1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = memdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = memdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 iov_iter_revert(&msg->msg_iter, msg_len); 1870 1871 return 0; 1872 } 1873 1874 return 1; 1875 } 1876 1877 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1878 struct msghdr *msg, size_t msg_len, 1879 struct sctp_transport *transport, 1880 struct sctp_sndrcvinfo *sinfo) 1881 { 1882 struct sock *sk = asoc->base.sk; 1883 struct sctp_sock *sp = sctp_sk(sk); 1884 struct net *net = sock_net(sk); 1885 struct sctp_datamsg *datamsg; 1886 bool wait_connect = false; 1887 struct sctp_chunk *chunk; 1888 long timeo; 1889 int err; 1890 1891 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1892 err = -EINVAL; 1893 goto err; 1894 } 1895 1896 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1897 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1898 if (err) 1899 goto err; 1900 } 1901 1902 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1903 err = -EMSGSIZE; 1904 goto err; 1905 } 1906 1907 if (asoc->pmtu_pending) { 1908 if (sp->param_flags & SPP_PMTUD_ENABLE) 1909 sctp_assoc_sync_pmtu(asoc); 1910 asoc->pmtu_pending = 0; 1911 } 1912 1913 if (sctp_wspace(asoc) < (int)msg_len) 1914 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1915 1916 if (sctp_wspace(asoc) <= 0) { 1917 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1918 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1919 if (err) 1920 goto err; 1921 } 1922 1923 if (sctp_state(asoc, CLOSED)) { 1924 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1925 if (err) 1926 goto err; 1927 1928 if (sp->strm_interleave) { 1929 timeo = sock_sndtimeo(sk, 0); 1930 err = sctp_wait_for_connect(asoc, &timeo); 1931 if (err) { 1932 err = -ESRCH; 1933 goto err; 1934 } 1935 } else { 1936 wait_connect = true; 1937 } 1938 1939 pr_debug("%s: we associated primitively\n", __func__); 1940 } 1941 1942 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1943 if (IS_ERR(datamsg)) { 1944 err = PTR_ERR(datamsg); 1945 goto err; 1946 } 1947 1948 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1949 1950 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1951 sctp_chunk_hold(chunk); 1952 sctp_set_owner_w(chunk); 1953 chunk->transport = transport; 1954 } 1955 1956 err = sctp_primitive_SEND(net, asoc, datamsg); 1957 if (err) { 1958 sctp_datamsg_free(datamsg); 1959 goto err; 1960 } 1961 1962 pr_debug("%s: we sent primitively\n", __func__); 1963 1964 sctp_datamsg_put(datamsg); 1965 1966 if (unlikely(wait_connect)) { 1967 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1968 sctp_wait_for_connect(asoc, &timeo); 1969 } 1970 1971 err = msg_len; 1972 1973 err: 1974 return err; 1975 } 1976 1977 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1978 const struct msghdr *msg, 1979 struct sctp_cmsgs *cmsgs) 1980 { 1981 union sctp_addr *daddr = NULL; 1982 int err; 1983 1984 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1985 int len = msg->msg_namelen; 1986 1987 if (len > sizeof(*daddr)) 1988 len = sizeof(*daddr); 1989 1990 daddr = (union sctp_addr *)msg->msg_name; 1991 1992 err = sctp_verify_addr(sk, daddr, len); 1993 if (err) 1994 return ERR_PTR(err); 1995 } 1996 1997 return daddr; 1998 } 1999 2000 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2001 struct sctp_sndrcvinfo *sinfo, 2002 struct sctp_cmsgs *cmsgs) 2003 { 2004 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2005 sinfo->sinfo_stream = asoc->default_stream; 2006 sinfo->sinfo_ppid = asoc->default_ppid; 2007 sinfo->sinfo_context = asoc->default_context; 2008 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2009 2010 if (!cmsgs->prinfo) 2011 sinfo->sinfo_flags = asoc->default_flags; 2012 } 2013 2014 if (!cmsgs->srinfo && !cmsgs->prinfo) 2015 sinfo->sinfo_timetolive = asoc->default_timetolive; 2016 2017 if (cmsgs->authinfo) { 2018 /* Reuse sinfo_tsn to indicate that authinfo was set and 2019 * sinfo_ssn to save the keyid on tx path. 2020 */ 2021 sinfo->sinfo_tsn = 1; 2022 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2023 } 2024 } 2025 2026 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2027 { 2028 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2029 struct sctp_transport *transport = NULL; 2030 struct sctp_sndrcvinfo _sinfo, *sinfo; 2031 struct sctp_association *asoc, *tmp; 2032 struct sctp_cmsgs cmsgs; 2033 union sctp_addr *daddr; 2034 bool new = false; 2035 __u16 sflags; 2036 int err; 2037 2038 /* Parse and get snd_info */ 2039 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2040 if (err) 2041 goto out; 2042 2043 sinfo = &_sinfo; 2044 sflags = sinfo->sinfo_flags; 2045 2046 /* Get daddr from msg */ 2047 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2048 if (IS_ERR(daddr)) { 2049 err = PTR_ERR(daddr); 2050 goto out; 2051 } 2052 2053 lock_sock(sk); 2054 2055 /* SCTP_SENDALL process */ 2056 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2057 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2058 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2059 msg_len); 2060 if (err == 0) 2061 continue; 2062 if (err < 0) 2063 goto out_unlock; 2064 2065 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2066 2067 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2068 NULL, sinfo); 2069 if (err < 0) 2070 goto out_unlock; 2071 2072 iov_iter_revert(&msg->msg_iter, err); 2073 } 2074 2075 goto out_unlock; 2076 } 2077 2078 /* Get and check or create asoc */ 2079 if (daddr) { 2080 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2081 if (asoc) { 2082 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2083 msg_len); 2084 if (err <= 0) 2085 goto out_unlock; 2086 } else { 2087 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2088 &transport); 2089 if (err) 2090 goto out_unlock; 2091 2092 asoc = transport->asoc; 2093 new = true; 2094 } 2095 2096 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2097 transport = NULL; 2098 } else { 2099 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2100 if (!asoc) { 2101 err = -EPIPE; 2102 goto out_unlock; 2103 } 2104 2105 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2106 if (err <= 0) 2107 goto out_unlock; 2108 } 2109 2110 /* Update snd_info with the asoc */ 2111 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2112 2113 /* Send msg to the asoc */ 2114 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2115 if (err < 0 && err != -ESRCH && new) 2116 sctp_association_free(asoc); 2117 2118 out_unlock: 2119 release_sock(sk); 2120 out: 2121 return sctp_error(sk, msg->msg_flags, err); 2122 } 2123 2124 /* This is an extended version of skb_pull() that removes the data from the 2125 * start of a skb even when data is spread across the list of skb's in the 2126 * frag_list. len specifies the total amount of data that needs to be removed. 2127 * when 'len' bytes could be removed from the skb, it returns 0. 2128 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2129 * could not be removed. 2130 */ 2131 static int sctp_skb_pull(struct sk_buff *skb, int len) 2132 { 2133 struct sk_buff *list; 2134 int skb_len = skb_headlen(skb); 2135 int rlen; 2136 2137 if (len <= skb_len) { 2138 __skb_pull(skb, len); 2139 return 0; 2140 } 2141 len -= skb_len; 2142 __skb_pull(skb, skb_len); 2143 2144 skb_walk_frags(skb, list) { 2145 rlen = sctp_skb_pull(list, len); 2146 skb->len -= (len-rlen); 2147 skb->data_len -= (len-rlen); 2148 2149 if (!rlen) 2150 return 0; 2151 2152 len = rlen; 2153 } 2154 2155 return len; 2156 } 2157 2158 /* API 3.1.3 recvmsg() - UDP Style Syntax 2159 * 2160 * ssize_t recvmsg(int socket, struct msghdr *message, 2161 * int flags); 2162 * 2163 * socket - the socket descriptor of the endpoint. 2164 * message - pointer to the msghdr structure which contains a single 2165 * user message and possibly some ancillary data. 2166 * 2167 * See Section 5 for complete description of the data 2168 * structures. 2169 * 2170 * flags - flags sent or received with the user message, see Section 2171 * 5 for complete description of the flags. 2172 */ 2173 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2174 int noblock, int flags, int *addr_len) 2175 { 2176 struct sctp_ulpevent *event = NULL; 2177 struct sctp_sock *sp = sctp_sk(sk); 2178 struct sk_buff *skb, *head_skb; 2179 int copied; 2180 int err = 0; 2181 int skb_len; 2182 2183 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2184 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2185 addr_len); 2186 2187 lock_sock(sk); 2188 2189 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2190 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2191 err = -ENOTCONN; 2192 goto out; 2193 } 2194 2195 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2196 if (!skb) 2197 goto out; 2198 2199 /* Get the total length of the skb including any skb's in the 2200 * frag_list. 2201 */ 2202 skb_len = skb->len; 2203 2204 copied = skb_len; 2205 if (copied > len) 2206 copied = len; 2207 2208 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2209 2210 event = sctp_skb2event(skb); 2211 2212 if (err) 2213 goto out_free; 2214 2215 if (event->chunk && event->chunk->head_skb) 2216 head_skb = event->chunk->head_skb; 2217 else 2218 head_skb = skb; 2219 sock_recv_ts_and_drops(msg, sk, head_skb); 2220 if (sctp_ulpevent_is_notification(event)) { 2221 msg->msg_flags |= MSG_NOTIFICATION; 2222 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2223 } else { 2224 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2225 } 2226 2227 /* Check if we allow SCTP_NXTINFO. */ 2228 if (sp->recvnxtinfo) 2229 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2230 /* Check if we allow SCTP_RCVINFO. */ 2231 if (sp->recvrcvinfo) 2232 sctp_ulpevent_read_rcvinfo(event, msg); 2233 /* Check if we allow SCTP_SNDRCVINFO. */ 2234 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2235 sctp_ulpevent_read_sndrcvinfo(event, msg); 2236 2237 err = copied; 2238 2239 /* If skb's length exceeds the user's buffer, update the skb and 2240 * push it back to the receive_queue so that the next call to 2241 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2242 */ 2243 if (skb_len > copied) { 2244 msg->msg_flags &= ~MSG_EOR; 2245 if (flags & MSG_PEEK) 2246 goto out_free; 2247 sctp_skb_pull(skb, copied); 2248 skb_queue_head(&sk->sk_receive_queue, skb); 2249 2250 /* When only partial message is copied to the user, increase 2251 * rwnd by that amount. If all the data in the skb is read, 2252 * rwnd is updated when the event is freed. 2253 */ 2254 if (!sctp_ulpevent_is_notification(event)) 2255 sctp_assoc_rwnd_increase(event->asoc, copied); 2256 goto out; 2257 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2258 (event->msg_flags & MSG_EOR)) 2259 msg->msg_flags |= MSG_EOR; 2260 else 2261 msg->msg_flags &= ~MSG_EOR; 2262 2263 out_free: 2264 if (flags & MSG_PEEK) { 2265 /* Release the skb reference acquired after peeking the skb in 2266 * sctp_skb_recv_datagram(). 2267 */ 2268 kfree_skb(skb); 2269 } else { 2270 /* Free the event which includes releasing the reference to 2271 * the owner of the skb, freeing the skb and updating the 2272 * rwnd. 2273 */ 2274 sctp_ulpevent_free(event); 2275 } 2276 out: 2277 release_sock(sk); 2278 return err; 2279 } 2280 2281 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2282 * 2283 * This option is a on/off flag. If enabled no SCTP message 2284 * fragmentation will be performed. Instead if a message being sent 2285 * exceeds the current PMTU size, the message will NOT be sent and 2286 * instead a error will be indicated to the user. 2287 */ 2288 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2289 char __user *optval, 2290 unsigned int optlen) 2291 { 2292 int val; 2293 2294 if (optlen < sizeof(int)) 2295 return -EINVAL; 2296 2297 if (get_user(val, (int __user *)optval)) 2298 return -EFAULT; 2299 2300 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2301 2302 return 0; 2303 } 2304 2305 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2306 unsigned int optlen) 2307 { 2308 struct sctp_event_subscribe subscribe; 2309 __u8 *sn_type = (__u8 *)&subscribe; 2310 struct sctp_sock *sp = sctp_sk(sk); 2311 struct sctp_association *asoc; 2312 int i; 2313 2314 if (optlen > sizeof(struct sctp_event_subscribe)) 2315 return -EINVAL; 2316 2317 if (copy_from_user(&subscribe, optval, optlen)) 2318 return -EFAULT; 2319 2320 for (i = 0; i < optlen; i++) 2321 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2322 sn_type[i]); 2323 2324 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2325 asoc->subscribe = sctp_sk(sk)->subscribe; 2326 2327 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2328 * if there is no data to be sent or retransmit, the stack will 2329 * immediately send up this notification. 2330 */ 2331 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2332 struct sctp_ulpevent *event; 2333 2334 asoc = sctp_id2assoc(sk, 0); 2335 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2336 event = sctp_ulpevent_make_sender_dry_event(asoc, 2337 GFP_USER | __GFP_NOWARN); 2338 if (!event) 2339 return -ENOMEM; 2340 2341 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2342 } 2343 } 2344 2345 return 0; 2346 } 2347 2348 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2349 * 2350 * This socket option is applicable to the UDP-style socket only. When 2351 * set it will cause associations that are idle for more than the 2352 * specified number of seconds to automatically close. An association 2353 * being idle is defined an association that has NOT sent or received 2354 * user data. The special value of '0' indicates that no automatic 2355 * close of any associations should be performed. The option expects an 2356 * integer defining the number of seconds of idle time before an 2357 * association is closed. 2358 */ 2359 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2360 unsigned int optlen) 2361 { 2362 struct sctp_sock *sp = sctp_sk(sk); 2363 struct net *net = sock_net(sk); 2364 2365 /* Applicable to UDP-style socket only */ 2366 if (sctp_style(sk, TCP)) 2367 return -EOPNOTSUPP; 2368 if (optlen != sizeof(int)) 2369 return -EINVAL; 2370 if (copy_from_user(&sp->autoclose, optval, optlen)) 2371 return -EFAULT; 2372 2373 if (sp->autoclose > net->sctp.max_autoclose) 2374 sp->autoclose = net->sctp.max_autoclose; 2375 2376 return 0; 2377 } 2378 2379 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2380 * 2381 * Applications can enable or disable heartbeats for any peer address of 2382 * an association, modify an address's heartbeat interval, force a 2383 * heartbeat to be sent immediately, and adjust the address's maximum 2384 * number of retransmissions sent before an address is considered 2385 * unreachable. The following structure is used to access and modify an 2386 * address's parameters: 2387 * 2388 * struct sctp_paddrparams { 2389 * sctp_assoc_t spp_assoc_id; 2390 * struct sockaddr_storage spp_address; 2391 * uint32_t spp_hbinterval; 2392 * uint16_t spp_pathmaxrxt; 2393 * uint32_t spp_pathmtu; 2394 * uint32_t spp_sackdelay; 2395 * uint32_t spp_flags; 2396 * uint32_t spp_ipv6_flowlabel; 2397 * uint8_t spp_dscp; 2398 * }; 2399 * 2400 * spp_assoc_id - (one-to-many style socket) This is filled in the 2401 * application, and identifies the association for 2402 * this query. 2403 * spp_address - This specifies which address is of interest. 2404 * spp_hbinterval - This contains the value of the heartbeat interval, 2405 * in milliseconds. If a value of zero 2406 * is present in this field then no changes are to 2407 * be made to this parameter. 2408 * spp_pathmaxrxt - This contains the maximum number of 2409 * retransmissions before this address shall be 2410 * considered unreachable. If a value of zero 2411 * is present in this field then no changes are to 2412 * be made to this parameter. 2413 * spp_pathmtu - When Path MTU discovery is disabled the value 2414 * specified here will be the "fixed" path mtu. 2415 * Note that if the spp_address field is empty 2416 * then all associations on this address will 2417 * have this fixed path mtu set upon them. 2418 * 2419 * spp_sackdelay - When delayed sack is enabled, this value specifies 2420 * the number of milliseconds that sacks will be delayed 2421 * for. This value will apply to all addresses of an 2422 * association if the spp_address field is empty. Note 2423 * also, that if delayed sack is enabled and this 2424 * value is set to 0, no change is made to the last 2425 * recorded delayed sack timer value. 2426 * 2427 * spp_flags - These flags are used to control various features 2428 * on an association. The flag field may contain 2429 * zero or more of the following options. 2430 * 2431 * SPP_HB_ENABLE - Enable heartbeats on the 2432 * specified address. Note that if the address 2433 * field is empty all addresses for the association 2434 * have heartbeats enabled upon them. 2435 * 2436 * SPP_HB_DISABLE - Disable heartbeats on the 2437 * speicifed address. Note that if the address 2438 * field is empty all addresses for the association 2439 * will have their heartbeats disabled. Note also 2440 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2441 * mutually exclusive, only one of these two should 2442 * be specified. Enabling both fields will have 2443 * undetermined results. 2444 * 2445 * SPP_HB_DEMAND - Request a user initiated heartbeat 2446 * to be made immediately. 2447 * 2448 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2449 * heartbeat delayis to be set to the value of 0 2450 * milliseconds. 2451 * 2452 * SPP_PMTUD_ENABLE - This field will enable PMTU 2453 * discovery upon the specified address. Note that 2454 * if the address feild is empty then all addresses 2455 * on the association are effected. 2456 * 2457 * SPP_PMTUD_DISABLE - This field will disable PMTU 2458 * discovery upon the specified address. Note that 2459 * if the address feild is empty then all addresses 2460 * on the association are effected. Not also that 2461 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2462 * exclusive. Enabling both will have undetermined 2463 * results. 2464 * 2465 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2466 * on delayed sack. The time specified in spp_sackdelay 2467 * is used to specify the sack delay for this address. Note 2468 * that if spp_address is empty then all addresses will 2469 * enable delayed sack and take on the sack delay 2470 * value specified in spp_sackdelay. 2471 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2472 * off delayed sack. If the spp_address field is blank then 2473 * delayed sack is disabled for the entire association. Note 2474 * also that this field is mutually exclusive to 2475 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2476 * results. 2477 * 2478 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2479 * setting of the IPV6 flow label value. The value is 2480 * contained in the spp_ipv6_flowlabel field. 2481 * Upon retrieval, this flag will be set to indicate that 2482 * the spp_ipv6_flowlabel field has a valid value returned. 2483 * If a specific destination address is set (in the 2484 * spp_address field), then the value returned is that of 2485 * the address. If just an association is specified (and 2486 * no address), then the association's default flow label 2487 * is returned. If neither an association nor a destination 2488 * is specified, then the socket's default flow label is 2489 * returned. For non-IPv6 sockets, this flag will be left 2490 * cleared. 2491 * 2492 * SPP_DSCP: Setting this flag enables the setting of the 2493 * Differentiated Services Code Point (DSCP) value 2494 * associated with either the association or a specific 2495 * address. The value is obtained in the spp_dscp field. 2496 * Upon retrieval, this flag will be set to indicate that 2497 * the spp_dscp field has a valid value returned. If a 2498 * specific destination address is set when called (in the 2499 * spp_address field), then that specific destination 2500 * address's DSCP value is returned. If just an association 2501 * is specified, then the association's default DSCP is 2502 * returned. If neither an association nor a destination is 2503 * specified, then the socket's default DSCP is returned. 2504 * 2505 * spp_ipv6_flowlabel 2506 * - This field is used in conjunction with the 2507 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2508 * The 20 least significant bits are used for the flow 2509 * label. This setting has precedence over any IPv6-layer 2510 * setting. 2511 * 2512 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2513 * and contains the DSCP. The 6 most significant bits are 2514 * used for the DSCP. This setting has precedence over any 2515 * IPv4- or IPv6- layer setting. 2516 */ 2517 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2518 struct sctp_transport *trans, 2519 struct sctp_association *asoc, 2520 struct sctp_sock *sp, 2521 int hb_change, 2522 int pmtud_change, 2523 int sackdelay_change) 2524 { 2525 int error; 2526 2527 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2528 struct net *net = sock_net(trans->asoc->base.sk); 2529 2530 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2531 if (error) 2532 return error; 2533 } 2534 2535 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2536 * this field is ignored. Note also that a value of zero indicates 2537 * the current setting should be left unchanged. 2538 */ 2539 if (params->spp_flags & SPP_HB_ENABLE) { 2540 2541 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2542 * set. This lets us use 0 value when this flag 2543 * is set. 2544 */ 2545 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2546 params->spp_hbinterval = 0; 2547 2548 if (params->spp_hbinterval || 2549 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2550 if (trans) { 2551 trans->hbinterval = 2552 msecs_to_jiffies(params->spp_hbinterval); 2553 } else if (asoc) { 2554 asoc->hbinterval = 2555 msecs_to_jiffies(params->spp_hbinterval); 2556 } else { 2557 sp->hbinterval = params->spp_hbinterval; 2558 } 2559 } 2560 } 2561 2562 if (hb_change) { 2563 if (trans) { 2564 trans->param_flags = 2565 (trans->param_flags & ~SPP_HB) | hb_change; 2566 } else if (asoc) { 2567 asoc->param_flags = 2568 (asoc->param_flags & ~SPP_HB) | hb_change; 2569 } else { 2570 sp->param_flags = 2571 (sp->param_flags & ~SPP_HB) | hb_change; 2572 } 2573 } 2574 2575 /* When Path MTU discovery is disabled the value specified here will 2576 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2577 * include the flag SPP_PMTUD_DISABLE for this field to have any 2578 * effect). 2579 */ 2580 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2581 if (trans) { 2582 trans->pathmtu = params->spp_pathmtu; 2583 sctp_assoc_sync_pmtu(asoc); 2584 } else if (asoc) { 2585 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2586 } else { 2587 sp->pathmtu = params->spp_pathmtu; 2588 } 2589 } 2590 2591 if (pmtud_change) { 2592 if (trans) { 2593 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2594 (params->spp_flags & SPP_PMTUD_ENABLE); 2595 trans->param_flags = 2596 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2597 if (update) { 2598 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2599 sctp_assoc_sync_pmtu(asoc); 2600 } 2601 } else if (asoc) { 2602 asoc->param_flags = 2603 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2604 } else { 2605 sp->param_flags = 2606 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2607 } 2608 } 2609 2610 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2611 * value of this field is ignored. Note also that a value of zero 2612 * indicates the current setting should be left unchanged. 2613 */ 2614 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2615 if (trans) { 2616 trans->sackdelay = 2617 msecs_to_jiffies(params->spp_sackdelay); 2618 } else if (asoc) { 2619 asoc->sackdelay = 2620 msecs_to_jiffies(params->spp_sackdelay); 2621 } else { 2622 sp->sackdelay = params->spp_sackdelay; 2623 } 2624 } 2625 2626 if (sackdelay_change) { 2627 if (trans) { 2628 trans->param_flags = 2629 (trans->param_flags & ~SPP_SACKDELAY) | 2630 sackdelay_change; 2631 } else if (asoc) { 2632 asoc->param_flags = 2633 (asoc->param_flags & ~SPP_SACKDELAY) | 2634 sackdelay_change; 2635 } else { 2636 sp->param_flags = 2637 (sp->param_flags & ~SPP_SACKDELAY) | 2638 sackdelay_change; 2639 } 2640 } 2641 2642 /* Note that a value of zero indicates the current setting should be 2643 left unchanged. 2644 */ 2645 if (params->spp_pathmaxrxt) { 2646 if (trans) { 2647 trans->pathmaxrxt = params->spp_pathmaxrxt; 2648 } else if (asoc) { 2649 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2650 } else { 2651 sp->pathmaxrxt = params->spp_pathmaxrxt; 2652 } 2653 } 2654 2655 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2656 if (trans) { 2657 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2658 trans->flowlabel = params->spp_ipv6_flowlabel & 2659 SCTP_FLOWLABEL_VAL_MASK; 2660 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2661 } 2662 } else if (asoc) { 2663 struct sctp_transport *t; 2664 2665 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2666 transports) { 2667 if (t->ipaddr.sa.sa_family != AF_INET6) 2668 continue; 2669 t->flowlabel = params->spp_ipv6_flowlabel & 2670 SCTP_FLOWLABEL_VAL_MASK; 2671 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2672 } 2673 asoc->flowlabel = params->spp_ipv6_flowlabel & 2674 SCTP_FLOWLABEL_VAL_MASK; 2675 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2676 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2677 sp->flowlabel = params->spp_ipv6_flowlabel & 2678 SCTP_FLOWLABEL_VAL_MASK; 2679 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2680 } 2681 } 2682 2683 if (params->spp_flags & SPP_DSCP) { 2684 if (trans) { 2685 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2686 trans->dscp |= SCTP_DSCP_SET_MASK; 2687 } else if (asoc) { 2688 struct sctp_transport *t; 2689 2690 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2691 transports) { 2692 t->dscp = params->spp_dscp & 2693 SCTP_DSCP_VAL_MASK; 2694 t->dscp |= SCTP_DSCP_SET_MASK; 2695 } 2696 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2697 asoc->dscp |= SCTP_DSCP_SET_MASK; 2698 } else { 2699 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2700 sp->dscp |= SCTP_DSCP_SET_MASK; 2701 } 2702 } 2703 2704 return 0; 2705 } 2706 2707 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2708 char __user *optval, 2709 unsigned int optlen) 2710 { 2711 struct sctp_paddrparams params; 2712 struct sctp_transport *trans = NULL; 2713 struct sctp_association *asoc = NULL; 2714 struct sctp_sock *sp = sctp_sk(sk); 2715 int error; 2716 int hb_change, pmtud_change, sackdelay_change; 2717 2718 if (optlen == sizeof(params)) { 2719 if (copy_from_user(¶ms, optval, optlen)) 2720 return -EFAULT; 2721 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2722 spp_ipv6_flowlabel), 4)) { 2723 if (copy_from_user(¶ms, optval, optlen)) 2724 return -EFAULT; 2725 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2726 return -EINVAL; 2727 } else { 2728 return -EINVAL; 2729 } 2730 2731 /* Validate flags and value parameters. */ 2732 hb_change = params.spp_flags & SPP_HB; 2733 pmtud_change = params.spp_flags & SPP_PMTUD; 2734 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2735 2736 if (hb_change == SPP_HB || 2737 pmtud_change == SPP_PMTUD || 2738 sackdelay_change == SPP_SACKDELAY || 2739 params.spp_sackdelay > 500 || 2740 (params.spp_pathmtu && 2741 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2742 return -EINVAL; 2743 2744 /* If an address other than INADDR_ANY is specified, and 2745 * no transport is found, then the request is invalid. 2746 */ 2747 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2748 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2749 params.spp_assoc_id); 2750 if (!trans) 2751 return -EINVAL; 2752 } 2753 2754 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2755 * socket is a one to many style socket, and an association 2756 * was not found, then the id was invalid. 2757 */ 2758 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2759 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2760 sctp_style(sk, UDP)) 2761 return -EINVAL; 2762 2763 /* Heartbeat demand can only be sent on a transport or 2764 * association, but not a socket. 