1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && inet_port_requires_bind_service(net, snum) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if (sctp_get_port_local(sk, addr)) 418 return -EADDRINUSE; 419 420 /* Refresh ephemeral port. */ 421 if (!bp->port) 422 bp->port = inet_sk(sk)->inet_num; 423 424 /* Add the address to the bind address list. 425 * Use GFP_ATOMIC since BHs will be disabled. 426 */ 427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 428 SCTP_ADDR_SRC, GFP_ATOMIC); 429 430 if (ret) { 431 sctp_put_port(sk); 432 return ret; 433 } 434 /* Copy back into socket for getsockname() use. */ 435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 436 sp->pf->to_sk_saddr(addr, sk); 437 438 return ret; 439 } 440 441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 442 * 443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 444 * at any one time. If a sender, after sending an ASCONF chunk, decides 445 * it needs to transfer another ASCONF Chunk, it MUST wait until the 446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 447 * subsequent ASCONF. Note this restriction binds each side, so at any 448 * time two ASCONF may be in-transit on any given association (one sent 449 * from each endpoint). 450 */ 451 static int sctp_send_asconf(struct sctp_association *asoc, 452 struct sctp_chunk *chunk) 453 { 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct sctp_sock *sp; 543 struct sctp_endpoint *ep; 544 struct sctp_association *asoc; 545 struct sctp_bind_addr *bp; 546 struct sctp_chunk *chunk; 547 struct sctp_sockaddr_entry *laddr; 548 union sctp_addr *addr; 549 union sctp_addr saveaddr; 550 void *addr_buf; 551 struct sctp_af *af; 552 struct list_head *p; 553 int i; 554 int retval = 0; 555 556 sp = sctp_sk(sk); 557 ep = sp->ep; 558 559 if (!ep->asconf_enable) 560 return retval; 561 562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 563 __func__, sk, addrs, addrcnt); 564 565 list_for_each_entry(asoc, &ep->asocs, asocs) { 566 if (!asoc->peer.asconf_capable) 567 continue; 568 569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 570 continue; 571 572 if (!sctp_state(asoc, ESTABLISHED)) 573 continue; 574 575 /* Check if any address in the packed array of addresses is 576 * in the bind address list of the association. If so, 577 * do not send the asconf chunk to its peer, but continue with 578 * other associations. 579 */ 580 addr_buf = addrs; 581 for (i = 0; i < addrcnt; i++) { 582 addr = addr_buf; 583 af = sctp_get_af_specific(addr->v4.sin_family); 584 if (!af) { 585 retval = -EINVAL; 586 goto out; 587 } 588 589 if (sctp_assoc_lookup_laddr(asoc, addr)) 590 break; 591 592 addr_buf += af->sockaddr_len; 593 } 594 if (i < addrcnt) 595 continue; 596 597 /* Use the first valid address in bind addr list of 598 * association as Address Parameter of ASCONF CHUNK. 599 */ 600 bp = &asoc->base.bind_addr; 601 p = bp->address_list.next; 602 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 604 addrcnt, SCTP_PARAM_ADD_IP); 605 if (!chunk) { 606 retval = -ENOMEM; 607 goto out; 608 } 609 610 /* Add the new addresses to the bind address list with 611 * use_as_src set to 0. 612 */ 613 addr_buf = addrs; 614 for (i = 0; i < addrcnt; i++) { 615 addr = addr_buf; 616 af = sctp_get_af_specific(addr->v4.sin_family); 617 memcpy(&saveaddr, addr, af->sockaddr_len); 618 retval = sctp_add_bind_addr(bp, &saveaddr, 619 sizeof(saveaddr), 620 SCTP_ADDR_NEW, GFP_ATOMIC); 621 addr_buf += af->sockaddr_len; 622 } 623 if (asoc->src_out_of_asoc_ok) { 624 struct sctp_transport *trans; 625 626 list_for_each_entry(trans, 627 &asoc->peer.transport_addr_list, transports) { 628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 629 2*asoc->pathmtu, 4380)); 630 trans->ssthresh = asoc->peer.i.a_rwnd; 631 trans->rto = asoc->rto_initial; 632 sctp_max_rto(asoc, trans); 633 trans->rtt = trans->srtt = trans->rttvar = 0; 634 /* Clear the source and route cache */ 635 sctp_transport_route(trans, NULL, 636 sctp_sk(asoc->base.sk)); 637 } 638 } 639 retval = sctp_send_asconf(asoc, chunk); 640 } 641 642 out: 643 return retval; 644 } 645 646 /* Remove a list of addresses from bind addresses list. Do not remove the 647 * last address. 648 * 649 * Basically run through each address specified in the addrs/addrcnt 650 * array/length pair, determine if it is IPv6 or IPv4 and call 651 * sctp_del_bind() on it. 652 * 653 * If any of them fails, then the operation will be reversed and the 654 * ones that were removed will be added back. 655 * 656 * At least one address has to be left; if only one address is 657 * available, the operation will return -EBUSY. 658 * 659 * Only sctp_setsockopt_bindx() is supposed to call this function. 660 */ 661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 662 { 663 struct sctp_sock *sp = sctp_sk(sk); 664 struct sctp_endpoint *ep = sp->ep; 665 int cnt; 666 struct sctp_bind_addr *bp = &ep->base.bind_addr; 667 int retval = 0; 668 void *addr_buf; 669 union sctp_addr *sa_addr; 670 struct sctp_af *af; 671 672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 673 __func__, sk, addrs, addrcnt); 674 675 addr_buf = addrs; 676 for (cnt = 0; cnt < addrcnt; cnt++) { 677 /* If the bind address list is empty or if there is only one 678 * bind address, there is nothing more to be removed (we need 679 * at least one address here). 680 */ 681 if (list_empty(&bp->address_list) || 682 (sctp_list_single_entry(&bp->address_list))) { 683 retval = -EBUSY; 684 goto err_bindx_rem; 685 } 686 687 sa_addr = addr_buf; 688 af = sctp_get_af_specific(sa_addr->sa.sa_family); 689 if (!af) { 690 retval = -EINVAL; 691 goto err_bindx_rem; 692 } 693 694 if (!af->addr_valid(sa_addr, sp, NULL)) { 695 retval = -EADDRNOTAVAIL; 696 goto err_bindx_rem; 697 } 698 699 if (sa_addr->v4.sin_port && 700 sa_addr->v4.sin_port != htons(bp->port)) { 701 retval = -EINVAL; 702 goto err_bindx_rem; 703 } 704 705 if (!sa_addr->v4.sin_port) 706 sa_addr->v4.sin_port = htons(bp->port); 707 708 /* FIXME - There is probably a need to check if sk->sk_saddr and 709 * sk->sk_rcv_addr are currently set to one of the addresses to 710 * be removed. This is something which needs to be looked into 711 * when we are fixing the outstanding issues with multi-homing 712 * socket routing and failover schemes. Refer to comments in 713 * sctp_do_bind(). -daisy 714 */ 715 retval = sctp_del_bind_addr(bp, sa_addr); 716 717 addr_buf += af->sockaddr_len; 718 err_bindx_rem: 719 if (retval < 0) { 720 /* Failed. Add the ones that has been removed back */ 721 if (cnt > 0) 722 sctp_bindx_add(sk, addrs, cnt); 723 return retval; 724 } 725 } 726 727 return retval; 728 } 729 730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 731 * the associations that are part of the endpoint indicating that a list of 732 * local addresses are removed from the endpoint. 733 * 734 * If any of the addresses is already in the bind address list of the 735 * association, we do not send the chunk for that association. But it will not 736 * affect other associations. 737 * 738 * Only sctp_setsockopt_bindx() is supposed to call this function. 739 */ 740 static int sctp_send_asconf_del_ip(struct sock *sk, 741 struct sockaddr *addrs, 742 int addrcnt) 743 { 744 struct sctp_sock *sp; 745 struct sctp_endpoint *ep; 746 struct sctp_association *asoc; 747 struct sctp_transport *transport; 748 struct sctp_bind_addr *bp; 749 struct sctp_chunk *chunk; 750 union sctp_addr *laddr; 751 void *addr_buf; 752 struct sctp_af *af; 753 struct sctp_sockaddr_entry *saddr; 754 int i; 755 int retval = 0; 756 int stored = 0; 757 758 chunk = NULL; 759 sp = sctp_sk(sk); 760 ep = sp->ep; 761 762 if (!ep->asconf_enable) 763 return retval; 764 765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 766 __func__, sk, addrs, addrcnt); 767 768 list_for_each_entry(asoc, &ep->asocs, asocs) { 769 770 if (!asoc->peer.asconf_capable) 771 continue; 772 773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 774 continue; 775 776 if (!sctp_state(asoc, ESTABLISHED)) 777 continue; 778 779 /* Check if any address in the packed array of addresses is 780 * not present in the bind address list of the association. 781 * If so, do not send the asconf chunk to its peer, but 782 * continue with other associations. 783 */ 784 addr_buf = addrs; 785 for (i = 0; i < addrcnt; i++) { 786 laddr = addr_buf; 787 af = sctp_get_af_specific(laddr->v4.sin_family); 788 if (!af) { 789 retval = -EINVAL; 790 goto out; 791 } 792 793 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 794 break; 795 796 addr_buf += af->sockaddr_len; 797 } 798 if (i < addrcnt) 799 continue; 800 801 /* Find one address in the association's bind address list 802 * that is not in the packed array of addresses. This is to 803 * make sure that we do not delete all the addresses in the 804 * association. 805 */ 806 bp = &asoc->base.bind_addr; 807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 808 addrcnt, sp); 809 if ((laddr == NULL) && (addrcnt == 1)) { 810 if (asoc->asconf_addr_del_pending) 811 continue; 812 asoc->asconf_addr_del_pending = 813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 814 if (asoc->asconf_addr_del_pending == NULL) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 asoc->asconf_addr_del_pending->sa.sa_family = 819 addrs->sa_family; 820 asoc->asconf_addr_del_pending->v4.sin_port = 821 htons(bp->port); 822 if (addrs->sa_family == AF_INET) { 823 struct sockaddr_in *sin; 824 825 sin = (struct sockaddr_in *)addrs; 826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 827 } else if (addrs->sa_family == AF_INET6) { 828 struct sockaddr_in6 *sin6; 829 830 sin6 = (struct sockaddr_in6 *)addrs; 831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 832 } 833 834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 835 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 836 asoc->asconf_addr_del_pending); 837 838 asoc->src_out_of_asoc_ok = 1; 839 stored = 1; 840 goto skip_mkasconf; 841 } 842 843 if (laddr == NULL) 844 return -EINVAL; 845 846 /* We do not need RCU protection throughout this loop 847 * because this is done under a socket lock from the 848 * setsockopt call. 849 */ 850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 851 SCTP_PARAM_DEL_IP); 852 if (!chunk) { 853 retval = -ENOMEM; 854 goto out; 855 } 856 857 skip_mkasconf: 858 /* Reset use_as_src flag for the addresses in the bind address 859 * list that are to be deleted. 860 */ 861 addr_buf = addrs; 862 for (i = 0; i < addrcnt; i++) { 863 laddr = addr_buf; 864 af = sctp_get_af_specific(laddr->v4.sin_family); 865 list_for_each_entry(saddr, &bp->address_list, list) { 866 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 867 saddr->state = SCTP_ADDR_DEL; 868 } 869 addr_buf += af->sockaddr_len; 870 } 871 872 /* Update the route and saddr entries for all the transports 873 * as some of the addresses in the bind address list are 874 * about to be deleted and cannot be used as source addresses. 875 */ 876 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 877 transports) { 878 sctp_transport_route(transport, NULL, 879 sctp_sk(asoc->base.sk)); 880 } 881 882 if (stored) 883 /* We don't need to transmit ASCONF */ 884 continue; 885 retval = sctp_send_asconf(asoc, chunk); 886 } 887 out: 888 return retval; 889 } 890 891 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 893 { 894 struct sock *sk = sctp_opt2sk(sp); 895 union sctp_addr *addr; 896 struct sctp_af *af; 897 898 /* It is safe to write port space in caller. */ 899 addr = &addrw->a; 900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 901 af = sctp_get_af_specific(addr->sa.sa_family); 902 if (!af) 903 return -EINVAL; 904 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 905 return -EINVAL; 906 907 if (addrw->state == SCTP_ADDR_NEW) 908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 909 else 910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 911 } 912 913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 914 * 915 * API 8.1 916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 917 * int flags); 918 * 919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 921 * or IPv6 addresses. 922 * 923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 924 * Section 3.1.2 for this usage. 925 * 926 * addrs is a pointer to an array of one or more socket addresses. Each 927 * address is contained in its appropriate structure (i.e. struct 928 * sockaddr_in or struct sockaddr_in6) the family of the address type 929 * must be used to distinguish the address length (note that this 930 * representation is termed a "packed array" of addresses). The caller 931 * specifies the number of addresses in the array with addrcnt. 932 * 933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 934 * -1, and sets errno to the appropriate error code. 935 * 936 * For SCTP, the port given in each socket address must be the same, or 937 * sctp_bindx() will fail, setting errno to EINVAL. 938 * 939 * The flags parameter is formed from the bitwise OR of zero or more of 940 * the following currently defined flags: 941 * 942 * SCTP_BINDX_ADD_ADDR 943 * 944 * SCTP_BINDX_REM_ADDR 945 * 946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 948 * addresses from the association. The two flags are mutually exclusive; 949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 950 * not remove all addresses from an association; sctp_bindx() will 951 * reject such an attempt with EINVAL. 952 * 953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 954 * additional addresses with an endpoint after calling bind(). Or use 955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 956 * socket is associated with so that no new association accepted will be 957 * associated with those addresses. If the endpoint supports dynamic 958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 959 * endpoint to send the appropriate message to the peer to change the 960 * peers address lists. 961 * 962 * Adding and removing addresses from a connected association is 963 * optional functionality. Implementations that do not support this 964 * functionality should return EOPNOTSUPP. 965 * 966 * Basically do nothing but copying the addresses from user to kernel 967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 969 * from userspace. 970 * 971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 972 * it. 973 * 974 * sk The sk of the socket 975 * addrs The pointer to the addresses 976 * addrssize Size of the addrs buffer 977 * op Operation to perform (add or remove, see the flags of 978 * sctp_bindx) 979 * 980 * Returns 0 if ok, <0 errno code on error. 981 */ 982 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 983 int addrs_size, int op) 984 { 985 int err; 986 int addrcnt = 0; 987 int walk_size = 0; 988 struct sockaddr *sa_addr; 989 void *addr_buf = addrs; 990 struct sctp_af *af; 991 992 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 993 __func__, sk, addr_buf, addrs_size, op); 994 995 if (unlikely(addrs_size <= 0)) 996 return -EINVAL; 997 998 /* Walk through the addrs buffer and count the number of addresses. */ 999 while (walk_size < addrs_size) { 1000 if (walk_size + sizeof(sa_family_t) > addrs_size) 1001 return -EINVAL; 1002 1003 sa_addr = addr_buf; 1004 af = sctp_get_af_specific(sa_addr->sa_family); 1005 1006 /* If the address family is not supported or if this address 1007 * causes the address buffer to overflow return EINVAL. 1008 */ 1009 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1010 return -EINVAL; 1011 addrcnt++; 1012 addr_buf += af->sockaddr_len; 1013 walk_size += af->sockaddr_len; 1014 } 1015 1016 /* Do the work. */ 1017 switch (op) { 1018 case SCTP_BINDX_ADD_ADDR: 1019 /* Allow security module to validate bindx addresses. */ 1020 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1021 addrs, addrs_size); 1022 if (err) 1023 return err; 1024 err = sctp_bindx_add(sk, addrs, addrcnt); 1025 if (err) 1026 return err; 1027 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1028 case SCTP_BINDX_REM_ADDR: 1029 err = sctp_bindx_rem(sk, addrs, addrcnt); 1030 if (err) 1031 return err; 1032 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1033 1034 default: 1035 return -EINVAL; 1036 } 1037 } 1038 1039 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1040 int addrlen) 1041 { 1042 int err; 1043 1044 lock_sock(sk); 1045 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1046 release_sock(sk); 1047 return err; 1048 } 1049 1050 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1051 const union sctp_addr *daddr, 1052 const struct sctp_initmsg *init, 1053 struct sctp_transport **tp) 1054 { 1055 struct sctp_association *asoc; 1056 struct sock *sk = ep->base.sk; 1057 struct net *net = sock_net(sk); 1058 enum sctp_scope scope; 1059 int err; 1060 1061 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1062 return -EADDRNOTAVAIL; 1063 1064 if (!ep->base.bind_addr.port) { 1065 if (sctp_autobind(sk)) 1066 return -EAGAIN; 1067 } else { 1068 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1069 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1070 return -EACCES; 1071 } 1072 1073 scope = sctp_scope(daddr); 1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1075 if (!asoc) 1076 return -ENOMEM; 1077 1078 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1079 if (err < 0) 1080 goto free; 1081 1082 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1083 if (!*tp) { 1084 err = -ENOMEM; 1085 goto free; 1086 } 1087 1088 if (!init) 1089 return 0; 1090 1091 if (init->sinit_num_ostreams) { 1092 __u16 outcnt = init->sinit_num_ostreams; 1093 1094 asoc->c.sinit_num_ostreams = outcnt; 1095 /* outcnt has been changed, need to re-init stream */ 1096 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1097 if (err) 1098 goto free; 1099 } 1100 1101 if (init->sinit_max_instreams) 1102 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1103 1104 if (init->sinit_max_attempts) 1105 asoc->max_init_attempts = init->sinit_max_attempts; 1106 1107 if (init->sinit_max_init_timeo) 1108 asoc->max_init_timeo = 1109 msecs_to_jiffies(init->sinit_max_init_timeo); 1110 1111 return 0; 1112 free: 1113 sctp_association_free(asoc); 1114 return err; 1115 } 1116 1117 static int sctp_connect_add_peer(struct sctp_association *asoc, 1118 union sctp_addr *daddr, int addr_len) 1119 { 1120 struct sctp_endpoint *ep = asoc->ep; 1121 struct sctp_association *old; 1122 struct sctp_transport *t; 1123 int err; 1124 1125 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1126 if (err) 1127 return err; 1128 1129 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1130 if (old && old != asoc) 1131 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1132 : -EALREADY; 1133 1134 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1135 return -EADDRNOTAVAIL; 1136 1137 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1138 if (!t) 1139 return -ENOMEM; 1140 1141 return 0; 1142 } 1143 1144 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1145 * 1146 * Common routine for handling connect() and sctp_connectx(). 1147 * Connect will come in with just a single address. 1148 */ 1149 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1150 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1151 { 1152 struct sctp_sock *sp = sctp_sk(sk); 1153 struct sctp_endpoint *ep = sp->ep; 1154 struct sctp_transport *transport; 1155 struct sctp_association *asoc; 1156 void *addr_buf = kaddrs; 1157 union sctp_addr *daddr; 1158 struct sctp_af *af; 1159 int walk_size, err; 1160 long timeo; 1161 1162 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1163 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1164 return -EISCONN; 1165 1166 daddr = addr_buf; 1167 af = sctp_get_af_specific(daddr->sa.sa_family); 1168 if (!af || af->sockaddr_len > addrs_size) 1169 return -EINVAL; 1170 1171 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1172 if (err) 1173 return err; 1174 1175 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1176 if (asoc) 1177 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1178 : -EALREADY; 1179 1180 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1181 if (err) 1182 return err; 1183 asoc = transport->asoc; 1184 1185 addr_buf += af->sockaddr_len; 1186 walk_size = af->sockaddr_len; 1187 while (walk_size < addrs_size) { 1188 err = -EINVAL; 1189 if (walk_size + sizeof(sa_family_t) > addrs_size) 1190 goto out_free; 1191 1192 daddr = addr_buf; 1193 af = sctp_get_af_specific(daddr->sa.sa_family); 1194 if (!af || af->sockaddr_len + walk_size > addrs_size) 1195 goto out_free; 1196 1197 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1198 goto out_free; 1199 1200 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1201 if (err) 1202 goto out_free; 1203 1204 addr_buf += af->sockaddr_len; 1205 walk_size += af->sockaddr_len; 1206 } 1207 1208 /* In case the user of sctp_connectx() wants an association 1209 * id back, assign one now. 1210 */ 1211 if (assoc_id) { 1212 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1213 if (err < 0) 1214 goto out_free; 1215 } 1216 1217 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1218 if (err < 0) 1219 goto out_free; 1220 1221 /* Initialize sk's dport and daddr for getpeername() */ 1222 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1223 sp->pf->to_sk_daddr(daddr, sk); 1224 sk->sk_err = 0; 1225 1226 if (assoc_id) 1227 *assoc_id = asoc->assoc_id; 1228 1229 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1230 return sctp_wait_for_connect(asoc, &timeo); 1231 1232 out_free: 1233 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1234 __func__, asoc, kaddrs, err); 1235 sctp_association_free(asoc); 1236 return err; 1237 } 1238 1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1240 * 1241 * API 8.9 1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1243 * sctp_assoc_t *asoc); 1244 * 1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1247 * or IPv6 addresses. 1248 * 1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1250 * Section 3.1.2 for this usage. 1251 * 1252 * addrs is a pointer to an array of one or more socket addresses. Each 1253 * address is contained in its appropriate structure (i.e. struct 1254 * sockaddr_in or struct sockaddr_in6) the family of the address type 1255 * must be used to distengish the address length (note that this 1256 * representation is termed a "packed array" of addresses). The caller 1257 * specifies the number of addresses in the array with addrcnt. 1258 * 1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1260 * the association id of the new association. On failure, sctp_connectx() 1261 * returns -1, and sets errno to the appropriate error code. The assoc_id 1262 * is not touched by the kernel. 1263 * 1264 * For SCTP, the port given in each socket address must be the same, or 1265 * sctp_connectx() will fail, setting errno to EINVAL. 1266 * 1267 * An application can use sctp_connectx to initiate an association with 1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1269 * allows a caller to specify multiple addresses at which a peer can be 1270 * reached. The way the SCTP stack uses the list of addresses to set up 1271 * the association is implementation dependent. This function only 1272 * specifies that the stack will try to make use of all the addresses in 1273 * the list when needed. 1274 * 1275 * Note that the list of addresses passed in is only used for setting up 1276 * the association. It does not necessarily equal the set of addresses 1277 * the peer uses for the resulting association. If the caller wants to 1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1279 * retrieve them after the association has been set up. 1280 * 1281 * Basically do nothing but copying the addresses from user to kernel 1282 * land and invoking either sctp_connectx(). This is used for tunneling 1283 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1284 * 1285 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1286 * it. 1287 * 1288 * sk The sk of the socket 1289 * addrs The pointer to the addresses 1290 * addrssize Size of the addrs buffer 1291 * 1292 * Returns >=0 if ok, <0 errno code on error. 1293 */ 1294 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1295 int addrs_size, sctp_assoc_t *assoc_id) 1296 { 1297 int err = 0, flags = 0; 1298 1299 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1300 __func__, sk, kaddrs, addrs_size); 1301 1302 /* make sure the 1st addr's sa_family is accessible later */ 1303 if (unlikely(addrs_size < sizeof(sa_family_t))) 1304 return -EINVAL; 1305 1306 /* Allow security module to validate connectx addresses. */ 1307 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1308 (struct sockaddr *)kaddrs, 1309 addrs_size); 1310 if (err) 1311 return err; 1312 1313 /* in-kernel sockets don't generally have a file allocated to them 1314 * if all they do is call sock_create_kern(). 1315 */ 1316 if (sk->sk_socket->file) 1317 flags = sk->sk_socket->file->f_flags; 1318 1319 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1320 } 1321 1322 /* 1323 * This is an older interface. It's kept for backward compatibility 1324 * to the option that doesn't provide association id. 1325 */ 1326 static int sctp_setsockopt_connectx_old(struct sock *sk, 1327 struct sockaddr *kaddrs, 1328 int addrs_size) 1329 { 1330 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1331 } 1332 1333 /* 1334 * New interface for the API. The since the API is done with a socket 1335 * option, to make it simple we feed back the association id is as a return 1336 * indication to the call. Error is always negative and association id is 1337 * always positive. 1338 */ 1339 static int sctp_setsockopt_connectx(struct sock *sk, 1340 struct sockaddr *kaddrs, 1341 int addrs_size) 1342 { 1343 sctp_assoc_t assoc_id = 0; 1344 int err = 0; 1345 1346 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1347 1348 if (err) 1349 return err; 1350 else 1351 return assoc_id; 1352 } 1353 1354 /* 1355 * New (hopefully final) interface for the API. 1356 * We use the sctp_getaddrs_old structure so that use-space library 1357 * can avoid any unnecessary allocations. The only different part 1358 * is that we store the actual length of the address buffer into the 1359 * addrs_num structure member. That way we can re-use the existing 1360 * code. 1361 */ 1362 #ifdef CONFIG_COMPAT 1363 struct compat_sctp_getaddrs_old { 1364 sctp_assoc_t assoc_id; 1365 s32 addr_num; 1366 compat_uptr_t addrs; /* struct sockaddr * */ 1367 }; 1368 #endif 1369 1370 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1371 char __user *optval, 1372 int __user *optlen) 1373 { 1374 struct sctp_getaddrs_old param; 1375 sctp_assoc_t assoc_id = 0; 1376 struct sockaddr *kaddrs; 1377 int err = 0; 1378 1379 #ifdef CONFIG_COMPAT 1380 if (in_compat_syscall()) { 1381 struct compat_sctp_getaddrs_old param32; 1382 1383 if (len < sizeof(param32)) 1384 return -EINVAL; 1385 if (copy_from_user(¶m32, optval, sizeof(param32))) 1386 return -EFAULT; 1387 1388 param.assoc_id = param32.assoc_id; 1389 param.addr_num = param32.addr_num; 1390 param.addrs = compat_ptr(param32.addrs); 1391 } else 1392 #endif 1393 { 1394 if (len < sizeof(param)) 1395 return -EINVAL; 1396 if (copy_from_user(¶m, optval, sizeof(param))) 1397 return -EFAULT; 1398 } 1399 1400 kaddrs = memdup_user(param.addrs, param.addr_num); 1401 if (IS_ERR(kaddrs)) 1402 return PTR_ERR(kaddrs); 1403 1404 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1405 kfree(kaddrs); 1406 if (err == 0 || err == -EINPROGRESS) { 1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1408 return -EFAULT; 1409 if (put_user(sizeof(assoc_id), optlen)) 1410 return -EFAULT; 1411 } 1412 1413 return err; 1414 } 1415 1416 /* API 3.1.4 close() - UDP Style Syntax 1417 * Applications use close() to perform graceful shutdown (as described in 1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1419 * by a UDP-style socket. 1420 * 1421 * The syntax is 1422 * 1423 * ret = close(int sd); 1424 * 1425 * sd - the socket descriptor of the associations to be closed. 1426 * 1427 * To gracefully shutdown a specific association represented by the 1428 * UDP-style socket, an application should use the sendmsg() call, 1429 * passing no user data, but including the appropriate flag in the 1430 * ancillary data (see Section xxxx). 1431 * 1432 * If sd in the close() call is a branched-off socket representing only 1433 * one association, the shutdown is performed on that association only. 1434 * 1435 * 4.1.6 close() - TCP Style Syntax 1436 * 1437 * Applications use close() to gracefully close down an association. 1438 * 1439 * The syntax is: 1440 * 1441 * int close(int sd); 1442 * 1443 * sd - the socket descriptor of the association to be closed. 1444 * 1445 * After an application calls close() on a socket descriptor, no further 1446 * socket operations will succeed on that descriptor. 1447 * 1448 * API 7.1.4 SO_LINGER 1449 * 1450 * An application using the TCP-style socket can use this option to 1451 * perform the SCTP ABORT primitive. The linger option structure is: 1452 * 1453 * struct linger { 1454 * int l_onoff; // option on/off 1455 * int l_linger; // linger time 1456 * }; 1457 * 1458 * To enable the option, set l_onoff to 1. If the l_linger value is set 1459 * to 0, calling close() is the same as the ABORT primitive. If the 1460 * value is set to a negative value, the setsockopt() call will return 1461 * an error. If the value is set to a positive value linger_time, the 1462 * close() can be blocked for at most linger_time ms. If the graceful 1463 * shutdown phase does not finish during this period, close() will 1464 * return but the graceful shutdown phase continues in the system. 1465 */ 1466 static void sctp_close(struct sock *sk, long timeout) 1467 { 1468 struct net *net = sock_net(sk); 1469 struct sctp_endpoint *ep; 1470 struct sctp_association *asoc; 1471 struct list_head *pos, *temp; 1472 unsigned int data_was_unread; 1473 1474 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1475 1476 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1477 sk->sk_shutdown = SHUTDOWN_MASK; 1478 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1479 1480 ep = sctp_sk(sk)->ep; 1481 1482 /* Clean up any skbs sitting on the receive queue. */ 1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1485 1486 /* Walk all associations on an endpoint. */ 1487 list_for_each_safe(pos, temp, &ep->asocs) { 1488 asoc = list_entry(pos, struct sctp_association, asocs); 1489 1490 if (sctp_style(sk, TCP)) { 1491 /* A closed association can still be in the list if 1492 * it belongs to a TCP-style listening socket that is 1493 * not yet accepted. If so, free it. If not, send an 1494 * ABORT or SHUTDOWN based on the linger options. 1495 */ 1496 if (sctp_state(asoc, CLOSED)) { 1497 sctp_association_free(asoc); 1498 continue; 1499 } 1500 } 1501 1502 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1503 !skb_queue_empty(&asoc->ulpq.reasm) || 1504 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1506 struct sctp_chunk *chunk; 1507 1508 chunk = sctp_make_abort_user(asoc, NULL, 0); 1509 sctp_primitive_ABORT(net, asoc, chunk); 1510 } else 1511 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1512 } 1513 1514 /* On a TCP-style socket, block for at most linger_time if set. */ 1515 if (sctp_style(sk, TCP) && timeout) 1516 sctp_wait_for_close(sk, timeout); 1517 1518 /* This will run the backlog queue. */ 1519 release_sock(sk); 1520 1521 /* Supposedly, no process has access to the socket, but 1522 * the net layers still may. 1523 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1524 * held and that should be grabbed before socket lock. 1525 */ 1526 spin_lock_bh(&net->sctp.addr_wq_lock); 1527 bh_lock_sock_nested(sk); 1528 1529 /* Hold the sock, since sk_common_release() will put sock_put() 1530 * and we have just a little more cleanup. 1531 */ 1532 sock_hold(sk); 1533 sk_common_release(sk); 1534 1535 bh_unlock_sock(sk); 1536 spin_unlock_bh(&net->sctp.addr_wq_lock); 1537 1538 sock_put(sk); 1539 1540 SCTP_DBG_OBJCNT_DEC(sock); 1541 } 1542 1543 /* Handle EPIPE error. */ 1544 static int sctp_error(struct sock *sk, int flags, int err) 1545 { 1546 if (err == -EPIPE) 1547 err = sock_error(sk) ? : -EPIPE; 1548 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1549 send_sig(SIGPIPE, current, 0); 1550 return err; 1551 } 1552 1553 /* API 3.1.3 sendmsg() - UDP Style Syntax 1554 * 1555 * An application uses sendmsg() and recvmsg() calls to transmit data to 1556 * and receive data from its peer. 1557 * 1558 * ssize_t sendmsg(int socket, const struct msghdr *message, 1559 * int flags); 1560 * 1561 * socket - the socket descriptor of the endpoint. 1562 * message - pointer to the msghdr structure which contains a single 1563 * user message and possibly some ancillary data. 1564 * 1565 * See Section 5 for complete description of the data 1566 * structures. 1567 * 1568 * flags - flags sent or received with the user message, see Section 1569 * 5 for complete description of the flags. 