xref: /openbmc/linux/net/sctp/socket.c (revision b04b4f78)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114 
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 struct percpu_counter sctp_sockets_allocated;
118 
119 static void sctp_enter_memory_pressure(struct sock *sk)
120 {
121 	sctp_memory_pressure = 1;
122 }
123 
124 
125 /* Get the sndbuf space available at the time on the association.  */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 	int amt;
129 
130 	if (asoc->ep->sndbuf_policy)
131 		amt = asoc->sndbuf_used;
132 	else
133 		amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134 
135 	if (amt >= asoc->base.sk->sk_sndbuf) {
136 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 			amt = 0;
138 		else {
139 			amt = sk_stream_wspace(asoc->base.sk);
140 			if (amt < 0)
141 				amt = 0;
142 		}
143 	} else {
144 		amt = asoc->base.sk->sk_sndbuf - amt;
145 	}
146 	return amt;
147 }
148 
149 /* Increment the used sndbuf space count of the corresponding association by
150  * the size of the outgoing data chunk.
151  * Also, set the skb destructor for sndbuf accounting later.
152  *
153  * Since it is always 1-1 between chunk and skb, and also a new skb is always
154  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155  * destructor in the data chunk skb for the purpose of the sndbuf space
156  * tracking.
157  */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 	struct sctp_association *asoc = chunk->asoc;
161 	struct sock *sk = asoc->base.sk;
162 
163 	/* The sndbuf space is tracked per association.  */
164 	sctp_association_hold(asoc);
165 
166 	skb_set_owner_w(chunk->skb, sk);
167 
168 	chunk->skb->destructor = sctp_wfree;
169 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
170 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171 
172 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 				sizeof(struct sk_buff) +
174 				sizeof(struct sctp_chunk);
175 
176 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 	sk->sk_wmem_queued += chunk->skb->truesize;
178 	sk_mem_charge(sk, chunk->skb->truesize);
179 }
180 
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 				   int len)
184 {
185 	struct sctp_af *af;
186 
187 	/* Verify basic sockaddr. */
188 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 	if (!af)
190 		return -EINVAL;
191 
192 	/* Is this a valid SCTP address?  */
193 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 		return -EINVAL;
195 
196 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 		return -EINVAL;
198 
199 	return 0;
200 }
201 
202 /* Look up the association by its id.  If this is not a UDP-style
203  * socket, the ID field is always ignored.
204  */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 	struct sctp_association *asoc = NULL;
208 
209 	/* If this is not a UDP-style socket, assoc id should be ignored. */
210 	if (!sctp_style(sk, UDP)) {
211 		/* Return NULL if the socket state is not ESTABLISHED. It
212 		 * could be a TCP-style listening socket or a socket which
213 		 * hasn't yet called connect() to establish an association.
214 		 */
215 		if (!sctp_sstate(sk, ESTABLISHED))
216 			return NULL;
217 
218 		/* Get the first and the only association from the list. */
219 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 					  struct sctp_association, asocs);
222 		return asoc;
223 	}
224 
225 	/* Otherwise this is a UDP-style socket. */
226 	if (!id || (id == (sctp_assoc_t)-1))
227 		return NULL;
228 
229 	spin_lock_bh(&sctp_assocs_id_lock);
230 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 	spin_unlock_bh(&sctp_assocs_id_lock);
232 
233 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 		return NULL;
235 
236 	return asoc;
237 }
238 
239 /* Look up the transport from an address and an assoc id. If both address and
240  * id are specified, the associations matching the address and the id should be
241  * the same.
242  */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 					      struct sockaddr_storage *addr,
245 					      sctp_assoc_t id)
246 {
247 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 	struct sctp_transport *transport;
249 	union sctp_addr *laddr = (union sctp_addr *)addr;
250 
251 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 					       laddr,
253 					       &transport);
254 
255 	if (!addr_asoc)
256 		return NULL;
257 
258 	id_asoc = sctp_id2assoc(sk, id);
259 	if (id_asoc && (id_asoc != addr_asoc))
260 		return NULL;
261 
262 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 						(union sctp_addr *)addr);
264 
265 	return transport;
266 }
267 
268 /* API 3.1.2 bind() - UDP Style Syntax
269  * The syntax of bind() is,
270  *
271  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
272  *
273  *   sd      - the socket descriptor returned by socket().
274  *   addr    - the address structure (struct sockaddr_in or struct
275  *             sockaddr_in6 [RFC 2553]),
276  *   addr_len - the size of the address structure.
277  */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 	int retval = 0;
281 
282 	sctp_lock_sock(sk);
283 
284 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 			  sk, addr, addr_len);
286 
287 	/* Disallow binding twice. */
288 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 				      addr_len);
291 	else
292 		retval = -EINVAL;
293 
294 	sctp_release_sock(sk);
295 
296 	return retval;
297 }
298 
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300 
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 					union sctp_addr *addr, int len)
304 {
305 	struct sctp_af *af;
306 
307 	/* Check minimum size.  */
308 	if (len < sizeof (struct sockaddr))
309 		return NULL;
310 
311 	/* V4 mapped address are really of AF_INET family */
312 	if (addr->sa.sa_family == AF_INET6 &&
313 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 		if (!opt->pf->af_supported(AF_INET, opt))
315 			return NULL;
316 	} else {
317 		/* Does this PF support this AF? */
318 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 			return NULL;
320 	}
321 
322 	/* If we get this far, af is valid. */
323 	af = sctp_get_af_specific(addr->sa.sa_family);
324 
325 	if (len < af->sockaddr_len)
326 		return NULL;
327 
328 	return af;
329 }
330 
331 /* Bind a local address either to an endpoint or to an association.  */
332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333 {
334 	struct sctp_sock *sp = sctp_sk(sk);
335 	struct sctp_endpoint *ep = sp->ep;
336 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 	struct sctp_af *af;
338 	unsigned short snum;
339 	int ret = 0;
340 
341 	/* Common sockaddr verification. */
342 	af = sctp_sockaddr_af(sp, addr, len);
343 	if (!af) {
344 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 				  sk, addr, len);
346 		return -EINVAL;
347 	}
348 
349 	snum = ntohs(addr->v4.sin_port);
350 
351 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 				 ", port: %d, new port: %d, len: %d)\n",
353 				 sk,
354 				 addr,
355 				 bp->port, snum,
356 				 len);
357 
358 	/* PF specific bind() address verification. */
359 	if (!sp->pf->bind_verify(sp, addr))
360 		return -EADDRNOTAVAIL;
361 
362 	/* We must either be unbound, or bind to the same port.
363 	 * It's OK to allow 0 ports if we are already bound.
364 	 * We'll just inhert an already bound port in this case
365 	 */
366 	if (bp->port) {
367 		if (!snum)
368 			snum = bp->port;
369 		else if (snum != bp->port) {
370 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 				  " New port %d does not match existing port "
372 				  "%d.\n", snum, bp->port);
373 			return -EINVAL;
374 		}
375 	}
376 
377 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 		return -EACCES;
379 
380 	/* See if the address matches any of the addresses we may have
381 	 * already bound before checking against other endpoints.
382 	 */
383 	if (sctp_bind_addr_match(bp, addr, sp))
384 		return -EINVAL;
385 
386 	/* Make sure we are allowed to bind here.
387 	 * The function sctp_get_port_local() does duplicate address
388 	 * detection.
389 	 */
390 	addr->v4.sin_port = htons(snum);
391 	if ((ret = sctp_get_port_local(sk, addr))) {
392 		return -EADDRINUSE;
393 	}
394 
395 	/* Refresh ephemeral port.  */
396 	if (!bp->port)
397 		bp->port = inet_sk(sk)->num;
398 
399 	/* Add the address to the bind address list.
400 	 * Use GFP_ATOMIC since BHs will be disabled.
401 	 */
402 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
403 
404 	/* Copy back into socket for getsockname() use. */
405 	if (!ret) {
406 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
407 		af->to_sk_saddr(addr, sk);
408 	}
409 
410 	return ret;
411 }
412 
413  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
414  *
415  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416  * at any one time.  If a sender, after sending an ASCONF chunk, decides
417  * it needs to transfer another ASCONF Chunk, it MUST wait until the
418  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419  * subsequent ASCONF. Note this restriction binds each side, so at any
420  * time two ASCONF may be in-transit on any given association (one sent
421  * from each endpoint).
422  */
423 static int sctp_send_asconf(struct sctp_association *asoc,
424 			    struct sctp_chunk *chunk)
425 {
426 	int		retval = 0;
427 
428 	/* If there is an outstanding ASCONF chunk, queue it for later
429 	 * transmission.
430 	 */
431 	if (asoc->addip_last_asconf) {
432 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 		goto out;
434 	}
435 
436 	/* Hold the chunk until an ASCONF_ACK is received. */
437 	sctp_chunk_hold(chunk);
438 	retval = sctp_primitive_ASCONF(asoc, chunk);
439 	if (retval)
440 		sctp_chunk_free(chunk);
441 	else
442 		asoc->addip_last_asconf = chunk;
443 
444 out:
445 	return retval;
446 }
447 
448 /* Add a list of addresses as bind addresses to local endpoint or
449  * association.
450  *
451  * Basically run through each address specified in the addrs/addrcnt
452  * array/length pair, determine if it is IPv6 or IPv4 and call
453  * sctp_do_bind() on it.
454  *
455  * If any of them fails, then the operation will be reversed and the
456  * ones that were added will be removed.
457  *
458  * Only sctp_setsockopt_bindx() is supposed to call this function.
459  */
460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
461 {
462 	int cnt;
463 	int retval = 0;
464 	void *addr_buf;
465 	struct sockaddr *sa_addr;
466 	struct sctp_af *af;
467 
468 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 			  sk, addrs, addrcnt);
470 
471 	addr_buf = addrs;
472 	for (cnt = 0; cnt < addrcnt; cnt++) {
473 		/* The list may contain either IPv4 or IPv6 address;
474 		 * determine the address length for walking thru the list.
475 		 */
476 		sa_addr = (struct sockaddr *)addr_buf;
477 		af = sctp_get_af_specific(sa_addr->sa_family);
478 		if (!af) {
479 			retval = -EINVAL;
480 			goto err_bindx_add;
481 		}
482 
483 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 				      af->sockaddr_len);
485 
486 		addr_buf += af->sockaddr_len;
487 
488 err_bindx_add:
489 		if (retval < 0) {
490 			/* Failed. Cleanup the ones that have been added */
491 			if (cnt > 0)
492 				sctp_bindx_rem(sk, addrs, cnt);
493 			return retval;
494 		}
495 	}
496 
497 	return retval;
498 }
499 
500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501  * associations that are part of the endpoint indicating that a list of local
502  * addresses are added to the endpoint.
503  *
504  * If any of the addresses is already in the bind address list of the
505  * association, we do not send the chunk for that association.  But it will not
506  * affect other associations.
507  *
508  * Only sctp_setsockopt_bindx() is supposed to call this function.
509  */
510 static int sctp_send_asconf_add_ip(struct sock		*sk,
511 				   struct sockaddr	*addrs,
512 				   int 			addrcnt)
513 {
514 	struct sctp_sock		*sp;
515 	struct sctp_endpoint		*ep;
516 	struct sctp_association		*asoc;
517 	struct sctp_bind_addr		*bp;
518 	struct sctp_chunk		*chunk;
519 	struct sctp_sockaddr_entry	*laddr;
520 	union sctp_addr			*addr;
521 	union sctp_addr			saveaddr;
522 	void				*addr_buf;
523 	struct sctp_af			*af;
524 	struct list_head		*p;
525 	int 				i;
526 	int 				retval = 0;
527 
528 	if (!sctp_addip_enable)
529 		return retval;
530 
531 	sp = sctp_sk(sk);
532 	ep = sp->ep;
533 
534 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 			  __func__, sk, addrs, addrcnt);
536 
537 	list_for_each_entry(asoc, &ep->asocs, asocs) {
538 
539 		if (!asoc->peer.asconf_capable)
540 			continue;
541 
542 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 			continue;
544 
545 		if (!sctp_state(asoc, ESTABLISHED))
546 			continue;
547 
548 		/* Check if any address in the packed array of addresses is
549 		 * in the bind address list of the association. If so,
550 		 * do not send the asconf chunk to its peer, but continue with
551 		 * other associations.
552 		 */
553 		addr_buf = addrs;
554 		for (i = 0; i < addrcnt; i++) {
555 			addr = (union sctp_addr *)addr_buf;
556 			af = sctp_get_af_specific(addr->v4.sin_family);
557 			if (!af) {
558 				retval = -EINVAL;
559 				goto out;
560 			}
561 
562 			if (sctp_assoc_lookup_laddr(asoc, addr))
563 				break;
564 
565 			addr_buf += af->sockaddr_len;
566 		}
567 		if (i < addrcnt)
568 			continue;
569 
570 		/* Use the first valid address in bind addr list of
571 		 * association as Address Parameter of ASCONF CHUNK.
572 		 */
573 		bp = &asoc->base.bind_addr;
574 		p = bp->address_list.next;
575 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 						   addrcnt, SCTP_PARAM_ADD_IP);
578 		if (!chunk) {
579 			retval = -ENOMEM;
580 			goto out;
581 		}
582 
583 		retval = sctp_send_asconf(asoc, chunk);
584 		if (retval)
585 			goto out;
586 
587 		/* Add the new addresses to the bind address list with
588 		 * use_as_src set to 0.
589 		 */
590 		addr_buf = addrs;
591 		for (i = 0; i < addrcnt; i++) {
592 			addr = (union sctp_addr *)addr_buf;
593 			af = sctp_get_af_specific(addr->v4.sin_family);
594 			memcpy(&saveaddr, addr, af->sockaddr_len);
595 			retval = sctp_add_bind_addr(bp, &saveaddr,
596 						    SCTP_ADDR_NEW, GFP_ATOMIC);
597 			addr_buf += af->sockaddr_len;
598 		}
599 	}
600 
601 out:
602 	return retval;
603 }
604 
605 /* Remove a list of addresses from bind addresses list.  Do not remove the
606  * last address.
607  *
608  * Basically run through each address specified in the addrs/addrcnt
609  * array/length pair, determine if it is IPv6 or IPv4 and call
610  * sctp_del_bind() on it.
611  *
612  * If any of them fails, then the operation will be reversed and the
613  * ones that were removed will be added back.
614  *
615  * At least one address has to be left; if only one address is
616  * available, the operation will return -EBUSY.
617  *
618  * Only sctp_setsockopt_bindx() is supposed to call this function.
619  */
620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
621 {
622 	struct sctp_sock *sp = sctp_sk(sk);
623 	struct sctp_endpoint *ep = sp->ep;
624 	int cnt;
625 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 	int retval = 0;
627 	void *addr_buf;
628 	union sctp_addr *sa_addr;
629 	struct sctp_af *af;
630 
631 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 			  sk, addrs, addrcnt);
633 
634 	addr_buf = addrs;
635 	for (cnt = 0; cnt < addrcnt; cnt++) {
636 		/* If the bind address list is empty or if there is only one
637 		 * bind address, there is nothing more to be removed (we need
638 		 * at least one address here).
639 		 */
640 		if (list_empty(&bp->address_list) ||
641 		    (sctp_list_single_entry(&bp->address_list))) {
642 			retval = -EBUSY;
643 			goto err_bindx_rem;
644 		}
645 
646 		sa_addr = (union sctp_addr *)addr_buf;
647 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 		if (!af) {
649 			retval = -EINVAL;
650 			goto err_bindx_rem;
651 		}
652 
653 		if (!af->addr_valid(sa_addr, sp, NULL)) {
654 			retval = -EADDRNOTAVAIL;
655 			goto err_bindx_rem;
656 		}
657 
658 		if (sa_addr->v4.sin_port != htons(bp->port)) {
659 			retval = -EINVAL;
660 			goto err_bindx_rem;
661 		}
662 
663 		/* FIXME - There is probably a need to check if sk->sk_saddr and
664 		 * sk->sk_rcv_addr are currently set to one of the addresses to
665 		 * be removed. This is something which needs to be looked into
666 		 * when we are fixing the outstanding issues with multi-homing
667 		 * socket routing and failover schemes. Refer to comments in
668 		 * sctp_do_bind(). -daisy
669 		 */
670 		retval = sctp_del_bind_addr(bp, sa_addr);
671 
672 		addr_buf += af->sockaddr_len;
673 err_bindx_rem:
674 		if (retval < 0) {
675 			/* Failed. Add the ones that has been removed back */
676 			if (cnt > 0)
677 				sctp_bindx_add(sk, addrs, cnt);
678 			return retval;
679 		}
680 	}
681 
682 	return retval;
683 }
684 
685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686  * the associations that are part of the endpoint indicating that a list of
687  * local addresses are removed from the endpoint.
688  *
689  * If any of the addresses is already in the bind address list of the
690  * association, we do not send the chunk for that association.  But it will not
691  * affect other associations.
692  *
693  * Only sctp_setsockopt_bindx() is supposed to call this function.
694  */
695 static int sctp_send_asconf_del_ip(struct sock		*sk,
696 				   struct sockaddr	*addrs,
697 				   int			addrcnt)
698 {
699 	struct sctp_sock	*sp;
700 	struct sctp_endpoint	*ep;
701 	struct sctp_association	*asoc;
702 	struct sctp_transport	*transport;
703 	struct sctp_bind_addr	*bp;
704 	struct sctp_chunk	*chunk;
705 	union sctp_addr		*laddr;
706 	void			*addr_buf;
707 	struct sctp_af		*af;
708 	struct sctp_sockaddr_entry *saddr;
709 	int 			i;
710 	int 			retval = 0;
711 
712 	if (!sctp_addip_enable)
713 		return retval;
714 
715 	sp = sctp_sk(sk);
716 	ep = sp->ep;
717 
718 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 			  __func__, sk, addrs, addrcnt);
720 
721 	list_for_each_entry(asoc, &ep->asocs, asocs) {
722 
723 		if (!asoc->peer.asconf_capable)
724 			continue;
725 
726 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 			continue;
728 
729 		if (!sctp_state(asoc, ESTABLISHED))
730 			continue;
731 
732 		/* Check if any address in the packed array of addresses is
733 		 * not present in the bind address list of the association.
734 		 * If so, do not send the asconf chunk to its peer, but
735 		 * continue with other associations.
736 		 */
737 		addr_buf = addrs;
738 		for (i = 0; i < addrcnt; i++) {
739 			laddr = (union sctp_addr *)addr_buf;
740 			af = sctp_get_af_specific(laddr->v4.sin_family);
741 			if (!af) {
742 				retval = -EINVAL;
743 				goto out;
744 			}
745 
746 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 				break;
748 
749 			addr_buf += af->sockaddr_len;
750 		}
751 		if (i < addrcnt)
752 			continue;
753 
754 		/* Find one address in the association's bind address list
755 		 * that is not in the packed array of addresses. This is to
756 		 * make sure that we do not delete all the addresses in the
757 		 * association.
758 		 */
759 		bp = &asoc->base.bind_addr;
760 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 					       addrcnt, sp);
762 		if (!laddr)
763 			continue;
764 
765 		/* We do not need RCU protection throughout this loop
766 		 * because this is done under a socket lock from the
767 		 * setsockopt call.
768 		 */
769 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 						   SCTP_PARAM_DEL_IP);
771 		if (!chunk) {
772 			retval = -ENOMEM;
773 			goto out;
774 		}
775 
776 		/* Reset use_as_src flag for the addresses in the bind address
777 		 * list that are to be deleted.
778 		 */
779 		addr_buf = addrs;
780 		for (i = 0; i < addrcnt; i++) {
781 			laddr = (union sctp_addr *)addr_buf;
782 			af = sctp_get_af_specific(laddr->v4.sin_family);
783 			list_for_each_entry(saddr, &bp->address_list, list) {
784 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 					saddr->state = SCTP_ADDR_DEL;
786 			}
787 			addr_buf += af->sockaddr_len;
788 		}
789 
790 		/* Update the route and saddr entries for all the transports
791 		 * as some of the addresses in the bind address list are
792 		 * about to be deleted and cannot be used as source addresses.
793 		 */
794 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 					transports) {
796 			dst_release(transport->dst);
797 			sctp_transport_route(transport, NULL,
798 					     sctp_sk(asoc->base.sk));
799 		}
800 
801 		retval = sctp_send_asconf(asoc, chunk);
802 	}
803 out:
804 	return retval;
805 }
806 
807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
808  *
809  * API 8.1
810  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811  *                int flags);
812  *
813  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815  * or IPv6 addresses.
816  *
817  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818  * Section 3.1.2 for this usage.
819  *
820  * addrs is a pointer to an array of one or more socket addresses. Each
821  * address is contained in its appropriate structure (i.e. struct
822  * sockaddr_in or struct sockaddr_in6) the family of the address type
823  * must be used to distinguish the address length (note that this
824  * representation is termed a "packed array" of addresses). The caller
825  * specifies the number of addresses in the array with addrcnt.
826  *
827  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828  * -1, and sets errno to the appropriate error code.
829  *
830  * For SCTP, the port given in each socket address must be the same, or
831  * sctp_bindx() will fail, setting errno to EINVAL.
832  *
833  * The flags parameter is formed from the bitwise OR of zero or more of
834  * the following currently defined flags:
835  *
836  * SCTP_BINDX_ADD_ADDR
837  *
838  * SCTP_BINDX_REM_ADDR
839  *
840  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842  * addresses from the association. The two flags are mutually exclusive;
843  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844  * not remove all addresses from an association; sctp_bindx() will
845  * reject such an attempt with EINVAL.
846  *
847  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848  * additional addresses with an endpoint after calling bind().  Or use
849  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850  * socket is associated with so that no new association accepted will be
851  * associated with those addresses. If the endpoint supports dynamic
852  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853  * endpoint to send the appropriate message to the peer to change the
854  * peers address lists.
855  *
856  * Adding and removing addresses from a connected association is
857  * optional functionality. Implementations that do not support this
858  * functionality should return EOPNOTSUPP.
859  *
860  * Basically do nothing but copying the addresses from user to kernel
861  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863  * from userspace.
864  *
865  * We don't use copy_from_user() for optimization: we first do the
866  * sanity checks (buffer size -fast- and access check-healthy
867  * pointer); if all of those succeed, then we can alloc the memory
868  * (expensive operation) needed to copy the data to kernel. Then we do
869  * the copying without checking the user space area
870  * (__copy_from_user()).
871  *
872  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873  * it.
874  *
875  * sk        The sk of the socket
876  * addrs     The pointer to the addresses in user land
877  * addrssize Size of the addrs buffer
878  * op        Operation to perform (add or remove, see the flags of
879  *           sctp_bindx)
880  *
881  * Returns 0 if ok, <0 errno code on error.
882  */
883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 				      struct sockaddr __user *addrs,
885 				      int addrs_size, int op)
886 {
887 	struct sockaddr *kaddrs;
888 	int err;
889 	int addrcnt = 0;
890 	int walk_size = 0;
891 	struct sockaddr *sa_addr;
892 	void *addr_buf;
893 	struct sctp_af *af;
894 
895 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
897 
898 	if (unlikely(addrs_size <= 0))
899 		return -EINVAL;
900 
901 	/* Check the user passed a healthy pointer.  */
902 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 		return -EFAULT;
904 
905 	/* Alloc space for the address array in kernel memory.  */
906 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 	if (unlikely(!kaddrs))
908 		return -ENOMEM;
909 
910 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 		kfree(kaddrs);
912 		return -EFAULT;
913 	}
914 
915 	/* Walk through the addrs buffer and count the number of addresses. */
916 	addr_buf = kaddrs;
917 	while (walk_size < addrs_size) {
918 		sa_addr = (struct sockaddr *)addr_buf;
919 		af = sctp_get_af_specific(sa_addr->sa_family);
920 
921 		/* If the address family is not supported or if this address
922 		 * causes the address buffer to overflow return EINVAL.
923 		 */
924 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 			kfree(kaddrs);
926 			return -EINVAL;
927 		}
928 		addrcnt++;
929 		addr_buf += af->sockaddr_len;
930 		walk_size += af->sockaddr_len;
931 	}
932 
933 	/* Do the work. */
934 	switch (op) {
935 	case SCTP_BINDX_ADD_ADDR:
936 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 		if (err)
938 			goto out;
939 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 		break;
941 
942 	case SCTP_BINDX_REM_ADDR:
943 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 		if (err)
945 			goto out;
946 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 		break;
948 
949 	default:
950 		err = -EINVAL;
951 		break;
952 	}
953 
954 out:
955 	kfree(kaddrs);
956 
957 	return err;
958 }
959 
960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
961  *
962  * Common routine for handling connect() and sctp_connectx().
963  * Connect will come in with just a single address.
964  */
965 static int __sctp_connect(struct sock* sk,
966 			  struct sockaddr *kaddrs,
967 			  int addrs_size,
968 			  sctp_assoc_t *assoc_id)
969 {
970 	struct sctp_sock *sp;
971 	struct sctp_endpoint *ep;
972 	struct sctp_association *asoc = NULL;
973 	struct sctp_association *asoc2;
974 	struct sctp_transport *transport;
975 	union sctp_addr to;
976 	struct sctp_af *af;
977 	sctp_scope_t scope;
978 	long timeo;
979 	int err = 0;
980 	int addrcnt = 0;
981 	int walk_size = 0;
982 	union sctp_addr *sa_addr = NULL;
983 	void *addr_buf;
984 	unsigned short port;
985 	unsigned int f_flags = 0;
986 
987 	sp = sctp_sk(sk);
988 	ep = sp->ep;
989 
990 	/* connect() cannot be done on a socket that is already in ESTABLISHED
991 	 * state - UDP-style peeled off socket or a TCP-style socket that
992 	 * is already connected.
993 	 * It cannot be done even on a TCP-style listening socket.
994 	 */
995 	if (sctp_sstate(sk, ESTABLISHED) ||
996 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 		err = -EISCONN;
998 		goto out_free;
999 	}
1000 
1001 	/* Walk through the addrs buffer and count the number of addresses. */
1002 	addr_buf = kaddrs;
1003 	while (walk_size < addrs_size) {
1004 		sa_addr = (union sctp_addr *)addr_buf;
1005 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 		port = ntohs(sa_addr->v4.sin_port);
1007 
1008 		/* If the address family is not supported or if this address
1009 		 * causes the address buffer to overflow return EINVAL.
