1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 83 /* Forward declarations for internal helper functions. */ 84 static int sctp_writeable(struct sock *sk); 85 static void sctp_wfree(struct sk_buff *skb); 86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 87 size_t msg_len); 88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 90 static int sctp_wait_for_accept(struct sock *sk, long timeo); 91 static void sctp_wait_for_close(struct sock *sk, long timeo); 92 static void sctp_destruct_sock(struct sock *sk); 93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 94 union sctp_addr *addr, int len); 95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf(struct sctp_association *asoc, 100 struct sctp_chunk *chunk); 101 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 102 static int sctp_autobind(struct sock *sk); 103 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 104 struct sctp_association *assoc, 105 enum sctp_socket_type type); 106 107 static unsigned long sctp_memory_pressure; 108 static atomic_long_t sctp_memory_allocated; 109 struct percpu_counter sctp_sockets_allocated; 110 111 static void sctp_enter_memory_pressure(struct sock *sk) 112 { 113 sctp_memory_pressure = 1; 114 } 115 116 117 /* Get the sndbuf space available at the time on the association. */ 118 static inline int sctp_wspace(struct sctp_association *asoc) 119 { 120 int amt; 121 122 if (asoc->ep->sndbuf_policy) 123 amt = asoc->sndbuf_used; 124 else 125 amt = sk_wmem_alloc_get(asoc->base.sk); 126 127 if (amt >= asoc->base.sk->sk_sndbuf) { 128 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 129 amt = 0; 130 else { 131 amt = sk_stream_wspace(asoc->base.sk); 132 if (amt < 0) 133 amt = 0; 134 } 135 } else { 136 amt = asoc->base.sk->sk_sndbuf - amt; 137 } 138 return amt; 139 } 140 141 /* Increment the used sndbuf space count of the corresponding association by 142 * the size of the outgoing data chunk. 143 * Also, set the skb destructor for sndbuf accounting later. 144 * 145 * Since it is always 1-1 between chunk and skb, and also a new skb is always 146 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 147 * destructor in the data chunk skb for the purpose of the sndbuf space 148 * tracking. 149 */ 150 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 151 { 152 struct sctp_association *asoc = chunk->asoc; 153 struct sock *sk = asoc->base.sk; 154 155 /* The sndbuf space is tracked per association. */ 156 sctp_association_hold(asoc); 157 158 skb_set_owner_w(chunk->skb, sk); 159 160 chunk->skb->destructor = sctp_wfree; 161 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 162 skb_shinfo(chunk->skb)->destructor_arg = chunk; 163 164 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 165 sizeof(struct sk_buff) + 166 sizeof(struct sctp_chunk); 167 168 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 169 sk->sk_wmem_queued += chunk->skb->truesize; 170 sk_mem_charge(sk, chunk->skb->truesize); 171 } 172 173 /* Verify that this is a valid address. */ 174 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 175 int len) 176 { 177 struct sctp_af *af; 178 179 /* Verify basic sockaddr. */ 180 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 181 if (!af) 182 return -EINVAL; 183 184 /* Is this a valid SCTP address? */ 185 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 186 return -EINVAL; 187 188 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 189 return -EINVAL; 190 191 return 0; 192 } 193 194 /* Look up the association by its id. If this is not a UDP-style 195 * socket, the ID field is always ignored. 196 */ 197 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 198 { 199 struct sctp_association *asoc = NULL; 200 201 /* If this is not a UDP-style socket, assoc id should be ignored. */ 202 if (!sctp_style(sk, UDP)) { 203 /* Return NULL if the socket state is not ESTABLISHED. It 204 * could be a TCP-style listening socket or a socket which 205 * hasn't yet called connect() to establish an association. 206 */ 207 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 208 return NULL; 209 210 /* Get the first and the only association from the list. */ 211 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 212 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 213 struct sctp_association, asocs); 214 return asoc; 215 } 216 217 /* Otherwise this is a UDP-style socket. */ 218 if (!id || (id == (sctp_assoc_t)-1)) 219 return NULL; 220 221 spin_lock_bh(&sctp_assocs_id_lock); 222 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 223 spin_unlock_bh(&sctp_assocs_id_lock); 224 225 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 226 return NULL; 227 228 return asoc; 229 } 230 231 /* Look up the transport from an address and an assoc id. If both address and 232 * id are specified, the associations matching the address and the id should be 233 * the same. 234 */ 235 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 236 struct sockaddr_storage *addr, 237 sctp_assoc_t id) 238 { 239 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 240 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 241 union sctp_addr *laddr = (union sctp_addr *)addr; 242 struct sctp_transport *transport; 243 244 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 245 return NULL; 246 247 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 248 laddr, 249 &transport); 250 251 if (!addr_asoc) 252 return NULL; 253 254 id_asoc = sctp_id2assoc(sk, id); 255 if (id_asoc && (id_asoc != addr_asoc)) 256 return NULL; 257 258 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 259 (union sctp_addr *)addr); 260 261 return transport; 262 } 263 264 /* API 3.1.2 bind() - UDP Style Syntax 265 * The syntax of bind() is, 266 * 267 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 268 * 269 * sd - the socket descriptor returned by socket(). 270 * addr - the address structure (struct sockaddr_in or struct 271 * sockaddr_in6 [RFC 2553]), 272 * addr_len - the size of the address structure. 273 */ 274 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 275 { 276 int retval = 0; 277 278 lock_sock(sk); 279 280 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 281 addr, addr_len); 282 283 /* Disallow binding twice. */ 284 if (!sctp_sk(sk)->ep->base.bind_addr.port) 285 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 286 addr_len); 287 else 288 retval = -EINVAL; 289 290 release_sock(sk); 291 292 return retval; 293 } 294 295 static long sctp_get_port_local(struct sock *, union sctp_addr *); 296 297 /* Verify this is a valid sockaddr. */ 298 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 299 union sctp_addr *addr, int len) 300 { 301 struct sctp_af *af; 302 303 /* Check minimum size. */ 304 if (len < sizeof (struct sockaddr)) 305 return NULL; 306 307 /* V4 mapped address are really of AF_INET family */ 308 if (addr->sa.sa_family == AF_INET6 && 309 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 310 if (!opt->pf->af_supported(AF_INET, opt)) 311 return NULL; 312 } else { 313 /* Does this PF support this AF? */ 314 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 315 return NULL; 316 } 317 318 /* If we get this far, af is valid. */ 319 af = sctp_get_af_specific(addr->sa.sa_family); 320 321 if (len < af->sockaddr_len) 322 return NULL; 323 324 return af; 325 } 326 327 /* Bind a local address either to an endpoint or to an association. */ 328 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 329 { 330 struct net *net = sock_net(sk); 331 struct sctp_sock *sp = sctp_sk(sk); 332 struct sctp_endpoint *ep = sp->ep; 333 struct sctp_bind_addr *bp = &ep->base.bind_addr; 334 struct sctp_af *af; 335 unsigned short snum; 336 int ret = 0; 337 338 /* Common sockaddr verification. */ 339 af = sctp_sockaddr_af(sp, addr, len); 340 if (!af) { 341 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 342 __func__, sk, addr, len); 343 return -EINVAL; 344 } 345 346 snum = ntohs(addr->v4.sin_port); 347 348 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 349 __func__, sk, &addr->sa, bp->port, snum, len); 350 351 /* PF specific bind() address verification. */ 352 if (!sp->pf->bind_verify(sp, addr)) 353 return -EADDRNOTAVAIL; 354 355 /* We must either be unbound, or bind to the same port. 356 * It's OK to allow 0 ports if we are already bound. 357 * We'll just inhert an already bound port in this case 358 */ 359 if (bp->port) { 360 if (!snum) 361 snum = bp->port; 362 else if (snum != bp->port) { 363 pr_debug("%s: new port %d doesn't match existing port " 364 "%d\n", __func__, snum, bp->port); 365 return -EINVAL; 366 } 367 } 368 369 if (snum && snum < inet_prot_sock(net) && 370 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 371 return -EACCES; 372 373 /* See if the address matches any of the addresses we may have 374 * already bound before checking against other endpoints. 375 */ 376 if (sctp_bind_addr_match(bp, addr, sp)) 377 return -EINVAL; 378 379 /* Make sure we are allowed to bind here. 380 * The function sctp_get_port_local() does duplicate address 381 * detection. 382 */ 383 addr->v4.sin_port = htons(snum); 384 if ((ret = sctp_get_port_local(sk, addr))) { 385 return -EADDRINUSE; 386 } 387 388 /* Refresh ephemeral port. */ 389 if (!bp->port) 390 bp->port = inet_sk(sk)->inet_num; 391 392 /* Add the address to the bind address list. 393 * Use GFP_ATOMIC since BHs will be disabled. 394 */ 395 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 396 SCTP_ADDR_SRC, GFP_ATOMIC); 397 398 /* Copy back into socket for getsockname() use. */ 399 if (!ret) { 400 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 401 sp->pf->to_sk_saddr(addr, sk); 402 } 403 404 return ret; 405 } 406 407 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 408 * 409 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 410 * at any one time. If a sender, after sending an ASCONF chunk, decides 411 * it needs to transfer another ASCONF Chunk, it MUST wait until the 412 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 413 * subsequent ASCONF. Note this restriction binds each side, so at any 414 * time two ASCONF may be in-transit on any given association (one sent 415 * from each endpoint). 416 */ 417 static int sctp_send_asconf(struct sctp_association *asoc, 418 struct sctp_chunk *chunk) 419 { 420 struct net *net = sock_net(asoc->base.sk); 421 int retval = 0; 422 423 /* If there is an outstanding ASCONF chunk, queue it for later 424 * transmission. 425 */ 426 if (asoc->addip_last_asconf) { 427 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 428 goto out; 429 } 430 431 /* Hold the chunk until an ASCONF_ACK is received. */ 432 sctp_chunk_hold(chunk); 433 retval = sctp_primitive_ASCONF(net, asoc, chunk); 434 if (retval) 435 sctp_chunk_free(chunk); 436 else 437 asoc->addip_last_asconf = chunk; 438 439 out: 440 return retval; 441 } 442 443 /* Add a list of addresses as bind addresses to local endpoint or 444 * association. 445 * 446 * Basically run through each address specified in the addrs/addrcnt 447 * array/length pair, determine if it is IPv6 or IPv4 and call 448 * sctp_do_bind() on it. 449 * 450 * If any of them fails, then the operation will be reversed and the 451 * ones that were added will be removed. 452 * 453 * Only sctp_setsockopt_bindx() is supposed to call this function. 454 */ 455 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 456 { 457 int cnt; 458 int retval = 0; 459 void *addr_buf; 460 struct sockaddr *sa_addr; 461 struct sctp_af *af; 462 463 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 464 addrs, addrcnt); 465 466 addr_buf = addrs; 467 for (cnt = 0; cnt < addrcnt; cnt++) { 468 /* The list may contain either IPv4 or IPv6 address; 469 * determine the address length for walking thru the list. 470 */ 471 sa_addr = addr_buf; 472 af = sctp_get_af_specific(sa_addr->sa_family); 473 if (!af) { 474 retval = -EINVAL; 475 goto err_bindx_add; 476 } 477 478 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 479 af->sockaddr_len); 480 481 addr_buf += af->sockaddr_len; 482 483 err_bindx_add: 484 if (retval < 0) { 485 /* Failed. Cleanup the ones that have been added */ 486 if (cnt > 0) 487 sctp_bindx_rem(sk, addrs, cnt); 488 return retval; 489 } 490 } 491 492 return retval; 493 } 494 495 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 496 * associations that are part of the endpoint indicating that a list of local 497 * addresses are added to the endpoint. 498 * 499 * If any of the addresses is already in the bind address list of the 500 * association, we do not send the chunk for that association. But it will not 501 * affect other associations. 502 * 503 * Only sctp_setsockopt_bindx() is supposed to call this function. 504 */ 505 static int sctp_send_asconf_add_ip(struct sock *sk, 506 struct sockaddr *addrs, 507 int addrcnt) 508 { 509 struct net *net = sock_net(sk); 510 struct sctp_sock *sp; 511 struct sctp_endpoint *ep; 512 struct sctp_association *asoc; 513 struct sctp_bind_addr *bp; 514 struct sctp_chunk *chunk; 515 struct sctp_sockaddr_entry *laddr; 516 union sctp_addr *addr; 517 union sctp_addr saveaddr; 518 void *addr_buf; 519 struct sctp_af *af; 520 struct list_head *p; 521 int i; 522 int retval = 0; 523 524 if (!net->sctp.addip_enable) 525 return retval; 526 527 sp = sctp_sk(sk); 528 ep = sp->ep; 529 530 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 531 __func__, sk, addrs, addrcnt); 532 533 list_for_each_entry(asoc, &ep->asocs, asocs) { 534 if (!asoc->peer.asconf_capable) 535 continue; 536 537 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 538 continue; 539 540 if (!sctp_state(asoc, ESTABLISHED)) 541 continue; 542 543 /* Check if any address in the packed array of addresses is 544 * in the bind address list of the association. If so, 545 * do not send the asconf chunk to its peer, but continue with 546 * other associations. 547 */ 548 addr_buf = addrs; 549 for (i = 0; i < addrcnt; i++) { 550 addr = addr_buf; 551 af = sctp_get_af_specific(addr->v4.sin_family); 552 if (!af) { 553 retval = -EINVAL; 554 goto out; 555 } 556 557 if (sctp_assoc_lookup_laddr(asoc, addr)) 558 break; 559 560 addr_buf += af->sockaddr_len; 561 } 562 if (i < addrcnt) 563 continue; 564 565 /* Use the first valid address in bind addr list of 566 * association as Address Parameter of ASCONF CHUNK. 567 */ 568 bp = &asoc->base.bind_addr; 569 p = bp->address_list.next; 570 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 571 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 572 addrcnt, SCTP_PARAM_ADD_IP); 573 if (!chunk) { 574 retval = -ENOMEM; 575 goto out; 576 } 577 578 /* Add the new addresses to the bind address list with 579 * use_as_src set to 0. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 memcpy(&saveaddr, addr, af->sockaddr_len); 586 retval = sctp_add_bind_addr(bp, &saveaddr, 587 sizeof(saveaddr), 588 SCTP_ADDR_NEW, GFP_ATOMIC); 589 addr_buf += af->sockaddr_len; 590 } 591 if (asoc->src_out_of_asoc_ok) { 592 struct sctp_transport *trans; 593 594 list_for_each_entry(trans, 595 &asoc->peer.transport_addr_list, transports) { 596 /* Clear the source and route cache */ 597 sctp_transport_dst_release(trans); 598 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 599 2*asoc->pathmtu, 4380)); 600 trans->ssthresh = asoc->peer.i.a_rwnd; 601 trans->rto = asoc->rto_initial; 602 sctp_max_rto(asoc, trans); 603 trans->rtt = trans->srtt = trans->rttvar = 0; 604 sctp_transport_route(trans, NULL, 605 sctp_sk(asoc->base.sk)); 606 } 607 } 608 retval = sctp_send_asconf(asoc, chunk); 609 } 610 611 out: 612 return retval; 613 } 614 615 /* Remove a list of addresses from bind addresses list. Do not remove the 616 * last address. 617 * 618 * Basically run through each address specified in the addrs/addrcnt 619 * array/length pair, determine if it is IPv6 or IPv4 and call 620 * sctp_del_bind() on it. 621 * 622 * If any of them fails, then the operation will be reversed and the 623 * ones that were removed will be added back. 624 * 625 * At least one address has to be left; if only one address is 626 * available, the operation will return -EBUSY. 627 * 628 * Only sctp_setsockopt_bindx() is supposed to call this function. 629 */ 630 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 631 { 632 struct sctp_sock *sp = sctp_sk(sk); 633 struct sctp_endpoint *ep = sp->ep; 634 int cnt; 635 struct sctp_bind_addr *bp = &ep->base.bind_addr; 636 int retval = 0; 637 void *addr_buf; 638 union sctp_addr *sa_addr; 639 struct sctp_af *af; 640 641 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 642 __func__, sk, addrs, addrcnt); 643 644 addr_buf = addrs; 645 for (cnt = 0; cnt < addrcnt; cnt++) { 646 /* If the bind address list is empty or if there is only one 647 * bind address, there is nothing more to be removed (we need 648 * at least one address here). 649 */ 650 if (list_empty(&bp->address_list) || 651 (sctp_list_single_entry(&bp->address_list))) { 652 retval = -EBUSY; 653 goto err_bindx_rem; 654 } 655 656 sa_addr = addr_buf; 657 af = sctp_get_af_specific(sa_addr->sa.sa_family); 658 if (!af) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 if (!af->addr_valid(sa_addr, sp, NULL)) { 664 retval = -EADDRNOTAVAIL; 665 goto err_bindx_rem; 666 } 667 668 if (sa_addr->v4.sin_port && 669 sa_addr->v4.sin_port != htons(bp->port)) { 670 retval = -EINVAL; 671 goto err_bindx_rem; 672 } 673 674 if (!sa_addr->v4.sin_port) 675 sa_addr->v4.sin_port = htons(bp->port); 676 677 /* FIXME - There is probably a need to check if sk->sk_saddr and 678 * sk->sk_rcv_addr are currently set to one of the addresses to 679 * be removed. This is something which needs to be looked into 680 * when we are fixing the outstanding issues with multi-homing 681 * socket routing and failover schemes. Refer to comments in 682 * sctp_do_bind(). -daisy 683 */ 684 retval = sctp_del_bind_addr(bp, sa_addr); 685 686 addr_buf += af->sockaddr_len; 687 err_bindx_rem: 688 if (retval < 0) { 689 /* Failed. Add the ones that has been removed back */ 690 if (cnt > 0) 691 sctp_bindx_add(sk, addrs, cnt); 692 return retval; 693 } 694 } 695 696 return retval; 697 } 698 699 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 700 * the associations that are part of the endpoint indicating that a list of 701 * local addresses are removed from the endpoint. 702 * 703 * If any of the addresses is already in the bind address list of the 704 * association, we do not send the chunk for that association. But it will not 705 * affect other associations. 706 * 707 * Only sctp_setsockopt_bindx() is supposed to call this function. 708 */ 709 static int sctp_send_asconf_del_ip(struct sock *sk, 710 struct sockaddr *addrs, 711 int addrcnt) 712 { 713 struct net *net = sock_net(sk); 714 struct sctp_sock *sp; 715 struct sctp_endpoint *ep; 716 struct sctp_association *asoc; 717 struct sctp_transport *transport; 718 struct sctp_bind_addr *bp; 719 struct sctp_chunk *chunk; 720 union sctp_addr *laddr; 721 void *addr_buf; 722 struct sctp_af *af; 723 struct sctp_sockaddr_entry *saddr; 724 int i; 725 int retval = 0; 726 int stored = 0; 727 728 chunk = NULL; 729 if (!net->sctp.addip_enable) 730 return retval; 731 732 sp = sctp_sk(sk); 733 ep = sp->ep; 734 735 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 736 __func__, sk, addrs, addrcnt); 737 738 list_for_each_entry(asoc, &ep->asocs, asocs) { 739 740 if (!asoc->peer.asconf_capable) 741 continue; 742 743 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 744 continue; 745 746 if (!sctp_state(asoc, ESTABLISHED)) 747 continue; 748 749 /* Check if any address in the packed array of addresses is 750 * not present in the bind address list of the association. 751 * If so, do not send the asconf chunk to its peer, but 752 * continue with other associations. 753 */ 754 addr_buf = addrs; 755 for (i = 0; i < addrcnt; i++) { 756 laddr = addr_buf; 757 af = sctp_get_af_specific(laddr->v4.sin_family); 758 if (!af) { 759 retval = -EINVAL; 760 goto out; 761 } 762 763 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 764 break; 765 766 addr_buf += af->sockaddr_len; 767 } 768 if (i < addrcnt) 769 continue; 770 771 /* Find one address in the association's bind address list 772 * that is not in the packed array of addresses. This is to 773 * make sure that we do not delete all the addresses in the 774 * association. 775 */ 776 bp = &asoc->base.bind_addr; 777 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 778 addrcnt, sp); 779 if ((laddr == NULL) && (addrcnt == 1)) { 780 if (asoc->asconf_addr_del_pending) 781 continue; 782 asoc->asconf_addr_del_pending = 783 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 784 if (asoc->asconf_addr_del_pending == NULL) { 785 retval = -ENOMEM; 786 goto out; 787 } 788 asoc->asconf_addr_del_pending->sa.sa_family = 789 addrs->sa_family; 790 asoc->asconf_addr_del_pending->v4.sin_port = 791 htons(bp->port); 792 if (addrs->sa_family == AF_INET) { 793 struct sockaddr_in *sin; 794 795 sin = (struct sockaddr_in *)addrs; 796 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 797 } else if (addrs->sa_family == AF_INET6) { 798 struct sockaddr_in6 *sin6; 799 800 sin6 = (struct sockaddr_in6 *)addrs; 801 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 802 } 803 804 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 805 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 806 asoc->asconf_addr_del_pending); 807 808 asoc->src_out_of_asoc_ok = 1; 809 stored = 1; 810 goto skip_mkasconf; 811 } 812 813 if (laddr == NULL) 814 return -EINVAL; 815 816 /* We do not need RCU protection throughout this loop 817 * because this is done under a socket lock from the 818 * setsockopt call. 819 */ 820 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 821 SCTP_PARAM_DEL_IP); 822 if (!chunk) { 823 retval = -ENOMEM; 824 goto out; 825 } 826 827 skip_mkasconf: 828 /* Reset use_as_src flag for the addresses in the bind address 829 * list that are to be deleted. 830 */ 831 addr_buf = addrs; 832 for (i = 0; i < addrcnt; i++) { 833 laddr = addr_buf; 834 af = sctp_get_af_specific(laddr->v4.sin_family); 835 list_for_each_entry(saddr, &bp->address_list, list) { 836 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 837 saddr->state = SCTP_ADDR_DEL; 838 } 839 addr_buf += af->sockaddr_len; 840 } 841 842 /* Update the route and saddr entries for all the transports 843 * as some of the addresses in the bind address list are 844 * about to be deleted and cannot be used as source addresses. 845 */ 846 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 847 transports) { 848 sctp_transport_dst_release(transport); 849 sctp_transport_route(transport, NULL, 850 sctp_sk(asoc->base.sk)); 851 } 852 853 if (stored) 854 /* We don't need to transmit ASCONF */ 855 continue; 856 retval = sctp_send_asconf(asoc, chunk); 857 } 858 out: 859 return retval; 860 } 861 862 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 863 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 864 { 865 struct sock *sk = sctp_opt2sk(sp); 866 union sctp_addr *addr; 867 struct sctp_af *af; 868 869 /* It is safe to write port space in caller. */ 870 addr = &addrw->a; 871 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 872 af = sctp_get_af_specific(addr->sa.sa_family); 873 if (!af) 874 return -EINVAL; 875 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 876 return -EINVAL; 877 878 if (addrw->state == SCTP_ADDR_NEW) 879 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 880 else 881 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 882 } 883 884 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 885 * 886 * API 8.1 887 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 888 * int flags); 889 * 890 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 891 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 892 * or IPv6 addresses. 893 * 894 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 895 * Section 3.1.2 for this usage. 896 * 897 * addrs is a pointer to an array of one or more socket addresses. Each 898 * address is contained in its appropriate structure (i.e. struct 899 * sockaddr_in or struct sockaddr_in6) the family of the address type 900 * must be used to distinguish the address length (note that this 901 * representation is termed a "packed array" of addresses). The caller 902 * specifies the number of addresses in the array with addrcnt. 903 * 904 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 905 * -1, and sets errno to the appropriate error code. 906 * 907 * For SCTP, the port given in each socket address must be the same, or 908 * sctp_bindx() will fail, setting errno to EINVAL. 909 * 910 * The flags parameter is formed from the bitwise OR of zero or more of 911 * the following currently defined flags: 912 * 913 * SCTP_BINDX_ADD_ADDR 914 * 915 * SCTP_BINDX_REM_ADDR 916 * 917 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 918 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 919 * addresses from the association. The two flags are mutually exclusive; 920 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 921 * not remove all addresses from an association; sctp_bindx() will 922 * reject such an attempt with EINVAL. 923 * 924 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 925 * additional addresses with an endpoint after calling bind(). Or use 926 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 927 * socket is associated with so that no new association accepted will be 928 * associated with those addresses. If the endpoint supports dynamic 929 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 930 * endpoint to send the appropriate message to the peer to change the 931 * peers address lists. 932 * 933 * Adding and removing addresses from a connected association is 934 * optional functionality. Implementations that do not support this 935 * functionality should return EOPNOTSUPP. 936 * 937 * Basically do nothing but copying the addresses from user to kernel 938 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 939 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 940 * from userspace. 941 * 942 * We don't use copy_from_user() for optimization: we first do the 943 * sanity checks (buffer size -fast- and access check-healthy 944 * pointer); if all of those succeed, then we can alloc the memory 945 * (expensive operation) needed to copy the data to kernel. Then we do 946 * the copying without checking the user space area 947 * (__copy_from_user()). 948 * 949 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 950 * it. 951 * 952 * sk The sk of the socket 953 * addrs The pointer to the addresses in user land 954 * addrssize Size of the addrs buffer 955 * op Operation to perform (add or remove, see the flags of 956 * sctp_bindx) 957 * 958 * Returns 0 if ok, <0 errno code on error. 959 */ 960 static int sctp_setsockopt_bindx(struct sock *sk, 961 struct sockaddr __user *addrs, 962 int addrs_size, int op) 963 { 964 struct sockaddr *kaddrs; 965 int err; 966 int addrcnt = 0; 967 int walk_size = 0; 968 struct sockaddr *sa_addr; 969 void *addr_buf; 970 struct sctp_af *af; 971 972 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 973 __func__, sk, addrs, addrs_size, op); 974 975 if (unlikely(addrs_size <= 0)) 976 return -EINVAL; 977 978 /* Check the user passed a healthy pointer. */ 979 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 980 return -EFAULT; 981 982 /* Alloc space for the address array in kernel memory. */ 983 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 984 if (unlikely(!kaddrs)) 985 return -ENOMEM; 986 987 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 988 kfree(kaddrs); 989 return -EFAULT; 990 } 991 992 /* Walk through the addrs buffer and count the number of addresses. */ 993 addr_buf = kaddrs; 994 while (walk_size < addrs_size) { 995 if (walk_size + sizeof(sa_family_t) > addrs_size) { 996 kfree(kaddrs); 997 return -EINVAL; 998 } 999 1000 sa_addr = addr_buf; 1001 af = sctp_get_af_specific(sa_addr->sa_family); 1002 1003 /* If the address family is not supported or if this address 1004 * causes the address buffer to overflow return EINVAL. 1005 */ 1006 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1007 kfree(kaddrs); 1008 return -EINVAL; 1009 } 1010 addrcnt++; 1011 addr_buf += af->sockaddr_len; 1012 walk_size += af->sockaddr_len; 1013 } 1014 1015 /* Do the work. */ 1016 switch (op) { 1017 case SCTP_BINDX_ADD_ADDR: 1018 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1019 if (err) 1020 goto out; 1021 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1022 break; 1023 1024 case SCTP_BINDX_REM_ADDR: 1025 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1026 if (err) 1027 goto out; 1028 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1029 break; 1030 1031 default: 1032 err = -EINVAL; 1033 break; 1034 } 1035 1036 out: 1037 kfree(kaddrs); 1038 1039 return err; 1040 } 1041 1042 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1043 * 1044 * Common routine for handling connect() and sctp_connectx(). 1045 * Connect will come in with just a single address. 1046 */ 1047 static int __sctp_connect(struct sock *sk, 1048 struct sockaddr *kaddrs, 1049 int addrs_size, 1050 sctp_assoc_t *assoc_id) 1051 { 1052 struct net *net = sock_net(sk); 1053 struct sctp_sock *sp; 1054 struct sctp_endpoint *ep; 1055 struct sctp_association *asoc = NULL; 1056 struct sctp_association *asoc2; 1057 struct sctp_transport *transport; 1058 union sctp_addr to; 1059 enum sctp_scope scope; 1060 long timeo; 1061 int err = 0; 1062 int addrcnt = 0; 1063 int walk_size = 0; 1064 union sctp_addr *sa_addr = NULL; 1065 void *addr_buf; 1066 unsigned short port; 1067 unsigned int f_flags = 0; 1068 1069 sp = sctp_sk(sk); 1070 ep = sp->ep; 1071 1072 /* connect() cannot be done on a socket that is already in ESTABLISHED 1073 * state - UDP-style peeled off socket or a TCP-style socket that 1074 * is already connected. 1075 * It cannot be done even on a TCP-style listening socket. 1076 */ 1077 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1078 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1079 err = -EISCONN; 1080 goto out_free; 1081 } 1082 1083 /* Walk through the addrs buffer and count the number of addresses. */ 1084 addr_buf = kaddrs; 1085 while (walk_size < addrs_size) { 1086 struct sctp_af *af; 1087 1088 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1089 err = -EINVAL; 1090 goto out_free; 1091 } 1092 1093 sa_addr = addr_buf; 1094 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1095 1096 /* If the address family is not supported or if this address 1097 * causes the address buffer to overflow return EINVAL. 1098 */ 1099 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1100 err = -EINVAL; 1101 goto out_free; 1102 } 1103 1104 port = ntohs(sa_addr->v4.sin_port); 1105 1106 /* Save current address so we can work with it */ 1107 memcpy(&to, sa_addr, af->sockaddr_len); 1108 1109 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1110 if (err) 1111 goto out_free; 1112 1113 /* Make sure the destination port is correctly set 1114 * in all addresses. 