1570 * 1571 * Note: This function could use a rewrite especially when explicit 1572 * connect support comes in. 1573 */ 1574 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1575 1576 static int sctp_msghdr_parse(const struct msghdr *msg, 1577 struct sctp_cmsgs *cmsgs); 1578 1579 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1580 struct sctp_sndrcvinfo *srinfo, 1581 const struct msghdr *msg, size_t msg_len) 1582 { 1583 __u16 sflags; 1584 int err; 1585 1586 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1587 return -EPIPE; 1588 1589 if (msg_len > sk->sk_sndbuf) 1590 return -EMSGSIZE; 1591 1592 memset(cmsgs, 0, sizeof(*cmsgs)); 1593 err = sctp_msghdr_parse(msg, cmsgs); 1594 if (err) { 1595 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1596 return err; 1597 } 1598 1599 memset(srinfo, 0, sizeof(*srinfo)); 1600 if (cmsgs->srinfo) { 1601 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1602 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1603 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1604 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1605 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1606 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1607 } 1608 1609 if (cmsgs->sinfo) { 1610 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1611 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1612 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1613 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1614 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1615 } 1616 1617 if (cmsgs->prinfo) { 1618 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1619 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1620 cmsgs->prinfo->pr_policy); 1621 } 1622 1623 sflags = srinfo->sinfo_flags; 1624 if (!sflags && msg_len) 1625 return 0; 1626 1627 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1628 return -EINVAL; 1629 1630 if (((sflags & SCTP_EOF) && msg_len > 0) || 1631 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1632 return -EINVAL; 1633 1634 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1635 return -EINVAL; 1636 1637 return 0; 1638 } 1639 1640 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1641 struct sctp_cmsgs *cmsgs, 1642 union sctp_addr *daddr, 1643 struct sctp_transport **tp) 1644 { 1645 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1646 struct sctp_association *asoc; 1647 struct cmsghdr *cmsg; 1648 __be32 flowinfo = 0; 1649 struct sctp_af *af; 1650 int err; 1651 1652 *tp = NULL; 1653 1654 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1655 return -EINVAL; 1656 1657 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1658 sctp_sstate(sk, CLOSING))) 1659 return -EADDRNOTAVAIL; 1660 1661 /* Label connection socket for first association 1-to-many 1662 * style for client sequence socket()->sendmsg(). This 1663 * needs to be done before sctp_assoc_add_peer() as that will 1664 * set up the initial packet that needs to account for any 1665 * security ip options (CIPSO/CALIPSO) added to the packet. 1666 */ 1667 af = sctp_get_af_specific(daddr->sa.sa_family); 1668 if (!af) 1669 return -EINVAL; 1670 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1671 (struct sockaddr *)daddr, 1672 af->sockaddr_len); 1673 if (err < 0) 1674 return err; 1675 1676 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1677 if (err) 1678 return err; 1679 asoc = (*tp)->asoc; 1680 1681 if (!cmsgs->addrs_msg) 1682 return 0; 1683 1684 if (daddr->sa.sa_family == AF_INET6) 1685 flowinfo = daddr->v6.sin6_flowinfo; 1686 1687 /* sendv addr list parse */ 1688 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1689 union sctp_addr _daddr; 1690 int dlen; 1691 1692 if (cmsg->cmsg_level != IPPROTO_SCTP || 1693 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1694 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1695 continue; 1696 1697 daddr = &_daddr; 1698 memset(daddr, 0, sizeof(*daddr)); 1699 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1700 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1701 if (dlen < sizeof(struct in_addr)) { 1702 err = -EINVAL; 1703 goto free; 1704 } 1705 1706 dlen = sizeof(struct in_addr); 1707 daddr->v4.sin_family = AF_INET; 1708 daddr->v4.sin_port = htons(asoc->peer.port); 1709 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1710 } else { 1711 if (dlen < sizeof(struct in6_addr)) { 1712 err = -EINVAL; 1713 goto free; 1714 } 1715 1716 dlen = sizeof(struct in6_addr); 1717 daddr->v6.sin6_flowinfo = flowinfo; 1718 daddr->v6.sin6_family = AF_INET6; 1719 daddr->v6.sin6_port = htons(asoc->peer.port); 1720 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1721 } 1722 1723 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1724 if (err) 1725 goto free; 1726 } 1727 1728 return 0; 1729 1730 free: 1731 sctp_association_free(asoc); 1732 return err; 1733 } 1734 1735 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1736 __u16 sflags, struct msghdr *msg, 1737 size_t msg_len) 1738 { 1739 struct sock *sk = asoc->base.sk; 1740 struct net *net = sock_net(sk); 1741 1742 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1743 return -EPIPE; 1744 1745 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1746 !sctp_state(asoc, ESTABLISHED)) 1747 return 0; 1748 1749 if (sflags & SCTP_EOF) { 1750 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1751 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1752 1753 return 0; 1754 } 1755 1756 if (sflags & SCTP_ABORT) { 1757 struct sctp_chunk *chunk; 1758 1759 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1760 if (!chunk) 1761 return -ENOMEM; 1762 1763 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1764 sctp_primitive_ABORT(net, asoc, chunk); 1765 iov_iter_revert(&msg->msg_iter, msg_len); 1766 1767 return 0; 1768 } 1769 1770 return 1; 1771 } 1772 1773 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1774 struct msghdr *msg, size_t msg_len, 1775 struct sctp_transport *transport, 1776 struct sctp_sndrcvinfo *sinfo) 1777 { 1778 struct sock *sk = asoc->base.sk; 1779 struct sctp_sock *sp = sctp_sk(sk); 1780 struct net *net = sock_net(sk); 1781 struct sctp_datamsg *datamsg; 1782 bool wait_connect = false; 1783 struct sctp_chunk *chunk; 1784 long timeo; 1785 int err; 1786 1787 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1788 err = -EINVAL; 1789 goto err; 1790 } 1791 1792 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1793 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1794 if (err) 1795 goto err; 1796 } 1797 1798 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1799 err = -EMSGSIZE; 1800 goto err; 1801 } 1802 1803 if (asoc->pmtu_pending) { 1804 if (sp->param_flags & SPP_PMTUD_ENABLE) 1805 sctp_assoc_sync_pmtu(asoc); 1806 asoc->pmtu_pending = 0; 1807 } 1808 1809 if (sctp_wspace(asoc) < (int)msg_len) 1810 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1811 1812 if (sk_under_memory_pressure(sk)) 1813 sk_mem_reclaim(sk); 1814 1815 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1816 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1817 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1818 if (err) 1819 goto err; 1820 } 1821 1822 if (sctp_state(asoc, CLOSED)) { 1823 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1824 if (err) 1825 goto err; 1826 1827 if (asoc->ep->intl_enable) { 1828 timeo = sock_sndtimeo(sk, 0); 1829 err = sctp_wait_for_connect(asoc, &timeo); 1830 if (err) { 1831 err = -ESRCH; 1832 goto err; 1833 } 1834 } else { 1835 wait_connect = true; 1836 } 1837 1838 pr_debug("%s: we associated primitively\n", __func__); 1839 } 1840 1841 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1842 if (IS_ERR(datamsg)) { 1843 err = PTR_ERR(datamsg); 1844 goto err; 1845 } 1846 1847 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1848 1849 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1850 sctp_chunk_hold(chunk); 1851 sctp_set_owner_w(chunk); 1852 chunk->transport = transport; 1853 } 1854 1855 err = sctp_primitive_SEND(net, asoc, datamsg); 1856 if (err) { 1857 sctp_datamsg_free(datamsg); 1858 goto err; 1859 } 1860 1861 pr_debug("%s: we sent primitively\n", __func__); 1862 1863 sctp_datamsg_put(datamsg); 1864 1865 if (unlikely(wait_connect)) { 1866 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1867 sctp_wait_for_connect(asoc, &timeo); 1868 } 1869 1870 err = msg_len; 1871 1872 err: 1873 return err; 1874 } 1875 1876 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1877 const struct msghdr *msg, 1878 struct sctp_cmsgs *cmsgs) 1879 { 1880 union sctp_addr *daddr = NULL; 1881 int err; 1882 1883 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1884 int len = msg->msg_namelen; 1885 1886 if (len > sizeof(*daddr)) 1887 len = sizeof(*daddr); 1888 1889 daddr = (union sctp_addr *)msg->msg_name; 1890 1891 err = sctp_verify_addr(sk, daddr, len); 1892 if (err) 1893 return ERR_PTR(err); 1894 } 1895 1896 return daddr; 1897 } 1898 1899 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1900 struct sctp_sndrcvinfo *sinfo, 1901 struct sctp_cmsgs *cmsgs) 1902 { 1903 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1904 sinfo->sinfo_stream = asoc->default_stream; 1905 sinfo->sinfo_ppid = asoc->default_ppid; 1906 sinfo->sinfo_context = asoc->default_context; 1907 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1908 1909 if (!cmsgs->prinfo) 1910 sinfo->sinfo_flags = asoc->default_flags; 1911 } 1912 1913 if (!cmsgs->srinfo && !cmsgs->prinfo) 1914 sinfo->sinfo_timetolive = asoc->default_timetolive; 1915 1916 if (cmsgs->authinfo) { 1917 /* Reuse sinfo_tsn to indicate that authinfo was set and 1918 * sinfo_ssn to save the keyid on tx path. 1919 */ 1920 sinfo->sinfo_tsn = 1; 1921 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1922 } 1923 } 1924 1925 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1926 { 1927 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1928 struct sctp_transport *transport = NULL; 1929 struct sctp_sndrcvinfo _sinfo, *sinfo; 1930 struct sctp_association *asoc, *tmp; 1931 struct sctp_cmsgs cmsgs; 1932 union sctp_addr *daddr; 1933 bool new = false; 1934 __u16 sflags; 1935 int err; 1936 1937 /* Parse and get snd_info */ 1938 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1939 if (err) 1940 goto out; 1941 1942 sinfo = &_sinfo; 1943 sflags = sinfo->sinfo_flags; 1944 1945 /* Get daddr from msg */ 1946 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1947 if (IS_ERR(daddr)) { 1948 err = PTR_ERR(daddr); 1949 goto out; 1950 } 1951 1952 lock_sock(sk); 1953 1954 /* SCTP_SENDALL process */ 1955 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1956 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1957 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1958 msg_len); 1959 if (err == 0) 1960 continue; 1961 if (err < 0) 1962 goto out_unlock; 1963 1964 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1965 1966 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1967 NULL, sinfo); 1968 if (err < 0) 1969 goto out_unlock; 1970 1971 iov_iter_revert(&msg->msg_iter, err); 1972 } 1973 1974 goto out_unlock; 1975 } 1976 1977 /* Get and check or create asoc */ 1978 if (daddr) { 1979 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1980 if (asoc) { 1981 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1982 msg_len); 1983 if (err <= 0) 1984 goto out_unlock; 1985 } else { 1986 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1987 &transport); 1988 if (err) 1989 goto out_unlock; 1990 1991 asoc = transport->asoc; 1992 new = true; 1993 } 1994 1995 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 1996 transport = NULL; 1997 } else { 1998 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 1999 if (!asoc) { 2000 err = -EPIPE; 2001 goto out_unlock; 2002 } 2003 2004 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2005 if (err <= 0) 2006 goto out_unlock; 2007 } 2008 2009 /* Update snd_info with the asoc */ 2010 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2011 2012 /* Send msg to the asoc */ 2013 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2014 if (err < 0 && err != -ESRCH && new) 2015 sctp_association_free(asoc); 2016 2017 out_unlock: 2018 release_sock(sk); 2019 out: 2020 return sctp_error(sk, msg->msg_flags, err); 2021 } 2022 2023 /* This is an extended version of skb_pull() that removes the data from the 2024 * start of a skb even when data is spread across the list of skb's in the 2025 * frag_list. len specifies the total amount of data that needs to be removed. 2026 * when 'len' bytes could be removed from the skb, it returns 0. 2027 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2028 * could not be removed. 2029 */ 2030 static int sctp_skb_pull(struct sk_buff *skb, int len) 2031 { 2032 struct sk_buff *list; 2033 int skb_len = skb_headlen(skb); 2034 int rlen; 2035 2036 if (len <= skb_len) { 2037 __skb_pull(skb, len); 2038 return 0; 2039 } 2040 len -= skb_len; 2041 __skb_pull(skb, skb_len); 2042 2043 skb_walk_frags(skb, list) { 2044 rlen = sctp_skb_pull(list, len); 2045 skb->len -= (len-rlen); 2046 skb->data_len -= (len-rlen); 2047 2048 if (!rlen) 2049 return 0; 2050 2051 len = rlen; 2052 } 2053 2054 return len; 2055 } 2056 2057 /* API 3.1.3 recvmsg() - UDP Style Syntax 2058 * 2059 * ssize_t recvmsg(int socket, struct msghdr *message, 2060 * int flags); 2061 * 2062 * socket - the socket descriptor of the endpoint. 2063 * message - pointer to the msghdr structure which contains a single 2064 * user message and possibly some ancillary data. 2065 * 2066 * See Section 5 for complete description of the data 2067 * structures. 2068 * 2069 * flags - flags sent or received with the user message, see Section 2070 * 5 for complete description of the flags. 2071 */ 2072 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2073 int noblock, int flags, int *addr_len) 2074 { 2075 struct sctp_ulpevent *event = NULL; 2076 struct sctp_sock *sp = sctp_sk(sk); 2077 struct sk_buff *skb, *head_skb; 2078 int copied; 2079 int err = 0; 2080 int skb_len; 2081 2082 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2083 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2084 addr_len); 2085 2086 lock_sock(sk); 2087 2088 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2089 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2090 err = -ENOTCONN; 2091 goto out; 2092 } 2093 2094 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2095 if (!skb) 2096 goto out; 2097 2098 /* Get the total length of the skb including any skb's in the 2099 * frag_list. 2100 */ 2101 skb_len = skb->len; 2102 2103 copied = skb_len; 2104 if (copied > len) 2105 copied = len; 2106 2107 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2108 2109 event = sctp_skb2event(skb); 2110 2111 if (err) 2112 goto out_free; 2113 2114 if (event->chunk && event->chunk->head_skb) 2115 head_skb = event->chunk->head_skb; 2116 else 2117 head_skb = skb; 2118 sock_recv_ts_and_drops(msg, sk, head_skb); 2119 if (sctp_ulpevent_is_notification(event)) { 2120 msg->msg_flags |= MSG_NOTIFICATION; 2121 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2122 } else { 2123 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2124 } 2125 2126 /* Check if we allow SCTP_NXTINFO. */ 2127 if (sp->recvnxtinfo) 2128 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2129 /* Check if we allow SCTP_RCVINFO. */ 2130 if (sp->recvrcvinfo) 2131 sctp_ulpevent_read_rcvinfo(event, msg); 2132 /* Check if we allow SCTP_SNDRCVINFO. */ 2133 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2134 sctp_ulpevent_read_sndrcvinfo(event, msg); 2135 2136 err = copied; 2137 2138 /* If skb's length exceeds the user's buffer, update the skb and 2139 * push it back to the receive_queue so that the next call to 2140 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2141 */ 2142 if (skb_len > copied) { 2143 msg->msg_flags &= ~MSG_EOR; 2144 if (flags & MSG_PEEK) 2145 goto out_free; 2146 sctp_skb_pull(skb, copied); 2147 skb_queue_head(&sk->sk_receive_queue, skb); 2148 2149 /* When only partial message is copied to the user, increase 2150 * rwnd by that amount. If all the data in the skb is read, 2151 * rwnd is updated when the event is freed. 2152 */ 2153 if (!sctp_ulpevent_is_notification(event)) 2154 sctp_assoc_rwnd_increase(event->asoc, copied); 2155 goto out; 2156 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2157 (event->msg_flags & MSG_EOR)) 2158 msg->msg_flags |= MSG_EOR; 2159 else 2160 msg->msg_flags &= ~MSG_EOR; 2161 2162 out_free: 2163 if (flags & MSG_PEEK) { 2164 /* Release the skb reference acquired after peeking the skb in 2165 * sctp_skb_recv_datagram(). 2166 */ 2167 kfree_skb(skb); 2168 } else { 2169 /* Free the event which includes releasing the reference to 2170 * the owner of the skb, freeing the skb and updating the 2171 * rwnd. 2172 */ 2173 sctp_ulpevent_free(event); 2174 } 2175 out: 2176 release_sock(sk); 2177 return err; 2178 } 2179 2180 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2181 * 2182 * This option is a on/off flag. If enabled no SCTP message 2183 * fragmentation will be performed. Instead if a message being sent 2184 * exceeds the current PMTU size, the message will NOT be sent and 2185 * instead a error will be indicated to the user. 2186 */ 2187 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2188 unsigned int optlen) 2189 { 2190 if (optlen < sizeof(int)) 2191 return -EINVAL; 2192 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2193 return 0; 2194 } 2195 2196 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2197 unsigned int optlen) 2198 { 2199 struct sctp_sock *sp = sctp_sk(sk); 2200 struct sctp_association *asoc; 2201 int i; 2202 2203 if (optlen > sizeof(struct sctp_event_subscribe)) 2204 return -EINVAL; 2205 2206 for (i = 0; i < optlen; i++) 2207 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2208 sn_type[i]); 2209 2210 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2211 asoc->subscribe = sctp_sk(sk)->subscribe; 2212 2213 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2214 * if there is no data to be sent or retransmit, the stack will 2215 * immediately send up this notification. 2216 */ 2217 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2218 struct sctp_ulpevent *event; 2219 2220 asoc = sctp_id2assoc(sk, 0); 2221 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2222 event = sctp_ulpevent_make_sender_dry_event(asoc, 2223 GFP_USER | __GFP_NOWARN); 2224 if (!event) 2225 return -ENOMEM; 2226 2227 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2228 } 2229 } 2230 2231 return 0; 2232 } 2233 2234 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2235 * 2236 * This socket option is applicable to the UDP-style socket only. When 2237 * set it will cause associations that are idle for more than the 2238 * specified number of seconds to automatically close. An association 2239 * being idle is defined an association that has NOT sent or received 2240 * user data. The special value of '0' indicates that no automatic 2241 * close of any associations should be performed. The option expects an 2242 * integer defining the number of seconds of idle time before an 2243 * association is closed. 2244 */ 2245 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2246 unsigned int optlen) 2247 { 2248 struct sctp_sock *sp = sctp_sk(sk); 2249 struct net *net = sock_net(sk); 2250 2251 /* Applicable to UDP-style socket only */ 2252 if (sctp_style(sk, TCP)) 2253 return -EOPNOTSUPP; 2254 if (optlen != sizeof(int)) 2255 return -EINVAL; 2256 2257 sp->autoclose = *optval; 2258 if (sp->autoclose > net->sctp.max_autoclose) 2259 sp->autoclose = net->sctp.max_autoclose; 2260 2261 return 0; 2262 } 2263 2264 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2265 * 2266 * Applications can enable or disable heartbeats for any peer address of 2267 * an association, modify an address's heartbeat interval, force a 2268 * heartbeat to be sent immediately, and adjust the address's maximum 2269 * number of retransmissions sent before an address is considered 2270 * unreachable. The following structure is used to access and modify an 2271 * address's parameters: 2272 * 2273 * struct sctp_paddrparams { 2274 * sctp_assoc_t spp_assoc_id; 2275 * struct sockaddr_storage spp_address; 2276 * uint32_t spp_hbinterval; 2277 * uint16_t spp_pathmaxrxt; 2278 * uint32_t spp_pathmtu; 2279 * uint32_t spp_sackdelay; 2280 * uint32_t spp_flags; 2281 * uint32_t spp_ipv6_flowlabel; 2282 * uint8_t spp_dscp; 2283 * }; 2284 * 2285 * spp_assoc_id - (one-to-many style socket) This is filled in the 2286 * application, and identifies the association for 2287 * this query. 2288 * spp_address - This specifies which address is of interest. 2289 * spp_hbinterval - This contains the value of the heartbeat interval, 2290 * in milliseconds. If a value of zero 2291 * is present in this field then no changes are to 2292 * be made to this parameter. 2293 * spp_pathmaxrxt - This contains the maximum number of 2294 * retransmissions before this address shall be 2295 * considered unreachable. If a value of zero 2296 * is present in this field then no changes are to 2297 * be made to this parameter. 2298 * spp_pathmtu - When Path MTU discovery is disabled the value 2299 * specified here will be the "fixed" path mtu. 2300 * Note that if the spp_address field is empty 2301 * then all associations on this address will 2302 * have this fixed path mtu set upon them. 2303 * 2304 * spp_sackdelay - When delayed sack is enabled, this value specifies 2305 * the number of milliseconds that sacks will be delayed 2306 * for. This value will apply to all addresses of an 2307 * association if the spp_address field is empty. Note 2308 * also, that if delayed sack is enabled and this 2309 * value is set to 0, no change is made to the last 2310 * recorded delayed sack timer value. 2311 * 2312 * spp_flags - These flags are used to control various features 2313 * on an association. The flag field may contain 2314 * zero or more of the following options. 2315 * 2316 * SPP_HB_ENABLE - Enable heartbeats on the 2317 * specified address. Note that if the address 2318 * field is empty all addresses for the association 2319 * have heartbeats enabled upon them. 2320 * 2321 * SPP_HB_DISABLE - Disable heartbeats on the 2322 * speicifed address. Note that if the address 2323 * field is empty all addresses for the association 2324 * will have their heartbeats disabled. Note also 2325 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2326 * mutually exclusive, only one of these two should 2327 * be specified. Enabling both fields will have 2328 * undetermined results. 2329 * 2330 * SPP_HB_DEMAND - Request a user initiated heartbeat 2331 * to be made immediately. 2332 * 2333 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2334 * heartbeat delayis to be set to the value of 0 2335 * milliseconds. 2336 * 2337 * SPP_PMTUD_ENABLE - This field will enable PMTU 2338 * discovery upon the specified address. Note that 2339 * if the address feild is empty then all addresses 2340 * on the association are effected. 2341 * 2342 * SPP_PMTUD_DISABLE - This field will disable PMTU 2343 * discovery upon the specified address. Note that 2344 * if the address feild is empty then all addresses 2345 * on the association are effected. Not also that 2346 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2347 * exclusive. Enabling both will have undetermined 2348 * results. 2349 * 2350 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2351 * on delayed sack. The time specified in spp_sackdelay 2352 * is used to specify the sack delay for this address. Note 2353 * that if spp_address is empty then all addresses will 2354 * enable delayed sack and take on the sack delay 2355 * value specified in spp_sackdelay. 2356 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2357 * off delayed sack. If the spp_address field is blank then 2358 * delayed sack is disabled for the entire association. Note 2359 * also that this field is mutually exclusive to 2360 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2361 * results. 2362 * 2363 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2364 * setting of the IPV6 flow label value. The value is 2365 * contained in the spp_ipv6_flowlabel field. 2366 * Upon retrieval, this flag will be set to indicate that 2367 * the spp_ipv6_flowlabel field has a valid value returned. 2368 * If a specific destination address is set (in the 2369 * spp_address field), then the value returned is that of 2370 * the address. If just an association is specified (and 2371 * no address), then the association's default flow label 2372 * is returned. If neither an association nor a destination 2373 * is specified, then the socket's default flow label is 2374 * returned. For non-IPv6 sockets, this flag will be left 2375 * cleared. 2376 * 2377 * SPP_DSCP: Setting this flag enables the setting of the 2378 * Differentiated Services Code Point (DSCP) value 2379 * associated with either the association or a specific 2380 * address. The value is obtained in the spp_dscp field. 2381 * Upon retrieval, this flag will be set to indicate that 2382 * the spp_dscp field has a valid value returned. If a 2383 * specific destination address is set when called (in the 2384 * spp_address field), then that specific destination 2385 * address's DSCP value is returned. If just an association 2386 * is specified, then the association's default DSCP is 2387 * returned. If neither an association nor a destination is 2388 * specified, then the socket's default DSCP is returned. 2389 * 2390 * spp_ipv6_flowlabel 2391 * - This field is used in conjunction with the 2392 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2393 * The 20 least significant bits are used for the flow 2394 * label. This setting has precedence over any IPv6-layer 2395 * setting. 2396 * 2397 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2398 * and contains the DSCP. The 6 most significant bits are 2399 * used for the DSCP. This setting has precedence over any 2400 * IPv4- or IPv6- layer setting. 2401 */ 2402 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2403 struct sctp_transport *trans, 2404 struct sctp_association *asoc, 2405 struct sctp_sock *sp, 2406 int hb_change, 2407 int pmtud_change, 2408 int sackdelay_change) 2409 { 2410 int error; 2411 2412 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2413 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2414 trans->asoc, trans); 2415 if (error) 2416 return error; 2417 } 2418 2419 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2420 * this field is ignored. Note also that a value of zero indicates 2421 * the current setting should be left unchanged. 2422 */ 2423 if (params->spp_flags & SPP_HB_ENABLE) { 2424 2425 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2426 * set. This lets us use 0 value when this flag 2427 * is set. 2428 */ 2429 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2430 params->spp_hbinterval = 0; 2431 2432 if (params->spp_hbinterval || 2433 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2434 if (trans) { 2435 trans->hbinterval = 2436 msecs_to_jiffies(params->spp_hbinterval); 2437 } else if (asoc) { 2438 asoc->hbinterval = 2439 msecs_to_jiffies(params->spp_hbinterval); 2440 } else { 2441 sp->hbinterval = params->spp_hbinterval; 2442 } 2443 } 2444 } 2445 2446 if (hb_change) { 2447 if (trans) { 2448 trans->param_flags = 2449 (trans->param_flags & ~SPP_HB) | hb_change; 2450 } else if (asoc) { 2451 asoc->param_flags = 2452 (asoc->param_flags & ~SPP_HB) | hb_change; 2453 } else { 2454 sp->param_flags = 2455 (sp->param_flags & ~SPP_HB) | hb_change; 2456 } 2457 } 2458 2459 /* When Path MTU discovery is disabled the value specified here will 2460 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2461 * include the flag SPP_PMTUD_DISABLE for this field to have any 2462 * effect). 2463 */ 2464 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2465 if (trans) { 2466 trans->pathmtu = params->spp_pathmtu; 2467 sctp_assoc_sync_pmtu(asoc); 2468 } else if (asoc) { 2469 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2470 } else { 2471 sp->pathmtu = params->spp_pathmtu; 2472 } 2473 } 2474 2475 if (pmtud_change) { 2476 if (trans) { 2477 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2478 (params->spp_flags & SPP_PMTUD_ENABLE); 2479 trans->param_flags = 2480 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2481 if (update) { 2482 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2483 sctp_assoc_sync_pmtu(asoc); 2484 } 2485 } else if (asoc) { 2486 asoc->param_flags = 2487 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2488 } else { 2489 sp->param_flags = 2490 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2491 } 2492 } 2493 2494 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2495 * value of this field is ignored. Note also that a value of zero 2496 * indicates the current setting should be left unchanged. 2497 */ 2498 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2499 if (trans) { 2500 trans->sackdelay = 2501 msecs_to_jiffies(params->spp_sackdelay); 2502 } else if (asoc) { 2503 asoc->sackdelay = 2504 msecs_to_jiffies(params->spp_sackdelay); 2505 } else { 2506 sp->sackdelay = params->spp_sackdelay; 2507 } 2508 } 2509 2510 if (sackdelay_change) { 2511 if (trans) { 2512 trans->param_flags = 2513 (trans->param_flags & ~SPP_SACKDELAY) | 2514 sackdelay_change; 2515 } else if (asoc) { 2516 asoc->param_flags = 2517 (asoc->param_flags & ~SPP_SACKDELAY) | 2518 sackdelay_change; 2519 } else { 2520 sp->param_flags = 2521 (sp->param_flags & ~SPP_SACKDELAY) | 2522 sackdelay_change; 2523 } 2524 } 2525 2526 /* Note that a value of zero indicates the current setting should be 2527 left unchanged. 2528 */ 2529 if (params->spp_pathmaxrxt) { 2530 if (trans) { 2531 trans->pathmaxrxt = params->spp_pathmaxrxt; 2532 } else if (asoc) { 2533 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2534 } else { 2535 sp->pathmaxrxt = params->spp_pathmaxrxt; 2536 } 2537 } 2538 2539 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2540 if (trans) { 2541 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2542 trans->flowlabel = params->spp_ipv6_flowlabel & 2543 SCTP_FLOWLABEL_VAL_MASK; 2544 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2545 } 2546 } else if (asoc) { 2547 struct sctp_transport *t; 2548 2549 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2550 transports) { 2551 if (t->ipaddr.sa.sa_family != AF_INET6) 2552 continue; 2553 t->flowlabel = params->spp_ipv6_flowlabel & 2554 SCTP_FLOWLABEL_VAL_MASK; 2555 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2556 } 2557 asoc->flowlabel = params->spp_ipv6_flowlabel & 2558 SCTP_FLOWLABEL_VAL_MASK; 2559 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2560 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2561 sp->flowlabel = params->spp_ipv6_flowlabel & 2562 SCTP_FLOWLABEL_VAL_MASK; 2563 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2564 } 2565 } 2566 2567 if (params->spp_flags & SPP_DSCP) { 2568 if (trans) { 2569 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2570 trans->dscp |= SCTP_DSCP_SET_MASK; 2571 } else if (asoc) { 2572 struct sctp_transport *t; 2573 2574 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2575 transports) { 2576 t->dscp = params->spp_dscp & 2577 SCTP_DSCP_VAL_MASK; 2578 t->dscp |= SCTP_DSCP_SET_MASK; 2579 } 2580 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2581 asoc->dscp |= SCTP_DSCP_SET_MASK; 2582 } else { 2583 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2584 sp->dscp |= SCTP_DSCP_SET_MASK; 2585 } 2586 } 2587 2588 return 0; 2589 } 2590 2591 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2592 struct sctp_paddrparams *params, 2593 unsigned int optlen) 2594 { 2595 struct sctp_transport *trans = NULL; 2596 struct sctp_association *asoc = NULL; 2597 struct sctp_sock *sp = sctp_sk(sk); 2598 int error; 2599 int hb_change, pmtud_change, sackdelay_change; 2600 2601 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2602 spp_ipv6_flowlabel), 4)) { 2603 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2604 return -EINVAL; 2605 } else if (optlen != sizeof(*params)) { 2606 return -EINVAL; 2607 } 2608 2609 /* Validate flags and value parameters. */ 2610 hb_change = params->spp_flags & SPP_HB; 2611 pmtud_change = params->spp_flags & SPP_PMTUD; 2612 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2613 2614 if (hb_change == SPP_HB || 2615 pmtud_change == SPP_PMTUD || 2616 sackdelay_change == SPP_SACKDELAY || 2617 params->spp_sackdelay > 500 || 2618 (params->spp_pathmtu && 2619 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2620 return -EINVAL; 2621 2622 /* If an address other than INADDR_ANY is specified, and 2623 * no transport is found, then the request is invalid. 2624 */ 2625 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2626 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2627 params->spp_assoc_id); 2628 if (!trans) 2629 return -EINVAL; 2630 } 2631 2632 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2633 * socket is a one to many style socket, and an association 2634 * was not found, then the id was invalid. 2635 */ 2636 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2637 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2638 sctp_style(sk, UDP)) 2639 return -EINVAL; 2640 2641 /* Heartbeat demand can only be sent on a transport or 2642 * association, but not a socket. 2643 */ 2644 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2645 return -EINVAL; 2646 2647 /* Process parameters. */ 2648 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2649 hb_change, pmtud_change, 2650 sackdelay_change); 2651 2652 if (error) 2653 return error; 2654 2655 /* If changes are for association, also apply parameters to each 2656 * transport. 