1010 		 */
1011 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 			err = -EINVAL;
1013 			goto out_free;
1014 		}
1015 
1016 		/* Save current address so we can work with it */
1017 		memcpy(&to, sa_addr, af->sockaddr_len);
1018 
1019 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 		if (err)
1021 			goto out_free;
1022 
1023 		/* Make sure the destination port is correctly set
1024 		 * in all addresses.
1025 		 */
1026 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 			goto out_free;
1028 
1029 
1030 		/* Check if there already is a matching association on the
1031 		 * endpoint (other than the one created here).
1032 		 */
1033 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 		if (asoc2 && asoc2 != asoc) {
1035 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 				err = -EISCONN;
1037 			else
1038 				err = -EALREADY;
1039 			goto out_free;
1040 		}
1041 
1042 		/* If we could not find a matching association on the endpoint,
1043 		 * make sure that there is no peeled-off association matching
1044 		 * the peer address even on another socket.
1045 		 */
1046 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 			err = -EADDRNOTAVAIL;
1048 			goto out_free;
1049 		}
1050 
1051 		if (!asoc) {
1052 			/* If a bind() or sctp_bindx() is not called prior to
1053 			 * an sctp_connectx() call, the system picks an
1054 			 * ephemeral port and will choose an address set
1055 			 * equivalent to binding with a wildcard address.
1056 			 */
1057 			if (!ep->base.bind_addr.port) {
1058 				if (sctp_autobind(sk)) {
1059 					err = -EAGAIN;
1060 					goto out_free;
1061 				}
1062 			} else {
1063 				/*
1064 				 * If an unprivileged user inherits a 1-many
1065 				 * style socket with open associations on a
1066 				 * privileged port, it MAY be permitted to
1067 				 * accept new associations, but it SHOULD NOT
1068 				 * be permitted to open new associations.
1069 				 */
1070 				if (ep->base.bind_addr.port < PROT_SOCK &&
1071 				    !capable(CAP_NET_BIND_SERVICE)) {
1072 					err = -EACCES;
1073 					goto out_free;
1074 				}
1075 			}
1076 
1077 			scope = sctp_scope(&to);
1078 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 			if (!asoc) {
1080 				err = -ENOMEM;
1081 				goto out_free;
1082 			}
1083 		}
1084 
1085 		/* Prime the peer's transport structures.  */
1086 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1087 						SCTP_UNKNOWN);
1088 		if (!transport) {
1089 			err = -ENOMEM;
1090 			goto out_free;
1091 		}
1092 
1093 		addrcnt++;
1094 		addr_buf += af->sockaddr_len;
1095 		walk_size += af->sockaddr_len;
1096 	}
1097 
1098 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1099 	if (err < 0) {
1100 		goto out_free;
1101 	}
1102 
1103 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1104 	if (err < 0) {
1105 		goto out_free;
1106 	}
1107 
1108 	/* Initialize sk's dport and daddr for getpeername() */
1109 	inet_sk(sk)->dport = htons(asoc->peer.port);
1110 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1111 	af->to_sk_daddr(sa_addr, sk);
1112 	sk->sk_err = 0;
1113 
1114 	/* in-kernel sockets don't generally have a file allocated to them
1115 	 * if all they do is call sock_create_kern().
1116 	 */
1117 	if (sk->sk_socket->file)
1118 		f_flags = sk->sk_socket->file->f_flags;
1119 
1120 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1121 
1122 	err = sctp_wait_for_connect(asoc, &timeo);
1123 	if (!err && assoc_id)
1124 		*assoc_id = asoc->assoc_id;
1125 
1126 	/* Don't free association on exit. */
1127 	asoc = NULL;
1128 
1129 out_free:
1130 
1131 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1132 			  " kaddrs: %p err: %d\n",
1133 			  asoc, kaddrs, err);
1134 	if (asoc)
1135 		sctp_association_free(asoc);
1136 	return err;
1137 }
1138 
1139 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1140  *
1141  * API 8.9
1142  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1143  * 			sctp_assoc_t *asoc);
1144  *
1145  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1146  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1147  * or IPv6 addresses.
1148  *
1149  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1150  * Section 3.1.2 for this usage.
1151  *
1152  * addrs is a pointer to an array of one or more socket addresses. Each
1153  * address is contained in its appropriate structure (i.e. struct
1154  * sockaddr_in or struct sockaddr_in6) the family of the address type
1155  * must be used to distengish the address length (note that this
1156  * representation is termed a "packed array" of addresses). The caller
1157  * specifies the number of addresses in the array with addrcnt.
1158  *
1159  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1160  * the association id of the new association.  On failure, sctp_connectx()
1161  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1162  * is not touched by the kernel.
1163  *
1164  * For SCTP, the port given in each socket address must be the same, or
1165  * sctp_connectx() will fail, setting errno to EINVAL.
1166  *
1167  * An application can use sctp_connectx to initiate an association with
1168  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1169  * allows a caller to specify multiple addresses at which a peer can be
1170  * reached.  The way the SCTP stack uses the list of addresses to set up
1171  * the association is implementation dependant.  This function only
1172  * specifies that the stack will try to make use of all the addresses in
1173  * the list when needed.
1174  *
1175  * Note that the list of addresses passed in is only used for setting up
1176  * the association.  It does not necessarily equal the set of addresses
1177  * the peer uses for the resulting association.  If the caller wants to
1178  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1179  * retrieve them after the association has been set up.
1180  *
1181  * Basically do nothing but copying the addresses from user to kernel
1182  * land and invoking either sctp_connectx(). This is used for tunneling
1183  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1184  *
1185  * We don't use copy_from_user() for optimization: we first do the
1186  * sanity checks (buffer size -fast- and access check-healthy
1187  * pointer); if all of those succeed, then we can alloc the memory
1188  * (expensive operation) needed to copy the data to kernel. Then we do
1189  * the copying without checking the user space area
1190  * (__copy_from_user()).
1191  *
1192  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1193  * it.
1194  *
1195  * sk        The sk of the socket
1196  * addrs     The pointer to the addresses in user land
1197  * addrssize Size of the addrs buffer
1198  *
1199  * Returns >=0 if ok, <0 errno code on error.
1200  */
1201 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1202 				      struct sockaddr __user *addrs,
1203 				      int addrs_size,
1204 				      sctp_assoc_t *assoc_id)
1205 {
1206 	int err = 0;
1207 	struct sockaddr *kaddrs;
1208 
1209 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1210 			  __func__, sk, addrs, addrs_size);
1211 
1212 	if (unlikely(addrs_size <= 0))
1213 		return -EINVAL;
1214 
1215 	/* Check the user passed a healthy pointer.  */
1216 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1217 		return -EFAULT;
1218 
1219 	/* Alloc space for the address array in kernel memory.  */
1220 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1221 	if (unlikely(!kaddrs))
1222 		return -ENOMEM;
1223 
1224 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1225 		err = -EFAULT;
1226 	} else {
1227 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1228 	}
1229 
1230 	kfree(kaddrs);
1231 
1232 	return err;
1233 }
1234 
1235 /*
1236  * This is an older interface.  It's kept for backward compatibility
1237  * to the option that doesn't provide association id.
1238  */
1239 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1240 				      struct sockaddr __user *addrs,
1241 				      int addrs_size)
1242 {
1243 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1244 }
1245 
1246 /*
1247  * New interface for the API.  The since the API is done with a socket
1248  * option, to make it simple we feed back the association id is as a return
1249  * indication to the call.  Error is always negative and association id is
1250  * always positive.
1251  */
1252 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1253 				      struct sockaddr __user *addrs,
1254 				      int addrs_size)
1255 {
1256 	sctp_assoc_t assoc_id = 0;
1257 	int err = 0;
1258 
1259 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1260 
1261 	if (err)
1262 		return err;
1263 	else
1264 		return assoc_id;
1265 }
1266 
1267 /* API 3.1.4 close() - UDP Style Syntax
1268  * Applications use close() to perform graceful shutdown (as described in
1269  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1270  * by a UDP-style socket.
1271  *
1272  * The syntax is
1273  *
1274  *   ret = close(int sd);
1275  *
1276  *   sd      - the socket descriptor of the associations to be closed.
1277  *
1278  * To gracefully shutdown a specific association represented by the
1279  * UDP-style socket, an application should use the sendmsg() call,
1280  * passing no user data, but including the appropriate flag in the
1281  * ancillary data (see Section xxxx).
1282  *
1283  * If sd in the close() call is a branched-off socket representing only
1284  * one association, the shutdown is performed on that association only.
1285  *
1286  * 4.1.6 close() - TCP Style Syntax
1287  *
1288  * Applications use close() to gracefully close down an association.
1289  *
1290  * The syntax is:
1291  *
1292  *    int close(int sd);
1293  *
1294  *      sd      - the socket descriptor of the association to be closed.
1295  *
1296  * After an application calls close() on a socket descriptor, no further
1297  * socket operations will succeed on that descriptor.
1298  *
1299  * API 7.1.4 SO_LINGER
1300  *
1301  * An application using the TCP-style socket can use this option to
1302  * perform the SCTP ABORT primitive.  The linger option structure is:
1303  *
1304  *  struct  linger {
1305  *     int     l_onoff;                // option on/off
1306  *     int     l_linger;               // linger time
1307  * };
1308  *
1309  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1310  * to 0, calling close() is the same as the ABORT primitive.  If the
1311  * value is set to a negative value, the setsockopt() call will return
1312  * an error.  If the value is set to a positive value linger_time, the
1313  * close() can be blocked for at most linger_time ms.  If the graceful
1314  * shutdown phase does not finish during this period, close() will
1315  * return but the graceful shutdown phase continues in the system.
1316  */
1317 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1318 {
1319 	struct sctp_endpoint *ep;
1320 	struct sctp_association *asoc;
1321 	struct list_head *pos, *temp;
1322 
1323 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1324 
1325 	sctp_lock_sock(sk);
1326 	sk->sk_shutdown = SHUTDOWN_MASK;
1327 
1328 	ep = sctp_sk(sk)->ep;
1329 
1330 	/* Walk all associations on an endpoint.  */
1331 	list_for_each_safe(pos, temp, &ep->asocs) {
1332 		asoc = list_entry(pos, struct sctp_association, asocs);
1333 
1334 		if (sctp_style(sk, TCP)) {
1335 			/* A closed association can still be in the list if
1336 			 * it belongs to a TCP-style listening socket that is
1337 			 * not yet accepted. If so, free it. If not, send an
1338 			 * ABORT or SHUTDOWN based on the linger options.
1339 			 */
1340 			if (sctp_state(asoc, CLOSED)) {
1341 				sctp_unhash_established(asoc);
1342 				sctp_association_free(asoc);
1343 				continue;
1344 			}
1345 		}
1346 
1347 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1348 			struct sctp_chunk *chunk;
1349 
1350 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1351 			if (chunk)
1352 				sctp_primitive_ABORT(asoc, chunk);
1353 		} else
1354 			sctp_primitive_SHUTDOWN(asoc, NULL);
1355 	}
1356 
1357 	/* Clean up any skbs sitting on the receive queue.  */
1358 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1359 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1360 
1361 	/* On a TCP-style socket, block for at most linger_time if set. */
1362 	if (sctp_style(sk, TCP) && timeout)
1363 		sctp_wait_for_close(sk, timeout);
1364 
1365 	/* This will run the backlog queue.  */
1366 	sctp_release_sock(sk);
1367 
1368 	/* Supposedly, no process has access to the socket, but
1369 	 * the net layers still may.
1370 	 */
1371 	sctp_local_bh_disable();
1372 	sctp_bh_lock_sock(sk);
1373 
1374 	/* Hold the sock, since sk_common_release() will put sock_put()
1375 	 * and we have just a little more cleanup.
1376 	 */
1377 	sock_hold(sk);
1378 	sk_common_release(sk);
1379 
1380 	sctp_bh_unlock_sock(sk);
1381 	sctp_local_bh_enable();
1382 
1383 	sock_put(sk);
1384 
1385 	SCTP_DBG_OBJCNT_DEC(sock);
1386 }
1387 
1388 /* Handle EPIPE error. */
1389 static int sctp_error(struct sock *sk, int flags, int err)
1390 {
1391 	if (err == -EPIPE)
1392 		err = sock_error(sk) ? : -EPIPE;
1393 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1394 		send_sig(SIGPIPE, current, 0);
1395 	return err;
1396 }
1397 
1398 /* API 3.1.3 sendmsg() - UDP Style Syntax
1399  *
1400  * An application uses sendmsg() and recvmsg() calls to transmit data to
1401  * and receive data from its peer.
1402  *
1403  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1404  *                  int flags);
1405  *
1406  *  socket  - the socket descriptor of the endpoint.
1407  *  message - pointer to the msghdr structure which contains a single
1408  *            user message and possibly some ancillary data.
1409  *
1410  *            See Section 5 for complete description of the data
1411  *            structures.
1412  *
1413  *  flags   - flags sent or received with the user message, see Section
1414  *            5 for complete description of the flags.
1415  *
1416  * Note:  This function could use a rewrite especially when explicit
1417  * connect support comes in.
1418  */
1419 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1420 
1421 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1422 
1423 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1424 			     struct msghdr *msg, size_t msg_len)
1425 {
1426 	struct sctp_sock *sp;
1427 	struct sctp_endpoint *ep;
1428 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1429 	struct sctp_transport *transport, *chunk_tp;
1430 	struct sctp_chunk *chunk;
1431 	union sctp_addr to;
1432 	struct sockaddr *msg_name = NULL;
1433 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1434 	struct sctp_sndrcvinfo *sinfo;
1435 	struct sctp_initmsg *sinit;
1436 	sctp_assoc_t associd = 0;
1437 	sctp_cmsgs_t cmsgs = { NULL };
1438 	int err;
1439 	sctp_scope_t scope;
1440 	long timeo;
1441 	__u16 sinfo_flags = 0;
1442 	struct sctp_datamsg *datamsg;
1443 	int msg_flags = msg->msg_flags;
1444 
1445 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1446 			  sk, msg, msg_len);
1447 
1448 	err = 0;
1449 	sp = sctp_sk(sk);
1450 	ep = sp->ep;
1451 
1452 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1453 
1454 	/* We cannot send a message over a TCP-style listening socket. */
1455 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1456 		err = -EPIPE;
1457 		goto out_nounlock;
1458 	}
1459 
1460 	/* Parse out the SCTP CMSGs.  */
1461 	err = sctp_msghdr_parse(msg, &cmsgs);
1462 
1463 	if (err) {
1464 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1465 		goto out_nounlock;
1466 	}
1467 
1468 	/* Fetch the destination address for this packet.  This
1469 	 * address only selects the association--it is not necessarily
1470 	 * the address we will send to.
1471 	 * For a peeled-off socket, msg_name is ignored.
1472 	 */
1473 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1474 		int msg_namelen = msg->msg_namelen;
1475 
1476 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1477 				       msg_namelen);
1478 		if (err)
1479 			return err;
1480 
1481 		if (msg_namelen > sizeof(to))
1482 			msg_namelen = sizeof(to);
1483 		memcpy(&to, msg->msg_name, msg_namelen);
1484 		msg_name = msg->msg_name;
1485 	}
1486 
1487 	sinfo = cmsgs.info;
1488 	sinit = cmsgs.init;
1489 
1490 	/* Did the user specify SNDRCVINFO?  */
1491 	if (sinfo) {
1492 		sinfo_flags = sinfo->sinfo_flags;
1493 		associd = sinfo->sinfo_assoc_id;
1494 	}
1495 
1496 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1497 			  msg_len, sinfo_flags);
1498 
1499 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1500 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1501 		err = -EINVAL;
1502 		goto out_nounlock;
1503 	}
1504 
1505 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1506 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1507 	 * If SCTP_ABORT is set, the message length could be non zero with
1508 	 * the msg_iov set to the user abort reason.
1509 	 */
1510 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1511 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1512 		err = -EINVAL;
1513 		goto out_nounlock;
1514 	}
1515 
1516 	/* If SCTP_ADDR_OVER is set, there must be an address
1517 	 * specified in msg_name.
1518 	 */
1519 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1520 		err = -EINVAL;
1521 		goto out_nounlock;
1522 	}
1523 
1524 	transport = NULL;
1525 
1526 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1527 
1528 	sctp_lock_sock(sk);
1529 
1530 	/* If a msg_name has been specified, assume this is to be used.  */
1531 	if (msg_name) {
1532 		/* Look for a matching association on the endpoint. */
1533 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1534 		if (!asoc) {
1535 			/* If we could not find a matching association on the
1536 			 * endpoint, make sure that it is not a TCP-style
1537 			 * socket that already has an association or there is
1538 			 * no peeled-off association on another socket.
1539 			 */
1540 			if ((sctp_style(sk, TCP) &&
1541 			     sctp_sstate(sk, ESTABLISHED)) ||
1542 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1543 				err = -EADDRNOTAVAIL;
1544 				goto out_unlock;
1545 			}
1546 		}
1547 	} else {
1548 		asoc = sctp_id2assoc(sk, associd);
1549 		if (!asoc) {
1550 			err = -EPIPE;
1551 			goto out_unlock;
1552 		}
1553 	}
1554 
1555 	if (asoc) {
1556 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1557 
1558 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1559 		 * socket that has an association in CLOSED state. This can
1560 		 * happen when an accepted socket has an association that is
1561 		 * already CLOSED.
1562 		 */
1563 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1564 			err = -EPIPE;
1565 			goto out_unlock;
1566 		}
1567 
1568 		if (sinfo_flags & SCTP_EOF) {
1569 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1570 					  asoc);
1571 			sctp_primitive_SHUTDOWN(asoc, NULL);
1572 			err = 0;
1573 			goto out_unlock;
1574 		}
1575 		if (sinfo_flags & SCTP_ABORT) {
1576 
1577 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1578 			if (!chunk) {
1579 				err = -ENOMEM;
1580 				goto out_unlock;
1581 			}
1582 
1583 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1584 			sctp_primitive_ABORT(asoc, chunk);
1585 			err = 0;
1586 			goto out_unlock;
1587 		}
1588 	}
1589 
1590 	/* Do we need to create the association?  */
1591 	if (!asoc) {
1592 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1593 
1594 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1595 			err = -EINVAL;
1596 			goto out_unlock;
1597 		}
1598 
1599 		/* Check for invalid stream against the stream counts,
1600 		 * either the default or the user specified stream counts.
1601 		 */
1602 		if (sinfo) {
1603 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1604 				/* Check against the defaults. */
1605 				if (sinfo->sinfo_stream >=
1606 				    sp->initmsg.sinit_num_ostreams) {
1607 					err = -EINVAL;
1608 					goto out_unlock;
1609 				}
1610 			} else {
1611 				/* Check against the requested.  */
1612 				if (sinfo->sinfo_stream >=
1613 				    sinit->sinit_num_ostreams) {
1614 					err = -EINVAL;
1615 					goto out_unlock;
1616 				}
1617 			}
1618 		}
1619 
1620 		/*
1621 		 * API 3.1.2 bind() - UDP Style Syntax
1622 		 * If a bind() or sctp_bindx() is not called prior to a
1623 		 * sendmsg() call that initiates a new association, the
1624 		 * system picks an ephemeral port and will choose an address
1625 		 * set equivalent to binding with a wildcard address.
1626 		 */
1627 		if (!ep->base.bind_addr.port) {
1628 			if (sctp_autobind(sk)) {
1629 				err = -EAGAIN;
1630 				goto out_unlock;
1631 			}
1632 		} else {
1633 			/*
1634 			 * If an unprivileged user inherits a one-to-many
1635 			 * style socket with open associations on a privileged
1636 			 * port, it MAY be permitted to accept new associations,
1637 			 * but it SHOULD NOT be permitted to open new
1638 			 * associations.
1639 			 */
1640 			if (ep->base.bind_addr.port < PROT_SOCK &&
1641 			    !capable(CAP_NET_BIND_SERVICE)) {
1642 				err = -EACCES;
1643 				goto out_unlock;
1644 			}
1645 		}
1646 
1647 		scope = sctp_scope(&to);
1648 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1649 		if (!new_asoc) {
1650 			err = -ENOMEM;
1651 			goto out_unlock;
1652 		}
1653 		asoc = new_asoc;
1654 
1655 		/* If the SCTP_INIT ancillary data is specified, set all
1656 		 * the association init values accordingly.
1657 		 */
1658 		if (sinit) {
1659 			if (sinit->sinit_num_ostreams) {
1660 				asoc->c.sinit_num_ostreams =
1661 					sinit->sinit_num_ostreams;
1662 			}
1663 			if (sinit->sinit_max_instreams) {
1664 				asoc->c.sinit_max_instreams =
1665 					sinit->sinit_max_instreams;
1666 			}
1667 			if (sinit->sinit_max_attempts) {
1668 				asoc->max_init_attempts
1669 					= sinit->sinit_max_attempts;
1670 			}
1671 			if (sinit->sinit_max_init_timeo) {
1672 				asoc->max_init_timeo =
1673 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1674 			}
1675 		}
1676 
1677 		/* Prime the peer's transport structures.  */
1678 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1679 		if (!transport) {
1680 			err = -ENOMEM;
1681 			goto out_free;
1682 		}
1683 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1684 		if (err < 0) {
1685 			err = -ENOMEM;
1686 			goto out_free;
1687 		}
1688 	}
1689 
1690 	/* ASSERT: we have a valid association at this point.  */
1691 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1692 
1693 	if (!sinfo) {
1694 		/* If the user didn't specify SNDRCVINFO, make up one with
1695 		 * some defaults.
1696 		 */
1697 		default_sinfo.sinfo_stream = asoc->default_stream;
1698 		default_sinfo.sinfo_flags = asoc->default_flags;
1699 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1700 		default_sinfo.sinfo_context = asoc->default_context;
1701 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1702 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1703 		sinfo = &default_sinfo;
1704 	}
1705 
1706 	/* API 7.1.7, the sndbuf size per association bounds the
1707 	 * maximum size of data that can be sent in a single send call.
1708 	 */
1709 	if (msg_len > sk->sk_sndbuf) {
1710 		err = -EMSGSIZE;
1711 		goto out_free;
1712 	}
1713 
1714 	if (asoc->pmtu_pending)
1715 		sctp_assoc_pending_pmtu(asoc);
1716 
1717 	/* If fragmentation is disabled and the message length exceeds the
1718 	 * association fragmentation point, return EMSGSIZE.  The I-D
1719 	 * does not specify what this error is, but this looks like
1720 	 * a great fit.
1721 	 */
1722 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1723 		err = -EMSGSIZE;
1724 		goto out_free;
1725 	}
1726 
1727 	if (sinfo) {
1728 		/* Check for invalid stream. */
1729 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1730 			err = -EINVAL;
1731 			goto out_free;
1732 		}
1733 	}
1734 
1735 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1736 	if (!sctp_wspace(asoc)) {
1737 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1738 		if (err)
1739 			goto out_free;
1740 	}
1741 
1742 	/* If an address is passed with the sendto/sendmsg call, it is used
1743 	 * to override the primary destination address in the TCP model, or
1744 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1745 	 */
1746 	if ((sctp_style(sk, TCP) && msg_name) ||
1747 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1748 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1749 		if (!chunk_tp) {
1750 			err = -EINVAL;
1751 			goto out_free;
1752 		}
1753 	} else
1754 		chunk_tp = NULL;
1755 
1756 	/* Auto-connect, if we aren't connected already. */
1757 	if (sctp_state(asoc, CLOSED)) {
1758 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1759 		if (err < 0)
1760 			goto out_free;
1761 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1762 	}
1763 
1764 	/* Break the message into multiple chunks of maximum size. */
1765 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1766 	if (!datamsg) {
1767 		err = -ENOMEM;
1768 		goto out_free;
1769 	}
1770 
1771 	/* Now send the (possibly) fragmented message. */
1772 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1773 		sctp_chunk_hold(chunk);
1774 
1775 		/* Do accounting for the write space.  */
1776 		sctp_set_owner_w(chunk);
1777 
1778 		chunk->transport = chunk_tp;
1779 
1780 		/* Send it to the lower layers.  Note:  all chunks
1781 		 * must either fail or succeed.   The lower layer
1782 		 * works that way today.  Keep it that way or this
1783 		 * breaks.
1784 		 */
1785 		err = sctp_primitive_SEND(asoc, chunk);
1786 		/* Did the lower layer accept the chunk? */
1787 		if (err)
1788 			sctp_chunk_free(chunk);
1789 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1790 	}
1791 
1792 	sctp_datamsg_put(datamsg);
1793 	if (err)
1794 		goto out_free;
1795 	else
1796 		err = msg_len;
1797 
1798 	/* If we are already past ASSOCIATE, the lower
1799 	 * layers are responsible for association cleanup.
1800 	 */
1801 	goto out_unlock;
1802 
1803 out_free:
1804 	if (new_asoc)
1805 		sctp_association_free(asoc);
1806 out_unlock:
1807 	sctp_release_sock(sk);
1808 
1809 out_nounlock:
1810 	return sctp_error(sk, msg_flags, err);
1811 
1812 #if 0
1813 do_sock_err:
1814 	if (msg_len)
1815 		err = msg_len;
1816 	else
1817 		err = sock_error(sk);
1818 	goto out;
1819 
1820 do_interrupted:
1821 	if (msg_len)
1822 		err = msg_len;
1823 	goto out;
1824 #endif /* 0 */
1825 }
1826 
1827 /* This is an extended version of skb_pull() that removes the data from the
1828  * start of a skb even when data is spread across the list of skb's in the
1829  * frag_list. len specifies the total amount of data that needs to be removed.
1830  * when 'len' bytes could be removed from the skb, it returns 0.
1831  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1832  * could not be removed.
1833  */
1834 static int sctp_skb_pull(struct sk_buff *skb, int len)
1835 {
1836 	struct sk_buff *list;
1837 	int skb_len = skb_headlen(skb);
1838 	int rlen;
1839 
1840 	if (len <= skb_len) {
1841 		__skb_pull(skb, len);
1842 		return 0;
1843 	}
1844 	len -= skb_len;
1845 	__skb_pull(skb, skb_len);
1846 
1847 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1848 		rlen = sctp_skb_pull(list, len);
1849 		skb->len -= (len-rlen);
1850 		skb->data_len -= (len-rlen);
1851 
1852 		if (!rlen)
1853 			return 0;
1854 
1855 		len = rlen;
1856 	}
1857 
1858 	return len;
1859 }
1860 
1861 /* API 3.1.3  recvmsg() - UDP Style Syntax
1862  *
1863  *  ssize_t recvmsg(int socket, struct msghdr *message,
1864  *                    int flags);
1865  *
1866  *  socket  - the socket descriptor of the endpoint.