1115 */ 1116 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1117 err = -EINVAL; 1118 goto out_free; 1119 } 1120 1121 /* Check if there already is a matching association on the 1122 * endpoint (other than the one created here). 1123 */ 1124 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1125 if (asoc2 && asoc2 != asoc) { 1126 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1127 err = -EISCONN; 1128 else 1129 err = -EALREADY; 1130 goto out_free; 1131 } 1132 1133 /* If we could not find a matching association on the endpoint, 1134 * make sure that there is no peeled-off association matching 1135 * the peer address even on another socket. 1136 */ 1137 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1138 err = -EADDRNOTAVAIL; 1139 goto out_free; 1140 } 1141 1142 if (!asoc) { 1143 /* If a bind() or sctp_bindx() is not called prior to 1144 * an sctp_connectx() call, the system picks an 1145 * ephemeral port and will choose an address set 1146 * equivalent to binding with a wildcard address. 1147 */ 1148 if (!ep->base.bind_addr.port) { 1149 if (sctp_autobind(sk)) { 1150 err = -EAGAIN; 1151 goto out_free; 1152 } 1153 } else { 1154 /* 1155 * If an unprivileged user inherits a 1-many 1156 * style socket with open associations on a 1157 * privileged port, it MAY be permitted to 1158 * accept new associations, but it SHOULD NOT 1159 * be permitted to open new associations. 1160 */ 1161 if (ep->base.bind_addr.port < 1162 inet_prot_sock(net) && 1163 !ns_capable(net->user_ns, 1164 CAP_NET_BIND_SERVICE)) { 1165 err = -EACCES; 1166 goto out_free; 1167 } 1168 } 1169 1170 scope = sctp_scope(&to); 1171 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1172 if (!asoc) { 1173 err = -ENOMEM; 1174 goto out_free; 1175 } 1176 1177 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1178 GFP_KERNEL); 1179 if (err < 0) { 1180 goto out_free; 1181 } 1182 1183 } 1184 1185 /* Prime the peer's transport structures. */ 1186 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1187 SCTP_UNKNOWN); 1188 if (!transport) { 1189 err = -ENOMEM; 1190 goto out_free; 1191 } 1192 1193 addrcnt++; 1194 addr_buf += af->sockaddr_len; 1195 walk_size += af->sockaddr_len; 1196 } 1197 1198 /* In case the user of sctp_connectx() wants an association 1199 * id back, assign one now. 1200 */ 1201 if (assoc_id) { 1202 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1203 if (err < 0) 1204 goto out_free; 1205 } 1206 1207 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1208 if (err < 0) { 1209 goto out_free; 1210 } 1211 1212 /* Initialize sk's dport and daddr for getpeername() */ 1213 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1214 sp->pf->to_sk_daddr(sa_addr, sk); 1215 sk->sk_err = 0; 1216 1217 /* in-kernel sockets don't generally have a file allocated to them 1218 * if all they do is call sock_create_kern(). 1219 */ 1220 if (sk->sk_socket->file) 1221 f_flags = sk->sk_socket->file->f_flags; 1222 1223 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1224 1225 if (assoc_id) 1226 *assoc_id = asoc->assoc_id; 1227 err = sctp_wait_for_connect(asoc, &timeo); 1228 /* Note: the asoc may be freed after the return of 1229 * sctp_wait_for_connect. 1230 */ 1231 1232 /* Don't free association on exit. */ 1233 asoc = NULL; 1234 1235 out_free: 1236 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1237 __func__, asoc, kaddrs, err); 1238 1239 if (asoc) { 1240 /* sctp_primitive_ASSOCIATE may have added this association 1241 * To the hash table, try to unhash it, just in case, its a noop 1242 * if it wasn't hashed so we're safe 1243 */ 1244 sctp_association_free(asoc); 1245 } 1246 return err; 1247 } 1248 1249 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1250 * 1251 * API 8.9 1252 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1253 * sctp_assoc_t *asoc); 1254 * 1255 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1256 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1257 * or IPv6 addresses. 1258 * 1259 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1260 * Section 3.1.2 for this usage. 1261 * 1262 * addrs is a pointer to an array of one or more socket addresses. Each 1263 * address is contained in its appropriate structure (i.e. struct 1264 * sockaddr_in or struct sockaddr_in6) the family of the address type 1265 * must be used to distengish the address length (note that this 1266 * representation is termed a "packed array" of addresses). The caller 1267 * specifies the number of addresses in the array with addrcnt. 1268 * 1269 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1270 * the association id of the new association. On failure, sctp_connectx() 1271 * returns -1, and sets errno to the appropriate error code. The assoc_id 1272 * is not touched by the kernel. 1273 * 1274 * For SCTP, the port given in each socket address must be the same, or 1275 * sctp_connectx() will fail, setting errno to EINVAL. 1276 * 1277 * An application can use sctp_connectx to initiate an association with 1278 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1279 * allows a caller to specify multiple addresses at which a peer can be 1280 * reached. The way the SCTP stack uses the list of addresses to set up 1281 * the association is implementation dependent. This function only 1282 * specifies that the stack will try to make use of all the addresses in 1283 * the list when needed. 1284 * 1285 * Note that the list of addresses passed in is only used for setting up 1286 * the association. It does not necessarily equal the set of addresses 1287 * the peer uses for the resulting association. If the caller wants to 1288 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1289 * retrieve them after the association has been set up. 1290 * 1291 * Basically do nothing but copying the addresses from user to kernel 1292 * land and invoking either sctp_connectx(). This is used for tunneling 1293 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1294 * 1295 * We don't use copy_from_user() for optimization: we first do the 1296 * sanity checks (buffer size -fast- and access check-healthy 1297 * pointer); if all of those succeed, then we can alloc the memory 1298 * (expensive operation) needed to copy the data to kernel. Then we do 1299 * the copying without checking the user space area 1300 * (__copy_from_user()). 1301 * 1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1303 * it. 1304 * 1305 * sk The sk of the socket 1306 * addrs The pointer to the addresses in user land 1307 * addrssize Size of the addrs buffer 1308 * 1309 * Returns >=0 if ok, <0 errno code on error. 1310 */ 1311 static int __sctp_setsockopt_connectx(struct sock *sk, 1312 struct sockaddr __user *addrs, 1313 int addrs_size, 1314 sctp_assoc_t *assoc_id) 1315 { 1316 struct sockaddr *kaddrs; 1317 gfp_t gfp = GFP_KERNEL; 1318 int err = 0; 1319 1320 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1321 __func__, sk, addrs, addrs_size); 1322 1323 if (unlikely(addrs_size <= 0)) 1324 return -EINVAL; 1325 1326 /* Check the user passed a healthy pointer. */ 1327 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1328 return -EFAULT; 1329 1330 /* Alloc space for the address array in kernel memory. */ 1331 if (sk->sk_socket->file) 1332 gfp = GFP_USER | __GFP_NOWARN; 1333 kaddrs = kmalloc(addrs_size, gfp); 1334 if (unlikely(!kaddrs)) 1335 return -ENOMEM; 1336 1337 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1338 err = -EFAULT; 1339 } else { 1340 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1341 } 1342 1343 kfree(kaddrs); 1344 1345 return err; 1346 } 1347 1348 /* 1349 * This is an older interface. It's kept for backward compatibility 1350 * to the option that doesn't provide association id. 1351 */ 1352 static int sctp_setsockopt_connectx_old(struct sock *sk, 1353 struct sockaddr __user *addrs, 1354 int addrs_size) 1355 { 1356 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1357 } 1358 1359 /* 1360 * New interface for the API. The since the API is done with a socket 1361 * option, to make it simple we feed back the association id is as a return 1362 * indication to the call. Error is always negative and association id is 1363 * always positive. 1364 */ 1365 static int sctp_setsockopt_connectx(struct sock *sk, 1366 struct sockaddr __user *addrs, 1367 int addrs_size) 1368 { 1369 sctp_assoc_t assoc_id = 0; 1370 int err = 0; 1371 1372 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1373 1374 if (err) 1375 return err; 1376 else 1377 return assoc_id; 1378 } 1379 1380 /* 1381 * New (hopefully final) interface for the API. 1382 * We use the sctp_getaddrs_old structure so that use-space library 1383 * can avoid any unnecessary allocations. The only different part 1384 * is that we store the actual length of the address buffer into the 1385 * addrs_num structure member. That way we can re-use the existing 1386 * code. 1387 */ 1388 #ifdef CONFIG_COMPAT 1389 struct compat_sctp_getaddrs_old { 1390 sctp_assoc_t assoc_id; 1391 s32 addr_num; 1392 compat_uptr_t addrs; /* struct sockaddr * */ 1393 }; 1394 #endif 1395 1396 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1397 char __user *optval, 1398 int __user *optlen) 1399 { 1400 struct sctp_getaddrs_old param; 1401 sctp_assoc_t assoc_id = 0; 1402 int err = 0; 1403 1404 #ifdef CONFIG_COMPAT 1405 if (in_compat_syscall()) { 1406 struct compat_sctp_getaddrs_old param32; 1407 1408 if (len < sizeof(param32)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m32, optval, sizeof(param32))) 1411 return -EFAULT; 1412 1413 param.assoc_id = param32.assoc_id; 1414 param.addr_num = param32.addr_num; 1415 param.addrs = compat_ptr(param32.addrs); 1416 } else 1417 #endif 1418 { 1419 if (len < sizeof(param)) 1420 return -EINVAL; 1421 if (copy_from_user(¶m, optval, sizeof(param))) 1422 return -EFAULT; 1423 } 1424 1425 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1426 param.addrs, param.addr_num, 1427 &assoc_id); 1428 if (err == 0 || err == -EINPROGRESS) { 1429 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1430 return -EFAULT; 1431 if (put_user(sizeof(assoc_id), optlen)) 1432 return -EFAULT; 1433 } 1434 1435 return err; 1436 } 1437 1438 /* API 3.1.4 close() - UDP Style Syntax 1439 * Applications use close() to perform graceful shutdown (as described in 1440 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1441 * by a UDP-style socket. 1442 * 1443 * The syntax is 1444 * 1445 * ret = close(int sd); 1446 * 1447 * sd - the socket descriptor of the associations to be closed. 1448 * 1449 * To gracefully shutdown a specific association represented by the 1450 * UDP-style socket, an application should use the sendmsg() call, 1451 * passing no user data, but including the appropriate flag in the 1452 * ancillary data (see Section xxxx). 1453 * 1454 * If sd in the close() call is a branched-off socket representing only 1455 * one association, the shutdown is performed on that association only. 1456 * 1457 * 4.1.6 close() - TCP Style Syntax 1458 * 1459 * Applications use close() to gracefully close down an association. 1460 * 1461 * The syntax is: 1462 * 1463 * int close(int sd); 1464 * 1465 * sd - the socket descriptor of the association to be closed. 1466 * 1467 * After an application calls close() on a socket descriptor, no further 1468 * socket operations will succeed on that descriptor. 1469 * 1470 * API 7.1.4 SO_LINGER 1471 * 1472 * An application using the TCP-style socket can use this option to 1473 * perform the SCTP ABORT primitive. The linger option structure is: 1474 * 1475 * struct linger { 1476 * int l_onoff; // option on/off 1477 * int l_linger; // linger time 1478 * }; 1479 * 1480 * To enable the option, set l_onoff to 1. If the l_linger value is set 1481 * to 0, calling close() is the same as the ABORT primitive. If the 1482 * value is set to a negative value, the setsockopt() call will return 1483 * an error. If the value is set to a positive value linger_time, the 1484 * close() can be blocked for at most linger_time ms. If the graceful 1485 * shutdown phase does not finish during this period, close() will 1486 * return but the graceful shutdown phase continues in the system. 1487 */ 1488 static void sctp_close(struct sock *sk, long timeout) 1489 { 1490 struct net *net = sock_net(sk); 1491 struct sctp_endpoint *ep; 1492 struct sctp_association *asoc; 1493 struct list_head *pos, *temp; 1494 unsigned int data_was_unread; 1495 1496 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1497 1498 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1499 sk->sk_shutdown = SHUTDOWN_MASK; 1500 sk->sk_state = SCTP_SS_CLOSING; 1501 1502 ep = sctp_sk(sk)->ep; 1503 1504 /* Clean up any skbs sitting on the receive queue. */ 1505 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1506 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1507 1508 /* Walk all associations on an endpoint. */ 1509 list_for_each_safe(pos, temp, &ep->asocs) { 1510 asoc = list_entry(pos, struct sctp_association, asocs); 1511 1512 if (sctp_style(sk, TCP)) { 1513 /* A closed association can still be in the list if 1514 * it belongs to a TCP-style listening socket that is 1515 * not yet accepted. If so, free it. If not, send an 1516 * ABORT or SHUTDOWN based on the linger options. 1517 */ 1518 if (sctp_state(asoc, CLOSED)) { 1519 sctp_association_free(asoc); 1520 continue; 1521 } 1522 } 1523 1524 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1525 !skb_queue_empty(&asoc->ulpq.reasm) || 1526 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1527 struct sctp_chunk *chunk; 1528 1529 chunk = sctp_make_abort_user(asoc, NULL, 0); 1530 sctp_primitive_ABORT(net, asoc, chunk); 1531 } else 1532 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1533 } 1534 1535 /* On a TCP-style socket, block for at most linger_time if set. */ 1536 if (sctp_style(sk, TCP) && timeout) 1537 sctp_wait_for_close(sk, timeout); 1538 1539 /* This will run the backlog queue. */ 1540 release_sock(sk); 1541 1542 /* Supposedly, no process has access to the socket, but 1543 * the net layers still may. 1544 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1545 * held and that should be grabbed before socket lock. 1546 */ 1547 spin_lock_bh(&net->sctp.addr_wq_lock); 1548 bh_lock_sock_nested(sk); 1549 1550 /* Hold the sock, since sk_common_release() will put sock_put() 1551 * and we have just a little more cleanup. 1552 */ 1553 sock_hold(sk); 1554 sk_common_release(sk); 1555 1556 bh_unlock_sock(sk); 1557 spin_unlock_bh(&net->sctp.addr_wq_lock); 1558 1559 sock_put(sk); 1560 1561 SCTP_DBG_OBJCNT_DEC(sock); 1562 } 1563 1564 /* Handle EPIPE error. */ 1565 static int sctp_error(struct sock *sk, int flags, int err) 1566 { 1567 if (err == -EPIPE) 1568 err = sock_error(sk) ? : -EPIPE; 1569 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1570 send_sig(SIGPIPE, current, 0); 1571 return err; 1572 } 1573 1574 /* API 3.1.3 sendmsg() - UDP Style Syntax 1575 * 1576 * An application uses sendmsg() and recvmsg() calls to transmit data to 1577 * and receive data from its peer. 1578 * 1579 * ssize_t sendmsg(int socket, const struct msghdr *message, 1580 * int flags); 1581 * 1582 * socket - the socket descriptor of the endpoint. 1583 * message - pointer to the msghdr structure which contains a single 1584 * user message and possibly some ancillary data. 1585 * 1586 * See Section 5 for complete description of the data 1587 * structures. 1588 * 1589 * flags - flags sent or received with the user message, see Section 1590 * 5 for complete description of the flags. 1591 * 1592 * Note: This function could use a rewrite especially when explicit 1593 * connect support comes in. 1594 */ 1595 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1596 1597 static int sctp_msghdr_parse(const struct msghdr *msg, 1598 struct sctp_cmsgs *cmsgs); 1599 1600 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1601 { 1602 struct net *net = sock_net(sk); 1603 struct sctp_sock *sp; 1604 struct sctp_endpoint *ep; 1605 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1606 struct sctp_transport *transport, *chunk_tp; 1607 struct sctp_chunk *chunk; 1608 union sctp_addr to; 1609 struct sockaddr *msg_name = NULL; 1610 struct sctp_sndrcvinfo default_sinfo; 1611 struct sctp_sndrcvinfo *sinfo; 1612 struct sctp_initmsg *sinit; 1613 sctp_assoc_t associd = 0; 1614 struct sctp_cmsgs cmsgs = { NULL }; 1615 enum sctp_scope scope; 1616 bool fill_sinfo_ttl = false, wait_connect = false; 1617 struct sctp_datamsg *datamsg; 1618 int msg_flags = msg->msg_flags; 1619 __u16 sinfo_flags = 0; 1620 long timeo; 1621 int err; 1622 1623 err = 0; 1624 sp = sctp_sk(sk); 1625 ep = sp->ep; 1626 1627 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1628 msg, msg_len, ep); 1629 1630 /* We cannot send a message over a TCP-style listening socket. */ 1631 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1632 err = -EPIPE; 1633 goto out_nounlock; 1634 } 1635 1636 /* Parse out the SCTP CMSGs. */ 1637 err = sctp_msghdr_parse(msg, &cmsgs); 1638 if (err) { 1639 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1640 goto out_nounlock; 1641 } 1642 1643 /* Fetch the destination address for this packet. This 1644 * address only selects the association--it is not necessarily 1645 * the address we will send to. 1646 * For a peeled-off socket, msg_name is ignored. 1647 */ 1648 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1649 int msg_namelen = msg->msg_namelen; 1650 1651 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1652 msg_namelen); 1653 if (err) 1654 return err; 1655 1656 if (msg_namelen > sizeof(to)) 1657 msg_namelen = sizeof(to); 1658 memcpy(&to, msg->msg_name, msg_namelen); 1659 msg_name = msg->msg_name; 1660 } 1661 1662 sinit = cmsgs.init; 1663 if (cmsgs.sinfo != NULL) { 1664 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1665 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1666 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1667 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1668 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1669 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1670 1671 sinfo = &default_sinfo; 1672 fill_sinfo_ttl = true; 1673 } else { 1674 sinfo = cmsgs.srinfo; 1675 } 1676 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1677 if (sinfo) { 1678 sinfo_flags = sinfo->sinfo_flags; 1679 associd = sinfo->sinfo_assoc_id; 1680 } 1681 1682 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1683 msg_len, sinfo_flags); 1684 1685 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1686 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1687 err = -EINVAL; 1688 goto out_nounlock; 1689 } 1690 1691 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1692 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1693 * If SCTP_ABORT is set, the message length could be non zero with 1694 * the msg_iov set to the user abort reason. 1695 */ 1696 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1697 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1698 err = -EINVAL; 1699 goto out_nounlock; 1700 } 1701 1702 /* If SCTP_ADDR_OVER is set, there must be an address 1703 * specified in msg_name. 1704 */ 1705 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1706 err = -EINVAL; 1707 goto out_nounlock; 1708 } 1709 1710 transport = NULL; 1711 1712 pr_debug("%s: about to look up association\n", __func__); 1713 1714 lock_sock(sk); 1715 1716 /* If a msg_name has been specified, assume this is to be used. */ 1717 if (msg_name) { 1718 /* Look for a matching association on the endpoint. */ 1719 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1720 1721 /* If we could not find a matching association on the 1722 * endpoint, make sure that it is not a TCP-style 1723 * socket that already has an association or there is 1724 * no peeled-off association on another socket. 1725 */ 1726 if (!asoc && 1727 ((sctp_style(sk, TCP) && 1728 (sctp_sstate(sk, ESTABLISHED) || 1729 sctp_sstate(sk, CLOSING))) || 1730 sctp_endpoint_is_peeled_off(ep, &to))) { 1731 err = -EADDRNOTAVAIL; 1732 goto out_unlock; 1733 } 1734 } else { 1735 asoc = sctp_id2assoc(sk, associd); 1736 if (!asoc) { 1737 err = -EPIPE; 1738 goto out_unlock; 1739 } 1740 } 1741 1742 if (asoc) { 1743 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1744 1745 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1746 * socket that has an association in CLOSED state. This can 1747 * happen when an accepted socket has an association that is 1748 * already CLOSED. 1749 */ 1750 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1751 err = -EPIPE; 1752 goto out_unlock; 1753 } 1754 1755 if (sinfo_flags & SCTP_EOF) { 1756 pr_debug("%s: shutting down association:%p\n", 1757 __func__, asoc); 1758 1759 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1760 err = 0; 1761 goto out_unlock; 1762 } 1763 if (sinfo_flags & SCTP_ABORT) { 1764 1765 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1766 if (!chunk) { 1767 err = -ENOMEM; 1768 goto out_unlock; 1769 } 1770 1771 pr_debug("%s: aborting association:%p\n", 1772 __func__, asoc); 1773 1774 sctp_primitive_ABORT(net, asoc, chunk); 1775 err = 0; 1776 goto out_unlock; 1777 } 1778 } 1779 1780 /* Do we need to create the association? */ 1781 if (!asoc) { 1782 pr_debug("%s: there is no association yet\n", __func__); 1783 1784 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1785 err = -EINVAL; 1786 goto out_unlock; 1787 } 1788 1789 /* Check for invalid stream against the stream counts, 1790 * either the default or the user specified stream counts. 1791 */ 1792 if (sinfo) { 1793 if (!sinit || !sinit->sinit_num_ostreams) { 1794 /* Check against the defaults. */ 1795 if (sinfo->sinfo_stream >= 1796 sp->initmsg.sinit_num_ostreams) { 1797 err = -EINVAL; 1798 goto out_unlock; 1799 } 1800 } else { 1801 /* Check against the requested. */ 1802 if (sinfo->sinfo_stream >= 1803 sinit->sinit_num_ostreams) { 1804 err = -EINVAL; 1805 goto out_unlock; 1806 } 1807 } 1808 } 1809 1810 /* 1811 * API 3.1.2 bind() - UDP Style Syntax 1812 * If a bind() or sctp_bindx() is not called prior to a 1813 * sendmsg() call that initiates a new association, the 1814 * system picks an ephemeral port and will choose an address 1815 * set equivalent to binding with a wildcard address. 1816 */ 1817 if (!ep->base.bind_addr.port) { 1818 if (sctp_autobind(sk)) { 1819 err = -EAGAIN; 1820 goto out_unlock; 1821 } 1822 } else { 1823 /* 1824 * If an unprivileged user inherits a one-to-many 1825 * style socket with open associations on a privileged 1826 * port, it MAY be permitted to accept new associations, 1827 * but it SHOULD NOT be permitted to open new 1828 * associations. 1829 */ 1830 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1831 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1832 err = -EACCES; 1833 goto out_unlock; 1834 } 1835 } 1836 1837 scope = sctp_scope(&to); 1838 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1839 if (!new_asoc) { 1840 err = -ENOMEM; 1841 goto out_unlock; 1842 } 1843 asoc = new_asoc; 1844 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1845 if (err < 0) { 1846 err = -ENOMEM; 1847 goto out_free; 1848 } 1849 1850 /* If the SCTP_INIT ancillary data is specified, set all 1851 * the association init values accordingly. 1852 */ 1853 if (sinit) { 1854 if (sinit->sinit_num_ostreams) { 1855 asoc->c.sinit_num_ostreams = 1856 sinit->sinit_num_ostreams; 1857 } 1858 if (sinit->sinit_max_instreams) { 1859 asoc->c.sinit_max_instreams = 1860 sinit->sinit_max_instreams; 1861 } 1862 if (sinit->sinit_max_attempts) { 1863 asoc->max_init_attempts 1864 = sinit->sinit_max_attempts; 1865 } 1866 if (sinit->sinit_max_init_timeo) { 1867 asoc->max_init_timeo = 1868 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1869 } 1870 } 1871 1872 /* Prime the peer's transport structures. */ 1873 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1874 if (!transport) { 1875 err = -ENOMEM; 1876 goto out_free; 1877 } 1878 } 1879 1880 /* ASSERT: we have a valid association at this point. */ 1881 pr_debug("%s: we have a valid association\n", __func__); 1882 1883 if (!sinfo) { 1884 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1885 * one with some defaults. 1886 */ 1887 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1888 default_sinfo.sinfo_stream = asoc->default_stream; 1889 default_sinfo.sinfo_flags = asoc->default_flags; 1890 default_sinfo.sinfo_ppid = asoc->default_ppid; 1891 default_sinfo.sinfo_context = asoc->default_context; 1892 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1893 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1894 1895 sinfo = &default_sinfo; 1896 } else if (fill_sinfo_ttl) { 1897 /* In case SNDINFO was specified, we still need to fill 1898 * it with a default ttl from the assoc here. 1899 */ 1900 sinfo->sinfo_timetolive = asoc->default_timetolive; 1901 } 1902 1903 /* API 7.1.7, the sndbuf size per association bounds the 1904 * maximum size of data that can be sent in a single send call. 1905 */ 1906 if (msg_len > sk->sk_sndbuf) { 1907 err = -EMSGSIZE; 1908 goto out_free; 1909 } 1910 1911 if (asoc->pmtu_pending) 1912 sctp_assoc_pending_pmtu(asoc); 1913 1914 /* If fragmentation is disabled and the message length exceeds the 1915 * association fragmentation point, return EMSGSIZE. The I-D 1916 * does not specify what this error is, but this looks like 1917 * a great fit. 1918 */ 1919 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1920 err = -EMSGSIZE; 1921 goto out_free; 1922 } 1923 1924 /* Check for invalid stream. */ 1925 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1926 err = -EINVAL; 1927 goto out_free; 1928 } 1929 1930 if (sctp_wspace(asoc) < msg_len) 1931 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1932 1933 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1934 if (!sctp_wspace(asoc)) { 1935 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1936 if (err) 1937 goto out_free; 1938 } 1939 1940 /* If an address is passed with the sendto/sendmsg call, it is used 1941 * to override the primary destination address in the TCP model, or 1942 * when SCTP_ADDR_OVER flag is set in the UDP model. 1943 */ 1944 if ((sctp_style(sk, TCP) && msg_name) || 1945 (sinfo_flags & SCTP_ADDR_OVER)) { 1946 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1947 if (!chunk_tp) { 1948 err = -EINVAL; 1949 goto out_free; 1950 } 1951 } else 1952 chunk_tp = NULL; 1953 1954 /* Auto-connect, if we aren't connected already. */ 1955 if (sctp_state(asoc, CLOSED)) { 1956 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1957 if (err < 0) 1958 goto out_free; 1959 1960 wait_connect = true; 1961 pr_debug("%s: we associated primitively\n", __func__); 1962 } 1963 1964 /* Break the message into multiple chunks of maximum size. */ 1965 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1966 if (IS_ERR(datamsg)) { 1967 err = PTR_ERR(datamsg); 1968 goto out_free; 1969 } 1970 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1971 1972 /* Now send the (possibly) fragmented message. */ 1973 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1974 sctp_chunk_hold(chunk); 1975 1976 /* Do accounting for the write space. */ 1977 sctp_set_owner_w(chunk); 1978 1979 chunk->transport = chunk_tp; 1980 } 1981 1982 /* Send it to the lower layers. Note: all chunks 1983 * must either fail or succeed. The lower layer 1984 * works that way today. Keep it that way or this 1985 * breaks. 1986 */ 1987 err = sctp_primitive_SEND(net, asoc, datamsg); 1988 /* Did the lower layer accept the chunk? */ 1989 if (err) { 1990 sctp_datamsg_free(datamsg); 1991 goto out_free; 1992 } 1993 1994 pr_debug("%s: we sent primitively\n", __func__); 1995 1996 sctp_datamsg_put(datamsg); 1997 err = msg_len; 1998 1999 if (unlikely(wait_connect)) { 2000 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 2001 sctp_wait_for_connect(asoc, &timeo); 2002 } 2003 2004 /* If we are already past ASSOCIATE, the lower 2005 * layers are responsible for association cleanup. 2006 */ 2007 goto out_unlock; 2008 2009 out_free: 2010 if (new_asoc) 2011 sctp_association_free(asoc); 2012 out_unlock: 2013 release_sock(sk); 2014 2015 out_nounlock: 2016 return sctp_error(sk, msg_flags, err); 2017 2018 #if 0 2019 do_sock_err: 2020 if (msg_len) 2021 err = msg_len; 2022 else 2023 err = sock_error(sk); 2024 goto out; 2025 2026 do_interrupted: 2027 if (msg_len) 2028 err = msg_len; 2029 goto out; 2030 #endif /* 0 */ 2031 } 2032 2033 /* This is an extended version of skb_pull() that removes the data from the 2034 * start of a skb even when data is spread across the list of skb's in the 2035 * frag_list. len specifies the total amount of data that needs to be removed. 2036 * when 'len' bytes could be removed from the skb, it returns 0. 2037 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2038 * could not be removed. 2039 */ 2040 static int sctp_skb_pull(struct sk_buff *skb, int len) 2041 { 2042 struct sk_buff *list; 2043 int skb_len = skb_headlen(skb); 2044 int rlen; 2045 2046 if (len <= skb_len) { 2047 __skb_pull(skb, len); 2048 return 0; 2049 } 2050 len -= skb_len; 2051 __skb_pull(skb, skb_len); 2052 2053 skb_walk_frags(skb, list) { 2054 rlen = sctp_skb_pull(list, len); 2055 skb->len -= (len-rlen); 2056 skb->data_len -= (len-rlen); 2057 2058 if (!rlen) 2059 return 0; 2060 2061 len = rlen; 2062 } 2063 2064 return len; 2065 } 2066 2067 /* API 3.1.3 recvmsg() - UDP Style Syntax 2068 * 2069 * ssize_t recvmsg(int socket, struct msghdr *message, 2070 * int flags); 2071 * 2072 * socket - the socket descriptor of the endpoint. 2073 * message - pointer to the msghdr structure which contains a single 2074 * user message and possibly some ancillary data. 2075 * 2076 * See Section 5 for complete description of the data 2077 * structures. 2078 * 2079 * flags - flags sent or received with the user message, see Section 2080 * 5 for complete description of the flags. 