2657 */ 2658 if (!trans && asoc) { 2659 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2660 transports) { 2661 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2662 hb_change, pmtud_change, 2663 sackdelay_change); 2664 } 2665 } 2666 2667 return 0; 2668 } 2669 2670 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2671 { 2672 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2673 } 2674 2675 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2676 { 2677 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2678 } 2679 2680 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2681 struct sctp_association *asoc) 2682 { 2683 struct sctp_transport *trans; 2684 2685 if (params->sack_delay) { 2686 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2687 asoc->param_flags = 2688 sctp_spp_sackdelay_enable(asoc->param_flags); 2689 } 2690 if (params->sack_freq == 1) { 2691 asoc->param_flags = 2692 sctp_spp_sackdelay_disable(asoc->param_flags); 2693 } else if (params->sack_freq > 1) { 2694 asoc->sackfreq = params->sack_freq; 2695 asoc->param_flags = 2696 sctp_spp_sackdelay_enable(asoc->param_flags); 2697 } 2698 2699 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2700 transports) { 2701 if (params->sack_delay) { 2702 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2703 trans->param_flags = 2704 sctp_spp_sackdelay_enable(trans->param_flags); 2705 } 2706 if (params->sack_freq == 1) { 2707 trans->param_flags = 2708 sctp_spp_sackdelay_disable(trans->param_flags); 2709 } else if (params->sack_freq > 1) { 2710 trans->sackfreq = params->sack_freq; 2711 trans->param_flags = 2712 sctp_spp_sackdelay_enable(trans->param_flags); 2713 } 2714 } 2715 } 2716 2717 /* 2718 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2719 * 2720 * This option will effect the way delayed acks are performed. This 2721 * option allows you to get or set the delayed ack time, in 2722 * milliseconds. It also allows changing the delayed ack frequency. 2723 * Changing the frequency to 1 disables the delayed sack algorithm. If 2724 * the assoc_id is 0, then this sets or gets the endpoints default 2725 * values. If the assoc_id field is non-zero, then the set or get 2726 * effects the specified association for the one to many model (the 2727 * assoc_id field is ignored by the one to one model). Note that if 2728 * sack_delay or sack_freq are 0 when setting this option, then the 2729 * current values will remain unchanged. 2730 * 2731 * struct sctp_sack_info { 2732 * sctp_assoc_t sack_assoc_id; 2733 * uint32_t sack_delay; 2734 * uint32_t sack_freq; 2735 * }; 2736 * 2737 * sack_assoc_id - This parameter, indicates which association the user 2738 * is performing an action upon. Note that if this field's value is 2739 * zero then the endpoints default value is changed (effecting future 2740 * associations only). 2741 * 2742 * sack_delay - This parameter contains the number of milliseconds that 2743 * the user is requesting the delayed ACK timer be set to. Note that 2744 * this value is defined in the standard to be between 200 and 500 2745 * milliseconds. 2746 * 2747 * sack_freq - This parameter contains the number of packets that must 2748 * be received before a sack is sent without waiting for the delay 2749 * timer to expire. The default value for this is 2, setting this 2750 * value to 1 will disable the delayed sack algorithm. 2751 */ 2752 2753 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2754 struct sctp_sack_info *params, 2755 unsigned int optlen) 2756 { 2757 struct sctp_sock *sp = sctp_sk(sk); 2758 struct sctp_association *asoc; 2759 2760 if (optlen == sizeof(struct sctp_sack_info)) { 2761 if (params->sack_delay == 0 && params->sack_freq == 0) 2762 return 0; 2763 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2764 pr_warn_ratelimited(DEPRECATED 2765 "%s (pid %d) " 2766 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2767 "Use struct sctp_sack_info instead\n", 2768 current->comm, task_pid_nr(current)); 2769 2770 if (params->sack_delay == 0) 2771 params->sack_freq = 1; 2772 else 2773 params->sack_freq = 0; 2774 } else 2775 return -EINVAL; 2776 2777 /* Validate value parameter. */ 2778 if (params->sack_delay > 500) 2779 return -EINVAL; 2780 2781 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2782 * socket is a one to many style socket, and an association 2783 * was not found, then the id was invalid. 2784 */ 2785 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2786 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2787 sctp_style(sk, UDP)) 2788 return -EINVAL; 2789 2790 if (asoc) { 2791 sctp_apply_asoc_delayed_ack(params, asoc); 2792 2793 return 0; 2794 } 2795 2796 if (sctp_style(sk, TCP)) 2797 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2798 2799 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2800 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2801 if (params->sack_delay) { 2802 sp->sackdelay = params->sack_delay; 2803 sp->param_flags = 2804 sctp_spp_sackdelay_enable(sp->param_flags); 2805 } 2806 if (params->sack_freq == 1) { 2807 sp->param_flags = 2808 sctp_spp_sackdelay_disable(sp->param_flags); 2809 } else if (params->sack_freq > 1) { 2810 sp->sackfreq = params->sack_freq; 2811 sp->param_flags = 2812 sctp_spp_sackdelay_enable(sp->param_flags); 2813 } 2814 } 2815 2816 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2817 params->sack_assoc_id == SCTP_ALL_ASSOC) 2818 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2819 sctp_apply_asoc_delayed_ack(params, asoc); 2820 2821 return 0; 2822 } 2823 2824 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2825 * 2826 * Applications can specify protocol parameters for the default association 2827 * initialization. The option name argument to setsockopt() and getsockopt() 2828 * is SCTP_INITMSG. 2829 * 2830 * Setting initialization parameters is effective only on an unconnected 2831 * socket (for UDP-style sockets only future associations are effected 2832 * by the change). With TCP-style sockets, this option is inherited by 2833 * sockets derived from a listener socket. 2834 */ 2835 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2836 unsigned int optlen) 2837 { 2838 struct sctp_sock *sp = sctp_sk(sk); 2839 2840 if (optlen != sizeof(struct sctp_initmsg)) 2841 return -EINVAL; 2842 2843 if (sinit->sinit_num_ostreams) 2844 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2845 if (sinit->sinit_max_instreams) 2846 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2847 if (sinit->sinit_max_attempts) 2848 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2849 if (sinit->sinit_max_init_timeo) 2850 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2851 2852 return 0; 2853 } 2854 2855 /* 2856 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2857 * 2858 * Applications that wish to use the sendto() system call may wish to 2859 * specify a default set of parameters that would normally be supplied 2860 * through the inclusion of ancillary data. This socket option allows 2861 * such an application to set the default sctp_sndrcvinfo structure. 2862 * The application that wishes to use this socket option simply passes 2863 * in to this call the sctp_sndrcvinfo structure defined in Section 2864 * 5.2.2) The input parameters accepted by this call include 2865 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2866 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2867 * to this call if the caller is using the UDP model. 2868 */ 2869 static int sctp_setsockopt_default_send_param(struct sock *sk, 2870 struct sctp_sndrcvinfo *info, 2871 unsigned int optlen) 2872 { 2873 struct sctp_sock *sp = sctp_sk(sk); 2874 struct sctp_association *asoc; 2875 2876 if (optlen != sizeof(*info)) 2877 return -EINVAL; 2878 if (info->sinfo_flags & 2879 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2880 SCTP_ABORT | SCTP_EOF)) 2881 return -EINVAL; 2882 2883 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2884 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2885 sctp_style(sk, UDP)) 2886 return -EINVAL; 2887 2888 if (asoc) { 2889 asoc->default_stream = info->sinfo_stream; 2890 asoc->default_flags = info->sinfo_flags; 2891 asoc->default_ppid = info->sinfo_ppid; 2892 asoc->default_context = info->sinfo_context; 2893 asoc->default_timetolive = info->sinfo_timetolive; 2894 2895 return 0; 2896 } 2897 2898 if (sctp_style(sk, TCP)) 2899 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2900 2901 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2902 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2903 sp->default_stream = info->sinfo_stream; 2904 sp->default_flags = info->sinfo_flags; 2905 sp->default_ppid = info->sinfo_ppid; 2906 sp->default_context = info->sinfo_context; 2907 sp->default_timetolive = info->sinfo_timetolive; 2908 } 2909 2910 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2911 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2912 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2913 asoc->default_stream = info->sinfo_stream; 2914 asoc->default_flags = info->sinfo_flags; 2915 asoc->default_ppid = info->sinfo_ppid; 2916 asoc->default_context = info->sinfo_context; 2917 asoc->default_timetolive = info->sinfo_timetolive; 2918 } 2919 } 2920 2921 return 0; 2922 } 2923 2924 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2925 * (SCTP_DEFAULT_SNDINFO) 2926 */ 2927 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2928 struct sctp_sndinfo *info, 2929 unsigned int optlen) 2930 { 2931 struct sctp_sock *sp = sctp_sk(sk); 2932 struct sctp_association *asoc; 2933 2934 if (optlen != sizeof(*info)) 2935 return -EINVAL; 2936 if (info->snd_flags & 2937 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2938 SCTP_ABORT | SCTP_EOF)) 2939 return -EINVAL; 2940 2941 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2942 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2943 sctp_style(sk, UDP)) 2944 return -EINVAL; 2945 2946 if (asoc) { 2947 asoc->default_stream = info->snd_sid; 2948 asoc->default_flags = info->snd_flags; 2949 asoc->default_ppid = info->snd_ppid; 2950 asoc->default_context = info->snd_context; 2951 2952 return 0; 2953 } 2954 2955 if (sctp_style(sk, TCP)) 2956 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2957 2958 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2959 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2960 sp->default_stream = info->snd_sid; 2961 sp->default_flags = info->snd_flags; 2962 sp->default_ppid = info->snd_ppid; 2963 sp->default_context = info->snd_context; 2964 } 2965 2966 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2967 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2968 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2969 asoc->default_stream = info->snd_sid; 2970 asoc->default_flags = info->snd_flags; 2971 asoc->default_ppid = info->snd_ppid; 2972 asoc->default_context = info->snd_context; 2973 } 2974 } 2975 2976 return 0; 2977 } 2978 2979 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2980 * 2981 * Requests that the local SCTP stack use the enclosed peer address as 2982 * the association primary. The enclosed address must be one of the 2983 * association peer's addresses. 2984 */ 2985 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 2986 unsigned int optlen) 2987 { 2988 struct sctp_transport *trans; 2989 struct sctp_af *af; 2990 int err; 2991 2992 if (optlen != sizeof(struct sctp_prim)) 2993 return -EINVAL; 2994 2995 /* Allow security module to validate address but need address len. */ 2996 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 2997 if (!af) 2998 return -EINVAL; 2999 3000 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3001 (struct sockaddr *)&prim->ssp_addr, 3002 af->sockaddr_len); 3003 if (err) 3004 return err; 3005 3006 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3007 if (!trans) 3008 return -EINVAL; 3009 3010 sctp_assoc_set_primary(trans->asoc, trans); 3011 3012 return 0; 3013 } 3014 3015 /* 3016 * 7.1.5 SCTP_NODELAY 3017 * 3018 * Turn on/off any Nagle-like algorithm. This means that packets are 3019 * generally sent as soon as possible and no unnecessary delays are 3020 * introduced, at the cost of more packets in the network. Expects an 3021 * integer boolean flag. 3022 */ 3023 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3024 unsigned int optlen) 3025 { 3026 if (optlen < sizeof(int)) 3027 return -EINVAL; 3028 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3029 return 0; 3030 } 3031 3032 /* 3033 * 3034 * 7.1.1 SCTP_RTOINFO 3035 * 3036 * The protocol parameters used to initialize and bound retransmission 3037 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3038 * and modify these parameters. 3039 * All parameters are time values, in milliseconds. A value of 0, when 3040 * modifying the parameters, indicates that the current value should not 3041 * be changed. 3042 * 3043 */ 3044 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3045 struct sctp_rtoinfo *rtoinfo, 3046 unsigned int optlen) 3047 { 3048 struct sctp_association *asoc; 3049 unsigned long rto_min, rto_max; 3050 struct sctp_sock *sp = sctp_sk(sk); 3051 3052 if (optlen != sizeof (struct sctp_rtoinfo)) 3053 return -EINVAL; 3054 3055 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3056 3057 /* Set the values to the specific association */ 3058 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3059 sctp_style(sk, UDP)) 3060 return -EINVAL; 3061 3062 rto_max = rtoinfo->srto_max; 3063 rto_min = rtoinfo->srto_min; 3064 3065 if (rto_max) 3066 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3067 else 3068 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3069 3070 if (rto_min) 3071 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3072 else 3073 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3074 3075 if (rto_min > rto_max) 3076 return -EINVAL; 3077 3078 if (asoc) { 3079 if (rtoinfo->srto_initial != 0) 3080 asoc->rto_initial = 3081 msecs_to_jiffies(rtoinfo->srto_initial); 3082 asoc->rto_max = rto_max; 3083 asoc->rto_min = rto_min; 3084 } else { 3085 /* If there is no association or the association-id = 0 3086 * set the values to the endpoint. 3087 */ 3088 if (rtoinfo->srto_initial != 0) 3089 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3090 sp->rtoinfo.srto_max = rto_max; 3091 sp->rtoinfo.srto_min = rto_min; 3092 } 3093 3094 return 0; 3095 } 3096 3097 /* 3098 * 3099 * 7.1.2 SCTP_ASSOCINFO 3100 * 3101 * This option is used to tune the maximum retransmission attempts 3102 * of the association. 3103 * Returns an error if the new association retransmission value is 3104 * greater than the sum of the retransmission value of the peer. 3105 * See [SCTP] for more information. 3106 * 3107 */ 3108 static int sctp_setsockopt_associnfo(struct sock *sk, 3109 struct sctp_assocparams *assocparams, 3110 unsigned int optlen) 3111 { 3112 3113 struct sctp_association *asoc; 3114 3115 if (optlen != sizeof(struct sctp_assocparams)) 3116 return -EINVAL; 3117 3118 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3119 3120 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3121 sctp_style(sk, UDP)) 3122 return -EINVAL; 3123 3124 /* Set the values to the specific association */ 3125 if (asoc) { 3126 if (assocparams->sasoc_asocmaxrxt != 0) { 3127 __u32 path_sum = 0; 3128 int paths = 0; 3129 struct sctp_transport *peer_addr; 3130 3131 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3132 transports) { 3133 path_sum += peer_addr->pathmaxrxt; 3134 paths++; 3135 } 3136 3137 /* Only validate asocmaxrxt if we have more than 3138 * one path/transport. We do this because path 3139 * retransmissions are only counted when we have more 3140 * then one path. 3141 */ 3142 if (paths > 1 && 3143 assocparams->sasoc_asocmaxrxt > path_sum) 3144 return -EINVAL; 3145 3146 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3147 } 3148 3149 if (assocparams->sasoc_cookie_life != 0) 3150 asoc->cookie_life = 3151 ms_to_ktime(assocparams->sasoc_cookie_life); 3152 } else { 3153 /* Set the values to the endpoint */ 3154 struct sctp_sock *sp = sctp_sk(sk); 3155 3156 if (assocparams->sasoc_asocmaxrxt != 0) 3157 sp->assocparams.sasoc_asocmaxrxt = 3158 assocparams->sasoc_asocmaxrxt; 3159 if (assocparams->sasoc_cookie_life != 0) 3160 sp->assocparams.sasoc_cookie_life = 3161 assocparams->sasoc_cookie_life; 3162 } 3163 return 0; 3164 } 3165 3166 /* 3167 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3168 * 3169 * This socket option is a boolean flag which turns on or off mapped V4 3170 * addresses. If this option is turned on and the socket is type 3171 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3172 * If this option is turned off, then no mapping will be done of V4 3173 * addresses and a user will receive both PF_INET6 and PF_INET type 3174 * addresses on the socket. 3175 */ 3176 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3177 unsigned int optlen) 3178 { 3179 struct sctp_sock *sp = sctp_sk(sk); 3180 3181 if (optlen < sizeof(int)) 3182 return -EINVAL; 3183 if (*val) 3184 sp->v4mapped = 1; 3185 else 3186 sp->v4mapped = 0; 3187 3188 return 0; 3189 } 3190 3191 /* 3192 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3193 * This option will get or set the maximum size to put in any outgoing 3194 * SCTP DATA chunk. If a message is larger than this size it will be 3195 * fragmented by SCTP into the specified size. Note that the underlying 3196 * SCTP implementation may fragment into smaller sized chunks when the 3197 * PMTU of the underlying association is smaller than the value set by 3198 * the user. The default value for this option is '0' which indicates 3199 * the user is NOT limiting fragmentation and only the PMTU will effect 3200 * SCTP's choice of DATA chunk size. Note also that values set larger 3201 * than the maximum size of an IP datagram will effectively let SCTP 3202 * control fragmentation (i.e. the same as setting this option to 0). 3203 * 3204 * The following structure is used to access and modify this parameter: 3205 * 3206 * struct sctp_assoc_value { 3207 * sctp_assoc_t assoc_id; 3208 * uint32_t assoc_value; 3209 * }; 3210 * 3211 * assoc_id: This parameter is ignored for one-to-one style sockets. 3212 * For one-to-many style sockets this parameter indicates which 3213 * association the user is performing an action upon. Note that if 3214 * this field's value is zero then the endpoints default value is 3215 * changed (effecting future associations only). 3216 * assoc_value: This parameter specifies the maximum size in bytes. 3217 */ 3218 static int sctp_setsockopt_maxseg(struct sock *sk, 3219 struct sctp_assoc_value *params, 3220 unsigned int optlen) 3221 { 3222 struct sctp_sock *sp = sctp_sk(sk); 3223 struct sctp_association *asoc; 3224 sctp_assoc_t assoc_id; 3225 int val; 3226 3227 if (optlen == sizeof(int)) { 3228 pr_warn_ratelimited(DEPRECATED 3229 "%s (pid %d) " 3230 "Use of int in maxseg socket option.\n" 3231 "Use struct sctp_assoc_value instead\n", 3232 current->comm, task_pid_nr(current)); 3233 assoc_id = SCTP_FUTURE_ASSOC; 3234 val = *(int *)params; 3235 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3236 assoc_id = params->assoc_id; 3237 val = params->assoc_value; 3238 } else { 3239 return -EINVAL; 3240 } 3241 3242 asoc = sctp_id2assoc(sk, assoc_id); 3243 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3244 sctp_style(sk, UDP)) 3245 return -EINVAL; 3246 3247 if (val) { 3248 int min_len, max_len; 3249 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3250 sizeof(struct sctp_data_chunk); 3251 3252 min_len = sctp_min_frag_point(sp, datasize); 3253 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3254 3255 if (val < min_len || val > max_len) 3256 return -EINVAL; 3257 } 3258 3259 if (asoc) { 3260 asoc->user_frag = val; 3261 sctp_assoc_update_frag_point(asoc); 3262 } else { 3263 sp->user_frag = val; 3264 } 3265 3266 return 0; 3267 } 3268 3269 3270 /* 3271 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3272 * 3273 * Requests that the peer mark the enclosed address as the association 3274 * primary. The enclosed address must be one of the association's 3275 * locally bound addresses. The following structure is used to make a 3276 * set primary request: 3277 */ 3278 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3279 struct sctp_setpeerprim *prim, 3280 unsigned int optlen) 3281 { 3282 struct sctp_sock *sp; 3283 struct sctp_association *asoc = NULL; 3284 struct sctp_chunk *chunk; 3285 struct sctp_af *af; 3286 int err; 3287 3288 sp = sctp_sk(sk); 3289 3290 if (!sp->ep->asconf_enable) 3291 return -EPERM; 3292 3293 if (optlen != sizeof(struct sctp_setpeerprim)) 3294 return -EINVAL; 3295 3296 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3297 if (!asoc) 3298 return -EINVAL; 3299 3300 if (!asoc->peer.asconf_capable) 3301 return -EPERM; 3302 3303 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3304 return -EPERM; 3305 3306 if (!sctp_state(asoc, ESTABLISHED)) 3307 return -ENOTCONN; 3308 3309 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3310 if (!af) 3311 return -EINVAL; 3312 3313 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3314 return -EADDRNOTAVAIL; 3315 3316 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3317 return -EADDRNOTAVAIL; 3318 3319 /* Allow security module to validate address. */ 3320 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3321 (struct sockaddr *)&prim->sspp_addr, 3322 af->sockaddr_len); 3323 if (err) 3324 return err; 3325 3326 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3327 chunk = sctp_make_asconf_set_prim(asoc, 3328 (union sctp_addr *)&prim->sspp_addr); 3329 if (!chunk) 3330 return -ENOMEM; 3331 3332 err = sctp_send_asconf(asoc, chunk); 3333 3334 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3335 3336 return err; 3337 } 3338 3339 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3340 struct sctp_setadaptation *adapt, 3341 unsigned int optlen) 3342 { 3343 if (optlen != sizeof(struct sctp_setadaptation)) 3344 return -EINVAL; 3345 3346 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3347 3348 return 0; 3349 } 3350 3351 /* 3352 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3353 * 3354 * The context field in the sctp_sndrcvinfo structure is normally only 3355 * used when a failed message is retrieved holding the value that was 3356 * sent down on the actual send call. This option allows the setting of 3357 * a default context on an association basis that will be received on 3358 * reading messages from the peer. This is especially helpful in the 3359 * one-2-many model for an application to keep some reference to an 3360 * internal state machine that is processing messages on the 3361 * association. Note that the setting of this value only effects 3362 * received messages from the peer and does not effect the value that is 3363 * saved with outbound messages. 3364 */ 3365 static int sctp_setsockopt_context(struct sock *sk, 3366 struct sctp_assoc_value *params, 3367 unsigned int optlen) 3368 { 3369 struct sctp_sock *sp = sctp_sk(sk); 3370 struct sctp_association *asoc; 3371 3372 if (optlen != sizeof(struct sctp_assoc_value)) 3373 return -EINVAL; 3374 3375 asoc = sctp_id2assoc(sk, params->assoc_id); 3376 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3377 sctp_style(sk, UDP)) 3378 return -EINVAL; 3379 3380 if (asoc) { 3381 asoc->default_rcv_context = params->assoc_value; 3382 3383 return 0; 3384 } 3385 3386 if (sctp_style(sk, TCP)) 3387 params->assoc_id = SCTP_FUTURE_ASSOC; 3388 3389 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3390 params->assoc_id == SCTP_ALL_ASSOC) 3391 sp->default_rcv_context = params->assoc_value; 3392 3393 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3394 params->assoc_id == SCTP_ALL_ASSOC) 3395 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3396 asoc->default_rcv_context = params->assoc_value; 3397 3398 return 0; 3399 } 3400 3401 /* 3402 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3403 * 3404 * This options will at a minimum specify if the implementation is doing 3405 * fragmented interleave. Fragmented interleave, for a one to many 3406 * socket, is when subsequent calls to receive a message may return 3407 * parts of messages from different associations. Some implementations 3408 * may allow you to turn this value on or off. If so, when turned off, 3409 * no fragment interleave will occur (which will cause a head of line 3410 * blocking amongst multiple associations sharing the same one to many 3411 * socket). When this option is turned on, then each receive call may 3412 * come from a different association (thus the user must receive data 3413 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3414 * association each receive belongs to. 3415 * 3416 * This option takes a boolean value. A non-zero value indicates that 3417 * fragmented interleave is on. A value of zero indicates that 3418 * fragmented interleave is off. 3419 * 3420 * Note that it is important that an implementation that allows this 3421 * option to be turned on, have it off by default. Otherwise an unaware 3422 * application using the one to many model may become confused and act 3423 * incorrectly. 3424 */ 3425 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3426 unsigned int optlen) 3427 { 3428 if (optlen != sizeof(int)) 3429 return -EINVAL; 3430 3431 sctp_sk(sk)->frag_interleave = !!*val; 3432 3433 if (!sctp_sk(sk)->frag_interleave) 3434 sctp_sk(sk)->ep->intl_enable = 0; 3435 3436 return 0; 3437 } 3438 3439 /* 3440 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3441 * (SCTP_PARTIAL_DELIVERY_POINT) 3442 * 3443 * This option will set or get the SCTP partial delivery point. This 3444 * point is the size of a message where the partial delivery API will be 3445 * invoked to help free up rwnd space for the peer. Setting this to a 3446 * lower value will cause partial deliveries to happen more often. The 3447 * calls argument is an integer that sets or gets the partial delivery 3448 * point. Note also that the call will fail if the user attempts to set 3449 * this value larger than the socket receive buffer size. 3450 * 3451 * Note that any single message having a length smaller than or equal to 3452 * the SCTP partial delivery point will be delivered in one single read 3453 * call as long as the user provided buffer is large enough to hold the 3454 * message. 3455 */ 3456 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3457 unsigned int optlen) 3458 { 3459 if (optlen != sizeof(u32)) 3460 return -EINVAL; 3461 3462 /* Note: We double the receive buffer from what the user sets 3463 * it to be, also initial rwnd is based on rcvbuf/2. 3464 */ 3465 if (*val > (sk->sk_rcvbuf >> 1)) 3466 return -EINVAL; 3467 3468 sctp_sk(sk)->pd_point = *val; 3469 3470 return 0; /* is this the right error code? */ 3471 } 3472 3473 /* 3474 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3475 * 3476 * This option will allow a user to change the maximum burst of packets 3477 * that can be emitted by this association. Note that the default value 3478 * is 4, and some implementations may restrict this setting so that it 3479 * can only be lowered. 3480 * 3481 * NOTE: This text doesn't seem right. Do this on a socket basis with 3482 * future associations inheriting the socket value. 3483 */ 3484 static int sctp_setsockopt_maxburst(struct sock *sk, 3485 struct sctp_assoc_value *params, 3486 unsigned int optlen) 3487 { 3488 struct sctp_sock *sp = sctp_sk(sk); 3489 struct sctp_association *asoc; 3490 sctp_assoc_t assoc_id; 3491 u32 assoc_value; 3492 3493 if (optlen == sizeof(int)) { 3494 pr_warn_ratelimited(DEPRECATED 3495 "%s (pid %d) " 3496 "Use of int in max_burst socket option deprecated.\n" 3497 "Use struct sctp_assoc_value instead\n", 3498 current->comm, task_pid_nr(current)); 3499 assoc_id = SCTP_FUTURE_ASSOC; 3500 assoc_value = *((int *)params); 3501 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3502 assoc_id = params->assoc_id; 3503 assoc_value = params->assoc_value; 3504 } else 3505 return -EINVAL; 3506 3507 asoc = sctp_id2assoc(sk, assoc_id); 3508 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3509 return -EINVAL; 3510 3511 if (asoc) { 3512 asoc->max_burst = assoc_value; 3513 3514 return 0; 3515 } 3516 3517 if (sctp_style(sk, TCP)) 3518 assoc_id = SCTP_FUTURE_ASSOC; 3519 3520 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3521 sp->max_burst = assoc_value; 3522 3523 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3524 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3525 asoc->max_burst = assoc_value; 3526 3527 return 0; 3528 } 3529 3530 /* 3531 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3532 * 3533 * This set option adds a chunk type that the user is requesting to be 3534 * received only in an authenticated way. Changes to the list of chunks 3535 * will only effect future associations on the socket. 3536 */ 3537 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3538 struct sctp_authchunk *val, 3539 unsigned int optlen) 3540 { 3541 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3542 3543 if (!ep->auth_enable) 3544 return -EACCES; 3545 3546 if (optlen != sizeof(struct sctp_authchunk)) 3547 return -EINVAL; 3548 3549 switch (val->sauth_chunk) { 3550 case SCTP_CID_INIT: 3551 case SCTP_CID_INIT_ACK: 3552 case SCTP_CID_SHUTDOWN_COMPLETE: 3553 case SCTP_CID_AUTH: 3554 return -EINVAL; 3555 } 3556 3557 /* add this chunk id to the endpoint */ 3558 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3559 } 3560 3561 /* 3562 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3563 * 3564 * This option gets or sets the list of HMAC algorithms that the local 3565 * endpoint requires the peer to use. 3566 */ 3567 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3568 struct sctp_hmacalgo *hmacs, 3569 unsigned int optlen) 3570 { 3571 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3572 u32 idents; 3573 3574 if (!ep->auth_enable) 3575 return -EACCES; 3576 3577 if (optlen < sizeof(struct sctp_hmacalgo)) 3578 return -EINVAL; 3579 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3580 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3581 3582 idents = hmacs->shmac_num_idents; 3583 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3584 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3585 return -EINVAL; 3586 3587 return sctp_auth_ep_set_hmacs(ep, hmacs); 3588 } 3589 3590 /* 3591 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3592 * 3593 * This option will set a shared secret key which is used to build an 3594 * association shared key. 3595 */ 3596 static int sctp_setsockopt_auth_key(struct sock *sk, 3597 struct sctp_authkey *authkey, 3598 unsigned int optlen) 3599 { 3600 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3601 struct sctp_association *asoc; 3602 int ret = -EINVAL; 3603 3604 if (optlen <= sizeof(struct sctp_authkey)) 3605 return -EINVAL; 3606 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3607 * this. 3608 */ 3609 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3610 3611 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3612 goto out; 3613 3614 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3615 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3616 sctp_style(sk, UDP)) 3617 goto out; 3618 3619 if (asoc) { 3620 ret = sctp_auth_set_key(ep, asoc, authkey); 3621 goto out; 3622 } 3623 3624 if (sctp_style(sk, TCP)) 3625 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3626 3627 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3628 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3629 ret = sctp_auth_set_key(ep, asoc, authkey); 3630 if (ret) 3631 goto out; 3632 } 3633 3634 ret = 0; 3635 3636 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3637 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3638 list_for_each_entry(asoc, &ep->asocs, asocs) { 3639 int res = sctp_auth_set_key(ep, asoc, authkey); 3640 3641 if (res && !ret) 3642 ret = res; 3643 } 3644 } 3645 3646 out: 3647 memzero_explicit(authkey, optlen); 3648 return ret; 3649 } 3650 3651 /* 3652 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3653 * 3654 * This option will get or set the active shared key to be used to build 3655 * the association shared key. 3656 */ 3657 static int sctp_setsockopt_active_key(struct sock *sk, 3658 struct sctp_authkeyid *val, 3659 unsigned int optlen) 3660 { 3661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3662 struct sctp_association *asoc; 3663 int ret = 0; 3664 3665 if (optlen != sizeof(struct sctp_authkeyid)) 3666 return -EINVAL; 3667 3668 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3669 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3670 sctp_style(sk, UDP)) 3671 return -EINVAL; 3672 3673 if (asoc) 3674 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3675 3676 if (sctp_style(sk, TCP)) 3677 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3678 3679 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3680 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3681 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3682 if (ret) 3683 return ret; 3684 } 3685 3686 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3687 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3688 list_for_each_entry(asoc, &ep->asocs, asocs) { 3689 int res = sctp_auth_set_active_key(ep, asoc, 3690 val->scact_keynumber); 3691 3692 if (res && !ret) 3693 ret = res; 3694 } 3695 } 3696 3697 return ret; 3698 } 3699 3700 /* 3701 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3702 * 3703 * This set option will delete a shared secret key from use. 3704 */ 3705 static int sctp_setsockopt_del_key(struct sock *sk, 3706 struct sctp_authkeyid *val, 3707 unsigned int optlen) 3708 { 3709 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3710 struct sctp_association *asoc; 3711 int ret = 0; 3712 3713 if (optlen != sizeof(struct sctp_authkeyid)) 3714 return -EINVAL; 3715 3716 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3717 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3718 sctp_style(sk, UDP)) 3719 return -EINVAL; 3720 3721 if (asoc) 3722 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3723 3724 if (sctp_style(sk, TCP)) 3725 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3726 3727 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3728 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3729 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3730 if (ret) 3731 return ret; 3732 } 3733 3734 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3735 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3736 list_for_each_entry(asoc, &ep->asocs, asocs) { 3737 int res = sctp_auth_del_key_id(ep, asoc, 3738 val->scact_keynumber); 3739 3740 if (res && !ret) 3741 ret = res; 3742 } 3743 } 3744 3745 return ret; 3746 } 3747 3748 /* 3749 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3750 * 3751 * This set option will deactivate a shared secret key. 3752 */ 3753 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3754 struct sctp_authkeyid *val, 3755 unsigned int optlen) 3756 { 3757 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3758 struct sctp_association *asoc; 3759 int ret = 0; 3760 3761 if (optlen != sizeof(struct sctp_authkeyid)) 3762 return -EINVAL; 3763 3764 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3765 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3766 sctp_style(sk, UDP)) 3767 return -EINVAL; 3768 3769 if (asoc) 3770 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3771 3772 if (sctp_style(sk, TCP)) 3773 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3774 3775 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3776 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3777 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3778 if (ret) 3779 return ret; 3780 } 3781 3782 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3783 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3784 list_for_each_entry(asoc, &ep->asocs, asocs) { 3785 int res = sctp_auth_deact_key_id(ep, asoc, 3786 val->scact_keynumber); 3787 3788 if (res && !ret) 3789 ret = res; 3790 } 3791 } 3792 3793 return ret; 3794 } 3795 3796 /* 3797 * 8.1.23 SCTP_AUTO_ASCONF 3798 * 3799 * This option will enable or disable the use of the automatic generation of 3800 * ASCONF chunks to add and delete addresses to an existing association. Note 3801 * that this option has two caveats namely: a) it only affects sockets that 3802 * are bound to all addresses available to the SCTP stack, and b) the system 3803 * administrator may have an overriding control that turns the ASCONF feature 3804 * off no matter what setting the socket option may have. 3805 * This option expects an integer boolean flag, where a non-zero value turns on 3806 * the option, and a zero value turns off the option. 