1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 struct percpu_counter sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(struct sock *sk) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* V4 mapped address are really of AF_INET family */ 312 if (addr->sa.sa_family == AF_INET6 && 313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 314 if (!opt->pf->af_supported(AF_INET, opt)) 315 return NULL; 316 } else { 317 /* Does this PF support this AF? */ 318 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 319 return NULL; 320 } 321 322 /* If we get this far, af is valid. */ 323 af = sctp_get_af_specific(addr->sa.sa_family); 324 325 if (len < af->sockaddr_len) 326 return NULL; 327 328 return af; 329 } 330 331 /* Bind a local address either to an endpoint or to an association. */ 332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 333 { 334 struct sctp_sock *sp = sctp_sk(sk); 335 struct sctp_endpoint *ep = sp->ep; 336 struct sctp_bind_addr *bp = &ep->base.bind_addr; 337 struct sctp_af *af; 338 unsigned short snum; 339 int ret = 0; 340 341 /* Common sockaddr verification. */ 342 af = sctp_sockaddr_af(sp, addr, len); 343 if (!af) { 344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 345 sk, addr, len); 346 return -EINVAL; 347 } 348 349 snum = ntohs(addr->v4.sin_port); 350 351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 352 ", port: %d, new port: %d, len: %d)\n", 353 sk, 354 addr, 355 bp->port, snum, 356 len); 357 358 /* PF specific bind() address verification. */ 359 if (!sp->pf->bind_verify(sp, addr)) 360 return -EADDRNOTAVAIL; 361 362 /* We must either be unbound, or bind to the same port. 363 * It's OK to allow 0 ports if we are already bound. 364 * We'll just inhert an already bound port in this case 365 */ 366 if (bp->port) { 367 if (!snum) 368 snum = bp->port; 369 else if (snum != bp->port) { 370 SCTP_DEBUG_PRINTK("sctp_do_bind:" 371 " New port %d does not match existing port " 372 "%d.\n", snum, bp->port); 373 return -EINVAL; 374 } 375 } 376 377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 378 return -EACCES; 379 380 /* See if the address matches any of the addresses we may have 381 * already bound before checking against other endpoints. 382 */ 383 if (sctp_bind_addr_match(bp, addr, sp)) 384 return -EINVAL; 385 386 /* Make sure we are allowed to bind here. 387 * The function sctp_get_port_local() does duplicate address 388 * detection. 389 */ 390 addr->v4.sin_port = htons(snum); 391 if ((ret = sctp_get_port_local(sk, addr))) { 392 return -EADDRINUSE; 393 } 394 395 /* Refresh ephemeral port. */ 396 if (!bp->port) 397 bp->port = inet_sk(sk)->num; 398 399 /* Add the address to the bind address list. 400 * Use GFP_ATOMIC since BHs will be disabled. 401 */ 402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 403 404 /* Copy back into socket for getsockname() use. */ 405 if (!ret) { 406 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 407 af->to_sk_saddr(addr, sk); 408 } 409 410 return ret; 411 } 412 413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 414 * 415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 416 * at any one time. If a sender, after sending an ASCONF chunk, decides 417 * it needs to transfer another ASCONF Chunk, it MUST wait until the 418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 419 * subsequent ASCONF. Note this restriction binds each side, so at any 420 * time two ASCONF may be in-transit on any given association (one sent 421 * from each endpoint). 422 */ 423 static int sctp_send_asconf(struct sctp_association *asoc, 424 struct sctp_chunk *chunk) 425 { 426 int retval = 0; 427 428 /* If there is an outstanding ASCONF chunk, queue it for later 429 * transmission. 430 */ 431 if (asoc->addip_last_asconf) { 432 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 433 goto out; 434 } 435 436 /* Hold the chunk until an ASCONF_ACK is received. */ 437 sctp_chunk_hold(chunk); 438 retval = sctp_primitive_ASCONF(asoc, chunk); 439 if (retval) 440 sctp_chunk_free(chunk); 441 else 442 asoc->addip_last_asconf = chunk; 443 444 out: 445 return retval; 446 } 447 448 /* Add a list of addresses as bind addresses to local endpoint or 449 * association. 450 * 451 * Basically run through each address specified in the addrs/addrcnt 452 * array/length pair, determine if it is IPv6 or IPv4 and call 453 * sctp_do_bind() on it. 454 * 455 * If any of them fails, then the operation will be reversed and the 456 * ones that were added will be removed. 457 * 458 * Only sctp_setsockopt_bindx() is supposed to call this function. 459 */ 460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 461 { 462 int cnt; 463 int retval = 0; 464 void *addr_buf; 465 struct sockaddr *sa_addr; 466 struct sctp_af *af; 467 468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 469 sk, addrs, addrcnt); 470 471 addr_buf = addrs; 472 for (cnt = 0; cnt < addrcnt; cnt++) { 473 /* The list may contain either IPv4 or IPv6 address; 474 * determine the address length for walking thru the list. 475 */ 476 sa_addr = (struct sockaddr *)addr_buf; 477 af = sctp_get_af_specific(sa_addr->sa_family); 478 if (!af) { 479 retval = -EINVAL; 480 goto err_bindx_add; 481 } 482 483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 484 af->sockaddr_len); 485 486 addr_buf += af->sockaddr_len; 487 488 err_bindx_add: 489 if (retval < 0) { 490 /* Failed. Cleanup the ones that have been added */ 491 if (cnt > 0) 492 sctp_bindx_rem(sk, addrs, cnt); 493 return retval; 494 } 495 } 496 497 return retval; 498 } 499 500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 501 * associations that are part of the endpoint indicating that a list of local 502 * addresses are added to the endpoint. 503 * 504 * If any of the addresses is already in the bind address list of the 505 * association, we do not send the chunk for that association. But it will not 506 * affect other associations. 507 * 508 * Only sctp_setsockopt_bindx() is supposed to call this function. 509 */ 510 static int sctp_send_asconf_add_ip(struct sock *sk, 511 struct sockaddr *addrs, 512 int addrcnt) 513 { 514 struct sctp_sock *sp; 515 struct sctp_endpoint *ep; 516 struct sctp_association *asoc; 517 struct sctp_bind_addr *bp; 518 struct sctp_chunk *chunk; 519 struct sctp_sockaddr_entry *laddr; 520 union sctp_addr *addr; 521 union sctp_addr saveaddr; 522 void *addr_buf; 523 struct sctp_af *af; 524 struct list_head *p; 525 int i; 526 int retval = 0; 527 528 if (!sctp_addip_enable) 529 return retval; 530 531 sp = sctp_sk(sk); 532 ep = sp->ep; 533 534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 535 __func__, sk, addrs, addrcnt); 536 537 list_for_each_entry(asoc, &ep->asocs, asocs) { 538 539 if (!asoc->peer.asconf_capable) 540 continue; 541 542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 543 continue; 544 545 if (!sctp_state(asoc, ESTABLISHED)) 546 continue; 547 548 /* Check if any address in the packed array of addresses is 549 * in the bind address list of the association. If so, 550 * do not send the asconf chunk to its peer, but continue with 551 * other associations. 552 */ 553 addr_buf = addrs; 554 for (i = 0; i < addrcnt; i++) { 555 addr = (union sctp_addr *)addr_buf; 556 af = sctp_get_af_specific(addr->v4.sin_family); 557 if (!af) { 558 retval = -EINVAL; 559 goto out; 560 } 561 562 if (sctp_assoc_lookup_laddr(asoc, addr)) 563 break; 564 565 addr_buf += af->sockaddr_len; 566 } 567 if (i < addrcnt) 568 continue; 569 570 /* Use the first valid address in bind addr list of 571 * association as Address Parameter of ASCONF CHUNK. 572 */ 573 bp = &asoc->base.bind_addr; 574 p = bp->address_list.next; 575 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 577 addrcnt, SCTP_PARAM_ADD_IP); 578 if (!chunk) { 579 retval = -ENOMEM; 580 goto out; 581 } 582 583 retval = sctp_send_asconf(asoc, chunk); 584 if (retval) 585 goto out; 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = (union sctp_addr *)addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 } 600 601 out: 602 return retval; 603 } 604 605 /* Remove a list of addresses from bind addresses list. Do not remove the 606 * last address. 607 * 608 * Basically run through each address specified in the addrs/addrcnt 609 * array/length pair, determine if it is IPv6 or IPv4 and call 610 * sctp_del_bind() on it. 611 * 612 * If any of them fails, then the operation will be reversed and the 613 * ones that were removed will be added back. 614 * 615 * At least one address has to be left; if only one address is 616 * available, the operation will return -EBUSY. 617 * 618 * Only sctp_setsockopt_bindx() is supposed to call this function. 619 */ 620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 621 { 622 struct sctp_sock *sp = sctp_sk(sk); 623 struct sctp_endpoint *ep = sp->ep; 624 int cnt; 625 struct sctp_bind_addr *bp = &ep->base.bind_addr; 626 int retval = 0; 627 void *addr_buf; 628 union sctp_addr *sa_addr; 629 struct sctp_af *af; 630 631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 632 sk, addrs, addrcnt); 633 634 addr_buf = addrs; 635 for (cnt = 0; cnt < addrcnt; cnt++) { 636 /* If the bind address list is empty or if there is only one 637 * bind address, there is nothing more to be removed (we need 638 * at least one address here). 639 */ 640 if (list_empty(&bp->address_list) || 641 (sctp_list_single_entry(&bp->address_list))) { 642 retval = -EBUSY; 643 goto err_bindx_rem; 644 } 645 646 sa_addr = (union sctp_addr *)addr_buf; 647 af = sctp_get_af_specific(sa_addr->sa.sa_family); 648 if (!af) { 649 retval = -EINVAL; 650 goto err_bindx_rem; 651 } 652 653 if (!af->addr_valid(sa_addr, sp, NULL)) { 654 retval = -EADDRNOTAVAIL; 655 goto err_bindx_rem; 656 } 657 658 if (sa_addr->v4.sin_port != htons(bp->port)) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 /* FIXME - There is probably a need to check if sk->sk_saddr and 664 * sk->sk_rcv_addr are currently set to one of the addresses to 665 * be removed. This is something which needs to be looked into 666 * when we are fixing the outstanding issues with multi-homing 667 * socket routing and failover schemes. Refer to comments in 668 * sctp_do_bind(). -daisy 669 */ 670 retval = sctp_del_bind_addr(bp, sa_addr); 671 672 addr_buf += af->sockaddr_len; 673 err_bindx_rem: 674 if (retval < 0) { 675 /* Failed. Add the ones that has been removed back */ 676 if (cnt > 0) 677 sctp_bindx_add(sk, addrs, cnt); 678 return retval; 679 } 680 } 681 682 return retval; 683 } 684 685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 686 * the associations that are part of the endpoint indicating that a list of 687 * local addresses are removed from the endpoint. 688 * 689 * If any of the addresses is already in the bind address list of the 690 * association, we do not send the chunk for that association. But it will not 691 * affect other associations. 692 * 693 * Only sctp_setsockopt_bindx() is supposed to call this function. 694 */ 695 static int sctp_send_asconf_del_ip(struct sock *sk, 696 struct sockaddr *addrs, 697 int addrcnt) 698 { 699 struct sctp_sock *sp; 700 struct sctp_endpoint *ep; 701 struct sctp_association *asoc; 702 struct sctp_transport *transport; 703 struct sctp_bind_addr *bp; 704 struct sctp_chunk *chunk; 705 union sctp_addr *laddr; 706 void *addr_buf; 707 struct sctp_af *af; 708 struct sctp_sockaddr_entry *saddr; 709 int i; 710 int retval = 0; 711 712 if (!sctp_addip_enable) 713 return retval; 714 715 sp = sctp_sk(sk); 716 ep = sp->ep; 717 718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 719 __func__, sk, addrs, addrcnt); 720 721 list_for_each_entry(asoc, &ep->asocs, asocs) { 722 723 if (!asoc->peer.asconf_capable) 724 continue; 725 726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 727 continue; 728 729 if (!sctp_state(asoc, ESTABLISHED)) 730 continue; 731 732 /* Check if any address in the packed array of addresses is 733 * not present in the bind address list of the association. 734 * If so, do not send the asconf chunk to its peer, but 735 * continue with other associations. 736 */ 737 addr_buf = addrs; 738 for (i = 0; i < addrcnt; i++) { 739 laddr = (union sctp_addr *)addr_buf; 740 af = sctp_get_af_specific(laddr->v4.sin_family); 741 if (!af) { 742 retval = -EINVAL; 743 goto out; 744 } 745 746 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 747 break; 748 749 addr_buf += af->sockaddr_len; 750 } 751 if (i < addrcnt) 752 continue; 753 754 /* Find one address in the association's bind address list 755 * that is not in the packed array of addresses. This is to 756 * make sure that we do not delete all the addresses in the 757 * association. 758 */ 759 bp = &asoc->base.bind_addr; 760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 761 addrcnt, sp); 762 if (!laddr) 763 continue; 764 765 /* We do not need RCU protection throughout this loop 766 * because this is done under a socket lock from the 767 * setsockopt call. 768 */ 769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 770 SCTP_PARAM_DEL_IP); 771 if (!chunk) { 772 retval = -ENOMEM; 773 goto out; 774 } 775 776 /* Reset use_as_src flag for the addresses in the bind address 777 * list that are to be deleted. 778 */ 779 addr_buf = addrs; 780 for (i = 0; i < addrcnt; i++) { 781 laddr = (union sctp_addr *)addr_buf; 782 af = sctp_get_af_specific(laddr->v4.sin_family); 783 list_for_each_entry(saddr, &bp->address_list, list) { 784 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 785 saddr->state = SCTP_ADDR_DEL; 786 } 787 addr_buf += af->sockaddr_len; 788 } 789 790 /* Update the route and saddr entries for all the transports 791 * as some of the addresses in the bind address list are 792 * about to be deleted and cannot be used as source addresses. 793 */ 794 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 795 transports) { 796 dst_release(transport->dst); 797 sctp_transport_route(transport, NULL, 798 sctp_sk(asoc->base.sk)); 799 } 800 801 retval = sctp_send_asconf(asoc, chunk); 802 } 803 out: 804 return retval; 805 } 806 807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 808 * 809 * API 8.1 810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 811 * int flags); 812 * 813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 815 * or IPv6 addresses. 816 * 817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 818 * Section 3.1.2 for this usage. 819 * 820 * addrs is a pointer to an array of one or more socket addresses. Each 821 * address is contained in its appropriate structure (i.e. struct 822 * sockaddr_in or struct sockaddr_in6) the family of the address type 823 * must be used to distinguish the address length (note that this 824 * representation is termed a "packed array" of addresses). The caller 825 * specifies the number of addresses in the array with addrcnt. 826 * 827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 828 * -1, and sets errno to the appropriate error code. 829 * 830 * For SCTP, the port given in each socket address must be the same, or 831 * sctp_bindx() will fail, setting errno to EINVAL. 832 * 833 * The flags parameter is formed from the bitwise OR of zero or more of 834 * the following currently defined flags: 835 * 836 * SCTP_BINDX_ADD_ADDR 837 * 838 * SCTP_BINDX_REM_ADDR 839 * 840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 842 * addresses from the association. The two flags are mutually exclusive; 843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 844 * not remove all addresses from an association; sctp_bindx() will 845 * reject such an attempt with EINVAL. 846 * 847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 848 * additional addresses with an endpoint after calling bind(). Or use 849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 850 * socket is associated with so that no new association accepted will be 851 * associated with those addresses. If the endpoint supports dynamic 852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 853 * endpoint to send the appropriate message to the peer to change the 854 * peers address lists. 855 * 856 * Adding and removing addresses from a connected association is 857 * optional functionality. Implementations that do not support this 858 * functionality should return EOPNOTSUPP. 859 * 860 * Basically do nothing but copying the addresses from user to kernel 861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 863 * from userspace. 864 * 865 * We don't use copy_from_user() for optimization: we first do the 866 * sanity checks (buffer size -fast- and access check-healthy 867 * pointer); if all of those succeed, then we can alloc the memory 868 * (expensive operation) needed to copy the data to kernel. Then we do 869 * the copying without checking the user space area 870 * (__copy_from_user()). 871 * 872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 873 * it. 874 * 875 * sk The sk of the socket 876 * addrs The pointer to the addresses in user land 877 * addrssize Size of the addrs buffer 878 * op Operation to perform (add or remove, see the flags of 879 * sctp_bindx) 880 * 881 * Returns 0 if ok, <0 errno code on error. 882 */ 883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 884 struct sockaddr __user *addrs, 885 int addrs_size, int op) 886 { 887 struct sockaddr *kaddrs; 888 int err; 889 int addrcnt = 0; 890 int walk_size = 0; 891 struct sockaddr *sa_addr; 892 void *addr_buf; 893 struct sctp_af *af; 894 895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 897 898 if (unlikely(addrs_size <= 0)) 899 return -EINVAL; 900 901 /* Check the user passed a healthy pointer. */ 902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 903 return -EFAULT; 904 905 /* Alloc space for the address array in kernel memory. */ 906 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 907 if (unlikely(!kaddrs)) 908 return -ENOMEM; 909 910 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 911 kfree(kaddrs); 912 return -EFAULT; 913 } 914 915 /* Walk through the addrs buffer and count the number of addresses. */ 916 addr_buf = kaddrs; 917 while (walk_size < addrs_size) { 918 sa_addr = (struct sockaddr *)addr_buf; 919 af = sctp_get_af_specific(sa_addr->sa_family); 920 921 /* If the address family is not supported or if this address 922 * causes the address buffer to overflow return EINVAL. 923 */ 924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 925 kfree(kaddrs); 926 return -EINVAL; 927 } 928 addrcnt++; 929 addr_buf += af->sockaddr_len; 930 walk_size += af->sockaddr_len; 931 } 932 933 /* Do the work. */ 934 switch (op) { 935 case SCTP_BINDX_ADD_ADDR: 936 err = sctp_bindx_add(sk, kaddrs, addrcnt); 937 if (err) 938 goto out; 939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 940 break; 941 942 case SCTP_BINDX_REM_ADDR: 943 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 944 if (err) 945 goto out; 946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 947 break; 948 949 default: 950 err = -EINVAL; 951 break; 952 } 953 954 out: 955 kfree(kaddrs); 956 957 return err; 958 } 959 960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 961 * 962 * Common routine for handling connect() and sctp_connectx(). 963 * Connect will come in with just a single address. 964 */ 965 static int __sctp_connect(struct sock* sk, 966 struct sockaddr *kaddrs, 967 int addrs_size, 968 sctp_assoc_t *assoc_id) 969 { 970 struct sctp_sock *sp; 971 struct sctp_endpoint *ep; 972 struct sctp_association *asoc = NULL; 973 struct sctp_association *asoc2; 974 struct sctp_transport *transport; 975 union sctp_addr to; 976 struct sctp_af *af; 977 sctp_scope_t scope; 978 long timeo; 979 int err = 0; 980 int addrcnt = 0; 981 int walk_size = 0; 982 union sctp_addr *sa_addr = NULL; 983 void *addr_buf; 984 unsigned short port; 985 unsigned int f_flags = 0; 986 987 sp = sctp_sk(sk); 988 ep = sp->ep; 989 990 /* connect() cannot be done on a socket that is already in ESTABLISHED 991 * state - UDP-style peeled off socket or a TCP-style socket that 992 * is already connected. 993 * It cannot be done even on a TCP-style listening socket. 994 */ 995 if (sctp_sstate(sk, ESTABLISHED) || 996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 997 err = -EISCONN; 998 goto out_free; 999 } 1000 1001 /* Walk through the addrs buffer and count the number of addresses. */ 1002 addr_buf = kaddrs; 1003 while (walk_size < addrs_size) { 1004 sa_addr = (union sctp_addr *)addr_buf; 1005 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1006 port = ntohs(sa_addr->v4.sin_port); 1007 1008 /* If the address family is not supported or if this address 1009 * causes the address buffer to overflow return EINVAL. 1010 */ 1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1012 err = -EINVAL; 1013 goto out_free; 1014 } 1015 1016 /* Save current address so we can work with it */ 1017 memcpy(&to, sa_addr, af->sockaddr_len); 1018 1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1020 if (err) 1021 goto out_free; 1022 1023 /* Make sure the destination port is correctly set 1024 * in all addresses. 1025 */ 1026 if (asoc && asoc->peer.port && asoc->peer.port != port) 1027 goto out_free; 1028 1029 1030 /* Check if there already is a matching association on the 1031 * endpoint (other than the one created here). 1032 */ 1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1034 if (asoc2 && asoc2 != asoc) { 1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1036 err = -EISCONN; 1037 else 1038 err = -EALREADY; 1039 goto out_free; 1040 } 1041 1042 /* If we could not find a matching association on the endpoint, 1043 * make sure that there is no peeled-off association matching 1044 * the peer address even on another socket. 1045 */ 1046 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1047 err = -EADDRNOTAVAIL; 1048 goto out_free; 1049 } 1050 1051 if (!asoc) { 1052 /* If a bind() or sctp_bindx() is not called prior to 1053 * an sctp_connectx() call, the system picks an 1054 * ephemeral port and will choose an address set 1055 * equivalent to binding with a wildcard address. 1056 */ 1057 if (!ep->base.bind_addr.port) { 1058 if (sctp_autobind(sk)) { 1059 err = -EAGAIN; 1060 goto out_free; 1061 } 1062 } else { 1063 /* 1064 * If an unprivileged user inherits a 1-many 1065 * style socket with open associations on a 1066 * privileged port, it MAY be permitted to 1067 * accept new associations, but it SHOULD NOT 1068 * be permitted to open new associations. 1069 */ 1070 if (ep->base.bind_addr.port < PROT_SOCK && 1071 !capable(CAP_NET_BIND_SERVICE)) { 1072 err = -EACCES; 1073 goto out_free; 1074 } 1075 } 1076 1077 scope = sctp_scope(&to); 1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1079 if (!asoc) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 } 1084 1085 /* Prime the peer's transport structures. */ 1086 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1087 SCTP_UNKNOWN); 1088 if (!transport) { 1089 err = -ENOMEM; 1090 goto out_free; 1091 } 1092 1093 addrcnt++; 1094 addr_buf += af->sockaddr_len; 1095 walk_size += af->sockaddr_len; 1096 } 1097 1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1099 if (err < 0) { 1100 goto out_free; 1101 } 1102 1103 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1104 if (err < 0) { 1105 goto out_free; 1106 } 1107 1108 /* Initialize sk's dport and daddr for getpeername() */ 1109 inet_sk(sk)->dport = htons(asoc->peer.port); 1110 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1111 af->to_sk_daddr(sa_addr, sk); 1112 sk->sk_err = 0; 1113 1114 /* in-kernel sockets don't generally have a file allocated to them 1115 * if all they do is call sock_create_kern(). 1116 */ 1117 if (sk->sk_socket->file) 1118 f_flags = sk->sk_socket->file->f_flags; 1119 1120 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1121 1122 err = sctp_wait_for_connect(asoc, &timeo); 1123 if (!err && assoc_id) 1124 *assoc_id = asoc->assoc_id; 1125 1126 /* Don't free association on exit. */ 1127 asoc = NULL; 1128 1129 out_free: 1130 1131 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1132 " kaddrs: %p err: %d\n", 1133 asoc, kaddrs, err); 1134 if (asoc) 1135 sctp_association_free(asoc); 1136 return err; 1137 } 1138 1139 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1140 * 1141 * API 8.9 1142 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1143 * sctp_assoc_t *asoc); 1144 * 1145 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1146 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1147 * or IPv6 addresses. 1148 * 1149 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1150 * Section 3.1.2 for this usage. 1151 * 1152 * addrs is a pointer to an array of one or more socket addresses. Each 1153 * address is contained in its appropriate structure (i.e. struct 1154 * sockaddr_in or struct sockaddr_in6) the family of the address type 1155 * must be used to distengish the address length (note that this 1156 * representation is termed a "packed array" of addresses). The caller 1157 * specifies the number of addresses in the array with addrcnt. 1158 * 1159 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1160 * the association id of the new association. On failure, sctp_connectx() 1161 * returns -1, and sets errno to the appropriate error code. The assoc_id 1162 * is not touched by the kernel. 