2765 */ 2766 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2767 return -EINVAL; 2768 2769 /* Process parameters. */ 2770 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2771 hb_change, pmtud_change, 2772 sackdelay_change); 2773 2774 if (error) 2775 return error; 2776 2777 /* If changes are for association, also apply parameters to each 2778 * transport. 2779 */ 2780 if (!trans && asoc) { 2781 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2782 transports) { 2783 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2784 hb_change, pmtud_change, 2785 sackdelay_change); 2786 } 2787 } 2788 2789 return 0; 2790 } 2791 2792 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2793 { 2794 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2795 } 2796 2797 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2798 { 2799 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2800 } 2801 2802 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2803 struct sctp_association *asoc) 2804 { 2805 struct sctp_transport *trans; 2806 2807 if (params->sack_delay) { 2808 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2809 asoc->param_flags = 2810 sctp_spp_sackdelay_enable(asoc->param_flags); 2811 } 2812 if (params->sack_freq == 1) { 2813 asoc->param_flags = 2814 sctp_spp_sackdelay_disable(asoc->param_flags); 2815 } else if (params->sack_freq > 1) { 2816 asoc->sackfreq = params->sack_freq; 2817 asoc->param_flags = 2818 sctp_spp_sackdelay_enable(asoc->param_flags); 2819 } 2820 2821 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2822 transports) { 2823 if (params->sack_delay) { 2824 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2825 trans->param_flags = 2826 sctp_spp_sackdelay_enable(trans->param_flags); 2827 } 2828 if (params->sack_freq == 1) { 2829 trans->param_flags = 2830 sctp_spp_sackdelay_disable(trans->param_flags); 2831 } else if (params->sack_freq > 1) { 2832 trans->sackfreq = params->sack_freq; 2833 trans->param_flags = 2834 sctp_spp_sackdelay_enable(trans->param_flags); 2835 } 2836 } 2837 } 2838 2839 /* 2840 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2841 * 2842 * This option will effect the way delayed acks are performed. This 2843 * option allows you to get or set the delayed ack time, in 2844 * milliseconds. It also allows changing the delayed ack frequency. 2845 * Changing the frequency to 1 disables the delayed sack algorithm. If 2846 * the assoc_id is 0, then this sets or gets the endpoints default 2847 * values. If the assoc_id field is non-zero, then the set or get 2848 * effects the specified association for the one to many model (the 2849 * assoc_id field is ignored by the one to one model). Note that if 2850 * sack_delay or sack_freq are 0 when setting this option, then the 2851 * current values will remain unchanged. 2852 * 2853 * struct sctp_sack_info { 2854 * sctp_assoc_t sack_assoc_id; 2855 * uint32_t sack_delay; 2856 * uint32_t sack_freq; 2857 * }; 2858 * 2859 * sack_assoc_id - This parameter, indicates which association the user 2860 * is performing an action upon. Note that if this field's value is 2861 * zero then the endpoints default value is changed (effecting future 2862 * associations only). 2863 * 2864 * sack_delay - This parameter contains the number of milliseconds that 2865 * the user is requesting the delayed ACK timer be set to. Note that 2866 * this value is defined in the standard to be between 200 and 500 2867 * milliseconds. 2868 * 2869 * sack_freq - This parameter contains the number of packets that must 2870 * be received before a sack is sent without waiting for the delay 2871 * timer to expire. The default value for this is 2, setting this 2872 * value to 1 will disable the delayed sack algorithm. 2873 */ 2874 2875 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2876 char __user *optval, unsigned int optlen) 2877 { 2878 struct sctp_sock *sp = sctp_sk(sk); 2879 struct sctp_association *asoc; 2880 struct sctp_sack_info params; 2881 2882 if (optlen == sizeof(struct sctp_sack_info)) { 2883 if (copy_from_user(¶ms, optval, optlen)) 2884 return -EFAULT; 2885 2886 if (params.sack_delay == 0 && params.sack_freq == 0) 2887 return 0; 2888 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2889 pr_warn_ratelimited(DEPRECATED 2890 "%s (pid %d) " 2891 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2892 "Use struct sctp_sack_info instead\n", 2893 current->comm, task_pid_nr(current)); 2894 if (copy_from_user(¶ms, optval, optlen)) 2895 return -EFAULT; 2896 2897 if (params.sack_delay == 0) 2898 params.sack_freq = 1; 2899 else 2900 params.sack_freq = 0; 2901 } else 2902 return -EINVAL; 2903 2904 /* Validate value parameter. */ 2905 if (params.sack_delay > 500) 2906 return -EINVAL; 2907 2908 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2909 * socket is a one to many style socket, and an association 2910 * was not found, then the id was invalid. 2911 */ 2912 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2913 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2914 sctp_style(sk, UDP)) 2915 return -EINVAL; 2916 2917 if (asoc) { 2918 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2919 2920 return 0; 2921 } 2922 2923 if (sctp_style(sk, TCP)) 2924 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2925 2926 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2927 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2928 if (params.sack_delay) { 2929 sp->sackdelay = params.sack_delay; 2930 sp->param_flags = 2931 sctp_spp_sackdelay_enable(sp->param_flags); 2932 } 2933 if (params.sack_freq == 1) { 2934 sp->param_flags = 2935 sctp_spp_sackdelay_disable(sp->param_flags); 2936 } else if (params.sack_freq > 1) { 2937 sp->sackfreq = params.sack_freq; 2938 sp->param_flags = 2939 sctp_spp_sackdelay_enable(sp->param_flags); 2940 } 2941 } 2942 2943 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2944 params.sack_assoc_id == SCTP_ALL_ASSOC) 2945 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2946 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2947 2948 return 0; 2949 } 2950 2951 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2952 * 2953 * Applications can specify protocol parameters for the default association 2954 * initialization. The option name argument to setsockopt() and getsockopt() 2955 * is SCTP_INITMSG. 2956 * 2957 * Setting initialization parameters is effective only on an unconnected 2958 * socket (for UDP-style sockets only future associations are effected 2959 * by the change). With TCP-style sockets, this option is inherited by 2960 * sockets derived from a listener socket. 2961 */ 2962 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2963 { 2964 struct sctp_initmsg sinit; 2965 struct sctp_sock *sp = sctp_sk(sk); 2966 2967 if (optlen != sizeof(struct sctp_initmsg)) 2968 return -EINVAL; 2969 if (copy_from_user(&sinit, optval, optlen)) 2970 return -EFAULT; 2971 2972 if (sinit.sinit_num_ostreams) 2973 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2974 if (sinit.sinit_max_instreams) 2975 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2976 if (sinit.sinit_max_attempts) 2977 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2978 if (sinit.sinit_max_init_timeo) 2979 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2980 2981 return 0; 2982 } 2983 2984 /* 2985 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2986 * 2987 * Applications that wish to use the sendto() system call may wish to 2988 * specify a default set of parameters that would normally be supplied 2989 * through the inclusion of ancillary data. This socket option allows 2990 * such an application to set the default sctp_sndrcvinfo structure. 2991 * The application that wishes to use this socket option simply passes 2992 * in to this call the sctp_sndrcvinfo structure defined in Section 2993 * 5.2.2) The input parameters accepted by this call include 2994 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2995 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2996 * to this call if the caller is using the UDP model. 2997 */ 2998 static int sctp_setsockopt_default_send_param(struct sock *sk, 2999 char __user *optval, 3000 unsigned int optlen) 3001 { 3002 struct sctp_sock *sp = sctp_sk(sk); 3003 struct sctp_association *asoc; 3004 struct sctp_sndrcvinfo info; 3005 3006 if (optlen != sizeof(info)) 3007 return -EINVAL; 3008 if (copy_from_user(&info, optval, optlen)) 3009 return -EFAULT; 3010 if (info.sinfo_flags & 3011 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3012 SCTP_ABORT | SCTP_EOF)) 3013 return -EINVAL; 3014 3015 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3016 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3017 sctp_style(sk, UDP)) 3018 return -EINVAL; 3019 3020 if (asoc) { 3021 asoc->default_stream = info.sinfo_stream; 3022 asoc->default_flags = info.sinfo_flags; 3023 asoc->default_ppid = info.sinfo_ppid; 3024 asoc->default_context = info.sinfo_context; 3025 asoc->default_timetolive = info.sinfo_timetolive; 3026 3027 return 0; 3028 } 3029 3030 if (sctp_style(sk, TCP)) 3031 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 3032 3033 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3034 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3035 sp->default_stream = info.sinfo_stream; 3036 sp->default_flags = info.sinfo_flags; 3037 sp->default_ppid = info.sinfo_ppid; 3038 sp->default_context = info.sinfo_context; 3039 sp->default_timetolive = info.sinfo_timetolive; 3040 } 3041 3042 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3043 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3044 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3045 asoc->default_stream = info.sinfo_stream; 3046 asoc->default_flags = info.sinfo_flags; 3047 asoc->default_ppid = info.sinfo_ppid; 3048 asoc->default_context = info.sinfo_context; 3049 asoc->default_timetolive = info.sinfo_timetolive; 3050 } 3051 } 3052 3053 return 0; 3054 } 3055 3056 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3057 * (SCTP_DEFAULT_SNDINFO) 3058 */ 3059 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3060 char __user *optval, 3061 unsigned int optlen) 3062 { 3063 struct sctp_sock *sp = sctp_sk(sk); 3064 struct sctp_association *asoc; 3065 struct sctp_sndinfo info; 3066 3067 if (optlen != sizeof(info)) 3068 return -EINVAL; 3069 if (copy_from_user(&info, optval, optlen)) 3070 return -EFAULT; 3071 if (info.snd_flags & 3072 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3073 SCTP_ABORT | SCTP_EOF)) 3074 return -EINVAL; 3075 3076 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3077 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3078 sctp_style(sk, UDP)) 3079 return -EINVAL; 3080 3081 if (asoc) { 3082 asoc->default_stream = info.snd_sid; 3083 asoc->default_flags = info.snd_flags; 3084 asoc->default_ppid = info.snd_ppid; 3085 asoc->default_context = info.snd_context; 3086 3087 return 0; 3088 } 3089 3090 if (sctp_style(sk, TCP)) 3091 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3092 3093 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3094 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3095 sp->default_stream = info.snd_sid; 3096 sp->default_flags = info.snd_flags; 3097 sp->default_ppid = info.snd_ppid; 3098 sp->default_context = info.snd_context; 3099 } 3100 3101 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3102 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3103 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3104 asoc->default_stream = info.snd_sid; 3105 asoc->default_flags = info.snd_flags; 3106 asoc->default_ppid = info.snd_ppid; 3107 asoc->default_context = info.snd_context; 3108 } 3109 } 3110 3111 return 0; 3112 } 3113 3114 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3115 * 3116 * Requests that the local SCTP stack use the enclosed peer address as 3117 * the association primary. The enclosed address must be one of the 3118 * association peer's addresses. 3119 */ 3120 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3121 unsigned int optlen) 3122 { 3123 struct sctp_prim prim; 3124 struct sctp_transport *trans; 3125 struct sctp_af *af; 3126 int err; 3127 3128 if (optlen != sizeof(struct sctp_prim)) 3129 return -EINVAL; 3130 3131 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3132 return -EFAULT; 3133 3134 /* Allow security module to validate address but need address len. */ 3135 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3136 if (!af) 3137 return -EINVAL; 3138 3139 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3140 (struct sockaddr *)&prim.ssp_addr, 3141 af->sockaddr_len); 3142 if (err) 3143 return err; 3144 3145 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3146 if (!trans) 3147 return -EINVAL; 3148 3149 sctp_assoc_set_primary(trans->asoc, trans); 3150 3151 return 0; 3152 } 3153 3154 /* 3155 * 7.1.5 SCTP_NODELAY 3156 * 3157 * Turn on/off any Nagle-like algorithm. This means that packets are 3158 * generally sent as soon as possible and no unnecessary delays are 3159 * introduced, at the cost of more packets in the network. Expects an 3160 * integer boolean flag. 3161 */ 3162 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3163 unsigned int optlen) 3164 { 3165 int val; 3166 3167 if (optlen < sizeof(int)) 3168 return -EINVAL; 3169 if (get_user(val, (int __user *)optval)) 3170 return -EFAULT; 3171 3172 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3173 return 0; 3174 } 3175 3176 /* 3177 * 3178 * 7.1.1 SCTP_RTOINFO 3179 * 3180 * The protocol parameters used to initialize and bound retransmission 3181 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3182 * and modify these parameters. 3183 * All parameters are time values, in milliseconds. A value of 0, when 3184 * modifying the parameters, indicates that the current value should not 3185 * be changed. 3186 * 3187 */ 3188 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3189 { 3190 struct sctp_rtoinfo rtoinfo; 3191 struct sctp_association *asoc; 3192 unsigned long rto_min, rto_max; 3193 struct sctp_sock *sp = sctp_sk(sk); 3194 3195 if (optlen != sizeof (struct sctp_rtoinfo)) 3196 return -EINVAL; 3197 3198 if (copy_from_user(&rtoinfo, optval, optlen)) 3199 return -EFAULT; 3200 3201 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3202 3203 /* Set the values to the specific association */ 3204 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3205 sctp_style(sk, UDP)) 3206 return -EINVAL; 3207 3208 rto_max = rtoinfo.srto_max; 3209 rto_min = rtoinfo.srto_min; 3210 3211 if (rto_max) 3212 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3213 else 3214 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3215 3216 if (rto_min) 3217 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3218 else 3219 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3220 3221 if (rto_min > rto_max) 3222 return -EINVAL; 3223 3224 if (asoc) { 3225 if (rtoinfo.srto_initial != 0) 3226 asoc->rto_initial = 3227 msecs_to_jiffies(rtoinfo.srto_initial); 3228 asoc->rto_max = rto_max; 3229 asoc->rto_min = rto_min; 3230 } else { 3231 /* If there is no association or the association-id = 0 3232 * set the values to the endpoint. 3233 */ 3234 if (rtoinfo.srto_initial != 0) 3235 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3236 sp->rtoinfo.srto_max = rto_max; 3237 sp->rtoinfo.srto_min = rto_min; 3238 } 3239 3240 return 0; 3241 } 3242 3243 /* 3244 * 3245 * 7.1.2 SCTP_ASSOCINFO 3246 * 3247 * This option is used to tune the maximum retransmission attempts 3248 * of the association. 3249 * Returns an error if the new association retransmission value is 3250 * greater than the sum of the retransmission value of the peer. 3251 * See [SCTP] for more information. 3252 * 3253 */ 3254 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3255 { 3256 3257 struct sctp_assocparams assocparams; 3258 struct sctp_association *asoc; 3259 3260 if (optlen != sizeof(struct sctp_assocparams)) 3261 return -EINVAL; 3262 if (copy_from_user(&assocparams, optval, optlen)) 3263 return -EFAULT; 3264 3265 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3266 3267 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3268 sctp_style(sk, UDP)) 3269 return -EINVAL; 3270 3271 /* Set the values to the specific association */ 3272 if (asoc) { 3273 if (assocparams.sasoc_asocmaxrxt != 0) { 3274 __u32 path_sum = 0; 3275 int paths = 0; 3276 struct sctp_transport *peer_addr; 3277 3278 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3279 transports) { 3280 path_sum += peer_addr->pathmaxrxt; 3281 paths++; 3282 } 3283 3284 /* Only validate asocmaxrxt if we have more than 3285 * one path/transport. We do this because path 3286 * retransmissions are only counted when we have more 3287 * then one path. 3288 */ 3289 if (paths > 1 && 3290 assocparams.sasoc_asocmaxrxt > path_sum) 3291 return -EINVAL; 3292 3293 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3294 } 3295 3296 if (assocparams.sasoc_cookie_life != 0) 3297 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3298 } else { 3299 /* Set the values to the endpoint */ 3300 struct sctp_sock *sp = sctp_sk(sk); 3301 3302 if (assocparams.sasoc_asocmaxrxt != 0) 3303 sp->assocparams.sasoc_asocmaxrxt = 3304 assocparams.sasoc_asocmaxrxt; 3305 if (assocparams.sasoc_cookie_life != 0) 3306 sp->assocparams.sasoc_cookie_life = 3307 assocparams.sasoc_cookie_life; 3308 } 3309 return 0; 3310 } 3311 3312 /* 3313 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3314 * 3315 * This socket option is a boolean flag which turns on or off mapped V4 3316 * addresses. If this option is turned on and the socket is type 3317 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3318 * If this option is turned off, then no mapping will be done of V4 3319 * addresses and a user will receive both PF_INET6 and PF_INET type 3320 * addresses on the socket. 3321 */ 3322 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3323 { 3324 int val; 3325 struct sctp_sock *sp = sctp_sk(sk); 3326 3327 if (optlen < sizeof(int)) 3328 return -EINVAL; 3329 if (get_user(val, (int __user *)optval)) 3330 return -EFAULT; 3331 if (val) 3332 sp->v4mapped = 1; 3333 else 3334 sp->v4mapped = 0; 3335 3336 return 0; 3337 } 3338 3339 /* 3340 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3341 * This option will get or set the maximum size to put in any outgoing 3342 * SCTP DATA chunk. If a message is larger than this size it will be 3343 * fragmented by SCTP into the specified size. Note that the underlying 3344 * SCTP implementation may fragment into smaller sized chunks when the 3345 * PMTU of the underlying association is smaller than the value set by 3346 * the user. The default value for this option is '0' which indicates 3347 * the user is NOT limiting fragmentation and only the PMTU will effect 3348 * SCTP's choice of DATA chunk size. Note also that values set larger 3349 * than the maximum size of an IP datagram will effectively let SCTP 3350 * control fragmentation (i.e. the same as setting this option to 0). 3351 * 3352 * The following structure is used to access and modify this parameter: 3353 * 3354 * struct sctp_assoc_value { 3355 * sctp_assoc_t assoc_id; 3356 * uint32_t assoc_value; 3357 * }; 3358 * 3359 * assoc_id: This parameter is ignored for one-to-one style sockets. 3360 * For one-to-many style sockets this parameter indicates which 3361 * association the user is performing an action upon. Note that if 3362 * this field's value is zero then the endpoints default value is 3363 * changed (effecting future associations only). 3364 * assoc_value: This parameter specifies the maximum size in bytes. 3365 */ 3366 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3367 { 3368 struct sctp_sock *sp = sctp_sk(sk); 3369 struct sctp_assoc_value params; 3370 struct sctp_association *asoc; 3371 int val; 3372 3373 if (optlen == sizeof(int)) { 3374 pr_warn_ratelimited(DEPRECATED 3375 "%s (pid %d) " 3376 "Use of int in maxseg socket option.\n" 3377 "Use struct sctp_assoc_value instead\n", 3378 current->comm, task_pid_nr(current)); 3379 if (copy_from_user(&val, optval, optlen)) 3380 return -EFAULT; 3381 params.assoc_id = SCTP_FUTURE_ASSOC; 3382 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3383 if (copy_from_user(¶ms, optval, optlen)) 3384 return -EFAULT; 3385 val = params.assoc_value; 3386 } else { 3387 return -EINVAL; 3388 } 3389 3390 asoc = sctp_id2assoc(sk, params.assoc_id); 3391 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3392 sctp_style(sk, UDP)) 3393 return -EINVAL; 3394 3395 if (val) { 3396 int min_len, max_len; 3397 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3398 sizeof(struct sctp_data_chunk); 3399 3400 min_len = sctp_min_frag_point(sp, datasize); 3401 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3402 3403 if (val < min_len || val > max_len) 3404 return -EINVAL; 3405 } 3406 3407 if (asoc) { 3408 asoc->user_frag = val; 3409 sctp_assoc_update_frag_point(asoc); 3410 } else { 3411 sp->user_frag = val; 3412 } 3413 3414 return 0; 3415 } 3416 3417 3418 /* 3419 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3420 * 3421 * Requests that the peer mark the enclosed address as the association 3422 * primary. The enclosed address must be one of the association's 3423 * locally bound addresses. The following structure is used to make a 3424 * set primary request: 3425 */ 3426 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3427 unsigned int optlen) 3428 { 3429 struct net *net = sock_net(sk); 3430 struct sctp_sock *sp; 3431 struct sctp_association *asoc = NULL; 3432 struct sctp_setpeerprim prim; 3433 struct sctp_chunk *chunk; 3434 struct sctp_af *af; 3435 int err; 3436 3437 sp = sctp_sk(sk); 3438 3439 if (!net->sctp.addip_enable) 3440 return -EPERM; 3441 3442 if (optlen != sizeof(struct sctp_setpeerprim)) 3443 return -EINVAL; 3444 3445 if (copy_from_user(&prim, optval, optlen)) 3446 return -EFAULT; 3447 3448 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3449 if (!asoc) 3450 return -EINVAL; 3451 3452 if (!asoc->peer.asconf_capable) 3453 return -EPERM; 3454 3455 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3456 return -EPERM; 3457 3458 if (!sctp_state(asoc, ESTABLISHED)) 3459 return -ENOTCONN; 3460 3461 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3462 if (!af) 3463 return -EINVAL; 3464 3465 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3466 return -EADDRNOTAVAIL; 3467 3468 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3469 return -EADDRNOTAVAIL; 3470 3471 /* Allow security module to validate address. */ 3472 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3473 (struct sockaddr *)&prim.sspp_addr, 3474 af->sockaddr_len); 3475 if (err) 3476 return err; 3477 3478 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3479 chunk = sctp_make_asconf_set_prim(asoc, 3480 (union sctp_addr *)&prim.sspp_addr); 3481 if (!chunk) 3482 return -ENOMEM; 3483 3484 err = sctp_send_asconf(asoc, chunk); 3485 3486 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3487 3488 return err; 3489 } 3490 3491 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3492 unsigned int optlen) 3493 { 3494 struct sctp_setadaptation adaptation; 3495 3496 if (optlen != sizeof(struct sctp_setadaptation)) 3497 return -EINVAL; 3498 if (copy_from_user(&adaptation, optval, optlen)) 3499 return -EFAULT; 3500 3501 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3502 3503 return 0; 3504 } 3505 3506 /* 3507 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3508 * 3509 * The context field in the sctp_sndrcvinfo structure is normally only 3510 * used when a failed message is retrieved holding the value that was 3511 * sent down on the actual send call. This option allows the setting of 3512 * a default context on an association basis that will be received on 3513 * reading messages from the peer. This is especially helpful in the 3514 * one-2-many model for an application to keep some reference to an 3515 * internal state machine that is processing messages on the 3516 * association. Note that the setting of this value only effects 3517 * received messages from the peer and does not effect the value that is 3518 * saved with outbound messages. 3519 */ 3520 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3521 unsigned int optlen) 3522 { 3523 struct sctp_sock *sp = sctp_sk(sk); 3524 struct sctp_assoc_value params; 3525 struct sctp_association *asoc; 3526 3527 if (optlen != sizeof(struct sctp_assoc_value)) 3528 return -EINVAL; 3529 if (copy_from_user(¶ms, optval, optlen)) 3530 return -EFAULT; 3531 3532 asoc = sctp_id2assoc(sk, params.assoc_id); 3533 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3534 sctp_style(sk, UDP)) 3535 return -EINVAL; 3536 3537 if (asoc) { 3538 asoc->default_rcv_context = params.assoc_value; 3539 3540 return 0; 3541 } 3542 3543 if (sctp_style(sk, TCP)) 3544 params.assoc_id = SCTP_FUTURE_ASSOC; 3545 3546 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3547 params.assoc_id == SCTP_ALL_ASSOC) 3548 sp->default_rcv_context = params.assoc_value; 3549 3550 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3551 params.assoc_id == SCTP_ALL_ASSOC) 3552 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3553 asoc->default_rcv_context = params.assoc_value; 3554 3555 return 0; 3556 } 3557 3558 /* 3559 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3560 * 3561 * This options will at a minimum specify if the implementation is doing 3562 * fragmented interleave. Fragmented interleave, for a one to many 3563 * socket, is when subsequent calls to receive a message may return 3564 * parts of messages from different associations. Some implementations 3565 * may allow you to turn this value on or off. If so, when turned off, 3566 * no fragment interleave will occur (which will cause a head of line 3567 * blocking amongst multiple associations sharing the same one to many 3568 * socket). When this option is turned on, then each receive call may 3569 * come from a different association (thus the user must receive data 3570 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3571 * association each receive belongs to. 3572 * 3573 * This option takes a boolean value. A non-zero value indicates that 3574 * fragmented interleave is on. A value of zero indicates that 3575 * fragmented interleave is off. 3576 * 3577 * Note that it is important that an implementation that allows this 3578 * option to be turned on, have it off by default. Otherwise an unaware 3579 * application using the one to many model may become confused and act 3580 * incorrectly. 3581 */ 3582 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3583 char __user *optval, 3584 unsigned int optlen) 3585 { 3586 int val; 3587 3588 if (optlen != sizeof(int)) 3589 return -EINVAL; 3590 if (get_user(val, (int __user *)optval)) 3591 return -EFAULT; 3592 3593 sctp_sk(sk)->frag_interleave = !!val; 3594 3595 if (!sctp_sk(sk)->frag_interleave) 3596 sctp_sk(sk)->strm_interleave = 0; 3597 3598 return 0; 3599 } 3600 3601 /* 3602 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3603 * (SCTP_PARTIAL_DELIVERY_POINT) 3604 * 3605 * This option will set or get the SCTP partial delivery point. This 3606 * point is the size of a message where the partial delivery API will be 3607 * invoked to help free up rwnd space for the peer. Setting this to a 3608 * lower value will cause partial deliveries to happen more often. The 3609 * calls argument is an integer that sets or gets the partial delivery 3610 * point. Note also that the call will fail if the user attempts to set 3611 * this value larger than the socket receive buffer size. 3612 * 3613 * Note that any single message having a length smaller than or equal to 3614 * the SCTP partial delivery point will be delivered in one single read 3615 * call as long as the user provided buffer is large enough to hold the 3616 * message. 3617 */ 3618 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3619 char __user *optval, 3620 unsigned int optlen) 3621 { 3622 u32 val; 3623 3624 if (optlen != sizeof(u32)) 3625 return -EINVAL; 3626 if (get_user(val, (int __user *)optval)) 3627 return -EFAULT; 3628 3629 /* Note: We double the receive buffer from what the user sets 3630 * it to be, also initial rwnd is based on rcvbuf/2. 