3807 * Note. In this implementation, socket operation overrides default parameter 3808 * being set by sysctl as well as FreeBSD implementation 3809 */ 3810 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3811 unsigned int optlen) 3812 { 3813 struct sctp_sock *sp = sctp_sk(sk); 3814 3815 if (optlen < sizeof(int)) 3816 return -EINVAL; 3817 if (!sctp_is_ep_boundall(sk) && *val) 3818 return -EINVAL; 3819 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3820 return 0; 3821 3822 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3823 if (*val == 0 && sp->do_auto_asconf) { 3824 list_del(&sp->auto_asconf_list); 3825 sp->do_auto_asconf = 0; 3826 } else if (*val && !sp->do_auto_asconf) { 3827 list_add_tail(&sp->auto_asconf_list, 3828 &sock_net(sk)->sctp.auto_asconf_splist); 3829 sp->do_auto_asconf = 1; 3830 } 3831 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3832 return 0; 3833 } 3834 3835 /* 3836 * SCTP_PEER_ADDR_THLDS 3837 * 3838 * This option allows us to alter the partially failed threshold for one or all 3839 * transports in an association. See Section 6.1 of: 3840 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3841 */ 3842 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3843 struct sctp_paddrthlds_v2 *val, 3844 unsigned int optlen, bool v2) 3845 { 3846 struct sctp_transport *trans; 3847 struct sctp_association *asoc; 3848 int len; 3849 3850 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3851 if (optlen < len) 3852 return -EINVAL; 3853 3854 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3855 return -EINVAL; 3856 3857 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3858 trans = sctp_addr_id2transport(sk, &val->spt_address, 3859 val->spt_assoc_id); 3860 if (!trans) 3861 return -ENOENT; 3862 3863 if (val->spt_pathmaxrxt) 3864 trans->pathmaxrxt = val->spt_pathmaxrxt; 3865 if (v2) 3866 trans->ps_retrans = val->spt_pathcpthld; 3867 trans->pf_retrans = val->spt_pathpfthld; 3868 3869 return 0; 3870 } 3871 3872 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3873 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3874 sctp_style(sk, UDP)) 3875 return -EINVAL; 3876 3877 if (asoc) { 3878 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3879 transports) { 3880 if (val->spt_pathmaxrxt) 3881 trans->pathmaxrxt = val->spt_pathmaxrxt; 3882 if (v2) 3883 trans->ps_retrans = val->spt_pathcpthld; 3884 trans->pf_retrans = val->spt_pathpfthld; 3885 } 3886 3887 if (val->spt_pathmaxrxt) 3888 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3889 if (v2) 3890 asoc->ps_retrans = val->spt_pathcpthld; 3891 asoc->pf_retrans = val->spt_pathpfthld; 3892 } else { 3893 struct sctp_sock *sp = sctp_sk(sk); 3894 3895 if (val->spt_pathmaxrxt) 3896 sp->pathmaxrxt = val->spt_pathmaxrxt; 3897 if (v2) 3898 sp->ps_retrans = val->spt_pathcpthld; 3899 sp->pf_retrans = val->spt_pathpfthld; 3900 } 3901 3902 return 0; 3903 } 3904 3905 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3906 unsigned int optlen) 3907 { 3908 if (optlen < sizeof(int)) 3909 return -EINVAL; 3910 3911 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3912 3913 return 0; 3914 } 3915 3916 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3917 unsigned int optlen) 3918 { 3919 if (optlen < sizeof(int)) 3920 return -EINVAL; 3921 3922 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3923 3924 return 0; 3925 } 3926 3927 static int sctp_setsockopt_pr_supported(struct sock *sk, 3928 struct sctp_assoc_value *params, 3929 unsigned int optlen) 3930 { 3931 struct sctp_association *asoc; 3932 3933 if (optlen != sizeof(*params)) 3934 return -EINVAL; 3935 3936 asoc = sctp_id2assoc(sk, params->assoc_id); 3937 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3938 sctp_style(sk, UDP)) 3939 return -EINVAL; 3940 3941 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3942 3943 return 0; 3944 } 3945 3946 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3947 struct sctp_default_prinfo *info, 3948 unsigned int optlen) 3949 { 3950 struct sctp_sock *sp = sctp_sk(sk); 3951 struct sctp_association *asoc; 3952 int retval = -EINVAL; 3953 3954 if (optlen != sizeof(*info)) 3955 goto out; 3956 3957 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3958 goto out; 3959 3960 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3961 info->pr_value = 0; 3962 3963 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3964 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3965 sctp_style(sk, UDP)) 3966 goto out; 3967 3968 retval = 0; 3969 3970 if (asoc) { 3971 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3972 asoc->default_timetolive = info->pr_value; 3973 goto out; 3974 } 3975 3976 if (sctp_style(sk, TCP)) 3977 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 3978 3979 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 3980 info->pr_assoc_id == SCTP_ALL_ASSOC) { 3981 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 3982 sp->default_timetolive = info->pr_value; 3983 } 3984 3985 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 3986 info->pr_assoc_id == SCTP_ALL_ASSOC) { 3987 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3988 SCTP_PR_SET_POLICY(asoc->default_flags, 3989 info->pr_policy); 3990 asoc->default_timetolive = info->pr_value; 3991 } 3992 } 3993 3994 out: 3995 return retval; 3996 } 3997 3998 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3999 struct sctp_assoc_value *params, 4000 unsigned int optlen) 4001 { 4002 struct sctp_association *asoc; 4003 int retval = -EINVAL; 4004 4005 if (optlen != sizeof(*params)) 4006 goto out; 4007 4008 asoc = sctp_id2assoc(sk, params->assoc_id); 4009 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4010 sctp_style(sk, UDP)) 4011 goto out; 4012 4013 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4014 4015 retval = 0; 4016 4017 out: 4018 return retval; 4019 } 4020 4021 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4022 struct sctp_assoc_value *params, 4023 unsigned int optlen) 4024 { 4025 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4026 struct sctp_association *asoc; 4027 int retval = -EINVAL; 4028 4029 if (optlen != sizeof(*params)) 4030 goto out; 4031 4032 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4033 goto out; 4034 4035 asoc = sctp_id2assoc(sk, params->assoc_id); 4036 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4037 sctp_style(sk, UDP)) 4038 goto out; 4039 4040 retval = 0; 4041 4042 if (asoc) { 4043 asoc->strreset_enable = params->assoc_value; 4044 goto out; 4045 } 4046 4047 if (sctp_style(sk, TCP)) 4048 params->assoc_id = SCTP_FUTURE_ASSOC; 4049 4050 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4051 params->assoc_id == SCTP_ALL_ASSOC) 4052 ep->strreset_enable = params->assoc_value; 4053 4054 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4055 params->assoc_id == SCTP_ALL_ASSOC) 4056 list_for_each_entry(asoc, &ep->asocs, asocs) 4057 asoc->strreset_enable = params->assoc_value; 4058 4059 out: 4060 return retval; 4061 } 4062 4063 static int sctp_setsockopt_reset_streams(struct sock *sk, 4064 struct sctp_reset_streams *params, 4065 unsigned int optlen) 4066 { 4067 struct sctp_association *asoc; 4068 4069 if (optlen < sizeof(*params)) 4070 return -EINVAL; 4071 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4072 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4073 sizeof(__u16) * sizeof(*params)); 4074 4075 if (params->srs_number_streams * sizeof(__u16) > 4076 optlen - sizeof(*params)) 4077 return -EINVAL; 4078 4079 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4080 if (!asoc) 4081 return -EINVAL; 4082 4083 return sctp_send_reset_streams(asoc, params); 4084 } 4085 4086 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4087 unsigned int optlen) 4088 { 4089 struct sctp_association *asoc; 4090 4091 if (optlen != sizeof(*associd)) 4092 return -EINVAL; 4093 4094 asoc = sctp_id2assoc(sk, *associd); 4095 if (!asoc) 4096 return -EINVAL; 4097 4098 return sctp_send_reset_assoc(asoc); 4099 } 4100 4101 static int sctp_setsockopt_add_streams(struct sock *sk, 4102 struct sctp_add_streams *params, 4103 unsigned int optlen) 4104 { 4105 struct sctp_association *asoc; 4106 4107 if (optlen != sizeof(*params)) 4108 return -EINVAL; 4109 4110 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4111 if (!asoc) 4112 return -EINVAL; 4113 4114 return sctp_send_add_streams(asoc, params); 4115 } 4116 4117 static int sctp_setsockopt_scheduler(struct sock *sk, 4118 struct sctp_assoc_value *params, 4119 unsigned int optlen) 4120 { 4121 struct sctp_sock *sp = sctp_sk(sk); 4122 struct sctp_association *asoc; 4123 int retval = 0; 4124 4125 if (optlen < sizeof(*params)) 4126 return -EINVAL; 4127 4128 if (params->assoc_value > SCTP_SS_MAX) 4129 return -EINVAL; 4130 4131 asoc = sctp_id2assoc(sk, params->assoc_id); 4132 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4133 sctp_style(sk, UDP)) 4134 return -EINVAL; 4135 4136 if (asoc) 4137 return sctp_sched_set_sched(asoc, params->assoc_value); 4138 4139 if (sctp_style(sk, TCP)) 4140 params->assoc_id = SCTP_FUTURE_ASSOC; 4141 4142 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4143 params->assoc_id == SCTP_ALL_ASSOC) 4144 sp->default_ss = params->assoc_value; 4145 4146 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4147 params->assoc_id == SCTP_ALL_ASSOC) { 4148 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4149 int ret = sctp_sched_set_sched(asoc, 4150 params->assoc_value); 4151 4152 if (ret && !retval) 4153 retval = ret; 4154 } 4155 } 4156 4157 return retval; 4158 } 4159 4160 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4161 struct sctp_stream_value *params, 4162 unsigned int optlen) 4163 { 4164 struct sctp_association *asoc; 4165 int retval = -EINVAL; 4166 4167 if (optlen < sizeof(*params)) 4168 goto out; 4169 4170 asoc = sctp_id2assoc(sk, params->assoc_id); 4171 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4172 sctp_style(sk, UDP)) 4173 goto out; 4174 4175 if (asoc) { 4176 retval = sctp_sched_set_value(asoc, params->stream_id, 4177 params->stream_value, GFP_KERNEL); 4178 goto out; 4179 } 4180 4181 retval = 0; 4182 4183 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4184 int ret = sctp_sched_set_value(asoc, params->stream_id, 4185 params->stream_value, 4186 GFP_KERNEL); 4187 if (ret && !retval) /* try to return the 1st error. */ 4188 retval = ret; 4189 } 4190 4191 out: 4192 return retval; 4193 } 4194 4195 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4196 struct sctp_assoc_value *p, 4197 unsigned int optlen) 4198 { 4199 struct sctp_sock *sp = sctp_sk(sk); 4200 struct sctp_association *asoc; 4201 4202 if (optlen < sizeof(*p)) 4203 return -EINVAL; 4204 4205 asoc = sctp_id2assoc(sk, p->assoc_id); 4206 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4207 return -EINVAL; 4208 4209 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4210 return -EPERM; 4211 } 4212 4213 sp->ep->intl_enable = !!p->assoc_value; 4214 return 0; 4215 } 4216 4217 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4218 unsigned int optlen) 4219 { 4220 if (!sctp_style(sk, TCP)) 4221 return -EOPNOTSUPP; 4222 4223 if (sctp_sk(sk)->ep->base.bind_addr.port) 4224 return -EFAULT; 4225 4226 if (optlen < sizeof(int)) 4227 return -EINVAL; 4228 4229 sctp_sk(sk)->reuse = !!*val; 4230 4231 return 0; 4232 } 4233 4234 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4235 struct sctp_association *asoc) 4236 { 4237 struct sctp_ulpevent *event; 4238 4239 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4240 4241 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4242 if (sctp_outq_is_empty(&asoc->outqueue)) { 4243 event = sctp_ulpevent_make_sender_dry_event(asoc, 4244 GFP_USER | __GFP_NOWARN); 4245 if (!event) 4246 return -ENOMEM; 4247 4248 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4249 } 4250 } 4251 4252 return 0; 4253 } 4254 4255 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4256 unsigned int optlen) 4257 { 4258 struct sctp_sock *sp = sctp_sk(sk); 4259 struct sctp_association *asoc; 4260 int retval = 0; 4261 4262 if (optlen < sizeof(*param)) 4263 return -EINVAL; 4264 4265 if (param->se_type < SCTP_SN_TYPE_BASE || 4266 param->se_type > SCTP_SN_TYPE_MAX) 4267 return -EINVAL; 4268 4269 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4270 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4271 sctp_style(sk, UDP)) 4272 return -EINVAL; 4273 4274 if (asoc) 4275 return sctp_assoc_ulpevent_type_set(param, asoc); 4276 4277 if (sctp_style(sk, TCP)) 4278 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4279 4280 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4281 param->se_assoc_id == SCTP_ALL_ASSOC) 4282 sctp_ulpevent_type_set(&sp->subscribe, 4283 param->se_type, param->se_on); 4284 4285 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4286 param->se_assoc_id == SCTP_ALL_ASSOC) { 4287 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4288 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4289 4290 if (ret && !retval) 4291 retval = ret; 4292 } 4293 } 4294 4295 return retval; 4296 } 4297 4298 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4299 struct sctp_assoc_value *params, 4300 unsigned int optlen) 4301 { 4302 struct sctp_association *asoc; 4303 struct sctp_endpoint *ep; 4304 int retval = -EINVAL; 4305 4306 if (optlen != sizeof(*params)) 4307 goto out; 4308 4309 asoc = sctp_id2assoc(sk, params->assoc_id); 4310 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4311 sctp_style(sk, UDP)) 4312 goto out; 4313 4314 ep = sctp_sk(sk)->ep; 4315 ep->asconf_enable = !!params->assoc_value; 4316 4317 if (ep->asconf_enable && ep->auth_enable) { 4318 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4319 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4320 } 4321 4322 retval = 0; 4323 4324 out: 4325 return retval; 4326 } 4327 4328 static int sctp_setsockopt_auth_supported(struct sock *sk, 4329 struct sctp_assoc_value *params, 4330 unsigned int optlen) 4331 { 4332 struct sctp_association *asoc; 4333 struct sctp_endpoint *ep; 4334 int retval = -EINVAL; 4335 4336 if (optlen != sizeof(*params)) 4337 goto out; 4338 4339 asoc = sctp_id2assoc(sk, params->assoc_id); 4340 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4341 sctp_style(sk, UDP)) 4342 goto out; 4343 4344 ep = sctp_sk(sk)->ep; 4345 if (params->assoc_value) { 4346 retval = sctp_auth_init(ep, GFP_KERNEL); 4347 if (retval) 4348 goto out; 4349 if (ep->asconf_enable) { 4350 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4351 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4352 } 4353 } 4354 4355 ep->auth_enable = !!params->assoc_value; 4356 retval = 0; 4357 4358 out: 4359 return retval; 4360 } 4361 4362 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4363 struct sctp_assoc_value *params, 4364 unsigned int optlen) 4365 { 4366 struct sctp_association *asoc; 4367 int retval = -EINVAL; 4368 4369 if (optlen != sizeof(*params)) 4370 goto out; 4371 4372 asoc = sctp_id2assoc(sk, params->assoc_id); 4373 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4374 sctp_style(sk, UDP)) 4375 goto out; 4376 4377 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4378 retval = 0; 4379 4380 out: 4381 return retval; 4382 } 4383 4384 static int sctp_setsockopt_pf_expose(struct sock *sk, 4385 struct sctp_assoc_value *params, 4386 unsigned int optlen) 4387 { 4388 struct sctp_association *asoc; 4389 int retval = -EINVAL; 4390 4391 if (optlen != sizeof(*params)) 4392 goto out; 4393 4394 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4395 goto out; 4396 4397 asoc = sctp_id2assoc(sk, params->assoc_id); 4398 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4399 sctp_style(sk, UDP)) 4400 goto out; 4401 4402 if (asoc) 4403 asoc->pf_expose = params->assoc_value; 4404 else 4405 sctp_sk(sk)->pf_expose = params->assoc_value; 4406 retval = 0; 4407 4408 out: 4409 return retval; 4410 } 4411 4412 /* API 6.2 setsockopt(), getsockopt() 4413 * 4414 * Applications use setsockopt() and getsockopt() to set or retrieve 4415 * socket options. Socket options are used to change the default 4416 * behavior of sockets calls. They are described in Section 7. 4417 * 4418 * The syntax is: 4419 * 4420 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4421 * int __user *optlen); 4422 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4423 * int optlen); 4424 * 4425 * sd - the socket descript. 4426 * level - set to IPPROTO_SCTP for all SCTP options. 4427 * optname - the option name. 4428 * optval - the buffer to store the value of the option. 4429 * optlen - the size of the buffer. 4430 */ 4431 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4432 char __user *optval, unsigned int optlen) 4433 { 4434 void *kopt = NULL; 4435 int retval = 0; 4436 4437 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4438 4439 /* I can hardly begin to describe how wrong this is. This is 4440 * so broken as to be worse than useless. The API draft 4441 * REALLY is NOT helpful here... I am not convinced that the 4442 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4443 * are at all well-founded. 4444 */ 4445 if (level != SOL_SCTP) { 4446 struct sctp_af *af = sctp_sk(sk)->pf->af; 4447 4448 return af->setsockopt(sk, level, optname, optval, optlen); 4449 } 4450 4451 if (optlen > 0) { 4452 kopt = memdup_user(optval, optlen); 4453 if (IS_ERR(kopt)) 4454 return PTR_ERR(kopt); 4455 } 4456 4457 lock_sock(sk); 4458 4459 switch (optname) { 4460 case SCTP_SOCKOPT_BINDX_ADD: 4461 /* 'optlen' is the size of the addresses buffer. */ 4462 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4463 SCTP_BINDX_ADD_ADDR); 4464 break; 4465 4466 case SCTP_SOCKOPT_BINDX_REM: 4467 /* 'optlen' is the size of the addresses buffer. */ 4468 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4469 SCTP_BINDX_REM_ADDR); 4470 break; 4471 4472 case SCTP_SOCKOPT_CONNECTX_OLD: 4473 /* 'optlen' is the size of the addresses buffer. */ 4474 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4475 break; 4476 4477 case SCTP_SOCKOPT_CONNECTX: 4478 /* 'optlen' is the size of the addresses buffer. */ 4479 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4480 break; 4481 4482 case SCTP_DISABLE_FRAGMENTS: 4483 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4484 break; 4485 4486 case SCTP_EVENTS: 4487 retval = sctp_setsockopt_events(sk, kopt, optlen); 4488 break; 4489 4490 case SCTP_AUTOCLOSE: 4491 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4492 break; 4493 4494 case SCTP_PEER_ADDR_PARAMS: 4495 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4496 break; 4497 4498 case SCTP_DELAYED_SACK: 4499 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4500 break; 4501 case SCTP_PARTIAL_DELIVERY_POINT: 4502 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4503 break; 4504 4505 case SCTP_INITMSG: 4506 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4507 break; 4508 case SCTP_DEFAULT_SEND_PARAM: 4509 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4510 break; 4511 case SCTP_DEFAULT_SNDINFO: 4512 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4513 break; 4514 case SCTP_PRIMARY_ADDR: 4515 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4516 break; 4517 case SCTP_SET_PEER_PRIMARY_ADDR: 4518 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4519 break; 4520 case SCTP_NODELAY: 4521 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4522 break; 4523 case SCTP_RTOINFO: 4524 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4525 break; 4526 case SCTP_ASSOCINFO: 4527 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4528 break; 4529 case SCTP_I_WANT_MAPPED_V4_ADDR: 4530 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4531 break; 4532 case SCTP_MAXSEG: 4533 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4534 break; 4535 case SCTP_ADAPTATION_LAYER: 4536 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4537 break; 4538 case SCTP_CONTEXT: 4539 retval = sctp_setsockopt_context(sk, kopt, optlen); 4540 break; 4541 case SCTP_FRAGMENT_INTERLEAVE: 4542 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4543 break; 4544 case SCTP_MAX_BURST: 4545 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4546 break; 4547 case SCTP_AUTH_CHUNK: 4548 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4549 break; 4550 case SCTP_HMAC_IDENT: 4551 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4552 break; 4553 case SCTP_AUTH_KEY: 4554 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4555 break; 4556 case SCTP_AUTH_ACTIVE_KEY: 4557 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4558 break; 4559 case SCTP_AUTH_DELETE_KEY: 4560 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4561 break; 4562 case SCTP_AUTH_DEACTIVATE_KEY: 4563 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4564 break; 4565 case SCTP_AUTO_ASCONF: 4566 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4567 break; 4568 case SCTP_PEER_ADDR_THLDS: 4569 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4570 false); 4571 break; 4572 case SCTP_PEER_ADDR_THLDS_V2: 4573 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4574 true); 4575 break; 4576 case SCTP_RECVRCVINFO: 4577 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4578 break; 4579 case SCTP_RECVNXTINFO: 4580 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4581 break; 4582 case SCTP_PR_SUPPORTED: 4583 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4584 break; 4585 case SCTP_DEFAULT_PRINFO: 4586 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4587 break; 4588 case SCTP_RECONFIG_SUPPORTED: 4589 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4590 break; 4591 case SCTP_ENABLE_STREAM_RESET: 4592 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4593 break; 4594 case SCTP_RESET_STREAMS: 4595 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4596 break; 4597 case SCTP_RESET_ASSOC: 4598 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4599 break; 4600 case SCTP_ADD_STREAMS: 4601 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4602 break; 4603 case SCTP_STREAM_SCHEDULER: 4604 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4605 break; 4606 case SCTP_STREAM_SCHEDULER_VALUE: 4607 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4608 break; 4609 case SCTP_INTERLEAVING_SUPPORTED: 4610 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4611 optlen); 4612 break; 4613 case SCTP_REUSE_PORT: 4614 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4615 break; 4616 case SCTP_EVENT: 4617 retval = sctp_setsockopt_event(sk, kopt, optlen); 4618 break; 4619 case SCTP_ASCONF_SUPPORTED: 4620 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4621 break; 4622 case SCTP_AUTH_SUPPORTED: 4623 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4624 break; 4625 case SCTP_ECN_SUPPORTED: 4626 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4627 break; 4628 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4629 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4630 break; 4631 default: 4632 retval = -ENOPROTOOPT; 4633 break; 4634 } 4635 4636 release_sock(sk); 4637 kfree(kopt); 4638 return retval; 4639 } 4640 4641 /* API 3.1.6 connect() - UDP Style Syntax 4642 * 4643 * An application may use the connect() call in the UDP model to initiate an 4644 * association without sending data. 4645 * 4646 * The syntax is: 4647 * 4648 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4649 * 4650 * sd: the socket descriptor to have a new association added to. 4651 * 4652 * nam: the address structure (either struct sockaddr_in or struct 4653 * sockaddr_in6 defined in RFC2553 [7]). 4654 * 4655 * len: the size of the address. 4656 */ 4657 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4658 int addr_len, int flags) 4659 { 4660 struct sctp_af *af; 4661 int err = -EINVAL; 4662 4663 lock_sock(sk); 4664 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4665 addr, addr_len); 4666 4667 /* Validate addr_len before calling common connect/connectx routine. */ 4668 af = sctp_get_af_specific(addr->sa_family); 4669 if (af && addr_len >= af->sockaddr_len) 4670 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4671 4672 release_sock(sk); 4673 return err; 4674 } 4675 4676 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4677 int addr_len, int flags) 4678 { 4679 if (addr_len < sizeof(uaddr->sa_family)) 4680 return -EINVAL; 4681 4682 if (uaddr->sa_family == AF_UNSPEC) 4683 return -EOPNOTSUPP; 4684 4685 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4686 } 4687 4688 /* FIXME: Write comments. */ 4689 static int sctp_disconnect(struct sock *sk, int flags) 4690 { 4691 return -EOPNOTSUPP; /* STUB */ 4692 } 4693 4694 /* 4.1.4 accept() - TCP Style Syntax 4695 * 4696 * Applications use accept() call to remove an established SCTP 4697 * association from the accept queue of the endpoint. A new socket 4698 * descriptor will be returned from accept() to represent the newly 4699 * formed association. 4700 */ 4701 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4702 { 4703 struct sctp_sock *sp; 4704 struct sctp_endpoint *ep; 4705 struct sock *newsk = NULL; 4706 struct sctp_association *asoc; 4707 long timeo; 4708 int error = 0; 4709 4710 lock_sock(sk); 4711 4712 sp = sctp_sk(sk); 4713 ep = sp->ep; 4714 4715 if (!sctp_style(sk, TCP)) { 4716 error = -EOPNOTSUPP; 4717 goto out; 4718 } 4719 4720 if (!sctp_sstate(sk, LISTENING)) { 4721 error = -EINVAL; 4722 goto out; 4723 } 4724 4725 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4726 4727 error = sctp_wait_for_accept(sk, timeo); 4728 if (error) 4729 goto out; 4730 4731 /* We treat the list of associations on the endpoint as the accept 4732 * queue and pick the first association on the list. 4733 */ 4734 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4735 4736 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4737 if (!newsk) { 4738 error = -ENOMEM; 4739 goto out; 4740 } 4741 4742 /* Populate the fields of the newsk from the oldsk and migrate the 4743 * asoc to the newsk. 4744 */ 4745 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4746 if (error) { 4747 sk_common_release(newsk); 4748 newsk = NULL; 4749 } 4750 4751 out: 4752 release_sock(sk); 4753 *err = error; 4754 return newsk; 4755 } 4756 4757 /* The SCTP ioctl handler. */ 4758 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4759 { 4760 int rc = -ENOTCONN; 4761 4762 lock_sock(sk); 4763 4764 /* 4765 * SEQPACKET-style sockets in LISTENING state are valid, for 4766 * SCTP, so only discard TCP-style sockets in LISTENING state. 4767 */ 4768 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4769 goto out; 4770 4771 switch (cmd) { 4772 case SIOCINQ: { 4773 struct sk_buff *skb; 4774 unsigned int amount = 0; 4775 4776 skb = skb_peek(&sk->sk_receive_queue); 4777 if (skb != NULL) { 4778 /* 4779 * We will only return the amount of this packet since 4780 * that is all that will be read. 4781 */ 4782 amount = skb->len; 4783 } 4784 rc = put_user(amount, (int __user *)arg); 4785 break; 4786 } 4787 default: 4788 rc = -ENOIOCTLCMD; 4789 break; 4790 } 4791 out: 4792 release_sock(sk); 4793 return rc; 4794 } 4795 4796 /* This is the function which gets called during socket creation to 4797 * initialized the SCTP-specific portion of the sock. 4798 * The sock structure should already be zero-filled memory. 4799 */ 4800 static int sctp_init_sock(struct sock *sk) 4801 { 4802 struct net *net = sock_net(sk); 4803 struct sctp_sock *sp; 4804 4805 pr_debug("%s: sk:%p\n", __func__, sk); 4806 4807 sp = sctp_sk(sk); 4808 4809 /* Initialize the SCTP per socket area. */ 4810 switch (sk->sk_type) { 4811 case SOCK_SEQPACKET: 4812 sp->type = SCTP_SOCKET_UDP; 4813 break; 4814 case SOCK_STREAM: 4815 sp->type = SCTP_SOCKET_TCP; 4816 break; 4817 default: 4818 return -ESOCKTNOSUPPORT; 4819 } 4820 4821 sk->sk_gso_type = SKB_GSO_SCTP; 4822 4823 /* Initialize default send parameters. These parameters can be 4824 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4825 */ 4826 sp->default_stream = 0; 4827 sp->default_ppid = 0; 4828 sp->default_flags = 0; 4829 sp->default_context = 0; 4830 sp->default_timetolive = 0; 4831 4832 sp->default_rcv_context = 0; 4833 sp->max_burst = net->sctp.max_burst; 4834 4835 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4836 4837 /* Initialize default setup parameters. These parameters 4838 * can be modified with the SCTP_INITMSG socket option or 4839 * overridden by the SCTP_INIT CMSG. 4840 */ 4841 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4842 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4843 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4844 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4845 4846 /* Initialize default RTO related parameters. These parameters can 4847 * be modified for with the SCTP_RTOINFO socket option. 4848 */ 4849 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4850 sp->rtoinfo.srto_max = net->sctp.rto_max; 4851 sp->rtoinfo.srto_min = net->sctp.rto_min; 4852 4853 /* Initialize default association related parameters. These parameters 4854 * can be modified with the SCTP_ASSOCINFO socket option. 4855 */ 4856 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4857 sp->assocparams.sasoc_number_peer_destinations = 0; 4858 sp->assocparams.sasoc_peer_rwnd = 0; 4859 sp->assocparams.sasoc_local_rwnd = 0; 4860 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4861 4862 /* Initialize default event subscriptions. By default, all the 4863 * options are off. 4864 */ 4865 sp->subscribe = 0; 4866 4867 /* Default Peer Address Parameters. These defaults can 4868 * be modified via SCTP_PEER_ADDR_PARAMS 4869 */ 4870 sp->hbinterval = net->sctp.hb_interval; 4871 sp->pathmaxrxt = net->sctp.max_retrans_path; 4872 sp->pf_retrans = net->sctp.pf_retrans; 4873 sp->ps_retrans = net->sctp.ps_retrans; 4874 sp->pf_expose = net->sctp.pf_expose; 4875 sp->pathmtu = 0; /* allow default discovery */ 4876 sp->sackdelay = net->sctp.sack_timeout; 4877 sp->sackfreq = 2; 4878 sp->param_flags = SPP_HB_ENABLE | 4879 SPP_PMTUD_ENABLE | 4880 SPP_SACKDELAY_ENABLE; 4881 sp->default_ss = SCTP_SS_DEFAULT; 4882 4883 /* If enabled no SCTP message fragmentation will be performed. 