1163 * 1164 * For SCTP, the port given in each socket address must be the same, or 1165 * sctp_connectx() will fail, setting errno to EINVAL. 1166 * 1167 * An application can use sctp_connectx to initiate an association with 1168 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1169 * allows a caller to specify multiple addresses at which a peer can be 1170 * reached. The way the SCTP stack uses the list of addresses to set up 1171 * the association is implementation dependant. This function only 1172 * specifies that the stack will try to make use of all the addresses in 1173 * the list when needed. 1174 * 1175 * Note that the list of addresses passed in is only used for setting up 1176 * the association. It does not necessarily equal the set of addresses 1177 * the peer uses for the resulting association. If the caller wants to 1178 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1179 * retrieve them after the association has been set up. 1180 * 1181 * Basically do nothing but copying the addresses from user to kernel 1182 * land and invoking either sctp_connectx(). This is used for tunneling 1183 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1184 * 1185 * We don't use copy_from_user() for optimization: we first do the 1186 * sanity checks (buffer size -fast- and access check-healthy 1187 * pointer); if all of those succeed, then we can alloc the memory 1188 * (expensive operation) needed to copy the data to kernel. Then we do 1189 * the copying without checking the user space area 1190 * (__copy_from_user()). 1191 * 1192 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1193 * it. 1194 * 1195 * sk The sk of the socket 1196 * addrs The pointer to the addresses in user land 1197 * addrssize Size of the addrs buffer 1198 * 1199 * Returns >=0 if ok, <0 errno code on error. 1200 */ 1201 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1202 struct sockaddr __user *addrs, 1203 int addrs_size, 1204 sctp_assoc_t *assoc_id) 1205 { 1206 int err = 0; 1207 struct sockaddr *kaddrs; 1208 1209 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1210 __func__, sk, addrs, addrs_size); 1211 1212 if (unlikely(addrs_size <= 0)) 1213 return -EINVAL; 1214 1215 /* Check the user passed a healthy pointer. */ 1216 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1217 return -EFAULT; 1218 1219 /* Alloc space for the address array in kernel memory. */ 1220 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1221 if (unlikely(!kaddrs)) 1222 return -ENOMEM; 1223 1224 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1225 err = -EFAULT; 1226 } else { 1227 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1228 } 1229 1230 kfree(kaddrs); 1231 1232 return err; 1233 } 1234 1235 /* 1236 * This is an older interface. It's kept for backward compatibility 1237 * to the option that doesn't provide association id. 1238 */ 1239 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1240 struct sockaddr __user *addrs, 1241 int addrs_size) 1242 { 1243 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1244 } 1245 1246 /* 1247 * New interface for the API. The since the API is done with a socket 1248 * option, to make it simple we feed back the association id is as a return 1249 * indication to the call. Error is always negative and association id is 1250 * always positive. 1251 */ 1252 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1253 struct sockaddr __user *addrs, 1254 int addrs_size) 1255 { 1256 sctp_assoc_t assoc_id = 0; 1257 int err = 0; 1258 1259 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1260 1261 if (err) 1262 return err; 1263 else 1264 return assoc_id; 1265 } 1266 1267 /* API 3.1.4 close() - UDP Style Syntax 1268 * Applications use close() to perform graceful shutdown (as described in 1269 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1270 * by a UDP-style socket. 1271 * 1272 * The syntax is 1273 * 1274 * ret = close(int sd); 1275 * 1276 * sd - the socket descriptor of the associations to be closed. 1277 * 1278 * To gracefully shutdown a specific association represented by the 1279 * UDP-style socket, an application should use the sendmsg() call, 1280 * passing no user data, but including the appropriate flag in the 1281 * ancillary data (see Section xxxx). 1282 * 1283 * If sd in the close() call is a branched-off socket representing only 1284 * one association, the shutdown is performed on that association only. 1285 * 1286 * 4.1.6 close() - TCP Style Syntax 1287 * 1288 * Applications use close() to gracefully close down an association. 1289 * 1290 * The syntax is: 1291 * 1292 * int close(int sd); 1293 * 1294 * sd - the socket descriptor of the association to be closed. 1295 * 1296 * After an application calls close() on a socket descriptor, no further 1297 * socket operations will succeed on that descriptor. 1298 * 1299 * API 7.1.4 SO_LINGER 1300 * 1301 * An application using the TCP-style socket can use this option to 1302 * perform the SCTP ABORT primitive. The linger option structure is: 1303 * 1304 * struct linger { 1305 * int l_onoff; // option on/off 1306 * int l_linger; // linger time 1307 * }; 1308 * 1309 * To enable the option, set l_onoff to 1. If the l_linger value is set 1310 * to 0, calling close() is the same as the ABORT primitive. If the 1311 * value is set to a negative value, the setsockopt() call will return 1312 * an error. If the value is set to a positive value linger_time, the 1313 * close() can be blocked for at most linger_time ms. If the graceful 1314 * shutdown phase does not finish during this period, close() will 1315 * return but the graceful shutdown phase continues in the system. 1316 */ 1317 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1318 { 1319 struct sctp_endpoint *ep; 1320 struct sctp_association *asoc; 1321 struct list_head *pos, *temp; 1322 1323 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1324 1325 sctp_lock_sock(sk); 1326 sk->sk_shutdown = SHUTDOWN_MASK; 1327 1328 ep = sctp_sk(sk)->ep; 1329 1330 /* Walk all associations on an endpoint. */ 1331 list_for_each_safe(pos, temp, &ep->asocs) { 1332 asoc = list_entry(pos, struct sctp_association, asocs); 1333 1334 if (sctp_style(sk, TCP)) { 1335 /* A closed association can still be in the list if 1336 * it belongs to a TCP-style listening socket that is 1337 * not yet accepted. If so, free it. If not, send an 1338 * ABORT or SHUTDOWN based on the linger options. 1339 */ 1340 if (sctp_state(asoc, CLOSED)) { 1341 sctp_unhash_established(asoc); 1342 sctp_association_free(asoc); 1343 continue; 1344 } 1345 } 1346 1347 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1348 struct sctp_chunk *chunk; 1349 1350 chunk = sctp_make_abort_user(asoc, NULL, 0); 1351 if (chunk) 1352 sctp_primitive_ABORT(asoc, chunk); 1353 } else 1354 sctp_primitive_SHUTDOWN(asoc, NULL); 1355 } 1356 1357 /* Clean up any skbs sitting on the receive queue. */ 1358 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1359 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1360 1361 /* On a TCP-style socket, block for at most linger_time if set. */ 1362 if (sctp_style(sk, TCP) && timeout) 1363 sctp_wait_for_close(sk, timeout); 1364 1365 /* This will run the backlog queue. */ 1366 sctp_release_sock(sk); 1367 1368 /* Supposedly, no process has access to the socket, but 1369 * the net layers still may. 1370 */ 1371 sctp_local_bh_disable(); 1372 sctp_bh_lock_sock(sk); 1373 1374 /* Hold the sock, since sk_common_release() will put sock_put() 1375 * and we have just a little more cleanup. 1376 */ 1377 sock_hold(sk); 1378 sk_common_release(sk); 1379 1380 sctp_bh_unlock_sock(sk); 1381 sctp_local_bh_enable(); 1382 1383 sock_put(sk); 1384 1385 SCTP_DBG_OBJCNT_DEC(sock); 1386 } 1387 1388 /* Handle EPIPE error. */ 1389 static int sctp_error(struct sock *sk, int flags, int err) 1390 { 1391 if (err == -EPIPE) 1392 err = sock_error(sk) ? : -EPIPE; 1393 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1394 send_sig(SIGPIPE, current, 0); 1395 return err; 1396 } 1397 1398 /* API 3.1.3 sendmsg() - UDP Style Syntax 1399 * 1400 * An application uses sendmsg() and recvmsg() calls to transmit data to 1401 * and receive data from its peer. 1402 * 1403 * ssize_t sendmsg(int socket, const struct msghdr *message, 1404 * int flags); 1405 * 1406 * socket - the socket descriptor of the endpoint. 1407 * message - pointer to the msghdr structure which contains a single 1408 * user message and possibly some ancillary data. 1409 * 1410 * See Section 5 for complete description of the data 1411 * structures. 1412 * 1413 * flags - flags sent or received with the user message, see Section 1414 * 5 for complete description of the flags. 1415 * 1416 * Note: This function could use a rewrite especially when explicit 1417 * connect support comes in. 1418 */ 1419 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1420 1421 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1422 1423 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1424 struct msghdr *msg, size_t msg_len) 1425 { 1426 struct sctp_sock *sp; 1427 struct sctp_endpoint *ep; 1428 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1429 struct sctp_transport *transport, *chunk_tp; 1430 struct sctp_chunk *chunk; 1431 union sctp_addr to; 1432 struct sockaddr *msg_name = NULL; 1433 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1434 struct sctp_sndrcvinfo *sinfo; 1435 struct sctp_initmsg *sinit; 1436 sctp_assoc_t associd = 0; 1437 sctp_cmsgs_t cmsgs = { NULL }; 1438 int err; 1439 sctp_scope_t scope; 1440 long timeo; 1441 __u16 sinfo_flags = 0; 1442 struct sctp_datamsg *datamsg; 1443 int msg_flags = msg->msg_flags; 1444 1445 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1446 sk, msg, msg_len); 1447 1448 err = 0; 1449 sp = sctp_sk(sk); 1450 ep = sp->ep; 1451 1452 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1453 1454 /* We cannot send a message over a TCP-style listening socket. */ 1455 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1456 err = -EPIPE; 1457 goto out_nounlock; 1458 } 1459 1460 /* Parse out the SCTP CMSGs. */ 1461 err = sctp_msghdr_parse(msg, &cmsgs); 1462 1463 if (err) { 1464 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1465 goto out_nounlock; 1466 } 1467 1468 /* Fetch the destination address for this packet. This 1469 * address only selects the association--it is not necessarily 1470 * the address we will send to. 1471 * For a peeled-off socket, msg_name is ignored. 1472 */ 1473 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1474 int msg_namelen = msg->msg_namelen; 1475 1476 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1477 msg_namelen); 1478 if (err) 1479 return err; 1480 1481 if (msg_namelen > sizeof(to)) 1482 msg_namelen = sizeof(to); 1483 memcpy(&to, msg->msg_name, msg_namelen); 1484 msg_name = msg->msg_name; 1485 } 1486 1487 sinfo = cmsgs.info; 1488 sinit = cmsgs.init; 1489 1490 /* Did the user specify SNDRCVINFO? */ 1491 if (sinfo) { 1492 sinfo_flags = sinfo->sinfo_flags; 1493 associd = sinfo->sinfo_assoc_id; 1494 } 1495 1496 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1497 msg_len, sinfo_flags); 1498 1499 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1500 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1501 err = -EINVAL; 1502 goto out_nounlock; 1503 } 1504 1505 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1506 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1507 * If SCTP_ABORT is set, the message length could be non zero with 1508 * the msg_iov set to the user abort reason. 1509 */ 1510 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1511 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1512 err = -EINVAL; 1513 goto out_nounlock; 1514 } 1515 1516 /* If SCTP_ADDR_OVER is set, there must be an address 1517 * specified in msg_name. 1518 */ 1519 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1520 err = -EINVAL; 1521 goto out_nounlock; 1522 } 1523 1524 transport = NULL; 1525 1526 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1527 1528 sctp_lock_sock(sk); 1529 1530 /* If a msg_name has been specified, assume this is to be used. */ 1531 if (msg_name) { 1532 /* Look for a matching association on the endpoint. */ 1533 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1534 if (!asoc) { 1535 /* If we could not find a matching association on the 1536 * endpoint, make sure that it is not a TCP-style 1537 * socket that already has an association or there is 1538 * no peeled-off association on another socket. 1539 */ 1540 if ((sctp_style(sk, TCP) && 1541 sctp_sstate(sk, ESTABLISHED)) || 1542 sctp_endpoint_is_peeled_off(ep, &to)) { 1543 err = -EADDRNOTAVAIL; 1544 goto out_unlock; 1545 } 1546 } 1547 } else { 1548 asoc = sctp_id2assoc(sk, associd); 1549 if (!asoc) { 1550 err = -EPIPE; 1551 goto out_unlock; 1552 } 1553 } 1554 1555 if (asoc) { 1556 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1557 1558 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1559 * socket that has an association in CLOSED state. This can 1560 * happen when an accepted socket has an association that is 1561 * already CLOSED. 1562 */ 1563 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1564 err = -EPIPE; 1565 goto out_unlock; 1566 } 1567 1568 if (sinfo_flags & SCTP_EOF) { 1569 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1570 asoc); 1571 sctp_primitive_SHUTDOWN(asoc, NULL); 1572 err = 0; 1573 goto out_unlock; 1574 } 1575 if (sinfo_flags & SCTP_ABORT) { 1576 1577 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1578 if (!chunk) { 1579 err = -ENOMEM; 1580 goto out_unlock; 1581 } 1582 1583 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1584 sctp_primitive_ABORT(asoc, chunk); 1585 err = 0; 1586 goto out_unlock; 1587 } 1588 } 1589 1590 /* Do we need to create the association? */ 1591 if (!asoc) { 1592 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1593 1594 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1595 err = -EINVAL; 1596 goto out_unlock; 1597 } 1598 1599 /* Check for invalid stream against the stream counts, 1600 * either the default or the user specified stream counts. 1601 */ 1602 if (sinfo) { 1603 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1604 /* Check against the defaults. */ 1605 if (sinfo->sinfo_stream >= 1606 sp->initmsg.sinit_num_ostreams) { 1607 err = -EINVAL; 1608 goto out_unlock; 1609 } 1610 } else { 1611 /* Check against the requested. */ 1612 if (sinfo->sinfo_stream >= 1613 sinit->sinit_num_ostreams) { 1614 err = -EINVAL; 1615 goto out_unlock; 1616 } 1617 } 1618 } 1619 1620 /* 1621 * API 3.1.2 bind() - UDP Style Syntax 1622 * If a bind() or sctp_bindx() is not called prior to a 1623 * sendmsg() call that initiates a new association, the 1624 * system picks an ephemeral port and will choose an address 1625 * set equivalent to binding with a wildcard address. 1626 */ 1627 if (!ep->base.bind_addr.port) { 1628 if (sctp_autobind(sk)) { 1629 err = -EAGAIN; 1630 goto out_unlock; 1631 } 1632 } else { 1633 /* 1634 * If an unprivileged user inherits a one-to-many 1635 * style socket with open associations on a privileged 1636 * port, it MAY be permitted to accept new associations, 1637 * but it SHOULD NOT be permitted to open new 1638 * associations. 1639 */ 1640 if (ep->base.bind_addr.port < PROT_SOCK && 1641 !capable(CAP_NET_BIND_SERVICE)) { 1642 err = -EACCES; 1643 goto out_unlock; 1644 } 1645 } 1646 1647 scope = sctp_scope(&to); 1648 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1649 if (!new_asoc) { 1650 err = -ENOMEM; 1651 goto out_unlock; 1652 } 1653 asoc = new_asoc; 1654 1655 /* If the SCTP_INIT ancillary data is specified, set all 1656 * the association init values accordingly. 1657 */ 1658 if (sinit) { 1659 if (sinit->sinit_num_ostreams) { 1660 asoc->c.sinit_num_ostreams = 1661 sinit->sinit_num_ostreams; 1662 } 1663 if (sinit->sinit_max_instreams) { 1664 asoc->c.sinit_max_instreams = 1665 sinit->sinit_max_instreams; 1666 } 1667 if (sinit->sinit_max_attempts) { 1668 asoc->max_init_attempts 1669 = sinit->sinit_max_attempts; 1670 } 1671 if (sinit->sinit_max_init_timeo) { 1672 asoc->max_init_timeo = 1673 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1674 } 1675 } 1676 1677 /* Prime the peer's transport structures. */ 1678 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1679 if (!transport) { 1680 err = -ENOMEM; 1681 goto out_free; 1682 } 1683 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1684 if (err < 0) { 1685 err = -ENOMEM; 1686 goto out_free; 1687 } 1688 } 1689 1690 /* ASSERT: we have a valid association at this point. */ 1691 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1692 1693 if (!sinfo) { 1694 /* If the user didn't specify SNDRCVINFO, make up one with 1695 * some defaults. 1696 */ 1697 default_sinfo.sinfo_stream = asoc->default_stream; 1698 default_sinfo.sinfo_flags = asoc->default_flags; 1699 default_sinfo.sinfo_ppid = asoc->default_ppid; 1700 default_sinfo.sinfo_context = asoc->default_context; 1701 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1702 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1703 sinfo = &default_sinfo; 1704 } 1705 1706 /* API 7.1.7, the sndbuf size per association bounds the 1707 * maximum size of data that can be sent in a single send call. 1708 */ 1709 if (msg_len > sk->sk_sndbuf) { 1710 err = -EMSGSIZE; 1711 goto out_free; 1712 } 1713 1714 if (asoc->pmtu_pending) 1715 sctp_assoc_pending_pmtu(asoc); 1716 1717 /* If fragmentation is disabled and the message length exceeds the 1718 * association fragmentation point, return EMSGSIZE. The I-D 1719 * does not specify what this error is, but this looks like 1720 * a great fit. 1721 */ 1722 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1723 err = -EMSGSIZE; 1724 goto out_free; 1725 } 1726 1727 if (sinfo) { 1728 /* Check for invalid stream. */ 1729 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1730 err = -EINVAL; 1731 goto out_free; 1732 } 1733 } 1734 1735 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1736 if (!sctp_wspace(asoc)) { 1737 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1738 if (err) 1739 goto out_free; 1740 } 1741 1742 /* If an address is passed with the sendto/sendmsg call, it is used 1743 * to override the primary destination address in the TCP model, or 1744 * when SCTP_ADDR_OVER flag is set in the UDP model. 1745 */ 1746 if ((sctp_style(sk, TCP) && msg_name) || 1747 (sinfo_flags & SCTP_ADDR_OVER)) { 1748 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1749 if (!chunk_tp) { 1750 err = -EINVAL; 1751 goto out_free; 1752 } 1753 } else 1754 chunk_tp = NULL; 1755 1756 /* Auto-connect, if we aren't connected already. */ 1757 if (sctp_state(asoc, CLOSED)) { 1758 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1759 if (err < 0) 1760 goto out_free; 1761 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1762 } 1763 1764 /* Break the message into multiple chunks of maximum size. */ 1765 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1766 if (!datamsg) { 1767 err = -ENOMEM; 1768 goto out_free; 1769 } 1770 1771 /* Now send the (possibly) fragmented message. */ 1772 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1773 sctp_chunk_hold(chunk); 1774 1775 /* Do accounting for the write space. */ 1776 sctp_set_owner_w(chunk); 1777 1778 chunk->transport = chunk_tp; 1779 1780 /* Send it to the lower layers. Note: all chunks 1781 * must either fail or succeed. The lower layer 1782 * works that way today. Keep it that way or this 1783 * breaks. 1784 */ 1785 err = sctp_primitive_SEND(asoc, chunk); 1786 /* Did the lower layer accept the chunk? */ 1787 if (err) 1788 sctp_chunk_free(chunk); 1789 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1790 } 1791 1792 sctp_datamsg_put(datamsg); 1793 if (err) 1794 goto out_free; 1795 else 1796 err = msg_len; 1797 1798 /* If we are already past ASSOCIATE, the lower 1799 * layers are responsible for association cleanup. 1800 */ 1801 goto out_unlock; 1802 1803 out_free: 1804 if (new_asoc) 1805 sctp_association_free(asoc); 1806 out_unlock: 1807 sctp_release_sock(sk); 1808 1809 out_nounlock: 1810 return sctp_error(sk, msg_flags, err); 1811 1812 #if 0 1813 do_sock_err: 1814 if (msg_len) 1815 err = msg_len; 1816 else 1817 err = sock_error(sk); 1818 goto out; 1819 1820 do_interrupted: 1821 if (msg_len) 1822 err = msg_len; 1823 goto out; 1824 #endif /* 0 */ 1825 } 1826 1827 /* This is an extended version of skb_pull() that removes the data from the 1828 * start of a skb even when data is spread across the list of skb's in the 1829 * frag_list. len specifies the total amount of data that needs to be removed. 1830 * when 'len' bytes could be removed from the skb, it returns 0. 1831 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1832 * could not be removed. 1833 */ 1834 static int sctp_skb_pull(struct sk_buff *skb, int len) 1835 { 1836 struct sk_buff *list; 1837 int skb_len = skb_headlen(skb); 1838 int rlen; 1839 1840 if (len <= skb_len) { 1841 __skb_pull(skb, len); 1842 return 0; 1843 } 1844 len -= skb_len; 1845 __skb_pull(skb, skb_len); 1846 1847 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1848 rlen = sctp_skb_pull(list, len); 1849 skb->len -= (len-rlen); 1850 skb->data_len -= (len-rlen); 1851 1852 if (!rlen) 1853 return 0; 1854 1855 len = rlen; 1856 } 1857 1858 return len; 1859 } 1860 1861 /* API 3.1.3 recvmsg() - UDP Style Syntax 1862 * 1863 * ssize_t recvmsg(int socket, struct msghdr *message, 1864 * int flags); 1865 * 1866 * socket - the socket descriptor of the endpoint. 1867 * message - pointer to the msghdr structure which contains a single 1868 * user message and possibly some ancillary data. 1869 * 1870 * See Section 5 for complete description of the data 1871 * structures. 1872 * 1873 * flags - flags sent or received with the user message, see Section 1874 * 5 for complete description of the flags. 1875 */ 1876 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1877 1878 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1879 struct msghdr *msg, size_t len, int noblock, 1880 int flags, int *addr_len) 1881 { 1882 struct sctp_ulpevent *event = NULL; 1883 struct sctp_sock *sp = sctp_sk(sk); 1884 struct sk_buff *skb; 1885 int copied; 1886 int err = 0; 1887 int skb_len; 1888 1889 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1890 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1891 "len", len, "knoblauch", noblock, 1892 "flags", flags, "addr_len", addr_len); 1893 1894 sctp_lock_sock(sk); 1895 1896 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1897 err = -ENOTCONN; 1898 goto out; 1899 } 1900 1901 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1902 if (!skb) 1903 goto out; 1904 1905 /* Get the total length of the skb including any skb's in the 1906 * frag_list. 1907 */ 1908 skb_len = skb->len; 1909 1910 copied = skb_len; 1911 if (copied > len) 1912 copied = len; 1913 1914 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1915 1916 event = sctp_skb2event(skb); 1917 1918 if (err) 1919 goto out_free; 1920 1921 sock_recv_timestamp(msg, sk, skb); 1922 if (sctp_ulpevent_is_notification(event)) { 1923 msg->msg_flags |= MSG_NOTIFICATION; 1924 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1925 } else { 1926 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1927 } 1928 1929 /* Check if we allow SCTP_SNDRCVINFO. */ 1930 if (sp->subscribe.sctp_data_io_event) 1931 sctp_ulpevent_read_sndrcvinfo(event, msg); 1932 #if 0 1933 /* FIXME: we should be calling IP/IPv6 layers. */ 1934 if (sk->sk_protinfo.af_inet.cmsg_flags) 1935 ip_cmsg_recv(msg, skb); 1936 #endif 1937 1938 err = copied; 1939 1940 /* If skb's length exceeds the user's buffer, update the skb and 1941 * push it back to the receive_queue so that the next call to 1942 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1943 */ 1944 if (skb_len > copied) { 1945 msg->msg_flags &= ~MSG_EOR; 1946 if (flags & MSG_PEEK) 1947 goto out_free; 1948 sctp_skb_pull(skb, copied); 1949 skb_queue_head(&sk->sk_receive_queue, skb); 1950 1951 /* When only partial message is copied to the user, increase 1952 * rwnd by that amount. If all the data in the skb is read, 1953 * rwnd is updated when the event is freed. 1954 */ 1955 if (!sctp_ulpevent_is_notification(event)) 1956 sctp_assoc_rwnd_increase(event->asoc, copied); 1957 goto out; 1958 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1959 (event->msg_flags & MSG_EOR)) 1960 msg->msg_flags |= MSG_EOR; 1961 else 1962 msg->msg_flags &= ~MSG_EOR; 1963 1964 out_free: 1965 if (flags & MSG_PEEK) { 1966 /* Release the skb reference acquired after peeking the skb in 1967 * sctp_skb_recv_datagram(). 