3631 */ 3632 if (val > (sk->sk_rcvbuf >> 1)) 3633 return -EINVAL; 3634 3635 sctp_sk(sk)->pd_point = val; 3636 3637 return 0; /* is this the right error code? */ 3638 } 3639 3640 /* 3641 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3642 * 3643 * This option will allow a user to change the maximum burst of packets 3644 * that can be emitted by this association. Note that the default value 3645 * is 4, and some implementations may restrict this setting so that it 3646 * can only be lowered. 3647 * 3648 * NOTE: This text doesn't seem right. Do this on a socket basis with 3649 * future associations inheriting the socket value. 3650 */ 3651 static int sctp_setsockopt_maxburst(struct sock *sk, 3652 char __user *optval, 3653 unsigned int optlen) 3654 { 3655 struct sctp_sock *sp = sctp_sk(sk); 3656 struct sctp_assoc_value params; 3657 struct sctp_association *asoc; 3658 3659 if (optlen == sizeof(int)) { 3660 pr_warn_ratelimited(DEPRECATED 3661 "%s (pid %d) " 3662 "Use of int in max_burst socket option deprecated.\n" 3663 "Use struct sctp_assoc_value instead\n", 3664 current->comm, task_pid_nr(current)); 3665 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3666 return -EFAULT; 3667 params.assoc_id = SCTP_FUTURE_ASSOC; 3668 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3669 if (copy_from_user(¶ms, optval, optlen)) 3670 return -EFAULT; 3671 } else 3672 return -EINVAL; 3673 3674 asoc = sctp_id2assoc(sk, params.assoc_id); 3675 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3676 sctp_style(sk, UDP)) 3677 return -EINVAL; 3678 3679 if (asoc) { 3680 asoc->max_burst = params.assoc_value; 3681 3682 return 0; 3683 } 3684 3685 if (sctp_style(sk, TCP)) 3686 params.assoc_id = SCTP_FUTURE_ASSOC; 3687 3688 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3689 params.assoc_id == SCTP_ALL_ASSOC) 3690 sp->max_burst = params.assoc_value; 3691 3692 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3693 params.assoc_id == SCTP_ALL_ASSOC) 3694 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3695 asoc->max_burst = params.assoc_value; 3696 3697 return 0; 3698 } 3699 3700 /* 3701 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3702 * 3703 * This set option adds a chunk type that the user is requesting to be 3704 * received only in an authenticated way. Changes to the list of chunks 3705 * will only effect future associations on the socket. 3706 */ 3707 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3708 char __user *optval, 3709 unsigned int optlen) 3710 { 3711 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3712 struct sctp_authchunk val; 3713 3714 if (!ep->auth_enable) 3715 return -EACCES; 3716 3717 if (optlen != sizeof(struct sctp_authchunk)) 3718 return -EINVAL; 3719 if (copy_from_user(&val, optval, optlen)) 3720 return -EFAULT; 3721 3722 switch (val.sauth_chunk) { 3723 case SCTP_CID_INIT: 3724 case SCTP_CID_INIT_ACK: 3725 case SCTP_CID_SHUTDOWN_COMPLETE: 3726 case SCTP_CID_AUTH: 3727 return -EINVAL; 3728 } 3729 3730 /* add this chunk id to the endpoint */ 3731 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3732 } 3733 3734 /* 3735 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3736 * 3737 * This option gets or sets the list of HMAC algorithms that the local 3738 * endpoint requires the peer to use. 3739 */ 3740 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3741 char __user *optval, 3742 unsigned int optlen) 3743 { 3744 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3745 struct sctp_hmacalgo *hmacs; 3746 u32 idents; 3747 int err; 3748 3749 if (!ep->auth_enable) 3750 return -EACCES; 3751 3752 if (optlen < sizeof(struct sctp_hmacalgo)) 3753 return -EINVAL; 3754 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3755 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3756 3757 hmacs = memdup_user(optval, optlen); 3758 if (IS_ERR(hmacs)) 3759 return PTR_ERR(hmacs); 3760 3761 idents = hmacs->shmac_num_idents; 3762 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3763 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3764 err = -EINVAL; 3765 goto out; 3766 } 3767 3768 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3769 out: 3770 kfree(hmacs); 3771 return err; 3772 } 3773 3774 /* 3775 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3776 * 3777 * This option will set a shared secret key which is used to build an 3778 * association shared key. 3779 */ 3780 static int sctp_setsockopt_auth_key(struct sock *sk, 3781 char __user *optval, 3782 unsigned int optlen) 3783 { 3784 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3785 struct sctp_authkey *authkey; 3786 struct sctp_association *asoc; 3787 int ret = -EINVAL; 3788 3789 if (!ep->auth_enable) 3790 return -EACCES; 3791 3792 if (optlen <= sizeof(struct sctp_authkey)) 3793 return -EINVAL; 3794 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3795 * this. 3796 */ 3797 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3798 3799 authkey = memdup_user(optval, optlen); 3800 if (IS_ERR(authkey)) 3801 return PTR_ERR(authkey); 3802 3803 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3804 goto out; 3805 3806 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3807 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3808 sctp_style(sk, UDP)) 3809 goto out; 3810 3811 if (asoc) { 3812 ret = sctp_auth_set_key(ep, asoc, authkey); 3813 goto out; 3814 } 3815 3816 if (sctp_style(sk, TCP)) 3817 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3818 3819 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3820 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3821 ret = sctp_auth_set_key(ep, asoc, authkey); 3822 if (ret) 3823 goto out; 3824 } 3825 3826 ret = 0; 3827 3828 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3829 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3830 list_for_each_entry(asoc, &ep->asocs, asocs) { 3831 int res = sctp_auth_set_key(ep, asoc, authkey); 3832 3833 if (res && !ret) 3834 ret = res; 3835 } 3836 } 3837 3838 out: 3839 kzfree(authkey); 3840 return ret; 3841 } 3842 3843 /* 3844 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3845 * 3846 * This option will get or set the active shared key to be used to build 3847 * the association shared key. 3848 */ 3849 static int sctp_setsockopt_active_key(struct sock *sk, 3850 char __user *optval, 3851 unsigned int optlen) 3852 { 3853 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3854 struct sctp_association *asoc; 3855 struct sctp_authkeyid val; 3856 int ret = 0; 3857 3858 if (!ep->auth_enable) 3859 return -EACCES; 3860 3861 if (optlen != sizeof(struct sctp_authkeyid)) 3862 return -EINVAL; 3863 if (copy_from_user(&val, optval, optlen)) 3864 return -EFAULT; 3865 3866 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3867 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3868 sctp_style(sk, UDP)) 3869 return -EINVAL; 3870 3871 if (asoc) 3872 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3873 3874 if (sctp_style(sk, TCP)) 3875 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3876 3877 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3878 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3879 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3880 if (ret) 3881 return ret; 3882 } 3883 3884 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3885 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3886 list_for_each_entry(asoc, &ep->asocs, asocs) { 3887 int res = sctp_auth_set_active_key(ep, asoc, 3888 val.scact_keynumber); 3889 3890 if (res && !ret) 3891 ret = res; 3892 } 3893 } 3894 3895 return ret; 3896 } 3897 3898 /* 3899 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3900 * 3901 * This set option will delete a shared secret key from use. 3902 */ 3903 static int sctp_setsockopt_del_key(struct sock *sk, 3904 char __user *optval, 3905 unsigned int optlen) 3906 { 3907 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3908 struct sctp_association *asoc; 3909 struct sctp_authkeyid val; 3910 int ret = 0; 3911 3912 if (!ep->auth_enable) 3913 return -EACCES; 3914 3915 if (optlen != sizeof(struct sctp_authkeyid)) 3916 return -EINVAL; 3917 if (copy_from_user(&val, optval, optlen)) 3918 return -EFAULT; 3919 3920 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3921 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3922 sctp_style(sk, UDP)) 3923 return -EINVAL; 3924 3925 if (asoc) 3926 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3927 3928 if (sctp_style(sk, TCP)) 3929 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3930 3931 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3932 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3933 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3934 if (ret) 3935 return ret; 3936 } 3937 3938 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3939 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3940 list_for_each_entry(asoc, &ep->asocs, asocs) { 3941 int res = sctp_auth_del_key_id(ep, asoc, 3942 val.scact_keynumber); 3943 3944 if (res && !ret) 3945 ret = res; 3946 } 3947 } 3948 3949 return ret; 3950 } 3951 3952 /* 3953 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3954 * 3955 * This set option will deactivate a shared secret key. 3956 */ 3957 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3958 unsigned int optlen) 3959 { 3960 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3961 struct sctp_association *asoc; 3962 struct sctp_authkeyid val; 3963 int ret = 0; 3964 3965 if (!ep->auth_enable) 3966 return -EACCES; 3967 3968 if (optlen != sizeof(struct sctp_authkeyid)) 3969 return -EINVAL; 3970 if (copy_from_user(&val, optval, optlen)) 3971 return -EFAULT; 3972 3973 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3974 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3975 sctp_style(sk, UDP)) 3976 return -EINVAL; 3977 3978 if (asoc) 3979 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3980 3981 if (sctp_style(sk, TCP)) 3982 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3983 3984 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3985 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3986 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3987 if (ret) 3988 return ret; 3989 } 3990 3991 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3992 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3993 list_for_each_entry(asoc, &ep->asocs, asocs) { 3994 int res = sctp_auth_deact_key_id(ep, asoc, 3995 val.scact_keynumber); 3996 3997 if (res && !ret) 3998 ret = res; 3999 } 4000 } 4001 4002 return ret; 4003 } 4004 4005 /* 4006 * 8.1.23 SCTP_AUTO_ASCONF 4007 * 4008 * This option will enable or disable the use of the automatic generation of 4009 * ASCONF chunks to add and delete addresses to an existing association. Note 4010 * that this option has two caveats namely: a) it only affects sockets that 4011 * are bound to all addresses available to the SCTP stack, and b) the system 4012 * administrator may have an overriding control that turns the ASCONF feature 4013 * off no matter what setting the socket option may have. 4014 * This option expects an integer boolean flag, where a non-zero value turns on 4015 * the option, and a zero value turns off the option. 4016 * Note. In this implementation, socket operation overrides default parameter 4017 * being set by sysctl as well as FreeBSD implementation 4018 */ 4019 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 4020 unsigned int optlen) 4021 { 4022 int val; 4023 struct sctp_sock *sp = sctp_sk(sk); 4024 4025 if (optlen < sizeof(int)) 4026 return -EINVAL; 4027 if (get_user(val, (int __user *)optval)) 4028 return -EFAULT; 4029 if (!sctp_is_ep_boundall(sk) && val) 4030 return -EINVAL; 4031 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4032 return 0; 4033 4034 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4035 if (val == 0 && sp->do_auto_asconf) { 4036 list_del(&sp->auto_asconf_list); 4037 sp->do_auto_asconf = 0; 4038 } else if (val && !sp->do_auto_asconf) { 4039 list_add_tail(&sp->auto_asconf_list, 4040 &sock_net(sk)->sctp.auto_asconf_splist); 4041 sp->do_auto_asconf = 1; 4042 } 4043 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4044 return 0; 4045 } 4046 4047 /* 4048 * SCTP_PEER_ADDR_THLDS 4049 * 4050 * This option allows us to alter the partially failed threshold for one or all 4051 * transports in an association. See Section 6.1 of: 4052 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4053 */ 4054 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4055 char __user *optval, 4056 unsigned int optlen) 4057 { 4058 struct sctp_paddrthlds val; 4059 struct sctp_transport *trans; 4060 struct sctp_association *asoc; 4061 4062 if (optlen < sizeof(struct sctp_paddrthlds)) 4063 return -EINVAL; 4064 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4065 sizeof(struct sctp_paddrthlds))) 4066 return -EFAULT; 4067 4068 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4069 trans = sctp_addr_id2transport(sk, &val.spt_address, 4070 val.spt_assoc_id); 4071 if (!trans) 4072 return -ENOENT; 4073 4074 if (val.spt_pathmaxrxt) 4075 trans->pathmaxrxt = val.spt_pathmaxrxt; 4076 trans->pf_retrans = val.spt_pathpfthld; 4077 4078 return 0; 4079 } 4080 4081 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4082 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4083 sctp_style(sk, UDP)) 4084 return -EINVAL; 4085 4086 if (asoc) { 4087 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4088 transports) { 4089 if (val.spt_pathmaxrxt) 4090 trans->pathmaxrxt = val.spt_pathmaxrxt; 4091 trans->pf_retrans = val.spt_pathpfthld; 4092 } 4093 4094 if (val.spt_pathmaxrxt) 4095 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4096 asoc->pf_retrans = val.spt_pathpfthld; 4097 } else { 4098 struct sctp_sock *sp = sctp_sk(sk); 4099 4100 if (val.spt_pathmaxrxt) 4101 sp->pathmaxrxt = val.spt_pathmaxrxt; 4102 sp->pf_retrans = val.spt_pathpfthld; 4103 } 4104 4105 return 0; 4106 } 4107 4108 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4109 char __user *optval, 4110 unsigned int optlen) 4111 { 4112 int val; 4113 4114 if (optlen < sizeof(int)) 4115 return -EINVAL; 4116 if (get_user(val, (int __user *) optval)) 4117 return -EFAULT; 4118 4119 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4120 4121 return 0; 4122 } 4123 4124 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4125 char __user *optval, 4126 unsigned int optlen) 4127 { 4128 int val; 4129 4130 if (optlen < sizeof(int)) 4131 return -EINVAL; 4132 if (get_user(val, (int __user *) optval)) 4133 return -EFAULT; 4134 4135 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4136 4137 return 0; 4138 } 4139 4140 static int sctp_setsockopt_pr_supported(struct sock *sk, 4141 char __user *optval, 4142 unsigned int optlen) 4143 { 4144 struct sctp_assoc_value params; 4145 struct sctp_association *asoc; 4146 4147 if (optlen != sizeof(params)) 4148 return -EINVAL; 4149 4150 if (copy_from_user(¶ms, optval, optlen)) 4151 return -EFAULT; 4152 4153 asoc = sctp_id2assoc(sk, params.assoc_id); 4154 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4155 sctp_style(sk, UDP)) 4156 return -EINVAL; 4157 4158 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4159 4160 return 0; 4161 } 4162 4163 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4164 char __user *optval, 4165 unsigned int optlen) 4166 { 4167 struct sctp_sock *sp = sctp_sk(sk); 4168 struct sctp_default_prinfo info; 4169 struct sctp_association *asoc; 4170 int retval = -EINVAL; 4171 4172 if (optlen != sizeof(info)) 4173 goto out; 4174 4175 if (copy_from_user(&info, optval, sizeof(info))) { 4176 retval = -EFAULT; 4177 goto out; 4178 } 4179 4180 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4181 goto out; 4182 4183 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4184 info.pr_value = 0; 4185 4186 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4187 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4188 sctp_style(sk, UDP)) 4189 goto out; 4190 4191 retval = 0; 4192 4193 if (asoc) { 4194 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4195 asoc->default_timetolive = info.pr_value; 4196 goto out; 4197 } 4198 4199 if (sctp_style(sk, TCP)) 4200 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4201 4202 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4203 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4204 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4205 sp->default_timetolive = info.pr_value; 4206 } 4207 4208 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4209 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4210 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4211 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4212 asoc->default_timetolive = info.pr_value; 4213 } 4214 } 4215 4216 out: 4217 return retval; 4218 } 4219 4220 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4221 char __user *optval, 4222 unsigned int optlen) 4223 { 4224 struct sctp_assoc_value params; 4225 struct sctp_association *asoc; 4226 int retval = -EINVAL; 4227 4228 if (optlen != sizeof(params)) 4229 goto out; 4230 4231 if (copy_from_user(¶ms, optval, optlen)) { 4232 retval = -EFAULT; 4233 goto out; 4234 } 4235 4236 asoc = sctp_id2assoc(sk, params.assoc_id); 4237 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4238 sctp_style(sk, UDP)) 4239 goto out; 4240 4241 if (asoc) 4242 asoc->reconf_enable = !!params.assoc_value; 4243 else 4244 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4245 4246 retval = 0; 4247 4248 out: 4249 return retval; 4250 } 4251 4252 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4253 char __user *optval, 4254 unsigned int optlen) 4255 { 4256 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4257 struct sctp_assoc_value params; 4258 struct sctp_association *asoc; 4259 int retval = -EINVAL; 4260 4261 if (optlen != sizeof(params)) 4262 goto out; 4263 4264 if (copy_from_user(¶ms, optval, optlen)) { 4265 retval = -EFAULT; 4266 goto out; 4267 } 4268 4269 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4270 goto out; 4271 4272 asoc = sctp_id2assoc(sk, params.assoc_id); 4273 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4274 sctp_style(sk, UDP)) 4275 goto out; 4276 4277 retval = 0; 4278 4279 if (asoc) { 4280 asoc->strreset_enable = params.assoc_value; 4281 goto out; 4282 } 4283 4284 if (sctp_style(sk, TCP)) 4285 params.assoc_id = SCTP_FUTURE_ASSOC; 4286 4287 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4288 params.assoc_id == SCTP_ALL_ASSOC) 4289 ep->strreset_enable = params.assoc_value; 4290 4291 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4292 params.assoc_id == SCTP_ALL_ASSOC) 4293 list_for_each_entry(asoc, &ep->asocs, asocs) 4294 asoc->strreset_enable = params.assoc_value; 4295 4296 out: 4297 return retval; 4298 } 4299 4300 static int sctp_setsockopt_reset_streams(struct sock *sk, 4301 char __user *optval, 4302 unsigned int optlen) 4303 { 4304 struct sctp_reset_streams *params; 4305 struct sctp_association *asoc; 4306 int retval = -EINVAL; 4307 4308 if (optlen < sizeof(*params)) 4309 return -EINVAL; 4310 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4311 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4312 sizeof(__u16) * sizeof(*params)); 4313 4314 params = memdup_user(optval, optlen); 4315 if (IS_ERR(params)) 4316 return PTR_ERR(params); 4317 4318 if (params->srs_number_streams * sizeof(__u16) > 4319 optlen - sizeof(*params)) 4320 goto out; 4321 4322 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4323 if (!asoc) 4324 goto out; 4325 4326 retval = sctp_send_reset_streams(asoc, params); 4327 4328 out: 4329 kfree(params); 4330 return retval; 4331 } 4332 4333 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4334 char __user *optval, 4335 unsigned int optlen) 4336 { 4337 struct sctp_association *asoc; 4338 sctp_assoc_t associd; 4339 int retval = -EINVAL; 4340 4341 if (optlen != sizeof(associd)) 4342 goto out; 4343 4344 if (copy_from_user(&associd, optval, optlen)) { 4345 retval = -EFAULT; 4346 goto out; 4347 } 4348 4349 asoc = sctp_id2assoc(sk, associd); 4350 if (!asoc) 4351 goto out; 4352 4353 retval = sctp_send_reset_assoc(asoc); 4354 4355 out: 4356 return retval; 4357 } 4358 4359 static int sctp_setsockopt_add_streams(struct sock *sk, 4360 char __user *optval, 4361 unsigned int optlen) 4362 { 4363 struct sctp_association *asoc; 4364 struct sctp_add_streams params; 4365 int retval = -EINVAL; 4366 4367 if (optlen != sizeof(params)) 4368 goto out; 4369 4370 if (copy_from_user(¶ms, optval, optlen)) { 4371 retval = -EFAULT; 4372 goto out; 4373 } 4374 4375 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4376 if (!asoc) 4377 goto out; 4378 4379 retval = sctp_send_add_streams(asoc, ¶ms); 4380 4381 out: 4382 return retval; 4383 } 4384 4385 static int sctp_setsockopt_scheduler(struct sock *sk, 4386 char __user *optval, 4387 unsigned int optlen) 4388 { 4389 struct sctp_sock *sp = sctp_sk(sk); 4390 struct sctp_association *asoc; 4391 struct sctp_assoc_value params; 4392 int retval = 0; 4393 4394 if (optlen < sizeof(params)) 4395 return -EINVAL; 4396 4397 optlen = sizeof(params); 4398 if (copy_from_user(¶ms, optval, optlen)) 4399 return -EFAULT; 4400 4401 if (params.assoc_value > SCTP_SS_MAX) 4402 return -EINVAL; 4403 4404 asoc = sctp_id2assoc(sk, params.assoc_id); 4405 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4406 sctp_style(sk, UDP)) 4407 return -EINVAL; 4408 4409 if (asoc) 4410 return sctp_sched_set_sched(asoc, params.assoc_value); 4411 4412 if (sctp_style(sk, TCP)) 4413 params.assoc_id = SCTP_FUTURE_ASSOC; 4414 4415 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4416 params.assoc_id == SCTP_ALL_ASSOC) 4417 sp->default_ss = params.assoc_value; 4418 4419 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4420 params.assoc_id == SCTP_ALL_ASSOC) { 4421 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4422 int ret = sctp_sched_set_sched(asoc, 4423 params.assoc_value); 4424 4425 if (ret && !retval) 4426 retval = ret; 4427 } 4428 } 4429 4430 return retval; 4431 } 4432 4433 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4434 char __user *optval, 4435 unsigned int optlen) 4436 { 4437 struct sctp_stream_value params; 4438 struct sctp_association *asoc; 4439 int retval = -EINVAL; 4440 4441 if (optlen < sizeof(params)) 4442 goto out; 4443 4444 optlen = sizeof(params); 4445 if (copy_from_user(¶ms, optval, optlen)) { 4446 retval = -EFAULT; 4447 goto out; 4448 } 4449 4450 asoc = sctp_id2assoc(sk, params.assoc_id); 4451 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4452 sctp_style(sk, UDP)) 4453 goto out; 4454 4455 if (asoc) { 4456 retval = sctp_sched_set_value(asoc, params.stream_id, 4457 params.stream_value, GFP_KERNEL); 4458 goto out; 4459 } 4460 4461 retval = 0; 4462 4463 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4464 int ret = sctp_sched_set_value(asoc, params.stream_id, 4465 params.stream_value, GFP_KERNEL); 4466 if (ret && !retval) /* try to return the 1st error. */ 4467 retval = ret; 4468 } 4469 4470 out: 4471 return retval; 4472 } 4473 4474 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4475 char __user *optval, 4476 unsigned int optlen) 4477 { 4478 struct sctp_sock *sp = sctp_sk(sk); 4479 struct sctp_assoc_value params; 4480 struct sctp_association *asoc; 4481 int retval = -EINVAL; 4482 4483 if (optlen < sizeof(params)) 4484 goto out; 4485 4486 optlen = sizeof(params); 4487 if (copy_from_user(¶ms, optval, optlen)) { 4488 retval = -EFAULT; 4489 goto out; 4490 } 4491 4492 asoc = sctp_id2assoc(sk, params.assoc_id); 4493 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4494 sctp_style(sk, UDP)) 4495 goto out; 4496 4497 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4498 retval = -EPERM; 4499 goto out; 4500 } 4501 4502 sp->strm_interleave = !!params.assoc_value; 4503 4504 retval = 0; 4505 4506 out: 4507 return retval; 4508 } 4509 4510 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4511 unsigned int optlen) 4512 { 4513 int val; 4514 4515 if (!sctp_style(sk, TCP)) 4516 return -EOPNOTSUPP; 4517 4518 if (sctp_sk(sk)->ep->base.bind_addr.port) 4519 return -EFAULT; 4520 4521 if (optlen < sizeof(int)) 4522 return -EINVAL; 4523 4524 if (get_user(val, (int __user *)optval)) 4525 return -EFAULT; 4526 4527 sctp_sk(sk)->reuse = !!val; 4528 4529 return 0; 4530 } 4531 4532 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4533 struct sctp_association *asoc) 4534 { 4535 struct sctp_ulpevent *event; 4536 4537 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4538 4539 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4540 if (sctp_outq_is_empty(&asoc->outqueue)) { 4541 event = sctp_ulpevent_make_sender_dry_event(asoc, 4542 GFP_USER | __GFP_NOWARN); 4543 if (!event) 4544 return -ENOMEM; 4545 4546 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4547 } 4548 } 4549 4550 return 0; 4551 } 4552 4553 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4554 unsigned int optlen) 4555 { 4556 struct sctp_sock *sp = sctp_sk(sk); 4557 struct sctp_association *asoc; 4558 struct sctp_event param; 4559 int retval = 0; 4560 4561 if (optlen < sizeof(param)) 4562 return -EINVAL; 4563 4564 optlen = sizeof(param); 4565 if (copy_from_user(¶m, optval, optlen)) 4566 return -EFAULT; 4567 4568 if (param.se_type < SCTP_SN_TYPE_BASE || 4569 param.se_type > SCTP_SN_TYPE_MAX) 4570 return -EINVAL; 4571 4572 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4573 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4574 sctp_style(sk, UDP)) 4575 return -EINVAL; 4576 4577 if (asoc) 4578 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4579 4580 if (sctp_style(sk, TCP)) 4581 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4582 4583 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4584 param.se_assoc_id == SCTP_ALL_ASSOC) 4585 sctp_ulpevent_type_set(&sp->subscribe, 4586 param.se_type, param.se_on); 4587 4588 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4589 param.se_assoc_id == SCTP_ALL_ASSOC) { 4590 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4591 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4592 4593 if (ret && !retval) 4594 retval = ret; 4595 } 4596 } 4597 4598 return retval; 4599 } 4600 4601 /* API 6.2 setsockopt(), getsockopt() 4602 * 4603 * Applications use setsockopt() and getsockopt() to set or retrieve 4604 * socket options. Socket options are used to change the default 4605 * behavior of sockets calls. They are described in Section 7. 4606 * 4607 * The syntax is: 4608 * 4609 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4610 * int __user *optlen); 4611 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4612 * int optlen); 4613 * 4614 * sd - the socket descript. 4615 * level - set to IPPROTO_SCTP for all SCTP options. 4616 * optname - the option name. 4617 * optval - the buffer to store the value of the option. 4618 * optlen - the size of the buffer. 4619 */ 4620 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4621 char __user *optval, unsigned int optlen) 4622 { 4623 int retval = 0; 4624 4625 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4626 4627 /* I can hardly begin to describe how wrong this is. This is 4628 * so broken as to be worse than useless. The API draft 4629 * REALLY is NOT helpful here... I am not convinced that the 4630 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4631 * are at all well-founded. 