4884 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4885 */ 4886 sp->disable_fragments = 0; 4887 4888 /* Enable Nagle algorithm by default. */ 4889 sp->nodelay = 0; 4890 4891 sp->recvrcvinfo = 0; 4892 sp->recvnxtinfo = 0; 4893 4894 /* Enable by default. */ 4895 sp->v4mapped = 1; 4896 4897 /* Auto-close idle associations after the configured 4898 * number of seconds. A value of 0 disables this 4899 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4900 * for UDP-style sockets only. 4901 */ 4902 sp->autoclose = 0; 4903 4904 /* User specified fragmentation limit. */ 4905 sp->user_frag = 0; 4906 4907 sp->adaptation_ind = 0; 4908 4909 sp->pf = sctp_get_pf_specific(sk->sk_family); 4910 4911 /* Control variables for partial data delivery. */ 4912 atomic_set(&sp->pd_mode, 0); 4913 skb_queue_head_init(&sp->pd_lobby); 4914 sp->frag_interleave = 0; 4915 4916 /* Create a per socket endpoint structure. Even if we 4917 * change the data structure relationships, this may still 4918 * be useful for storing pre-connect address information. 4919 */ 4920 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4921 if (!sp->ep) 4922 return -ENOMEM; 4923 4924 sp->hmac = NULL; 4925 4926 sk->sk_destruct = sctp_destruct_sock; 4927 4928 SCTP_DBG_OBJCNT_INC(sock); 4929 4930 local_bh_disable(); 4931 sk_sockets_allocated_inc(sk); 4932 sock_prot_inuse_add(net, sk->sk_prot, 1); 4933 4934 /* Nothing can fail after this block, otherwise 4935 * sctp_destroy_sock() will be called without addr_wq_lock held 4936 */ 4937 if (net->sctp.default_auto_asconf) { 4938 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4939 list_add_tail(&sp->auto_asconf_list, 4940 &net->sctp.auto_asconf_splist); 4941 sp->do_auto_asconf = 1; 4942 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4943 } else { 4944 sp->do_auto_asconf = 0; 4945 } 4946 4947 local_bh_enable(); 4948 4949 return 0; 4950 } 4951 4952 /* Cleanup any SCTP per socket resources. Must be called with 4953 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4954 */ 4955 static void sctp_destroy_sock(struct sock *sk) 4956 { 4957 struct sctp_sock *sp; 4958 4959 pr_debug("%s: sk:%p\n", __func__, sk); 4960 4961 /* Release our hold on the endpoint. */ 4962 sp = sctp_sk(sk); 4963 /* This could happen during socket init, thus we bail out 4964 * early, since the rest of the below is not setup either. 4965 */ 4966 if (sp->ep == NULL) 4967 return; 4968 4969 if (sp->do_auto_asconf) { 4970 sp->do_auto_asconf = 0; 4971 list_del(&sp->auto_asconf_list); 4972 } 4973 sctp_endpoint_free(sp->ep); 4974 local_bh_disable(); 4975 sk_sockets_allocated_dec(sk); 4976 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4977 local_bh_enable(); 4978 } 4979 4980 /* Triggered when there are no references on the socket anymore */ 4981 static void sctp_destruct_sock(struct sock *sk) 4982 { 4983 struct sctp_sock *sp = sctp_sk(sk); 4984 4985 /* Free up the HMAC transform. */ 4986 crypto_free_shash(sp->hmac); 4987 4988 inet_sock_destruct(sk); 4989 } 4990 4991 /* API 4.1.7 shutdown() - TCP Style Syntax 4992 * int shutdown(int socket, int how); 4993 * 4994 * sd - the socket descriptor of the association to be closed. 4995 * how - Specifies the type of shutdown. The values are 4996 * as follows: 4997 * SHUT_RD 4998 * Disables further receive operations. No SCTP 4999 * protocol action is taken. 5000 * SHUT_WR 5001 * Disables further send operations, and initiates 5002 * the SCTP shutdown sequence. 5003 * SHUT_RDWR 5004 * Disables further send and receive operations 5005 * and initiates the SCTP shutdown sequence. 5006 */ 5007 static void sctp_shutdown(struct sock *sk, int how) 5008 { 5009 struct net *net = sock_net(sk); 5010 struct sctp_endpoint *ep; 5011 5012 if (!sctp_style(sk, TCP)) 5013 return; 5014 5015 ep = sctp_sk(sk)->ep; 5016 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5017 struct sctp_association *asoc; 5018 5019 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5020 asoc = list_entry(ep->asocs.next, 5021 struct sctp_association, asocs); 5022 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5023 } 5024 } 5025 5026 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5027 struct sctp_info *info) 5028 { 5029 struct sctp_transport *prim; 5030 struct list_head *pos; 5031 int mask; 5032 5033 memset(info, 0, sizeof(*info)); 5034 if (!asoc) { 5035 struct sctp_sock *sp = sctp_sk(sk); 5036 5037 info->sctpi_s_autoclose = sp->autoclose; 5038 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5039 info->sctpi_s_pd_point = sp->pd_point; 5040 info->sctpi_s_nodelay = sp->nodelay; 5041 info->sctpi_s_disable_fragments = sp->disable_fragments; 5042 info->sctpi_s_v4mapped = sp->v4mapped; 5043 info->sctpi_s_frag_interleave = sp->frag_interleave; 5044 info->sctpi_s_type = sp->type; 5045 5046 return 0; 5047 } 5048 5049 info->sctpi_tag = asoc->c.my_vtag; 5050 info->sctpi_state = asoc->state; 5051 info->sctpi_rwnd = asoc->a_rwnd; 5052 info->sctpi_unackdata = asoc->unack_data; 5053 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5054 info->sctpi_instrms = asoc->stream.incnt; 5055 info->sctpi_outstrms = asoc->stream.outcnt; 5056 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5057 info->sctpi_inqueue++; 5058 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5059 info->sctpi_outqueue++; 5060 info->sctpi_overall_error = asoc->overall_error_count; 5061 info->sctpi_max_burst = asoc->max_burst; 5062 info->sctpi_maxseg = asoc->frag_point; 5063 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5064 info->sctpi_peer_tag = asoc->c.peer_vtag; 5065 5066 mask = asoc->peer.ecn_capable << 1; 5067 mask = (mask | asoc->peer.ipv4_address) << 1; 5068 mask = (mask | asoc->peer.ipv6_address) << 1; 5069 mask = (mask | asoc->peer.hostname_address) << 1; 5070 mask = (mask | asoc->peer.asconf_capable) << 1; 5071 mask = (mask | asoc->peer.prsctp_capable) << 1; 5072 mask = (mask | asoc->peer.auth_capable); 5073 info->sctpi_peer_capable = mask; 5074 mask = asoc->peer.sack_needed << 1; 5075 mask = (mask | asoc->peer.sack_generation) << 1; 5076 mask = (mask | asoc->peer.zero_window_announced); 5077 info->sctpi_peer_sack = mask; 5078 5079 info->sctpi_isacks = asoc->stats.isacks; 5080 info->sctpi_osacks = asoc->stats.osacks; 5081 info->sctpi_opackets = asoc->stats.opackets; 5082 info->sctpi_ipackets = asoc->stats.ipackets; 5083 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5084 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5085 info->sctpi_idupchunks = asoc->stats.idupchunks; 5086 info->sctpi_gapcnt = asoc->stats.gapcnt; 5087 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5088 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5089 info->sctpi_oodchunks = asoc->stats.oodchunks; 5090 info->sctpi_iodchunks = asoc->stats.iodchunks; 5091 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5092 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5093 5094 prim = asoc->peer.primary_path; 5095 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5096 info->sctpi_p_state = prim->state; 5097 info->sctpi_p_cwnd = prim->cwnd; 5098 info->sctpi_p_srtt = prim->srtt; 5099 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5100 info->sctpi_p_hbinterval = prim->hbinterval; 5101 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5102 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5103 info->sctpi_p_ssthresh = prim->ssthresh; 5104 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5105 info->sctpi_p_flight_size = prim->flight_size; 5106 info->sctpi_p_error = prim->error_count; 5107 5108 return 0; 5109 } 5110 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5111 5112 /* use callback to avoid exporting the core structure */ 5113 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5114 { 5115 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5116 5117 rhashtable_walk_start(iter); 5118 } 5119 5120 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5121 { 5122 rhashtable_walk_stop(iter); 5123 rhashtable_walk_exit(iter); 5124 } 5125 5126 struct sctp_transport *sctp_transport_get_next(struct net *net, 5127 struct rhashtable_iter *iter) 5128 { 5129 struct sctp_transport *t; 5130 5131 t = rhashtable_walk_next(iter); 5132 for (; t; t = rhashtable_walk_next(iter)) { 5133 if (IS_ERR(t)) { 5134 if (PTR_ERR(t) == -EAGAIN) 5135 continue; 5136 break; 5137 } 5138 5139 if (!sctp_transport_hold(t)) 5140 continue; 5141 5142 if (net_eq(t->asoc->base.net, net) && 5143 t->asoc->peer.primary_path == t) 5144 break; 5145 5146 sctp_transport_put(t); 5147 } 5148 5149 return t; 5150 } 5151 5152 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5153 struct rhashtable_iter *iter, 5154 int pos) 5155 { 5156 struct sctp_transport *t; 5157 5158 if (!pos) 5159 return SEQ_START_TOKEN; 5160 5161 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5162 if (!--pos) 5163 break; 5164 sctp_transport_put(t); 5165 } 5166 5167 return t; 5168 } 5169 5170 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5171 void *p) { 5172 int err = 0; 5173 int hash = 0; 5174 struct sctp_ep_common *epb; 5175 struct sctp_hashbucket *head; 5176 5177 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5178 hash++, head++) { 5179 read_lock_bh(&head->lock); 5180 sctp_for_each_hentry(epb, &head->chain) { 5181 err = cb(sctp_ep(epb), p); 5182 if (err) 5183 break; 5184 } 5185 read_unlock_bh(&head->lock); 5186 } 5187 5188 return err; 5189 } 5190 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5191 5192 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5193 struct net *net, 5194 const union sctp_addr *laddr, 5195 const union sctp_addr *paddr, void *p) 5196 { 5197 struct sctp_transport *transport; 5198 int err; 5199 5200 rcu_read_lock(); 5201 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5202 rcu_read_unlock(); 5203 if (!transport) 5204 return -ENOENT; 5205 5206 err = cb(transport, p); 5207 sctp_transport_put(transport); 5208 5209 return err; 5210 } 5211 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5212 5213 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5214 int (*cb_done)(struct sctp_transport *, void *), 5215 struct net *net, int *pos, void *p) { 5216 struct rhashtable_iter hti; 5217 struct sctp_transport *tsp; 5218 int ret; 5219 5220 again: 5221 ret = 0; 5222 sctp_transport_walk_start(&hti); 5223 5224 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5225 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5226 ret = cb(tsp, p); 5227 if (ret) 5228 break; 5229 (*pos)++; 5230 sctp_transport_put(tsp); 5231 } 5232 sctp_transport_walk_stop(&hti); 5233 5234 if (ret) { 5235 if (cb_done && !cb_done(tsp, p)) { 5236 (*pos)++; 5237 sctp_transport_put(tsp); 5238 goto again; 5239 } 5240 sctp_transport_put(tsp); 5241 } 5242 5243 return ret; 5244 } 5245 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5246 5247 /* 7.2.1 Association Status (SCTP_STATUS) 5248 5249 * Applications can retrieve current status information about an 5250 * association, including association state, peer receiver window size, 5251 * number of unacked data chunks, and number of data chunks pending 5252 * receipt. This information is read-only. 5253 */ 5254 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5255 char __user *optval, 5256 int __user *optlen) 5257 { 5258 struct sctp_status status; 5259 struct sctp_association *asoc = NULL; 5260 struct sctp_transport *transport; 5261 sctp_assoc_t associd; 5262 int retval = 0; 5263 5264 if (len < sizeof(status)) { 5265 retval = -EINVAL; 5266 goto out; 5267 } 5268 5269 len = sizeof(status); 5270 if (copy_from_user(&status, optval, len)) { 5271 retval = -EFAULT; 5272 goto out; 5273 } 5274 5275 associd = status.sstat_assoc_id; 5276 asoc = sctp_id2assoc(sk, associd); 5277 if (!asoc) { 5278 retval = -EINVAL; 5279 goto out; 5280 } 5281 5282 transport = asoc->peer.primary_path; 5283 5284 status.sstat_assoc_id = sctp_assoc2id(asoc); 5285 status.sstat_state = sctp_assoc_to_state(asoc); 5286 status.sstat_rwnd = asoc->peer.rwnd; 5287 status.sstat_unackdata = asoc->unack_data; 5288 5289 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5290 status.sstat_instrms = asoc->stream.incnt; 5291 status.sstat_outstrms = asoc->stream.outcnt; 5292 status.sstat_fragmentation_point = asoc->frag_point; 5293 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5294 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5295 transport->af_specific->sockaddr_len); 5296 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5297 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5298 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5299 status.sstat_primary.spinfo_state = transport->state; 5300 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5301 status.sstat_primary.spinfo_srtt = transport->srtt; 5302 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5303 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5304 5305 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5306 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5307 5308 if (put_user(len, optlen)) { 5309 retval = -EFAULT; 5310 goto out; 5311 } 5312 5313 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5314 __func__, len, status.sstat_state, status.sstat_rwnd, 5315 status.sstat_assoc_id); 5316 5317 if (copy_to_user(optval, &status, len)) { 5318 retval = -EFAULT; 5319 goto out; 5320 } 5321 5322 out: 5323 return retval; 5324 } 5325 5326 5327 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5328 * 5329 * Applications can retrieve information about a specific peer address 5330 * of an association, including its reachability state, congestion 5331 * window, and retransmission timer values. This information is 5332 * read-only. 5333 */ 5334 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5335 char __user *optval, 5336 int __user *optlen) 5337 { 5338 struct sctp_paddrinfo pinfo; 5339 struct sctp_transport *transport; 5340 int retval = 0; 5341 5342 if (len < sizeof(pinfo)) { 5343 retval = -EINVAL; 5344 goto out; 5345 } 5346 5347 len = sizeof(pinfo); 5348 if (copy_from_user(&pinfo, optval, len)) { 5349 retval = -EFAULT; 5350 goto out; 5351 } 5352 5353 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5354 pinfo.spinfo_assoc_id); 5355 if (!transport) { 5356 retval = -EINVAL; 5357 goto out; 5358 } 5359 5360 if (transport->state == SCTP_PF && 5361 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5362 retval = -EACCES; 5363 goto out; 5364 } 5365 5366 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5367 pinfo.spinfo_state = transport->state; 5368 pinfo.spinfo_cwnd = transport->cwnd; 5369 pinfo.spinfo_srtt = transport->srtt; 5370 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5371 pinfo.spinfo_mtu = transport->pathmtu; 5372 5373 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5374 pinfo.spinfo_state = SCTP_ACTIVE; 5375 5376 if (put_user(len, optlen)) { 5377 retval = -EFAULT; 5378 goto out; 5379 } 5380 5381 if (copy_to_user(optval, &pinfo, len)) { 5382 retval = -EFAULT; 5383 goto out; 5384 } 5385 5386 out: 5387 return retval; 5388 } 5389 5390 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5391 * 5392 * This option is a on/off flag. If enabled no SCTP message 5393 * fragmentation will be performed. Instead if a message being sent 5394 * exceeds the current PMTU size, the message will NOT be sent and 5395 * instead a error will be indicated to the user. 5396 */ 5397 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5398 char __user *optval, int __user *optlen) 5399 { 5400 int val; 5401 5402 if (len < sizeof(int)) 5403 return -EINVAL; 5404 5405 len = sizeof(int); 5406 val = (sctp_sk(sk)->disable_fragments == 1); 5407 if (put_user(len, optlen)) 5408 return -EFAULT; 5409 if (copy_to_user(optval, &val, len)) 5410 return -EFAULT; 5411 return 0; 5412 } 5413 5414 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5415 * 5416 * This socket option is used to specify various notifications and 5417 * ancillary data the user wishes to receive. 5418 */ 5419 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5420 int __user *optlen) 5421 { 5422 struct sctp_event_subscribe subscribe; 5423 __u8 *sn_type = (__u8 *)&subscribe; 5424 int i; 5425 5426 if (len == 0) 5427 return -EINVAL; 5428 if (len > sizeof(struct sctp_event_subscribe)) 5429 len = sizeof(struct sctp_event_subscribe); 5430 if (put_user(len, optlen)) 5431 return -EFAULT; 5432 5433 for (i = 0; i < len; i++) 5434 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5435 SCTP_SN_TYPE_BASE + i); 5436 5437 if (copy_to_user(optval, &subscribe, len)) 5438 return -EFAULT; 5439 5440 return 0; 5441 } 5442 5443 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5444 * 5445 * This socket option is applicable to the UDP-style socket only. When 5446 * set it will cause associations that are idle for more than the 5447 * specified number of seconds to automatically close. An association 5448 * being idle is defined an association that has NOT sent or received 5449 * user data. The special value of '0' indicates that no automatic 5450 * close of any associations should be performed. The option expects an 5451 * integer defining the number of seconds of idle time before an 5452 * association is closed. 5453 */ 5454 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5455 { 5456 /* Applicable to UDP-style socket only */ 5457 if (sctp_style(sk, TCP)) 5458 return -EOPNOTSUPP; 5459 if (len < sizeof(int)) 5460 return -EINVAL; 5461 len = sizeof(int); 5462 if (put_user(len, optlen)) 5463 return -EFAULT; 5464 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5465 return -EFAULT; 5466 return 0; 5467 } 5468 5469 /* Helper routine to branch off an association to a new socket. */ 5470 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5471 { 5472 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5473 struct sctp_sock *sp = sctp_sk(sk); 5474 struct socket *sock; 5475 int err = 0; 5476 5477 /* Do not peel off from one netns to another one. */ 5478 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5479 return -EINVAL; 5480 5481 if (!asoc) 5482 return -EINVAL; 5483 5484 /* An association cannot be branched off from an already peeled-off 5485 * socket, nor is this supported for tcp style sockets. 5486 */ 5487 if (!sctp_style(sk, UDP)) 5488 return -EINVAL; 5489 5490 /* Create a new socket. */ 5491 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5492 if (err < 0) 5493 return err; 5494 5495 sctp_copy_sock(sock->sk, sk, asoc); 5496 5497 /* Make peeled-off sockets more like 1-1 accepted sockets. 5498 * Set the daddr and initialize id to something more random and also 5499 * copy over any ip options. 5500 */ 5501 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5502 sp->pf->copy_ip_options(sk, sock->sk); 5503 5504 /* Populate the fields of the newsk from the oldsk and migrate the 5505 * asoc to the newsk. 5506 */ 5507 err = sctp_sock_migrate(sk, sock->sk, asoc, 5508 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5509 if (err) { 5510 sock_release(sock); 5511 sock = NULL; 5512 } 5513 5514 *sockp = sock; 5515 5516 return err; 5517 } 5518 EXPORT_SYMBOL(sctp_do_peeloff); 5519 5520 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5521 struct file **newfile, unsigned flags) 5522 { 5523 struct socket *newsock; 5524 int retval; 5525 5526 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5527 if (retval < 0) 5528 goto out; 5529 5530 /* Map the socket to an unused fd that can be returned to the user. */ 5531 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5532 if (retval < 0) { 5533 sock_release(newsock); 5534 goto out; 5535 } 5536 5537 *newfile = sock_alloc_file(newsock, 0, NULL); 5538 if (IS_ERR(*newfile)) { 5539 put_unused_fd(retval); 5540 retval = PTR_ERR(*newfile); 5541 *newfile = NULL; 5542 return retval; 5543 } 5544 5545 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5546 retval); 5547 5548 peeloff->sd = retval; 5549 5550 if (flags & SOCK_NONBLOCK) 5551 (*newfile)->f_flags |= O_NONBLOCK; 5552 out: 5553 return retval; 5554 } 5555 5556 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5557 { 5558 sctp_peeloff_arg_t peeloff; 5559 struct file *newfile = NULL; 5560 int retval = 0; 5561 5562 if (len < sizeof(sctp_peeloff_arg_t)) 5563 return -EINVAL; 5564 len = sizeof(sctp_peeloff_arg_t); 5565 if (copy_from_user(&peeloff, optval, len)) 5566 return -EFAULT; 5567 5568 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5569 if (retval < 0) 5570 goto out; 5571 5572 /* Return the fd mapped to the new socket. */ 5573 if (put_user(len, optlen)) { 5574 fput(newfile); 5575 put_unused_fd(retval); 5576 return -EFAULT; 5577 } 5578 5579 if (copy_to_user(optval, &peeloff, len)) { 5580 fput(newfile); 5581 put_unused_fd(retval); 5582 return -EFAULT; 5583 } 5584 fd_install(retval, newfile); 5585 out: 5586 return retval; 5587 } 5588 5589 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5590 char __user *optval, int __user *optlen) 5591 { 5592 sctp_peeloff_flags_arg_t peeloff; 5593 struct file *newfile = NULL; 5594 int retval = 0; 5595 5596 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5597 return -EINVAL; 5598 len = sizeof(sctp_peeloff_flags_arg_t); 5599 if (copy_from_user(&peeloff, optval, len)) 5600 return -EFAULT; 5601 5602 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5603 &newfile, peeloff.flags); 5604 if (retval < 0) 5605 goto out; 5606 5607 /* Return the fd mapped to the new socket. */ 5608 if (put_user(len, optlen)) { 5609 fput(newfile); 5610 put_unused_fd(retval); 5611 return -EFAULT; 5612 } 5613 5614 if (copy_to_user(optval, &peeloff, len)) { 5615 fput(newfile); 5616 put_unused_fd(retval); 5617 return -EFAULT; 5618 } 5619 fd_install(retval, newfile); 5620 out: 5621 return retval; 5622 } 5623 5624 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5625 * 5626 * Applications can enable or disable heartbeats for any peer address of 5627 * an association, modify an address's heartbeat interval, force a 5628 * heartbeat to be sent immediately, and adjust the address's maximum 5629 * number of retransmissions sent before an address is considered 5630 * unreachable. The following structure is used to access and modify an 5631 * address's parameters: 5632 * 5633 * struct sctp_paddrparams { 5634 * sctp_assoc_t spp_assoc_id; 5635 * struct sockaddr_storage spp_address; 5636 * uint32_t spp_hbinterval; 5637 * uint16_t spp_pathmaxrxt; 5638 * uint32_t spp_pathmtu; 5639 * uint32_t spp_sackdelay; 5640 * uint32_t spp_flags; 5641 * }; 5642 * 5643 * spp_assoc_id - (one-to-many style socket) This is filled in the 5644 * application, and identifies the association for 5645 * this query. 5646 * spp_address - This specifies which address is of interest. 5647 * spp_hbinterval - This contains the value of the heartbeat interval, 5648 * in milliseconds. If a value of zero 5649 * is present in this field then no changes are to 5650 * be made to this parameter. 5651 * spp_pathmaxrxt - This contains the maximum number of 5652 * retransmissions before this address shall be 5653 * considered unreachable. If a value of zero 5654 * is present in this field then no changes are to 5655 * be made to this parameter. 5656 * spp_pathmtu - When Path MTU discovery is disabled the value 5657 * specified here will be the "fixed" path mtu. 5658 * Note that if the spp_address field is empty 5659 * then all associations on this address will 5660 * have this fixed path mtu set upon them. 5661 * 5662 * spp_sackdelay - When delayed sack is enabled, this value specifies 5663 * the number of milliseconds that sacks will be delayed 5664 * for. This value will apply to all addresses of an 5665 * association if the spp_address field is empty. Note 5666 * also, that if delayed sack is enabled and this 5667 * value is set to 0, no change is made to the last 5668 * recorded delayed sack timer value. 5669 * 5670 * spp_flags - These flags are used to control various features 5671 * on an association. The flag field may contain 5672 * zero or more of the following options. 5673 * 5674 * SPP_HB_ENABLE - Enable heartbeats on the 5675 * specified address. Note that if the address 5676 * field is empty all addresses for the association 5677 * have heartbeats enabled upon them. 5678 * 5679 * SPP_HB_DISABLE - Disable heartbeats on the 5680 * speicifed address. Note that if the address 5681 * field is empty all addresses for the association 5682 * will have their heartbeats disabled. Note also 5683 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5684 * mutually exclusive, only one of these two should 5685 * be specified. Enabling both fields will have 5686 * undetermined results. 5687 * 5688 * SPP_HB_DEMAND - Request a user initiated heartbeat 5689 * to be made immediately. 5690 * 5691 * SPP_PMTUD_ENABLE - This field will enable PMTU 5692 * discovery upon the specified address. Note that 5693 * if the address feild is empty then all addresses 5694 * on the association are effected. 5695 * 5696 * SPP_PMTUD_DISABLE - This field will disable PMTU 5697 * discovery upon the specified address. Note that 5698 * if the address feild is empty then all addresses 5699 * on the association are effected. Not also that 5700 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5701 * exclusive. Enabling both will have undetermined 5702 * results. 5703 * 5704 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5705 * on delayed sack. The time specified in spp_sackdelay 5706 * is used to specify the sack delay for this address. Note 5707 * that if spp_address is empty then all addresses will 5708 * enable delayed sack and take on the sack delay 5709 * value specified in spp_sackdelay. 5710 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5711 * off delayed sack. If the spp_address field is blank then 5712 * delayed sack is disabled for the entire association. Note 5713 * also that this field is mutually exclusive to 5714 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5715 * results. 5716 * 5717 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5718 * setting of the IPV6 flow label value. The value is 5719 * contained in the spp_ipv6_flowlabel field. 5720 * Upon retrieval, this flag will be set to indicate that 5721 * the spp_ipv6_flowlabel field has a valid value returned. 5722 * If a specific destination address is set (in the 5723 * spp_address field), then the value returned is that of 5724 * the address. If just an association is specified (and 5725 * no address), then the association's default flow label 5726 * is returned. If neither an association nor a destination 5727 * is specified, then the socket's default flow label is 5728 * returned. For non-IPv6 sockets, this flag will be left 5729 * cleared. 5730 * 5731 * SPP_DSCP: Setting this flag enables the setting of the 5732 * Differentiated Services Code Point (DSCP) value 5733 * associated with either the association or a specific 5734 * address. The value is obtained in the spp_dscp field. 5735 * Upon retrieval, this flag will be set to indicate that 5736 * the spp_dscp field has a valid value returned. If a 5737 * specific destination address is set when called (in the 5738 * spp_address field), then that specific destination 5739 * address's DSCP value is returned. If just an association 5740 * is specified, then the association's default DSCP is 5741 * returned. If neither an association nor a destination is 5742 * specified, then the socket's default DSCP is returned. 5743 * 5744 * spp_ipv6_flowlabel 5745 * - This field is used in conjunction with the 5746 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5747 * The 20 least significant bits are used for the flow 5748 * label. This setting has precedence over any IPv6-layer 5749 * setting. 5750 * 5751 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5752 * and contains the DSCP. The 6 most significant bits are 5753 * used for the DSCP. This setting has precedence over any 5754 * IPv4- or IPv6- layer setting. 5755 */ 5756 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5757 char __user *optval, int __user *optlen) 5758 { 5759 struct sctp_paddrparams params; 5760 struct sctp_transport *trans = NULL; 5761 struct sctp_association *asoc = NULL; 5762 struct sctp_sock *sp = sctp_sk(sk); 5763 5764 if (len >= sizeof(params)) 5765 len = sizeof(params); 5766 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5767 spp_ipv6_flowlabel), 4)) 5768 len = ALIGN(offsetof(struct sctp_paddrparams, 5769 spp_ipv6_flowlabel), 4); 5770 else 5771 return -EINVAL; 5772 5773 if (copy_from_user(¶ms, optval, len)) 5774 return -EFAULT; 5775 5776 /* If an address other than INADDR_ANY is specified, and 5777 * no transport is found, then the request is invalid. 5778 */ 5779 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5780 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5781 params.spp_assoc_id); 5782 if (!trans) { 5783 pr_debug("%s: failed no transport\n", __func__); 5784 return -EINVAL; 5785 } 5786 } 5787 5788 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5789 * socket is a one to many style socket, and an association 5790 * was not found, then the id was invalid. 5791 */ 5792 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5793 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5794 sctp_style(sk, UDP)) { 5795 pr_debug("%s: failed no association\n", __func__); 5796 return -EINVAL; 5797 } 5798 5799 if (trans) { 5800 /* Fetch transport values. */ 5801 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5802 params.spp_pathmtu = trans->pathmtu; 5803 params.spp_pathmaxrxt = trans->pathmaxrxt; 5804 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5805 5806 /*draft-11 doesn't say what to return in spp_flags*/ 5807 params.spp_flags = trans->param_flags; 5808 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5809 params.spp_ipv6_flowlabel = trans->flowlabel & 5810 SCTP_FLOWLABEL_VAL_MASK; 5811 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5812 } 5813 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5814 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5815 params.spp_flags |= SPP_DSCP; 5816 } 5817 } else if (asoc) { 5818 /* Fetch association values. */ 5819 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5820 params.spp_pathmtu = asoc->pathmtu; 5821 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5822 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5823 5824 /*draft-11 doesn't say what to return in spp_flags*/ 5825 params.spp_flags = asoc->param_flags; 5826 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5827 params.spp_ipv6_flowlabel = asoc->flowlabel & 5828 SCTP_FLOWLABEL_VAL_MASK; 5829 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5830 } 5831 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5832 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5833 params.spp_flags |= SPP_DSCP; 5834 } 5835 } else { 5836 /* Fetch socket values. */ 5837 params.spp_hbinterval = sp->hbinterval; 5838 params.spp_pathmtu = sp->pathmtu; 5839 params.spp_sackdelay = sp->sackdelay; 5840 params.spp_pathmaxrxt = sp->pathmaxrxt; 5841 5842 /*draft-11 doesn't say what to return in spp_flags*/ 5843 params.spp_flags = sp->param_flags; 5844 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5845 params.spp_ipv6_flowlabel = sp->flowlabel & 5846 SCTP_FLOWLABEL_VAL_MASK; 5847 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5848 } 5849 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5850 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5851 params.spp_flags |= SPP_DSCP; 5852 } 5853 } 5854 5855 if (copy_to_user(optval, ¶ms, len)) 5856 return -EFAULT; 5857 5858 if (put_user(len, optlen)) 5859 return -EFAULT; 5860 5861 return 0; 5862 } 5863 5864 /* 5865 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5866 * 5867 * This option will effect the way delayed acks are performed. This 5868 * option allows you to get or set the delayed ack time, in 5869 * milliseconds. It also allows changing the delayed ack frequency. 5870 * Changing the frequency to 1 disables the delayed sack algorithm. If 5871 * the assoc_id is 0, then this sets or gets the endpoints default 5872 * values. If the assoc_id field is non-zero, then the set or get 5873 * effects the specified association for the one to many model (the 5874 * assoc_id field is ignored by the one to one model). Note that if 5875 * sack_delay or sack_freq are 0 when setting this option, then the 5876 * current values will remain unchanged. 5877 * 5878 * struct sctp_sack_info { 5879 * sctp_assoc_t sack_assoc_id; 5880 * uint32_t sack_delay; 5881 * uint32_t sack_freq; 5882 * }; 5883 * 5884 * sack_assoc_id - This parameter, indicates which association the user 5885 * is performing an action upon. Note that if this field's value is 5886 * zero then the endpoints default value is changed (effecting future 5887 * associations only). 5888 * 5889 * sack_delay - This parameter contains the number of milliseconds that 5890 * the user is requesting the delayed ACK timer be set to. Note that 5891 * this value is defined in the standard to be between 200 and 500 5892 * milliseconds. 5893 * 5894 * sack_freq - This parameter contains the number of packets that must 5895 * be received before a sack is sent without waiting for the delay 5896 * timer to expire. The default value for this is 2, setting this 5897 * value to 1 will disable the delayed sack algorithm. 5898 */ 5899 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5900 char __user *optval, 5901 int __user *optlen) 5902 { 5903 struct sctp_sack_info params; 5904 struct sctp_association *asoc = NULL; 5905 struct sctp_sock *sp = sctp_sk(sk); 5906 5907 if (len >= sizeof(struct sctp_sack_info)) { 5908 len = sizeof(struct sctp_sack_info); 5909 5910 if (copy_from_user(¶ms, optval, len)) 5911 return -EFAULT; 5912 } else if (len == sizeof(struct sctp_assoc_value)) { 5913 pr_warn_ratelimited(DEPRECATED 5914 "%s (pid %d) " 5915 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5916 "Use struct sctp_sack_info instead\n", 5917 current->comm, task_pid_nr(current)); 5918 if (copy_from_user(¶ms, optval, len)) 5919 return -EFAULT; 5920 } else 5921 return -EINVAL; 5922 5923 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 5924 * socket is a one to many style socket, and an association 5925 * was not found, then the id was invalid. 