1968 */ 1969 kfree_skb(skb); 1970 } else { 1971 /* Free the event which includes releasing the reference to 1972 * the owner of the skb, freeing the skb and updating the 1973 * rwnd. 1974 */ 1975 sctp_ulpevent_free(event); 1976 } 1977 out: 1978 sctp_release_sock(sk); 1979 return err; 1980 } 1981 1982 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1983 * 1984 * This option is a on/off flag. If enabled no SCTP message 1985 * fragmentation will be performed. Instead if a message being sent 1986 * exceeds the current PMTU size, the message will NOT be sent and 1987 * instead a error will be indicated to the user. 1988 */ 1989 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1990 char __user *optval, int optlen) 1991 { 1992 int val; 1993 1994 if (optlen < sizeof(int)) 1995 return -EINVAL; 1996 1997 if (get_user(val, (int __user *)optval)) 1998 return -EFAULT; 1999 2000 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2001 2002 return 0; 2003 } 2004 2005 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2006 int optlen) 2007 { 2008 if (optlen > sizeof(struct sctp_event_subscribe)) 2009 return -EINVAL; 2010 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2011 return -EFAULT; 2012 return 0; 2013 } 2014 2015 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2016 * 2017 * This socket option is applicable to the UDP-style socket only. When 2018 * set it will cause associations that are idle for more than the 2019 * specified number of seconds to automatically close. An association 2020 * being idle is defined an association that has NOT sent or received 2021 * user data. The special value of '0' indicates that no automatic 2022 * close of any associations should be performed. The option expects an 2023 * integer defining the number of seconds of idle time before an 2024 * association is closed. 2025 */ 2026 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2027 int optlen) 2028 { 2029 struct sctp_sock *sp = sctp_sk(sk); 2030 2031 /* Applicable to UDP-style socket only */ 2032 if (sctp_style(sk, TCP)) 2033 return -EOPNOTSUPP; 2034 if (optlen != sizeof(int)) 2035 return -EINVAL; 2036 if (copy_from_user(&sp->autoclose, optval, optlen)) 2037 return -EFAULT; 2038 2039 return 0; 2040 } 2041 2042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2043 * 2044 * Applications can enable or disable heartbeats for any peer address of 2045 * an association, modify an address's heartbeat interval, force a 2046 * heartbeat to be sent immediately, and adjust the address's maximum 2047 * number of retransmissions sent before an address is considered 2048 * unreachable. The following structure is used to access and modify an 2049 * address's parameters: 2050 * 2051 * struct sctp_paddrparams { 2052 * sctp_assoc_t spp_assoc_id; 2053 * struct sockaddr_storage spp_address; 2054 * uint32_t spp_hbinterval; 2055 * uint16_t spp_pathmaxrxt; 2056 * uint32_t spp_pathmtu; 2057 * uint32_t spp_sackdelay; 2058 * uint32_t spp_flags; 2059 * }; 2060 * 2061 * spp_assoc_id - (one-to-many style socket) This is filled in the 2062 * application, and identifies the association for 2063 * this query. 2064 * spp_address - This specifies which address is of interest. 2065 * spp_hbinterval - This contains the value of the heartbeat interval, 2066 * in milliseconds. If a value of zero 2067 * is present in this field then no changes are to 2068 * be made to this parameter. 2069 * spp_pathmaxrxt - This contains the maximum number of 2070 * retransmissions before this address shall be 2071 * considered unreachable. If a value of zero 2072 * is present in this field then no changes are to 2073 * be made to this parameter. 2074 * spp_pathmtu - When Path MTU discovery is disabled the value 2075 * specified here will be the "fixed" path mtu. 2076 * Note that if the spp_address field is empty 2077 * then all associations on this address will 2078 * have this fixed path mtu set upon them. 2079 * 2080 * spp_sackdelay - When delayed sack is enabled, this value specifies 2081 * the number of milliseconds that sacks will be delayed 2082 * for. This value will apply to all addresses of an 2083 * association if the spp_address field is empty. Note 2084 * also, that if delayed sack is enabled and this 2085 * value is set to 0, no change is made to the last 2086 * recorded delayed sack timer value. 2087 * 2088 * spp_flags - These flags are used to control various features 2089 * on an association. The flag field may contain 2090 * zero or more of the following options. 2091 * 2092 * SPP_HB_ENABLE - Enable heartbeats on the 2093 * specified address. Note that if the address 2094 * field is empty all addresses for the association 2095 * have heartbeats enabled upon them. 2096 * 2097 * SPP_HB_DISABLE - Disable heartbeats on the 2098 * speicifed address. Note that if the address 2099 * field is empty all addresses for the association 2100 * will have their heartbeats disabled. Note also 2101 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2102 * mutually exclusive, only one of these two should 2103 * be specified. Enabling both fields will have 2104 * undetermined results. 2105 * 2106 * SPP_HB_DEMAND - Request a user initiated heartbeat 2107 * to be made immediately. 2108 * 2109 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2110 * heartbeat delayis to be set to the value of 0 2111 * milliseconds. 2112 * 2113 * SPP_PMTUD_ENABLE - This field will enable PMTU 2114 * discovery upon the specified address. Note that 2115 * if the address feild is empty then all addresses 2116 * on the association are effected. 2117 * 2118 * SPP_PMTUD_DISABLE - This field will disable PMTU 2119 * discovery upon the specified address. Note that 2120 * if the address feild is empty then all addresses 2121 * on the association are effected. Not also that 2122 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2123 * exclusive. Enabling both will have undetermined 2124 * results. 2125 * 2126 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2127 * on delayed sack. The time specified in spp_sackdelay 2128 * is used to specify the sack delay for this address. Note 2129 * that if spp_address is empty then all addresses will 2130 * enable delayed sack and take on the sack delay 2131 * value specified in spp_sackdelay. 2132 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2133 * off delayed sack. If the spp_address field is blank then 2134 * delayed sack is disabled for the entire association. Note 2135 * also that this field is mutually exclusive to 2136 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2137 * results. 2138 */ 2139 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2140 struct sctp_transport *trans, 2141 struct sctp_association *asoc, 2142 struct sctp_sock *sp, 2143 int hb_change, 2144 int pmtud_change, 2145 int sackdelay_change) 2146 { 2147 int error; 2148 2149 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2150 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2151 if (error) 2152 return error; 2153 } 2154 2155 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2156 * this field is ignored. Note also that a value of zero indicates 2157 * the current setting should be left unchanged. 2158 */ 2159 if (params->spp_flags & SPP_HB_ENABLE) { 2160 2161 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2162 * set. This lets us use 0 value when this flag 2163 * is set. 2164 */ 2165 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2166 params->spp_hbinterval = 0; 2167 2168 if (params->spp_hbinterval || 2169 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2170 if (trans) { 2171 trans->hbinterval = 2172 msecs_to_jiffies(params->spp_hbinterval); 2173 } else if (asoc) { 2174 asoc->hbinterval = 2175 msecs_to_jiffies(params->spp_hbinterval); 2176 } else { 2177 sp->hbinterval = params->spp_hbinterval; 2178 } 2179 } 2180 } 2181 2182 if (hb_change) { 2183 if (trans) { 2184 trans->param_flags = 2185 (trans->param_flags & ~SPP_HB) | hb_change; 2186 } else if (asoc) { 2187 asoc->param_flags = 2188 (asoc->param_flags & ~SPP_HB) | hb_change; 2189 } else { 2190 sp->param_flags = 2191 (sp->param_flags & ~SPP_HB) | hb_change; 2192 } 2193 } 2194 2195 /* When Path MTU discovery is disabled the value specified here will 2196 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2197 * include the flag SPP_PMTUD_DISABLE for this field to have any 2198 * effect). 2199 */ 2200 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2201 if (trans) { 2202 trans->pathmtu = params->spp_pathmtu; 2203 sctp_assoc_sync_pmtu(asoc); 2204 } else if (asoc) { 2205 asoc->pathmtu = params->spp_pathmtu; 2206 sctp_frag_point(sp, params->spp_pathmtu); 2207 } else { 2208 sp->pathmtu = params->spp_pathmtu; 2209 } 2210 } 2211 2212 if (pmtud_change) { 2213 if (trans) { 2214 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2215 (params->spp_flags & SPP_PMTUD_ENABLE); 2216 trans->param_flags = 2217 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2218 if (update) { 2219 sctp_transport_pmtu(trans); 2220 sctp_assoc_sync_pmtu(asoc); 2221 } 2222 } else if (asoc) { 2223 asoc->param_flags = 2224 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2225 } else { 2226 sp->param_flags = 2227 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2228 } 2229 } 2230 2231 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2232 * value of this field is ignored. Note also that a value of zero 2233 * indicates the current setting should be left unchanged. 2234 */ 2235 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2236 if (trans) { 2237 trans->sackdelay = 2238 msecs_to_jiffies(params->spp_sackdelay); 2239 } else if (asoc) { 2240 asoc->sackdelay = 2241 msecs_to_jiffies(params->spp_sackdelay); 2242 } else { 2243 sp->sackdelay = params->spp_sackdelay; 2244 } 2245 } 2246 2247 if (sackdelay_change) { 2248 if (trans) { 2249 trans->param_flags = 2250 (trans->param_flags & ~SPP_SACKDELAY) | 2251 sackdelay_change; 2252 } else if (asoc) { 2253 asoc->param_flags = 2254 (asoc->param_flags & ~SPP_SACKDELAY) | 2255 sackdelay_change; 2256 } else { 2257 sp->param_flags = 2258 (sp->param_flags & ~SPP_SACKDELAY) | 2259 sackdelay_change; 2260 } 2261 } 2262 2263 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2264 * of this field is ignored. Note also that a value of zero 2265 * indicates the current setting should be left unchanged. 2266 */ 2267 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2268 if (trans) { 2269 trans->pathmaxrxt = params->spp_pathmaxrxt; 2270 } else if (asoc) { 2271 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2272 } else { 2273 sp->pathmaxrxt = params->spp_pathmaxrxt; 2274 } 2275 } 2276 2277 return 0; 2278 } 2279 2280 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2281 char __user *optval, int optlen) 2282 { 2283 struct sctp_paddrparams params; 2284 struct sctp_transport *trans = NULL; 2285 struct sctp_association *asoc = NULL; 2286 struct sctp_sock *sp = sctp_sk(sk); 2287 int error; 2288 int hb_change, pmtud_change, sackdelay_change; 2289 2290 if (optlen != sizeof(struct sctp_paddrparams)) 2291 return - EINVAL; 2292 2293 if (copy_from_user(¶ms, optval, optlen)) 2294 return -EFAULT; 2295 2296 /* Validate flags and value parameters. */ 2297 hb_change = params.spp_flags & SPP_HB; 2298 pmtud_change = params.spp_flags & SPP_PMTUD; 2299 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2300 2301 if (hb_change == SPP_HB || 2302 pmtud_change == SPP_PMTUD || 2303 sackdelay_change == SPP_SACKDELAY || 2304 params.spp_sackdelay > 500 || 2305 (params.spp_pathmtu 2306 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2307 return -EINVAL; 2308 2309 /* If an address other than INADDR_ANY is specified, and 2310 * no transport is found, then the request is invalid. 2311 */ 2312 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2313 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2314 params.spp_assoc_id); 2315 if (!trans) 2316 return -EINVAL; 2317 } 2318 2319 /* Get association, if assoc_id != 0 and the socket is a one 2320 * to many style socket, and an association was not found, then 2321 * the id was invalid. 2322 */ 2323 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2324 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2325 return -EINVAL; 2326 2327 /* Heartbeat demand can only be sent on a transport or 2328 * association, but not a socket. 2329 */ 2330 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2331 return -EINVAL; 2332 2333 /* Process parameters. */ 2334 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2335 hb_change, pmtud_change, 2336 sackdelay_change); 2337 2338 if (error) 2339 return error; 2340 2341 /* If changes are for association, also apply parameters to each 2342 * transport. 2343 */ 2344 if (!trans && asoc) { 2345 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2346 transports) { 2347 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2348 hb_change, pmtud_change, 2349 sackdelay_change); 2350 } 2351 } 2352 2353 return 0; 2354 } 2355 2356 /* 2357 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2358 * 2359 * This option will effect the way delayed acks are performed. This 2360 * option allows you to get or set the delayed ack time, in 2361 * milliseconds. It also allows changing the delayed ack frequency. 2362 * Changing the frequency to 1 disables the delayed sack algorithm. If 2363 * the assoc_id is 0, then this sets or gets the endpoints default 2364 * values. If the assoc_id field is non-zero, then the set or get 2365 * effects the specified association for the one to many model (the 2366 * assoc_id field is ignored by the one to one model). Note that if 2367 * sack_delay or sack_freq are 0 when setting this option, then the 2368 * current values will remain unchanged. 2369 * 2370 * struct sctp_sack_info { 2371 * sctp_assoc_t sack_assoc_id; 2372 * uint32_t sack_delay; 2373 * uint32_t sack_freq; 2374 * }; 2375 * 2376 * sack_assoc_id - This parameter, indicates which association the user 2377 * is performing an action upon. Note that if this field's value is 2378 * zero then the endpoints default value is changed (effecting future 2379 * associations only). 2380 * 2381 * sack_delay - This parameter contains the number of milliseconds that 2382 * the user is requesting the delayed ACK timer be set to. Note that 2383 * this value is defined in the standard to be between 200 and 500 2384 * milliseconds. 2385 * 2386 * sack_freq - This parameter contains the number of packets that must 2387 * be received before a sack is sent without waiting for the delay 2388 * timer to expire. The default value for this is 2, setting this 2389 * value to 1 will disable the delayed sack algorithm. 2390 */ 2391 2392 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2393 char __user *optval, int optlen) 2394 { 2395 struct sctp_sack_info params; 2396 struct sctp_transport *trans = NULL; 2397 struct sctp_association *asoc = NULL; 2398 struct sctp_sock *sp = sctp_sk(sk); 2399 2400 if (optlen == sizeof(struct sctp_sack_info)) { 2401 if (copy_from_user(¶ms, optval, optlen)) 2402 return -EFAULT; 2403 2404 if (params.sack_delay == 0 && params.sack_freq == 0) 2405 return 0; 2406 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2407 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 2408 "in delayed_ack socket option deprecated\n"); 2409 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 2410 if (copy_from_user(¶ms, optval, optlen)) 2411 return -EFAULT; 2412 2413 if (params.sack_delay == 0) 2414 params.sack_freq = 1; 2415 else 2416 params.sack_freq = 0; 2417 } else 2418 return - EINVAL; 2419 2420 /* Validate value parameter. */ 2421 if (params.sack_delay > 500) 2422 return -EINVAL; 2423 2424 /* Get association, if sack_assoc_id != 0 and the socket is a one 2425 * to many style socket, and an association was not found, then 2426 * the id was invalid. 2427 */ 2428 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2429 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2430 return -EINVAL; 2431 2432 if (params.sack_delay) { 2433 if (asoc) { 2434 asoc->sackdelay = 2435 msecs_to_jiffies(params.sack_delay); 2436 asoc->param_flags = 2437 (asoc->param_flags & ~SPP_SACKDELAY) | 2438 SPP_SACKDELAY_ENABLE; 2439 } else { 2440 sp->sackdelay = params.sack_delay; 2441 sp->param_flags = 2442 (sp->param_flags & ~SPP_SACKDELAY) | 2443 SPP_SACKDELAY_ENABLE; 2444 } 2445 } 2446 2447 if (params.sack_freq == 1) { 2448 if (asoc) { 2449 asoc->param_flags = 2450 (asoc->param_flags & ~SPP_SACKDELAY) | 2451 SPP_SACKDELAY_DISABLE; 2452 } else { 2453 sp->param_flags = 2454 (sp->param_flags & ~SPP_SACKDELAY) | 2455 SPP_SACKDELAY_DISABLE; 2456 } 2457 } else if (params.sack_freq > 1) { 2458 if (asoc) { 2459 asoc->sackfreq = params.sack_freq; 2460 asoc->param_flags = 2461 (asoc->param_flags & ~SPP_SACKDELAY) | 2462 SPP_SACKDELAY_ENABLE; 2463 } else { 2464 sp->sackfreq = params.sack_freq; 2465 sp->param_flags = 2466 (sp->param_flags & ~SPP_SACKDELAY) | 2467 SPP_SACKDELAY_ENABLE; 2468 } 2469 } 2470 2471 /* If change is for association, also apply to each transport. */ 2472 if (asoc) { 2473 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2474 transports) { 2475 if (params.sack_delay) { 2476 trans->sackdelay = 2477 msecs_to_jiffies(params.sack_delay); 2478 trans->param_flags = 2479 (trans->param_flags & ~SPP_SACKDELAY) | 2480 SPP_SACKDELAY_ENABLE; 2481 } 2482 if (params.sack_freq == 1) { 2483 trans->param_flags = 2484 (trans->param_flags & ~SPP_SACKDELAY) | 2485 SPP_SACKDELAY_DISABLE; 2486 } else if (params.sack_freq > 1) { 2487 trans->sackfreq = params.sack_freq; 2488 trans->param_flags = 2489 (trans->param_flags & ~SPP_SACKDELAY) | 2490 SPP_SACKDELAY_ENABLE; 2491 } 2492 } 2493 } 2494 2495 return 0; 2496 } 2497 2498 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2499 * 2500 * Applications can specify protocol parameters for the default association 2501 * initialization. The option name argument to setsockopt() and getsockopt() 2502 * is SCTP_INITMSG. 2503 * 2504 * Setting initialization parameters is effective only on an unconnected 2505 * socket (for UDP-style sockets only future associations are effected 2506 * by the change). With TCP-style sockets, this option is inherited by 2507 * sockets derived from a listener socket. 2508 */ 2509 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2510 { 2511 struct sctp_initmsg sinit; 2512 struct sctp_sock *sp = sctp_sk(sk); 2513 2514 if (optlen != sizeof(struct sctp_initmsg)) 2515 return -EINVAL; 2516 if (copy_from_user(&sinit, optval, optlen)) 2517 return -EFAULT; 2518 2519 if (sinit.sinit_num_ostreams) 2520 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2521 if (sinit.sinit_max_instreams) 2522 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2523 if (sinit.sinit_max_attempts) 2524 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2525 if (sinit.sinit_max_init_timeo) 2526 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2527 2528 return 0; 2529 } 2530 2531 /* 2532 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2533 * 2534 * Applications that wish to use the sendto() system call may wish to 2535 * specify a default set of parameters that would normally be supplied 2536 * through the inclusion of ancillary data. This socket option allows 2537 * such an application to set the default sctp_sndrcvinfo structure. 2538 * The application that wishes to use this socket option simply passes 2539 * in to this call the sctp_sndrcvinfo structure defined in Section 2540 * 5.2.2) The input parameters accepted by this call include 2541 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2542 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2543 * to this call if the caller is using the UDP model. 2544 */ 2545 static int sctp_setsockopt_default_send_param(struct sock *sk, 2546 char __user *optval, int optlen) 2547 { 2548 struct sctp_sndrcvinfo info; 2549 struct sctp_association *asoc; 2550 struct sctp_sock *sp = sctp_sk(sk); 2551 2552 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2553 return -EINVAL; 2554 if (copy_from_user(&info, optval, optlen)) 2555 return -EFAULT; 2556 2557 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2558 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2559 return -EINVAL; 2560 2561 if (asoc) { 2562 asoc->default_stream = info.sinfo_stream; 2563 asoc->default_flags = info.sinfo_flags; 2564 asoc->default_ppid = info.sinfo_ppid; 2565 asoc->default_context = info.sinfo_context; 2566 asoc->default_timetolive = info.sinfo_timetolive; 2567 } else { 2568 sp->default_stream = info.sinfo_stream; 2569 sp->default_flags = info.sinfo_flags; 2570 sp->default_ppid = info.sinfo_ppid; 2571 sp->default_context = info.sinfo_context; 2572 sp->default_timetolive = info.sinfo_timetolive; 2573 } 2574 2575 return 0; 2576 } 2577 2578 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2579 * 2580 * Requests that the local SCTP stack use the enclosed peer address as 2581 * the association primary. The enclosed address must be one of the 2582 * association peer's addresses. 2583 */ 2584 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2585 int optlen) 2586 { 2587 struct sctp_prim prim; 2588 struct sctp_transport *trans; 2589 2590 if (optlen != sizeof(struct sctp_prim)) 2591 return -EINVAL; 2592 2593 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2594 return -EFAULT; 2595 2596 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2597 if (!trans) 2598 return -EINVAL; 2599 2600 sctp_assoc_set_primary(trans->asoc, trans); 2601 2602 return 0; 2603 } 2604 2605 /* 2606 * 7.1.5 SCTP_NODELAY 2607 * 2608 * Turn on/off any Nagle-like algorithm. This means that packets are 2609 * generally sent as soon as possible and no unnecessary delays are 2610 * introduced, at the cost of more packets in the network. Expects an 2611 * integer boolean flag. 2612 */ 2613 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2614 int optlen) 2615 { 2616 int val; 2617 2618 if (optlen < sizeof(int)) 2619 return -EINVAL; 2620 if (get_user(val, (int __user *)optval)) 2621 return -EFAULT; 2622 2623 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2624 return 0; 2625 } 2626 2627 /* 2628 * 2629 * 7.1.1 SCTP_RTOINFO 2630 * 2631 * The protocol parameters used to initialize and bound retransmission 2632 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2633 * and modify these parameters. 2634 * All parameters are time values, in milliseconds. A value of 0, when 2635 * modifying the parameters, indicates that the current value should not 2636 * be changed. 2637 * 2638 */ 2639 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2640 struct sctp_rtoinfo rtoinfo; 2641 struct sctp_association *asoc; 2642 2643 if (optlen != sizeof (struct sctp_rtoinfo)) 2644 return -EINVAL; 2645 2646 if (copy_from_user(&rtoinfo, optval, optlen)) 2647 return -EFAULT; 2648 2649 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2650 2651 /* Set the values to the specific association */ 2652 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2653 return -EINVAL; 2654 2655 if (asoc) { 2656 if (rtoinfo.srto_initial != 0) 2657 asoc->rto_initial = 2658 msecs_to_jiffies(rtoinfo.srto_initial); 2659 if (rtoinfo.srto_max != 0) 2660 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2661 if (rtoinfo.srto_min != 0) 2662 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2663 } else { 2664 /* If there is no association or the association-id = 0 2665 * set the values to the endpoint. 2666 */ 2667 struct sctp_sock *sp = sctp_sk(sk); 2668 2669 if (rtoinfo.srto_initial != 0) 2670 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2671 if (rtoinfo.srto_max != 0) 2672 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2673 if (rtoinfo.srto_min != 0) 2674 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2675 } 2676 2677 return 0; 2678 } 2679 2680 /* 2681 * 2682 * 7.1.2 SCTP_ASSOCINFO 2683 * 2684 * This option is used to tune the maximum retransmission attempts 2685 * of the association. 2686 * Returns an error if the new association retransmission value is 2687 * greater than the sum of the retransmission value of the peer. 2688 * See [SCTP] for more information. 2689 * 2690 */ 2691 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2692 { 2693 2694 struct sctp_assocparams assocparams; 2695 struct sctp_association *asoc; 2696 2697 if (optlen != sizeof(struct sctp_assocparams)) 2698 return -EINVAL; 2699 if (copy_from_user(&assocparams, optval, optlen)) 2700 return -EFAULT; 2701 2702 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2703 2704 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2705 return -EINVAL; 2706 2707 /* Set the values to the specific association */ 2708 if (asoc) { 2709 if (assocparams.sasoc_asocmaxrxt != 0) { 2710 __u32 path_sum = 0; 2711 int paths = 0; 2712 struct sctp_transport *peer_addr; 2713 2714 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2715 transports) { 2716 path_sum += peer_addr->pathmaxrxt; 2717 paths++; 2718 } 2719 2720 /* Only validate asocmaxrxt if we have more than 2721 * one path/transport. We do this because path 2722 * retransmissions are only counted when we have more 2723 * then one path. 2724 */ 2725 if (paths > 1 && 2726 assocparams.sasoc_asocmaxrxt > path_sum) 2727 return -EINVAL; 2728 2729 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2730 } 2731 2732 if (assocparams.sasoc_cookie_life != 0) { 2733 asoc->cookie_life.tv_sec = 2734 assocparams.sasoc_cookie_life / 1000; 2735 asoc->cookie_life.tv_usec = 2736 (assocparams.sasoc_cookie_life % 1000) 2737 * 1000; 2738 } 2739 } else { 2740 /* Set the values to the endpoint */ 2741 struct sctp_sock *sp = sctp_sk(sk); 2742 2743 if (assocparams.sasoc_asocmaxrxt != 0) 2744 sp->assocparams.sasoc_asocmaxrxt = 2745 assocparams.sasoc_asocmaxrxt; 2746 if (assocparams.sasoc_cookie_life != 0) 2747 sp->assocparams.sasoc_cookie_life = 2748 assocparams.sasoc_cookie_life; 2749 } 2750 return 0; 2751 } 2752 2753 /* 2754 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2755 * 2756 * This socket option is a boolean flag which turns on or off mapped V4 2757 * addresses. If this option is turned on and the socket is type 2758 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2759 * If this option is turned off, then no mapping will be done of V4 2760 * addresses and a user will receive both PF_INET6 and PF_INET type 2761 * addresses on the socket. 