN_SUPPORTED: 8223 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8224 break; 8225 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8226 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8227 break; 8228 default: 8229 retval = -ENOPROTOOPT; 8230 break; 8231 } 8232 8233 release_sock(sk); 8234 return retval; 8235 } 8236 8237 static int sctp_hash(struct sock *sk) 8238 { 8239 /* STUB */ 8240 return 0; 8241 } 8242 8243 static void sctp_unhash(struct sock *sk) 8244 { 8245 /* STUB */ 8246 } 8247 8248 /* Check if port is acceptable. Possibly find first available port. 8249 * 8250 * The port hash table (contained in the 'global' SCTP protocol storage 8251 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8252 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8253 * list (the list number is the port number hashed out, so as you 8254 * would expect from a hash function, all the ports in a given list have 8255 * such a number that hashes out to the same list number; you were 8256 * expecting that, right?); so each list has a set of ports, with a 8257 * link to the socket (struct sock) that uses it, the port number and 8258 * a fastreuse flag (FIXME: NPI ipg). 8259 */ 8260 static struct sctp_bind_bucket *sctp_bucket_create( 8261 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8262 8263 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8264 { 8265 struct sctp_sock *sp = sctp_sk(sk); 8266 bool reuse = (sk->sk_reuse || sp->reuse); 8267 struct sctp_bind_hashbucket *head; /* hash list */ 8268 struct net *net = sock_net(sk); 8269 kuid_t uid = sock_i_uid(sk); 8270 struct sctp_bind_bucket *pp; 8271 unsigned short snum; 8272 int ret; 8273 8274 snum = ntohs(addr->v4.sin_port); 8275 8276 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8277 8278 local_bh_disable(); 8279 8280 if (snum == 0) { 8281 /* Search for an available port. */ 8282 int low, high, remaining, index; 8283 unsigned int rover; 8284 8285 inet_get_local_port_range(net, &low, &high); 8286 remaining = (high - low) + 1; 8287 rover = prandom_u32() % remaining + low; 8288 8289 do { 8290 rover++; 8291 if ((rover < low) || (rover > high)) 8292 rover = low; 8293 if (inet_is_local_reserved_port(net, rover)) 8294 continue; 8295 index = sctp_phashfn(net, rover); 8296 head = &sctp_port_hashtable[index]; 8297 spin_lock(&head->lock); 8298 sctp_for_each_hentry(pp, &head->chain) 8299 if ((pp->port == rover) && 8300 net_eq(net, pp->net)) 8301 goto next; 8302 break; 8303 next: 8304 spin_unlock(&head->lock); 8305 } while (--remaining > 0); 8306 8307 /* Exhausted local port range during search? */ 8308 ret = 1; 8309 if (remaining <= 0) 8310 goto fail; 8311 8312 /* OK, here is the one we will use. HEAD (the port 8313 * hash table list entry) is non-NULL and we hold it's 8314 * mutex. 8315 */ 8316 snum = rover; 8317 } else { 8318 /* We are given an specific port number; we verify 8319 * that it is not being used. If it is used, we will 8320 * exahust the search in the hash list corresponding 8321 * to the port number (snum) - we detect that with the 8322 * port iterator, pp being NULL. 8323 */ 8324 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8325 spin_lock(&head->lock); 8326 sctp_for_each_hentry(pp, &head->chain) { 8327 if ((pp->port == snum) && net_eq(pp->net, net)) 8328 goto pp_found; 8329 } 8330 } 8331 pp = NULL; 8332 goto pp_not_found; 8333 pp_found: 8334 if (!hlist_empty(&pp->owner)) { 8335 /* We had a port hash table hit - there is an 8336 * available port (pp != NULL) and it is being 8337 * used by other socket (pp->owner not empty); that other 8338 * socket is going to be sk2. 8339 */ 8340 struct sock *sk2; 8341 8342 pr_debug("%s: found a possible match\n", __func__); 8343 8344 if ((pp->fastreuse && reuse && 8345 sk->sk_state != SCTP_SS_LISTENING) || 8346 (pp->fastreuseport && sk->sk_reuseport && 8347 uid_eq(pp->fastuid, uid))) 8348 goto success; 8349 8350 /* Run through the list of sockets bound to the port 8351 * (pp->port) [via the pointers bind_next and 8352 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8353 * we get the endpoint they describe and run through 8354 * the endpoint's list of IP (v4 or v6) addresses, 8355 * comparing each of the addresses with the address of 8356 * the socket sk. If we find a match, then that means 8357 * that this port/socket (sk) combination are already 8358 * in an endpoint. 8359 */ 8360 sk_for_each_bound(sk2, &pp->owner) { 8361 struct sctp_sock *sp2 = sctp_sk(sk2); 8362 struct sctp_endpoint *ep2 = sp2->ep; 8363 8364 if (sk == sk2 || 8365 (reuse && (sk2->sk_reuse || sp2->reuse) && 8366 sk2->sk_state != SCTP_SS_LISTENING) || 8367 (sk->sk_reuseport && sk2->sk_reuseport && 8368 uid_eq(uid, sock_i_uid(sk2)))) 8369 continue; 8370 8371 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8372 addr, sp2, sp)) { 8373 ret = 1; 8374 goto fail_unlock; 8375 } 8376 } 8377 8378 pr_debug("%s: found a match\n", __func__); 8379 } 8380 pp_not_found: 8381 /* If there was a hash table miss, create a new port. */ 8382 ret = 1; 8383 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8384 goto fail_unlock; 8385 8386 /* In either case (hit or miss), make sure fastreuse is 1 only 8387 * if sk->sk_reuse is too (that is, if the caller requested 8388 * SO_REUSEADDR on this socket -sk-). 