5926 */ 5927 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5928 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 5929 sctp_style(sk, UDP)) 5930 return -EINVAL; 5931 5932 if (asoc) { 5933 /* Fetch association values. */ 5934 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5935 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 5936 params.sack_freq = asoc->sackfreq; 5937 5938 } else { 5939 params.sack_delay = 0; 5940 params.sack_freq = 1; 5941 } 5942 } else { 5943 /* Fetch socket values. */ 5944 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5945 params.sack_delay = sp->sackdelay; 5946 params.sack_freq = sp->sackfreq; 5947 } else { 5948 params.sack_delay = 0; 5949 params.sack_freq = 1; 5950 } 5951 } 5952 5953 if (copy_to_user(optval, ¶ms, len)) 5954 return -EFAULT; 5955 5956 if (put_user(len, optlen)) 5957 return -EFAULT; 5958 5959 return 0; 5960 } 5961 5962 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5963 * 5964 * Applications can specify protocol parameters for the default association 5965 * initialization. The option name argument to setsockopt() and getsockopt() 5966 * is SCTP_INITMSG. 5967 * 5968 * Setting initialization parameters is effective only on an unconnected 5969 * socket (for UDP-style sockets only future associations are effected 5970 * by the change). With TCP-style sockets, this option is inherited by 5971 * sockets derived from a listener socket. 5972 */ 5973 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5974 { 5975 if (len < sizeof(struct sctp_initmsg)) 5976 return -EINVAL; 5977 len = sizeof(struct sctp_initmsg); 5978 if (put_user(len, optlen)) 5979 return -EFAULT; 5980 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5981 return -EFAULT; 5982 return 0; 5983 } 5984 5985 5986 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5987 char __user *optval, int __user *optlen) 5988 { 5989 struct sctp_association *asoc; 5990 int cnt = 0; 5991 struct sctp_getaddrs getaddrs; 5992 struct sctp_transport *from; 5993 void __user *to; 5994 union sctp_addr temp; 5995 struct sctp_sock *sp = sctp_sk(sk); 5996 int addrlen; 5997 size_t space_left; 5998 int bytes_copied; 5999 6000 if (len < sizeof(struct sctp_getaddrs)) 6001 return -EINVAL; 6002 6003 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6004 return -EFAULT; 6005 6006 /* For UDP-style sockets, id specifies the association to query. */ 6007 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6008 if (!asoc) 6009 return -EINVAL; 6010 6011 to = optval + offsetof(struct sctp_getaddrs, addrs); 6012 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6013 6014 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6015 transports) { 6016 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6017 addrlen = sctp_get_pf_specific(sk->sk_family) 6018 ->addr_to_user(sp, &temp); 6019 if (space_left < addrlen) 6020 return -ENOMEM; 6021 if (copy_to_user(to, &temp, addrlen)) 6022 return -EFAULT; 6023 to += addrlen; 6024 cnt++; 6025 space_left -= addrlen; 6026 } 6027 6028 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6029 return -EFAULT; 6030 bytes_copied = ((char __user *)to) - optval; 6031 if (put_user(bytes_copied, optlen)) 6032 return -EFAULT; 6033 6034 return 0; 6035 } 6036 6037 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6038 size_t space_left, int *bytes_copied) 6039 { 6040 struct sctp_sockaddr_entry *addr; 6041 union sctp_addr temp; 6042 int cnt = 0; 6043 int addrlen; 6044 struct net *net = sock_net(sk); 6045 6046 rcu_read_lock(); 6047 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6048 if (!addr->valid) 6049 continue; 6050 6051 if ((PF_INET == sk->sk_family) && 6052 (AF_INET6 == addr->a.sa.sa_family)) 6053 continue; 6054 if ((PF_INET6 == sk->sk_family) && 6055 inet_v6_ipv6only(sk) && 6056 (AF_INET == addr->a.sa.sa_family)) 6057 continue; 6058 memcpy(&temp, &addr->a, sizeof(temp)); 6059 if (!temp.v4.sin_port) 6060 temp.v4.sin_port = htons(port); 6061 6062 addrlen = sctp_get_pf_specific(sk->sk_family) 6063 ->addr_to_user(sctp_sk(sk), &temp); 6064 6065 if (space_left < addrlen) { 6066 cnt = -ENOMEM; 6067 break; 6068 } 6069 memcpy(to, &temp, addrlen); 6070 6071 to += addrlen; 6072 cnt++; 6073 space_left -= addrlen; 6074 *bytes_copied += addrlen; 6075 } 6076 rcu_read_unlock(); 6077 6078 return cnt; 6079 } 6080 6081 6082 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6083 char __user *optval, int __user *optlen) 6084 { 6085 struct sctp_bind_addr *bp; 6086 struct sctp_association *asoc; 6087 int cnt = 0; 6088 struct sctp_getaddrs getaddrs; 6089 struct sctp_sockaddr_entry *addr; 6090 void __user *to; 6091 union sctp_addr temp; 6092 struct sctp_sock *sp = sctp_sk(sk); 6093 int addrlen; 6094 int err = 0; 6095 size_t space_left; 6096 int bytes_copied = 0; 6097 void *addrs; 6098 void *buf; 6099 6100 if (len < sizeof(struct sctp_getaddrs)) 6101 return -EINVAL; 6102 6103 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6104 return -EFAULT; 6105 6106 /* 6107 * For UDP-style sockets, id specifies the association to query. 6108 * If the id field is set to the value '0' then the locally bound 6109 * addresses are returned without regard to any particular 6110 * association. 6111 */ 6112 if (0 == getaddrs.assoc_id) { 6113 bp = &sctp_sk(sk)->ep->base.bind_addr; 6114 } else { 6115 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6116 if (!asoc) 6117 return -EINVAL; 6118 bp = &asoc->base.bind_addr; 6119 } 6120 6121 to = optval + offsetof(struct sctp_getaddrs, addrs); 6122 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6123 6124 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6125 if (!addrs) 6126 return -ENOMEM; 6127 6128 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6129 * addresses from the global local address list. 6130 */ 6131 if (sctp_list_single_entry(&bp->address_list)) { 6132 addr = list_entry(bp->address_list.next, 6133 struct sctp_sockaddr_entry, list); 6134 if (sctp_is_any(sk, &addr->a)) { 6135 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6136 space_left, &bytes_copied); 6137 if (cnt < 0) { 6138 err = cnt; 6139 goto out; 6140 } 6141 goto copy_getaddrs; 6142 } 6143 } 6144 6145 buf = addrs; 6146 /* Protection on the bound address list is not needed since 6147 * in the socket option context we hold a socket lock and 6148 * thus the bound address list can't change. 6149 */ 6150 list_for_each_entry(addr, &bp->address_list, list) { 6151 memcpy(&temp, &addr->a, sizeof(temp)); 6152 addrlen = sctp_get_pf_specific(sk->sk_family) 6153 ->addr_to_user(sp, &temp); 6154 if (space_left < addrlen) { 6155 err = -ENOMEM; /*fixme: right error?*/ 6156 goto out; 6157 } 6158 memcpy(buf, &temp, addrlen); 6159 buf += addrlen; 6160 bytes_copied += addrlen; 6161 cnt++; 6162 space_left -= addrlen; 6163 } 6164 6165 copy_getaddrs: 6166 if (copy_to_user(to, addrs, bytes_copied)) { 6167 err = -EFAULT; 6168 goto out; 6169 } 6170 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6171 err = -EFAULT; 6172 goto out; 6173 } 6174 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6175 * but we can't change it anymore. 6176 */ 6177 if (put_user(bytes_copied, optlen)) 6178 err = -EFAULT; 6179 out: 6180 kfree(addrs); 6181 return err; 6182 } 6183 6184 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6185 * 6186 * Requests that the local SCTP stack use the enclosed peer address as 6187 * the association primary. The enclosed address must be one of the 6188 * association peer's addresses. 6189 */ 6190 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6191 char __user *optval, int __user *optlen) 6192 { 6193 struct sctp_prim prim; 6194 struct sctp_association *asoc; 6195 struct sctp_sock *sp = sctp_sk(sk); 6196 6197 if (len < sizeof(struct sctp_prim)) 6198 return -EINVAL; 6199 6200 len = sizeof(struct sctp_prim); 6201 6202 if (copy_from_user(&prim, optval, len)) 6203 return -EFAULT; 6204 6205 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6206 if (!asoc) 6207 return -EINVAL; 6208 6209 if (!asoc->peer.primary_path) 6210 return -ENOTCONN; 6211 6212 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6213 asoc->peer.primary_path->af_specific->sockaddr_len); 6214 6215 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6216 (union sctp_addr *)&prim.ssp_addr); 6217 6218 if (put_user(len, optlen)) 6219 return -EFAULT; 6220 if (copy_to_user(optval, &prim, len)) 6221 return -EFAULT; 6222 6223 return 0; 6224 } 6225 6226 /* 6227 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6228 * 6229 * Requests that the local endpoint set the specified Adaptation Layer 6230 * Indication parameter for all future INIT and INIT-ACK exchanges. 6231 */ 6232 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6233 char __user *optval, int __user *optlen) 6234 { 6235 struct sctp_setadaptation adaptation; 6236 6237 if (len < sizeof(struct sctp_setadaptation)) 6238 return -EINVAL; 6239 6240 len = sizeof(struct sctp_setadaptation); 6241 6242 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6243 6244 if (put_user(len, optlen)) 6245 return -EFAULT; 6246 if (copy_to_user(optval, &adaptation, len)) 6247 return -EFAULT; 6248 6249 return 0; 6250 } 6251 6252 /* 6253 * 6254 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6255 * 6256 * Applications that wish to use the sendto() system call may wish to 6257 * specify a default set of parameters that would normally be supplied 6258 * through the inclusion of ancillary data. This socket option allows 6259 * such an application to set the default sctp_sndrcvinfo structure. 6260 6261 6262 * The application that wishes to use this socket option simply passes 6263 * in to this call the sctp_sndrcvinfo structure defined in Section 6264 * 5.2.2) The input parameters accepted by this call include 6265 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6266 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6267 * to this call if the caller is using the UDP model. 6268 * 6269 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6270 */ 6271 static int sctp_getsockopt_default_send_param(struct sock *sk, 6272 int len, char __user *optval, 6273 int __user *optlen) 6274 { 6275 struct sctp_sock *sp = sctp_sk(sk); 6276 struct sctp_association *asoc; 6277 struct sctp_sndrcvinfo info; 6278 6279 if (len < sizeof(info)) 6280 return -EINVAL; 6281 6282 len = sizeof(info); 6283 6284 if (copy_from_user(&info, optval, len)) 6285 return -EFAULT; 6286 6287 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6288 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6289 sctp_style(sk, UDP)) 6290 return -EINVAL; 6291 6292 if (asoc) { 6293 info.sinfo_stream = asoc->default_stream; 6294 info.sinfo_flags = asoc->default_flags; 6295 info.sinfo_ppid = asoc->default_ppid; 6296 info.sinfo_context = asoc->default_context; 6297 info.sinfo_timetolive = asoc->default_timetolive; 6298 } else { 6299 info.sinfo_stream = sp->default_stream; 6300 info.sinfo_flags = sp->default_flags; 6301 info.sinfo_ppid = sp->default_ppid; 6302 info.sinfo_context = sp->default_context; 6303 info.sinfo_timetolive = sp->default_timetolive; 6304 } 6305 6306 if (put_user(len, optlen)) 6307 return -EFAULT; 6308 if (copy_to_user(optval, &info, len)) 6309 return -EFAULT; 6310 6311 return 0; 6312 } 6313 6314 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6315 * (SCTP_DEFAULT_SNDINFO) 6316 */ 6317 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6318 char __user *optval, 6319 int __user *optlen) 6320 { 6321 struct sctp_sock *sp = sctp_sk(sk); 6322 struct sctp_association *asoc; 6323 struct sctp_sndinfo info; 6324 6325 if (len < sizeof(info)) 6326 return -EINVAL; 6327 6328 len = sizeof(info); 6329 6330 if (copy_from_user(&info, optval, len)) 6331 return -EFAULT; 6332 6333 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6334 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6335 sctp_style(sk, UDP)) 6336 return -EINVAL; 6337 6338 if (asoc) { 6339 info.snd_sid = asoc->default_stream; 6340 info.snd_flags = asoc->default_flags; 6341 info.snd_ppid = asoc->default_ppid; 6342 info.snd_context = asoc->default_context; 6343 } else { 6344 info.snd_sid = sp->default_stream; 6345 info.snd_flags = sp->default_flags; 6346 info.snd_ppid = sp->default_ppid; 6347 info.snd_context = sp->default_context; 6348 } 6349 6350 if (put_user(len, optlen)) 6351 return -EFAULT; 6352 if (copy_to_user(optval, &info, len)) 6353 return -EFAULT; 6354 6355 return 0; 6356 } 6357 6358 /* 6359 * 6360 * 7.1.5 SCTP_NODELAY 6361 * 6362 * Turn on/off any Nagle-like algorithm. This means that packets are 6363 * generally sent as soon as possible and no unnecessary delays are 6364 * introduced, at the cost of more packets in the network. Expects an 6365 * integer boolean flag. 6366 */ 6367 6368 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6369 char __user *optval, int __user *optlen) 6370 { 6371 int val; 6372 6373 if (len < sizeof(int)) 6374 return -EINVAL; 6375 6376 len = sizeof(int); 6377 val = (sctp_sk(sk)->nodelay == 1); 6378 if (put_user(len, optlen)) 6379 return -EFAULT; 6380 if (copy_to_user(optval, &val, len)) 6381 return -EFAULT; 6382 return 0; 6383 } 6384 6385 /* 6386 * 6387 * 7.1.1 SCTP_RTOINFO 6388 * 6389 * The protocol parameters used to initialize and bound retransmission 6390 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6391 * and modify these parameters. 6392 * All parameters are time values, in milliseconds. A value of 0, when 6393 * modifying the parameters, indicates that the current value should not 6394 * be changed. 6395 * 6396 */ 6397 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6398 char __user *optval, 6399 int __user *optlen) { 6400 struct sctp_rtoinfo rtoinfo; 6401 struct sctp_association *asoc; 6402 6403 if (len < sizeof (struct sctp_rtoinfo)) 6404 return -EINVAL; 6405 6406 len = sizeof(struct sctp_rtoinfo); 6407 6408 if (copy_from_user(&rtoinfo, optval, len)) 6409 return -EFAULT; 6410 6411 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6412 6413 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6414 sctp_style(sk, UDP)) 6415 return -EINVAL; 6416 6417 /* Values corresponding to the specific association. */ 6418 if (asoc) { 6419 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6420 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6421 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6422 } else { 6423 /* Values corresponding to the endpoint. */ 6424 struct sctp_sock *sp = sctp_sk(sk); 6425 6426 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6427 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6428 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6429 } 6430 6431 if (put_user(len, optlen)) 6432 return -EFAULT; 6433 6434 if (copy_to_user(optval, &rtoinfo, len)) 6435 return -EFAULT; 6436 6437 return 0; 6438 } 6439 6440 /* 6441 * 6442 * 7.1.2 SCTP_ASSOCINFO 6443 * 6444 * This option is used to tune the maximum retransmission attempts 6445 * of the association. 6446 * Returns an error if the new association retransmission value is 6447 * greater than the sum of the retransmission value of the peer. 6448 * See [SCTP] for more information. 6449 * 6450 */ 6451 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6452 char __user *optval, 6453 int __user *optlen) 6454 { 6455 6456 struct sctp_assocparams assocparams; 6457 struct sctp_association *asoc; 6458 struct list_head *pos; 6459 int cnt = 0; 6460 6461 if (len < sizeof (struct sctp_assocparams)) 6462 return -EINVAL; 6463 6464 len = sizeof(struct sctp_assocparams); 6465 6466 if (copy_from_user(&assocparams, optval, len)) 6467 return -EFAULT; 6468 6469 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6470 6471 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6472 sctp_style(sk, UDP)) 6473 return -EINVAL; 6474 6475 /* Values correspoinding to the specific association */ 6476 if (asoc) { 6477 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6478 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6479 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6480 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6481 6482 list_for_each(pos, &asoc->peer.transport_addr_list) { 6483 cnt++; 6484 } 6485 6486 assocparams.sasoc_number_peer_destinations = cnt; 6487 } else { 6488 /* Values corresponding to the endpoint */ 6489 struct sctp_sock *sp = sctp_sk(sk); 6490 6491 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6492 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6493 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6494 assocparams.sasoc_cookie_life = 6495 sp->assocparams.sasoc_cookie_life; 6496 assocparams.sasoc_number_peer_destinations = 6497 sp->assocparams. 6498 sasoc_number_peer_destinations; 6499 } 6500 6501 if (put_user(len, optlen)) 6502 return -EFAULT; 6503 6504 if (copy_to_user(optval, &assocparams, len)) 6505 return -EFAULT; 6506 6507 return 0; 6508 } 6509 6510 /* 6511 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6512 * 6513 * This socket option is a boolean flag which turns on or off mapped V4 6514 * addresses. If this option is turned on and the socket is type 6515 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6516 * If this option is turned off, then no mapping will be done of V4 6517 * addresses and a user will receive both PF_INET6 and PF_INET type 6518 * addresses on the socket. 6519 */ 6520 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6521 char __user *optval, int __user *optlen) 6522 { 6523 int val; 6524 struct sctp_sock *sp = sctp_sk(sk); 6525 6526 if (len < sizeof(int)) 6527 return -EINVAL; 6528 6529 len = sizeof(int); 6530 val = sp->v4mapped; 6531 if (put_user(len, optlen)) 6532 return -EFAULT; 6533 if (copy_to_user(optval, &val, len)) 6534 return -EFAULT; 6535 6536 return 0; 6537 } 6538 6539 /* 6540 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6541 * (chapter and verse is quoted at sctp_setsockopt_context()) 6542 */ 6543 static int sctp_getsockopt_context(struct sock *sk, int len, 6544 char __user *optval, int __user *optlen) 6545 { 6546 struct sctp_assoc_value params; 6547 struct sctp_association *asoc; 6548 6549 if (len < sizeof(struct sctp_assoc_value)) 6550 return -EINVAL; 6551 6552 len = sizeof(struct sctp_assoc_value); 6553 6554 if (copy_from_user(¶ms, optval, len)) 6555 return -EFAULT; 6556 6557 asoc = sctp_id2assoc(sk, params.assoc_id); 6558 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6559 sctp_style(sk, UDP)) 6560 return -EINVAL; 6561 6562 params.assoc_value = asoc ? asoc->default_rcv_context 6563 : sctp_sk(sk)->default_rcv_context; 6564 6565 if (put_user(len, optlen)) 6566 return -EFAULT; 6567 if (copy_to_user(optval, ¶ms, len)) 6568 return -EFAULT; 6569 6570 return 0; 6571 } 6572 6573 /* 6574 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6575 * This option will get or set the maximum size to put in any outgoing 6576 * SCTP DATA chunk. If a message is larger than this size it will be 6577 * fragmented by SCTP into the specified size. Note that the underlying 6578 * SCTP implementation may fragment into smaller sized chunks when the 6579 * PMTU of the underlying association is smaller than the value set by 6580 * the user. The default value for this option is '0' which indicates 6581 * the user is NOT limiting fragmentation and only the PMTU will effect 6582 * SCTP's choice of DATA chunk size. Note also that values set larger 6583 * than the maximum size of an IP datagram will effectively let SCTP 6584 * control fragmentation (i.e. the same as setting this option to 0). 6585 * 6586 * The following structure is used to access and modify this parameter: 6587 * 6588 * struct sctp_assoc_value { 6589 * sctp_assoc_t assoc_id; 6590 * uint32_t assoc_value; 6591 * }; 6592 * 6593 * assoc_id: This parameter is ignored for one-to-one style sockets. 6594 * For one-to-many style sockets this parameter indicates which 6595 * association the user is performing an action upon. Note that if 6596 * this field's value is zero then the endpoints default value is 6597 * changed (effecting future associations only). 6598 * assoc_value: This parameter specifies the maximum size in bytes. 6599 */ 6600 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6601 char __user *optval, int __user *optlen) 6602 { 6603 struct sctp_assoc_value params; 6604 struct sctp_association *asoc; 6605 6606 if (len == sizeof(int)) { 6607 pr_warn_ratelimited(DEPRECATED 6608 "%s (pid %d) " 6609 "Use of int in maxseg socket option.\n" 6610 "Use struct sctp_assoc_value instead\n", 6611 current->comm, task_pid_nr(current)); 6612 params.assoc_id = SCTP_FUTURE_ASSOC; 6613 } else if (len >= sizeof(struct sctp_assoc_value)) { 6614 len = sizeof(struct sctp_assoc_value); 6615 if (copy_from_user(¶ms, optval, len)) 6616 return -EFAULT; 6617 } else 6618 return -EINVAL; 6619 6620 asoc = sctp_id2assoc(sk, params.assoc_id); 6621 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6622 sctp_style(sk, UDP)) 6623 return -EINVAL; 6624 6625 if (asoc) 6626 params.assoc_value = asoc->frag_point; 6627 else 6628 params.assoc_value = sctp_sk(sk)->user_frag; 6629 6630 if (put_user(len, optlen)) 6631 return -EFAULT; 6632 if (len == sizeof(int)) { 6633 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6634 return -EFAULT; 6635 } else { 6636 if (copy_to_user(optval, ¶ms, len)) 6637 return -EFAULT; 6638 } 6639 6640 return 0; 6641 } 6642 6643 /* 6644 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6645 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6646 */ 6647 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6648 char __user *optval, int __user *optlen) 6649 { 6650 int val; 6651 6652 if (len < sizeof(int)) 6653 return -EINVAL; 6654 6655 len = sizeof(int); 6656 6657 val = sctp_sk(sk)->frag_interleave; 6658 if (put_user(len, optlen)) 6659 return -EFAULT; 6660 if (copy_to_user(optval, &val, len)) 6661 return -EFAULT; 6662 6663 return 0; 6664 } 6665 6666 /* 6667 * 7.1.25. Set or Get the sctp partial delivery point 6668 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6669 */ 6670 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6671 char __user *optval, 6672 int __user *optlen) 6673 { 6674 u32 val; 6675 6676 if (len < sizeof(u32)) 6677 return -EINVAL; 6678 6679 len = sizeof(u32); 6680 6681 val = sctp_sk(sk)->pd_point; 6682 if (put_user(len, optlen)) 6683 return -EFAULT; 6684 if (copy_to_user(optval, &val, len)) 6685 return -EFAULT; 6686 6687 return 0; 6688 } 6689 6690 /* 6691 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6692 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6693 */ 6694 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6695 char __user *optval, 6696 int __user *optlen) 6697 { 6698 struct sctp_assoc_value params; 6699 struct sctp_association *asoc; 6700 6701 if (len == sizeof(int)) { 6702 pr_warn_ratelimited(DEPRECATED 6703 "%s (pid %d) " 6704 "Use of int in max_burst socket option.\n" 6705 "Use struct sctp_assoc_value instead\n", 6706 current->comm, task_pid_nr(current)); 6707 params.assoc_id = SCTP_FUTURE_ASSOC; 6708 } else if (len >= sizeof(struct sctp_assoc_value)) { 6709 len = sizeof(struct sctp_assoc_value); 6710 if (copy_from_user(¶ms, optval, len)) 6711 return -EFAULT; 6712 } else 6713 return -EINVAL; 6714 6715 asoc = sctp_id2assoc(sk, params.assoc_id); 6716 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6717 sctp_style(sk, UDP)) 6718 return -EINVAL; 6719 6720 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6721 6722 if (len == sizeof(int)) { 6723 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6724 return -EFAULT; 6725 } else { 6726 if (copy_to_user(optval, ¶ms, len)) 6727 return -EFAULT; 6728 } 6729 6730 return 0; 6731 6732 } 6733 6734 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6735 char __user *optval, int __user *optlen) 6736 { 6737 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6738 struct sctp_hmacalgo __user *p = (void __user *)optval; 6739 struct sctp_hmac_algo_param *hmacs; 6740 __u16 data_len = 0; 6741 u32 num_idents; 6742 int i; 6743 6744 if (!ep->auth_enable) 6745 return -EACCES; 6746 6747 hmacs = ep->auth_hmacs_list; 6748 data_len = ntohs(hmacs->param_hdr.length) - 6749 sizeof(struct sctp_paramhdr); 6750 6751 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6752 return -EINVAL; 6753 6754 len = sizeof(struct sctp_hmacalgo) + data_len; 6755 num_idents = data_len / sizeof(u16); 6756 6757 if (put_user(len, optlen)) 6758 return -EFAULT; 6759 if (put_user(num_idents, &p->shmac_num_idents)) 6760 return -EFAULT; 6761 for (i = 0; i < num_idents; i++) { 6762 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6763 6764 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6765 return -EFAULT; 6766 } 6767 return 0; 6768 } 6769 6770 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6771 char __user *optval, int __user *optlen) 6772 { 6773 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6774 struct sctp_authkeyid val; 6775 struct sctp_association *asoc; 6776 6777 if (len < sizeof(struct sctp_authkeyid)) 6778 return -EINVAL; 6779 6780 len = sizeof(struct sctp_authkeyid); 6781 if (copy_from_user(&val, optval, len)) 6782 return -EFAULT; 6783 6784 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6785 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6786 return -EINVAL; 6787 6788 if (asoc) { 6789 if (!asoc->peer.auth_capable) 6790 return -EACCES; 6791 val.scact_keynumber = asoc->active_key_id; 6792 } else { 6793 if (!ep->auth_enable) 6794 return -EACCES; 6795 val.scact_keynumber = ep->active_key_id; 6796 } 6797 6798 if (put_user(len, optlen)) 6799 return -EFAULT; 6800 if (copy_to_user(optval, &val, len)) 6801 return -EFAULT; 6802 6803 return 0; 6804 } 6805 6806 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6807 char __user *optval, int __user *optlen) 6808 { 6809 struct sctp_authchunks __user *p = (void __user *)optval; 6810 struct sctp_authchunks val; 6811 struct sctp_association *asoc; 6812 struct sctp_chunks_param *ch; 6813 u32 num_chunks = 0; 6814 char __user *to; 6815 6816 if (len < sizeof(struct sctp_authchunks)) 6817 return -EINVAL; 6818 6819 if (copy_from_user(&val, optval, sizeof(val))) 6820 return -EFAULT; 6821 6822 to = p->gauth_chunks; 6823 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6824 if (!asoc) 6825 return -EINVAL; 6826 6827 if (!asoc->peer.auth_capable) 6828 return -EACCES; 6829 6830 ch = asoc->peer.peer_chunks; 6831 if (!ch) 6832 goto num; 6833 6834 /* See if the user provided enough room for all the data */ 6835 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6836 if (len < num_chunks) 6837 return -EINVAL; 6838 6839 if (copy_to_user(to, ch->chunks, num_chunks)) 6840 return -EFAULT; 6841 num: 6842 len = sizeof(struct sctp_authchunks) + num_chunks; 6843 if (put_user(len, optlen)) 6844 return -EFAULT; 6845 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6846 return -EFAULT; 6847 return 0; 6848 } 6849 6850 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6851 char __user *optval, int __user *optlen) 6852 { 6853 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6854 struct sctp_authchunks __user *p = (void __user *)optval; 6855 struct sctp_authchunks val; 6856 struct sctp_association *asoc; 6857 struct sctp_chunks_param *ch; 6858 u32 num_chunks = 0; 6859 char __user *to; 6860 6861 if (len < sizeof(struct sctp_authchunks)) 6862 return -EINVAL; 6863 6864 if (copy_from_user(&val, optval, sizeof(val))) 6865 return -EFAULT; 6866 6867 to = p->gauth_chunks; 6868 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6869 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 6870 sctp_style(sk, UDP)) 6871 return -EINVAL; 6872 6873 if (asoc) { 6874 if (!asoc->peer.auth_capable) 6875 return -EACCES; 6876 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6877 } else { 6878 if (!ep->auth_enable) 6879 return -EACCES; 6880 ch = ep->auth_chunk_list; 6881 } 6882 if (!ch) 6883 goto num; 6884 6885 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6886 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6887 return -EINVAL; 6888 6889 if (copy_to_user(to, ch->chunks, num_chunks)) 6890 return -EFAULT; 6891 num: 6892 len = sizeof(struct sctp_authchunks) + num_chunks; 6893 if (put_user(len, optlen)) 6894 return -EFAULT; 6895 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6896 return -EFAULT; 6897 6898 return 0; 6899 } 6900 6901 /* 6902 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6903 * This option gets the current number of associations that are attached 6904 * to a one-to-many style socket. The option value is an uint32_t. 6905 */ 6906 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6907 char __user *optval, int __user *optlen) 6908 { 6909 struct sctp_sock *sp = sctp_sk(sk); 6910 struct sctp_association *asoc; 6911 u32 val = 0; 6912 6913 if (sctp_style(sk, TCP)) 6914 return -EOPNOTSUPP; 6915 6916 if (len < sizeof(u32)) 6917 return -EINVAL; 6918 6919 len = sizeof(u32); 6920 6921 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6922 val++; 6923 } 6924 6925 if (put_user(len, optlen)) 6926 return -EFAULT; 6927 if (copy_to_user(optval, &val, len)) 6928 return -EFAULT; 6929 6930 return 0; 6931 } 6932 6933 /* 6934 * 8.1.23 SCTP_AUTO_ASCONF 6935 * See the corresponding setsockopt entry as description 6936 */ 6937 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6938 char __user *optval, int __user *optlen) 6939 { 6940 int val = 0; 6941 6942 if (len < sizeof(int)) 6943 return -EINVAL; 6944 6945 len = sizeof(int); 6946 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6947 val = 1; 6948 if (put_user(len, optlen)) 6949 return -EFAULT; 6950 if (copy_to_user(optval, &val, len)) 6951 return -EFAULT; 6952 return 0; 6953 } 6954 6955 /* 6956 * 8.2.6. Get the Current Identifiers of Associations 6957 * (SCTP_GET_ASSOC_ID_LIST) 6958 * 6959 * This option gets the current list of SCTP association identifiers of 6960 * the SCTP associations handled by a one-to-many style socket. 