1867  *  message - pointer to the msghdr structure which contains a single
1868  *            user message and possibly some ancillary data.
1869  *
1870  *            See Section 5 for complete description of the data
1871  *            structures.
1872  *
1873  *  flags   - flags sent or received with the user message, see Section
1874  *            5 for complete description of the flags.
1875  */
1876 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1877 
1878 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1879 			     struct msghdr *msg, size_t len, int noblock,
1880 			     int flags, int *addr_len)
1881 {
1882 	struct sctp_ulpevent *event = NULL;
1883 	struct sctp_sock *sp = sctp_sk(sk);
1884 	struct sk_buff *skb;
1885 	int copied;
1886 	int err = 0;
1887 	int skb_len;
1888 
1889 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1890 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1891 			  "len", len, "knoblauch", noblock,
1892 			  "flags", flags, "addr_len", addr_len);
1893 
1894 	sctp_lock_sock(sk);
1895 
1896 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1897 		err = -ENOTCONN;
1898 		goto out;
1899 	}
1900 
1901 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1902 	if (!skb)
1903 		goto out;
1904 
1905 	/* Get the total length of the skb including any skb's in the
1906 	 * frag_list.
1907 	 */
1908 	skb_len = skb->len;
1909 
1910 	copied = skb_len;
1911 	if (copied > len)
1912 		copied = len;
1913 
1914 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1915 
1916 	event = sctp_skb2event(skb);
1917 
1918 	if (err)
1919 		goto out_free;
1920 
1921 	sock_recv_timestamp(msg, sk, skb);
1922 	if (sctp_ulpevent_is_notification(event)) {
1923 		msg->msg_flags |= MSG_NOTIFICATION;
1924 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1925 	} else {
1926 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1927 	}
1928 
1929 	/* Check if we allow SCTP_SNDRCVINFO. */
1930 	if (sp->subscribe.sctp_data_io_event)
1931 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1932 #if 0
1933 	/* FIXME: we should be calling IP/IPv6 layers.  */
1934 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1935 		ip_cmsg_recv(msg, skb);
1936 #endif
1937 
1938 	err = copied;
1939 
1940 	/* If skb's length exceeds the user's buffer, update the skb and
1941 	 * push it back to the receive_queue so that the next call to
1942 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1943 	 */
1944 	if (skb_len > copied) {
1945 		msg->msg_flags &= ~MSG_EOR;
1946 		if (flags & MSG_PEEK)
1947 			goto out_free;
1948 		sctp_skb_pull(skb, copied);
1949 		skb_queue_head(&sk->sk_receive_queue, skb);
1950 
1951 		/* When only partial message is copied to the user, increase
1952 		 * rwnd by that amount. If all the data in the skb is read,
1953 		 * rwnd is updated when the event is freed.
1954 		 */
1955 		if (!sctp_ulpevent_is_notification(event))
1956 			sctp_assoc_rwnd_increase(event->asoc, copied);
1957 		goto out;
1958 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1959 		   (event->msg_flags & MSG_EOR))
1960 		msg->msg_flags |= MSG_EOR;
1961 	else
1962 		msg->msg_flags &= ~MSG_EOR;
1963 
1964 out_free:
1965 	if (flags & MSG_PEEK) {
1966 		/* Release the skb reference acquired after peeking the skb in
1967 		 * sctp_skb_recv_datagram().
1968 		 */
1969 		kfree_skb(skb);
1970 	} else {
1971 		/* Free the event which includes releasing the reference to
1972 		 * the owner of the skb, freeing the skb and updating the
1973 		 * rwnd.
1974 		 */
1975 		sctp_ulpevent_free(event);
1976 	}
1977 out:
1978 	sctp_release_sock(sk);
1979 	return err;
1980 }
1981 
1982 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1983  *
1984  * This option is a on/off flag.  If enabled no SCTP message
1985  * fragmentation will be performed.  Instead if a message being sent
1986  * exceeds the current PMTU size, the message will NOT be sent and
1987  * instead a error will be indicated to the user.
1988  */
1989 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1990 					    char __user *optval, int optlen)
1991 {
1992 	int val;
1993 
1994 	if (optlen < sizeof(int))
1995 		return -EINVAL;
1996 
1997 	if (get_user(val, (int __user *)optval))
1998 		return -EFAULT;
1999 
2000 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2001 
2002 	return 0;
2003 }
2004 
2005 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2006 					int optlen)
2007 {
2008 	if (optlen > sizeof(struct sctp_event_subscribe))
2009 		return -EINVAL;
2010 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2011 		return -EFAULT;
2012 	return 0;
2013 }
2014 
2015 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2016  *
2017  * This socket option is applicable to the UDP-style socket only.  When
2018  * set it will cause associations that are idle for more than the
2019  * specified number of seconds to automatically close.  An association
2020  * being idle is defined an association that has NOT sent or received
2021  * user data.  The special value of '0' indicates that no automatic
2022  * close of any associations should be performed.  The option expects an
2023  * integer defining the number of seconds of idle time before an
2024  * association is closed.
2025  */
2026 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2027 					    int optlen)
2028 {
2029 	struct sctp_sock *sp = sctp_sk(sk);
2030 
2031 	/* Applicable to UDP-style socket only */
2032 	if (sctp_style(sk, TCP))
2033 		return -EOPNOTSUPP;
2034 	if (optlen != sizeof(int))
2035 		return -EINVAL;
2036 	if (copy_from_user(&sp->autoclose, optval, optlen))
2037 		return -EFAULT;
2038 
2039 	return 0;
2040 }
2041 
2042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2043  *
2044  * Applications can enable or disable heartbeats for any peer address of
2045  * an association, modify an address's heartbeat interval, force a
2046  * heartbeat to be sent immediately, and adjust the address's maximum
2047  * number of retransmissions sent before an address is considered
2048  * unreachable.  The following structure is used to access and modify an
2049  * address's parameters:
2050  *
2051  *  struct sctp_paddrparams {
2052  *     sctp_assoc_t            spp_assoc_id;
2053  *     struct sockaddr_storage spp_address;
2054  *     uint32_t                spp_hbinterval;
2055  *     uint16_t                spp_pathmaxrxt;
2056  *     uint32_t                spp_pathmtu;
2057  *     uint32_t                spp_sackdelay;
2058  *     uint32_t                spp_flags;
2059  * };
2060  *
2061  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2062  *                     application, and identifies the association for
2063  *                     this query.
2064  *   spp_address     - This specifies which address is of interest.
2065  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2066  *                     in milliseconds.  If a  value of zero
2067  *                     is present in this field then no changes are to
2068  *                     be made to this parameter.
2069  *   spp_pathmaxrxt  - This contains the maximum number of
2070  *                     retransmissions before this address shall be
2071  *                     considered unreachable. If a  value of zero
2072  *                     is present in this field then no changes are to
2073  *                     be made to this parameter.
2074  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2075  *                     specified here will be the "fixed" path mtu.
2076  *                     Note that if the spp_address field is empty
2077  *                     then all associations on this address will
2078  *                     have this fixed path mtu set upon them.
2079  *
2080  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2081  *                     the number of milliseconds that sacks will be delayed
2082  *                     for. This value will apply to all addresses of an
2083  *                     association if the spp_address field is empty. Note
2084  *                     also, that if delayed sack is enabled and this
2085  *                     value is set to 0, no change is made to the last
2086  *                     recorded delayed sack timer value.
2087  *
2088  *   spp_flags       - These flags are used to control various features
2089  *                     on an association. The flag field may contain
2090  *                     zero or more of the following options.
2091  *
2092  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2093  *                     specified address. Note that if the address
2094  *                     field is empty all addresses for the association
2095  *                     have heartbeats enabled upon them.
2096  *
2097  *                     SPP_HB_DISABLE - Disable heartbeats on the
2098  *                     speicifed address. Note that if the address
2099  *                     field is empty all addresses for the association
2100  *                     will have their heartbeats disabled. Note also
2101  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2102  *                     mutually exclusive, only one of these two should
2103  *                     be specified. Enabling both fields will have
2104  *                     undetermined results.
2105  *
2106  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2107  *                     to be made immediately.
2108  *
2109  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2110  *                     heartbeat delayis to be set to the value of 0
2111  *                     milliseconds.
2112  *
2113  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2114  *                     discovery upon the specified address. Note that
2115  *                     if the address feild is empty then all addresses
2116  *                     on the association are effected.
2117  *
2118  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2119  *                     discovery upon the specified address. Note that
2120  *                     if the address feild is empty then all addresses
2121  *                     on the association are effected. Not also that
2122  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2123  *                     exclusive. Enabling both will have undetermined
2124  *                     results.
2125  *
2126  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2127  *                     on delayed sack. The time specified in spp_sackdelay
2128  *                     is used to specify the sack delay for this address. Note
2129  *                     that if spp_address is empty then all addresses will
2130  *                     enable delayed sack and take on the sack delay
2131  *                     value specified in spp_sackdelay.
2132  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2133  *                     off delayed sack. If the spp_address field is blank then
2134  *                     delayed sack is disabled for the entire association. Note
2135  *                     also that this field is mutually exclusive to
2136  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2137  *                     results.
2138  */
2139 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2140 				       struct sctp_transport   *trans,
2141 				       struct sctp_association *asoc,
2142 				       struct sctp_sock        *sp,
2143 				       int                      hb_change,
2144 				       int                      pmtud_change,
2145 				       int                      sackdelay_change)
2146 {
2147 	int error;
2148 
2149 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2150 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2151 		if (error)
2152 			return error;
2153 	}
2154 
2155 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2156 	 * this field is ignored.  Note also that a value of zero indicates
2157 	 * the current setting should be left unchanged.
2158 	 */
2159 	if (params->spp_flags & SPP_HB_ENABLE) {
2160 
2161 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2162 		 * set.  This lets us use 0 value when this flag
2163 		 * is set.
2164 		 */
2165 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2166 			params->spp_hbinterval = 0;
2167 
2168 		if (params->spp_hbinterval ||
2169 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2170 			if (trans) {
2171 				trans->hbinterval =
2172 				    msecs_to_jiffies(params->spp_hbinterval);
2173 			} else if (asoc) {
2174 				asoc->hbinterval =
2175 				    msecs_to_jiffies(params->spp_hbinterval);
2176 			} else {
2177 				sp->hbinterval = params->spp_hbinterval;
2178 			}
2179 		}
2180 	}
2181 
2182 	if (hb_change) {
2183 		if (trans) {
2184 			trans->param_flags =
2185 				(trans->param_flags & ~SPP_HB) | hb_change;
2186 		} else if (asoc) {
2187 			asoc->param_flags =
2188 				(asoc->param_flags & ~SPP_HB) | hb_change;
2189 		} else {
2190 			sp->param_flags =
2191 				(sp->param_flags & ~SPP_HB) | hb_change;
2192 		}
2193 	}
2194 
2195 	/* When Path MTU discovery is disabled the value specified here will
2196 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2197 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2198 	 * effect).
2199 	 */
2200 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2201 		if (trans) {
2202 			trans->pathmtu = params->spp_pathmtu;
2203 			sctp_assoc_sync_pmtu(asoc);
2204 		} else if (asoc) {
2205 			asoc->pathmtu = params->spp_pathmtu;
2206 			sctp_frag_point(sp, params->spp_pathmtu);
2207 		} else {
2208 			sp->pathmtu = params->spp_pathmtu;
2209 		}
2210 	}
2211 
2212 	if (pmtud_change) {
2213 		if (trans) {
2214 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2215 				(params->spp_flags & SPP_PMTUD_ENABLE);
2216 			trans->param_flags =
2217 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2218 			if (update) {
2219 				sctp_transport_pmtu(trans);
2220 				sctp_assoc_sync_pmtu(asoc);
2221 			}
2222 		} else if (asoc) {
2223 			asoc->param_flags =
2224 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2225 		} else {
2226 			sp->param_flags =
2227 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2228 		}
2229 	}
2230 
2231 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2232 	 * value of this field is ignored.  Note also that a value of zero
2233 	 * indicates the current setting should be left unchanged.
2234 	 */
2235 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2236 		if (trans) {
2237 			trans->sackdelay =
2238 				msecs_to_jiffies(params->spp_sackdelay);
2239 		} else if (asoc) {
2240 			asoc->sackdelay =
2241 				msecs_to_jiffies(params->spp_sackdelay);
2242 		} else {
2243 			sp->sackdelay = params->spp_sackdelay;
2244 		}
2245 	}
2246 
2247 	if (sackdelay_change) {
2248 		if (trans) {
2249 			trans->param_flags =
2250 				(trans->param_flags & ~SPP_SACKDELAY) |
2251 				sackdelay_change;
2252 		} else if (asoc) {
2253 			asoc->param_flags =
2254 				(asoc->param_flags & ~SPP_SACKDELAY) |
2255 				sackdelay_change;
2256 		} else {
2257 			sp->param_flags =
2258 				(sp->param_flags & ~SPP_SACKDELAY) |
2259 				sackdelay_change;
2260 		}
2261 	}
2262 
2263 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2264 	 * of this field is ignored.  Note also that a value of zero
2265 	 * indicates the current setting should be left unchanged.
2266 	 */
2267 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2268 		if (trans) {
2269 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2270 		} else if (asoc) {
2271 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2272 		} else {
2273 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2274 		}
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2281 					    char __user *optval, int optlen)
2282 {
2283 	struct sctp_paddrparams  params;
2284 	struct sctp_transport   *trans = NULL;
2285 	struct sctp_association *asoc = NULL;
2286 	struct sctp_sock        *sp = sctp_sk(sk);
2287 	int error;
2288 	int hb_change, pmtud_change, sackdelay_change;
2289 
2290 	if (optlen != sizeof(struct sctp_paddrparams))
2291 		return - EINVAL;
2292 
2293 	if (copy_from_user(&params, optval, optlen))
2294 		return -EFAULT;
2295 
2296 	/* Validate flags and value parameters. */
2297 	hb_change        = params.spp_flags & SPP_HB;
2298 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2299 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2300 
2301 	if (hb_change        == SPP_HB ||
2302 	    pmtud_change     == SPP_PMTUD ||
2303 	    sackdelay_change == SPP_SACKDELAY ||
2304 	    params.spp_sackdelay > 500 ||
2305 	    (params.spp_pathmtu
2306 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2307 		return -EINVAL;
2308 
2309 	/* If an address other than INADDR_ANY is specified, and
2310 	 * no transport is found, then the request is invalid.
2311 	 */
2312 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2313 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2314 					       params.spp_assoc_id);
2315 		if (!trans)
2316 			return -EINVAL;
2317 	}
2318 
2319 	/* Get association, if assoc_id != 0 and the socket is a one
2320 	 * to many style socket, and an association was not found, then
2321 	 * the id was invalid.
2322 	 */
2323 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2324 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2325 		return -EINVAL;
2326 
2327 	/* Heartbeat demand can only be sent on a transport or
2328 	 * association, but not a socket.
2329 	 */
2330 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2331 		return -EINVAL;
2332 
2333 	/* Process parameters. */
2334 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2335 					    hb_change, pmtud_change,
2336 					    sackdelay_change);
2337 
2338 	if (error)
2339 		return error;
2340 
2341 	/* If changes are for association, also apply parameters to each
2342 	 * transport.
2343 	 */
2344 	if (!trans && asoc) {
2345 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2346 				transports) {
2347 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2348 						    hb_change, pmtud_change,
2349 						    sackdelay_change);
2350 		}
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /*
2357  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2358  *
2359  * This option will effect the way delayed acks are performed.  This
2360  * option allows you to get or set the delayed ack time, in
2361  * milliseconds.  It also allows changing the delayed ack frequency.
2362  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2363  * the assoc_id is 0, then this sets or gets the endpoints default
2364  * values.  If the assoc_id field is non-zero, then the set or get
2365  * effects the specified association for the one to many model (the
2366  * assoc_id field is ignored by the one to one model).  Note that if
2367  * sack_delay or sack_freq are 0 when setting this option, then the
2368  * current values will remain unchanged.
2369  *
2370  * struct sctp_sack_info {
2371  *     sctp_assoc_t            sack_assoc_id;
2372  *     uint32_t                sack_delay;
2373  *     uint32_t                sack_freq;
2374  * };
2375  *
2376  * sack_assoc_id -  This parameter, indicates which association the user
2377  *    is performing an action upon.  Note that if this field's value is
2378  *    zero then the endpoints default value is changed (effecting future
2379  *    associations only).
2380  *
2381  * sack_delay -  This parameter contains the number of milliseconds that
2382  *    the user is requesting the delayed ACK timer be set to.  Note that
2383  *    this value is defined in the standard to be between 200 and 500
2384  *    milliseconds.
2385  *
2386  * sack_freq -  This parameter contains the number of packets that must
2387  *    be received before a sack is sent without waiting for the delay
2388  *    timer to expire.  The default value for this is 2, setting this
2389  *    value to 1 will disable the delayed sack algorithm.
2390  */
2391 
2392 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2393 					    char __user *optval, int optlen)
2394 {
2395 	struct sctp_sack_info    params;
2396 	struct sctp_transport   *trans = NULL;
2397 	struct sctp_association *asoc = NULL;
2398 	struct sctp_sock        *sp = sctp_sk(sk);
2399 
2400 	if (optlen == sizeof(struct sctp_sack_info)) {
2401 		if (copy_from_user(&params, optval, optlen))
2402 			return -EFAULT;
2403 
2404 		if (params.sack_delay == 0 && params.sack_freq == 0)
2405 			return 0;
2406 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2407 		printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value "
2408 		       "in delayed_ack socket option deprecated\n");
2409 		printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n");
2410 		if (copy_from_user(&params, optval, optlen))
2411 			return -EFAULT;
2412 
2413 		if (params.sack_delay == 0)
2414 			params.sack_freq = 1;
2415 		else
2416 			params.sack_freq = 0;
2417 	} else
2418 		return - EINVAL;
2419 
2420 	/* Validate value parameter. */
2421 	if (params.sack_delay > 500)
2422 		return -EINVAL;
2423 
2424 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2425 	 * to many style socket, and an association was not found, then
2426 	 * the id was invalid.
2427 	 */
2428 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2429 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2430 		return -EINVAL;
2431 
2432 	if (params.sack_delay) {
2433 		if (asoc) {
2434 			asoc->sackdelay =
2435 				msecs_to_jiffies(params.sack_delay);
2436 			asoc->param_flags =
2437 				(asoc->param_flags & ~SPP_SACKDELAY) |
2438 				SPP_SACKDELAY_ENABLE;
2439 		} else {
2440 			sp->sackdelay = params.sack_delay;
2441 			sp->param_flags =
2442 				(sp->param_flags & ~SPP_SACKDELAY) |
2443 				SPP_SACKDELAY_ENABLE;
2444 		}
2445 	}
2446 
2447 	if (params.sack_freq == 1) {
2448 		if (asoc) {
2449 			asoc->param_flags =
2450 				(asoc->param_flags & ~SPP_SACKDELAY) |
2451 				SPP_SACKDELAY_DISABLE;
2452 		} else {
2453 			sp->param_flags =
2454 				(sp->param_flags & ~SPP_SACKDELAY) |
2455 				SPP_SACKDELAY_DISABLE;
2456 		}
2457 	} else if (params.sack_freq > 1) {
2458 		if (asoc) {
2459 			asoc->sackfreq = params.sack_freq;
2460 			asoc->param_flags =
2461 				(asoc->param_flags & ~SPP_SACKDELAY) |
2462 				SPP_SACKDELAY_ENABLE;
2463 		} else {
2464 			sp->sackfreq = params.sack_freq;
2465 			sp->param_flags =
2466 				(sp->param_flags & ~SPP_SACKDELAY) |
2467 				SPP_SACKDELAY_ENABLE;
2468 		}
2469 	}
2470 
2471 	/* If change is for association, also apply to each transport. */
2472 	if (asoc) {
2473 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2474 				transports) {
2475 			if (params.sack_delay) {
2476 				trans->sackdelay =
2477 					msecs_to_jiffies(params.sack_delay);
2478 				trans->param_flags =
2479 					(trans->param_flags & ~SPP_SACKDELAY) |
2480 					SPP_SACKDELAY_ENABLE;
2481 			}
2482 			if (params.sack_freq == 1) {
2483 				trans->param_flags =
2484 					(trans->param_flags & ~SPP_SACKDELAY) |
2485 					SPP_SACKDELAY_DISABLE;
2486 			} else if (params.sack_freq > 1) {
2487 				trans->sackfreq = params.sack_freq;
2488 				trans->param_flags =
2489 					(trans->param_flags & ~SPP_SACKDELAY) |
2490 					SPP_SACKDELAY_ENABLE;
2491 			}
2492 		}
2493 	}
2494 
2495 	return 0;
2496 }
2497 
2498 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2499  *
2500  * Applications can specify protocol parameters for the default association
2501  * initialization.  The option name argument to setsockopt() and getsockopt()
2502  * is SCTP_INITMSG.
2503  *
2504  * Setting initialization parameters is effective only on an unconnected
2505  * socket (for UDP-style sockets only future associations are effected
2506  * by the change).  With TCP-style sockets, this option is inherited by
2507  * sockets derived from a listener socket.
2508  */
2509 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2510 {
2511 	struct sctp_initmsg sinit;
2512 	struct sctp_sock *sp = sctp_sk(sk);
2513 
2514 	if (optlen != sizeof(struct sctp_initmsg))
2515 		return -EINVAL;
2516 	if (copy_from_user(&sinit, optval, optlen))
2517 		return -EFAULT;
2518 
2519 	if (sinit.sinit_num_ostreams)
2520 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2521 	if (sinit.sinit_max_instreams)
2522 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2523 	if (sinit.sinit_max_attempts)
2524 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2525 	if (sinit.sinit_max_init_timeo)
2526 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2527 
2528 	return 0;
2529 }
2530 
2531 /*
2532  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2533  *
2534  *   Applications that wish to use the sendto() system call may wish to
2535  *   specify a default set of parameters that would normally be supplied
2536  *   through the inclusion of ancillary data.  This socket option allows
2537  *   such an application to set the default sctp_sndrcvinfo structure.
2538  *   The application that wishes to use this socket option simply passes
2539  *   in to this call the sctp_sndrcvinfo structure defined in Section
2540  *   5.2.2) The input parameters accepted by this call include
2541  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2542  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2543  *   to this call if the caller is using the UDP model.
2544  */
2545 static int sctp_setsockopt_default_send_param(struct sock *sk,
2546 						char __user *optval, int optlen)
2547 {
2548 	struct sctp_sndrcvinfo info;
2549 	struct sctp_association *asoc;
2550 	struct sctp_sock *sp = sctp_sk(sk);
2551 
2552 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2553 		return -EINVAL;
2554 	if (copy_from_user(&info, optval, optlen))
2555 		return -EFAULT;
2556 
2557 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2558 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2559 		return -EINVAL;
2560 
2561 	if (asoc) {
2562 		asoc->default_stream = info.sinfo_stream;
2563 		asoc->default_flags = info.sinfo_flags;
2564 		asoc->default_ppid = info.sinfo_ppid;
2565 		asoc->default_context = info.sinfo_context;
2566 		asoc->default_timetolive = info.sinfo_timetolive;
2567 	} else {
2568 		sp->default_stream = info.sinfo_stream;
2569 		sp->default_flags = info.sinfo_flags;
2570 		sp->default_ppid = info.sinfo_ppid;
2571 		sp->default_context = info.sinfo_context;
2572 		sp->default_timetolive = info.sinfo_timetolive;
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2579  *
2580  * Requests that the local SCTP stack use the enclosed peer address as
2581  * the association primary.  The enclosed address must be one of the
2582  * association peer's addresses.
2583  */
2584 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2585 					int optlen)
2586 {
2587 	struct sctp_prim prim;
2588 	struct sctp_transport *trans;
2589 
2590 	if (optlen != sizeof(struct sctp_prim))
2591 		return -EINVAL;
2592 
2593 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2594 		return -EFAULT;
2595 
2596 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2597 	if (!trans)
2598 		return -EINVAL;
2599 
2600 	sctp_assoc_set_primary(trans->asoc, trans);
2601 
2602 	return 0;
2603 }
2604 
2605 /*
2606  * 7.1.5 SCTP_NODELAY
2607  *
2608  * Turn on/off any Nagle-like algorithm.  This means that packets are
2609  * generally sent as soon as possible and no unnecessary delays are
2610  * introduced, at the cost of more packets in the network.  Expects an
2611  *  integer boolean flag.
2612  */
2613 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2614 					int optlen)
2615 {
2616 	int val;
2617 
2618 	if (optlen < sizeof(int))
2619 		return -EINVAL;
2620 	if (get_user(val, (int __user *)optval))
2621 		return -EFAULT;
2622 
2623 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2624 	return 0;
2625 }
2626 
2627 /*
2628  *
2629  * 7.1.1 SCTP_RTOINFO
2630  *
2631  * The protocol parameters used to initialize and bound retransmission
2632  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2633  * and modify these parameters.
2634  * All parameters are time values, in milliseconds.  A value of 0, when
2635  * modifying the parameters, indicates that the current value should not
2636  * be changed.
2637  *
2638  */
2639 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2640 	struct sctp_rtoinfo rtoinfo;
2641 	struct sctp_association *asoc;
2642 
2643 	if (optlen != sizeof (struct sctp_rtoinfo))
2644 		return -EINVAL;
2645 
2646 	if (copy_from_user(&rtoinfo, optval, optlen))
2647 		return -EFAULT;
2648 
2649 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2650 
2651 	/* Set the values to the specific association */
2652 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2653 		return -EINVAL;
2654 
2655 	if (asoc) {
2656 		if (rtoinfo.srto_initial != 0)
2657 			asoc->rto_initial =
2658 				msecs_to_jiffies(rtoinfo.srto_initial);
2659 		if (rtoinfo.srto_max != 0)
2660 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2661 		if (rtoinfo.srto_min != 0)
2662 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2663 	} else {
2664 		/* If there is no association or the association-id = 0
2665 		 * set the values to the endpoint.
2666 		 */
2667 		struct sctp_sock *sp = sctp_sk(sk);
2668 
2669 		if (rtoinfo.srto_initial != 0)
2670 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2671 		if (rtoinfo.srto_max != 0)
2672 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2673 		if (rtoinfo.srto_min != 0)
2674 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2675 	}
2676 
2677 	return 0;
2678 }
2679 
2680 /*
2681  *
2682  * 7.1.2 SCTP_ASSOCINFO
2683  *
2684  * This option is used to tune the maximum retransmission attempts
2685  * of the association.
