xref: /openbmc/linux/net/sctp/socket.c (revision b03afaa8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 #define traverse_and_process()	\
151 do {				\
152 	msg = chunk->msg;	\
153 	if (msg == prev_msg)	\
154 		continue;	\
155 	list_for_each_entry(c, &msg->chunks, frag_list) {	\
156 		if ((clear && asoc->base.sk == c->skb->sk) ||	\
157 		    (!clear && asoc->base.sk != c->skb->sk))	\
158 			cb(c);	\
159 	}			\
160 	prev_msg = msg;		\
161 } while (0)
162 
163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 				       bool clear,
165 				       void (*cb)(struct sctp_chunk *))
166 
167 {
168 	struct sctp_datamsg *msg, *prev_msg = NULL;
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_chunk *chunk, *c;
171 	struct sctp_transport *t;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			traverse_and_process();
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		traverse_and_process();
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		traverse_and_process();
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		traverse_and_process();
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		traverse_and_process();
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && inet_port_requires_bind_service(net, snum) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if (sctp_get_port_local(sk, addr))
418 		return -EADDRINUSE;
419 
420 	/* Refresh ephemeral port.  */
421 	if (!bp->port)
422 		bp->port = inet_sk(sk)->inet_num;
423 
424 	/* Add the address to the bind address list.
425 	 * Use GFP_ATOMIC since BHs will be disabled.
426 	 */
427 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
428 				 SCTP_ADDR_SRC, GFP_ATOMIC);
429 
430 	if (ret) {
431 		sctp_put_port(sk);
432 		return ret;
433 	}
434 	/* Copy back into socket for getsockname() use. */
435 	inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
436 	sp->pf->to_sk_saddr(addr, sk);
437 
438 	return ret;
439 }
440 
441  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
442  *
443  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
444  * at any one time.  If a sender, after sending an ASCONF chunk, decides
445  * it needs to transfer another ASCONF Chunk, it MUST wait until the
446  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
447  * subsequent ASCONF. Note this restriction binds each side, so at any
448  * time two ASCONF may be in-transit on any given association (one sent
449  * from each endpoint).
450  */
451 static int sctp_send_asconf(struct sctp_association *asoc,
452 			    struct sctp_chunk *chunk)
453 {
454 	int retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct sctp_sock		*sp;
543 	struct sctp_endpoint		*ep;
544 	struct sctp_association		*asoc;
545 	struct sctp_bind_addr		*bp;
546 	struct sctp_chunk		*chunk;
547 	struct sctp_sockaddr_entry	*laddr;
548 	union sctp_addr			*addr;
549 	union sctp_addr			saveaddr;
550 	void				*addr_buf;
551 	struct sctp_af			*af;
552 	struct list_head		*p;
553 	int 				i;
554 	int 				retval = 0;
555 
556 	sp = sctp_sk(sk);
557 	ep = sp->ep;
558 
559 	if (!ep->asconf_enable)
560 		return retval;
561 
562 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
563 		 __func__, sk, addrs, addrcnt);
564 
565 	list_for_each_entry(asoc, &ep->asocs, asocs) {
566 		if (!asoc->peer.asconf_capable)
567 			continue;
568 
569 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
570 			continue;
571 
572 		if (!sctp_state(asoc, ESTABLISHED))
573 			continue;
574 
575 		/* Check if any address in the packed array of addresses is
576 		 * in the bind address list of the association. If so,
577 		 * do not send the asconf chunk to its peer, but continue with
578 		 * other associations.
579 		 */
580 		addr_buf = addrs;
581 		for (i = 0; i < addrcnt; i++) {
582 			addr = addr_buf;
583 			af = sctp_get_af_specific(addr->v4.sin_family);
584 			if (!af) {
585 				retval = -EINVAL;
586 				goto out;
587 			}
588 
589 			if (sctp_assoc_lookup_laddr(asoc, addr))
590 				break;
591 
592 			addr_buf += af->sockaddr_len;
593 		}
594 		if (i < addrcnt)
595 			continue;
596 
597 		/* Use the first valid address in bind addr list of
598 		 * association as Address Parameter of ASCONF CHUNK.
599 		 */
600 		bp = &asoc->base.bind_addr;
601 		p = bp->address_list.next;
602 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
603 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
604 						   addrcnt, SCTP_PARAM_ADD_IP);
605 		if (!chunk) {
606 			retval = -ENOMEM;
607 			goto out;
608 		}
609 
610 		/* Add the new addresses to the bind address list with
611 		 * use_as_src set to 0.
612 		 */
613 		addr_buf = addrs;
614 		for (i = 0; i < addrcnt; i++) {
615 			addr = addr_buf;
616 			af = sctp_get_af_specific(addr->v4.sin_family);
617 			memcpy(&saveaddr, addr, af->sockaddr_len);
618 			retval = sctp_add_bind_addr(bp, &saveaddr,
619 						    sizeof(saveaddr),
620 						    SCTP_ADDR_NEW, GFP_ATOMIC);
621 			addr_buf += af->sockaddr_len;
622 		}
623 		if (asoc->src_out_of_asoc_ok) {
624 			struct sctp_transport *trans;
625 
626 			list_for_each_entry(trans,
627 			    &asoc->peer.transport_addr_list, transports) {
628 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 				    2*asoc->pathmtu, 4380));
630 				trans->ssthresh = asoc->peer.i.a_rwnd;
631 				trans->rto = asoc->rto_initial;
632 				sctp_max_rto(asoc, trans);
633 				trans->rtt = trans->srtt = trans->rttvar = 0;
634 				/* Clear the source and route cache */
635 				sctp_transport_route(trans, NULL,
636 						     sctp_sk(asoc->base.sk));
637 			}
638 		}
639 		retval = sctp_send_asconf(asoc, chunk);
640 	}
641 
642 out:
643 	return retval;
644 }
645 
646 /* Remove a list of addresses from bind addresses list.  Do not remove the
647  * last address.
648  *
649  * Basically run through each address specified in the addrs/addrcnt
650  * array/length pair, determine if it is IPv6 or IPv4 and call
651  * sctp_del_bind() on it.
652  *
653  * If any of them fails, then the operation will be reversed and the
654  * ones that were removed will be added back.
655  *
656  * At least one address has to be left; if only one address is
657  * available, the operation will return -EBUSY.
658  *
659  * Only sctp_setsockopt_bindx() is supposed to call this function.
660  */
661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
662 {
663 	struct sctp_sock *sp = sctp_sk(sk);
664 	struct sctp_endpoint *ep = sp->ep;
665 	int cnt;
666 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
667 	int retval = 0;
668 	void *addr_buf;
669 	union sctp_addr *sa_addr;
670 	struct sctp_af *af;
671 
672 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
673 		 __func__, sk, addrs, addrcnt);
674 
675 	addr_buf = addrs;
676 	for (cnt = 0; cnt < addrcnt; cnt++) {
677 		/* If the bind address list is empty or if there is only one
678 		 * bind address, there is nothing more to be removed (we need
679 		 * at least one address here).
680 		 */
681 		if (list_empty(&bp->address_list) ||
682 		    (sctp_list_single_entry(&bp->address_list))) {
683 			retval = -EBUSY;
684 			goto err_bindx_rem;
685 		}
686 
687 		sa_addr = addr_buf;
688 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
689 		if (!af) {
690 			retval = -EINVAL;
691 			goto err_bindx_rem;
692 		}
693 
694 		if (!af->addr_valid(sa_addr, sp, NULL)) {
695 			retval = -EADDRNOTAVAIL;
696 			goto err_bindx_rem;
697 		}
698 
699 		if (sa_addr->v4.sin_port &&
700 		    sa_addr->v4.sin_port != htons(bp->port)) {
701 			retval = -EINVAL;
702 			goto err_bindx_rem;
703 		}
704 
705 		if (!sa_addr->v4.sin_port)
706 			sa_addr->v4.sin_port = htons(bp->port);
707 
708 		/* FIXME - There is probably a need to check if sk->sk_saddr and
709 		 * sk->sk_rcv_addr are currently set to one of the addresses to
710 		 * be removed. This is something which needs to be looked into
711 		 * when we are fixing the outstanding issues with multi-homing
712 		 * socket routing and failover schemes. Refer to comments in
713 		 * sctp_do_bind(). -daisy
714 		 */
715 		retval = sctp_del_bind_addr(bp, sa_addr);
716 
717 		addr_buf += af->sockaddr_len;
718 err_bindx_rem:
719 		if (retval < 0) {
720 			/* Failed. Add the ones that has been removed back */
721 			if (cnt > 0)
722 				sctp_bindx_add(sk, addrs, cnt);
723 			return retval;
724 		}
725 	}
726 
727 	return retval;
728 }
729 
730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
731  * the associations that are part of the endpoint indicating that a list of
732  * local addresses are removed from the endpoint.
733  *
734  * If any of the addresses is already in the bind address list of the
735  * association, we do not send the chunk for that association.  But it will not
736  * affect other associations.
737  *
738  * Only sctp_setsockopt_bindx() is supposed to call this function.
739  */
740 static int sctp_send_asconf_del_ip(struct sock		*sk,
741 				   struct sockaddr	*addrs,
742 				   int			addrcnt)
743 {
744 	struct sctp_sock	*sp;
745 	struct sctp_endpoint	*ep;
746 	struct sctp_association	*asoc;
747 	struct sctp_transport	*transport;
748 	struct sctp_bind_addr	*bp;
749 	struct sctp_chunk	*chunk;
750 	union sctp_addr		*laddr;
751 	void			*addr_buf;
752 	struct sctp_af		*af;
753 	struct sctp_sockaddr_entry *saddr;
754 	int 			i;
755 	int 			retval = 0;
756 	int			stored = 0;
757 
758 	chunk = NULL;
759 	sp = sctp_sk(sk);
760 	ep = sp->ep;
761 
762 	if (!ep->asconf_enable)
763 		return retval;
764 
765 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 		 __func__, sk, addrs, addrcnt);
767 
768 	list_for_each_entry(asoc, &ep->asocs, asocs) {
769 
770 		if (!asoc->peer.asconf_capable)
771 			continue;
772 
773 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 			continue;
775 
776 		if (!sctp_state(asoc, ESTABLISHED))
777 			continue;
778 
779 		/* Check if any address in the packed array of addresses is
780 		 * not present in the bind address list of the association.
781 		 * If so, do not send the asconf chunk to its peer, but
782 		 * continue with other associations.
783 		 */
784 		addr_buf = addrs;
785 		for (i = 0; i < addrcnt; i++) {
786 			laddr = addr_buf;
787 			af = sctp_get_af_specific(laddr->v4.sin_family);
788 			if (!af) {
789 				retval = -EINVAL;
790 				goto out;
791 			}
792 
793 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 				break;
795 
796 			addr_buf += af->sockaddr_len;
797 		}
798 		if (i < addrcnt)
799 			continue;
800 
801 		/* Find one address in the association's bind address list
802 		 * that is not in the packed array of addresses. This is to
803 		 * make sure that we do not delete all the addresses in the
804 		 * association.
805 		 */
806 		bp = &asoc->base.bind_addr;
807 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 					       addrcnt, sp);
809 		if ((laddr == NULL) && (addrcnt == 1)) {
810 			if (asoc->asconf_addr_del_pending)
811 				continue;
812 			asoc->asconf_addr_del_pending =
813 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 			if (asoc->asconf_addr_del_pending == NULL) {
815 				retval = -ENOMEM;
816 				goto out;
817 			}
818 			asoc->asconf_addr_del_pending->sa.sa_family =
819 				    addrs->sa_family;
820 			asoc->asconf_addr_del_pending->v4.sin_port =
821 				    htons(bp->port);
822 			if (addrs->sa_family == AF_INET) {
823 				struct sockaddr_in *sin;
824 
825 				sin = (struct sockaddr_in *)addrs;
826 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 			} else if (addrs->sa_family == AF_INET6) {
828 				struct sockaddr_in6 *sin6;
829 
830 				sin6 = (struct sockaddr_in6 *)addrs;
831 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 			}
833 
834 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 				 asoc->asconf_addr_del_pending);
837 
838 			asoc->src_out_of_asoc_ok = 1;
839 			stored = 1;
840 			goto skip_mkasconf;
841 		}
842 
843 		if (laddr == NULL)
844 			return -EINVAL;
845 
846 		/* We do not need RCU protection throughout this loop
847 		 * because this is done under a socket lock from the
848 		 * setsockopt call.
849 		 */
850 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 						   SCTP_PARAM_DEL_IP);
852 		if (!chunk) {
853 			retval = -ENOMEM;
854 			goto out;
855 		}
856 
857 skip_mkasconf:
858 		/* Reset use_as_src flag for the addresses in the bind address
859 		 * list that are to be deleted.
860 		 */
861 		addr_buf = addrs;
862 		for (i = 0; i < addrcnt; i++) {
863 			laddr = addr_buf;
864 			af = sctp_get_af_specific(laddr->v4.sin_family);
865 			list_for_each_entry(saddr, &bp->address_list, list) {
866 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 					saddr->state = SCTP_ADDR_DEL;
868 			}
869 			addr_buf += af->sockaddr_len;
870 		}
871 
872 		/* Update the route and saddr entries for all the transports
873 		 * as some of the addresses in the bind address list are
874 		 * about to be deleted and cannot be used as source addresses.
875 		 */
876 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 					transports) {
878 			sctp_transport_route(transport, NULL,
879 					     sctp_sk(asoc->base.sk));
880 		}
881 
882 		if (stored)
883 			/* We don't need to transmit ASCONF */
884 			continue;
885 		retval = sctp_send_asconf(asoc, chunk);
886 	}
887 out:
888 	return retval;
889 }
890 
891 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
893 {
894 	struct sock *sk = sctp_opt2sk(sp);
895 	union sctp_addr *addr;
896 	struct sctp_af *af;
897 
898 	/* It is safe to write port space in caller. */
899 	addr = &addrw->a;
900 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
901 	af = sctp_get_af_specific(addr->sa.sa_family);
902 	if (!af)
903 		return -EINVAL;
904 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
905 		return -EINVAL;
906 
907 	if (addrw->state == SCTP_ADDR_NEW)
908 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
909 	else
910 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
911 }
912 
913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
914  *
915  * API 8.1
916  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
917  *                int flags);
918  *
919  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
920  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
921  * or IPv6 addresses.
922  *
923  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
924  * Section 3.1.2 for this usage.
925  *
926  * addrs is a pointer to an array of one or more socket addresses. Each
927  * address is contained in its appropriate structure (i.e. struct
928  * sockaddr_in or struct sockaddr_in6) the family of the address type
929  * must be used to distinguish the address length (note that this
930  * representation is termed a "packed array" of addresses). The caller
931  * specifies the number of addresses in the array with addrcnt.
932  *
933  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
934  * -1, and sets errno to the appropriate error code.
935  *
936  * For SCTP, the port given in each socket address must be the same, or
937  * sctp_bindx() will fail, setting errno to EINVAL.
938  *
939  * The flags parameter is formed from the bitwise OR of zero or more of
940  * the following currently defined flags:
941  *
942  * SCTP_BINDX_ADD_ADDR
943  *
944  * SCTP_BINDX_REM_ADDR
945  *
946  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
947  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
948  * addresses from the association. The two flags are mutually exclusive;
949  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
950  * not remove all addresses from an association; sctp_bindx() will
951  * reject such an attempt with EINVAL.
952  *
953  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
954  * additional addresses with an endpoint after calling bind().  Or use
955  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
956  * socket is associated with so that no new association accepted will be
957  * associated with those addresses. If the endpoint supports dynamic
958  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
959  * endpoint to send the appropriate message to the peer to change the
960  * peers address lists.
961  *
962  * Adding and removing addresses from a connected association is
963  * optional functionality. Implementations that do not support this
964  * functionality should return EOPNOTSUPP.
965  *
966  * Basically do nothing but copying the addresses from user to kernel
967  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
968  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
969  * from userspace.
970  *
971  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
972  * it.
973  *
974  * sk        The sk of the socket
975  * addrs     The pointer to the addresses
976  * addrssize Size of the addrs buffer
977  * op        Operation to perform (add or remove, see the flags of
978  *           sctp_bindx)
979  *
980  * Returns 0 if ok, <0 errno code on error.
981  */
982 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
983 				 int addrs_size, int op)
984 {
985 	int err;
986 	int addrcnt = 0;
987 	int walk_size = 0;
988 	struct sockaddr *sa_addr;
989 	void *addr_buf = addrs;
990 	struct sctp_af *af;
991 
992 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
993 		 __func__, sk, addr_buf, addrs_size, op);
994 
995 	if (unlikely(addrs_size <= 0))
996 		return -EINVAL;
997 
998 	/* Walk through the addrs buffer and count the number of addresses. */
999 	while (walk_size < addrs_size) {
1000 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1001 			return -EINVAL;
1002 
1003 		sa_addr = addr_buf;
1004 		af = sctp_get_af_specific(sa_addr->sa_family);
1005 
1006 		/* If the address family is not supported or if this address
1007 		 * causes the address buffer to overflow return EINVAL.
1008 		 */
1009 		if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1010 			return -EINVAL;
1011 		addrcnt++;
1012 		addr_buf += af->sockaddr_len;
1013 		walk_size += af->sockaddr_len;
1014 	}
1015 
1016 	/* Do the work. */
1017 	switch (op) {
1018 	case SCTP_BINDX_ADD_ADDR:
1019 		/* Allow security module to validate bindx addresses. */
1020 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1021 						 addrs, addrs_size);
1022 		if (err)
1023 			return err;
1024 		err = sctp_bindx_add(sk, addrs, addrcnt);
1025 		if (err)
1026 			return err;
1027 		return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1028 	case SCTP_BINDX_REM_ADDR:
1029 		err = sctp_bindx_rem(sk, addrs, addrcnt);
1030 		if (err)
1031 			return err;
1032 		return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1033 
1034 	default:
1035 		return -EINVAL;
1036 	}
1037 }
1038 
1039 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1040 		int addrlen)
1041 {
1042 	int err;
1043 
1044 	lock_sock(sk);
1045 	err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1046 	release_sock(sk);
1047 	return err;
1048 }
1049 
1050 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1051 				 const union sctp_addr *daddr,
1052 				 const struct sctp_initmsg *init,
1053 				 struct sctp_transport **tp)
1054 {
1055 	struct sctp_association *asoc;
1056 	struct sock *sk = ep->base.sk;
1057 	struct net *net = sock_net(sk);
1058 	enum sctp_scope scope;
1059 	int err;
1060 
1061 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1062 		return -EADDRNOTAVAIL;
1063 
1064 	if (!ep->base.bind_addr.port) {
1065 		if (sctp_autobind(sk))
1066 			return -EAGAIN;
1067 	} else {
1068 		if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1069 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1070 			return -EACCES;
1071 	}
1072 
1073 	scope = sctp_scope(daddr);
1074 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 	if (!asoc)
1076 		return -ENOMEM;
1077 
1078 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1079 	if (err < 0)
1080 		goto free;
1081 
1082 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1083 	if (!*tp) {
1084 		err = -ENOMEM;
1085 		goto free;
1086 	}
1087 
1088 	if (!init)
1089 		return 0;
1090 
1091 	if (init->sinit_num_ostreams) {
1092 		__u16 outcnt = init->sinit_num_ostreams;
1093 
1094 		asoc->c.sinit_num_ostreams = outcnt;
1095 		/* outcnt has been changed, need to re-init stream */
1096 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1097 		if (err)
1098 			goto free;
1099 	}
1100 
1101 	if (init->sinit_max_instreams)
1102 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1103 
1104 	if (init->sinit_max_attempts)
1105 		asoc->max_init_attempts = init->sinit_max_attempts;
1106 
1107 	if (init->sinit_max_init_timeo)
1108 		asoc->max_init_timeo =
1109 			msecs_to_jiffies(init->sinit_max_init_timeo);
1110 
1111 	return 0;
1112 free:
1113 	sctp_association_free(asoc);
1114 	return err;
1115 }
1116 
1117 static int sctp_connect_add_peer(struct sctp_association *asoc,
1118 				 union sctp_addr *daddr, int addr_len)
1119 {
1120 	struct sctp_endpoint *ep = asoc->ep;
1121 	struct sctp_association *old;
1122 	struct sctp_transport *t;
1123 	int err;
1124 
1125 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1126 	if (err)
1127 		return err;
1128 
1129 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1130 	if (old && old != asoc)
1131 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1132 							    : -EALREADY;
1133 
1134 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1135 		return -EADDRNOTAVAIL;
1136 
1137 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1138 	if (!t)
1139 		return -ENOMEM;
1140 
1141 	return 0;
1142 }
1143 
1144 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1145  *
1146  * Common routine for handling connect() and sctp_connectx().
1147  * Connect will come in with just a single address.
1148  */
1149 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1150 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1151 {
1152 	struct sctp_sock *sp = sctp_sk(sk);
1153 	struct sctp_endpoint *ep = sp->ep;
1154 	struct sctp_transport *transport;
1155 	struct sctp_association *asoc;
1156 	void *addr_buf = kaddrs;
1157 	union sctp_addr *daddr;
1158 	struct sctp_af *af;
1159 	int walk_size, err;
1160 	long timeo;
1161 
1162 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1163 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1164 		return -EISCONN;
1165 
1166 	daddr = addr_buf;
1167 	af = sctp_get_af_specific(daddr->sa.sa_family);
1168 	if (!af || af->sockaddr_len > addrs_size)
1169 		return -EINVAL;
1170 
1171 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1172 	if (err)
1173 		return err;
1174 
1175 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1176 	if (asoc)
1177 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1178 							     : -EALREADY;
1179 
1180 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1181 	if (err)
1182 		return err;
1183 	asoc = transport->asoc;
1184 
1185 	addr_buf += af->sockaddr_len;
1186 	walk_size = af->sockaddr_len;
1187 	while (walk_size < addrs_size) {
1188 		err = -EINVAL;
1189 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1190 			goto out_free;
1191 
1192 		daddr = addr_buf;
1193 		af = sctp_get_af_specific(daddr->sa.sa_family);
1194 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1195 			goto out_free;
1196 
1197 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1198 			goto out_free;
1199 
1200 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1201 		if (err)
1202 			goto out_free;
1203 
1204 		addr_buf  += af->sockaddr_len;
1205 		walk_size += af->sockaddr_len;
1206 	}
1207 
1208 	/* In case the user of sctp_connectx() wants an association
1209 	 * id back, assign one now.
1210 	 */
1211 	if (assoc_id) {
1212 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1213 		if (err < 0)
1214 			goto out_free;
1215 	}
1216 
1217 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1218 	if (err < 0)
1219 		goto out_free;
1220 
1221 	/* Initialize sk's dport and daddr for getpeername() */
1222 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1223 	sp->pf->to_sk_daddr(daddr, sk);
1224 	sk->sk_err = 0;
1225 
1226 	if (assoc_id)
1227 		*assoc_id = asoc->assoc_id;
1228 
1229 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1230 	return sctp_wait_for_connect(asoc, &timeo);
1231 
1232 out_free:
1233 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1234 		 __func__, asoc, kaddrs, err);
1235 	sctp_association_free(asoc);
1236 	return err;
1237 }
1238 
1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1240  *
1241  * API 8.9
1242  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1243  * 			sctp_assoc_t *asoc);
1244  *
1245  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1246  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1247  * or IPv6 addresses.
1248  *
1249  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1250  * Section 3.1.2 for this usage.
1251  *
1252  * addrs is a pointer to an array of one or more socket addresses. Each
1253  * address is contained in its appropriate structure (i.e. struct
1254  * sockaddr_in or struct sockaddr_in6) the family of the address type
1255  * must be used to distengish the address length (note that this
1256  * representation is termed a "packed array" of addresses). The caller
1257  * specifies the number of addresses in the array with addrcnt.
1258  *
1259  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1260  * the association id of the new association.  On failure, sctp_connectx()
1261  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1262  * is not touched by the kernel.
1263  *
1264  * For SCTP, the port given in each socket address must be the same, or
1265  * sctp_connectx() will fail, setting errno to EINVAL.
1266  *
1267  * An application can use sctp_connectx to initiate an association with
1268  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1269  * allows a caller to specify multiple addresses at which a peer can be
1270  * reached.  The way the SCTP stack uses the list of addresses to set up
1271  * the association is implementation dependent.  This function only
1272  * specifies that the stack will try to make use of all the addresses in
1273  * the list when needed.
1274  *
1275  * Note that the list of addresses passed in is only used for setting up
1276  * the association.  It does not necessarily equal the set of addresses
1277  * the peer uses for the resulting association.  If the caller wants to
1278  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1279  * retrieve them after the association has been set up.
1280  *
1281  * Basically do nothing but copying the addresses from user to kernel
1282  * land and invoking either sctp_connectx(). This is used for tunneling
1283  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1284  *
1285  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1286  * it.
1287  *
1288  * sk        The sk of the socket
1289  * addrs     The pointer to the addresses
1290  * addrssize Size of the addrs buffer
1291  *
1292  * Returns >=0 if ok, <0 errno code on error.
1293  */
1294 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1295 				      int addrs_size, sctp_assoc_t *assoc_id)
1296 {
1297 	int err = 0, flags = 0;
1298 
1299 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1300 		 __func__, sk, kaddrs, addrs_size);
1301 
1302 	/* make sure the 1st addr's sa_family is accessible later */
1303 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1304 		return -EINVAL;
1305 
1306 	/* Allow security module to validate connectx addresses. */
1307 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1308 					 (struct sockaddr *)kaddrs,
1309 					  addrs_size);
1310 	if (err)
1311 		return err;
1312 
1313 	/* in-kernel sockets don't generally have a file allocated to them
1314 	 * if all they do is call sock_create_kern().
1315 	 */
1316 	if (sk->sk_socket->file)
1317 		flags = sk->sk_socket->file->f_flags;
1318 
1319 	return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1320 }
1321 
1322 /*
1323  * This is an older interface.  It's kept for backward compatibility
1324  * to the option that doesn't provide association id.
1325  */
1326 static int sctp_setsockopt_connectx_old(struct sock *sk,
1327 					struct sockaddr *kaddrs,
1328 					int addrs_size)
1329 {
1330 	return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1331 }
1332 
1333 /*
1334  * New interface for the API.  The since the API is done with a socket
1335  * option, to make it simple we feed back the association id is as a return
1336  * indication to the call.  Error is always negative and association id is
1337  * always positive.
1338  */
1339 static int sctp_setsockopt_connectx(struct sock *sk,
1340 				    struct sockaddr *kaddrs,
1341 				    int addrs_size)
1342 {
1343 	sctp_assoc_t assoc_id = 0;
1344 	int err = 0;
1345 
1346 	err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1347 
1348 	if (err)
1349 		return err;
1350 	else
1351 		return assoc_id;
1352 }
1353 
1354 /*
1355  * New (hopefully final) interface for the API.
1356  * We use the sctp_getaddrs_old structure so that use-space library
1357  * can avoid any unnecessary allocations. The only different part
1358  * is that we store the actual length of the address buffer into the
1359  * addrs_num structure member. That way we can re-use the existing
1360  * code.
1361  */
1362 #ifdef CONFIG_COMPAT
1363 struct compat_sctp_getaddrs_old {
1364 	sctp_assoc_t	assoc_id;
1365 	s32		addr_num;
1366 	compat_uptr_t	addrs;		/* struct sockaddr * */
1367 };
1368 #endif
1369 
1370 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1371 				     char __user *optval,
1372 				     int __user *optlen)
1373 {
1374 	struct sctp_getaddrs_old param;
1375 	sctp_assoc_t assoc_id = 0;
1376 	struct sockaddr *kaddrs;
1377 	int err = 0;
1378 
1379 #ifdef CONFIG_COMPAT
1380 	if (in_compat_syscall()) {
1381 		struct compat_sctp_getaddrs_old param32;
1382 
1383 		if (len < sizeof(param32))
1384 			return -EINVAL;
1385 		if (copy_from_user(&param32, optval, sizeof(param32)))
1386 			return -EFAULT;
1387 
1388 		param.assoc_id = param32.assoc_id;
1389 		param.addr_num = param32.addr_num;
1390 		param.addrs = compat_ptr(param32.addrs);
1391 	} else
1392 #endif
1393 	{
1394 		if (len < sizeof(param))
1395 			return -EINVAL;
1396 		if (copy_from_user(&param, optval, sizeof(param)))
1397 			return -EFAULT;
1398 	}
1399 
1400 	kaddrs = memdup_user(param.addrs, param.addr_num);
1401 	if (IS_ERR(kaddrs))
1402 		return PTR_ERR(kaddrs);
1403 
1404 	err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1405 	kfree(kaddrs);
1406 	if (err == 0 || err == -EINPROGRESS) {
1407 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1408 			return -EFAULT;
1409 		if (put_user(sizeof(assoc_id), optlen))
1410 			return -EFAULT;
1411 	}
1412 
1413 	return err;
1414 }
1415 
1416 /* API 3.1.4 close() - UDP Style Syntax
1417  * Applications use close() to perform graceful shutdown (as described in
1418  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1419  * by a UDP-style socket.
1420  *
1421  * The syntax is
1422  *
1423  *   ret = close(int sd);
1424  *
1425  *   sd      - the socket descriptor of the associations to be closed.
1426  *
1427  * To gracefully shutdown a specific association represented by the
1428  * UDP-style socket, an application should use the sendmsg() call,
1429  * passing no user data, but including the appropriate flag in the
1430  * ancillary data (see Section xxxx).
1431  *
1432  * If sd in the close() call is a branched-off socket representing only
1433  * one association, the shutdown is performed on that association only.
1434  *
1435  * 4.1.6 close() - TCP Style Syntax
1436  *
1437  * Applications use close() to gracefully close down an association.
1438  *
1439  * The syntax is:
1440  *
1441  *    int close(int sd);
1442  *
1443  *      sd      - the socket descriptor of the association to be closed.
1444  *
1445  * After an application calls close() on a socket descriptor, no further
1446  * socket operations will succeed on that descriptor.
1447  *
1448  * API 7.1.4 SO_LINGER
1449  *
1450  * An application using the TCP-style socket can use this option to
1451  * perform the SCTP ABORT primitive.  The linger option structure is:
1452  *
1453  *  struct  linger {
1454  *     int     l_onoff;                // option on/off
1455  *     int     l_linger;               // linger time
1456  * };
1457  *
1458  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1459  * to 0, calling close() is the same as the ABORT primitive.  If the
1460  * value is set to a negative value, the setsockopt() call will return
1461  * an error.  If the value is set to a positive value linger_time, the
1462  * close() can be blocked for at most linger_time ms.  If the graceful
1463  * shutdown phase does not finish during this period, close() will
1464  * return but the graceful shutdown phase continues in the system.
1465  */
1466 static void sctp_close(struct sock *sk, long timeout)
1467 {
1468 	struct net *net = sock_net(sk);
1469 	struct sctp_endpoint *ep;
1470 	struct sctp_association *asoc;
1471 	struct list_head *pos, *temp;
1472 	unsigned int data_was_unread;
1473 
1474 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1475 
1476 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1477 	sk->sk_shutdown = SHUTDOWN_MASK;
1478 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1479 
1480 	ep = sctp_sk(sk)->ep;
1481 
1482 	/* Clean up any skbs sitting on the receive queue.  */
1483 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1484 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1485 
1486 	/* Walk all associations on an endpoint.  */
1487 	list_for_each_safe(pos, temp, &ep->asocs) {
1488 		asoc = list_entry(pos, struct sctp_association, asocs);
1489 
1490 		if (sctp_style(sk, TCP)) {
1491 			/* A closed association can still be in the list if
1492 			 * it belongs to a TCP-style listening socket that is
1493 			 * not yet accepted. If so, free it. If not, send an
1494 			 * ABORT or SHUTDOWN based on the linger options.
1495 			 */
1496 			if (sctp_state(asoc, CLOSED)) {
1497 				sctp_association_free(asoc);
1498 				continue;
1499 			}
1500 		}
1501 
1502 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1503 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1504 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1505 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1506 			struct sctp_chunk *chunk;
1507 
1508 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1509 			sctp_primitive_ABORT(net, asoc, chunk);
1510 		} else
1511 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1512 	}
1513 
1514 	/* On a TCP-style socket, block for at most linger_time if set. */
1515 	if (sctp_style(sk, TCP) && timeout)
1516 		sctp_wait_for_close(sk, timeout);
1517 
1518 	/* This will run the backlog queue.  */
1519 	release_sock(sk);
1520 
1521 	/* Supposedly, no process has access to the socket, but
1522 	 * the net layers still may.
1523 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1524 	 * held and that should be grabbed before socket lock.
1525 	 */
1526 	spin_lock_bh(&net->sctp.addr_wq_lock);
1527 	bh_lock_sock_nested(sk);
1528 
1529 	/* Hold the sock, since sk_common_release() will put sock_put()
1530 	 * and we have just a little more cleanup.
1531 	 */
1532 	sock_hold(sk);
1533 	sk_common_release(sk);
1534 
1535 	bh_unlock_sock(sk);
1536 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1537 
1538 	sock_put(sk);
1539 
1540 	SCTP_DBG_OBJCNT_DEC(sock);
1541 }
1542 
1543 /* Handle EPIPE error. */
1544 static int sctp_error(struct sock *sk, int flags, int err)
1545 {
1546 	if (err == -EPIPE)
1547 		err = sock_error(sk) ? : -EPIPE;
1548 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1549 		send_sig(SIGPIPE, current, 0);
1550 	return err;
1551 }
1552 
1553 /* API 3.1.3 sendmsg() - UDP Style Syntax
1554  *
1555  * An application uses sendmsg() and recvmsg() calls to transmit data to
1556  * and receive data from its peer.
1557  *
1558  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1559  *                  int flags);
1560  *
1561  *  socket  - the socket descriptor of the endpoint.
1562  *  message - pointer to the msghdr structure which contains a single
1563  *            user message and possibly some ancillary data.
1564  *
1565  *            See Section 5 for complete description of the data
1566  *            structures.
1567  *
1568  *  flags   - flags sent or received with the user message, see Section
1569  *            5 for complete description of the flags.