2081 */ 2082 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2083 int noblock, int flags, int *addr_len) 2084 { 2085 struct sctp_ulpevent *event = NULL; 2086 struct sctp_sock *sp = sctp_sk(sk); 2087 struct sk_buff *skb, *head_skb; 2088 int copied; 2089 int err = 0; 2090 int skb_len; 2091 2092 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2093 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2094 addr_len); 2095 2096 lock_sock(sk); 2097 2098 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2099 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2100 err = -ENOTCONN; 2101 goto out; 2102 } 2103 2104 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2105 if (!skb) 2106 goto out; 2107 2108 /* Get the total length of the skb including any skb's in the 2109 * frag_list. 2110 */ 2111 skb_len = skb->len; 2112 2113 copied = skb_len; 2114 if (copied > len) 2115 copied = len; 2116 2117 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2118 2119 event = sctp_skb2event(skb); 2120 2121 if (err) 2122 goto out_free; 2123 2124 if (event->chunk && event->chunk->head_skb) 2125 head_skb = event->chunk->head_skb; 2126 else 2127 head_skb = skb; 2128 sock_recv_ts_and_drops(msg, sk, head_skb); 2129 if (sctp_ulpevent_is_notification(event)) { 2130 msg->msg_flags |= MSG_NOTIFICATION; 2131 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2132 } else { 2133 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2134 } 2135 2136 /* Check if we allow SCTP_NXTINFO. */ 2137 if (sp->recvnxtinfo) 2138 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2139 /* Check if we allow SCTP_RCVINFO. */ 2140 if (sp->recvrcvinfo) 2141 sctp_ulpevent_read_rcvinfo(event, msg); 2142 /* Check if we allow SCTP_SNDRCVINFO. */ 2143 if (sp->subscribe.sctp_data_io_event) 2144 sctp_ulpevent_read_sndrcvinfo(event, msg); 2145 2146 err = copied; 2147 2148 /* If skb's length exceeds the user's buffer, update the skb and 2149 * push it back to the receive_queue so that the next call to 2150 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2151 */ 2152 if (skb_len > copied) { 2153 msg->msg_flags &= ~MSG_EOR; 2154 if (flags & MSG_PEEK) 2155 goto out_free; 2156 sctp_skb_pull(skb, copied); 2157 skb_queue_head(&sk->sk_receive_queue, skb); 2158 2159 /* When only partial message is copied to the user, increase 2160 * rwnd by that amount. If all the data in the skb is read, 2161 * rwnd is updated when the event is freed. 2162 */ 2163 if (!sctp_ulpevent_is_notification(event)) 2164 sctp_assoc_rwnd_increase(event->asoc, copied); 2165 goto out; 2166 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2167 (event->msg_flags & MSG_EOR)) 2168 msg->msg_flags |= MSG_EOR; 2169 else 2170 msg->msg_flags &= ~MSG_EOR; 2171 2172 out_free: 2173 if (flags & MSG_PEEK) { 2174 /* Release the skb reference acquired after peeking the skb in 2175 * sctp_skb_recv_datagram(). 2176 */ 2177 kfree_skb(skb); 2178 } else { 2179 /* Free the event which includes releasing the reference to 2180 * the owner of the skb, freeing the skb and updating the 2181 * rwnd. 2182 */ 2183 sctp_ulpevent_free(event); 2184 } 2185 out: 2186 release_sock(sk); 2187 return err; 2188 } 2189 2190 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2191 * 2192 * This option is a on/off flag. If enabled no SCTP message 2193 * fragmentation will be performed. Instead if a message being sent 2194 * exceeds the current PMTU size, the message will NOT be sent and 2195 * instead a error will be indicated to the user. 2196 */ 2197 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2198 char __user *optval, 2199 unsigned int optlen) 2200 { 2201 int val; 2202 2203 if (optlen < sizeof(int)) 2204 return -EINVAL; 2205 2206 if (get_user(val, (int __user *)optval)) 2207 return -EFAULT; 2208 2209 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2210 2211 return 0; 2212 } 2213 2214 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2215 unsigned int optlen) 2216 { 2217 struct sctp_association *asoc; 2218 struct sctp_ulpevent *event; 2219 2220 if (optlen > sizeof(struct sctp_event_subscribe)) 2221 return -EINVAL; 2222 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2223 return -EFAULT; 2224 2225 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2226 * if there is no data to be sent or retransmit, the stack will 2227 * immediately send up this notification. 2228 */ 2229 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2230 &sctp_sk(sk)->subscribe)) { 2231 asoc = sctp_id2assoc(sk, 0); 2232 2233 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2234 event = sctp_ulpevent_make_sender_dry_event(asoc, 2235 GFP_ATOMIC); 2236 if (!event) 2237 return -ENOMEM; 2238 2239 sctp_ulpq_tail_event(&asoc->ulpq, event); 2240 } 2241 } 2242 2243 return 0; 2244 } 2245 2246 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2247 * 2248 * This socket option is applicable to the UDP-style socket only. When 2249 * set it will cause associations that are idle for more than the 2250 * specified number of seconds to automatically close. An association 2251 * being idle is defined an association that has NOT sent or received 2252 * user data. The special value of '0' indicates that no automatic 2253 * close of any associations should be performed. The option expects an 2254 * integer defining the number of seconds of idle time before an 2255 * association is closed. 2256 */ 2257 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2258 unsigned int optlen) 2259 { 2260 struct sctp_sock *sp = sctp_sk(sk); 2261 struct net *net = sock_net(sk); 2262 2263 /* Applicable to UDP-style socket only */ 2264 if (sctp_style(sk, TCP)) 2265 return -EOPNOTSUPP; 2266 if (optlen != sizeof(int)) 2267 return -EINVAL; 2268 if (copy_from_user(&sp->autoclose, optval, optlen)) 2269 return -EFAULT; 2270 2271 if (sp->autoclose > net->sctp.max_autoclose) 2272 sp->autoclose = net->sctp.max_autoclose; 2273 2274 return 0; 2275 } 2276 2277 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2278 * 2279 * Applications can enable or disable heartbeats for any peer address of 2280 * an association, modify an address's heartbeat interval, force a 2281 * heartbeat to be sent immediately, and adjust the address's maximum 2282 * number of retransmissions sent before an address is considered 2283 * unreachable. The following structure is used to access and modify an 2284 * address's parameters: 2285 * 2286 * struct sctp_paddrparams { 2287 * sctp_assoc_t spp_assoc_id; 2288 * struct sockaddr_storage spp_address; 2289 * uint32_t spp_hbinterval; 2290 * uint16_t spp_pathmaxrxt; 2291 * uint32_t spp_pathmtu; 2292 * uint32_t spp_sackdelay; 2293 * uint32_t spp_flags; 2294 * }; 2295 * 2296 * spp_assoc_id - (one-to-many style socket) This is filled in the 2297 * application, and identifies the association for 2298 * this query. 2299 * spp_address - This specifies which address is of interest. 2300 * spp_hbinterval - This contains the value of the heartbeat interval, 2301 * in milliseconds. If a value of zero 2302 * is present in this field then no changes are to 2303 * be made to this parameter. 2304 * spp_pathmaxrxt - This contains the maximum number of 2305 * retransmissions before this address shall be 2306 * considered unreachable. If a value of zero 2307 * is present in this field then no changes are to 2308 * be made to this parameter. 2309 * spp_pathmtu - When Path MTU discovery is disabled the value 2310 * specified here will be the "fixed" path mtu. 2311 * Note that if the spp_address field is empty 2312 * then all associations on this address will 2313 * have this fixed path mtu set upon them. 2314 * 2315 * spp_sackdelay - When delayed sack is enabled, this value specifies 2316 * the number of milliseconds that sacks will be delayed 2317 * for. This value will apply to all addresses of an 2318 * association if the spp_address field is empty. Note 2319 * also, that if delayed sack is enabled and this 2320 * value is set to 0, no change is made to the last 2321 * recorded delayed sack timer value. 2322 * 2323 * spp_flags - These flags are used to control various features 2324 * on an association. The flag field may contain 2325 * zero or more of the following options. 2326 * 2327 * SPP_HB_ENABLE - Enable heartbeats on the 2328 * specified address. Note that if the address 2329 * field is empty all addresses for the association 2330 * have heartbeats enabled upon them. 2331 * 2332 * SPP_HB_DISABLE - Disable heartbeats on the 2333 * speicifed address. Note that if the address 2334 * field is empty all addresses for the association 2335 * will have their heartbeats disabled. Note also 2336 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2337 * mutually exclusive, only one of these two should 2338 * be specified. Enabling both fields will have 2339 * undetermined results. 2340 * 2341 * SPP_HB_DEMAND - Request a user initiated heartbeat 2342 * to be made immediately. 2343 * 2344 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2345 * heartbeat delayis to be set to the value of 0 2346 * milliseconds. 2347 * 2348 * SPP_PMTUD_ENABLE - This field will enable PMTU 2349 * discovery upon the specified address. Note that 2350 * if the address feild is empty then all addresses 2351 * on the association are effected. 2352 * 2353 * SPP_PMTUD_DISABLE - This field will disable PMTU 2354 * discovery upon the specified address. Note that 2355 * if the address feild is empty then all addresses 2356 * on the association are effected. Not also that 2357 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2358 * exclusive. Enabling both will have undetermined 2359 * results. 2360 * 2361 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2362 * on delayed sack. The time specified in spp_sackdelay 2363 * is used to specify the sack delay for this address. Note 2364 * that if spp_address is empty then all addresses will 2365 * enable delayed sack and take on the sack delay 2366 * value specified in spp_sackdelay. 2367 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2368 * off delayed sack. If the spp_address field is blank then 2369 * delayed sack is disabled for the entire association. Note 2370 * also that this field is mutually exclusive to 2371 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2372 * results. 2373 */ 2374 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2375 struct sctp_transport *trans, 2376 struct sctp_association *asoc, 2377 struct sctp_sock *sp, 2378 int hb_change, 2379 int pmtud_change, 2380 int sackdelay_change) 2381 { 2382 int error; 2383 2384 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2385 struct net *net = sock_net(trans->asoc->base.sk); 2386 2387 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2388 if (error) 2389 return error; 2390 } 2391 2392 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2393 * this field is ignored. Note also that a value of zero indicates 2394 * the current setting should be left unchanged. 2395 */ 2396 if (params->spp_flags & SPP_HB_ENABLE) { 2397 2398 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2399 * set. This lets us use 0 value when this flag 2400 * is set. 2401 */ 2402 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2403 params->spp_hbinterval = 0; 2404 2405 if (params->spp_hbinterval || 2406 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2407 if (trans) { 2408 trans->hbinterval = 2409 msecs_to_jiffies(params->spp_hbinterval); 2410 } else if (asoc) { 2411 asoc->hbinterval = 2412 msecs_to_jiffies(params->spp_hbinterval); 2413 } else { 2414 sp->hbinterval = params->spp_hbinterval; 2415 } 2416 } 2417 } 2418 2419 if (hb_change) { 2420 if (trans) { 2421 trans->param_flags = 2422 (trans->param_flags & ~SPP_HB) | hb_change; 2423 } else if (asoc) { 2424 asoc->param_flags = 2425 (asoc->param_flags & ~SPP_HB) | hb_change; 2426 } else { 2427 sp->param_flags = 2428 (sp->param_flags & ~SPP_HB) | hb_change; 2429 } 2430 } 2431 2432 /* When Path MTU discovery is disabled the value specified here will 2433 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2434 * include the flag SPP_PMTUD_DISABLE for this field to have any 2435 * effect). 2436 */ 2437 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2438 if (trans) { 2439 trans->pathmtu = params->spp_pathmtu; 2440 sctp_assoc_sync_pmtu(asoc); 2441 } else if (asoc) { 2442 asoc->pathmtu = params->spp_pathmtu; 2443 } else { 2444 sp->pathmtu = params->spp_pathmtu; 2445 } 2446 } 2447 2448 if (pmtud_change) { 2449 if (trans) { 2450 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2451 (params->spp_flags & SPP_PMTUD_ENABLE); 2452 trans->param_flags = 2453 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2454 if (update) { 2455 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2456 sctp_assoc_sync_pmtu(asoc); 2457 } 2458 } else if (asoc) { 2459 asoc->param_flags = 2460 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2461 } else { 2462 sp->param_flags = 2463 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2464 } 2465 } 2466 2467 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2468 * value of this field is ignored. Note also that a value of zero 2469 * indicates the current setting should be left unchanged. 2470 */ 2471 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2472 if (trans) { 2473 trans->sackdelay = 2474 msecs_to_jiffies(params->spp_sackdelay); 2475 } else if (asoc) { 2476 asoc->sackdelay = 2477 msecs_to_jiffies(params->spp_sackdelay); 2478 } else { 2479 sp->sackdelay = params->spp_sackdelay; 2480 } 2481 } 2482 2483 if (sackdelay_change) { 2484 if (trans) { 2485 trans->param_flags = 2486 (trans->param_flags & ~SPP_SACKDELAY) | 2487 sackdelay_change; 2488 } else if (asoc) { 2489 asoc->param_flags = 2490 (asoc->param_flags & ~SPP_SACKDELAY) | 2491 sackdelay_change; 2492 } else { 2493 sp->param_flags = 2494 (sp->param_flags & ~SPP_SACKDELAY) | 2495 sackdelay_change; 2496 } 2497 } 2498 2499 /* Note that a value of zero indicates the current setting should be 2500 left unchanged. 2501 */ 2502 if (params->spp_pathmaxrxt) { 2503 if (trans) { 2504 trans->pathmaxrxt = params->spp_pathmaxrxt; 2505 } else if (asoc) { 2506 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2507 } else { 2508 sp->pathmaxrxt = params->spp_pathmaxrxt; 2509 } 2510 } 2511 2512 return 0; 2513 } 2514 2515 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2516 char __user *optval, 2517 unsigned int optlen) 2518 { 2519 struct sctp_paddrparams params; 2520 struct sctp_transport *trans = NULL; 2521 struct sctp_association *asoc = NULL; 2522 struct sctp_sock *sp = sctp_sk(sk); 2523 int error; 2524 int hb_change, pmtud_change, sackdelay_change; 2525 2526 if (optlen != sizeof(struct sctp_paddrparams)) 2527 return -EINVAL; 2528 2529 if (copy_from_user(¶ms, optval, optlen)) 2530 return -EFAULT; 2531 2532 /* Validate flags and value parameters. */ 2533 hb_change = params.spp_flags & SPP_HB; 2534 pmtud_change = params.spp_flags & SPP_PMTUD; 2535 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2536 2537 if (hb_change == SPP_HB || 2538 pmtud_change == SPP_PMTUD || 2539 sackdelay_change == SPP_SACKDELAY || 2540 params.spp_sackdelay > 500 || 2541 (params.spp_pathmtu && 2542 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2543 return -EINVAL; 2544 2545 /* If an address other than INADDR_ANY is specified, and 2546 * no transport is found, then the request is invalid. 2547 */ 2548 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2549 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2550 params.spp_assoc_id); 2551 if (!trans) 2552 return -EINVAL; 2553 } 2554 2555 /* Get association, if assoc_id != 0 and the socket is a one 2556 * to many style socket, and an association was not found, then 2557 * the id was invalid. 2558 */ 2559 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2560 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2561 return -EINVAL; 2562 2563 /* Heartbeat demand can only be sent on a transport or 2564 * association, but not a socket. 2565 */ 2566 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2567 return -EINVAL; 2568 2569 /* Process parameters. */ 2570 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2571 hb_change, pmtud_change, 2572 sackdelay_change); 2573 2574 if (error) 2575 return error; 2576 2577 /* If changes are for association, also apply parameters to each 2578 * transport. 2579 */ 2580 if (!trans && asoc) { 2581 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2582 transports) { 2583 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2584 hb_change, pmtud_change, 2585 sackdelay_change); 2586 } 2587 } 2588 2589 return 0; 2590 } 2591 2592 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2593 { 2594 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2595 } 2596 2597 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2598 { 2599 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2600 } 2601 2602 /* 2603 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2604 * 2605 * This option will effect the way delayed acks are performed. This 2606 * option allows you to get or set the delayed ack time, in 2607 * milliseconds. It also allows changing the delayed ack frequency. 2608 * Changing the frequency to 1 disables the delayed sack algorithm. If 2609 * the assoc_id is 0, then this sets or gets the endpoints default 2610 * values. If the assoc_id field is non-zero, then the set or get 2611 * effects the specified association for the one to many model (the 2612 * assoc_id field is ignored by the one to one model). Note that if 2613 * sack_delay or sack_freq are 0 when setting this option, then the 2614 * current values will remain unchanged. 2615 * 2616 * struct sctp_sack_info { 2617 * sctp_assoc_t sack_assoc_id; 2618 * uint32_t sack_delay; 2619 * uint32_t sack_freq; 2620 * }; 2621 * 2622 * sack_assoc_id - This parameter, indicates which association the user 2623 * is performing an action upon. Note that if this field's value is 2624 * zero then the endpoints default value is changed (effecting future 2625 * associations only). 2626 * 2627 * sack_delay - This parameter contains the number of milliseconds that 2628 * the user is requesting the delayed ACK timer be set to. Note that 2629 * this value is defined in the standard to be between 200 and 500 2630 * milliseconds. 2631 * 2632 * sack_freq - This parameter contains the number of packets that must 2633 * be received before a sack is sent without waiting for the delay 2634 * timer to expire. The default value for this is 2, setting this 2635 * value to 1 will disable the delayed sack algorithm. 2636 */ 2637 2638 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2639 char __user *optval, unsigned int optlen) 2640 { 2641 struct sctp_sack_info params; 2642 struct sctp_transport *trans = NULL; 2643 struct sctp_association *asoc = NULL; 2644 struct sctp_sock *sp = sctp_sk(sk); 2645 2646 if (optlen == sizeof(struct sctp_sack_info)) { 2647 if (copy_from_user(¶ms, optval, optlen)) 2648 return -EFAULT; 2649 2650 if (params.sack_delay == 0 && params.sack_freq == 0) 2651 return 0; 2652 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2653 pr_warn_ratelimited(DEPRECATED 2654 "%s (pid %d) " 2655 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2656 "Use struct sctp_sack_info instead\n", 2657 current->comm, task_pid_nr(current)); 2658 if (copy_from_user(¶ms, optval, optlen)) 2659 return -EFAULT; 2660 2661 if (params.sack_delay == 0) 2662 params.sack_freq = 1; 2663 else 2664 params.sack_freq = 0; 2665 } else 2666 return -EINVAL; 2667 2668 /* Validate value parameter. */ 2669 if (params.sack_delay > 500) 2670 return -EINVAL; 2671 2672 /* Get association, if sack_assoc_id != 0 and the socket is a one 2673 * to many style socket, and an association was not found, then 2674 * the id was invalid. 2675 */ 2676 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2677 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2678 return -EINVAL; 2679 2680 if (params.sack_delay) { 2681 if (asoc) { 2682 asoc->sackdelay = 2683 msecs_to_jiffies(params.sack_delay); 2684 asoc->param_flags = 2685 sctp_spp_sackdelay_enable(asoc->param_flags); 2686 } else { 2687 sp->sackdelay = params.sack_delay; 2688 sp->param_flags = 2689 sctp_spp_sackdelay_enable(sp->param_flags); 2690 } 2691 } 2692 2693 if (params.sack_freq == 1) { 2694 if (asoc) { 2695 asoc->param_flags = 2696 sctp_spp_sackdelay_disable(asoc->param_flags); 2697 } else { 2698 sp->param_flags = 2699 sctp_spp_sackdelay_disable(sp->param_flags); 2700 } 2701 } else if (params.sack_freq > 1) { 2702 if (asoc) { 2703 asoc->sackfreq = params.sack_freq; 2704 asoc->param_flags = 2705 sctp_spp_sackdelay_enable(asoc->param_flags); 2706 } else { 2707 sp->sackfreq = params.sack_freq; 2708 sp->param_flags = 2709 sctp_spp_sackdelay_enable(sp->param_flags); 2710 } 2711 } 2712 2713 /* If change is for association, also apply to each transport. */ 2714 if (asoc) { 2715 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2716 transports) { 2717 if (params.sack_delay) { 2718 trans->sackdelay = 2719 msecs_to_jiffies(params.sack_delay); 2720 trans->param_flags = 2721 sctp_spp_sackdelay_enable(trans->param_flags); 2722 } 2723 if (params.sack_freq == 1) { 2724 trans->param_flags = 2725 sctp_spp_sackdelay_disable(trans->param_flags); 2726 } else if (params.sack_freq > 1) { 2727 trans->sackfreq = params.sack_freq; 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 } 2732 } 2733 2734 return 0; 2735 } 2736 2737 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2738 * 2739 * Applications can specify protocol parameters for the default association 2740 * initialization. The option name argument to setsockopt() and getsockopt() 2741 * is SCTP_INITMSG. 2742 * 2743 * Setting initialization parameters is effective only on an unconnected 2744 * socket (for UDP-style sockets only future associations are effected 2745 * by the change). With TCP-style sockets, this option is inherited by 2746 * sockets derived from a listener socket. 2747 */ 2748 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2749 { 2750 struct sctp_initmsg sinit; 2751 struct sctp_sock *sp = sctp_sk(sk); 2752 2753 if (optlen != sizeof(struct sctp_initmsg)) 2754 return -EINVAL; 2755 if (copy_from_user(&sinit, optval, optlen)) 2756 return -EFAULT; 2757 2758 if (sinit.sinit_num_ostreams) 2759 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2760 if (sinit.sinit_max_instreams) 2761 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2762 if (sinit.sinit_max_attempts) 2763 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2764 if (sinit.sinit_max_init_timeo) 2765 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2766 2767 return 0; 2768 } 2769 2770 /* 2771 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2772 * 2773 * Applications that wish to use the sendto() system call may wish to 2774 * specify a default set of parameters that would normally be supplied 2775 * through the inclusion of ancillary data. This socket option allows 2776 * such an application to set the default sctp_sndrcvinfo structure. 2777 * The application that wishes to use this socket option simply passes 2778 * in to this call the sctp_sndrcvinfo structure defined in Section 2779 * 5.2.2) The input parameters accepted by this call include 2780 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2781 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2782 * to this call if the caller is using the UDP model. 2783 */ 2784 static int sctp_setsockopt_default_send_param(struct sock *sk, 2785 char __user *optval, 2786 unsigned int optlen) 2787 { 2788 struct sctp_sock *sp = sctp_sk(sk); 2789 struct sctp_association *asoc; 2790 struct sctp_sndrcvinfo info; 2791 2792 if (optlen != sizeof(info)) 2793 return -EINVAL; 2794 if (copy_from_user(&info, optval, optlen)) 2795 return -EFAULT; 2796 if (info.sinfo_flags & 2797 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2798 SCTP_ABORT | SCTP_EOF)) 2799 return -EINVAL; 2800 2801 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2802 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2803 return -EINVAL; 2804 if (asoc) { 2805 asoc->default_stream = info.sinfo_stream; 2806 asoc->default_flags = info.sinfo_flags; 2807 asoc->default_ppid = info.sinfo_ppid; 2808 asoc->default_context = info.sinfo_context; 2809 asoc->default_timetolive = info.sinfo_timetolive; 2810 } else { 2811 sp->default_stream = info.sinfo_stream; 2812 sp->default_flags = info.sinfo_flags; 2813 sp->default_ppid = info.sinfo_ppid; 2814 sp->default_context = info.sinfo_context; 2815 sp->default_timetolive = info.sinfo_timetolive; 2816 } 2817 2818 return 0; 2819 } 2820 2821 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2822 * (SCTP_DEFAULT_SNDINFO) 2823 */ 2824 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2825 char __user *optval, 2826 unsigned int optlen) 2827 { 2828 struct sctp_sock *sp = sctp_sk(sk); 2829 struct sctp_association *asoc; 2830 struct sctp_sndinfo info; 2831 2832 if (optlen != sizeof(info)) 2833 return -EINVAL; 2834 if (copy_from_user(&info, optval, optlen)) 2835 return -EFAULT; 2836 if (info.snd_flags & 2837 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2838 SCTP_ABORT | SCTP_EOF)) 2839 return -EINVAL; 2840 2841 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2842 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2843 return -EINVAL; 2844 if (asoc) { 2845 asoc->default_stream = info.snd_sid; 2846 asoc->default_flags = info.snd_flags; 2847 asoc->default_ppid = info.snd_ppid; 2848 asoc->default_context = info.snd_context; 2849 } else { 2850 sp->default_stream = info.snd_sid; 2851 sp->default_flags = info.snd_flags; 2852 sp->default_ppid = info.snd_ppid; 2853 sp->default_context = info.snd_context; 2854 } 2855 2856 return 0; 2857 } 2858 2859 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2860 * 2861 * Requests that the local SCTP stack use the enclosed peer address as 2862 * the association primary. The enclosed address must be one of the 2863 * association peer's addresses. 2864 */ 2865 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2866 unsigned int optlen) 2867 { 2868 struct sctp_prim prim; 2869 struct sctp_transport *trans; 2870 2871 if (optlen != sizeof(struct sctp_prim)) 2872 return -EINVAL; 2873 2874 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2875 return -EFAULT; 2876 2877 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2878 if (!trans) 2879 return -EINVAL; 2880 2881 sctp_assoc_set_primary(trans->asoc, trans); 2882 2883 return 0; 2884 } 2885 2886 /* 2887 * 7.1.5 SCTP_NODELAY 2888 * 2889 * Turn on/off any Nagle-like algorithm. This means that packets are 2890 * generally sent as soon as possible and no unnecessary delays are 2891 * introduced, at the cost of more packets in the network. Expects an 2892 * integer boolean flag. 2893 */ 2894 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2895 unsigned int optlen) 2896 { 2897 int val; 2898 2899 if (optlen < sizeof(int)) 2900 return -EINVAL; 2901 if (get_user(val, (int __user *)optval)) 2902 return -EFAULT; 2903 2904 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2905 return 0; 2906 } 2907 2908 /* 2909 * 2910 * 7.1.1 SCTP_RTOINFO 2911 * 2912 * The protocol parameters used to initialize and bound retransmission 2913 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2914 * and modify these parameters. 2915 * All parameters are time values, in milliseconds. A value of 0, when 2916 * modifying the parameters, indicates that the current value should not 2917 * be changed. 2918 * 2919 */ 2920 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2921 { 2922 struct sctp_rtoinfo rtoinfo; 2923 struct sctp_association *asoc; 2924 unsigned long rto_min, rto_max; 2925 struct sctp_sock *sp = sctp_sk(sk); 2926 2927 if (optlen != sizeof (struct sctp_rtoinfo)) 2928 return -EINVAL; 2929 2930 if (copy_from_user(&rtoinfo, optval, optlen)) 2931 return -EFAULT; 2932 2933 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2934 2935 /* Set the values to the specific association */ 2936 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2937 return -EINVAL; 2938 2939 rto_max = rtoinfo.srto_max; 2940 rto_min = rtoinfo.srto_min; 2941 2942 if (rto_max) 2943 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2944 else 2945 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2946 2947 if (rto_min) 2948 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2949 else 2950 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2951 2952 if (rto_min > rto_max) 2953 return -EINVAL; 2954 2955 if (asoc) { 2956 if (rtoinfo.srto_initial != 0) 2957 asoc->rto_initial = 2958 msecs_to_jiffies(rtoinfo.srto_initial); 2959 asoc->rto_max = rto_max; 2960 asoc->rto_min = rto_min; 2961 } else { 2962 /* If there is no association or the association-id = 0 2963 * set the values to the endpoint. 2964 */ 2965 if (rtoinfo.srto_initial != 0) 2966 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2967 sp->rtoinfo.srto_max = rto_max; 2968 sp->rtoinfo.srto_min = rto_min; 2969 } 2970 2971 return 0; 2972 } 2973 2974 /* 2975 * 2976 * 7.1.2 SCTP_ASSOCINFO 2977 * 2978 * This option is used to tune the maximum retransmission attempts 2979 * of the association. 2980 * Returns an error if the new association retransmission value is 2981 * greater than the sum of the retransmission value of the peer. 2982 * See [SCTP] for more information. 2983 * 2984 */ 2985 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2986 { 2987 2988 struct sctp_assocparams assocparams; 2989 struct sctp_association *asoc; 2990 2991 if (optlen != sizeof(struct sctp_assocparams)) 2992 return -EINVAL; 2993 if (copy_from_user(&assocparams, optval, optlen)) 2994 return -EFAULT; 2995 2996 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2997 2998 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2999 return -EINVAL; 3000 3001 /* Set the values to the specific association */ 3002 if (asoc) { 3003 if (assocparams.sasoc_asocmaxrxt != 0) { 3004 __u32 path_sum = 0; 3005 int paths = 0; 3006 struct sctp_transport *peer_addr; 3007 3008 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3009 transports) { 3010 path_sum += peer_addr->pathmaxrxt; 3011 paths++; 3012 } 3013 3014 /* Only validate asocmaxrxt if we have more than 3015 * one path/transport. We do this because path 3016 * retransmissions are only counted when we have more 3017 * then one path. 3018 */ 3019 if (paths > 1 && 3020 assocparams.sasoc_asocmaxrxt > path_sum) 3021 return -EINVAL; 3022 3023 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3024 } 3025 3026 if (assocparams.sasoc_cookie_life != 0) 3027 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3028 } else { 3029 /* Set the values to the endpoint */ 3030 struct sctp_sock *sp = sctp_sk(sk); 3031 3032 if (assocparams.sasoc_asocmaxrxt != 0) 3033 sp->assocparams.sasoc_asocmaxrxt = 3034 assocparams.sasoc_asocmaxrxt; 3035 if (assocparams.sasoc_cookie_life != 0) 3036 sp->assocparams.sasoc_cookie_life = 3037 assocparams.sasoc_cookie_life; 3038 } 3039 return 0; 3040 } 3041 3042 /* 3043 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3044 * 3045 * This socket option is a boolean flag which turns on or off mapped V4 3046 * addresses. If this option is turned on and the socket is type 3047 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3048 * If this option is turned off, then no mapping will be done of V4 3049 * addresses and a user will receive both PF_INET6 and PF_INET type 3050 * addresses on the socket. 