8389 */ 8390 if (hlist_empty(&pp->owner)) { 8391 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8392 pp->fastreuse = 1; 8393 else 8394 pp->fastreuse = 0; 8395 8396 if (sk->sk_reuseport) { 8397 pp->fastreuseport = 1; 8398 pp->fastuid = uid; 8399 } else { 8400 pp->fastreuseport = 0; 8401 } 8402 } else { 8403 if (pp->fastreuse && 8404 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8405 pp->fastreuse = 0; 8406 8407 if (pp->fastreuseport && 8408 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8409 pp->fastreuseport = 0; 8410 } 8411 8412 /* We are set, so fill up all the data in the hash table 8413 * entry, tie the socket list information with the rest of the 8414 * sockets FIXME: Blurry, NPI (ipg). 8415 */ 8416 success: 8417 if (!sp->bind_hash) { 8418 inet_sk(sk)->inet_num = snum; 8419 sk_add_bind_node(sk, &pp->owner); 8420 sp->bind_hash = pp; 8421 } 8422 ret = 0; 8423 8424 fail_unlock: 8425 spin_unlock(&head->lock); 8426 8427 fail: 8428 local_bh_enable(); 8429 return ret; 8430 } 8431 8432 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8433 * port is requested. 8434 */ 8435 static int sctp_get_port(struct sock *sk, unsigned short snum) 8436 { 8437 union sctp_addr addr; 8438 struct sctp_af *af = sctp_sk(sk)->pf->af; 8439 8440 /* Set up a dummy address struct from the sk. */ 8441 af->from_sk(&addr, sk); 8442 addr.v4.sin_port = htons(snum); 8443 8444 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8445 return sctp_get_port_local(sk, &addr); 8446 } 8447 8448 /* 8449 * Move a socket to LISTENING state. 8450 */ 8451 static int sctp_listen_start(struct sock *sk, int backlog) 8452 { 8453 struct sctp_sock *sp = sctp_sk(sk); 8454 struct sctp_endpoint *ep = sp->ep; 8455 struct crypto_shash *tfm = NULL; 8456 char alg[32]; 8457 8458 /* Allocate HMAC for generating cookie. */ 8459 if (!sp->hmac && sp->sctp_hmac_alg) { 8460 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8461 tfm = crypto_alloc_shash(alg, 0, 0); 8462 if (IS_ERR(tfm)) { 8463 net_info_ratelimited("failed to load transform for %s: %ld\n", 8464 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8465 return -ENOSYS; 8466 } 8467 sctp_sk(sk)->hmac = tfm; 8468 } 8469 8470 /* 8471 * If a bind() or sctp_bindx() is not called prior to a listen() 8472 * call that allows new associations to be accepted, the system 8473 * picks an ephemeral port and will choose an address set equivalent 8474 * to binding with a wildcard address. 8475 * 8476 * This is not currently spelled out in the SCTP sockets 8477 * extensions draft, but follows the practice as seen in TCP 8478 * sockets. 8479 * 8480 */ 8481 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8482 if (!ep->base.bind_addr.port) { 8483 if (sctp_autobind(sk)) 8484 return -EAGAIN; 8485 } else { 8486 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8487 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8488 return -EADDRINUSE; 8489 } 8490 } 8491 8492 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8493 return sctp_hash_endpoint(ep); 8494 } 8495 8496 /* 8497 * 4.1.3 / 5.1.3 listen() 8498 * 8499 * By default, new associations are not accepted for UDP style sockets. 8500 * An application uses listen() to mark a socket as being able to 8501 * accept new associations. 8502 * 8503 * On TCP style sockets, applications use listen() to ready the SCTP 8504 * endpoint for accepting inbound associations. 8505 * 8506 * On both types of endpoints a backlog of '0' disables listening. 8507 * 8508 * Move a socket to LISTENING state. 8509 */ 8510 int sctp_inet_listen(struct socket *sock, int backlog) 8511 { 8512 struct sock *sk = sock->sk; 8513 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8514 int err = -EINVAL; 8515 8516 if (unlikely(backlog < 0)) 8517 return err; 8518 8519 lock_sock(sk); 8520 8521 /* Peeled-off sockets are not allowed to listen(). */ 8522 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8523 goto out; 8524 8525 if (sock->state != SS_UNCONNECTED) 8526 goto out; 8527 8528 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8529 goto out; 8530 8531 /* If backlog is zero, disable listening. */ 8532 if (!backlog) { 8533 if (sctp_sstate(sk, CLOSED)) 8534 goto out; 8535 8536 err = 0; 8537 sctp_unhash_endpoint(ep); 8538 sk->sk_state = SCTP_SS_CLOSED; 8539 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8540 sctp_sk(sk)->bind_hash->fastreuse = 1; 8541 goto out; 8542 } 8543 8544 /* If we are already listening, just update the backlog */ 8545 if (sctp_sstate(sk, LISTENING)) 8546 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8547 else { 8548 err = sctp_listen_start(sk, backlog); 8549 if (err) 8550 goto out; 8551 } 8552 8553 err = 0; 8554 out: 8555 release_sock(sk); 8556 return err; 8557 } 8558 8559 /* 8560 * This function is done by modeling the current datagram_poll() and the 8561 * tcp_poll(). Note that, based on these implementations, we don't 8562 * lock the socket in this function, even though it seems that, 8563 * ideally, locking or some other mechanisms can be used to ensure 8564 * the integrity of the counters (sndbuf and wmem_alloc) used 8565 * in this place. We assume that we don't need locks either until proven 8566 * otherwise. 8567 * 8568 * Another thing to note is that we include the Async I/O support 8569 * here, again, by modeling the current TCP/UDP code. We don't have 8570 * a good way to test with it yet. 8571 */ 8572 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8573 { 8574 struct sock *sk = sock->sk; 8575 struct sctp_sock *sp = sctp_sk(sk); 8576 __poll_t mask; 8577 8578 poll_wait(file, sk_sleep(sk), wait); 8579 8580 sock_rps_record_flow(sk); 8581 8582 /* A TCP-style listening socket becomes readable when the accept queue 8583 * is not empty. 