4632 */ 4633 if (level != SOL_SCTP) { 4634 struct sctp_af *af = sctp_sk(sk)->pf->af; 4635 retval = af->setsockopt(sk, level, optname, optval, optlen); 4636 goto out_nounlock; 4637 } 4638 4639 lock_sock(sk); 4640 4641 switch (optname) { 4642 case SCTP_SOCKOPT_BINDX_ADD: 4643 /* 'optlen' is the size of the addresses buffer. */ 4644 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4645 optlen, SCTP_BINDX_ADD_ADDR); 4646 break; 4647 4648 case SCTP_SOCKOPT_BINDX_REM: 4649 /* 'optlen' is the size of the addresses buffer. */ 4650 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4651 optlen, SCTP_BINDX_REM_ADDR); 4652 break; 4653 4654 case SCTP_SOCKOPT_CONNECTX_OLD: 4655 /* 'optlen' is the size of the addresses buffer. */ 4656 retval = sctp_setsockopt_connectx_old(sk, 4657 (struct sockaddr __user *)optval, 4658 optlen); 4659 break; 4660 4661 case SCTP_SOCKOPT_CONNECTX: 4662 /* 'optlen' is the size of the addresses buffer. */ 4663 retval = sctp_setsockopt_connectx(sk, 4664 (struct sockaddr __user *)optval, 4665 optlen); 4666 break; 4667 4668 case SCTP_DISABLE_FRAGMENTS: 4669 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4670 break; 4671 4672 case SCTP_EVENTS: 4673 retval = sctp_setsockopt_events(sk, optval, optlen); 4674 break; 4675 4676 case SCTP_AUTOCLOSE: 4677 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4678 break; 4679 4680 case SCTP_PEER_ADDR_PARAMS: 4681 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4682 break; 4683 4684 case SCTP_DELAYED_SACK: 4685 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4686 break; 4687 case SCTP_PARTIAL_DELIVERY_POINT: 4688 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4689 break; 4690 4691 case SCTP_INITMSG: 4692 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4693 break; 4694 case SCTP_DEFAULT_SEND_PARAM: 4695 retval = sctp_setsockopt_default_send_param(sk, optval, 4696 optlen); 4697 break; 4698 case SCTP_DEFAULT_SNDINFO: 4699 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4700 break; 4701 case SCTP_PRIMARY_ADDR: 4702 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4703 break; 4704 case SCTP_SET_PEER_PRIMARY_ADDR: 4705 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4706 break; 4707 case SCTP_NODELAY: 4708 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4709 break; 4710 case SCTP_RTOINFO: 4711 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4712 break; 4713 case SCTP_ASSOCINFO: 4714 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4715 break; 4716 case SCTP_I_WANT_MAPPED_V4_ADDR: 4717 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4718 break; 4719 case SCTP_MAXSEG: 4720 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4721 break; 4722 case SCTP_ADAPTATION_LAYER: 4723 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4724 break; 4725 case SCTP_CONTEXT: 4726 retval = sctp_setsockopt_context(sk, optval, optlen); 4727 break; 4728 case SCTP_FRAGMENT_INTERLEAVE: 4729 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4730 break; 4731 case SCTP_MAX_BURST: 4732 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4733 break; 4734 case SCTP_AUTH_CHUNK: 4735 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4736 break; 4737 case SCTP_HMAC_IDENT: 4738 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4739 break; 4740 case SCTP_AUTH_KEY: 4741 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4742 break; 4743 case SCTP_AUTH_ACTIVE_KEY: 4744 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4745 break; 4746 case SCTP_AUTH_DELETE_KEY: 4747 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4748 break; 4749 case SCTP_AUTH_DEACTIVATE_KEY: 4750 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4751 break; 4752 case SCTP_AUTO_ASCONF: 4753 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4754 break; 4755 case SCTP_PEER_ADDR_THLDS: 4756 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4757 break; 4758 case SCTP_RECVRCVINFO: 4759 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4760 break; 4761 case SCTP_RECVNXTINFO: 4762 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4763 break; 4764 case SCTP_PR_SUPPORTED: 4765 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4766 break; 4767 case SCTP_DEFAULT_PRINFO: 4768 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4769 break; 4770 case SCTP_RECONFIG_SUPPORTED: 4771 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4772 break; 4773 case SCTP_ENABLE_STREAM_RESET: 4774 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4775 break; 4776 case SCTP_RESET_STREAMS: 4777 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4778 break; 4779 case SCTP_RESET_ASSOC: 4780 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4781 break; 4782 case SCTP_ADD_STREAMS: 4783 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4784 break; 4785 case SCTP_STREAM_SCHEDULER: 4786 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4787 break; 4788 case SCTP_STREAM_SCHEDULER_VALUE: 4789 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4790 break; 4791 case SCTP_INTERLEAVING_SUPPORTED: 4792 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4793 optlen); 4794 break; 4795 case SCTP_REUSE_PORT: 4796 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4797 break; 4798 case SCTP_EVENT: 4799 retval = sctp_setsockopt_event(sk, optval, optlen); 4800 break; 4801 default: 4802 retval = -ENOPROTOOPT; 4803 break; 4804 } 4805 4806 release_sock(sk); 4807 4808 out_nounlock: 4809 return retval; 4810 } 4811 4812 /* API 3.1.6 connect() - UDP Style Syntax 4813 * 4814 * An application may use the connect() call in the UDP model to initiate an 4815 * association without sending data. 4816 * 4817 * The syntax is: 4818 * 4819 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4820 * 4821 * sd: the socket descriptor to have a new association added to. 4822 * 4823 * nam: the address structure (either struct sockaddr_in or struct 4824 * sockaddr_in6 defined in RFC2553 [7]). 4825 * 4826 * len: the size of the address. 4827 */ 4828 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4829 int addr_len, int flags) 4830 { 4831 struct inet_sock *inet = inet_sk(sk); 4832 struct sctp_af *af; 4833 int err = 0; 4834 4835 lock_sock(sk); 4836 4837 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4838 addr, addr_len); 4839 4840 /* We may need to bind the socket. */ 4841 if (!inet->inet_num) { 4842 if (sk->sk_prot->get_port(sk, 0)) { 4843 release_sock(sk); 4844 return -EAGAIN; 4845 } 4846 inet->inet_sport = htons(inet->inet_num); 4847 } 4848 4849 /* Validate addr_len before calling common connect/connectx routine. */ 4850 af = sctp_get_af_specific(addr->sa_family); 4851 if (!af || addr_len < af->sockaddr_len) { 4852 err = -EINVAL; 4853 } else { 4854 /* Pass correct addr len to common routine (so it knows there 4855 * is only one address being passed. 4856 */ 4857 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4858 } 4859 4860 release_sock(sk); 4861 return err; 4862 } 4863 4864 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4865 int addr_len, int flags) 4866 { 4867 if (addr_len < sizeof(uaddr->sa_family)) 4868 return -EINVAL; 4869 4870 if (uaddr->sa_family == AF_UNSPEC) 4871 return -EOPNOTSUPP; 4872 4873 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4874 } 4875 4876 /* FIXME: Write comments. */ 4877 static int sctp_disconnect(struct sock *sk, int flags) 4878 { 4879 return -EOPNOTSUPP; /* STUB */ 4880 } 4881 4882 /* 4.1.4 accept() - TCP Style Syntax 4883 * 4884 * Applications use accept() call to remove an established SCTP 4885 * association from the accept queue of the endpoint. A new socket 4886 * descriptor will be returned from accept() to represent the newly 4887 * formed association. 4888 */ 4889 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4890 { 4891 struct sctp_sock *sp; 4892 struct sctp_endpoint *ep; 4893 struct sock *newsk = NULL; 4894 struct sctp_association *asoc; 4895 long timeo; 4896 int error = 0; 4897 4898 lock_sock(sk); 4899 4900 sp = sctp_sk(sk); 4901 ep = sp->ep; 4902 4903 if (!sctp_style(sk, TCP)) { 4904 error = -EOPNOTSUPP; 4905 goto out; 4906 } 4907 4908 if (!sctp_sstate(sk, LISTENING)) { 4909 error = -EINVAL; 4910 goto out; 4911 } 4912 4913 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4914 4915 error = sctp_wait_for_accept(sk, timeo); 4916 if (error) 4917 goto out; 4918 4919 /* We treat the list of associations on the endpoint as the accept 4920 * queue and pick the first association on the list. 4921 */ 4922 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4923 4924 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4925 if (!newsk) { 4926 error = -ENOMEM; 4927 goto out; 4928 } 4929 4930 /* Populate the fields of the newsk from the oldsk and migrate the 4931 * asoc to the newsk. 4932 */ 4933 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4934 if (error) { 4935 sk_common_release(newsk); 4936 newsk = NULL; 4937 } 4938 4939 out: 4940 release_sock(sk); 4941 *err = error; 4942 return newsk; 4943 } 4944 4945 /* The SCTP ioctl handler. */ 4946 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4947 { 4948 int rc = -ENOTCONN; 4949 4950 lock_sock(sk); 4951 4952 /* 4953 * SEQPACKET-style sockets in LISTENING state are valid, for 4954 * SCTP, so only discard TCP-style sockets in LISTENING state. 4955 */ 4956 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4957 goto out; 4958 4959 switch (cmd) { 4960 case SIOCINQ: { 4961 struct sk_buff *skb; 4962 unsigned int amount = 0; 4963 4964 skb = skb_peek(&sk->sk_receive_queue); 4965 if (skb != NULL) { 4966 /* 4967 * We will only return the amount of this packet since 4968 * that is all that will be read. 4969 */ 4970 amount = skb->len; 4971 } 4972 rc = put_user(amount, (int __user *)arg); 4973 break; 4974 } 4975 default: 4976 rc = -ENOIOCTLCMD; 4977 break; 4978 } 4979 out: 4980 release_sock(sk); 4981 return rc; 4982 } 4983 4984 /* This is the function which gets called during socket creation to 4985 * initialized the SCTP-specific portion of the sock. 4986 * The sock structure should already be zero-filled memory. 4987 */ 4988 static int sctp_init_sock(struct sock *sk) 4989 { 4990 struct net *net = sock_net(sk); 4991 struct sctp_sock *sp; 4992 4993 pr_debug("%s: sk:%p\n", __func__, sk); 4994 4995 sp = sctp_sk(sk); 4996 4997 /* Initialize the SCTP per socket area. */ 4998 switch (sk->sk_type) { 4999 case SOCK_SEQPACKET: 5000 sp->type = SCTP_SOCKET_UDP; 5001 break; 5002 case SOCK_STREAM: 5003 sp->type = SCTP_SOCKET_TCP; 5004 break; 5005 default: 5006 return -ESOCKTNOSUPPORT; 5007 } 5008 5009 sk->sk_gso_type = SKB_GSO_SCTP; 5010 5011 /* Initialize default send parameters. These parameters can be 5012 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5013 */ 5014 sp->default_stream = 0; 5015 sp->default_ppid = 0; 5016 sp->default_flags = 0; 5017 sp->default_context = 0; 5018 sp->default_timetolive = 0; 5019 5020 sp->default_rcv_context = 0; 5021 sp->max_burst = net->sctp.max_burst; 5022 5023 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5024 5025 /* Initialize default setup parameters. These parameters 5026 * can be modified with the SCTP_INITMSG socket option or 5027 * overridden by the SCTP_INIT CMSG. 5028 */ 5029 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5030 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5031 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5032 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5033 5034 /* Initialize default RTO related parameters. These parameters can 5035 * be modified for with the SCTP_RTOINFO socket option. 5036 */ 5037 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5038 sp->rtoinfo.srto_max = net->sctp.rto_max; 5039 sp->rtoinfo.srto_min = net->sctp.rto_min; 5040 5041 /* Initialize default association related parameters. These parameters 5042 * can be modified with the SCTP_ASSOCINFO socket option. 5043 */ 5044 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5045 sp->assocparams.sasoc_number_peer_destinations = 0; 5046 sp->assocparams.sasoc_peer_rwnd = 0; 5047 sp->assocparams.sasoc_local_rwnd = 0; 5048 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5049 5050 /* Initialize default event subscriptions. By default, all the 5051 * options are off. 5052 */ 5053 sp->subscribe = 0; 5054 5055 /* Default Peer Address Parameters. These defaults can 5056 * be modified via SCTP_PEER_ADDR_PARAMS 5057 */ 5058 sp->hbinterval = net->sctp.hb_interval; 5059 sp->pathmaxrxt = net->sctp.max_retrans_path; 5060 sp->pf_retrans = net->sctp.pf_retrans; 5061 sp->pathmtu = 0; /* allow default discovery */ 5062 sp->sackdelay = net->sctp.sack_timeout; 5063 sp->sackfreq = 2; 5064 sp->param_flags = SPP_HB_ENABLE | 5065 SPP_PMTUD_ENABLE | 5066 SPP_SACKDELAY_ENABLE; 5067 sp->default_ss = SCTP_SS_DEFAULT; 5068 5069 /* If enabled no SCTP message fragmentation will be performed. 5070 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5071 */ 5072 sp->disable_fragments = 0; 5073 5074 /* Enable Nagle algorithm by default. */ 5075 sp->nodelay = 0; 5076 5077 sp->recvrcvinfo = 0; 5078 sp->recvnxtinfo = 0; 5079 5080 /* Enable by default. */ 5081 sp->v4mapped = 1; 5082 5083 /* Auto-close idle associations after the configured 5084 * number of seconds. A value of 0 disables this 5085 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5086 * for UDP-style sockets only. 5087 */ 5088 sp->autoclose = 0; 5089 5090 /* User specified fragmentation limit. */ 5091 sp->user_frag = 0; 5092 5093 sp->adaptation_ind = 0; 5094 5095 sp->pf = sctp_get_pf_specific(sk->sk_family); 5096 5097 /* Control variables for partial data delivery. */ 5098 atomic_set(&sp->pd_mode, 0); 5099 skb_queue_head_init(&sp->pd_lobby); 5100 sp->frag_interleave = 0; 5101 5102 /* Create a per socket endpoint structure. Even if we 5103 * change the data structure relationships, this may still 5104 * be useful for storing pre-connect address information. 5105 */ 5106 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5107 if (!sp->ep) 5108 return -ENOMEM; 5109 5110 sp->hmac = NULL; 5111 5112 sk->sk_destruct = sctp_destruct_sock; 5113 5114 SCTP_DBG_OBJCNT_INC(sock); 5115 5116 local_bh_disable(); 5117 sk_sockets_allocated_inc(sk); 5118 sock_prot_inuse_add(net, sk->sk_prot, 1); 5119 5120 /* Nothing can fail after this block, otherwise 5121 * sctp_destroy_sock() will be called without addr_wq_lock held 5122 */ 5123 if (net->sctp.default_auto_asconf) { 5124 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5125 list_add_tail(&sp->auto_asconf_list, 5126 &net->sctp.auto_asconf_splist); 5127 sp->do_auto_asconf = 1; 5128 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5129 } else { 5130 sp->do_auto_asconf = 0; 5131 } 5132 5133 local_bh_enable(); 5134 5135 return 0; 5136 } 5137 5138 /* Cleanup any SCTP per socket resources. Must be called with 5139 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5140 */ 5141 static void sctp_destroy_sock(struct sock *sk) 5142 { 5143 struct sctp_sock *sp; 5144 5145 pr_debug("%s: sk:%p\n", __func__, sk); 5146 5147 /* Release our hold on the endpoint. */ 5148 sp = sctp_sk(sk); 5149 /* This could happen during socket init, thus we bail out 5150 * early, since the rest of the below is not setup either. 5151 */ 5152 if (sp->ep == NULL) 5153 return; 5154 5155 if (sp->do_auto_asconf) { 5156 sp->do_auto_asconf = 0; 5157 list_del(&sp->auto_asconf_list); 5158 } 5159 sctp_endpoint_free(sp->ep); 5160 local_bh_disable(); 5161 sk_sockets_allocated_dec(sk); 5162 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5163 local_bh_enable(); 5164 } 5165 5166 /* Triggered when there are no references on the socket anymore */ 5167 static void sctp_destruct_sock(struct sock *sk) 5168 { 5169 struct sctp_sock *sp = sctp_sk(sk); 5170 5171 /* Free up the HMAC transform. */ 5172 crypto_free_shash(sp->hmac); 5173 5174 inet_sock_destruct(sk); 5175 } 5176 5177 /* API 4.1.7 shutdown() - TCP Style Syntax 5178 * int shutdown(int socket, int how); 5179 * 5180 * sd - the socket descriptor of the association to be closed. 5181 * how - Specifies the type of shutdown. The values are 5182 * as follows: 5183 * SHUT_RD 5184 * Disables further receive operations. No SCTP 5185 * protocol action is taken. 5186 * SHUT_WR 5187 * Disables further send operations, and initiates 5188 * the SCTP shutdown sequence. 5189 * SHUT_RDWR 5190 * Disables further send and receive operations 5191 * and initiates the SCTP shutdown sequence. 5192 */ 5193 static void sctp_shutdown(struct sock *sk, int how) 5194 { 5195 struct net *net = sock_net(sk); 5196 struct sctp_endpoint *ep; 5197 5198 if (!sctp_style(sk, TCP)) 5199 return; 5200 5201 ep = sctp_sk(sk)->ep; 5202 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5203 struct sctp_association *asoc; 5204 5205 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5206 asoc = list_entry(ep->asocs.next, 5207 struct sctp_association, asocs); 5208 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5209 } 5210 } 5211 5212 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5213 struct sctp_info *info) 5214 { 5215 struct sctp_transport *prim; 5216 struct list_head *pos; 5217 int mask; 5218 5219 memset(info, 0, sizeof(*info)); 5220 if (!asoc) { 5221 struct sctp_sock *sp = sctp_sk(sk); 5222 5223 info->sctpi_s_autoclose = sp->autoclose; 5224 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5225 info->sctpi_s_pd_point = sp->pd_point; 5226 info->sctpi_s_nodelay = sp->nodelay; 5227 info->sctpi_s_disable_fragments = sp->disable_fragments; 5228 info->sctpi_s_v4mapped = sp->v4mapped; 5229 info->sctpi_s_frag_interleave = sp->frag_interleave; 5230 info->sctpi_s_type = sp->type; 5231 5232 return 0; 5233 } 5234 5235 info->sctpi_tag = asoc->c.my_vtag; 5236 info->sctpi_state = asoc->state; 5237 info->sctpi_rwnd = asoc->a_rwnd; 5238 info->sctpi_unackdata = asoc->unack_data; 5239 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5240 info->sctpi_instrms = asoc->stream.incnt; 5241 info->sctpi_outstrms = asoc->stream.outcnt; 5242 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5243 info->sctpi_inqueue++; 5244 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5245 info->sctpi_outqueue++; 5246 info->sctpi_overall_error = asoc->overall_error_count; 5247 info->sctpi_max_burst = asoc->max_burst; 5248 info->sctpi_maxseg = asoc->frag_point; 5249 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5250 info->sctpi_peer_tag = asoc->c.peer_vtag; 5251 5252 mask = asoc->peer.ecn_capable << 1; 5253 mask = (mask | asoc->peer.ipv4_address) << 1; 5254 mask = (mask | asoc->peer.ipv6_address) << 1; 5255 mask = (mask | asoc->peer.hostname_address) << 1; 5256 mask = (mask | asoc->peer.asconf_capable) << 1; 5257 mask = (mask | asoc->peer.prsctp_capable) << 1; 5258 mask = (mask | asoc->peer.auth_capable); 5259 info->sctpi_peer_capable = mask; 5260 mask = asoc->peer.sack_needed << 1; 5261 mask = (mask | asoc->peer.sack_generation) << 1; 5262 mask = (mask | asoc->peer.zero_window_announced); 5263 info->sctpi_peer_sack = mask; 5264 5265 info->sctpi_isacks = asoc->stats.isacks; 5266 info->sctpi_osacks = asoc->stats.osacks; 5267 info->sctpi_opackets = asoc->stats.opackets; 5268 info->sctpi_ipackets = asoc->stats.ipackets; 5269 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5270 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5271 info->sctpi_idupchunks = asoc->stats.idupchunks; 5272 info->sctpi_gapcnt = asoc->stats.gapcnt; 5273 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5274 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5275 info->sctpi_oodchunks = asoc->stats.oodchunks; 5276 info->sctpi_iodchunks = asoc->stats.iodchunks; 5277 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5278 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5279 5280 prim = asoc->peer.primary_path; 5281 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5282 info->sctpi_p_state = prim->state; 5283 info->sctpi_p_cwnd = prim->cwnd; 5284 info->sctpi_p_srtt = prim->srtt; 5285 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5286 info->sctpi_p_hbinterval = prim->hbinterval; 5287 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5288 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5289 info->sctpi_p_ssthresh = prim->ssthresh; 5290 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5291 info->sctpi_p_flight_size = prim->flight_size; 5292 info->sctpi_p_error = prim->error_count; 5293 5294 return 0; 5295 } 5296 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5297 5298 /* use callback to avoid exporting the core structure */ 5299 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5300 { 5301 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5302 5303 rhashtable_walk_start(iter); 5304 } 5305 5306 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5307 { 5308 rhashtable_walk_stop(iter); 5309 rhashtable_walk_exit(iter); 5310 } 5311 5312 struct sctp_transport *sctp_transport_get_next(struct net *net, 5313 struct rhashtable_iter *iter) 5314 { 5315 struct sctp_transport *t; 5316 5317 t = rhashtable_walk_next(iter); 5318 for (; t; t = rhashtable_walk_next(iter)) { 5319 if (IS_ERR(t)) { 5320 if (PTR_ERR(t) == -EAGAIN) 5321 continue; 5322 break; 5323 } 5324 5325 if (!sctp_transport_hold(t)) 5326 continue; 5327 5328 if (net_eq(sock_net(t->asoc->base.sk), net) && 5329 t->asoc->peer.primary_path == t) 5330 break; 5331 5332 sctp_transport_put(t); 5333 } 5334 5335 return t; 5336 } 5337 5338 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5339 struct rhashtable_iter *iter, 5340 int pos) 5341 { 5342 struct sctp_transport *t; 5343 5344 if (!pos) 5345 return SEQ_START_TOKEN; 5346 5347 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5348 if (!--pos) 5349 break; 5350 sctp_transport_put(t); 5351 } 5352 5353 return t; 5354 } 5355 5356 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5357 void *p) { 5358 int err = 0; 5359 int hash = 0; 5360 struct sctp_ep_common *epb; 5361 struct sctp_hashbucket *head; 5362 5363 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5364 hash++, head++) { 5365 read_lock_bh(&head->lock); 5366 sctp_for_each_hentry(epb, &head->chain) { 5367 err = cb(sctp_ep(epb), p); 5368 if (err) 5369 break; 5370 } 5371 read_unlock_bh(&head->lock); 5372 } 5373 5374 return err; 5375 } 5376 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5377 5378 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5379 struct net *net, 5380 const union sctp_addr *laddr, 5381 const union sctp_addr *paddr, void *p) 5382 { 5383 struct sctp_transport *transport; 5384 int err; 5385 5386 rcu_read_lock(); 5387 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5388 rcu_read_unlock(); 5389 if (!transport) 5390 return -ENOENT; 5391 5392 err = cb(transport, p); 5393 sctp_transport_put(transport); 5394 5395 return err; 5396 } 5397 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5398 5399 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5400 int (*cb_done)(struct sctp_transport *, void *), 5401 struct net *net, int *pos, void *p) { 5402 struct rhashtable_iter hti; 5403 struct sctp_transport *tsp; 5404 int ret; 5405 5406 again: 5407 ret = 0; 5408 sctp_transport_walk_start(&hti); 5409 5410 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5411 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5412 ret = cb(tsp, p); 5413 if (ret) 5414 break; 5415 (*pos)++; 5416 sctp_transport_put(tsp); 5417 } 5418 sctp_transport_walk_stop(&hti); 5419 5420 if (ret) { 5421 if (cb_done && !cb_done(tsp, p)) { 5422 (*pos)++; 5423 sctp_transport_put(tsp); 5424 goto again; 5425 } 5426 sctp_transport_put(tsp); 5427 } 5428 5429 return ret; 5430 } 5431 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5432 5433 /* 7.2.1 Association Status (SCTP_STATUS) 5434 5435 * Applications can retrieve current status information about an 5436 * association, including association state, peer receiver window size, 5437 * number of unacked data chunks, and number of data chunks pending 5438 * receipt. This information is read-only. 5439 */ 5440 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5441 char __user *optval, 5442 int __user *optlen) 5443 { 5444 struct sctp_status status; 5445 struct sctp_association *asoc = NULL; 5446 struct sctp_transport *transport; 5447 sctp_assoc_t associd; 5448 int retval = 0; 5449 5450 if (len < sizeof(status)) { 5451 retval = -EINVAL; 5452 goto out; 5453 } 5454 5455 len = sizeof(status); 5456 if (copy_from_user(&status, optval, len)) { 5457 retval = -EFAULT; 5458 goto out; 5459 } 5460 5461 associd = status.sstat_assoc_id; 5462 asoc = sctp_id2assoc(sk, associd); 5463 if (!asoc) { 5464 retval = -EINVAL; 5465 goto out; 5466 } 5467 5468 transport = asoc->peer.primary_path; 5469 5470 status.sstat_assoc_id = sctp_assoc2id(asoc); 5471 status.sstat_state = sctp_assoc_to_state(asoc); 5472 status.sstat_rwnd = asoc->peer.rwnd; 5473 status.sstat_unackdata = asoc->unack_data; 5474 5475 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5476 status.sstat_instrms = asoc->stream.incnt; 5477 status.sstat_outstrms = asoc->stream.outcnt; 5478 status.sstat_fragmentation_point = asoc->frag_point; 5479 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5480 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5481 transport->af_specific->sockaddr_len); 5482 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5483 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5484 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5485 status.sstat_primary.spinfo_state = transport->state; 5486 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5487 status.sstat_primary.spinfo_srtt = transport->srtt; 5488 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5489 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5490 5491 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5492 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5493 5494 if (put_user(len, optlen)) { 5495 retval = -EFAULT; 5496 goto out; 5497 } 5498 5499 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5500 __func__, len, status.sstat_state, status.sstat_rwnd, 5501 status.sstat_assoc_id); 5502 5503 if (copy_to_user(optval, &status, len)) { 5504 retval = -EFAULT; 5505 goto out; 5506 } 5507 5508 out: 5509 return retval; 5510 } 5511 5512 5513 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5514 * 5515 * Applications can retrieve information about a specific peer address 5516 * of an association, including its reachability state, congestion 5517 * window, and retransmission timer values. This information is 5518 * read-only. 5519 */ 5520 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5521 char __user *optval, 5522 int __user *optlen) 5523 { 5524 struct sctp_paddrinfo pinfo; 5525 struct sctp_transport *transport; 5526 int retval = 0; 5527 5528 if (len < sizeof(pinfo)) { 5529 retval = -EINVAL; 5530 goto out; 5531 } 5532 5533 len = sizeof(pinfo); 5534 if (copy_from_user(&pinfo, optval, len)) { 5535 retval = -EFAULT; 5536 goto out; 5537 } 5538 5539 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5540 pinfo.spinfo_assoc_id); 5541 if (!transport) 5542 return -EINVAL; 5543 5544 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5545 pinfo.spinfo_state = transport->state; 5546 pinfo.spinfo_cwnd = transport->cwnd; 5547 pinfo.spinfo_srtt = transport->srtt; 5548 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5549 pinfo.spinfo_mtu = transport->pathmtu; 5550 5551 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5552 pinfo.spinfo_state = SCTP_ACTIVE; 5553 5554 if (put_user(len, optlen)) { 5555 retval = -EFAULT; 5556 goto out; 5557 } 5558 5559 if (copy_to_user(optval, &pinfo, len)) { 5560 retval = -EFAULT; 5561 goto out; 5562 } 5563 5564 out: 5565 return retval; 5566 } 5567 5568 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5569 * 5570 * This option is a on/off flag. If enabled no SCTP message 5571 * fragmentation will be performed. Instead if a message being sent 5572 * exceeds the current PMTU size, the message will NOT be sent and 5573 * instead a error will be indicated to the user. 5574 */ 5575 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5576 char __user *optval, int __user *optlen) 5577 { 5578 int val; 5579 5580 if (len < sizeof(int)) 5581 return -EINVAL; 5582 5583 len = sizeof(int); 5584 val = (sctp_sk(sk)->disable_fragments == 1); 5585 if (put_user(len, optlen)) 5586 return -EFAULT; 5587 if (copy_to_user(optval, &val, len)) 5588 return -EFAULT; 5589 return 0; 5590 } 5591 5592 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5593 * 5594 * This socket option is used to specify various notifications and 5595 * ancillary data the user wishes to receive. 5596 */ 5597 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5598 int __user *optlen) 5599 { 5600 struct sctp_event_subscribe subscribe; 5601 __u8 *sn_type = (__u8 *)&subscribe; 5602 int i; 5603 5604 if (len == 0) 5605 return -EINVAL; 5606 if (len > sizeof(struct sctp_event_subscribe)) 5607 len = sizeof(struct sctp_event_subscribe); 5608 if (put_user(len, optlen)) 5609 return -EFAULT; 5610 5611 for (i = 0; i < len; i++) 5612 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5613 SCTP_SN_TYPE_BASE + i); 5614 5615 if (copy_to_user(optval, &subscribe, len)) 5616 return -EFAULT; 5617 5618 return 0; 5619 } 5620 5621 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5622 * 5623 * This socket option is applicable to the UDP-style socket only. When 5624 * set it will cause associations that are idle for more than the 5625 * specified number of seconds to automatically close. An association 5626 * being idle is defined an association that has NOT sent or received 5627 * user data. The special value of '0' indicates that no automatic 5628 * close of any associations should be performed. The option expects an 5629 * integer defining the number of seconds of idle time before an 5630 * association is closed. 