3051 */ 3052 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3053 { 3054 int val; 3055 struct sctp_sock *sp = sctp_sk(sk); 3056 3057 if (optlen < sizeof(int)) 3058 return -EINVAL; 3059 if (get_user(val, (int __user *)optval)) 3060 return -EFAULT; 3061 if (val) 3062 sp->v4mapped = 1; 3063 else 3064 sp->v4mapped = 0; 3065 3066 return 0; 3067 } 3068 3069 /* 3070 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3071 * This option will get or set the maximum size to put in any outgoing 3072 * SCTP DATA chunk. If a message is larger than this size it will be 3073 * fragmented by SCTP into the specified size. Note that the underlying 3074 * SCTP implementation may fragment into smaller sized chunks when the 3075 * PMTU of the underlying association is smaller than the value set by 3076 * the user. The default value for this option is '0' which indicates 3077 * the user is NOT limiting fragmentation and only the PMTU will effect 3078 * SCTP's choice of DATA chunk size. Note also that values set larger 3079 * than the maximum size of an IP datagram will effectively let SCTP 3080 * control fragmentation (i.e. the same as setting this option to 0). 3081 * 3082 * The following structure is used to access and modify this parameter: 3083 * 3084 * struct sctp_assoc_value { 3085 * sctp_assoc_t assoc_id; 3086 * uint32_t assoc_value; 3087 * }; 3088 * 3089 * assoc_id: This parameter is ignored for one-to-one style sockets. 3090 * For one-to-many style sockets this parameter indicates which 3091 * association the user is performing an action upon. Note that if 3092 * this field's value is zero then the endpoints default value is 3093 * changed (effecting future associations only). 3094 * assoc_value: This parameter specifies the maximum size in bytes. 3095 */ 3096 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3097 { 3098 struct sctp_assoc_value params; 3099 struct sctp_association *asoc; 3100 struct sctp_sock *sp = sctp_sk(sk); 3101 int val; 3102 3103 if (optlen == sizeof(int)) { 3104 pr_warn_ratelimited(DEPRECATED 3105 "%s (pid %d) " 3106 "Use of int in maxseg socket option.\n" 3107 "Use struct sctp_assoc_value instead\n", 3108 current->comm, task_pid_nr(current)); 3109 if (copy_from_user(&val, optval, optlen)) 3110 return -EFAULT; 3111 params.assoc_id = 0; 3112 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3113 if (copy_from_user(¶ms, optval, optlen)) 3114 return -EFAULT; 3115 val = params.assoc_value; 3116 } else 3117 return -EINVAL; 3118 3119 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3120 return -EINVAL; 3121 3122 asoc = sctp_id2assoc(sk, params.assoc_id); 3123 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3124 return -EINVAL; 3125 3126 if (asoc) { 3127 if (val == 0) { 3128 val = asoc->pathmtu; 3129 val -= sp->pf->af->net_header_len; 3130 val -= sizeof(struct sctphdr) + 3131 sizeof(struct sctp_data_chunk); 3132 } 3133 asoc->user_frag = val; 3134 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3135 } else { 3136 sp->user_frag = val; 3137 } 3138 3139 return 0; 3140 } 3141 3142 3143 /* 3144 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3145 * 3146 * Requests that the peer mark the enclosed address as the association 3147 * primary. The enclosed address must be one of the association's 3148 * locally bound addresses. The following structure is used to make a 3149 * set primary request: 3150 */ 3151 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3152 unsigned int optlen) 3153 { 3154 struct net *net = sock_net(sk); 3155 struct sctp_sock *sp; 3156 struct sctp_association *asoc = NULL; 3157 struct sctp_setpeerprim prim; 3158 struct sctp_chunk *chunk; 3159 struct sctp_af *af; 3160 int err; 3161 3162 sp = sctp_sk(sk); 3163 3164 if (!net->sctp.addip_enable) 3165 return -EPERM; 3166 3167 if (optlen != sizeof(struct sctp_setpeerprim)) 3168 return -EINVAL; 3169 3170 if (copy_from_user(&prim, optval, optlen)) 3171 return -EFAULT; 3172 3173 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3174 if (!asoc) 3175 return -EINVAL; 3176 3177 if (!asoc->peer.asconf_capable) 3178 return -EPERM; 3179 3180 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3181 return -EPERM; 3182 3183 if (!sctp_state(asoc, ESTABLISHED)) 3184 return -ENOTCONN; 3185 3186 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3187 if (!af) 3188 return -EINVAL; 3189 3190 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3191 return -EADDRNOTAVAIL; 3192 3193 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3194 return -EADDRNOTAVAIL; 3195 3196 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3197 chunk = sctp_make_asconf_set_prim(asoc, 3198 (union sctp_addr *)&prim.sspp_addr); 3199 if (!chunk) 3200 return -ENOMEM; 3201 3202 err = sctp_send_asconf(asoc, chunk); 3203 3204 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3205 3206 return err; 3207 } 3208 3209 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3210 unsigned int optlen) 3211 { 3212 struct sctp_setadaptation adaptation; 3213 3214 if (optlen != sizeof(struct sctp_setadaptation)) 3215 return -EINVAL; 3216 if (copy_from_user(&adaptation, optval, optlen)) 3217 return -EFAULT; 3218 3219 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3220 3221 return 0; 3222 } 3223 3224 /* 3225 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3226 * 3227 * The context field in the sctp_sndrcvinfo structure is normally only 3228 * used when a failed message is retrieved holding the value that was 3229 * sent down on the actual send call. This option allows the setting of 3230 * a default context on an association basis that will be received on 3231 * reading messages from the peer. This is especially helpful in the 3232 * one-2-many model for an application to keep some reference to an 3233 * internal state machine that is processing messages on the 3234 * association. Note that the setting of this value only effects 3235 * received messages from the peer and does not effect the value that is 3236 * saved with outbound messages. 3237 */ 3238 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3239 unsigned int optlen) 3240 { 3241 struct sctp_assoc_value params; 3242 struct sctp_sock *sp; 3243 struct sctp_association *asoc; 3244 3245 if (optlen != sizeof(struct sctp_assoc_value)) 3246 return -EINVAL; 3247 if (copy_from_user(¶ms, optval, optlen)) 3248 return -EFAULT; 3249 3250 sp = sctp_sk(sk); 3251 3252 if (params.assoc_id != 0) { 3253 asoc = sctp_id2assoc(sk, params.assoc_id); 3254 if (!asoc) 3255 return -EINVAL; 3256 asoc->default_rcv_context = params.assoc_value; 3257 } else { 3258 sp->default_rcv_context = params.assoc_value; 3259 } 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3266 * 3267 * This options will at a minimum specify if the implementation is doing 3268 * fragmented interleave. Fragmented interleave, for a one to many 3269 * socket, is when subsequent calls to receive a message may return 3270 * parts of messages from different associations. Some implementations 3271 * may allow you to turn this value on or off. If so, when turned off, 3272 * no fragment interleave will occur (which will cause a head of line 3273 * blocking amongst multiple associations sharing the same one to many 3274 * socket). When this option is turned on, then each receive call may 3275 * come from a different association (thus the user must receive data 3276 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3277 * association each receive belongs to. 3278 * 3279 * This option takes a boolean value. A non-zero value indicates that 3280 * fragmented interleave is on. A value of zero indicates that 3281 * fragmented interleave is off. 3282 * 3283 * Note that it is important that an implementation that allows this 3284 * option to be turned on, have it off by default. Otherwise an unaware 3285 * application using the one to many model may become confused and act 3286 * incorrectly. 3287 */ 3288 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3289 char __user *optval, 3290 unsigned int optlen) 3291 { 3292 int val; 3293 3294 if (optlen != sizeof(int)) 3295 return -EINVAL; 3296 if (get_user(val, (int __user *)optval)) 3297 return -EFAULT; 3298 3299 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3300 3301 return 0; 3302 } 3303 3304 /* 3305 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3306 * (SCTP_PARTIAL_DELIVERY_POINT) 3307 * 3308 * This option will set or get the SCTP partial delivery point. This 3309 * point is the size of a message where the partial delivery API will be 3310 * invoked to help free up rwnd space for the peer. Setting this to a 3311 * lower value will cause partial deliveries to happen more often. The 3312 * calls argument is an integer that sets or gets the partial delivery 3313 * point. Note also that the call will fail if the user attempts to set 3314 * this value larger than the socket receive buffer size. 3315 * 3316 * Note that any single message having a length smaller than or equal to 3317 * the SCTP partial delivery point will be delivered in one single read 3318 * call as long as the user provided buffer is large enough to hold the 3319 * message. 3320 */ 3321 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3322 char __user *optval, 3323 unsigned int optlen) 3324 { 3325 u32 val; 3326 3327 if (optlen != sizeof(u32)) 3328 return -EINVAL; 3329 if (get_user(val, (int __user *)optval)) 3330 return -EFAULT; 3331 3332 /* Note: We double the receive buffer from what the user sets 3333 * it to be, also initial rwnd is based on rcvbuf/2. 3334 */ 3335 if (val > (sk->sk_rcvbuf >> 1)) 3336 return -EINVAL; 3337 3338 sctp_sk(sk)->pd_point = val; 3339 3340 return 0; /* is this the right error code? */ 3341 } 3342 3343 /* 3344 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3345 * 3346 * This option will allow a user to change the maximum burst of packets 3347 * that can be emitted by this association. Note that the default value 3348 * is 4, and some implementations may restrict this setting so that it 3349 * can only be lowered. 3350 * 3351 * NOTE: This text doesn't seem right. Do this on a socket basis with 3352 * future associations inheriting the socket value. 3353 */ 3354 static int sctp_setsockopt_maxburst(struct sock *sk, 3355 char __user *optval, 3356 unsigned int optlen) 3357 { 3358 struct sctp_assoc_value params; 3359 struct sctp_sock *sp; 3360 struct sctp_association *asoc; 3361 int val; 3362 int assoc_id = 0; 3363 3364 if (optlen == sizeof(int)) { 3365 pr_warn_ratelimited(DEPRECATED 3366 "%s (pid %d) " 3367 "Use of int in max_burst socket option deprecated.\n" 3368 "Use struct sctp_assoc_value instead\n", 3369 current->comm, task_pid_nr(current)); 3370 if (copy_from_user(&val, optval, optlen)) 3371 return -EFAULT; 3372 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3373 if (copy_from_user(¶ms, optval, optlen)) 3374 return -EFAULT; 3375 val = params.assoc_value; 3376 assoc_id = params.assoc_id; 3377 } else 3378 return -EINVAL; 3379 3380 sp = sctp_sk(sk); 3381 3382 if (assoc_id != 0) { 3383 asoc = sctp_id2assoc(sk, assoc_id); 3384 if (!asoc) 3385 return -EINVAL; 3386 asoc->max_burst = val; 3387 } else 3388 sp->max_burst = val; 3389 3390 return 0; 3391 } 3392 3393 /* 3394 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3395 * 3396 * This set option adds a chunk type that the user is requesting to be 3397 * received only in an authenticated way. Changes to the list of chunks 3398 * will only effect future associations on the socket. 3399 */ 3400 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3401 char __user *optval, 3402 unsigned int optlen) 3403 { 3404 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3405 struct sctp_authchunk val; 3406 3407 if (!ep->auth_enable) 3408 return -EACCES; 3409 3410 if (optlen != sizeof(struct sctp_authchunk)) 3411 return -EINVAL; 3412 if (copy_from_user(&val, optval, optlen)) 3413 return -EFAULT; 3414 3415 switch (val.sauth_chunk) { 3416 case SCTP_CID_INIT: 3417 case SCTP_CID_INIT_ACK: 3418 case SCTP_CID_SHUTDOWN_COMPLETE: 3419 case SCTP_CID_AUTH: 3420 return -EINVAL; 3421 } 3422 3423 /* add this chunk id to the endpoint */ 3424 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3425 } 3426 3427 /* 3428 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3429 * 3430 * This option gets or sets the list of HMAC algorithms that the local 3431 * endpoint requires the peer to use. 3432 */ 3433 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3434 char __user *optval, 3435 unsigned int optlen) 3436 { 3437 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3438 struct sctp_hmacalgo *hmacs; 3439 u32 idents; 3440 int err; 3441 3442 if (!ep->auth_enable) 3443 return -EACCES; 3444 3445 if (optlen < sizeof(struct sctp_hmacalgo)) 3446 return -EINVAL; 3447 3448 hmacs = memdup_user(optval, optlen); 3449 if (IS_ERR(hmacs)) 3450 return PTR_ERR(hmacs); 3451 3452 idents = hmacs->shmac_num_idents; 3453 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3454 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3455 err = -EINVAL; 3456 goto out; 3457 } 3458 3459 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3460 out: 3461 kfree(hmacs); 3462 return err; 3463 } 3464 3465 /* 3466 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3467 * 3468 * This option will set a shared secret key which is used to build an 3469 * association shared key. 3470 */ 3471 static int sctp_setsockopt_auth_key(struct sock *sk, 3472 char __user *optval, 3473 unsigned int optlen) 3474 { 3475 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3476 struct sctp_authkey *authkey; 3477 struct sctp_association *asoc; 3478 int ret; 3479 3480 if (!ep->auth_enable) 3481 return -EACCES; 3482 3483 if (optlen <= sizeof(struct sctp_authkey)) 3484 return -EINVAL; 3485 3486 authkey = memdup_user(optval, optlen); 3487 if (IS_ERR(authkey)) 3488 return PTR_ERR(authkey); 3489 3490 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3491 ret = -EINVAL; 3492 goto out; 3493 } 3494 3495 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3496 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3497 ret = -EINVAL; 3498 goto out; 3499 } 3500 3501 ret = sctp_auth_set_key(ep, asoc, authkey); 3502 out: 3503 kzfree(authkey); 3504 return ret; 3505 } 3506 3507 /* 3508 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3509 * 3510 * This option will get or set the active shared key to be used to build 3511 * the association shared key. 3512 */ 3513 static int sctp_setsockopt_active_key(struct sock *sk, 3514 char __user *optval, 3515 unsigned int optlen) 3516 { 3517 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3518 struct sctp_authkeyid val; 3519 struct sctp_association *asoc; 3520 3521 if (!ep->auth_enable) 3522 return -EACCES; 3523 3524 if (optlen != sizeof(struct sctp_authkeyid)) 3525 return -EINVAL; 3526 if (copy_from_user(&val, optval, optlen)) 3527 return -EFAULT; 3528 3529 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3530 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3531 return -EINVAL; 3532 3533 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3534 } 3535 3536 /* 3537 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3538 * 3539 * This set option will delete a shared secret key from use. 3540 */ 3541 static int sctp_setsockopt_del_key(struct sock *sk, 3542 char __user *optval, 3543 unsigned int optlen) 3544 { 3545 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3546 struct sctp_authkeyid val; 3547 struct sctp_association *asoc; 3548 3549 if (!ep->auth_enable) 3550 return -EACCES; 3551 3552 if (optlen != sizeof(struct sctp_authkeyid)) 3553 return -EINVAL; 3554 if (copy_from_user(&val, optval, optlen)) 3555 return -EFAULT; 3556 3557 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3558 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3559 return -EINVAL; 3560 3561 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3562 3563 } 3564 3565 /* 3566 * 8.1.23 SCTP_AUTO_ASCONF 3567 * 3568 * This option will enable or disable the use of the automatic generation of 3569 * ASCONF chunks to add and delete addresses to an existing association. Note 3570 * that this option has two caveats namely: a) it only affects sockets that 3571 * are bound to all addresses available to the SCTP stack, and b) the system 3572 * administrator may have an overriding control that turns the ASCONF feature 3573 * off no matter what setting the socket option may have. 3574 * This option expects an integer boolean flag, where a non-zero value turns on 3575 * the option, and a zero value turns off the option. 3576 * Note. In this implementation, socket operation overrides default parameter 3577 * being set by sysctl as well as FreeBSD implementation 3578 */ 3579 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3580 unsigned int optlen) 3581 { 3582 int val; 3583 struct sctp_sock *sp = sctp_sk(sk); 3584 3585 if (optlen < sizeof(int)) 3586 return -EINVAL; 3587 if (get_user(val, (int __user *)optval)) 3588 return -EFAULT; 3589 if (!sctp_is_ep_boundall(sk) && val) 3590 return -EINVAL; 3591 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3592 return 0; 3593 3594 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3595 if (val == 0 && sp->do_auto_asconf) { 3596 list_del(&sp->auto_asconf_list); 3597 sp->do_auto_asconf = 0; 3598 } else if (val && !sp->do_auto_asconf) { 3599 list_add_tail(&sp->auto_asconf_list, 3600 &sock_net(sk)->sctp.auto_asconf_splist); 3601 sp->do_auto_asconf = 1; 3602 } 3603 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3604 return 0; 3605 } 3606 3607 /* 3608 * SCTP_PEER_ADDR_THLDS 3609 * 3610 * This option allows us to alter the partially failed threshold for one or all 3611 * transports in an association. See Section 6.1 of: 3612 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3613 */ 3614 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3615 char __user *optval, 3616 unsigned int optlen) 3617 { 3618 struct sctp_paddrthlds val; 3619 struct sctp_transport *trans; 3620 struct sctp_association *asoc; 3621 3622 if (optlen < sizeof(struct sctp_paddrthlds)) 3623 return -EINVAL; 3624 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3625 sizeof(struct sctp_paddrthlds))) 3626 return -EFAULT; 3627 3628 3629 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3630 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3631 if (!asoc) 3632 return -ENOENT; 3633 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3634 transports) { 3635 if (val.spt_pathmaxrxt) 3636 trans->pathmaxrxt = val.spt_pathmaxrxt; 3637 trans->pf_retrans = val.spt_pathpfthld; 3638 } 3639 3640 if (val.spt_pathmaxrxt) 3641 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3642 asoc->pf_retrans = val.spt_pathpfthld; 3643 } else { 3644 trans = sctp_addr_id2transport(sk, &val.spt_address, 3645 val.spt_assoc_id); 3646 if (!trans) 3647 return -ENOENT; 3648 3649 if (val.spt_pathmaxrxt) 3650 trans->pathmaxrxt = val.spt_pathmaxrxt; 3651 trans->pf_retrans = val.spt_pathpfthld; 3652 } 3653 3654 return 0; 3655 } 3656 3657 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3658 char __user *optval, 3659 unsigned int optlen) 3660 { 3661 int val; 3662 3663 if (optlen < sizeof(int)) 3664 return -EINVAL; 3665 if (get_user(val, (int __user *) optval)) 3666 return -EFAULT; 3667 3668 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3669 3670 return 0; 3671 } 3672 3673 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3674 char __user *optval, 3675 unsigned int optlen) 3676 { 3677 int val; 3678 3679 if (optlen < sizeof(int)) 3680 return -EINVAL; 3681 if (get_user(val, (int __user *) optval)) 3682 return -EFAULT; 3683 3684 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3685 3686 return 0; 3687 } 3688 3689 static int sctp_setsockopt_pr_supported(struct sock *sk, 3690 char __user *optval, 3691 unsigned int optlen) 3692 { 3693 struct sctp_assoc_value params; 3694 struct sctp_association *asoc; 3695 int retval = -EINVAL; 3696 3697 if (optlen != sizeof(params)) 3698 goto out; 3699 3700 if (copy_from_user(¶ms, optval, optlen)) { 3701 retval = -EFAULT; 3702 goto out; 3703 } 3704 3705 asoc = sctp_id2assoc(sk, params.assoc_id); 3706 if (asoc) { 3707 asoc->prsctp_enable = !!params.assoc_value; 3708 } else if (!params.assoc_id) { 3709 struct sctp_sock *sp = sctp_sk(sk); 3710 3711 sp->ep->prsctp_enable = !!params.assoc_value; 3712 } else { 3713 goto out; 3714 } 3715 3716 retval = 0; 3717 3718 out: 3719 return retval; 3720 } 3721 3722 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3723 char __user *optval, 3724 unsigned int optlen) 3725 { 3726 struct sctp_default_prinfo info; 3727 struct sctp_association *asoc; 3728 int retval = -EINVAL; 3729 3730 if (optlen != sizeof(info)) 3731 goto out; 3732 3733 if (copy_from_user(&info, optval, sizeof(info))) { 3734 retval = -EFAULT; 3735 goto out; 3736 } 3737 3738 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3739 goto out; 3740 3741 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3742 info.pr_value = 0; 3743 3744 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3745 if (asoc) { 3746 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3747 asoc->default_timetolive = info.pr_value; 3748 } else if (!info.pr_assoc_id) { 3749 struct sctp_sock *sp = sctp_sk(sk); 3750 3751 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3752 sp->default_timetolive = info.pr_value; 3753 } else { 3754 goto out; 3755 } 3756 3757 retval = 0; 3758 3759 out: 3760 return retval; 3761 } 3762 3763 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3764 char __user *optval, 3765 unsigned int optlen) 3766 { 3767 struct sctp_assoc_value params; 3768 struct sctp_association *asoc; 3769 int retval = -EINVAL; 3770 3771 if (optlen != sizeof(params)) 3772 goto out; 3773 3774 if (copy_from_user(¶ms, optval, optlen)) { 3775 retval = -EFAULT; 3776 goto out; 3777 } 3778 3779 asoc = sctp_id2assoc(sk, params.assoc_id); 3780 if (asoc) { 3781 asoc->reconf_enable = !!params.assoc_value; 3782 } else if (!params.assoc_id) { 3783 struct sctp_sock *sp = sctp_sk(sk); 3784 3785 sp->ep->reconf_enable = !!params.assoc_value; 3786 } else { 3787 goto out; 3788 } 3789 3790 retval = 0; 3791 3792 out: 3793 return retval; 3794 } 3795 3796 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3797 char __user *optval, 3798 unsigned int optlen) 3799 { 3800 struct sctp_assoc_value params; 3801 struct sctp_association *asoc; 3802 int retval = -EINVAL; 3803 3804 if (optlen != sizeof(params)) 3805 goto out; 3806 3807 if (copy_from_user(¶ms, optval, optlen)) { 3808 retval = -EFAULT; 3809 goto out; 3810 } 3811 3812 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3813 goto out; 3814 3815 asoc = sctp_id2assoc(sk, params.assoc_id); 3816 if (asoc) { 3817 asoc->strreset_enable = params.assoc_value; 3818 } else if (!params.assoc_id) { 3819 struct sctp_sock *sp = sctp_sk(sk); 3820 3821 sp->ep->strreset_enable = params.assoc_value; 3822 } else { 3823 goto out; 3824 } 3825 3826 retval = 0; 3827 3828 out: 3829 return retval; 3830 } 3831 3832 static int sctp_setsockopt_reset_streams(struct sock *sk, 3833 char __user *optval, 3834 unsigned int optlen) 3835 { 3836 struct sctp_reset_streams *params; 3837 struct sctp_association *asoc; 3838 int retval = -EINVAL; 3839 3840 if (optlen < sizeof(struct sctp_reset_streams)) 3841 return -EINVAL; 3842 3843 params = memdup_user(optval, optlen); 3844 if (IS_ERR(params)) 3845 return PTR_ERR(params); 3846 3847 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3848 if (!asoc) 3849 goto out; 3850 3851 retval = sctp_send_reset_streams(asoc, params); 3852 3853 out: 3854 kfree(params); 3855 return retval; 3856 } 3857 3858 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3859 char __user *optval, 3860 unsigned int optlen) 3861 { 3862 struct sctp_association *asoc; 3863 sctp_assoc_t associd; 3864 int retval = -EINVAL; 3865 3866 if (optlen != sizeof(associd)) 3867 goto out; 3868 3869 if (copy_from_user(&associd, optval, optlen)) { 3870 retval = -EFAULT; 3871 goto out; 3872 } 3873 3874 asoc = sctp_id2assoc(sk, associd); 3875 if (!asoc) 3876 goto out; 3877 3878 retval = sctp_send_reset_assoc(asoc); 3879 3880 out: 3881 return retval; 3882 } 3883 3884 static int sctp_setsockopt_add_streams(struct sock *sk, 3885 char __user *optval, 3886 unsigned int optlen) 3887 { 3888 struct sctp_association *asoc; 3889 struct sctp_add_streams params; 3890 int retval = -EINVAL; 3891 3892 if (optlen != sizeof(params)) 3893 goto out; 3894 3895 if (copy_from_user(¶ms, optval, optlen)) { 3896 retval = -EFAULT; 3897 goto out; 3898 } 3899 3900 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3901 if (!asoc) 3902 goto out; 3903 3904 retval = sctp_send_add_streams(asoc, ¶ms); 3905 3906 out: 3907 return retval; 3908 } 3909 3910 /* API 6.2 setsockopt(), getsockopt() 3911 * 3912 * Applications use setsockopt() and getsockopt() to set or retrieve 3913 * socket options. Socket options are used to change the default 3914 * behavior of sockets calls. They are described in Section 7. 3915 * 3916 * The syntax is: 3917 * 3918 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3919 * int __user *optlen); 3920 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3921 * int optlen); 3922 * 3923 * sd - the socket descript. 3924 * level - set to IPPROTO_SCTP for all SCTP options. 3925 * optname - the option name. 3926 * optval - the buffer to store the value of the option. 3927 * optlen - the size of the buffer. 3928 */ 3929 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3930 char __user *optval, unsigned int optlen) 3931 { 3932 int retval = 0; 3933 3934 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3935 3936 /* I can hardly begin to describe how wrong this is. This is 3937 * so broken as to be worse than useless. The API draft 3938 * REALLY is NOT helpful here... I am not convinced that the 3939 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3940 * are at all well-founded. 3941 */ 3942 if (level != SOL_SCTP) { 3943 struct sctp_af *af = sctp_sk(sk)->pf->af; 3944 retval = af->setsockopt(sk, level, optname, optval, optlen); 3945 goto out_nounlock; 3946 } 3947 3948 lock_sock(sk); 3949 3950 switch (optname) { 3951 case SCTP_SOCKOPT_BINDX_ADD: 3952 /* 'optlen' is the size of the addresses buffer. */ 3953 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3954 optlen, SCTP_BINDX_ADD_ADDR); 3955 break; 3956 3957 case SCTP_SOCKOPT_BINDX_REM: 3958 /* 'optlen' is the size of the addresses buffer. */ 3959 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3960 optlen, SCTP_BINDX_REM_ADDR); 3961 break; 3962 3963 case SCTP_SOCKOPT_CONNECTX_OLD: 3964 /* 'optlen' is the size of the addresses buffer. */ 3965 retval = sctp_setsockopt_connectx_old(sk, 3966 (struct sockaddr __user *)optval, 3967 optlen); 3968 break; 3969 3970 case SCTP_SOCKOPT_CONNECTX: 3971 /* 'optlen' is the size of the addresses buffer. */ 3972 retval = sctp_setsockopt_connectx(sk, 3973 (struct sockaddr __user *)optval, 3974 optlen); 3975 break; 3976 3977 case SCTP_DISABLE_FRAGMENTS: 3978 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3979 break; 3980 3981 case SCTP_EVENTS: 3982 retval = sctp_setsockopt_events(sk, optval, optlen); 3983 break; 3984 3985 case SCTP_AUTOCLOSE: 3986 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3987 break; 3988 3989 case SCTP_PEER_ADDR_PARAMS: 3990 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3991 break; 3992 3993 case SCTP_DELAYED_SACK: 3994 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3995 break; 3996 case SCTP_PARTIAL_DELIVERY_POINT: 3997 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3998 break; 3999 4000 case SCTP_INITMSG: 4001 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4002 break; 4003 case SCTP_DEFAULT_SEND_PARAM: 4004 retval = sctp_setsockopt_default_send_param(sk, optval, 4005 optlen); 4006 break; 4007 case SCTP_DEFAULT_SNDINFO: 4008 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4009 break; 4010 case SCTP_PRIMARY_ADDR: 4011 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4012 break; 4013 case SCTP_SET_PEER_PRIMARY_ADDR: 4014 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4015 break; 4016 case SCTP_NODELAY: 4017 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4018 break; 4019 case SCTP_RTOINFO: 4020 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4021 break; 4022 case SCTP_ASSOCINFO: 4023 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4024 break; 4025 case SCTP_I_WANT_MAPPED_V4_ADDR: 4026 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4027 break; 4028 case SCTP_MAXSEG: 4029 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4030 break; 4031 case SCTP_ADAPTATION_LAYER: 4032 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4033 break; 4034 case SCTP_CONTEXT: 4035 retval = sctp_setsockopt_context(sk, optval, optlen); 4036 break; 4037 case SCTP_FRAGMENT_INTERLEAVE: 4038 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4039 break; 4040 case SCTP_MAX_BURST: 4041 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4042 break; 4043 case SCTP_AUTH_CHUNK: 4044 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4045 break; 4046 case SCTP_HMAC_IDENT: 4047 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4048 break; 4049 case SCTP_AUTH_KEY: 4050 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4051 break; 4052 case SCTP_AUTH_ACTIVE_KEY: 4053 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4054 break; 4055 case SCTP_AUTH_DELETE_KEY: 4056 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4057 break; 4058 case SCTP_AUTO_ASCONF: 4059 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4060 break; 4061 case SCTP_PEER_ADDR_THLDS: 4062 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4063 break; 4064 case SCTP_RECVRCVINFO: 4065 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4066 break; 4067 case SCTP_RECVNXTINFO: 4068 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4069 break; 4070 case SCTP_PR_SUPPORTED: 4071 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4072 break; 4073 case SCTP_DEFAULT_PRINFO: 4074 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4075 break; 4076 case SCTP_RECONFIG_SUPPORTED: 4077 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4078 break; 4079 case SCTP_ENABLE_STREAM_RESET: 4080 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4081 break; 4082 case SCTP_RESET_STREAMS: 4083 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4084 break; 4085 case SCTP_RESET_ASSOC: 4086 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4087 break; 4088 case SCTP_ADD_STREAMS: 4089 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4090 break; 4091 default: 4092 retval = -ENOPROTOOPT; 4093 break; 4094 } 4095 4096 release_sock(sk); 4097 4098 out_nounlock: 4099 return retval; 4100 } 4101 4102 /* API 3.1.6 connect() - UDP Style Syntax 4103 * 4104 * An application may use the connect() call in the UDP model to initiate an 4105 * association without sending data. 4106 * 4107 * The syntax is: 4108 * 4109 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4110 * 4111 * sd: the socket descriptor to have a new association added to. 4112 * 4113 * nam: the address structure (either struct sockaddr_in or struct 4114 * sockaddr_in6 defined in RFC2553 [7]). 4115 * 4116 * len: the size of the address. 