1570  *
1571  * Note:  This function could use a rewrite especially when explicit
1572  * connect support comes in.
1573  */
1574 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1575 
1576 static int sctp_msghdr_parse(const struct msghdr *msg,
1577 			     struct sctp_cmsgs *cmsgs);
1578 
1579 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1580 			      struct sctp_sndrcvinfo *srinfo,
1581 			      const struct msghdr *msg, size_t msg_len)
1582 {
1583 	__u16 sflags;
1584 	int err;
1585 
1586 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1587 		return -EPIPE;
1588 
1589 	if (msg_len > sk->sk_sndbuf)
1590 		return -EMSGSIZE;
1591 
1592 	memset(cmsgs, 0, sizeof(*cmsgs));
1593 	err = sctp_msghdr_parse(msg, cmsgs);
1594 	if (err) {
1595 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1596 		return err;
1597 	}
1598 
1599 	memset(srinfo, 0, sizeof(*srinfo));
1600 	if (cmsgs->srinfo) {
1601 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1602 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1603 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1604 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1605 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1606 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1607 	}
1608 
1609 	if (cmsgs->sinfo) {
1610 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1611 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1612 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1613 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1614 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1615 	}
1616 
1617 	if (cmsgs->prinfo) {
1618 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1619 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1620 				   cmsgs->prinfo->pr_policy);
1621 	}
1622 
1623 	sflags = srinfo->sinfo_flags;
1624 	if (!sflags && msg_len)
1625 		return 0;
1626 
1627 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1628 		return -EINVAL;
1629 
1630 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1631 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1632 		return -EINVAL;
1633 
1634 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1635 		return -EINVAL;
1636 
1637 	return 0;
1638 }
1639 
1640 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1641 				 struct sctp_cmsgs *cmsgs,
1642 				 union sctp_addr *daddr,
1643 				 struct sctp_transport **tp)
1644 {
1645 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1646 	struct sctp_association *asoc;
1647 	struct cmsghdr *cmsg;
1648 	__be32 flowinfo = 0;
1649 	struct sctp_af *af;
1650 	int err;
1651 
1652 	*tp = NULL;
1653 
1654 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1655 		return -EINVAL;
1656 
1657 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1658 				    sctp_sstate(sk, CLOSING)))
1659 		return -EADDRNOTAVAIL;
1660 
1661 	/* Label connection socket for first association 1-to-many
1662 	 * style for client sequence socket()->sendmsg(). This
1663 	 * needs to be done before sctp_assoc_add_peer() as that will
1664 	 * set up the initial packet that needs to account for any
1665 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1666 	 */
1667 	af = sctp_get_af_specific(daddr->sa.sa_family);
1668 	if (!af)
1669 		return -EINVAL;
1670 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1671 					 (struct sockaddr *)daddr,
1672 					 af->sockaddr_len);
1673 	if (err < 0)
1674 		return err;
1675 
1676 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1677 	if (err)
1678 		return err;
1679 	asoc = (*tp)->asoc;
1680 
1681 	if (!cmsgs->addrs_msg)
1682 		return 0;
1683 
1684 	if (daddr->sa.sa_family == AF_INET6)
1685 		flowinfo = daddr->v6.sin6_flowinfo;
1686 
1687 	/* sendv addr list parse */
1688 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1689 		union sctp_addr _daddr;
1690 		int dlen;
1691 
1692 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1693 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1694 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1695 			continue;
1696 
1697 		daddr = &_daddr;
1698 		memset(daddr, 0, sizeof(*daddr));
1699 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1700 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1701 			if (dlen < sizeof(struct in_addr)) {
1702 				err = -EINVAL;
1703 				goto free;
1704 			}
1705 
1706 			dlen = sizeof(struct in_addr);
1707 			daddr->v4.sin_family = AF_INET;
1708 			daddr->v4.sin_port = htons(asoc->peer.port);
1709 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1710 		} else {
1711 			if (dlen < sizeof(struct in6_addr)) {
1712 				err = -EINVAL;
1713 				goto free;
1714 			}
1715 
1716 			dlen = sizeof(struct in6_addr);
1717 			daddr->v6.sin6_flowinfo = flowinfo;
1718 			daddr->v6.sin6_family = AF_INET6;
1719 			daddr->v6.sin6_port = htons(asoc->peer.port);
1720 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1721 		}
1722 
1723 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1724 		if (err)
1725 			goto free;
1726 	}
1727 
1728 	return 0;
1729 
1730 free:
1731 	sctp_association_free(asoc);
1732 	return err;
1733 }
1734 
1735 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1736 				     __u16 sflags, struct msghdr *msg,
1737 				     size_t msg_len)
1738 {
1739 	struct sock *sk = asoc->base.sk;
1740 	struct net *net = sock_net(sk);
1741 
1742 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1743 		return -EPIPE;
1744 
1745 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1746 	    !sctp_state(asoc, ESTABLISHED))
1747 		return 0;
1748 
1749 	if (sflags & SCTP_EOF) {
1750 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1751 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1752 
1753 		return 0;
1754 	}
1755 
1756 	if (sflags & SCTP_ABORT) {
1757 		struct sctp_chunk *chunk;
1758 
1759 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1760 		if (!chunk)
1761 			return -ENOMEM;
1762 
1763 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1764 		sctp_primitive_ABORT(net, asoc, chunk);
1765 		iov_iter_revert(&msg->msg_iter, msg_len);
1766 
1767 		return 0;
1768 	}
1769 
1770 	return 1;
1771 }
1772 
1773 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1774 				struct msghdr *msg, size_t msg_len,
1775 				struct sctp_transport *transport,
1776 				struct sctp_sndrcvinfo *sinfo)
1777 {
1778 	struct sock *sk = asoc->base.sk;
1779 	struct sctp_sock *sp = sctp_sk(sk);
1780 	struct net *net = sock_net(sk);
1781 	struct sctp_datamsg *datamsg;
1782 	bool wait_connect = false;
1783 	struct sctp_chunk *chunk;
1784 	long timeo;
1785 	int err;
1786 
1787 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1788 		err = -EINVAL;
1789 		goto err;
1790 	}
1791 
1792 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1793 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1794 		if (err)
1795 			goto err;
1796 	}
1797 
1798 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1799 		err = -EMSGSIZE;
1800 		goto err;
1801 	}
1802 
1803 	if (asoc->pmtu_pending) {
1804 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1805 			sctp_assoc_sync_pmtu(asoc);
1806 		asoc->pmtu_pending = 0;
1807 	}
1808 
1809 	if (sctp_wspace(asoc) < (int)msg_len)
1810 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1811 
1812 	if (sk_under_memory_pressure(sk))
1813 		sk_mem_reclaim(sk);
1814 
1815 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1816 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1817 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1818 		if (err)
1819 			goto err;
1820 	}
1821 
1822 	if (sctp_state(asoc, CLOSED)) {
1823 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1824 		if (err)
1825 			goto err;
1826 
1827 		if (asoc->ep->intl_enable) {
1828 			timeo = sock_sndtimeo(sk, 0);
1829 			err = sctp_wait_for_connect(asoc, &timeo);
1830 			if (err) {
1831 				err = -ESRCH;
1832 				goto err;
1833 			}
1834 		} else {
1835 			wait_connect = true;
1836 		}
1837 
1838 		pr_debug("%s: we associated primitively\n", __func__);
1839 	}
1840 
1841 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1842 	if (IS_ERR(datamsg)) {
1843 		err = PTR_ERR(datamsg);
1844 		goto err;
1845 	}
1846 
1847 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1848 
1849 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1850 		sctp_chunk_hold(chunk);
1851 		sctp_set_owner_w(chunk);
1852 		chunk->transport = transport;
1853 	}
1854 
1855 	err = sctp_primitive_SEND(net, asoc, datamsg);
1856 	if (err) {
1857 		sctp_datamsg_free(datamsg);
1858 		goto err;
1859 	}
1860 
1861 	pr_debug("%s: we sent primitively\n", __func__);
1862 
1863 	sctp_datamsg_put(datamsg);
1864 
1865 	if (unlikely(wait_connect)) {
1866 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1867 		sctp_wait_for_connect(asoc, &timeo);
1868 	}
1869 
1870 	err = msg_len;
1871 
1872 err:
1873 	return err;
1874 }
1875 
1876 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1877 					       const struct msghdr *msg,
1878 					       struct sctp_cmsgs *cmsgs)
1879 {
1880 	union sctp_addr *daddr = NULL;
1881 	int err;
1882 
1883 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1884 		int len = msg->msg_namelen;
1885 
1886 		if (len > sizeof(*daddr))
1887 			len = sizeof(*daddr);
1888 
1889 		daddr = (union sctp_addr *)msg->msg_name;
1890 
1891 		err = sctp_verify_addr(sk, daddr, len);
1892 		if (err)
1893 			return ERR_PTR(err);
1894 	}
1895 
1896 	return daddr;
1897 }
1898 
1899 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1900 				      struct sctp_sndrcvinfo *sinfo,
1901 				      struct sctp_cmsgs *cmsgs)
1902 {
1903 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1904 		sinfo->sinfo_stream = asoc->default_stream;
1905 		sinfo->sinfo_ppid = asoc->default_ppid;
1906 		sinfo->sinfo_context = asoc->default_context;
1907 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1908 
1909 		if (!cmsgs->prinfo)
1910 			sinfo->sinfo_flags = asoc->default_flags;
1911 	}
1912 
1913 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1914 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1915 
1916 	if (cmsgs->authinfo) {
1917 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1918 		 * sinfo_ssn to save the keyid on tx path.
1919 		 */
1920 		sinfo->sinfo_tsn = 1;
1921 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1922 	}
1923 }
1924 
1925 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1926 {
1927 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1928 	struct sctp_transport *transport = NULL;
1929 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1930 	struct sctp_association *asoc, *tmp;
1931 	struct sctp_cmsgs cmsgs;
1932 	union sctp_addr *daddr;
1933 	bool new = false;
1934 	__u16 sflags;
1935 	int err;
1936 
1937 	/* Parse and get snd_info */
1938 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1939 	if (err)
1940 		goto out;
1941 
1942 	sinfo  = &_sinfo;
1943 	sflags = sinfo->sinfo_flags;
1944 
1945 	/* Get daddr from msg */
1946 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1947 	if (IS_ERR(daddr)) {
1948 		err = PTR_ERR(daddr);
1949 		goto out;
1950 	}
1951 
1952 	lock_sock(sk);
1953 
1954 	/* SCTP_SENDALL process */
1955 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1956 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1957 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1958 							msg_len);
1959 			if (err == 0)
1960 				continue;
1961 			if (err < 0)
1962 				goto out_unlock;
1963 
1964 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1965 
1966 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1967 						   NULL, sinfo);
1968 			if (err < 0)
1969 				goto out_unlock;
1970 
1971 			iov_iter_revert(&msg->msg_iter, err);
1972 		}
1973 
1974 		goto out_unlock;
1975 	}
1976 
1977 	/* Get and check or create asoc */
1978 	if (daddr) {
1979 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1980 		if (asoc) {
1981 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1982 							msg_len);
1983 			if (err <= 0)
1984 				goto out_unlock;
1985 		} else {
1986 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1987 						    &transport);
1988 			if (err)
1989 				goto out_unlock;
1990 
1991 			asoc = transport->asoc;
1992 			new = true;
1993 		}
1994 
1995 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
1996 			transport = NULL;
1997 	} else {
1998 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
1999 		if (!asoc) {
2000 			err = -EPIPE;
2001 			goto out_unlock;
2002 		}
2003 
2004 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2005 		if (err <= 0)
2006 			goto out_unlock;
2007 	}
2008 
2009 	/* Update snd_info with the asoc */
2010 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2011 
2012 	/* Send msg to the asoc */
2013 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2014 	if (err < 0 && err != -ESRCH && new)
2015 		sctp_association_free(asoc);
2016 
2017 out_unlock:
2018 	release_sock(sk);
2019 out:
2020 	return sctp_error(sk, msg->msg_flags, err);
2021 }
2022 
2023 /* This is an extended version of skb_pull() that removes the data from the
2024  * start of a skb even when data is spread across the list of skb's in the
2025  * frag_list. len specifies the total amount of data that needs to be removed.
2026  * when 'len' bytes could be removed from the skb, it returns 0.
2027  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2028  * could not be removed.
2029  */
2030 static int sctp_skb_pull(struct sk_buff *skb, int len)
2031 {
2032 	struct sk_buff *list;
2033 	int skb_len = skb_headlen(skb);
2034 	int rlen;
2035 
2036 	if (len <= skb_len) {
2037 		__skb_pull(skb, len);
2038 		return 0;
2039 	}
2040 	len -= skb_len;
2041 	__skb_pull(skb, skb_len);
2042 
2043 	skb_walk_frags(skb, list) {
2044 		rlen = sctp_skb_pull(list, len);
2045 		skb->len -= (len-rlen);
2046 		skb->data_len -= (len-rlen);
2047 
2048 		if (!rlen)
2049 			return 0;
2050 
2051 		len = rlen;
2052 	}
2053 
2054 	return len;
2055 }
2056 
2057 /* API 3.1.3  recvmsg() - UDP Style Syntax
2058  *
2059  *  ssize_t recvmsg(int socket, struct msghdr *message,
2060  *                    int flags);
2061  *
2062  *  socket  - the socket descriptor of the endpoint.
2063  *  message - pointer to the msghdr structure which contains a single
2064  *            user message and possibly some ancillary data.
2065  *
2066  *            See Section 5 for complete description of the data
2067  *            structures.
2068  *
2069  *  flags   - flags sent or received with the user message, see Section
2070  *            5 for complete description of the flags.
2071  */
2072 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2073 			int noblock, int flags, int *addr_len)
2074 {
2075 	struct sctp_ulpevent *event = NULL;
2076 	struct sctp_sock *sp = sctp_sk(sk);
2077 	struct sk_buff *skb, *head_skb;
2078 	int copied;
2079 	int err = 0;
2080 	int skb_len;
2081 
2082 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2083 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2084 		 addr_len);
2085 
2086 	lock_sock(sk);
2087 
2088 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2089 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2090 		err = -ENOTCONN;
2091 		goto out;
2092 	}
2093 
2094 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2095 	if (!skb)
2096 		goto out;
2097 
2098 	/* Get the total length of the skb including any skb's in the
2099 	 * frag_list.
2100 	 */
2101 	skb_len = skb->len;
2102 
2103 	copied = skb_len;
2104 	if (copied > len)
2105 		copied = len;
2106 
2107 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2108 
2109 	event = sctp_skb2event(skb);
2110 
2111 	if (err)
2112 		goto out_free;
2113 
2114 	if (event->chunk && event->chunk->head_skb)
2115 		head_skb = event->chunk->head_skb;
2116 	else
2117 		head_skb = skb;
2118 	sock_recv_ts_and_drops(msg, sk, head_skb);
2119 	if (sctp_ulpevent_is_notification(event)) {
2120 		msg->msg_flags |= MSG_NOTIFICATION;
2121 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2122 	} else {
2123 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2124 	}
2125 
2126 	/* Check if we allow SCTP_NXTINFO. */
2127 	if (sp->recvnxtinfo)
2128 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2129 	/* Check if we allow SCTP_RCVINFO. */
2130 	if (sp->recvrcvinfo)
2131 		sctp_ulpevent_read_rcvinfo(event, msg);
2132 	/* Check if we allow SCTP_SNDRCVINFO. */
2133 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2134 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2135 
2136 	err = copied;
2137 
2138 	/* If skb's length exceeds the user's buffer, update the skb and
2139 	 * push it back to the receive_queue so that the next call to
2140 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2141 	 */
2142 	if (skb_len > copied) {
2143 		msg->msg_flags &= ~MSG_EOR;
2144 		if (flags & MSG_PEEK)
2145 			goto out_free;
2146 		sctp_skb_pull(skb, copied);
2147 		skb_queue_head(&sk->sk_receive_queue, skb);
2148 
2149 		/* When only partial message is copied to the user, increase
2150 		 * rwnd by that amount. If all the data in the skb is read,
2151 		 * rwnd is updated when the event is freed.
2152 		 */
2153 		if (!sctp_ulpevent_is_notification(event))
2154 			sctp_assoc_rwnd_increase(event->asoc, copied);
2155 		goto out;
2156 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2157 		   (event->msg_flags & MSG_EOR))
2158 		msg->msg_flags |= MSG_EOR;
2159 	else
2160 		msg->msg_flags &= ~MSG_EOR;
2161 
2162 out_free:
2163 	if (flags & MSG_PEEK) {
2164 		/* Release the skb reference acquired after peeking the skb in
2165 		 * sctp_skb_recv_datagram().
2166 		 */
2167 		kfree_skb(skb);
2168 	} else {
2169 		/* Free the event which includes releasing the reference to
2170 		 * the owner of the skb, freeing the skb and updating the
2171 		 * rwnd.
2172 		 */
2173 		sctp_ulpevent_free(event);
2174 	}
2175 out:
2176 	release_sock(sk);
2177 	return err;
2178 }
2179 
2180 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2181  *
2182  * This option is a on/off flag.  If enabled no SCTP message
2183  * fragmentation will be performed.  Instead if a message being sent
2184  * exceeds the current PMTU size, the message will NOT be sent and
2185  * instead a error will be indicated to the user.
2186  */
2187 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2188 					     unsigned int optlen)
2189 {
2190 	if (optlen < sizeof(int))
2191 		return -EINVAL;
2192 	sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2193 	return 0;
2194 }
2195 
2196 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2197 				  unsigned int optlen)
2198 {
2199 	struct sctp_sock *sp = sctp_sk(sk);
2200 	struct sctp_association *asoc;
2201 	int i;
2202 
2203 	if (optlen > sizeof(struct sctp_event_subscribe))
2204 		return -EINVAL;
2205 
2206 	for (i = 0; i < optlen; i++)
2207 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2208 				       sn_type[i]);
2209 
2210 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2211 		asoc->subscribe = sctp_sk(sk)->subscribe;
2212 
2213 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2214 	 * if there is no data to be sent or retransmit, the stack will
2215 	 * immediately send up this notification.
2216 	 */
2217 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2218 		struct sctp_ulpevent *event;
2219 
2220 		asoc = sctp_id2assoc(sk, 0);
2221 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2222 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2223 					GFP_USER | __GFP_NOWARN);
2224 			if (!event)
2225 				return -ENOMEM;
2226 
2227 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2228 		}
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2235  *
2236  * This socket option is applicable to the UDP-style socket only.  When
2237  * set it will cause associations that are idle for more than the
2238  * specified number of seconds to automatically close.  An association
2239  * being idle is defined an association that has NOT sent or received
2240  * user data.  The special value of '0' indicates that no automatic
2241  * close of any associations should be performed.  The option expects an
2242  * integer defining the number of seconds of idle time before an
2243  * association is closed.
2244  */
2245 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2246 				     unsigned int optlen)
2247 {
2248 	struct sctp_sock *sp = sctp_sk(sk);
2249 	struct net *net = sock_net(sk);
2250 
2251 	/* Applicable to UDP-style socket only */
2252 	if (sctp_style(sk, TCP))
2253 		return -EOPNOTSUPP;
2254 	if (optlen != sizeof(int))
2255 		return -EINVAL;
2256 
2257 	sp->autoclose = *optval;
2258 	if (sp->autoclose > net->sctp.max_autoclose)
2259 		sp->autoclose = net->sctp.max_autoclose;
2260 
2261 	return 0;
2262 }
2263 
2264 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2265  *
2266  * Applications can enable or disable heartbeats for any peer address of
2267  * an association, modify an address's heartbeat interval, force a
2268  * heartbeat to be sent immediately, and adjust the address's maximum
2269  * number of retransmissions sent before an address is considered
2270  * unreachable.  The following structure is used to access and modify an
2271  * address's parameters:
2272  *
2273  *  struct sctp_paddrparams {
2274  *     sctp_assoc_t            spp_assoc_id;
2275  *     struct sockaddr_storage spp_address;
2276  *     uint32_t                spp_hbinterval;
2277  *     uint16_t                spp_pathmaxrxt;
2278  *     uint32_t                spp_pathmtu;
2279  *     uint32_t                spp_sackdelay;
2280  *     uint32_t                spp_flags;
2281  *     uint32_t                spp_ipv6_flowlabel;
2282  *     uint8_t                 spp_dscp;
2283  * };
2284  *
2285  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2286  *                     application, and identifies the association for
2287  *                     this query.
2288  *   spp_address     - This specifies which address is of interest.
2289  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2290  *                     in milliseconds.  If a  value of zero
2291  *                     is present in this field then no changes are to
2292  *                     be made to this parameter.
2293  *   spp_pathmaxrxt  - This contains the maximum number of
2294  *                     retransmissions before this address shall be
2295  *                     considered unreachable. If a  value of zero
2296  *                     is present in this field then no changes are to
2297  *                     be made to this parameter.
2298  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2299  *                     specified here will be the "fixed" path mtu.
2300  *                     Note that if the spp_address field is empty
2301  *                     then all associations on this address will
2302  *                     have this fixed path mtu set upon them.
2303  *
2304  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2305  *                     the number of milliseconds that sacks will be delayed
2306  *                     for. This value will apply to all addresses of an
2307  *                     association if the spp_address field is empty. Note
2308  *                     also, that if delayed sack is enabled and this
2309  *                     value is set to 0, no change is made to the last
2310  *                     recorded delayed sack timer value.
2311  *
2312  *   spp_flags       - These flags are used to control various features
2313  *                     on an association. The flag field may contain
2314  *                     zero or more of the following options.
2315  *
2316  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2317  *                     specified address. Note that if the address
2318  *                     field is empty all addresses for the association
2319  *                     have heartbeats enabled upon them.
2320  *
2321  *                     SPP_HB_DISABLE - Disable heartbeats on the
2322  *                     speicifed address. Note that if the address
2323  *                     field is empty all addresses for the association
2324  *                     will have their heartbeats disabled. Note also
2325  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2326  *                     mutually exclusive, only one of these two should
2327  *                     be specified. Enabling both fields will have
2328  *                     undetermined results.
2329  *
2330  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2331  *                     to be made immediately.
2332  *
2333  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2334  *                     heartbeat delayis to be set to the value of 0
2335  *                     milliseconds.
2336  *
2337  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2338  *                     discovery upon the specified address. Note that
2339  *                     if the address feild is empty then all addresses
2340  *                     on the association are effected.
2341  *
2342  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2343  *                     discovery upon the specified address. Note that
2344  *                     if the address feild is empty then all addresses
2345  *                     on the association are effected. Not also that
2346  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2347  *                     exclusive. Enabling both will have undetermined
2348  *                     results.
2349  *
2350  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2351  *                     on delayed sack. The time specified in spp_sackdelay
2352  *                     is used to specify the sack delay for this address. Note
2353  *                     that if spp_address is empty then all addresses will
2354  *                     enable delayed sack and take on the sack delay
2355  *                     value specified in spp_sackdelay.
2356  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2357  *                     off delayed sack. If the spp_address field is blank then
2358  *                     delayed sack is disabled for the entire association. Note
2359  *                     also that this field is mutually exclusive to
2360  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2361  *                     results.
2362  *
2363  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2364  *                     setting of the IPV6 flow label value.  The value is
2365  *                     contained in the spp_ipv6_flowlabel field.
2366  *                     Upon retrieval, this flag will be set to indicate that
2367  *                     the spp_ipv6_flowlabel field has a valid value returned.
2368  *                     If a specific destination address is set (in the
2369  *                     spp_address field), then the value returned is that of
2370  *                     the address.  If just an association is specified (and
2371  *                     no address), then the association's default flow label
2372  *                     is returned.  If neither an association nor a destination
2373  *                     is specified, then the socket's default flow label is
2374  *                     returned.  For non-IPv6 sockets, this flag will be left
2375  *                     cleared.
2376  *
2377  *                     SPP_DSCP:  Setting this flag enables the setting of the
2378  *                     Differentiated Services Code Point (DSCP) value
2379  *                     associated with either the association or a specific
2380  *                     address.  The value is obtained in the spp_dscp field.
2381  *                     Upon retrieval, this flag will be set to indicate that
2382  *                     the spp_dscp field has a valid value returned.  If a
2383  *                     specific destination address is set when called (in the
2384  *                     spp_address field), then that specific destination
2385  *                     address's DSCP value is returned.  If just an association
2386  *                     is specified, then the association's default DSCP is
2387  *                     returned.  If neither an association nor a destination is
2388  *                     specified, then the socket's default DSCP is returned.
2389  *
2390  *   spp_ipv6_flowlabel
2391  *                   - This field is used in conjunction with the
2392  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2393  *                     The 20 least significant bits are used for the flow
2394  *                     label.  This setting has precedence over any IPv6-layer
2395  *                     setting.
2396  *
2397  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2398  *                     and contains the DSCP.  The 6 most significant bits are
2399  *                     used for the DSCP.  This setting has precedence over any
2400  *                     IPv4- or IPv6- layer setting.
2401  */
2402 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2403 				       struct sctp_transport   *trans,
2404 				       struct sctp_association *asoc,
2405 				       struct sctp_sock        *sp,
2406 				       int                      hb_change,
2407 				       int                      pmtud_change,
2408 				       int                      sackdelay_change)
2409 {
2410 	int error;
2411 
2412 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2413 		error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2414 							trans->asoc, trans);
2415 		if (error)
2416 			return error;
2417 	}
2418 
2419 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2420 	 * this field is ignored.  Note also that a value of zero indicates
2421 	 * the current setting should be left unchanged.
2422 	 */
2423 	if (params->spp_flags & SPP_HB_ENABLE) {
2424 
2425 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2426 		 * set.  This lets us use 0 value when this flag
2427 		 * is set.
2428 		 */
2429 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2430 			params->spp_hbinterval = 0;
2431 
2432 		if (params->spp_hbinterval ||
2433 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2434 			if (trans) {
2435 				trans->hbinterval =
2436 				    msecs_to_jiffies(params->spp_hbinterval);
2437 			} else if (asoc) {
2438 				asoc->hbinterval =
2439 				    msecs_to_jiffies(params->spp_hbinterval);
2440 			} else {
2441 				sp->hbinterval = params->spp_hbinterval;
2442 			}
2443 		}
2444 	}
2445 
2446 	if (hb_change) {
2447 		if (trans) {
2448 			trans->param_flags =
2449 				(trans->param_flags & ~SPP_HB) | hb_change;
2450 		} else if (asoc) {
2451 			asoc->param_flags =
2452 				(asoc->param_flags & ~SPP_HB) | hb_change;
2453 		} else {
2454 			sp->param_flags =
2455 				(sp->param_flags & ~SPP_HB) | hb_change;
2456 		}
2457 	}
2458 
2459 	/* When Path MTU discovery is disabled the value specified here will
2460 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2461 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2462 	 * effect).
2463 	 */
2464 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2465 		if (trans) {
2466 			trans->pathmtu = params->spp_pathmtu;
2467 			sctp_assoc_sync_pmtu(asoc);
2468 		} else if (asoc) {
2469 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2470 		} else {
2471 			sp->pathmtu = params->spp_pathmtu;
2472 		}
2473 	}
2474 
2475 	if (pmtud_change) {
2476 		if (trans) {
2477 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2478 				(params->spp_flags & SPP_PMTUD_ENABLE);
2479 			trans->param_flags =
2480 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2481 			if (update) {
2482 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2483 				sctp_assoc_sync_pmtu(asoc);
2484 			}
2485 		} else if (asoc) {
2486 			asoc->param_flags =
2487 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2488 		} else {
2489 			sp->param_flags =
2490 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2491 		}
2492 	}
2493 
2494 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2495 	 * value of this field is ignored.  Note also that a value of zero
2496 	 * indicates the current setting should be left unchanged.
2497 	 */
2498 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2499 		if (trans) {
2500 			trans->sackdelay =
2501 				msecs_to_jiffies(params->spp_sackdelay);
2502 		} else if (asoc) {
2503 			asoc->sackdelay =
2504 				msecs_to_jiffies(params->spp_sackdelay);
2505 		} else {
2506 			sp->sackdelay = params->spp_sackdelay;
2507 		}
2508 	}
2509 
2510 	if (sackdelay_change) {
2511 		if (trans) {
2512 			trans->param_flags =
2513 				(trans->param_flags & ~SPP_SACKDELAY) |
2514 				sackdelay_change;
2515 		} else if (asoc) {
2516 			asoc->param_flags =
2517 				(asoc->param_flags & ~SPP_SACKDELAY) |
2518 				sackdelay_change;
2519 		} else {
2520 			sp->param_flags =
2521 				(sp->param_flags & ~SPP_SACKDELAY) |
2522 				sackdelay_change;
2523 		}
2524 	}
2525 
2526 	/* Note that a value of zero indicates the current setting should be
2527 	   left unchanged.
2528 	 */
2529 	if (params->spp_pathmaxrxt) {
2530 		if (trans) {
2531 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2532 		} else if (asoc) {
2533 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2534 		} else {
2535 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2536 		}
2537 	}
2538 
2539 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2540 		if (trans) {
2541 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2542 				trans->flowlabel = params->spp_ipv6_flowlabel &
2543 						   SCTP_FLOWLABEL_VAL_MASK;
2544 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2545 			}
2546 		} else if (asoc) {
2547 			struct sctp_transport *t;
2548 
2549 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2550 					    transports) {
2551 				if (t->ipaddr.sa.sa_family != AF_INET6)
2552 					continue;
2553 				t->flowlabel = params->spp_ipv6_flowlabel &
2554 					       SCTP_FLOWLABEL_VAL_MASK;
2555 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2556 			}
2557 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2558 					  SCTP_FLOWLABEL_VAL_MASK;
2559 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2560 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2561 			sp->flowlabel = params->spp_ipv6_flowlabel &
2562 					SCTP_FLOWLABEL_VAL_MASK;
2563 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2564 		}
2565 	}
2566 
2567 	if (params->spp_flags & SPP_DSCP) {
2568 		if (trans) {
2569 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2570 			trans->dscp |= SCTP_DSCP_SET_MASK;
2571 		} else if (asoc) {
2572 			struct sctp_transport *t;
2573 
2574 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2575 					    transports) {
2576 				t->dscp = params->spp_dscp &
2577 					  SCTP_DSCP_VAL_MASK;
2578 				t->dscp |= SCTP_DSCP_SET_MASK;
2579 			}
2580 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2581 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2582 		} else {
2583 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 			sp->dscp |= SCTP_DSCP_SET_MASK;
2585 		}
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2592 					    struct sctp_paddrparams *params,
2593 					    unsigned int optlen)
2594 {
2595 	struct sctp_transport   *trans = NULL;
2596 	struct sctp_association *asoc = NULL;
2597 	struct sctp_sock        *sp = sctp_sk(sk);
2598 	int error;
2599 	int hb_change, pmtud_change, sackdelay_change;
2600 
2601 	if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2602 					    spp_ipv6_flowlabel), 4)) {
2603 		if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2604 			return -EINVAL;
2605 	} else if (optlen != sizeof(*params)) {
2606 		return -EINVAL;
2607 	}
2608 
2609 	/* Validate flags and value parameters. */
2610 	hb_change        = params->spp_flags & SPP_HB;
2611 	pmtud_change     = params->spp_flags & SPP_PMTUD;
2612 	sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2613 
2614 	if (hb_change        == SPP_HB ||
2615 	    pmtud_change     == SPP_PMTUD ||
2616 	    sackdelay_change == SPP_SACKDELAY ||
2617 	    params->spp_sackdelay > 500 ||
2618 	    (params->spp_pathmtu &&
2619 	     params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2620 		return -EINVAL;
2621 
2622 	/* If an address other than INADDR_ANY is specified, and
2623 	 * no transport is found, then the request is invalid.
2624 	 */
2625 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
2626 		trans = sctp_addr_id2transport(sk, &params->spp_address,
2627 					       params->spp_assoc_id);
2628 		if (!trans)
2629 			return -EINVAL;
2630 	}
2631 
2632 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2633 	 * socket is a one to many style socket, and an association
2634 	 * was not found, then the id was invalid.
2635 	 */
2636 	asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2637 	if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2638 	    sctp_style(sk, UDP))
2639 		return -EINVAL;
2640 
2641 	/* Heartbeat demand can only be sent on a transport or
2642 	 * association, but not a socket.
2643 	 */
2644 	if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2645 		return -EINVAL;
2646 
2647 	/* Process parameters. */
2648 	error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2649 					    hb_change, pmtud_change,
2650 					    sackdelay_change);
2651 
2652 	if (error)
2653 		return error;
2654 
2655 	/* If changes are for association, also apply parameters to each
2656 	 * transport.
2657 	 */
2658 	if (!trans && asoc) {
2659 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2660 				transports) {
2661 			sctp_apply_peer_addr_params(params, trans, asoc, sp,
2662 						    hb_change, pmtud_change,
2663 						    sackdelay_change);
2664 		}
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2671 {
2672 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2673 }
2674 
2675 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2676 {
2677 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2678 }
2679 
2680 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2681 					struct sctp_association *asoc)
2682 {
2683 	struct sctp_transport *trans;
2684 
2685 	if (params->sack_delay) {
2686 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2687 		asoc->param_flags =
2688 			sctp_spp_sackdelay_enable(asoc->param_flags);
2689 	}
2690 	if (params->sack_freq == 1) {
2691 		asoc->param_flags =
2692 			sctp_spp_sackdelay_disable(asoc->param_flags);
2693 	} else if (params->sack_freq > 1) {
2694 		asoc->sackfreq = params->sack_freq;
2695 		asoc->param_flags =
2696 			sctp_spp_sackdelay_enable(asoc->param_flags);
2697 	}
2698 
2699 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2700 			    transports) {
2701 		if (params->sack_delay) {
2702 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2703 			trans->param_flags =
2704 				sctp_spp_sackdelay_enable(trans->param_flags);
2705 		}
2706 		if (params->sack_freq == 1) {
2707 			trans->param_flags =
2708 				sctp_spp_sackdelay_disable(trans->param_flags);
2709 		} else if (params->sack_freq > 1) {
2710 			trans->sackfreq = params->sack_freq;
2711 			trans->param_flags =
2712 				sctp_spp_sackdelay_enable(trans->param_flags);
2713 		}
2714 	}
2715 }
2716 
2717 /*
2718  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2719  *
2720  * This option will effect the way delayed acks are performed.  This
2721  * option allows you to get or set the delayed ack time, in
2722  * milliseconds.  It also allows changing the delayed ack frequency.