5631 */ 5632 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5633 { 5634 /* Applicable to UDP-style socket only */ 5635 if (sctp_style(sk, TCP)) 5636 return -EOPNOTSUPP; 5637 if (len < sizeof(int)) 5638 return -EINVAL; 5639 len = sizeof(int); 5640 if (put_user(len, optlen)) 5641 return -EFAULT; 5642 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5643 return -EFAULT; 5644 return 0; 5645 } 5646 5647 /* Helper routine to branch off an association to a new socket. */ 5648 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5649 { 5650 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5651 struct sctp_sock *sp = sctp_sk(sk); 5652 struct socket *sock; 5653 int err = 0; 5654 5655 /* Do not peel off from one netns to another one. */ 5656 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5657 return -EINVAL; 5658 5659 if (!asoc) 5660 return -EINVAL; 5661 5662 /* An association cannot be branched off from an already peeled-off 5663 * socket, nor is this supported for tcp style sockets. 5664 */ 5665 if (!sctp_style(sk, UDP)) 5666 return -EINVAL; 5667 5668 /* Create a new socket. */ 5669 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5670 if (err < 0) 5671 return err; 5672 5673 sctp_copy_sock(sock->sk, sk, asoc); 5674 5675 /* Make peeled-off sockets more like 1-1 accepted sockets. 5676 * Set the daddr and initialize id to something more random and also 5677 * copy over any ip options. 5678 */ 5679 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5680 sp->pf->copy_ip_options(sk, sock->sk); 5681 5682 /* Populate the fields of the newsk from the oldsk and migrate the 5683 * asoc to the newsk. 5684 */ 5685 err = sctp_sock_migrate(sk, sock->sk, asoc, 5686 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5687 if (err) { 5688 sock_release(sock); 5689 sock = NULL; 5690 } 5691 5692 *sockp = sock; 5693 5694 return err; 5695 } 5696 EXPORT_SYMBOL(sctp_do_peeloff); 5697 5698 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5699 struct file **newfile, unsigned flags) 5700 { 5701 struct socket *newsock; 5702 int retval; 5703 5704 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5705 if (retval < 0) 5706 goto out; 5707 5708 /* Map the socket to an unused fd that can be returned to the user. */ 5709 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5710 if (retval < 0) { 5711 sock_release(newsock); 5712 goto out; 5713 } 5714 5715 *newfile = sock_alloc_file(newsock, 0, NULL); 5716 if (IS_ERR(*newfile)) { 5717 put_unused_fd(retval); 5718 retval = PTR_ERR(*newfile); 5719 *newfile = NULL; 5720 return retval; 5721 } 5722 5723 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5724 retval); 5725 5726 peeloff->sd = retval; 5727 5728 if (flags & SOCK_NONBLOCK) 5729 (*newfile)->f_flags |= O_NONBLOCK; 5730 out: 5731 return retval; 5732 } 5733 5734 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5735 { 5736 sctp_peeloff_arg_t peeloff; 5737 struct file *newfile = NULL; 5738 int retval = 0; 5739 5740 if (len < sizeof(sctp_peeloff_arg_t)) 5741 return -EINVAL; 5742 len = sizeof(sctp_peeloff_arg_t); 5743 if (copy_from_user(&peeloff, optval, len)) 5744 return -EFAULT; 5745 5746 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5747 if (retval < 0) 5748 goto out; 5749 5750 /* Return the fd mapped to the new socket. */ 5751 if (put_user(len, optlen)) { 5752 fput(newfile); 5753 put_unused_fd(retval); 5754 return -EFAULT; 5755 } 5756 5757 if (copy_to_user(optval, &peeloff, len)) { 5758 fput(newfile); 5759 put_unused_fd(retval); 5760 return -EFAULT; 5761 } 5762 fd_install(retval, newfile); 5763 out: 5764 return retval; 5765 } 5766 5767 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5768 char __user *optval, int __user *optlen) 5769 { 5770 sctp_peeloff_flags_arg_t peeloff; 5771 struct file *newfile = NULL; 5772 int retval = 0; 5773 5774 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5775 return -EINVAL; 5776 len = sizeof(sctp_peeloff_flags_arg_t); 5777 if (copy_from_user(&peeloff, optval, len)) 5778 return -EFAULT; 5779 5780 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5781 &newfile, peeloff.flags); 5782 if (retval < 0) 5783 goto out; 5784 5785 /* Return the fd mapped to the new socket. */ 5786 if (put_user(len, optlen)) { 5787 fput(newfile); 5788 put_unused_fd(retval); 5789 return -EFAULT; 5790 } 5791 5792 if (copy_to_user(optval, &peeloff, len)) { 5793 fput(newfile); 5794 put_unused_fd(retval); 5795 return -EFAULT; 5796 } 5797 fd_install(retval, newfile); 5798 out: 5799 return retval; 5800 } 5801 5802 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5803 * 5804 * Applications can enable or disable heartbeats for any peer address of 5805 * an association, modify an address's heartbeat interval, force a 5806 * heartbeat to be sent immediately, and adjust the address's maximum 5807 * number of retransmissions sent before an address is considered 5808 * unreachable. The following structure is used to access and modify an 5809 * address's parameters: 5810 * 5811 * struct sctp_paddrparams { 5812 * sctp_assoc_t spp_assoc_id; 5813 * struct sockaddr_storage spp_address; 5814 * uint32_t spp_hbinterval; 5815 * uint16_t spp_pathmaxrxt; 5816 * uint32_t spp_pathmtu; 5817 * uint32_t spp_sackdelay; 5818 * uint32_t spp_flags; 5819 * }; 5820 * 5821 * spp_assoc_id - (one-to-many style socket) This is filled in the 5822 * application, and identifies the association for 5823 * this query. 5824 * spp_address - This specifies which address is of interest. 5825 * spp_hbinterval - This contains the value of the heartbeat interval, 5826 * in milliseconds. If a value of zero 5827 * is present in this field then no changes are to 5828 * be made to this parameter. 5829 * spp_pathmaxrxt - This contains the maximum number of 5830 * retransmissions before this address shall be 5831 * considered unreachable. If a value of zero 5832 * is present in this field then no changes are to 5833 * be made to this parameter. 5834 * spp_pathmtu - When Path MTU discovery is disabled the value 5835 * specified here will be the "fixed" path mtu. 5836 * Note that if the spp_address field is empty 5837 * then all associations on this address will 5838 * have this fixed path mtu set upon them. 5839 * 5840 * spp_sackdelay - When delayed sack is enabled, this value specifies 5841 * the number of milliseconds that sacks will be delayed 5842 * for. This value will apply to all addresses of an 5843 * association if the spp_address field is empty. Note 5844 * also, that if delayed sack is enabled and this 5845 * value is set to 0, no change is made to the last 5846 * recorded delayed sack timer value. 5847 * 5848 * spp_flags - These flags are used to control various features 5849 * on an association. The flag field may contain 5850 * zero or more of the following options. 5851 * 5852 * SPP_HB_ENABLE - Enable heartbeats on the 5853 * specified address. Note that if the address 5854 * field is empty all addresses for the association 5855 * have heartbeats enabled upon them. 5856 * 5857 * SPP_HB_DISABLE - Disable heartbeats on the 5858 * speicifed address. Note that if the address 5859 * field is empty all addresses for the association 5860 * will have their heartbeats disabled. Note also 5861 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5862 * mutually exclusive, only one of these two should 5863 * be specified. Enabling both fields will have 5864 * undetermined results. 5865 * 5866 * SPP_HB_DEMAND - Request a user initiated heartbeat 5867 * to be made immediately. 5868 * 5869 * SPP_PMTUD_ENABLE - This field will enable PMTU 5870 * discovery upon the specified address. Note that 5871 * if the address feild is empty then all addresses 5872 * on the association are effected. 5873 * 5874 * SPP_PMTUD_DISABLE - This field will disable PMTU 5875 * discovery upon the specified address. Note that 5876 * if the address feild is empty then all addresses 5877 * on the association are effected. Not also that 5878 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5879 * exclusive. Enabling both will have undetermined 5880 * results. 5881 * 5882 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5883 * on delayed sack. The time specified in spp_sackdelay 5884 * is used to specify the sack delay for this address. Note 5885 * that if spp_address is empty then all addresses will 5886 * enable delayed sack and take on the sack delay 5887 * value specified in spp_sackdelay. 5888 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5889 * off delayed sack. If the spp_address field is blank then 5890 * delayed sack is disabled for the entire association. Note 5891 * also that this field is mutually exclusive to 5892 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5893 * results. 5894 * 5895 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5896 * setting of the IPV6 flow label value. The value is 5897 * contained in the spp_ipv6_flowlabel field. 5898 * Upon retrieval, this flag will be set to indicate that 5899 * the spp_ipv6_flowlabel field has a valid value returned. 5900 * If a specific destination address is set (in the 5901 * spp_address field), then the value returned is that of 5902 * the address. If just an association is specified (and 5903 * no address), then the association's default flow label 5904 * is returned. If neither an association nor a destination 5905 * is specified, then the socket's default flow label is 5906 * returned. For non-IPv6 sockets, this flag will be left 5907 * cleared. 5908 * 5909 * SPP_DSCP: Setting this flag enables the setting of the 5910 * Differentiated Services Code Point (DSCP) value 5911 * associated with either the association or a specific 5912 * address. The value is obtained in the spp_dscp field. 5913 * Upon retrieval, this flag will be set to indicate that 5914 * the spp_dscp field has a valid value returned. If a 5915 * specific destination address is set when called (in the 5916 * spp_address field), then that specific destination 5917 * address's DSCP value is returned. If just an association 5918 * is specified, then the association's default DSCP is 5919 * returned. If neither an association nor a destination is 5920 * specified, then the socket's default DSCP is returned. 5921 * 5922 * spp_ipv6_flowlabel 5923 * - This field is used in conjunction with the 5924 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5925 * The 20 least significant bits are used for the flow 5926 * label. This setting has precedence over any IPv6-layer 5927 * setting. 5928 * 5929 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5930 * and contains the DSCP. The 6 most significant bits are 5931 * used for the DSCP. This setting has precedence over any 5932 * IPv4- or IPv6- layer setting. 5933 */ 5934 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5935 char __user *optval, int __user *optlen) 5936 { 5937 struct sctp_paddrparams params; 5938 struct sctp_transport *trans = NULL; 5939 struct sctp_association *asoc = NULL; 5940 struct sctp_sock *sp = sctp_sk(sk); 5941 5942 if (len >= sizeof(params)) 5943 len = sizeof(params); 5944 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5945 spp_ipv6_flowlabel), 4)) 5946 len = ALIGN(offsetof(struct sctp_paddrparams, 5947 spp_ipv6_flowlabel), 4); 5948 else 5949 return -EINVAL; 5950 5951 if (copy_from_user(¶ms, optval, len)) 5952 return -EFAULT; 5953 5954 /* If an address other than INADDR_ANY is specified, and 5955 * no transport is found, then the request is invalid. 5956 */ 5957 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5958 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5959 params.spp_assoc_id); 5960 if (!trans) { 5961 pr_debug("%s: failed no transport\n", __func__); 5962 return -EINVAL; 5963 } 5964 } 5965 5966 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5967 * socket is a one to many style socket, and an association 5968 * was not found, then the id was invalid. 5969 */ 5970 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5971 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5972 sctp_style(sk, UDP)) { 5973 pr_debug("%s: failed no association\n", __func__); 5974 return -EINVAL; 5975 } 5976 5977 if (trans) { 5978 /* Fetch transport values. */ 5979 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5980 params.spp_pathmtu = trans->pathmtu; 5981 params.spp_pathmaxrxt = trans->pathmaxrxt; 5982 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5983 5984 /*draft-11 doesn't say what to return in spp_flags*/ 5985 params.spp_flags = trans->param_flags; 5986 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5987 params.spp_ipv6_flowlabel = trans->flowlabel & 5988 SCTP_FLOWLABEL_VAL_MASK; 5989 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5990 } 5991 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5992 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5993 params.spp_flags |= SPP_DSCP; 5994 } 5995 } else if (asoc) { 5996 /* Fetch association values. */ 5997 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5998 params.spp_pathmtu = asoc->pathmtu; 5999 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6000 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6001 6002 /*draft-11 doesn't say what to return in spp_flags*/ 6003 params.spp_flags = asoc->param_flags; 6004 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6005 params.spp_ipv6_flowlabel = asoc->flowlabel & 6006 SCTP_FLOWLABEL_VAL_MASK; 6007 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6008 } 6009 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6010 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6011 params.spp_flags |= SPP_DSCP; 6012 } 6013 } else { 6014 /* Fetch socket values. */ 6015 params.spp_hbinterval = sp->hbinterval; 6016 params.spp_pathmtu = sp->pathmtu; 6017 params.spp_sackdelay = sp->sackdelay; 6018 params.spp_pathmaxrxt = sp->pathmaxrxt; 6019 6020 /*draft-11 doesn't say what to return in spp_flags*/ 6021 params.spp_flags = sp->param_flags; 6022 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6023 params.spp_ipv6_flowlabel = sp->flowlabel & 6024 SCTP_FLOWLABEL_VAL_MASK; 6025 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6026 } 6027 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6028 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6029 params.spp_flags |= SPP_DSCP; 6030 } 6031 } 6032 6033 if (copy_to_user(optval, ¶ms, len)) 6034 return -EFAULT; 6035 6036 if (put_user(len, optlen)) 6037 return -EFAULT; 6038 6039 return 0; 6040 } 6041 6042 /* 6043 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6044 * 6045 * This option will effect the way delayed acks are performed. This 6046 * option allows you to get or set the delayed ack time, in 6047 * milliseconds. It also allows changing the delayed ack frequency. 6048 * Changing the frequency to 1 disables the delayed sack algorithm. If 6049 * the assoc_id is 0, then this sets or gets the endpoints default 6050 * values. If the assoc_id field is non-zero, then the set or get 6051 * effects the specified association for the one to many model (the 6052 * assoc_id field is ignored by the one to one model). Note that if 6053 * sack_delay or sack_freq are 0 when setting this option, then the 6054 * current values will remain unchanged. 6055 * 6056 * struct sctp_sack_info { 6057 * sctp_assoc_t sack_assoc_id; 6058 * uint32_t sack_delay; 6059 * uint32_t sack_freq; 6060 * }; 6061 * 6062 * sack_assoc_id - This parameter, indicates which association the user 6063 * is performing an action upon. Note that if this field's value is 6064 * zero then the endpoints default value is changed (effecting future 6065 * associations only). 6066 * 6067 * sack_delay - This parameter contains the number of milliseconds that 6068 * the user is requesting the delayed ACK timer be set to. Note that 6069 * this value is defined in the standard to be between 200 and 500 6070 * milliseconds. 6071 * 6072 * sack_freq - This parameter contains the number of packets that must 6073 * be received before a sack is sent without waiting for the delay 6074 * timer to expire. The default value for this is 2, setting this 6075 * value to 1 will disable the delayed sack algorithm. 6076 */ 6077 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6078 char __user *optval, 6079 int __user *optlen) 6080 { 6081 struct sctp_sack_info params; 6082 struct sctp_association *asoc = NULL; 6083 struct sctp_sock *sp = sctp_sk(sk); 6084 6085 if (len >= sizeof(struct sctp_sack_info)) { 6086 len = sizeof(struct sctp_sack_info); 6087 6088 if (copy_from_user(¶ms, optval, len)) 6089 return -EFAULT; 6090 } else if (len == sizeof(struct sctp_assoc_value)) { 6091 pr_warn_ratelimited(DEPRECATED 6092 "%s (pid %d) " 6093 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6094 "Use struct sctp_sack_info instead\n", 6095 current->comm, task_pid_nr(current)); 6096 if (copy_from_user(¶ms, optval, len)) 6097 return -EFAULT; 6098 } else 6099 return -EINVAL; 6100 6101 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6102 * socket is a one to many style socket, and an association 6103 * was not found, then the id was invalid. 6104 */ 6105 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6106 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6107 sctp_style(sk, UDP)) 6108 return -EINVAL; 6109 6110 if (asoc) { 6111 /* Fetch association values. */ 6112 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6113 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6114 params.sack_freq = asoc->sackfreq; 6115 6116 } else { 6117 params.sack_delay = 0; 6118 params.sack_freq = 1; 6119 } 6120 } else { 6121 /* Fetch socket values. */ 6122 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6123 params.sack_delay = sp->sackdelay; 6124 params.sack_freq = sp->sackfreq; 6125 } else { 6126 params.sack_delay = 0; 6127 params.sack_freq = 1; 6128 } 6129 } 6130 6131 if (copy_to_user(optval, ¶ms, len)) 6132 return -EFAULT; 6133 6134 if (put_user(len, optlen)) 6135 return -EFAULT; 6136 6137 return 0; 6138 } 6139 6140 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6141 * 6142 * Applications can specify protocol parameters for the default association 6143 * initialization. The option name argument to setsockopt() and getsockopt() 6144 * is SCTP_INITMSG. 6145 * 6146 * Setting initialization parameters is effective only on an unconnected 6147 * socket (for UDP-style sockets only future associations are effected 6148 * by the change). With TCP-style sockets, this option is inherited by 6149 * sockets derived from a listener socket. 6150 */ 6151 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6152 { 6153 if (len < sizeof(struct sctp_initmsg)) 6154 return -EINVAL; 6155 len = sizeof(struct sctp_initmsg); 6156 if (put_user(len, optlen)) 6157 return -EFAULT; 6158 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6159 return -EFAULT; 6160 return 0; 6161 } 6162 6163 6164 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6165 char __user *optval, int __user *optlen) 6166 { 6167 struct sctp_association *asoc; 6168 int cnt = 0; 6169 struct sctp_getaddrs getaddrs; 6170 struct sctp_transport *from; 6171 void __user *to; 6172 union sctp_addr temp; 6173 struct sctp_sock *sp = sctp_sk(sk); 6174 int addrlen; 6175 size_t space_left; 6176 int bytes_copied; 6177 6178 if (len < sizeof(struct sctp_getaddrs)) 6179 return -EINVAL; 6180 6181 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6182 return -EFAULT; 6183 6184 /* For UDP-style sockets, id specifies the association to query. */ 6185 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6186 if (!asoc) 6187 return -EINVAL; 6188 6189 to = optval + offsetof(struct sctp_getaddrs, addrs); 6190 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6191 6192 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6193 transports) { 6194 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6195 addrlen = sctp_get_pf_specific(sk->sk_family) 6196 ->addr_to_user(sp, &temp); 6197 if (space_left < addrlen) 6198 return -ENOMEM; 6199 if (copy_to_user(to, &temp, addrlen)) 6200 return -EFAULT; 6201 to += addrlen; 6202 cnt++; 6203 space_left -= addrlen; 6204 } 6205 6206 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6207 return -EFAULT; 6208 bytes_copied = ((char __user *)to) - optval; 6209 if (put_user(bytes_copied, optlen)) 6210 return -EFAULT; 6211 6212 return 0; 6213 } 6214 6215 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6216 size_t space_left, int *bytes_copied) 6217 { 6218 struct sctp_sockaddr_entry *addr; 6219 union sctp_addr temp; 6220 int cnt = 0; 6221 int addrlen; 6222 struct net *net = sock_net(sk); 6223 6224 rcu_read_lock(); 6225 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6226 if (!addr->valid) 6227 continue; 6228 6229 if ((PF_INET == sk->sk_family) && 6230 (AF_INET6 == addr->a.sa.sa_family)) 6231 continue; 6232 if ((PF_INET6 == sk->sk_family) && 6233 inet_v6_ipv6only(sk) && 6234 (AF_INET == addr->a.sa.sa_family)) 6235 continue; 6236 memcpy(&temp, &addr->a, sizeof(temp)); 6237 if (!temp.v4.sin_port) 6238 temp.v4.sin_port = htons(port); 6239 6240 addrlen = sctp_get_pf_specific(sk->sk_family) 6241 ->addr_to_user(sctp_sk(sk), &temp); 6242 6243 if (space_left < addrlen) { 6244 cnt = -ENOMEM; 6245 break; 6246 } 6247 memcpy(to, &temp, addrlen); 6248 6249 to += addrlen; 6250 cnt++; 6251 space_left -= addrlen; 6252 *bytes_copied += addrlen; 6253 } 6254 rcu_read_unlock(); 6255 6256 return cnt; 6257 } 6258 6259 6260 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6261 char __user *optval, int __user *optlen) 6262 { 6263 struct sctp_bind_addr *bp; 6264 struct sctp_association *asoc; 6265 int cnt = 0; 6266 struct sctp_getaddrs getaddrs; 6267 struct sctp_sockaddr_entry *addr; 6268 void __user *to; 6269 union sctp_addr temp; 6270 struct sctp_sock *sp = sctp_sk(sk); 6271 int addrlen; 6272 int err = 0; 6273 size_t space_left; 6274 int bytes_copied = 0; 6275 void *addrs; 6276 void *buf; 6277 6278 if (len < sizeof(struct sctp_getaddrs)) 6279 return -EINVAL; 6280 6281 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6282 return -EFAULT; 6283 6284 /* 6285 * For UDP-style sockets, id specifies the association to query. 6286 * If the id field is set to the value '0' then the locally bound 6287 * addresses are returned without regard to any particular 6288 * association. 6289 */ 6290 if (0 == getaddrs.assoc_id) { 6291 bp = &sctp_sk(sk)->ep->base.bind_addr; 6292 } else { 6293 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6294 if (!asoc) 6295 return -EINVAL; 6296 bp = &asoc->base.bind_addr; 6297 } 6298 6299 to = optval + offsetof(struct sctp_getaddrs, addrs); 6300 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6301 6302 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6303 if (!addrs) 6304 return -ENOMEM; 6305 6306 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6307 * addresses from the global local address list. 6308 */ 6309 if (sctp_list_single_entry(&bp->address_list)) { 6310 addr = list_entry(bp->address_list.next, 6311 struct sctp_sockaddr_entry, list); 6312 if (sctp_is_any(sk, &addr->a)) { 6313 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6314 space_left, &bytes_copied); 6315 if (cnt < 0) { 6316 err = cnt; 6317 goto out; 6318 } 6319 goto copy_getaddrs; 6320 } 6321 } 6322 6323 buf = addrs; 6324 /* Protection on the bound address list is not needed since 6325 * in the socket option context we hold a socket lock and 6326 * thus the bound address list can't change. 6327 */ 6328 list_for_each_entry(addr, &bp->address_list, list) { 6329 memcpy(&temp, &addr->a, sizeof(temp)); 6330 addrlen = sctp_get_pf_specific(sk->sk_family) 6331 ->addr_to_user(sp, &temp); 6332 if (space_left < addrlen) { 6333 err = -ENOMEM; /*fixme: right error?*/ 6334 goto out; 6335 } 6336 memcpy(buf, &temp, addrlen); 6337 buf += addrlen; 6338 bytes_copied += addrlen; 6339 cnt++; 6340 space_left -= addrlen; 6341 } 6342 6343 copy_getaddrs: 6344 if (copy_to_user(to, addrs, bytes_copied)) { 6345 err = -EFAULT; 6346 goto out; 6347 } 6348 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6349 err = -EFAULT; 6350 goto out; 6351 } 6352 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6353 * but we can't change it anymore. 6354 */ 6355 if (put_user(bytes_copied, optlen)) 6356 err = -EFAULT; 6357 out: 6358 kfree(addrs); 6359 return err; 6360 } 6361 6362 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6363 * 6364 * Requests that the local SCTP stack use the enclosed peer address as 6365 * the association primary. The enclosed address must be one of the 6366 * association peer's addresses. 6367 */ 6368 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6369 char __user *optval, int __user *optlen) 6370 { 6371 struct sctp_prim prim; 6372 struct sctp_association *asoc; 6373 struct sctp_sock *sp = sctp_sk(sk); 6374 6375 if (len < sizeof(struct sctp_prim)) 6376 return -EINVAL; 6377 6378 len = sizeof(struct sctp_prim); 6379 6380 if (copy_from_user(&prim, optval, len)) 6381 return -EFAULT; 6382 6383 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6384 if (!asoc) 6385 return -EINVAL; 6386 6387 if (!asoc->peer.primary_path) 6388 return -ENOTCONN; 6389 6390 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6391 asoc->peer.primary_path->af_specific->sockaddr_len); 6392 6393 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6394 (union sctp_addr *)&prim.ssp_addr); 6395 6396 if (put_user(len, optlen)) 6397 return -EFAULT; 6398 if (copy_to_user(optval, &prim, len)) 6399 return -EFAULT; 6400 6401 return 0; 6402 } 6403 6404 /* 6405 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6406 * 6407 * Requests that the local endpoint set the specified Adaptation Layer 6408 * Indication parameter for all future INIT and INIT-ACK exchanges. 6409 */ 6410 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6411 char __user *optval, int __user *optlen) 6412 { 6413 struct sctp_setadaptation adaptation; 6414 6415 if (len < sizeof(struct sctp_setadaptation)) 6416 return -EINVAL; 6417 6418 len = sizeof(struct sctp_setadaptation); 6419 6420 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6421 6422 if (put_user(len, optlen)) 6423 return -EFAULT; 6424 if (copy_to_user(optval, &adaptation, len)) 6425 return -EFAULT; 6426 6427 return 0; 6428 } 6429 6430 /* 6431 * 6432 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6433 * 6434 * Applications that wish to use the sendto() system call may wish to 6435 * specify a default set of parameters that would normally be supplied 6436 * through the inclusion of ancillary data. This socket option allows 6437 * such an application to set the default sctp_sndrcvinfo structure. 6438 6439 6440 * The application that wishes to use this socket option simply passes 6441 * in to this call the sctp_sndrcvinfo structure defined in Section 6442 * 5.2.2) The input parameters accepted by this call include 6443 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6444 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6445 * to this call if the caller is using the UDP model. 