2762 */ 2763 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2764 { 2765 int val; 2766 struct sctp_sock *sp = sctp_sk(sk); 2767 2768 if (optlen < sizeof(int)) 2769 return -EINVAL; 2770 if (get_user(val, (int __user *)optval)) 2771 return -EFAULT; 2772 if (val) 2773 sp->v4mapped = 1; 2774 else 2775 sp->v4mapped = 0; 2776 2777 return 0; 2778 } 2779 2780 /* 2781 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2782 * This option will get or set the maximum size to put in any outgoing 2783 * SCTP DATA chunk. If a message is larger than this size it will be 2784 * fragmented by SCTP into the specified size. Note that the underlying 2785 * SCTP implementation may fragment into smaller sized chunks when the 2786 * PMTU of the underlying association is smaller than the value set by 2787 * the user. The default value for this option is '0' which indicates 2788 * the user is NOT limiting fragmentation and only the PMTU will effect 2789 * SCTP's choice of DATA chunk size. Note also that values set larger 2790 * than the maximum size of an IP datagram will effectively let SCTP 2791 * control fragmentation (i.e. the same as setting this option to 0). 2792 * 2793 * The following structure is used to access and modify this parameter: 2794 * 2795 * struct sctp_assoc_value { 2796 * sctp_assoc_t assoc_id; 2797 * uint32_t assoc_value; 2798 * }; 2799 * 2800 * assoc_id: This parameter is ignored for one-to-one style sockets. 2801 * For one-to-many style sockets this parameter indicates which 2802 * association the user is performing an action upon. Note that if 2803 * this field's value is zero then the endpoints default value is 2804 * changed (effecting future associations only). 2805 * assoc_value: This parameter specifies the maximum size in bytes. 2806 */ 2807 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2808 { 2809 struct sctp_assoc_value params; 2810 struct sctp_association *asoc; 2811 struct sctp_sock *sp = sctp_sk(sk); 2812 int val; 2813 2814 if (optlen == sizeof(int)) { 2815 printk(KERN_WARNING 2816 "SCTP: Use of int in maxseg socket option deprecated\n"); 2817 printk(KERN_WARNING 2818 "SCTP: Use struct sctp_assoc_value instead\n"); 2819 if (copy_from_user(&val, optval, optlen)) 2820 return -EFAULT; 2821 params.assoc_id = 0; 2822 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2823 if (copy_from_user(¶ms, optval, optlen)) 2824 return -EFAULT; 2825 val = params.assoc_value; 2826 } else 2827 return -EINVAL; 2828 2829 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2830 return -EINVAL; 2831 2832 asoc = sctp_id2assoc(sk, params.assoc_id); 2833 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2834 return -EINVAL; 2835 2836 if (asoc) { 2837 if (val == 0) { 2838 val = asoc->pathmtu; 2839 val -= sp->pf->af->net_header_len; 2840 val -= sizeof(struct sctphdr) + 2841 sizeof(struct sctp_data_chunk); 2842 } 2843 2844 asoc->frag_point = val; 2845 } else { 2846 sp->user_frag = val; 2847 2848 /* Update the frag_point of the existing associations. */ 2849 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 2850 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2851 } 2852 } 2853 2854 return 0; 2855 } 2856 2857 2858 /* 2859 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2860 * 2861 * Requests that the peer mark the enclosed address as the association 2862 * primary. The enclosed address must be one of the association's 2863 * locally bound addresses. The following structure is used to make a 2864 * set primary request: 2865 */ 2866 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2867 int optlen) 2868 { 2869 struct sctp_sock *sp; 2870 struct sctp_endpoint *ep; 2871 struct sctp_association *asoc = NULL; 2872 struct sctp_setpeerprim prim; 2873 struct sctp_chunk *chunk; 2874 int err; 2875 2876 sp = sctp_sk(sk); 2877 ep = sp->ep; 2878 2879 if (!sctp_addip_enable) 2880 return -EPERM; 2881 2882 if (optlen != sizeof(struct sctp_setpeerprim)) 2883 return -EINVAL; 2884 2885 if (copy_from_user(&prim, optval, optlen)) 2886 return -EFAULT; 2887 2888 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2889 if (!asoc) 2890 return -EINVAL; 2891 2892 if (!asoc->peer.asconf_capable) 2893 return -EPERM; 2894 2895 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2896 return -EPERM; 2897 2898 if (!sctp_state(asoc, ESTABLISHED)) 2899 return -ENOTCONN; 2900 2901 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2902 return -EADDRNOTAVAIL; 2903 2904 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2905 chunk = sctp_make_asconf_set_prim(asoc, 2906 (union sctp_addr *)&prim.sspp_addr); 2907 if (!chunk) 2908 return -ENOMEM; 2909 2910 err = sctp_send_asconf(asoc, chunk); 2911 2912 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2913 2914 return err; 2915 } 2916 2917 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2918 int optlen) 2919 { 2920 struct sctp_setadaptation adaptation; 2921 2922 if (optlen != sizeof(struct sctp_setadaptation)) 2923 return -EINVAL; 2924 if (copy_from_user(&adaptation, optval, optlen)) 2925 return -EFAULT; 2926 2927 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2928 2929 return 0; 2930 } 2931 2932 /* 2933 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2934 * 2935 * The context field in the sctp_sndrcvinfo structure is normally only 2936 * used when a failed message is retrieved holding the value that was 2937 * sent down on the actual send call. This option allows the setting of 2938 * a default context on an association basis that will be received on 2939 * reading messages from the peer. This is especially helpful in the 2940 * one-2-many model for an application to keep some reference to an 2941 * internal state machine that is processing messages on the 2942 * association. Note that the setting of this value only effects 2943 * received messages from the peer and does not effect the value that is 2944 * saved with outbound messages. 2945 */ 2946 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2947 int optlen) 2948 { 2949 struct sctp_assoc_value params; 2950 struct sctp_sock *sp; 2951 struct sctp_association *asoc; 2952 2953 if (optlen != sizeof(struct sctp_assoc_value)) 2954 return -EINVAL; 2955 if (copy_from_user(¶ms, optval, optlen)) 2956 return -EFAULT; 2957 2958 sp = sctp_sk(sk); 2959 2960 if (params.assoc_id != 0) { 2961 asoc = sctp_id2assoc(sk, params.assoc_id); 2962 if (!asoc) 2963 return -EINVAL; 2964 asoc->default_rcv_context = params.assoc_value; 2965 } else { 2966 sp->default_rcv_context = params.assoc_value; 2967 } 2968 2969 return 0; 2970 } 2971 2972 /* 2973 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2974 * 2975 * This options will at a minimum specify if the implementation is doing 2976 * fragmented interleave. Fragmented interleave, for a one to many 2977 * socket, is when subsequent calls to receive a message may return 2978 * parts of messages from different associations. Some implementations 2979 * may allow you to turn this value on or off. If so, when turned off, 2980 * no fragment interleave will occur (which will cause a head of line 2981 * blocking amongst multiple associations sharing the same one to many 2982 * socket). When this option is turned on, then each receive call may 2983 * come from a different association (thus the user must receive data 2984 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2985 * association each receive belongs to. 2986 * 2987 * This option takes a boolean value. A non-zero value indicates that 2988 * fragmented interleave is on. A value of zero indicates that 2989 * fragmented interleave is off. 2990 * 2991 * Note that it is important that an implementation that allows this 2992 * option to be turned on, have it off by default. Otherwise an unaware 2993 * application using the one to many model may become confused and act 2994 * incorrectly. 2995 */ 2996 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2997 char __user *optval, 2998 int optlen) 2999 { 3000 int val; 3001 3002 if (optlen != sizeof(int)) 3003 return -EINVAL; 3004 if (get_user(val, (int __user *)optval)) 3005 return -EFAULT; 3006 3007 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3008 3009 return 0; 3010 } 3011 3012 /* 3013 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3014 * (SCTP_PARTIAL_DELIVERY_POINT) 3015 * 3016 * This option will set or get the SCTP partial delivery point. This 3017 * point is the size of a message where the partial delivery API will be 3018 * invoked to help free up rwnd space for the peer. Setting this to a 3019 * lower value will cause partial deliveries to happen more often. The 3020 * calls argument is an integer that sets or gets the partial delivery 3021 * point. Note also that the call will fail if the user attempts to set 3022 * this value larger than the socket receive buffer size. 3023 * 3024 * Note that any single message having a length smaller than or equal to 3025 * the SCTP partial delivery point will be delivered in one single read 3026 * call as long as the user provided buffer is large enough to hold the 3027 * message. 3028 */ 3029 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3030 char __user *optval, 3031 int optlen) 3032 { 3033 u32 val; 3034 3035 if (optlen != sizeof(u32)) 3036 return -EINVAL; 3037 if (get_user(val, (int __user *)optval)) 3038 return -EFAULT; 3039 3040 /* Note: We double the receive buffer from what the user sets 3041 * it to be, also initial rwnd is based on rcvbuf/2. 3042 */ 3043 if (val > (sk->sk_rcvbuf >> 1)) 3044 return -EINVAL; 3045 3046 sctp_sk(sk)->pd_point = val; 3047 3048 return 0; /* is this the right error code? */ 3049 } 3050 3051 /* 3052 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3053 * 3054 * This option will allow a user to change the maximum burst of packets 3055 * that can be emitted by this association. Note that the default value 3056 * is 4, and some implementations may restrict this setting so that it 3057 * can only be lowered. 3058 * 3059 * NOTE: This text doesn't seem right. Do this on a socket basis with 3060 * future associations inheriting the socket value. 3061 */ 3062 static int sctp_setsockopt_maxburst(struct sock *sk, 3063 char __user *optval, 3064 int optlen) 3065 { 3066 struct sctp_assoc_value params; 3067 struct sctp_sock *sp; 3068 struct sctp_association *asoc; 3069 int val; 3070 int assoc_id = 0; 3071 3072 if (optlen == sizeof(int)) { 3073 printk(KERN_WARNING 3074 "SCTP: Use of int in max_burst socket option deprecated\n"); 3075 printk(KERN_WARNING 3076 "SCTP: Use struct sctp_assoc_value instead\n"); 3077 if (copy_from_user(&val, optval, optlen)) 3078 return -EFAULT; 3079 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3080 if (copy_from_user(¶ms, optval, optlen)) 3081 return -EFAULT; 3082 val = params.assoc_value; 3083 assoc_id = params.assoc_id; 3084 } else 3085 return -EINVAL; 3086 3087 sp = sctp_sk(sk); 3088 3089 if (assoc_id != 0) { 3090 asoc = sctp_id2assoc(sk, assoc_id); 3091 if (!asoc) 3092 return -EINVAL; 3093 asoc->max_burst = val; 3094 } else 3095 sp->max_burst = val; 3096 3097 return 0; 3098 } 3099 3100 /* 3101 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3102 * 3103 * This set option adds a chunk type that the user is requesting to be 3104 * received only in an authenticated way. Changes to the list of chunks 3105 * will only effect future associations on the socket. 3106 */ 3107 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3108 char __user *optval, 3109 int optlen) 3110 { 3111 struct sctp_authchunk val; 3112 3113 if (!sctp_auth_enable) 3114 return -EACCES; 3115 3116 if (optlen != sizeof(struct sctp_authchunk)) 3117 return -EINVAL; 3118 if (copy_from_user(&val, optval, optlen)) 3119 return -EFAULT; 3120 3121 switch (val.sauth_chunk) { 3122 case SCTP_CID_INIT: 3123 case SCTP_CID_INIT_ACK: 3124 case SCTP_CID_SHUTDOWN_COMPLETE: 3125 case SCTP_CID_AUTH: 3126 return -EINVAL; 3127 } 3128 3129 /* add this chunk id to the endpoint */ 3130 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3131 } 3132 3133 /* 3134 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3135 * 3136 * This option gets or sets the list of HMAC algorithms that the local 3137 * endpoint requires the peer to use. 3138 */ 3139 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3140 char __user *optval, 3141 int optlen) 3142 { 3143 struct sctp_hmacalgo *hmacs; 3144 u32 idents; 3145 int err; 3146 3147 if (!sctp_auth_enable) 3148 return -EACCES; 3149 3150 if (optlen < sizeof(struct sctp_hmacalgo)) 3151 return -EINVAL; 3152 3153 hmacs = kmalloc(optlen, GFP_KERNEL); 3154 if (!hmacs) 3155 return -ENOMEM; 3156 3157 if (copy_from_user(hmacs, optval, optlen)) { 3158 err = -EFAULT; 3159 goto out; 3160 } 3161 3162 idents = hmacs->shmac_num_idents; 3163 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3164 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3165 err = -EINVAL; 3166 goto out; 3167 } 3168 3169 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3170 out: 3171 kfree(hmacs); 3172 return err; 3173 } 3174 3175 /* 3176 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3177 * 3178 * This option will set a shared secret key which is used to build an 3179 * association shared key. 3180 */ 3181 static int sctp_setsockopt_auth_key(struct sock *sk, 3182 char __user *optval, 3183 int optlen) 3184 { 3185 struct sctp_authkey *authkey; 3186 struct sctp_association *asoc; 3187 int ret; 3188 3189 if (!sctp_auth_enable) 3190 return -EACCES; 3191 3192 if (optlen <= sizeof(struct sctp_authkey)) 3193 return -EINVAL; 3194 3195 authkey = kmalloc(optlen, GFP_KERNEL); 3196 if (!authkey) 3197 return -ENOMEM; 3198 3199 if (copy_from_user(authkey, optval, optlen)) { 3200 ret = -EFAULT; 3201 goto out; 3202 } 3203 3204 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3205 ret = -EINVAL; 3206 goto out; 3207 } 3208 3209 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3210 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3211 ret = -EINVAL; 3212 goto out; 3213 } 3214 3215 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3216 out: 3217 kfree(authkey); 3218 return ret; 3219 } 3220 3221 /* 3222 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3223 * 3224 * This option will get or set the active shared key to be used to build 3225 * the association shared key. 3226 */ 3227 static int sctp_setsockopt_active_key(struct sock *sk, 3228 char __user *optval, 3229 int optlen) 3230 { 3231 struct sctp_authkeyid val; 3232 struct sctp_association *asoc; 3233 3234 if (!sctp_auth_enable) 3235 return -EACCES; 3236 3237 if (optlen != sizeof(struct sctp_authkeyid)) 3238 return -EINVAL; 3239 if (copy_from_user(&val, optval, optlen)) 3240 return -EFAULT; 3241 3242 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3243 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3244 return -EINVAL; 3245 3246 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3247 val.scact_keynumber); 3248 } 3249 3250 /* 3251 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3252 * 3253 * This set option will delete a shared secret key from use. 3254 */ 3255 static int sctp_setsockopt_del_key(struct sock *sk, 3256 char __user *optval, 3257 int optlen) 3258 { 3259 struct sctp_authkeyid val; 3260 struct sctp_association *asoc; 3261 3262 if (!sctp_auth_enable) 3263 return -EACCES; 3264 3265 if (optlen != sizeof(struct sctp_authkeyid)) 3266 return -EINVAL; 3267 if (copy_from_user(&val, optval, optlen)) 3268 return -EFAULT; 3269 3270 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3271 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3272 return -EINVAL; 3273 3274 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3275 val.scact_keynumber); 3276 3277 } 3278 3279 3280 /* API 6.2 setsockopt(), getsockopt() 3281 * 3282 * Applications use setsockopt() and getsockopt() to set or retrieve 3283 * socket options. Socket options are used to change the default 3284 * behavior of sockets calls. They are described in Section 7. 3285 * 3286 * The syntax is: 3287 * 3288 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3289 * int __user *optlen); 3290 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3291 * int optlen); 3292 * 3293 * sd - the socket descript. 3294 * level - set to IPPROTO_SCTP for all SCTP options. 3295 * optname - the option name. 3296 * optval - the buffer to store the value of the option. 3297 * optlen - the size of the buffer. 3298 */ 3299 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3300 char __user *optval, int optlen) 3301 { 3302 int retval = 0; 3303 3304 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3305 sk, optname); 3306 3307 /* I can hardly begin to describe how wrong this is. This is 3308 * so broken as to be worse than useless. The API draft 3309 * REALLY is NOT helpful here... I am not convinced that the 3310 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3311 * are at all well-founded. 3312 */ 3313 if (level != SOL_SCTP) { 3314 struct sctp_af *af = sctp_sk(sk)->pf->af; 3315 retval = af->setsockopt(sk, level, optname, optval, optlen); 3316 goto out_nounlock; 3317 } 3318 3319 sctp_lock_sock(sk); 3320 3321 switch (optname) { 3322 case SCTP_SOCKOPT_BINDX_ADD: 3323 /* 'optlen' is the size of the addresses buffer. */ 3324 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3325 optlen, SCTP_BINDX_ADD_ADDR); 3326 break; 3327 3328 case SCTP_SOCKOPT_BINDX_REM: 3329 /* 'optlen' is the size of the addresses buffer. */ 3330 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3331 optlen, SCTP_BINDX_REM_ADDR); 3332 break; 3333 3334 case SCTP_SOCKOPT_CONNECTX_OLD: 3335 /* 'optlen' is the size of the addresses buffer. */ 3336 retval = sctp_setsockopt_connectx_old(sk, 3337 (struct sockaddr __user *)optval, 3338 optlen); 3339 break; 3340 3341 case SCTP_SOCKOPT_CONNECTX: 3342 /* 'optlen' is the size of the addresses buffer. */ 3343 retval = sctp_setsockopt_connectx(sk, 3344 (struct sockaddr __user *)optval, 3345 optlen); 3346 break; 3347 3348 case SCTP_DISABLE_FRAGMENTS: 3349 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3350 break; 3351 3352 case SCTP_EVENTS: 3353 retval = sctp_setsockopt_events(sk, optval, optlen); 3354 break; 3355 3356 case SCTP_AUTOCLOSE: 3357 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3358 break; 3359 3360 case SCTP_PEER_ADDR_PARAMS: 3361 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3362 break; 3363 3364 case SCTP_DELAYED_ACK: 3365 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3366 break; 3367 case SCTP_PARTIAL_DELIVERY_POINT: 3368 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3369 break; 3370 3371 case SCTP_INITMSG: 3372 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3373 break; 3374 case SCTP_DEFAULT_SEND_PARAM: 3375 retval = sctp_setsockopt_default_send_param(sk, optval, 3376 optlen); 3377 break; 3378 case SCTP_PRIMARY_ADDR: 3379 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3380 break; 3381 case SCTP_SET_PEER_PRIMARY_ADDR: 3382 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3383 break; 3384 case SCTP_NODELAY: 3385 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3386 break; 3387 case SCTP_RTOINFO: 3388 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3389 break; 3390 case SCTP_ASSOCINFO: 3391 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3392 break; 3393 case SCTP_I_WANT_MAPPED_V4_ADDR: 3394 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3395 break; 3396 case SCTP_MAXSEG: 3397 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3398 break; 3399 case SCTP_ADAPTATION_LAYER: 3400 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3401 break; 3402 case SCTP_CONTEXT: 3403 retval = sctp_setsockopt_context(sk, optval, optlen); 3404 break; 3405 case SCTP_FRAGMENT_INTERLEAVE: 3406 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3407 break; 3408 case SCTP_MAX_BURST: 3409 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3410 break; 3411 case SCTP_AUTH_CHUNK: 3412 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3413 break; 3414 case SCTP_HMAC_IDENT: 3415 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3416 break; 3417 case SCTP_AUTH_KEY: 3418 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3419 break; 3420 case SCTP_AUTH_ACTIVE_KEY: 3421 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3422 break; 3423 case SCTP_AUTH_DELETE_KEY: 3424 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3425 break; 3426 default: 3427 retval = -ENOPROTOOPT; 3428 break; 3429 } 3430 3431 sctp_release_sock(sk); 3432 3433 out_nounlock: 3434 return retval; 3435 } 3436 3437 /* API 3.1.6 connect() - UDP Style Syntax 3438 * 3439 * An application may use the connect() call in the UDP model to initiate an 3440 * association without sending data. 3441 * 3442 * The syntax is: 3443 * 3444 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3445 * 3446 * sd: the socket descriptor to have a new association added to. 3447 * 3448 * nam: the address structure (either struct sockaddr_in or struct 3449 * sockaddr_in6 defined in RFC2553 [7]). 3450 * 3451 * len: the size of the address. 3452 */ 3453 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3454 int addr_len) 3455 { 3456 int err = 0; 3457 struct sctp_af *af; 3458 3459 sctp_lock_sock(sk); 3460 3461 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3462 __func__, sk, addr, addr_len); 3463 3464 /* Validate addr_len before calling common connect/connectx routine. */ 3465 af = sctp_get_af_specific(addr->sa_family); 3466 if (!af || addr_len < af->sockaddr_len) { 3467 err = -EINVAL; 3468 } else { 3469 /* Pass correct addr len to common routine (so it knows there 3470 * is only one address being passed. 3471 */ 3472 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3473 } 3474 3475 sctp_release_sock(sk); 3476 return err; 3477 } 3478 3479 /* FIXME: Write comments. */ 3480 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3481 { 3482 return -EOPNOTSUPP; /* STUB */ 3483 } 3484 3485 /* 4.1.4 accept() - TCP Style Syntax 3486 * 3487 * Applications use accept() call to remove an established SCTP 3488 * association from the accept queue of the endpoint. A new socket 3489 * descriptor will be returned from accept() to represent the newly 3490 * formed association. 3491 */ 3492 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3493 { 3494 struct sctp_sock *sp; 3495 struct sctp_endpoint *ep; 3496 struct sock *newsk = NULL; 3497 struct sctp_association *asoc; 3498 long timeo; 3499 int error = 0; 3500 3501 sctp_lock_sock(sk); 3502 3503 sp = sctp_sk(sk); 3504 ep = sp->ep; 3505 3506 if (!sctp_style(sk, TCP)) { 3507 error = -EOPNOTSUPP; 3508 goto out; 3509 } 3510 3511 if (!sctp_sstate(sk, LISTENING)) { 3512 error = -EINVAL; 3513 goto out; 3514 } 3515 3516 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3517 3518 error = sctp_wait_for_accept(sk, timeo); 3519 if (error) 3520 goto out; 3521 3522 /* We treat the list of associations on the endpoint as the accept 3523 * queue and pick the first association on the list. 3524 */ 3525 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3526 3527 newsk = sp->pf->create_accept_sk(sk, asoc); 3528 if (!newsk) { 3529 error = -ENOMEM; 3530 goto out; 3531 } 3532 3533 /* Populate the fields of the newsk from the oldsk and migrate the 3534 * asoc to the newsk. 3535 */ 3536 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3537 3538 out: 3539 sctp_release_sock(sk); 3540 *err = error; 3541 return newsk; 3542 } 3543 3544 /* The SCTP ioctl handler. */ 3545 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3546 { 3547 return -ENOIOCTLCMD; 3548 } 3549 3550 /* This is the function which gets called during socket creation to 3551 * initialized the SCTP-specific portion of the sock. 3552 * The sock structure should already be zero-filled memory. 