2686  * Returns an error if the new association retransmission value is
2687  * greater than the sum of the retransmission value  of the peer.
2688  * See [SCTP] for more information.
2689  *
2690  */
2691 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2692 {
2693 
2694 	struct sctp_assocparams assocparams;
2695 	struct sctp_association *asoc;
2696 
2697 	if (optlen != sizeof(struct sctp_assocparams))
2698 		return -EINVAL;
2699 	if (copy_from_user(&assocparams, optval, optlen))
2700 		return -EFAULT;
2701 
2702 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2703 
2704 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2705 		return -EINVAL;
2706 
2707 	/* Set the values to the specific association */
2708 	if (asoc) {
2709 		if (assocparams.sasoc_asocmaxrxt != 0) {
2710 			__u32 path_sum = 0;
2711 			int   paths = 0;
2712 			struct sctp_transport *peer_addr;
2713 
2714 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2715 					transports) {
2716 				path_sum += peer_addr->pathmaxrxt;
2717 				paths++;
2718 			}
2719 
2720 			/* Only validate asocmaxrxt if we have more than
2721 			 * one path/transport.  We do this because path
2722 			 * retransmissions are only counted when we have more
2723 			 * then one path.
2724 			 */
2725 			if (paths > 1 &&
2726 			    assocparams.sasoc_asocmaxrxt > path_sum)
2727 				return -EINVAL;
2728 
2729 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2730 		}
2731 
2732 		if (assocparams.sasoc_cookie_life != 0) {
2733 			asoc->cookie_life.tv_sec =
2734 					assocparams.sasoc_cookie_life / 1000;
2735 			asoc->cookie_life.tv_usec =
2736 					(assocparams.sasoc_cookie_life % 1000)
2737 					* 1000;
2738 		}
2739 	} else {
2740 		/* Set the values to the endpoint */
2741 		struct sctp_sock *sp = sctp_sk(sk);
2742 
2743 		if (assocparams.sasoc_asocmaxrxt != 0)
2744 			sp->assocparams.sasoc_asocmaxrxt =
2745 						assocparams.sasoc_asocmaxrxt;
2746 		if (assocparams.sasoc_cookie_life != 0)
2747 			sp->assocparams.sasoc_cookie_life =
2748 						assocparams.sasoc_cookie_life;
2749 	}
2750 	return 0;
2751 }
2752 
2753 /*
2754  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2755  *
2756  * This socket option is a boolean flag which turns on or off mapped V4
2757  * addresses.  If this option is turned on and the socket is type
2758  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2759  * If this option is turned off, then no mapping will be done of V4
2760  * addresses and a user will receive both PF_INET6 and PF_INET type
2761  * addresses on the socket.
2762  */
2763 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2764 {
2765 	int val;
2766 	struct sctp_sock *sp = sctp_sk(sk);
2767 
2768 	if (optlen < sizeof(int))
2769 		return -EINVAL;
2770 	if (get_user(val, (int __user *)optval))
2771 		return -EFAULT;
2772 	if (val)
2773 		sp->v4mapped = 1;
2774 	else
2775 		sp->v4mapped = 0;
2776 
2777 	return 0;
2778 }
2779 
2780 /*
2781  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2782  * This option will get or set the maximum size to put in any outgoing
2783  * SCTP DATA chunk.  If a message is larger than this size it will be
2784  * fragmented by SCTP into the specified size.  Note that the underlying
2785  * SCTP implementation may fragment into smaller sized chunks when the
2786  * PMTU of the underlying association is smaller than the value set by
2787  * the user.  The default value for this option is '0' which indicates
2788  * the user is NOT limiting fragmentation and only the PMTU will effect
2789  * SCTP's choice of DATA chunk size.  Note also that values set larger
2790  * than the maximum size of an IP datagram will effectively let SCTP
2791  * control fragmentation (i.e. the same as setting this option to 0).
2792  *
2793  * The following structure is used to access and modify this parameter:
2794  *
2795  * struct sctp_assoc_value {
2796  *   sctp_assoc_t assoc_id;
2797  *   uint32_t assoc_value;
2798  * };
2799  *
2800  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2801  *    For one-to-many style sockets this parameter indicates which
2802  *    association the user is performing an action upon.  Note that if
2803  *    this field's value is zero then the endpoints default value is
2804  *    changed (effecting future associations only).
2805  * assoc_value:  This parameter specifies the maximum size in bytes.
2806  */
2807 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2808 {
2809 	struct sctp_assoc_value params;
2810 	struct sctp_association *asoc;
2811 	struct sctp_sock *sp = sctp_sk(sk);
2812 	int val;
2813 
2814 	if (optlen == sizeof(int)) {
2815 		printk(KERN_WARNING
2816 		   "SCTP: Use of int in maxseg socket option deprecated\n");
2817 		printk(KERN_WARNING
2818 		   "SCTP: Use struct sctp_assoc_value instead\n");
2819 		if (copy_from_user(&val, optval, optlen))
2820 			return -EFAULT;
2821 		params.assoc_id = 0;
2822 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2823 		if (copy_from_user(&params, optval, optlen))
2824 			return -EFAULT;
2825 		val = params.assoc_value;
2826 	} else
2827 		return -EINVAL;
2828 
2829 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2830 		return -EINVAL;
2831 
2832 	asoc = sctp_id2assoc(sk, params.assoc_id);
2833 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2834 		return -EINVAL;
2835 
2836 	if (asoc) {
2837 		if (val == 0) {
2838 			val = asoc->pathmtu;
2839 			val -= sp->pf->af->net_header_len;
2840 			val -= sizeof(struct sctphdr) +
2841 					sizeof(struct sctp_data_chunk);
2842 		}
2843 
2844 		asoc->frag_point = val;
2845 	} else {
2846 		sp->user_frag = val;
2847 
2848 		/* Update the frag_point of the existing associations. */
2849 		list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2850 			asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2851 		}
2852 	}
2853 
2854 	return 0;
2855 }
2856 
2857 
2858 /*
2859  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2860  *
2861  *   Requests that the peer mark the enclosed address as the association
2862  *   primary. The enclosed address must be one of the association's
2863  *   locally bound addresses. The following structure is used to make a
2864  *   set primary request:
2865  */
2866 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2867 					     int optlen)
2868 {
2869 	struct sctp_sock	*sp;
2870 	struct sctp_endpoint	*ep;
2871 	struct sctp_association	*asoc = NULL;
2872 	struct sctp_setpeerprim	prim;
2873 	struct sctp_chunk	*chunk;
2874 	int 			err;
2875 
2876 	sp = sctp_sk(sk);
2877 	ep = sp->ep;
2878 
2879 	if (!sctp_addip_enable)
2880 		return -EPERM;
2881 
2882 	if (optlen != sizeof(struct sctp_setpeerprim))
2883 		return -EINVAL;
2884 
2885 	if (copy_from_user(&prim, optval, optlen))
2886 		return -EFAULT;
2887 
2888 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2889 	if (!asoc)
2890 		return -EINVAL;
2891 
2892 	if (!asoc->peer.asconf_capable)
2893 		return -EPERM;
2894 
2895 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2896 		return -EPERM;
2897 
2898 	if (!sctp_state(asoc, ESTABLISHED))
2899 		return -ENOTCONN;
2900 
2901 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2902 		return -EADDRNOTAVAIL;
2903 
2904 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2905 	chunk = sctp_make_asconf_set_prim(asoc,
2906 					  (union sctp_addr *)&prim.sspp_addr);
2907 	if (!chunk)
2908 		return -ENOMEM;
2909 
2910 	err = sctp_send_asconf(asoc, chunk);
2911 
2912 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2913 
2914 	return err;
2915 }
2916 
2917 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2918 					  int optlen)
2919 {
2920 	struct sctp_setadaptation adaptation;
2921 
2922 	if (optlen != sizeof(struct sctp_setadaptation))
2923 		return -EINVAL;
2924 	if (copy_from_user(&adaptation, optval, optlen))
2925 		return -EFAULT;
2926 
2927 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2928 
2929 	return 0;
2930 }
2931 
2932 /*
2933  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2934  *
2935  * The context field in the sctp_sndrcvinfo structure is normally only
2936  * used when a failed message is retrieved holding the value that was
2937  * sent down on the actual send call.  This option allows the setting of
2938  * a default context on an association basis that will be received on
2939  * reading messages from the peer.  This is especially helpful in the
2940  * one-2-many model for an application to keep some reference to an
2941  * internal state machine that is processing messages on the
2942  * association.  Note that the setting of this value only effects
2943  * received messages from the peer and does not effect the value that is
2944  * saved with outbound messages.
2945  */
2946 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2947 				   int optlen)
2948 {
2949 	struct sctp_assoc_value params;
2950 	struct sctp_sock *sp;
2951 	struct sctp_association *asoc;
2952 
2953 	if (optlen != sizeof(struct sctp_assoc_value))
2954 		return -EINVAL;
2955 	if (copy_from_user(&params, optval, optlen))
2956 		return -EFAULT;
2957 
2958 	sp = sctp_sk(sk);
2959 
2960 	if (params.assoc_id != 0) {
2961 		asoc = sctp_id2assoc(sk, params.assoc_id);
2962 		if (!asoc)
2963 			return -EINVAL;
2964 		asoc->default_rcv_context = params.assoc_value;
2965 	} else {
2966 		sp->default_rcv_context = params.assoc_value;
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 /*
2973  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2974  *
2975  * This options will at a minimum specify if the implementation is doing
2976  * fragmented interleave.  Fragmented interleave, for a one to many
2977  * socket, is when subsequent calls to receive a message may return
2978  * parts of messages from different associations.  Some implementations
2979  * may allow you to turn this value on or off.  If so, when turned off,
2980  * no fragment interleave will occur (which will cause a head of line
2981  * blocking amongst multiple associations sharing the same one to many
2982  * socket).  When this option is turned on, then each receive call may
2983  * come from a different association (thus the user must receive data
2984  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2985  * association each receive belongs to.
2986  *
2987  * This option takes a boolean value.  A non-zero value indicates that
2988  * fragmented interleave is on.  A value of zero indicates that
2989  * fragmented interleave is off.
2990  *
2991  * Note that it is important that an implementation that allows this
2992  * option to be turned on, have it off by default.  Otherwise an unaware
2993  * application using the one to many model may become confused and act
2994  * incorrectly.
2995  */
2996 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2997 					       char __user *optval,
2998 					       int optlen)
2999 {
3000 	int val;
3001 
3002 	if (optlen != sizeof(int))
3003 		return -EINVAL;
3004 	if (get_user(val, (int __user *)optval))
3005 		return -EFAULT;
3006 
3007 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3008 
3009 	return 0;
3010 }
3011 
3012 /*
3013  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3014  *       (SCTP_PARTIAL_DELIVERY_POINT)
3015  *
3016  * This option will set or get the SCTP partial delivery point.  This
3017  * point is the size of a message where the partial delivery API will be
3018  * invoked to help free up rwnd space for the peer.  Setting this to a
3019  * lower value will cause partial deliveries to happen more often.  The
3020  * calls argument is an integer that sets or gets the partial delivery
3021  * point.  Note also that the call will fail if the user attempts to set
3022  * this value larger than the socket receive buffer size.
3023  *
3024  * Note that any single message having a length smaller than or equal to
3025  * the SCTP partial delivery point will be delivered in one single read
3026  * call as long as the user provided buffer is large enough to hold the
3027  * message.
3028  */
3029 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3030 						  char __user *optval,
3031 						  int optlen)
3032 {
3033 	u32 val;
3034 
3035 	if (optlen != sizeof(u32))
3036 		return -EINVAL;
3037 	if (get_user(val, (int __user *)optval))
3038 		return -EFAULT;
3039 
3040 	/* Note: We double the receive buffer from what the user sets
3041 	 * it to be, also initial rwnd is based on rcvbuf/2.
3042 	 */
3043 	if (val > (sk->sk_rcvbuf >> 1))
3044 		return -EINVAL;
3045 
3046 	sctp_sk(sk)->pd_point = val;
3047 
3048 	return 0; /* is this the right error code? */
3049 }
3050 
3051 /*
3052  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3053  *
3054  * This option will allow a user to change the maximum burst of packets
3055  * that can be emitted by this association.  Note that the default value
3056  * is 4, and some implementations may restrict this setting so that it
3057  * can only be lowered.
3058  *
3059  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3060  * future associations inheriting the socket value.
3061  */
3062 static int sctp_setsockopt_maxburst(struct sock *sk,
3063 				    char __user *optval,
3064 				    int optlen)
3065 {
3066 	struct sctp_assoc_value params;
3067 	struct sctp_sock *sp;
3068 	struct sctp_association *asoc;
3069 	int val;
3070 	int assoc_id = 0;
3071 
3072 	if (optlen == sizeof(int)) {
3073 		printk(KERN_WARNING
3074 		   "SCTP: Use of int in max_burst socket option deprecated\n");
3075 		printk(KERN_WARNING
3076 		   "SCTP: Use struct sctp_assoc_value instead\n");
3077 		if (copy_from_user(&val, optval, optlen))
3078 			return -EFAULT;
3079 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3080 		if (copy_from_user(&params, optval, optlen))
3081 			return -EFAULT;
3082 		val = params.assoc_value;
3083 		assoc_id = params.assoc_id;
3084 	} else
3085 		return -EINVAL;
3086 
3087 	sp = sctp_sk(sk);
3088 
3089 	if (assoc_id != 0) {
3090 		asoc = sctp_id2assoc(sk, assoc_id);
3091 		if (!asoc)
3092 			return -EINVAL;
3093 		asoc->max_burst = val;
3094 	} else
3095 		sp->max_burst = val;
3096 
3097 	return 0;
3098 }
3099 
3100 /*
3101  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3102  *
3103  * This set option adds a chunk type that the user is requesting to be
3104  * received only in an authenticated way.  Changes to the list of chunks
3105  * will only effect future associations on the socket.
3106  */
3107 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3108 				    char __user *optval,
3109 				    int optlen)
3110 {
3111 	struct sctp_authchunk val;
3112 
3113 	if (!sctp_auth_enable)
3114 		return -EACCES;
3115 
3116 	if (optlen != sizeof(struct sctp_authchunk))
3117 		return -EINVAL;
3118 	if (copy_from_user(&val, optval, optlen))
3119 		return -EFAULT;
3120 
3121 	switch (val.sauth_chunk) {
3122 		case SCTP_CID_INIT:
3123 		case SCTP_CID_INIT_ACK:
3124 		case SCTP_CID_SHUTDOWN_COMPLETE:
3125 		case SCTP_CID_AUTH:
3126 			return -EINVAL;
3127 	}
3128 
3129 	/* add this chunk id to the endpoint */
3130 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3131 }
3132 
3133 /*
3134  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3135  *
3136  * This option gets or sets the list of HMAC algorithms that the local
3137  * endpoint requires the peer to use.
3138  */
3139 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3140 				    char __user *optval,
3141 				    int optlen)
3142 {
3143 	struct sctp_hmacalgo *hmacs;
3144 	u32 idents;
3145 	int err;
3146 
3147 	if (!sctp_auth_enable)
3148 		return -EACCES;
3149 
3150 	if (optlen < sizeof(struct sctp_hmacalgo))
3151 		return -EINVAL;
3152 
3153 	hmacs = kmalloc(optlen, GFP_KERNEL);
3154 	if (!hmacs)
3155 		return -ENOMEM;
3156 
3157 	if (copy_from_user(hmacs, optval, optlen)) {
3158 		err = -EFAULT;
3159 		goto out;
3160 	}
3161 
3162 	idents = hmacs->shmac_num_idents;
3163 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3164 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3165 		err = -EINVAL;
3166 		goto out;
3167 	}
3168 
3169 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3170 out:
3171 	kfree(hmacs);
3172 	return err;
3173 }
3174 
3175 /*
3176  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3177  *
3178  * This option will set a shared secret key which is used to build an
3179  * association shared key.
3180  */
3181 static int sctp_setsockopt_auth_key(struct sock *sk,
3182 				    char __user *optval,
3183 				    int optlen)
3184 {
3185 	struct sctp_authkey *authkey;
3186 	struct sctp_association *asoc;
3187 	int ret;
3188 
3189 	if (!sctp_auth_enable)
3190 		return -EACCES;
3191 
3192 	if (optlen <= sizeof(struct sctp_authkey))
3193 		return -EINVAL;
3194 
3195 	authkey = kmalloc(optlen, GFP_KERNEL);
3196 	if (!authkey)
3197 		return -ENOMEM;
3198 
3199 	if (copy_from_user(authkey, optval, optlen)) {
3200 		ret = -EFAULT;
3201 		goto out;
3202 	}
3203 
3204 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3205 		ret = -EINVAL;
3206 		goto out;
3207 	}
3208 
3209 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3210 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3211 		ret = -EINVAL;
3212 		goto out;
3213 	}
3214 
3215 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3216 out:
3217 	kfree(authkey);
3218 	return ret;
3219 }
3220 
3221 /*
3222  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3223  *
3224  * This option will get or set the active shared key to be used to build
3225  * the association shared key.
3226  */
3227 static int sctp_setsockopt_active_key(struct sock *sk,
3228 					char __user *optval,
3229 					int optlen)
3230 {
3231 	struct sctp_authkeyid val;
3232 	struct sctp_association *asoc;
3233 
3234 	if (!sctp_auth_enable)
3235 		return -EACCES;
3236 
3237 	if (optlen != sizeof(struct sctp_authkeyid))
3238 		return -EINVAL;
3239 	if (copy_from_user(&val, optval, optlen))
3240 		return -EFAULT;
3241 
3242 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3243 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3244 		return -EINVAL;
3245 
3246 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3247 					val.scact_keynumber);
3248 }
3249 
3250 /*
3251  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3252  *
3253  * This set option will delete a shared secret key from use.
3254  */
3255 static int sctp_setsockopt_del_key(struct sock *sk,
3256 					char __user *optval,
3257 					int optlen)
3258 {
3259 	struct sctp_authkeyid val;
3260 	struct sctp_association *asoc;
3261 
3262 	if (!sctp_auth_enable)
3263 		return -EACCES;
3264 
3265 	if (optlen != sizeof(struct sctp_authkeyid))
3266 		return -EINVAL;
3267 	if (copy_from_user(&val, optval, optlen))
3268 		return -EFAULT;
3269 
3270 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3271 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3272 		return -EINVAL;
3273 
3274 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3275 				    val.scact_keynumber);
3276 
3277 }
3278 
3279 
3280 /* API 6.2 setsockopt(), getsockopt()
3281  *
3282  * Applications use setsockopt() and getsockopt() to set or retrieve
3283  * socket options.  Socket options are used to change the default
3284  * behavior of sockets calls.  They are described in Section 7.
3285  *
3286  * The syntax is:
3287  *
3288  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3289  *                    int __user *optlen);
3290  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3291  *                    int optlen);
3292  *
3293  *   sd      - the socket descript.
3294  *   level   - set to IPPROTO_SCTP for all SCTP options.
3295  *   optname - the option name.
3296  *   optval  - the buffer to store the value of the option.
3297  *   optlen  - the size of the buffer.
3298  */
3299 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3300 				char __user *optval, int optlen)
3301 {
3302 	int retval = 0;
3303 
3304 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3305 			  sk, optname);
3306 
3307 	/* I can hardly begin to describe how wrong this is.  This is
3308 	 * so broken as to be worse than useless.  The API draft
3309 	 * REALLY is NOT helpful here...  I am not convinced that the
3310 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3311 	 * are at all well-founded.
3312 	 */
3313 	if (level != SOL_SCTP) {
3314 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3315 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3316 		goto out_nounlock;
3317 	}
3318 
3319 	sctp_lock_sock(sk);
3320 
3321 	switch (optname) {
3322 	case SCTP_SOCKOPT_BINDX_ADD:
3323 		/* 'optlen' is the size of the addresses buffer. */
3324 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3325 					       optlen, SCTP_BINDX_ADD_ADDR);
3326 		break;
3327 
3328 	case SCTP_SOCKOPT_BINDX_REM:
3329 		/* 'optlen' is the size of the addresses buffer. */
3330 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3331 					       optlen, SCTP_BINDX_REM_ADDR);
3332 		break;
3333 
3334 	case SCTP_SOCKOPT_CONNECTX_OLD:
3335 		/* 'optlen' is the size of the addresses buffer. */
3336 		retval = sctp_setsockopt_connectx_old(sk,
3337 					    (struct sockaddr __user *)optval,
3338 					    optlen);
3339 		break;
3340 
3341 	case SCTP_SOCKOPT_CONNECTX:
3342 		/* 'optlen' is the size of the addresses buffer. */
3343 		retval = sctp_setsockopt_connectx(sk,
3344 					    (struct sockaddr __user *)optval,
3345 					    optlen);
3346 		break;
3347 
3348 	case SCTP_DISABLE_FRAGMENTS:
3349 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3350 		break;
3351 
3352 	case SCTP_EVENTS:
3353 		retval = sctp_setsockopt_events(sk, optval, optlen);
3354 		break;
3355 
3356 	case SCTP_AUTOCLOSE:
3357 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3358 		break;
3359 
3360 	case SCTP_PEER_ADDR_PARAMS:
3361 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3362 		break;
3363 
3364 	case SCTP_DELAYED_ACK:
3365 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3366 		break;
3367 	case SCTP_PARTIAL_DELIVERY_POINT:
3368 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3369 		break;
3370 
3371 	case SCTP_INITMSG:
3372 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3373 		break;
3374 	case SCTP_DEFAULT_SEND_PARAM:
3375 		retval = sctp_setsockopt_default_send_param(sk, optval,
3376 							    optlen);
3377 		break;
3378 	case SCTP_PRIMARY_ADDR:
3379 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3380 		break;
3381 	case SCTP_SET_PEER_PRIMARY_ADDR:
3382 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3383 		break;
3384 	case SCTP_NODELAY:
3385 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3386 		break;
3387 	case SCTP_RTOINFO:
3388 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3389 		break;
3390 	case SCTP_ASSOCINFO:
3391 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3392 		break;
3393 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3394 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3395 		break;
3396 	case SCTP_MAXSEG:
3397 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3398 		break;
3399 	case SCTP_ADAPTATION_LAYER:
3400 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3401 		break;
3402 	case SCTP_CONTEXT:
3403 		retval = sctp_setsockopt_context(sk, optval, optlen);
3404 		break;
3405 	case SCTP_FRAGMENT_INTERLEAVE:
3406 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3407 		break;
3408 	case SCTP_MAX_BURST:
3409 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3410 		break;
3411 	case SCTP_AUTH_CHUNK:
3412 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3413 		break;
3414 	case SCTP_HMAC_IDENT:
3415 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3416 		break;
3417 	case SCTP_AUTH_KEY:
3418 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3419 		break;
3420 	case SCTP_AUTH_ACTIVE_KEY:
3421 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3422 		break;
3423 	case SCTP_AUTH_DELETE_KEY:
3424 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3425 		break;
3426 	default:
3427 		retval = -ENOPROTOOPT;
3428 		break;
3429 	}
3430 
3431 	sctp_release_sock(sk);
3432 
3433 out_nounlock:
3434 	return retval;
3435 }
3436 
3437 /* API 3.1.6 connect() - UDP Style Syntax
3438  *
3439  * An application may use the connect() call in the UDP model to initiate an
3440  * association without sending data.
3441  *
3442  * The syntax is:
3443  *
3444  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3445  *
3446  * sd: the socket descriptor to have a new association added to.
3447  *
3448  * nam: the address structure (either struct sockaddr_in or struct
3449  *    sockaddr_in6 defined in RFC2553 [7]).
3450  *
3451  * len: the size of the address.
3452  */
3453 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3454 			     int addr_len)
3455 {
3456 	int err = 0;
3457 	struct sctp_af *af;
3458 
3459 	sctp_lock_sock(sk);
3460 
3461 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3462 			  __func__, sk, addr, addr_len);
3463 
3464 	/* Validate addr_len before calling common connect/connectx routine. */
3465 	af = sctp_get_af_specific(addr->sa_family);
3466 	if (!af || addr_len < af->sockaddr_len) {
3467 		err = -EINVAL;
3468 	} else {
3469 		/* Pass correct addr len to common routine (so it knows there
3470 		 * is only one address being passed.
3471 		 */
3472 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3473 	}
3474 
3475 	sctp_release_sock(sk);
3476 	return err;
3477 }
3478 
3479 /* FIXME: Write comments. */
3480 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3481 {
3482 	return -EOPNOTSUPP; /* STUB */
3483 }
3484 
3485 /* 4.1.4 accept() - TCP Style Syntax
3486  *
3487  * Applications use accept() call to remove an established SCTP
3488  * association from the accept queue of the endpoint.  A new socket
3489  * descriptor will be returned from accept() to represent the newly
3490  * formed association.
3491  */
3492 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3493 {
3494 	struct sctp_sock *sp;
3495 	struct sctp_endpoint *ep;
3496 	struct sock *newsk = NULL;
3497 	struct sctp_association *asoc;
3498 	long timeo;
3499 	int error = 0;
3500 
3501 	sctp_lock_sock(sk);
3502 
3503 	sp = sctp_sk(sk);
3504 	ep = sp->ep;
3505 
3506 	if (!sctp_style(sk, TCP)) {
3507 		error = -EOPNOTSUPP;
3508 		goto out;
3509 	}
3510 
3511 	if (!sctp_sstate(sk, LISTENING)) {
3512 		error = -EINVAL;
3513 		goto out;
3514 	}
3515 
3516 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3517 
3518 	error = sctp_wait_for_accept(sk, timeo);
3519 	if (error)
3520 		goto out;
3521 
3522 	/* We treat the list of associations on the endpoint as the accept
3523 	 * queue and pick the first association on the list.
3524 	 */
3525 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3526 
3527 	newsk = sp->pf->create_accept_sk(sk, asoc);
3528 	if (!newsk) {
3529 		error = -ENOMEM;
3530 		goto out;
3531 	}
3532 
3533 	/* Populate the fields of the newsk from the oldsk and migrate the
3534 	 * asoc to the newsk.
3535 	 */
3536 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3537 
3538 out:
3539 	sctp_release_sock(sk);
3540 	*err = error;
3541 	return newsk;
3542 }
3543 
3544 /* The SCTP ioctl handler. */
3545 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3546 {
3547 	return -ENOIOCTLCMD;
3548 }
3549 
3550 /* This is the function which gets called during socket creation to
3551  * initialized the SCTP-specific portion of the sock.