6446 * 6447 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6448 */ 6449 static int sctp_getsockopt_default_send_param(struct sock *sk, 6450 int len, char __user *optval, 6451 int __user *optlen) 6452 { 6453 struct sctp_sock *sp = sctp_sk(sk); 6454 struct sctp_association *asoc; 6455 struct sctp_sndrcvinfo info; 6456 6457 if (len < sizeof(info)) 6458 return -EINVAL; 6459 6460 len = sizeof(info); 6461 6462 if (copy_from_user(&info, optval, len)) 6463 return -EFAULT; 6464 6465 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6466 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6467 sctp_style(sk, UDP)) 6468 return -EINVAL; 6469 6470 if (asoc) { 6471 info.sinfo_stream = asoc->default_stream; 6472 info.sinfo_flags = asoc->default_flags; 6473 info.sinfo_ppid = asoc->default_ppid; 6474 info.sinfo_context = asoc->default_context; 6475 info.sinfo_timetolive = asoc->default_timetolive; 6476 } else { 6477 info.sinfo_stream = sp->default_stream; 6478 info.sinfo_flags = sp->default_flags; 6479 info.sinfo_ppid = sp->default_ppid; 6480 info.sinfo_context = sp->default_context; 6481 info.sinfo_timetolive = sp->default_timetolive; 6482 } 6483 6484 if (put_user(len, optlen)) 6485 return -EFAULT; 6486 if (copy_to_user(optval, &info, len)) 6487 return -EFAULT; 6488 6489 return 0; 6490 } 6491 6492 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6493 * (SCTP_DEFAULT_SNDINFO) 6494 */ 6495 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6496 char __user *optval, 6497 int __user *optlen) 6498 { 6499 struct sctp_sock *sp = sctp_sk(sk); 6500 struct sctp_association *asoc; 6501 struct sctp_sndinfo info; 6502 6503 if (len < sizeof(info)) 6504 return -EINVAL; 6505 6506 len = sizeof(info); 6507 6508 if (copy_from_user(&info, optval, len)) 6509 return -EFAULT; 6510 6511 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6512 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6513 sctp_style(sk, UDP)) 6514 return -EINVAL; 6515 6516 if (asoc) { 6517 info.snd_sid = asoc->default_stream; 6518 info.snd_flags = asoc->default_flags; 6519 info.snd_ppid = asoc->default_ppid; 6520 info.snd_context = asoc->default_context; 6521 } else { 6522 info.snd_sid = sp->default_stream; 6523 info.snd_flags = sp->default_flags; 6524 info.snd_ppid = sp->default_ppid; 6525 info.snd_context = sp->default_context; 6526 } 6527 6528 if (put_user(len, optlen)) 6529 return -EFAULT; 6530 if (copy_to_user(optval, &info, len)) 6531 return -EFAULT; 6532 6533 return 0; 6534 } 6535 6536 /* 6537 * 6538 * 7.1.5 SCTP_NODELAY 6539 * 6540 * Turn on/off any Nagle-like algorithm. This means that packets are 6541 * generally sent as soon as possible and no unnecessary delays are 6542 * introduced, at the cost of more packets in the network. Expects an 6543 * integer boolean flag. 6544 */ 6545 6546 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6547 char __user *optval, int __user *optlen) 6548 { 6549 int val; 6550 6551 if (len < sizeof(int)) 6552 return -EINVAL; 6553 6554 len = sizeof(int); 6555 val = (sctp_sk(sk)->nodelay == 1); 6556 if (put_user(len, optlen)) 6557 return -EFAULT; 6558 if (copy_to_user(optval, &val, len)) 6559 return -EFAULT; 6560 return 0; 6561 } 6562 6563 /* 6564 * 6565 * 7.1.1 SCTP_RTOINFO 6566 * 6567 * The protocol parameters used to initialize and bound retransmission 6568 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6569 * and modify these parameters. 6570 * All parameters are time values, in milliseconds. A value of 0, when 6571 * modifying the parameters, indicates that the current value should not 6572 * be changed. 6573 * 6574 */ 6575 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6576 char __user *optval, 6577 int __user *optlen) { 6578 struct sctp_rtoinfo rtoinfo; 6579 struct sctp_association *asoc; 6580 6581 if (len < sizeof (struct sctp_rtoinfo)) 6582 return -EINVAL; 6583 6584 len = sizeof(struct sctp_rtoinfo); 6585 6586 if (copy_from_user(&rtoinfo, optval, len)) 6587 return -EFAULT; 6588 6589 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6590 6591 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6592 sctp_style(sk, UDP)) 6593 return -EINVAL; 6594 6595 /* Values corresponding to the specific association. */ 6596 if (asoc) { 6597 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6598 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6599 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6600 } else { 6601 /* Values corresponding to the endpoint. */ 6602 struct sctp_sock *sp = sctp_sk(sk); 6603 6604 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6605 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6606 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6607 } 6608 6609 if (put_user(len, optlen)) 6610 return -EFAULT; 6611 6612 if (copy_to_user(optval, &rtoinfo, len)) 6613 return -EFAULT; 6614 6615 return 0; 6616 } 6617 6618 /* 6619 * 6620 * 7.1.2 SCTP_ASSOCINFO 6621 * 6622 * This option is used to tune the maximum retransmission attempts 6623 * of the association. 6624 * Returns an error if the new association retransmission value is 6625 * greater than the sum of the retransmission value of the peer. 6626 * See [SCTP] for more information. 6627 * 6628 */ 6629 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6630 char __user *optval, 6631 int __user *optlen) 6632 { 6633 6634 struct sctp_assocparams assocparams; 6635 struct sctp_association *asoc; 6636 struct list_head *pos; 6637 int cnt = 0; 6638 6639 if (len < sizeof (struct sctp_assocparams)) 6640 return -EINVAL; 6641 6642 len = sizeof(struct sctp_assocparams); 6643 6644 if (copy_from_user(&assocparams, optval, len)) 6645 return -EFAULT; 6646 6647 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6648 6649 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6650 sctp_style(sk, UDP)) 6651 return -EINVAL; 6652 6653 /* Values correspoinding to the specific association */ 6654 if (asoc) { 6655 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6656 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6657 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6658 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6659 6660 list_for_each(pos, &asoc->peer.transport_addr_list) { 6661 cnt++; 6662 } 6663 6664 assocparams.sasoc_number_peer_destinations = cnt; 6665 } else { 6666 /* Values corresponding to the endpoint */ 6667 struct sctp_sock *sp = sctp_sk(sk); 6668 6669 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6670 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6671 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6672 assocparams.sasoc_cookie_life = 6673 sp->assocparams.sasoc_cookie_life; 6674 assocparams.sasoc_number_peer_destinations = 6675 sp->assocparams. 6676 sasoc_number_peer_destinations; 6677 } 6678 6679 if (put_user(len, optlen)) 6680 return -EFAULT; 6681 6682 if (copy_to_user(optval, &assocparams, len)) 6683 return -EFAULT; 6684 6685 return 0; 6686 } 6687 6688 /* 6689 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6690 * 6691 * This socket option is a boolean flag which turns on or off mapped V4 6692 * addresses. If this option is turned on and the socket is type 6693 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6694 * If this option is turned off, then no mapping will be done of V4 6695 * addresses and a user will receive both PF_INET6 and PF_INET type 6696 * addresses on the socket. 6697 */ 6698 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6699 char __user *optval, int __user *optlen) 6700 { 6701 int val; 6702 struct sctp_sock *sp = sctp_sk(sk); 6703 6704 if (len < sizeof(int)) 6705 return -EINVAL; 6706 6707 len = sizeof(int); 6708 val = sp->v4mapped; 6709 if (put_user(len, optlen)) 6710 return -EFAULT; 6711 if (copy_to_user(optval, &val, len)) 6712 return -EFAULT; 6713 6714 return 0; 6715 } 6716 6717 /* 6718 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6719 * (chapter and verse is quoted at sctp_setsockopt_context()) 6720 */ 6721 static int sctp_getsockopt_context(struct sock *sk, int len, 6722 char __user *optval, int __user *optlen) 6723 { 6724 struct sctp_assoc_value params; 6725 struct sctp_association *asoc; 6726 6727 if (len < sizeof(struct sctp_assoc_value)) 6728 return -EINVAL; 6729 6730 len = sizeof(struct sctp_assoc_value); 6731 6732 if (copy_from_user(¶ms, optval, len)) 6733 return -EFAULT; 6734 6735 asoc = sctp_id2assoc(sk, params.assoc_id); 6736 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6737 sctp_style(sk, UDP)) 6738 return -EINVAL; 6739 6740 params.assoc_value = asoc ? asoc->default_rcv_context 6741 : sctp_sk(sk)->default_rcv_context; 6742 6743 if (put_user(len, optlen)) 6744 return -EFAULT; 6745 if (copy_to_user(optval, ¶ms, len)) 6746 return -EFAULT; 6747 6748 return 0; 6749 } 6750 6751 /* 6752 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6753 * This option will get or set the maximum size to put in any outgoing 6754 * SCTP DATA chunk. If a message is larger than this size it will be 6755 * fragmented by SCTP into the specified size. Note that the underlying 6756 * SCTP implementation may fragment into smaller sized chunks when the 6757 * PMTU of the underlying association is smaller than the value set by 6758 * the user. The default value for this option is '0' which indicates 6759 * the user is NOT limiting fragmentation and only the PMTU will effect 6760 * SCTP's choice of DATA chunk size. Note also that values set larger 6761 * than the maximum size of an IP datagram will effectively let SCTP 6762 * control fragmentation (i.e. the same as setting this option to 0). 6763 * 6764 * The following structure is used to access and modify this parameter: 6765 * 6766 * struct sctp_assoc_value { 6767 * sctp_assoc_t assoc_id; 6768 * uint32_t assoc_value; 6769 * }; 6770 * 6771 * assoc_id: This parameter is ignored for one-to-one style sockets. 6772 * For one-to-many style sockets this parameter indicates which 6773 * association the user is performing an action upon. Note that if 6774 * this field's value is zero then the endpoints default value is 6775 * changed (effecting future associations only). 6776 * assoc_value: This parameter specifies the maximum size in bytes. 6777 */ 6778 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6779 char __user *optval, int __user *optlen) 6780 { 6781 struct sctp_assoc_value params; 6782 struct sctp_association *asoc; 6783 6784 if (len == sizeof(int)) { 6785 pr_warn_ratelimited(DEPRECATED 6786 "%s (pid %d) " 6787 "Use of int in maxseg socket option.\n" 6788 "Use struct sctp_assoc_value instead\n", 6789 current->comm, task_pid_nr(current)); 6790 params.assoc_id = SCTP_FUTURE_ASSOC; 6791 } else if (len >= sizeof(struct sctp_assoc_value)) { 6792 len = sizeof(struct sctp_assoc_value); 6793 if (copy_from_user(¶ms, optval, len)) 6794 return -EFAULT; 6795 } else 6796 return -EINVAL; 6797 6798 asoc = sctp_id2assoc(sk, params.assoc_id); 6799 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6800 sctp_style(sk, UDP)) 6801 return -EINVAL; 6802 6803 if (asoc) 6804 params.assoc_value = asoc->frag_point; 6805 else 6806 params.assoc_value = sctp_sk(sk)->user_frag; 6807 6808 if (put_user(len, optlen)) 6809 return -EFAULT; 6810 if (len == sizeof(int)) { 6811 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6812 return -EFAULT; 6813 } else { 6814 if (copy_to_user(optval, ¶ms, len)) 6815 return -EFAULT; 6816 } 6817 6818 return 0; 6819 } 6820 6821 /* 6822 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6823 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6824 */ 6825 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6826 char __user *optval, int __user *optlen) 6827 { 6828 int val; 6829 6830 if (len < sizeof(int)) 6831 return -EINVAL; 6832 6833 len = sizeof(int); 6834 6835 val = sctp_sk(sk)->frag_interleave; 6836 if (put_user(len, optlen)) 6837 return -EFAULT; 6838 if (copy_to_user(optval, &val, len)) 6839 return -EFAULT; 6840 6841 return 0; 6842 } 6843 6844 /* 6845 * 7.1.25. Set or Get the sctp partial delivery point 6846 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6847 */ 6848 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6849 char __user *optval, 6850 int __user *optlen) 6851 { 6852 u32 val; 6853 6854 if (len < sizeof(u32)) 6855 return -EINVAL; 6856 6857 len = sizeof(u32); 6858 6859 val = sctp_sk(sk)->pd_point; 6860 if (put_user(len, optlen)) 6861 return -EFAULT; 6862 if (copy_to_user(optval, &val, len)) 6863 return -EFAULT; 6864 6865 return 0; 6866 } 6867 6868 /* 6869 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6870 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6871 */ 6872 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6873 char __user *optval, 6874 int __user *optlen) 6875 { 6876 struct sctp_assoc_value params; 6877 struct sctp_association *asoc; 6878 6879 if (len == sizeof(int)) { 6880 pr_warn_ratelimited(DEPRECATED 6881 "%s (pid %d) " 6882 "Use of int in max_burst socket option.\n" 6883 "Use struct sctp_assoc_value instead\n", 6884 current->comm, task_pid_nr(current)); 6885 params.assoc_id = SCTP_FUTURE_ASSOC; 6886 } else if (len >= sizeof(struct sctp_assoc_value)) { 6887 len = sizeof(struct sctp_assoc_value); 6888 if (copy_from_user(¶ms, optval, len)) 6889 return -EFAULT; 6890 } else 6891 return -EINVAL; 6892 6893 asoc = sctp_id2assoc(sk, params.assoc_id); 6894 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6895 sctp_style(sk, UDP)) 6896 return -EINVAL; 6897 6898 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6899 6900 if (len == sizeof(int)) { 6901 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6902 return -EFAULT; 6903 } else { 6904 if (copy_to_user(optval, ¶ms, len)) 6905 return -EFAULT; 6906 } 6907 6908 return 0; 6909 6910 } 6911 6912 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6913 char __user *optval, int __user *optlen) 6914 { 6915 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6916 struct sctp_hmacalgo __user *p = (void __user *)optval; 6917 struct sctp_hmac_algo_param *hmacs; 6918 __u16 data_len = 0; 6919 u32 num_idents; 6920 int i; 6921 6922 if (!ep->auth_enable) 6923 return -EACCES; 6924 6925 hmacs = ep->auth_hmacs_list; 6926 data_len = ntohs(hmacs->param_hdr.length) - 6927 sizeof(struct sctp_paramhdr); 6928 6929 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6930 return -EINVAL; 6931 6932 len = sizeof(struct sctp_hmacalgo) + data_len; 6933 num_idents = data_len / sizeof(u16); 6934 6935 if (put_user(len, optlen)) 6936 return -EFAULT; 6937 if (put_user(num_idents, &p->shmac_num_idents)) 6938 return -EFAULT; 6939 for (i = 0; i < num_idents; i++) { 6940 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6941 6942 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6943 return -EFAULT; 6944 } 6945 return 0; 6946 } 6947 6948 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6949 char __user *optval, int __user *optlen) 6950 { 6951 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6952 struct sctp_authkeyid val; 6953 struct sctp_association *asoc; 6954 6955 if (!ep->auth_enable) 6956 return -EACCES; 6957 6958 if (len < sizeof(struct sctp_authkeyid)) 6959 return -EINVAL; 6960 6961 len = sizeof(struct sctp_authkeyid); 6962 if (copy_from_user(&val, optval, len)) 6963 return -EFAULT; 6964 6965 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6966 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6967 return -EINVAL; 6968 6969 if (asoc) 6970 val.scact_keynumber = asoc->active_key_id; 6971 else 6972 val.scact_keynumber = ep->active_key_id; 6973 6974 if (put_user(len, optlen)) 6975 return -EFAULT; 6976 if (copy_to_user(optval, &val, len)) 6977 return -EFAULT; 6978 6979 return 0; 6980 } 6981 6982 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6983 char __user *optval, int __user *optlen) 6984 { 6985 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6986 struct sctp_authchunks __user *p = (void __user *)optval; 6987 struct sctp_authchunks val; 6988 struct sctp_association *asoc; 6989 struct sctp_chunks_param *ch; 6990 u32 num_chunks = 0; 6991 char __user *to; 6992 6993 if (!ep->auth_enable) 6994 return -EACCES; 6995 6996 if (len < sizeof(struct sctp_authchunks)) 6997 return -EINVAL; 6998 6999 if (copy_from_user(&val, optval, sizeof(val))) 7000 return -EFAULT; 7001 7002 to = p->gauth_chunks; 7003 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7004 if (!asoc) 7005 return -EINVAL; 7006 7007 ch = asoc->peer.peer_chunks; 7008 if (!ch) 7009 goto num; 7010 7011 /* See if the user provided enough room for all the data */ 7012 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7013 if (len < num_chunks) 7014 return -EINVAL; 7015 7016 if (copy_to_user(to, ch->chunks, num_chunks)) 7017 return -EFAULT; 7018 num: 7019 len = sizeof(struct sctp_authchunks) + num_chunks; 7020 if (put_user(len, optlen)) 7021 return -EFAULT; 7022 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7023 return -EFAULT; 7024 return 0; 7025 } 7026 7027 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7028 char __user *optval, int __user *optlen) 7029 { 7030 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7031 struct sctp_authchunks __user *p = (void __user *)optval; 7032 struct sctp_authchunks val; 7033 struct sctp_association *asoc; 7034 struct sctp_chunks_param *ch; 7035 u32 num_chunks = 0; 7036 char __user *to; 7037 7038 if (!ep->auth_enable) 7039 return -EACCES; 7040 7041 if (len < sizeof(struct sctp_authchunks)) 7042 return -EINVAL; 7043 7044 if (copy_from_user(&val, optval, sizeof(val))) 7045 return -EFAULT; 7046 7047 to = p->gauth_chunks; 7048 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7049 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7050 sctp_style(sk, UDP)) 7051 return -EINVAL; 7052 7053 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7054 : ep->auth_chunk_list; 7055 if (!ch) 7056 goto num; 7057 7058 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7059 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7060 return -EINVAL; 7061 7062 if (copy_to_user(to, ch->chunks, num_chunks)) 7063 return -EFAULT; 7064 num: 7065 len = sizeof(struct sctp_authchunks) + num_chunks; 7066 if (put_user(len, optlen)) 7067 return -EFAULT; 7068 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7069 return -EFAULT; 7070 7071 return 0; 7072 } 7073 7074 /* 7075 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7076 * This option gets the current number of associations that are attached 7077 * to a one-to-many style socket. The option value is an uint32_t. 7078 */ 7079 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7080 char __user *optval, int __user *optlen) 7081 { 7082 struct sctp_sock *sp = sctp_sk(sk); 7083 struct sctp_association *asoc; 7084 u32 val = 0; 7085 7086 if (sctp_style(sk, TCP)) 7087 return -EOPNOTSUPP; 7088 7089 if (len < sizeof(u32)) 7090 return -EINVAL; 7091 7092 len = sizeof(u32); 7093 7094 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7095 val++; 7096 } 7097 7098 if (put_user(len, optlen)) 7099 return -EFAULT; 7100 if (copy_to_user(optval, &val, len)) 7101 return -EFAULT; 7102 7103 return 0; 7104 } 7105 7106 /* 7107 * 8.1.23 SCTP_AUTO_ASCONF 7108 * See the corresponding setsockopt entry as description 7109 */ 7110 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7111 char __user *optval, int __user *optlen) 7112 { 7113 int val = 0; 7114 7115 if (len < sizeof(int)) 7116 return -EINVAL; 7117 7118 len = sizeof(int); 7119 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7120 val = 1; 7121 if (put_user(len, optlen)) 7122 return -EFAULT; 7123 if (copy_to_user(optval, &val, len)) 7124 return -EFAULT; 7125 return 0; 7126 } 7127 7128 /* 7129 * 8.2.6. Get the Current Identifiers of Associations 7130 * (SCTP_GET_ASSOC_ID_LIST) 7131 * 7132 * This option gets the current list of SCTP association identifiers of 7133 * the SCTP associations handled by a one-to-many style socket. 7134 */ 7135 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7136 char __user *optval, int __user *optlen) 7137 { 7138 struct sctp_sock *sp = sctp_sk(sk); 7139 struct sctp_association *asoc; 7140 struct sctp_assoc_ids *ids; 7141 u32 num = 0; 7142 7143 if (sctp_style(sk, TCP)) 7144 return -EOPNOTSUPP; 7145 7146 if (len < sizeof(struct sctp_assoc_ids)) 7147 return -EINVAL; 7148 7149 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7150 num++; 7151 } 7152 7153 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7154 return -EINVAL; 7155 7156 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7157 7158 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7159 if (unlikely(!ids)) 7160 return -ENOMEM; 7161 7162 ids->gaids_number_of_ids = num; 7163 num = 0; 7164 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7165 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7166 } 7167 7168 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7169 kfree(ids); 7170 return -EFAULT; 7171 } 7172 7173 kfree(ids); 7174 return 0; 7175 } 7176 7177 /* 7178 * SCTP_PEER_ADDR_THLDS 7179 * 7180 * This option allows us to fetch the partially failed threshold for one or all 7181 * transports in an association. See Section 6.1 of: 7182 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7183 */ 7184 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7185 char __user *optval, 7186 int len, 7187 int __user *optlen) 7188 { 7189 struct sctp_paddrthlds val; 7190 struct sctp_transport *trans; 7191 struct sctp_association *asoc; 7192 7193 if (len < sizeof(struct sctp_paddrthlds)) 7194 return -EINVAL; 7195 len = sizeof(struct sctp_paddrthlds); 7196 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7197 return -EFAULT; 7198 7199 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7200 trans = sctp_addr_id2transport(sk, &val.spt_address, 7201 val.spt_assoc_id); 7202 if (!trans) 7203 return -ENOENT; 7204 7205 val.spt_pathmaxrxt = trans->pathmaxrxt; 7206 val.spt_pathpfthld = trans->pf_retrans; 7207 7208 return 0; 7209 } 7210 7211 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7212 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7213 sctp_style(sk, UDP)) 7214 return -EINVAL; 7215 7216 if (asoc) { 7217 val.spt_pathpfthld = asoc->pf_retrans; 7218 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7219 } else { 7220 struct sctp_sock *sp = sctp_sk(sk); 7221 7222 val.spt_pathpfthld = sp->pf_retrans; 7223 val.spt_pathmaxrxt = sp->pathmaxrxt; 7224 } 7225 7226 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7227 return -EFAULT; 7228 7229 return 0; 7230 } 7231 7232 /* 7233 * SCTP_GET_ASSOC_STATS 7234 * 7235 * This option retrieves local per endpoint statistics. It is modeled 7236 * after OpenSolaris' implementation 7237 */ 7238 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7239 char __user *optval, 7240 int __user *optlen) 7241 { 7242 struct sctp_assoc_stats sas; 7243 struct sctp_association *asoc = NULL; 7244 7245 /* User must provide at least the assoc id */ 7246 if (len < sizeof(sctp_assoc_t)) 7247 return -EINVAL; 7248 7249 /* Allow the struct to grow and fill in as much as possible */ 7250 len = min_t(size_t, len, sizeof(sas)); 7251 7252 if (copy_from_user(&sas, optval, len)) 7253 return -EFAULT; 7254 7255 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7256 if (!asoc) 7257 return -EINVAL; 7258 7259 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7260 sas.sas_gapcnt = asoc->stats.gapcnt; 7261 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7262 sas.sas_osacks = asoc->stats.osacks; 7263 sas.sas_isacks = asoc->stats.isacks; 7264 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7265 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7266 sas.sas_oodchunks = asoc->stats.oodchunks; 7267 sas.sas_iodchunks = asoc->stats.iodchunks; 7268 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7269 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7270 sas.sas_idupchunks = asoc->stats.idupchunks; 7271 sas.sas_opackets = asoc->stats.opackets; 7272 sas.sas_ipackets = asoc->stats.ipackets; 7273 7274 /* New high max rto observed, will return 0 if not a single 7275 * RTO update took place. obs_rto_ipaddr will be bogus 7276 * in such a case 7277 */ 7278 sas.sas_maxrto = asoc->stats.max_obs_rto; 7279 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7280 sizeof(struct sockaddr_storage)); 7281 7282 /* Mark beginning of a new observation period */ 7283 asoc->stats.max_obs_rto = asoc->rto_min; 7284 7285 if (put_user(len, optlen)) 7286 return -EFAULT; 7287 7288 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7289 7290 if (copy_to_user(optval, &sas, len)) 7291 return -EFAULT; 7292 7293 return 0; 7294 } 7295 7296 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7297 char __user *optval, 7298 int __user *optlen) 7299 { 7300 int val = 0; 7301 7302 if (len < sizeof(int)) 7303 return -EINVAL; 7304 7305 len = sizeof(int); 7306 if (sctp_sk(sk)->recvrcvinfo) 7307 val = 1; 7308 if (put_user(len, optlen)) 7309 return -EFAULT; 7310 if (copy_to_user(optval, &val, len)) 7311 return -EFAULT; 7312 7313 return 0; 7314 } 7315 7316 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7317 char __user *optval, 7318 int __user *optlen) 7319 { 7320 int val = 0; 7321 7322 if (len < sizeof(int)) 7323 return -EINVAL; 7324 7325 len = sizeof(int); 7326 if (sctp_sk(sk)->recvnxtinfo) 7327 val = 1; 7328 if (put_user(len, optlen)) 7329 return -EFAULT; 7330 if (copy_to_user(optval, &val, len)) 7331 return -EFAULT; 7332 7333 return 0; 7334 } 7335 7336 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7337 char __user *optval, 7338 int __user *optlen) 7339 { 7340 struct sctp_assoc_value params; 7341 struct sctp_association *asoc; 7342 int retval = -EFAULT; 7343 7344 if (len < sizeof(params)) { 7345 retval = -EINVAL; 7346 goto out; 7347 } 7348 7349 len = sizeof(params); 7350 if (copy_from_user(¶ms, optval, len)) 7351 goto out; 7352 7353 asoc = sctp_id2assoc(sk, params.assoc_id); 7354 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7355 sctp_style(sk, UDP)) { 7356 retval = -EINVAL; 7357 goto out; 7358 } 7359 7360 params.assoc_value = asoc ? asoc->prsctp_enable 7361 : sctp_sk(sk)->ep->prsctp_enable; 7362 7363 if (put_user(len, optlen)) 7364 goto out; 7365 7366 if (copy_to_user(optval, ¶ms, len)) 7367 goto out; 7368 7369 retval = 0; 7370 7371 out: 7372 return retval; 7373 } 7374 7375 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7376 char __user *optval, 7377 int __user *optlen) 7378 { 7379 struct sctp_default_prinfo info; 7380 struct sctp_association *asoc; 7381 int retval = -EFAULT; 7382 7383 if (len < sizeof(info)) { 7384 retval = -EINVAL; 7385 goto out; 7386 } 7387 7388 len = sizeof(info); 7389 if (copy_from_user(&info, optval, len)) 7390 goto out; 7391 7392 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7393 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7394 sctp_style(sk, UDP)) { 7395 retval = -EINVAL; 7396 goto out; 7397 } 7398 7399 if (asoc) { 7400 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7401 info.pr_value = asoc->default_timetolive; 7402 } else { 7403 struct sctp_sock *sp = sctp_sk(sk); 7404 7405 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7406 info.pr_value = sp->default_timetolive; 7407 } 7408 7409 if (put_user(len, optlen)) 7410 goto out; 7411 7412 if (copy_to_user(optval, &info, len)) 7413 goto out; 7414 7415 retval = 0; 7416 7417 out: 7418 return retval; 7419 } 7420 7421 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7422 char __user *optval, 7423 int __user *optlen) 7424 { 7425 struct sctp_prstatus params; 7426 struct sctp_association *asoc; 7427 int policy; 7428 int retval = -EINVAL; 7429 7430 if (len < sizeof(params)) 7431 goto out; 7432 7433 len = sizeof(params); 7434 if (copy_from_user(¶ms, optval, len)) { 7435 retval = -EFAULT; 7436 goto out; 7437 } 7438 7439 policy = params.sprstat_policy; 7440 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7441 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7442 goto out; 7443 7444 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7445 if (!asoc) 7446 goto out; 7447 7448 if (policy == SCTP_PR_SCTP_ALL) { 7449 params.sprstat_abandoned_unsent = 0; 7450 params.sprstat_abandoned_sent = 0; 7451 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7452 params.sprstat_abandoned_unsent += 7453 asoc->abandoned_unsent[policy]; 7454 params.sprstat_abandoned_sent += 7455 asoc->abandoned_sent[policy]; 7456 } 7457 } else { 7458 params.sprstat_abandoned_unsent = 7459 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7460 params.sprstat_abandoned_sent = 7461 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7462 } 7463 7464 if (put_user(len, optlen)) { 7465 retval = -EFAULT; 7466 goto out; 7467 } 7468 7469 if (copy_to_user(optval, ¶ms, len)) { 7470 retval = -EFAULT; 7471 goto out; 7472 } 7473 7474 retval = 0; 7475 7476 out: 7477 return retval; 7478 } 7479 7480 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7481 char __user *optval, 7482 int __user *optlen) 7483 { 7484 struct sctp_stream_out_ext *streamoute; 7485 struct sctp_association *asoc; 7486 struct sctp_prstatus params; 7487 int retval = -EINVAL; 7488 int policy; 7489 7490 if (len < sizeof(params)) 7491 goto out; 7492 7493 len = sizeof(params); 7494 if (copy_from_user(¶ms, optval, len)) { 7495 retval = -EFAULT; 7496 goto out; 7497 } 7498 7499 policy = params.sprstat_policy; 7500 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7501 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7502 