3553 */ 3554 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3555 { 3556 struct sctp_endpoint *ep; 3557 struct sctp_sock *sp; 3558 3559 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3560 3561 sp = sctp_sk(sk); 3562 3563 /* Initialize the SCTP per socket area. */ 3564 switch (sk->sk_type) { 3565 case SOCK_SEQPACKET: 3566 sp->type = SCTP_SOCKET_UDP; 3567 break; 3568 case SOCK_STREAM: 3569 sp->type = SCTP_SOCKET_TCP; 3570 break; 3571 default: 3572 return -ESOCKTNOSUPPORT; 3573 } 3574 3575 /* Initialize default send parameters. These parameters can be 3576 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3577 */ 3578 sp->default_stream = 0; 3579 sp->default_ppid = 0; 3580 sp->default_flags = 0; 3581 sp->default_context = 0; 3582 sp->default_timetolive = 0; 3583 3584 sp->default_rcv_context = 0; 3585 sp->max_burst = sctp_max_burst; 3586 3587 /* Initialize default setup parameters. These parameters 3588 * can be modified with the SCTP_INITMSG socket option or 3589 * overridden by the SCTP_INIT CMSG. 3590 */ 3591 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3592 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3593 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3594 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3595 3596 /* Initialize default RTO related parameters. These parameters can 3597 * be modified for with the SCTP_RTOINFO socket option. 3598 */ 3599 sp->rtoinfo.srto_initial = sctp_rto_initial; 3600 sp->rtoinfo.srto_max = sctp_rto_max; 3601 sp->rtoinfo.srto_min = sctp_rto_min; 3602 3603 /* Initialize default association related parameters. These parameters 3604 * can be modified with the SCTP_ASSOCINFO socket option. 3605 */ 3606 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3607 sp->assocparams.sasoc_number_peer_destinations = 0; 3608 sp->assocparams.sasoc_peer_rwnd = 0; 3609 sp->assocparams.sasoc_local_rwnd = 0; 3610 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3611 3612 /* Initialize default event subscriptions. By default, all the 3613 * options are off. 3614 */ 3615 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3616 3617 /* Default Peer Address Parameters. These defaults can 3618 * be modified via SCTP_PEER_ADDR_PARAMS 3619 */ 3620 sp->hbinterval = sctp_hb_interval; 3621 sp->pathmaxrxt = sctp_max_retrans_path; 3622 sp->pathmtu = 0; // allow default discovery 3623 sp->sackdelay = sctp_sack_timeout; 3624 sp->sackfreq = 2; 3625 sp->param_flags = SPP_HB_ENABLE | 3626 SPP_PMTUD_ENABLE | 3627 SPP_SACKDELAY_ENABLE; 3628 3629 /* If enabled no SCTP message fragmentation will be performed. 3630 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3631 */ 3632 sp->disable_fragments = 0; 3633 3634 /* Enable Nagle algorithm by default. */ 3635 sp->nodelay = 0; 3636 3637 /* Enable by default. */ 3638 sp->v4mapped = 1; 3639 3640 /* Auto-close idle associations after the configured 3641 * number of seconds. A value of 0 disables this 3642 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3643 * for UDP-style sockets only. 3644 */ 3645 sp->autoclose = 0; 3646 3647 /* User specified fragmentation limit. */ 3648 sp->user_frag = 0; 3649 3650 sp->adaptation_ind = 0; 3651 3652 sp->pf = sctp_get_pf_specific(sk->sk_family); 3653 3654 /* Control variables for partial data delivery. */ 3655 atomic_set(&sp->pd_mode, 0); 3656 skb_queue_head_init(&sp->pd_lobby); 3657 sp->frag_interleave = 0; 3658 3659 /* Create a per socket endpoint structure. Even if we 3660 * change the data structure relationships, this may still 3661 * be useful for storing pre-connect address information. 3662 */ 3663 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3664 if (!ep) 3665 return -ENOMEM; 3666 3667 sp->ep = ep; 3668 sp->hmac = NULL; 3669 3670 SCTP_DBG_OBJCNT_INC(sock); 3671 percpu_counter_inc(&sctp_sockets_allocated); 3672 3673 local_bh_disable(); 3674 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3675 local_bh_enable(); 3676 3677 return 0; 3678 } 3679 3680 /* Cleanup any SCTP per socket resources. */ 3681 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3682 { 3683 struct sctp_endpoint *ep; 3684 3685 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3686 3687 /* Release our hold on the endpoint. */ 3688 ep = sctp_sk(sk)->ep; 3689 sctp_endpoint_free(ep); 3690 percpu_counter_dec(&sctp_sockets_allocated); 3691 local_bh_disable(); 3692 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3693 local_bh_enable(); 3694 } 3695 3696 /* API 4.1.7 shutdown() - TCP Style Syntax 3697 * int shutdown(int socket, int how); 3698 * 3699 * sd - the socket descriptor of the association to be closed. 3700 * how - Specifies the type of shutdown. The values are 3701 * as follows: 3702 * SHUT_RD 3703 * Disables further receive operations. No SCTP 3704 * protocol action is taken. 3705 * SHUT_WR 3706 * Disables further send operations, and initiates 3707 * the SCTP shutdown sequence. 3708 * SHUT_RDWR 3709 * Disables further send and receive operations 3710 * and initiates the SCTP shutdown sequence. 3711 */ 3712 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3713 { 3714 struct sctp_endpoint *ep; 3715 struct sctp_association *asoc; 3716 3717 if (!sctp_style(sk, TCP)) 3718 return; 3719 3720 if (how & SEND_SHUTDOWN) { 3721 ep = sctp_sk(sk)->ep; 3722 if (!list_empty(&ep->asocs)) { 3723 asoc = list_entry(ep->asocs.next, 3724 struct sctp_association, asocs); 3725 sctp_primitive_SHUTDOWN(asoc, NULL); 3726 } 3727 } 3728 } 3729 3730 /* 7.2.1 Association Status (SCTP_STATUS) 3731 3732 * Applications can retrieve current status information about an 3733 * association, including association state, peer receiver window size, 3734 * number of unacked data chunks, and number of data chunks pending 3735 * receipt. This information is read-only. 3736 */ 3737 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3738 char __user *optval, 3739 int __user *optlen) 3740 { 3741 struct sctp_status status; 3742 struct sctp_association *asoc = NULL; 3743 struct sctp_transport *transport; 3744 sctp_assoc_t associd; 3745 int retval = 0; 3746 3747 if (len < sizeof(status)) { 3748 retval = -EINVAL; 3749 goto out; 3750 } 3751 3752 len = sizeof(status); 3753 if (copy_from_user(&status, optval, len)) { 3754 retval = -EFAULT; 3755 goto out; 3756 } 3757 3758 associd = status.sstat_assoc_id; 3759 asoc = sctp_id2assoc(sk, associd); 3760 if (!asoc) { 3761 retval = -EINVAL; 3762 goto out; 3763 } 3764 3765 transport = asoc->peer.primary_path; 3766 3767 status.sstat_assoc_id = sctp_assoc2id(asoc); 3768 status.sstat_state = asoc->state; 3769 status.sstat_rwnd = asoc->peer.rwnd; 3770 status.sstat_unackdata = asoc->unack_data; 3771 3772 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3773 status.sstat_instrms = asoc->c.sinit_max_instreams; 3774 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3775 status.sstat_fragmentation_point = asoc->frag_point; 3776 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3777 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3778 transport->af_specific->sockaddr_len); 3779 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3780 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3781 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3782 status.sstat_primary.spinfo_state = transport->state; 3783 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3784 status.sstat_primary.spinfo_srtt = transport->srtt; 3785 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3786 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3787 3788 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3789 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3790 3791 if (put_user(len, optlen)) { 3792 retval = -EFAULT; 3793 goto out; 3794 } 3795 3796 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3797 len, status.sstat_state, status.sstat_rwnd, 3798 status.sstat_assoc_id); 3799 3800 if (copy_to_user(optval, &status, len)) { 3801 retval = -EFAULT; 3802 goto out; 3803 } 3804 3805 out: 3806 return (retval); 3807 } 3808 3809 3810 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3811 * 3812 * Applications can retrieve information about a specific peer address 3813 * of an association, including its reachability state, congestion 3814 * window, and retransmission timer values. This information is 3815 * read-only. 3816 */ 3817 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3818 char __user *optval, 3819 int __user *optlen) 3820 { 3821 struct sctp_paddrinfo pinfo; 3822 struct sctp_transport *transport; 3823 int retval = 0; 3824 3825 if (len < sizeof(pinfo)) { 3826 retval = -EINVAL; 3827 goto out; 3828 } 3829 3830 len = sizeof(pinfo); 3831 if (copy_from_user(&pinfo, optval, len)) { 3832 retval = -EFAULT; 3833 goto out; 3834 } 3835 3836 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3837 pinfo.spinfo_assoc_id); 3838 if (!transport) 3839 return -EINVAL; 3840 3841 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3842 pinfo.spinfo_state = transport->state; 3843 pinfo.spinfo_cwnd = transport->cwnd; 3844 pinfo.spinfo_srtt = transport->srtt; 3845 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3846 pinfo.spinfo_mtu = transport->pathmtu; 3847 3848 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3849 pinfo.spinfo_state = SCTP_ACTIVE; 3850 3851 if (put_user(len, optlen)) { 3852 retval = -EFAULT; 3853 goto out; 3854 } 3855 3856 if (copy_to_user(optval, &pinfo, len)) { 3857 retval = -EFAULT; 3858 goto out; 3859 } 3860 3861 out: 3862 return (retval); 3863 } 3864 3865 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3866 * 3867 * This option is a on/off flag. If enabled no SCTP message 3868 * fragmentation will be performed. Instead if a message being sent 3869 * exceeds the current PMTU size, the message will NOT be sent and 3870 * instead a error will be indicated to the user. 3871 */ 3872 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3873 char __user *optval, int __user *optlen) 3874 { 3875 int val; 3876 3877 if (len < sizeof(int)) 3878 return -EINVAL; 3879 3880 len = sizeof(int); 3881 val = (sctp_sk(sk)->disable_fragments == 1); 3882 if (put_user(len, optlen)) 3883 return -EFAULT; 3884 if (copy_to_user(optval, &val, len)) 3885 return -EFAULT; 3886 return 0; 3887 } 3888 3889 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3890 * 3891 * This socket option is used to specify various notifications and 3892 * ancillary data the user wishes to receive. 3893 */ 3894 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3895 int __user *optlen) 3896 { 3897 if (len < sizeof(struct sctp_event_subscribe)) 3898 return -EINVAL; 3899 len = sizeof(struct sctp_event_subscribe); 3900 if (put_user(len, optlen)) 3901 return -EFAULT; 3902 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3903 return -EFAULT; 3904 return 0; 3905 } 3906 3907 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3908 * 3909 * This socket option is applicable to the UDP-style socket only. When 3910 * set it will cause associations that are idle for more than the 3911 * specified number of seconds to automatically close. An association 3912 * being idle is defined an association that has NOT sent or received 3913 * user data. The special value of '0' indicates that no automatic 3914 * close of any associations should be performed. The option expects an 3915 * integer defining the number of seconds of idle time before an 3916 * association is closed. 3917 */ 3918 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3919 { 3920 /* Applicable to UDP-style socket only */ 3921 if (sctp_style(sk, TCP)) 3922 return -EOPNOTSUPP; 3923 if (len < sizeof(int)) 3924 return -EINVAL; 3925 len = sizeof(int); 3926 if (put_user(len, optlen)) 3927 return -EFAULT; 3928 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3929 return -EFAULT; 3930 return 0; 3931 } 3932 3933 /* Helper routine to branch off an association to a new socket. */ 3934 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3935 struct socket **sockp) 3936 { 3937 struct sock *sk = asoc->base.sk; 3938 struct socket *sock; 3939 struct sctp_af *af; 3940 int err = 0; 3941 3942 /* An association cannot be branched off from an already peeled-off 3943 * socket, nor is this supported for tcp style sockets. 3944 */ 3945 if (!sctp_style(sk, UDP)) 3946 return -EINVAL; 3947 3948 /* Create a new socket. */ 3949 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3950 if (err < 0) 3951 return err; 3952 3953 sctp_copy_sock(sock->sk, sk, asoc); 3954 3955 /* Make peeled-off sockets more like 1-1 accepted sockets. 3956 * Set the daddr and initialize id to something more random 3957 */ 3958 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3959 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3960 3961 /* Populate the fields of the newsk from the oldsk and migrate the 3962 * asoc to the newsk. 3963 */ 3964 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3965 3966 *sockp = sock; 3967 3968 return err; 3969 } 3970 3971 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3972 { 3973 sctp_peeloff_arg_t peeloff; 3974 struct socket *newsock; 3975 int retval = 0; 3976 struct sctp_association *asoc; 3977 3978 if (len < sizeof(sctp_peeloff_arg_t)) 3979 return -EINVAL; 3980 len = sizeof(sctp_peeloff_arg_t); 3981 if (copy_from_user(&peeloff, optval, len)) 3982 return -EFAULT; 3983 3984 asoc = sctp_id2assoc(sk, peeloff.associd); 3985 if (!asoc) { 3986 retval = -EINVAL; 3987 goto out; 3988 } 3989 3990 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 3991 3992 retval = sctp_do_peeloff(asoc, &newsock); 3993 if (retval < 0) 3994 goto out; 3995 3996 /* Map the socket to an unused fd that can be returned to the user. */ 3997 retval = sock_map_fd(newsock, 0); 3998 if (retval < 0) { 3999 sock_release(newsock); 4000 goto out; 4001 } 4002 4003 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4004 __func__, sk, asoc, newsock->sk, retval); 4005 4006 /* Return the fd mapped to the new socket. */ 4007 peeloff.sd = retval; 4008 if (put_user(len, optlen)) 4009 return -EFAULT; 4010 if (copy_to_user(optval, &peeloff, len)) 4011 retval = -EFAULT; 4012 4013 out: 4014 return retval; 4015 } 4016 4017 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4018 * 4019 * Applications can enable or disable heartbeats for any peer address of 4020 * an association, modify an address's heartbeat interval, force a 4021 * heartbeat to be sent immediately, and adjust the address's maximum 4022 * number of retransmissions sent before an address is considered 4023 * unreachable. The following structure is used to access and modify an 4024 * address's parameters: 4025 * 4026 * struct sctp_paddrparams { 4027 * sctp_assoc_t spp_assoc_id; 4028 * struct sockaddr_storage spp_address; 4029 * uint32_t spp_hbinterval; 4030 * uint16_t spp_pathmaxrxt; 4031 * uint32_t spp_pathmtu; 4032 * uint32_t spp_sackdelay; 4033 * uint32_t spp_flags; 4034 * }; 4035 * 4036 * spp_assoc_id - (one-to-many style socket) This is filled in the 4037 * application, and identifies the association for 4038 * this query. 4039 * spp_address - This specifies which address is of interest. 4040 * spp_hbinterval - This contains the value of the heartbeat interval, 4041 * in milliseconds. If a value of zero 4042 * is present in this field then no changes are to 4043 * be made to this parameter. 4044 * spp_pathmaxrxt - This contains the maximum number of 4045 * retransmissions before this address shall be 4046 * considered unreachable. If a value of zero 4047 * is present in this field then no changes are to 4048 * be made to this parameter. 4049 * spp_pathmtu - When Path MTU discovery is disabled the value 4050 * specified here will be the "fixed" path mtu. 4051 * Note that if the spp_address field is empty 4052 * then all associations on this address will 4053 * have this fixed path mtu set upon them. 4054 * 4055 * spp_sackdelay - When delayed sack is enabled, this value specifies 4056 * the number of milliseconds that sacks will be delayed 4057 * for. This value will apply to all addresses of an 4058 * association if the spp_address field is empty. Note 4059 * also, that if delayed sack is enabled and this 4060 * value is set to 0, no change is made to the last 4061 * recorded delayed sack timer value. 4062 * 4063 * spp_flags - These flags are used to control various features 4064 * on an association. The flag field may contain 4065 * zero or more of the following options. 4066 * 4067 * SPP_HB_ENABLE - Enable heartbeats on the 4068 * specified address. Note that if the address 4069 * field is empty all addresses for the association 4070 * have heartbeats enabled upon them. 4071 * 4072 * SPP_HB_DISABLE - Disable heartbeats on the 4073 * speicifed address. Note that if the address 4074 * field is empty all addresses for the association 4075 * will have their heartbeats disabled. Note also 4076 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4077 * mutually exclusive, only one of these two should 4078 * be specified. Enabling both fields will have 4079 * undetermined results. 4080 * 4081 * SPP_HB_DEMAND - Request a user initiated heartbeat 4082 * to be made immediately. 4083 * 4084 * SPP_PMTUD_ENABLE - This field will enable PMTU 4085 * discovery upon the specified address. Note that 4086 * if the address feild is empty then all addresses 4087 * on the association are effected. 4088 * 4089 * SPP_PMTUD_DISABLE - This field will disable PMTU 4090 * discovery upon the specified address. Note that 4091 * if the address feild is empty then all addresses 4092 * on the association are effected. Not also that 4093 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4094 * exclusive. Enabling both will have undetermined 4095 * results. 4096 * 4097 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4098 * on delayed sack. The time specified in spp_sackdelay 4099 * is used to specify the sack delay for this address. Note 4100 * that if spp_address is empty then all addresses will 4101 * enable delayed sack and take on the sack delay 4102 * value specified in spp_sackdelay. 4103 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4104 * off delayed sack. If the spp_address field is blank then 4105 * delayed sack is disabled for the entire association. Note 4106 * also that this field is mutually exclusive to 4107 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4108 * results. 4109 */ 4110 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4111 char __user *optval, int __user *optlen) 4112 { 4113 struct sctp_paddrparams params; 4114 struct sctp_transport *trans = NULL; 4115 struct sctp_association *asoc = NULL; 4116 struct sctp_sock *sp = sctp_sk(sk); 4117 4118 if (len < sizeof(struct sctp_paddrparams)) 4119 return -EINVAL; 4120 len = sizeof(struct sctp_paddrparams); 4121 if (copy_from_user(¶ms, optval, len)) 4122 return -EFAULT; 4123 4124 /* If an address other than INADDR_ANY is specified, and 4125 * no transport is found, then the request is invalid. 4126 */ 4127 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4128 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4129 params.spp_assoc_id); 4130 if (!trans) { 4131 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4132 return -EINVAL; 4133 } 4134 } 4135 4136 /* Get association, if assoc_id != 0 and the socket is a one 4137 * to many style socket, and an association was not found, then 4138 * the id was invalid. 4139 */ 4140 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4141 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4142 SCTP_DEBUG_PRINTK("Failed no association\n"); 4143 return -EINVAL; 4144 } 4145 4146 if (trans) { 4147 /* Fetch transport values. */ 4148 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4149 params.spp_pathmtu = trans->pathmtu; 4150 params.spp_pathmaxrxt = trans->pathmaxrxt; 4151 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4152 4153 /*draft-11 doesn't say what to return in spp_flags*/ 4154 params.spp_flags = trans->param_flags; 4155 } else if (asoc) { 4156 /* Fetch association values. */ 4157 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4158 params.spp_pathmtu = asoc->pathmtu; 4159 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4160 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4161 4162 /*draft-11 doesn't say what to return in spp_flags*/ 4163 params.spp_flags = asoc->param_flags; 4164 } else { 4165 /* Fetch socket values. */ 4166 params.spp_hbinterval = sp->hbinterval; 4167 params.spp_pathmtu = sp->pathmtu; 4168 params.spp_sackdelay = sp->sackdelay; 4169 params.spp_pathmaxrxt = sp->pathmaxrxt; 4170 4171 /*draft-11 doesn't say what to return in spp_flags*/ 4172 params.spp_flags = sp->param_flags; 4173 } 4174 4175 if (copy_to_user(optval, ¶ms, len)) 4176 return -EFAULT; 4177 4178 if (put_user(len, optlen)) 4179 return -EFAULT; 4180 4181 return 0; 4182 } 4183 4184 /* 4185 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4186 * 4187 * This option will effect the way delayed acks are performed. This 4188 * option allows you to get or set the delayed ack time, in 4189 * milliseconds. It also allows changing the delayed ack frequency. 4190 * Changing the frequency to 1 disables the delayed sack algorithm. If 4191 * the assoc_id is 0, then this sets or gets the endpoints default 4192 * values. If the assoc_id field is non-zero, then the set or get 4193 * effects the specified association for the one to many model (the 4194 * assoc_id field is ignored by the one to one model). Note that if 4195 * sack_delay or sack_freq are 0 when setting this option, then the 4196 * current values will remain unchanged. 4197 * 4198 * struct sctp_sack_info { 4199 * sctp_assoc_t sack_assoc_id; 4200 * uint32_t sack_delay; 4201 * uint32_t sack_freq; 4202 * }; 4203 * 4204 * sack_assoc_id - This parameter, indicates which association the user 4205 * is performing an action upon. Note that if this field's value is 4206 * zero then the endpoints default value is changed (effecting future 4207 * associations only). 4208 * 4209 * sack_delay - This parameter contains the number of milliseconds that 4210 * the user is requesting the delayed ACK timer be set to. Note that 4211 * this value is defined in the standard to be between 200 and 500 4212 * milliseconds. 4213 * 4214 * sack_freq - This parameter contains the number of packets that must 4215 * be received before a sack is sent without waiting for the delay 4216 * timer to expire. The default value for this is 2, setting this 4217 * value to 1 will disable the delayed sack algorithm. 4218 */ 4219 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4220 char __user *optval, 4221 int __user *optlen) 4222 { 4223 struct sctp_sack_info params; 4224 struct sctp_association *asoc = NULL; 4225 struct sctp_sock *sp = sctp_sk(sk); 4226 4227 if (len >= sizeof(struct sctp_sack_info)) { 4228 len = sizeof(struct sctp_sack_info); 4229 4230 if (copy_from_user(¶ms, optval, len)) 4231 return -EFAULT; 4232 } else if (len == sizeof(struct sctp_assoc_value)) { 4233 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 4234 "in delayed_ack socket option deprecated\n"); 4235 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 4236 if (copy_from_user(¶ms, optval, len)) 4237 return -EFAULT; 4238 } else 4239 return - EINVAL; 4240 4241 /* Get association, if sack_assoc_id != 0 and the socket is a one 4242 * to many style socket, and an association was not found, then 4243 * the id was invalid. 4244 */ 4245 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4246 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4247 return -EINVAL; 4248 4249 if (asoc) { 4250 /* Fetch association values. */ 4251 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4252 params.sack_delay = jiffies_to_msecs( 4253 asoc->sackdelay); 4254 params.sack_freq = asoc->sackfreq; 4255 4256 } else { 4257 params.sack_delay = 0; 4258 params.sack_freq = 1; 4259 } 4260 } else { 4261 /* Fetch socket values. */ 4262 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4263 params.sack_delay = sp->sackdelay; 4264 params.sack_freq = sp->sackfreq; 4265 } else { 4266 params.sack_delay = 0; 4267 params.sack_freq = 1; 4268 } 4269 } 4270 4271 if (copy_to_user(optval, ¶ms, len)) 4272 return -EFAULT; 4273 4274 if (put_user(len, optlen)) 4275 return -EFAULT; 4276 4277 return 0; 4278 } 4279 4280 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4281 * 4282 * Applications can specify protocol parameters for the default association 4283 * initialization. The option name argument to setsockopt() and getsockopt() 4284 * is SCTP_INITMSG. 4285 * 4286 * Setting initialization parameters is effective only on an unconnected 4287 * socket (for UDP-style sockets only future associations are effected 4288 * by the change). With TCP-style sockets, this option is inherited by 4289 * sockets derived from a listener socket. 