4117 */ 4118 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4119 int addr_len) 4120 { 4121 int err = 0; 4122 struct sctp_af *af; 4123 4124 lock_sock(sk); 4125 4126 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4127 addr, addr_len); 4128 4129 /* Validate addr_len before calling common connect/connectx routine. */ 4130 af = sctp_get_af_specific(addr->sa_family); 4131 if (!af || addr_len < af->sockaddr_len) { 4132 err = -EINVAL; 4133 } else { 4134 /* Pass correct addr len to common routine (so it knows there 4135 * is only one address being passed. 4136 */ 4137 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4138 } 4139 4140 release_sock(sk); 4141 return err; 4142 } 4143 4144 /* FIXME: Write comments. */ 4145 static int sctp_disconnect(struct sock *sk, int flags) 4146 { 4147 return -EOPNOTSUPP; /* STUB */ 4148 } 4149 4150 /* 4.1.4 accept() - TCP Style Syntax 4151 * 4152 * Applications use accept() call to remove an established SCTP 4153 * association from the accept queue of the endpoint. A new socket 4154 * descriptor will be returned from accept() to represent the newly 4155 * formed association. 4156 */ 4157 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4158 { 4159 struct sctp_sock *sp; 4160 struct sctp_endpoint *ep; 4161 struct sock *newsk = NULL; 4162 struct sctp_association *asoc; 4163 long timeo; 4164 int error = 0; 4165 4166 lock_sock(sk); 4167 4168 sp = sctp_sk(sk); 4169 ep = sp->ep; 4170 4171 if (!sctp_style(sk, TCP)) { 4172 error = -EOPNOTSUPP; 4173 goto out; 4174 } 4175 4176 if (!sctp_sstate(sk, LISTENING)) { 4177 error = -EINVAL; 4178 goto out; 4179 } 4180 4181 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4182 4183 error = sctp_wait_for_accept(sk, timeo); 4184 if (error) 4185 goto out; 4186 4187 /* We treat the list of associations on the endpoint as the accept 4188 * queue and pick the first association on the list. 4189 */ 4190 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4191 4192 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4193 if (!newsk) { 4194 error = -ENOMEM; 4195 goto out; 4196 } 4197 4198 /* Populate the fields of the newsk from the oldsk and migrate the 4199 * asoc to the newsk. 4200 */ 4201 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4202 4203 out: 4204 release_sock(sk); 4205 *err = error; 4206 return newsk; 4207 } 4208 4209 /* The SCTP ioctl handler. */ 4210 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4211 { 4212 int rc = -ENOTCONN; 4213 4214 lock_sock(sk); 4215 4216 /* 4217 * SEQPACKET-style sockets in LISTENING state are valid, for 4218 * SCTP, so only discard TCP-style sockets in LISTENING state. 4219 */ 4220 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4221 goto out; 4222 4223 switch (cmd) { 4224 case SIOCINQ: { 4225 struct sk_buff *skb; 4226 unsigned int amount = 0; 4227 4228 skb = skb_peek(&sk->sk_receive_queue); 4229 if (skb != NULL) { 4230 /* 4231 * We will only return the amount of this packet since 4232 * that is all that will be read. 4233 */ 4234 amount = skb->len; 4235 } 4236 rc = put_user(amount, (int __user *)arg); 4237 break; 4238 } 4239 default: 4240 rc = -ENOIOCTLCMD; 4241 break; 4242 } 4243 out: 4244 release_sock(sk); 4245 return rc; 4246 } 4247 4248 /* This is the function which gets called during socket creation to 4249 * initialized the SCTP-specific portion of the sock. 4250 * The sock structure should already be zero-filled memory. 4251 */ 4252 static int sctp_init_sock(struct sock *sk) 4253 { 4254 struct net *net = sock_net(sk); 4255 struct sctp_sock *sp; 4256 4257 pr_debug("%s: sk:%p\n", __func__, sk); 4258 4259 sp = sctp_sk(sk); 4260 4261 /* Initialize the SCTP per socket area. */ 4262 switch (sk->sk_type) { 4263 case SOCK_SEQPACKET: 4264 sp->type = SCTP_SOCKET_UDP; 4265 break; 4266 case SOCK_STREAM: 4267 sp->type = SCTP_SOCKET_TCP; 4268 break; 4269 default: 4270 return -ESOCKTNOSUPPORT; 4271 } 4272 4273 sk->sk_gso_type = SKB_GSO_SCTP; 4274 4275 /* Initialize default send parameters. These parameters can be 4276 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4277 */ 4278 sp->default_stream = 0; 4279 sp->default_ppid = 0; 4280 sp->default_flags = 0; 4281 sp->default_context = 0; 4282 sp->default_timetolive = 0; 4283 4284 sp->default_rcv_context = 0; 4285 sp->max_burst = net->sctp.max_burst; 4286 4287 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4288 4289 /* Initialize default setup parameters. These parameters 4290 * can be modified with the SCTP_INITMSG socket option or 4291 * overridden by the SCTP_INIT CMSG. 4292 */ 4293 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4294 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4295 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4296 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4297 4298 /* Initialize default RTO related parameters. These parameters can 4299 * be modified for with the SCTP_RTOINFO socket option. 4300 */ 4301 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4302 sp->rtoinfo.srto_max = net->sctp.rto_max; 4303 sp->rtoinfo.srto_min = net->sctp.rto_min; 4304 4305 /* Initialize default association related parameters. These parameters 4306 * can be modified with the SCTP_ASSOCINFO socket option. 4307 */ 4308 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4309 sp->assocparams.sasoc_number_peer_destinations = 0; 4310 sp->assocparams.sasoc_peer_rwnd = 0; 4311 sp->assocparams.sasoc_local_rwnd = 0; 4312 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4313 4314 /* Initialize default event subscriptions. By default, all the 4315 * options are off. 4316 */ 4317 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4318 4319 /* Default Peer Address Parameters. These defaults can 4320 * be modified via SCTP_PEER_ADDR_PARAMS 4321 */ 4322 sp->hbinterval = net->sctp.hb_interval; 4323 sp->pathmaxrxt = net->sctp.max_retrans_path; 4324 sp->pathmtu = 0; /* allow default discovery */ 4325 sp->sackdelay = net->sctp.sack_timeout; 4326 sp->sackfreq = 2; 4327 sp->param_flags = SPP_HB_ENABLE | 4328 SPP_PMTUD_ENABLE | 4329 SPP_SACKDELAY_ENABLE; 4330 4331 /* If enabled no SCTP message fragmentation will be performed. 4332 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4333 */ 4334 sp->disable_fragments = 0; 4335 4336 /* Enable Nagle algorithm by default. */ 4337 sp->nodelay = 0; 4338 4339 sp->recvrcvinfo = 0; 4340 sp->recvnxtinfo = 0; 4341 4342 /* Enable by default. */ 4343 sp->v4mapped = 1; 4344 4345 /* Auto-close idle associations after the configured 4346 * number of seconds. A value of 0 disables this 4347 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4348 * for UDP-style sockets only. 4349 */ 4350 sp->autoclose = 0; 4351 4352 /* User specified fragmentation limit. */ 4353 sp->user_frag = 0; 4354 4355 sp->adaptation_ind = 0; 4356 4357 sp->pf = sctp_get_pf_specific(sk->sk_family); 4358 4359 /* Control variables for partial data delivery. */ 4360 atomic_set(&sp->pd_mode, 0); 4361 skb_queue_head_init(&sp->pd_lobby); 4362 sp->frag_interleave = 0; 4363 4364 /* Create a per socket endpoint structure. Even if we 4365 * change the data structure relationships, this may still 4366 * be useful for storing pre-connect address information. 4367 */ 4368 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4369 if (!sp->ep) 4370 return -ENOMEM; 4371 4372 sp->hmac = NULL; 4373 4374 sk->sk_destruct = sctp_destruct_sock; 4375 4376 SCTP_DBG_OBJCNT_INC(sock); 4377 4378 local_bh_disable(); 4379 percpu_counter_inc(&sctp_sockets_allocated); 4380 sock_prot_inuse_add(net, sk->sk_prot, 1); 4381 4382 /* Nothing can fail after this block, otherwise 4383 * sctp_destroy_sock() will be called without addr_wq_lock held 4384 */ 4385 if (net->sctp.default_auto_asconf) { 4386 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4387 list_add_tail(&sp->auto_asconf_list, 4388 &net->sctp.auto_asconf_splist); 4389 sp->do_auto_asconf = 1; 4390 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4391 } else { 4392 sp->do_auto_asconf = 0; 4393 } 4394 4395 local_bh_enable(); 4396 4397 return 0; 4398 } 4399 4400 /* Cleanup any SCTP per socket resources. Must be called with 4401 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4402 */ 4403 static void sctp_destroy_sock(struct sock *sk) 4404 { 4405 struct sctp_sock *sp; 4406 4407 pr_debug("%s: sk:%p\n", __func__, sk); 4408 4409 /* Release our hold on the endpoint. */ 4410 sp = sctp_sk(sk); 4411 /* This could happen during socket init, thus we bail out 4412 * early, since the rest of the below is not setup either. 4413 */ 4414 if (sp->ep == NULL) 4415 return; 4416 4417 if (sp->do_auto_asconf) { 4418 sp->do_auto_asconf = 0; 4419 list_del(&sp->auto_asconf_list); 4420 } 4421 sctp_endpoint_free(sp->ep); 4422 local_bh_disable(); 4423 percpu_counter_dec(&sctp_sockets_allocated); 4424 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4425 local_bh_enable(); 4426 } 4427 4428 /* Triggered when there are no references on the socket anymore */ 4429 static void sctp_destruct_sock(struct sock *sk) 4430 { 4431 struct sctp_sock *sp = sctp_sk(sk); 4432 4433 /* Free up the HMAC transform. */ 4434 crypto_free_shash(sp->hmac); 4435 4436 inet_sock_destruct(sk); 4437 } 4438 4439 /* API 4.1.7 shutdown() - TCP Style Syntax 4440 * int shutdown(int socket, int how); 4441 * 4442 * sd - the socket descriptor of the association to be closed. 4443 * how - Specifies the type of shutdown. The values are 4444 * as follows: 4445 * SHUT_RD 4446 * Disables further receive operations. No SCTP 4447 * protocol action is taken. 4448 * SHUT_WR 4449 * Disables further send operations, and initiates 4450 * the SCTP shutdown sequence. 4451 * SHUT_RDWR 4452 * Disables further send and receive operations 4453 * and initiates the SCTP shutdown sequence. 4454 */ 4455 static void sctp_shutdown(struct sock *sk, int how) 4456 { 4457 struct net *net = sock_net(sk); 4458 struct sctp_endpoint *ep; 4459 4460 if (!sctp_style(sk, TCP)) 4461 return; 4462 4463 ep = sctp_sk(sk)->ep; 4464 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4465 struct sctp_association *asoc; 4466 4467 sk->sk_state = SCTP_SS_CLOSING; 4468 asoc = list_entry(ep->asocs.next, 4469 struct sctp_association, asocs); 4470 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4471 } 4472 } 4473 4474 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4475 struct sctp_info *info) 4476 { 4477 struct sctp_transport *prim; 4478 struct list_head *pos; 4479 int mask; 4480 4481 memset(info, 0, sizeof(*info)); 4482 if (!asoc) { 4483 struct sctp_sock *sp = sctp_sk(sk); 4484 4485 info->sctpi_s_autoclose = sp->autoclose; 4486 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4487 info->sctpi_s_pd_point = sp->pd_point; 4488 info->sctpi_s_nodelay = sp->nodelay; 4489 info->sctpi_s_disable_fragments = sp->disable_fragments; 4490 info->sctpi_s_v4mapped = sp->v4mapped; 4491 info->sctpi_s_frag_interleave = sp->frag_interleave; 4492 info->sctpi_s_type = sp->type; 4493 4494 return 0; 4495 } 4496 4497 info->sctpi_tag = asoc->c.my_vtag; 4498 info->sctpi_state = asoc->state; 4499 info->sctpi_rwnd = asoc->a_rwnd; 4500 info->sctpi_unackdata = asoc->unack_data; 4501 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4502 info->sctpi_instrms = asoc->stream.incnt; 4503 info->sctpi_outstrms = asoc->stream.outcnt; 4504 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4505 info->sctpi_inqueue++; 4506 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4507 info->sctpi_outqueue++; 4508 info->sctpi_overall_error = asoc->overall_error_count; 4509 info->sctpi_max_burst = asoc->max_burst; 4510 info->sctpi_maxseg = asoc->frag_point; 4511 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4512 info->sctpi_peer_tag = asoc->c.peer_vtag; 4513 4514 mask = asoc->peer.ecn_capable << 1; 4515 mask = (mask | asoc->peer.ipv4_address) << 1; 4516 mask = (mask | asoc->peer.ipv6_address) << 1; 4517 mask = (mask | asoc->peer.hostname_address) << 1; 4518 mask = (mask | asoc->peer.asconf_capable) << 1; 4519 mask = (mask | asoc->peer.prsctp_capable) << 1; 4520 mask = (mask | asoc->peer.auth_capable); 4521 info->sctpi_peer_capable = mask; 4522 mask = asoc->peer.sack_needed << 1; 4523 mask = (mask | asoc->peer.sack_generation) << 1; 4524 mask = (mask | asoc->peer.zero_window_announced); 4525 info->sctpi_peer_sack = mask; 4526 4527 info->sctpi_isacks = asoc->stats.isacks; 4528 info->sctpi_osacks = asoc->stats.osacks; 4529 info->sctpi_opackets = asoc->stats.opackets; 4530 info->sctpi_ipackets = asoc->stats.ipackets; 4531 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4532 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4533 info->sctpi_idupchunks = asoc->stats.idupchunks; 4534 info->sctpi_gapcnt = asoc->stats.gapcnt; 4535 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4536 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4537 info->sctpi_oodchunks = asoc->stats.oodchunks; 4538 info->sctpi_iodchunks = asoc->stats.iodchunks; 4539 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4540 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4541 4542 prim = asoc->peer.primary_path; 4543 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4544 info->sctpi_p_state = prim->state; 4545 info->sctpi_p_cwnd = prim->cwnd; 4546 info->sctpi_p_srtt = prim->srtt; 4547 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4548 info->sctpi_p_hbinterval = prim->hbinterval; 4549 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4550 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4551 info->sctpi_p_ssthresh = prim->ssthresh; 4552 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4553 info->sctpi_p_flight_size = prim->flight_size; 4554 info->sctpi_p_error = prim->error_count; 4555 4556 return 0; 4557 } 4558 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4559 4560 /* use callback to avoid exporting the core structure */ 4561 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4562 { 4563 int err; 4564 4565 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4566 4567 err = rhashtable_walk_start(iter); 4568 if (err && err != -EAGAIN) { 4569 rhashtable_walk_stop(iter); 4570 rhashtable_walk_exit(iter); 4571 return err; 4572 } 4573 4574 return 0; 4575 } 4576 4577 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4578 { 4579 rhashtable_walk_stop(iter); 4580 rhashtable_walk_exit(iter); 4581 } 4582 4583 struct sctp_transport *sctp_transport_get_next(struct net *net, 4584 struct rhashtable_iter *iter) 4585 { 4586 struct sctp_transport *t; 4587 4588 t = rhashtable_walk_next(iter); 4589 for (; t; t = rhashtable_walk_next(iter)) { 4590 if (IS_ERR(t)) { 4591 if (PTR_ERR(t) == -EAGAIN) 4592 continue; 4593 break; 4594 } 4595 4596 if (net_eq(sock_net(t->asoc->base.sk), net) && 4597 t->asoc->peer.primary_path == t) 4598 break; 4599 } 4600 4601 return t; 4602 } 4603 4604 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4605 struct rhashtable_iter *iter, 4606 int pos) 4607 { 4608 void *obj = SEQ_START_TOKEN; 4609 4610 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4611 !IS_ERR(obj)) 4612 pos--; 4613 4614 return obj; 4615 } 4616 4617 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4618 void *p) { 4619 int err = 0; 4620 int hash = 0; 4621 struct sctp_ep_common *epb; 4622 struct sctp_hashbucket *head; 4623 4624 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4625 hash++, head++) { 4626 read_lock_bh(&head->lock); 4627 sctp_for_each_hentry(epb, &head->chain) { 4628 err = cb(sctp_ep(epb), p); 4629 if (err) 4630 break; 4631 } 4632 read_unlock_bh(&head->lock); 4633 } 4634 4635 return err; 4636 } 4637 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4638 4639 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4640 struct net *net, 4641 const union sctp_addr *laddr, 4642 const union sctp_addr *paddr, void *p) 4643 { 4644 struct sctp_transport *transport; 4645 int err; 4646 4647 rcu_read_lock(); 4648 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4649 rcu_read_unlock(); 4650 if (!transport) 4651 return -ENOENT; 4652 4653 err = cb(transport, p); 4654 sctp_transport_put(transport); 4655 4656 return err; 4657 } 4658 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4659 4660 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4661 int (*cb_done)(struct sctp_transport *, void *), 4662 struct net *net, int *pos, void *p) { 4663 struct rhashtable_iter hti; 4664 struct sctp_transport *tsp; 4665 int ret; 4666 4667 again: 4668 ret = sctp_transport_walk_start(&hti); 4669 if (ret) 4670 return ret; 4671 4672 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4673 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4674 if (!sctp_transport_hold(tsp)) 4675 continue; 4676 ret = cb(tsp, p); 4677 if (ret) 4678 break; 4679 (*pos)++; 4680 sctp_transport_put(tsp); 4681 } 4682 sctp_transport_walk_stop(&hti); 4683 4684 if (ret) { 4685 if (cb_done && !cb_done(tsp, p)) { 4686 (*pos)++; 4687 sctp_transport_put(tsp); 4688 goto again; 4689 } 4690 sctp_transport_put(tsp); 4691 } 4692 4693 return ret; 4694 } 4695 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4696 4697 /* 7.2.1 Association Status (SCTP_STATUS) 4698 4699 * Applications can retrieve current status information about an 4700 * association, including association state, peer receiver window size, 4701 * number of unacked data chunks, and number of data chunks pending 4702 * receipt. This information is read-only. 4703 */ 4704 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4705 char __user *optval, 4706 int __user *optlen) 4707 { 4708 struct sctp_status status; 4709 struct sctp_association *asoc = NULL; 4710 struct sctp_transport *transport; 4711 sctp_assoc_t associd; 4712 int retval = 0; 4713 4714 if (len < sizeof(status)) { 4715 retval = -EINVAL; 4716 goto out; 4717 } 4718 4719 len = sizeof(status); 4720 if (copy_from_user(&status, optval, len)) { 4721 retval = -EFAULT; 4722 goto out; 4723 } 4724 4725 associd = status.sstat_assoc_id; 4726 asoc = sctp_id2assoc(sk, associd); 4727 if (!asoc) { 4728 retval = -EINVAL; 4729 goto out; 4730 } 4731 4732 transport = asoc->peer.primary_path; 4733 4734 status.sstat_assoc_id = sctp_assoc2id(asoc); 4735 status.sstat_state = sctp_assoc_to_state(asoc); 4736 status.sstat_rwnd = asoc->peer.rwnd; 4737 status.sstat_unackdata = asoc->unack_data; 4738 4739 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4740 status.sstat_instrms = asoc->stream.incnt; 4741 status.sstat_outstrms = asoc->stream.outcnt; 4742 status.sstat_fragmentation_point = asoc->frag_point; 4743 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4744 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4745 transport->af_specific->sockaddr_len); 4746 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4747 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4748 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4749 status.sstat_primary.spinfo_state = transport->state; 4750 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4751 status.sstat_primary.spinfo_srtt = transport->srtt; 4752 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4753 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4754 4755 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4756 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4757 4758 if (put_user(len, optlen)) { 4759 retval = -EFAULT; 4760 goto out; 4761 } 4762 4763 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4764 __func__, len, status.sstat_state, status.sstat_rwnd, 4765 status.sstat_assoc_id); 4766 4767 if (copy_to_user(optval, &status, len)) { 4768 retval = -EFAULT; 4769 goto out; 4770 } 4771 4772 out: 4773 return retval; 4774 } 4775 4776 4777 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4778 * 4779 * Applications can retrieve information about a specific peer address 4780 * of an association, including its reachability state, congestion 4781 * window, and retransmission timer values. This information is 4782 * read-only. 4783 */ 4784 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4785 char __user *optval, 4786 int __user *optlen) 4787 { 4788 struct sctp_paddrinfo pinfo; 4789 struct sctp_transport *transport; 4790 int retval = 0; 4791 4792 if (len < sizeof(pinfo)) { 4793 retval = -EINVAL; 4794 goto out; 4795 } 4796 4797 len = sizeof(pinfo); 4798 if (copy_from_user(&pinfo, optval, len)) { 4799 retval = -EFAULT; 4800 goto out; 4801 } 4802 4803 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4804 pinfo.spinfo_assoc_id); 4805 if (!transport) 4806 return -EINVAL; 4807 4808 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4809 pinfo.spinfo_state = transport->state; 4810 pinfo.spinfo_cwnd = transport->cwnd; 4811 pinfo.spinfo_srtt = transport->srtt; 4812 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4813 pinfo.spinfo_mtu = transport->pathmtu; 4814 4815 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4816 pinfo.spinfo_state = SCTP_ACTIVE; 4817 4818 if (put_user(len, optlen)) { 4819 retval = -EFAULT; 4820 goto out; 4821 } 4822 4823 if (copy_to_user(optval, &pinfo, len)) { 4824 retval = -EFAULT; 4825 goto out; 4826 } 4827 4828 out: 4829 return retval; 4830 } 4831 4832 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4833 * 4834 * This option is a on/off flag. If enabled no SCTP message 4835 * fragmentation will be performed. Instead if a message being sent 4836 * exceeds the current PMTU size, the message will NOT be sent and 4837 * instead a error will be indicated to the user. 4838 */ 4839 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4840 char __user *optval, int __user *optlen) 4841 { 4842 int val; 4843 4844 if (len < sizeof(int)) 4845 return -EINVAL; 4846 4847 len = sizeof(int); 4848 val = (sctp_sk(sk)->disable_fragments == 1); 4849 if (put_user(len, optlen)) 4850 return -EFAULT; 4851 if (copy_to_user(optval, &val, len)) 4852 return -EFAULT; 4853 return 0; 4854 } 4855 4856 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4857 * 4858 * This socket option is used to specify various notifications and 4859 * ancillary data the user wishes to receive. 4860 */ 4861 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4862 int __user *optlen) 4863 { 4864 if (len == 0) 4865 return -EINVAL; 4866 if (len > sizeof(struct sctp_event_subscribe)) 4867 len = sizeof(struct sctp_event_subscribe); 4868 if (put_user(len, optlen)) 4869 return -EFAULT; 4870 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4871 return -EFAULT; 4872 return 0; 4873 } 4874 4875 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4876 * 4877 * This socket option is applicable to the UDP-style socket only. When 4878 * set it will cause associations that are idle for more than the 4879 * specified number of seconds to automatically close. An association 4880 * being idle is defined an association that has NOT sent or received 4881 * user data. The special value of '0' indicates that no automatic 4882 * close of any associations should be performed. The option expects an 4883 * integer defining the number of seconds of idle time before an 4884 * association is closed. 4885 */ 4886 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4887 { 4888 /* Applicable to UDP-style socket only */ 4889 if (sctp_style(sk, TCP)) 4890 return -EOPNOTSUPP; 4891 if (len < sizeof(int)) 4892 return -EINVAL; 4893 len = sizeof(int); 4894 if (put_user(len, optlen)) 4895 return -EFAULT; 4896 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4897 return -EFAULT; 4898 return 0; 4899 } 4900 4901 /* Helper routine to branch off an association to a new socket. */ 4902 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4903 { 4904 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4905 struct sctp_sock *sp = sctp_sk(sk); 4906 struct socket *sock; 4907 int err = 0; 4908 4909 /* Do not peel off from one netns to another one. */ 4910 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 4911 return -EINVAL; 4912 4913 if (!asoc) 4914 return -EINVAL; 4915 4916 /* If there is a thread waiting on more sndbuf space for 4917 * sending on this asoc, it cannot be peeled. 4918 */ 4919 if (waitqueue_active(&asoc->wait)) 4920 return -EBUSY; 4921 4922 /* An association cannot be branched off from an already peeled-off 4923 * socket, nor is this supported for tcp style sockets. 4924 */ 4925 if (!sctp_style(sk, UDP)) 4926 return -EINVAL; 4927 4928 /* Create a new socket. */ 4929 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4930 if (err < 0) 4931 return err; 4932 4933 sctp_copy_sock(sock->sk, sk, asoc); 4934 4935 /* Make peeled-off sockets more like 1-1 accepted sockets. 4936 * Set the daddr and initialize id to something more random 4937 */ 4938 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4939 4940 /* Populate the fields of the newsk from the oldsk and migrate the 4941 * asoc to the newsk. 4942 */ 4943 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4944 4945 *sockp = sock; 4946 4947 return err; 4948 } 4949 EXPORT_SYMBOL(sctp_do_peeloff); 4950 4951 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 4952 struct file **newfile, unsigned flags) 4953 { 4954 struct socket *newsock; 4955 int retval; 4956 4957 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 4958 if (retval < 0) 4959 goto out; 4960 4961 /* Map the socket to an unused fd that can be returned to the user. */ 4962 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 4963 if (retval < 0) { 4964 sock_release(newsock); 4965 goto out; 4966 } 4967 4968 *newfile = sock_alloc_file(newsock, 0, NULL); 4969 if (IS_ERR(*newfile)) { 4970 put_unused_fd(retval); 4971 sock_release(newsock); 4972 retval = PTR_ERR(*newfile); 4973 *newfile = NULL; 4974 return retval; 4975 } 4976 4977 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4978 retval); 4979 4980 peeloff->sd = retval; 4981 4982 if (flags & SOCK_NONBLOCK) 4983 (*newfile)->f_flags |= O_NONBLOCK; 4984 out: 4985 return retval; 4986 } 4987 4988 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4989 { 4990 sctp_peeloff_arg_t peeloff; 4991 struct file *newfile = NULL; 4992 int retval = 0; 4993 4994 if (len < sizeof(sctp_peeloff_arg_t)) 4995 return -EINVAL; 4996 len = sizeof(sctp_peeloff_arg_t); 4997 if (copy_from_user(&peeloff, optval, len)) 4998 return -EFAULT; 4999 5000 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5001 if (retval < 0) 5002 goto out; 5003 5004 /* Return the fd mapped to the new socket. */ 5005 if (put_user(len, optlen)) { 5006 fput(newfile); 5007 put_unused_fd(retval); 5008 return -EFAULT; 5009 } 5010 5011 if (copy_to_user(optval, &peeloff, len)) { 5012 fput(newfile); 5013 put_unused_fd(retval); 5014 return -EFAULT; 5015 } 5016 fd_install(retval, newfile); 5017 out: 5018 return retval; 5019 } 5020 5021 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5022 char __user *optval, int __user *optlen) 5023 { 5024 sctp_peeloff_flags_arg_t peeloff; 5025 struct file *newfile = NULL; 5026 int retval = 0; 5027 5028 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5029 return -EINVAL; 5030 len = sizeof(sctp_peeloff_flags_arg_t); 5031 if (copy_from_user(&peeloff, optval, len)) 5032 return -EFAULT; 5033 5034 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5035 &newfile, peeloff.flags); 5036 if (retval < 0) 5037 goto out; 5038 5039 /* Return the fd mapped to the new socket. */ 5040 if (put_user(len, optlen)) { 5041 fput(newfile); 5042 put_unused_fd(retval); 5043 return -EFAULT; 5044 } 5045 5046 if (copy_to_user(optval, &peeloff, len)) { 5047 fput(newfile); 5048 put_unused_fd(retval); 5049 return -EFAULT; 5050 } 5051 fd_install(retval, newfile); 5052 out: 5053 return retval; 5054 } 5055 5056 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5057 * 5058 * Applications can enable or disable heartbeats for any peer address of 5059 * an association, modify an address's heartbeat interval, force a 5060 * heartbeat to be sent immediately, and adjust the address's maximum 5061 * number of retransmissions sent before an address is considered 5062 * unreachable. The following structure is used to access and modify an 5063 * address's parameters: 5064 * 5065 * struct sctp_paddrparams { 5066 * sctp_assoc_t spp_assoc_id; 5067 * struct sockaddr_storage spp_address; 5068 * uint32_t spp_hbinterval; 5069 * uint16_t spp_pathmaxrxt; 5070 * uint32_t spp_pathmtu; 5071 * uint32_t spp_sackdelay; 5072 * uint32_t spp_flags; 5073 * }; 5074 * 5075 * spp_assoc_id - (one-to-many style socket) This is filled in the 5076 * application, and identifies the association for 5077 * this query. 5078 * spp_address - This specifies which address is of interest. 5079 * spp_hbinterval - This contains the value of the heartbeat interval, 5080 * in milliseconds. If a value of zero 5081 * is present in this field then no changes are to 5082 * be made to this parameter. 5083 * spp_pathmaxrxt - This contains the maximum number of 5084 * retransmissions before this address shall be 5085 * considered unreachable. If a value of zero 5086 * is present in this field then no changes are to 5087 * be made to this parameter. 5088 * spp_pathmtu - When Path MTU discovery is disabled the value 5089 * specified here will be the "fixed" path mtu. 5090 * Note that if the spp_address field is empty 5091 * then all associations on this address will 5092 * have this fixed path mtu set upon them. 5093 * 5094 * spp_sackdelay - When delayed sack is enabled, this value specifies 5095 * the number of milliseconds that sacks will be delayed 5096 * for. This value will apply to all addresses of an 5097 * association if the spp_address field is empty. Note 5098 * also, that if delayed sack is enabled and this 5099 * value is set to 0, no change is made to the last 5100 * recorded delayed sack timer value. 5101 * 5102 * spp_flags - These flags are used to control various features 5103 * on an association. The flag field may contain 5104 * zero or more of the following options. 5105 * 5106 * SPP_HB_ENABLE - Enable heartbeats on the 5107 * specified address. Note that if the address 5108 * field is empty all addresses for the association 5109 * have heartbeats enabled upon them. 5110 * 5111 * SPP_HB_DISABLE - Disable heartbeats on the 5112 * speicifed address. Note that if the address 5113 * field is empty all addresses for the association 5114 * will have their heartbeats disabled. Note also 5115 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5116 * mutually exclusive, only one of these two should 5117 * be specified. Enabling both fields will have 5118 * undetermined results. 5119 * 5120 * SPP_HB_DEMAND - Request a user initiated heartbeat 5121 * to be made immediately. 5122 * 5123 * SPP_PMTUD_ENABLE - This field will enable PMTU 5124 * discovery upon the specified address. Note that 5125 * if the address feild is empty then all addresses 5126 * on the association are effected. 5127 * 5128 * SPP_PMTUD_DISABLE - This field will disable PMTU 5129 * discovery upon the specified address. Note that 5130 * if the address feild is empty then all addresses 5131 * on the association are effected. Not also that 5132 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5133 * exclusive. Enabling both will have undetermined 5134 * results. 