goto out; 7503 7504 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7505 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7506 goto out; 7507 7508 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7509 if (!streamoute) { 7510 /* Not allocated yet, means all stats are 0 */ 7511 params.sprstat_abandoned_unsent = 0; 7512 params.sprstat_abandoned_sent = 0; 7513 retval = 0; 7514 goto out; 7515 } 7516 7517 if (policy == SCTP_PR_SCTP_ALL) { 7518 params.sprstat_abandoned_unsent = 0; 7519 params.sprstat_abandoned_sent = 0; 7520 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7521 params.sprstat_abandoned_unsent += 7522 streamoute->abandoned_unsent[policy]; 7523 params.sprstat_abandoned_sent += 7524 streamoute->abandoned_sent[policy]; 7525 } 7526 } else { 7527 params.sprstat_abandoned_unsent = 7528 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7529 params.sprstat_abandoned_sent = 7530 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7531 } 7532 7533 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7534 retval = -EFAULT; 7535 goto out; 7536 } 7537 7538 retval = 0; 7539 7540 out: 7541 return retval; 7542 } 7543 7544 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7545 char __user *optval, 7546 int __user *optlen) 7547 { 7548 struct sctp_assoc_value params; 7549 struct sctp_association *asoc; 7550 int retval = -EFAULT; 7551 7552 if (len < sizeof(params)) { 7553 retval = -EINVAL; 7554 goto out; 7555 } 7556 7557 len = sizeof(params); 7558 if (copy_from_user(¶ms, optval, len)) 7559 goto out; 7560 7561 asoc = sctp_id2assoc(sk, params.assoc_id); 7562 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7563 sctp_style(sk, UDP)) { 7564 retval = -EINVAL; 7565 goto out; 7566 } 7567 7568 params.assoc_value = asoc ? asoc->reconf_enable 7569 : sctp_sk(sk)->ep->reconf_enable; 7570 7571 if (put_user(len, optlen)) 7572 goto out; 7573 7574 if (copy_to_user(optval, ¶ms, len)) 7575 goto out; 7576 7577 retval = 0; 7578 7579 out: 7580 return retval; 7581 } 7582 7583 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7584 char __user *optval, 7585 int __user *optlen) 7586 { 7587 struct sctp_assoc_value params; 7588 struct sctp_association *asoc; 7589 int retval = -EFAULT; 7590 7591 if (len < sizeof(params)) { 7592 retval = -EINVAL; 7593 goto out; 7594 } 7595 7596 len = sizeof(params); 7597 if (copy_from_user(¶ms, optval, len)) 7598 goto out; 7599 7600 asoc = sctp_id2assoc(sk, params.assoc_id); 7601 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7602 sctp_style(sk, UDP)) { 7603 retval = -EINVAL; 7604 goto out; 7605 } 7606 7607 params.assoc_value = asoc ? asoc->strreset_enable 7608 : sctp_sk(sk)->ep->strreset_enable; 7609 7610 if (put_user(len, optlen)) 7611 goto out; 7612 7613 if (copy_to_user(optval, ¶ms, len)) 7614 goto out; 7615 7616 retval = 0; 7617 7618 out: 7619 return retval; 7620 } 7621 7622 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7623 char __user *optval, 7624 int __user *optlen) 7625 { 7626 struct sctp_assoc_value params; 7627 struct sctp_association *asoc; 7628 int retval = -EFAULT; 7629 7630 if (len < sizeof(params)) { 7631 retval = -EINVAL; 7632 goto out; 7633 } 7634 7635 len = sizeof(params); 7636 if (copy_from_user(¶ms, optval, len)) 7637 goto out; 7638 7639 asoc = sctp_id2assoc(sk, params.assoc_id); 7640 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7641 sctp_style(sk, UDP)) { 7642 retval = -EINVAL; 7643 goto out; 7644 } 7645 7646 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7647 : sctp_sk(sk)->default_ss; 7648 7649 if (put_user(len, optlen)) 7650 goto out; 7651 7652 if (copy_to_user(optval, ¶ms, len)) 7653 goto out; 7654 7655 retval = 0; 7656 7657 out: 7658 return retval; 7659 } 7660 7661 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7662 char __user *optval, 7663 int __user *optlen) 7664 { 7665 struct sctp_stream_value params; 7666 struct sctp_association *asoc; 7667 int retval = -EFAULT; 7668 7669 if (len < sizeof(params)) { 7670 retval = -EINVAL; 7671 goto out; 7672 } 7673 7674 len = sizeof(params); 7675 if (copy_from_user(¶ms, optval, len)) 7676 goto out; 7677 7678 asoc = sctp_id2assoc(sk, params.assoc_id); 7679 if (!asoc) { 7680 retval = -EINVAL; 7681 goto out; 7682 } 7683 7684 retval = sctp_sched_get_value(asoc, params.stream_id, 7685 ¶ms.stream_value); 7686 if (retval) 7687 goto out; 7688 7689 if (put_user(len, optlen)) { 7690 retval = -EFAULT; 7691 goto out; 7692 } 7693 7694 if (copy_to_user(optval, ¶ms, len)) { 7695 retval = -EFAULT; 7696 goto out; 7697 } 7698 7699 out: 7700 return retval; 7701 } 7702 7703 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7704 char __user *optval, 7705 int __user *optlen) 7706 { 7707 struct sctp_assoc_value params; 7708 struct sctp_association *asoc; 7709 int retval = -EFAULT; 7710 7711 if (len < sizeof(params)) { 7712 retval = -EINVAL; 7713 goto out; 7714 } 7715 7716 len = sizeof(params); 7717 if (copy_from_user(¶ms, optval, len)) 7718 goto out; 7719 7720 asoc = sctp_id2assoc(sk, params.assoc_id); 7721 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7722 sctp_style(sk, UDP)) { 7723 retval = -EINVAL; 7724 goto out; 7725 } 7726 7727 params.assoc_value = asoc ? asoc->intl_enable 7728 : sctp_sk(sk)->strm_interleave; 7729 7730 if (put_user(len, optlen)) 7731 goto out; 7732 7733 if (copy_to_user(optval, ¶ms, len)) 7734 goto out; 7735 7736 retval = 0; 7737 7738 out: 7739 return retval; 7740 } 7741 7742 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7743 char __user *optval, 7744 int __user *optlen) 7745 { 7746 int val; 7747 7748 if (len < sizeof(int)) 7749 return -EINVAL; 7750 7751 len = sizeof(int); 7752 val = sctp_sk(sk)->reuse; 7753 if (put_user(len, optlen)) 7754 return -EFAULT; 7755 7756 if (copy_to_user(optval, &val, len)) 7757 return -EFAULT; 7758 7759 return 0; 7760 } 7761 7762 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7763 int __user *optlen) 7764 { 7765 struct sctp_association *asoc; 7766 struct sctp_event param; 7767 __u16 subscribe; 7768 7769 if (len < sizeof(param)) 7770 return -EINVAL; 7771 7772 len = sizeof(param); 7773 if (copy_from_user(¶m, optval, len)) 7774 return -EFAULT; 7775 7776 if (param.se_type < SCTP_SN_TYPE_BASE || 7777 param.se_type > SCTP_SN_TYPE_MAX) 7778 return -EINVAL; 7779 7780 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7781 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7782 sctp_style(sk, UDP)) 7783 return -EINVAL; 7784 7785 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7786 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7787 7788 if (put_user(len, optlen)) 7789 return -EFAULT; 7790 7791 if (copy_to_user(optval, ¶m, len)) 7792 return -EFAULT; 7793 7794 return 0; 7795 } 7796 7797 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7798 char __user *optval, int __user *optlen) 7799 { 7800 int retval = 0; 7801 int len; 7802 7803 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7804 7805 /* I can hardly begin to describe how wrong this is. This is 7806 * so broken as to be worse than useless. The API draft 7807 * REALLY is NOT helpful here... I am not convinced that the 7808 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7809 * are at all well-founded. 7810 */ 7811 if (level != SOL_SCTP) { 7812 struct sctp_af *af = sctp_sk(sk)->pf->af; 7813 7814 retval = af->getsockopt(sk, level, optname, optval, optlen); 7815 return retval; 7816 } 7817 7818 if (get_user(len, optlen)) 7819 return -EFAULT; 7820 7821 if (len < 0) 7822 return -EINVAL; 7823 7824 lock_sock(sk); 7825 7826 switch (optname) { 7827 case SCTP_STATUS: 7828 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7829 break; 7830 case SCTP_DISABLE_FRAGMENTS: 7831 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7832 optlen); 7833 break; 7834 case SCTP_EVENTS: 7835 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7836 break; 7837 case SCTP_AUTOCLOSE: 7838 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7839 break; 7840 case SCTP_SOCKOPT_PEELOFF: 7841 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7842 break; 7843 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7844 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7845 break; 7846 case SCTP_PEER_ADDR_PARAMS: 7847 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7848 optlen); 7849 break; 7850 case SCTP_DELAYED_SACK: 7851 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7852 optlen); 7853 break; 7854 case SCTP_INITMSG: 7855 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7856 break; 7857 case SCTP_GET_PEER_ADDRS: 7858 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7859 optlen); 7860 break; 7861 case SCTP_GET_LOCAL_ADDRS: 7862 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7863 optlen); 7864 break; 7865 case SCTP_SOCKOPT_CONNECTX3: 7866 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7867 break; 7868 case SCTP_DEFAULT_SEND_PARAM: 7869 retval = sctp_getsockopt_default_send_param(sk, len, 7870 optval, optlen); 7871 break; 7872 case SCTP_DEFAULT_SNDINFO: 7873 retval = sctp_getsockopt_default_sndinfo(sk, len, 7874 optval, optlen); 7875 break; 7876 case SCTP_PRIMARY_ADDR: 7877 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7878 break; 7879 case SCTP_NODELAY: 7880 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7881 break; 7882 case SCTP_RTOINFO: 7883 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7884 break; 7885 case SCTP_ASSOCINFO: 7886 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7887 break; 7888 case SCTP_I_WANT_MAPPED_V4_ADDR: 7889 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7890 break; 7891 case SCTP_MAXSEG: 7892 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7893 break; 7894 case SCTP_GET_PEER_ADDR_INFO: 7895 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7896 optlen); 7897 break; 7898 case SCTP_ADAPTATION_LAYER: 7899 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7900 optlen); 7901 break; 7902 case SCTP_CONTEXT: 7903 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7904 break; 7905 case SCTP_FRAGMENT_INTERLEAVE: 7906 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7907 optlen); 7908 break; 7909 case SCTP_PARTIAL_DELIVERY_POINT: 7910 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7911 optlen); 7912 break; 7913 case SCTP_MAX_BURST: 7914 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7915 break; 7916 case SCTP_AUTH_KEY: 7917 case SCTP_AUTH_CHUNK: 7918 case SCTP_AUTH_DELETE_KEY: 7919 case SCTP_AUTH_DEACTIVATE_KEY: 7920 retval = -EOPNOTSUPP; 7921 break; 7922 case SCTP_HMAC_IDENT: 7923 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7924 break; 7925 case SCTP_AUTH_ACTIVE_KEY: 7926 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7927 break; 7928 case SCTP_PEER_AUTH_CHUNKS: 7929 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7930 optlen); 7931 break; 7932 case SCTP_LOCAL_AUTH_CHUNKS: 7933 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7934 optlen); 7935 break; 7936 case SCTP_GET_ASSOC_NUMBER: 7937 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7938 break; 7939 case SCTP_GET_ASSOC_ID_LIST: 7940 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7941 break; 7942 case SCTP_AUTO_ASCONF: 7943 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7944 break; 7945 case SCTP_PEER_ADDR_THLDS: 7946 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7947 break; 7948 case SCTP_GET_ASSOC_STATS: 7949 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7950 break; 7951 case SCTP_RECVRCVINFO: 7952 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7953 break; 7954 case SCTP_RECVNXTINFO: 7955 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7956 break; 7957 case SCTP_PR_SUPPORTED: 7958 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7959 break; 7960 case SCTP_DEFAULT_PRINFO: 7961 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7962 optlen); 7963 break; 7964 case SCTP_PR_ASSOC_STATUS: 7965 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7966 optlen); 7967 break; 7968 case SCTP_PR_STREAM_STATUS: 7969 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7970 optlen); 7971 break; 7972 case SCTP_RECONFIG_SUPPORTED: 7973 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7974 optlen); 7975 break; 7976 case SCTP_ENABLE_STREAM_RESET: 7977 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7978 optlen); 7979 break; 7980 case SCTP_STREAM_SCHEDULER: 7981 retval = sctp_getsockopt_scheduler(sk, len, optval, 7982 optlen); 7983 break; 7984 case SCTP_STREAM_SCHEDULER_VALUE: 7985 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7986 optlen); 7987 break; 7988 case SCTP_INTERLEAVING_SUPPORTED: 7989 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7990 optlen); 7991 break; 7992 case SCTP_REUSE_PORT: 7993 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7994 break; 7995 case SCTP_EVENT: 7996 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7997 break; 7998 default: 7999 retval = -ENOPROTOOPT; 8000 break; 8001 } 8002 8003 release_sock(sk); 8004 return retval; 8005 } 8006 8007 static int sctp_hash(struct sock *sk) 8008 { 8009 /* STUB */ 8010 return 0; 8011 } 8012 8013 static void sctp_unhash(struct sock *sk) 8014 { 8015 /* STUB */ 8016 } 8017 8018 /* Check if port is acceptable. Possibly find first available port. 8019 * 8020 * The port hash table (contained in the 'global' SCTP protocol storage 8021 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8022 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8023 * list (the list number is the port number hashed out, so as you 8024 * would expect from a hash function, all the ports in a given list have 8025 * such a number that hashes out to the same list number; you were 8026 * expecting that, right?); so each list has a set of ports, with a 8027 * link to the socket (struct sock) that uses it, the port number and 8028 * a fastreuse flag (FIXME: NPI ipg). 8029 */ 8030 static struct sctp_bind_bucket *sctp_bucket_create( 8031 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8032 8033 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8034 { 8035 struct sctp_sock *sp = sctp_sk(sk); 8036 bool reuse = (sk->sk_reuse || sp->reuse); 8037 struct sctp_bind_hashbucket *head; /* hash list */ 8038 kuid_t uid = sock_i_uid(sk); 8039 struct sctp_bind_bucket *pp; 8040 unsigned short snum; 8041 int ret; 8042 8043 snum = ntohs(addr->v4.sin_port); 8044 8045 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8046 8047 local_bh_disable(); 8048 8049 if (snum == 0) { 8050 /* Search for an available port. */ 8051 int low, high, remaining, index; 8052 unsigned int rover; 8053 struct net *net = sock_net(sk); 8054 8055 inet_get_local_port_range(net, &low, &high); 8056 remaining = (high - low) + 1; 8057 rover = prandom_u32() % remaining + low; 8058 8059 do { 8060 rover++; 8061 if ((rover < low) || (rover > high)) 8062 rover = low; 8063 if (inet_is_local_reserved_port(net, rover)) 8064 continue; 8065 index = sctp_phashfn(sock_net(sk), rover); 8066 head = &sctp_port_hashtable[index]; 8067 spin_lock(&head->lock); 8068 sctp_for_each_hentry(pp, &head->chain) 8069 if ((pp->port == rover) && 8070 net_eq(sock_net(sk), pp->net)) 8071 goto next; 8072 break; 8073 next: 8074 spin_unlock(&head->lock); 8075 } while (--remaining > 0); 8076 8077 /* Exhausted local port range during search? */ 8078 ret = 1; 8079 if (remaining <= 0) 8080 goto fail; 8081 8082 /* OK, here is the one we will use. HEAD (the port 8083 * hash table list entry) is non-NULL and we hold it's 8084 * mutex. 8085 */ 8086 snum = rover; 8087 } else { 8088 /* We are given an specific port number; we verify 8089 * that it is not being used. If it is used, we will 8090 * exahust the search in the hash list corresponding 8091 * to the port number (snum) - we detect that with the 8092 * port iterator, pp being NULL. 8093 */ 8094 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8095 spin_lock(&head->lock); 8096 sctp_for_each_hentry(pp, &head->chain) { 8097 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8098 goto pp_found; 8099 } 8100 } 8101 pp = NULL; 8102 goto pp_not_found; 8103 pp_found: 8104 if (!hlist_empty(&pp->owner)) { 8105 /* We had a port hash table hit - there is an 8106 * available port (pp != NULL) and it is being 8107 * used by other socket (pp->owner not empty); that other 8108 * socket is going to be sk2. 8109 */ 8110 struct sock *sk2; 8111 8112 pr_debug("%s: found a possible match\n", __func__); 8113 8114 if ((pp->fastreuse && reuse && 8115 sk->sk_state != SCTP_SS_LISTENING) || 8116 (pp->fastreuseport && sk->sk_reuseport && 8117 uid_eq(pp->fastuid, uid))) 8118 goto success; 8119 8120 /* Run through the list of sockets bound to the port 8121 * (pp->port) [via the pointers bind_next and 8122 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8123 * we get the endpoint they describe and run through 8124 * the endpoint's list of IP (v4 or v6) addresses, 8125 * comparing each of the addresses with the address of 8126 * the socket sk. If we find a match, then that means 8127 * that this port/socket (sk) combination are already 8128 * in an endpoint. 8129 */ 8130 sk_for_each_bound(sk2, &pp->owner) { 8131 struct sctp_sock *sp2 = sctp_sk(sk2); 8132 struct sctp_endpoint *ep2 = sp2->ep; 8133 8134 if (sk == sk2 || 8135 (reuse && (sk2->sk_reuse || sp2->reuse) && 8136 sk2->sk_state != SCTP_SS_LISTENING) || 8137 (sk->sk_reuseport && sk2->sk_reuseport && 8138 uid_eq(uid, sock_i_uid(sk2)))) 8139 continue; 8140 8141 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8142 addr, sp2, sp)) { 8143 ret = (long)sk2; 8144 goto fail_unlock; 8145 } 8146 } 8147 8148 pr_debug("%s: found a match\n", __func__); 8149 } 8150 pp_not_found: 8151 /* If there was a hash table miss, create a new port. */ 8152 ret = 1; 8153 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8154 goto fail_unlock; 8155 8156 /* In either case (hit or miss), make sure fastreuse is 1 only 8157 * if sk->sk_reuse is too (that is, if the caller requested 8158 * SO_REUSEADDR on this socket -sk-). 8159 */ 8160 if (hlist_empty(&pp->owner)) { 8161 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8162 pp->fastreuse = 1; 8163 else 8164 pp->fastreuse = 0; 8165 8166 if (sk->sk_reuseport) { 8167 pp->fastreuseport = 1; 8168 pp->fastuid = uid; 8169 } else { 8170 pp->fastreuseport = 0; 8171 } 8172 } else { 8173 if (pp->fastreuse && 8174 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8175 pp->fastreuse = 0; 8176 8177 if (pp->fastreuseport && 8178 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8179 pp->fastreuseport = 0; 8180 } 8181 8182 /* We are set, so fill up all the data in the hash table 8183 * entry, tie the socket list information with the rest of the 8184 * sockets FIXME: Blurry, NPI (ipg). 8185 */ 8186 success: 8187 if (!sp->bind_hash) { 8188 inet_sk(sk)->inet_num = snum; 8189 sk_add_bind_node(sk, &pp->owner); 8190 sp->bind_hash = pp; 8191 } 8192 ret = 0; 8193 8194 fail_unlock: 8195 spin_unlock(&head->lock); 8196 8197 fail: 8198 local_bh_enable(); 8199 return ret; 8200 } 8201 8202 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8203 * port is requested. 8204 */ 8205 static int sctp_get_port(struct sock *sk, unsigned short snum) 8206 { 8207 union sctp_addr addr; 8208 struct sctp_af *af = sctp_sk(sk)->pf->af; 8209 8210 /* Set up a dummy address struct from the sk. */ 8211 af->from_sk(&addr, sk); 8212 addr.v4.sin_port = htons(snum); 8213 8214 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8215 return !!sctp_get_port_local(sk, &addr); 8216 } 8217 8218 /* 8219 * Move a socket to LISTENING state. 8220 */ 8221 static int sctp_listen_start(struct sock *sk, int backlog) 8222 { 8223 struct sctp_sock *sp = sctp_sk(sk); 8224 struct sctp_endpoint *ep = sp->ep; 8225 struct crypto_shash *tfm = NULL; 8226 char alg[32]; 8227 8228 /* Allocate HMAC for generating cookie. */ 8229 if (!sp->hmac && sp->sctp_hmac_alg) { 8230 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8231 tfm = crypto_alloc_shash(alg, 0, 0); 8232 if (IS_ERR(tfm)) { 8233 net_info_ratelimited("failed to load transform for %s: %ld\n", 8234 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8235 return -ENOSYS; 8236 } 8237 sctp_sk(sk)->hmac = tfm; 8238 } 8239 8240 /* 8241 * If a bind() or sctp_bindx() is not called prior to a listen() 8242 * call that allows new associations to be accepted, the system 8243 * picks an ephemeral port and will choose an address set equivalent 8244 * to binding with a wildcard address. 8245 * 8246 * This is not currently spelled out in the SCTP sockets 8247 * extensions draft, but follows the practice as seen in TCP 8248 * sockets. 8249 * 8250 */ 8251 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8252 if (!ep->base.bind_addr.port) { 8253 if (sctp_autobind(sk)) 8254 return -EAGAIN; 8255 } else { 8256 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8257 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8258 return -EADDRINUSE; 8259 } 8260 } 8261 8262 sk->sk_max_ack_backlog = backlog; 8263 return sctp_hash_endpoint(ep); 8264 } 8265 8266 /* 8267 * 4.1.3 / 5.1.3 listen() 8268 * 8269 * By default, new associations are not accepted for UDP style sockets. 8270 * An application uses listen() to mark a socket as being able to 8271 * accept new associations. 8272 * 8273 * On TCP style sockets, applications use listen() to ready the SCTP 8274 * endpoint for accepting inbound associations. 8275 * 8276 * On both types of endpoints a backlog of '0' disables listening. 8277 * 8278 * Move a socket to LISTENING state. 8279 */ 8280 int sctp_inet_listen(struct socket *sock, int backlog) 8281 { 8282 struct sock *sk = sock->sk; 8283 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8284 int err = -EINVAL; 8285 8286 if (unlikely(backlog < 0)) 8287 return err; 8288 8289 lock_sock(sk); 8290 8291 /* Peeled-off sockets are not allowed to listen(). */ 8292 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8293 goto out; 8294 8295 if (sock->state != SS_UNCONNECTED) 8296 goto out; 8297 8298 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8299 goto out; 8300 8301 /* If backlog is zero, disable listening. */ 8302 if (!backlog) { 8303 if (sctp_sstate(sk, CLOSED)) 8304 goto out; 8305 8306 err = 0; 8307 sctp_unhash_endpoint(ep); 8308 sk->sk_state = SCTP_SS_CLOSED; 8309 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8310 sctp_sk(sk)->bind_hash->fastreuse = 1; 8311 goto out; 8312 } 8313 8314 /* If we are already listening, just update the backlog */ 8315 if (sctp_sstate(sk, LISTENING)) 8316 sk->sk_max_ack_backlog = backlog; 8317 else { 8318 err = sctp_listen_start(sk, backlog); 8319 if (err) 8320 goto out; 8321 } 8322 8323 err = 0; 8324 out: 8325 release_sock(sk); 8326 return err; 8327 } 8328 8329 /* 8330 * This function is done by modeling the current datagram_poll() and the 8331 * tcp_poll(). Note that, based on these implementations, we don't 8332 * lock the socket in this function, even though it seems that, 8333 * ideally, locking or some other mechanisms can be used to ensure 8334 * the integrity of the counters (sndbuf and wmem_alloc) used 8335 * in this place. We assume that we don't need locks either until proven 8336 * otherwise. 8337 * 8338 * Another thing to note is that we include the Async I/O support 8339 * here, again, by modeling the current TCP/UDP code. We don't have 8340 * a good way to test with it yet. 8341 */ 8342 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8343 { 8344 struct sock *sk = sock->sk; 8345 struct sctp_sock *sp = sctp_sk(sk); 8346 __poll_t mask; 8347 8348 poll_wait(file, sk_sleep(sk), wait); 8349 8350 sock_rps_record_flow(sk); 8351 8352 /* A TCP-style listening socket becomes readable when the accept queue 8353 * is not empty. 8354 */ 8355 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8356 return (!list_empty(&sp->ep->asocs)) ? 8357 (EPOLLIN | EPOLLRDNORM) : 0; 8358 8359 mask = 0; 8360 8361 /* Is there any exceptional events? */ 8362 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8363 mask |= EPOLLERR | 8364 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8365 if (sk->sk_shutdown & RCV_SHUTDOWN) 8366 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8367 if (sk->sk_shutdown == SHUTDOWN_MASK) 8368 mask |= EPOLLHUP; 8369 8370 /* Is it readable? Reconsider this code with TCP-style support. */ 8371 if (!skb_queue_empty(&sk->sk_receive_queue)) 8372 mask |= EPOLLIN | EPOLLRDNORM; 8373 8374 /* The association is either gone or not ready. */ 8375 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8376 return mask; 8377 8378 /* Is it writable? */ 8379 if (sctp_writeable(sk)) { 8380 mask |= EPOLLOUT | EPOLLWRNORM; 8381 } else { 8382 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8383 /* 8384 * Since the socket is not locked, the buffer 8385 * might be made available after the writeable check and 8386 * before the bit is set. This could cause a lost I/O 8387 * signal. tcp_poll() has a race breaker for this race 8388 * condition. Based on their implementation, we put 8389 * in the following code to cover it as well. 8390 */ 8391 if (sctp_writeable(sk)) 8392 mask |= EPOLLOUT | EPOLLWRNORM; 8393 } 8394 return mask; 8395 } 8396 8397 /******************************************************************** 8398 * 2nd Level Abstractions 8399 ********************************************************************/ 8400 8401 static struct sctp_bind_bucket *sctp_bucket_create( 8402 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8403 { 8404 struct sctp_bind_bucket *pp; 8405 8406 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8407 if (pp) { 8408 SCTP_DBG_OBJCNT_INC(bind_bucket); 8409 pp->port = snum; 8410 pp->fastreuse = 0; 8411 INIT_HLIST_HEAD(&pp->owner); 8412 pp->net = net; 8413 hlist_add_head(&pp->node, &head->chain); 8414 } 8415 return pp; 8416 } 8417 8418 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8419 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8420 { 8421 if (pp && hlist_empty(&pp->owner)) { 8422 __hlist_del(&pp->node); 8423 kmem_cache_free(sctp_bucket_cachep, pp); 8424 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8425 } 8426 } 8427 8428 /* Release this socket's reference to a local port. */ 8429 static inline void __sctp_put_port(struct sock *sk) 8430 { 8431 struct sctp_bind_hashbucket *head = 8432 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8433 inet_sk(sk)->inet_num)]; 8434 struct sctp_bind_bucket *pp; 8435 8436 spin_lock(&head->lock); 8437 pp = sctp_sk(sk)->bind_hash; 8438 __sk_del_bind_node(sk); 8439 sctp_sk(sk)->bind_hash = NULL; 8440 inet_sk(sk)->inet_num = 0; 8441 sctp_bucket_destroy(pp); 8442 spin_unlock(&head->lock); 8443 } 8444 8445 void sctp_put_port(struct sock *sk) 8446 { 8447 local_bh_disable(); 8448 __sctp_put_port(sk); 8449 local_bh_enable(); 8450 } 8451 8452 /* 8453 * The system picks an ephemeral port and choose an address set equivalent 8454 * to binding with a wildcard address. 8455 * One of those addresses will be the primary address for the association. 8456 * This automatically enables the multihoming capability of SCTP. 8457 */ 8458 static int sctp_autobind(struct sock *sk) 8459 { 8460 union sctp_addr autoaddr; 8461 struct sctp_af *af; 8462 __be16 port; 8463 8464 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8465 af = sctp_sk(sk)->pf->af; 8466 8467 port = htons(inet_sk(sk)->inet_num); 8468 af->inaddr_any(&autoaddr, port); 8469 8470 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8471 } 8472 8473 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8474 * 8475 * From RFC 2292 8476 * 4.2 The cmsghdr Structure * 8477 * 8478 * When ancillary data is sent or received, any number of ancillary data 8479 * objects can be specified by the msg_control and msg_controllen members of 8480 * the msghdr structure, because each object is preceded by 8481 * a cmsghdr structure defining the object's length (the cmsg_len member). 8482 * Historically Berkeley-derived implementations have passed only one object 8483 * at a time, but this API allows multiple objects to be 8484 * passed in a single call to sendmsg() or recvmsg(). The following example 8485 * shows two ancillary data objects in a control buffer. 