6961 */ 6962 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6963 char __user *optval, int __user *optlen) 6964 { 6965 struct sctp_sock *sp = sctp_sk(sk); 6966 struct sctp_association *asoc; 6967 struct sctp_assoc_ids *ids; 6968 u32 num = 0; 6969 6970 if (sctp_style(sk, TCP)) 6971 return -EOPNOTSUPP; 6972 6973 if (len < sizeof(struct sctp_assoc_ids)) 6974 return -EINVAL; 6975 6976 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6977 num++; 6978 } 6979 6980 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6981 return -EINVAL; 6982 6983 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6984 6985 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6986 if (unlikely(!ids)) 6987 return -ENOMEM; 6988 6989 ids->gaids_number_of_ids = num; 6990 num = 0; 6991 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6992 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6993 } 6994 6995 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6996 kfree(ids); 6997 return -EFAULT; 6998 } 6999 7000 kfree(ids); 7001 return 0; 7002 } 7003 7004 /* 7005 * SCTP_PEER_ADDR_THLDS 7006 * 7007 * This option allows us to fetch the partially failed threshold for one or all 7008 * transports in an association. See Section 6.1 of: 7009 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7010 */ 7011 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7012 char __user *optval, int len, 7013 int __user *optlen, bool v2) 7014 { 7015 struct sctp_paddrthlds_v2 val; 7016 struct sctp_transport *trans; 7017 struct sctp_association *asoc; 7018 int min; 7019 7020 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7021 if (len < min) 7022 return -EINVAL; 7023 len = min; 7024 if (copy_from_user(&val, optval, len)) 7025 return -EFAULT; 7026 7027 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7028 trans = sctp_addr_id2transport(sk, &val.spt_address, 7029 val.spt_assoc_id); 7030 if (!trans) 7031 return -ENOENT; 7032 7033 val.spt_pathmaxrxt = trans->pathmaxrxt; 7034 val.spt_pathpfthld = trans->pf_retrans; 7035 val.spt_pathcpthld = trans->ps_retrans; 7036 7037 goto out; 7038 } 7039 7040 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7041 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7042 sctp_style(sk, UDP)) 7043 return -EINVAL; 7044 7045 if (asoc) { 7046 val.spt_pathpfthld = asoc->pf_retrans; 7047 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7048 val.spt_pathcpthld = asoc->ps_retrans; 7049 } else { 7050 struct sctp_sock *sp = sctp_sk(sk); 7051 7052 val.spt_pathpfthld = sp->pf_retrans; 7053 val.spt_pathmaxrxt = sp->pathmaxrxt; 7054 val.spt_pathcpthld = sp->ps_retrans; 7055 } 7056 7057 out: 7058 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7059 return -EFAULT; 7060 7061 return 0; 7062 } 7063 7064 /* 7065 * SCTP_GET_ASSOC_STATS 7066 * 7067 * This option retrieves local per endpoint statistics. It is modeled 7068 * after OpenSolaris' implementation 7069 */ 7070 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7071 char __user *optval, 7072 int __user *optlen) 7073 { 7074 struct sctp_assoc_stats sas; 7075 struct sctp_association *asoc = NULL; 7076 7077 /* User must provide at least the assoc id */ 7078 if (len < sizeof(sctp_assoc_t)) 7079 return -EINVAL; 7080 7081 /* Allow the struct to grow and fill in as much as possible */ 7082 len = min_t(size_t, len, sizeof(sas)); 7083 7084 if (copy_from_user(&sas, optval, len)) 7085 return -EFAULT; 7086 7087 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7088 if (!asoc) 7089 return -EINVAL; 7090 7091 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7092 sas.sas_gapcnt = asoc->stats.gapcnt; 7093 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7094 sas.sas_osacks = asoc->stats.osacks; 7095 sas.sas_isacks = asoc->stats.isacks; 7096 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7097 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7098 sas.sas_oodchunks = asoc->stats.oodchunks; 7099 sas.sas_iodchunks = asoc->stats.iodchunks; 7100 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7101 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7102 sas.sas_idupchunks = asoc->stats.idupchunks; 7103 sas.sas_opackets = asoc->stats.opackets; 7104 sas.sas_ipackets = asoc->stats.ipackets; 7105 7106 /* New high max rto observed, will return 0 if not a single 7107 * RTO update took place. obs_rto_ipaddr will be bogus 7108 * in such a case 7109 */ 7110 sas.sas_maxrto = asoc->stats.max_obs_rto; 7111 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7112 sizeof(struct sockaddr_storage)); 7113 7114 /* Mark beginning of a new observation period */ 7115 asoc->stats.max_obs_rto = asoc->rto_min; 7116 7117 if (put_user(len, optlen)) 7118 return -EFAULT; 7119 7120 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7121 7122 if (copy_to_user(optval, &sas, len)) 7123 return -EFAULT; 7124 7125 return 0; 7126 } 7127 7128 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7129 char __user *optval, 7130 int __user *optlen) 7131 { 7132 int val = 0; 7133 7134 if (len < sizeof(int)) 7135 return -EINVAL; 7136 7137 len = sizeof(int); 7138 if (sctp_sk(sk)->recvrcvinfo) 7139 val = 1; 7140 if (put_user(len, optlen)) 7141 return -EFAULT; 7142 if (copy_to_user(optval, &val, len)) 7143 return -EFAULT; 7144 7145 return 0; 7146 } 7147 7148 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7149 char __user *optval, 7150 int __user *optlen) 7151 { 7152 int val = 0; 7153 7154 if (len < sizeof(int)) 7155 return -EINVAL; 7156 7157 len = sizeof(int); 7158 if (sctp_sk(sk)->recvnxtinfo) 7159 val = 1; 7160 if (put_user(len, optlen)) 7161 return -EFAULT; 7162 if (copy_to_user(optval, &val, len)) 7163 return -EFAULT; 7164 7165 return 0; 7166 } 7167 7168 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7169 char __user *optval, 7170 int __user *optlen) 7171 { 7172 struct sctp_assoc_value params; 7173 struct sctp_association *asoc; 7174 int retval = -EFAULT; 7175 7176 if (len < sizeof(params)) { 7177 retval = -EINVAL; 7178 goto out; 7179 } 7180 7181 len = sizeof(params); 7182 if (copy_from_user(¶ms, optval, len)) 7183 goto out; 7184 7185 asoc = sctp_id2assoc(sk, params.assoc_id); 7186 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7187 sctp_style(sk, UDP)) { 7188 retval = -EINVAL; 7189 goto out; 7190 } 7191 7192 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7193 : sctp_sk(sk)->ep->prsctp_enable; 7194 7195 if (put_user(len, optlen)) 7196 goto out; 7197 7198 if (copy_to_user(optval, ¶ms, len)) 7199 goto out; 7200 7201 retval = 0; 7202 7203 out: 7204 return retval; 7205 } 7206 7207 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7208 char __user *optval, 7209 int __user *optlen) 7210 { 7211 struct sctp_default_prinfo info; 7212 struct sctp_association *asoc; 7213 int retval = -EFAULT; 7214 7215 if (len < sizeof(info)) { 7216 retval = -EINVAL; 7217 goto out; 7218 } 7219 7220 len = sizeof(info); 7221 if (copy_from_user(&info, optval, len)) 7222 goto out; 7223 7224 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7225 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7226 sctp_style(sk, UDP)) { 7227 retval = -EINVAL; 7228 goto out; 7229 } 7230 7231 if (asoc) { 7232 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7233 info.pr_value = asoc->default_timetolive; 7234 } else { 7235 struct sctp_sock *sp = sctp_sk(sk); 7236 7237 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7238 info.pr_value = sp->default_timetolive; 7239 } 7240 7241 if (put_user(len, optlen)) 7242 goto out; 7243 7244 if (copy_to_user(optval, &info, len)) 7245 goto out; 7246 7247 retval = 0; 7248 7249 out: 7250 return retval; 7251 } 7252 7253 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7254 char __user *optval, 7255 int __user *optlen) 7256 { 7257 struct sctp_prstatus params; 7258 struct sctp_association *asoc; 7259 int policy; 7260 int retval = -EINVAL; 7261 7262 if (len < sizeof(params)) 7263 goto out; 7264 7265 len = sizeof(params); 7266 if (copy_from_user(¶ms, optval, len)) { 7267 retval = -EFAULT; 7268 goto out; 7269 } 7270 7271 policy = params.sprstat_policy; 7272 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7273 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7274 goto out; 7275 7276 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7277 if (!asoc) 7278 goto out; 7279 7280 if (policy == SCTP_PR_SCTP_ALL) { 7281 params.sprstat_abandoned_unsent = 0; 7282 params.sprstat_abandoned_sent = 0; 7283 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7284 params.sprstat_abandoned_unsent += 7285 asoc->abandoned_unsent[policy]; 7286 params.sprstat_abandoned_sent += 7287 asoc->abandoned_sent[policy]; 7288 } 7289 } else { 7290 params.sprstat_abandoned_unsent = 7291 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7292 params.sprstat_abandoned_sent = 7293 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7294 } 7295 7296 if (put_user(len, optlen)) { 7297 retval = -EFAULT; 7298 goto out; 7299 } 7300 7301 if (copy_to_user(optval, ¶ms, len)) { 7302 retval = -EFAULT; 7303 goto out; 7304 } 7305 7306 retval = 0; 7307 7308 out: 7309 return retval; 7310 } 7311 7312 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7313 char __user *optval, 7314 int __user *optlen) 7315 { 7316 struct sctp_stream_out_ext *streamoute; 7317 struct sctp_association *asoc; 7318 struct sctp_prstatus params; 7319 int retval = -EINVAL; 7320 int policy; 7321 7322 if (len < sizeof(params)) 7323 goto out; 7324 7325 len = sizeof(params); 7326 if (copy_from_user(¶ms, optval, len)) { 7327 retval = -EFAULT; 7328 goto out; 7329 } 7330 7331 policy = params.sprstat_policy; 7332 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7333 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7334 goto out; 7335 7336 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7337 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7338 goto out; 7339 7340 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7341 if (!streamoute) { 7342 /* Not allocated yet, means all stats are 0 */ 7343 params.sprstat_abandoned_unsent = 0; 7344 params.sprstat_abandoned_sent = 0; 7345 retval = 0; 7346 goto out; 7347 } 7348 7349 if (policy == SCTP_PR_SCTP_ALL) { 7350 params.sprstat_abandoned_unsent = 0; 7351 params.sprstat_abandoned_sent = 0; 7352 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7353 params.sprstat_abandoned_unsent += 7354 streamoute->abandoned_unsent[policy]; 7355 params.sprstat_abandoned_sent += 7356 streamoute->abandoned_sent[policy]; 7357 } 7358 } else { 7359 params.sprstat_abandoned_unsent = 7360 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7361 params.sprstat_abandoned_sent = 7362 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7363 } 7364 7365 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7366 retval = -EFAULT; 7367 goto out; 7368 } 7369 7370 retval = 0; 7371 7372 out: 7373 return retval; 7374 } 7375 7376 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7377 char __user *optval, 7378 int __user *optlen) 7379 { 7380 struct sctp_assoc_value params; 7381 struct sctp_association *asoc; 7382 int retval = -EFAULT; 7383 7384 if (len < sizeof(params)) { 7385 retval = -EINVAL; 7386 goto out; 7387 } 7388 7389 len = sizeof(params); 7390 if (copy_from_user(¶ms, optval, len)) 7391 goto out; 7392 7393 asoc = sctp_id2assoc(sk, params.assoc_id); 7394 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7395 sctp_style(sk, UDP)) { 7396 retval = -EINVAL; 7397 goto out; 7398 } 7399 7400 params.assoc_value = asoc ? asoc->peer.reconf_capable 7401 : sctp_sk(sk)->ep->reconf_enable; 7402 7403 if (put_user(len, optlen)) 7404 goto out; 7405 7406 if (copy_to_user(optval, ¶ms, len)) 7407 goto out; 7408 7409 retval = 0; 7410 7411 out: 7412 return retval; 7413 } 7414 7415 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7416 char __user *optval, 7417 int __user *optlen) 7418 { 7419 struct sctp_assoc_value params; 7420 struct sctp_association *asoc; 7421 int retval = -EFAULT; 7422 7423 if (len < sizeof(params)) { 7424 retval = -EINVAL; 7425 goto out; 7426 } 7427 7428 len = sizeof(params); 7429 if (copy_from_user(¶ms, optval, len)) 7430 goto out; 7431 7432 asoc = sctp_id2assoc(sk, params.assoc_id); 7433 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7434 sctp_style(sk, UDP)) { 7435 retval = -EINVAL; 7436 goto out; 7437 } 7438 7439 params.assoc_value = asoc ? asoc->strreset_enable 7440 : sctp_sk(sk)->ep->strreset_enable; 7441 7442 if (put_user(len, optlen)) 7443 goto out; 7444 7445 if (copy_to_user(optval, ¶ms, len)) 7446 goto out; 7447 7448 retval = 0; 7449 7450 out: 7451 return retval; 7452 } 7453 7454 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7455 char __user *optval, 7456 int __user *optlen) 7457 { 7458 struct sctp_assoc_value params; 7459 struct sctp_association *asoc; 7460 int retval = -EFAULT; 7461 7462 if (len < sizeof(params)) { 7463 retval = -EINVAL; 7464 goto out; 7465 } 7466 7467 len = sizeof(params); 7468 if (copy_from_user(¶ms, optval, len)) 7469 goto out; 7470 7471 asoc = sctp_id2assoc(sk, params.assoc_id); 7472 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7473 sctp_style(sk, UDP)) { 7474 retval = -EINVAL; 7475 goto out; 7476 } 7477 7478 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7479 : sctp_sk(sk)->default_ss; 7480 7481 if (put_user(len, optlen)) 7482 goto out; 7483 7484 if (copy_to_user(optval, ¶ms, len)) 7485 goto out; 7486 7487 retval = 0; 7488 7489 out: 7490 return retval; 7491 } 7492 7493 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7494 char __user *optval, 7495 int __user *optlen) 7496 { 7497 struct sctp_stream_value params; 7498 struct sctp_association *asoc; 7499 int retval = -EFAULT; 7500 7501 if (len < sizeof(params)) { 7502 retval = -EINVAL; 7503 goto out; 7504 } 7505 7506 len = sizeof(params); 7507 if (copy_from_user(¶ms, optval, len)) 7508 goto out; 7509 7510 asoc = sctp_id2assoc(sk, params.assoc_id); 7511 if (!asoc) { 7512 retval = -EINVAL; 7513 goto out; 7514 } 7515 7516 retval = sctp_sched_get_value(asoc, params.stream_id, 7517 ¶ms.stream_value); 7518 if (retval) 7519 goto out; 7520 7521 if (put_user(len, optlen)) { 7522 retval = -EFAULT; 7523 goto out; 7524 } 7525 7526 if (copy_to_user(optval, ¶ms, len)) { 7527 retval = -EFAULT; 7528 goto out; 7529 } 7530 7531 out: 7532 return retval; 7533 } 7534 7535 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7536 char __user *optval, 7537 int __user *optlen) 7538 { 7539 struct sctp_assoc_value params; 7540 struct sctp_association *asoc; 7541 int retval = -EFAULT; 7542 7543 if (len < sizeof(params)) { 7544 retval = -EINVAL; 7545 goto out; 7546 } 7547 7548 len = sizeof(params); 7549 if (copy_from_user(¶ms, optval, len)) 7550 goto out; 7551 7552 asoc = sctp_id2assoc(sk, params.assoc_id); 7553 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7554 sctp_style(sk, UDP)) { 7555 retval = -EINVAL; 7556 goto out; 7557 } 7558 7559 params.assoc_value = asoc ? asoc->peer.intl_capable 7560 : sctp_sk(sk)->ep->intl_enable; 7561 7562 if (put_user(len, optlen)) 7563 goto out; 7564 7565 if (copy_to_user(optval, ¶ms, len)) 7566 goto out; 7567 7568 retval = 0; 7569 7570 out: 7571 return retval; 7572 } 7573 7574 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7575 char __user *optval, 7576 int __user *optlen) 7577 { 7578 int val; 7579 7580 if (len < sizeof(int)) 7581 return -EINVAL; 7582 7583 len = sizeof(int); 7584 val = sctp_sk(sk)->reuse; 7585 if (put_user(len, optlen)) 7586 return -EFAULT; 7587 7588 if (copy_to_user(optval, &val, len)) 7589 return -EFAULT; 7590 7591 return 0; 7592 } 7593 7594 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7595 int __user *optlen) 7596 { 7597 struct sctp_association *asoc; 7598 struct sctp_event param; 7599 __u16 subscribe; 7600 7601 if (len < sizeof(param)) 7602 return -EINVAL; 7603 7604 len = sizeof(param); 7605 if (copy_from_user(¶m, optval, len)) 7606 return -EFAULT; 7607 7608 if (param.se_type < SCTP_SN_TYPE_BASE || 7609 param.se_type > SCTP_SN_TYPE_MAX) 7610 return -EINVAL; 7611 7612 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7613 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7614 sctp_style(sk, UDP)) 7615 return -EINVAL; 7616 7617 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7618 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7619 7620 if (put_user(len, optlen)) 7621 return -EFAULT; 7622 7623 if (copy_to_user(optval, ¶m, len)) 7624 return -EFAULT; 7625 7626 return 0; 7627 } 7628 7629 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7630 char __user *optval, 7631 int __user *optlen) 7632 { 7633 struct sctp_assoc_value params; 7634 struct sctp_association *asoc; 7635 int retval = -EFAULT; 7636 7637 if (len < sizeof(params)) { 7638 retval = -EINVAL; 7639 goto out; 7640 } 7641 7642 len = sizeof(params); 7643 if (copy_from_user(¶ms, optval, len)) 7644 goto out; 7645 7646 asoc = sctp_id2assoc(sk, params.assoc_id); 7647 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7648 sctp_style(sk, UDP)) { 7649 retval = -EINVAL; 7650 goto out; 7651 } 7652 7653 params.assoc_value = asoc ? asoc->peer.asconf_capable 7654 : sctp_sk(sk)->ep->asconf_enable; 7655 7656 if (put_user(len, optlen)) 7657 goto out; 7658 7659 if (copy_to_user(optval, ¶ms, len)) 7660 goto out; 7661 7662 retval = 0; 7663 7664 out: 7665 return retval; 7666 } 7667 7668 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7669 char __user *optval, 7670 int __user *optlen) 7671 { 7672 struct sctp_assoc_value params; 7673 struct sctp_association *asoc; 7674 int retval = -EFAULT; 7675 7676 if (len < sizeof(params)) { 7677 retval = -EINVAL; 7678 goto out; 7679 } 7680 7681 len = sizeof(params); 7682 if (copy_from_user(¶ms, optval, len)) 7683 goto out; 7684 7685 asoc = sctp_id2assoc(sk, params.assoc_id); 7686 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7687 sctp_style(sk, UDP)) { 7688 retval = -EINVAL; 7689 goto out; 7690 } 7691 7692 params.assoc_value = asoc ? asoc->peer.auth_capable 7693 : sctp_sk(sk)->ep->auth_enable; 7694 7695 if (put_user(len, optlen)) 7696 goto out; 7697 7698 if (copy_to_user(optval, ¶ms, len)) 7699 goto out; 7700 7701 retval = 0; 7702 7703 out: 7704 return retval; 7705 } 7706 7707 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7708 char __user *optval, 7709 int __user *optlen) 7710 { 7711 struct sctp_assoc_value params; 7712 struct sctp_association *asoc; 7713 int retval = -EFAULT; 7714 7715 if (len < sizeof(params)) { 7716 retval = -EINVAL; 7717 goto out; 7718 } 7719 7720 len = sizeof(params); 7721 if (copy_from_user(¶ms, optval, len)) 7722 goto out; 7723 7724 asoc = sctp_id2assoc(sk, params.assoc_id); 7725 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7726 sctp_style(sk, UDP)) { 7727 retval = -EINVAL; 7728 goto out; 7729 } 7730 7731 params.assoc_value = asoc ? asoc->peer.ecn_capable 7732 : sctp_sk(sk)->ep->ecn_enable; 7733 7734 if (put_user(len, optlen)) 7735 goto out; 7736 7737 if (copy_to_user(optval, ¶ms, len)) 7738 goto out; 7739 7740 retval = 0; 7741 7742 out: 7743 return retval; 7744 } 7745 7746 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7747 char __user *optval, 7748 int __user *optlen) 7749 { 7750 struct sctp_assoc_value params; 7751 struct sctp_association *asoc; 7752 int retval = -EFAULT; 7753 7754 if (len < sizeof(params)) { 7755 retval = -EINVAL; 7756 goto out; 7757 } 7758 7759 len = sizeof(params); 7760 if (copy_from_user(¶ms, optval, len)) 7761 goto out; 7762 7763 asoc = sctp_id2assoc(sk, params.assoc_id); 7764 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7765 sctp_style(sk, UDP)) { 7766 retval = -EINVAL; 7767 goto out; 7768 } 7769 7770 params.assoc_value = asoc ? asoc->pf_expose 7771 : sctp_sk(sk)->pf_expose; 7772 7773 if (put_user(len, optlen)) 7774 goto out; 7775 7776 if (copy_to_user(optval, ¶ms, len)) 7777 goto out; 7778 7779 retval = 0; 7780 7781 out: 7782 return retval; 7783 } 7784 7785 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7786 char __user *optval, int __user *optlen) 7787 { 7788 int retval = 0; 7789 int len; 7790 7791 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7792 7793 /* I can hardly begin to describe how wrong this is. This is 7794 * so broken as to be worse than useless. The API draft 7795 * REALLY is NOT helpful here... I am not convinced that the 7796 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7797 * are at all well-founded. 7798 */ 7799 if (level != SOL_SCTP) { 7800 struct sctp_af *af = sctp_sk(sk)->pf->af; 7801 7802 retval = af->getsockopt(sk, level, optname, optval, optlen); 7803 return retval; 7804 } 7805 7806 if (get_user(len, optlen)) 7807 return -EFAULT; 7808 7809 if (len < 0) 7810 return -EINVAL; 7811 7812 lock_sock(sk); 7813 7814 switch (optname) { 7815 case SCTP_STATUS: 7816 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7817 break; 7818 case SCTP_DISABLE_FRAGMENTS: 7819 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7820 optlen); 7821 break; 7822 case SCTP_EVENTS: 7823 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7824 break; 7825 case SCTP_AUTOCLOSE: 7826 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7827 break; 7828 case SCTP_SOCKOPT_PEELOFF: 7829 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7830 break; 7831 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7832 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7833 break; 7834 case SCTP_PEER_ADDR_PARAMS: 7835 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7836 optlen); 7837 break; 7838 case SCTP_DELAYED_SACK: 7839 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7840 optlen); 7841 break; 7842 case SCTP_INITMSG: 7843 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7844 break; 7845 case SCTP_GET_PEER_ADDRS: 7846 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7847 optlen); 7848 break; 7849 case SCTP_GET_LOCAL_ADDRS: 7850 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7851 optlen); 7852 break; 7853 case SCTP_SOCKOPT_CONNECTX3: 7854 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7855 break; 7856 case SCTP_DEFAULT_SEND_PARAM: 7857 retval = sctp_getsockopt_default_send_param(sk, len, 7858 optval, optlen); 7859 break; 7860 case SCTP_DEFAULT_SNDINFO: 7861 retval = sctp_getsockopt_default_sndinfo(sk, len, 7862 optval, optlen); 7863 break; 7864 case SCTP_PRIMARY_ADDR: 7865 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7866 break; 7867 case SCTP_NODELAY: 7868 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7869 break; 7870 case SCTP_RTOINFO: 7871 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7872 break; 7873 case SCTP_ASSOCINFO: 7874 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7875 break; 7876 case SCTP_I_WANT_MAPPED_V4_ADDR: 7877 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7878 break; 7879 case SCTP_MAXSEG: 7880 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7881 break; 7882 case SCTP_GET_PEER_ADDR_INFO: 7883 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7884 optlen); 7885 break; 7886 case SCTP_ADAPTATION_LAYER: 7887 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7888 optlen); 7889 break; 7890 case SCTP_CONTEXT: 7891 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7892 break; 7893 case SCTP_FRAGMENT_INTERLEAVE: 7894 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7895 optlen); 7896 break; 7897 case SCTP_PARTIAL_DELIVERY_POINT: 7898 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7899 optlen); 7900 break; 7901 case SCTP_MAX_BURST: 7902 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7903 break; 7904 case SCTP_AUTH_KEY: 7905 case SCTP_AUTH_CHUNK: 7906 case SCTP_AUTH_DELETE_KEY: 7907 case SCTP_AUTH_DEACTIVATE_KEY: 7908 retval = -EOPNOTSUPP; 7909 break; 7910 case SCTP_HMAC_IDENT: 7911 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7912 break; 7913 case SCTP_AUTH_ACTIVE_KEY: 7914 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7915 break; 7916 case SCTP_PEER_AUTH_CHUNKS: 7917 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7918 optlen); 7919 break; 7920 case SCTP_LOCAL_AUTH_CHUNKS: 7921 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7922 optlen); 7923 break; 7924 case SCTP_GET_ASSOC_NUMBER: 7925 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7926 break; 7927 case SCTP_GET_ASSOC_ID_LIST: 7928 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7929 break; 7930 case SCTP_AUTO_ASCONF: 7931 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7932 break; 7933 case SCTP_PEER_ADDR_THLDS: 7934 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 7935 optlen, false); 7936 break; 7937 case SCTP_PEER_ADDR_THLDS_V2: 7938 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 7939 optlen, true); 7940 break; 7941 case SCTP_GET_ASSOC_STATS: 7942 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7943 break; 7944 case SCTP_RECVRCVINFO: 7945 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7946 break; 7947 case SCTP_RECVNXTINFO: 7948 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7949 break; 7950 case SCTP_PR_SUPPORTED: 7951 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7952 break; 7953 case SCTP_DEFAULT_PRINFO: 7954 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7955 optlen); 7956 break; 7957 case SCTP_PR_ASSOC_STATUS: 7958 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7959 optlen); 7960 break; 7961 case SCTP_PR_STREAM_STATUS: 7962 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7963 optlen); 7964 break; 7965 case SCTP_RECONFIG_SUPPORTED: 7966 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7967 optlen); 7968 break; 7969 case SCTP_ENABLE_STREAM_RESET: 7970 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7971 optlen); 7972 break; 7973 case SCTP_STREAM_SCHEDULER: 7974 retval = sctp_getsockopt_scheduler(sk, len, optval, 7975 optlen); 7976 break; 7977 case SCTP_STREAM_SCHEDULER_VALUE: 7978 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7979 optlen); 7980 break; 7981 case SCTP_INTERLEAVING_SUPPORTED: 7982 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7983 optlen); 7984 break; 7985 case SCTP_REUSE_PORT: 7986 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7987 break; 7988 case SCTP_EVENT: 7989 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7990 break; 7991 case SCTP_ASCONF_SUPPORTED: 7992 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 7993 optlen); 7994 break; 7995 case SCTP_AUTH_SUPPORTED: 7996 retval = sctp_getsockopt_auth_supported(sk, len, optval, 7997 optlen); 7998 break; 7999 case SCTP_ECN_SUPPORTED: 8000 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8001 break; 8002 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8003 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8004 break; 8005 default: 8006 retval = -ENOPROTOOPT; 8007 break; 8008 } 8009 8010 release_sock(sk); 8011 return retval; 8012 } 8013 8014 static int sctp_hash(struct sock *sk) 8015 { 8016 /* STUB */ 8017 return 0; 8018 } 8019 8020 static void sctp_unhash(struct sock *sk) 8021 { 8022 /* STUB */ 8023 } 8024 8025 /* Check if port is acceptable. Possibly find first available port. 8026 * 8027 * The port hash table (contained in the 'global' SCTP protocol storage 8028 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8029 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8030 * list (the list number is the port number hashed out, so as you 8031 * would expect from a hash function, all the ports in a given list have 8032 * such a number that hashes out to the same list number; you were 8033 * expecting that, right?); so each list has a set of ports, with a 8034 * link to the socket (struct sock) that uses it, the port number and 8035 * a fastreuse flag (FIXME: NPI ipg). 8036 */ 8037 static struct sctp_bind_bucket *sctp_bucket_create( 8038 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8039 8040 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8041 { 8042 struct sctp_sock *sp = sctp_sk(sk); 8043 bool reuse = (sk->sk_reuse || sp->reuse); 8044 struct sctp_bind_hashbucket *head; /* hash list */ 8045 struct net *net = sock_net(sk); 8046 kuid_t uid = sock_i_uid(sk); 8047 struct sctp_bind_bucket *pp; 8048 unsigned short snum; 8049 int ret; 8050 8051 snum = ntohs(addr->v4.sin_port); 8052 8053 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8054 8055 local_bh_disable(); 8056 8057 if (snum == 0) { 8058 /* Search for an available port. */ 8059 int low, high, remaining, index; 8060 unsigned int rover; 8061 8062 inet_get_local_port_range(net, &low, &high); 8063 remaining = (high - low) + 1; 8064 rover = prandom_u32() % remaining + low; 8065 8066 do { 8067 rover++; 8068 if ((rover < low) || (rover > high)) 8069 rover = low; 8070 if (inet_is_local_reserved_port(net, rover)) 8071 continue; 8072 index = sctp_phashfn(net, rover); 8073 head = &sctp_port_hashtable[index]; 8074 spin_lock(&head->lock); 8075 sctp_for_each_hentry(pp, &head->chain) 8076 if ((pp->port == rover) && 8077 net_eq(net, pp->net)) 8078 goto next; 8079 break; 8080 next: 8081 spin_unlock(&head->lock); 8082 } while (--remaining > 0); 8083 8084 /* Exhausted local port range during search? */ 8085 ret = 1; 8086 if (remaining <= 0) 8087 goto fail; 8088 8089 /* OK, here is the one we will use. HEAD (the port 8090 * hash table list entry) is non-NULL and we hold it's 8091 * mutex. 8092 */ 8093 snum = rover; 8094 } else { 8095 /* We are given an specific port number; we verify 8096 * that it is not being used. If it is used, we will 8097 * exahust the search in the hash list corresponding 8098 * to the port number (snum) - we detect that with the 8099 * port iterator, pp being NULL. 8100 */ 8101 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8102 spin_lock(&head->lock); 8103 sctp_for_each_hentry(pp, &head->chain) { 8104 if ((pp->port == snum) && net_eq(pp->net, net)) 8105 goto pp_found; 8106 } 8107 } 8108 pp = NULL; 8109 goto pp_not_found; 8110 pp_found: 8111 if (!hlist_empty(&pp->owner)) { 8112 /* We had a port hash table hit - there is an 8113 * available port (pp != NULL) and it is being 8114 * used by other socket (pp->owner not empty); that other 8115 * socket is going to be sk2. 8116 */ 8117 struct sock *sk2; 8118 8119 pr_debug("%s: found a possible match\n", __func__); 8120 8121 if ((pp->fastreuse && reuse && 8122 sk->sk_state != SCTP_SS_LISTENING) || 8123 (pp->fastreuseport && sk->sk_reuseport && 8124 uid_eq(pp->fastuid, uid))) 8125 goto success; 8126 8127 /* Run through the list of sockets bound to the port 8128 * (pp->port) [via the pointers bind_next and 8129 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8130 * we get the endpoint they describe and run through 8131 * the endpoint's list of IP (v4 or v6) addresses, 8132 * comparing each of the addresses with the address of 8133 * the socket sk. If we find a match, then that means 8134 * that this port/socket (sk) combination are already 8135 * in an endpoint. 8136 */ 8137 sk_for_each_bound(sk2, &pp->owner) { 8138 struct sctp_sock *sp2 = sctp_sk(sk2); 8139 struct sctp_endpoint *ep2 = sp2->ep; 8140 8141 if (sk == sk2 || 8142 (reuse && (sk2->sk_reuse || sp2->reuse) && 8143 sk2->sk_state != SCTP_SS_LISTENING) || 8144 (sk->sk_reuseport && sk2->sk_reuseport && 8145 uid_eq(uid, sock_i_uid(sk2)))) 8146 continue; 8147 8148 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8149 addr, sp2, sp)) { 8150 ret = 1; 8151 goto fail_unlock; 8152 } 8153 } 8154 8155 pr_debug("%s: found a match\n", __func__); 8156 } 8157 pp_not_found: 8158 /* If there was a hash table miss, create a new port. */ 8159 ret = 1; 8160 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8161 goto fail_unlock; 8162 8163 /* In either case (hit or miss), make sure fastreuse is 1 only 8164 * if sk->sk_reuse is too (that is, if the caller requested 8165 * SO_REUSEADDR on this socket -sk-). 8166 */ 8167 if (hlist_empty(&pp->owner)) { 8168 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8169 pp->fastreuse = 1; 8170 else 8171 pp->fastreuse = 0; 8172 8173 if (sk->sk_reuseport) { 8174 pp->fastreuseport = 1; 8175 pp->fastuid = uid; 8176 } else { 8177 pp->fastreuseport = 0; 8178 } 8179 } else { 8180 if (pp->fastreuse && 8181 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8182 pp->fastreuse = 0; 8183 8184 if (pp->fastreuseport && 8185 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8186 pp->fastreuseport = 0; 8187 } 8188 8189 /* We are set, so fill up all the data in the hash table 8190 * entry, tie the socket list information with the rest of the 8191 * sockets FIXME: Blurry, NPI (ipg). 8192 */ 8193 success: 8194 if (!sp->bind_hash) { 8195 inet_sk(sk)->inet_num = snum; 8196 sk_add_bind_node(sk, &pp->owner); 8197 sp->bind_hash = pp; 8198 } 8199 ret = 0; 8200 8201 fail_unlock: 8202 spin_unlock(&head->lock); 8203 8204 fail: 8205 local_bh_enable(); 8206 return ret; 8207 } 8208 8209 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8210 * port is requested. 8211 */ 8212 static int sctp_get_port(struct sock *sk, unsigned short snum) 8213 { 8214 union sctp_addr addr; 8215 struct sctp_af *af = sctp_sk(sk)->pf->af; 8216 8217 /* Set up a dummy address struct from the sk. */ 8218 af->from_sk(&addr, sk); 8219 addr.v4.sin_port = htons(snum); 8220 8221 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8222 return sctp_get_port_local(sk, &addr); 8223 } 8224 8225 /* 8226 * Move a socket to LISTENING state. 8227 */ 8228 static int sctp_listen_start(struct sock *sk, int backlog) 8229 { 8230 struct sctp_sock *sp = sctp_sk(sk); 8231 struct sctp_endpoint *ep = sp->ep; 8232 struct crypto_shash *tfm = NULL; 8233 char alg[32]; 8234 8235 /* Allocate HMAC for generating cookie. */ 8236 if (!sp->hmac && sp->sctp_hmac_alg) { 8237 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8238 tfm = crypto_alloc_shash(alg, 0, 0); 8239 if (IS_ERR(tfm)) { 8240 net_info_ratelimited("failed to load transform for %s: %ld\n", 8241 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8242 return -ENOSYS; 8243 } 8244 sctp_sk(sk)->hmac = tfm; 8245 } 8246 8247 /* 8248 * If a bind() or sctp_bindx() is not called prior to a listen() 8249 * call that allows new associations to be accepted, the system 8250 * picks an ephemeral port and will choose an address set equivalent 8251 * to binding with a wildcard address. 8252 * 8253 * This is not currently spelled out in the SCTP sockets 8254 * extensions draft, but follows the practice as seen in TCP 8255 * sockets. 8256 * 8257 */ 8258 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8259 if (!ep->base.bind_addr.port) { 8260 if (sctp_autobind(sk)) 8261 return -EAGAIN; 8262 } else { 8263 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8264 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8265 return -EADDRINUSE; 8266 } 8267 } 8268 8269 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8270 return sctp_hash_endpoint(ep); 8271 } 8272 8273 /* 8274 * 4.1.3 / 5.1.3 listen() 8275 * 8276 * By default, new associations are not accepted for UDP style sockets. 8277 * An application uses listen() to mark a socket as being able to 8278 * accept new associations. 8279 * 8280 * On TCP style sockets, applications use listen() to ready the SCTP 8281 * endpoint for accepting inbound associations. 8282 * 8283 * On both types of endpoints a backlog of '0' disables listening. 8284 * 8285 * Move a socket to LISTENING state. 8286 */ 8287 int sctp_inet_listen(struct socket *sock, int backlog) 8288 { 8289 struct sock *sk = sock->sk; 8290 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8291 int err = -EINVAL; 8292 8293 if (unlikely(backlog < 0)) 8294 return err; 8295 8296 lock_sock(sk); 8297 8298 /* Peeled-off sockets are not allowed to listen(). */ 8299 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8300 goto out; 8301 8302 if (sock->state != SS_UNCONNECTED) 8303 goto out; 8304 8305 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8306 goto out; 8307 8308 /* If backlog is zero, disable listening. */ 8309 if (!backlog) { 8310 if (sctp_sstate(sk, CLOSED)) 8311 goto out; 8312 8313 err = 0; 8314 sctp_unhash_endpoint(ep); 8315 sk->sk_state = SCTP_SS_CLOSED; 8316 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8317 sctp_sk(sk)->bind_hash->fastreuse = 1; 8318 goto out; 8319 } 8320 8321 /* If we are already listening, just update the backlog */ 8322 if (sctp_sstate(sk, LISTENING)) 8323 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8324 else { 8325 err = sctp_listen_start(sk, backlog); 8326 if (err) 8327 goto out; 8328 } 8329 8330 err = 0; 8331 out: 8332 release_sock(sk); 8333 return err; 8334 } 8335 8336 /* 8337 * This function is done by modeling the current datagram_poll() and the 8338 * tcp_poll(). Note that, based on these implementations, we don't 8339 * lock the socket in this function, even though it seems that, 8340 * ideally, locking or some other mechanisms can be used to ensure 8341 * the integrity of the counters (sndbuf and wmem_alloc) used 8342 * in this place. We assume that we don't need locks either until proven 8343 * otherwise. 