2723  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2724  * the assoc_id is 0, then this sets or gets the endpoints default
2725  * values.  If the assoc_id field is non-zero, then the set or get
2726  * effects the specified association for the one to many model (the
2727  * assoc_id field is ignored by the one to one model).  Note that if
2728  * sack_delay or sack_freq are 0 when setting this option, then the
2729  * current values will remain unchanged.
2730  *
2731  * struct sctp_sack_info {
2732  *     sctp_assoc_t            sack_assoc_id;
2733  *     uint32_t                sack_delay;
2734  *     uint32_t                sack_freq;
2735  * };
2736  *
2737  * sack_assoc_id -  This parameter, indicates which association the user
2738  *    is performing an action upon.  Note that if this field's value is
2739  *    zero then the endpoints default value is changed (effecting future
2740  *    associations only).
2741  *
2742  * sack_delay -  This parameter contains the number of milliseconds that
2743  *    the user is requesting the delayed ACK timer be set to.  Note that
2744  *    this value is defined in the standard to be between 200 and 500
2745  *    milliseconds.
2746  *
2747  * sack_freq -  This parameter contains the number of packets that must
2748  *    be received before a sack is sent without waiting for the delay
2749  *    timer to expire.  The default value for this is 2, setting this
2750  *    value to 1 will disable the delayed sack algorithm.
2751  */
2752 
2753 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2754 				       struct sctp_sack_info *params,
2755 				       unsigned int optlen)
2756 {
2757 	struct sctp_sock *sp = sctp_sk(sk);
2758 	struct sctp_association *asoc;
2759 
2760 	if (optlen == sizeof(struct sctp_sack_info)) {
2761 		if (params->sack_delay == 0 && params->sack_freq == 0)
2762 			return 0;
2763 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2764 		pr_warn_ratelimited(DEPRECATED
2765 				    "%s (pid %d) "
2766 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2767 				    "Use struct sctp_sack_info instead\n",
2768 				    current->comm, task_pid_nr(current));
2769 
2770 		if (params->sack_delay == 0)
2771 			params->sack_freq = 1;
2772 		else
2773 			params->sack_freq = 0;
2774 	} else
2775 		return -EINVAL;
2776 
2777 	/* Validate value parameter. */
2778 	if (params->sack_delay > 500)
2779 		return -EINVAL;
2780 
2781 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2782 	 * socket is a one to many style socket, and an association
2783 	 * was not found, then the id was invalid.
2784 	 */
2785 	asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2786 	if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2787 	    sctp_style(sk, UDP))
2788 		return -EINVAL;
2789 
2790 	if (asoc) {
2791 		sctp_apply_asoc_delayed_ack(params, asoc);
2792 
2793 		return 0;
2794 	}
2795 
2796 	if (sctp_style(sk, TCP))
2797 		params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2798 
2799 	if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2800 	    params->sack_assoc_id == SCTP_ALL_ASSOC) {
2801 		if (params->sack_delay) {
2802 			sp->sackdelay = params->sack_delay;
2803 			sp->param_flags =
2804 				sctp_spp_sackdelay_enable(sp->param_flags);
2805 		}
2806 		if (params->sack_freq == 1) {
2807 			sp->param_flags =
2808 				sctp_spp_sackdelay_disable(sp->param_flags);
2809 		} else if (params->sack_freq > 1) {
2810 			sp->sackfreq = params->sack_freq;
2811 			sp->param_flags =
2812 				sctp_spp_sackdelay_enable(sp->param_flags);
2813 		}
2814 	}
2815 
2816 	if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2817 	    params->sack_assoc_id == SCTP_ALL_ASSOC)
2818 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2819 			sctp_apply_asoc_delayed_ack(params, asoc);
2820 
2821 	return 0;
2822 }
2823 
2824 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2825  *
2826  * Applications can specify protocol parameters for the default association
2827  * initialization.  The option name argument to setsockopt() and getsockopt()
2828  * is SCTP_INITMSG.
2829  *
2830  * Setting initialization parameters is effective only on an unconnected
2831  * socket (for UDP-style sockets only future associations are effected
2832  * by the change).  With TCP-style sockets, this option is inherited by
2833  * sockets derived from a listener socket.
2834  */
2835 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2836 				   unsigned int optlen)
2837 {
2838 	struct sctp_sock *sp = sctp_sk(sk);
2839 
2840 	if (optlen != sizeof(struct sctp_initmsg))
2841 		return -EINVAL;
2842 
2843 	if (sinit->sinit_num_ostreams)
2844 		sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2845 	if (sinit->sinit_max_instreams)
2846 		sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2847 	if (sinit->sinit_max_attempts)
2848 		sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2849 	if (sinit->sinit_max_init_timeo)
2850 		sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2851 
2852 	return 0;
2853 }
2854 
2855 /*
2856  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2857  *
2858  *   Applications that wish to use the sendto() system call may wish to
2859  *   specify a default set of parameters that would normally be supplied
2860  *   through the inclusion of ancillary data.  This socket option allows
2861  *   such an application to set the default sctp_sndrcvinfo structure.
2862  *   The application that wishes to use this socket option simply passes
2863  *   in to this call the sctp_sndrcvinfo structure defined in Section
2864  *   5.2.2) The input parameters accepted by this call include
2865  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2866  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2867  *   to this call if the caller is using the UDP model.
2868  */
2869 static int sctp_setsockopt_default_send_param(struct sock *sk,
2870 					      struct sctp_sndrcvinfo *info,
2871 					      unsigned int optlen)
2872 {
2873 	struct sctp_sock *sp = sctp_sk(sk);
2874 	struct sctp_association *asoc;
2875 
2876 	if (optlen != sizeof(*info))
2877 		return -EINVAL;
2878 	if (info->sinfo_flags &
2879 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2880 	      SCTP_ABORT | SCTP_EOF))
2881 		return -EINVAL;
2882 
2883 	asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2884 	if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2885 	    sctp_style(sk, UDP))
2886 		return -EINVAL;
2887 
2888 	if (asoc) {
2889 		asoc->default_stream = info->sinfo_stream;
2890 		asoc->default_flags = info->sinfo_flags;
2891 		asoc->default_ppid = info->sinfo_ppid;
2892 		asoc->default_context = info->sinfo_context;
2893 		asoc->default_timetolive = info->sinfo_timetolive;
2894 
2895 		return 0;
2896 	}
2897 
2898 	if (sctp_style(sk, TCP))
2899 		info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2900 
2901 	if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2902 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2903 		sp->default_stream = info->sinfo_stream;
2904 		sp->default_flags = info->sinfo_flags;
2905 		sp->default_ppid = info->sinfo_ppid;
2906 		sp->default_context = info->sinfo_context;
2907 		sp->default_timetolive = info->sinfo_timetolive;
2908 	}
2909 
2910 	if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2911 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2912 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2913 			asoc->default_stream = info->sinfo_stream;
2914 			asoc->default_flags = info->sinfo_flags;
2915 			asoc->default_ppid = info->sinfo_ppid;
2916 			asoc->default_context = info->sinfo_context;
2917 			asoc->default_timetolive = info->sinfo_timetolive;
2918 		}
2919 	}
2920 
2921 	return 0;
2922 }
2923 
2924 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2925  * (SCTP_DEFAULT_SNDINFO)
2926  */
2927 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2928 					   struct sctp_sndinfo *info,
2929 					   unsigned int optlen)
2930 {
2931 	struct sctp_sock *sp = sctp_sk(sk);
2932 	struct sctp_association *asoc;
2933 
2934 	if (optlen != sizeof(*info))
2935 		return -EINVAL;
2936 	if (info->snd_flags &
2937 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2938 	      SCTP_ABORT | SCTP_EOF))
2939 		return -EINVAL;
2940 
2941 	asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2942 	if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2943 	    sctp_style(sk, UDP))
2944 		return -EINVAL;
2945 
2946 	if (asoc) {
2947 		asoc->default_stream = info->snd_sid;
2948 		asoc->default_flags = info->snd_flags;
2949 		asoc->default_ppid = info->snd_ppid;
2950 		asoc->default_context = info->snd_context;
2951 
2952 		return 0;
2953 	}
2954 
2955 	if (sctp_style(sk, TCP))
2956 		info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2957 
2958 	if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2959 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2960 		sp->default_stream = info->snd_sid;
2961 		sp->default_flags = info->snd_flags;
2962 		sp->default_ppid = info->snd_ppid;
2963 		sp->default_context = info->snd_context;
2964 	}
2965 
2966 	if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2967 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2968 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2969 			asoc->default_stream = info->snd_sid;
2970 			asoc->default_flags = info->snd_flags;
2971 			asoc->default_ppid = info->snd_ppid;
2972 			asoc->default_context = info->snd_context;
2973 		}
2974 	}
2975 
2976 	return 0;
2977 }
2978 
2979 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2980  *
2981  * Requests that the local SCTP stack use the enclosed peer address as
2982  * the association primary.  The enclosed address must be one of the
2983  * association peer's addresses.
2984  */
2985 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
2986 					unsigned int optlen)
2987 {
2988 	struct sctp_transport *trans;
2989 	struct sctp_af *af;
2990 	int err;
2991 
2992 	if (optlen != sizeof(struct sctp_prim))
2993 		return -EINVAL;
2994 
2995 	/* Allow security module to validate address but need address len. */
2996 	af = sctp_get_af_specific(prim->ssp_addr.ss_family);
2997 	if (!af)
2998 		return -EINVAL;
2999 
3000 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3001 					 (struct sockaddr *)&prim->ssp_addr,
3002 					 af->sockaddr_len);
3003 	if (err)
3004 		return err;
3005 
3006 	trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3007 	if (!trans)
3008 		return -EINVAL;
3009 
3010 	sctp_assoc_set_primary(trans->asoc, trans);
3011 
3012 	return 0;
3013 }
3014 
3015 /*
3016  * 7.1.5 SCTP_NODELAY
3017  *
3018  * Turn on/off any Nagle-like algorithm.  This means that packets are
3019  * generally sent as soon as possible and no unnecessary delays are
3020  * introduced, at the cost of more packets in the network.  Expects an
3021  *  integer boolean flag.
3022  */
3023 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3024 				   unsigned int optlen)
3025 {
3026 	if (optlen < sizeof(int))
3027 		return -EINVAL;
3028 	sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3029 	return 0;
3030 }
3031 
3032 /*
3033  *
3034  * 7.1.1 SCTP_RTOINFO
3035  *
3036  * The protocol parameters used to initialize and bound retransmission
3037  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3038  * and modify these parameters.
3039  * All parameters are time values, in milliseconds.  A value of 0, when
3040  * modifying the parameters, indicates that the current value should not
3041  * be changed.
3042  *
3043  */
3044 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3045 				   struct sctp_rtoinfo *rtoinfo,
3046 				   unsigned int optlen)
3047 {
3048 	struct sctp_association *asoc;
3049 	unsigned long rto_min, rto_max;
3050 	struct sctp_sock *sp = sctp_sk(sk);
3051 
3052 	if (optlen != sizeof (struct sctp_rtoinfo))
3053 		return -EINVAL;
3054 
3055 	asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3056 
3057 	/* Set the values to the specific association */
3058 	if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3059 	    sctp_style(sk, UDP))
3060 		return -EINVAL;
3061 
3062 	rto_max = rtoinfo->srto_max;
3063 	rto_min = rtoinfo->srto_min;
3064 
3065 	if (rto_max)
3066 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3067 	else
3068 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3069 
3070 	if (rto_min)
3071 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3072 	else
3073 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3074 
3075 	if (rto_min > rto_max)
3076 		return -EINVAL;
3077 
3078 	if (asoc) {
3079 		if (rtoinfo->srto_initial != 0)
3080 			asoc->rto_initial =
3081 				msecs_to_jiffies(rtoinfo->srto_initial);
3082 		asoc->rto_max = rto_max;
3083 		asoc->rto_min = rto_min;
3084 	} else {
3085 		/* If there is no association or the association-id = 0
3086 		 * set the values to the endpoint.
3087 		 */
3088 		if (rtoinfo->srto_initial != 0)
3089 			sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3090 		sp->rtoinfo.srto_max = rto_max;
3091 		sp->rtoinfo.srto_min = rto_min;
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 /*
3098  *
3099  * 7.1.2 SCTP_ASSOCINFO
3100  *
3101  * This option is used to tune the maximum retransmission attempts
3102  * of the association.
3103  * Returns an error if the new association retransmission value is
3104  * greater than the sum of the retransmission value  of the peer.
3105  * See [SCTP] for more information.
3106  *
3107  */
3108 static int sctp_setsockopt_associnfo(struct sock *sk,
3109 				     struct sctp_assocparams *assocparams,
3110 				     unsigned int optlen)
3111 {
3112 
3113 	struct sctp_association *asoc;
3114 
3115 	if (optlen != sizeof(struct sctp_assocparams))
3116 		return -EINVAL;
3117 
3118 	asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3119 
3120 	if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3121 	    sctp_style(sk, UDP))
3122 		return -EINVAL;
3123 
3124 	/* Set the values to the specific association */
3125 	if (asoc) {
3126 		if (assocparams->sasoc_asocmaxrxt != 0) {
3127 			__u32 path_sum = 0;
3128 			int   paths = 0;
3129 			struct sctp_transport *peer_addr;
3130 
3131 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3132 					transports) {
3133 				path_sum += peer_addr->pathmaxrxt;
3134 				paths++;
3135 			}
3136 
3137 			/* Only validate asocmaxrxt if we have more than
3138 			 * one path/transport.  We do this because path
3139 			 * retransmissions are only counted when we have more
3140 			 * then one path.
3141 			 */
3142 			if (paths > 1 &&
3143 			    assocparams->sasoc_asocmaxrxt > path_sum)
3144 				return -EINVAL;
3145 
3146 			asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3147 		}
3148 
3149 		if (assocparams->sasoc_cookie_life != 0)
3150 			asoc->cookie_life =
3151 				ms_to_ktime(assocparams->sasoc_cookie_life);
3152 	} else {
3153 		/* Set the values to the endpoint */
3154 		struct sctp_sock *sp = sctp_sk(sk);
3155 
3156 		if (assocparams->sasoc_asocmaxrxt != 0)
3157 			sp->assocparams.sasoc_asocmaxrxt =
3158 						assocparams->sasoc_asocmaxrxt;
3159 		if (assocparams->sasoc_cookie_life != 0)
3160 			sp->assocparams.sasoc_cookie_life =
3161 						assocparams->sasoc_cookie_life;
3162 	}
3163 	return 0;
3164 }
3165 
3166 /*
3167  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3168  *
3169  * This socket option is a boolean flag which turns on or off mapped V4
3170  * addresses.  If this option is turned on and the socket is type
3171  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3172  * If this option is turned off, then no mapping will be done of V4
3173  * addresses and a user will receive both PF_INET6 and PF_INET type
3174  * addresses on the socket.
3175  */
3176 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3177 				    unsigned int optlen)
3178 {
3179 	struct sctp_sock *sp = sctp_sk(sk);
3180 
3181 	if (optlen < sizeof(int))
3182 		return -EINVAL;
3183 	if (*val)
3184 		sp->v4mapped = 1;
3185 	else
3186 		sp->v4mapped = 0;
3187 
3188 	return 0;
3189 }
3190 
3191 /*
3192  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3193  * This option will get or set the maximum size to put in any outgoing
3194  * SCTP DATA chunk.  If a message is larger than this size it will be
3195  * fragmented by SCTP into the specified size.  Note that the underlying
3196  * SCTP implementation may fragment into smaller sized chunks when the
3197  * PMTU of the underlying association is smaller than the value set by
3198  * the user.  The default value for this option is '0' which indicates
3199  * the user is NOT limiting fragmentation and only the PMTU will effect
3200  * SCTP's choice of DATA chunk size.  Note also that values set larger
3201  * than the maximum size of an IP datagram will effectively let SCTP
3202  * control fragmentation (i.e. the same as setting this option to 0).
3203  *
3204  * The following structure is used to access and modify this parameter:
3205  *
3206  * struct sctp_assoc_value {
3207  *   sctp_assoc_t assoc_id;
3208  *   uint32_t assoc_value;
3209  * };
3210  *
3211  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3212  *    For one-to-many style sockets this parameter indicates which
3213  *    association the user is performing an action upon.  Note that if
3214  *    this field's value is zero then the endpoints default value is
3215  *    changed (effecting future associations only).
3216  * assoc_value:  This parameter specifies the maximum size in bytes.
3217  */
3218 static int sctp_setsockopt_maxseg(struct sock *sk,
3219 				  struct sctp_assoc_value *params,
3220 				  unsigned int optlen)
3221 {
3222 	struct sctp_sock *sp = sctp_sk(sk);
3223 	struct sctp_association *asoc;
3224 	sctp_assoc_t assoc_id;
3225 	int val;
3226 
3227 	if (optlen == sizeof(int)) {
3228 		pr_warn_ratelimited(DEPRECATED
3229 				    "%s (pid %d) "
3230 				    "Use of int in maxseg socket option.\n"
3231 				    "Use struct sctp_assoc_value instead\n",
3232 				    current->comm, task_pid_nr(current));
3233 		assoc_id = SCTP_FUTURE_ASSOC;
3234 		val = *(int *)params;
3235 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3236 		assoc_id = params->assoc_id;
3237 		val = params->assoc_value;
3238 	} else {
3239 		return -EINVAL;
3240 	}
3241 
3242 	asoc = sctp_id2assoc(sk, assoc_id);
3243 	if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3244 	    sctp_style(sk, UDP))
3245 		return -EINVAL;
3246 
3247 	if (val) {
3248 		int min_len, max_len;
3249 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3250 				 sizeof(struct sctp_data_chunk);
3251 
3252 		min_len = sctp_min_frag_point(sp, datasize);
3253 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3254 
3255 		if (val < min_len || val > max_len)
3256 			return -EINVAL;
3257 	}
3258 
3259 	if (asoc) {
3260 		asoc->user_frag = val;
3261 		sctp_assoc_update_frag_point(asoc);
3262 	} else {
3263 		sp->user_frag = val;
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 
3270 /*
3271  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3272  *
3273  *   Requests that the peer mark the enclosed address as the association
3274  *   primary. The enclosed address must be one of the association's
3275  *   locally bound addresses. The following structure is used to make a
3276  *   set primary request:
3277  */
3278 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3279 					     struct sctp_setpeerprim *prim,
3280 					     unsigned int optlen)
3281 {
3282 	struct sctp_sock	*sp;
3283 	struct sctp_association	*asoc = NULL;
3284 	struct sctp_chunk	*chunk;
3285 	struct sctp_af		*af;
3286 	int 			err;
3287 
3288 	sp = sctp_sk(sk);
3289 
3290 	if (!sp->ep->asconf_enable)
3291 		return -EPERM;
3292 
3293 	if (optlen != sizeof(struct sctp_setpeerprim))
3294 		return -EINVAL;
3295 
3296 	asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3297 	if (!asoc)
3298 		return -EINVAL;
3299 
3300 	if (!asoc->peer.asconf_capable)
3301 		return -EPERM;
3302 
3303 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3304 		return -EPERM;
3305 
3306 	if (!sctp_state(asoc, ESTABLISHED))
3307 		return -ENOTCONN;
3308 
3309 	af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3310 	if (!af)
3311 		return -EINVAL;
3312 
3313 	if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3314 		return -EADDRNOTAVAIL;
3315 
3316 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3317 		return -EADDRNOTAVAIL;
3318 
3319 	/* Allow security module to validate address. */
3320 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3321 					 (struct sockaddr *)&prim->sspp_addr,
3322 					 af->sockaddr_len);
3323 	if (err)
3324 		return err;
3325 
3326 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3327 	chunk = sctp_make_asconf_set_prim(asoc,
3328 					  (union sctp_addr *)&prim->sspp_addr);
3329 	if (!chunk)
3330 		return -ENOMEM;
3331 
3332 	err = sctp_send_asconf(asoc, chunk);
3333 
3334 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3335 
3336 	return err;
3337 }
3338 
3339 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3340 					    struct sctp_setadaptation *adapt,
3341 					    unsigned int optlen)
3342 {
3343 	if (optlen != sizeof(struct sctp_setadaptation))
3344 		return -EINVAL;
3345 
3346 	sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3347 
3348 	return 0;
3349 }
3350 
3351 /*
3352  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3353  *
3354  * The context field in the sctp_sndrcvinfo structure is normally only
3355  * used when a failed message is retrieved holding the value that was
3356  * sent down on the actual send call.  This option allows the setting of
3357  * a default context on an association basis that will be received on
3358  * reading messages from the peer.  This is especially helpful in the
3359  * one-2-many model for an application to keep some reference to an
3360  * internal state machine that is processing messages on the
3361  * association.  Note that the setting of this value only effects
3362  * received messages from the peer and does not effect the value that is
3363  * saved with outbound messages.
3364  */
3365 static int sctp_setsockopt_context(struct sock *sk,
3366 				   struct sctp_assoc_value *params,
3367 				   unsigned int optlen)
3368 {
3369 	struct sctp_sock *sp = sctp_sk(sk);
3370 	struct sctp_association *asoc;
3371 
3372 	if (optlen != sizeof(struct sctp_assoc_value))
3373 		return -EINVAL;
3374 
3375 	asoc = sctp_id2assoc(sk, params->assoc_id);
3376 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3377 	    sctp_style(sk, UDP))
3378 		return -EINVAL;
3379 
3380 	if (asoc) {
3381 		asoc->default_rcv_context = params->assoc_value;
3382 
3383 		return 0;
3384 	}
3385 
3386 	if (sctp_style(sk, TCP))
3387 		params->assoc_id = SCTP_FUTURE_ASSOC;
3388 
3389 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3390 	    params->assoc_id == SCTP_ALL_ASSOC)
3391 		sp->default_rcv_context = params->assoc_value;
3392 
3393 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3394 	    params->assoc_id == SCTP_ALL_ASSOC)
3395 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3396 			asoc->default_rcv_context = params->assoc_value;
3397 
3398 	return 0;
3399 }
3400 
3401 /*
3402  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3403  *
3404  * This options will at a minimum specify if the implementation is doing
3405  * fragmented interleave.  Fragmented interleave, for a one to many
3406  * socket, is when subsequent calls to receive a message may return
3407  * parts of messages from different associations.  Some implementations
3408  * may allow you to turn this value on or off.  If so, when turned off,
3409  * no fragment interleave will occur (which will cause a head of line
3410  * blocking amongst multiple associations sharing the same one to many
3411  * socket).  When this option is turned on, then each receive call may
3412  * come from a different association (thus the user must receive data
3413  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3414  * association each receive belongs to.
3415  *
3416  * This option takes a boolean value.  A non-zero value indicates that
3417  * fragmented interleave is on.  A value of zero indicates that
3418  * fragmented interleave is off.
3419  *
3420  * Note that it is important that an implementation that allows this
3421  * option to be turned on, have it off by default.  Otherwise an unaware
3422  * application using the one to many model may become confused and act
3423  * incorrectly.
3424  */
3425 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3426 					       unsigned int optlen)
3427 {
3428 	if (optlen != sizeof(int))
3429 		return -EINVAL;
3430 
3431 	sctp_sk(sk)->frag_interleave = !!*val;
3432 
3433 	if (!sctp_sk(sk)->frag_interleave)
3434 		sctp_sk(sk)->ep->intl_enable = 0;
3435 
3436 	return 0;
3437 }
3438 
3439 /*
3440  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3441  *       (SCTP_PARTIAL_DELIVERY_POINT)
3442  *
3443  * This option will set or get the SCTP partial delivery point.  This
3444  * point is the size of a message where the partial delivery API will be
3445  * invoked to help free up rwnd space for the peer.  Setting this to a
3446  * lower value will cause partial deliveries to happen more often.  The
3447  * calls argument is an integer that sets or gets the partial delivery
3448  * point.  Note also that the call will fail if the user attempts to set
3449  * this value larger than the socket receive buffer size.
3450  *
3451  * Note that any single message having a length smaller than or equal to
3452  * the SCTP partial delivery point will be delivered in one single read
3453  * call as long as the user provided buffer is large enough to hold the
3454  * message.
3455  */
3456 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3457 						  unsigned int optlen)
3458 {
3459 	if (optlen != sizeof(u32))
3460 		return -EINVAL;
3461 
3462 	/* Note: We double the receive buffer from what the user sets
3463 	 * it to be, also initial rwnd is based on rcvbuf/2.
3464 	 */
3465 	if (*val > (sk->sk_rcvbuf >> 1))
3466 		return -EINVAL;
3467 
3468 	sctp_sk(sk)->pd_point = *val;
3469 
3470 	return 0; /* is this the right error code? */
3471 }
3472 
3473 /*
3474  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3475  *
3476  * This option will allow a user to change the maximum burst of packets
3477  * that can be emitted by this association.  Note that the default value
3478  * is 4, and some implementations may restrict this setting so that it
3479  * can only be lowered.
3480  *
3481  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3482  * future associations inheriting the socket value.
3483  */
3484 static int sctp_setsockopt_maxburst(struct sock *sk,
3485 				    struct sctp_assoc_value *params,
3486 				    unsigned int optlen)
3487 {
3488 	struct sctp_sock *sp = sctp_sk(sk);
3489 	struct sctp_association *asoc;
3490 	sctp_assoc_t assoc_id;
3491 	u32 assoc_value;
3492 
3493 	if (optlen == sizeof(int)) {
3494 		pr_warn_ratelimited(DEPRECATED
3495 				    "%s (pid %d) "
3496 				    "Use of int in max_burst socket option deprecated.\n"
3497 				    "Use struct sctp_assoc_value instead\n",
3498 				    current->comm, task_pid_nr(current));
3499 		assoc_id = SCTP_FUTURE_ASSOC;
3500 		assoc_value = *((int *)params);
3501 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3502 		assoc_id = params->assoc_id;
3503 		assoc_value = params->assoc_value;
3504 	} else
3505 		return -EINVAL;
3506 
3507 	asoc = sctp_id2assoc(sk, assoc_id);
3508 	if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3509 		return -EINVAL;
3510 
3511 	if (asoc) {
3512 		asoc->max_burst = assoc_value;
3513 
3514 		return 0;
3515 	}
3516 
3517 	if (sctp_style(sk, TCP))
3518 		assoc_id = SCTP_FUTURE_ASSOC;
3519 
3520 	if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3521 		sp->max_burst = assoc_value;
3522 
3523 	if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3524 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3525 			asoc->max_burst = assoc_value;
3526 
3527 	return 0;
3528 }
3529 
3530 /*
3531  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3532  *
3533  * This set option adds a chunk type that the user is requesting to be
3534  * received only in an authenticated way.  Changes to the list of chunks
3535  * will only effect future associations on the socket.
3536  */
3537 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3538 				      struct sctp_authchunk *val,
3539 				      unsigned int optlen)
3540 {
3541 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3542 
3543 	if (!ep->auth_enable)
3544 		return -EACCES;
3545 
3546 	if (optlen != sizeof(struct sctp_authchunk))
3547 		return -EINVAL;
3548 
3549 	switch (val->sauth_chunk) {
3550 	case SCTP_CID_INIT:
3551 	case SCTP_CID_INIT_ACK:
3552 	case SCTP_CID_SHUTDOWN_COMPLETE:
3553 	case SCTP_CID_AUTH:
3554 		return -EINVAL;
3555 	}
3556 
3557 	/* add this chunk id to the endpoint */
3558 	return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3559 }
3560 
3561 /*
3562  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3563  *
3564  * This option gets or sets the list of HMAC algorithms that the local
3565  * endpoint requires the peer to use.
3566  */
3567 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3568 				      struct sctp_hmacalgo *hmacs,
3569 				      unsigned int optlen)
3570 {
3571 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3572 	u32 idents;
3573 
3574 	if (!ep->auth_enable)
3575 		return -EACCES;
3576 
3577 	if (optlen < sizeof(struct sctp_hmacalgo))
3578 		return -EINVAL;
3579 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3580 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3581 
3582 	idents = hmacs->shmac_num_idents;
3583 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3584 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3585 		return -EINVAL;
3586 
3587 	return sctp_auth_ep_set_hmacs(ep, hmacs);
3588 }
3589 
3590 /*
3591  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3592  *
3593  * This option will set a shared secret key which is used to build an
3594  * association shared key.
3595  */
3596 static int sctp_setsockopt_auth_key(struct sock *sk,
3597 				    struct sctp_authkey *authkey,
3598 				    unsigned int optlen)
3599 {
3600 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3601 	struct sctp_association *asoc;
3602 	int ret = -EINVAL;
3603 
3604 	if (optlen <= sizeof(struct sctp_authkey))
3605 		return -EINVAL;
3606 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3607 	 * this.
3608 	 */
3609 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3610 
3611 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3612 		goto out;
3613 
3614 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3615 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3616 	    sctp_style(sk, UDP))
3617 		goto out;
3618 
3619 	if (asoc) {
3620 		ret = sctp_auth_set_key(ep, asoc, authkey);
3621 		goto out;
3622 	}
3623 
3624 	if (sctp_style(sk, TCP))
3625 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3626 
3627 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3628 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3629 		ret = sctp_auth_set_key(ep, asoc, authkey);
3630 		if (ret)
3631 			goto out;
3632 	}
3633 
3634 	ret = 0;
3635 
3636 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3637 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3638 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3639 			int res = sctp_auth_set_key(ep, asoc, authkey);
3640 
3641 			if (res && !ret)
3642 				ret = res;
3643 		}
3644 	}
3645 
3646 out:
3647 	memzero_explicit(authkey, optlen);
3648 	return ret;
3649 }
3650 
3651 /*
3652  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3653  *
3654  * This option will get or set the active shared key to be used to build
3655  * the association shared key.
3656  */
3657 static int sctp_setsockopt_active_key(struct sock *sk,
3658 				      struct sctp_authkeyid *val,
3659 				      unsigned int optlen)
3660 {
3661 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3662 	struct sctp_association *asoc;
3663 	int ret = 0;
3664 
3665 	if (optlen != sizeof(struct sctp_authkeyid))
3666 		return -EINVAL;
3667 
3668 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3669 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3670 	    sctp_style(sk, UDP))
3671 		return -EINVAL;
3672 
3673 	if (asoc)
3674 		return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3675 
3676 	if (sctp_style(sk, TCP))
3677 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3678 
3679 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3680 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3681 		ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3682 		if (ret)
3683 			return ret;
3684 	}
3685 
3686 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3687 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3688 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3689 			int res = sctp_auth_set_active_key(ep, asoc,
3690 							   val->scact_keynumber);
3691 
3692 			if (res && !ret)
3693 				ret = res;
3694 		}
3695 	}
3696 
3697 	return ret;
3698 }
3699 
3700 /*
3701  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3702  *
3703  * This set option will delete a shared secret key from use.
3704  */
3705 static int sctp_setsockopt_del_key(struct sock *sk,
3706 				   struct sctp_authkeyid *val,
3707 				   unsigned int optlen)
3708 {
3709 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3710 	struct sctp_association *asoc;
3711 	int ret = 0;
3712 
3713 	if (optlen != sizeof(struct sctp_authkeyid))
3714 		return -EINVAL;
3715 
3716 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3717 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3718 	    sctp_style(sk, UDP))
3719 		return -EINVAL;
3720 
3721 	if (asoc)
3722 		return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3723 
3724 	if (sctp_style(sk, TCP))
3725 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3726 
3727 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3728 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3729 		ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3730 		if (ret)
3731 			return ret;
3732 	}
3733 
3734 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3735 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3736 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3737 			int res = sctp_auth_del_key_id(ep, asoc,
3738 						       val->scact_keynumber);
3739 
3740 			if (res && !ret)
3741 				ret = res;
3742 		}
3743 	}
3744 
3745 	return ret;
3746 }
3747 
3748 /*
3749  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3750  *
3751  * This set option will deactivate a shared secret key.
3752  */
3753 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3754 					  struct sctp_authkeyid *val,
3755 					  unsigned int optlen)
3756 {
3757 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3758 	struct sctp_association *asoc;
3759 	int ret = 0;
3760 
3761 	if (optlen != sizeof(struct sctp_authkeyid))
3762 		return -EINVAL;
3763 
3764 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3765 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3766 	    sctp_style(sk, UDP))
3767 		return -EINVAL;
3768 
3769 	if (asoc)
3770 		return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3771 
3772 	if (sctp_style(sk, TCP))
3773 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3774 
3775 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3776 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3777 		ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3778 		if (ret)
3779 			return ret;
3780 	}
3781 
3782 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3783 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3784 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3785 			int res = sctp_auth_deact_key_id(ep, asoc,
3786 							 val->scact_keynumber);
3787 
3788 			if (res && !ret)
3789 				ret = res;
3790 		}
3791 	}
3792 
3793 	return ret;
3794 }
3795 
3796 /*
3797  * 8.1.23 SCTP_AUTO_ASCONF
3798  *
3799  * This option will enable or disable the use of the automatic generation of
3800  * ASCONF chunks to add and delete addresses to an existing association.  Note
3801  * that this option has two caveats namely: a) it only affects sockets that
3802  * are bound to all addresses available to the SCTP stack, and b) the system
3803  * administrator may have an overriding control that turns the ASCONF feature
3804  * off no matter what setting the socket option may have.
3805  * This option expects an integer boolean flag, where a non-zero value turns on
3806  * the option, and a zero value turns off the option.