3552  * The sock structure should already be zero-filled memory.
3553  */
3554 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3555 {
3556 	struct sctp_endpoint *ep;
3557 	struct sctp_sock *sp;
3558 
3559 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3560 
3561 	sp = sctp_sk(sk);
3562 
3563 	/* Initialize the SCTP per socket area.  */
3564 	switch (sk->sk_type) {
3565 	case SOCK_SEQPACKET:
3566 		sp->type = SCTP_SOCKET_UDP;
3567 		break;
3568 	case SOCK_STREAM:
3569 		sp->type = SCTP_SOCKET_TCP;
3570 		break;
3571 	default:
3572 		return -ESOCKTNOSUPPORT;
3573 	}
3574 
3575 	/* Initialize default send parameters. These parameters can be
3576 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3577 	 */
3578 	sp->default_stream = 0;
3579 	sp->default_ppid = 0;
3580 	sp->default_flags = 0;
3581 	sp->default_context = 0;
3582 	sp->default_timetolive = 0;
3583 
3584 	sp->default_rcv_context = 0;
3585 	sp->max_burst = sctp_max_burst;
3586 
3587 	/* Initialize default setup parameters. These parameters
3588 	 * can be modified with the SCTP_INITMSG socket option or
3589 	 * overridden by the SCTP_INIT CMSG.
3590 	 */
3591 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3592 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3593 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3594 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3595 
3596 	/* Initialize default RTO related parameters.  These parameters can
3597 	 * be modified for with the SCTP_RTOINFO socket option.
3598 	 */
3599 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3600 	sp->rtoinfo.srto_max     = sctp_rto_max;
3601 	sp->rtoinfo.srto_min     = sctp_rto_min;
3602 
3603 	/* Initialize default association related parameters. These parameters
3604 	 * can be modified with the SCTP_ASSOCINFO socket option.
3605 	 */
3606 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3607 	sp->assocparams.sasoc_number_peer_destinations = 0;
3608 	sp->assocparams.sasoc_peer_rwnd = 0;
3609 	sp->assocparams.sasoc_local_rwnd = 0;
3610 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3611 
3612 	/* Initialize default event subscriptions. By default, all the
3613 	 * options are off.
3614 	 */
3615 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3616 
3617 	/* Default Peer Address Parameters.  These defaults can
3618 	 * be modified via SCTP_PEER_ADDR_PARAMS
3619 	 */
3620 	sp->hbinterval  = sctp_hb_interval;
3621 	sp->pathmaxrxt  = sctp_max_retrans_path;
3622 	sp->pathmtu     = 0; // allow default discovery
3623 	sp->sackdelay   = sctp_sack_timeout;
3624 	sp->sackfreq	= 2;
3625 	sp->param_flags = SPP_HB_ENABLE |
3626 			  SPP_PMTUD_ENABLE |
3627 			  SPP_SACKDELAY_ENABLE;
3628 
3629 	/* If enabled no SCTP message fragmentation will be performed.
3630 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3631 	 */
3632 	sp->disable_fragments = 0;
3633 
3634 	/* Enable Nagle algorithm by default.  */
3635 	sp->nodelay           = 0;
3636 
3637 	/* Enable by default. */
3638 	sp->v4mapped          = 1;
3639 
3640 	/* Auto-close idle associations after the configured
3641 	 * number of seconds.  A value of 0 disables this
3642 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3643 	 * for UDP-style sockets only.
3644 	 */
3645 	sp->autoclose         = 0;
3646 
3647 	/* User specified fragmentation limit. */
3648 	sp->user_frag         = 0;
3649 
3650 	sp->adaptation_ind = 0;
3651 
3652 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3653 
3654 	/* Control variables for partial data delivery. */
3655 	atomic_set(&sp->pd_mode, 0);
3656 	skb_queue_head_init(&sp->pd_lobby);
3657 	sp->frag_interleave = 0;
3658 
3659 	/* Create a per socket endpoint structure.  Even if we
3660 	 * change the data structure relationships, this may still
3661 	 * be useful for storing pre-connect address information.
3662 	 */
3663 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3664 	if (!ep)
3665 		return -ENOMEM;
3666 
3667 	sp->ep = ep;
3668 	sp->hmac = NULL;
3669 
3670 	SCTP_DBG_OBJCNT_INC(sock);
3671 	percpu_counter_inc(&sctp_sockets_allocated);
3672 
3673 	local_bh_disable();
3674 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3675 	local_bh_enable();
3676 
3677 	return 0;
3678 }
3679 
3680 /* Cleanup any SCTP per socket resources.  */
3681 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3682 {
3683 	struct sctp_endpoint *ep;
3684 
3685 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3686 
3687 	/* Release our hold on the endpoint. */
3688 	ep = sctp_sk(sk)->ep;
3689 	sctp_endpoint_free(ep);
3690 	percpu_counter_dec(&sctp_sockets_allocated);
3691 	local_bh_disable();
3692 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3693 	local_bh_enable();
3694 }
3695 
3696 /* API 4.1.7 shutdown() - TCP Style Syntax
3697  *     int shutdown(int socket, int how);
3698  *
3699  *     sd      - the socket descriptor of the association to be closed.
3700  *     how     - Specifies the type of shutdown.  The  values  are
3701  *               as follows:
3702  *               SHUT_RD
3703  *                     Disables further receive operations. No SCTP
3704  *                     protocol action is taken.
3705  *               SHUT_WR
3706  *                     Disables further send operations, and initiates
3707  *                     the SCTP shutdown sequence.
3708  *               SHUT_RDWR
3709  *                     Disables further send  and  receive  operations
3710  *                     and initiates the SCTP shutdown sequence.
3711  */
3712 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3713 {
3714 	struct sctp_endpoint *ep;
3715 	struct sctp_association *asoc;
3716 
3717 	if (!sctp_style(sk, TCP))
3718 		return;
3719 
3720 	if (how & SEND_SHUTDOWN) {
3721 		ep = sctp_sk(sk)->ep;
3722 		if (!list_empty(&ep->asocs)) {
3723 			asoc = list_entry(ep->asocs.next,
3724 					  struct sctp_association, asocs);
3725 			sctp_primitive_SHUTDOWN(asoc, NULL);
3726 		}
3727 	}
3728 }
3729 
3730 /* 7.2.1 Association Status (SCTP_STATUS)
3731 
3732  * Applications can retrieve current status information about an
3733  * association, including association state, peer receiver window size,
3734  * number of unacked data chunks, and number of data chunks pending
3735  * receipt.  This information is read-only.
3736  */
3737 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3738 				       char __user *optval,
3739 				       int __user *optlen)
3740 {
3741 	struct sctp_status status;
3742 	struct sctp_association *asoc = NULL;
3743 	struct sctp_transport *transport;
3744 	sctp_assoc_t associd;
3745 	int retval = 0;
3746 
3747 	if (len < sizeof(status)) {
3748 		retval = -EINVAL;
3749 		goto out;
3750 	}
3751 
3752 	len = sizeof(status);
3753 	if (copy_from_user(&status, optval, len)) {
3754 		retval = -EFAULT;
3755 		goto out;
3756 	}
3757 
3758 	associd = status.sstat_assoc_id;
3759 	asoc = sctp_id2assoc(sk, associd);
3760 	if (!asoc) {
3761 		retval = -EINVAL;
3762 		goto out;
3763 	}
3764 
3765 	transport = asoc->peer.primary_path;
3766 
3767 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3768 	status.sstat_state = asoc->state;
3769 	status.sstat_rwnd =  asoc->peer.rwnd;
3770 	status.sstat_unackdata = asoc->unack_data;
3771 
3772 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3773 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3774 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3775 	status.sstat_fragmentation_point = asoc->frag_point;
3776 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3777 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3778 			transport->af_specific->sockaddr_len);
3779 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3780 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3781 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3782 	status.sstat_primary.spinfo_state = transport->state;
3783 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3784 	status.sstat_primary.spinfo_srtt = transport->srtt;
3785 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3786 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3787 
3788 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3789 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3790 
3791 	if (put_user(len, optlen)) {
3792 		retval = -EFAULT;
3793 		goto out;
3794 	}
3795 
3796 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3797 			  len, status.sstat_state, status.sstat_rwnd,
3798 			  status.sstat_assoc_id);
3799 
3800 	if (copy_to_user(optval, &status, len)) {
3801 		retval = -EFAULT;
3802 		goto out;
3803 	}
3804 
3805 out:
3806 	return (retval);
3807 }
3808 
3809 
3810 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3811  *
3812  * Applications can retrieve information about a specific peer address
3813  * of an association, including its reachability state, congestion
3814  * window, and retransmission timer values.  This information is
3815  * read-only.
3816  */
3817 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3818 					  char __user *optval,
3819 					  int __user *optlen)
3820 {
3821 	struct sctp_paddrinfo pinfo;
3822 	struct sctp_transport *transport;
3823 	int retval = 0;
3824 
3825 	if (len < sizeof(pinfo)) {
3826 		retval = -EINVAL;
3827 		goto out;
3828 	}
3829 
3830 	len = sizeof(pinfo);
3831 	if (copy_from_user(&pinfo, optval, len)) {
3832 		retval = -EFAULT;
3833 		goto out;
3834 	}
3835 
3836 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3837 					   pinfo.spinfo_assoc_id);
3838 	if (!transport)
3839 		return -EINVAL;
3840 
3841 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3842 	pinfo.spinfo_state = transport->state;
3843 	pinfo.spinfo_cwnd = transport->cwnd;
3844 	pinfo.spinfo_srtt = transport->srtt;
3845 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3846 	pinfo.spinfo_mtu = transport->pathmtu;
3847 
3848 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3849 		pinfo.spinfo_state = SCTP_ACTIVE;
3850 
3851 	if (put_user(len, optlen)) {
3852 		retval = -EFAULT;
3853 		goto out;
3854 	}
3855 
3856 	if (copy_to_user(optval, &pinfo, len)) {
3857 		retval = -EFAULT;
3858 		goto out;
3859 	}
3860 
3861 out:
3862 	return (retval);
3863 }
3864 
3865 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3866  *
3867  * This option is a on/off flag.  If enabled no SCTP message
3868  * fragmentation will be performed.  Instead if a message being sent
3869  * exceeds the current PMTU size, the message will NOT be sent and
3870  * instead a error will be indicated to the user.
3871  */
3872 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3873 					char __user *optval, int __user *optlen)
3874 {
3875 	int val;
3876 
3877 	if (len < sizeof(int))
3878 		return -EINVAL;
3879 
3880 	len = sizeof(int);
3881 	val = (sctp_sk(sk)->disable_fragments == 1);
3882 	if (put_user(len, optlen))
3883 		return -EFAULT;
3884 	if (copy_to_user(optval, &val, len))
3885 		return -EFAULT;
3886 	return 0;
3887 }
3888 
3889 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3890  *
3891  * This socket option is used to specify various notifications and
3892  * ancillary data the user wishes to receive.
3893  */
3894 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3895 				  int __user *optlen)
3896 {
3897 	if (len < sizeof(struct sctp_event_subscribe))
3898 		return -EINVAL;
3899 	len = sizeof(struct sctp_event_subscribe);
3900 	if (put_user(len, optlen))
3901 		return -EFAULT;
3902 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3903 		return -EFAULT;
3904 	return 0;
3905 }
3906 
3907 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3908  *
3909  * This socket option is applicable to the UDP-style socket only.  When
3910  * set it will cause associations that are idle for more than the
3911  * specified number of seconds to automatically close.  An association
3912  * being idle is defined an association that has NOT sent or received
3913  * user data.  The special value of '0' indicates that no automatic
3914  * close of any associations should be performed.  The option expects an
3915  * integer defining the number of seconds of idle time before an
3916  * association is closed.
3917  */
3918 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3919 {
3920 	/* Applicable to UDP-style socket only */
3921 	if (sctp_style(sk, TCP))
3922 		return -EOPNOTSUPP;
3923 	if (len < sizeof(int))
3924 		return -EINVAL;
3925 	len = sizeof(int);
3926 	if (put_user(len, optlen))
3927 		return -EFAULT;
3928 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3929 		return -EFAULT;
3930 	return 0;
3931 }
3932 
3933 /* Helper routine to branch off an association to a new socket.  */
3934 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3935 				struct socket **sockp)
3936 {
3937 	struct sock *sk = asoc->base.sk;
3938 	struct socket *sock;
3939 	struct sctp_af *af;
3940 	int err = 0;
3941 
3942 	/* An association cannot be branched off from an already peeled-off
3943 	 * socket, nor is this supported for tcp style sockets.
3944 	 */
3945 	if (!sctp_style(sk, UDP))
3946 		return -EINVAL;
3947 
3948 	/* Create a new socket.  */
3949 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3950 	if (err < 0)
3951 		return err;
3952 
3953 	sctp_copy_sock(sock->sk, sk, asoc);
3954 
3955 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3956 	 * Set the daddr and initialize id to something more random
3957 	 */
3958 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3959 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3960 
3961 	/* Populate the fields of the newsk from the oldsk and migrate the
3962 	 * asoc to the newsk.
3963 	 */
3964 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3965 
3966 	*sockp = sock;
3967 
3968 	return err;
3969 }
3970 
3971 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3972 {
3973 	sctp_peeloff_arg_t peeloff;
3974 	struct socket *newsock;
3975 	int retval = 0;
3976 	struct sctp_association *asoc;
3977 
3978 	if (len < sizeof(sctp_peeloff_arg_t))
3979 		return -EINVAL;
3980 	len = sizeof(sctp_peeloff_arg_t);
3981 	if (copy_from_user(&peeloff, optval, len))
3982 		return -EFAULT;
3983 
3984 	asoc = sctp_id2assoc(sk, peeloff.associd);
3985 	if (!asoc) {
3986 		retval = -EINVAL;
3987 		goto out;
3988 	}
3989 
3990 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3991 
3992 	retval = sctp_do_peeloff(asoc, &newsock);
3993 	if (retval < 0)
3994 		goto out;
3995 
3996 	/* Map the socket to an unused fd that can be returned to the user.  */
3997 	retval = sock_map_fd(newsock, 0);
3998 	if (retval < 0) {
3999 		sock_release(newsock);
4000 		goto out;
4001 	}
4002 
4003 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4004 			  __func__, sk, asoc, newsock->sk, retval);
4005 
4006 	/* Return the fd mapped to the new socket.  */
4007 	peeloff.sd = retval;
4008 	if (put_user(len, optlen))
4009 		return -EFAULT;
4010 	if (copy_to_user(optval, &peeloff, len))
4011 		retval = -EFAULT;
4012 
4013 out:
4014 	return retval;
4015 }
4016 
4017 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4018  *
4019  * Applications can enable or disable heartbeats for any peer address of
4020  * an association, modify an address's heartbeat interval, force a
4021  * heartbeat to be sent immediately, and adjust the address's maximum
4022  * number of retransmissions sent before an address is considered
4023  * unreachable.  The following structure is used to access and modify an
4024  * address's parameters:
4025  *
4026  *  struct sctp_paddrparams {
4027  *     sctp_assoc_t            spp_assoc_id;
4028  *     struct sockaddr_storage spp_address;
4029  *     uint32_t                spp_hbinterval;
4030  *     uint16_t                spp_pathmaxrxt;
4031  *     uint32_t                spp_pathmtu;
4032  *     uint32_t                spp_sackdelay;
4033  *     uint32_t                spp_flags;
4034  * };
4035  *
4036  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4037  *                     application, and identifies the association for
4038  *                     this query.
4039  *   spp_address     - This specifies which address is of interest.
4040  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4041  *                     in milliseconds.  If a  value of zero
4042  *                     is present in this field then no changes are to
4043  *                     be made to this parameter.
4044  *   spp_pathmaxrxt  - This contains the maximum number of
4045  *                     retransmissions before this address shall be
4046  *                     considered unreachable. If a  value of zero
4047  *                     is present in this field then no changes are to
4048  *                     be made to this parameter.
4049  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4050  *                     specified here will be the "fixed" path mtu.
4051  *                     Note that if the spp_address field is empty
4052  *                     then all associations on this address will
4053  *                     have this fixed path mtu set upon them.
4054  *
4055  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4056  *                     the number of milliseconds that sacks will be delayed
4057  *                     for. This value will apply to all addresses of an
4058  *                     association if the spp_address field is empty. Note
4059  *                     also, that if delayed sack is enabled and this
4060  *                     value is set to 0, no change is made to the last
4061  *                     recorded delayed sack timer value.
4062  *
4063  *   spp_flags       - These flags are used to control various features
4064  *                     on an association. The flag field may contain
4065  *                     zero or more of the following options.
4066  *
4067  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4068  *                     specified address. Note that if the address
4069  *                     field is empty all addresses for the association
4070  *                     have heartbeats enabled upon them.
4071  *
4072  *                     SPP_HB_DISABLE - Disable heartbeats on the
4073  *                     speicifed address. Note that if the address
4074  *                     field is empty all addresses for the association
4075  *                     will have their heartbeats disabled. Note also
4076  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4077  *                     mutually exclusive, only one of these two should
4078  *                     be specified. Enabling both fields will have
4079  *                     undetermined results.
4080  *
4081  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4082  *                     to be made immediately.
4083  *
4084  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4085  *                     discovery upon the specified address. Note that
4086  *                     if the address feild is empty then all addresses
4087  *                     on the association are effected.
4088  *
4089  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4090  *                     discovery upon the specified address. Note that
4091  *                     if the address feild is empty then all addresses
4092  *                     on the association are effected. Not also that
4093  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4094  *                     exclusive. Enabling both will have undetermined
4095  *                     results.
4096  *
4097  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4098  *                     on delayed sack. The time specified in spp_sackdelay
4099  *                     is used to specify the sack delay for this address. Note
4100  *                     that if spp_address is empty then all addresses will
4101  *                     enable delayed sack and take on the sack delay
4102  *                     value specified in spp_sackdelay.
4103  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4104  *                     off delayed sack. If the spp_address field is blank then
4105  *                     delayed sack is disabled for the entire association. Note
4106  *                     also that this field is mutually exclusive to
4107  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4108  *                     results.
4109  */
4110 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4111 					    char __user *optval, int __user *optlen)
4112 {
4113 	struct sctp_paddrparams  params;
4114 	struct sctp_transport   *trans = NULL;
4115 	struct sctp_association *asoc = NULL;
4116 	struct sctp_sock        *sp = sctp_sk(sk);
4117 
4118 	if (len < sizeof(struct sctp_paddrparams))
4119 		return -EINVAL;
4120 	len = sizeof(struct sctp_paddrparams);
4121 	if (copy_from_user(&params, optval, len))
4122 		return -EFAULT;
4123 
4124 	/* If an address other than INADDR_ANY is specified, and
4125 	 * no transport is found, then the request is invalid.
4126 	 */
4127 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4128 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4129 					       params.spp_assoc_id);
4130 		if (!trans) {
4131 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4132 			return -EINVAL;
4133 		}
4134 	}
4135 
4136 	/* Get association, if assoc_id != 0 and the socket is a one
4137 	 * to many style socket, and an association was not found, then
4138 	 * the id was invalid.
4139 	 */
4140 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4141 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4142 		SCTP_DEBUG_PRINTK("Failed no association\n");
4143 		return -EINVAL;
4144 	}
4145 
4146 	if (trans) {
4147 		/* Fetch transport values. */
4148 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4149 		params.spp_pathmtu    = trans->pathmtu;
4150 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4151 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4152 
4153 		/*draft-11 doesn't say what to return in spp_flags*/
4154 		params.spp_flags      = trans->param_flags;
4155 	} else if (asoc) {
4156 		/* Fetch association values. */
4157 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4158 		params.spp_pathmtu    = asoc->pathmtu;
4159 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4160 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4161 
4162 		/*draft-11 doesn't say what to return in spp_flags*/
4163 		params.spp_flags      = asoc->param_flags;
4164 	} else {
4165 		/* Fetch socket values. */
4166 		params.spp_hbinterval = sp->hbinterval;
4167 		params.spp_pathmtu    = sp->pathmtu;
4168 		params.spp_sackdelay  = sp->sackdelay;
4169 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4170 
4171 		/*draft-11 doesn't say what to return in spp_flags*/
4172 		params.spp_flags      = sp->param_flags;
4173 	}
4174 
4175 	if (copy_to_user(optval, &params, len))
4176 		return -EFAULT;
4177 
4178 	if (put_user(len, optlen))
4179 		return -EFAULT;
4180 
4181 	return 0;
4182 }
4183 
4184 /*
4185  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4186  *
4187  * This option will effect the way delayed acks are performed.  This
4188  * option allows you to get or set the delayed ack time, in
4189  * milliseconds.  It also allows changing the delayed ack frequency.
4190  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4191  * the assoc_id is 0, then this sets or gets the endpoints default
4192  * values.  If the assoc_id field is non-zero, then the set or get
4193  * effects the specified association for the one to many model (the
4194  * assoc_id field is ignored by the one to one model).  Note that if
4195  * sack_delay or sack_freq are 0 when setting this option, then the
4196  * current values will remain unchanged.
4197  *
4198  * struct sctp_sack_info {
4199  *     sctp_assoc_t            sack_assoc_id;
4200  *     uint32_t                sack_delay;
4201  *     uint32_t                sack_freq;
4202  * };
4203  *
4204  * sack_assoc_id -  This parameter, indicates which association the user
4205  *    is performing an action upon.  Note that if this field's value is
4206  *    zero then the endpoints default value is changed (effecting future
4207  *    associations only).
4208  *
4209  * sack_delay -  This parameter contains the number of milliseconds that
4210  *    the user is requesting the delayed ACK timer be set to.  Note that
4211  *    this value is defined in the standard to be between 200 and 500
4212  *    milliseconds.
4213  *
4214  * sack_freq -  This parameter contains the number of packets that must
4215  *    be received before a sack is sent without waiting for the delay
4216  *    timer to expire.  The default value for this is 2, setting this
4217  *    value to 1 will disable the delayed sack algorithm.
4218  */
4219 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4220 					    char __user *optval,
4221 					    int __user *optlen)
4222 {
4223 	struct sctp_sack_info    params;
4224 	struct sctp_association *asoc = NULL;
4225 	struct sctp_sock        *sp = sctp_sk(sk);
4226 
4227 	if (len >= sizeof(struct sctp_sack_info)) {
4228 		len = sizeof(struct sctp_sack_info);
4229 
4230 		if (copy_from_user(&params, optval, len))
4231 			return -EFAULT;
4232 	} else if (len == sizeof(struct sctp_assoc_value)) {
4233 		printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value "
4234 		       "in delayed_ack socket option deprecated\n");
4235 		printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n");
4236 		if (copy_from_user(&params, optval, len))
4237 			return -EFAULT;
4238 	} else
4239 		return - EINVAL;
4240 
4241 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4242 	 * to many style socket, and an association was not found, then
4243 	 * the id was invalid.
4244 	 */
4245 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4246 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4247 		return -EINVAL;
4248 
4249 	if (asoc) {
4250 		/* Fetch association values. */
4251 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4252 			params.sack_delay = jiffies_to_msecs(
4253 				asoc->sackdelay);
4254 			params.sack_freq = asoc->sackfreq;
4255 
4256 		} else {
4257 			params.sack_delay = 0;
4258 			params.sack_freq = 1;
4259 		}
4260 	} else {
4261 		/* Fetch socket values. */
4262 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4263 			params.sack_delay  = sp->sackdelay;
4264 			params.sack_freq = sp->sackfreq;
4265 		} else {
4266 			params.sack_delay  = 0;
4267 			params.sack_freq = 1;
4268 		}
4269 	}
4270 
4271 	if (copy_to_user(optval, &params, len))
4272 		return -EFAULT;
4273 
4274 	if (put_user(len, optlen))
4275 		return -EFAULT;
4276 
4277 	return 0;
4278 }
4279 
4280 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4281  *
4282  * Applications can specify protocol parameters for the default association
4283  * initialization.  The option name argument to setsockopt() and getsockopt()
4284  * is SCTP_INITMSG.
4285  *
4286  * Setting initialization parameters is effective only on an unconnected
4287  * socket (for UDP-style sockets only future associations are effected
4288  * by the change).  With TCP-style sockets, this option is inherited by
4289  * sockets derived from a listener socket.