8344 * 8345 * Another thing to note is that we include the Async I/O support 8346 * here, again, by modeling the current TCP/UDP code. We don't have 8347 * a good way to test with it yet. 8348 */ 8349 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8350 { 8351 struct sock *sk = sock->sk; 8352 struct sctp_sock *sp = sctp_sk(sk); 8353 __poll_t mask; 8354 8355 poll_wait(file, sk_sleep(sk), wait); 8356 8357 sock_rps_record_flow(sk); 8358 8359 /* A TCP-style listening socket becomes readable when the accept queue 8360 * is not empty. 8361 */ 8362 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8363 return (!list_empty(&sp->ep->asocs)) ? 8364 (EPOLLIN | EPOLLRDNORM) : 0; 8365 8366 mask = 0; 8367 8368 /* Is there any exceptional events? */ 8369 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8370 mask |= EPOLLERR | 8371 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8372 if (sk->sk_shutdown & RCV_SHUTDOWN) 8373 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8374 if (sk->sk_shutdown == SHUTDOWN_MASK) 8375 mask |= EPOLLHUP; 8376 8377 /* Is it readable? Reconsider this code with TCP-style support. */ 8378 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8379 mask |= EPOLLIN | EPOLLRDNORM; 8380 8381 /* The association is either gone or not ready. */ 8382 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8383 return mask; 8384 8385 /* Is it writable? */ 8386 if (sctp_writeable(sk)) { 8387 mask |= EPOLLOUT | EPOLLWRNORM; 8388 } else { 8389 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8390 /* 8391 * Since the socket is not locked, the buffer 8392 * might be made available after the writeable check and 8393 * before the bit is set. This could cause a lost I/O 8394 * signal. tcp_poll() has a race breaker for this race 8395 * condition. Based on their implementation, we put 8396 * in the following code to cover it as well. 8397 */ 8398 if (sctp_writeable(sk)) 8399 mask |= EPOLLOUT | EPOLLWRNORM; 8400 } 8401 return mask; 8402 } 8403 8404 /******************************************************************** 8405 * 2nd Level Abstractions 8406 ********************************************************************/ 8407 8408 static struct sctp_bind_bucket *sctp_bucket_create( 8409 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8410 { 8411 struct sctp_bind_bucket *pp; 8412 8413 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8414 if (pp) { 8415 SCTP_DBG_OBJCNT_INC(bind_bucket); 8416 pp->port = snum; 8417 pp->fastreuse = 0; 8418 INIT_HLIST_HEAD(&pp->owner); 8419 pp->net = net; 8420 hlist_add_head(&pp->node, &head->chain); 8421 } 8422 return pp; 8423 } 8424 8425 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8426 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8427 { 8428 if (pp && hlist_empty(&pp->owner)) { 8429 __hlist_del(&pp->node); 8430 kmem_cache_free(sctp_bucket_cachep, pp); 8431 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8432 } 8433 } 8434 8435 /* Release this socket's reference to a local port. */ 8436 static inline void __sctp_put_port(struct sock *sk) 8437 { 8438 struct sctp_bind_hashbucket *head = 8439 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8440 inet_sk(sk)->inet_num)]; 8441 struct sctp_bind_bucket *pp; 8442 8443 spin_lock(&head->lock); 8444 pp = sctp_sk(sk)->bind_hash; 8445 __sk_del_bind_node(sk); 8446 sctp_sk(sk)->bind_hash = NULL; 8447 inet_sk(sk)->inet_num = 0; 8448 sctp_bucket_destroy(pp); 8449 spin_unlock(&head->lock); 8450 } 8451 8452 void sctp_put_port(struct sock *sk) 8453 { 8454 local_bh_disable(); 8455 __sctp_put_port(sk); 8456 local_bh_enable(); 8457 } 8458 8459 /* 8460 * The system picks an ephemeral port and choose an address set equivalent 8461 * to binding with a wildcard address. 8462 * One of those addresses will be the primary address for the association. 8463 * This automatically enables the multihoming capability of SCTP. 8464 */ 8465 static int sctp_autobind(struct sock *sk) 8466 { 8467 union sctp_addr autoaddr; 8468 struct sctp_af *af; 8469 __be16 port; 8470 8471 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8472 af = sctp_sk(sk)->pf->af; 8473 8474 port = htons(inet_sk(sk)->inet_num); 8475 af->inaddr_any(&autoaddr, port); 8476 8477 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8478 } 8479 8480 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8481 * 8482 * From RFC 2292 8483 * 4.2 The cmsghdr Structure * 8484 * 8485 * When ancillary data is sent or received, any number of ancillary data 8486 * objects can be specified by the msg_control and msg_controllen members of 8487 * the msghdr structure, because each object is preceded by 8488 * a cmsghdr structure defining the object's length (the cmsg_len member). 8489 * Historically Berkeley-derived implementations have passed only one object 8490 * at a time, but this API allows multiple objects to be 8491 * passed in a single call to sendmsg() or recvmsg(). The following example 8492 * shows two ancillary data objects in a control buffer. 8493 * 8494 * |<--------------------------- msg_controllen -------------------------->| 8495 * | | 8496 * 8497 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8498 * 8499 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8500 * | | | 8501 * 8502 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8503 * 8504 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8505 * | | | | | 8506 * 8507 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8508 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8509 * 8510 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8511 * 8512 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8513 * ^ 8514 * | 8515 * 8516 * msg_control 8517 * points here 8518 */ 8519 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8520 { 8521 struct msghdr *my_msg = (struct msghdr *)msg; 8522 struct cmsghdr *cmsg; 8523 8524 for_each_cmsghdr(cmsg, my_msg) { 8525 if (!CMSG_OK(my_msg, cmsg)) 8526 return -EINVAL; 8527 8528 /* Should we parse this header or ignore? */ 8529 if (cmsg->cmsg_level != IPPROTO_SCTP) 8530 continue; 8531 8532 /* Strictly check lengths following example in SCM code. */ 8533 switch (cmsg->cmsg_type) { 8534 case SCTP_INIT: 8535 /* SCTP Socket API Extension 8536 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8537 * 8538 * This cmsghdr structure provides information for 8539 * initializing new SCTP associations with sendmsg(). 8540 * The SCTP_INITMSG socket option uses this same data 8541 * structure. This structure is not used for 8542 * recvmsg(). 8543 * 8544 * cmsg_level cmsg_type cmsg_data[] 8545 * ------------ ------------ ---------------------- 8546 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8547 */ 8548 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8549 return -EINVAL; 8550 8551 cmsgs->init = CMSG_DATA(cmsg); 8552 break; 8553 8554 case SCTP_SNDRCV: 8555 /* SCTP Socket API Extension 8556 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8557 * 8558 * This cmsghdr structure specifies SCTP options for 8559 * sendmsg() and describes SCTP header information 8560 * about a received message through recvmsg(). 8561 * 8562 * cmsg_level cmsg_type cmsg_data[] 8563 * ------------ ------------ ---------------------- 8564 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8565 */ 8566 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8567 return -EINVAL; 8568 8569 cmsgs->srinfo = CMSG_DATA(cmsg); 8570 8571 if (cmsgs->srinfo->sinfo_flags & 8572 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8573 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8574 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8575 return -EINVAL; 8576 break; 8577 8578 case SCTP_SNDINFO: 8579 /* SCTP Socket API Extension 8580 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8581 * 8582 * This cmsghdr structure specifies SCTP options for 8583 * sendmsg(). This structure and SCTP_RCVINFO replaces 8584 * SCTP_SNDRCV which has been deprecated. 8585 * 8586 * cmsg_level cmsg_type cmsg_data[] 8587 * ------------ ------------ --------------------- 8588 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8589 */ 8590 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8591 return -EINVAL; 8592 8593 cmsgs->sinfo = CMSG_DATA(cmsg); 8594 8595 if (cmsgs->sinfo->snd_flags & 8596 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8597 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8598 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8599 return -EINVAL; 8600 break; 8601 case SCTP_PRINFO: 8602 /* SCTP Socket API Extension 8603 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8604 * 8605 * This cmsghdr structure specifies SCTP options for sendmsg(). 8606 * 8607 * cmsg_level cmsg_type cmsg_data[] 8608 * ------------ ------------ --------------------- 8609 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8610 */ 8611 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8612 return -EINVAL; 8613 8614 cmsgs->prinfo = CMSG_DATA(cmsg); 8615 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8616 return -EINVAL; 8617 8618 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8619 cmsgs->prinfo->pr_value = 0; 8620 break; 8621 case SCTP_AUTHINFO: 8622 /* SCTP Socket API Extension 8623 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8624 * 8625 * This cmsghdr structure specifies SCTP options for sendmsg(). 8626 * 8627 * cmsg_level cmsg_type cmsg_data[] 8628 * ------------ ------------ --------------------- 8629 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8630 */ 8631 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8632 return -EINVAL; 8633 8634 cmsgs->authinfo = CMSG_DATA(cmsg); 8635 break; 8636 case SCTP_DSTADDRV4: 8637 case SCTP_DSTADDRV6: 8638 /* SCTP Socket API Extension 8639 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8640 * 8641 * This cmsghdr structure specifies SCTP options for sendmsg(). 8642 * 8643 * cmsg_level cmsg_type cmsg_data[] 8644 * ------------ ------------ --------------------- 8645 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8646 * ------------ ------------ --------------------- 8647 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8648 */ 8649 cmsgs->addrs_msg = my_msg; 8650 break; 8651 default: 8652 return -EINVAL; 8653 } 8654 } 8655 8656 return 0; 8657 } 8658 8659 /* 8660 * Wait for a packet.. 8661 * Note: This function is the same function as in core/datagram.c 8662 * with a few modifications to make lksctp work. 8663 */ 8664 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8665 { 8666 int error; 8667 DEFINE_WAIT(wait); 8668 8669 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8670 8671 /* Socket errors? */ 8672 error = sock_error(sk); 8673 if (error) 8674 goto out; 8675 8676 if (!skb_queue_empty(&sk->sk_receive_queue)) 8677 goto ready; 8678 8679 /* Socket shut down? */ 8680 if (sk->sk_shutdown & RCV_SHUTDOWN) 8681 goto out; 8682 8683 /* Sequenced packets can come disconnected. If so we report the 8684 * problem. 8685 */ 8686 error = -ENOTCONN; 8687 8688 /* Is there a good reason to think that we may receive some data? */ 8689 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8690 goto out; 8691 8692 /* Handle signals. */ 8693 if (signal_pending(current)) 8694 goto interrupted; 8695 8696 /* Let another process have a go. Since we are going to sleep 8697 * anyway. Note: This may cause odd behaviors if the message 8698 * does not fit in the user's buffer, but this seems to be the 8699 * only way to honor MSG_DONTWAIT realistically. 8700 */ 8701 release_sock(sk); 8702 *timeo_p = schedule_timeout(*timeo_p); 8703 lock_sock(sk); 8704 8705 ready: 8706 finish_wait(sk_sleep(sk), &wait); 8707 return 0; 8708 8709 interrupted: 8710 error = sock_intr_errno(*timeo_p); 8711 8712 out: 8713 finish_wait(sk_sleep(sk), &wait); 8714 *err = error; 8715 return error; 8716 } 8717 8718 /* Receive a datagram. 8719 * Note: This is pretty much the same routine as in core/datagram.c 8720 * with a few changes to make lksctp work. 8721 */ 8722 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8723 int noblock, int *err) 8724 { 8725 int error; 8726 struct sk_buff *skb; 8727 long timeo; 8728 8729 timeo = sock_rcvtimeo(sk, noblock); 8730 8731 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8732 MAX_SCHEDULE_TIMEOUT); 8733 8734 do { 8735 /* Again only user level code calls this function, 8736 * so nothing interrupt level 8737 * will suddenly eat the receive_queue. 8738 * 8739 * Look at current nfs client by the way... 8740 * However, this function was correct in any case. 8) 8741 */ 8742 if (flags & MSG_PEEK) { 8743 skb = skb_peek(&sk->sk_receive_queue); 8744 if (skb) 8745 refcount_inc(&skb->users); 8746 } else { 8747 skb = __skb_dequeue(&sk->sk_receive_queue); 8748 } 8749 8750 if (skb) 8751 return skb; 8752 8753 /* Caller is allowed not to check sk->sk_err before calling. */ 8754 error = sock_error(sk); 8755 if (error) 8756 goto no_packet; 8757 8758 if (sk->sk_shutdown & RCV_SHUTDOWN) 8759 break; 8760 8761 if (sk_can_busy_loop(sk)) { 8762 sk_busy_loop(sk, noblock); 8763 8764 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8765 continue; 8766 } 8767 8768 /* User doesn't want to wait. */ 8769 error = -EAGAIN; 8770 if (!timeo) 8771 goto no_packet; 8772 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8773 8774 return NULL; 8775 8776 no_packet: 8777 *err = error; 8778 return NULL; 8779 } 8780 8781 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8782 static void __sctp_write_space(struct sctp_association *asoc) 8783 { 8784 struct sock *sk = asoc->base.sk; 8785 8786 if (sctp_wspace(asoc) <= 0) 8787 return; 8788 8789 if (waitqueue_active(&asoc->wait)) 8790 wake_up_interruptible(&asoc->wait); 8791 8792 if (sctp_writeable(sk)) { 8793 struct socket_wq *wq; 8794 8795 rcu_read_lock(); 8796 wq = rcu_dereference(sk->sk_wq); 8797 if (wq) { 8798 if (waitqueue_active(&wq->wait)) 8799 wake_up_interruptible(&wq->wait); 8800 8801 /* Note that we try to include the Async I/O support 8802 * here by modeling from the current TCP/UDP code. 8803 * We have not tested with it yet. 8804 */ 8805 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8806 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8807 } 8808 rcu_read_unlock(); 8809 } 8810 } 8811 8812 static void sctp_wake_up_waiters(struct sock *sk, 8813 struct sctp_association *asoc) 8814 { 8815 struct sctp_association *tmp = asoc; 8816 8817 /* We do accounting for the sndbuf space per association, 8818 * so we only need to wake our own association. 8819 */ 8820 if (asoc->ep->sndbuf_policy) 8821 return __sctp_write_space(asoc); 8822 8823 /* If association goes down and is just flushing its 8824 * outq, then just normally notify others. 8825 */ 8826 if (asoc->base.dead) 8827 return sctp_write_space(sk); 8828 8829 /* Accounting for the sndbuf space is per socket, so we 8830 * need to wake up others, try to be fair and in case of 8831 * other associations, let them have a go first instead 8832 * of just doing a sctp_write_space() call. 8833 * 8834 * Note that we reach sctp_wake_up_waiters() only when 8835 * associations free up queued chunks, thus we are under 8836 * lock and the list of associations on a socket is 8837 * guaranteed not to change. 8838 */ 8839 for (tmp = list_next_entry(tmp, asocs); 1; 8840 tmp = list_next_entry(tmp, asocs)) { 8841 /* Manually skip the head element. */ 8842 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8843 continue; 8844 /* Wake up association. */ 8845 __sctp_write_space(tmp); 8846 /* We've reached the end. */ 8847 if (tmp == asoc) 8848 break; 8849 } 8850 } 8851 8852 /* Do accounting for the sndbuf space. 8853 * Decrement the used sndbuf space of the corresponding association by the 8854 * data size which was just transmitted(freed). 8855 */ 8856 static void sctp_wfree(struct sk_buff *skb) 8857 { 8858 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8859 struct sctp_association *asoc = chunk->asoc; 8860 struct sock *sk = asoc->base.sk; 8861 8862 sk_mem_uncharge(sk, skb->truesize); 8863 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8864 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8865 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8866 &sk->sk_wmem_alloc)); 8867 8868 if (chunk->shkey) { 8869 struct sctp_shared_key *shkey = chunk->shkey; 8870 8871 /* refcnt == 2 and !list_empty mean after this release, it's 8872 * not being used anywhere, and it's time to notify userland 8873 * that this shkey can be freed if it's been deactivated. 8874 */ 8875 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8876 refcount_read(&shkey->refcnt) == 2) { 8877 struct sctp_ulpevent *ev; 8878 8879 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8880 SCTP_AUTH_FREE_KEY, 8881 GFP_KERNEL); 8882 if (ev) 8883 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8884 } 8885 sctp_auth_shkey_release(chunk->shkey); 8886 } 8887 8888 sock_wfree(skb); 8889 sctp_wake_up_waiters(sk, asoc); 8890 8891 sctp_association_put(asoc); 8892 } 8893 8894 /* Do accounting for the receive space on the socket. 8895 * Accounting for the association is done in ulpevent.c 8896 * We set this as a destructor for the cloned data skbs so that 8897 * accounting is done at the correct time. 8898 */ 8899 void sctp_sock_rfree(struct sk_buff *skb) 8900 { 8901 struct sock *sk = skb->sk; 8902 struct sctp_ulpevent *event = sctp_skb2event(skb); 8903 8904 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8905 8906 /* 8907 * Mimic the behavior of sock_rfree 8908 */ 8909 sk_mem_uncharge(sk, event->rmem_len); 8910 } 8911 8912 8913 /* Helper function to wait for space in the sndbuf. */ 8914 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8915 size_t msg_len) 8916 { 8917 struct sock *sk = asoc->base.sk; 8918 long current_timeo = *timeo_p; 8919 DEFINE_WAIT(wait); 8920 int err = 0; 8921 8922 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8923 *timeo_p, msg_len); 8924 8925 /* Increment the association's refcnt. */ 8926 sctp_association_hold(asoc); 8927 8928 /* Wait on the association specific sndbuf space. */ 8929 for (;;) { 8930 prepare_to_wait_exclusive(&asoc->wait, &wait, 8931 TASK_INTERRUPTIBLE); 8932 if (asoc->base.dead) 8933 goto do_dead; 8934 if (!*timeo_p) 8935 goto do_nonblock; 8936 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8937 goto do_error; 8938 if (signal_pending(current)) 8939 goto do_interrupted; 8940 if (sk_under_memory_pressure(sk)) 8941 sk_mem_reclaim(sk); 8942 if ((int)msg_len <= sctp_wspace(asoc) && 8943 sk_wmem_schedule(sk, msg_len)) 8944 break; 8945 8946 /* Let another process have a go. Since we are going 8947 * to sleep anyway. 8948 */ 8949 release_sock(sk); 8950 current_timeo = schedule_timeout(current_timeo); 8951 lock_sock(sk); 8952 if (sk != asoc->base.sk) 8953 goto do_error; 8954 8955 *timeo_p = current_timeo; 8956 } 8957 8958 out: 8959 finish_wait(&asoc->wait, &wait); 8960 8961 /* Release the association's refcnt. */ 8962 sctp_association_put(asoc); 8963 8964 return err; 8965 8966 do_dead: 8967 err = -ESRCH; 8968 goto out; 8969 8970 do_error: 8971 err = -EPIPE; 8972 goto out; 8973 8974 do_interrupted: 8975 err = sock_intr_errno(*timeo_p); 8976 goto out; 8977 8978 do_nonblock: 8979 err = -EAGAIN; 8980 goto out; 8981 } 8982 8983 void sctp_data_ready(struct sock *sk) 8984 { 8985 struct socket_wq *wq; 8986 8987 rcu_read_lock(); 8988 wq = rcu_dereference(sk->sk_wq); 8989 if (skwq_has_sleeper(wq)) 8990 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8991 EPOLLRDNORM | EPOLLRDBAND); 8992 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8993 rcu_read_unlock(); 8994 } 8995 8996 /* If socket sndbuf has changed, wake up all per association waiters. */ 8997 void sctp_write_space(struct sock *sk) 8998 { 8999 struct sctp_association *asoc; 9000 9001 /* Wake up the tasks in each wait queue. */ 9002 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9003 __sctp_write_space(asoc); 9004 } 9005 } 9006 9007 /* Is there any sndbuf space available on the socket? 9008 * 9009 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9010 * associations on the same socket. For a UDP-style socket with 9011 * multiple associations, it is possible for it to be "unwriteable" 9012 * prematurely. I assume that this is acceptable because 9013 * a premature "unwriteable" is better than an accidental "writeable" which 9014 * would cause an unwanted block under certain circumstances. For the 1-1 9015 * UDP-style sockets or TCP-style sockets, this code should work. 9016 * - Daisy 9017 */ 9018 static bool sctp_writeable(struct sock *sk) 9019 { 9020 return sk->sk_sndbuf > sk->sk_wmem_queued; 9021 } 9022 9023 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9024 * returns immediately with EINPROGRESS. 9025 */ 9026 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9027 { 9028 struct sock *sk = asoc->base.sk; 9029 int err = 0; 9030 long current_timeo = *timeo_p; 9031 DEFINE_WAIT(wait); 9032 9033 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9034 9035 /* Increment the association's refcnt. */ 9036 sctp_association_hold(asoc); 9037 9038 for (;;) { 9039 prepare_to_wait_exclusive(&asoc->wait, &wait, 9040 TASK_INTERRUPTIBLE); 9041 if (!*timeo_p) 9042 goto do_nonblock; 9043 if (sk->sk_shutdown & RCV_SHUTDOWN) 9044 break; 9045 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9046 asoc->base.dead) 9047 goto do_error; 9048 if (signal_pending(current)) 9049 goto do_interrupted; 9050 9051 if (sctp_state(asoc, ESTABLISHED)) 9052 break; 9053 9054 /* Let another process have a go. Since we are going 9055 * to sleep anyway. 9056 */ 9057 release_sock(sk); 9058 current_timeo = schedule_timeout(current_timeo); 9059 lock_sock(sk); 9060 9061 *timeo_p = current_timeo; 9062 } 9063 9064 out: 9065 finish_wait(&asoc->wait, &wait); 9066 9067 /* Release the association's refcnt. */ 9068 sctp_association_put(asoc); 9069 9070 return err; 9071 9072 do_error: 9073 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9074 err = -ETIMEDOUT; 9075 else 9076 err = -ECONNREFUSED; 9077 goto out; 9078 9079 do_interrupted: 9080 err = sock_intr_errno(*timeo_p); 9081 goto out; 9082 9083 do_nonblock: 9084 err = -EINPROGRESS; 9085 goto out; 9086 } 9087 9088 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9089 { 9090 struct sctp_endpoint *ep; 9091 int err = 0; 9092 DEFINE_WAIT(wait); 9093 9094 ep = sctp_sk(sk)->ep; 9095 9096 9097 for (;;) { 9098 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9099 TASK_INTERRUPTIBLE); 9100 9101 if (list_empty(&ep->asocs)) { 9102 release_sock(sk); 9103 timeo = schedule_timeout(timeo); 9104 lock_sock(sk); 9105 } 9106 9107 err = -EINVAL; 9108 if (!sctp_sstate(sk, LISTENING)) 9109 break; 9110 9111 err = 0; 9112 if (!list_empty(&ep->asocs)) 9113 break; 9114 9115 err = sock_intr_errno(timeo); 9116 if (signal_pending(current)) 9117 break; 9118 9119 err = -EAGAIN; 9120 if (!timeo) 9121 break; 9122 } 9123 9124 finish_wait(sk_sleep(sk), &wait); 9125 9126 return err; 9127 } 9128 9129 static void sctp_wait_for_close(struct sock *sk, long timeout) 9130 { 9131 DEFINE_WAIT(wait); 9132 9133 do { 9134 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9135 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9136 break; 9137 release_sock(sk); 9138 timeout = schedule_timeout(timeout); 9139 lock_sock(sk); 9140 } while (!signal_pending(current) && timeout); 9141 9142 finish_wait(sk_sleep(sk), &wait); 9143 } 9144 9145 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9146 { 9147 struct sk_buff *frag; 9148 9149 if (!skb->data_len) 9150 goto done; 9151 9152 /* Don't forget the fragments. */ 9153 skb_walk_frags(skb, frag) 9154 sctp_skb_set_owner_r_frag(frag, sk); 9155 9156 done: 9157 sctp_skb_set_owner_r(skb, sk); 9158 } 9159 9160 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9161 struct sctp_association *asoc) 9162 { 9163 struct inet_sock *inet = inet_sk(sk); 9164 struct inet_sock *newinet; 9165 struct sctp_sock *sp = sctp_sk(sk); 9166 struct sctp_endpoint *ep = sp->ep; 9167 9168 newsk->sk_type = sk->sk_type; 9169 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9170 newsk->sk_flags = sk->sk_flags; 9171 newsk->sk_tsflags = sk->sk_tsflags; 9172 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9173 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9174 newsk->sk_reuse = sk->sk_reuse; 9175 sctp_sk(newsk)->reuse = sp->reuse; 9176 9177 newsk->sk_shutdown = sk->sk_shutdown; 9178 newsk->sk_destruct = sctp_destruct_sock; 9179 newsk->sk_family = sk->sk_family; 9180 newsk->sk_protocol = IPPROTO_SCTP; 9181 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9182 newsk->sk_sndbuf = sk->sk_sndbuf; 9183 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9184 newsk->sk_lingertime = sk->sk_lingertime; 9185 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9186 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9187 newsk->sk_rxhash = sk->sk_rxhash; 9188 9189 newinet = inet_sk(newsk); 9190 9191 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9192 * getsockname() and getpeername() 9193 */ 9194 newinet->inet_sport = inet->inet_sport; 9195 newinet->inet_saddr = inet->inet_saddr; 9196 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9197 newinet->inet_dport = htons(asoc->peer.port); 9198 newinet->pmtudisc = inet->pmtudisc; 9199 newinet->inet_id = prandom_u32(); 9200 9201 newinet->uc_ttl = inet->uc_ttl; 9202 newinet->mc_loop = 1; 9203 newinet->mc_ttl = 1; 9204 newinet->mc_index = 0; 9205 newinet->mc_list = NULL; 9206 9207 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9208 net_enable_timestamp(); 9209 9210 /* Set newsk security attributes from orginal sk and connection 9211 * security attribute from ep. 9212 */ 9213 security_sctp_sk_clone(ep, sk, newsk); 9214 } 9215 9216 static inline void sctp_copy_descendant(struct sock *sk_to, 9217 const struct sock *sk_from) 9218 { 9219 int ancestor_size = sizeof(struct inet_sock) + 9220 sizeof(struct sctp_sock) - 9221 offsetof(struct sctp_sock, pd_lobby); 9222 9223 if (sk_from->sk_family == PF_INET6) 9224 ancestor_size += sizeof(struct ipv6_pinfo); 9225 9226 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9227 } 9228 9229 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9230 * and its messages to the newsk. 9231 */ 9232 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9233 struct sctp_association *assoc, 9234 enum sctp_socket_type type) 9235 { 9236 struct sctp_sock *oldsp = sctp_sk(oldsk); 9237 struct sctp_sock *newsp = sctp_sk(newsk); 9238 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9239 struct sctp_endpoint *newep = newsp->ep; 9240 struct sk_buff *skb, *tmp; 9241 struct sctp_ulpevent *event; 9242 struct sctp_bind_hashbucket *head; 9243 int err; 9244 9245 /* Migrate socket buffer sizes and all the socket level options to the 9246 * new socket. 9247 */ 9248 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9249 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9250 /* Brute force copy old sctp opt. */ 9251 sctp_copy_descendant(newsk, oldsk); 9252 9253 /* Restore the ep value that was overwritten with the above structure 9254 * copy. 9255 */ 9256 newsp->ep = newep; 9257 newsp->hmac = NULL; 9258 9259 /* Hook this new socket in to the bind_hash list. */ 9260 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9261 inet_sk(oldsk)->inet_num)]; 9262 spin_lock_bh(&head->lock); 9263 pp = sctp_sk(oldsk)->bind_hash; 9264 sk_add_bind_node(newsk, &pp->owner); 9265 sctp_sk(newsk)->bind_hash = pp; 9266 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9267 spin_unlock_bh(&head->lock); 9268 9269 /* Copy the bind_addr list from the original endpoint to the new 9270 * endpoint so that we can handle restarts properly 9271 */ 9272 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9273 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9274 if (err) 9275 return err; 9276 9277 /* New ep's auth_hmacs should be set if old ep's is set, in case 9278 * that net->sctp.auth_enable has been changed to 0 by users and 9279 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9280 */ 9281 if (oldsp->ep->auth_hmacs) { 9282 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9283 if (err) 9284 return err; 9285 } 9286 9287 /* Move any messages in the old socket's receive queue that are for the 9288 * peeled off association to the new socket's receive queue. 9289 */ 9290 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9291 event = sctp_skb2event(skb); 9292 if (event->asoc == assoc) { 9293 __skb_unlink(skb, &oldsk->sk_receive_queue); 9294 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9295 sctp_skb_set_owner_r_frag(skb, newsk); 9296 } 9297 } 9298 9299 /* Clean up any messages pending delivery due to partial 9300 * delivery. Three cases: 9301 * 1) No partial deliver; no work. 9302 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9303 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9304 */ 9305 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9306 9307 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9308 struct sk_buff_head *queue; 9309 9310 /* Decide which queue to move pd_lobby skbs to. */ 9311 if (assoc->ulpq.pd_mode) { 9312 queue = &newsp->pd_lobby; 9313 } else 9314 queue = &newsk->sk_receive_queue; 9315 9316 /* Walk through the pd_lobby, looking for skbs that 9317 * need moved to the new socket. 9318 */ 9319 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9320 event = sctp_skb2event(skb); 9321 if (event->asoc == assoc) { 9322 __skb_unlink(skb, &oldsp->pd_lobby); 9323 __skb_queue_tail(queue, skb); 9324 sctp_skb_set_owner_r_frag(skb, newsk); 9325 } 9326 } 9327 9328 /* Clear up any skbs waiting for the partial 9329 * delivery to finish. 9330 */ 9331 if (assoc->ulpq.pd_mode) 9332 sctp_clear_pd(oldsk, NULL); 9333 9334 } 9335 9336 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9337 9338 /* Set the type of socket to indicate that it is peeled off from the 9339 * original UDP-style socket or created with the accept() call on a 9340 * TCP-style socket.. 9341 */ 9342 newsp->type = type; 9343 9344 /* Mark the new socket "in-use" by the user so that any packets 9345 * that may arrive on the association after we've moved it are 9346 * queued to the backlog. This prevents a potential race between 9347 * backlog processing on the old socket and new-packet processing 9348 * on the new socket. 9349 * 9350 * The caller has just allocated newsk so we can guarantee that other 9351 * paths won't try to lock it and then oldsk. 9352 */ 9353 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9354 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9355 sctp_assoc_migrate(assoc, newsk); 9356 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9357 9358 /* If the association on the newsk is already closed before accept() 9359 * is called, set RCV_SHUTDOWN flag. 9360 */ 9361 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9362 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9363 newsk->sk_shutdown |= RCV_SHUTDOWN; 9364 } else { 9365 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9366 } 9367 9368 release_sock(newsk); 9369 9370 return 0; 9371 } 9372 9373 9374 /* This proto struct describes the ULP interface for SCTP. */ 9375 struct proto sctp_prot = { 9376 .name = "SCTP", 9377 .owner = THIS_MODULE, 9378 .close = sctp_close, 9379 .disconnect = sctp_disconnect, 9380 .accept = sctp_accept, 9381 .ioctl = sctp_ioctl, 9382 .init = sctp_init_sock, 9383 .destroy = sctp_destroy_sock, 9384 .shutdown = sctp_shutdown, 9385 .setsockopt = sctp_setsockopt, 9386 .getsockopt = sctp_getsockopt, 9387 .sendmsg = sctp_sendmsg, 9388 .recvmsg = sctp_recvmsg, 9389 .bind = sctp_bind, 9390 .bind_add = sctp_bind_add, 9391 .backlog_rcv = sctp_backlog_rcv, 9392 .hash = sctp_hash, 9393 .unhash = sctp_unhash, 9394 .no_autobind = true, 9395 .obj_size = sizeof(struct sctp_sock), 9396 .useroffset = offsetof(struct sctp_sock, subscribe), 9397 .usersize = offsetof(struct sctp_sock, initmsg) - 9398 offsetof(struct sctp_sock, subscribe) + 9399 sizeof_field(struct sctp_sock, initmsg), 9400 .sysctl_mem = sysctl_sctp_mem, 9401 .sysctl_rmem = sysctl_sctp_rmem, 9402 .sysctl_wmem = sysctl_sctp_wmem, 9403 .memory_pressure = &sctp_memory_pressure, 9404 .enter_memory_pressure = sctp_enter_memory_pressure, 9405 .memory_allocated = &sctp_memory_allocated, 9406 .sockets_allocated = &sctp_sockets_allocated, 9407 }; 9408 9409 #if IS_ENABLED(CONFIG_IPV6) 9410 9411 #include <net/transp_v6.h> 9412 static void sctp_v6_destroy_sock(struct sock *sk) 9413 { 9414 sctp_destroy_sock(sk); 9415 inet6_destroy_sock(sk); 9416 } 9417 9418 struct proto sctpv6_prot = { 9419 .name = "SCTPv6", 9420 .owner = THIS_MODULE, 9421 .close = sctp_close, 9422 .disconnect = sctp_disconnect, 9423 .accept = sctp_accept, 9424 .ioctl = sctp_ioctl, 9425 .init = sctp_init_sock, 9426 .destroy = sctp_v6_destroy_sock, 9427 .shutdown = sctp_shutdown, 9428 .setsockopt = sctp_setsockopt, 9429 .getsockopt = sctp_getsockopt, 9430 .sendmsg = sctp_sendmsg, 9431 .recvmsg = sctp_recvmsg, 9432 .bind = sctp_bind, 9433 .bind_add = sctp_bind_add, 9434 .backlog_rcv = sctp_backlog_rcv, 9435 .hash = sctp_hash, 9436 .unhash = sctp_unhash, 9437 .no_autobind = true, 9438 .obj_size = sizeof(struct sctp6_sock), 9439 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9440 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9441 offsetof(struct sctp6_sock, sctp.subscribe) + 9442 sizeof_field(struct sctp6_sock, sctp.initmsg), 9443 .sysctl_mem = sysctl_sctp_mem, 9444 .sysctl_rmem = sysctl_sctp_rmem, 9445 .sysctl_wmem = sysctl_sctp_wmem, 9446 .memory_pressure = &sctp_memory_pressure, 9447 .enter_memory_pressure = sctp_enter_memory_pressure, 9448 .memory_allocated = &sctp_memory_allocated, 9449 .sockets_allocated = &sctp_sockets_allocated, 9450 }; 9451 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9452