3807  * Note. In this implementation, socket operation overrides default parameter
3808  * being set by sysctl as well as FreeBSD implementation
3809  */
3810 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3811 					unsigned int optlen)
3812 {
3813 	struct sctp_sock *sp = sctp_sk(sk);
3814 
3815 	if (optlen < sizeof(int))
3816 		return -EINVAL;
3817 	if (!sctp_is_ep_boundall(sk) && *val)
3818 		return -EINVAL;
3819 	if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3820 		return 0;
3821 
3822 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3823 	if (*val == 0 && sp->do_auto_asconf) {
3824 		list_del(&sp->auto_asconf_list);
3825 		sp->do_auto_asconf = 0;
3826 	} else if (*val && !sp->do_auto_asconf) {
3827 		list_add_tail(&sp->auto_asconf_list,
3828 		    &sock_net(sk)->sctp.auto_asconf_splist);
3829 		sp->do_auto_asconf = 1;
3830 	}
3831 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3832 	return 0;
3833 }
3834 
3835 /*
3836  * SCTP_PEER_ADDR_THLDS
3837  *
3838  * This option allows us to alter the partially failed threshold for one or all
3839  * transports in an association.  See Section 6.1 of:
3840  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3841  */
3842 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3843 					    struct sctp_paddrthlds_v2 *val,
3844 					    unsigned int optlen, bool v2)
3845 {
3846 	struct sctp_transport *trans;
3847 	struct sctp_association *asoc;
3848 	int len;
3849 
3850 	len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3851 	if (optlen < len)
3852 		return -EINVAL;
3853 
3854 	if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3855 		return -EINVAL;
3856 
3857 	if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3858 		trans = sctp_addr_id2transport(sk, &val->spt_address,
3859 					       val->spt_assoc_id);
3860 		if (!trans)
3861 			return -ENOENT;
3862 
3863 		if (val->spt_pathmaxrxt)
3864 			trans->pathmaxrxt = val->spt_pathmaxrxt;
3865 		if (v2)
3866 			trans->ps_retrans = val->spt_pathcpthld;
3867 		trans->pf_retrans = val->spt_pathpfthld;
3868 
3869 		return 0;
3870 	}
3871 
3872 	asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3873 	if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3874 	    sctp_style(sk, UDP))
3875 		return -EINVAL;
3876 
3877 	if (asoc) {
3878 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3879 				    transports) {
3880 			if (val->spt_pathmaxrxt)
3881 				trans->pathmaxrxt = val->spt_pathmaxrxt;
3882 			if (v2)
3883 				trans->ps_retrans = val->spt_pathcpthld;
3884 			trans->pf_retrans = val->spt_pathpfthld;
3885 		}
3886 
3887 		if (val->spt_pathmaxrxt)
3888 			asoc->pathmaxrxt = val->spt_pathmaxrxt;
3889 		if (v2)
3890 			asoc->ps_retrans = val->spt_pathcpthld;
3891 		asoc->pf_retrans = val->spt_pathpfthld;
3892 	} else {
3893 		struct sctp_sock *sp = sctp_sk(sk);
3894 
3895 		if (val->spt_pathmaxrxt)
3896 			sp->pathmaxrxt = val->spt_pathmaxrxt;
3897 		if (v2)
3898 			sp->ps_retrans = val->spt_pathcpthld;
3899 		sp->pf_retrans = val->spt_pathpfthld;
3900 	}
3901 
3902 	return 0;
3903 }
3904 
3905 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3906 				       unsigned int optlen)
3907 {
3908 	if (optlen < sizeof(int))
3909 		return -EINVAL;
3910 
3911 	sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3912 
3913 	return 0;
3914 }
3915 
3916 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3917 				       unsigned int optlen)
3918 {
3919 	if (optlen < sizeof(int))
3920 		return -EINVAL;
3921 
3922 	sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3923 
3924 	return 0;
3925 }
3926 
3927 static int sctp_setsockopt_pr_supported(struct sock *sk,
3928 					struct sctp_assoc_value *params,
3929 					unsigned int optlen)
3930 {
3931 	struct sctp_association *asoc;
3932 
3933 	if (optlen != sizeof(*params))
3934 		return -EINVAL;
3935 
3936 	asoc = sctp_id2assoc(sk, params->assoc_id);
3937 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3938 	    sctp_style(sk, UDP))
3939 		return -EINVAL;
3940 
3941 	sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3942 
3943 	return 0;
3944 }
3945 
3946 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3947 					  struct sctp_default_prinfo *info,
3948 					  unsigned int optlen)
3949 {
3950 	struct sctp_sock *sp = sctp_sk(sk);
3951 	struct sctp_association *asoc;
3952 	int retval = -EINVAL;
3953 
3954 	if (optlen != sizeof(*info))
3955 		goto out;
3956 
3957 	if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3958 		goto out;
3959 
3960 	if (info->pr_policy == SCTP_PR_SCTP_NONE)
3961 		info->pr_value = 0;
3962 
3963 	asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3964 	if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3965 	    sctp_style(sk, UDP))
3966 		goto out;
3967 
3968 	retval = 0;
3969 
3970 	if (asoc) {
3971 		SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3972 		asoc->default_timetolive = info->pr_value;
3973 		goto out;
3974 	}
3975 
3976 	if (sctp_style(sk, TCP))
3977 		info->pr_assoc_id = SCTP_FUTURE_ASSOC;
3978 
3979 	if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
3980 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
3981 		SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
3982 		sp->default_timetolive = info->pr_value;
3983 	}
3984 
3985 	if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
3986 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
3987 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3988 			SCTP_PR_SET_POLICY(asoc->default_flags,
3989 					   info->pr_policy);
3990 			asoc->default_timetolive = info->pr_value;
3991 		}
3992 	}
3993 
3994 out:
3995 	return retval;
3996 }
3997 
3998 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3999 					      struct sctp_assoc_value *params,
4000 					      unsigned int optlen)
4001 {
4002 	struct sctp_association *asoc;
4003 	int retval = -EINVAL;
4004 
4005 	if (optlen != sizeof(*params))
4006 		goto out;
4007 
4008 	asoc = sctp_id2assoc(sk, params->assoc_id);
4009 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4010 	    sctp_style(sk, UDP))
4011 		goto out;
4012 
4013 	sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4014 
4015 	retval = 0;
4016 
4017 out:
4018 	return retval;
4019 }
4020 
4021 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4022 					   struct sctp_assoc_value *params,
4023 					   unsigned int optlen)
4024 {
4025 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4026 	struct sctp_association *asoc;
4027 	int retval = -EINVAL;
4028 
4029 	if (optlen != sizeof(*params))
4030 		goto out;
4031 
4032 	if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4033 		goto out;
4034 
4035 	asoc = sctp_id2assoc(sk, params->assoc_id);
4036 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4037 	    sctp_style(sk, UDP))
4038 		goto out;
4039 
4040 	retval = 0;
4041 
4042 	if (asoc) {
4043 		asoc->strreset_enable = params->assoc_value;
4044 		goto out;
4045 	}
4046 
4047 	if (sctp_style(sk, TCP))
4048 		params->assoc_id = SCTP_FUTURE_ASSOC;
4049 
4050 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4051 	    params->assoc_id == SCTP_ALL_ASSOC)
4052 		ep->strreset_enable = params->assoc_value;
4053 
4054 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4055 	    params->assoc_id == SCTP_ALL_ASSOC)
4056 		list_for_each_entry(asoc, &ep->asocs, asocs)
4057 			asoc->strreset_enable = params->assoc_value;
4058 
4059 out:
4060 	return retval;
4061 }
4062 
4063 static int sctp_setsockopt_reset_streams(struct sock *sk,
4064 					 struct sctp_reset_streams *params,
4065 					 unsigned int optlen)
4066 {
4067 	struct sctp_association *asoc;
4068 
4069 	if (optlen < sizeof(*params))
4070 		return -EINVAL;
4071 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4072 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4073 					     sizeof(__u16) * sizeof(*params));
4074 
4075 	if (params->srs_number_streams * sizeof(__u16) >
4076 	    optlen - sizeof(*params))
4077 		return -EINVAL;
4078 
4079 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4080 	if (!asoc)
4081 		return -EINVAL;
4082 
4083 	return sctp_send_reset_streams(asoc, params);
4084 }
4085 
4086 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4087 				       unsigned int optlen)
4088 {
4089 	struct sctp_association *asoc;
4090 
4091 	if (optlen != sizeof(*associd))
4092 		return -EINVAL;
4093 
4094 	asoc = sctp_id2assoc(sk, *associd);
4095 	if (!asoc)
4096 		return -EINVAL;
4097 
4098 	return sctp_send_reset_assoc(asoc);
4099 }
4100 
4101 static int sctp_setsockopt_add_streams(struct sock *sk,
4102 				       struct sctp_add_streams *params,
4103 				       unsigned int optlen)
4104 {
4105 	struct sctp_association *asoc;
4106 
4107 	if (optlen != sizeof(*params))
4108 		return -EINVAL;
4109 
4110 	asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4111 	if (!asoc)
4112 		return -EINVAL;
4113 
4114 	return sctp_send_add_streams(asoc, params);
4115 }
4116 
4117 static int sctp_setsockopt_scheduler(struct sock *sk,
4118 				     struct sctp_assoc_value *params,
4119 				     unsigned int optlen)
4120 {
4121 	struct sctp_sock *sp = sctp_sk(sk);
4122 	struct sctp_association *asoc;
4123 	int retval = 0;
4124 
4125 	if (optlen < sizeof(*params))
4126 		return -EINVAL;
4127 
4128 	if (params->assoc_value > SCTP_SS_MAX)
4129 		return -EINVAL;
4130 
4131 	asoc = sctp_id2assoc(sk, params->assoc_id);
4132 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4133 	    sctp_style(sk, UDP))
4134 		return -EINVAL;
4135 
4136 	if (asoc)
4137 		return sctp_sched_set_sched(asoc, params->assoc_value);
4138 
4139 	if (sctp_style(sk, TCP))
4140 		params->assoc_id = SCTP_FUTURE_ASSOC;
4141 
4142 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4143 	    params->assoc_id == SCTP_ALL_ASSOC)
4144 		sp->default_ss = params->assoc_value;
4145 
4146 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4147 	    params->assoc_id == SCTP_ALL_ASSOC) {
4148 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4149 			int ret = sctp_sched_set_sched(asoc,
4150 						       params->assoc_value);
4151 
4152 			if (ret && !retval)
4153 				retval = ret;
4154 		}
4155 	}
4156 
4157 	return retval;
4158 }
4159 
4160 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4161 					   struct sctp_stream_value *params,
4162 					   unsigned int optlen)
4163 {
4164 	struct sctp_association *asoc;
4165 	int retval = -EINVAL;
4166 
4167 	if (optlen < sizeof(*params))
4168 		goto out;
4169 
4170 	asoc = sctp_id2assoc(sk, params->assoc_id);
4171 	if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4172 	    sctp_style(sk, UDP))
4173 		goto out;
4174 
4175 	if (asoc) {
4176 		retval = sctp_sched_set_value(asoc, params->stream_id,
4177 					      params->stream_value, GFP_KERNEL);
4178 		goto out;
4179 	}
4180 
4181 	retval = 0;
4182 
4183 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4184 		int ret = sctp_sched_set_value(asoc, params->stream_id,
4185 					       params->stream_value,
4186 					       GFP_KERNEL);
4187 		if (ret && !retval) /* try to return the 1st error. */
4188 			retval = ret;
4189 	}
4190 
4191 out:
4192 	return retval;
4193 }
4194 
4195 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4196 						  struct sctp_assoc_value *p,
4197 						  unsigned int optlen)
4198 {
4199 	struct sctp_sock *sp = sctp_sk(sk);
4200 	struct sctp_association *asoc;
4201 
4202 	if (optlen < sizeof(*p))
4203 		return -EINVAL;
4204 
4205 	asoc = sctp_id2assoc(sk, p->assoc_id);
4206 	if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4207 		return -EINVAL;
4208 
4209 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4210 		return -EPERM;
4211 	}
4212 
4213 	sp->ep->intl_enable = !!p->assoc_value;
4214 	return 0;
4215 }
4216 
4217 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4218 				      unsigned int optlen)
4219 {
4220 	if (!sctp_style(sk, TCP))
4221 		return -EOPNOTSUPP;
4222 
4223 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4224 		return -EFAULT;
4225 
4226 	if (optlen < sizeof(int))
4227 		return -EINVAL;
4228 
4229 	sctp_sk(sk)->reuse = !!*val;
4230 
4231 	return 0;
4232 }
4233 
4234 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4235 					struct sctp_association *asoc)
4236 {
4237 	struct sctp_ulpevent *event;
4238 
4239 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4240 
4241 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4242 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4243 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4244 					GFP_USER | __GFP_NOWARN);
4245 			if (!event)
4246 				return -ENOMEM;
4247 
4248 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4249 		}
4250 	}
4251 
4252 	return 0;
4253 }
4254 
4255 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4256 				 unsigned int optlen)
4257 {
4258 	struct sctp_sock *sp = sctp_sk(sk);
4259 	struct sctp_association *asoc;
4260 	int retval = 0;
4261 
4262 	if (optlen < sizeof(*param))
4263 		return -EINVAL;
4264 
4265 	if (param->se_type < SCTP_SN_TYPE_BASE ||
4266 	    param->se_type > SCTP_SN_TYPE_MAX)
4267 		return -EINVAL;
4268 
4269 	asoc = sctp_id2assoc(sk, param->se_assoc_id);
4270 	if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4271 	    sctp_style(sk, UDP))
4272 		return -EINVAL;
4273 
4274 	if (asoc)
4275 		return sctp_assoc_ulpevent_type_set(param, asoc);
4276 
4277 	if (sctp_style(sk, TCP))
4278 		param->se_assoc_id = SCTP_FUTURE_ASSOC;
4279 
4280 	if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4281 	    param->se_assoc_id == SCTP_ALL_ASSOC)
4282 		sctp_ulpevent_type_set(&sp->subscribe,
4283 				       param->se_type, param->se_on);
4284 
4285 	if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4286 	    param->se_assoc_id == SCTP_ALL_ASSOC) {
4287 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4288 			int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4289 
4290 			if (ret && !retval)
4291 				retval = ret;
4292 		}
4293 	}
4294 
4295 	return retval;
4296 }
4297 
4298 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4299 					    struct sctp_assoc_value *params,
4300 					    unsigned int optlen)
4301 {
4302 	struct sctp_association *asoc;
4303 	struct sctp_endpoint *ep;
4304 	int retval = -EINVAL;
4305 
4306 	if (optlen != sizeof(*params))
4307 		goto out;
4308 
4309 	asoc = sctp_id2assoc(sk, params->assoc_id);
4310 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4311 	    sctp_style(sk, UDP))
4312 		goto out;
4313 
4314 	ep = sctp_sk(sk)->ep;
4315 	ep->asconf_enable = !!params->assoc_value;
4316 
4317 	if (ep->asconf_enable && ep->auth_enable) {
4318 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4319 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4320 	}
4321 
4322 	retval = 0;
4323 
4324 out:
4325 	return retval;
4326 }
4327 
4328 static int sctp_setsockopt_auth_supported(struct sock *sk,
4329 					  struct sctp_assoc_value *params,
4330 					  unsigned int optlen)
4331 {
4332 	struct sctp_association *asoc;
4333 	struct sctp_endpoint *ep;
4334 	int retval = -EINVAL;
4335 
4336 	if (optlen != sizeof(*params))
4337 		goto out;
4338 
4339 	asoc = sctp_id2assoc(sk, params->assoc_id);
4340 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4341 	    sctp_style(sk, UDP))
4342 		goto out;
4343 
4344 	ep = sctp_sk(sk)->ep;
4345 	if (params->assoc_value) {
4346 		retval = sctp_auth_init(ep, GFP_KERNEL);
4347 		if (retval)
4348 			goto out;
4349 		if (ep->asconf_enable) {
4350 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4351 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4352 		}
4353 	}
4354 
4355 	ep->auth_enable = !!params->assoc_value;
4356 	retval = 0;
4357 
4358 out:
4359 	return retval;
4360 }
4361 
4362 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4363 					 struct sctp_assoc_value *params,
4364 					 unsigned int optlen)
4365 {
4366 	struct sctp_association *asoc;
4367 	int retval = -EINVAL;
4368 
4369 	if (optlen != sizeof(*params))
4370 		goto out;
4371 
4372 	asoc = sctp_id2assoc(sk, params->assoc_id);
4373 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4374 	    sctp_style(sk, UDP))
4375 		goto out;
4376 
4377 	sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4378 	retval = 0;
4379 
4380 out:
4381 	return retval;
4382 }
4383 
4384 static int sctp_setsockopt_pf_expose(struct sock *sk,
4385 				     struct sctp_assoc_value *params,
4386 				     unsigned int optlen)
4387 {
4388 	struct sctp_association *asoc;
4389 	int retval = -EINVAL;
4390 
4391 	if (optlen != sizeof(*params))
4392 		goto out;
4393 
4394 	if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4395 		goto out;
4396 
4397 	asoc = sctp_id2assoc(sk, params->assoc_id);
4398 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4399 	    sctp_style(sk, UDP))
4400 		goto out;
4401 
4402 	if (asoc)
4403 		asoc->pf_expose = params->assoc_value;
4404 	else
4405 		sctp_sk(sk)->pf_expose = params->assoc_value;
4406 	retval = 0;
4407 
4408 out:
4409 	return retval;
4410 }
4411 
4412 /* API 6.2 setsockopt(), getsockopt()
4413  *
4414  * Applications use setsockopt() and getsockopt() to set or retrieve
4415  * socket options.  Socket options are used to change the default
4416  * behavior of sockets calls.  They are described in Section 7.
4417  *
4418  * The syntax is:
4419  *
4420  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4421  *                    int __user *optlen);
4422  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4423  *                    int optlen);
4424  *
4425  *   sd      - the socket descript.
4426  *   level   - set to IPPROTO_SCTP for all SCTP options.
4427  *   optname - the option name.
4428  *   optval  - the buffer to store the value of the option.
4429  *   optlen  - the size of the buffer.
4430  */
4431 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4432 			   char __user *optval, unsigned int optlen)
4433 {
4434 	void *kopt = NULL;
4435 	int retval = 0;
4436 
4437 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4438 
4439 	/* I can hardly begin to describe how wrong this is.  This is
4440 	 * so broken as to be worse than useless.  The API draft
4441 	 * REALLY is NOT helpful here...  I am not convinced that the
4442 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4443 	 * are at all well-founded.
4444 	 */
4445 	if (level != SOL_SCTP) {
4446 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4447 
4448 		return af->setsockopt(sk, level, optname, optval, optlen);
4449 	}
4450 
4451 	if (optlen > 0) {
4452 		kopt = memdup_user(optval, optlen);
4453 		if (IS_ERR(kopt))
4454 			return PTR_ERR(kopt);
4455 	}
4456 
4457 	lock_sock(sk);
4458 
4459 	switch (optname) {
4460 	case SCTP_SOCKOPT_BINDX_ADD:
4461 		/* 'optlen' is the size of the addresses buffer. */
4462 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4463 					       SCTP_BINDX_ADD_ADDR);
4464 		break;
4465 
4466 	case SCTP_SOCKOPT_BINDX_REM:
4467 		/* 'optlen' is the size of the addresses buffer. */
4468 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4469 					       SCTP_BINDX_REM_ADDR);
4470 		break;
4471 
4472 	case SCTP_SOCKOPT_CONNECTX_OLD:
4473 		/* 'optlen' is the size of the addresses buffer. */
4474 		retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4475 		break;
4476 
4477 	case SCTP_SOCKOPT_CONNECTX:
4478 		/* 'optlen' is the size of the addresses buffer. */
4479 		retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4480 		break;
4481 
4482 	case SCTP_DISABLE_FRAGMENTS:
4483 		retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4484 		break;
4485 
4486 	case SCTP_EVENTS:
4487 		retval = sctp_setsockopt_events(sk, kopt, optlen);
4488 		break;
4489 
4490 	case SCTP_AUTOCLOSE:
4491 		retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4492 		break;
4493 
4494 	case SCTP_PEER_ADDR_PARAMS:
4495 		retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4496 		break;
4497 
4498 	case SCTP_DELAYED_SACK:
4499 		retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4500 		break;
4501 	case SCTP_PARTIAL_DELIVERY_POINT:
4502 		retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4503 		break;
4504 
4505 	case SCTP_INITMSG:
4506 		retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4507 		break;
4508 	case SCTP_DEFAULT_SEND_PARAM:
4509 		retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4510 		break;
4511 	case SCTP_DEFAULT_SNDINFO:
4512 		retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4513 		break;
4514 	case SCTP_PRIMARY_ADDR:
4515 		retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4516 		break;
4517 	case SCTP_SET_PEER_PRIMARY_ADDR:
4518 		retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4519 		break;
4520 	case SCTP_NODELAY:
4521 		retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4522 		break;
4523 	case SCTP_RTOINFO:
4524 		retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4525 		break;
4526 	case SCTP_ASSOCINFO:
4527 		retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4528 		break;
4529 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4530 		retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4531 		break;
4532 	case SCTP_MAXSEG:
4533 		retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4534 		break;
4535 	case SCTP_ADAPTATION_LAYER:
4536 		retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4537 		break;
4538 	case SCTP_CONTEXT:
4539 		retval = sctp_setsockopt_context(sk, kopt, optlen);
4540 		break;
4541 	case SCTP_FRAGMENT_INTERLEAVE:
4542 		retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4543 		break;
4544 	case SCTP_MAX_BURST:
4545 		retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4546 		break;
4547 	case SCTP_AUTH_CHUNK:
4548 		retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4549 		break;
4550 	case SCTP_HMAC_IDENT:
4551 		retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4552 		break;
4553 	case SCTP_AUTH_KEY:
4554 		retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4555 		break;
4556 	case SCTP_AUTH_ACTIVE_KEY:
4557 		retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4558 		break;
4559 	case SCTP_AUTH_DELETE_KEY:
4560 		retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4561 		break;
4562 	case SCTP_AUTH_DEACTIVATE_KEY:
4563 		retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4564 		break;
4565 	case SCTP_AUTO_ASCONF:
4566 		retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4567 		break;
4568 	case SCTP_PEER_ADDR_THLDS:
4569 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4570 							  false);
4571 		break;
4572 	case SCTP_PEER_ADDR_THLDS_V2:
4573 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4574 							  true);
4575 		break;
4576 	case SCTP_RECVRCVINFO:
4577 		retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4578 		break;
4579 	case SCTP_RECVNXTINFO:
4580 		retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4581 		break;
4582 	case SCTP_PR_SUPPORTED:
4583 		retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4584 		break;
4585 	case SCTP_DEFAULT_PRINFO:
4586 		retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4587 		break;
4588 	case SCTP_RECONFIG_SUPPORTED:
4589 		retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4590 		break;
4591 	case SCTP_ENABLE_STREAM_RESET:
4592 		retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4593 		break;
4594 	case SCTP_RESET_STREAMS:
4595 		retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4596 		break;
4597 	case SCTP_RESET_ASSOC:
4598 		retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4599 		break;
4600 	case SCTP_ADD_STREAMS:
4601 		retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4602 		break;
4603 	case SCTP_STREAM_SCHEDULER:
4604 		retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4605 		break;
4606 	case SCTP_STREAM_SCHEDULER_VALUE:
4607 		retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4608 		break;
4609 	case SCTP_INTERLEAVING_SUPPORTED:
4610 		retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4611 								optlen);
4612 		break;
4613 	case SCTP_REUSE_PORT:
4614 		retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4615 		break;
4616 	case SCTP_EVENT:
4617 		retval = sctp_setsockopt_event(sk, kopt, optlen);
4618 		break;
4619 	case SCTP_ASCONF_SUPPORTED:
4620 		retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4621 		break;
4622 	case SCTP_AUTH_SUPPORTED:
4623 		retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4624 		break;
4625 	case SCTP_ECN_SUPPORTED:
4626 		retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4627 		break;
4628 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4629 		retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4630 		break;
4631 	default:
4632 		retval = -ENOPROTOOPT;
4633 		break;
4634 	}
4635 
4636 	release_sock(sk);
4637 	kfree(kopt);
4638 	return retval;
4639 }
4640 
4641 /* API 3.1.6 connect() - UDP Style Syntax
4642  *
4643  * An application may use the connect() call in the UDP model to initiate an
4644  * association without sending data.
4645  *
4646  * The syntax is:
4647  *
4648  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4649  *
4650  * sd: the socket descriptor to have a new association added to.
4651  *
4652  * nam: the address structure (either struct sockaddr_in or struct
4653  *    sockaddr_in6 defined in RFC2553 [7]).
4654  *
4655  * len: the size of the address.
4656  */
4657 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4658 			int addr_len, int flags)
4659 {
4660 	struct sctp_af *af;
4661 	int err = -EINVAL;
4662 
4663 	lock_sock(sk);
4664 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4665 		 addr, addr_len);
4666 
4667 	/* Validate addr_len before calling common connect/connectx routine. */
4668 	af = sctp_get_af_specific(addr->sa_family);
4669 	if (af && addr_len >= af->sockaddr_len)
4670 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4671 
4672 	release_sock(sk);
4673 	return err;
4674 }
4675 
4676 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4677 		      int addr_len, int flags)
4678 {
4679 	if (addr_len < sizeof(uaddr->sa_family))
4680 		return -EINVAL;
4681 
4682 	if (uaddr->sa_family == AF_UNSPEC)
4683 		return -EOPNOTSUPP;
4684 
4685 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4686 }
4687 
4688 /* FIXME: Write comments. */
4689 static int sctp_disconnect(struct sock *sk, int flags)
4690 {
4691 	return -EOPNOTSUPP; /* STUB */
4692 }
4693 
4694 /* 4.1.4 accept() - TCP Style Syntax
4695  *
4696  * Applications use accept() call to remove an established SCTP
4697  * association from the accept queue of the endpoint.  A new socket
4698  * descriptor will be returned from accept() to represent the newly
4699  * formed association.
4700  */
4701 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4702 {
4703 	struct sctp_sock *sp;
4704 	struct sctp_endpoint *ep;
4705 	struct sock *newsk = NULL;
4706 	struct sctp_association *asoc;
4707 	long timeo;
4708 	int error = 0;
4709 
4710 	lock_sock(sk);
4711 
4712 	sp = sctp_sk(sk);
4713 	ep = sp->ep;
4714 
4715 	if (!sctp_style(sk, TCP)) {
4716 		error = -EOPNOTSUPP;
4717 		goto out;
4718 	}
4719 
4720 	if (!sctp_sstate(sk, LISTENING)) {
4721 		error = -EINVAL;
4722 		goto out;
4723 	}
4724 
4725 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4726 
4727 	error = sctp_wait_for_accept(sk, timeo);
4728 	if (error)
4729 		goto out;
4730 
4731 	/* We treat the list of associations on the endpoint as the accept
4732 	 * queue and pick the first association on the list.
4733 	 */
4734 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4735 
4736 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4737 	if (!newsk) {
4738 		error = -ENOMEM;
4739 		goto out;
4740 	}
4741 
4742 	/* Populate the fields of the newsk from the oldsk and migrate the
4743 	 * asoc to the newsk.
4744 	 */
4745 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4746 	if (error) {
4747 		sk_common_release(newsk);
4748 		newsk = NULL;
4749 	}
4750 
4751 out:
4752 	release_sock(sk);
4753 	*err = error;
4754 	return newsk;
4755 }
4756 
4757 /* The SCTP ioctl handler. */
4758 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4759 {
4760 	int rc = -ENOTCONN;
4761 
4762 	lock_sock(sk);
4763 
4764 	/*
4765 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4766 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4767 	 */
4768 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4769 		goto out;
4770 
4771 	switch (cmd) {
4772 	case SIOCINQ: {
4773 		struct sk_buff *skb;
4774 		unsigned int amount = 0;
4775 
4776 		skb = skb_peek(&sk->sk_receive_queue);
4777 		if (skb != NULL) {
4778 			/*
4779 			 * We will only return the amount of this packet since
4780 			 * that is all that will be read.
4781 			 */
4782 			amount = skb->len;
4783 		}
4784 		rc = put_user(amount, (int __user *)arg);
4785 		break;
4786 	}
4787 	default:
4788 		rc = -ENOIOCTLCMD;
4789 		break;
4790 	}
4791 out:
4792 	release_sock(sk);
4793 	return rc;
4794 }
4795 
4796 /* This is the function which gets called during socket creation to
4797  * initialized the SCTP-specific portion of the sock.
4798  * The sock structure should already be zero-filled memory.
4799  */
4800 static int sctp_init_sock(struct sock *sk)
4801 {
4802 	struct net *net = sock_net(sk);
4803 	struct sctp_sock *sp;
4804 
4805 	pr_debug("%s: sk:%p\n", __func__, sk);
4806 
4807 	sp = sctp_sk(sk);
4808 
4809 	/* Initialize the SCTP per socket area.  */
4810 	switch (sk->sk_type) {
4811 	case SOCK_SEQPACKET:
4812 		sp->type = SCTP_SOCKET_UDP;
4813 		break;
4814 	case SOCK_STREAM:
4815 		sp->type = SCTP_SOCKET_TCP;
4816 		break;
4817 	default:
4818 		return -ESOCKTNOSUPPORT;
4819 	}
4820 
4821 	sk->sk_gso_type = SKB_GSO_SCTP;
4822 
4823 	/* Initialize default send parameters. These parameters can be
4824 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4825 	 */
4826 	sp->default_stream = 0;
4827 	sp->default_ppid = 0;
4828 	sp->default_flags = 0;
4829 	sp->default_context = 0;
4830 	sp->default_timetolive = 0;
4831 
4832 	sp->default_rcv_context = 0;
4833 	sp->max_burst = net->sctp.max_burst;
4834 
4835 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4836 
4837 	/* Initialize default setup parameters. These parameters
4838 	 * can be modified with the SCTP_INITMSG socket option or
4839 	 * overridden by the SCTP_INIT CMSG.
4840 	 */
4841 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4842 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4843 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4844 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4845 
4846 	/* Initialize default RTO related parameters.  These parameters can
4847 	 * be modified for with the SCTP_RTOINFO socket option.
4848 	 */
4849 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4850 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4851 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4852 
4853 	/* Initialize default association related parameters. These parameters
4854 	 * can be modified with the SCTP_ASSOCINFO socket option.
4855 	 */
4856 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4857 	sp->assocparams.sasoc_number_peer_destinations = 0;
4858 	sp->assocparams.sasoc_peer_rwnd = 0;
4859 	sp->assocparams.sasoc_local_rwnd = 0;
4860 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4861 
4862 	/* Initialize default event subscriptions. By default, all the
4863 	 * options are off.
4864 	 */
4865 	sp->subscribe = 0;
4866 
4867 	/* Default Peer Address Parameters.  These defaults can
4868 	 * be modified via SCTP_PEER_ADDR_PARAMS
4869 	 */
4870 	sp->hbinterval  = net->sctp.hb_interval;
4871 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4872 	sp->pf_retrans  = net->sctp.pf_retrans;
4873 	sp->ps_retrans  = net->sctp.ps_retrans;
4874 	sp->pf_expose   = net->sctp.pf_expose;
4875 	sp->pathmtu     = 0; /* allow default discovery */
4876 	sp->sackdelay   = net->sctp.sack_timeout;
4877 	sp->sackfreq	= 2;
4878 	sp->param_flags = SPP_HB_ENABLE |
4879 			  SPP_PMTUD_ENABLE |
4880 			  SPP_SACKDELAY_ENABLE;
4881 	sp->default_ss = SCTP_SS_DEFAULT;
4882 
4883 	/* If enabled no SCTP message fragmentation will be performed.
4884 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4885 	 */
4886 	sp->disable_fragments = 0;
4887 
4888 	/* Enable Nagle algorithm by default.  */
4889 	sp->nodelay           = 0;
4890 
4891 	sp->recvrcvinfo = 0;
4892 	sp->recvnxtinfo = 0;
4893 
4894 	/* Enable by default. */
4895 	sp->v4mapped          = 1;
4896 
4897 	/* Auto-close idle associations after the configured
4898 	 * number of seconds.  A value of 0 disables this
4899 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4900 	 * for UDP-style sockets only.
4901 	 */
4902 	sp->autoclose         = 0;
4903 
4904 	/* User specified fragmentation limit. */
4905 	sp->user_frag         = 0;
4906 
4907 	sp->adaptation_ind = 0;
4908 
4909 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4910 
4911 	/* Control variables for partial data delivery. */
4912 	atomic_set(&sp->pd_mode, 0);
4913 	skb_queue_head_init(&sp->pd_lobby);
4914 	sp->frag_interleave = 0;
4915 
4916 	/* Create a per socket endpoint structure.  Even if we
4917 	 * change the data structure relationships, this may still
4918 	 * be useful for storing pre-connect address information.
4919 	 */
4920 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4921 	if (!sp->ep)
4922 		return -ENOMEM;
4923 
4924 	sp->hmac = NULL;
4925 
4926 	sk->sk_destruct = sctp_destruct_sock;
4927 
4928 	SCTP_DBG_OBJCNT_INC(sock);
4929 
4930 	local_bh_disable();
4931 	sk_sockets_allocated_inc(sk);
4932 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4933 
4934 	/* Nothing can fail after this block, otherwise
4935 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4936 	 */
4937 	if (net->sctp.default_auto_asconf) {
4938 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4939 		list_add_tail(&sp->auto_asconf_list,
4940 		    &net->sctp.auto_asconf_splist);
4941 		sp->do_auto_asconf = 1;
4942 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4943 	} else {
4944 		sp->do_auto_asconf = 0;
4945 	}
4946 
4947 	local_bh_enable();
4948 
4949 	return 0;
4950 }
4951 
4952 /* Cleanup any SCTP per socket resources. Must be called with
4953  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4954  */
4955 static void sctp_destroy_sock(struct sock *sk)
4956 {
4957 	struct sctp_sock *sp;
4958 
4959 	pr_debug("%s: sk:%p\n", __func__, sk);
4960 
4961 	/* Release our hold on the endpoint. */
4962 	sp = sctp_sk(sk);
4963 	/* This could happen during socket init, thus we bail out
4964 	 * early, since the rest of the below is not setup either.