4290 */ 4291 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4292 { 4293 if (len < sizeof(struct sctp_initmsg)) 4294 return -EINVAL; 4295 len = sizeof(struct sctp_initmsg); 4296 if (put_user(len, optlen)) 4297 return -EFAULT; 4298 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4299 return -EFAULT; 4300 return 0; 4301 } 4302 4303 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4304 char __user *optval, 4305 int __user *optlen) 4306 { 4307 sctp_assoc_t id; 4308 struct sctp_association *asoc; 4309 struct list_head *pos; 4310 int cnt = 0; 4311 4312 if (len < sizeof(sctp_assoc_t)) 4313 return -EINVAL; 4314 4315 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4316 return -EFAULT; 4317 4318 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD " 4319 "socket option deprecated\n"); 4320 /* For UDP-style sockets, id specifies the association to query. */ 4321 asoc = sctp_id2assoc(sk, id); 4322 if (!asoc) 4323 return -EINVAL; 4324 4325 list_for_each(pos, &asoc->peer.transport_addr_list) { 4326 cnt ++; 4327 } 4328 4329 return cnt; 4330 } 4331 4332 /* 4333 * Old API for getting list of peer addresses. Does not work for 32-bit 4334 * programs running on a 64-bit kernel 4335 */ 4336 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4337 char __user *optval, 4338 int __user *optlen) 4339 { 4340 struct sctp_association *asoc; 4341 int cnt = 0; 4342 struct sctp_getaddrs_old getaddrs; 4343 struct sctp_transport *from; 4344 void __user *to; 4345 union sctp_addr temp; 4346 struct sctp_sock *sp = sctp_sk(sk); 4347 int addrlen; 4348 4349 if (len < sizeof(struct sctp_getaddrs_old)) 4350 return -EINVAL; 4351 4352 len = sizeof(struct sctp_getaddrs_old); 4353 4354 if (copy_from_user(&getaddrs, optval, len)) 4355 return -EFAULT; 4356 4357 if (getaddrs.addr_num <= 0) return -EINVAL; 4358 4359 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD " 4360 "socket option deprecated\n"); 4361 4362 /* For UDP-style sockets, id specifies the association to query. */ 4363 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4364 if (!asoc) 4365 return -EINVAL; 4366 4367 to = (void __user *)getaddrs.addrs; 4368 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4369 transports) { 4370 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4371 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4372 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4373 if (copy_to_user(to, &temp, addrlen)) 4374 return -EFAULT; 4375 to += addrlen ; 4376 cnt ++; 4377 if (cnt >= getaddrs.addr_num) break; 4378 } 4379 getaddrs.addr_num = cnt; 4380 if (put_user(len, optlen)) 4381 return -EFAULT; 4382 if (copy_to_user(optval, &getaddrs, len)) 4383 return -EFAULT; 4384 4385 return 0; 4386 } 4387 4388 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4389 char __user *optval, int __user *optlen) 4390 { 4391 struct sctp_association *asoc; 4392 int cnt = 0; 4393 struct sctp_getaddrs getaddrs; 4394 struct sctp_transport *from; 4395 void __user *to; 4396 union sctp_addr temp; 4397 struct sctp_sock *sp = sctp_sk(sk); 4398 int addrlen; 4399 size_t space_left; 4400 int bytes_copied; 4401 4402 if (len < sizeof(struct sctp_getaddrs)) 4403 return -EINVAL; 4404 4405 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4406 return -EFAULT; 4407 4408 /* For UDP-style sockets, id specifies the association to query. */ 4409 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4410 if (!asoc) 4411 return -EINVAL; 4412 4413 to = optval + offsetof(struct sctp_getaddrs,addrs); 4414 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4415 4416 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4417 transports) { 4418 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4419 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4420 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4421 if (space_left < addrlen) 4422 return -ENOMEM; 4423 if (copy_to_user(to, &temp, addrlen)) 4424 return -EFAULT; 4425 to += addrlen; 4426 cnt++; 4427 space_left -= addrlen; 4428 } 4429 4430 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4431 return -EFAULT; 4432 bytes_copied = ((char __user *)to) - optval; 4433 if (put_user(bytes_copied, optlen)) 4434 return -EFAULT; 4435 4436 return 0; 4437 } 4438 4439 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4440 char __user *optval, 4441 int __user *optlen) 4442 { 4443 sctp_assoc_t id; 4444 struct sctp_bind_addr *bp; 4445 struct sctp_association *asoc; 4446 struct sctp_sockaddr_entry *addr; 4447 int cnt = 0; 4448 4449 if (len < sizeof(sctp_assoc_t)) 4450 return -EINVAL; 4451 4452 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4453 return -EFAULT; 4454 4455 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD " 4456 "socket option deprecated\n"); 4457 4458 /* 4459 * For UDP-style sockets, id specifies the association to query. 4460 * If the id field is set to the value '0' then the locally bound 4461 * addresses are returned without regard to any particular 4462 * association. 4463 */ 4464 if (0 == id) { 4465 bp = &sctp_sk(sk)->ep->base.bind_addr; 4466 } else { 4467 asoc = sctp_id2assoc(sk, id); 4468 if (!asoc) 4469 return -EINVAL; 4470 bp = &asoc->base.bind_addr; 4471 } 4472 4473 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4474 * addresses from the global local address list. 4475 */ 4476 if (sctp_list_single_entry(&bp->address_list)) { 4477 addr = list_entry(bp->address_list.next, 4478 struct sctp_sockaddr_entry, list); 4479 if (sctp_is_any(sk, &addr->a)) { 4480 rcu_read_lock(); 4481 list_for_each_entry_rcu(addr, 4482 &sctp_local_addr_list, list) { 4483 if (!addr->valid) 4484 continue; 4485 4486 if ((PF_INET == sk->sk_family) && 4487 (AF_INET6 == addr->a.sa.sa_family)) 4488 continue; 4489 4490 if ((PF_INET6 == sk->sk_family) && 4491 inet_v6_ipv6only(sk) && 4492 (AF_INET == addr->a.sa.sa_family)) 4493 continue; 4494 4495 cnt++; 4496 } 4497 rcu_read_unlock(); 4498 } else { 4499 cnt = 1; 4500 } 4501 goto done; 4502 } 4503 4504 /* Protection on the bound address list is not needed, 4505 * since in the socket option context we hold the socket lock, 4506 * so there is no way that the bound address list can change. 4507 */ 4508 list_for_each_entry(addr, &bp->address_list, list) { 4509 cnt ++; 4510 } 4511 done: 4512 return cnt; 4513 } 4514 4515 /* Helper function that copies local addresses to user and returns the number 4516 * of addresses copied. 4517 */ 4518 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4519 int max_addrs, void *to, 4520 int *bytes_copied) 4521 { 4522 struct sctp_sockaddr_entry *addr; 4523 union sctp_addr temp; 4524 int cnt = 0; 4525 int addrlen; 4526 4527 rcu_read_lock(); 4528 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4529 if (!addr->valid) 4530 continue; 4531 4532 if ((PF_INET == sk->sk_family) && 4533 (AF_INET6 == addr->a.sa.sa_family)) 4534 continue; 4535 if ((PF_INET6 == sk->sk_family) && 4536 inet_v6_ipv6only(sk) && 4537 (AF_INET == addr->a.sa.sa_family)) 4538 continue; 4539 memcpy(&temp, &addr->a, sizeof(temp)); 4540 if (!temp.v4.sin_port) 4541 temp.v4.sin_port = htons(port); 4542 4543 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4544 &temp); 4545 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4546 memcpy(to, &temp, addrlen); 4547 4548 to += addrlen; 4549 *bytes_copied += addrlen; 4550 cnt ++; 4551 if (cnt >= max_addrs) break; 4552 } 4553 rcu_read_unlock(); 4554 4555 return cnt; 4556 } 4557 4558 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4559 size_t space_left, int *bytes_copied) 4560 { 4561 struct sctp_sockaddr_entry *addr; 4562 union sctp_addr temp; 4563 int cnt = 0; 4564 int addrlen; 4565 4566 rcu_read_lock(); 4567 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4568 if (!addr->valid) 4569 continue; 4570 4571 if ((PF_INET == sk->sk_family) && 4572 (AF_INET6 == addr->a.sa.sa_family)) 4573 continue; 4574 if ((PF_INET6 == sk->sk_family) && 4575 inet_v6_ipv6only(sk) && 4576 (AF_INET == addr->a.sa.sa_family)) 4577 continue; 4578 memcpy(&temp, &addr->a, sizeof(temp)); 4579 if (!temp.v4.sin_port) 4580 temp.v4.sin_port = htons(port); 4581 4582 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4583 &temp); 4584 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4585 if (space_left < addrlen) { 4586 cnt = -ENOMEM; 4587 break; 4588 } 4589 memcpy(to, &temp, addrlen); 4590 4591 to += addrlen; 4592 cnt ++; 4593 space_left -= addrlen; 4594 *bytes_copied += addrlen; 4595 } 4596 rcu_read_unlock(); 4597 4598 return cnt; 4599 } 4600 4601 /* Old API for getting list of local addresses. Does not work for 32-bit 4602 * programs running on a 64-bit kernel 4603 */ 4604 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4605 char __user *optval, int __user *optlen) 4606 { 4607 struct sctp_bind_addr *bp; 4608 struct sctp_association *asoc; 4609 int cnt = 0; 4610 struct sctp_getaddrs_old getaddrs; 4611 struct sctp_sockaddr_entry *addr; 4612 void __user *to; 4613 union sctp_addr temp; 4614 struct sctp_sock *sp = sctp_sk(sk); 4615 int addrlen; 4616 int err = 0; 4617 void *addrs; 4618 void *buf; 4619 int bytes_copied = 0; 4620 4621 if (len < sizeof(struct sctp_getaddrs_old)) 4622 return -EINVAL; 4623 4624 len = sizeof(struct sctp_getaddrs_old); 4625 if (copy_from_user(&getaddrs, optval, len)) 4626 return -EFAULT; 4627 4628 if (getaddrs.addr_num <= 0 || 4629 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr))) 4630 return -EINVAL; 4631 4632 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD " 4633 "socket option deprecated\n"); 4634 4635 /* 4636 * For UDP-style sockets, id specifies the association to query. 4637 * If the id field is set to the value '0' then the locally bound 4638 * addresses are returned without regard to any particular 4639 * association. 4640 */ 4641 if (0 == getaddrs.assoc_id) { 4642 bp = &sctp_sk(sk)->ep->base.bind_addr; 4643 } else { 4644 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4645 if (!asoc) 4646 return -EINVAL; 4647 bp = &asoc->base.bind_addr; 4648 } 4649 4650 to = getaddrs.addrs; 4651 4652 /* Allocate space for a local instance of packed array to hold all 4653 * the data. We store addresses here first and then put write them 4654 * to the user in one shot. 4655 */ 4656 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4657 GFP_KERNEL); 4658 if (!addrs) 4659 return -ENOMEM; 4660 4661 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4662 * addresses from the global local address list. 4663 */ 4664 if (sctp_list_single_entry(&bp->address_list)) { 4665 addr = list_entry(bp->address_list.next, 4666 struct sctp_sockaddr_entry, list); 4667 if (sctp_is_any(sk, &addr->a)) { 4668 cnt = sctp_copy_laddrs_old(sk, bp->port, 4669 getaddrs.addr_num, 4670 addrs, &bytes_copied); 4671 goto copy_getaddrs; 4672 } 4673 } 4674 4675 buf = addrs; 4676 /* Protection on the bound address list is not needed since 4677 * in the socket option context we hold a socket lock and 4678 * thus the bound address list can't change. 4679 */ 4680 list_for_each_entry(addr, &bp->address_list, list) { 4681 memcpy(&temp, &addr->a, sizeof(temp)); 4682 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4683 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4684 memcpy(buf, &temp, addrlen); 4685 buf += addrlen; 4686 bytes_copied += addrlen; 4687 cnt ++; 4688 if (cnt >= getaddrs.addr_num) break; 4689 } 4690 4691 copy_getaddrs: 4692 /* copy the entire address list into the user provided space */ 4693 if (copy_to_user(to, addrs, bytes_copied)) { 4694 err = -EFAULT; 4695 goto error; 4696 } 4697 4698 /* copy the leading structure back to user */ 4699 getaddrs.addr_num = cnt; 4700 if (copy_to_user(optval, &getaddrs, len)) 4701 err = -EFAULT; 4702 4703 error: 4704 kfree(addrs); 4705 return err; 4706 } 4707 4708 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4709 char __user *optval, int __user *optlen) 4710 { 4711 struct sctp_bind_addr *bp; 4712 struct sctp_association *asoc; 4713 int cnt = 0; 4714 struct sctp_getaddrs getaddrs; 4715 struct sctp_sockaddr_entry *addr; 4716 void __user *to; 4717 union sctp_addr temp; 4718 struct sctp_sock *sp = sctp_sk(sk); 4719 int addrlen; 4720 int err = 0; 4721 size_t space_left; 4722 int bytes_copied = 0; 4723 void *addrs; 4724 void *buf; 4725 4726 if (len < sizeof(struct sctp_getaddrs)) 4727 return -EINVAL; 4728 4729 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4730 return -EFAULT; 4731 4732 /* 4733 * For UDP-style sockets, id specifies the association to query. 4734 * If the id field is set to the value '0' then the locally bound 4735 * addresses are returned without regard to any particular 4736 * association. 4737 */ 4738 if (0 == getaddrs.assoc_id) { 4739 bp = &sctp_sk(sk)->ep->base.bind_addr; 4740 } else { 4741 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4742 if (!asoc) 4743 return -EINVAL; 4744 bp = &asoc->base.bind_addr; 4745 } 4746 4747 to = optval + offsetof(struct sctp_getaddrs,addrs); 4748 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4749 4750 addrs = kmalloc(space_left, GFP_KERNEL); 4751 if (!addrs) 4752 return -ENOMEM; 4753 4754 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4755 * addresses from the global local address list. 4756 */ 4757 if (sctp_list_single_entry(&bp->address_list)) { 4758 addr = list_entry(bp->address_list.next, 4759 struct sctp_sockaddr_entry, list); 4760 if (sctp_is_any(sk, &addr->a)) { 4761 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4762 space_left, &bytes_copied); 4763 if (cnt < 0) { 4764 err = cnt; 4765 goto out; 4766 } 4767 goto copy_getaddrs; 4768 } 4769 } 4770 4771 buf = addrs; 4772 /* Protection on the bound address list is not needed since 4773 * in the socket option context we hold a socket lock and 4774 * thus the bound address list can't change. 4775 */ 4776 list_for_each_entry(addr, &bp->address_list, list) { 4777 memcpy(&temp, &addr->a, sizeof(temp)); 4778 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4779 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4780 if (space_left < addrlen) { 4781 err = -ENOMEM; /*fixme: right error?*/ 4782 goto out; 4783 } 4784 memcpy(buf, &temp, addrlen); 4785 buf += addrlen; 4786 bytes_copied += addrlen; 4787 cnt ++; 4788 space_left -= addrlen; 4789 } 4790 4791 copy_getaddrs: 4792 if (copy_to_user(to, addrs, bytes_copied)) { 4793 err = -EFAULT; 4794 goto out; 4795 } 4796 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4797 err = -EFAULT; 4798 goto out; 4799 } 4800 if (put_user(bytes_copied, optlen)) 4801 err = -EFAULT; 4802 out: 4803 kfree(addrs); 4804 return err; 4805 } 4806 4807 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4808 * 4809 * Requests that the local SCTP stack use the enclosed peer address as 4810 * the association primary. The enclosed address must be one of the 4811 * association peer's addresses. 4812 */ 4813 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4814 char __user *optval, int __user *optlen) 4815 { 4816 struct sctp_prim prim; 4817 struct sctp_association *asoc; 4818 struct sctp_sock *sp = sctp_sk(sk); 4819 4820 if (len < sizeof(struct sctp_prim)) 4821 return -EINVAL; 4822 4823 len = sizeof(struct sctp_prim); 4824 4825 if (copy_from_user(&prim, optval, len)) 4826 return -EFAULT; 4827 4828 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4829 if (!asoc) 4830 return -EINVAL; 4831 4832 if (!asoc->peer.primary_path) 4833 return -ENOTCONN; 4834 4835 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4836 asoc->peer.primary_path->af_specific->sockaddr_len); 4837 4838 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4839 (union sctp_addr *)&prim.ssp_addr); 4840 4841 if (put_user(len, optlen)) 4842 return -EFAULT; 4843 if (copy_to_user(optval, &prim, len)) 4844 return -EFAULT; 4845 4846 return 0; 4847 } 4848 4849 /* 4850 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4851 * 4852 * Requests that the local endpoint set the specified Adaptation Layer 4853 * Indication parameter for all future INIT and INIT-ACK exchanges. 4854 */ 4855 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4856 char __user *optval, int __user *optlen) 4857 { 4858 struct sctp_setadaptation adaptation; 4859 4860 if (len < sizeof(struct sctp_setadaptation)) 4861 return -EINVAL; 4862 4863 len = sizeof(struct sctp_setadaptation); 4864 4865 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4866 4867 if (put_user(len, optlen)) 4868 return -EFAULT; 4869 if (copy_to_user(optval, &adaptation, len)) 4870 return -EFAULT; 4871 4872 return 0; 4873 } 4874 4875 /* 4876 * 4877 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4878 * 4879 * Applications that wish to use the sendto() system call may wish to 4880 * specify a default set of parameters that would normally be supplied 4881 * through the inclusion of ancillary data. This socket option allows 4882 * such an application to set the default sctp_sndrcvinfo structure. 4883 4884 4885 * The application that wishes to use this socket option simply passes 4886 * in to this call the sctp_sndrcvinfo structure defined in Section 4887 * 5.2.2) The input parameters accepted by this call include 4888 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4889 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4890 * to this call if the caller is using the UDP model. 4891 * 4892 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4893 */ 4894 static int sctp_getsockopt_default_send_param(struct sock *sk, 4895 int len, char __user *optval, 4896 int __user *optlen) 4897 { 4898 struct sctp_sndrcvinfo info; 4899 struct sctp_association *asoc; 4900 struct sctp_sock *sp = sctp_sk(sk); 4901 4902 if (len < sizeof(struct sctp_sndrcvinfo)) 4903 return -EINVAL; 4904 4905 len = sizeof(struct sctp_sndrcvinfo); 4906 4907 if (copy_from_user(&info, optval, len)) 4908 return -EFAULT; 4909 4910 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4911 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4912 return -EINVAL; 4913 4914 if (asoc) { 4915 info.sinfo_stream = asoc->default_stream; 4916 info.sinfo_flags = asoc->default_flags; 4917 info.sinfo_ppid = asoc->default_ppid; 4918 info.sinfo_context = asoc->default_context; 4919 info.sinfo_timetolive = asoc->default_timetolive; 4920 } else { 4921 info.sinfo_stream = sp->default_stream; 4922 info.sinfo_flags = sp->default_flags; 4923 info.sinfo_ppid = sp->default_ppid; 4924 info.sinfo_context = sp->default_context; 4925 info.sinfo_timetolive = sp->default_timetolive; 4926 } 4927 4928 if (put_user(len, optlen)) 4929 return -EFAULT; 4930 if (copy_to_user(optval, &info, len)) 4931 return -EFAULT; 4932 4933 return 0; 4934 } 4935 4936 /* 4937 * 4938 * 7.1.5 SCTP_NODELAY 4939 * 4940 * Turn on/off any Nagle-like algorithm. This means that packets are 4941 * generally sent as soon as possible and no unnecessary delays are 4942 * introduced, at the cost of more packets in the network. Expects an 4943 * integer boolean flag. 4944 */ 4945 4946 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4947 char __user *optval, int __user *optlen) 4948 { 4949 int val; 4950 4951 if (len < sizeof(int)) 4952 return -EINVAL; 4953 4954 len = sizeof(int); 4955 val = (sctp_sk(sk)->nodelay == 1); 4956 if (put_user(len, optlen)) 4957 return -EFAULT; 4958 if (copy_to_user(optval, &val, len)) 4959 return -EFAULT; 4960 return 0; 4961 } 4962 4963 /* 4964 * 4965 * 7.1.1 SCTP_RTOINFO 4966 * 4967 * The protocol parameters used to initialize and bound retransmission 4968 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4969 * and modify these parameters. 4970 * All parameters are time values, in milliseconds. A value of 0, when 4971 * modifying the parameters, indicates that the current value should not 4972 * be changed. 4973 * 4974 */ 4975 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4976 char __user *optval, 4977 int __user *optlen) { 4978 struct sctp_rtoinfo rtoinfo; 4979 struct sctp_association *asoc; 4980 4981 if (len < sizeof (struct sctp_rtoinfo)) 4982 return -EINVAL; 4983 4984 len = sizeof(struct sctp_rtoinfo); 4985 4986 if (copy_from_user(&rtoinfo, optval, len)) 4987 return -EFAULT; 4988 4989 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4990 4991 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4992 return -EINVAL; 4993 4994 /* Values corresponding to the specific association. */ 4995 if (asoc) { 4996 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4997 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4998 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4999 } else { 5000 /* Values corresponding to the endpoint. */ 5001 struct sctp_sock *sp = sctp_sk(sk); 5002 5003 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5004 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5005 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5006 } 5007 5008 if (put_user(len, optlen)) 5009 return -EFAULT; 5010 5011 if (copy_to_user(optval, &rtoinfo, len)) 5012 return -EFAULT; 5013 5014 return 0; 5015 } 5016 5017 /* 5018 * 5019 * 7.1.2 SCTP_ASSOCINFO 5020 * 5021 * This option is used to tune the maximum retransmission attempts 5022 * of the association. 5023 * Returns an error if the new association retransmission value is 5024 * greater than the sum of the retransmission value of the peer. 5025 * See [SCTP] for more information. 5026 * 5027 */ 5028 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5029 char __user *optval, 5030 int __user *optlen) 5031 { 5032 5033 struct sctp_assocparams assocparams; 5034 struct sctp_association *asoc; 5035 struct list_head *pos; 5036 int cnt = 0; 5037 5038 if (len < sizeof (struct sctp_assocparams)) 5039 return -EINVAL; 5040 5041 len = sizeof(struct sctp_assocparams); 5042 5043 if (copy_from_user(&assocparams, optval, len)) 5044 return -EFAULT; 5045 5046 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5047 5048 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5049 return -EINVAL; 5050 5051 /* Values correspoinding to the specific association */ 5052 if (asoc) { 5053 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5054 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5055 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5056 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5057 * 1000) + 5058 (asoc->cookie_life.tv_usec 5059 / 1000); 5060 5061 list_for_each(pos, &asoc->peer.transport_addr_list) { 5062 cnt ++; 5063 } 5064 5065 assocparams.sasoc_number_peer_destinations = cnt; 5066 } else { 5067 /* Values corresponding to the endpoint */ 5068 struct sctp_sock *sp = sctp_sk(sk); 5069 5070 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5071 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5072 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5073 assocparams.sasoc_cookie_life = 5074 sp->assocparams.sasoc_cookie_life; 5075 assocparams.sasoc_number_peer_destinations = 5076 sp->assocparams. 5077 sasoc_number_peer_destinations; 5078 } 5079 5080 if (put_user(len, optlen)) 5081 return -EFAULT; 5082 5083 if (copy_to_user(optval, &assocparams, len)) 5084 return -EFAULT; 5085 5086 return 0; 5087 } 5088 5089 /* 5090 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5091 * 5092 * This socket option is a boolean flag which turns on or off mapped V4 5093 * addresses. If this option is turned on and the socket is type 5094 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5095 * If this option is turned off, then no mapping will be done of V4 5096 * addresses and a user will receive both PF_INET6 and PF_INET type 5097 * addresses on the socket. 5098 */ 5099 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5100 char __user *optval, int __user *optlen) 5101 { 5102 int val; 5103 struct sctp_sock *sp = sctp_sk(sk); 5104 5105 if (len < sizeof(int)) 5106 return -EINVAL; 5107 5108 len = sizeof(int); 5109 val = sp->v4mapped; 5110 if (put_user(len, optlen)) 5111 return -EFAULT; 5112 if (copy_to_user(optval, &val, len)) 5113 return -EFAULT; 5114 5115 return 0; 5116 } 5117 5118 /* 5119 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5120 * (chapter and verse is quoted at sctp_setsockopt_context()) 5121 */ 5122 static int sctp_getsockopt_context(struct sock *sk, int len, 5123 char __user *optval, int __user *optlen) 5124 { 5125 struct sctp_assoc_value params; 5126 struct sctp_sock *sp; 5127 struct sctp_association *asoc; 5128 5129 if (len < sizeof(struct sctp_assoc_value)) 5130 return -EINVAL; 5131 5132 len = sizeof(struct sctp_assoc_value); 5133 5134 if (copy_from_user(¶ms, optval, len)) 5135 return -EFAULT; 5136 5137 sp = sctp_sk(sk); 5138 5139 if (params.assoc_id != 0) { 5140 asoc = sctp_id2assoc(sk, params.assoc_id); 5141 if (!asoc) 5142 return -EINVAL; 5143 params.assoc_value = asoc->default_rcv_context; 5144 } else { 5145 params.assoc_value = sp->default_rcv_context; 5146 } 5147 5148 if (put_user(len, optlen)) 5149 return -EFAULT; 5150 if (copy_to_user(optval, ¶ms, len)) 5151 return -EFAULT; 5152 5153 return 0; 5154 } 5155 5156 /* 5157 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5158 * This option will get or set the maximum size to put in any outgoing 5159 * SCTP DATA chunk. If a message is larger than this size it will be 5160 * fragmented by SCTP into the specified size. Note that the underlying 5161 * SCTP implementation may fragment into smaller sized chunks when the 5162 * PMTU of the underlying association is smaller than the value set by 5163 * the user. The default value for this option is '0' which indicates 5164 * the user is NOT limiting fragmentation and only the PMTU will effect 5165 * SCTP's choice of DATA chunk size. Note also that values set larger 5166 * than the maximum size of an IP datagram will effectively let SCTP 5167 * control fragmentation (i.e. the same as setting this option to 0). 5168 * 5169 * The following structure is used to access and modify this parameter: 5170 * 5171 * struct sctp_assoc_value { 5172 * sctp_assoc_t assoc_id; 5173 * uint32_t assoc_value; 5174 * }; 5175 * 5176 * assoc_id: This parameter is ignored for one-to-one style sockets. 