8584 */ 8585 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8586 return (!list_empty(&sp->ep->asocs)) ? 8587 (EPOLLIN | EPOLLRDNORM) : 0; 8588 8589 mask = 0; 8590 8591 /* Is there any exceptional events? */ 8592 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8593 mask |= EPOLLERR | 8594 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8595 if (sk->sk_shutdown & RCV_SHUTDOWN) 8596 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8597 if (sk->sk_shutdown == SHUTDOWN_MASK) 8598 mask |= EPOLLHUP; 8599 8600 /* Is it readable? Reconsider this code with TCP-style support. */ 8601 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8602 mask |= EPOLLIN | EPOLLRDNORM; 8603 8604 /* The association is either gone or not ready. */ 8605 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8606 return mask; 8607 8608 /* Is it writable? */ 8609 if (sctp_writeable(sk)) { 8610 mask |= EPOLLOUT | EPOLLWRNORM; 8611 } else { 8612 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8613 /* 8614 * Since the socket is not locked, the buffer 8615 * might be made available after the writeable check and 8616 * before the bit is set. This could cause a lost I/O 8617 * signal. tcp_poll() has a race breaker for this race 8618 * condition. Based on their implementation, we put 8619 * in the following code to cover it as well. 8620 */ 8621 if (sctp_writeable(sk)) 8622 mask |= EPOLLOUT | EPOLLWRNORM; 8623 } 8624 return mask; 8625 } 8626 8627 /******************************************************************** 8628 * 2nd Level Abstractions 8629 ********************************************************************/ 8630 8631 static struct sctp_bind_bucket *sctp_bucket_create( 8632 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8633 { 8634 struct sctp_bind_bucket *pp; 8635 8636 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8637 if (pp) { 8638 SCTP_DBG_OBJCNT_INC(bind_bucket); 8639 pp->port = snum; 8640 pp->fastreuse = 0; 8641 INIT_HLIST_HEAD(&pp->owner); 8642 pp->net = net; 8643 hlist_add_head(&pp->node, &head->chain); 8644 } 8645 return pp; 8646 } 8647 8648 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8649 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8650 { 8651 if (pp && hlist_empty(&pp->owner)) { 8652 __hlist_del(&pp->node); 8653 kmem_cache_free(sctp_bucket_cachep, pp); 8654 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8655 } 8656 } 8657 8658 /* Release this socket's reference to a local port. */ 8659 static inline void __sctp_put_port(struct sock *sk) 8660 { 8661 struct sctp_bind_hashbucket *head = 8662 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8663 inet_sk(sk)->inet_num)]; 8664 struct sctp_bind_bucket *pp; 8665 8666 spin_lock(&head->lock); 8667 pp = sctp_sk(sk)->bind_hash; 8668 __sk_del_bind_node(sk); 8669 sctp_sk(sk)->bind_hash = NULL; 8670 inet_sk(sk)->inet_num = 0; 8671 sctp_bucket_destroy(pp); 8672 spin_unlock(&head->lock); 8673 } 8674 8675 void sctp_put_port(struct sock *sk) 8676 { 8677 local_bh_disable(); 8678 __sctp_put_port(sk); 8679 local_bh_enable(); 8680 } 8681 8682 /* 8683 * The system picks an ephemeral port and choose an address set equivalent 8684 * to binding with a wildcard address. 8685 * One of those addresses will be the primary address for the association. 8686 * This automatically enables the multihoming capability of SCTP. 8687 */ 8688 static int sctp_autobind(struct sock *sk) 8689 { 8690 union sctp_addr autoaddr; 8691 struct sctp_af *af; 8692 __be16 port; 8693 8694 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8695 af = sctp_sk(sk)->pf->af; 8696 8697 port = htons(inet_sk(sk)->inet_num); 8698 af->inaddr_any(&autoaddr, port); 8699 8700 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8701 } 8702 8703 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8704 * 8705 * From RFC 2292 8706 * 4.2 The cmsghdr Structure * 8707 * 8708 * When ancillary data is sent or received, any number of ancillary data 8709 * objects can be specified by the msg_control and msg_controllen members of 8710 * the msghdr structure, because each object is preceded by 8711 * a cmsghdr structure defining the object's length (the cmsg_len member). 8712 * Historically Berkeley-derived implementations have passed only one object 8713 * at a time, but this API allows multiple objects to be 8714 * passed in a single call to sendmsg() or recvmsg(). The following example 8715 * shows two ancillary data objects in a control buffer. 8716 * 8717 * |<--------------------------- msg_controllen -------------------------->| 8718 * | | 8719 * 8720 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8721 * 8722 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8723 * | | | 8724 * 8725 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8726 * 8727 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8728 * | | | | | 8729 * 8730 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8731 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8732 * 8733 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8734 * 8735 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8736 * ^ 8737 * | 8738 * 8739 * msg_control 8740 * points here 8741 */ 8742 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8743 { 8744 struct msghdr *my_msg = (struct msghdr *)msg; 8745 struct cmsghdr *cmsg; 8746 8747 for_each_cmsghdr(cmsg, my_msg) { 8748 if (!CMSG_OK(my_msg, cmsg)) 8749 return -EINVAL; 8750 8751 /* Should we parse this header or ignore? */ 8752 if (cmsg->cmsg_level != IPPROTO_SCTP) 8753 continue; 8754 8755 /* Strictly check lengths following example in SCM code. */ 8756 switch (cmsg->cmsg_type) { 8757 case SCTP_INIT: 8758 /* SCTP Socket API Extension 8759 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8760 * 8761 * This cmsghdr structure provides information for 8762 * initializing new SCTP associations with sendmsg(). 