5135 * 5136 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5137 * on delayed sack. The time specified in spp_sackdelay 5138 * is used to specify the sack delay for this address. Note 5139 * that if spp_address is empty then all addresses will 5140 * enable delayed sack and take on the sack delay 5141 * value specified in spp_sackdelay. 5142 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5143 * off delayed sack. If the spp_address field is blank then 5144 * delayed sack is disabled for the entire association. Note 5145 * also that this field is mutually exclusive to 5146 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5147 * results. 5148 */ 5149 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5150 char __user *optval, int __user *optlen) 5151 { 5152 struct sctp_paddrparams params; 5153 struct sctp_transport *trans = NULL; 5154 struct sctp_association *asoc = NULL; 5155 struct sctp_sock *sp = sctp_sk(sk); 5156 5157 if (len < sizeof(struct sctp_paddrparams)) 5158 return -EINVAL; 5159 len = sizeof(struct sctp_paddrparams); 5160 if (copy_from_user(¶ms, optval, len)) 5161 return -EFAULT; 5162 5163 /* If an address other than INADDR_ANY is specified, and 5164 * no transport is found, then the request is invalid. 5165 */ 5166 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5167 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5168 params.spp_assoc_id); 5169 if (!trans) { 5170 pr_debug("%s: failed no transport\n", __func__); 5171 return -EINVAL; 5172 } 5173 } 5174 5175 /* Get association, if assoc_id != 0 and the socket is a one 5176 * to many style socket, and an association was not found, then 5177 * the id was invalid. 5178 */ 5179 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5180 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5181 pr_debug("%s: failed no association\n", __func__); 5182 return -EINVAL; 5183 } 5184 5185 if (trans) { 5186 /* Fetch transport values. */ 5187 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5188 params.spp_pathmtu = trans->pathmtu; 5189 params.spp_pathmaxrxt = trans->pathmaxrxt; 5190 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5191 5192 /*draft-11 doesn't say what to return in spp_flags*/ 5193 params.spp_flags = trans->param_flags; 5194 } else if (asoc) { 5195 /* Fetch association values. */ 5196 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5197 params.spp_pathmtu = asoc->pathmtu; 5198 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5199 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5200 5201 /*draft-11 doesn't say what to return in spp_flags*/ 5202 params.spp_flags = asoc->param_flags; 5203 } else { 5204 /* Fetch socket values. */ 5205 params.spp_hbinterval = sp->hbinterval; 5206 params.spp_pathmtu = sp->pathmtu; 5207 params.spp_sackdelay = sp->sackdelay; 5208 params.spp_pathmaxrxt = sp->pathmaxrxt; 5209 5210 /*draft-11 doesn't say what to return in spp_flags*/ 5211 params.spp_flags = sp->param_flags; 5212 } 5213 5214 if (copy_to_user(optval, ¶ms, len)) 5215 return -EFAULT; 5216 5217 if (put_user(len, optlen)) 5218 return -EFAULT; 5219 5220 return 0; 5221 } 5222 5223 /* 5224 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5225 * 5226 * This option will effect the way delayed acks are performed. This 5227 * option allows you to get or set the delayed ack time, in 5228 * milliseconds. It also allows changing the delayed ack frequency. 5229 * Changing the frequency to 1 disables the delayed sack algorithm. If 5230 * the assoc_id is 0, then this sets or gets the endpoints default 5231 * values. If the assoc_id field is non-zero, then the set or get 5232 * effects the specified association for the one to many model (the 5233 * assoc_id field is ignored by the one to one model). Note that if 5234 * sack_delay or sack_freq are 0 when setting this option, then the 5235 * current values will remain unchanged. 5236 * 5237 * struct sctp_sack_info { 5238 * sctp_assoc_t sack_assoc_id; 5239 * uint32_t sack_delay; 5240 * uint32_t sack_freq; 5241 * }; 5242 * 5243 * sack_assoc_id - This parameter, indicates which association the user 5244 * is performing an action upon. Note that if this field's value is 5245 * zero then the endpoints default value is changed (effecting future 5246 * associations only). 5247 * 5248 * sack_delay - This parameter contains the number of milliseconds that 5249 * the user is requesting the delayed ACK timer be set to. Note that 5250 * this value is defined in the standard to be between 200 and 500 5251 * milliseconds. 5252 * 5253 * sack_freq - This parameter contains the number of packets that must 5254 * be received before a sack is sent without waiting for the delay 5255 * timer to expire. The default value for this is 2, setting this 5256 * value to 1 will disable the delayed sack algorithm. 5257 */ 5258 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5259 char __user *optval, 5260 int __user *optlen) 5261 { 5262 struct sctp_sack_info params; 5263 struct sctp_association *asoc = NULL; 5264 struct sctp_sock *sp = sctp_sk(sk); 5265 5266 if (len >= sizeof(struct sctp_sack_info)) { 5267 len = sizeof(struct sctp_sack_info); 5268 5269 if (copy_from_user(¶ms, optval, len)) 5270 return -EFAULT; 5271 } else if (len == sizeof(struct sctp_assoc_value)) { 5272 pr_warn_ratelimited(DEPRECATED 5273 "%s (pid %d) " 5274 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5275 "Use struct sctp_sack_info instead\n", 5276 current->comm, task_pid_nr(current)); 5277 if (copy_from_user(¶ms, optval, len)) 5278 return -EFAULT; 5279 } else 5280 return -EINVAL; 5281 5282 /* Get association, if sack_assoc_id != 0 and the socket is a one 5283 * to many style socket, and an association was not found, then 5284 * the id was invalid. 5285 */ 5286 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5287 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5288 return -EINVAL; 5289 5290 if (asoc) { 5291 /* Fetch association values. */ 5292 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5293 params.sack_delay = jiffies_to_msecs( 5294 asoc->sackdelay); 5295 params.sack_freq = asoc->sackfreq; 5296 5297 } else { 5298 params.sack_delay = 0; 5299 params.sack_freq = 1; 5300 } 5301 } else { 5302 /* Fetch socket values. */ 5303 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5304 params.sack_delay = sp->sackdelay; 5305 params.sack_freq = sp->sackfreq; 5306 } else { 5307 params.sack_delay = 0; 5308 params.sack_freq = 1; 5309 } 5310 } 5311 5312 if (copy_to_user(optval, ¶ms, len)) 5313 return -EFAULT; 5314 5315 if (put_user(len, optlen)) 5316 return -EFAULT; 5317 5318 return 0; 5319 } 5320 5321 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5322 * 5323 * Applications can specify protocol parameters for the default association 5324 * initialization. The option name argument to setsockopt() and getsockopt() 5325 * is SCTP_INITMSG. 5326 * 5327 * Setting initialization parameters is effective only on an unconnected 5328 * socket (for UDP-style sockets only future associations are effected 5329 * by the change). With TCP-style sockets, this option is inherited by 5330 * sockets derived from a listener socket. 5331 */ 5332 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5333 { 5334 if (len < sizeof(struct sctp_initmsg)) 5335 return -EINVAL; 5336 len = sizeof(struct sctp_initmsg); 5337 if (put_user(len, optlen)) 5338 return -EFAULT; 5339 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5340 return -EFAULT; 5341 return 0; 5342 } 5343 5344 5345 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5346 char __user *optval, int __user *optlen) 5347 { 5348 struct sctp_association *asoc; 5349 int cnt = 0; 5350 struct sctp_getaddrs getaddrs; 5351 struct sctp_transport *from; 5352 void __user *to; 5353 union sctp_addr temp; 5354 struct sctp_sock *sp = sctp_sk(sk); 5355 int addrlen; 5356 size_t space_left; 5357 int bytes_copied; 5358 5359 if (len < sizeof(struct sctp_getaddrs)) 5360 return -EINVAL; 5361 5362 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5363 return -EFAULT; 5364 5365 /* For UDP-style sockets, id specifies the association to query. */ 5366 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5367 if (!asoc) 5368 return -EINVAL; 5369 5370 to = optval + offsetof(struct sctp_getaddrs, addrs); 5371 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5372 5373 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5374 transports) { 5375 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5376 addrlen = sctp_get_pf_specific(sk->sk_family) 5377 ->addr_to_user(sp, &temp); 5378 if (space_left < addrlen) 5379 return -ENOMEM; 5380 if (copy_to_user(to, &temp, addrlen)) 5381 return -EFAULT; 5382 to += addrlen; 5383 cnt++; 5384 space_left -= addrlen; 5385 } 5386 5387 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5388 return -EFAULT; 5389 bytes_copied = ((char __user *)to) - optval; 5390 if (put_user(bytes_copied, optlen)) 5391 return -EFAULT; 5392 5393 return 0; 5394 } 5395 5396 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5397 size_t space_left, int *bytes_copied) 5398 { 5399 struct sctp_sockaddr_entry *addr; 5400 union sctp_addr temp; 5401 int cnt = 0; 5402 int addrlen; 5403 struct net *net = sock_net(sk); 5404 5405 rcu_read_lock(); 5406 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5407 if (!addr->valid) 5408 continue; 5409 5410 if ((PF_INET == sk->sk_family) && 5411 (AF_INET6 == addr->a.sa.sa_family)) 5412 continue; 5413 if ((PF_INET6 == sk->sk_family) && 5414 inet_v6_ipv6only(sk) && 5415 (AF_INET == addr->a.sa.sa_family)) 5416 continue; 5417 memcpy(&temp, &addr->a, sizeof(temp)); 5418 if (!temp.v4.sin_port) 5419 temp.v4.sin_port = htons(port); 5420 5421 addrlen = sctp_get_pf_specific(sk->sk_family) 5422 ->addr_to_user(sctp_sk(sk), &temp); 5423 5424 if (space_left < addrlen) { 5425 cnt = -ENOMEM; 5426 break; 5427 } 5428 memcpy(to, &temp, addrlen); 5429 5430 to += addrlen; 5431 cnt++; 5432 space_left -= addrlen; 5433 *bytes_copied += addrlen; 5434 } 5435 rcu_read_unlock(); 5436 5437 return cnt; 5438 } 5439 5440 5441 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5442 char __user *optval, int __user *optlen) 5443 { 5444 struct sctp_bind_addr *bp; 5445 struct sctp_association *asoc; 5446 int cnt = 0; 5447 struct sctp_getaddrs getaddrs; 5448 struct sctp_sockaddr_entry *addr; 5449 void __user *to; 5450 union sctp_addr temp; 5451 struct sctp_sock *sp = sctp_sk(sk); 5452 int addrlen; 5453 int err = 0; 5454 size_t space_left; 5455 int bytes_copied = 0; 5456 void *addrs; 5457 void *buf; 5458 5459 if (len < sizeof(struct sctp_getaddrs)) 5460 return -EINVAL; 5461 5462 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5463 return -EFAULT; 5464 5465 /* 5466 * For UDP-style sockets, id specifies the association to query. 5467 * If the id field is set to the value '0' then the locally bound 5468 * addresses are returned without regard to any particular 5469 * association. 5470 */ 5471 if (0 == getaddrs.assoc_id) { 5472 bp = &sctp_sk(sk)->ep->base.bind_addr; 5473 } else { 5474 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5475 if (!asoc) 5476 return -EINVAL; 5477 bp = &asoc->base.bind_addr; 5478 } 5479 5480 to = optval + offsetof(struct sctp_getaddrs, addrs); 5481 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5482 5483 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5484 if (!addrs) 5485 return -ENOMEM; 5486 5487 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5488 * addresses from the global local address list. 5489 */ 5490 if (sctp_list_single_entry(&bp->address_list)) { 5491 addr = list_entry(bp->address_list.next, 5492 struct sctp_sockaddr_entry, list); 5493 if (sctp_is_any(sk, &addr->a)) { 5494 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5495 space_left, &bytes_copied); 5496 if (cnt < 0) { 5497 err = cnt; 5498 goto out; 5499 } 5500 goto copy_getaddrs; 5501 } 5502 } 5503 5504 buf = addrs; 5505 /* Protection on the bound address list is not needed since 5506 * in the socket option context we hold a socket lock and 5507 * thus the bound address list can't change. 5508 */ 5509 list_for_each_entry(addr, &bp->address_list, list) { 5510 memcpy(&temp, &addr->a, sizeof(temp)); 5511 addrlen = sctp_get_pf_specific(sk->sk_family) 5512 ->addr_to_user(sp, &temp); 5513 if (space_left < addrlen) { 5514 err = -ENOMEM; /*fixme: right error?*/ 5515 goto out; 5516 } 5517 memcpy(buf, &temp, addrlen); 5518 buf += addrlen; 5519 bytes_copied += addrlen; 5520 cnt++; 5521 space_left -= addrlen; 5522 } 5523 5524 copy_getaddrs: 5525 if (copy_to_user(to, addrs, bytes_copied)) { 5526 err = -EFAULT; 5527 goto out; 5528 } 5529 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5530 err = -EFAULT; 5531 goto out; 5532 } 5533 if (put_user(bytes_copied, optlen)) 5534 err = -EFAULT; 5535 out: 5536 kfree(addrs); 5537 return err; 5538 } 5539 5540 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5541 * 5542 * Requests that the local SCTP stack use the enclosed peer address as 5543 * the association primary. The enclosed address must be one of the 5544 * association peer's addresses. 5545 */ 5546 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5547 char __user *optval, int __user *optlen) 5548 { 5549 struct sctp_prim prim; 5550 struct sctp_association *asoc; 5551 struct sctp_sock *sp = sctp_sk(sk); 5552 5553 if (len < sizeof(struct sctp_prim)) 5554 return -EINVAL; 5555 5556 len = sizeof(struct sctp_prim); 5557 5558 if (copy_from_user(&prim, optval, len)) 5559 return -EFAULT; 5560 5561 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5562 if (!asoc) 5563 return -EINVAL; 5564 5565 if (!asoc->peer.primary_path) 5566 return -ENOTCONN; 5567 5568 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5569 asoc->peer.primary_path->af_specific->sockaddr_len); 5570 5571 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5572 (union sctp_addr *)&prim.ssp_addr); 5573 5574 if (put_user(len, optlen)) 5575 return -EFAULT; 5576 if (copy_to_user(optval, &prim, len)) 5577 return -EFAULT; 5578 5579 return 0; 5580 } 5581 5582 /* 5583 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5584 * 5585 * Requests that the local endpoint set the specified Adaptation Layer 5586 * Indication parameter for all future INIT and INIT-ACK exchanges. 5587 */ 5588 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5589 char __user *optval, int __user *optlen) 5590 { 5591 struct sctp_setadaptation adaptation; 5592 5593 if (len < sizeof(struct sctp_setadaptation)) 5594 return -EINVAL; 5595 5596 len = sizeof(struct sctp_setadaptation); 5597 5598 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5599 5600 if (put_user(len, optlen)) 5601 return -EFAULT; 5602 if (copy_to_user(optval, &adaptation, len)) 5603 return -EFAULT; 5604 5605 return 0; 5606 } 5607 5608 /* 5609 * 5610 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5611 * 5612 * Applications that wish to use the sendto() system call may wish to 5613 * specify a default set of parameters that would normally be supplied 5614 * through the inclusion of ancillary data. This socket option allows 5615 * such an application to set the default sctp_sndrcvinfo structure. 5616 5617 5618 * The application that wishes to use this socket option simply passes 5619 * in to this call the sctp_sndrcvinfo structure defined in Section 5620 * 5.2.2) The input parameters accepted by this call include 5621 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5622 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5623 * to this call if the caller is using the UDP model. 5624 * 5625 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5626 */ 5627 static int sctp_getsockopt_default_send_param(struct sock *sk, 5628 int len, char __user *optval, 5629 int __user *optlen) 5630 { 5631 struct sctp_sock *sp = sctp_sk(sk); 5632 struct sctp_association *asoc; 5633 struct sctp_sndrcvinfo info; 5634 5635 if (len < sizeof(info)) 5636 return -EINVAL; 5637 5638 len = sizeof(info); 5639 5640 if (copy_from_user(&info, optval, len)) 5641 return -EFAULT; 5642 5643 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5644 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5645 return -EINVAL; 5646 if (asoc) { 5647 info.sinfo_stream = asoc->default_stream; 5648 info.sinfo_flags = asoc->default_flags; 5649 info.sinfo_ppid = asoc->default_ppid; 5650 info.sinfo_context = asoc->default_context; 5651 info.sinfo_timetolive = asoc->default_timetolive; 5652 } else { 5653 info.sinfo_stream = sp->default_stream; 5654 info.sinfo_flags = sp->default_flags; 5655 info.sinfo_ppid = sp->default_ppid; 5656 info.sinfo_context = sp->default_context; 5657 info.sinfo_timetolive = sp->default_timetolive; 5658 } 5659 5660 if (put_user(len, optlen)) 5661 return -EFAULT; 5662 if (copy_to_user(optval, &info, len)) 5663 return -EFAULT; 5664 5665 return 0; 5666 } 5667 5668 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5669 * (SCTP_DEFAULT_SNDINFO) 5670 */ 5671 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5672 char __user *optval, 5673 int __user *optlen) 5674 { 5675 struct sctp_sock *sp = sctp_sk(sk); 5676 struct sctp_association *asoc; 5677 struct sctp_sndinfo info; 5678 5679 if (len < sizeof(info)) 5680 return -EINVAL; 5681 5682 len = sizeof(info); 5683 5684 if (copy_from_user(&info, optval, len)) 5685 return -EFAULT; 5686 5687 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5688 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5689 return -EINVAL; 5690 if (asoc) { 5691 info.snd_sid = asoc->default_stream; 5692 info.snd_flags = asoc->default_flags; 5693 info.snd_ppid = asoc->default_ppid; 5694 info.snd_context = asoc->default_context; 5695 } else { 5696 info.snd_sid = sp->default_stream; 5697 info.snd_flags = sp->default_flags; 5698 info.snd_ppid = sp->default_ppid; 5699 info.snd_context = sp->default_context; 5700 } 5701 5702 if (put_user(len, optlen)) 5703 return -EFAULT; 5704 if (copy_to_user(optval, &info, len)) 5705 return -EFAULT; 5706 5707 return 0; 5708 } 5709 5710 /* 5711 * 5712 * 7.1.5 SCTP_NODELAY 5713 * 5714 * Turn on/off any Nagle-like algorithm. This means that packets are 5715 * generally sent as soon as possible and no unnecessary delays are 5716 * introduced, at the cost of more packets in the network. Expects an 5717 * integer boolean flag. 5718 */ 5719 5720 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5721 char __user *optval, int __user *optlen) 5722 { 5723 int val; 5724 5725 if (len < sizeof(int)) 5726 return -EINVAL; 5727 5728 len = sizeof(int); 5729 val = (sctp_sk(sk)->nodelay == 1); 5730 if (put_user(len, optlen)) 5731 return -EFAULT; 5732 if (copy_to_user(optval, &val, len)) 5733 return -EFAULT; 5734 return 0; 5735 } 5736 5737 /* 5738 * 5739 * 7.1.1 SCTP_RTOINFO 5740 * 5741 * The protocol parameters used to initialize and bound retransmission 5742 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5743 * and modify these parameters. 5744 * All parameters are time values, in milliseconds. A value of 0, when 5745 * modifying the parameters, indicates that the current value should not 5746 * be changed. 5747 * 5748 */ 5749 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5750 char __user *optval, 5751 int __user *optlen) { 5752 struct sctp_rtoinfo rtoinfo; 5753 struct sctp_association *asoc; 5754 5755 if (len < sizeof (struct sctp_rtoinfo)) 5756 return -EINVAL; 5757 5758 len = sizeof(struct sctp_rtoinfo); 5759 5760 if (copy_from_user(&rtoinfo, optval, len)) 5761 return -EFAULT; 5762 5763 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5764 5765 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5766 return -EINVAL; 5767 5768 /* Values corresponding to the specific association. */ 5769 if (asoc) { 5770 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5771 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5772 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5773 } else { 5774 /* Values corresponding to the endpoint. */ 5775 struct sctp_sock *sp = sctp_sk(sk); 5776 5777 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5778 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5779 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5780 } 5781 5782 if (put_user(len, optlen)) 5783 return -EFAULT; 5784 5785 if (copy_to_user(optval, &rtoinfo, len)) 5786 return -EFAULT; 5787 5788 return 0; 5789 } 5790 5791 /* 5792 * 5793 * 7.1.2 SCTP_ASSOCINFO 5794 * 5795 * This option is used to tune the maximum retransmission attempts 5796 * of the association. 5797 * Returns an error if the new association retransmission value is 5798 * greater than the sum of the retransmission value of the peer. 5799 * See [SCTP] for more information. 5800 * 5801 */ 5802 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5803 char __user *optval, 5804 int __user *optlen) 5805 { 5806 5807 struct sctp_assocparams assocparams; 5808 struct sctp_association *asoc; 5809 struct list_head *pos; 5810 int cnt = 0; 5811 5812 if (len < sizeof (struct sctp_assocparams)) 5813 return -EINVAL; 5814 5815 len = sizeof(struct sctp_assocparams); 5816 5817 if (copy_from_user(&assocparams, optval, len)) 5818 return -EFAULT; 5819 5820 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5821 5822 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5823 return -EINVAL; 5824 5825 /* Values correspoinding to the specific association */ 5826 if (asoc) { 5827 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5828 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5829 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5830 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5831 5832 list_for_each(pos, &asoc->peer.transport_addr_list) { 5833 cnt++; 5834 } 5835 5836 assocparams.sasoc_number_peer_destinations = cnt; 5837 } else { 5838 /* Values corresponding to the endpoint */ 5839 struct sctp_sock *sp = sctp_sk(sk); 5840 5841 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5842 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5843 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5844 assocparams.sasoc_cookie_life = 5845 sp->assocparams.sasoc_cookie_life; 5846 assocparams.sasoc_number_peer_destinations = 5847 sp->assocparams. 5848 sasoc_number_peer_destinations; 5849 } 5850 5851 if (put_user(len, optlen)) 5852 return -EFAULT; 5853 5854 if (copy_to_user(optval, &assocparams, len)) 5855 return -EFAULT; 5856 5857 return 0; 5858 } 5859 5860 /* 5861 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5862 * 5863 * This socket option is a boolean flag which turns on or off mapped V4 5864 * addresses. If this option is turned on and the socket is type 5865 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5866 * If this option is turned off, then no mapping will be done of V4 5867 * addresses and a user will receive both PF_INET6 and PF_INET type 5868 * addresses on the socket. 5869 */ 5870 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5871 char __user *optval, int __user *optlen) 5872 { 5873 int val; 5874 struct sctp_sock *sp = sctp_sk(sk); 5875 5876 if (len < sizeof(int)) 5877 return -EINVAL; 5878 5879 len = sizeof(int); 5880 val = sp->v4mapped; 5881 if (put_user(len, optlen)) 5882 return -EFAULT; 5883 if (copy_to_user(optval, &val, len)) 5884 return -EFAULT; 5885 5886 return 0; 5887 } 5888 5889 /* 5890 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5891 * (chapter and verse is quoted at sctp_setsockopt_context()) 5892 */ 5893 static int sctp_getsockopt_context(struct sock *sk, int len, 5894 char __user *optval, int __user *optlen) 5895 { 5896 struct sctp_assoc_value params; 5897 struct sctp_sock *sp; 5898 struct sctp_association *asoc; 5899 5900 if (len < sizeof(struct sctp_assoc_value)) 5901 return -EINVAL; 5902 5903 len = sizeof(struct sctp_assoc_value); 5904 5905 if (copy_from_user(¶ms, optval, len)) 5906 return -EFAULT; 5907 5908 sp = sctp_sk(sk); 5909 5910 if (params.assoc_id != 0) { 5911 asoc = sctp_id2assoc(sk, params.assoc_id); 5912 if (!asoc) 5913 return -EINVAL; 5914 params.assoc_value = asoc->default_rcv_context; 5915 } else { 5916 params.assoc_value = sp->default_rcv_context; 5917 } 5918 5919 if (put_user(len, optlen)) 5920 return -EFAULT; 5921 if (copy_to_user(optval, ¶ms, len)) 5922 return -EFAULT; 5923 5924 return 0; 5925 } 5926 5927 /* 5928 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5929 * This option will get or set the maximum size to put in any outgoing 5930 * SCTP DATA chunk. If a message is larger than this size it will be 5931 * fragmented by SCTP into the specified size. Note that the underlying 5932 * SCTP implementation may fragment into smaller sized chunks when the 5933 * PMTU of the underlying association is smaller than the value set by 5934 * the user. The default value for this option is '0' which indicates 5935 * the user is NOT limiting fragmentation and only the PMTU will effect 5936 * SCTP's choice of DATA chunk size. Note also that values set larger 5937 * than the maximum size of an IP datagram will effectively let SCTP 5938 * control fragmentation (i.e. the same as setting this option to 0). 5939 * 5940 * The following structure is used to access and modify this parameter: 5941 * 5942 * struct sctp_assoc_value { 5943 * sctp_assoc_t assoc_id; 5944 * uint32_t assoc_value; 5945 * }; 5946 * 5947 * assoc_id: This parameter is ignored for one-to-one style sockets. 5948 * For one-to-many style sockets this parameter indicates which 5949 * association the user is performing an action upon. Note that if 5950 * this field's value is zero then the endpoints default value is 5951 * changed (effecting future associations only). 5952 * assoc_value: This parameter specifies the maximum size in bytes. 5953 */ 5954 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5955 char __user *optval, int __user *optlen) 5956 { 5957 struct sctp_assoc_value params; 5958 struct sctp_association *asoc; 5959 5960 if (len == sizeof(int)) { 5961 pr_warn_ratelimited(DEPRECATED 5962 "%s (pid %d) " 5963 "Use of int in maxseg socket option.\n" 5964 "Use struct sctp_assoc_value instead\n", 5965 current->comm, task_pid_nr(current)); 5966 params.assoc_id = 0; 5967 } else if (len >= sizeof(struct sctp_assoc_value)) { 5968 len = sizeof(struct sctp_assoc_value); 5969 if (copy_from_user(¶ms, optval, sizeof(params))) 5970 return -EFAULT; 5971 } else 5972 return -EINVAL; 5973 5974 asoc = sctp_id2assoc(sk, params.assoc_id); 5975 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5976 return -EINVAL; 5977 5978 if (asoc) 5979 params.assoc_value = asoc->frag_point; 5980 else 5981 params.assoc_value = sctp_sk(sk)->user_frag; 5982 5983 if (put_user(len, optlen)) 5984 return -EFAULT; 5985 if (len == sizeof(int)) { 5986 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5987 return -EFAULT; 5988 } else { 5989 if (copy_to_user(optval, ¶ms, len)) 5990 return -EFAULT; 5991 } 5992 5993 return 0; 5994 } 5995 5996 /* 5997 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5998 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5999 */ 6000 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6001 char __user *optval, int __user *optlen) 6002 { 6003 int val; 6004 6005 if (len < sizeof(int)) 6006 return -EINVAL; 6007 6008 len = sizeof(int); 6009 6010 val = sctp_sk(sk)->frag_interleave; 6011 if (put_user(len, optlen)) 6012 return -EFAULT; 6013 if (copy_to_user(optval, &val, len)) 6014 return -EFAULT; 6015 6016 return 0; 6017 } 6018 6019 /* 6020 * 7.1.25. Set or Get the sctp partial delivery point 6021 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6022 */ 6023 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6024 char __user *optval, 6025 int __user *optlen) 6026 { 6027 u32 val; 6028 6029 if (len < sizeof(u32)) 6030 return -EINVAL; 6031 6032 len = sizeof(u32); 6033 6034 val = sctp_sk(sk)->pd_point; 6035 if (put_user(len, optlen)) 6036 return -EFAULT; 6037 if (copy_to_user(optval, &val, len)) 6038 return -EFAULT; 6039 6040 return 0; 6041 } 6042 6043 /* 6044 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6045 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6046 */ 6047 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6048 char __user *optval, 6049 int __user *optlen) 6050 { 6051 struct sctp_assoc_value params; 6052 struct sctp_sock *sp; 6053 struct sctp_association *asoc; 6054 6055 if (len == sizeof(int)) { 6056 pr_warn_ratelimited(DEPRECATED 6057 "%s (pid %d) " 6058 "Use of int in max_burst socket option.