5177 * For one-to-many style sockets this parameter indicates which 5178 * association the user is performing an action upon. Note that if 5179 * this field's value is zero then the endpoints default value is 5180 * changed (effecting future associations only). 5181 * assoc_value: This parameter specifies the maximum size in bytes. 5182 */ 5183 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5184 char __user *optval, int __user *optlen) 5185 { 5186 struct sctp_assoc_value params; 5187 struct sctp_association *asoc; 5188 5189 if (len == sizeof(int)) { 5190 printk(KERN_WARNING 5191 "SCTP: Use of int in maxseg socket option deprecated\n"); 5192 printk(KERN_WARNING 5193 "SCTP: Use struct sctp_assoc_value instead\n"); 5194 params.assoc_id = 0; 5195 } else if (len >= sizeof(struct sctp_assoc_value)) { 5196 len = sizeof(struct sctp_assoc_value); 5197 if (copy_from_user(¶ms, optval, sizeof(params))) 5198 return -EFAULT; 5199 } else 5200 return -EINVAL; 5201 5202 asoc = sctp_id2assoc(sk, params.assoc_id); 5203 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5204 return -EINVAL; 5205 5206 if (asoc) 5207 params.assoc_value = asoc->frag_point; 5208 else 5209 params.assoc_value = sctp_sk(sk)->user_frag; 5210 5211 if (put_user(len, optlen)) 5212 return -EFAULT; 5213 if (len == sizeof(int)) { 5214 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5215 return -EFAULT; 5216 } else { 5217 if (copy_to_user(optval, ¶ms, len)) 5218 return -EFAULT; 5219 } 5220 5221 return 0; 5222 } 5223 5224 /* 5225 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5226 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5227 */ 5228 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5229 char __user *optval, int __user *optlen) 5230 { 5231 int val; 5232 5233 if (len < sizeof(int)) 5234 return -EINVAL; 5235 5236 len = sizeof(int); 5237 5238 val = sctp_sk(sk)->frag_interleave; 5239 if (put_user(len, optlen)) 5240 return -EFAULT; 5241 if (copy_to_user(optval, &val, len)) 5242 return -EFAULT; 5243 5244 return 0; 5245 } 5246 5247 /* 5248 * 7.1.25. Set or Get the sctp partial delivery point 5249 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5250 */ 5251 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5252 char __user *optval, 5253 int __user *optlen) 5254 { 5255 u32 val; 5256 5257 if (len < sizeof(u32)) 5258 return -EINVAL; 5259 5260 len = sizeof(u32); 5261 5262 val = sctp_sk(sk)->pd_point; 5263 if (put_user(len, optlen)) 5264 return -EFAULT; 5265 if (copy_to_user(optval, &val, len)) 5266 return -EFAULT; 5267 5268 return -ENOTSUPP; 5269 } 5270 5271 /* 5272 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5273 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5274 */ 5275 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5276 char __user *optval, 5277 int __user *optlen) 5278 { 5279 struct sctp_assoc_value params; 5280 struct sctp_sock *sp; 5281 struct sctp_association *asoc; 5282 5283 if (len == sizeof(int)) { 5284 printk(KERN_WARNING 5285 "SCTP: Use of int in max_burst socket option deprecated\n"); 5286 printk(KERN_WARNING 5287 "SCTP: Use struct sctp_assoc_value instead\n"); 5288 params.assoc_id = 0; 5289 } else if (len >= sizeof(struct sctp_assoc_value)) { 5290 len = sizeof(struct sctp_assoc_value); 5291 if (copy_from_user(¶ms, optval, len)) 5292 return -EFAULT; 5293 } else 5294 return -EINVAL; 5295 5296 sp = sctp_sk(sk); 5297 5298 if (params.assoc_id != 0) { 5299 asoc = sctp_id2assoc(sk, params.assoc_id); 5300 if (!asoc) 5301 return -EINVAL; 5302 params.assoc_value = asoc->max_burst; 5303 } else 5304 params.assoc_value = sp->max_burst; 5305 5306 if (len == sizeof(int)) { 5307 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5308 return -EFAULT; 5309 } else { 5310 if (copy_to_user(optval, ¶ms, len)) 5311 return -EFAULT; 5312 } 5313 5314 return 0; 5315 5316 } 5317 5318 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5319 char __user *optval, int __user *optlen) 5320 { 5321 struct sctp_hmacalgo __user *p = (void __user *)optval; 5322 struct sctp_hmac_algo_param *hmacs; 5323 __u16 data_len = 0; 5324 u32 num_idents; 5325 5326 if (!sctp_auth_enable) 5327 return -EACCES; 5328 5329 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5330 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5331 5332 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5333 return -EINVAL; 5334 5335 len = sizeof(struct sctp_hmacalgo) + data_len; 5336 num_idents = data_len / sizeof(u16); 5337 5338 if (put_user(len, optlen)) 5339 return -EFAULT; 5340 if (put_user(num_idents, &p->shmac_num_idents)) 5341 return -EFAULT; 5342 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5343 return -EFAULT; 5344 return 0; 5345 } 5346 5347 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5348 char __user *optval, int __user *optlen) 5349 { 5350 struct sctp_authkeyid val; 5351 struct sctp_association *asoc; 5352 5353 if (!sctp_auth_enable) 5354 return -EACCES; 5355 5356 if (len < sizeof(struct sctp_authkeyid)) 5357 return -EINVAL; 5358 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5359 return -EFAULT; 5360 5361 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5362 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5363 return -EINVAL; 5364 5365 if (asoc) 5366 val.scact_keynumber = asoc->active_key_id; 5367 else 5368 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5369 5370 len = sizeof(struct sctp_authkeyid); 5371 if (put_user(len, optlen)) 5372 return -EFAULT; 5373 if (copy_to_user(optval, &val, len)) 5374 return -EFAULT; 5375 5376 return 0; 5377 } 5378 5379 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5380 char __user *optval, int __user *optlen) 5381 { 5382 struct sctp_authchunks __user *p = (void __user *)optval; 5383 struct sctp_authchunks val; 5384 struct sctp_association *asoc; 5385 struct sctp_chunks_param *ch; 5386 u32 num_chunks = 0; 5387 char __user *to; 5388 5389 if (!sctp_auth_enable) 5390 return -EACCES; 5391 5392 if (len < sizeof(struct sctp_authchunks)) 5393 return -EINVAL; 5394 5395 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5396 return -EFAULT; 5397 5398 to = p->gauth_chunks; 5399 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5400 if (!asoc) 5401 return -EINVAL; 5402 5403 ch = asoc->peer.peer_chunks; 5404 if (!ch) 5405 goto num; 5406 5407 /* See if the user provided enough room for all the data */ 5408 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5409 if (len < num_chunks) 5410 return -EINVAL; 5411 5412 if (copy_to_user(to, ch->chunks, num_chunks)) 5413 return -EFAULT; 5414 num: 5415 len = sizeof(struct sctp_authchunks) + num_chunks; 5416 if (put_user(len, optlen)) return -EFAULT; 5417 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5418 return -EFAULT; 5419 return 0; 5420 } 5421 5422 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5423 char __user *optval, int __user *optlen) 5424 { 5425 struct sctp_authchunks __user *p = (void __user *)optval; 5426 struct sctp_authchunks val; 5427 struct sctp_association *asoc; 5428 struct sctp_chunks_param *ch; 5429 u32 num_chunks = 0; 5430 char __user *to; 5431 5432 if (!sctp_auth_enable) 5433 return -EACCES; 5434 5435 if (len < sizeof(struct sctp_authchunks)) 5436 return -EINVAL; 5437 5438 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5439 return -EFAULT; 5440 5441 to = p->gauth_chunks; 5442 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5443 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5444 return -EINVAL; 5445 5446 if (asoc) 5447 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5448 else 5449 ch = sctp_sk(sk)->ep->auth_chunk_list; 5450 5451 if (!ch) 5452 goto num; 5453 5454 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5455 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5456 return -EINVAL; 5457 5458 if (copy_to_user(to, ch->chunks, num_chunks)) 5459 return -EFAULT; 5460 num: 5461 len = sizeof(struct sctp_authchunks) + num_chunks; 5462 if (put_user(len, optlen)) 5463 return -EFAULT; 5464 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5465 return -EFAULT; 5466 5467 return 0; 5468 } 5469 5470 /* 5471 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5472 * This option gets the current number of associations that are attached 5473 * to a one-to-many style socket. The option value is an uint32_t. 5474 */ 5475 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5476 char __user *optval, int __user *optlen) 5477 { 5478 struct sctp_sock *sp = sctp_sk(sk); 5479 struct sctp_association *asoc; 5480 u32 val = 0; 5481 5482 if (sctp_style(sk, TCP)) 5483 return -EOPNOTSUPP; 5484 5485 if (len < sizeof(u32)) 5486 return -EINVAL; 5487 5488 len = sizeof(u32); 5489 5490 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5491 val++; 5492 } 5493 5494 if (put_user(len, optlen)) 5495 return -EFAULT; 5496 if (copy_to_user(optval, &val, len)) 5497 return -EFAULT; 5498 5499 return 0; 5500 } 5501 5502 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5503 char __user *optval, int __user *optlen) 5504 { 5505 int retval = 0; 5506 int len; 5507 5508 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5509 sk, optname); 5510 5511 /* I can hardly begin to describe how wrong this is. This is 5512 * so broken as to be worse than useless. The API draft 5513 * REALLY is NOT helpful here... I am not convinced that the 5514 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5515 * are at all well-founded. 5516 */ 5517 if (level != SOL_SCTP) { 5518 struct sctp_af *af = sctp_sk(sk)->pf->af; 5519 5520 retval = af->getsockopt(sk, level, optname, optval, optlen); 5521 return retval; 5522 } 5523 5524 if (get_user(len, optlen)) 5525 return -EFAULT; 5526 5527 sctp_lock_sock(sk); 5528 5529 switch (optname) { 5530 case SCTP_STATUS: 5531 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5532 break; 5533 case SCTP_DISABLE_FRAGMENTS: 5534 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5535 optlen); 5536 break; 5537 case SCTP_EVENTS: 5538 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5539 break; 5540 case SCTP_AUTOCLOSE: 5541 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5542 break; 5543 case SCTP_SOCKOPT_PEELOFF: 5544 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5545 break; 5546 case SCTP_PEER_ADDR_PARAMS: 5547 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5548 optlen); 5549 break; 5550 case SCTP_DELAYED_ACK: 5551 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5552 optlen); 5553 break; 5554 case SCTP_INITMSG: 5555 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5556 break; 5557 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5558 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5559 optlen); 5560 break; 5561 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5562 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5563 optlen); 5564 break; 5565 case SCTP_GET_PEER_ADDRS_OLD: 5566 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5567 optlen); 5568 break; 5569 case SCTP_GET_LOCAL_ADDRS_OLD: 5570 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5571 optlen); 5572 break; 5573 case SCTP_GET_PEER_ADDRS: 5574 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5575 optlen); 5576 break; 5577 case SCTP_GET_LOCAL_ADDRS: 5578 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5579 optlen); 5580 break; 5581 case SCTP_DEFAULT_SEND_PARAM: 5582 retval = sctp_getsockopt_default_send_param(sk, len, 5583 optval, optlen); 5584 break; 5585 case SCTP_PRIMARY_ADDR: 5586 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5587 break; 5588 case SCTP_NODELAY: 5589 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5590 break; 5591 case SCTP_RTOINFO: 5592 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5593 break; 5594 case SCTP_ASSOCINFO: 5595 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5596 break; 5597 case SCTP_I_WANT_MAPPED_V4_ADDR: 5598 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5599 break; 5600 case SCTP_MAXSEG: 5601 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5602 break; 5603 case SCTP_GET_PEER_ADDR_INFO: 5604 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5605 optlen); 5606 break; 5607 case SCTP_ADAPTATION_LAYER: 5608 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5609 optlen); 5610 break; 5611 case SCTP_CONTEXT: 5612 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5613 break; 5614 case SCTP_FRAGMENT_INTERLEAVE: 5615 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5616 optlen); 5617 break; 5618 case SCTP_PARTIAL_DELIVERY_POINT: 5619 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5620 optlen); 5621 break; 5622 case SCTP_MAX_BURST: 5623 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5624 break; 5625 case SCTP_AUTH_KEY: 5626 case SCTP_AUTH_CHUNK: 5627 case SCTP_AUTH_DELETE_KEY: 5628 retval = -EOPNOTSUPP; 5629 break; 5630 case SCTP_HMAC_IDENT: 5631 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5632 break; 5633 case SCTP_AUTH_ACTIVE_KEY: 5634 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5635 break; 5636 case SCTP_PEER_AUTH_CHUNKS: 5637 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5638 optlen); 5639 break; 5640 case SCTP_LOCAL_AUTH_CHUNKS: 5641 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5642 optlen); 5643 break; 5644 case SCTP_GET_ASSOC_NUMBER: 5645 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5646 break; 5647 default: 5648 retval = -ENOPROTOOPT; 5649 break; 5650 } 5651 5652 sctp_release_sock(sk); 5653 return retval; 5654 } 5655 5656 static void sctp_hash(struct sock *sk) 5657 { 5658 /* STUB */ 5659 } 5660 5661 static void sctp_unhash(struct sock *sk) 5662 { 5663 /* STUB */ 5664 } 5665 5666 /* Check if port is acceptable. Possibly find first available port. 5667 * 5668 * The port hash table (contained in the 'global' SCTP protocol storage 5669 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5670 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5671 * list (the list number is the port number hashed out, so as you 5672 * would expect from a hash function, all the ports in a given list have 5673 * such a number that hashes out to the same list number; you were 5674 * expecting that, right?); so each list has a set of ports, with a 5675 * link to the socket (struct sock) that uses it, the port number and 5676 * a fastreuse flag (FIXME: NPI ipg). 5677 */ 5678 static struct sctp_bind_bucket *sctp_bucket_create( 5679 struct sctp_bind_hashbucket *head, unsigned short snum); 5680 5681 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5682 { 5683 struct sctp_bind_hashbucket *head; /* hash list */ 5684 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5685 struct hlist_node *node; 5686 unsigned short snum; 5687 int ret; 5688 5689 snum = ntohs(addr->v4.sin_port); 5690 5691 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5692 sctp_local_bh_disable(); 5693 5694 if (snum == 0) { 5695 /* Search for an available port. */ 5696 int low, high, remaining, index; 5697 unsigned int rover; 5698 5699 inet_get_local_port_range(&low, &high); 5700 remaining = (high - low) + 1; 5701 rover = net_random() % remaining + low; 5702 5703 do { 5704 rover++; 5705 if ((rover < low) || (rover > high)) 5706 rover = low; 5707 index = sctp_phashfn(rover); 5708 head = &sctp_port_hashtable[index]; 5709 sctp_spin_lock(&head->lock); 5710 sctp_for_each_hentry(pp, node, &head->chain) 5711 if (pp->port == rover) 5712 goto next; 5713 break; 5714 next: 5715 sctp_spin_unlock(&head->lock); 5716 } while (--remaining > 0); 5717 5718 /* Exhausted local port range during search? */ 5719 ret = 1; 5720 if (remaining <= 0) 5721 goto fail; 5722 5723 /* OK, here is the one we will use. HEAD (the port 5724 * hash table list entry) is non-NULL and we hold it's 5725 * mutex. 5726 */ 5727 snum = rover; 5728 } else { 5729 /* We are given an specific port number; we verify 5730 * that it is not being used. If it is used, we will 5731 * exahust the search in the hash list corresponding 5732 * to the port number (snum) - we detect that with the 5733 * port iterator, pp being NULL. 5734 */ 5735 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5736 sctp_spin_lock(&head->lock); 5737 sctp_for_each_hentry(pp, node, &head->chain) { 5738 if (pp->port == snum) 5739 goto pp_found; 5740 } 5741 } 5742 pp = NULL; 5743 goto pp_not_found; 5744 pp_found: 5745 if (!hlist_empty(&pp->owner)) { 5746 /* We had a port hash table hit - there is an 5747 * available port (pp != NULL) and it is being 5748 * used by other socket (pp->owner not empty); that other 5749 * socket is going to be sk2. 5750 */ 5751 int reuse = sk->sk_reuse; 5752 struct sock *sk2; 5753 struct hlist_node *node; 5754 5755 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5756 if (pp->fastreuse && sk->sk_reuse && 5757 sk->sk_state != SCTP_SS_LISTENING) 5758 goto success; 5759 5760 /* Run through the list of sockets bound to the port 5761 * (pp->port) [via the pointers bind_next and 5762 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5763 * we get the endpoint they describe and run through 5764 * the endpoint's list of IP (v4 or v6) addresses, 5765 * comparing each of the addresses with the address of 5766 * the socket sk. If we find a match, then that means 5767 * that this port/socket (sk) combination are already 5768 * in an endpoint. 5769 */ 5770 sk_for_each_bound(sk2, node, &pp->owner) { 5771 struct sctp_endpoint *ep2; 5772 ep2 = sctp_sk(sk2)->ep; 5773 5774 if (sk == sk2 || 5775 (reuse && sk2->sk_reuse && 5776 sk2->sk_state != SCTP_SS_LISTENING)) 5777 continue; 5778 5779 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5780 sctp_sk(sk2), sctp_sk(sk))) { 5781 ret = (long)sk2; 5782 goto fail_unlock; 5783 } 5784 } 5785 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5786 } 5787 pp_not_found: 5788 /* If there was a hash table miss, create a new port. */ 5789 ret = 1; 5790 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5791 goto fail_unlock; 5792 5793 /* In either case (hit or miss), make sure fastreuse is 1 only 5794 * if sk->sk_reuse is too (that is, if the caller requested 5795 * SO_REUSEADDR on this socket -sk-). 5796 */ 5797 if (hlist_empty(&pp->owner)) { 5798 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5799 pp->fastreuse = 1; 5800 else 5801 pp->fastreuse = 0; 5802 } else if (pp->fastreuse && 5803 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5804 pp->fastreuse = 0; 5805 5806 /* We are set, so fill up all the data in the hash table 5807 * entry, tie the socket list information with the rest of the 5808 * sockets FIXME: Blurry, NPI (ipg). 5809 */ 5810 success: 5811 if (!sctp_sk(sk)->bind_hash) { 5812 inet_sk(sk)->num = snum; 5813 sk_add_bind_node(sk, &pp->owner); 5814 sctp_sk(sk)->bind_hash = pp; 5815 } 5816 ret = 0; 5817 5818 fail_unlock: 5819 sctp_spin_unlock(&head->lock); 5820 5821 fail: 5822 sctp_local_bh_enable(); 5823 return ret; 5824 } 5825 5826 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5827 * port is requested. 5828 */ 5829 static int sctp_get_port(struct sock *sk, unsigned short snum) 5830 { 5831 long ret; 5832 union sctp_addr addr; 5833 struct sctp_af *af = sctp_sk(sk)->pf->af; 5834 5835 /* Set up a dummy address struct from the sk. */ 5836 af->from_sk(&addr, sk); 5837 addr.v4.sin_port = htons(snum); 5838 5839 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5840 ret = sctp_get_port_local(sk, &addr); 5841 5842 return (ret ? 1 : 0); 5843 } 5844 5845 /* 5846 * Move a socket to LISTENING state. 5847 */ 5848 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5849 { 5850 struct sctp_sock *sp = sctp_sk(sk); 5851 struct sctp_endpoint *ep = sp->ep; 5852 struct crypto_hash *tfm = NULL; 5853 5854 /* Allocate HMAC for generating cookie. */ 5855 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5856 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5857 if (IS_ERR(tfm)) { 5858 if (net_ratelimit()) { 5859 printk(KERN_INFO 5860 "SCTP: failed to load transform for %s: %ld\n", 5861 sctp_hmac_alg, PTR_ERR(tfm)); 5862 } 5863 return -ENOSYS; 5864 } 5865 sctp_sk(sk)->hmac = tfm; 5866 } 5867 5868 /* 5869 * If a bind() or sctp_bindx() is not called prior to a listen() 5870 * call that allows new associations to be accepted, the system 5871 * picks an ephemeral port and will choose an address set equivalent 5872 * to binding with a wildcard address. 5873 * 5874 * This is not currently spelled out in the SCTP sockets 5875 * extensions draft, but follows the practice as seen in TCP 5876 * sockets. 5877 * 5878 */ 5879 sk->sk_state = SCTP_SS_LISTENING; 5880 if (!ep->base.bind_addr.port) { 5881 if (sctp_autobind(sk)) 5882 return -EAGAIN; 5883 } else { 5884 if (sctp_get_port(sk, inet_sk(sk)->num)) { 5885 sk->sk_state = SCTP_SS_CLOSED; 5886 return -EADDRINUSE; 5887 } 5888 } 5889 5890 sk->sk_max_ack_backlog = backlog; 5891 sctp_hash_endpoint(ep); 5892 return 0; 5893 } 5894 5895 /* 5896 * 4.1.3 / 5.1.3 listen() 5897 * 5898 * By default, new associations are not accepted for UDP style sockets. 5899 * An application uses listen() to mark a socket as being able to 5900 * accept new associations. 5901 * 5902 * On TCP style sockets, applications use listen() to ready the SCTP 5903 * endpoint for accepting inbound associations. 5904 * 5905 * On both types of endpoints a backlog of '0' disables listening. 5906 * 5907 * Move a socket to LISTENING state. 5908 */ 5909 int sctp_inet_listen(struct socket *sock, int backlog) 5910 { 5911 struct sock *sk = sock->sk; 5912 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5913 int err = -EINVAL; 5914 5915 if (unlikely(backlog < 0)) 5916 return err; 5917 5918 sctp_lock_sock(sk); 5919 5920 /* Peeled-off sockets are not allowed to listen(). */ 5921 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5922 goto out; 5923 5924 if (sock->state != SS_UNCONNECTED) 5925 goto out; 5926 5927 /* If backlog is zero, disable listening. */ 5928 if (!backlog) { 5929 if (sctp_sstate(sk, CLOSED)) 5930 goto out; 5931 5932 err = 0; 5933 sctp_unhash_endpoint(ep); 5934 sk->sk_state = SCTP_SS_CLOSED; 5935 if (sk->sk_reuse) 5936 sctp_sk(sk)->bind_hash->fastreuse = 1; 5937 goto out; 5938 } 5939 5940 /* If we are already listening, just update the backlog */ 5941 if (sctp_sstate(sk, LISTENING)) 5942 sk->sk_max_ack_backlog = backlog; 5943 else { 5944 err = sctp_listen_start(sk, backlog); 5945 if (err) 5946 goto out; 5947 } 5948 5949 err = 0; 5950 out: 5951 sctp_release_sock(sk); 5952 return err; 5953 } 5954 5955 /* 5956 * This function is done by modeling the current datagram_poll() and the 5957 * tcp_poll(). Note that, based on these implementations, we don't 5958 * lock the socket in this function, even though it seems that, 5959 * ideally, locking or some other mechanisms can be used to ensure 5960 * the integrity of the counters (sndbuf and wmem_alloc) used 5961 * in this place. We assume that we don't need locks either until proven 5962 * otherwise. 5963 * 5964 * Another thing to note is that we include the Async I/O support 5965 * here, again, by modeling the current TCP/UDP code. We don't have 5966 * a good way to test with it yet. 5967 */ 5968 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5969 { 5970 struct sock *sk = sock->sk; 5971 struct sctp_sock *sp = sctp_sk(sk); 5972 unsigned int mask; 5973 5974 poll_wait(file, sk->sk_sleep, wait); 5975 5976 /* A TCP-style listening socket becomes readable when the accept queue 5977 * is not empty. 5978 */ 5979 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5980 return (!list_empty(&sp->ep->asocs)) ? 5981 (POLLIN | POLLRDNORM) : 0; 5982 5983 mask = 0; 5984 5985 /* Is there any exceptional events? */ 5986 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5987 mask |= POLLERR; 5988 if (sk->sk_shutdown & RCV_SHUTDOWN) 5989 mask |= POLLRDHUP; 5990 if (sk->sk_shutdown == SHUTDOWN_MASK) 5991 mask |= POLLHUP; 5992 5993 /* Is it readable? Reconsider this code with TCP-style support. */ 5994 if (!skb_queue_empty(&sk->sk_receive_queue) || 5995 (sk->sk_shutdown & RCV_SHUTDOWN)) 5996 mask |= POLLIN | POLLRDNORM; 5997 5998 /* The association is either gone or not ready. */ 5999 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6000 return mask; 6001 6002 /* Is it writable? */ 6003 if (sctp_writeable(sk)) { 6004 mask |= POLLOUT | POLLWRNORM; 6005 } else { 6006 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6007 /* 6008 * Since the socket is not locked, the buffer 6009 * might be made available after the writeable check and 6010 * before the bit is set. This could cause a lost I/O 6011 * signal. tcp_poll() has a race breaker for this race 6012 * condition. Based on their implementation, we put 6013 * in the following code to cover it as well. 6014 */ 6015 if (sctp_writeable(sk)) 6016 mask |= POLLOUT | POLLWRNORM; 6017 } 6018 return mask; 6019 } 6020 6021 /******************************************************************** 6022 * 2nd Level Abstractions 6023 ********************************************************************/ 6024 6025 static struct sctp_bind_bucket *sctp_bucket_create( 6026 struct sctp_bind_hashbucket *head, unsigned short snum) 6027 { 6028 struct sctp_bind_bucket *pp; 6029 6030 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6031 if (pp) { 6032 SCTP_DBG_OBJCNT_INC(bind_bucket); 6033 pp->port = snum; 6034 pp->fastreuse = 0; 6035 INIT_HLIST_HEAD(&pp->owner); 6036 hlist_add_head(&pp->node, &head->chain); 6037 } 6038 return pp; 6039 } 6040 6041 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6042 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6043 { 6044 if (pp && hlist_empty(&pp->owner)) { 6045 __hlist_del(&pp->node); 6046 kmem_cache_free(sctp_bucket_cachep, pp); 6047 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6048 } 6049 } 6050 6051 /* Release this socket's reference to a local port. */ 6052 static inline void __sctp_put_port(struct sock *sk) 6053 { 6054 struct sctp_bind_hashbucket *head = 6055 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 6056 struct sctp_bind_bucket *pp; 6057 6058 sctp_spin_lock(&head->lock); 6059 pp = sctp_sk(sk)->bind_hash; 6060 __sk_del_bind_node(sk); 6061 sctp_sk(sk)->bind_hash = NULL; 6062 inet_sk(sk)->num = 0; 6063 sctp_bucket_destroy(pp); 6064 sctp_spin_unlock(&head->lock); 6065 } 6066 6067 void sctp_put_port(struct sock *sk) 6068 { 6069 sctp_local_bh_disable(); 6070 __sctp_put_port(sk); 6071 sctp_local_bh_enable(); 6072 } 6073 6074 /* 6075 * The system picks an ephemeral port and choose an address set equivalent 6076 * to binding with a wildcard address. 