8763 * The SCTP_INITMSG socket option uses this same data 8764 * structure. This structure is not used for 8765 * recvmsg(). 8766 * 8767 * cmsg_level cmsg_type cmsg_data[] 8768 * ------------ ------------ ---------------------- 8769 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8770 */ 8771 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8772 return -EINVAL; 8773 8774 cmsgs->init = CMSG_DATA(cmsg); 8775 break; 8776 8777 case SCTP_SNDRCV: 8778 /* SCTP Socket API Extension 8779 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8780 * 8781 * This cmsghdr structure specifies SCTP options for 8782 * sendmsg() and describes SCTP header information 8783 * about a received message through recvmsg(). 8784 * 8785 * cmsg_level cmsg_type cmsg_data[] 8786 * ------------ ------------ ---------------------- 8787 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8788 */ 8789 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8790 return -EINVAL; 8791 8792 cmsgs->srinfo = CMSG_DATA(cmsg); 8793 8794 if (cmsgs->srinfo->sinfo_flags & 8795 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8796 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8797 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8798 return -EINVAL; 8799 break; 8800 8801 case SCTP_SNDINFO: 8802 /* SCTP Socket API Extension 8803 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8804 * 8805 * This cmsghdr structure specifies SCTP options for 8806 * sendmsg(). This structure and SCTP_RCVINFO replaces 8807 * SCTP_SNDRCV which has been deprecated. 8808 * 8809 * cmsg_level cmsg_type cmsg_data[] 8810 * ------------ ------------ --------------------- 8811 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8812 */ 8813 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8814 return -EINVAL; 8815 8816 cmsgs->sinfo = CMSG_DATA(cmsg); 8817 8818 if (cmsgs->sinfo->snd_flags & 8819 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8820 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8821 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8822 return -EINVAL; 8823 break; 8824 case SCTP_PRINFO: 8825 /* SCTP Socket API Extension 8826 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8827 * 8828 * This cmsghdr structure specifies SCTP options for sendmsg(). 8829 * 8830 * cmsg_level cmsg_type cmsg_data[] 8831 * ------------ ------------ --------------------- 8832 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8833 */ 8834 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8835 return -EINVAL; 8836 8837 cmsgs->prinfo = CMSG_DATA(cmsg); 8838 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8839 return -EINVAL; 8840 8841 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8842 cmsgs->prinfo->pr_value = 0; 8843 break; 8844 case SCTP_AUTHINFO: 8845 /* SCTP Socket API Extension 8846 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8847 * 8848 * This cmsghdr structure specifies SCTP options for sendmsg(). 8849 * 8850 * cmsg_level cmsg_type cmsg_data[] 8851 * ------------ ------------ --------------------- 8852 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8853 */ 8854 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8855 return -EINVAL; 8856 8857 cmsgs->authinfo = CMSG_DATA(cmsg); 8858 break; 8859 case SCTP_DSTADDRV4: 8860 case SCTP_DSTADDRV6: 8861 /* SCTP Socket API Extension 8862 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8863 * 8864 * This cmsghdr structure specifies SCTP options for sendmsg(). 8865 * 8866 * cmsg_level cmsg_type cmsg_data[] 8867 * ------------ ------------ --------------------- 8868 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8869 * ------------ ------------ --------------------- 8870 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8871 */ 8872 cmsgs->addrs_msg = my_msg; 8873 break; 8874 default: 8875 return -EINVAL; 8876 } 8877 } 8878 8879 return 0; 8880 } 8881 8882 /* 8883 * Wait for a packet.. 8884 * Note: This function is the same function as in core/datagram.c 8885 * with a few modifications to make lksctp work. 8886 */ 8887 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8888 { 8889 int error; 8890 DEFINE_WAIT(wait); 8891 8892 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8893 8894 /* Socket errors? */ 8895 error = sock_error(sk); 8896 if (error) 8897 goto out; 8898 8899 if (!skb_queue_empty(&sk->sk_receive_queue)) 8900 goto ready; 8901 8902 /* Socket shut down? */ 8903 if (sk->sk_shutdown & RCV_SHUTDOWN) 8904 goto out; 8905 8906 /* Sequenced packets can come disconnected. If so we report the 8907 * problem. 8908 */ 8909 error = -ENOTCONN; 8910 8911 /* Is there a good reason to think that we may receive some data? */ 8912 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8913 goto out; 8914 8915 /* Handle signals. */ 8916 if (signal_pending(current)) 8917 goto interrupted; 8918 8919 /* Let another process have a go. Since we are going to sleep 8920 * anyway. Note: This may cause odd behaviors if the message 8921 * does not fit in the user's buffer, but this seems to be the 8922 * only way to honor MSG_DONTWAIT realistically. 