4290  */
4291 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4292 {
4293 	if (len < sizeof(struct sctp_initmsg))
4294 		return -EINVAL;
4295 	len = sizeof(struct sctp_initmsg);
4296 	if (put_user(len, optlen))
4297 		return -EFAULT;
4298 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4299 		return -EFAULT;
4300 	return 0;
4301 }
4302 
4303 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4304 					      char __user *optval,
4305 					      int __user *optlen)
4306 {
4307 	sctp_assoc_t id;
4308 	struct sctp_association *asoc;
4309 	struct list_head *pos;
4310 	int cnt = 0;
4311 
4312 	if (len < sizeof(sctp_assoc_t))
4313 		return -EINVAL;
4314 
4315 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4316 		return -EFAULT;
4317 
4318 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD "
4319 			    "socket option deprecated\n");
4320 	/* For UDP-style sockets, id specifies the association to query.  */
4321 	asoc = sctp_id2assoc(sk, id);
4322 	if (!asoc)
4323 		return -EINVAL;
4324 
4325 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4326 		cnt ++;
4327 	}
4328 
4329 	return cnt;
4330 }
4331 
4332 /*
4333  * Old API for getting list of peer addresses. Does not work for 32-bit
4334  * programs running on a 64-bit kernel
4335  */
4336 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4337 					  char __user *optval,
4338 					  int __user *optlen)
4339 {
4340 	struct sctp_association *asoc;
4341 	int cnt = 0;
4342 	struct sctp_getaddrs_old getaddrs;
4343 	struct sctp_transport *from;
4344 	void __user *to;
4345 	union sctp_addr temp;
4346 	struct sctp_sock *sp = sctp_sk(sk);
4347 	int addrlen;
4348 
4349 	if (len < sizeof(struct sctp_getaddrs_old))
4350 		return -EINVAL;
4351 
4352 	len = sizeof(struct sctp_getaddrs_old);
4353 
4354 	if (copy_from_user(&getaddrs, optval, len))
4355 		return -EFAULT;
4356 
4357 	if (getaddrs.addr_num <= 0) return -EINVAL;
4358 
4359 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD "
4360 			    "socket option deprecated\n");
4361 
4362 	/* For UDP-style sockets, id specifies the association to query.  */
4363 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4364 	if (!asoc)
4365 		return -EINVAL;
4366 
4367 	to = (void __user *)getaddrs.addrs;
4368 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4369 				transports) {
4370 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4371 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4372 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4373 		if (copy_to_user(to, &temp, addrlen))
4374 			return -EFAULT;
4375 		to += addrlen ;
4376 		cnt ++;
4377 		if (cnt >= getaddrs.addr_num) break;
4378 	}
4379 	getaddrs.addr_num = cnt;
4380 	if (put_user(len, optlen))
4381 		return -EFAULT;
4382 	if (copy_to_user(optval, &getaddrs, len))
4383 		return -EFAULT;
4384 
4385 	return 0;
4386 }
4387 
4388 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4389 				      char __user *optval, int __user *optlen)
4390 {
4391 	struct sctp_association *asoc;
4392 	int cnt = 0;
4393 	struct sctp_getaddrs getaddrs;
4394 	struct sctp_transport *from;
4395 	void __user *to;
4396 	union sctp_addr temp;
4397 	struct sctp_sock *sp = sctp_sk(sk);
4398 	int addrlen;
4399 	size_t space_left;
4400 	int bytes_copied;
4401 
4402 	if (len < sizeof(struct sctp_getaddrs))
4403 		return -EINVAL;
4404 
4405 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4406 		return -EFAULT;
4407 
4408 	/* For UDP-style sockets, id specifies the association to query.  */
4409 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4410 	if (!asoc)
4411 		return -EINVAL;
4412 
4413 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4414 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4415 
4416 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4417 				transports) {
4418 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4419 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4420 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4421 		if (space_left < addrlen)
4422 			return -ENOMEM;
4423 		if (copy_to_user(to, &temp, addrlen))
4424 			return -EFAULT;
4425 		to += addrlen;
4426 		cnt++;
4427 		space_left -= addrlen;
4428 	}
4429 
4430 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4431 		return -EFAULT;
4432 	bytes_copied = ((char __user *)to) - optval;
4433 	if (put_user(bytes_copied, optlen))
4434 		return -EFAULT;
4435 
4436 	return 0;
4437 }
4438 
4439 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4440 					       char __user *optval,
4441 					       int __user *optlen)
4442 {
4443 	sctp_assoc_t id;
4444 	struct sctp_bind_addr *bp;
4445 	struct sctp_association *asoc;
4446 	struct sctp_sockaddr_entry *addr;
4447 	int cnt = 0;
4448 
4449 	if (len < sizeof(sctp_assoc_t))
4450 		return -EINVAL;
4451 
4452 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4453 		return -EFAULT;
4454 
4455 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD "
4456 			    "socket option deprecated\n");
4457 
4458 	/*
4459 	 *  For UDP-style sockets, id specifies the association to query.
4460 	 *  If the id field is set to the value '0' then the locally bound
4461 	 *  addresses are returned without regard to any particular
4462 	 *  association.
4463 	 */
4464 	if (0 == id) {
4465 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4466 	} else {
4467 		asoc = sctp_id2assoc(sk, id);
4468 		if (!asoc)
4469 			return -EINVAL;
4470 		bp = &asoc->base.bind_addr;
4471 	}
4472 
4473 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4474 	 * addresses from the global local address list.
4475 	 */
4476 	if (sctp_list_single_entry(&bp->address_list)) {
4477 		addr = list_entry(bp->address_list.next,
4478 				  struct sctp_sockaddr_entry, list);
4479 		if (sctp_is_any(sk, &addr->a)) {
4480 			rcu_read_lock();
4481 			list_for_each_entry_rcu(addr,
4482 						&sctp_local_addr_list, list) {
4483 				if (!addr->valid)
4484 					continue;
4485 
4486 				if ((PF_INET == sk->sk_family) &&
4487 				    (AF_INET6 == addr->a.sa.sa_family))
4488 					continue;
4489 
4490 				if ((PF_INET6 == sk->sk_family) &&
4491 				    inet_v6_ipv6only(sk) &&
4492 				    (AF_INET == addr->a.sa.sa_family))
4493 					continue;
4494 
4495 				cnt++;
4496 			}
4497 			rcu_read_unlock();
4498 		} else {
4499 			cnt = 1;
4500 		}
4501 		goto done;
4502 	}
4503 
4504 	/* Protection on the bound address list is not needed,
4505 	 * since in the socket option context we hold the socket lock,
4506 	 * so there is no way that the bound address list can change.
4507 	 */
4508 	list_for_each_entry(addr, &bp->address_list, list) {
4509 		cnt ++;
4510 	}
4511 done:
4512 	return cnt;
4513 }
4514 
4515 /* Helper function that copies local addresses to user and returns the number
4516  * of addresses copied.
4517  */
4518 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4519 					int max_addrs, void *to,
4520 					int *bytes_copied)
4521 {
4522 	struct sctp_sockaddr_entry *addr;
4523 	union sctp_addr temp;
4524 	int cnt = 0;
4525 	int addrlen;
4526 
4527 	rcu_read_lock();
4528 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4529 		if (!addr->valid)
4530 			continue;
4531 
4532 		if ((PF_INET == sk->sk_family) &&
4533 		    (AF_INET6 == addr->a.sa.sa_family))
4534 			continue;
4535 		if ((PF_INET6 == sk->sk_family) &&
4536 		    inet_v6_ipv6only(sk) &&
4537 		    (AF_INET == addr->a.sa.sa_family))
4538 			continue;
4539 		memcpy(&temp, &addr->a, sizeof(temp));
4540 		if (!temp.v4.sin_port)
4541 			temp.v4.sin_port = htons(port);
4542 
4543 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4544 								&temp);
4545 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4546 		memcpy(to, &temp, addrlen);
4547 
4548 		to += addrlen;
4549 		*bytes_copied += addrlen;
4550 		cnt ++;
4551 		if (cnt >= max_addrs) break;
4552 	}
4553 	rcu_read_unlock();
4554 
4555 	return cnt;
4556 }
4557 
4558 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4559 			    size_t space_left, int *bytes_copied)
4560 {
4561 	struct sctp_sockaddr_entry *addr;
4562 	union sctp_addr temp;
4563 	int cnt = 0;
4564 	int addrlen;
4565 
4566 	rcu_read_lock();
4567 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4568 		if (!addr->valid)
4569 			continue;
4570 
4571 		if ((PF_INET == sk->sk_family) &&
4572 		    (AF_INET6 == addr->a.sa.sa_family))
4573 			continue;
4574 		if ((PF_INET6 == sk->sk_family) &&
4575 		    inet_v6_ipv6only(sk) &&
4576 		    (AF_INET == addr->a.sa.sa_family))
4577 			continue;
4578 		memcpy(&temp, &addr->a, sizeof(temp));
4579 		if (!temp.v4.sin_port)
4580 			temp.v4.sin_port = htons(port);
4581 
4582 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4583 								&temp);
4584 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4585 		if (space_left < addrlen) {
4586 			cnt =  -ENOMEM;
4587 			break;
4588 		}
4589 		memcpy(to, &temp, addrlen);
4590 
4591 		to += addrlen;
4592 		cnt ++;
4593 		space_left -= addrlen;
4594 		*bytes_copied += addrlen;
4595 	}
4596 	rcu_read_unlock();
4597 
4598 	return cnt;
4599 }
4600 
4601 /* Old API for getting list of local addresses. Does not work for 32-bit
4602  * programs running on a 64-bit kernel
4603  */
4604 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4605 					   char __user *optval, int __user *optlen)
4606 {
4607 	struct sctp_bind_addr *bp;
4608 	struct sctp_association *asoc;
4609 	int cnt = 0;
4610 	struct sctp_getaddrs_old getaddrs;
4611 	struct sctp_sockaddr_entry *addr;
4612 	void __user *to;
4613 	union sctp_addr temp;
4614 	struct sctp_sock *sp = sctp_sk(sk);
4615 	int addrlen;
4616 	int err = 0;
4617 	void *addrs;
4618 	void *buf;
4619 	int bytes_copied = 0;
4620 
4621 	if (len < sizeof(struct sctp_getaddrs_old))
4622 		return -EINVAL;
4623 
4624 	len = sizeof(struct sctp_getaddrs_old);
4625 	if (copy_from_user(&getaddrs, optval, len))
4626 		return -EFAULT;
4627 
4628 	if (getaddrs.addr_num <= 0 ||
4629 	    getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4630 		return -EINVAL;
4631 
4632 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD "
4633 			    "socket option deprecated\n");
4634 
4635 	/*
4636 	 *  For UDP-style sockets, id specifies the association to query.
4637 	 *  If the id field is set to the value '0' then the locally bound
4638 	 *  addresses are returned without regard to any particular
4639 	 *  association.
4640 	 */
4641 	if (0 == getaddrs.assoc_id) {
4642 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4643 	} else {
4644 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4645 		if (!asoc)
4646 			return -EINVAL;
4647 		bp = &asoc->base.bind_addr;
4648 	}
4649 
4650 	to = getaddrs.addrs;
4651 
4652 	/* Allocate space for a local instance of packed array to hold all
4653 	 * the data.  We store addresses here first and then put write them
4654 	 * to the user in one shot.
4655 	 */
4656 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4657 			GFP_KERNEL);
4658 	if (!addrs)
4659 		return -ENOMEM;
4660 
4661 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4662 	 * addresses from the global local address list.
4663 	 */
4664 	if (sctp_list_single_entry(&bp->address_list)) {
4665 		addr = list_entry(bp->address_list.next,
4666 				  struct sctp_sockaddr_entry, list);
4667 		if (sctp_is_any(sk, &addr->a)) {
4668 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4669 						   getaddrs.addr_num,
4670 						   addrs, &bytes_copied);
4671 			goto copy_getaddrs;
4672 		}
4673 	}
4674 
4675 	buf = addrs;
4676 	/* Protection on the bound address list is not needed since
4677 	 * in the socket option context we hold a socket lock and
4678 	 * thus the bound address list can't change.
4679 	 */
4680 	list_for_each_entry(addr, &bp->address_list, list) {
4681 		memcpy(&temp, &addr->a, sizeof(temp));
4682 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4683 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4684 		memcpy(buf, &temp, addrlen);
4685 		buf += addrlen;
4686 		bytes_copied += addrlen;
4687 		cnt ++;
4688 		if (cnt >= getaddrs.addr_num) break;
4689 	}
4690 
4691 copy_getaddrs:
4692 	/* copy the entire address list into the user provided space */
4693 	if (copy_to_user(to, addrs, bytes_copied)) {
4694 		err = -EFAULT;
4695 		goto error;
4696 	}
4697 
4698 	/* copy the leading structure back to user */
4699 	getaddrs.addr_num = cnt;
4700 	if (copy_to_user(optval, &getaddrs, len))
4701 		err = -EFAULT;
4702 
4703 error:
4704 	kfree(addrs);
4705 	return err;
4706 }
4707 
4708 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4709 				       char __user *optval, int __user *optlen)
4710 {
4711 	struct sctp_bind_addr *bp;
4712 	struct sctp_association *asoc;
4713 	int cnt = 0;
4714 	struct sctp_getaddrs getaddrs;
4715 	struct sctp_sockaddr_entry *addr;
4716 	void __user *to;
4717 	union sctp_addr temp;
4718 	struct sctp_sock *sp = sctp_sk(sk);
4719 	int addrlen;
4720 	int err = 0;
4721 	size_t space_left;
4722 	int bytes_copied = 0;
4723 	void *addrs;
4724 	void *buf;
4725 
4726 	if (len < sizeof(struct sctp_getaddrs))
4727 		return -EINVAL;
4728 
4729 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4730 		return -EFAULT;
4731 
4732 	/*
4733 	 *  For UDP-style sockets, id specifies the association to query.
4734 	 *  If the id field is set to the value '0' then the locally bound
4735 	 *  addresses are returned without regard to any particular
4736 	 *  association.
4737 	 */
4738 	if (0 == getaddrs.assoc_id) {
4739 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4740 	} else {
4741 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4742 		if (!asoc)
4743 			return -EINVAL;
4744 		bp = &asoc->base.bind_addr;
4745 	}
4746 
4747 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4748 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4749 
4750 	addrs = kmalloc(space_left, GFP_KERNEL);
4751 	if (!addrs)
4752 		return -ENOMEM;
4753 
4754 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4755 	 * addresses from the global local address list.
4756 	 */
4757 	if (sctp_list_single_entry(&bp->address_list)) {
4758 		addr = list_entry(bp->address_list.next,
4759 				  struct sctp_sockaddr_entry, list);
4760 		if (sctp_is_any(sk, &addr->a)) {
4761 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4762 						space_left, &bytes_copied);
4763 			if (cnt < 0) {
4764 				err = cnt;
4765 				goto out;
4766 			}
4767 			goto copy_getaddrs;
4768 		}
4769 	}
4770 
4771 	buf = addrs;
4772 	/* Protection on the bound address list is not needed since
4773 	 * in the socket option context we hold a socket lock and
4774 	 * thus the bound address list can't change.
4775 	 */
4776 	list_for_each_entry(addr, &bp->address_list, list) {
4777 		memcpy(&temp, &addr->a, sizeof(temp));
4778 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4779 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4780 		if (space_left < addrlen) {
4781 			err =  -ENOMEM; /*fixme: right error?*/
4782 			goto out;
4783 		}
4784 		memcpy(buf, &temp, addrlen);
4785 		buf += addrlen;
4786 		bytes_copied += addrlen;
4787 		cnt ++;
4788 		space_left -= addrlen;
4789 	}
4790 
4791 copy_getaddrs:
4792 	if (copy_to_user(to, addrs, bytes_copied)) {
4793 		err = -EFAULT;
4794 		goto out;
4795 	}
4796 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4797 		err = -EFAULT;
4798 		goto out;
4799 	}
4800 	if (put_user(bytes_copied, optlen))
4801 		err = -EFAULT;
4802 out:
4803 	kfree(addrs);
4804 	return err;
4805 }
4806 
4807 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4808  *
4809  * Requests that the local SCTP stack use the enclosed peer address as
4810  * the association primary.  The enclosed address must be one of the
4811  * association peer's addresses.
4812  */
4813 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4814 					char __user *optval, int __user *optlen)
4815 {
4816 	struct sctp_prim prim;
4817 	struct sctp_association *asoc;
4818 	struct sctp_sock *sp = sctp_sk(sk);
4819 
4820 	if (len < sizeof(struct sctp_prim))
4821 		return -EINVAL;
4822 
4823 	len = sizeof(struct sctp_prim);
4824 
4825 	if (copy_from_user(&prim, optval, len))
4826 		return -EFAULT;
4827 
4828 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4829 	if (!asoc)
4830 		return -EINVAL;
4831 
4832 	if (!asoc->peer.primary_path)
4833 		return -ENOTCONN;
4834 
4835 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4836 		asoc->peer.primary_path->af_specific->sockaddr_len);
4837 
4838 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4839 			(union sctp_addr *)&prim.ssp_addr);
4840 
4841 	if (put_user(len, optlen))
4842 		return -EFAULT;
4843 	if (copy_to_user(optval, &prim, len))
4844 		return -EFAULT;
4845 
4846 	return 0;
4847 }
4848 
4849 /*
4850  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4851  *
4852  * Requests that the local endpoint set the specified Adaptation Layer
4853  * Indication parameter for all future INIT and INIT-ACK exchanges.
4854  */
4855 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4856 				  char __user *optval, int __user *optlen)
4857 {
4858 	struct sctp_setadaptation adaptation;
4859 
4860 	if (len < sizeof(struct sctp_setadaptation))
4861 		return -EINVAL;
4862 
4863 	len = sizeof(struct sctp_setadaptation);
4864 
4865 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4866 
4867 	if (put_user(len, optlen))
4868 		return -EFAULT;
4869 	if (copy_to_user(optval, &adaptation, len))
4870 		return -EFAULT;
4871 
4872 	return 0;
4873 }
4874 
4875 /*
4876  *
4877  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4878  *
4879  *   Applications that wish to use the sendto() system call may wish to
4880  *   specify a default set of parameters that would normally be supplied
4881  *   through the inclusion of ancillary data.  This socket option allows
4882  *   such an application to set the default sctp_sndrcvinfo structure.
4883 
4884 
4885  *   The application that wishes to use this socket option simply passes
4886  *   in to this call the sctp_sndrcvinfo structure defined in Section
4887  *   5.2.2) The input parameters accepted by this call include
4888  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4889  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4890  *   to this call if the caller is using the UDP model.
4891  *
4892  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4893  */
4894 static int sctp_getsockopt_default_send_param(struct sock *sk,
4895 					int len, char __user *optval,
4896 					int __user *optlen)
4897 {
4898 	struct sctp_sndrcvinfo info;
4899 	struct sctp_association *asoc;
4900 	struct sctp_sock *sp = sctp_sk(sk);
4901 
4902 	if (len < sizeof(struct sctp_sndrcvinfo))
4903 		return -EINVAL;
4904 
4905 	len = sizeof(struct sctp_sndrcvinfo);
4906 
4907 	if (copy_from_user(&info, optval, len))
4908 		return -EFAULT;
4909 
4910 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4911 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4912 		return -EINVAL;
4913 
4914 	if (asoc) {
4915 		info.sinfo_stream = asoc->default_stream;
4916 		info.sinfo_flags = asoc->default_flags;
4917 		info.sinfo_ppid = asoc->default_ppid;
4918 		info.sinfo_context = asoc->default_context;
4919 		info.sinfo_timetolive = asoc->default_timetolive;
4920 	} else {
4921 		info.sinfo_stream = sp->default_stream;
4922 		info.sinfo_flags = sp->default_flags;
4923 		info.sinfo_ppid = sp->default_ppid;
4924 		info.sinfo_context = sp->default_context;
4925 		info.sinfo_timetolive = sp->default_timetolive;
4926 	}
4927 
4928 	if (put_user(len, optlen))
4929 		return -EFAULT;
4930 	if (copy_to_user(optval, &info, len))
4931 		return -EFAULT;
4932 
4933 	return 0;
4934 }
4935 
4936 /*
4937  *
4938  * 7.1.5 SCTP_NODELAY
4939  *
4940  * Turn on/off any Nagle-like algorithm.  This means that packets are
4941  * generally sent as soon as possible and no unnecessary delays are
4942  * introduced, at the cost of more packets in the network.  Expects an
4943  * integer boolean flag.
4944  */
4945 
4946 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4947 				   char __user *optval, int __user *optlen)
4948 {
4949 	int val;
4950 
4951 	if (len < sizeof(int))
4952 		return -EINVAL;
4953 
4954 	len = sizeof(int);
4955 	val = (sctp_sk(sk)->nodelay == 1);
4956 	if (put_user(len, optlen))
4957 		return -EFAULT;
4958 	if (copy_to_user(optval, &val, len))
4959 		return -EFAULT;
4960 	return 0;
4961 }
4962 
4963 /*
4964  *
4965  * 7.1.1 SCTP_RTOINFO
4966  *
4967  * The protocol parameters used to initialize and bound retransmission
4968  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4969  * and modify these parameters.
4970  * All parameters are time values, in milliseconds.  A value of 0, when
4971  * modifying the parameters, indicates that the current value should not
4972  * be changed.
4973  *
4974  */
4975 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4976 				char __user *optval,
4977 				int __user *optlen) {
4978 	struct sctp_rtoinfo rtoinfo;
4979 	struct sctp_association *asoc;
4980 
4981 	if (len < sizeof (struct sctp_rtoinfo))
4982 		return -EINVAL;
4983 
4984 	len = sizeof(struct sctp_rtoinfo);
4985 
4986 	if (copy_from_user(&rtoinfo, optval, len))
4987 		return -EFAULT;
4988 
4989 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4990 
4991 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4992 		return -EINVAL;
4993 
4994 	/* Values corresponding to the specific association. */
4995 	if (asoc) {
4996 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4997 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4998 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4999 	} else {
5000 		/* Values corresponding to the endpoint. */
5001 		struct sctp_sock *sp = sctp_sk(sk);
5002 
5003 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5004 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5005 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5006 	}
5007 
5008 	if (put_user(len, optlen))
5009 		return -EFAULT;
5010 
5011 	if (copy_to_user(optval, &rtoinfo, len))
5012 		return -EFAULT;
5013 
5014 	return 0;
5015 }
5016 
5017 /*
5018  *
5019  * 7.1.2 SCTP_ASSOCINFO
5020  *
5021  * This option is used to tune the maximum retransmission attempts
5022  * of the association.
5023  * Returns an error if the new association retransmission value is
5024  * greater than the sum of the retransmission value  of the peer.
5025  * See [SCTP] for more information.
5026  *
5027  */
5028 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5029 				     char __user *optval,
5030 				     int __user *optlen)
5031 {
5032 
5033 	struct sctp_assocparams assocparams;
5034 	struct sctp_association *asoc;
5035 	struct list_head *pos;
5036 	int cnt = 0;
5037 
5038 	if (len < sizeof (struct sctp_assocparams))
5039 		return -EINVAL;
5040 
5041 	len = sizeof(struct sctp_assocparams);
5042 
5043 	if (copy_from_user(&assocparams, optval, len))
5044 		return -EFAULT;
5045 
5046 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5047 
5048 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5049 		return -EINVAL;
5050 
5051 	/* Values correspoinding to the specific association */
5052 	if (asoc) {
5053 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5054 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5055 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5056 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5057 						* 1000) +
5058 						(asoc->cookie_life.tv_usec
5059 						/ 1000);
5060 
5061 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5062 			cnt ++;
5063 		}
5064 
5065 		assocparams.sasoc_number_peer_destinations = cnt;
5066 	} else {
5067 		/* Values corresponding to the endpoint */
5068 		struct sctp_sock *sp = sctp_sk(sk);
5069 
5070 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5071 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5072 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5073 		assocparams.sasoc_cookie_life =
5074 					sp->assocparams.sasoc_cookie_life;
5075 		assocparams.sasoc_number_peer_destinations =
5076 					sp->assocparams.
5077 					sasoc_number_peer_destinations;
5078 	}
5079 
5080 	if (put_user(len, optlen))
5081 		return -EFAULT;
5082 
5083 	if (copy_to_user(optval, &assocparams, len))
5084 		return -EFAULT;
5085 
5086 	return 0;
5087 }
5088 
5089 /*
5090  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5091  *
5092  * This socket option is a boolean flag which turns on or off mapped V4
5093  * addresses.  If this option is turned on and the socket is type
5094  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5095  * If this option is turned off, then no mapping will be done of V4
5096  * addresses and a user will receive both PF_INET6 and PF_INET type
5097  * addresses on the socket.
5098  */
5099 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5100 				    char __user *optval, int __user *optlen)
5101 {
5102 	int val;
5103 	struct sctp_sock *sp = sctp_sk(sk);
5104 
5105 	if (len < sizeof(int))
5106 		return -EINVAL;
5107 
5108 	len = sizeof(int);
5109 	val = sp->v4mapped;
5110 	if (put_user(len, optlen))
5111 		return -EFAULT;
5112 	if (copy_to_user(optval, &val, len))
5113 		return -EFAULT;
5114 
5115 	return 0;
5116 }
5117 
5118 /*
5119  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5120  * (chapter and verse is quoted at sctp_setsockopt_context())
5121  */
5122 static int sctp_getsockopt_context(struct sock *sk, int len,
5123 				   char __user *optval, int __user *optlen)
5124 {
5125 	struct sctp_assoc_value params;
5126 	struct sctp_sock *sp;
5127 	struct sctp_association *asoc;
5128 
5129 	if (len < sizeof(struct sctp_assoc_value))
5130 		return -EINVAL;
5131 
5132 	len = sizeof(struct sctp_assoc_value);
5133 
5134 	if (copy_from_user(&params, optval, len))
5135 		return -EFAULT;
5136 
5137 	sp = sctp_sk(sk);
5138 
5139 	if (params.assoc_id != 0) {
5140 		asoc = sctp_id2assoc(sk, params.assoc_id);
5141 		if (!asoc)
5142 			return -EINVAL;
5143 		params.assoc_value = asoc->default_rcv_context;
5144 	} else {
5145 		params.assoc_value = sp->default_rcv_context;
5146 	}
5147 
5148 	if (put_user(len, optlen))
5149 		return -EFAULT;
5150 	if (copy_to_user(optval, &params, len))
5151 		return -EFAULT;
5152 
5153 	return 0;
5154 }
5155 
5156 /*
5157  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5158  * This option will get or set the maximum size to put in any outgoing
5159  * SCTP DATA chunk.  If a message is larger than this size it will be
5160  * fragmented by SCTP into the specified size.  Note that the underlying
5161  * SCTP implementation may fragment into smaller sized chunks when the
5162  * PMTU of the underlying association is smaller than the value set by
5163  * the user.  The default value for this option is '0' which indicates
5164  * the user is NOT limiting fragmentation and only the PMTU will effect
5165  * SCTP's choice of DATA chunk size.  Note also that values set larger
5166  * than the maximum size of an IP datagram will effectively let SCTP
5167  * control fragmentation (i.e. the same as setting this option to 0).
5168  *
5169  * The following structure is used to access and modify this parameter:
5170  *
5171  * struct sctp_assoc_value {
5172  *   sctp_assoc_t assoc_id;
5173  *   uint32_t assoc_value;
5174  * };
5175  *
5176  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5177  *    For one-to-many style sockets this parameter indicates which
5178  *    association the user is performing an action upon.  Note that if
5179  *    this field's value is zero then the endpoints default value is
5180  *    changed (effecting future associations only).
5181  * assoc_value:  This parameter specifies the maximum size in bytes.