6077 * One of those addresses will be the primary address for the association. 6078 * This automatically enables the multihoming capability of SCTP. 6079 */ 6080 static int sctp_autobind(struct sock *sk) 6081 { 6082 union sctp_addr autoaddr; 6083 struct sctp_af *af; 6084 __be16 port; 6085 6086 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6087 af = sctp_sk(sk)->pf->af; 6088 6089 port = htons(inet_sk(sk)->num); 6090 af->inaddr_any(&autoaddr, port); 6091 6092 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6093 } 6094 6095 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6096 * 6097 * From RFC 2292 6098 * 4.2 The cmsghdr Structure * 6099 * 6100 * When ancillary data is sent or received, any number of ancillary data 6101 * objects can be specified by the msg_control and msg_controllen members of 6102 * the msghdr structure, because each object is preceded by 6103 * a cmsghdr structure defining the object's length (the cmsg_len member). 6104 * Historically Berkeley-derived implementations have passed only one object 6105 * at a time, but this API allows multiple objects to be 6106 * passed in a single call to sendmsg() or recvmsg(). The following example 6107 * shows two ancillary data objects in a control buffer. 6108 * 6109 * |<--------------------------- msg_controllen -------------------------->| 6110 * | | 6111 * 6112 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6113 * 6114 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6115 * | | | 6116 * 6117 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6118 * 6119 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6120 * | | | | | 6121 * 6122 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6123 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6124 * 6125 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6126 * 6127 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6128 * ^ 6129 * | 6130 * 6131 * msg_control 6132 * points here 6133 */ 6134 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6135 sctp_cmsgs_t *cmsgs) 6136 { 6137 struct cmsghdr *cmsg; 6138 struct msghdr *my_msg = (struct msghdr *)msg; 6139 6140 for (cmsg = CMSG_FIRSTHDR(msg); 6141 cmsg != NULL; 6142 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6143 if (!CMSG_OK(my_msg, cmsg)) 6144 return -EINVAL; 6145 6146 /* Should we parse this header or ignore? */ 6147 if (cmsg->cmsg_level != IPPROTO_SCTP) 6148 continue; 6149 6150 /* Strictly check lengths following example in SCM code. */ 6151 switch (cmsg->cmsg_type) { 6152 case SCTP_INIT: 6153 /* SCTP Socket API Extension 6154 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6155 * 6156 * This cmsghdr structure provides information for 6157 * initializing new SCTP associations with sendmsg(). 6158 * The SCTP_INITMSG socket option uses this same data 6159 * structure. This structure is not used for 6160 * recvmsg(). 6161 * 6162 * cmsg_level cmsg_type cmsg_data[] 6163 * ------------ ------------ ---------------------- 6164 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6165 */ 6166 if (cmsg->cmsg_len != 6167 CMSG_LEN(sizeof(struct sctp_initmsg))) 6168 return -EINVAL; 6169 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6170 break; 6171 6172 case SCTP_SNDRCV: 6173 /* SCTP Socket API Extension 6174 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6175 * 6176 * This cmsghdr structure specifies SCTP options for 6177 * sendmsg() and describes SCTP header information 6178 * about a received message through recvmsg(). 6179 * 6180 * cmsg_level cmsg_type cmsg_data[] 6181 * ------------ ------------ ---------------------- 6182 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6183 */ 6184 if (cmsg->cmsg_len != 6185 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6186 return -EINVAL; 6187 6188 cmsgs->info = 6189 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6190 6191 /* Minimally, validate the sinfo_flags. */ 6192 if (cmsgs->info->sinfo_flags & 6193 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6194 SCTP_ABORT | SCTP_EOF)) 6195 return -EINVAL; 6196 break; 6197 6198 default: 6199 return -EINVAL; 6200 } 6201 } 6202 return 0; 6203 } 6204 6205 /* 6206 * Wait for a packet.. 6207 * Note: This function is the same function as in core/datagram.c 6208 * with a few modifications to make lksctp work. 6209 */ 6210 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6211 { 6212 int error; 6213 DEFINE_WAIT(wait); 6214 6215 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6216 6217 /* Socket errors? */ 6218 error = sock_error(sk); 6219 if (error) 6220 goto out; 6221 6222 if (!skb_queue_empty(&sk->sk_receive_queue)) 6223 goto ready; 6224 6225 /* Socket shut down? */ 6226 if (sk->sk_shutdown & RCV_SHUTDOWN) 6227 goto out; 6228 6229 /* Sequenced packets can come disconnected. If so we report the 6230 * problem. 6231 */ 6232 error = -ENOTCONN; 6233 6234 /* Is there a good reason to think that we may receive some data? */ 6235 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6236 goto out; 6237 6238 /* Handle signals. */ 6239 if (signal_pending(current)) 6240 goto interrupted; 6241 6242 /* Let another process have a go. Since we are going to sleep 6243 * anyway. Note: This may cause odd behaviors if the message 6244 * does not fit in the user's buffer, but this seems to be the 6245 * only way to honor MSG_DONTWAIT realistically. 6246 */ 6247 sctp_release_sock(sk); 6248 *timeo_p = schedule_timeout(*timeo_p); 6249 sctp_lock_sock(sk); 6250 6251 ready: 6252 finish_wait(sk->sk_sleep, &wait); 6253 return 0; 6254 6255 interrupted: 6256 error = sock_intr_errno(*timeo_p); 6257 6258 out: 6259 finish_wait(sk->sk_sleep, &wait); 6260 *err = error; 6261 return error; 6262 } 6263 6264 /* Receive a datagram. 6265 * Note: This is pretty much the same routine as in core/datagram.c 6266 * with a few changes to make lksctp work. 6267 */ 6268 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6269 int noblock, int *err) 6270 { 6271 int error; 6272 struct sk_buff *skb; 6273 long timeo; 6274 6275 timeo = sock_rcvtimeo(sk, noblock); 6276 6277 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6278 timeo, MAX_SCHEDULE_TIMEOUT); 6279 6280 do { 6281 /* Again only user level code calls this function, 6282 * so nothing interrupt level 6283 * will suddenly eat the receive_queue. 6284 * 6285 * Look at current nfs client by the way... 6286 * However, this function was corrent in any case. 8) 6287 */ 6288 if (flags & MSG_PEEK) { 6289 spin_lock_bh(&sk->sk_receive_queue.lock); 6290 skb = skb_peek(&sk->sk_receive_queue); 6291 if (skb) 6292 atomic_inc(&skb->users); 6293 spin_unlock_bh(&sk->sk_receive_queue.lock); 6294 } else { 6295 skb = skb_dequeue(&sk->sk_receive_queue); 6296 } 6297 6298 if (skb) 6299 return skb; 6300 6301 /* Caller is allowed not to check sk->sk_err before calling. */ 6302 error = sock_error(sk); 6303 if (error) 6304 goto no_packet; 6305 6306 if (sk->sk_shutdown & RCV_SHUTDOWN) 6307 break; 6308 6309 /* User doesn't want to wait. */ 6310 error = -EAGAIN; 6311 if (!timeo) 6312 goto no_packet; 6313 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6314 6315 return NULL; 6316 6317 no_packet: 6318 *err = error; 6319 return NULL; 6320 } 6321 6322 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6323 static void __sctp_write_space(struct sctp_association *asoc) 6324 { 6325 struct sock *sk = asoc->base.sk; 6326 struct socket *sock = sk->sk_socket; 6327 6328 if ((sctp_wspace(asoc) > 0) && sock) { 6329 if (waitqueue_active(&asoc->wait)) 6330 wake_up_interruptible(&asoc->wait); 6331 6332 if (sctp_writeable(sk)) { 6333 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6334 wake_up_interruptible(sk->sk_sleep); 6335 6336 /* Note that we try to include the Async I/O support 6337 * here by modeling from the current TCP/UDP code. 6338 * We have not tested with it yet. 6339 */ 6340 if (sock->fasync_list && 6341 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6342 sock_wake_async(sock, 6343 SOCK_WAKE_SPACE, POLL_OUT); 6344 } 6345 } 6346 } 6347 6348 /* Do accounting for the sndbuf space. 6349 * Decrement the used sndbuf space of the corresponding association by the 6350 * data size which was just transmitted(freed). 6351 */ 6352 static void sctp_wfree(struct sk_buff *skb) 6353 { 6354 struct sctp_association *asoc; 6355 struct sctp_chunk *chunk; 6356 struct sock *sk; 6357 6358 /* Get the saved chunk pointer. */ 6359 chunk = *((struct sctp_chunk **)(skb->cb)); 6360 asoc = chunk->asoc; 6361 sk = asoc->base.sk; 6362 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6363 sizeof(struct sk_buff) + 6364 sizeof(struct sctp_chunk); 6365 6366 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6367 6368 /* 6369 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6370 */ 6371 sk->sk_wmem_queued -= skb->truesize; 6372 sk_mem_uncharge(sk, skb->truesize); 6373 6374 sock_wfree(skb); 6375 __sctp_write_space(asoc); 6376 6377 sctp_association_put(asoc); 6378 } 6379 6380 /* Do accounting for the receive space on the socket. 6381 * Accounting for the association is done in ulpevent.c 6382 * We set this as a destructor for the cloned data skbs so that 6383 * accounting is done at the correct time. 6384 */ 6385 void sctp_sock_rfree(struct sk_buff *skb) 6386 { 6387 struct sock *sk = skb->sk; 6388 struct sctp_ulpevent *event = sctp_skb2event(skb); 6389 6390 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6391 6392 /* 6393 * Mimic the behavior of sock_rfree 6394 */ 6395 sk_mem_uncharge(sk, event->rmem_len); 6396 } 6397 6398 6399 /* Helper function to wait for space in the sndbuf. */ 6400 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6401 size_t msg_len) 6402 { 6403 struct sock *sk = asoc->base.sk; 6404 int err = 0; 6405 long current_timeo = *timeo_p; 6406 DEFINE_WAIT(wait); 6407 6408 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6409 asoc, (long)(*timeo_p), msg_len); 6410 6411 /* Increment the association's refcnt. */ 6412 sctp_association_hold(asoc); 6413 6414 /* Wait on the association specific sndbuf space. */ 6415 for (;;) { 6416 prepare_to_wait_exclusive(&asoc->wait, &wait, 6417 TASK_INTERRUPTIBLE); 6418 if (!*timeo_p) 6419 goto do_nonblock; 6420 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6421 asoc->base.dead) 6422 goto do_error; 6423 if (signal_pending(current)) 6424 goto do_interrupted; 6425 if (msg_len <= sctp_wspace(asoc)) 6426 break; 6427 6428 /* Let another process have a go. Since we are going 6429 * to sleep anyway. 6430 */ 6431 sctp_release_sock(sk); 6432 current_timeo = schedule_timeout(current_timeo); 6433 BUG_ON(sk != asoc->base.sk); 6434 sctp_lock_sock(sk); 6435 6436 *timeo_p = current_timeo; 6437 } 6438 6439 out: 6440 finish_wait(&asoc->wait, &wait); 6441 6442 /* Release the association's refcnt. */ 6443 sctp_association_put(asoc); 6444 6445 return err; 6446 6447 do_error: 6448 err = -EPIPE; 6449 goto out; 6450 6451 do_interrupted: 6452 err = sock_intr_errno(*timeo_p); 6453 goto out; 6454 6455 do_nonblock: 6456 err = -EAGAIN; 6457 goto out; 6458 } 6459 6460 /* If socket sndbuf has changed, wake up all per association waiters. */ 6461 void sctp_write_space(struct sock *sk) 6462 { 6463 struct sctp_association *asoc; 6464 6465 /* Wake up the tasks in each wait queue. */ 6466 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6467 __sctp_write_space(asoc); 6468 } 6469 } 6470 6471 /* Is there any sndbuf space available on the socket? 6472 * 6473 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6474 * associations on the same socket. For a UDP-style socket with 6475 * multiple associations, it is possible for it to be "unwriteable" 6476 * prematurely. I assume that this is acceptable because 6477 * a premature "unwriteable" is better than an accidental "writeable" which 6478 * would cause an unwanted block under certain circumstances. For the 1-1 6479 * UDP-style sockets or TCP-style sockets, this code should work. 6480 * - Daisy 6481 */ 6482 static int sctp_writeable(struct sock *sk) 6483 { 6484 int amt = 0; 6485 6486 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 6487 if (amt < 0) 6488 amt = 0; 6489 return amt; 6490 } 6491 6492 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6493 * returns immediately with EINPROGRESS. 6494 */ 6495 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6496 { 6497 struct sock *sk = asoc->base.sk; 6498 int err = 0; 6499 long current_timeo = *timeo_p; 6500 DEFINE_WAIT(wait); 6501 6502 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6503 (long)(*timeo_p)); 6504 6505 /* Increment the association's refcnt. */ 6506 sctp_association_hold(asoc); 6507 6508 for (;;) { 6509 prepare_to_wait_exclusive(&asoc->wait, &wait, 6510 TASK_INTERRUPTIBLE); 6511 if (!*timeo_p) 6512 goto do_nonblock; 6513 if (sk->sk_shutdown & RCV_SHUTDOWN) 6514 break; 6515 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6516 asoc->base.dead) 6517 goto do_error; 6518 if (signal_pending(current)) 6519 goto do_interrupted; 6520 6521 if (sctp_state(asoc, ESTABLISHED)) 6522 break; 6523 6524 /* Let another process have a go. Since we are going 6525 * to sleep anyway. 6526 */ 6527 sctp_release_sock(sk); 6528 current_timeo = schedule_timeout(current_timeo); 6529 sctp_lock_sock(sk); 6530 6531 *timeo_p = current_timeo; 6532 } 6533 6534 out: 6535 finish_wait(&asoc->wait, &wait); 6536 6537 /* Release the association's refcnt. */ 6538 sctp_association_put(asoc); 6539 6540 return err; 6541 6542 do_error: 6543 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6544 err = -ETIMEDOUT; 6545 else 6546 err = -ECONNREFUSED; 6547 goto out; 6548 6549 do_interrupted: 6550 err = sock_intr_errno(*timeo_p); 6551 goto out; 6552 6553 do_nonblock: 6554 err = -EINPROGRESS; 6555 goto out; 6556 } 6557 6558 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6559 { 6560 struct sctp_endpoint *ep; 6561 int err = 0; 6562 DEFINE_WAIT(wait); 6563 6564 ep = sctp_sk(sk)->ep; 6565 6566 6567 for (;;) { 6568 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6569 TASK_INTERRUPTIBLE); 6570 6571 if (list_empty(&ep->asocs)) { 6572 sctp_release_sock(sk); 6573 timeo = schedule_timeout(timeo); 6574 sctp_lock_sock(sk); 6575 } 6576 6577 err = -EINVAL; 6578 if (!sctp_sstate(sk, LISTENING)) 6579 break; 6580 6581 err = 0; 6582 if (!list_empty(&ep->asocs)) 6583 break; 6584 6585 err = sock_intr_errno(timeo); 6586 if (signal_pending(current)) 6587 break; 6588 6589 err = -EAGAIN; 6590 if (!timeo) 6591 break; 6592 } 6593 6594 finish_wait(sk->sk_sleep, &wait); 6595 6596 return err; 6597 } 6598 6599 static void sctp_wait_for_close(struct sock *sk, long timeout) 6600 { 6601 DEFINE_WAIT(wait); 6602 6603 do { 6604 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6605 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6606 break; 6607 sctp_release_sock(sk); 6608 timeout = schedule_timeout(timeout); 6609 sctp_lock_sock(sk); 6610 } while (!signal_pending(current) && timeout); 6611 6612 finish_wait(sk->sk_sleep, &wait); 6613 } 6614 6615 static void sctp_sock_rfree_frag(struct sk_buff *skb) 6616 { 6617 struct sk_buff *frag; 6618 6619 if (!skb->data_len) 6620 goto done; 6621 6622 /* Don't forget the fragments. */ 6623 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6624 sctp_sock_rfree_frag(frag); 6625 6626 done: 6627 sctp_sock_rfree(skb); 6628 } 6629 6630 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6631 { 6632 struct sk_buff *frag; 6633 6634 if (!skb->data_len) 6635 goto done; 6636 6637 /* Don't forget the fragments. */ 6638 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6639 sctp_skb_set_owner_r_frag(frag, sk); 6640 6641 done: 6642 sctp_skb_set_owner_r(skb, sk); 6643 } 6644 6645 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6646 struct sctp_association *asoc) 6647 { 6648 struct inet_sock *inet = inet_sk(sk); 6649 struct inet_sock *newinet = inet_sk(newsk); 6650 6651 newsk->sk_type = sk->sk_type; 6652 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6653 newsk->sk_flags = sk->sk_flags; 6654 newsk->sk_no_check = sk->sk_no_check; 6655 newsk->sk_reuse = sk->sk_reuse; 6656 6657 newsk->sk_shutdown = sk->sk_shutdown; 6658 newsk->sk_destruct = inet_sock_destruct; 6659 newsk->sk_family = sk->sk_family; 6660 newsk->sk_protocol = IPPROTO_SCTP; 6661 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6662 newsk->sk_sndbuf = sk->sk_sndbuf; 6663 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6664 newsk->sk_lingertime = sk->sk_lingertime; 6665 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6666 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6667 6668 newinet = inet_sk(newsk); 6669 6670 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6671 * getsockname() and getpeername() 6672 */ 6673 newinet->sport = inet->sport; 6674 newinet->saddr = inet->saddr; 6675 newinet->rcv_saddr = inet->rcv_saddr; 6676 newinet->dport = htons(asoc->peer.port); 6677 newinet->pmtudisc = inet->pmtudisc; 6678 newinet->id = asoc->next_tsn ^ jiffies; 6679 6680 newinet->uc_ttl = inet->uc_ttl; 6681 newinet->mc_loop = 1; 6682 newinet->mc_ttl = 1; 6683 newinet->mc_index = 0; 6684 newinet->mc_list = NULL; 6685 } 6686 6687 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6688 * and its messages to the newsk. 6689 */ 6690 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6691 struct sctp_association *assoc, 6692 sctp_socket_type_t type) 6693 { 6694 struct sctp_sock *oldsp = sctp_sk(oldsk); 6695 struct sctp_sock *newsp = sctp_sk(newsk); 6696 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6697 struct sctp_endpoint *newep = newsp->ep; 6698 struct sk_buff *skb, *tmp; 6699 struct sctp_ulpevent *event; 6700 struct sctp_bind_hashbucket *head; 6701 6702 /* Migrate socket buffer sizes and all the socket level options to the 6703 * new socket. 6704 */ 6705 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6706 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6707 /* Brute force copy old sctp opt. */ 6708 inet_sk_copy_descendant(newsk, oldsk); 6709 6710 /* Restore the ep value that was overwritten with the above structure 6711 * copy. 6712 */ 6713 newsp->ep = newep; 6714 newsp->hmac = NULL; 6715 6716 /* Hook this new socket in to the bind_hash list. */ 6717 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6718 sctp_local_bh_disable(); 6719 sctp_spin_lock(&head->lock); 6720 pp = sctp_sk(oldsk)->bind_hash; 6721 sk_add_bind_node(newsk, &pp->owner); 6722 sctp_sk(newsk)->bind_hash = pp; 6723 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6724 sctp_spin_unlock(&head->lock); 6725 sctp_local_bh_enable(); 6726 6727 /* Copy the bind_addr list from the original endpoint to the new 6728 * endpoint so that we can handle restarts properly 6729 */ 6730 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6731 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6732 6733 /* Move any messages in the old socket's receive queue that are for the 6734 * peeled off association to the new socket's receive queue. 6735 */ 6736 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6737 event = sctp_skb2event(skb); 6738 if (event->asoc == assoc) { 6739 sctp_sock_rfree_frag(skb); 6740 __skb_unlink(skb, &oldsk->sk_receive_queue); 6741 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6742 sctp_skb_set_owner_r_frag(skb, newsk); 6743 } 6744 } 6745 6746 /* Clean up any messages pending delivery due to partial 6747 * delivery. Three cases: 6748 * 1) No partial deliver; no work. 6749 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6750 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6751 */ 6752 skb_queue_head_init(&newsp->pd_lobby); 6753 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6754 6755 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6756 struct sk_buff_head *queue; 6757 6758 /* Decide which queue to move pd_lobby skbs to. */ 6759 if (assoc->ulpq.pd_mode) { 6760 queue = &newsp->pd_lobby; 6761 } else 6762 queue = &newsk->sk_receive_queue; 6763 6764 /* Walk through the pd_lobby, looking for skbs that 6765 * need moved to the new socket. 6766 */ 6767 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6768 event = sctp_skb2event(skb); 6769 if (event->asoc == assoc) { 6770 sctp_sock_rfree_frag(skb); 6771 __skb_unlink(skb, &oldsp->pd_lobby); 6772 __skb_queue_tail(queue, skb); 6773 sctp_skb_set_owner_r_frag(skb, newsk); 6774 } 6775 } 6776 6777 /* Clear up any skbs waiting for the partial 6778 * delivery to finish. 6779 */ 6780 if (assoc->ulpq.pd_mode) 6781 sctp_clear_pd(oldsk, NULL); 6782 6783 } 6784 6785 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6786 sctp_sock_rfree_frag(skb); 6787 sctp_skb_set_owner_r_frag(skb, newsk); 6788 } 6789 6790 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6791 sctp_sock_rfree_frag(skb); 6792 sctp_skb_set_owner_r_frag(skb, newsk); 6793 } 6794 6795 /* Set the type of socket to indicate that it is peeled off from the 6796 * original UDP-style socket or created with the accept() call on a 6797 * TCP-style socket.. 6798 */ 6799 newsp->type = type; 6800 6801 /* Mark the new socket "in-use" by the user so that any packets 6802 * that may arrive on the association after we've moved it are 6803 * queued to the backlog. This prevents a potential race between 6804 * backlog processing on the old socket and new-packet processing 6805 * on the new socket. 6806 * 6807 * The caller has just allocated newsk so we can guarantee that other 6808 * paths won't try to lock it and then oldsk. 6809 */ 6810 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6811 sctp_assoc_migrate(assoc, newsk); 6812 6813 /* If the association on the newsk is already closed before accept() 6814 * is called, set RCV_SHUTDOWN flag. 6815 */ 6816 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6817 newsk->sk_shutdown |= RCV_SHUTDOWN; 6818 6819 newsk->sk_state = SCTP_SS_ESTABLISHED; 6820 sctp_release_sock(newsk); 6821 } 6822 6823 6824 /* This proto struct describes the ULP interface for SCTP. */ 6825 struct proto sctp_prot = { 6826 .name = "SCTP", 6827 .owner = THIS_MODULE, 6828 .close = sctp_close, 6829 .connect = sctp_connect, 6830 .disconnect = sctp_disconnect, 6831 .accept = sctp_accept, 6832 .ioctl = sctp_ioctl, 6833 .init = sctp_init_sock, 6834 .destroy = sctp_destroy_sock, 6835 .shutdown = sctp_shutdown, 6836 .setsockopt = sctp_setsockopt, 6837 .getsockopt = sctp_getsockopt, 6838 .sendmsg = sctp_sendmsg, 6839 .recvmsg = sctp_recvmsg, 6840 .bind = sctp_bind, 6841 .backlog_rcv = sctp_backlog_rcv, 6842 .hash = sctp_hash, 6843 .unhash = sctp_unhash, 6844 .get_port = sctp_get_port, 6845 .obj_size = sizeof(struct sctp_sock), 6846 .sysctl_mem = sysctl_sctp_mem, 6847 .sysctl_rmem = sysctl_sctp_rmem, 6848 .sysctl_wmem = sysctl_sctp_wmem, 6849 .memory_pressure = &sctp_memory_pressure, 6850 .enter_memory_pressure = sctp_enter_memory_pressure, 6851 .memory_allocated = &sctp_memory_allocated, 6852 .sockets_allocated = &sctp_sockets_allocated, 6853 }; 6854 6855 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6856 6857 struct proto sctpv6_prot = { 6858 .name = "SCTPv6", 6859 .owner = THIS_MODULE, 6860 .close = sctp_close, 6861 .connect = sctp_connect, 6862 .disconnect = sctp_disconnect, 6863 .accept = sctp_accept, 6864 .ioctl = sctp_ioctl, 6865 .init = sctp_init_sock, 6866 .destroy = sctp_destroy_sock, 6867 .shutdown = sctp_shutdown, 6868 .setsockopt = sctp_setsockopt, 6869 .getsockopt = sctp_getsockopt, 6870 .sendmsg = sctp_sendmsg, 6871 .recvmsg = sctp_recvmsg, 6872 .bind = sctp_bind, 6873 .backlog_rcv = sctp_backlog_rcv, 6874 .hash = sctp_hash, 6875 .unhash = sctp_unhash, 6876 .get_port = sctp_get_port, 6877 .obj_size = sizeof(struct sctp6_sock), 6878 .sysctl_mem = sysctl_sctp_mem, 6879 .sysctl_rmem = sysctl_sctp_rmem, 6880 .sysctl_wmem = sysctl_sctp_wmem, 6881 .memory_pressure = &sctp_memory_pressure, 6882 .enter_memory_pressure = sctp_enter_memory_pressure, 6883 .memory_allocated = &sctp_memory_allocated, 6884 .sockets_allocated = &sctp_sockets_allocated, 6885 }; 6886 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6887