4965 	 */
4966 	if (sp->ep == NULL)
4967 		return;
4968 
4969 	if (sp->do_auto_asconf) {
4970 		sp->do_auto_asconf = 0;
4971 		list_del(&sp->auto_asconf_list);
4972 	}
4973 	sctp_endpoint_free(sp->ep);
4974 	local_bh_disable();
4975 	sk_sockets_allocated_dec(sk);
4976 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4977 	local_bh_enable();
4978 }
4979 
4980 /* Triggered when there are no references on the socket anymore */
4981 static void sctp_destruct_sock(struct sock *sk)
4982 {
4983 	struct sctp_sock *sp = sctp_sk(sk);
4984 
4985 	/* Free up the HMAC transform. */
4986 	crypto_free_shash(sp->hmac);
4987 
4988 	inet_sock_destruct(sk);
4989 }
4990 
4991 /* API 4.1.7 shutdown() - TCP Style Syntax
4992  *     int shutdown(int socket, int how);
4993  *
4994  *     sd      - the socket descriptor of the association to be closed.
4995  *     how     - Specifies the type of shutdown.  The  values  are
4996  *               as follows:
4997  *               SHUT_RD
4998  *                     Disables further receive operations. No SCTP
4999  *                     protocol action is taken.
5000  *               SHUT_WR
5001  *                     Disables further send operations, and initiates
5002  *                     the SCTP shutdown sequence.
5003  *               SHUT_RDWR
5004  *                     Disables further send  and  receive  operations
5005  *                     and initiates the SCTP shutdown sequence.
5006  */
5007 static void sctp_shutdown(struct sock *sk, int how)
5008 {
5009 	struct net *net = sock_net(sk);
5010 	struct sctp_endpoint *ep;
5011 
5012 	if (!sctp_style(sk, TCP))
5013 		return;
5014 
5015 	ep = sctp_sk(sk)->ep;
5016 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5017 		struct sctp_association *asoc;
5018 
5019 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5020 		asoc = list_entry(ep->asocs.next,
5021 				  struct sctp_association, asocs);
5022 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5023 	}
5024 }
5025 
5026 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5027 		       struct sctp_info *info)
5028 {
5029 	struct sctp_transport *prim;
5030 	struct list_head *pos;
5031 	int mask;
5032 
5033 	memset(info, 0, sizeof(*info));
5034 	if (!asoc) {
5035 		struct sctp_sock *sp = sctp_sk(sk);
5036 
5037 		info->sctpi_s_autoclose = sp->autoclose;
5038 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5039 		info->sctpi_s_pd_point = sp->pd_point;
5040 		info->sctpi_s_nodelay = sp->nodelay;
5041 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5042 		info->sctpi_s_v4mapped = sp->v4mapped;
5043 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5044 		info->sctpi_s_type = sp->type;
5045 
5046 		return 0;
5047 	}
5048 
5049 	info->sctpi_tag = asoc->c.my_vtag;
5050 	info->sctpi_state = asoc->state;
5051 	info->sctpi_rwnd = asoc->a_rwnd;
5052 	info->sctpi_unackdata = asoc->unack_data;
5053 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5054 	info->sctpi_instrms = asoc->stream.incnt;
5055 	info->sctpi_outstrms = asoc->stream.outcnt;
5056 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5057 		info->sctpi_inqueue++;
5058 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5059 		info->sctpi_outqueue++;
5060 	info->sctpi_overall_error = asoc->overall_error_count;
5061 	info->sctpi_max_burst = asoc->max_burst;
5062 	info->sctpi_maxseg = asoc->frag_point;
5063 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5064 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5065 
5066 	mask = asoc->peer.ecn_capable << 1;
5067 	mask = (mask | asoc->peer.ipv4_address) << 1;
5068 	mask = (mask | asoc->peer.ipv6_address) << 1;
5069 	mask = (mask | asoc->peer.hostname_address) << 1;
5070 	mask = (mask | asoc->peer.asconf_capable) << 1;
5071 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5072 	mask = (mask | asoc->peer.auth_capable);
5073 	info->sctpi_peer_capable = mask;
5074 	mask = asoc->peer.sack_needed << 1;
5075 	mask = (mask | asoc->peer.sack_generation) << 1;
5076 	mask = (mask | asoc->peer.zero_window_announced);
5077 	info->sctpi_peer_sack = mask;
5078 
5079 	info->sctpi_isacks = asoc->stats.isacks;
5080 	info->sctpi_osacks = asoc->stats.osacks;
5081 	info->sctpi_opackets = asoc->stats.opackets;
5082 	info->sctpi_ipackets = asoc->stats.ipackets;
5083 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5084 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5085 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5086 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5087 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5088 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5089 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5090 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5091 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5092 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5093 
5094 	prim = asoc->peer.primary_path;
5095 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5096 	info->sctpi_p_state = prim->state;
5097 	info->sctpi_p_cwnd = prim->cwnd;
5098 	info->sctpi_p_srtt = prim->srtt;
5099 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5100 	info->sctpi_p_hbinterval = prim->hbinterval;
5101 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5102 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5103 	info->sctpi_p_ssthresh = prim->ssthresh;
5104 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5105 	info->sctpi_p_flight_size = prim->flight_size;
5106 	info->sctpi_p_error = prim->error_count;
5107 
5108 	return 0;
5109 }
5110 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5111 
5112 /* use callback to avoid exporting the core structure */
5113 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5114 {
5115 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5116 
5117 	rhashtable_walk_start(iter);
5118 }
5119 
5120 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5121 {
5122 	rhashtable_walk_stop(iter);
5123 	rhashtable_walk_exit(iter);
5124 }
5125 
5126 struct sctp_transport *sctp_transport_get_next(struct net *net,
5127 					       struct rhashtable_iter *iter)
5128 {
5129 	struct sctp_transport *t;
5130 
5131 	t = rhashtable_walk_next(iter);
5132 	for (; t; t = rhashtable_walk_next(iter)) {
5133 		if (IS_ERR(t)) {
5134 			if (PTR_ERR(t) == -EAGAIN)
5135 				continue;
5136 			break;
5137 		}
5138 
5139 		if (!sctp_transport_hold(t))
5140 			continue;
5141 
5142 		if (net_eq(t->asoc->base.net, net) &&
5143 		    t->asoc->peer.primary_path == t)
5144 			break;
5145 
5146 		sctp_transport_put(t);
5147 	}
5148 
5149 	return t;
5150 }
5151 
5152 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5153 					      struct rhashtable_iter *iter,
5154 					      int pos)
5155 {
5156 	struct sctp_transport *t;
5157 
5158 	if (!pos)
5159 		return SEQ_START_TOKEN;
5160 
5161 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5162 		if (!--pos)
5163 			break;
5164 		sctp_transport_put(t);
5165 	}
5166 
5167 	return t;
5168 }
5169 
5170 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5171 			   void *p) {
5172 	int err = 0;
5173 	int hash = 0;
5174 	struct sctp_ep_common *epb;
5175 	struct sctp_hashbucket *head;
5176 
5177 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5178 	     hash++, head++) {
5179 		read_lock_bh(&head->lock);
5180 		sctp_for_each_hentry(epb, &head->chain) {
5181 			err = cb(sctp_ep(epb), p);
5182 			if (err)
5183 				break;
5184 		}
5185 		read_unlock_bh(&head->lock);
5186 	}
5187 
5188 	return err;
5189 }
5190 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5191 
5192 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5193 				  struct net *net,
5194 				  const union sctp_addr *laddr,
5195 				  const union sctp_addr *paddr, void *p)
5196 {
5197 	struct sctp_transport *transport;
5198 	int err;
5199 
5200 	rcu_read_lock();
5201 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5202 	rcu_read_unlock();
5203 	if (!transport)
5204 		return -ENOENT;
5205 
5206 	err = cb(transport, p);
5207 	sctp_transport_put(transport);
5208 
5209 	return err;
5210 }
5211 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5212 
5213 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5214 			    int (*cb_done)(struct sctp_transport *, void *),
5215 			    struct net *net, int *pos, void *p) {
5216 	struct rhashtable_iter hti;
5217 	struct sctp_transport *tsp;
5218 	int ret;
5219 
5220 again:
5221 	ret = 0;
5222 	sctp_transport_walk_start(&hti);
5223 
5224 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5225 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5226 		ret = cb(tsp, p);
5227 		if (ret)
5228 			break;
5229 		(*pos)++;
5230 		sctp_transport_put(tsp);
5231 	}
5232 	sctp_transport_walk_stop(&hti);
5233 
5234 	if (ret) {
5235 		if (cb_done && !cb_done(tsp, p)) {
5236 			(*pos)++;
5237 			sctp_transport_put(tsp);
5238 			goto again;
5239 		}
5240 		sctp_transport_put(tsp);
5241 	}
5242 
5243 	return ret;
5244 }
5245 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5246 
5247 /* 7.2.1 Association Status (SCTP_STATUS)
5248 
5249  * Applications can retrieve current status information about an
5250  * association, including association state, peer receiver window size,
5251  * number of unacked data chunks, and number of data chunks pending
5252  * receipt.  This information is read-only.
5253  */
5254 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5255 				       char __user *optval,
5256 				       int __user *optlen)
5257 {
5258 	struct sctp_status status;
5259 	struct sctp_association *asoc = NULL;
5260 	struct sctp_transport *transport;
5261 	sctp_assoc_t associd;
5262 	int retval = 0;
5263 
5264 	if (len < sizeof(status)) {
5265 		retval = -EINVAL;
5266 		goto out;
5267 	}
5268 
5269 	len = sizeof(status);
5270 	if (copy_from_user(&status, optval, len)) {
5271 		retval = -EFAULT;
5272 		goto out;
5273 	}
5274 
5275 	associd = status.sstat_assoc_id;
5276 	asoc = sctp_id2assoc(sk, associd);
5277 	if (!asoc) {
5278 		retval = -EINVAL;
5279 		goto out;
5280 	}
5281 
5282 	transport = asoc->peer.primary_path;
5283 
5284 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5285 	status.sstat_state = sctp_assoc_to_state(asoc);
5286 	status.sstat_rwnd =  asoc->peer.rwnd;
5287 	status.sstat_unackdata = asoc->unack_data;
5288 
5289 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5290 	status.sstat_instrms = asoc->stream.incnt;
5291 	status.sstat_outstrms = asoc->stream.outcnt;
5292 	status.sstat_fragmentation_point = asoc->frag_point;
5293 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5294 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5295 			transport->af_specific->sockaddr_len);
5296 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5297 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5298 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5299 	status.sstat_primary.spinfo_state = transport->state;
5300 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5301 	status.sstat_primary.spinfo_srtt = transport->srtt;
5302 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5303 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5304 
5305 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5306 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5307 
5308 	if (put_user(len, optlen)) {
5309 		retval = -EFAULT;
5310 		goto out;
5311 	}
5312 
5313 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5314 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5315 		 status.sstat_assoc_id);
5316 
5317 	if (copy_to_user(optval, &status, len)) {
5318 		retval = -EFAULT;
5319 		goto out;
5320 	}
5321 
5322 out:
5323 	return retval;
5324 }
5325 
5326 
5327 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5328  *
5329  * Applications can retrieve information about a specific peer address
5330  * of an association, including its reachability state, congestion
5331  * window, and retransmission timer values.  This information is
5332  * read-only.
5333  */
5334 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5335 					  char __user *optval,
5336 					  int __user *optlen)
5337 {
5338 	struct sctp_paddrinfo pinfo;
5339 	struct sctp_transport *transport;
5340 	int retval = 0;
5341 
5342 	if (len < sizeof(pinfo)) {
5343 		retval = -EINVAL;
5344 		goto out;
5345 	}
5346 
5347 	len = sizeof(pinfo);
5348 	if (copy_from_user(&pinfo, optval, len)) {
5349 		retval = -EFAULT;
5350 		goto out;
5351 	}
5352 
5353 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5354 					   pinfo.spinfo_assoc_id);
5355 	if (!transport) {
5356 		retval = -EINVAL;
5357 		goto out;
5358 	}
5359 
5360 	if (transport->state == SCTP_PF &&
5361 	    transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5362 		retval = -EACCES;
5363 		goto out;
5364 	}
5365 
5366 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5367 	pinfo.spinfo_state = transport->state;
5368 	pinfo.spinfo_cwnd = transport->cwnd;
5369 	pinfo.spinfo_srtt = transport->srtt;
5370 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5371 	pinfo.spinfo_mtu = transport->pathmtu;
5372 
5373 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5374 		pinfo.spinfo_state = SCTP_ACTIVE;
5375 
5376 	if (put_user(len, optlen)) {
5377 		retval = -EFAULT;
5378 		goto out;
5379 	}
5380 
5381 	if (copy_to_user(optval, &pinfo, len)) {
5382 		retval = -EFAULT;
5383 		goto out;
5384 	}
5385 
5386 out:
5387 	return retval;
5388 }
5389 
5390 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5391  *
5392  * This option is a on/off flag.  If enabled no SCTP message
5393  * fragmentation will be performed.  Instead if a message being sent
5394  * exceeds the current PMTU size, the message will NOT be sent and
5395  * instead a error will be indicated to the user.
5396  */
5397 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5398 					char __user *optval, int __user *optlen)
5399 {
5400 	int val;
5401 
5402 	if (len < sizeof(int))
5403 		return -EINVAL;
5404 
5405 	len = sizeof(int);
5406 	val = (sctp_sk(sk)->disable_fragments == 1);
5407 	if (put_user(len, optlen))
5408 		return -EFAULT;
5409 	if (copy_to_user(optval, &val, len))
5410 		return -EFAULT;
5411 	return 0;
5412 }
5413 
5414 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5415  *
5416  * This socket option is used to specify various notifications and
5417  * ancillary data the user wishes to receive.
5418  */
5419 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5420 				  int __user *optlen)
5421 {
5422 	struct sctp_event_subscribe subscribe;
5423 	__u8 *sn_type = (__u8 *)&subscribe;
5424 	int i;
5425 
5426 	if (len == 0)
5427 		return -EINVAL;
5428 	if (len > sizeof(struct sctp_event_subscribe))
5429 		len = sizeof(struct sctp_event_subscribe);
5430 	if (put_user(len, optlen))
5431 		return -EFAULT;
5432 
5433 	for (i = 0; i < len; i++)
5434 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5435 							SCTP_SN_TYPE_BASE + i);
5436 
5437 	if (copy_to_user(optval, &subscribe, len))
5438 		return -EFAULT;
5439 
5440 	return 0;
5441 }
5442 
5443 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5444  *
5445  * This socket option is applicable to the UDP-style socket only.  When
5446  * set it will cause associations that are idle for more than the
5447  * specified number of seconds to automatically close.  An association
5448  * being idle is defined an association that has NOT sent or received
5449  * user data.  The special value of '0' indicates that no automatic
5450  * close of any associations should be performed.  The option expects an
5451  * integer defining the number of seconds of idle time before an
5452  * association is closed.
5453  */
5454 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5455 {
5456 	/* Applicable to UDP-style socket only */
5457 	if (sctp_style(sk, TCP))
5458 		return -EOPNOTSUPP;
5459 	if (len < sizeof(int))
5460 		return -EINVAL;
5461 	len = sizeof(int);
5462 	if (put_user(len, optlen))
5463 		return -EFAULT;
5464 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5465 		return -EFAULT;
5466 	return 0;
5467 }
5468 
5469 /* Helper routine to branch off an association to a new socket.  */
5470 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5471 {
5472 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5473 	struct sctp_sock *sp = sctp_sk(sk);
5474 	struct socket *sock;
5475 	int err = 0;
5476 
5477 	/* Do not peel off from one netns to another one. */
5478 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5479 		return -EINVAL;
5480 
5481 	if (!asoc)
5482 		return -EINVAL;
5483 
5484 	/* An association cannot be branched off from an already peeled-off
5485 	 * socket, nor is this supported for tcp style sockets.
5486 	 */
5487 	if (!sctp_style(sk, UDP))
5488 		return -EINVAL;
5489 
5490 	/* Create a new socket.  */
5491 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5492 	if (err < 0)
5493 		return err;
5494 
5495 	sctp_copy_sock(sock->sk, sk, asoc);
5496 
5497 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5498 	 * Set the daddr and initialize id to something more random and also
5499 	 * copy over any ip options.
5500 	 */
5501 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5502 	sp->pf->copy_ip_options(sk, sock->sk);
5503 
5504 	/* Populate the fields of the newsk from the oldsk and migrate the
5505 	 * asoc to the newsk.
5506 	 */
5507 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5508 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5509 	if (err) {
5510 		sock_release(sock);
5511 		sock = NULL;
5512 	}
5513 
5514 	*sockp = sock;
5515 
5516 	return err;
5517 }
5518 EXPORT_SYMBOL(sctp_do_peeloff);
5519 
5520 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5521 					  struct file **newfile, unsigned flags)
5522 {
5523 	struct socket *newsock;
5524 	int retval;
5525 
5526 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5527 	if (retval < 0)
5528 		goto out;
5529 
5530 	/* Map the socket to an unused fd that can be returned to the user.  */
5531 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5532 	if (retval < 0) {
5533 		sock_release(newsock);
5534 		goto out;
5535 	}
5536 
5537 	*newfile = sock_alloc_file(newsock, 0, NULL);
5538 	if (IS_ERR(*newfile)) {
5539 		put_unused_fd(retval);
5540 		retval = PTR_ERR(*newfile);
5541 		*newfile = NULL;
5542 		return retval;
5543 	}
5544 
5545 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5546 		 retval);
5547 
5548 	peeloff->sd = retval;
5549 
5550 	if (flags & SOCK_NONBLOCK)
5551 		(*newfile)->f_flags |= O_NONBLOCK;
5552 out:
5553 	return retval;
5554 }
5555 
5556 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5557 {
5558 	sctp_peeloff_arg_t peeloff;
5559 	struct file *newfile = NULL;
5560 	int retval = 0;
5561 
5562 	if (len < sizeof(sctp_peeloff_arg_t))
5563 		return -EINVAL;
5564 	len = sizeof(sctp_peeloff_arg_t);
5565 	if (copy_from_user(&peeloff, optval, len))
5566 		return -EFAULT;
5567 
5568 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5569 	if (retval < 0)
5570 		goto out;
5571 
5572 	/* Return the fd mapped to the new socket.  */
5573 	if (put_user(len, optlen)) {
5574 		fput(newfile);
5575 		put_unused_fd(retval);
5576 		return -EFAULT;
5577 	}
5578 
5579 	if (copy_to_user(optval, &peeloff, len)) {
5580 		fput(newfile);
5581 		put_unused_fd(retval);
5582 		return -EFAULT;
5583 	}
5584 	fd_install(retval, newfile);
5585 out:
5586 	return retval;
5587 }
5588 
5589 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5590 					 char __user *optval, int __user *optlen)
5591 {
5592 	sctp_peeloff_flags_arg_t peeloff;
5593 	struct file *newfile = NULL;
5594 	int retval = 0;
5595 
5596 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5597 		return -EINVAL;
5598 	len = sizeof(sctp_peeloff_flags_arg_t);
5599 	if (copy_from_user(&peeloff, optval, len))
5600 		return -EFAULT;
5601 
5602 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5603 						&newfile, peeloff.flags);
5604 	if (retval < 0)
5605 		goto out;
5606 
5607 	/* Return the fd mapped to the new socket.  */
5608 	if (put_user(len, optlen)) {
5609 		fput(newfile);
5610 		put_unused_fd(retval);
5611 		return -EFAULT;
5612 	}
5613 
5614 	if (copy_to_user(optval, &peeloff, len)) {
5615 		fput(newfile);
5616 		put_unused_fd(retval);
5617 		return -EFAULT;
5618 	}
5619 	fd_install(retval, newfile);
5620 out:
5621 	return retval;
5622 }
5623 
5624 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5625  *
5626  * Applications can enable or disable heartbeats for any peer address of
5627  * an association, modify an address's heartbeat interval, force a
5628  * heartbeat to be sent immediately, and adjust the address's maximum
5629  * number of retransmissions sent before an address is considered
5630  * unreachable.  The following structure is used to access and modify an
5631  * address's parameters:
5632  *
5633  *  struct sctp_paddrparams {
5634  *     sctp_assoc_t            spp_assoc_id;
5635  *     struct sockaddr_storage spp_address;
5636  *     uint32_t                spp_hbinterval;
5637  *     uint16_t                spp_pathmaxrxt;
5638  *     uint32_t                spp_pathmtu;
5639  *     uint32_t                spp_sackdelay;
5640  *     uint32_t                spp_flags;
5641  * };
5642  *
5643  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5644  *                     application, and identifies the association for
5645  *                     this query.
5646  *   spp_address     - This specifies which address is of interest.
5647  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5648  *                     in milliseconds.  If a  value of zero
5649  *                     is present in this field then no changes are to
5650  *                     be made to this parameter.
5651  *   spp_pathmaxrxt  - This contains the maximum number of
5652  *                     retransmissions before this address shall be
5653  *                     considered unreachable. If a  value of zero
5654  *                     is present in this field then no changes are to
5655  *                     be made to this parameter.
5656  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5657  *                     specified here will be the "fixed" path mtu.
5658  *                     Note that if the spp_address field is empty
5659  *                     then all associations on this address will
5660  *                     have this fixed path mtu set upon them.
5661  *
5662  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5663  *                     the number of milliseconds that sacks will be delayed
5664  *                     for. This value will apply to all addresses of an
5665  *                     association if the spp_address field is empty. Note
5666  *                     also, that if delayed sack is enabled and this
5667  *                     value is set to 0, no change is made to the last
5668  *                     recorded delayed sack timer value.
5669  *
5670  *   spp_flags       - These flags are used to control various features
5671  *                     on an association. The flag field may contain
5672  *                     zero or more of the following options.
5673  *
5674  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5675  *                     specified address. Note that if the address
5676  *                     field is empty all addresses for the association
5677  *                     have heartbeats enabled upon them.
5678  *
5679  *                     SPP_HB_DISABLE - Disable heartbeats on the
5680  *                     speicifed address. Note that if the address
5681  *                     field is empty all addresses for the association
5682  *                     will have their heartbeats disabled. Note also
5683  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5684  *                     mutually exclusive, only one of these two should
5685  *                     be specified. Enabling both fields will have
5686  *                     undetermined results.
5687  *
5688  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5689  *                     to be made immediately.
5690  *
5691  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5692  *                     discovery upon the specified address. Note that
5693  *                     if the address feild is empty then all addresses
5694  *                     on the association are effected.
5695  *
5696  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5697  *                     discovery upon the specified address. Note that
5698  *                     if the address feild is empty then all addresses
5699  *                     on the association are effected. Not also that
5700  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5701  *                     exclusive. Enabling both will have undetermined
5702  *                     results.
5703  *
5704  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5705  *                     on delayed sack. The time specified in spp_sackdelay
5706  *                     is used to specify the sack delay for this address. Note
5707  *                     that if spp_address is empty then all addresses will
5708  *                     enable delayed sack and take on the sack delay
5709  *                     value specified in spp_sackdelay.
5710  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5711  *                     off delayed sack. If the spp_address field is blank then
5712  *                     delayed sack is disabled for the entire association. Note
5713  *                     also that this field is mutually exclusive to
5714  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5715  *                     results.
5716  *
5717  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5718  *                     setting of the IPV6 flow label value.  The value is
5719  *                     contained in the spp_ipv6_flowlabel field.
5720  *                     Upon retrieval, this flag will be set to indicate that
5721  *                     the spp_ipv6_flowlabel field has a valid value returned.
5722  *                     If a specific destination address is set (in the
5723  *                     spp_address field), then the value returned is that of
5724  *                     the address.  If just an association is specified (and
5725  *                     no address), then the association's default flow label
5726  *                     is returned.  If neither an association nor a destination
5727  *                     is specified, then the socket's default flow label is
5728  *                     returned.  For non-IPv6 sockets, this flag will be left
5729  *                     cleared.
5730  *
5731  *                     SPP_DSCP:  Setting this flag enables the setting of the
5732  *                     Differentiated Services Code Point (DSCP) value
5733  *                     associated with either the association or a specific
5734  *                     address.  The value is obtained in the spp_dscp field.
5735  *                     Upon retrieval, this flag will be set to indicate that
5736  *                     the spp_dscp field has a valid value returned.  If a
5737  *                     specific destination address is set when called (in the
5738  *                     spp_address field), then that specific destination
5739  *                     address's DSCP value is returned.  If just an association
5740  *                     is specified, then the association's default DSCP is
5741  *                     returned.  If neither an association nor a destination is
5742  *                     specified, then the socket's default DSCP is returned.
5743  *
5744  *   spp_ipv6_flowlabel
5745  *                   - This field is used in conjunction with the
5746  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5747  *                     The 20 least significant bits are used for the flow
5748  *                     label.  This setting has precedence over any IPv6-layer
5749  *                     setting.
5750  *
5751  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5752  *                     and contains the DSCP.  The 6 most significant bits are
5753  *                     used for the DSCP.  This setting has precedence over any
5754  *                     IPv4- or IPv6- layer setting.
5755  */
5756 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5757 					    char __user *optval, int __user *optlen)
5758 {
5759 	struct sctp_paddrparams  params;
5760 	struct sctp_transport   *trans = NULL;
5761 	struct sctp_association *asoc = NULL;
5762 	struct sctp_sock        *sp = sctp_sk(sk);
5763 
5764 	if (len >= sizeof(params))
5765 		len = sizeof(params);
5766 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5767 				       spp_ipv6_flowlabel), 4))
5768 		len = ALIGN(offsetof(struct sctp_paddrparams,
5769 				     spp_ipv6_flowlabel), 4);
5770 	else
5771 		return -EINVAL;
5772 
5773 	if (copy_from_user(&params, optval, len))
5774 		return -EFAULT;
5775 
5776 	/* If an address other than INADDR_ANY is specified, and
5777 	 * no transport is found, then the request is invalid.
5778 	 */
5779 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5780 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5781 					       params.spp_assoc_id);
5782 		if (!trans) {
5783 			pr_debug("%s: failed no transport\n", __func__);
5784 			return -EINVAL;
5785 		}
5786 	}
5787 
5788 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5789 	 * socket is a one to many style socket, and an association
5790 	 * was not found, then the id was invalid.
5791 	 */
5792 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5793 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5794 	    sctp_style(sk, UDP)) {
5795 		pr_debug("%s: failed no association\n", __func__);
5796 		return -EINVAL;
5797 	}
5798 
5799 	if (trans) {
5800 		/* Fetch transport values. */
5801 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5802 		params.spp_pathmtu    = trans->pathmtu;
5803 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5804 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5805 
5806 		/*draft-11 doesn't say what to return in spp_flags*/
5807 		params.spp_flags      = trans->param_flags;
5808 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5809 			params.spp_ipv6_flowlabel = trans->flowlabel &
5810 						    SCTP_FLOWLABEL_VAL_MASK;
5811 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5812 		}
5813 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5814 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5815 			params.spp_flags |= SPP_DSCP;
5816 		}
5817 	} else if (asoc) {
5818 		/* Fetch association values. */
5819 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5820 		params.spp_pathmtu    = asoc->pathmtu;
5821 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5822 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5823 
5824 		/*draft-11 doesn't say what to return in spp_flags*/
5825 		params.spp_flags      = asoc->param_flags;
5826 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5827 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5828 						    SCTP_FLOWLABEL_VAL_MASK;
5829 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5830 		}
5831 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5832 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5833 			params.spp_flags |= SPP_DSCP;
5834 		}
5835 	} else {
5836 		/* Fetch socket values. */
5837 		params.spp_hbinterval = sp->hbinterval;
5838 		params.spp_pathmtu    = sp->pathmtu;
5839 		params.spp_sackdelay  = sp->sackdelay;
5840 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5841 
5842 		/*draft-11 doesn't say what to return in spp_flags*/
5843 		params.spp_flags      = sp->param_flags;
5844 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5845 			params.spp_ipv6_flowlabel = sp->flowlabel &
5846 						    SCTP_FLOWLABEL_VAL_MASK;
5847 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5848 		}
5849 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5850 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5851 			params.spp_flags |= SPP_DSCP;
5852 		}
5853 	}
5854 
5855 	if (copy_to_user(optval, &params, len))
5856 		return -EFAULT;
5857 
5858 	if (put_user(len, optlen))
5859 		return -EFAULT;
5860 
5861 	return 0;
5862 }
5863 
5864 /*
5865  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5866  *
5867  * This option will effect the way delayed acks are performed.  This
5868  * option allows you to get or set the delayed ack time, in
5869  * milliseconds.  It also allows changing the delayed ack frequency.
5870  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5871  * the assoc_id is 0, then this sets or gets the endpoints default
5872  * values.  If the assoc_id field is non-zero, then the set or get
5873  * effects the specified association for the one to many model (the
5874  * assoc_id field is ignored by the one to one model).  Note that if
5875  * sack_delay or sack_freq are 0 when setting this option, then the
5876  * current values will remain unchanged.
5877  *
5878  * struct sctp_sack_info {
5879  *     sctp_assoc_t            sack_assoc_id;
5880  *     uint32_t                sack_delay;
5881  *     uint32_t                sack_freq;
5882  * };
5883  *
5884  * sack_assoc_id -  This parameter, indicates which association the user
5885  *    is performing an action upon.  Note that if this field's value is
5886  *    zero then the endpoints default value is changed (effecting future
5887  *    associations only).
5888  *
5889  * sack_delay -  This parameter contains the number of milliseconds that
5890  *    the user is requesting the delayed ACK timer be set to.  Note that
5891  *    this value is defined in the standard to be between 200 and 500
5892  *    milliseconds.
5893  *
5894  * sack_freq -  This parameter contains the number of packets that must
5895  *    be received before a sack is sent without waiting for the delay
5896  *    timer to expire.  The default value for this is 2, setting this
5897  *    value to 1 will disable the delayed sack algorithm.
5898  */
5899 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5900 					    char __user *optval,
5901 					    int __user *optlen)
5902 {
5903 	struct sctp_sack_info    params;
5904 	struct sctp_association *asoc = NULL;
5905 	struct sctp_sock        *sp = sctp_sk(sk);
5906 
5907 	if (len >= sizeof(struct sctp_sack_info)) {
5908 		len = sizeof(struct sctp_sack_info);
5909 
5910 		if (copy_from_user(&params, optval, len))
5911 			return -EFAULT;
5912 	} else if (len == sizeof(struct sctp_assoc_value)) {
5913 		pr_warn_ratelimited(DEPRECATED
5914 				    "%s (pid %d) "
5915 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5916 				    "Use struct sctp_sack_info instead\n",
5917 				    current->comm, task_pid_nr(current));
5918 		if (copy_from_user(&params, optval, len))
5919 			return -EFAULT;
5920 	} else
5921 		return -EINVAL;
5922 
5923 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5924 	 * socket is a one to many style socket, and an association
5925 	 * was not found, then the id was invalid.
5926 	 */
5927 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5928 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5929 	    sctp_style(sk, UDP))
5930 		return -EINVAL;
5931 
5932 	if (asoc) {
5933 		/* Fetch association values. */
5934 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5935 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5936 			params.sack_freq = asoc->sackfreq;
5937 
5938 		} else {
5939 			params.sack_delay = 0;
5940 			params.sack_freq = 1;
5941 		}
5942 	} else {
5943 		/* Fetch socket values. */
5944 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5945 			params.sack_delay  = sp->sackdelay;
5946 			params.sack_freq = sp->sackfreq;
5947 		} else {
5948 			params.sack_delay  = 0;
5949 			params.sack_freq = 1;
5950 		}
5951 	}
5952 
5953 	if (copy_to_user(optval, &params, len))
5954 		return -EFAULT;
5955 
5956 	if (put_user(len, optlen))
5957 		return -EFAULT;
5958 
5959 	return 0;
5960 }
5961 
5962 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5963  *
5964  * Applications can specify protocol parameters for the default association
5965  * initialization.  The option name argument to setsockopt() and getsockopt()
5966  * is SCTP_INITMSG.
5967  *
5968  * Setting initialization parameters is effective only on an unconnected
5969  * socket (for UDP-style sockets only future associations are effected
5970  * by the change).  With TCP-style sockets, this option is inherited by
5971  * sockets derived from a listener socket.
5972  */
5973 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5974 {
5975 	if (len < sizeof(struct sctp_initmsg))
5976 		return -EINVAL;
5977 	len = sizeof(struct sctp_initmsg);
5978 	if (put_user(len, optlen))
5979 		return -EFAULT;
5980 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5981 		return -EFAULT;
5982 	return 0;
5983 }
5984 
5985 
5986 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5987 				      char __user *optval, int __user *optlen)
5988 {
5989 	struct sctp_association *asoc;
5990 	int cnt = 0;
5991 	struct sctp_getaddrs getaddrs;
5992 	struct sctp_transport *from;
5993 	void __user *to;
5994 	union sctp_addr temp;
5995 	struct sctp_sock *sp = sctp_sk(sk);
5996 	int addrlen;
5997 	size_t space_left;
5998 	int bytes_copied;
5999 
6000 	if (len < sizeof(struct sctp_getaddrs))
6001 		return -EINVAL;
6002 
6003 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6004 		return -EFAULT;
6005 
6006 	/* For UDP-style sockets, id specifies the association to query.  */
6007 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6008 	if (!asoc)
6009 		return -EINVAL;
6010 
6011 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6012 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6013 
6014 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6015 				transports) {
6016 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6017 		addrlen = sctp_get_pf_specific(sk->sk_family)
6018 			      ->addr_to_user(sp, &temp);
6019 		if (space_left < addrlen)
6020 			return -ENOMEM;
6021 		if (copy_to_user(to, &temp, addrlen))
6022 			return -EFAULT;
6023 		to += addrlen;
6024 		cnt++;
6025 		space_left -= addrlen;
6026 	}
6027 
6028 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6029 		return -EFAULT;
6030 	bytes_copied = ((char __user *)to) - optval;
6031 	if (put_user(bytes_copied, optlen))
6032 		return -EFAULT;
6033 
6034 	return 0;
6035 }
6036 
6037 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6038 			    size_t space_left, int *bytes_copied)
6039 {
6040 	struct sctp_sockaddr_entry *addr;
6041 	union sctp_addr temp;
6042 	int cnt = 0;
6043 	int addrlen;
6044 	struct net *net = sock_net(sk);
6045 
6046 	rcu_read_lock();
6047 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6048 		if (!addr->valid)
6049 			continue;
6050 
6051 		if ((PF_INET == sk->sk_family) &&
6052 		    (AF_INET6 == addr->a.sa.sa_family))
6053 			continue;
6054 		if ((PF_INET6 == sk->sk_family) &&
6055 		    inet_v6_ipv6only(sk) &&
6056 		    (AF_INET == addr->a.sa.sa_family))
6057 			continue;
6058 		memcpy(&temp, &addr->a, sizeof(temp));
6059 		if (!temp.v4.sin_port)
6060 			temp.v4.sin_port = htons(port);
6061 
6062 		addrlen = sctp_get_pf_specific(sk->sk_family)
6063 			      ->addr_to_user(sctp_sk(sk), &temp);
6064 
6065 		if (space_left < addrlen) {
6066 			cnt =  -ENOMEM;
6067 			break;
6068 		}
6069 		memcpy(to, &temp, addrlen);
6070 
6071 		to += addrlen;
6072 		cnt++;
6073 		space_left -= addrlen;
6074 		*bytes_copied += addrlen;
6075 	}
6076 	rcu_read_unlock();
6077 
6078 	return cnt;
6079 }
6080 
6081 
6082 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6083 				       char __user *optval, int __user *optlen)
6084 {
6085 	struct sctp_bind_addr *bp;
6086 	struct sctp_association *asoc;
6087 	int cnt = 0;
6088 	struct sctp_getaddrs getaddrs;
6089 	struct sctp_sockaddr_entry *addr;
6090 	void __user *to;
6091 	union sctp_addr temp;
6092 	struct sctp_sock *sp = sctp_sk(sk);
6093 	int addrlen;
6094 	int err = 0;
6095 	size_t space_left;
6096 	int bytes_copied = 0;
6097 	void *addrs;
6098 	void *buf;
6099 
6100 	if (len < sizeof(struct sctp_getaddrs))
6101 		return -EINVAL;
6102 
6103 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6104 		return -EFAULT;
6105 
6106 	/*
6107 	 *  For UDP-style sockets, id specifies the association to query.