8923 */ 8924 release_sock(sk); 8925 *timeo_p = schedule_timeout(*timeo_p); 8926 lock_sock(sk); 8927 8928 ready: 8929 finish_wait(sk_sleep(sk), &wait); 8930 return 0; 8931 8932 interrupted: 8933 error = sock_intr_errno(*timeo_p); 8934 8935 out: 8936 finish_wait(sk_sleep(sk), &wait); 8937 *err = error; 8938 return error; 8939 } 8940 8941 /* Receive a datagram. 8942 * Note: This is pretty much the same routine as in core/datagram.c 8943 * with a few changes to make lksctp work. 8944 */ 8945 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8946 int noblock, int *err) 8947 { 8948 int error; 8949 struct sk_buff *skb; 8950 long timeo; 8951 8952 timeo = sock_rcvtimeo(sk, noblock); 8953 8954 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8955 MAX_SCHEDULE_TIMEOUT); 8956 8957 do { 8958 /* Again only user level code calls this function, 8959 * so nothing interrupt level 8960 * will suddenly eat the receive_queue. 8961 * 8962 * Look at current nfs client by the way... 8963 * However, this function was correct in any case. 8) 8964 */ 8965 if (flags & MSG_PEEK) { 8966 skb = skb_peek(&sk->sk_receive_queue); 8967 if (skb) 8968 refcount_inc(&skb->users); 8969 } else { 8970 skb = __skb_dequeue(&sk->sk_receive_queue); 8971 } 8972 8973 if (skb) 8974 return skb; 8975 8976 /* Caller is allowed not to check sk->sk_err before calling. */ 8977 error = sock_error(sk); 8978 if (error) 8979 goto no_packet; 8980 8981 if (sk->sk_shutdown & RCV_SHUTDOWN) 8982 break; 8983 8984 if (sk_can_busy_loop(sk)) { 8985 sk_busy_loop(sk, noblock); 8986 8987 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8988 continue; 8989 } 8990 8991 /* User doesn't want to wait. */ 8992 error = -EAGAIN; 8993 if (!timeo) 8994 goto no_packet; 8995 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8996 8997 return NULL; 8998 8999 no_packet: 9000 *err = error; 9001 return NULL; 9002 } 9003 9004 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9005 static void __sctp_write_space(struct sctp_association *asoc) 9006 { 9007 struct sock *sk = asoc->base.sk; 9008 9009 if (sctp_wspace(asoc) <= 0) 9010 return; 9011 9012 if (waitqueue_active(&asoc->wait)) 9013 wake_up_interruptible(&asoc->wait); 9014 9015 if (sctp_writeable(sk)) { 9016 struct socket_wq *wq; 9017 9018 rcu_read_lock(); 9019 wq = rcu_dereference(sk->sk_wq); 9020 if (wq) { 9021 if (waitqueue_active(&wq->wait)) 9022 wake_up_interruptible(&wq->wait); 9023 9024 /* Note that we try to include the Async I/O support 9025 * here by modeling from the current TCP/UDP code. 9026 * We have not tested with it yet. 9027 */ 9028 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9029 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9030 } 9031 rcu_read_unlock(); 9032 } 9033 } 9034 9035 static void sctp_wake_up_waiters(struct sock *sk, 9036 struct sctp_association *asoc) 9037 { 9038 struct sctp_association *tmp = asoc; 9039 9040 /* We do accounting for the sndbuf space per association, 9041 * so we only need to wake our own association. 9042 */ 9043 if (asoc->ep->sndbuf_policy) 9044 return __sctp_write_space(asoc); 9045 9046 /* If association goes down and is just flushing its 9047 * outq, then just normally notify others. 9048 */ 9049 if (asoc->base.dead) 9050 return sctp_write_space(sk); 9051 9052 /* Accounting for the sndbuf space is per socket, so we 9053 * need to wake up others, try to be fair and in case of 9054 * other associations, let them have a go first instead 9055 * of just doing a sctp_write_space() call. 9056 * 9057 * Note that we reach sctp_wake_up_waiters() only when 9058 * associations free up queued chunks, thus we are under 9059 * lock and the list of associations on a socket is 9060 * guaranteed not to change. 9061 */ 9062 for (tmp = list_next_entry(tmp, asocs); 1; 9063 tmp = list_next_entry(tmp, asocs)) { 9064 /* Manually skip the head element. */ 9065 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9066 continue; 9067 /* Wake up association. */ 9068 __sctp_write_space(tmp); 9069 /* We've reached the end. */ 9070 if (tmp == asoc) 9071 break; 9072 } 9073 } 9074 9075 /* Do accounting for the sndbuf space. 9076 * Decrement the used sndbuf space of the corresponding association by the 9077 * data size which was just transmitted(freed). 9078 */ 9079 static void sctp_wfree(struct sk_buff *skb) 9080 { 9081 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9082 struct sctp_association *asoc = chunk->asoc; 9083 struct sock *sk = asoc->base.sk; 9084 9085 sk_mem_uncharge(sk, skb->truesize); 9086 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9087 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9088 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9089 &sk->sk_wmem_alloc)); 9090 9091 if (chunk->shkey) { 9092 struct sctp_shared_key *shkey = chunk->shkey; 9093 9094 /* refcnt == 2 and !list_empty mean after this release, it's 9095 * not being used anywhere, and it's time to notify userland 9096 * that this shkey can be freed if it's been deactivated. 9097 */ 9098 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9099 refcount_read(&shkey->refcnt) == 2) { 9100 struct sctp_ulpevent *ev; 9101 9102 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9103 SCTP_AUTH_FREE_KEY, 9104 GFP_KERNEL); 9105 if (ev) 9106 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9107 } 9108 sctp_auth_shkey_release(chunk->shkey); 9109 } 9110 9111 sock_wfree(skb); 9112 sctp_wake_up_waiters(sk, asoc); 9113 9114 sctp_association_put(asoc); 9115 } 9116 9117 /* Do accounting for the receive space on the socket. 