\n" 6059 "Use struct sctp_assoc_value instead\n", 6060 current->comm, task_pid_nr(current)); 6061 params.assoc_id = 0; 6062 } else if (len >= sizeof(struct sctp_assoc_value)) { 6063 len = sizeof(struct sctp_assoc_value); 6064 if (copy_from_user(¶ms, optval, len)) 6065 return -EFAULT; 6066 } else 6067 return -EINVAL; 6068 6069 sp = sctp_sk(sk); 6070 6071 if (params.assoc_id != 0) { 6072 asoc = sctp_id2assoc(sk, params.assoc_id); 6073 if (!asoc) 6074 return -EINVAL; 6075 params.assoc_value = asoc->max_burst; 6076 } else 6077 params.assoc_value = sp->max_burst; 6078 6079 if (len == sizeof(int)) { 6080 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6081 return -EFAULT; 6082 } else { 6083 if (copy_to_user(optval, ¶ms, len)) 6084 return -EFAULT; 6085 } 6086 6087 return 0; 6088 6089 } 6090 6091 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6092 char __user *optval, int __user *optlen) 6093 { 6094 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6095 struct sctp_hmacalgo __user *p = (void __user *)optval; 6096 struct sctp_hmac_algo_param *hmacs; 6097 __u16 data_len = 0; 6098 u32 num_idents; 6099 int i; 6100 6101 if (!ep->auth_enable) 6102 return -EACCES; 6103 6104 hmacs = ep->auth_hmacs_list; 6105 data_len = ntohs(hmacs->param_hdr.length) - 6106 sizeof(struct sctp_paramhdr); 6107 6108 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6109 return -EINVAL; 6110 6111 len = sizeof(struct sctp_hmacalgo) + data_len; 6112 num_idents = data_len / sizeof(u16); 6113 6114 if (put_user(len, optlen)) 6115 return -EFAULT; 6116 if (put_user(num_idents, &p->shmac_num_idents)) 6117 return -EFAULT; 6118 for (i = 0; i < num_idents; i++) { 6119 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6120 6121 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6122 return -EFAULT; 6123 } 6124 return 0; 6125 } 6126 6127 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6128 char __user *optval, int __user *optlen) 6129 { 6130 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6131 struct sctp_authkeyid val; 6132 struct sctp_association *asoc; 6133 6134 if (!ep->auth_enable) 6135 return -EACCES; 6136 6137 if (len < sizeof(struct sctp_authkeyid)) 6138 return -EINVAL; 6139 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 6140 return -EFAULT; 6141 6142 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6143 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6144 return -EINVAL; 6145 6146 if (asoc) 6147 val.scact_keynumber = asoc->active_key_id; 6148 else 6149 val.scact_keynumber = ep->active_key_id; 6150 6151 len = sizeof(struct sctp_authkeyid); 6152 if (put_user(len, optlen)) 6153 return -EFAULT; 6154 if (copy_to_user(optval, &val, len)) 6155 return -EFAULT; 6156 6157 return 0; 6158 } 6159 6160 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6161 char __user *optval, int __user *optlen) 6162 { 6163 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6164 struct sctp_authchunks __user *p = (void __user *)optval; 6165 struct sctp_authchunks val; 6166 struct sctp_association *asoc; 6167 struct sctp_chunks_param *ch; 6168 u32 num_chunks = 0; 6169 char __user *to; 6170 6171 if (!ep->auth_enable) 6172 return -EACCES; 6173 6174 if (len < sizeof(struct sctp_authchunks)) 6175 return -EINVAL; 6176 6177 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6178 return -EFAULT; 6179 6180 to = p->gauth_chunks; 6181 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6182 if (!asoc) 6183 return -EINVAL; 6184 6185 ch = asoc->peer.peer_chunks; 6186 if (!ch) 6187 goto num; 6188 6189 /* See if the user provided enough room for all the data */ 6190 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6191 if (len < num_chunks) 6192 return -EINVAL; 6193 6194 if (copy_to_user(to, ch->chunks, num_chunks)) 6195 return -EFAULT; 6196 num: 6197 len = sizeof(struct sctp_authchunks) + num_chunks; 6198 if (put_user(len, optlen)) 6199 return -EFAULT; 6200 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6201 return -EFAULT; 6202 return 0; 6203 } 6204 6205 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6206 char __user *optval, int __user *optlen) 6207 { 6208 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6209 struct sctp_authchunks __user *p = (void __user *)optval; 6210 struct sctp_authchunks val; 6211 struct sctp_association *asoc; 6212 struct sctp_chunks_param *ch; 6213 u32 num_chunks = 0; 6214 char __user *to; 6215 6216 if (!ep->auth_enable) 6217 return -EACCES; 6218 6219 if (len < sizeof(struct sctp_authchunks)) 6220 return -EINVAL; 6221 6222 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6223 return -EFAULT; 6224 6225 to = p->gauth_chunks; 6226 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6227 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6228 return -EINVAL; 6229 6230 if (asoc) 6231 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6232 else 6233 ch = ep->auth_chunk_list; 6234 6235 if (!ch) 6236 goto num; 6237 6238 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6239 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6240 return -EINVAL; 6241 6242 if (copy_to_user(to, ch->chunks, num_chunks)) 6243 return -EFAULT; 6244 num: 6245 len = sizeof(struct sctp_authchunks) + num_chunks; 6246 if (put_user(len, optlen)) 6247 return -EFAULT; 6248 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6249 return -EFAULT; 6250 6251 return 0; 6252 } 6253 6254 /* 6255 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6256 * This option gets the current number of associations that are attached 6257 * to a one-to-many style socket. The option value is an uint32_t. 6258 */ 6259 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6260 char __user *optval, int __user *optlen) 6261 { 6262 struct sctp_sock *sp = sctp_sk(sk); 6263 struct sctp_association *asoc; 6264 u32 val = 0; 6265 6266 if (sctp_style(sk, TCP)) 6267 return -EOPNOTSUPP; 6268 6269 if (len < sizeof(u32)) 6270 return -EINVAL; 6271 6272 len = sizeof(u32); 6273 6274 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6275 val++; 6276 } 6277 6278 if (put_user(len, optlen)) 6279 return -EFAULT; 6280 if (copy_to_user(optval, &val, len)) 6281 return -EFAULT; 6282 6283 return 0; 6284 } 6285 6286 /* 6287 * 8.1.23 SCTP_AUTO_ASCONF 6288 * See the corresponding setsockopt entry as description 6289 */ 6290 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6291 char __user *optval, int __user *optlen) 6292 { 6293 int val = 0; 6294 6295 if (len < sizeof(int)) 6296 return -EINVAL; 6297 6298 len = sizeof(int); 6299 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6300 val = 1; 6301 if (put_user(len, optlen)) 6302 return -EFAULT; 6303 if (copy_to_user(optval, &val, len)) 6304 return -EFAULT; 6305 return 0; 6306 } 6307 6308 /* 6309 * 8.2.6. Get the Current Identifiers of Associations 6310 * (SCTP_GET_ASSOC_ID_LIST) 6311 * 6312 * This option gets the current list of SCTP association identifiers of 6313 * the SCTP associations handled by a one-to-many style socket. 6314 */ 6315 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6316 char __user *optval, int __user *optlen) 6317 { 6318 struct sctp_sock *sp = sctp_sk(sk); 6319 struct sctp_association *asoc; 6320 struct sctp_assoc_ids *ids; 6321 u32 num = 0; 6322 6323 if (sctp_style(sk, TCP)) 6324 return -EOPNOTSUPP; 6325 6326 if (len < sizeof(struct sctp_assoc_ids)) 6327 return -EINVAL; 6328 6329 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6330 num++; 6331 } 6332 6333 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6334 return -EINVAL; 6335 6336 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6337 6338 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6339 if (unlikely(!ids)) 6340 return -ENOMEM; 6341 6342 ids->gaids_number_of_ids = num; 6343 num = 0; 6344 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6345 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6346 } 6347 6348 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6349 kfree(ids); 6350 return -EFAULT; 6351 } 6352 6353 kfree(ids); 6354 return 0; 6355 } 6356 6357 /* 6358 * SCTP_PEER_ADDR_THLDS 6359 * 6360 * This option allows us to fetch the partially failed threshold for one or all 6361 * transports in an association. See Section 6.1 of: 6362 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6363 */ 6364 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6365 char __user *optval, 6366 int len, 6367 int __user *optlen) 6368 { 6369 struct sctp_paddrthlds val; 6370 struct sctp_transport *trans; 6371 struct sctp_association *asoc; 6372 6373 if (len < sizeof(struct sctp_paddrthlds)) 6374 return -EINVAL; 6375 len = sizeof(struct sctp_paddrthlds); 6376 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6377 return -EFAULT; 6378 6379 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6380 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6381 if (!asoc) 6382 return -ENOENT; 6383 6384 val.spt_pathpfthld = asoc->pf_retrans; 6385 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6386 } else { 6387 trans = sctp_addr_id2transport(sk, &val.spt_address, 6388 val.spt_assoc_id); 6389 if (!trans) 6390 return -ENOENT; 6391 6392 val.spt_pathmaxrxt = trans->pathmaxrxt; 6393 val.spt_pathpfthld = trans->pf_retrans; 6394 } 6395 6396 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6397 return -EFAULT; 6398 6399 return 0; 6400 } 6401 6402 /* 6403 * SCTP_GET_ASSOC_STATS 6404 * 6405 * This option retrieves local per endpoint statistics. It is modeled 6406 * after OpenSolaris' implementation 6407 */ 6408 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6409 char __user *optval, 6410 int __user *optlen) 6411 { 6412 struct sctp_assoc_stats sas; 6413 struct sctp_association *asoc = NULL; 6414 6415 /* User must provide at least the assoc id */ 6416 if (len < sizeof(sctp_assoc_t)) 6417 return -EINVAL; 6418 6419 /* Allow the struct to grow and fill in as much as possible */ 6420 len = min_t(size_t, len, sizeof(sas)); 6421 6422 if (copy_from_user(&sas, optval, len)) 6423 return -EFAULT; 6424 6425 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6426 if (!asoc) 6427 return -EINVAL; 6428 6429 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6430 sas.sas_gapcnt = asoc->stats.gapcnt; 6431 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6432 sas.sas_osacks = asoc->stats.osacks; 6433 sas.sas_isacks = asoc->stats.isacks; 6434 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6435 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6436 sas.sas_oodchunks = asoc->stats.oodchunks; 6437 sas.sas_iodchunks = asoc->stats.iodchunks; 6438 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6439 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6440 sas.sas_idupchunks = asoc->stats.idupchunks; 6441 sas.sas_opackets = asoc->stats.opackets; 6442 sas.sas_ipackets = asoc->stats.ipackets; 6443 6444 /* New high max rto observed, will return 0 if not a single 6445 * RTO update took place. obs_rto_ipaddr will be bogus 6446 * in such a case 6447 */ 6448 sas.sas_maxrto = asoc->stats.max_obs_rto; 6449 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6450 sizeof(struct sockaddr_storage)); 6451 6452 /* Mark beginning of a new observation period */ 6453 asoc->stats.max_obs_rto = asoc->rto_min; 6454 6455 if (put_user(len, optlen)) 6456 return -EFAULT; 6457 6458 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6459 6460 if (copy_to_user(optval, &sas, len)) 6461 return -EFAULT; 6462 6463 return 0; 6464 } 6465 6466 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6467 char __user *optval, 6468 int __user *optlen) 6469 { 6470 int val = 0; 6471 6472 if (len < sizeof(int)) 6473 return -EINVAL; 6474 6475 len = sizeof(int); 6476 if (sctp_sk(sk)->recvrcvinfo) 6477 val = 1; 6478 if (put_user(len, optlen)) 6479 return -EFAULT; 6480 if (copy_to_user(optval, &val, len)) 6481 return -EFAULT; 6482 6483 return 0; 6484 } 6485 6486 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6487 char __user *optval, 6488 int __user *optlen) 6489 { 6490 int val = 0; 6491 6492 if (len < sizeof(int)) 6493 return -EINVAL; 6494 6495 len = sizeof(int); 6496 if (sctp_sk(sk)->recvnxtinfo) 6497 val = 1; 6498 if (put_user(len, optlen)) 6499 return -EFAULT; 6500 if (copy_to_user(optval, &val, len)) 6501 return -EFAULT; 6502 6503 return 0; 6504 } 6505 6506 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6507 char __user *optval, 6508 int __user *optlen) 6509 { 6510 struct sctp_assoc_value params; 6511 struct sctp_association *asoc; 6512 int retval = -EFAULT; 6513 6514 if (len < sizeof(params)) { 6515 retval = -EINVAL; 6516 goto out; 6517 } 6518 6519 len = sizeof(params); 6520 if (copy_from_user(¶ms, optval, len)) 6521 goto out; 6522 6523 asoc = sctp_id2assoc(sk, params.assoc_id); 6524 if (asoc) { 6525 params.assoc_value = asoc->prsctp_enable; 6526 } else if (!params.assoc_id) { 6527 struct sctp_sock *sp = sctp_sk(sk); 6528 6529 params.assoc_value = sp->ep->prsctp_enable; 6530 } else { 6531 retval = -EINVAL; 6532 goto out; 6533 } 6534 6535 if (put_user(len, optlen)) 6536 goto out; 6537 6538 if (copy_to_user(optval, ¶ms, len)) 6539 goto out; 6540 6541 retval = 0; 6542 6543 out: 6544 return retval; 6545 } 6546 6547 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6548 char __user *optval, 6549 int __user *optlen) 6550 { 6551 struct sctp_default_prinfo info; 6552 struct sctp_association *asoc; 6553 int retval = -EFAULT; 6554 6555 if (len < sizeof(info)) { 6556 retval = -EINVAL; 6557 goto out; 6558 } 6559 6560 len = sizeof(info); 6561 if (copy_from_user(&info, optval, len)) 6562 goto out; 6563 6564 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6565 if (asoc) { 6566 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6567 info.pr_value = asoc->default_timetolive; 6568 } else if (!info.pr_assoc_id) { 6569 struct sctp_sock *sp = sctp_sk(sk); 6570 6571 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6572 info.pr_value = sp->default_timetolive; 6573 } else { 6574 retval = -EINVAL; 6575 goto out; 6576 } 6577 6578 if (put_user(len, optlen)) 6579 goto out; 6580 6581 if (copy_to_user(optval, &info, len)) 6582 goto out; 6583 6584 retval = 0; 6585 6586 out: 6587 return retval; 6588 } 6589 6590 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6591 char __user *optval, 6592 int __user *optlen) 6593 { 6594 struct sctp_prstatus params; 6595 struct sctp_association *asoc; 6596 int policy; 6597 int retval = -EINVAL; 6598 6599 if (len < sizeof(params)) 6600 goto out; 6601 6602 len = sizeof(params); 6603 if (copy_from_user(¶ms, optval, len)) { 6604 retval = -EFAULT; 6605 goto out; 6606 } 6607 6608 policy = params.sprstat_policy; 6609 if (policy & ~SCTP_PR_SCTP_MASK) 6610 goto out; 6611 6612 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6613 if (!asoc) 6614 goto out; 6615 6616 if (policy == SCTP_PR_SCTP_NONE) { 6617 params.sprstat_abandoned_unsent = 0; 6618 params.sprstat_abandoned_sent = 0; 6619 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6620 params.sprstat_abandoned_unsent += 6621 asoc->abandoned_unsent[policy]; 6622 params.sprstat_abandoned_sent += 6623 asoc->abandoned_sent[policy]; 6624 } 6625 } else { 6626 params.sprstat_abandoned_unsent = 6627 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6628 params.sprstat_abandoned_sent = 6629 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6630 } 6631 6632 if (put_user(len, optlen)) { 6633 retval = -EFAULT; 6634 goto out; 6635 } 6636 6637 if (copy_to_user(optval, ¶ms, len)) { 6638 retval = -EFAULT; 6639 goto out; 6640 } 6641 6642 retval = 0; 6643 6644 out: 6645 return retval; 6646 } 6647 6648 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6649 char __user *optval, 6650 int __user *optlen) 6651 { 6652 struct sctp_stream_out *streamout; 6653 struct sctp_association *asoc; 6654 struct sctp_prstatus params; 6655 int retval = -EINVAL; 6656 int policy; 6657 6658 if (len < sizeof(params)) 6659 goto out; 6660 6661 len = sizeof(params); 6662 if (copy_from_user(¶ms, optval, len)) { 6663 retval = -EFAULT; 6664 goto out; 6665 } 6666 6667 policy = params.sprstat_policy; 6668 if (policy & ~SCTP_PR_SCTP_MASK) 6669 goto out; 6670 6671 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6672 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6673 goto out; 6674 6675 streamout = &asoc->stream.out[params.sprstat_sid]; 6676 if (policy == SCTP_PR_SCTP_NONE) { 6677 params.sprstat_abandoned_unsent = 0; 6678 params.sprstat_abandoned_sent = 0; 6679 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6680 params.sprstat_abandoned_unsent += 6681 streamout->abandoned_unsent[policy]; 6682 params.sprstat_abandoned_sent += 6683 streamout->abandoned_sent[policy]; 6684 } 6685 } else { 6686 params.sprstat_abandoned_unsent = 6687 streamout->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6688 params.sprstat_abandoned_sent = 6689 streamout->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6690 } 6691 6692 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6693 retval = -EFAULT; 6694 goto out; 6695 } 6696 6697 retval = 0; 6698 6699 out: 6700 return retval; 6701 } 6702 6703 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6704 char __user *optval, 6705 int __user *optlen) 6706 { 6707 struct sctp_assoc_value params; 6708 struct sctp_association *asoc; 6709 int retval = -EFAULT; 6710 6711 if (len < sizeof(params)) { 6712 retval = -EINVAL; 6713 goto out; 6714 } 6715 6716 len = sizeof(params); 6717 if (copy_from_user(¶ms, optval, len)) 6718 goto out; 6719 6720 asoc = sctp_id2assoc(sk, params.assoc_id); 6721 if (asoc) { 6722 params.assoc_value = asoc->reconf_enable; 6723 } else if (!params.assoc_id) { 6724 struct sctp_sock *sp = sctp_sk(sk); 6725 6726 params.assoc_value = sp->ep->reconf_enable; 6727 } else { 6728 retval = -EINVAL; 6729 goto out; 6730 } 6731 6732 if (put_user(len, optlen)) 6733 goto out; 6734 6735 if (copy_to_user(optval, ¶ms, len)) 6736 goto out; 6737 6738 retval = 0; 6739 6740 out: 6741 return retval; 6742 } 6743 6744 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6745 char __user *optval, 6746 int __user *optlen) 6747 { 6748 struct sctp_assoc_value params; 6749 struct sctp_association *asoc; 6750 int retval = -EFAULT; 6751 6752 if (len < sizeof(params)) { 6753 retval = -EINVAL; 6754 goto out; 6755 } 6756 6757 len = sizeof(params); 6758 if (copy_from_user(¶ms, optval, len)) 6759 goto out; 6760 6761 asoc = sctp_id2assoc(sk, params.assoc_id); 6762 if (asoc) { 6763 params.assoc_value = asoc->strreset_enable; 6764 } else if (!params.assoc_id) { 6765 struct sctp_sock *sp = sctp_sk(sk); 6766 6767 params.assoc_value = sp->ep->strreset_enable; 6768 } else { 6769 retval = -EINVAL; 6770 goto out; 6771 } 6772 6773 if (put_user(len, optlen)) 6774 goto out; 6775 6776 if (copy_to_user(optval, ¶ms, len)) 6777 goto out; 6778 6779 retval = 0; 6780 6781 out: 6782 return retval; 6783 } 6784 6785 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6786 char __user *optval, int __user *optlen) 6787 { 6788 int retval = 0; 6789 int len; 6790 6791 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6792 6793 /* I can hardly begin to describe how wrong this is. This is 6794 * so broken as to be worse than useless. The API draft 6795 * REALLY is NOT helpful here... I am not convinced that the 6796 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6797 * are at all well-founded. 6798 */ 6799 if (level != SOL_SCTP) { 6800 struct sctp_af *af = sctp_sk(sk)->pf->af; 6801 6802 retval = af->getsockopt(sk, level, optname, optval, optlen); 6803 return retval; 6804 } 6805 6806 if (get_user(len, optlen)) 6807 return -EFAULT; 6808 6809 if (len < 0) 6810 return -EINVAL; 6811 6812 lock_sock(sk); 6813 6814 switch (optname) { 6815 case SCTP_STATUS: 6816 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6817 break; 6818 case SCTP_DISABLE_FRAGMENTS: 6819 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6820 optlen); 6821 break; 6822 case SCTP_EVENTS: 6823 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6824 break; 6825 case SCTP_AUTOCLOSE: 6826 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6827 break; 6828 case SCTP_SOCKOPT_PEELOFF: 6829 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6830 break; 6831 case SCTP_SOCKOPT_PEELOFF_FLAGS: 6832 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 6833 break; 6834 case SCTP_PEER_ADDR_PARAMS: 6835 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6836 optlen); 6837 break; 6838 case SCTP_DELAYED_SACK: 6839 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6840 optlen); 6841 break; 6842 case SCTP_INITMSG: 6843 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6844 break; 6845 case SCTP_GET_PEER_ADDRS: 6846 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6847 optlen); 6848 break; 6849 case SCTP_GET_LOCAL_ADDRS: 6850 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6851 optlen); 6852 break; 6853 case SCTP_SOCKOPT_CONNECTX3: 6854 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6855 break; 6856 case SCTP_DEFAULT_SEND_PARAM: 6857 retval = sctp_getsockopt_default_send_param(sk, len, 6858 optval, optlen); 6859 break; 6860 case SCTP_DEFAULT_SNDINFO: 6861 retval = sctp_getsockopt_default_sndinfo(sk, len, 6862 optval, optlen); 6863 break; 6864 case SCTP_PRIMARY_ADDR: 6865 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6866 break; 6867 case SCTP_NODELAY: 6868 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6869 break; 6870 case SCTP_RTOINFO: 6871 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6872 break; 6873 case SCTP_ASSOCINFO: 6874 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6875 break; 6876 case SCTP_I_WANT_MAPPED_V4_ADDR: 6877 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6878 break; 6879 case SCTP_MAXSEG: 6880 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6881 break; 6882 case SCTP_GET_PEER_ADDR_INFO: 6883 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6884 optlen); 6885 break; 6886 case SCTP_ADAPTATION_LAYER: 6887 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6888 optlen); 6889 break; 6890 case SCTP_CONTEXT: 6891 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6892 break; 6893 case SCTP_FRAGMENT_INTERLEAVE: 6894 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6895 optlen); 6896 break; 6897 case SCTP_PARTIAL_DELIVERY_POINT: 6898 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6899 optlen); 6900 break; 6901 case SCTP_MAX_BURST: 6902 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6903 break; 6904 case SCTP_AUTH_KEY: 6905 case SCTP_AUTH_CHUNK: 6906 case SCTP_AUTH_DELETE_KEY: 6907 retval = -EOPNOTSUPP; 6908 break; 6909 case SCTP_HMAC_IDENT: 6910 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6911 break; 6912 case SCTP_AUTH_ACTIVE_KEY: 6913 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6914 break; 6915 case SCTP_PEER_AUTH_CHUNKS: 6916 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6917 optlen); 6918 break; 6919 case SCTP_LOCAL_AUTH_CHUNKS: 6920 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6921 optlen); 6922 break; 6923 case SCTP_GET_ASSOC_NUMBER: 6924 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6925 break; 6926 case SCTP_GET_ASSOC_ID_LIST: 6927 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6928 break; 6929 case SCTP_AUTO_ASCONF: 6930 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6931 break; 6932 case SCTP_PEER_ADDR_THLDS: 6933 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6934 break; 6935 case SCTP_GET_ASSOC_STATS: 6936 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6937 break; 6938 case SCTP_RECVRCVINFO: 6939 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6940 break; 6941 case SCTP_RECVNXTINFO: 6942 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6943 break; 6944 case SCTP_PR_SUPPORTED: 6945 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6946 break; 6947 case SCTP_DEFAULT_PRINFO: 6948 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6949 optlen); 6950 break; 6951 case SCTP_PR_ASSOC_STATUS: 6952 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6953 optlen); 6954 break; 6955 case SCTP_PR_STREAM_STATUS: 6956 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 6957 optlen); 6958 break; 6959 case SCTP_RECONFIG_SUPPORTED: 6960 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 6961 optlen); 6962 break; 6963 case SCTP_ENABLE_STREAM_RESET: 6964 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 6965 optlen); 6966 break; 6967 default: 6968 retval = -ENOPROTOOPT; 6969 break; 6970 } 6971 6972 release_sock(sk); 6973 return retval; 6974 } 6975 6976 static int sctp_hash(struct sock *sk) 6977 { 6978 /* STUB */ 6979 return 0; 6980 } 6981 6982 static void sctp_unhash(struct sock *sk) 6983 { 6984 /* STUB */ 6985 } 6986 6987 /* Check if port is acceptable. Possibly find first available port. 6988 * 6989 * The port hash table (contained in the 'global' SCTP protocol storage 6990 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6991 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6992 * list (the list number is the port number hashed out, so as you 6993 * would expect from a hash function, all the ports in a given list have 6994 * such a number that hashes out to the same list number; you were 6995 * expecting that, right?); so each list has a set of ports, with a 6996 * link to the socket (struct sock) that uses it, the port number and 6997 * a fastreuse flag (FIXME: NPI ipg). 6998 */ 6999 static struct sctp_bind_bucket *sctp_bucket_create( 7000 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7001 7002 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7003 { 7004 struct sctp_bind_hashbucket *head; /* hash list */ 7005 struct sctp_bind_bucket *pp; 7006 unsigned short snum; 7007 int ret; 7008 7009 snum = ntohs(addr->v4.sin_port); 7010 7011 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7012 7013 local_bh_disable(); 7014 7015 if (snum == 0) { 7016 /* Search for an available port. */ 7017 int low, high, remaining, index; 7018 unsigned int rover; 7019 struct net *net = sock_net(sk); 7020 7021 inet_get_local_port_range(net, &low, &high); 7022 remaining = (high - low) + 1; 7023 rover = prandom_u32() % remaining + low; 7024 7025 do { 7026 rover++; 7027 if ((rover < low) || (rover > high)) 7028 rover = low; 7029 if (inet_is_local_reserved_port(net, rover)) 7030 continue; 7031 index = sctp_phashfn(sock_net(sk), rover); 7032 head = &sctp_port_hashtable[index]; 7033 spin_lock(&head->lock); 7034 sctp_for_each_hentry(pp, &head->chain) 7035 if ((pp->port == rover) && 7036 net_eq(sock_net(sk), pp->net)) 7037 goto next; 7038 break; 7039 next: 7040 spin_unlock(&head->lock); 7041 } while (--remaining > 0); 7042 7043 /* Exhausted local port range during search? */ 7044 ret = 1; 7045 if (remaining <= 0) 7046 goto fail; 7047 7048 /* OK, here is the one we will use. HEAD (the port 7049 * hash table list entry) is non-NULL and we hold it's 7050 * mutex. 7051 */ 7052 snum = rover; 7053 } else { 7054 /* We are given an specific port number; we verify 7055 * that it is not being used. If it is used, we will 7056 * exahust the search in the hash list corresponding 7057 * to the port number (snum) - we detect that with the 7058 * port iterator, pp being NULL. 7059 */ 7060 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7061 spin_lock(&head->lock); 7062 sctp_for_each_hentry(pp, &head->chain) { 7063 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7064 goto pp_found; 7065 } 7066 } 7067 pp = NULL; 7068 goto pp_not_found; 7069 pp_found: 7070 if (!hlist_empty(&pp->owner)) { 7071 /* We had a port hash table hit - there is an 7072 * available port (pp != NULL) and it is being 7073 * used by other socket (pp->owner not empty); that other 7074 * socket is going to be sk2. 7075 */ 7076 int reuse = sk->sk_reuse; 7077 struct sock *sk2; 7078 7079 pr_debug("%s: found a possible match\n", __func__); 7080 7081 if (pp->fastreuse && sk->sk_reuse && 7082 sk->sk_state != SCTP_SS_LISTENING) 7083 goto success; 7084 7085 /* Run through the list of sockets bound to the port 7086 * (pp->port) [via the pointers bind_next and 7087 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7088 * we get the endpoint they describe and run through 7089 * the endpoint's list of IP (v4 or v6) addresses, 7090 * comparing each of the addresses with the address of 7091 * the socket sk. If we find a match, then that means 7092 * that this port/socket (sk) combination are already 7093 * in an endpoint. 7094 */ 7095 sk_for_each_bound(sk2, &pp->owner) { 7096 struct sctp_endpoint *ep2; 7097 ep2 = sctp_sk(sk2)->ep; 7098 7099 if (sk == sk2 || 7100 (reuse && sk2->sk_reuse && 7101 sk2->sk_state != SCTP_SS_LISTENING)) 7102 continue; 7103 7104 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7105 sctp_sk(sk2), sctp_sk(sk))) { 7106 ret = (long)sk2; 7107 goto fail_unlock; 7108 } 7109 } 7110 7111 pr_debug("%s: found a match\n", __func__); 7112 } 7113 pp_not_found: 7114 /* If there was a hash table miss, create a new port. */ 7115 ret = 1; 7116 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7117 goto fail_unlock; 7118 7119 /* In either case (hit or miss), make sure fastreuse is 1 only 7120 * if sk->sk_reuse is too (that is, if the caller requested 7121 * SO_REUSEADDR on this socket -sk-). 7122 */ 7123 if (hlist_empty(&pp->owner)) { 7124 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7125 pp->fastreuse = 1; 7126 else 7127 pp->fastreuse = 0; 7128 } else if (pp->fastreuse && 7129 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7130 pp->fastreuse = 0; 7131 7132 /* We are set, so fill up all the data in the hash table 7133 * entry, tie the socket list information with the rest of the 7134 * sockets FIXME: Blurry, NPI (ipg). 7135 */ 7136 success: 7137 if (!sctp_sk(sk)->bind_hash) { 7138 inet_sk(sk)->inet_num = snum; 7139 sk_add_bind_node(sk, &pp->owner); 7140 sctp_sk(sk)->bind_hash = pp; 7141 } 7142 ret = 0; 7143 7144 fail_unlock: 7145 spin_unlock(&head->lock); 7146 7147 fail: 7148 local_bh_enable(); 7149 return ret; 7150 } 7151 7152 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7153 * port is requested. 7154 */ 7155 static int sctp_get_port(struct sock *sk, unsigned short snum) 7156 { 7157 union sctp_addr addr; 7158 struct sctp_af *af = sctp_sk(sk)->pf->af; 7159 7160 /* Set up a dummy address struct from the sk. */ 7161 af->from_sk(&addr, sk); 7162 addr.v4.sin_port = htons(snum); 7163 7164 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7165 return !!sctp_get_port_local(sk, &addr); 7166 } 7167 7168 /* 7169 * Move a socket to LISTENING state. 7170 */ 7171 static int sctp_listen_start(struct sock *sk, int backlog) 7172 { 7173 struct sctp_sock *sp = sctp_sk(sk); 7174 struct sctp_endpoint *ep = sp->ep; 7175 struct crypto_shash *tfm = NULL; 7176 char alg[32]; 7177 7178 /* Allocate HMAC for generating cookie. */ 7179 if (!sp->hmac && sp->sctp_hmac_alg) { 7180 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7181 tfm = crypto_alloc_shash(alg, 0, 0); 7182 if (IS_ERR(tfm)) { 7183 net_info_ratelimited("failed to load transform for %s: %ld\n", 7184 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7185 return -ENOSYS; 7186 } 7187 sctp_sk(sk)->hmac = tfm; 7188 } 7189 7190 /* 7191 * If a bind() or sctp_bindx() is not called prior to a listen() 7192 * call that allows new associations to be accepted, the system 7193 * picks an ephemeral port and will choose an address set equivalent 7194 * to binding with a wildcard address. 7195 * 7196 * This is not currently spelled out in the SCTP sockets 7197 * extensions draft, but follows the practice as seen in TCP 7198 * sockets. 7199 * 7200 */ 7201 sk->sk_state = SCTP_SS_LISTENING; 7202 if (!ep->base.bind_addr.port) { 7203 if (sctp_autobind(sk)) 7204 return -EAGAIN; 7205 } else { 7206 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7207 sk->sk_state = SCTP_SS_CLOSED; 7208 return -EADDRINUSE; 7209 } 7210 } 7211 7212 sk->sk_max_ack_backlog = backlog; 7213 sctp_hash_endpoint(ep); 7214 return 0; 7215 } 7216 7217 /* 7218 * 4.1.3 / 5.1.3 listen() 7219 * 7220 * By default, new associations are not accepted for UDP style sockets. 7221 * An application uses listen() to mark a socket as being able to 7222 * accept new associations. 7223 * 7224 * On TCP style sockets, applications use listen() to ready the SCTP 7225 * endpoint for accepting inbound associations. 7226 * 7227 * On both types of endpoints a backlog of '0' disables listening. 7228 * 7229 * Move a socket to LISTENING state. 7230 */ 7231 int sctp_inet_listen(struct socket *sock, int backlog) 7232 { 7233 struct sock *sk = sock->sk; 7234 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7235 int err = -EINVAL; 7236 7237 if (unlikely(backlog < 0)) 7238 return err; 7239 7240 lock_sock(sk); 7241 7242 /* Peeled-off sockets are not allowed to listen(). */ 7243 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7244 goto out; 7245 7246 if (sock->state != SS_UNCONNECTED) 7247 goto out; 7248 7249 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7250 goto out; 7251 7252 /* If backlog is zero, disable listening. */ 7253 if (!backlog) { 7254 if (sctp_sstate(sk, CLOSED)) 7255 goto out; 7256 7257 err = 0; 7258 sctp_unhash_endpoint(ep); 7259 sk->sk_state = SCTP_SS_CLOSED; 7260 if (sk->sk_reuse) 7261 sctp_sk(sk)->bind_hash->fastreuse = 1; 7262 goto out; 7263 } 7264 7265 /* If we are already listening, just update the backlog */ 7266 if (sctp_sstate(sk, LISTENING)) 7267 sk->sk_max_ack_backlog = backlog; 7268 else { 7269 err = sctp_listen_start(sk, backlog); 7270 if (err) 7271 goto out; 7272 } 7273 7274 err = 0; 7275 out: 7276 release_sock(sk); 7277 return err; 7278 } 7279 7280 /* 7281 * This function is done by modeling the current datagram_poll() and the 7282 * tcp_poll(). Note that, based on these implementations, we don't 7283 * lock the socket in this function, even though it seems that, 7284 * ideally, locking or some other mechanisms can be used to ensure 7285 * the integrity of the counters (sndbuf and wmem_alloc) used 7286 * in this place. We assume that we don't need locks either until proven 7287 * otherwise. 