6108 	 *  If the id field is set to the value '0' then the locally bound
6109 	 *  addresses are returned without regard to any particular
6110 	 *  association.
6111 	 */
6112 	if (0 == getaddrs.assoc_id) {
6113 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6114 	} else {
6115 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6116 		if (!asoc)
6117 			return -EINVAL;
6118 		bp = &asoc->base.bind_addr;
6119 	}
6120 
6121 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6122 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6123 
6124 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6125 	if (!addrs)
6126 		return -ENOMEM;
6127 
6128 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6129 	 * addresses from the global local address list.
6130 	 */
6131 	if (sctp_list_single_entry(&bp->address_list)) {
6132 		addr = list_entry(bp->address_list.next,
6133 				  struct sctp_sockaddr_entry, list);
6134 		if (sctp_is_any(sk, &addr->a)) {
6135 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6136 						space_left, &bytes_copied);
6137 			if (cnt < 0) {
6138 				err = cnt;
6139 				goto out;
6140 			}
6141 			goto copy_getaddrs;
6142 		}
6143 	}
6144 
6145 	buf = addrs;
6146 	/* Protection on the bound address list is not needed since
6147 	 * in the socket option context we hold a socket lock and
6148 	 * thus the bound address list can't change.
6149 	 */
6150 	list_for_each_entry(addr, &bp->address_list, list) {
6151 		memcpy(&temp, &addr->a, sizeof(temp));
6152 		addrlen = sctp_get_pf_specific(sk->sk_family)
6153 			      ->addr_to_user(sp, &temp);
6154 		if (space_left < addrlen) {
6155 			err =  -ENOMEM; /*fixme: right error?*/
6156 			goto out;
6157 		}
6158 		memcpy(buf, &temp, addrlen);
6159 		buf += addrlen;
6160 		bytes_copied += addrlen;
6161 		cnt++;
6162 		space_left -= addrlen;
6163 	}
6164 
6165 copy_getaddrs:
6166 	if (copy_to_user(to, addrs, bytes_copied)) {
6167 		err = -EFAULT;
6168 		goto out;
6169 	}
6170 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6171 		err = -EFAULT;
6172 		goto out;
6173 	}
6174 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6175 	 * but we can't change it anymore.
6176 	 */
6177 	if (put_user(bytes_copied, optlen))
6178 		err = -EFAULT;
6179 out:
6180 	kfree(addrs);
6181 	return err;
6182 }
6183 
6184 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6185  *
6186  * Requests that the local SCTP stack use the enclosed peer address as
6187  * the association primary.  The enclosed address must be one of the
6188  * association peer's addresses.
6189  */
6190 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6191 					char __user *optval, int __user *optlen)
6192 {
6193 	struct sctp_prim prim;
6194 	struct sctp_association *asoc;
6195 	struct sctp_sock *sp = sctp_sk(sk);
6196 
6197 	if (len < sizeof(struct sctp_prim))
6198 		return -EINVAL;
6199 
6200 	len = sizeof(struct sctp_prim);
6201 
6202 	if (copy_from_user(&prim, optval, len))
6203 		return -EFAULT;
6204 
6205 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6206 	if (!asoc)
6207 		return -EINVAL;
6208 
6209 	if (!asoc->peer.primary_path)
6210 		return -ENOTCONN;
6211 
6212 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6213 		asoc->peer.primary_path->af_specific->sockaddr_len);
6214 
6215 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6216 			(union sctp_addr *)&prim.ssp_addr);
6217 
6218 	if (put_user(len, optlen))
6219 		return -EFAULT;
6220 	if (copy_to_user(optval, &prim, len))
6221 		return -EFAULT;
6222 
6223 	return 0;
6224 }
6225 
6226 /*
6227  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6228  *
6229  * Requests that the local endpoint set the specified Adaptation Layer
6230  * Indication parameter for all future INIT and INIT-ACK exchanges.
6231  */
6232 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6233 				  char __user *optval, int __user *optlen)
6234 {
6235 	struct sctp_setadaptation adaptation;
6236 
6237 	if (len < sizeof(struct sctp_setadaptation))
6238 		return -EINVAL;
6239 
6240 	len = sizeof(struct sctp_setadaptation);
6241 
6242 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6243 
6244 	if (put_user(len, optlen))
6245 		return -EFAULT;
6246 	if (copy_to_user(optval, &adaptation, len))
6247 		return -EFAULT;
6248 
6249 	return 0;
6250 }
6251 
6252 /*
6253  *
6254  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6255  *
6256  *   Applications that wish to use the sendto() system call may wish to
6257  *   specify a default set of parameters that would normally be supplied
6258  *   through the inclusion of ancillary data.  This socket option allows
6259  *   such an application to set the default sctp_sndrcvinfo structure.
6260 
6261 
6262  *   The application that wishes to use this socket option simply passes
6263  *   in to this call the sctp_sndrcvinfo structure defined in Section
6264  *   5.2.2) The input parameters accepted by this call include
6265  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6266  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6267  *   to this call if the caller is using the UDP model.
6268  *
6269  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6270  */
6271 static int sctp_getsockopt_default_send_param(struct sock *sk,
6272 					int len, char __user *optval,
6273 					int __user *optlen)
6274 {
6275 	struct sctp_sock *sp = sctp_sk(sk);
6276 	struct sctp_association *asoc;
6277 	struct sctp_sndrcvinfo info;
6278 
6279 	if (len < sizeof(info))
6280 		return -EINVAL;
6281 
6282 	len = sizeof(info);
6283 
6284 	if (copy_from_user(&info, optval, len))
6285 		return -EFAULT;
6286 
6287 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6288 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6289 	    sctp_style(sk, UDP))
6290 		return -EINVAL;
6291 
6292 	if (asoc) {
6293 		info.sinfo_stream = asoc->default_stream;
6294 		info.sinfo_flags = asoc->default_flags;
6295 		info.sinfo_ppid = asoc->default_ppid;
6296 		info.sinfo_context = asoc->default_context;
6297 		info.sinfo_timetolive = asoc->default_timetolive;
6298 	} else {
6299 		info.sinfo_stream = sp->default_stream;
6300 		info.sinfo_flags = sp->default_flags;
6301 		info.sinfo_ppid = sp->default_ppid;
6302 		info.sinfo_context = sp->default_context;
6303 		info.sinfo_timetolive = sp->default_timetolive;
6304 	}
6305 
6306 	if (put_user(len, optlen))
6307 		return -EFAULT;
6308 	if (copy_to_user(optval, &info, len))
6309 		return -EFAULT;
6310 
6311 	return 0;
6312 }
6313 
6314 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6315  * (SCTP_DEFAULT_SNDINFO)
6316  */
6317 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6318 					   char __user *optval,
6319 					   int __user *optlen)
6320 {
6321 	struct sctp_sock *sp = sctp_sk(sk);
6322 	struct sctp_association *asoc;
6323 	struct sctp_sndinfo info;
6324 
6325 	if (len < sizeof(info))
6326 		return -EINVAL;
6327 
6328 	len = sizeof(info);
6329 
6330 	if (copy_from_user(&info, optval, len))
6331 		return -EFAULT;
6332 
6333 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6334 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6335 	    sctp_style(sk, UDP))
6336 		return -EINVAL;
6337 
6338 	if (asoc) {
6339 		info.snd_sid = asoc->default_stream;
6340 		info.snd_flags = asoc->default_flags;
6341 		info.snd_ppid = asoc->default_ppid;
6342 		info.snd_context = asoc->default_context;
6343 	} else {
6344 		info.snd_sid = sp->default_stream;
6345 		info.snd_flags = sp->default_flags;
6346 		info.snd_ppid = sp->default_ppid;
6347 		info.snd_context = sp->default_context;
6348 	}
6349 
6350 	if (put_user(len, optlen))
6351 		return -EFAULT;
6352 	if (copy_to_user(optval, &info, len))
6353 		return -EFAULT;
6354 
6355 	return 0;
6356 }
6357 
6358 /*
6359  *
6360  * 7.1.5 SCTP_NODELAY
6361  *
6362  * Turn on/off any Nagle-like algorithm.  This means that packets are
6363  * generally sent as soon as possible and no unnecessary delays are
6364  * introduced, at the cost of more packets in the network.  Expects an
6365  * integer boolean flag.
6366  */
6367 
6368 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6369 				   char __user *optval, int __user *optlen)
6370 {
6371 	int val;
6372 
6373 	if (len < sizeof(int))
6374 		return -EINVAL;
6375 
6376 	len = sizeof(int);
6377 	val = (sctp_sk(sk)->nodelay == 1);
6378 	if (put_user(len, optlen))
6379 		return -EFAULT;
6380 	if (copy_to_user(optval, &val, len))
6381 		return -EFAULT;
6382 	return 0;
6383 }
6384 
6385 /*
6386  *
6387  * 7.1.1 SCTP_RTOINFO
6388  *
6389  * The protocol parameters used to initialize and bound retransmission
6390  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6391  * and modify these parameters.
6392  * All parameters are time values, in milliseconds.  A value of 0, when
6393  * modifying the parameters, indicates that the current value should not
6394  * be changed.
6395  *
6396  */
6397 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6398 				char __user *optval,
6399 				int __user *optlen) {
6400 	struct sctp_rtoinfo rtoinfo;
6401 	struct sctp_association *asoc;
6402 
6403 	if (len < sizeof (struct sctp_rtoinfo))
6404 		return -EINVAL;
6405 
6406 	len = sizeof(struct sctp_rtoinfo);
6407 
6408 	if (copy_from_user(&rtoinfo, optval, len))
6409 		return -EFAULT;
6410 
6411 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6412 
6413 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6414 	    sctp_style(sk, UDP))
6415 		return -EINVAL;
6416 
6417 	/* Values corresponding to the specific association. */
6418 	if (asoc) {
6419 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6420 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6421 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6422 	} else {
6423 		/* Values corresponding to the endpoint. */
6424 		struct sctp_sock *sp = sctp_sk(sk);
6425 
6426 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6427 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6428 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6429 	}
6430 
6431 	if (put_user(len, optlen))
6432 		return -EFAULT;
6433 
6434 	if (copy_to_user(optval, &rtoinfo, len))
6435 		return -EFAULT;
6436 
6437 	return 0;
6438 }
6439 
6440 /*
6441  *
6442  * 7.1.2 SCTP_ASSOCINFO
6443  *
6444  * This option is used to tune the maximum retransmission attempts
6445  * of the association.
6446  * Returns an error if the new association retransmission value is
6447  * greater than the sum of the retransmission value  of the peer.
6448  * See [SCTP] for more information.
6449  *
6450  */
6451 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6452 				     char __user *optval,
6453 				     int __user *optlen)
6454 {
6455 
6456 	struct sctp_assocparams assocparams;
6457 	struct sctp_association *asoc;
6458 	struct list_head *pos;
6459 	int cnt = 0;
6460 
6461 	if (len < sizeof (struct sctp_assocparams))
6462 		return -EINVAL;
6463 
6464 	len = sizeof(struct sctp_assocparams);
6465 
6466 	if (copy_from_user(&assocparams, optval, len))
6467 		return -EFAULT;
6468 
6469 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6470 
6471 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6472 	    sctp_style(sk, UDP))
6473 		return -EINVAL;
6474 
6475 	/* Values correspoinding to the specific association */
6476 	if (asoc) {
6477 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6478 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6479 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6480 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6481 
6482 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6483 			cnt++;
6484 		}
6485 
6486 		assocparams.sasoc_number_peer_destinations = cnt;
6487 	} else {
6488 		/* Values corresponding to the endpoint */
6489 		struct sctp_sock *sp = sctp_sk(sk);
6490 
6491 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6492 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6493 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6494 		assocparams.sasoc_cookie_life =
6495 					sp->assocparams.sasoc_cookie_life;
6496 		assocparams.sasoc_number_peer_destinations =
6497 					sp->assocparams.
6498 					sasoc_number_peer_destinations;
6499 	}
6500 
6501 	if (put_user(len, optlen))
6502 		return -EFAULT;
6503 
6504 	if (copy_to_user(optval, &assocparams, len))
6505 		return -EFAULT;
6506 
6507 	return 0;
6508 }
6509 
6510 /*
6511  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6512  *
6513  * This socket option is a boolean flag which turns on or off mapped V4
6514  * addresses.  If this option is turned on and the socket is type
6515  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6516  * If this option is turned off, then no mapping will be done of V4
6517  * addresses and a user will receive both PF_INET6 and PF_INET type
6518  * addresses on the socket.
6519  */
6520 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6521 				    char __user *optval, int __user *optlen)
6522 {
6523 	int val;
6524 	struct sctp_sock *sp = sctp_sk(sk);
6525 
6526 	if (len < sizeof(int))
6527 		return -EINVAL;
6528 
6529 	len = sizeof(int);
6530 	val = sp->v4mapped;
6531 	if (put_user(len, optlen))
6532 		return -EFAULT;
6533 	if (copy_to_user(optval, &val, len))
6534 		return -EFAULT;
6535 
6536 	return 0;
6537 }
6538 
6539 /*
6540  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6541  * (chapter and verse is quoted at sctp_setsockopt_context())
6542  */
6543 static int sctp_getsockopt_context(struct sock *sk, int len,
6544 				   char __user *optval, int __user *optlen)
6545 {
6546 	struct sctp_assoc_value params;
6547 	struct sctp_association *asoc;
6548 
6549 	if (len < sizeof(struct sctp_assoc_value))
6550 		return -EINVAL;
6551 
6552 	len = sizeof(struct sctp_assoc_value);
6553 
6554 	if (copy_from_user(&params, optval, len))
6555 		return -EFAULT;
6556 
6557 	asoc = sctp_id2assoc(sk, params.assoc_id);
6558 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6559 	    sctp_style(sk, UDP))
6560 		return -EINVAL;
6561 
6562 	params.assoc_value = asoc ? asoc->default_rcv_context
6563 				  : sctp_sk(sk)->default_rcv_context;
6564 
6565 	if (put_user(len, optlen))
6566 		return -EFAULT;
6567 	if (copy_to_user(optval, &params, len))
6568 		return -EFAULT;
6569 
6570 	return 0;
6571 }
6572 
6573 /*
6574  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6575  * This option will get or set the maximum size to put in any outgoing
6576  * SCTP DATA chunk.  If a message is larger than this size it will be
6577  * fragmented by SCTP into the specified size.  Note that the underlying
6578  * SCTP implementation may fragment into smaller sized chunks when the
6579  * PMTU of the underlying association is smaller than the value set by
6580  * the user.  The default value for this option is '0' which indicates
6581  * the user is NOT limiting fragmentation and only the PMTU will effect
6582  * SCTP's choice of DATA chunk size.  Note also that values set larger
6583  * than the maximum size of an IP datagram will effectively let SCTP
6584  * control fragmentation (i.e. the same as setting this option to 0).
6585  *
6586  * The following structure is used to access and modify this parameter:
6587  *
6588  * struct sctp_assoc_value {
6589  *   sctp_assoc_t assoc_id;
6590  *   uint32_t assoc_value;
6591  * };
6592  *
6593  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6594  *    For one-to-many style sockets this parameter indicates which
6595  *    association the user is performing an action upon.  Note that if
6596  *    this field's value is zero then the endpoints default value is
6597  *    changed (effecting future associations only).
6598  * assoc_value:  This parameter specifies the maximum size in bytes.
6599  */
6600 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6601 				  char __user *optval, int __user *optlen)
6602 {
6603 	struct sctp_assoc_value params;
6604 	struct sctp_association *asoc;
6605 
6606 	if (len == sizeof(int)) {
6607 		pr_warn_ratelimited(DEPRECATED
6608 				    "%s (pid %d) "
6609 				    "Use of int in maxseg socket option.\n"
6610 				    "Use struct sctp_assoc_value instead\n",
6611 				    current->comm, task_pid_nr(current));
6612 		params.assoc_id = SCTP_FUTURE_ASSOC;
6613 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6614 		len = sizeof(struct sctp_assoc_value);
6615 		if (copy_from_user(&params, optval, len))
6616 			return -EFAULT;
6617 	} else
6618 		return -EINVAL;
6619 
6620 	asoc = sctp_id2assoc(sk, params.assoc_id);
6621 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6622 	    sctp_style(sk, UDP))
6623 		return -EINVAL;
6624 
6625 	if (asoc)
6626 		params.assoc_value = asoc->frag_point;
6627 	else
6628 		params.assoc_value = sctp_sk(sk)->user_frag;
6629 
6630 	if (put_user(len, optlen))
6631 		return -EFAULT;
6632 	if (len == sizeof(int)) {
6633 		if (copy_to_user(optval, &params.assoc_value, len))
6634 			return -EFAULT;
6635 	} else {
6636 		if (copy_to_user(optval, &params, len))
6637 			return -EFAULT;
6638 	}
6639 
6640 	return 0;
6641 }
6642 
6643 /*
6644  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6645  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6646  */
6647 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6648 					       char __user *optval, int __user *optlen)
6649 {
6650 	int val;
6651 
6652 	if (len < sizeof(int))
6653 		return -EINVAL;
6654 
6655 	len = sizeof(int);
6656 
6657 	val = sctp_sk(sk)->frag_interleave;
6658 	if (put_user(len, optlen))
6659 		return -EFAULT;
6660 	if (copy_to_user(optval, &val, len))
6661 		return -EFAULT;
6662 
6663 	return 0;
6664 }
6665 
6666 /*
6667  * 7.1.25.  Set or Get the sctp partial delivery point
6668  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6669  */
6670 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6671 						  char __user *optval,
6672 						  int __user *optlen)
6673 {
6674 	u32 val;
6675 
6676 	if (len < sizeof(u32))
6677 		return -EINVAL;
6678 
6679 	len = sizeof(u32);
6680 
6681 	val = sctp_sk(sk)->pd_point;
6682 	if (put_user(len, optlen))
6683 		return -EFAULT;
6684 	if (copy_to_user(optval, &val, len))
6685 		return -EFAULT;
6686 
6687 	return 0;
6688 }
6689 
6690 /*
6691  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6692  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6693  */
6694 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6695 				    char __user *optval,
6696 				    int __user *optlen)
6697 {
6698 	struct sctp_assoc_value params;
6699 	struct sctp_association *asoc;
6700 
6701 	if (len == sizeof(int)) {
6702 		pr_warn_ratelimited(DEPRECATED
6703 				    "%s (pid %d) "
6704 				    "Use of int in max_burst socket option.\n"
6705 				    "Use struct sctp_assoc_value instead\n",
6706 				    current->comm, task_pid_nr(current));
6707 		params.assoc_id = SCTP_FUTURE_ASSOC;
6708 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6709 		len = sizeof(struct sctp_assoc_value);
6710 		if (copy_from_user(&params, optval, len))
6711 			return -EFAULT;
6712 	} else
6713 		return -EINVAL;
6714 
6715 	asoc = sctp_id2assoc(sk, params.assoc_id);
6716 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6717 	    sctp_style(sk, UDP))
6718 		return -EINVAL;
6719 
6720 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6721 
6722 	if (len == sizeof(int)) {
6723 		if (copy_to_user(optval, &params.assoc_value, len))
6724 			return -EFAULT;
6725 	} else {
6726 		if (copy_to_user(optval, &params, len))
6727 			return -EFAULT;
6728 	}
6729 
6730 	return 0;
6731 
6732 }
6733 
6734 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6735 				    char __user *optval, int __user *optlen)
6736 {
6737 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6738 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6739 	struct sctp_hmac_algo_param *hmacs;
6740 	__u16 data_len = 0;
6741 	u32 num_idents;
6742 	int i;
6743 
6744 	if (!ep->auth_enable)
6745 		return -EACCES;
6746 
6747 	hmacs = ep->auth_hmacs_list;
6748 	data_len = ntohs(hmacs->param_hdr.length) -
6749 		   sizeof(struct sctp_paramhdr);
6750 
6751 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6752 		return -EINVAL;
6753 
6754 	len = sizeof(struct sctp_hmacalgo) + data_len;
6755 	num_idents = data_len / sizeof(u16);
6756 
6757 	if (put_user(len, optlen))
6758 		return -EFAULT;
6759 	if (put_user(num_idents, &p->shmac_num_idents))
6760 		return -EFAULT;
6761 	for (i = 0; i < num_idents; i++) {
6762 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6763 
6764 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6765 			return -EFAULT;
6766 	}
6767 	return 0;
6768 }
6769 
6770 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6771 				    char __user *optval, int __user *optlen)
6772 {
6773 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6774 	struct sctp_authkeyid val;
6775 	struct sctp_association *asoc;
6776 
6777 	if (len < sizeof(struct sctp_authkeyid))
6778 		return -EINVAL;
6779 
6780 	len = sizeof(struct sctp_authkeyid);
6781 	if (copy_from_user(&val, optval, len))
6782 		return -EFAULT;
6783 
6784 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6785 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6786 		return -EINVAL;
6787 
6788 	if (asoc) {
6789 		if (!asoc->peer.auth_capable)
6790 			return -EACCES;
6791 		val.scact_keynumber = asoc->active_key_id;
6792 	} else {
6793 		if (!ep->auth_enable)
6794 			return -EACCES;
6795 		val.scact_keynumber = ep->active_key_id;
6796 	}
6797 
6798 	if (put_user(len, optlen))
6799 		return -EFAULT;
6800 	if (copy_to_user(optval, &val, len))
6801 		return -EFAULT;
6802 
6803 	return 0;
6804 }
6805 
6806 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6807 				    char __user *optval, int __user *optlen)
6808 {
6809 	struct sctp_authchunks __user *p = (void __user *)optval;
6810 	struct sctp_authchunks val;
6811 	struct sctp_association *asoc;
6812 	struct sctp_chunks_param *ch;
6813 	u32    num_chunks = 0;
6814 	char __user *to;
6815 
6816 	if (len < sizeof(struct sctp_authchunks))
6817 		return -EINVAL;
6818 
6819 	if (copy_from_user(&val, optval, sizeof(val)))
6820 		return -EFAULT;
6821 
6822 	to = p->gauth_chunks;
6823 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6824 	if (!asoc)
6825 		return -EINVAL;
6826 
6827 	if (!asoc->peer.auth_capable)
6828 		return -EACCES;
6829 
6830 	ch = asoc->peer.peer_chunks;
6831 	if (!ch)
6832 		goto num;
6833 
6834 	/* See if the user provided enough room for all the data */
6835 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6836 	if (len < num_chunks)
6837 		return -EINVAL;
6838 
6839 	if (copy_to_user(to, ch->chunks, num_chunks))
6840 		return -EFAULT;
6841 num:
6842 	len = sizeof(struct sctp_authchunks) + num_chunks;
6843 	if (put_user(len, optlen))
6844 		return -EFAULT;
6845 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6846 		return -EFAULT;
6847 	return 0;
6848 }
6849 
6850 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6851 				    char __user *optval, int __user *optlen)
6852 {
6853 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6854 	struct sctp_authchunks __user *p = (void __user *)optval;
6855 	struct sctp_authchunks val;
6856 	struct sctp_association *asoc;
6857 	struct sctp_chunks_param *ch;
6858 	u32    num_chunks = 0;
6859 	char __user *to;
6860 
6861 	if (len < sizeof(struct sctp_authchunks))
6862 		return -EINVAL;
6863 
6864 	if (copy_from_user(&val, optval, sizeof(val)))
6865 		return -EFAULT;
6866 
6867 	to = p->gauth_chunks;
6868 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6869 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6870 	    sctp_style(sk, UDP))
6871 		return -EINVAL;
6872 
6873 	if (asoc) {
6874 		if (!asoc->peer.auth_capable)
6875 			return -EACCES;
6876 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6877 	} else {
6878 		if (!ep->auth_enable)
6879 			return -EACCES;
6880 		ch = ep->auth_chunk_list;
6881 	}
6882 	if (!ch)
6883 		goto num;
6884 
6885 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6886 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6887 		return -EINVAL;
6888 
6889 	if (copy_to_user(to, ch->chunks, num_chunks))
6890 		return -EFAULT;
6891 num:
6892 	len = sizeof(struct sctp_authchunks) + num_chunks;
6893 	if (put_user(len, optlen))
6894 		return -EFAULT;
6895 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6896 		return -EFAULT;
6897 
6898 	return 0;
6899 }
6900 
6901 /*
6902  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6903  * This option gets the current number of associations that are attached
6904  * to a one-to-many style socket.  The option value is an uint32_t.
6905  */
6906 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6907 				    char __user *optval, int __user *optlen)
6908 {
6909 	struct sctp_sock *sp = sctp_sk(sk);
6910 	struct sctp_association *asoc;
6911 	u32 val = 0;
6912 
6913 	if (sctp_style(sk, TCP))
6914 		return -EOPNOTSUPP;
6915 
6916 	if (len < sizeof(u32))
6917 		return -EINVAL;
6918 
6919 	len = sizeof(u32);
6920 
6921 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6922 		val++;
6923 	}
6924 
6925 	if (put_user(len, optlen))
6926 		return -EFAULT;
6927 	if (copy_to_user(optval, &val, len))
6928 		return -EFAULT;
6929 
6930 	return 0;
6931 }
6932 
6933 /*
6934  * 8.1.23 SCTP_AUTO_ASCONF
6935  * See the corresponding setsockopt entry as description
6936  */
6937 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6938 				   char __user *optval, int __user *optlen)
6939 {
6940 	int val = 0;
6941 
6942 	if (len < sizeof(int))
6943 		return -EINVAL;
6944 
6945 	len = sizeof(int);
6946 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6947 		val = 1;
6948 	if (put_user(len, optlen))
6949 		return -EFAULT;
6950 	if (copy_to_user(optval, &val, len))
6951 		return -EFAULT;
6952 	return 0;
6953 }
6954 
6955 /*
6956  * 8.2.6. Get the Current Identifiers of Associations
6957  *        (SCTP_GET_ASSOC_ID_LIST)
6958  *
6959  * This option gets the current list of SCTP association identifiers of
6960  * the SCTP associations handled by a one-to-many style socket.