9118 * Accounting for the association is done in ulpevent.c 9119 * We set this as a destructor for the cloned data skbs so that 9120 * accounting is done at the correct time. 9121 */ 9122 void sctp_sock_rfree(struct sk_buff *skb) 9123 { 9124 struct sock *sk = skb->sk; 9125 struct sctp_ulpevent *event = sctp_skb2event(skb); 9126 9127 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9128 9129 /* 9130 * Mimic the behavior of sock_rfree 9131 */ 9132 sk_mem_uncharge(sk, event->rmem_len); 9133 } 9134 9135 9136 /* Helper function to wait for space in the sndbuf. */ 9137 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9138 size_t msg_len) 9139 { 9140 struct sock *sk = asoc->base.sk; 9141 long current_timeo = *timeo_p; 9142 DEFINE_WAIT(wait); 9143 int err = 0; 9144 9145 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9146 *timeo_p, msg_len); 9147 9148 /* Increment the association's refcnt. */ 9149 sctp_association_hold(asoc); 9150 9151 /* Wait on the association specific sndbuf space. */ 9152 for (;;) { 9153 prepare_to_wait_exclusive(&asoc->wait, &wait, 9154 TASK_INTERRUPTIBLE); 9155 if (asoc->base.dead) 9156 goto do_dead; 9157 if (!*timeo_p) 9158 goto do_nonblock; 9159 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9160 goto do_error; 9161 if (signal_pending(current)) 9162 goto do_interrupted; 9163 if (sk_under_memory_pressure(sk)) 9164 sk_mem_reclaim(sk); 9165 if ((int)msg_len <= sctp_wspace(asoc) && 9166 sk_wmem_schedule(sk, msg_len)) 9167 break; 9168 9169 /* Let another process have a go. Since we are going 9170 * to sleep anyway. 9171 */ 9172 release_sock(sk); 9173 current_timeo = schedule_timeout(current_timeo); 9174 lock_sock(sk); 9175 if (sk != asoc->base.sk) 9176 goto do_error; 9177 9178 *timeo_p = current_timeo; 9179 } 9180 9181 out: 9182 finish_wait(&asoc->wait, &wait); 9183 9184 /* Release the association's refcnt. */ 9185 sctp_association_put(asoc); 9186 9187 return err; 9188 9189 do_dead: 9190 err = -ESRCH; 9191 goto out; 9192 9193 do_error: 9194 err = -EPIPE; 9195 goto out; 9196 9197 do_interrupted: 9198 err = sock_intr_errno(*timeo_p); 9199 goto out; 9200 9201 do_nonblock: 9202 err = -EAGAIN; 9203 goto out; 9204 } 9205 9206 void sctp_data_ready(struct sock *sk) 9207 { 9208 struct socket_wq *wq; 9209 9210 rcu_read_lock(); 9211 wq = rcu_dereference(sk->sk_wq); 9212 if (skwq_has_sleeper(wq)) 9213 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9214 EPOLLRDNORM | EPOLLRDBAND); 9215 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9216 rcu_read_unlock(); 9217 } 9218 9219 /* If socket sndbuf has changed, wake up all per association waiters. */ 9220 void sctp_write_space(struct sock *sk) 9221 { 9222 struct sctp_association *asoc; 9223 9224 /* Wake up the tasks in each wait queue. */ 9225 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9226 __sctp_write_space(asoc); 9227 } 9228 } 9229 9230 /* Is there any sndbuf space available on the socket? 9231 * 9232 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9233 * associations on the same socket. For a UDP-style socket with 9234 * multiple associations, it is possible for it to be "unwriteable" 9235 * prematurely. I assume that this is acceptable because 9236 * a premature "unwriteable" is better than an accidental "writeable" which 9237 * would cause an unwanted block under certain circumstances. For the 1-1 9238 * UDP-style sockets or TCP-style sockets, this code should work. 9239 * - Daisy 9240 */ 9241 static bool sctp_writeable(struct sock *sk) 9242 { 9243 return sk->sk_sndbuf > sk->sk_wmem_queued; 9244 } 9245 9246 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9247 * returns immediately with EINPROGRESS. 9248 */ 9249 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9250 { 9251 struct sock *sk = asoc->base.sk; 9252 int err = 0; 9253 long current_timeo = *timeo_p; 9254 DEFINE_WAIT(wait); 9255 9256 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9257 9258 /* Increment the association's refcnt. */ 9259 sctp_association_hold(asoc); 9260 9261 for (;;) { 9262 prepare_to_wait_exclusive(&asoc->wait, &wait, 9263 TASK_INTERRUPTIBLE); 9264 if (!*timeo_p) 9265 goto do_nonblock; 9266 if (sk->sk_shutdown & RCV_SHUTDOWN) 9267 break; 9268 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9269 asoc->base.dead) 9270 goto do_error; 9271 if (signal_pending(current)) 9272 goto do_interrupted; 9273 9274 if (sctp_state(asoc, ESTABLISHED)) 9275 break; 9276 9277 /* Let another process have a go. Since we are going 9278 * to sleep anyway. 9279 */ 9280 release_sock(sk); 9281 current_timeo = schedule_timeout(current_timeo); 9282 lock_sock(sk); 9283 9284 *timeo_p = current_timeo; 9285 } 9286 9287 out: 9288 finish_wait(&asoc->wait, &wait); 9289 9290 /* Release the association's refcnt. */ 9291 sctp_association_put(asoc); 9292 9293 return err; 9294 9295 do_error: 9296 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9297 err = -ETIMEDOUT; 9298 else 9299 err = -ECONNREFUSED; 9300 goto out; 9301 9302 do_interrupted: 9303 err = sock_intr_errno(*timeo_p); 9304 goto out; 9305 9306 do_nonblock: 9307 err = -EINPROGRESS; 9308 goto out; 9309 } 9310 9311 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9312 { 9313 struct sctp_endpoint *ep; 9314 int err = 0; 9315 DEFINE_WAIT(wait); 9316 9317 ep = sctp_sk(sk)->ep; 9318 9319 9320 for (;;) { 9321 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9322 TASK_INTERRUPTIBLE); 9323 9324 if (list_empty(&ep->asocs)) { 9325 release_sock(sk); 9326 timeo = schedule_timeout(timeo); 9327 lock_sock(sk); 9328 } 9329 9330 err = -EINVAL; 9331 if (!sctp_sstate(sk, LISTENING)) 9332 break; 9333 9334 err = 0; 