5182  */
5183 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5184 				  char __user *optval, int __user *optlen)
5185 {
5186 	struct sctp_assoc_value params;
5187 	struct sctp_association *asoc;
5188 
5189 	if (len == sizeof(int)) {
5190 		printk(KERN_WARNING
5191 		   "SCTP: Use of int in maxseg socket option deprecated\n");
5192 		printk(KERN_WARNING
5193 		   "SCTP: Use struct sctp_assoc_value instead\n");
5194 		params.assoc_id = 0;
5195 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5196 		len = sizeof(struct sctp_assoc_value);
5197 		if (copy_from_user(&params, optval, sizeof(params)))
5198 			return -EFAULT;
5199 	} else
5200 		return -EINVAL;
5201 
5202 	asoc = sctp_id2assoc(sk, params.assoc_id);
5203 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5204 		return -EINVAL;
5205 
5206 	if (asoc)
5207 		params.assoc_value = asoc->frag_point;
5208 	else
5209 		params.assoc_value = sctp_sk(sk)->user_frag;
5210 
5211 	if (put_user(len, optlen))
5212 		return -EFAULT;
5213 	if (len == sizeof(int)) {
5214 		if (copy_to_user(optval, &params.assoc_value, len))
5215 			return -EFAULT;
5216 	} else {
5217 		if (copy_to_user(optval, &params, len))
5218 			return -EFAULT;
5219 	}
5220 
5221 	return 0;
5222 }
5223 
5224 /*
5225  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5226  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5227  */
5228 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5229 					       char __user *optval, int __user *optlen)
5230 {
5231 	int val;
5232 
5233 	if (len < sizeof(int))
5234 		return -EINVAL;
5235 
5236 	len = sizeof(int);
5237 
5238 	val = sctp_sk(sk)->frag_interleave;
5239 	if (put_user(len, optlen))
5240 		return -EFAULT;
5241 	if (copy_to_user(optval, &val, len))
5242 		return -EFAULT;
5243 
5244 	return 0;
5245 }
5246 
5247 /*
5248  * 7.1.25.  Set or Get the sctp partial delivery point
5249  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5250  */
5251 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5252 						  char __user *optval,
5253 						  int __user *optlen)
5254 {
5255 	u32 val;
5256 
5257 	if (len < sizeof(u32))
5258 		return -EINVAL;
5259 
5260 	len = sizeof(u32);
5261 
5262 	val = sctp_sk(sk)->pd_point;
5263 	if (put_user(len, optlen))
5264 		return -EFAULT;
5265 	if (copy_to_user(optval, &val, len))
5266 		return -EFAULT;
5267 
5268 	return -ENOTSUPP;
5269 }
5270 
5271 /*
5272  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5273  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5274  */
5275 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5276 				    char __user *optval,
5277 				    int __user *optlen)
5278 {
5279 	struct sctp_assoc_value params;
5280 	struct sctp_sock *sp;
5281 	struct sctp_association *asoc;
5282 
5283 	if (len == sizeof(int)) {
5284 		printk(KERN_WARNING
5285 		   "SCTP: Use of int in max_burst socket option deprecated\n");
5286 		printk(KERN_WARNING
5287 		   "SCTP: Use struct sctp_assoc_value instead\n");
5288 		params.assoc_id = 0;
5289 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5290 		len = sizeof(struct sctp_assoc_value);
5291 		if (copy_from_user(&params, optval, len))
5292 			return -EFAULT;
5293 	} else
5294 		return -EINVAL;
5295 
5296 	sp = sctp_sk(sk);
5297 
5298 	if (params.assoc_id != 0) {
5299 		asoc = sctp_id2assoc(sk, params.assoc_id);
5300 		if (!asoc)
5301 			return -EINVAL;
5302 		params.assoc_value = asoc->max_burst;
5303 	} else
5304 		params.assoc_value = sp->max_burst;
5305 
5306 	if (len == sizeof(int)) {
5307 		if (copy_to_user(optval, &params.assoc_value, len))
5308 			return -EFAULT;
5309 	} else {
5310 		if (copy_to_user(optval, &params, len))
5311 			return -EFAULT;
5312 	}
5313 
5314 	return 0;
5315 
5316 }
5317 
5318 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5319 				    char __user *optval, int __user *optlen)
5320 {
5321 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5322 	struct sctp_hmac_algo_param *hmacs;
5323 	__u16 data_len = 0;
5324 	u32 num_idents;
5325 
5326 	if (!sctp_auth_enable)
5327 		return -EACCES;
5328 
5329 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5330 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5331 
5332 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5333 		return -EINVAL;
5334 
5335 	len = sizeof(struct sctp_hmacalgo) + data_len;
5336 	num_idents = data_len / sizeof(u16);
5337 
5338 	if (put_user(len, optlen))
5339 		return -EFAULT;
5340 	if (put_user(num_idents, &p->shmac_num_idents))
5341 		return -EFAULT;
5342 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5343 		return -EFAULT;
5344 	return 0;
5345 }
5346 
5347 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5348 				    char __user *optval, int __user *optlen)
5349 {
5350 	struct sctp_authkeyid val;
5351 	struct sctp_association *asoc;
5352 
5353 	if (!sctp_auth_enable)
5354 		return -EACCES;
5355 
5356 	if (len < sizeof(struct sctp_authkeyid))
5357 		return -EINVAL;
5358 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5359 		return -EFAULT;
5360 
5361 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5362 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5363 		return -EINVAL;
5364 
5365 	if (asoc)
5366 		val.scact_keynumber = asoc->active_key_id;
5367 	else
5368 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5369 
5370 	len = sizeof(struct sctp_authkeyid);
5371 	if (put_user(len, optlen))
5372 		return -EFAULT;
5373 	if (copy_to_user(optval, &val, len))
5374 		return -EFAULT;
5375 
5376 	return 0;
5377 }
5378 
5379 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5380 				    char __user *optval, int __user *optlen)
5381 {
5382 	struct sctp_authchunks __user *p = (void __user *)optval;
5383 	struct sctp_authchunks val;
5384 	struct sctp_association *asoc;
5385 	struct sctp_chunks_param *ch;
5386 	u32    num_chunks = 0;
5387 	char __user *to;
5388 
5389 	if (!sctp_auth_enable)
5390 		return -EACCES;
5391 
5392 	if (len < sizeof(struct sctp_authchunks))
5393 		return -EINVAL;
5394 
5395 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5396 		return -EFAULT;
5397 
5398 	to = p->gauth_chunks;
5399 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5400 	if (!asoc)
5401 		return -EINVAL;
5402 
5403 	ch = asoc->peer.peer_chunks;
5404 	if (!ch)
5405 		goto num;
5406 
5407 	/* See if the user provided enough room for all the data */
5408 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5409 	if (len < num_chunks)
5410 		return -EINVAL;
5411 
5412 	if (copy_to_user(to, ch->chunks, num_chunks))
5413 		return -EFAULT;
5414 num:
5415 	len = sizeof(struct sctp_authchunks) + num_chunks;
5416 	if (put_user(len, optlen)) return -EFAULT;
5417 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5418 		return -EFAULT;
5419 	return 0;
5420 }
5421 
5422 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5423 				    char __user *optval, int __user *optlen)
5424 {
5425 	struct sctp_authchunks __user *p = (void __user *)optval;
5426 	struct sctp_authchunks val;
5427 	struct sctp_association *asoc;
5428 	struct sctp_chunks_param *ch;
5429 	u32    num_chunks = 0;
5430 	char __user *to;
5431 
5432 	if (!sctp_auth_enable)
5433 		return -EACCES;
5434 
5435 	if (len < sizeof(struct sctp_authchunks))
5436 		return -EINVAL;
5437 
5438 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5439 		return -EFAULT;
5440 
5441 	to = p->gauth_chunks;
5442 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5443 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5444 		return -EINVAL;
5445 
5446 	if (asoc)
5447 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5448 	else
5449 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5450 
5451 	if (!ch)
5452 		goto num;
5453 
5454 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5455 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5456 		return -EINVAL;
5457 
5458 	if (copy_to_user(to, ch->chunks, num_chunks))
5459 		return -EFAULT;
5460 num:
5461 	len = sizeof(struct sctp_authchunks) + num_chunks;
5462 	if (put_user(len, optlen))
5463 		return -EFAULT;
5464 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5465 		return -EFAULT;
5466 
5467 	return 0;
5468 }
5469 
5470 /*
5471  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5472  * This option gets the current number of associations that are attached
5473  * to a one-to-many style socket.  The option value is an uint32_t.
5474  */
5475 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5476 				    char __user *optval, int __user *optlen)
5477 {
5478 	struct sctp_sock *sp = sctp_sk(sk);
5479 	struct sctp_association *asoc;
5480 	u32 val = 0;
5481 
5482 	if (sctp_style(sk, TCP))
5483 		return -EOPNOTSUPP;
5484 
5485 	if (len < sizeof(u32))
5486 		return -EINVAL;
5487 
5488 	len = sizeof(u32);
5489 
5490 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5491 		val++;
5492 	}
5493 
5494 	if (put_user(len, optlen))
5495 		return -EFAULT;
5496 	if (copy_to_user(optval, &val, len))
5497 		return -EFAULT;
5498 
5499 	return 0;
5500 }
5501 
5502 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5503 				char __user *optval, int __user *optlen)
5504 {
5505 	int retval = 0;
5506 	int len;
5507 
5508 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5509 			  sk, optname);
5510 
5511 	/* I can hardly begin to describe how wrong this is.  This is
5512 	 * so broken as to be worse than useless.  The API draft
5513 	 * REALLY is NOT helpful here...  I am not convinced that the
5514 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5515 	 * are at all well-founded.
5516 	 */
5517 	if (level != SOL_SCTP) {
5518 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5519 
5520 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5521 		return retval;
5522 	}
5523 
5524 	if (get_user(len, optlen))
5525 		return -EFAULT;
5526 
5527 	sctp_lock_sock(sk);
5528 
5529 	switch (optname) {
5530 	case SCTP_STATUS:
5531 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5532 		break;
5533 	case SCTP_DISABLE_FRAGMENTS:
5534 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5535 							   optlen);
5536 		break;
5537 	case SCTP_EVENTS:
5538 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5539 		break;
5540 	case SCTP_AUTOCLOSE:
5541 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5542 		break;
5543 	case SCTP_SOCKOPT_PEELOFF:
5544 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5545 		break;
5546 	case SCTP_PEER_ADDR_PARAMS:
5547 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5548 							  optlen);
5549 		break;
5550 	case SCTP_DELAYED_ACK:
5551 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5552 							  optlen);
5553 		break;
5554 	case SCTP_INITMSG:
5555 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5556 		break;
5557 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
5558 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5559 							    optlen);
5560 		break;
5561 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5562 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5563 							     optlen);
5564 		break;
5565 	case SCTP_GET_PEER_ADDRS_OLD:
5566 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5567 							optlen);
5568 		break;
5569 	case SCTP_GET_LOCAL_ADDRS_OLD:
5570 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5571 							 optlen);
5572 		break;
5573 	case SCTP_GET_PEER_ADDRS:
5574 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5575 						    optlen);
5576 		break;
5577 	case SCTP_GET_LOCAL_ADDRS:
5578 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5579 						     optlen);
5580 		break;
5581 	case SCTP_DEFAULT_SEND_PARAM:
5582 		retval = sctp_getsockopt_default_send_param(sk, len,
5583 							    optval, optlen);
5584 		break;
5585 	case SCTP_PRIMARY_ADDR:
5586 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5587 		break;
5588 	case SCTP_NODELAY:
5589 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5590 		break;
5591 	case SCTP_RTOINFO:
5592 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5593 		break;
5594 	case SCTP_ASSOCINFO:
5595 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5596 		break;
5597 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5598 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5599 		break;
5600 	case SCTP_MAXSEG:
5601 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5602 		break;
5603 	case SCTP_GET_PEER_ADDR_INFO:
5604 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5605 							optlen);
5606 		break;
5607 	case SCTP_ADAPTATION_LAYER:
5608 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5609 							optlen);
5610 		break;
5611 	case SCTP_CONTEXT:
5612 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5613 		break;
5614 	case SCTP_FRAGMENT_INTERLEAVE:
5615 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5616 							     optlen);
5617 		break;
5618 	case SCTP_PARTIAL_DELIVERY_POINT:
5619 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5620 								optlen);
5621 		break;
5622 	case SCTP_MAX_BURST:
5623 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5624 		break;
5625 	case SCTP_AUTH_KEY:
5626 	case SCTP_AUTH_CHUNK:
5627 	case SCTP_AUTH_DELETE_KEY:
5628 		retval = -EOPNOTSUPP;
5629 		break;
5630 	case SCTP_HMAC_IDENT:
5631 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5632 		break;
5633 	case SCTP_AUTH_ACTIVE_KEY:
5634 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5635 		break;
5636 	case SCTP_PEER_AUTH_CHUNKS:
5637 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5638 							optlen);
5639 		break;
5640 	case SCTP_LOCAL_AUTH_CHUNKS:
5641 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5642 							optlen);
5643 		break;
5644 	case SCTP_GET_ASSOC_NUMBER:
5645 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5646 		break;
5647 	default:
5648 		retval = -ENOPROTOOPT;
5649 		break;
5650 	}
5651 
5652 	sctp_release_sock(sk);
5653 	return retval;
5654 }
5655 
5656 static void sctp_hash(struct sock *sk)
5657 {
5658 	/* STUB */
5659 }
5660 
5661 static void sctp_unhash(struct sock *sk)
5662 {
5663 	/* STUB */
5664 }
5665 
5666 /* Check if port is acceptable.  Possibly find first available port.
5667  *
5668  * The port hash table (contained in the 'global' SCTP protocol storage
5669  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5670  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5671  * list (the list number is the port number hashed out, so as you
5672  * would expect from a hash function, all the ports in a given list have
5673  * such a number that hashes out to the same list number; you were
5674  * expecting that, right?); so each list has a set of ports, with a
5675  * link to the socket (struct sock) that uses it, the port number and
5676  * a fastreuse flag (FIXME: NPI ipg).
5677  */
5678 static struct sctp_bind_bucket *sctp_bucket_create(
5679 	struct sctp_bind_hashbucket *head, unsigned short snum);
5680 
5681 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5682 {
5683 	struct sctp_bind_hashbucket *head; /* hash list */
5684 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5685 	struct hlist_node *node;
5686 	unsigned short snum;
5687 	int ret;
5688 
5689 	snum = ntohs(addr->v4.sin_port);
5690 
5691 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5692 	sctp_local_bh_disable();
5693 
5694 	if (snum == 0) {
5695 		/* Search for an available port. */
5696 		int low, high, remaining, index;
5697 		unsigned int rover;
5698 
5699 		inet_get_local_port_range(&low, &high);
5700 		remaining = (high - low) + 1;
5701 		rover = net_random() % remaining + low;
5702 
5703 		do {
5704 			rover++;
5705 			if ((rover < low) || (rover > high))
5706 				rover = low;
5707 			index = sctp_phashfn(rover);
5708 			head = &sctp_port_hashtable[index];
5709 			sctp_spin_lock(&head->lock);
5710 			sctp_for_each_hentry(pp, node, &head->chain)
5711 				if (pp->port == rover)
5712 					goto next;
5713 			break;
5714 		next:
5715 			sctp_spin_unlock(&head->lock);
5716 		} while (--remaining > 0);
5717 
5718 		/* Exhausted local port range during search? */
5719 		ret = 1;
5720 		if (remaining <= 0)
5721 			goto fail;
5722 
5723 		/* OK, here is the one we will use.  HEAD (the port
5724 		 * hash table list entry) is non-NULL and we hold it's
5725 		 * mutex.
5726 		 */
5727 		snum = rover;
5728 	} else {
5729 		/* We are given an specific port number; we verify
5730 		 * that it is not being used. If it is used, we will
5731 		 * exahust the search in the hash list corresponding
5732 		 * to the port number (snum) - we detect that with the
5733 		 * port iterator, pp being NULL.
5734 		 */
5735 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5736 		sctp_spin_lock(&head->lock);
5737 		sctp_for_each_hentry(pp, node, &head->chain) {
5738 			if (pp->port == snum)
5739 				goto pp_found;
5740 		}
5741 	}
5742 	pp = NULL;
5743 	goto pp_not_found;
5744 pp_found:
5745 	if (!hlist_empty(&pp->owner)) {
5746 		/* We had a port hash table hit - there is an
5747 		 * available port (pp != NULL) and it is being
5748 		 * used by other socket (pp->owner not empty); that other
5749 		 * socket is going to be sk2.
5750 		 */
5751 		int reuse = sk->sk_reuse;
5752 		struct sock *sk2;
5753 		struct hlist_node *node;
5754 
5755 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5756 		if (pp->fastreuse && sk->sk_reuse &&
5757 			sk->sk_state != SCTP_SS_LISTENING)
5758 			goto success;
5759 
5760 		/* Run through the list of sockets bound to the port
5761 		 * (pp->port) [via the pointers bind_next and
5762 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5763 		 * we get the endpoint they describe and run through
5764 		 * the endpoint's list of IP (v4 or v6) addresses,
5765 		 * comparing each of the addresses with the address of
5766 		 * the socket sk. If we find a match, then that means
5767 		 * that this port/socket (sk) combination are already
5768 		 * in an endpoint.
5769 		 */
5770 		sk_for_each_bound(sk2, node, &pp->owner) {
5771 			struct sctp_endpoint *ep2;
5772 			ep2 = sctp_sk(sk2)->ep;
5773 
5774 			if (sk == sk2 ||
5775 			    (reuse && sk2->sk_reuse &&
5776 			     sk2->sk_state != SCTP_SS_LISTENING))
5777 				continue;
5778 
5779 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5780 						 sctp_sk(sk2), sctp_sk(sk))) {
5781 				ret = (long)sk2;
5782 				goto fail_unlock;
5783 			}
5784 		}
5785 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5786 	}
5787 pp_not_found:
5788 	/* If there was a hash table miss, create a new port.  */
5789 	ret = 1;
5790 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5791 		goto fail_unlock;
5792 
5793 	/* In either case (hit or miss), make sure fastreuse is 1 only
5794 	 * if sk->sk_reuse is too (that is, if the caller requested
5795 	 * SO_REUSEADDR on this socket -sk-).
5796 	 */
5797 	if (hlist_empty(&pp->owner)) {
5798 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5799 			pp->fastreuse = 1;
5800 		else
5801 			pp->fastreuse = 0;
5802 	} else if (pp->fastreuse &&
5803 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5804 		pp->fastreuse = 0;
5805 
5806 	/* We are set, so fill up all the data in the hash table
5807 	 * entry, tie the socket list information with the rest of the
5808 	 * sockets FIXME: Blurry, NPI (ipg).
5809 	 */
5810 success:
5811 	if (!sctp_sk(sk)->bind_hash) {
5812 		inet_sk(sk)->num = snum;
5813 		sk_add_bind_node(sk, &pp->owner);
5814 		sctp_sk(sk)->bind_hash = pp;
5815 	}
5816 	ret = 0;
5817 
5818 fail_unlock:
5819 	sctp_spin_unlock(&head->lock);
5820 
5821 fail:
5822 	sctp_local_bh_enable();
5823 	return ret;
5824 }
5825 
5826 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5827  * port is requested.
5828  */
5829 static int sctp_get_port(struct sock *sk, unsigned short snum)
5830 {
5831 	long ret;
5832 	union sctp_addr addr;
5833 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5834 
5835 	/* Set up a dummy address struct from the sk. */
5836 	af->from_sk(&addr, sk);
5837 	addr.v4.sin_port = htons(snum);
5838 
5839 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5840 	ret = sctp_get_port_local(sk, &addr);
5841 
5842 	return (ret ? 1 : 0);
5843 }
5844 
5845 /*
5846  *  Move a socket to LISTENING state.
5847  */
5848 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5849 {
5850 	struct sctp_sock *sp = sctp_sk(sk);
5851 	struct sctp_endpoint *ep = sp->ep;
5852 	struct crypto_hash *tfm = NULL;
5853 
5854 	/* Allocate HMAC for generating cookie. */
5855 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5856 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5857 		if (IS_ERR(tfm)) {
5858 			if (net_ratelimit()) {
5859 				printk(KERN_INFO
5860 				       "SCTP: failed to load transform for %s: %ld\n",
5861 					sctp_hmac_alg, PTR_ERR(tfm));
5862 			}
5863 			return -ENOSYS;
5864 		}
5865 		sctp_sk(sk)->hmac = tfm;
5866 	}
5867 
5868 	/*
5869 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5870 	 * call that allows new associations to be accepted, the system
5871 	 * picks an ephemeral port and will choose an address set equivalent
5872 	 * to binding with a wildcard address.
5873 	 *
5874 	 * This is not currently spelled out in the SCTP sockets
5875 	 * extensions draft, but follows the practice as seen in TCP
5876 	 * sockets.
5877 	 *
5878 	 */
5879 	sk->sk_state = SCTP_SS_LISTENING;
5880 	if (!ep->base.bind_addr.port) {
5881 		if (sctp_autobind(sk))
5882 			return -EAGAIN;
5883 	} else {
5884 		if (sctp_get_port(sk, inet_sk(sk)->num)) {
5885 			sk->sk_state = SCTP_SS_CLOSED;
5886 			return -EADDRINUSE;
5887 		}
5888 	}
5889 
5890 	sk->sk_max_ack_backlog = backlog;
5891 	sctp_hash_endpoint(ep);
5892 	return 0;
5893 }
5894 
5895 /*
5896  * 4.1.3 / 5.1.3 listen()
5897  *
5898  *   By default, new associations are not accepted for UDP style sockets.
5899  *   An application uses listen() to mark a socket as being able to
5900  *   accept new associations.
5901  *
5902  *   On TCP style sockets, applications use listen() to ready the SCTP
5903  *   endpoint for accepting inbound associations.
5904  *
5905  *   On both types of endpoints a backlog of '0' disables listening.
5906  *
5907  *  Move a socket to LISTENING state.
5908  */
5909 int sctp_inet_listen(struct socket *sock, int backlog)
5910 {
5911 	struct sock *sk = sock->sk;
5912 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5913 	int err = -EINVAL;
5914 
5915 	if (unlikely(backlog < 0))
5916 		return err;
5917 
5918 	sctp_lock_sock(sk);
5919 
5920 	/* Peeled-off sockets are not allowed to listen().  */
5921 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5922 		goto out;
5923 
5924 	if (sock->state != SS_UNCONNECTED)
5925 		goto out;
5926 
5927 	/* If backlog is zero, disable listening. */
5928 	if (!backlog) {
5929 		if (sctp_sstate(sk, CLOSED))
5930 			goto out;
5931 
5932 		err = 0;
5933 		sctp_unhash_endpoint(ep);
5934 		sk->sk_state = SCTP_SS_CLOSED;
5935 		if (sk->sk_reuse)
5936 			sctp_sk(sk)->bind_hash->fastreuse = 1;
5937 		goto out;
5938 	}
5939 
5940 	/* If we are already listening, just update the backlog */
5941 	if (sctp_sstate(sk, LISTENING))
5942 		sk->sk_max_ack_backlog = backlog;
5943 	else {
5944 		err = sctp_listen_start(sk, backlog);
5945 		if (err)
5946 			goto out;
5947 	}
5948 
5949 	err = 0;
5950 out:
5951 	sctp_release_sock(sk);
5952 	return err;
5953 }
5954 
5955 /*
5956  * This function is done by modeling the current datagram_poll() and the
5957  * tcp_poll().  Note that, based on these implementations, we don't
5958  * lock the socket in this function, even though it seems that,
5959  * ideally, locking or some other mechanisms can be used to ensure
5960  * the integrity of the counters (sndbuf and wmem_alloc) used
5961  * in this place.  We assume that we don't need locks either until proven
5962  * otherwise.
5963  *
5964  * Another thing to note is that we include the Async I/O support
5965  * here, again, by modeling the current TCP/UDP code.  We don't have
5966  * a good way to test with it yet.
5967  */
5968 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5969 {
5970 	struct sock *sk = sock->sk;
5971 	struct sctp_sock *sp = sctp_sk(sk);
5972 	unsigned int mask;
5973 
5974 	poll_wait(file, sk->sk_sleep, wait);
5975 
5976 	/* A TCP-style listening socket becomes readable when the accept queue
5977 	 * is not empty.
5978 	 */
5979 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5980 		return (!list_empty(&sp->ep->asocs)) ?
5981 			(POLLIN | POLLRDNORM) : 0;
5982 
5983 	mask = 0;
5984 
5985 	/* Is there any exceptional events?  */
5986 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5987 		mask |= POLLERR;
5988 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5989 		mask |= POLLRDHUP;
5990 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5991 		mask |= POLLHUP;
5992 
5993 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5994 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
5995 	    (sk->sk_shutdown & RCV_SHUTDOWN))
5996 		mask |= POLLIN | POLLRDNORM;
5997 
5998 	/* The association is either gone or not ready.  */
5999 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6000 		return mask;
6001 
6002 	/* Is it writable?  */
6003 	if (sctp_writeable(sk)) {
6004 		mask |= POLLOUT | POLLWRNORM;
6005 	} else {
6006 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6007 		/*
6008 		 * Since the socket is not locked, the buffer
6009 		 * might be made available after the writeable check and
6010 		 * before the bit is set.  This could cause a lost I/O
6011 		 * signal.  tcp_poll() has a race breaker for this race
6012 		 * condition.  Based on their implementation, we put
6013 		 * in the following code to cover it as well.
6014 		 */
6015 		if (sctp_writeable(sk))
6016 			mask |= POLLOUT | POLLWRNORM;
6017 	}
6018 	return mask;
6019 }
6020 
6021 /********************************************************************
6022  * 2nd Level Abstractions
6023  ********************************************************************/
6024 
6025 static struct sctp_bind_bucket *sctp_bucket_create(
6026 	struct sctp_bind_hashbucket *head, unsigned short snum)
6027 {
6028 	struct sctp_bind_bucket *pp;
6029 
6030 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6031 	if (pp) {
6032 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6033 		pp->port = snum;
6034 		pp->fastreuse = 0;
6035 		INIT_HLIST_HEAD(&pp->owner);
6036 		hlist_add_head(&pp->node, &head->chain);
6037 	}
6038 	return pp;
6039 }
6040 
6041 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6042 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6043 {
6044 	if (pp && hlist_empty(&pp->owner)) {
6045 		__hlist_del(&pp->node);
6046 		kmem_cache_free(sctp_bucket_cachep, pp);
6047 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6048 	}
6049 }
6050 
6051 /* Release this socket's reference to a local port.  */
6052 static inline void __sctp_put_port(struct sock *sk)
6053 {
6054 	struct sctp_bind_hashbucket *head =
6055 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
6056 	struct sctp_bind_bucket *pp;
6057 
6058 	sctp_spin_lock(&head->lock);
6059 	pp = sctp_sk(sk)->bind_hash;
6060 	__sk_del_bind_node(sk);
6061 	sctp_sk(sk)->bind_hash = NULL;
6062 	inet_sk(sk)->num = 0;
6063 	sctp_bucket_destroy(pp);
6064 	sctp_spin_unlock(&head->lock);
6065 }
6066 
6067 void sctp_put_port(struct sock *sk)
6068 {
6069 	sctp_local_bh_disable();
6070 	__sctp_put_port(sk);
6071 	sctp_local_bh_enable();
6072 }
6073 
6074 /*
6075  * The system picks an ephemeral port and choose an address set equivalent
6076  * to binding with a wildcard address.