6961  */
6962 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6963 				    char __user *optval, int __user *optlen)
6964 {
6965 	struct sctp_sock *sp = sctp_sk(sk);
6966 	struct sctp_association *asoc;
6967 	struct sctp_assoc_ids *ids;
6968 	u32 num = 0;
6969 
6970 	if (sctp_style(sk, TCP))
6971 		return -EOPNOTSUPP;
6972 
6973 	if (len < sizeof(struct sctp_assoc_ids))
6974 		return -EINVAL;
6975 
6976 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6977 		num++;
6978 	}
6979 
6980 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6981 		return -EINVAL;
6982 
6983 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6984 
6985 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6986 	if (unlikely(!ids))
6987 		return -ENOMEM;
6988 
6989 	ids->gaids_number_of_ids = num;
6990 	num = 0;
6991 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6992 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6993 	}
6994 
6995 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6996 		kfree(ids);
6997 		return -EFAULT;
6998 	}
6999 
7000 	kfree(ids);
7001 	return 0;
7002 }
7003 
7004 /*
7005  * SCTP_PEER_ADDR_THLDS
7006  *
7007  * This option allows us to fetch the partially failed threshold for one or all
7008  * transports in an association.  See Section 6.1 of:
7009  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7010  */
7011 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7012 					    char __user *optval, int len,
7013 					    int __user *optlen, bool v2)
7014 {
7015 	struct sctp_paddrthlds_v2 val;
7016 	struct sctp_transport *trans;
7017 	struct sctp_association *asoc;
7018 	int min;
7019 
7020 	min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7021 	if (len < min)
7022 		return -EINVAL;
7023 	len = min;
7024 	if (copy_from_user(&val, optval, len))
7025 		return -EFAULT;
7026 
7027 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7028 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7029 					       val.spt_assoc_id);
7030 		if (!trans)
7031 			return -ENOENT;
7032 
7033 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7034 		val.spt_pathpfthld = trans->pf_retrans;
7035 		val.spt_pathcpthld = trans->ps_retrans;
7036 
7037 		goto out;
7038 	}
7039 
7040 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7041 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7042 	    sctp_style(sk, UDP))
7043 		return -EINVAL;
7044 
7045 	if (asoc) {
7046 		val.spt_pathpfthld = asoc->pf_retrans;
7047 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7048 		val.spt_pathcpthld = asoc->ps_retrans;
7049 	} else {
7050 		struct sctp_sock *sp = sctp_sk(sk);
7051 
7052 		val.spt_pathpfthld = sp->pf_retrans;
7053 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7054 		val.spt_pathcpthld = sp->ps_retrans;
7055 	}
7056 
7057 out:
7058 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7059 		return -EFAULT;
7060 
7061 	return 0;
7062 }
7063 
7064 /*
7065  * SCTP_GET_ASSOC_STATS
7066  *
7067  * This option retrieves local per endpoint statistics. It is modeled
7068  * after OpenSolaris' implementation
7069  */
7070 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7071 				       char __user *optval,
7072 				       int __user *optlen)
7073 {
7074 	struct sctp_assoc_stats sas;
7075 	struct sctp_association *asoc = NULL;
7076 
7077 	/* User must provide at least the assoc id */
7078 	if (len < sizeof(sctp_assoc_t))
7079 		return -EINVAL;
7080 
7081 	/* Allow the struct to grow and fill in as much as possible */
7082 	len = min_t(size_t, len, sizeof(sas));
7083 
7084 	if (copy_from_user(&sas, optval, len))
7085 		return -EFAULT;
7086 
7087 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7088 	if (!asoc)
7089 		return -EINVAL;
7090 
7091 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7092 	sas.sas_gapcnt = asoc->stats.gapcnt;
7093 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7094 	sas.sas_osacks = asoc->stats.osacks;
7095 	sas.sas_isacks = asoc->stats.isacks;
7096 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7097 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7098 	sas.sas_oodchunks = asoc->stats.oodchunks;
7099 	sas.sas_iodchunks = asoc->stats.iodchunks;
7100 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7101 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7102 	sas.sas_idupchunks = asoc->stats.idupchunks;
7103 	sas.sas_opackets = asoc->stats.opackets;
7104 	sas.sas_ipackets = asoc->stats.ipackets;
7105 
7106 	/* New high max rto observed, will return 0 if not a single
7107 	 * RTO update took place. obs_rto_ipaddr will be bogus
7108 	 * in such a case
7109 	 */
7110 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7111 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7112 		sizeof(struct sockaddr_storage));
7113 
7114 	/* Mark beginning of a new observation period */
7115 	asoc->stats.max_obs_rto = asoc->rto_min;
7116 
7117 	if (put_user(len, optlen))
7118 		return -EFAULT;
7119 
7120 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7121 
7122 	if (copy_to_user(optval, &sas, len))
7123 		return -EFAULT;
7124 
7125 	return 0;
7126 }
7127 
7128 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7129 				       char __user *optval,
7130 				       int __user *optlen)
7131 {
7132 	int val = 0;
7133 
7134 	if (len < sizeof(int))
7135 		return -EINVAL;
7136 
7137 	len = sizeof(int);
7138 	if (sctp_sk(sk)->recvrcvinfo)
7139 		val = 1;
7140 	if (put_user(len, optlen))
7141 		return -EFAULT;
7142 	if (copy_to_user(optval, &val, len))
7143 		return -EFAULT;
7144 
7145 	return 0;
7146 }
7147 
7148 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7149 				       char __user *optval,
7150 				       int __user *optlen)
7151 {
7152 	int val = 0;
7153 
7154 	if (len < sizeof(int))
7155 		return -EINVAL;
7156 
7157 	len = sizeof(int);
7158 	if (sctp_sk(sk)->recvnxtinfo)
7159 		val = 1;
7160 	if (put_user(len, optlen))
7161 		return -EFAULT;
7162 	if (copy_to_user(optval, &val, len))
7163 		return -EFAULT;
7164 
7165 	return 0;
7166 }
7167 
7168 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7169 					char __user *optval,
7170 					int __user *optlen)
7171 {
7172 	struct sctp_assoc_value params;
7173 	struct sctp_association *asoc;
7174 	int retval = -EFAULT;
7175 
7176 	if (len < sizeof(params)) {
7177 		retval = -EINVAL;
7178 		goto out;
7179 	}
7180 
7181 	len = sizeof(params);
7182 	if (copy_from_user(&params, optval, len))
7183 		goto out;
7184 
7185 	asoc = sctp_id2assoc(sk, params.assoc_id);
7186 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7187 	    sctp_style(sk, UDP)) {
7188 		retval = -EINVAL;
7189 		goto out;
7190 	}
7191 
7192 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7193 				  : sctp_sk(sk)->ep->prsctp_enable;
7194 
7195 	if (put_user(len, optlen))
7196 		goto out;
7197 
7198 	if (copy_to_user(optval, &params, len))
7199 		goto out;
7200 
7201 	retval = 0;
7202 
7203 out:
7204 	return retval;
7205 }
7206 
7207 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7208 					  char __user *optval,
7209 					  int __user *optlen)
7210 {
7211 	struct sctp_default_prinfo info;
7212 	struct sctp_association *asoc;
7213 	int retval = -EFAULT;
7214 
7215 	if (len < sizeof(info)) {
7216 		retval = -EINVAL;
7217 		goto out;
7218 	}
7219 
7220 	len = sizeof(info);
7221 	if (copy_from_user(&info, optval, len))
7222 		goto out;
7223 
7224 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7225 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7226 	    sctp_style(sk, UDP)) {
7227 		retval = -EINVAL;
7228 		goto out;
7229 	}
7230 
7231 	if (asoc) {
7232 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7233 		info.pr_value = asoc->default_timetolive;
7234 	} else {
7235 		struct sctp_sock *sp = sctp_sk(sk);
7236 
7237 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7238 		info.pr_value = sp->default_timetolive;
7239 	}
7240 
7241 	if (put_user(len, optlen))
7242 		goto out;
7243 
7244 	if (copy_to_user(optval, &info, len))
7245 		goto out;
7246 
7247 	retval = 0;
7248 
7249 out:
7250 	return retval;
7251 }
7252 
7253 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7254 					  char __user *optval,
7255 					  int __user *optlen)
7256 {
7257 	struct sctp_prstatus params;
7258 	struct sctp_association *asoc;
7259 	int policy;
7260 	int retval = -EINVAL;
7261 
7262 	if (len < sizeof(params))
7263 		goto out;
7264 
7265 	len = sizeof(params);
7266 	if (copy_from_user(&params, optval, len)) {
7267 		retval = -EFAULT;
7268 		goto out;
7269 	}
7270 
7271 	policy = params.sprstat_policy;
7272 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7273 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7274 		goto out;
7275 
7276 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7277 	if (!asoc)
7278 		goto out;
7279 
7280 	if (policy == SCTP_PR_SCTP_ALL) {
7281 		params.sprstat_abandoned_unsent = 0;
7282 		params.sprstat_abandoned_sent = 0;
7283 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7284 			params.sprstat_abandoned_unsent +=
7285 				asoc->abandoned_unsent[policy];
7286 			params.sprstat_abandoned_sent +=
7287 				asoc->abandoned_sent[policy];
7288 		}
7289 	} else {
7290 		params.sprstat_abandoned_unsent =
7291 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7292 		params.sprstat_abandoned_sent =
7293 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7294 	}
7295 
7296 	if (put_user(len, optlen)) {
7297 		retval = -EFAULT;
7298 		goto out;
7299 	}
7300 
7301 	if (copy_to_user(optval, &params, len)) {
7302 		retval = -EFAULT;
7303 		goto out;
7304 	}
7305 
7306 	retval = 0;
7307 
7308 out:
7309 	return retval;
7310 }
7311 
7312 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7313 					   char __user *optval,
7314 					   int __user *optlen)
7315 {
7316 	struct sctp_stream_out_ext *streamoute;
7317 	struct sctp_association *asoc;
7318 	struct sctp_prstatus params;
7319 	int retval = -EINVAL;
7320 	int policy;
7321 
7322 	if (len < sizeof(params))
7323 		goto out;
7324 
7325 	len = sizeof(params);
7326 	if (copy_from_user(&params, optval, len)) {
7327 		retval = -EFAULT;
7328 		goto out;
7329 	}
7330 
7331 	policy = params.sprstat_policy;
7332 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7333 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7334 		goto out;
7335 
7336 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7337 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7338 		goto out;
7339 
7340 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7341 	if (!streamoute) {
7342 		/* Not allocated yet, means all stats are 0 */
7343 		params.sprstat_abandoned_unsent = 0;
7344 		params.sprstat_abandoned_sent = 0;
7345 		retval = 0;
7346 		goto out;
7347 	}
7348 
7349 	if (policy == SCTP_PR_SCTP_ALL) {
7350 		params.sprstat_abandoned_unsent = 0;
7351 		params.sprstat_abandoned_sent = 0;
7352 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7353 			params.sprstat_abandoned_unsent +=
7354 				streamoute->abandoned_unsent[policy];
7355 			params.sprstat_abandoned_sent +=
7356 				streamoute->abandoned_sent[policy];
7357 		}
7358 	} else {
7359 		params.sprstat_abandoned_unsent =
7360 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7361 		params.sprstat_abandoned_sent =
7362 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7363 	}
7364 
7365 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7366 		retval = -EFAULT;
7367 		goto out;
7368 	}
7369 
7370 	retval = 0;
7371 
7372 out:
7373 	return retval;
7374 }
7375 
7376 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7377 					      char __user *optval,
7378 					      int __user *optlen)
7379 {
7380 	struct sctp_assoc_value params;
7381 	struct sctp_association *asoc;
7382 	int retval = -EFAULT;
7383 
7384 	if (len < sizeof(params)) {
7385 		retval = -EINVAL;
7386 		goto out;
7387 	}
7388 
7389 	len = sizeof(params);
7390 	if (copy_from_user(&params, optval, len))
7391 		goto out;
7392 
7393 	asoc = sctp_id2assoc(sk, params.assoc_id);
7394 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7395 	    sctp_style(sk, UDP)) {
7396 		retval = -EINVAL;
7397 		goto out;
7398 	}
7399 
7400 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7401 				  : sctp_sk(sk)->ep->reconf_enable;
7402 
7403 	if (put_user(len, optlen))
7404 		goto out;
7405 
7406 	if (copy_to_user(optval, &params, len))
7407 		goto out;
7408 
7409 	retval = 0;
7410 
7411 out:
7412 	return retval;
7413 }
7414 
7415 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7416 					   char __user *optval,
7417 					   int __user *optlen)
7418 {
7419 	struct sctp_assoc_value params;
7420 	struct sctp_association *asoc;
7421 	int retval = -EFAULT;
7422 
7423 	if (len < sizeof(params)) {
7424 		retval = -EINVAL;
7425 		goto out;
7426 	}
7427 
7428 	len = sizeof(params);
7429 	if (copy_from_user(&params, optval, len))
7430 		goto out;
7431 
7432 	asoc = sctp_id2assoc(sk, params.assoc_id);
7433 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7434 	    sctp_style(sk, UDP)) {
7435 		retval = -EINVAL;
7436 		goto out;
7437 	}
7438 
7439 	params.assoc_value = asoc ? asoc->strreset_enable
7440 				  : sctp_sk(sk)->ep->strreset_enable;
7441 
7442 	if (put_user(len, optlen))
7443 		goto out;
7444 
7445 	if (copy_to_user(optval, &params, len))
7446 		goto out;
7447 
7448 	retval = 0;
7449 
7450 out:
7451 	return retval;
7452 }
7453 
7454 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7455 				     char __user *optval,
7456 				     int __user *optlen)
7457 {
7458 	struct sctp_assoc_value params;
7459 	struct sctp_association *asoc;
7460 	int retval = -EFAULT;
7461 
7462 	if (len < sizeof(params)) {
7463 		retval = -EINVAL;
7464 		goto out;
7465 	}
7466 
7467 	len = sizeof(params);
7468 	if (copy_from_user(&params, optval, len))
7469 		goto out;
7470 
7471 	asoc = sctp_id2assoc(sk, params.assoc_id);
7472 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7473 	    sctp_style(sk, UDP)) {
7474 		retval = -EINVAL;
7475 		goto out;
7476 	}
7477 
7478 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7479 				  : sctp_sk(sk)->default_ss;
7480 
7481 	if (put_user(len, optlen))
7482 		goto out;
7483 
7484 	if (copy_to_user(optval, &params, len))
7485 		goto out;
7486 
7487 	retval = 0;
7488 
7489 out:
7490 	return retval;
7491 }
7492 
7493 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7494 					   char __user *optval,
7495 					   int __user *optlen)
7496 {
7497 	struct sctp_stream_value params;
7498 	struct sctp_association *asoc;
7499 	int retval = -EFAULT;
7500 
7501 	if (len < sizeof(params)) {
7502 		retval = -EINVAL;
7503 		goto out;
7504 	}
7505 
7506 	len = sizeof(params);
7507 	if (copy_from_user(&params, optval, len))
7508 		goto out;
7509 
7510 	asoc = sctp_id2assoc(sk, params.assoc_id);
7511 	if (!asoc) {
7512 		retval = -EINVAL;
7513 		goto out;
7514 	}
7515 
7516 	retval = sctp_sched_get_value(asoc, params.stream_id,
7517 				      &params.stream_value);
7518 	if (retval)
7519 		goto out;
7520 
7521 	if (put_user(len, optlen)) {
7522 		retval = -EFAULT;
7523 		goto out;
7524 	}
7525 
7526 	if (copy_to_user(optval, &params, len)) {
7527 		retval = -EFAULT;
7528 		goto out;
7529 	}
7530 
7531 out:
7532 	return retval;
7533 }
7534 
7535 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7536 						  char __user *optval,
7537 						  int __user *optlen)
7538 {
7539 	struct sctp_assoc_value params;
7540 	struct sctp_association *asoc;
7541 	int retval = -EFAULT;
7542 
7543 	if (len < sizeof(params)) {
7544 		retval = -EINVAL;
7545 		goto out;
7546 	}
7547 
7548 	len = sizeof(params);
7549 	if (copy_from_user(&params, optval, len))
7550 		goto out;
7551 
7552 	asoc = sctp_id2assoc(sk, params.assoc_id);
7553 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7554 	    sctp_style(sk, UDP)) {
7555 		retval = -EINVAL;
7556 		goto out;
7557 	}
7558 
7559 	params.assoc_value = asoc ? asoc->peer.intl_capable
7560 				  : sctp_sk(sk)->ep->intl_enable;
7561 
7562 	if (put_user(len, optlen))
7563 		goto out;
7564 
7565 	if (copy_to_user(optval, &params, len))
7566 		goto out;
7567 
7568 	retval = 0;
7569 
7570 out:
7571 	return retval;
7572 }
7573 
7574 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7575 				      char __user *optval,
7576 				      int __user *optlen)
7577 {
7578 	int val;
7579 
7580 	if (len < sizeof(int))
7581 		return -EINVAL;
7582 
7583 	len = sizeof(int);
7584 	val = sctp_sk(sk)->reuse;
7585 	if (put_user(len, optlen))
7586 		return -EFAULT;
7587 
7588 	if (copy_to_user(optval, &val, len))
7589 		return -EFAULT;
7590 
7591 	return 0;
7592 }
7593 
7594 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7595 				 int __user *optlen)
7596 {
7597 	struct sctp_association *asoc;
7598 	struct sctp_event param;
7599 	__u16 subscribe;
7600 
7601 	if (len < sizeof(param))
7602 		return -EINVAL;
7603 
7604 	len = sizeof(param);
7605 	if (copy_from_user(&param, optval, len))
7606 		return -EFAULT;
7607 
7608 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7609 	    param.se_type > SCTP_SN_TYPE_MAX)
7610 		return -EINVAL;
7611 
7612 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7613 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7614 	    sctp_style(sk, UDP))
7615 		return -EINVAL;
7616 
7617 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7618 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7619 
7620 	if (put_user(len, optlen))
7621 		return -EFAULT;
7622 
7623 	if (copy_to_user(optval, &param, len))
7624 		return -EFAULT;
7625 
7626 	return 0;
7627 }
7628 
7629 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7630 					    char __user *optval,
7631 					    int __user *optlen)
7632 {
7633 	struct sctp_assoc_value params;
7634 	struct sctp_association *asoc;
7635 	int retval = -EFAULT;
7636 
7637 	if (len < sizeof(params)) {
7638 		retval = -EINVAL;
7639 		goto out;
7640 	}
7641 
7642 	len = sizeof(params);
7643 	if (copy_from_user(&params, optval, len))
7644 		goto out;
7645 
7646 	asoc = sctp_id2assoc(sk, params.assoc_id);
7647 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7648 	    sctp_style(sk, UDP)) {
7649 		retval = -EINVAL;
7650 		goto out;
7651 	}
7652 
7653 	params.assoc_value = asoc ? asoc->peer.asconf_capable
7654 				  : sctp_sk(sk)->ep->asconf_enable;
7655 
7656 	if (put_user(len, optlen))
7657 		goto out;
7658 
7659 	if (copy_to_user(optval, &params, len))
7660 		goto out;
7661 
7662 	retval = 0;
7663 
7664 out:
7665 	return retval;
7666 }
7667 
7668 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7669 					  char __user *optval,
7670 					  int __user *optlen)
7671 {
7672 	struct sctp_assoc_value params;
7673 	struct sctp_association *asoc;
7674 	int retval = -EFAULT;
7675 
7676 	if (len < sizeof(params)) {
7677 		retval = -EINVAL;
7678 		goto out;
7679 	}
7680 
7681 	len = sizeof(params);
7682 	if (copy_from_user(&params, optval, len))
7683 		goto out;
7684 
7685 	asoc = sctp_id2assoc(sk, params.assoc_id);
7686 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7687 	    sctp_style(sk, UDP)) {
7688 		retval = -EINVAL;
7689 		goto out;
7690 	}
7691 
7692 	params.assoc_value = asoc ? asoc->peer.auth_capable
7693 				  : sctp_sk(sk)->ep->auth_enable;
7694 
7695 	if (put_user(len, optlen))
7696 		goto out;
7697 
7698 	if (copy_to_user(optval, &params, len))
7699 		goto out;
7700 
7701 	retval = 0;
7702 
7703 out:
7704 	return retval;
7705 }
7706 
7707 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7708 					 char __user *optval,
7709 					 int __user *optlen)
7710 {
7711 	struct sctp_assoc_value params;
7712 	struct sctp_association *asoc;
7713 	int retval = -EFAULT;
7714 
7715 	if (len < sizeof(params)) {
7716 		retval = -EINVAL;
7717 		goto out;
7718 	}
7719 
7720 	len = sizeof(params);
7721 	if (copy_from_user(&params, optval, len))
7722 		goto out;
7723 
7724 	asoc = sctp_id2assoc(sk, params.assoc_id);
7725 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7726 	    sctp_style(sk, UDP)) {
7727 		retval = -EINVAL;
7728 		goto out;
7729 	}
7730 
7731 	params.assoc_value = asoc ? asoc->peer.ecn_capable
7732 				  : sctp_sk(sk)->ep->ecn_enable;
7733 
7734 	if (put_user(len, optlen))
7735 		goto out;
7736 
7737 	if (copy_to_user(optval, &params, len))
7738 		goto out;
7739 
7740 	retval = 0;
7741 
7742 out:
7743 	return retval;
7744 }
7745 
7746 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7747 				     char __user *optval,
7748 				     int __user *optlen)
7749 {
7750 	struct sctp_assoc_value params;
7751 	struct sctp_association *asoc;
7752 	int retval = -EFAULT;
7753 
7754 	if (len < sizeof(params)) {
7755 		retval = -EINVAL;
7756 		goto out;
7757 	}
7758 
7759 	len = sizeof(params);
7760 	if (copy_from_user(&params, optval, len))
7761 		goto out;
7762 
7763 	asoc = sctp_id2assoc(sk, params.assoc_id);
7764 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7765 	    sctp_style(sk, UDP)) {
7766 		retval = -EINVAL;
7767 		goto out;
7768 	}
7769 
7770 	params.assoc_value = asoc ? asoc->pf_expose
7771 				  : sctp_sk(sk)->pf_expose;
7772 
7773 	if (put_user(len, optlen))
7774 		goto out;
7775 
7776 	if (copy_to_user(optval, &params, len))
7777 		goto out;
7778 
7779 	retval = 0;
7780 
7781 out:
7782 	return retval;
7783 }
7784 
7785 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7786 			   char __user *optval, int __user *optlen)
7787 {
7788 	int retval = 0;
7789 	int len;
7790 
7791 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7792 
7793 	/* I can hardly begin to describe how wrong this is.  This is
7794 	 * so broken as to be worse than useless.  The API draft
7795 	 * REALLY is NOT helpful here...  I am not convinced that the
7796 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7797 	 * are at all well-founded.
7798 	 */
7799 	if (level != SOL_SCTP) {
7800 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7801 
7802 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7803 		return retval;
7804 	}
7805 
7806 	if (get_user(len, optlen))
7807 		return -EFAULT;
7808 
7809 	if (len < 0)
7810 		return -EINVAL;
7811 
7812 	lock_sock(sk);
7813 
7814 	switch (optname) {
7815 	case SCTP_STATUS:
7816 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7817 		break;
7818 	case SCTP_DISABLE_FRAGMENTS:
7819 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7820 							   optlen);
7821 		break;
7822 	case SCTP_EVENTS:
7823 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7824 		break;
7825 	case SCTP_AUTOCLOSE:
7826 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7827 		break;
7828 	case SCTP_SOCKOPT_PEELOFF:
7829 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7830 		break;
7831 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7832 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7833 		break;
7834 	case SCTP_PEER_ADDR_PARAMS:
7835 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7836 							  optlen);
7837 		break;
7838 	case SCTP_DELAYED_SACK:
7839 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7840 							  optlen);
7841 		break;
7842 	case SCTP_INITMSG:
7843 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7844 		break;
7845 	case SCTP_GET_PEER_ADDRS:
7846 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7847 						    optlen);
7848 		break;
7849 	case SCTP_GET_LOCAL_ADDRS:
7850 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7851 						     optlen);
7852 		break;
7853 	case SCTP_SOCKOPT_CONNECTX3:
7854 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7855 		break;
7856 	case SCTP_DEFAULT_SEND_PARAM:
7857 		retval = sctp_getsockopt_default_send_param(sk, len,
7858 							    optval, optlen);
7859 		break;
7860 	case SCTP_DEFAULT_SNDINFO:
7861 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7862 							 optval, optlen);
7863 		break;
7864 	case SCTP_PRIMARY_ADDR:
7865 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7866 		break;
7867 	case SCTP_NODELAY:
7868 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7869 		break;
7870 	case SCTP_RTOINFO:
7871 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7872 		break;
7873 	case SCTP_ASSOCINFO:
7874 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7875 		break;
7876 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7877 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7878 		break;
7879 	case SCTP_MAXSEG:
7880 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7881 		break;
7882 	case SCTP_GET_PEER_ADDR_INFO:
7883 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7884 							optlen);
7885 		break;
7886 	case SCTP_ADAPTATION_LAYER:
7887 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7888 							optlen);
7889 		break;
7890 	case SCTP_CONTEXT:
7891 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7892 		break;
7893 	case SCTP_FRAGMENT_INTERLEAVE:
7894 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7895 							     optlen);
7896 		break;
7897 	case SCTP_PARTIAL_DELIVERY_POINT:
7898 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7899 								optlen);
7900 		break;
7901 	case SCTP_MAX_BURST:
7902 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7903 		break;
7904 	case SCTP_AUTH_KEY:
7905 	case SCTP_AUTH_CHUNK:
7906 	case SCTP_AUTH_DELETE_KEY:
7907 	case SCTP_AUTH_DEACTIVATE_KEY:
7908 		retval = -EOPNOTSUPP;
7909 		break;
7910 	case SCTP_HMAC_IDENT:
7911 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7912 		break;
7913 	case SCTP_AUTH_ACTIVE_KEY:
7914 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7915 		break;
7916 	case SCTP_PEER_AUTH_CHUNKS:
7917 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7918 							optlen);
7919 		break;
7920 	case SCTP_LOCAL_AUTH_CHUNKS:
7921 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7922 							optlen);
7923 		break;
7924 	case SCTP_GET_ASSOC_NUMBER:
7925 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7926 		break;
7927 	case SCTP_GET_ASSOC_ID_LIST:
7928 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7929 		break;
7930 	case SCTP_AUTO_ASCONF:
7931 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7932 		break;
7933 	case SCTP_PEER_ADDR_THLDS:
7934 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
7935 							  optlen, false);
7936 		break;
7937 	case SCTP_PEER_ADDR_THLDS_V2:
7938 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
7939 							  optlen, true);
7940 		break;
7941 	case SCTP_GET_ASSOC_STATS:
7942 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7943 		break;
7944 	case SCTP_RECVRCVINFO:
7945 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7946 		break;
7947 	case SCTP_RECVNXTINFO:
7948 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7949 		break;
7950 	case SCTP_PR_SUPPORTED:
7951 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7952 		break;
7953 	case SCTP_DEFAULT_PRINFO:
7954 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7955 							optlen);
7956 		break;
7957 	case SCTP_PR_ASSOC_STATUS:
7958 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7959 							optlen);
7960 		break;
7961 	case SCTP_PR_STREAM_STATUS:
7962 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7963 							 optlen);
7964 		break;
7965 	case SCTP_RECONFIG_SUPPORTED:
7966 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7967 							    optlen);
7968 		break;
7969 	case SCTP_ENABLE_STREAM_RESET:
7970 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7971 							 optlen);
7972 		break;
7973 	case SCTP_STREAM_SCHEDULER:
7974 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7975 						   optlen);
7976 		break;
7977 	case SCTP_STREAM_SCHEDULER_VALUE:
7978 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7979 							 optlen);
7980 		break;
7981 	case SCTP_INTERLEAVING_SUPPORTED:
7982 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7983 								optlen);
7984 		break;
7985 	case SCTP_REUSE_PORT:
7986 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7987 		break;
7988 	case SCTP_EVENT:
7989 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
7990 		break;
7991 	case SCTP_ASCONF_SUPPORTED:
7992 		retval = sctp_getsockopt_asconf_supported(sk, len, optval,
7993 							  optlen);
7994 		break;
7995 	case SCTP_AUTH_SUPPORTED:
7996 		retval = sctp_getsockopt_auth_supported(sk, len, optval,
7997 							optlen);
7998 		break;
7999 	case SCTP_ECN_SUPPORTED:
8000 		retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8001 		break;
8002 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8003 		retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8004 		break;
8005 	default:
8006 		retval = -ENOPROTOOPT;
8007 		break;
8008 	}
8009 
8010 	release_sock(sk);
8011 	return retval;
8012 }
8013 
8014 static int sctp_hash(struct sock *sk)
8015 {
8016 	/* STUB */
8017 	return 0;
8018 }
8019 
8020 static void sctp_unhash(struct sock *sk)
8021 {
8022 	/* STUB */
8023 }
8024 
8025 /* Check if port is acceptable.  Possibly find first available port.
8026  *
8027  * The port hash table (contained in the 'global' SCTP protocol storage
8028  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8029  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8030  * list (the list number is the port number hashed out, so as you
8031  * would expect from a hash function, all the ports in a given list have
8032  * such a number that hashes out to the same list number; you were
8033  * expecting that, right?); so each list has a set of ports, with a
8034  * link to the socket (struct sock) that uses it, the port number and
8035  * a fastreuse flag (FIXME: NPI ipg).
8036  */
8037 static struct sctp_bind_bucket *sctp_bucket_create(
8038 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8039 
8040 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8041 {
8042 	struct sctp_sock *sp = sctp_sk(sk);
8043 	bool reuse = (sk->sk_reuse || sp->reuse);
8044 	struct sctp_bind_hashbucket *head; /* hash list */
8045 	struct net *net = sock_net(sk);
8046 	kuid_t uid = sock_i_uid(sk);
8047 	struct sctp_bind_bucket *pp;
8048 	unsigned short snum;
8049 	int ret;
8050 
8051 	snum = ntohs(addr->v4.sin_port);
8052 
8053 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8054 
8055 	local_bh_disable();
8056 
8057 	if (snum == 0) {
8058 		/* Search for an available port. */
8059 		int low, high, remaining, index;
8060 		unsigned int rover;
8061 
8062 		inet_get_local_port_range(net, &low, &high);
8063 		remaining = (high - low) + 1;
8064 		rover = prandom_u32() % remaining + low;
8065 
8066 		do {
8067 			rover++;
8068 			if ((rover < low) || (rover > high))
8069 				rover = low;
8070 			if (inet_is_local_reserved_port(net, rover))
8071 				continue;
8072 			index = sctp_phashfn(net, rover);
8073 			head = &sctp_port_hashtable[index];
8074 			spin_lock(&head->lock);
8075 			sctp_for_each_hentry(pp, &head->chain)
8076 				if ((pp->port == rover) &&
8077 				    net_eq(net, pp->net))
8078 					goto next;
8079 			break;
8080 		next:
8081 			spin_unlock(&head->lock);
8082 		} while (--remaining > 0);
8083 
8084 		/* Exhausted local port range during search? */
8085 		ret = 1;
8086 		if (remaining <= 0)
8087 			goto fail;
8088 
8089 		/* OK, here is the one we will use.  HEAD (the port
8090 		 * hash table list entry) is non-NULL and we hold it's
8091 		 * mutex.
8092 		 */
8093 		snum = rover;
8094 	} else {
8095 		/* We are given an specific port number; we verify
8096 		 * that it is not being used. If it is used, we will
8097 		 * exahust the search in the hash list corresponding
8098 		 * to the port number (snum) - we detect that with the
8099 		 * port iterator, pp being NULL.
8100 		 */
8101 		head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8102 		spin_lock(&head->lock);
8103 		sctp_for_each_hentry(pp, &head->chain) {
8104 			if ((pp->port == snum) && net_eq(pp->net, net))
8105 				goto pp_found;
8106 		}
8107 	}
8108 	pp = NULL;
8109 	goto pp_not_found;
8110 pp_found:
8111 	if (!hlist_empty(&pp->owner)) {
8112 		/* We had a port hash table hit - there is an
8113 		 * available port (pp != NULL) and it is being
8114 		 * used by other socket (pp->owner not empty); that other
8115 		 * socket is going to be sk2.
8116 		 */
8117 		struct sock *sk2;
8118 
8119 		pr_debug("%s: found a possible match\n", __func__);
8120 
8121 		if ((pp->fastreuse && reuse &&
8122 		     sk->sk_state != SCTP_SS_LISTENING) ||
8123 		    (pp->fastreuseport && sk->sk_reuseport &&
8124 		     uid_eq(pp->fastuid, uid)))
8125 			goto success;
8126 
8127 		/* Run through the list of sockets bound to the port
8128 		 * (pp->port) [via the pointers bind_next and
8129 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8130 		 * we get the endpoint they describe and run through
8131 		 * the endpoint's list of IP (v4 or v6) addresses,
8132 		 * comparing each of the addresses with the address of
8133 		 * the socket sk. If we find a match, then that means
8134 		 * that this port/socket (sk) combination are already
8135 		 * in an endpoint.
8136 		 */
8137 		sk_for_each_bound(sk2, &pp->owner) {
8138 			struct sctp_sock *sp2 = sctp_sk(sk2);
8139 			struct sctp_endpoint *ep2 = sp2->ep;
8140 
8141 			if (sk == sk2 ||
8142 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8143 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8144 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8145 			     uid_eq(uid, sock_i_uid(sk2))))
8146 				continue;
8147 
8148 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8149 						    addr, sp2, sp)) {
8150 				ret = 1;
8151 				goto fail_unlock;
8152 			}
8153 		}
8154 
8155 		pr_debug("%s: found a match\n", __func__);
8156 	}
8157 pp_not_found:
8158 	/* If there was a hash table miss, create a new port.  */
8159 	ret = 1;
8160 	if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8161 		goto fail_unlock;
8162 
8163 	/* In either case (hit or miss), make sure fastreuse is 1 only
8164 	 * if sk->sk_reuse is too (that is, if the caller requested
8165 	 * SO_REUSEADDR on this socket -sk-).
8166 	 */
8167 	if (hlist_empty(&pp->owner)) {
8168 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8169 			pp->fastreuse = 1;
8170 		else
8171 			pp->fastreuse = 0;
8172 
8173 		if (sk->sk_reuseport) {
8174 			pp->fastreuseport = 1;
8175 			pp->fastuid = uid;
8176 		} else {
8177 			pp->fastreuseport = 0;
8178 		}
8179 	} else {
8180 		if (pp->fastreuse &&
8181 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8182 			pp->fastreuse = 0;
8183 
8184 		if (pp->fastreuseport &&
8185 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8186 			pp->fastreuseport = 0;
8187 	}
8188 
8189 	/* We are set, so fill up all the data in the hash table
8190 	 * entry, tie the socket list information with the rest of the
8191 	 * sockets FIXME: Blurry, NPI (ipg).
8192 	 */
8193 success:
8194 	if (!sp->bind_hash) {
8195 		inet_sk(sk)->inet_num = snum;
8196 		sk_add_bind_node(sk, &pp->owner);
8197 		sp->bind_hash = pp;
8198 	}
8199 	ret = 0;
8200 
8201 fail_unlock:
8202 	spin_unlock(&head->lock);
8203 
8204 fail:
8205 	local_bh_enable();
8206 	return ret;
8207 }
8208 
8209 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8210  * port is requested.
8211  */
8212 static int sctp_get_port(struct sock *sk, unsigned short snum)
8213 {
8214 	union sctp_addr addr;
8215 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8216 
8217 	/* Set up a dummy address struct from the sk. */
8218 	af->from_sk(&addr, sk);
8219 	addr.v4.sin_port = htons(snum);
8220 
8221 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8222 	return sctp_get_port_local(sk, &addr);
8223 }
8224 
8225 /*
8226  *  Move a socket to LISTENING state.
8227  */
8228 static int sctp_listen_start(struct sock *sk, int backlog)
8229 {
8230 	struct sctp_sock *sp = sctp_sk(sk);
8231 	struct sctp_endpoint *ep = sp->ep;
8232 	struct crypto_shash *tfm = NULL;
8233 	char alg[32];
8234 
8235 	/* Allocate HMAC for generating cookie. */
8236 	if (!sp->hmac && sp->sctp_hmac_alg) {
8237 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8238 		tfm = crypto_alloc_shash(alg, 0, 0);
8239 		if (IS_ERR(tfm)) {
8240 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8241 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8242 			return -ENOSYS;
8243 		}
8244 		sctp_sk(sk)->hmac = tfm;
8245 	}
8246 
8247 	/*
8248 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8249 	 * call that allows new associations to be accepted, the system
8250 	 * picks an ephemeral port and will choose an address set equivalent
8251 	 * to binding with a wildcard address.
8252 	 *
8253 	 * This is not currently spelled out in the SCTP sockets
8254 	 * extensions draft, but follows the practice as seen in TCP
8255 	 * sockets.
8256 	 *
8257 	 */
8258 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8259 	if (!ep->base.bind_addr.port) {
8260 		if (sctp_autobind(sk))
8261 			return -EAGAIN;
8262 	} else {
8263 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8264 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8265 			return -EADDRINUSE;
8266 		}
8267 	}
8268 
8269 	WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8270 	return sctp_hash_endpoint(ep);
8271 }
8272 
8273 /*
8274  * 4.1.3 / 5.1.3 listen()
8275  *
8276  *   By default, new associations are not accepted for UDP style sockets.
8277  *   An application uses listen() to mark a socket as being able to
8278  *   accept new associations.
8279  *
8280  *   On TCP style sockets, applications use listen() to ready the SCTP
8281  *   endpoint for accepting inbound associations.
8282  *
8283  *   On both types of endpoints a backlog of '0' disables listening.
8284  *
8285  *  Move a socket to LISTENING state.
8286  */
8287 int sctp_inet_listen(struct socket *sock, int backlog)
8288 {
8289 	struct sock *sk = sock->sk;
8290 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8291 	int err = -EINVAL;
8292 
8293 	if (unlikely(backlog < 0))
8294 		return err;
8295 
8296 	lock_sock(sk);
8297 
8298 	/* Peeled-off sockets are not allowed to listen().  */
8299 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8300 		goto out;
8301 
8302 	if (sock->state != SS_UNCONNECTED)
8303 		goto out;
8304 
8305 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8306 		goto out;
8307 
8308 	/* If backlog is zero, disable listening. */
8309 	if (!backlog) {
8310 		if (sctp_sstate(sk, CLOSED))
8311 			goto out;
8312 
8313 		err = 0;
8314 		sctp_unhash_endpoint(ep);
8315 		sk->sk_state = SCTP_SS_CLOSED;
8316 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8317 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8318 		goto out;
8319 	}
8320 
8321 	/* If we are already listening, just update the backlog */
8322 	if (sctp_sstate(sk, LISTENING))
8323 		WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8324 	else {
8325 		err = sctp_listen_start(sk, backlog);
8326 		if (err)
8327 			goto out;
8328 	}
8329 
8330 	err = 0;
8331 out:
8332 	release_sock(sk);
8333 	return err;
8334 }
8335 
8336 /*
8337  * This function is done by modeling the current datagram_poll() and the
8338  * tcp_poll().  Note that, based on these implementations, we don't
8339  * lock the socket in this function, even though it seems that,
8340  * ideally, locking or some other mechanisms can be used to ensure
8341  * the integrity of the counters (sndbuf and wmem_alloc) used
8342  * in this place.  We assume that we don't need locks either until proven
8343  * otherwise.
8344  *
8345  * Another thing to note is that we include the Async I/O support
8346  * here, again, by modeling the current TCP/UDP code.  We don't have
8347  * a good way to test with it yet.
8348  */
8349 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8350 {
8351 	struct sock *sk = sock->sk;
8352 	struct sctp_sock *sp = sctp_sk(sk);
8353 	__poll_t mask;
8354 
8355 	poll_wait(file, sk_sleep(sk), wait);
8356 
8357 	sock_rps_record_flow(sk);
8358 
8359 	/* A TCP-style listening socket becomes readable when the accept queue
8360 	 * is not empty.