9335 if (!list_empty(&ep->asocs)) 9336 break; 9337 9338 err = sock_intr_errno(timeo); 9339 if (signal_pending(current)) 9340 break; 9341 9342 err = -EAGAIN; 9343 if (!timeo) 9344 break; 9345 } 9346 9347 finish_wait(sk_sleep(sk), &wait); 9348 9349 return err; 9350 } 9351 9352 static void sctp_wait_for_close(struct sock *sk, long timeout) 9353 { 9354 DEFINE_WAIT(wait); 9355 9356 do { 9357 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9358 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9359 break; 9360 release_sock(sk); 9361 timeout = schedule_timeout(timeout); 9362 lock_sock(sk); 9363 } while (!signal_pending(current) && timeout); 9364 9365 finish_wait(sk_sleep(sk), &wait); 9366 } 9367 9368 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9369 { 9370 struct sk_buff *frag; 9371 9372 if (!skb->data_len) 9373 goto done; 9374 9375 /* Don't forget the fragments. */ 9376 skb_walk_frags(skb, frag) 9377 sctp_skb_set_owner_r_frag(frag, sk); 9378 9379 done: 9380 sctp_skb_set_owner_r(skb, sk); 9381 } 9382 9383 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9384 struct sctp_association *asoc) 9385 { 9386 struct inet_sock *inet = inet_sk(sk); 9387 struct inet_sock *newinet; 9388 struct sctp_sock *sp = sctp_sk(sk); 9389 struct sctp_endpoint *ep = sp->ep; 9390 9391 newsk->sk_type = sk->sk_type; 9392 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9393 newsk->sk_flags = sk->sk_flags; 9394 newsk->sk_tsflags = sk->sk_tsflags; 9395 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9396 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9397 newsk->sk_reuse = sk->sk_reuse; 9398 sctp_sk(newsk)->reuse = sp->reuse; 9399 9400 newsk->sk_shutdown = sk->sk_shutdown; 9401 newsk->sk_destruct = sctp_destruct_sock; 9402 newsk->sk_family = sk->sk_family; 9403 newsk->sk_protocol = IPPROTO_SCTP; 9404 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9405 newsk->sk_sndbuf = sk->sk_sndbuf; 9406 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9407 newsk->sk_lingertime = sk->sk_lingertime; 9408 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9409 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9410 newsk->sk_rxhash = sk->sk_rxhash; 9411 9412 newinet = inet_sk(newsk); 9413 9414 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9415 * getsockname() and getpeername() 9416 */ 9417 newinet->inet_sport = inet->inet_sport; 9418 newinet->inet_saddr = inet->inet_saddr; 9419 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9420 newinet->inet_dport = htons(asoc->peer.port); 9421 newinet->pmtudisc = inet->pmtudisc; 9422 newinet->inet_id = prandom_u32(); 9423 9424 newinet->uc_ttl = inet->uc_ttl; 9425 newinet->mc_loop = 1; 9426 newinet->mc_ttl = 1; 9427 newinet->mc_index = 0; 9428 newinet->mc_list = NULL; 9429 9430 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9431 net_enable_timestamp(); 9432 9433 /* Set newsk security attributes from orginal sk and connection 9434 * security attribute from ep. 9435 */ 9436 security_sctp_sk_clone(ep, sk, newsk); 9437 } 9438 9439 static inline void sctp_copy_descendant(struct sock *sk_to, 9440 const struct sock *sk_from) 9441 { 9442 int ancestor_size = sizeof(struct inet_sock) + 9443 sizeof(struct sctp_sock) - 9444 offsetof(struct sctp_sock, pd_lobby); 9445 9446 if (sk_from->sk_family == PF_INET6) 9447 ancestor_size += sizeof(struct ipv6_pinfo); 9448 9449 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9450 } 9451 9452 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9453 * and its messages to the newsk. 9454 */ 9455 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9456 struct sctp_association *assoc, 9457 enum sctp_socket_type type) 9458 { 9459 struct sctp_sock *oldsp = sctp_sk(oldsk); 9460 struct sctp_sock *newsp = sctp_sk(newsk); 9461 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9462 struct sctp_endpoint *newep = newsp->ep; 9463 struct sk_buff *skb, *tmp; 9464 struct sctp_ulpevent *event; 9465 struct sctp_bind_hashbucket *head; 9466 int err; 9467 9468 /* Migrate socket buffer sizes and all the socket level options to the 9469 * new socket. 9470 */ 9471 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9472 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9473 /* Brute force copy old sctp opt. */ 9474 sctp_copy_descendant(newsk, oldsk); 9475 9476 /* Restore the ep value that was overwritten with the above structure 9477 * copy. 9478 */ 9479 newsp->ep = newep; 9480 newsp->hmac = NULL; 9481 9482 /* Hook this new socket in to the bind_hash list. */ 9483 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9484 inet_sk(oldsk)->inet_num)]; 9485 spin_lock_bh(&head->lock); 9486 pp = sctp_sk(oldsk)->bind_hash; 9487 sk_add_bind_node(newsk, &pp->owner); 9488 sctp_sk(newsk)->bind_hash = pp; 9489 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9490 spin_unlock_bh(&head->lock); 9491 9492 /* Copy the bind_addr list from the original endpoint to the new 9493 * endpoint so that we can handle restarts properly 9494 */ 9495 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9496 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9497 if (err) 9498 return err; 9499 9500 /* New ep's auth_hmacs should be set if old ep's is set, in case 9501 * that net->sctp.auth_enable has been changed to 0 by users and 9502 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9503 */ 9504 if (oldsp->ep->auth_hmacs) { 9505 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9506 if (err) 9507 return err; 9508 } 9509 9510 /* Move any messages in the old socket's receive queue that are for the 9511 * peeled off association to the new socket's receive queue. 