6077  * One of those addresses will be the primary address for the association.
6078  * This automatically enables the multihoming capability of SCTP.
6079  */
6080 static int sctp_autobind(struct sock *sk)
6081 {
6082 	union sctp_addr autoaddr;
6083 	struct sctp_af *af;
6084 	__be16 port;
6085 
6086 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6087 	af = sctp_sk(sk)->pf->af;
6088 
6089 	port = htons(inet_sk(sk)->num);
6090 	af->inaddr_any(&autoaddr, port);
6091 
6092 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6093 }
6094 
6095 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6096  *
6097  * From RFC 2292
6098  * 4.2 The cmsghdr Structure *
6099  *
6100  * When ancillary data is sent or received, any number of ancillary data
6101  * objects can be specified by the msg_control and msg_controllen members of
6102  * the msghdr structure, because each object is preceded by
6103  * a cmsghdr structure defining the object's length (the cmsg_len member).
6104  * Historically Berkeley-derived implementations have passed only one object
6105  * at a time, but this API allows multiple objects to be
6106  * passed in a single call to sendmsg() or recvmsg(). The following example
6107  * shows two ancillary data objects in a control buffer.
6108  *
6109  *   |<--------------------------- msg_controllen -------------------------->|
6110  *   |                                                                       |
6111  *
6112  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6113  *
6114  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6115  *   |                                   |                                   |
6116  *
6117  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6118  *
6119  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6120  *   |                                |  |                                |  |
6121  *
6122  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6123  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6124  *
6125  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6126  *
6127  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6128  *    ^
6129  *    |
6130  *
6131  * msg_control
6132  * points here
6133  */
6134 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6135 				  sctp_cmsgs_t *cmsgs)
6136 {
6137 	struct cmsghdr *cmsg;
6138 	struct msghdr *my_msg = (struct msghdr *)msg;
6139 
6140 	for (cmsg = CMSG_FIRSTHDR(msg);
6141 	     cmsg != NULL;
6142 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6143 		if (!CMSG_OK(my_msg, cmsg))
6144 			return -EINVAL;
6145 
6146 		/* Should we parse this header or ignore?  */
6147 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6148 			continue;
6149 
6150 		/* Strictly check lengths following example in SCM code.  */
6151 		switch (cmsg->cmsg_type) {
6152 		case SCTP_INIT:
6153 			/* SCTP Socket API Extension
6154 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6155 			 *
6156 			 * This cmsghdr structure provides information for
6157 			 * initializing new SCTP associations with sendmsg().
6158 			 * The SCTP_INITMSG socket option uses this same data
6159 			 * structure.  This structure is not used for
6160 			 * recvmsg().
6161 			 *
6162 			 * cmsg_level    cmsg_type      cmsg_data[]
6163 			 * ------------  ------------   ----------------------
6164 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6165 			 */
6166 			if (cmsg->cmsg_len !=
6167 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6168 				return -EINVAL;
6169 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6170 			break;
6171 
6172 		case SCTP_SNDRCV:
6173 			/* SCTP Socket API Extension
6174 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6175 			 *
6176 			 * This cmsghdr structure specifies SCTP options for
6177 			 * sendmsg() and describes SCTP header information
6178 			 * about a received message through recvmsg().
6179 			 *
6180 			 * cmsg_level    cmsg_type      cmsg_data[]
6181 			 * ------------  ------------   ----------------------
6182 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6183 			 */
6184 			if (cmsg->cmsg_len !=
6185 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6186 				return -EINVAL;
6187 
6188 			cmsgs->info =
6189 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6190 
6191 			/* Minimally, validate the sinfo_flags. */
6192 			if (cmsgs->info->sinfo_flags &
6193 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6194 			      SCTP_ABORT | SCTP_EOF))
6195 				return -EINVAL;
6196 			break;
6197 
6198 		default:
6199 			return -EINVAL;
6200 		}
6201 	}
6202 	return 0;
6203 }
6204 
6205 /*
6206  * Wait for a packet..
6207  * Note: This function is the same function as in core/datagram.c
6208  * with a few modifications to make lksctp work.
6209  */
6210 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6211 {
6212 	int error;
6213 	DEFINE_WAIT(wait);
6214 
6215 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6216 
6217 	/* Socket errors? */
6218 	error = sock_error(sk);
6219 	if (error)
6220 		goto out;
6221 
6222 	if (!skb_queue_empty(&sk->sk_receive_queue))
6223 		goto ready;
6224 
6225 	/* Socket shut down?  */
6226 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6227 		goto out;
6228 
6229 	/* Sequenced packets can come disconnected.  If so we report the
6230 	 * problem.
6231 	 */
6232 	error = -ENOTCONN;
6233 
6234 	/* Is there a good reason to think that we may receive some data?  */
6235 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6236 		goto out;
6237 
6238 	/* Handle signals.  */
6239 	if (signal_pending(current))
6240 		goto interrupted;
6241 
6242 	/* Let another process have a go.  Since we are going to sleep
6243 	 * anyway.  Note: This may cause odd behaviors if the message
6244 	 * does not fit in the user's buffer, but this seems to be the
6245 	 * only way to honor MSG_DONTWAIT realistically.
6246 	 */
6247 	sctp_release_sock(sk);
6248 	*timeo_p = schedule_timeout(*timeo_p);
6249 	sctp_lock_sock(sk);
6250 
6251 ready:
6252 	finish_wait(sk->sk_sleep, &wait);
6253 	return 0;
6254 
6255 interrupted:
6256 	error = sock_intr_errno(*timeo_p);
6257 
6258 out:
6259 	finish_wait(sk->sk_sleep, &wait);
6260 	*err = error;
6261 	return error;
6262 }
6263 
6264 /* Receive a datagram.
6265  * Note: This is pretty much the same routine as in core/datagram.c
6266  * with a few changes to make lksctp work.
6267  */
6268 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6269 					      int noblock, int *err)
6270 {
6271 	int error;
6272 	struct sk_buff *skb;
6273 	long timeo;
6274 
6275 	timeo = sock_rcvtimeo(sk, noblock);
6276 
6277 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6278 			  timeo, MAX_SCHEDULE_TIMEOUT);
6279 
6280 	do {
6281 		/* Again only user level code calls this function,
6282 		 * so nothing interrupt level
6283 		 * will suddenly eat the receive_queue.
6284 		 *
6285 		 *  Look at current nfs client by the way...
6286 		 *  However, this function was corrent in any case. 8)
6287 		 */
6288 		if (flags & MSG_PEEK) {
6289 			spin_lock_bh(&sk->sk_receive_queue.lock);
6290 			skb = skb_peek(&sk->sk_receive_queue);
6291 			if (skb)
6292 				atomic_inc(&skb->users);
6293 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6294 		} else {
6295 			skb = skb_dequeue(&sk->sk_receive_queue);
6296 		}
6297 
6298 		if (skb)
6299 			return skb;
6300 
6301 		/* Caller is allowed not to check sk->sk_err before calling. */
6302 		error = sock_error(sk);
6303 		if (error)
6304 			goto no_packet;
6305 
6306 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6307 			break;
6308 
6309 		/* User doesn't want to wait.  */
6310 		error = -EAGAIN;
6311 		if (!timeo)
6312 			goto no_packet;
6313 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6314 
6315 	return NULL;
6316 
6317 no_packet:
6318 	*err = error;
6319 	return NULL;
6320 }
6321 
6322 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6323 static void __sctp_write_space(struct sctp_association *asoc)
6324 {
6325 	struct sock *sk = asoc->base.sk;
6326 	struct socket *sock = sk->sk_socket;
6327 
6328 	if ((sctp_wspace(asoc) > 0) && sock) {
6329 		if (waitqueue_active(&asoc->wait))
6330 			wake_up_interruptible(&asoc->wait);
6331 
6332 		if (sctp_writeable(sk)) {
6333 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6334 				wake_up_interruptible(sk->sk_sleep);
6335 
6336 			/* Note that we try to include the Async I/O support
6337 			 * here by modeling from the current TCP/UDP code.
6338 			 * We have not tested with it yet.
6339 			 */
6340 			if (sock->fasync_list &&
6341 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
6342 				sock_wake_async(sock,
6343 						SOCK_WAKE_SPACE, POLL_OUT);
6344 		}
6345 	}
6346 }
6347 
6348 /* Do accounting for the sndbuf space.
6349  * Decrement the used sndbuf space of the corresponding association by the
6350  * data size which was just transmitted(freed).
6351  */
6352 static void sctp_wfree(struct sk_buff *skb)
6353 {
6354 	struct sctp_association *asoc;
6355 	struct sctp_chunk *chunk;
6356 	struct sock *sk;
6357 
6358 	/* Get the saved chunk pointer.  */
6359 	chunk = *((struct sctp_chunk **)(skb->cb));
6360 	asoc = chunk->asoc;
6361 	sk = asoc->base.sk;
6362 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6363 				sizeof(struct sk_buff) +
6364 				sizeof(struct sctp_chunk);
6365 
6366 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6367 
6368 	/*
6369 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6370 	 */
6371 	sk->sk_wmem_queued   -= skb->truesize;
6372 	sk_mem_uncharge(sk, skb->truesize);
6373 
6374 	sock_wfree(skb);
6375 	__sctp_write_space(asoc);
6376 
6377 	sctp_association_put(asoc);
6378 }
6379 
6380 /* Do accounting for the receive space on the socket.
6381  * Accounting for the association is done in ulpevent.c
6382  * We set this as a destructor for the cloned data skbs so that
6383  * accounting is done at the correct time.
6384  */
6385 void sctp_sock_rfree(struct sk_buff *skb)
6386 {
6387 	struct sock *sk = skb->sk;
6388 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6389 
6390 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6391 
6392 	/*
6393 	 * Mimic the behavior of sock_rfree
6394 	 */
6395 	sk_mem_uncharge(sk, event->rmem_len);
6396 }
6397 
6398 
6399 /* Helper function to wait for space in the sndbuf.  */
6400 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6401 				size_t msg_len)
6402 {
6403 	struct sock *sk = asoc->base.sk;
6404 	int err = 0;
6405 	long current_timeo = *timeo_p;
6406 	DEFINE_WAIT(wait);
6407 
6408 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6409 			  asoc, (long)(*timeo_p), msg_len);
6410 
6411 	/* Increment the association's refcnt.  */
6412 	sctp_association_hold(asoc);
6413 
6414 	/* Wait on the association specific sndbuf space. */
6415 	for (;;) {
6416 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6417 					  TASK_INTERRUPTIBLE);
6418 		if (!*timeo_p)
6419 			goto do_nonblock;
6420 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6421 		    asoc->base.dead)
6422 			goto do_error;
6423 		if (signal_pending(current))
6424 			goto do_interrupted;
6425 		if (msg_len <= sctp_wspace(asoc))
6426 			break;
6427 
6428 		/* Let another process have a go.  Since we are going
6429 		 * to sleep anyway.
6430 		 */
6431 		sctp_release_sock(sk);
6432 		current_timeo = schedule_timeout(current_timeo);
6433 		BUG_ON(sk != asoc->base.sk);
6434 		sctp_lock_sock(sk);
6435 
6436 		*timeo_p = current_timeo;
6437 	}
6438 
6439 out:
6440 	finish_wait(&asoc->wait, &wait);
6441 
6442 	/* Release the association's refcnt.  */
6443 	sctp_association_put(asoc);
6444 
6445 	return err;
6446 
6447 do_error:
6448 	err = -EPIPE;
6449 	goto out;
6450 
6451 do_interrupted:
6452 	err = sock_intr_errno(*timeo_p);
6453 	goto out;
6454 
6455 do_nonblock:
6456 	err = -EAGAIN;
6457 	goto out;
6458 }
6459 
6460 /* If socket sndbuf has changed, wake up all per association waiters.  */
6461 void sctp_write_space(struct sock *sk)
6462 {
6463 	struct sctp_association *asoc;
6464 
6465 	/* Wake up the tasks in each wait queue.  */
6466 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6467 		__sctp_write_space(asoc);
6468 	}
6469 }
6470 
6471 /* Is there any sndbuf space available on the socket?
6472  *
6473  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6474  * associations on the same socket.  For a UDP-style socket with
6475  * multiple associations, it is possible for it to be "unwriteable"
6476  * prematurely.  I assume that this is acceptable because
6477  * a premature "unwriteable" is better than an accidental "writeable" which
6478  * would cause an unwanted block under certain circumstances.  For the 1-1
6479  * UDP-style sockets or TCP-style sockets, this code should work.
6480  *  - Daisy
6481  */
6482 static int sctp_writeable(struct sock *sk)
6483 {
6484 	int amt = 0;
6485 
6486 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6487 	if (amt < 0)
6488 		amt = 0;
6489 	return amt;
6490 }
6491 
6492 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6493  * returns immediately with EINPROGRESS.
6494  */
6495 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6496 {
6497 	struct sock *sk = asoc->base.sk;
6498 	int err = 0;
6499 	long current_timeo = *timeo_p;
6500 	DEFINE_WAIT(wait);
6501 
6502 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6503 			  (long)(*timeo_p));
6504 
6505 	/* Increment the association's refcnt.  */
6506 	sctp_association_hold(asoc);
6507 
6508 	for (;;) {
6509 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6510 					  TASK_INTERRUPTIBLE);
6511 		if (!*timeo_p)
6512 			goto do_nonblock;
6513 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6514 			break;
6515 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6516 		    asoc->base.dead)
6517 			goto do_error;
6518 		if (signal_pending(current))
6519 			goto do_interrupted;
6520 
6521 		if (sctp_state(asoc, ESTABLISHED))
6522 			break;
6523 
6524 		/* Let another process have a go.  Since we are going
6525 		 * to sleep anyway.
6526 		 */
6527 		sctp_release_sock(sk);
6528 		current_timeo = schedule_timeout(current_timeo);
6529 		sctp_lock_sock(sk);
6530 
6531 		*timeo_p = current_timeo;
6532 	}
6533 
6534 out:
6535 	finish_wait(&asoc->wait, &wait);
6536 
6537 	/* Release the association's refcnt.  */
6538 	sctp_association_put(asoc);
6539 
6540 	return err;
6541 
6542 do_error:
6543 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6544 		err = -ETIMEDOUT;
6545 	else
6546 		err = -ECONNREFUSED;
6547 	goto out;
6548 
6549 do_interrupted:
6550 	err = sock_intr_errno(*timeo_p);
6551 	goto out;
6552 
6553 do_nonblock:
6554 	err = -EINPROGRESS;
6555 	goto out;
6556 }
6557 
6558 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6559 {
6560 	struct sctp_endpoint *ep;
6561 	int err = 0;
6562 	DEFINE_WAIT(wait);
6563 
6564 	ep = sctp_sk(sk)->ep;
6565 
6566 
6567 	for (;;) {
6568 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6569 					  TASK_INTERRUPTIBLE);
6570 
6571 		if (list_empty(&ep->asocs)) {
6572 			sctp_release_sock(sk);
6573 			timeo = schedule_timeout(timeo);
6574 			sctp_lock_sock(sk);
6575 		}
6576 
6577 		err = -EINVAL;
6578 		if (!sctp_sstate(sk, LISTENING))
6579 			break;
6580 
6581 		err = 0;
6582 		if (!list_empty(&ep->asocs))
6583 			break;
6584 
6585 		err = sock_intr_errno(timeo);
6586 		if (signal_pending(current))
6587 			break;
6588 
6589 		err = -EAGAIN;
6590 		if (!timeo)
6591 			break;
6592 	}
6593 
6594 	finish_wait(sk->sk_sleep, &wait);
6595 
6596 	return err;
6597 }
6598 
6599 static void sctp_wait_for_close(struct sock *sk, long timeout)
6600 {
6601 	DEFINE_WAIT(wait);
6602 
6603 	do {
6604 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6605 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6606 			break;
6607 		sctp_release_sock(sk);
6608 		timeout = schedule_timeout(timeout);
6609 		sctp_lock_sock(sk);
6610 	} while (!signal_pending(current) && timeout);
6611 
6612 	finish_wait(sk->sk_sleep, &wait);
6613 }
6614 
6615 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6616 {
6617 	struct sk_buff *frag;
6618 
6619 	if (!skb->data_len)
6620 		goto done;
6621 
6622 	/* Don't forget the fragments. */
6623 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6624 		sctp_sock_rfree_frag(frag);
6625 
6626 done:
6627 	sctp_sock_rfree(skb);
6628 }
6629 
6630 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6631 {
6632 	struct sk_buff *frag;
6633 
6634 	if (!skb->data_len)
6635 		goto done;
6636 
6637 	/* Don't forget the fragments. */
6638 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6639 		sctp_skb_set_owner_r_frag(frag, sk);
6640 
6641 done:
6642 	sctp_skb_set_owner_r(skb, sk);
6643 }
6644 
6645 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6646 		    struct sctp_association *asoc)
6647 {
6648 	struct inet_sock *inet = inet_sk(sk);
6649 	struct inet_sock *newinet = inet_sk(newsk);
6650 
6651 	newsk->sk_type = sk->sk_type;
6652 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6653 	newsk->sk_flags = sk->sk_flags;
6654 	newsk->sk_no_check = sk->sk_no_check;
6655 	newsk->sk_reuse = sk->sk_reuse;
6656 
6657 	newsk->sk_shutdown = sk->sk_shutdown;
6658 	newsk->sk_destruct = inet_sock_destruct;
6659 	newsk->sk_family = sk->sk_family;
6660 	newsk->sk_protocol = IPPROTO_SCTP;
6661 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6662 	newsk->sk_sndbuf = sk->sk_sndbuf;
6663 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6664 	newsk->sk_lingertime = sk->sk_lingertime;
6665 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6666 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6667 
6668 	newinet = inet_sk(newsk);
6669 
6670 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6671 	 * getsockname() and getpeername()
6672 	 */
6673 	newinet->sport = inet->sport;
6674 	newinet->saddr = inet->saddr;
6675 	newinet->rcv_saddr = inet->rcv_saddr;
6676 	newinet->dport = htons(asoc->peer.port);
6677 	newinet->pmtudisc = inet->pmtudisc;
6678 	newinet->id = asoc->next_tsn ^ jiffies;
6679 
6680 	newinet->uc_ttl = inet->uc_ttl;
6681 	newinet->mc_loop = 1;
6682 	newinet->mc_ttl = 1;
6683 	newinet->mc_index = 0;
6684 	newinet->mc_list = NULL;
6685 }
6686 
6687 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6688  * and its messages to the newsk.
6689  */
6690 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6691 			      struct sctp_association *assoc,
6692 			      sctp_socket_type_t type)
6693 {
6694 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6695 	struct sctp_sock *newsp = sctp_sk(newsk);
6696 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6697 	struct sctp_endpoint *newep = newsp->ep;
6698 	struct sk_buff *skb, *tmp;
6699 	struct sctp_ulpevent *event;
6700 	struct sctp_bind_hashbucket *head;
6701 
6702 	/* Migrate socket buffer sizes and all the socket level options to the
6703 	 * new socket.
6704 	 */
6705 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6706 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6707 	/* Brute force copy old sctp opt. */
6708 	inet_sk_copy_descendant(newsk, oldsk);
6709 
6710 	/* Restore the ep value that was overwritten with the above structure
6711 	 * copy.
6712 	 */
6713 	newsp->ep = newep;
6714 	newsp->hmac = NULL;
6715 
6716 	/* Hook this new socket in to the bind_hash list. */
6717 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6718 	sctp_local_bh_disable();
6719 	sctp_spin_lock(&head->lock);
6720 	pp = sctp_sk(oldsk)->bind_hash;
6721 	sk_add_bind_node(newsk, &pp->owner);
6722 	sctp_sk(newsk)->bind_hash = pp;
6723 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6724 	sctp_spin_unlock(&head->lock);
6725 	sctp_local_bh_enable();
6726 
6727 	/* Copy the bind_addr list from the original endpoint to the new
6728 	 * endpoint so that we can handle restarts properly
6729 	 */
6730 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6731 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6732 
6733 	/* Move any messages in the old socket's receive queue that are for the
6734 	 * peeled off association to the new socket's receive queue.
6735 	 */
6736 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6737 		event = sctp_skb2event(skb);
6738 		if (event->asoc == assoc) {
6739 			sctp_sock_rfree_frag(skb);
6740 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6741 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6742 			sctp_skb_set_owner_r_frag(skb, newsk);
6743 		}
6744 	}
6745 
6746 	/* Clean up any messages pending delivery due to partial
6747 	 * delivery.   Three cases:
6748 	 * 1) No partial deliver;  no work.
6749 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6750 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6751 	 */
6752 	skb_queue_head_init(&newsp->pd_lobby);
6753 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6754 
6755 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6756 		struct sk_buff_head *queue;
6757 
6758 		/* Decide which queue to move pd_lobby skbs to. */
6759 		if (assoc->ulpq.pd_mode) {
6760 			queue = &newsp->pd_lobby;
6761 		} else
6762 			queue = &newsk->sk_receive_queue;
6763 
6764 		/* Walk through the pd_lobby, looking for skbs that
6765 		 * need moved to the new socket.
6766 		 */
6767 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6768 			event = sctp_skb2event(skb);
6769 			if (event->asoc == assoc) {
6770 				sctp_sock_rfree_frag(skb);
6771 				__skb_unlink(skb, &oldsp->pd_lobby);
6772 				__skb_queue_tail(queue, skb);
6773 				sctp_skb_set_owner_r_frag(skb, newsk);
6774 			}
6775 		}
6776 
6777 		/* Clear up any skbs waiting for the partial
6778 		 * delivery to finish.
6779 		 */
6780 		if (assoc->ulpq.pd_mode)
6781 			sctp_clear_pd(oldsk, NULL);
6782 
6783 	}
6784 
6785 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6786 		sctp_sock_rfree_frag(skb);
6787 		sctp_skb_set_owner_r_frag(skb, newsk);
6788 	}
6789 
6790 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6791 		sctp_sock_rfree_frag(skb);
6792 		sctp_skb_set_owner_r_frag(skb, newsk);
6793 	}
6794 
6795 	/* Set the type of socket to indicate that it is peeled off from the
6796 	 * original UDP-style socket or created with the accept() call on a
6797 	 * TCP-style socket..
6798 	 */
6799 	newsp->type = type;
6800 
6801 	/* Mark the new socket "in-use" by the user so that any packets
6802 	 * that may arrive on the association after we've moved it are
6803 	 * queued to the backlog.  This prevents a potential race between
6804 	 * backlog processing on the old socket and new-packet processing
6805 	 * on the new socket.
6806 	 *
6807 	 * The caller has just allocated newsk so we can guarantee that other
6808 	 * paths won't try to lock it and then oldsk.
6809 	 */
6810 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6811 	sctp_assoc_migrate(assoc, newsk);
6812 
6813 	/* If the association on the newsk is already closed before accept()
6814 	 * is called, set RCV_SHUTDOWN flag.
6815 	 */
6816 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6817 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6818 
6819 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6820 	sctp_release_sock(newsk);
6821 }
6822 
6823 
6824 /* This proto struct describes the ULP interface for SCTP.  */
6825 struct proto sctp_prot = {
6826 	.name        =	"SCTP",
6827 	.owner       =	THIS_MODULE,
6828 	.close       =	sctp_close,
6829 	.connect     =	sctp_connect,
6830 	.disconnect  =	sctp_disconnect,
6831 	.accept      =	sctp_accept,
6832 	.ioctl       =	sctp_ioctl,
6833 	.init        =	sctp_init_sock,
6834 	.destroy     =	sctp_destroy_sock,
6835 	.shutdown    =	sctp_shutdown,
6836 	.setsockopt  =	sctp_setsockopt,
6837 	.getsockopt  =	sctp_getsockopt,
6838 	.sendmsg     =	sctp_sendmsg,
6839 	.recvmsg     =	sctp_recvmsg,
6840 	.bind        =	sctp_bind,
6841 	.backlog_rcv =	sctp_backlog_rcv,
6842 	.hash        =	sctp_hash,
6843 	.unhash      =	sctp_unhash,
6844 	.get_port    =	sctp_get_port,
6845 	.obj_size    =  sizeof(struct sctp_sock),
6846 	.sysctl_mem  =  sysctl_sctp_mem,
6847 	.sysctl_rmem =  sysctl_sctp_rmem,
6848 	.sysctl_wmem =  sysctl_sctp_wmem,
6849 	.memory_pressure = &sctp_memory_pressure,
6850 	.enter_memory_pressure = sctp_enter_memory_pressure,
6851 	.memory_allocated = &sctp_memory_allocated,
6852 	.sockets_allocated = &sctp_sockets_allocated,
6853 };
6854 
6855 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6856 
6857 struct proto sctpv6_prot = {
6858 	.name		= "SCTPv6",
6859 	.owner		= THIS_MODULE,
6860 	.close		= sctp_close,
6861 	.connect	= sctp_connect,
6862 	.disconnect	= sctp_disconnect,
6863 	.accept		= sctp_accept,
6864 	.ioctl		= sctp_ioctl,
6865 	.init		= sctp_init_sock,
6866 	.destroy	= sctp_destroy_sock,
6867 	.shutdown	= sctp_shutdown,
6868 	.setsockopt	= sctp_setsockopt,
6869 	.getsockopt	= sctp_getsockopt,
6870 	.sendmsg	= sctp_sendmsg,
6871 	.recvmsg	= sctp_recvmsg,
6872 	.bind		= sctp_bind,
6873 	.backlog_rcv	= sctp_backlog_rcv,
6874 	.hash		= sctp_hash,
6875 	.unhash		= sctp_unhash,
6876 	.get_port	= sctp_get_port,
6877 	.obj_size	= sizeof(struct sctp6_sock),
6878 	.sysctl_mem	= sysctl_sctp_mem,
6879 	.sysctl_rmem	= sysctl_sctp_rmem,
6880 	.sysctl_wmem	= sysctl_sctp_wmem,
6881 	.memory_pressure = &sctp_memory_pressure,
6882 	.enter_memory_pressure = sctp_enter_memory_pressure,
6883 	.memory_allocated = &sctp_memory_allocated,
6884 	.sockets_allocated = &sctp_sockets_allocated,
6885 };
6886 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6887