7288 * 7289 * Another thing to note is that we include the Async I/O support 7290 * here, again, by modeling the current TCP/UDP code. We don't have 7291 * a good way to test with it yet. 7292 */ 7293 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7294 { 7295 struct sock *sk = sock->sk; 7296 struct sctp_sock *sp = sctp_sk(sk); 7297 unsigned int mask; 7298 7299 poll_wait(file, sk_sleep(sk), wait); 7300 7301 sock_rps_record_flow(sk); 7302 7303 /* A TCP-style listening socket becomes readable when the accept queue 7304 * is not empty. 7305 */ 7306 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7307 return (!list_empty(&sp->ep->asocs)) ? 7308 (POLLIN | POLLRDNORM) : 0; 7309 7310 mask = 0; 7311 7312 /* Is there any exceptional events? */ 7313 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7314 mask |= POLLERR | 7315 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7316 if (sk->sk_shutdown & RCV_SHUTDOWN) 7317 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7318 if (sk->sk_shutdown == SHUTDOWN_MASK) 7319 mask |= POLLHUP; 7320 7321 /* Is it readable? Reconsider this code with TCP-style support. */ 7322 if (!skb_queue_empty(&sk->sk_receive_queue)) 7323 mask |= POLLIN | POLLRDNORM; 7324 7325 /* The association is either gone or not ready. */ 7326 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7327 return mask; 7328 7329 /* Is it writable? */ 7330 if (sctp_writeable(sk)) { 7331 mask |= POLLOUT | POLLWRNORM; 7332 } else { 7333 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7334 /* 7335 * Since the socket is not locked, the buffer 7336 * might be made available after the writeable check and 7337 * before the bit is set. This could cause a lost I/O 7338 * signal. tcp_poll() has a race breaker for this race 7339 * condition. Based on their implementation, we put 7340 * in the following code to cover it as well. 7341 */ 7342 if (sctp_writeable(sk)) 7343 mask |= POLLOUT | POLLWRNORM; 7344 } 7345 return mask; 7346 } 7347 7348 /******************************************************************** 7349 * 2nd Level Abstractions 7350 ********************************************************************/ 7351 7352 static struct sctp_bind_bucket *sctp_bucket_create( 7353 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7354 { 7355 struct sctp_bind_bucket *pp; 7356 7357 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7358 if (pp) { 7359 SCTP_DBG_OBJCNT_INC(bind_bucket); 7360 pp->port = snum; 7361 pp->fastreuse = 0; 7362 INIT_HLIST_HEAD(&pp->owner); 7363 pp->net = net; 7364 hlist_add_head(&pp->node, &head->chain); 7365 } 7366 return pp; 7367 } 7368 7369 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7370 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7371 { 7372 if (pp && hlist_empty(&pp->owner)) { 7373 __hlist_del(&pp->node); 7374 kmem_cache_free(sctp_bucket_cachep, pp); 7375 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7376 } 7377 } 7378 7379 /* Release this socket's reference to a local port. */ 7380 static inline void __sctp_put_port(struct sock *sk) 7381 { 7382 struct sctp_bind_hashbucket *head = 7383 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7384 inet_sk(sk)->inet_num)]; 7385 struct sctp_bind_bucket *pp; 7386 7387 spin_lock(&head->lock); 7388 pp = sctp_sk(sk)->bind_hash; 7389 __sk_del_bind_node(sk); 7390 sctp_sk(sk)->bind_hash = NULL; 7391 inet_sk(sk)->inet_num = 0; 7392 sctp_bucket_destroy(pp); 7393 spin_unlock(&head->lock); 7394 } 7395 7396 void sctp_put_port(struct sock *sk) 7397 { 7398 local_bh_disable(); 7399 __sctp_put_port(sk); 7400 local_bh_enable(); 7401 } 7402 7403 /* 7404 * The system picks an ephemeral port and choose an address set equivalent 7405 * to binding with a wildcard address. 7406 * One of those addresses will be the primary address for the association. 7407 * This automatically enables the multihoming capability of SCTP. 7408 */ 7409 static int sctp_autobind(struct sock *sk) 7410 { 7411 union sctp_addr autoaddr; 7412 struct sctp_af *af; 7413 __be16 port; 7414 7415 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7416 af = sctp_sk(sk)->pf->af; 7417 7418 port = htons(inet_sk(sk)->inet_num); 7419 af->inaddr_any(&autoaddr, port); 7420 7421 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7422 } 7423 7424 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7425 * 7426 * From RFC 2292 7427 * 4.2 The cmsghdr Structure * 7428 * 7429 * When ancillary data is sent or received, any number of ancillary data 7430 * objects can be specified by the msg_control and msg_controllen members of 7431 * the msghdr structure, because each object is preceded by 7432 * a cmsghdr structure defining the object's length (the cmsg_len member). 7433 * Historically Berkeley-derived implementations have passed only one object 7434 * at a time, but this API allows multiple objects to be 7435 * passed in a single call to sendmsg() or recvmsg(). The following example 7436 * shows two ancillary data objects in a control buffer. 7437 * 7438 * |<--------------------------- msg_controllen -------------------------->| 7439 * | | 7440 * 7441 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7442 * 7443 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7444 * | | | 7445 * 7446 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7447 * 7448 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7449 * | | | | | 7450 * 7451 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7452 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7453 * 7454 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7455 * 7456 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7457 * ^ 7458 * | 7459 * 7460 * msg_control 7461 * points here 7462 */ 7463 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7464 { 7465 struct msghdr *my_msg = (struct msghdr *)msg; 7466 struct cmsghdr *cmsg; 7467 7468 for_each_cmsghdr(cmsg, my_msg) { 7469 if (!CMSG_OK(my_msg, cmsg)) 7470 return -EINVAL; 7471 7472 /* Should we parse this header or ignore? */ 7473 if (cmsg->cmsg_level != IPPROTO_SCTP) 7474 continue; 7475 7476 /* Strictly check lengths following example in SCM code. */ 7477 switch (cmsg->cmsg_type) { 7478 case SCTP_INIT: 7479 /* SCTP Socket API Extension 7480 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7481 * 7482 * This cmsghdr structure provides information for 7483 * initializing new SCTP associations with sendmsg(). 7484 * The SCTP_INITMSG socket option uses this same data 7485 * structure. This structure is not used for 7486 * recvmsg(). 7487 * 7488 * cmsg_level cmsg_type cmsg_data[] 7489 * ------------ ------------ ---------------------- 7490 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7491 */ 7492 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7493 return -EINVAL; 7494 7495 cmsgs->init = CMSG_DATA(cmsg); 7496 break; 7497 7498 case SCTP_SNDRCV: 7499 /* SCTP Socket API Extension 7500 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7501 * 7502 * This cmsghdr structure specifies SCTP options for 7503 * sendmsg() and describes SCTP header information 7504 * about a received message through recvmsg(). 7505 * 7506 * cmsg_level cmsg_type cmsg_data[] 7507 * ------------ ------------ ---------------------- 7508 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7509 */ 7510 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7511 return -EINVAL; 7512 7513 cmsgs->srinfo = CMSG_DATA(cmsg); 7514 7515 if (cmsgs->srinfo->sinfo_flags & 7516 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7517 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7518 SCTP_ABORT | SCTP_EOF)) 7519 return -EINVAL; 7520 break; 7521 7522 case SCTP_SNDINFO: 7523 /* SCTP Socket API Extension 7524 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7525 * 7526 * This cmsghdr structure specifies SCTP options for 7527 * sendmsg(). This structure and SCTP_RCVINFO replaces 7528 * SCTP_SNDRCV which has been deprecated. 7529 * 7530 * cmsg_level cmsg_type cmsg_data[] 7531 * ------------ ------------ --------------------- 7532 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7533 */ 7534 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7535 return -EINVAL; 7536 7537 cmsgs->sinfo = CMSG_DATA(cmsg); 7538 7539 if (cmsgs->sinfo->snd_flags & 7540 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7541 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7542 SCTP_ABORT | SCTP_EOF)) 7543 return -EINVAL; 7544 break; 7545 default: 7546 return -EINVAL; 7547 } 7548 } 7549 7550 return 0; 7551 } 7552 7553 /* 7554 * Wait for a packet.. 7555 * Note: This function is the same function as in core/datagram.c 7556 * with a few modifications to make lksctp work. 7557 */ 7558 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7559 { 7560 int error; 7561 DEFINE_WAIT(wait); 7562 7563 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7564 7565 /* Socket errors? */ 7566 error = sock_error(sk); 7567 if (error) 7568 goto out; 7569 7570 if (!skb_queue_empty(&sk->sk_receive_queue)) 7571 goto ready; 7572 7573 /* Socket shut down? */ 7574 if (sk->sk_shutdown & RCV_SHUTDOWN) 7575 goto out; 7576 7577 /* Sequenced packets can come disconnected. If so we report the 7578 * problem. 7579 */ 7580 error = -ENOTCONN; 7581 7582 /* Is there a good reason to think that we may receive some data? */ 7583 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7584 goto out; 7585 7586 /* Handle signals. */ 7587 if (signal_pending(current)) 7588 goto interrupted; 7589 7590 /* Let another process have a go. Since we are going to sleep 7591 * anyway. Note: This may cause odd behaviors if the message 7592 * does not fit in the user's buffer, but this seems to be the 7593 * only way to honor MSG_DONTWAIT realistically. 7594 */ 7595 release_sock(sk); 7596 *timeo_p = schedule_timeout(*timeo_p); 7597 lock_sock(sk); 7598 7599 ready: 7600 finish_wait(sk_sleep(sk), &wait); 7601 return 0; 7602 7603 interrupted: 7604 error = sock_intr_errno(*timeo_p); 7605 7606 out: 7607 finish_wait(sk_sleep(sk), &wait); 7608 *err = error; 7609 return error; 7610 } 7611 7612 /* Receive a datagram. 7613 * Note: This is pretty much the same routine as in core/datagram.c 7614 * with a few changes to make lksctp work. 7615 */ 7616 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7617 int noblock, int *err) 7618 { 7619 int error; 7620 struct sk_buff *skb; 7621 long timeo; 7622 7623 timeo = sock_rcvtimeo(sk, noblock); 7624 7625 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7626 MAX_SCHEDULE_TIMEOUT); 7627 7628 do { 7629 /* Again only user level code calls this function, 7630 * so nothing interrupt level 7631 * will suddenly eat the receive_queue. 7632 * 7633 * Look at current nfs client by the way... 7634 * However, this function was correct in any case. 8) 7635 */ 7636 if (flags & MSG_PEEK) { 7637 skb = skb_peek(&sk->sk_receive_queue); 7638 if (skb) 7639 refcount_inc(&skb->users); 7640 } else { 7641 skb = __skb_dequeue(&sk->sk_receive_queue); 7642 } 7643 7644 if (skb) 7645 return skb; 7646 7647 /* Caller is allowed not to check sk->sk_err before calling. */ 7648 error = sock_error(sk); 7649 if (error) 7650 goto no_packet; 7651 7652 if (sk->sk_shutdown & RCV_SHUTDOWN) 7653 break; 7654 7655 if (sk_can_busy_loop(sk)) { 7656 sk_busy_loop(sk, noblock); 7657 7658 if (!skb_queue_empty(&sk->sk_receive_queue)) 7659 continue; 7660 } 7661 7662 /* User doesn't want to wait. */ 7663 error = -EAGAIN; 7664 if (!timeo) 7665 goto no_packet; 7666 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7667 7668 return NULL; 7669 7670 no_packet: 7671 *err = error; 7672 return NULL; 7673 } 7674 7675 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7676 static void __sctp_write_space(struct sctp_association *asoc) 7677 { 7678 struct sock *sk = asoc->base.sk; 7679 7680 if (sctp_wspace(asoc) <= 0) 7681 return; 7682 7683 if (waitqueue_active(&asoc->wait)) 7684 wake_up_interruptible(&asoc->wait); 7685 7686 if (sctp_writeable(sk)) { 7687 struct socket_wq *wq; 7688 7689 rcu_read_lock(); 7690 wq = rcu_dereference(sk->sk_wq); 7691 if (wq) { 7692 if (waitqueue_active(&wq->wait)) 7693 wake_up_interruptible(&wq->wait); 7694 7695 /* Note that we try to include the Async I/O support 7696 * here by modeling from the current TCP/UDP code. 7697 * We have not tested with it yet. 7698 */ 7699 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7700 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7701 } 7702 rcu_read_unlock(); 7703 } 7704 } 7705 7706 static void sctp_wake_up_waiters(struct sock *sk, 7707 struct sctp_association *asoc) 7708 { 7709 struct sctp_association *tmp = asoc; 7710 7711 /* We do accounting for the sndbuf space per association, 7712 * so we only need to wake our own association. 7713 */ 7714 if (asoc->ep->sndbuf_policy) 7715 return __sctp_write_space(asoc); 7716 7717 /* If association goes down and is just flushing its 7718 * outq, then just normally notify others. 7719 */ 7720 if (asoc->base.dead) 7721 return sctp_write_space(sk); 7722 7723 /* Accounting for the sndbuf space is per socket, so we 7724 * need to wake up others, try to be fair and in case of 7725 * other associations, let them have a go first instead 7726 * of just doing a sctp_write_space() call. 7727 * 7728 * Note that we reach sctp_wake_up_waiters() only when 7729 * associations free up queued chunks, thus we are under 7730 * lock and the list of associations on a socket is 7731 * guaranteed not to change. 7732 */ 7733 for (tmp = list_next_entry(tmp, asocs); 1; 7734 tmp = list_next_entry(tmp, asocs)) { 7735 /* Manually skip the head element. */ 7736 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7737 continue; 7738 /* Wake up association. */ 7739 __sctp_write_space(tmp); 7740 /* We've reached the end. */ 7741 if (tmp == asoc) 7742 break; 7743 } 7744 } 7745 7746 /* Do accounting for the sndbuf space. 7747 * Decrement the used sndbuf space of the corresponding association by the 7748 * data size which was just transmitted(freed). 7749 */ 7750 static void sctp_wfree(struct sk_buff *skb) 7751 { 7752 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7753 struct sctp_association *asoc = chunk->asoc; 7754 struct sock *sk = asoc->base.sk; 7755 7756 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7757 sizeof(struct sk_buff) + 7758 sizeof(struct sctp_chunk); 7759 7760 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 7761 7762 /* 7763 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7764 */ 7765 sk->sk_wmem_queued -= skb->truesize; 7766 sk_mem_uncharge(sk, skb->truesize); 7767 7768 sock_wfree(skb); 7769 sctp_wake_up_waiters(sk, asoc); 7770 7771 sctp_association_put(asoc); 7772 } 7773 7774 /* Do accounting for the receive space on the socket. 7775 * Accounting for the association is done in ulpevent.c 7776 * We set this as a destructor for the cloned data skbs so that 7777 * accounting is done at the correct time. 7778 */ 7779 void sctp_sock_rfree(struct sk_buff *skb) 7780 { 7781 struct sock *sk = skb->sk; 7782 struct sctp_ulpevent *event = sctp_skb2event(skb); 7783 7784 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7785 7786 /* 7787 * Mimic the behavior of sock_rfree 7788 */ 7789 sk_mem_uncharge(sk, event->rmem_len); 7790 } 7791 7792 7793 /* Helper function to wait for space in the sndbuf. */ 7794 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7795 size_t msg_len) 7796 { 7797 struct sock *sk = asoc->base.sk; 7798 int err = 0; 7799 long current_timeo = *timeo_p; 7800 DEFINE_WAIT(wait); 7801 7802 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7803 *timeo_p, msg_len); 7804 7805 /* Increment the association's refcnt. */ 7806 sctp_association_hold(asoc); 7807 7808 /* Wait on the association specific sndbuf space. */ 7809 for (;;) { 7810 prepare_to_wait_exclusive(&asoc->wait, &wait, 7811 TASK_INTERRUPTIBLE); 7812 if (!*timeo_p) 7813 goto do_nonblock; 7814 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7815 asoc->base.dead) 7816 goto do_error; 7817 if (signal_pending(current)) 7818 goto do_interrupted; 7819 if (msg_len <= sctp_wspace(asoc)) 7820 break; 7821 7822 /* Let another process have a go. Since we are going 7823 * to sleep anyway. 7824 */ 7825 release_sock(sk); 7826 current_timeo = schedule_timeout(current_timeo); 7827 lock_sock(sk); 7828 7829 *timeo_p = current_timeo; 7830 } 7831 7832 out: 7833 finish_wait(&asoc->wait, &wait); 7834 7835 /* Release the association's refcnt. */ 7836 sctp_association_put(asoc); 7837 7838 return err; 7839 7840 do_error: 7841 err = -EPIPE; 7842 goto out; 7843 7844 do_interrupted: 7845 err = sock_intr_errno(*timeo_p); 7846 goto out; 7847 7848 do_nonblock: 7849 err = -EAGAIN; 7850 goto out; 7851 } 7852 7853 void sctp_data_ready(struct sock *sk) 7854 { 7855 struct socket_wq *wq; 7856 7857 rcu_read_lock(); 7858 wq = rcu_dereference(sk->sk_wq); 7859 if (skwq_has_sleeper(wq)) 7860 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7861 POLLRDNORM | POLLRDBAND); 7862 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7863 rcu_read_unlock(); 7864 } 7865 7866 /* If socket sndbuf has changed, wake up all per association waiters. */ 7867 void sctp_write_space(struct sock *sk) 7868 { 7869 struct sctp_association *asoc; 7870 7871 /* Wake up the tasks in each wait queue. */ 7872 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7873 __sctp_write_space(asoc); 7874 } 7875 } 7876 7877 /* Is there any sndbuf space available on the socket? 7878 * 7879 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7880 * associations on the same socket. For a UDP-style socket with 7881 * multiple associations, it is possible for it to be "unwriteable" 7882 * prematurely. I assume that this is acceptable because 7883 * a premature "unwriteable" is better than an accidental "writeable" which 7884 * would cause an unwanted block under certain circumstances. For the 1-1 7885 * UDP-style sockets or TCP-style sockets, this code should work. 7886 * - Daisy 7887 */ 7888 static int sctp_writeable(struct sock *sk) 7889 { 7890 int amt = 0; 7891 7892 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7893 if (amt < 0) 7894 amt = 0; 7895 return amt; 7896 } 7897 7898 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7899 * returns immediately with EINPROGRESS. 7900 */ 7901 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7902 { 7903 struct sock *sk = asoc->base.sk; 7904 int err = 0; 7905 long current_timeo = *timeo_p; 7906 DEFINE_WAIT(wait); 7907 7908 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7909 7910 /* Increment the association's refcnt. */ 7911 sctp_association_hold(asoc); 7912 7913 for (;;) { 7914 prepare_to_wait_exclusive(&asoc->wait, &wait, 7915 TASK_INTERRUPTIBLE); 7916 if (!*timeo_p) 7917 goto do_nonblock; 7918 if (sk->sk_shutdown & RCV_SHUTDOWN) 7919 break; 7920 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7921 asoc->base.dead) 7922 goto do_error; 7923 if (signal_pending(current)) 7924 goto do_interrupted; 7925 7926 if (sctp_state(asoc, ESTABLISHED)) 7927 break; 7928 7929 /* Let another process have a go. Since we are going 7930 * to sleep anyway. 7931 */ 7932 release_sock(sk); 7933 current_timeo = schedule_timeout(current_timeo); 7934 lock_sock(sk); 7935 7936 *timeo_p = current_timeo; 7937 } 7938 7939 out: 7940 finish_wait(&asoc->wait, &wait); 7941 7942 /* Release the association's refcnt. */ 7943 sctp_association_put(asoc); 7944 7945 return err; 7946 7947 do_error: 7948 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7949 err = -ETIMEDOUT; 7950 else 7951 err = -ECONNREFUSED; 7952 goto out; 7953 7954 do_interrupted: 7955 err = sock_intr_errno(*timeo_p); 7956 goto out; 7957 7958 do_nonblock: 7959 err = -EINPROGRESS; 7960 goto out; 7961 } 7962 7963 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7964 { 7965 struct sctp_endpoint *ep; 7966 int err = 0; 7967 DEFINE_WAIT(wait); 7968 7969 ep = sctp_sk(sk)->ep; 7970 7971 7972 for (;;) { 7973 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7974 TASK_INTERRUPTIBLE); 7975 7976 if (list_empty(&ep->asocs)) { 7977 release_sock(sk); 7978 timeo = schedule_timeout(timeo); 7979 lock_sock(sk); 7980 } 7981 7982 err = -EINVAL; 7983 if (!sctp_sstate(sk, LISTENING)) 7984 break; 7985 7986 err = 0; 7987 if (!list_empty(&ep->asocs)) 7988 break; 7989 7990 err = sock_intr_errno(timeo); 7991 if (signal_pending(current)) 7992 break; 7993 7994 err = -EAGAIN; 7995 if (!timeo) 7996 break; 7997 } 7998 7999 finish_wait(sk_sleep(sk), &wait); 8000 8001 return err; 8002 } 8003 8004 static void sctp_wait_for_close(struct sock *sk, long timeout) 8005 { 8006 DEFINE_WAIT(wait); 8007 8008 do { 8009 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8010 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8011 break; 8012 release_sock(sk); 8013 timeout = schedule_timeout(timeout); 8014 lock_sock(sk); 8015 } while (!signal_pending(current) && timeout); 8016 8017 finish_wait(sk_sleep(sk), &wait); 8018 } 8019 8020 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8021 { 8022 struct sk_buff *frag; 8023 8024 if (!skb->data_len) 8025 goto done; 8026 8027 /* Don't forget the fragments. */ 8028 skb_walk_frags(skb, frag) 8029 sctp_skb_set_owner_r_frag(frag, sk); 8030 8031 done: 8032 sctp_skb_set_owner_r(skb, sk); 8033 } 8034 8035 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8036 struct sctp_association *asoc) 8037 { 8038 struct inet_sock *inet = inet_sk(sk); 8039 struct inet_sock *newinet; 8040 8041 newsk->sk_type = sk->sk_type; 8042 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8043 newsk->sk_flags = sk->sk_flags; 8044 newsk->sk_tsflags = sk->sk_tsflags; 8045 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8046 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8047 newsk->sk_reuse = sk->sk_reuse; 8048 8049 newsk->sk_shutdown = sk->sk_shutdown; 8050 newsk->sk_destruct = sctp_destruct_sock; 8051 newsk->sk_family = sk->sk_family; 8052 newsk->sk_protocol = IPPROTO_SCTP; 8053 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8054 newsk->sk_sndbuf = sk->sk_sndbuf; 8055 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8056 newsk->sk_lingertime = sk->sk_lingertime; 8057 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8058 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8059 newsk->sk_rxhash = sk->sk_rxhash; 8060 8061 newinet = inet_sk(newsk); 8062 8063 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8064 * getsockname() and getpeername() 8065 */ 8066 newinet->inet_sport = inet->inet_sport; 8067 newinet->inet_saddr = inet->inet_saddr; 8068 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8069 newinet->inet_dport = htons(asoc->peer.port); 8070 newinet->pmtudisc = inet->pmtudisc; 8071 newinet->inet_id = asoc->next_tsn ^ jiffies; 8072 8073 newinet->uc_ttl = inet->uc_ttl; 8074 newinet->mc_loop = 1; 8075 newinet->mc_ttl = 1; 8076 newinet->mc_index = 0; 8077 newinet->mc_list = NULL; 8078 8079 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8080 net_enable_timestamp(); 8081 8082 security_sk_clone(sk, newsk); 8083 } 8084 8085 static inline void sctp_copy_descendant(struct sock *sk_to, 8086 const struct sock *sk_from) 8087 { 8088 int ancestor_size = sizeof(struct inet_sock) + 8089 sizeof(struct sctp_sock) - 8090 offsetof(struct sctp_sock, auto_asconf_list); 8091 8092 if (sk_from->sk_family == PF_INET6) 8093 ancestor_size += sizeof(struct ipv6_pinfo); 8094 8095 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8096 } 8097 8098 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8099 * and its messages to the newsk. 8100 */ 8101 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8102 struct sctp_association *assoc, 8103 enum sctp_socket_type type) 8104 { 8105 struct sctp_sock *oldsp = sctp_sk(oldsk); 8106 struct sctp_sock *newsp = sctp_sk(newsk); 8107 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8108 struct sctp_endpoint *newep = newsp->ep; 8109 struct sk_buff *skb, *tmp; 8110 struct sctp_ulpevent *event; 8111 struct sctp_bind_hashbucket *head; 8112 8113 /* Migrate socket buffer sizes and all the socket level options to the 8114 * new socket. 8115 */ 8116 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8117 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8118 /* Brute force copy old sctp opt. */ 8119 sctp_copy_descendant(newsk, oldsk); 8120 8121 /* Restore the ep value that was overwritten with the above structure 8122 * copy. 8123 */ 8124 newsp->ep = newep; 8125 newsp->hmac = NULL; 8126 8127 /* Hook this new socket in to the bind_hash list. */ 8128 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8129 inet_sk(oldsk)->inet_num)]; 8130 spin_lock_bh(&head->lock); 8131 pp = sctp_sk(oldsk)->bind_hash; 8132 sk_add_bind_node(newsk, &pp->owner); 8133 sctp_sk(newsk)->bind_hash = pp; 8134 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8135 spin_unlock_bh(&head->lock); 8136 8137 /* Copy the bind_addr list from the original endpoint to the new 8138 * endpoint so that we can handle restarts properly 8139 */ 8140 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8141 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8142 8143 /* Move any messages in the old socket's receive queue that are for the 8144 * peeled off association to the new socket's receive queue. 8145 */ 8146 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8147 event = sctp_skb2event(skb); 8148 if (event->asoc == assoc) { 8149 __skb_unlink(skb, &oldsk->sk_receive_queue); 8150 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8151 sctp_skb_set_owner_r_frag(skb, newsk); 8152 } 8153 } 8154 8155 /* Clean up any messages pending delivery due to partial 8156 * delivery. Three cases: 8157 * 1) No partial deliver; no work. 8158 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8159 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8160 */ 8161 skb_queue_head_init(&newsp->pd_lobby); 8162 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8163 8164 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8165 struct sk_buff_head *queue; 8166 8167 /* Decide which queue to move pd_lobby skbs to. */ 8168 if (assoc->ulpq.pd_mode) { 8169 queue = &newsp->pd_lobby; 8170 } else 8171 queue = &newsk->sk_receive_queue; 8172 8173 /* Walk through the pd_lobby, looking for skbs that 8174 * need moved to the new socket. 8175 */ 8176 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8177 event = sctp_skb2event(skb); 8178 if (event->asoc == assoc) { 8179 __skb_unlink(skb, &oldsp->pd_lobby); 8180 __skb_queue_tail(queue, skb); 8181 sctp_skb_set_owner_r_frag(skb, newsk); 8182 } 8183 } 8184 8185 /* Clear up any skbs waiting for the partial 8186 * delivery to finish. 8187 */ 8188 if (assoc->ulpq.pd_mode) 8189 sctp_clear_pd(oldsk, NULL); 8190 8191 } 8192 8193 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 8194 sctp_skb_set_owner_r_frag(skb, newsk); 8195 8196 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 8197 sctp_skb_set_owner_r_frag(skb, newsk); 8198 8199 /* Set the type of socket to indicate that it is peeled off from the 8200 * original UDP-style socket or created with the accept() call on a 8201 * TCP-style socket.. 8202 */ 8203 newsp->type = type; 8204 8205 /* Mark the new socket "in-use" by the user so that any packets 8206 * that may arrive on the association after we've moved it are 8207 * queued to the backlog. This prevents a potential race between 8208 * backlog processing on the old socket and new-packet processing 8209 * on the new socket. 8210 * 8211 * The caller has just allocated newsk so we can guarantee that other 8212 * paths won't try to lock it and then oldsk. 8213 */ 8214 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8215 sctp_assoc_migrate(assoc, newsk); 8216 8217 /* If the association on the newsk is already closed before accept() 8218 * is called, set RCV_SHUTDOWN flag. 8219 */ 8220 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8221 newsk->sk_state = SCTP_SS_CLOSED; 8222 newsk->sk_shutdown |= RCV_SHUTDOWN; 8223 } else { 8224 newsk->sk_state = SCTP_SS_ESTABLISHED; 8225 } 8226 8227 release_sock(newsk); 8228 } 8229 8230 8231 /* This proto struct describes the ULP interface for SCTP. */ 8232 struct proto sctp_prot = { 8233 .name = "SCTP", 8234 .owner = THIS_MODULE, 8235 .close = sctp_close, 8236 .connect = sctp_connect, 8237 .disconnect = sctp_disconnect, 8238 .accept = sctp_accept, 8239 .ioctl = sctp_ioctl, 8240 .init = sctp_init_sock, 8241 .destroy = sctp_destroy_sock, 8242 .shutdown = sctp_shutdown, 8243 .setsockopt = sctp_setsockopt, 8244 .getsockopt = sctp_getsockopt, 8245 .sendmsg = sctp_sendmsg, 8246 .recvmsg = sctp_recvmsg, 8247 .bind = sctp_bind, 8248 .backlog_rcv = sctp_backlog_rcv, 8249 .hash = sctp_hash, 8250 .unhash = sctp_unhash, 8251 .get_port = sctp_get_port, 8252 .obj_size = sizeof(struct sctp_sock), 8253 .sysctl_mem = sysctl_sctp_mem, 8254 .sysctl_rmem = sysctl_sctp_rmem, 8255 .sysctl_wmem = sysctl_sctp_wmem, 8256 .memory_pressure = &sctp_memory_pressure, 8257 .enter_memory_pressure = sctp_enter_memory_pressure, 8258 .memory_allocated = &sctp_memory_allocated, 8259 .sockets_allocated = &sctp_sockets_allocated, 8260 }; 8261 8262 #if IS_ENABLED(CONFIG_IPV6) 8263 8264 #include <net/transp_v6.h> 8265 static void sctp_v6_destroy_sock(struct sock *sk) 8266 { 8267 sctp_destroy_sock(sk); 8268 inet6_destroy_sock(sk); 8269 } 8270 8271 struct proto sctpv6_prot = { 8272 .name = "SCTPv6", 8273 .owner = THIS_MODULE, 8274 .close = sctp_close, 8275 .connect = sctp_connect, 8276 .disconnect = sctp_disconnect, 8277 .accept = sctp_accept, 8278 .ioctl = sctp_ioctl, 8279 .init = sctp_init_sock, 8280 .destroy = sctp_v6_destroy_sock, 8281 .shutdown = sctp_shutdown, 8282 .setsockopt = sctp_setsockopt, 8283 .getsockopt = sctp_getsockopt, 8284 .sendmsg = sctp_sendmsg, 8285 .recvmsg = sctp_recvmsg, 8286 .bind = sctp_bind, 8287 .backlog_rcv = sctp_backlog_rcv, 8288 .hash = sctp_hash, 8289 .unhash = sctp_unhash, 8290 .get_port = sctp_get_port, 8291 .obj_size = sizeof(struct sctp6_sock), 8292 .sysctl_mem = sysctl_sctp_mem, 8293 .sysctl_rmem = sysctl_sctp_rmem, 8294 .sysctl_wmem = sysctl_sctp_wmem, 8295 .memory_pressure = &sctp_memory_pressure, 8296 .enter_memory_pressure = sctp_enter_memory_pressure, 8297 .memory_allocated = &sctp_memory_allocated, 8298 .sockets_allocated = &sctp_sockets_allocated, 8299 }; 8300 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8301