9512 */ 9513 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9514 event = sctp_skb2event(skb); 9515 if (event->asoc == assoc) { 9516 __skb_unlink(skb, &oldsk->sk_receive_queue); 9517 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9518 sctp_skb_set_owner_r_frag(skb, newsk); 9519 } 9520 } 9521 9522 /* Clean up any messages pending delivery due to partial 9523 * delivery. Three cases: 9524 * 1) No partial deliver; no work. 9525 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9526 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9527 */ 9528 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9529 9530 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9531 struct sk_buff_head *queue; 9532 9533 /* Decide which queue to move pd_lobby skbs to. */ 9534 if (assoc->ulpq.pd_mode) { 9535 queue = &newsp->pd_lobby; 9536 } else 9537 queue = &newsk->sk_receive_queue; 9538 9539 /* Walk through the pd_lobby, looking for skbs that 9540 * need moved to the new socket. 9541 */ 9542 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9543 event = sctp_skb2event(skb); 9544 if (event->asoc == assoc) { 9545 __skb_unlink(skb, &oldsp->pd_lobby); 9546 __skb_queue_tail(queue, skb); 9547 sctp_skb_set_owner_r_frag(skb, newsk); 9548 } 9549 } 9550 9551 /* Clear up any skbs waiting for the partial 9552 * delivery to finish. 9553 */ 9554 if (assoc->ulpq.pd_mode) 9555 sctp_clear_pd(oldsk, NULL); 9556 9557 } 9558 9559 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9560 9561 /* Set the type of socket to indicate that it is peeled off from the 9562 * original UDP-style socket or created with the accept() call on a 9563 * TCP-style socket.. 9564 */ 9565 newsp->type = type; 9566 9567 /* Mark the new socket "in-use" by the user so that any packets 9568 * that may arrive on the association after we've moved it are 9569 * queued to the backlog. This prevents a potential race between 9570 * backlog processing on the old socket and new-packet processing 9571 * on the new socket. 9572 * 9573 * The caller has just allocated newsk so we can guarantee that other 9574 * paths won't try to lock it and then oldsk. 9575 */ 9576 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9577 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9578 sctp_assoc_migrate(assoc, newsk); 9579 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9580 9581 /* If the association on the newsk is already closed before accept() 9582 * is called, set RCV_SHUTDOWN flag. 9583 */ 9584 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9585 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9586 newsk->sk_shutdown |= RCV_SHUTDOWN; 9587 } else { 9588 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9589 } 9590 9591 release_sock(newsk); 9592 9593 return 0; 9594 } 9595 9596 9597 /* This proto struct describes the ULP interface for SCTP. */ 9598 struct proto sctp_prot = { 9599 .name = "SCTP", 9600 .owner = THIS_MODULE, 9601 .close = sctp_close, 9602 .disconnect = sctp_disconnect, 9603 .accept = sctp_accept, 9604 .ioctl = sctp_ioctl, 9605 .init = sctp_init_sock, 9606 .destroy = sctp_destroy_sock, 9607 .shutdown = sctp_shutdown, 9608 .setsockopt = sctp_setsockopt, 9609 .getsockopt = sctp_getsockopt, 9610 .sendmsg = sctp_sendmsg, 9611 .recvmsg = sctp_recvmsg, 9612 .bind = sctp_bind, 9613 .backlog_rcv = sctp_backlog_rcv, 9614 .hash = sctp_hash, 9615 .unhash = sctp_unhash, 9616 .no_autobind = true, 9617 .obj_size = sizeof(struct sctp_sock), 9618 .useroffset = offsetof(struct sctp_sock, subscribe), 9619 .usersize = offsetof(struct sctp_sock, initmsg) - 9620 offsetof(struct sctp_sock, subscribe) + 9621 sizeof_field(struct sctp_sock, initmsg), 9622 .sysctl_mem = sysctl_sctp_mem, 9623 .sysctl_rmem = sysctl_sctp_rmem, 9624 .sysctl_wmem = sysctl_sctp_wmem, 9625 .memory_pressure = &sctp_memory_pressure, 9626 .enter_memory_pressure = sctp_enter_memory_pressure, 9627 .memory_allocated = &sctp_memory_allocated, 9628 .sockets_allocated = &sctp_sockets_allocated, 9629 }; 9630 9631 #if IS_ENABLED(CONFIG_IPV6) 9632 9633 #include <net/transp_v6.h> 9634 static void sctp_v6_destroy_sock(struct sock *sk) 9635 { 9636 sctp_destroy_sock(sk); 9637 inet6_destroy_sock(sk); 9638 } 9639 9640 struct proto sctpv6_prot = { 9641 .name = "SCTPv6", 9642 .owner = THIS_MODULE, 9643 .close = sctp_close, 9644 .disconnect = sctp_disconnect, 9645 .accept = sctp_accept, 9646 .ioctl = sctp_ioctl, 9647 .init = sctp_init_sock, 9648 .destroy = sctp_v6_destroy_sock, 9649 .shutdown = sctp_shutdown, 9650 .setsockopt = sctp_setsockopt, 9651 .getsockopt = sctp_getsockopt, 9652 .sendmsg = sctp_sendmsg, 9653 .recvmsg = sctp_recvmsg, 9654 .bind = sctp_bind, 9655 .backlog_rcv = sctp_backlog_rcv, 9656 .hash = sctp_hash, 9657 .unhash = sctp_unhash, 9658 .no_autobind = true, 9659 .obj_size = sizeof(struct sctp6_sock), 9660 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9661 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9662 offsetof(struct sctp6_sock, sctp.subscribe) + 9663 sizeof_field(struct sctp6_sock, sctp.initmsg), 9664 .sysctl_mem = sysctl_sctp_mem, 9665 .sysctl_rmem = sysctl_sctp_rmem, 9666 .sysctl_wmem = sysctl_sctp_wmem, 9667 .memory_pressure = &sctp_memory_pressure, 9668 .enter_memory_pressure = sctp_enter_memory_pressure, 9669 .memory_allocated = &sctp_memory_allocated, 9670 .sockets_allocated = &sctp_sockets_allocated, 9671 }; 9672 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9673