8486 * 8487 * |<--------------------------- msg_controllen -------------------------->| 8488 * | | 8489 * 8490 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8491 * 8492 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8493 * | | | 8494 * 8495 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8496 * 8497 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8498 * | | | | | 8499 * 8500 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8501 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8502 * 8503 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8504 * 8505 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8506 * ^ 8507 * | 8508 * 8509 * msg_control 8510 * points here 8511 */ 8512 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8513 { 8514 struct msghdr *my_msg = (struct msghdr *)msg; 8515 struct cmsghdr *cmsg; 8516 8517 for_each_cmsghdr(cmsg, my_msg) { 8518 if (!CMSG_OK(my_msg, cmsg)) 8519 return -EINVAL; 8520 8521 /* Should we parse this header or ignore? */ 8522 if (cmsg->cmsg_level != IPPROTO_SCTP) 8523 continue; 8524 8525 /* Strictly check lengths following example in SCM code. */ 8526 switch (cmsg->cmsg_type) { 8527 case SCTP_INIT: 8528 /* SCTP Socket API Extension 8529 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8530 * 8531 * This cmsghdr structure provides information for 8532 * initializing new SCTP associations with sendmsg(). 8533 * The SCTP_INITMSG socket option uses this same data 8534 * structure. This structure is not used for 8535 * recvmsg(). 8536 * 8537 * cmsg_level cmsg_type cmsg_data[] 8538 * ------------ ------------ ---------------------- 8539 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8540 */ 8541 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8542 return -EINVAL; 8543 8544 cmsgs->init = CMSG_DATA(cmsg); 8545 break; 8546 8547 case SCTP_SNDRCV: 8548 /* SCTP Socket API Extension 8549 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8550 * 8551 * This cmsghdr structure specifies SCTP options for 8552 * sendmsg() and describes SCTP header information 8553 * about a received message through recvmsg(). 8554 * 8555 * cmsg_level cmsg_type cmsg_data[] 8556 * ------------ ------------ ---------------------- 8557 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8558 */ 8559 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8560 return -EINVAL; 8561 8562 cmsgs->srinfo = CMSG_DATA(cmsg); 8563 8564 if (cmsgs->srinfo->sinfo_flags & 8565 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8566 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8567 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8568 return -EINVAL; 8569 break; 8570 8571 case SCTP_SNDINFO: 8572 /* SCTP Socket API Extension 8573 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8574 * 8575 * This cmsghdr structure specifies SCTP options for 8576 * sendmsg(). This structure and SCTP_RCVINFO replaces 8577 * SCTP_SNDRCV which has been deprecated. 8578 * 8579 * cmsg_level cmsg_type cmsg_data[] 8580 * ------------ ------------ --------------------- 8581 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8582 */ 8583 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8584 return -EINVAL; 8585 8586 cmsgs->sinfo = CMSG_DATA(cmsg); 8587 8588 if (cmsgs->sinfo->snd_flags & 8589 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8590 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8591 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8592 return -EINVAL; 8593 break; 8594 case SCTP_PRINFO: 8595 /* SCTP Socket API Extension 8596 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8597 * 8598 * This cmsghdr structure specifies SCTP options for sendmsg(). 8599 * 8600 * cmsg_level cmsg_type cmsg_data[] 8601 * ------------ ------------ --------------------- 8602 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8603 */ 8604 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8605 return -EINVAL; 8606 8607 cmsgs->prinfo = CMSG_DATA(cmsg); 8608 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8609 return -EINVAL; 8610 8611 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8612 cmsgs->prinfo->pr_value = 0; 8613 break; 8614 case SCTP_AUTHINFO: 8615 /* SCTP Socket API Extension 8616 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8617 * 8618 * This cmsghdr structure specifies SCTP options for sendmsg(). 8619 * 8620 * cmsg_level cmsg_type cmsg_data[] 8621 * ------------ ------------ --------------------- 8622 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8623 */ 8624 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8625 return -EINVAL; 8626 8627 cmsgs->authinfo = CMSG_DATA(cmsg); 8628 break; 8629 case SCTP_DSTADDRV4: 8630 case SCTP_DSTADDRV6: 8631 /* SCTP Socket API Extension 8632 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8633 * 8634 * This cmsghdr structure specifies SCTP options for sendmsg(). 8635 * 8636 * cmsg_level cmsg_type cmsg_data[] 8637 * ------------ ------------ --------------------- 8638 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8639 * ------------ ------------ --------------------- 8640 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8641 */ 8642 cmsgs->addrs_msg = my_msg; 8643 break; 8644 default: 8645 return -EINVAL; 8646 } 8647 } 8648 8649 return 0; 8650 } 8651 8652 /* 8653 * Wait for a packet.. 8654 * Note: This function is the same function as in core/datagram.c 8655 * with a few modifications to make lksctp work. 8656 */ 8657 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8658 { 8659 int error; 8660 DEFINE_WAIT(wait); 8661 8662 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8663 8664 /* Socket errors? */ 8665 error = sock_error(sk); 8666 if (error) 8667 goto out; 8668 8669 if (!skb_queue_empty(&sk->sk_receive_queue)) 8670 goto ready; 8671 8672 /* Socket shut down? */ 8673 if (sk->sk_shutdown & RCV_SHUTDOWN) 8674 goto out; 8675 8676 /* Sequenced packets can come disconnected. If so we report the 8677 * problem. 8678 */ 8679 error = -ENOTCONN; 8680 8681 /* Is there a good reason to think that we may receive some data? */ 8682 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8683 goto out; 8684 8685 /* Handle signals. */ 8686 if (signal_pending(current)) 8687 goto interrupted; 8688 8689 /* Let another process have a go. Since we are going to sleep 8690 * anyway. Note: This may cause odd behaviors if the message 8691 * does not fit in the user's buffer, but this seems to be the 8692 * only way to honor MSG_DONTWAIT realistically. 8693 */ 8694 release_sock(sk); 8695 *timeo_p = schedule_timeout(*timeo_p); 8696 lock_sock(sk); 8697 8698 ready: 8699 finish_wait(sk_sleep(sk), &wait); 8700 return 0; 8701 8702 interrupted: 8703 error = sock_intr_errno(*timeo_p); 8704 8705 out: 8706 finish_wait(sk_sleep(sk), &wait); 8707 *err = error; 8708 return error; 8709 } 8710 8711 /* Receive a datagram. 8712 * Note: This is pretty much the same routine as in core/datagram.c 8713 * with a few changes to make lksctp work. 8714 */ 8715 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8716 int noblock, int *err) 8717 { 8718 int error; 8719 struct sk_buff *skb; 8720 long timeo; 8721 8722 timeo = sock_rcvtimeo(sk, noblock); 8723 8724 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8725 MAX_SCHEDULE_TIMEOUT); 8726 8727 do { 8728 /* Again only user level code calls this function, 8729 * so nothing interrupt level 8730 * will suddenly eat the receive_queue. 8731 * 8732 * Look at current nfs client by the way... 8733 * However, this function was correct in any case. 8) 8734 */ 8735 if (flags & MSG_PEEK) { 8736 skb = skb_peek(&sk->sk_receive_queue); 8737 if (skb) 8738 refcount_inc(&skb->users); 8739 } else { 8740 skb = __skb_dequeue(&sk->sk_receive_queue); 8741 } 8742 8743 if (skb) 8744 return skb; 8745 8746 /* Caller is allowed not to check sk->sk_err before calling. */ 8747 error = sock_error(sk); 8748 if (error) 8749 goto no_packet; 8750 8751 if (sk->sk_shutdown & RCV_SHUTDOWN) 8752 break; 8753 8754 if (sk_can_busy_loop(sk)) { 8755 sk_busy_loop(sk, noblock); 8756 8757 if (!skb_queue_empty(&sk->sk_receive_queue)) 8758 continue; 8759 } 8760 8761 /* User doesn't want to wait. */ 8762 error = -EAGAIN; 8763 if (!timeo) 8764 goto no_packet; 8765 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8766 8767 return NULL; 8768 8769 no_packet: 8770 *err = error; 8771 return NULL; 8772 } 8773 8774 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8775 static void __sctp_write_space(struct sctp_association *asoc) 8776 { 8777 struct sock *sk = asoc->base.sk; 8778 8779 if (sctp_wspace(asoc) <= 0) 8780 return; 8781 8782 if (waitqueue_active(&asoc->wait)) 8783 wake_up_interruptible(&asoc->wait); 8784 8785 if (sctp_writeable(sk)) { 8786 struct socket_wq *wq; 8787 8788 rcu_read_lock(); 8789 wq = rcu_dereference(sk->sk_wq); 8790 if (wq) { 8791 if (waitqueue_active(&wq->wait)) 8792 wake_up_interruptible(&wq->wait); 8793 8794 /* Note that we try to include the Async I/O support 8795 * here by modeling from the current TCP/UDP code. 8796 * We have not tested with it yet. 8797 */ 8798 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8799 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8800 } 8801 rcu_read_unlock(); 8802 } 8803 } 8804 8805 static void sctp_wake_up_waiters(struct sock *sk, 8806 struct sctp_association *asoc) 8807 { 8808 struct sctp_association *tmp = asoc; 8809 8810 /* We do accounting for the sndbuf space per association, 8811 * so we only need to wake our own association. 8812 */ 8813 if (asoc->ep->sndbuf_policy) 8814 return __sctp_write_space(asoc); 8815 8816 /* If association goes down and is just flushing its 8817 * outq, then just normally notify others. 8818 */ 8819 if (asoc->base.dead) 8820 return sctp_write_space(sk); 8821 8822 /* Accounting for the sndbuf space is per socket, so we 8823 * need to wake up others, try to be fair and in case of 8824 * other associations, let them have a go first instead 8825 * of just doing a sctp_write_space() call. 8826 * 8827 * Note that we reach sctp_wake_up_waiters() only when 8828 * associations free up queued chunks, thus we are under 8829 * lock and the list of associations on a socket is 8830 * guaranteed not to change. 8831 */ 8832 for (tmp = list_next_entry(tmp, asocs); 1; 8833 tmp = list_next_entry(tmp, asocs)) { 8834 /* Manually skip the head element. */ 8835 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8836 continue; 8837 /* Wake up association. */ 8838 __sctp_write_space(tmp); 8839 /* We've reached the end. */ 8840 if (tmp == asoc) 8841 break; 8842 } 8843 } 8844 8845 /* Do accounting for the sndbuf space. 8846 * Decrement the used sndbuf space of the corresponding association by the 8847 * data size which was just transmitted(freed). 8848 */ 8849 static void sctp_wfree(struct sk_buff *skb) 8850 { 8851 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8852 struct sctp_association *asoc = chunk->asoc; 8853 struct sock *sk = asoc->base.sk; 8854 8855 sk_mem_uncharge(sk, skb->truesize); 8856 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8857 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8858 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8859 &sk->sk_wmem_alloc)); 8860 8861 if (chunk->shkey) { 8862 struct sctp_shared_key *shkey = chunk->shkey; 8863 8864 /* refcnt == 2 and !list_empty mean after this release, it's 8865 * not being used anywhere, and it's time to notify userland 8866 * that this shkey can be freed if it's been deactivated. 8867 */ 8868 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8869 refcount_read(&shkey->refcnt) == 2) { 8870 struct sctp_ulpevent *ev; 8871 8872 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8873 SCTP_AUTH_FREE_KEY, 8874 GFP_KERNEL); 8875 if (ev) 8876 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8877 } 8878 sctp_auth_shkey_release(chunk->shkey); 8879 } 8880 8881 sock_wfree(skb); 8882 sctp_wake_up_waiters(sk, asoc); 8883 8884 sctp_association_put(asoc); 8885 } 8886 8887 /* Do accounting for the receive space on the socket. 8888 * Accounting for the association is done in ulpevent.c 8889 * We set this as a destructor for the cloned data skbs so that 8890 * accounting is done at the correct time. 8891 */ 8892 void sctp_sock_rfree(struct sk_buff *skb) 8893 { 8894 struct sock *sk = skb->sk; 8895 struct sctp_ulpevent *event = sctp_skb2event(skb); 8896 8897 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8898 8899 /* 8900 * Mimic the behavior of sock_rfree 8901 */ 8902 sk_mem_uncharge(sk, event->rmem_len); 8903 } 8904 8905 8906 /* Helper function to wait for space in the sndbuf. */ 8907 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8908 size_t msg_len) 8909 { 8910 struct sock *sk = asoc->base.sk; 8911 long current_timeo = *timeo_p; 8912 DEFINE_WAIT(wait); 8913 int err = 0; 8914 8915 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8916 *timeo_p, msg_len); 8917 8918 /* Increment the association's refcnt. */ 8919 sctp_association_hold(asoc); 8920 8921 /* Wait on the association specific sndbuf space. */ 8922 for (;;) { 8923 prepare_to_wait_exclusive(&asoc->wait, &wait, 8924 TASK_INTERRUPTIBLE); 8925 if (asoc->base.dead) 8926 goto do_dead; 8927 if (!*timeo_p) 8928 goto do_nonblock; 8929 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8930 goto do_error; 8931 if (signal_pending(current)) 8932 goto do_interrupted; 8933 if ((int)msg_len <= sctp_wspace(asoc)) 8934 break; 8935 8936 /* Let another process have a go. Since we are going 8937 * to sleep anyway. 8938 */ 8939 release_sock(sk); 8940 current_timeo = schedule_timeout(current_timeo); 8941 lock_sock(sk); 8942 if (sk != asoc->base.sk) 8943 goto do_error; 8944 8945 *timeo_p = current_timeo; 8946 } 8947 8948 out: 8949 finish_wait(&asoc->wait, &wait); 8950 8951 /* Release the association's refcnt. */ 8952 sctp_association_put(asoc); 8953 8954 return err; 8955 8956 do_dead: 8957 err = -ESRCH; 8958 goto out; 8959 8960 do_error: 8961 err = -EPIPE; 8962 goto out; 8963 8964 do_interrupted: 8965 err = sock_intr_errno(*timeo_p); 8966 goto out; 8967 8968 do_nonblock: 8969 err = -EAGAIN; 8970 goto out; 8971 } 8972 8973 void sctp_data_ready(struct sock *sk) 8974 { 8975 struct socket_wq *wq; 8976 8977 rcu_read_lock(); 8978 wq = rcu_dereference(sk->sk_wq); 8979 if (skwq_has_sleeper(wq)) 8980 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8981 EPOLLRDNORM | EPOLLRDBAND); 8982 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8983 rcu_read_unlock(); 8984 } 8985 8986 /* If socket sndbuf has changed, wake up all per association waiters. */ 8987 void sctp_write_space(struct sock *sk) 8988 { 8989 struct sctp_association *asoc; 8990 8991 /* Wake up the tasks in each wait queue. */ 8992 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8993 __sctp_write_space(asoc); 8994 } 8995 } 8996 8997 /* Is there any sndbuf space available on the socket? 8998 * 8999 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9000 * associations on the same socket. For a UDP-style socket with 9001 * multiple associations, it is possible for it to be "unwriteable" 9002 * prematurely. I assume that this is acceptable because 9003 * a premature "unwriteable" is better than an accidental "writeable" which 9004 * would cause an unwanted block under certain circumstances. For the 1-1 9005 * UDP-style sockets or TCP-style sockets, this code should work. 9006 * - Daisy 9007 */ 9008 static bool sctp_writeable(struct sock *sk) 9009 { 9010 return sk->sk_sndbuf > sk->sk_wmem_queued; 9011 } 9012 9013 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9014 * returns immediately with EINPROGRESS. 9015 */ 9016 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9017 { 9018 struct sock *sk = asoc->base.sk; 9019 int err = 0; 9020 long current_timeo = *timeo_p; 9021 DEFINE_WAIT(wait); 9022 9023 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9024 9025 /* Increment the association's refcnt. */ 9026 sctp_association_hold(asoc); 9027 9028 for (;;) { 9029 prepare_to_wait_exclusive(&asoc->wait, &wait, 9030 TASK_INTERRUPTIBLE); 9031 if (!*timeo_p) 9032 goto do_nonblock; 9033 if (sk->sk_shutdown & RCV_SHUTDOWN) 9034 break; 9035 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9036 asoc->base.dead) 9037 goto do_error; 9038 if (signal_pending(current)) 9039 goto do_interrupted; 9040 9041 if (sctp_state(asoc, ESTABLISHED)) 9042 break; 9043 9044 /* Let another process have a go. Since we are going 9045 * to sleep anyway. 9046 */ 9047 release_sock(sk); 9048 current_timeo = schedule_timeout(current_timeo); 9049 lock_sock(sk); 9050 9051 *timeo_p = current_timeo; 9052 } 9053 9054 out: 9055 finish_wait(&asoc->wait, &wait); 9056 9057 /* Release the association's refcnt. */ 9058 sctp_association_put(asoc); 9059 9060 return err; 9061 9062 do_error: 9063 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9064 err = -ETIMEDOUT; 9065 else 9066 err = -ECONNREFUSED; 9067 goto out; 9068 9069 do_interrupted: 9070 err = sock_intr_errno(*timeo_p); 9071 goto out; 9072 9073 do_nonblock: 9074 err = -EINPROGRESS; 9075 goto out; 9076 } 9077 9078 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9079 { 9080 struct sctp_endpoint *ep; 9081 int err = 0; 9082 DEFINE_WAIT(wait); 9083 9084 ep = sctp_sk(sk)->ep; 9085 9086 9087 for (;;) { 9088 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9089 TASK_INTERRUPTIBLE); 9090 9091 if (list_empty(&ep->asocs)) { 9092 release_sock(sk); 9093 timeo = schedule_timeout(timeo); 9094 lock_sock(sk); 9095 } 9096 9097 err = -EINVAL; 9098 if (!sctp_sstate(sk, LISTENING)) 9099 break; 9100 9101 err = 0; 9102 if (!list_empty(&ep->asocs)) 9103 break; 9104 9105 err = sock_intr_errno(timeo); 9106 if (signal_pending(current)) 9107 break; 9108 9109 err = -EAGAIN; 9110 if (!timeo) 9111 break; 9112 } 9113 9114 finish_wait(sk_sleep(sk), &wait); 9115 9116 return err; 9117 } 9118 9119 static void sctp_wait_for_close(struct sock *sk, long timeout) 9120 { 9121 DEFINE_WAIT(wait); 9122 9123 do { 9124 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9125 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9126 break; 9127 release_sock(sk); 9128 timeout = schedule_timeout(timeout); 9129 lock_sock(sk); 9130 } while (!signal_pending(current) && timeout); 9131 9132 finish_wait(sk_sleep(sk), &wait); 9133 } 9134 9135 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9136 { 9137 struct sk_buff *frag; 9138 9139 if (!skb->data_len) 9140 goto done; 9141 9142 /* Don't forget the fragments. */ 9143 skb_walk_frags(skb, frag) 9144 sctp_skb_set_owner_r_frag(frag, sk); 9145 9146 done: 9147 sctp_skb_set_owner_r(skb, sk); 9148 } 9149 9150 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9151 struct sctp_association *asoc) 9152 { 9153 struct inet_sock *inet = inet_sk(sk); 9154 struct inet_sock *newinet; 9155 struct sctp_sock *sp = sctp_sk(sk); 9156 struct sctp_endpoint *ep = sp->ep; 9157 9158 newsk->sk_type = sk->sk_type; 9159 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9160 newsk->sk_flags = sk->sk_flags; 9161 newsk->sk_tsflags = sk->sk_tsflags; 9162 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9163 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9164 newsk->sk_reuse = sk->sk_reuse; 9165 sctp_sk(newsk)->reuse = sp->reuse; 9166 9167 newsk->sk_shutdown = sk->sk_shutdown; 9168 newsk->sk_destruct = sctp_destruct_sock; 9169 newsk->sk_family = sk->sk_family; 9170 newsk->sk_protocol = IPPROTO_SCTP; 9171 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9172 newsk->sk_sndbuf = sk->sk_sndbuf; 9173 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9174 newsk->sk_lingertime = sk->sk_lingertime; 9175 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9176 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9177 newsk->sk_rxhash = sk->sk_rxhash; 9178 9179 newinet = inet_sk(newsk); 9180 9181 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9182 * getsockname() and getpeername() 9183 */ 9184 newinet->inet_sport = inet->inet_sport; 9185 newinet->inet_saddr = inet->inet_saddr; 9186 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9187 newinet->inet_dport = htons(asoc->peer.port); 9188 newinet->pmtudisc = inet->pmtudisc; 9189 newinet->inet_id = asoc->next_tsn ^ jiffies; 9190 9191 newinet->uc_ttl = inet->uc_ttl; 9192 newinet->mc_loop = 1; 9193 newinet->mc_ttl = 1; 9194 newinet->mc_index = 0; 9195 newinet->mc_list = NULL; 9196 9197 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9198 net_enable_timestamp(); 9199 9200 /* Set newsk security attributes from orginal sk and connection 9201 * security attribute from ep. 9202 */ 9203 security_sctp_sk_clone(ep, sk, newsk); 9204 } 9205 9206 static inline void sctp_copy_descendant(struct sock *sk_to, 9207 const struct sock *sk_from) 9208 { 9209 int ancestor_size = sizeof(struct inet_sock) + 9210 sizeof(struct sctp_sock) - 9211 offsetof(struct sctp_sock, pd_lobby); 9212 9213 if (sk_from->sk_family == PF_INET6) 9214 ancestor_size += sizeof(struct ipv6_pinfo); 9215 9216 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9217 } 9218 9219 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9220 * and its messages to the newsk. 9221 */ 9222 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9223 struct sctp_association *assoc, 9224 enum sctp_socket_type type) 9225 { 9226 struct sctp_sock *oldsp = sctp_sk(oldsk); 9227 struct sctp_sock *newsp = sctp_sk(newsk); 9228 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9229 struct sctp_endpoint *newep = newsp->ep; 9230 struct sk_buff *skb, *tmp; 9231 struct sctp_ulpevent *event; 9232 struct sctp_bind_hashbucket *head; 9233 int err; 9234 9235 /* Migrate socket buffer sizes and all the socket level options to the 9236 * new socket. 9237 */ 9238 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9239 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9240 /* Brute force copy old sctp opt. */ 9241 sctp_copy_descendant(newsk, oldsk); 9242 9243 /* Restore the ep value that was overwritten with the above structure 9244 * copy. 9245 */ 9246 newsp->ep = newep; 9247 newsp->hmac = NULL; 9248 9249 /* Hook this new socket in to the bind_hash list. */ 9250 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9251 inet_sk(oldsk)->inet_num)]; 9252 spin_lock_bh(&head->lock); 9253 pp = sctp_sk(oldsk)->bind_hash; 9254 sk_add_bind_node(newsk, &pp->owner); 9255 sctp_sk(newsk)->bind_hash = pp; 9256 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9257 spin_unlock_bh(&head->lock); 9258 9259 /* Copy the bind_addr list from the original endpoint to the new 9260 * endpoint so that we can handle restarts properly 9261 */ 9262 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9263 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9264 if (err) 9265 return err; 9266 9267 /* New ep's auth_hmacs should be set if old ep's is set, in case 9268 * that net->sctp.auth_enable has been changed to 0 by users and 9269 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9270 */ 9271 if (oldsp->ep->auth_hmacs) { 9272 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9273 if (err) 9274 return err; 9275 } 9276 9277 /* Move any messages in the old socket's receive queue that are for the 9278 * peeled off association to the new socket's receive queue. 9279 */ 9280 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9281 event = sctp_skb2event(skb); 9282 if (event->asoc == assoc) { 9283 __skb_unlink(skb, &oldsk->sk_receive_queue); 9284 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9285 sctp_skb_set_owner_r_frag(skb, newsk); 9286 } 9287 } 9288 9289 /* Clean up any messages pending delivery due to partial 9290 * delivery. Three cases: 9291 * 1) No partial deliver; no work. 9292 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9293 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9294 */ 9295 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9296 9297 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9298 struct sk_buff_head *queue; 9299 9300 /* Decide which queue to move pd_lobby skbs to. */ 9301 if (assoc->ulpq.pd_mode) { 9302 queue = &newsp->pd_lobby; 9303 } else 9304 queue = &newsk->sk_receive_queue; 9305 9306 /* Walk through the pd_lobby, looking for skbs that 9307 * need moved to the new socket. 9308 */ 9309 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9310 event = sctp_skb2event(skb); 9311 if (event->asoc == assoc) { 9312 __skb_unlink(skb, &oldsp->pd_lobby); 9313 __skb_queue_tail(queue, skb); 9314 sctp_skb_set_owner_r_frag(skb, newsk); 9315 } 9316 } 9317 9318 /* Clear up any skbs waiting for the partial 9319 * delivery to finish. 9320 */ 9321 if (assoc->ulpq.pd_mode) 9322 sctp_clear_pd(oldsk, NULL); 9323 9324 } 9325 9326 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9327 9328 /* Set the type of socket to indicate that it is peeled off from the 9329 * original UDP-style socket or created with the accept() call on a 9330 * TCP-style socket.. 9331 */ 9332 newsp->type = type; 9333 9334 /* Mark the new socket "in-use" by the user so that any packets 9335 * that may arrive on the association after we've moved it are 9336 * queued to the backlog. This prevents a potential race between 9337 * backlog processing on the old socket and new-packet processing 9338 * on the new socket. 9339 * 9340 * The caller has just allocated newsk so we can guarantee that other 9341 * paths won't try to lock it and then oldsk. 9342 */ 9343 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9344 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9345 sctp_assoc_migrate(assoc, newsk); 9346 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9347 9348 /* If the association on the newsk is already closed before accept() 9349 * is called, set RCV_SHUTDOWN flag. 9350 */ 9351 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9352 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9353 newsk->sk_shutdown |= RCV_SHUTDOWN; 9354 } else { 9355 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9356 } 9357 9358 release_sock(newsk); 9359 9360 return 0; 9361 } 9362 9363 9364 /* This proto struct describes the ULP interface for SCTP. */ 9365 struct proto sctp_prot = { 9366 .name = "SCTP", 9367 .owner = THIS_MODULE, 9368 .close = sctp_close, 9369 .disconnect = sctp_disconnect, 9370 .accept = sctp_accept, 9371 .ioctl = sctp_ioctl, 9372 .init = sctp_init_sock, 9373 .destroy = sctp_destroy_sock, 9374 .shutdown = sctp_shutdown, 9375 .setsockopt = sctp_setsockopt, 9376 .getsockopt = sctp_getsockopt, 9377 .sendmsg = sctp_sendmsg, 9378 .recvmsg = sctp_recvmsg, 9379 .bind = sctp_bind, 9380 .backlog_rcv = sctp_backlog_rcv, 9381 .hash = sctp_hash, 9382 .unhash = sctp_unhash, 9383 .get_port = sctp_get_port, 9384 .obj_size = sizeof(struct sctp_sock), 9385 .useroffset = offsetof(struct sctp_sock, subscribe), 9386 .usersize = offsetof(struct sctp_sock, initmsg) - 9387 offsetof(struct sctp_sock, subscribe) + 9388 sizeof_field(struct sctp_sock, initmsg), 9389 .sysctl_mem = sysctl_sctp_mem, 9390 .sysctl_rmem = sysctl_sctp_rmem, 9391 .sysctl_wmem = sysctl_sctp_wmem, 9392 .memory_pressure = &sctp_memory_pressure, 9393 .enter_memory_pressure = sctp_enter_memory_pressure, 9394 .memory_allocated = &sctp_memory_allocated, 9395 .sockets_allocated = &sctp_sockets_allocated, 9396 }; 9397 9398 #if IS_ENABLED(CONFIG_IPV6) 9399 9400 #include <net/transp_v6.h> 9401 static void sctp_v6_destroy_sock(struct sock *sk) 9402 { 9403 sctp_destroy_sock(sk); 9404 inet6_destroy_sock(sk); 9405 } 9406 9407 struct proto sctpv6_prot = { 9408 .name = "SCTPv6", 9409 .owner = THIS_MODULE, 9410 .close = sctp_close, 9411 .disconnect = sctp_disconnect, 9412 .accept = sctp_accept, 9413 .ioctl = sctp_ioctl, 9414 .init = sctp_init_sock, 9415 .destroy = sctp_v6_destroy_sock, 9416 .shutdown = sctp_shutdown, 9417 .setsockopt = sctp_setsockopt, 9418 .getsockopt = sctp_getsockopt, 9419 .sendmsg = sctp_sendmsg, 9420 .recvmsg = sctp_recvmsg, 9421 .bind = sctp_bind, 9422 .backlog_rcv = sctp_backlog_rcv, 9423 .hash = sctp_hash, 9424 .unhash = sctp_unhash, 9425 .get_port = sctp_get_port, 9426 .obj_size = sizeof(struct sctp6_sock), 9427 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9428 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9429 offsetof(struct sctp6_sock, sctp.subscribe) + 9430 sizeof_field(struct sctp6_sock, sctp.initmsg), 9431 .sysctl_mem = sysctl_sctp_mem, 9432 .sysctl_rmem = sysctl_sctp_rmem, 9433 .sysctl_wmem = sysctl_sctp_wmem, 9434 .memory_pressure = &sctp_memory_pressure, 9435 .enter_memory_pressure = sctp_enter_memory_pressure, 9436 .memory_allocated = &sctp_memory_allocated, 9437 .sockets_allocated = &sctp_sockets_allocated, 9438 }; 9439 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9440