8361 	 */
8362 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8363 		return (!list_empty(&sp->ep->asocs)) ?
8364 			(EPOLLIN | EPOLLRDNORM) : 0;
8365 
8366 	mask = 0;
8367 
8368 	/* Is there any exceptional events?  */
8369 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8370 		mask |= EPOLLERR |
8371 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8372 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8373 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8374 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8375 		mask |= EPOLLHUP;
8376 
8377 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8378 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8379 		mask |= EPOLLIN | EPOLLRDNORM;
8380 
8381 	/* The association is either gone or not ready.  */
8382 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8383 		return mask;
8384 
8385 	/* Is it writable?  */
8386 	if (sctp_writeable(sk)) {
8387 		mask |= EPOLLOUT | EPOLLWRNORM;
8388 	} else {
8389 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8390 		/*
8391 		 * Since the socket is not locked, the buffer
8392 		 * might be made available after the writeable check and
8393 		 * before the bit is set.  This could cause a lost I/O
8394 		 * signal.  tcp_poll() has a race breaker for this race
8395 		 * condition.  Based on their implementation, we put
8396 		 * in the following code to cover it as well.
8397 		 */
8398 		if (sctp_writeable(sk))
8399 			mask |= EPOLLOUT | EPOLLWRNORM;
8400 	}
8401 	return mask;
8402 }
8403 
8404 /********************************************************************
8405  * 2nd Level Abstractions
8406  ********************************************************************/
8407 
8408 static struct sctp_bind_bucket *sctp_bucket_create(
8409 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8410 {
8411 	struct sctp_bind_bucket *pp;
8412 
8413 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8414 	if (pp) {
8415 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8416 		pp->port = snum;
8417 		pp->fastreuse = 0;
8418 		INIT_HLIST_HEAD(&pp->owner);
8419 		pp->net = net;
8420 		hlist_add_head(&pp->node, &head->chain);
8421 	}
8422 	return pp;
8423 }
8424 
8425 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8426 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8427 {
8428 	if (pp && hlist_empty(&pp->owner)) {
8429 		__hlist_del(&pp->node);
8430 		kmem_cache_free(sctp_bucket_cachep, pp);
8431 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8432 	}
8433 }
8434 
8435 /* Release this socket's reference to a local port.  */
8436 static inline void __sctp_put_port(struct sock *sk)
8437 {
8438 	struct sctp_bind_hashbucket *head =
8439 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8440 						  inet_sk(sk)->inet_num)];
8441 	struct sctp_bind_bucket *pp;
8442 
8443 	spin_lock(&head->lock);
8444 	pp = sctp_sk(sk)->bind_hash;
8445 	__sk_del_bind_node(sk);
8446 	sctp_sk(sk)->bind_hash = NULL;
8447 	inet_sk(sk)->inet_num = 0;
8448 	sctp_bucket_destroy(pp);
8449 	spin_unlock(&head->lock);
8450 }
8451 
8452 void sctp_put_port(struct sock *sk)
8453 {
8454 	local_bh_disable();
8455 	__sctp_put_port(sk);
8456 	local_bh_enable();
8457 }
8458 
8459 /*
8460  * The system picks an ephemeral port and choose an address set equivalent
8461  * to binding with a wildcard address.
8462  * One of those addresses will be the primary address for the association.
8463  * This automatically enables the multihoming capability of SCTP.
8464  */
8465 static int sctp_autobind(struct sock *sk)
8466 {
8467 	union sctp_addr autoaddr;
8468 	struct sctp_af *af;
8469 	__be16 port;
8470 
8471 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8472 	af = sctp_sk(sk)->pf->af;
8473 
8474 	port = htons(inet_sk(sk)->inet_num);
8475 	af->inaddr_any(&autoaddr, port);
8476 
8477 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8478 }
8479 
8480 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8481  *
8482  * From RFC 2292
8483  * 4.2 The cmsghdr Structure *
8484  *
8485  * When ancillary data is sent or received, any number of ancillary data
8486  * objects can be specified by the msg_control and msg_controllen members of
8487  * the msghdr structure, because each object is preceded by
8488  * a cmsghdr structure defining the object's length (the cmsg_len member).
8489  * Historically Berkeley-derived implementations have passed only one object
8490  * at a time, but this API allows multiple objects to be
8491  * passed in a single call to sendmsg() or recvmsg(). The following example
8492  * shows two ancillary data objects in a control buffer.
8493  *
8494  *   |<--------------------------- msg_controllen -------------------------->|
8495  *   |                                                                       |
8496  *
8497  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8498  *
8499  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8500  *   |                                   |                                   |
8501  *
8502  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8503  *
8504  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8505  *   |                                |  |                                |  |
8506  *
8507  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8508  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8509  *
8510  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8511  *
8512  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8513  *    ^
8514  *    |
8515  *
8516  * msg_control
8517  * points here
8518  */
8519 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8520 {
8521 	struct msghdr *my_msg = (struct msghdr *)msg;
8522 	struct cmsghdr *cmsg;
8523 
8524 	for_each_cmsghdr(cmsg, my_msg) {
8525 		if (!CMSG_OK(my_msg, cmsg))
8526 			return -EINVAL;
8527 
8528 		/* Should we parse this header or ignore?  */
8529 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8530 			continue;
8531 
8532 		/* Strictly check lengths following example in SCM code.  */
8533 		switch (cmsg->cmsg_type) {
8534 		case SCTP_INIT:
8535 			/* SCTP Socket API Extension
8536 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8537 			 *
8538 			 * This cmsghdr structure provides information for
8539 			 * initializing new SCTP associations with sendmsg().
8540 			 * The SCTP_INITMSG socket option uses this same data
8541 			 * structure.  This structure is not used for
8542 			 * recvmsg().
8543 			 *
8544 			 * cmsg_level    cmsg_type      cmsg_data[]
8545 			 * ------------  ------------   ----------------------
8546 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8547 			 */
8548 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8549 				return -EINVAL;
8550 
8551 			cmsgs->init = CMSG_DATA(cmsg);
8552 			break;
8553 
8554 		case SCTP_SNDRCV:
8555 			/* SCTP Socket API Extension
8556 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8557 			 *
8558 			 * This cmsghdr structure specifies SCTP options for
8559 			 * sendmsg() and describes SCTP header information
8560 			 * about a received message through recvmsg().
8561 			 *
8562 			 * cmsg_level    cmsg_type      cmsg_data[]
8563 			 * ------------  ------------   ----------------------
8564 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8565 			 */
8566 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8567 				return -EINVAL;
8568 
8569 			cmsgs->srinfo = CMSG_DATA(cmsg);
8570 
8571 			if (cmsgs->srinfo->sinfo_flags &
8572 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8573 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8574 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8575 				return -EINVAL;
8576 			break;
8577 
8578 		case SCTP_SNDINFO:
8579 			/* SCTP Socket API Extension
8580 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8581 			 *
8582 			 * This cmsghdr structure specifies SCTP options for
8583 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8584 			 * SCTP_SNDRCV which has been deprecated.
8585 			 *
8586 			 * cmsg_level    cmsg_type      cmsg_data[]
8587 			 * ------------  ------------   ---------------------
8588 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8589 			 */
8590 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8591 				return -EINVAL;
8592 
8593 			cmsgs->sinfo = CMSG_DATA(cmsg);
8594 
8595 			if (cmsgs->sinfo->snd_flags &
8596 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8597 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8598 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8599 				return -EINVAL;
8600 			break;
8601 		case SCTP_PRINFO:
8602 			/* SCTP Socket API Extension
8603 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8604 			 *
8605 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8606 			 *
8607 			 * cmsg_level    cmsg_type      cmsg_data[]
8608 			 * ------------  ------------   ---------------------
8609 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8610 			 */
8611 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8612 				return -EINVAL;
8613 
8614 			cmsgs->prinfo = CMSG_DATA(cmsg);
8615 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8616 				return -EINVAL;
8617 
8618 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8619 				cmsgs->prinfo->pr_value = 0;
8620 			break;
8621 		case SCTP_AUTHINFO:
8622 			/* SCTP Socket API Extension
8623 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8624 			 *
8625 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8626 			 *
8627 			 * cmsg_level    cmsg_type      cmsg_data[]
8628 			 * ------------  ------------   ---------------------
8629 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8630 			 */
8631 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8632 				return -EINVAL;
8633 
8634 			cmsgs->authinfo = CMSG_DATA(cmsg);
8635 			break;
8636 		case SCTP_DSTADDRV4:
8637 		case SCTP_DSTADDRV6:
8638 			/* SCTP Socket API Extension
8639 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8640 			 *
8641 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8642 			 *
8643 			 * cmsg_level    cmsg_type         cmsg_data[]
8644 			 * ------------  ------------   ---------------------
8645 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8646 			 * ------------  ------------   ---------------------
8647 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8648 			 */
8649 			cmsgs->addrs_msg = my_msg;
8650 			break;
8651 		default:
8652 			return -EINVAL;
8653 		}
8654 	}
8655 
8656 	return 0;
8657 }
8658 
8659 /*
8660  * Wait for a packet..
8661  * Note: This function is the same function as in core/datagram.c
8662  * with a few modifications to make lksctp work.
8663  */
8664 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8665 {
8666 	int error;
8667 	DEFINE_WAIT(wait);
8668 
8669 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8670 
8671 	/* Socket errors? */
8672 	error = sock_error(sk);
8673 	if (error)
8674 		goto out;
8675 
8676 	if (!skb_queue_empty(&sk->sk_receive_queue))
8677 		goto ready;
8678 
8679 	/* Socket shut down?  */
8680 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8681 		goto out;
8682 
8683 	/* Sequenced packets can come disconnected.  If so we report the
8684 	 * problem.
8685 	 */
8686 	error = -ENOTCONN;
8687 
8688 	/* Is there a good reason to think that we may receive some data?  */
8689 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8690 		goto out;
8691 
8692 	/* Handle signals.  */
8693 	if (signal_pending(current))
8694 		goto interrupted;
8695 
8696 	/* Let another process have a go.  Since we are going to sleep
8697 	 * anyway.  Note: This may cause odd behaviors if the message
8698 	 * does not fit in the user's buffer, but this seems to be the
8699 	 * only way to honor MSG_DONTWAIT realistically.
8700 	 */
8701 	release_sock(sk);
8702 	*timeo_p = schedule_timeout(*timeo_p);
8703 	lock_sock(sk);
8704 
8705 ready:
8706 	finish_wait(sk_sleep(sk), &wait);
8707 	return 0;
8708 
8709 interrupted:
8710 	error = sock_intr_errno(*timeo_p);
8711 
8712 out:
8713 	finish_wait(sk_sleep(sk), &wait);
8714 	*err = error;
8715 	return error;
8716 }
8717 
8718 /* Receive a datagram.
8719  * Note: This is pretty much the same routine as in core/datagram.c
8720  * with a few changes to make lksctp work.
8721  */
8722 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8723 				       int noblock, int *err)
8724 {
8725 	int error;
8726 	struct sk_buff *skb;
8727 	long timeo;
8728 
8729 	timeo = sock_rcvtimeo(sk, noblock);
8730 
8731 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8732 		 MAX_SCHEDULE_TIMEOUT);
8733 
8734 	do {
8735 		/* Again only user level code calls this function,
8736 		 * so nothing interrupt level
8737 		 * will suddenly eat the receive_queue.
8738 		 *
8739 		 *  Look at current nfs client by the way...
8740 		 *  However, this function was correct in any case. 8)
8741 		 */
8742 		if (flags & MSG_PEEK) {
8743 			skb = skb_peek(&sk->sk_receive_queue);
8744 			if (skb)
8745 				refcount_inc(&skb->users);
8746 		} else {
8747 			skb = __skb_dequeue(&sk->sk_receive_queue);
8748 		}
8749 
8750 		if (skb)
8751 			return skb;
8752 
8753 		/* Caller is allowed not to check sk->sk_err before calling. */
8754 		error = sock_error(sk);
8755 		if (error)
8756 			goto no_packet;
8757 
8758 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8759 			break;
8760 
8761 		if (sk_can_busy_loop(sk)) {
8762 			sk_busy_loop(sk, noblock);
8763 
8764 			if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8765 				continue;
8766 		}
8767 
8768 		/* User doesn't want to wait.  */
8769 		error = -EAGAIN;
8770 		if (!timeo)
8771 			goto no_packet;
8772 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8773 
8774 	return NULL;
8775 
8776 no_packet:
8777 	*err = error;
8778 	return NULL;
8779 }
8780 
8781 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8782 static void __sctp_write_space(struct sctp_association *asoc)
8783 {
8784 	struct sock *sk = asoc->base.sk;
8785 
8786 	if (sctp_wspace(asoc) <= 0)
8787 		return;
8788 
8789 	if (waitqueue_active(&asoc->wait))
8790 		wake_up_interruptible(&asoc->wait);
8791 
8792 	if (sctp_writeable(sk)) {
8793 		struct socket_wq *wq;
8794 
8795 		rcu_read_lock();
8796 		wq = rcu_dereference(sk->sk_wq);
8797 		if (wq) {
8798 			if (waitqueue_active(&wq->wait))
8799 				wake_up_interruptible(&wq->wait);
8800 
8801 			/* Note that we try to include the Async I/O support
8802 			 * here by modeling from the current TCP/UDP code.
8803 			 * We have not tested with it yet.
8804 			 */
8805 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8806 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8807 		}
8808 		rcu_read_unlock();
8809 	}
8810 }
8811 
8812 static void sctp_wake_up_waiters(struct sock *sk,
8813 				 struct sctp_association *asoc)
8814 {
8815 	struct sctp_association *tmp = asoc;
8816 
8817 	/* We do accounting for the sndbuf space per association,
8818 	 * so we only need to wake our own association.
8819 	 */
8820 	if (asoc->ep->sndbuf_policy)
8821 		return __sctp_write_space(asoc);
8822 
8823 	/* If association goes down and is just flushing its
8824 	 * outq, then just normally notify others.
8825 	 */
8826 	if (asoc->base.dead)
8827 		return sctp_write_space(sk);
8828 
8829 	/* Accounting for the sndbuf space is per socket, so we
8830 	 * need to wake up others, try to be fair and in case of
8831 	 * other associations, let them have a go first instead
8832 	 * of just doing a sctp_write_space() call.
8833 	 *
8834 	 * Note that we reach sctp_wake_up_waiters() only when
8835 	 * associations free up queued chunks, thus we are under
8836 	 * lock and the list of associations on a socket is
8837 	 * guaranteed not to change.
8838 	 */
8839 	for (tmp = list_next_entry(tmp, asocs); 1;
8840 	     tmp = list_next_entry(tmp, asocs)) {
8841 		/* Manually skip the head element. */
8842 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8843 			continue;
8844 		/* Wake up association. */
8845 		__sctp_write_space(tmp);
8846 		/* We've reached the end. */
8847 		if (tmp == asoc)
8848 			break;
8849 	}
8850 }
8851 
8852 /* Do accounting for the sndbuf space.
8853  * Decrement the used sndbuf space of the corresponding association by the
8854  * data size which was just transmitted(freed).
8855  */
8856 static void sctp_wfree(struct sk_buff *skb)
8857 {
8858 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8859 	struct sctp_association *asoc = chunk->asoc;
8860 	struct sock *sk = asoc->base.sk;
8861 
8862 	sk_mem_uncharge(sk, skb->truesize);
8863 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8864 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8865 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8866 				      &sk->sk_wmem_alloc));
8867 
8868 	if (chunk->shkey) {
8869 		struct sctp_shared_key *shkey = chunk->shkey;
8870 
8871 		/* refcnt == 2 and !list_empty mean after this release, it's
8872 		 * not being used anywhere, and it's time to notify userland
8873 		 * that this shkey can be freed if it's been deactivated.
8874 		 */
8875 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8876 		    refcount_read(&shkey->refcnt) == 2) {
8877 			struct sctp_ulpevent *ev;
8878 
8879 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8880 							SCTP_AUTH_FREE_KEY,
8881 							GFP_KERNEL);
8882 			if (ev)
8883 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8884 		}
8885 		sctp_auth_shkey_release(chunk->shkey);
8886 	}
8887 
8888 	sock_wfree(skb);
8889 	sctp_wake_up_waiters(sk, asoc);
8890 
8891 	sctp_association_put(asoc);
8892 }
8893 
8894 /* Do accounting for the receive space on the socket.
8895  * Accounting for the association is done in ulpevent.c
8896  * We set this as a destructor for the cloned data skbs so that
8897  * accounting is done at the correct time.
8898  */
8899 void sctp_sock_rfree(struct sk_buff *skb)
8900 {
8901 	struct sock *sk = skb->sk;
8902 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8903 
8904 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8905 
8906 	/*
8907 	 * Mimic the behavior of sock_rfree
8908 	 */
8909 	sk_mem_uncharge(sk, event->rmem_len);
8910 }
8911 
8912 
8913 /* Helper function to wait for space in the sndbuf.  */
8914 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8915 				size_t msg_len)
8916 {
8917 	struct sock *sk = asoc->base.sk;
8918 	long current_timeo = *timeo_p;
8919 	DEFINE_WAIT(wait);
8920 	int err = 0;
8921 
8922 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8923 		 *timeo_p, msg_len);
8924 
8925 	/* Increment the association's refcnt.  */
8926 	sctp_association_hold(asoc);
8927 
8928 	/* Wait on the association specific sndbuf space. */
8929 	for (;;) {
8930 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8931 					  TASK_INTERRUPTIBLE);
8932 		if (asoc->base.dead)
8933 			goto do_dead;
8934 		if (!*timeo_p)
8935 			goto do_nonblock;
8936 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8937 			goto do_error;
8938 		if (signal_pending(current))
8939 			goto do_interrupted;
8940 		if (sk_under_memory_pressure(sk))
8941 			sk_mem_reclaim(sk);
8942 		if ((int)msg_len <= sctp_wspace(asoc) &&
8943 		    sk_wmem_schedule(sk, msg_len))
8944 			break;
8945 
8946 		/* Let another process have a go.  Since we are going
8947 		 * to sleep anyway.
8948 		 */
8949 		release_sock(sk);
8950 		current_timeo = schedule_timeout(current_timeo);
8951 		lock_sock(sk);
8952 		if (sk != asoc->base.sk)
8953 			goto do_error;
8954 
8955 		*timeo_p = current_timeo;
8956 	}
8957 
8958 out:
8959 	finish_wait(&asoc->wait, &wait);
8960 
8961 	/* Release the association's refcnt.  */
8962 	sctp_association_put(asoc);
8963 
8964 	return err;
8965 
8966 do_dead:
8967 	err = -ESRCH;
8968 	goto out;
8969 
8970 do_error:
8971 	err = -EPIPE;
8972 	goto out;
8973 
8974 do_interrupted:
8975 	err = sock_intr_errno(*timeo_p);
8976 	goto out;
8977 
8978 do_nonblock:
8979 	err = -EAGAIN;
8980 	goto out;
8981 }
8982 
8983 void sctp_data_ready(struct sock *sk)
8984 {
8985 	struct socket_wq *wq;
8986 
8987 	rcu_read_lock();
8988 	wq = rcu_dereference(sk->sk_wq);
8989 	if (skwq_has_sleeper(wq))
8990 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8991 						EPOLLRDNORM | EPOLLRDBAND);
8992 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8993 	rcu_read_unlock();
8994 }
8995 
8996 /* If socket sndbuf has changed, wake up all per association waiters.  */
8997 void sctp_write_space(struct sock *sk)
8998 {
8999 	struct sctp_association *asoc;
9000 
9001 	/* Wake up the tasks in each wait queue.  */
9002 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9003 		__sctp_write_space(asoc);
9004 	}
9005 }
9006 
9007 /* Is there any sndbuf space available on the socket?
9008  *
9009  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9010  * associations on the same socket.  For a UDP-style socket with
9011  * multiple associations, it is possible for it to be "unwriteable"
9012  * prematurely.  I assume that this is acceptable because
9013  * a premature "unwriteable" is better than an accidental "writeable" which
9014  * would cause an unwanted block under certain circumstances.  For the 1-1
9015  * UDP-style sockets or TCP-style sockets, this code should work.
9016  *  - Daisy
9017  */
9018 static bool sctp_writeable(struct sock *sk)
9019 {
9020 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9021 }
9022 
9023 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9024  * returns immediately with EINPROGRESS.
9025  */
9026 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9027 {
9028 	struct sock *sk = asoc->base.sk;
9029 	int err = 0;
9030 	long current_timeo = *timeo_p;
9031 	DEFINE_WAIT(wait);
9032 
9033 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9034 
9035 	/* Increment the association's refcnt.  */
9036 	sctp_association_hold(asoc);
9037 
9038 	for (;;) {
9039 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9040 					  TASK_INTERRUPTIBLE);
9041 		if (!*timeo_p)
9042 			goto do_nonblock;
9043 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9044 			break;
9045 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9046 		    asoc->base.dead)
9047 			goto do_error;
9048 		if (signal_pending(current))
9049 			goto do_interrupted;
9050 
9051 		if (sctp_state(asoc, ESTABLISHED))
9052 			break;
9053 
9054 		/* Let another process have a go.  Since we are going
9055 		 * to sleep anyway.
9056 		 */
9057 		release_sock(sk);
9058 		current_timeo = schedule_timeout(current_timeo);
9059 		lock_sock(sk);
9060 
9061 		*timeo_p = current_timeo;
9062 	}
9063 
9064 out:
9065 	finish_wait(&asoc->wait, &wait);
9066 
9067 	/* Release the association's refcnt.  */
9068 	sctp_association_put(asoc);
9069 
9070 	return err;
9071 
9072 do_error:
9073 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9074 		err = -ETIMEDOUT;
9075 	else
9076 		err = -ECONNREFUSED;
9077 	goto out;
9078 
9079 do_interrupted:
9080 	err = sock_intr_errno(*timeo_p);
9081 	goto out;
9082 
9083 do_nonblock:
9084 	err = -EINPROGRESS;
9085 	goto out;
9086 }
9087 
9088 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9089 {
9090 	struct sctp_endpoint *ep;
9091 	int err = 0;
9092 	DEFINE_WAIT(wait);
9093 
9094 	ep = sctp_sk(sk)->ep;
9095 
9096 
9097 	for (;;) {
9098 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9099 					  TASK_INTERRUPTIBLE);
9100 
9101 		if (list_empty(&ep->asocs)) {
9102 			release_sock(sk);
9103 			timeo = schedule_timeout(timeo);
9104 			lock_sock(sk);
9105 		}
9106 
9107 		err = -EINVAL;
9108 		if (!sctp_sstate(sk, LISTENING))
9109 			break;
9110 
9111 		err = 0;
9112 		if (!list_empty(&ep->asocs))
9113 			break;
9114 
9115 		err = sock_intr_errno(timeo);
9116 		if (signal_pending(current))
9117 			break;
9118 
9119 		err = -EAGAIN;
9120 		if (!timeo)
9121 			break;
9122 	}
9123 
9124 	finish_wait(sk_sleep(sk), &wait);
9125 
9126 	return err;
9127 }
9128 
9129 static void sctp_wait_for_close(struct sock *sk, long timeout)
9130 {
9131 	DEFINE_WAIT(wait);
9132 
9133 	do {
9134 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9135 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9136 			break;
9137 		release_sock(sk);
9138 		timeout = schedule_timeout(timeout);
9139 		lock_sock(sk);
9140 	} while (!signal_pending(current) && timeout);
9141 
9142 	finish_wait(sk_sleep(sk), &wait);
9143 }
9144 
9145 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9146 {
9147 	struct sk_buff *frag;
9148 
9149 	if (!skb->data_len)
9150 		goto done;
9151 
9152 	/* Don't forget the fragments. */
9153 	skb_walk_frags(skb, frag)
9154 		sctp_skb_set_owner_r_frag(frag, sk);
9155 
9156 done:
9157 	sctp_skb_set_owner_r(skb, sk);
9158 }
9159 
9160 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9161 		    struct sctp_association *asoc)
9162 {
9163 	struct inet_sock *inet = inet_sk(sk);
9164 	struct inet_sock *newinet;
9165 	struct sctp_sock *sp = sctp_sk(sk);
9166 	struct sctp_endpoint *ep = sp->ep;
9167 
9168 	newsk->sk_type = sk->sk_type;
9169 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9170 	newsk->sk_flags = sk->sk_flags;
9171 	newsk->sk_tsflags = sk->sk_tsflags;
9172 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9173 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9174 	newsk->sk_reuse = sk->sk_reuse;
9175 	sctp_sk(newsk)->reuse = sp->reuse;
9176 
9177 	newsk->sk_shutdown = sk->sk_shutdown;
9178 	newsk->sk_destruct = sctp_destruct_sock;
9179 	newsk->sk_family = sk->sk_family;
9180 	newsk->sk_protocol = IPPROTO_SCTP;
9181 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9182 	newsk->sk_sndbuf = sk->sk_sndbuf;
9183 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9184 	newsk->sk_lingertime = sk->sk_lingertime;
9185 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9186 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9187 	newsk->sk_rxhash = sk->sk_rxhash;
9188 
9189 	newinet = inet_sk(newsk);
9190 
9191 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9192 	 * getsockname() and getpeername()
9193 	 */
9194 	newinet->inet_sport = inet->inet_sport;
9195 	newinet->inet_saddr = inet->inet_saddr;
9196 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9197 	newinet->inet_dport = htons(asoc->peer.port);
9198 	newinet->pmtudisc = inet->pmtudisc;
9199 	newinet->inet_id = prandom_u32();
9200 
9201 	newinet->uc_ttl = inet->uc_ttl;
9202 	newinet->mc_loop = 1;
9203 	newinet->mc_ttl = 1;
9204 	newinet->mc_index = 0;
9205 	newinet->mc_list = NULL;
9206 
9207 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9208 		net_enable_timestamp();
9209 
9210 	/* Set newsk security attributes from orginal sk and connection
9211 	 * security attribute from ep.
9212 	 */
9213 	security_sctp_sk_clone(ep, sk, newsk);
9214 }
9215 
9216 static inline void sctp_copy_descendant(struct sock *sk_to,
9217 					const struct sock *sk_from)
9218 {
9219 	int ancestor_size = sizeof(struct inet_sock) +
9220 			    sizeof(struct sctp_sock) -
9221 			    offsetof(struct sctp_sock, pd_lobby);
9222 
9223 	if (sk_from->sk_family == PF_INET6)
9224 		ancestor_size += sizeof(struct ipv6_pinfo);
9225 
9226 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9227 }
9228 
9229 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9230  * and its messages to the newsk.
9231  */
9232 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9233 			     struct sctp_association *assoc,
9234 			     enum sctp_socket_type type)
9235 {
9236 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9237 	struct sctp_sock *newsp = sctp_sk(newsk);
9238 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9239 	struct sctp_endpoint *newep = newsp->ep;
9240 	struct sk_buff *skb, *tmp;
9241 	struct sctp_ulpevent *event;
9242 	struct sctp_bind_hashbucket *head;
9243 	int err;
9244 
9245 	/* Migrate socket buffer sizes and all the socket level options to the
9246 	 * new socket.
9247 	 */
9248 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9249 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9250 	/* Brute force copy old sctp opt. */
9251 	sctp_copy_descendant(newsk, oldsk);
9252 
9253 	/* Restore the ep value that was overwritten with the above structure
9254 	 * copy.
9255 	 */
9256 	newsp->ep = newep;
9257 	newsp->hmac = NULL;
9258 
9259 	/* Hook this new socket in to the bind_hash list. */
9260 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9261 						 inet_sk(oldsk)->inet_num)];
9262 	spin_lock_bh(&head->lock);
9263 	pp = sctp_sk(oldsk)->bind_hash;
9264 	sk_add_bind_node(newsk, &pp->owner);
9265 	sctp_sk(newsk)->bind_hash = pp;
9266 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9267 	spin_unlock_bh(&head->lock);
9268 
9269 	/* Copy the bind_addr list from the original endpoint to the new
9270 	 * endpoint so that we can handle restarts properly
9271 	 */
9272 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9273 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9274 	if (err)
9275 		return err;
9276 
9277 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9278 	 * that net->sctp.auth_enable has been changed to 0 by users and
9279 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9280 	 */
9281 	if (oldsp->ep->auth_hmacs) {
9282 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9283 		if (err)
9284 			return err;
9285 	}
9286 
9287 	/* Move any messages in the old socket's receive queue that are for the
9288 	 * peeled off association to the new socket's receive queue.
9289 	 */
9290 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9291 		event = sctp_skb2event(skb);
9292 		if (event->asoc == assoc) {
9293 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9294 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9295 			sctp_skb_set_owner_r_frag(skb, newsk);
9296 		}
9297 	}
9298 
9299 	/* Clean up any messages pending delivery due to partial
9300 	 * delivery.   Three cases:
9301 	 * 1) No partial deliver;  no work.
9302 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9303 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9304 	 */
9305 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9306 
9307 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9308 		struct sk_buff_head *queue;
9309 
9310 		/* Decide which queue to move pd_lobby skbs to. */
9311 		if (assoc->ulpq.pd_mode) {
9312 			queue = &newsp->pd_lobby;
9313 		} else
9314 			queue = &newsk->sk_receive_queue;
9315 
9316 		/* Walk through the pd_lobby, looking for skbs that
9317 		 * need moved to the new socket.
9318 		 */
9319 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9320 			event = sctp_skb2event(skb);
9321 			if (event->asoc == assoc) {
9322 				__skb_unlink(skb, &oldsp->pd_lobby);
9323 				__skb_queue_tail(queue, skb);
9324 				sctp_skb_set_owner_r_frag(skb, newsk);
9325 			}
9326 		}
9327 
9328 		/* Clear up any skbs waiting for the partial
9329 		 * delivery to finish.
9330 		 */
9331 		if (assoc->ulpq.pd_mode)
9332 			sctp_clear_pd(oldsk, NULL);
9333 
9334 	}
9335 
9336 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9337 
9338 	/* Set the type of socket to indicate that it is peeled off from the
9339 	 * original UDP-style socket or created with the accept() call on a
9340 	 * TCP-style socket..
9341 	 */
9342 	newsp->type = type;
9343 
9344 	/* Mark the new socket "in-use" by the user so that any packets
9345 	 * that may arrive on the association after we've moved it are
9346 	 * queued to the backlog.  This prevents a potential race between
9347 	 * backlog processing on the old socket and new-packet processing
9348 	 * on the new socket.
9349 	 *
9350 	 * The caller has just allocated newsk so we can guarantee that other
9351 	 * paths won't try to lock it and then oldsk.
9352 	 */
9353 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9354 	sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9355 	sctp_assoc_migrate(assoc, newsk);
9356 	sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9357 
9358 	/* If the association on the newsk is already closed before accept()
9359 	 * is called, set RCV_SHUTDOWN flag.
9360 	 */
9361 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9362 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9363 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9364 	} else {
9365 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9366 	}
9367 
9368 	release_sock(newsk);
9369 
9370 	return 0;
9371 }
9372 
9373 
9374 /* This proto struct describes the ULP interface for SCTP.  */
9375 struct proto sctp_prot = {
9376 	.name        =	"SCTP",
9377 	.owner       =	THIS_MODULE,
9378 	.close       =	sctp_close,
9379 	.disconnect  =	sctp_disconnect,
9380 	.accept      =	sctp_accept,
9381 	.ioctl       =	sctp_ioctl,
9382 	.init        =	sctp_init_sock,
9383 	.destroy     =	sctp_destroy_sock,
9384 	.shutdown    =	sctp_shutdown,
9385 	.setsockopt  =	sctp_setsockopt,
9386 	.getsockopt  =	sctp_getsockopt,
9387 	.sendmsg     =	sctp_sendmsg,
9388 	.recvmsg     =	sctp_recvmsg,
9389 	.bind        =	sctp_bind,
9390 	.bind_add    =  sctp_bind_add,
9391 	.backlog_rcv =	sctp_backlog_rcv,
9392 	.hash        =	sctp_hash,
9393 	.unhash      =	sctp_unhash,
9394 	.no_autobind =	true,
9395 	.obj_size    =  sizeof(struct sctp_sock),
9396 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9397 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9398 				offsetof(struct sctp_sock, subscribe) +
9399 				sizeof_field(struct sctp_sock, initmsg),
9400 	.sysctl_mem  =  sysctl_sctp_mem,
9401 	.sysctl_rmem =  sysctl_sctp_rmem,
9402 	.sysctl_wmem =  sysctl_sctp_wmem,
9403 	.memory_pressure = &sctp_memory_pressure,
9404 	.enter_memory_pressure = sctp_enter_memory_pressure,
9405 	.memory_allocated = &sctp_memory_allocated,
9406 	.sockets_allocated = &sctp_sockets_allocated,
9407 };
9408 
9409 #if IS_ENABLED(CONFIG_IPV6)
9410 
9411 #include <net/transp_v6.h>
9412 static void sctp_v6_destroy_sock(struct sock *sk)
9413 {
9414 	sctp_destroy_sock(sk);
9415 	inet6_destroy_sock(sk);
9416 }
9417 
9418 struct proto sctpv6_prot = {
9419 	.name		= "SCTPv6",
9420 	.owner		= THIS_MODULE,
9421 	.close		= sctp_close,
9422 	.disconnect	= sctp_disconnect,
9423 	.accept		= sctp_accept,
9424 	.ioctl		= sctp_ioctl,
9425 	.init		= sctp_init_sock,
9426 	.destroy	= sctp_v6_destroy_sock,
9427 	.shutdown	= sctp_shutdown,
9428 	.setsockopt	= sctp_setsockopt,
9429 	.getsockopt	= sctp_getsockopt,
9430 	.sendmsg	= sctp_sendmsg,
9431 	.recvmsg	= sctp_recvmsg,
9432 	.bind		= sctp_bind,
9433 	.bind_add	= sctp_bind_add,
9434 	.backlog_rcv	= sctp_backlog_rcv,
9435 	.hash		= sctp_hash,
9436 	.unhash		= sctp_unhash,
9437 	.no_autobind	= true,
9438 	.obj_size	= sizeof(struct sctp6_sock),
9439 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9440 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9441 				offsetof(struct sctp6_sock, sctp.subscribe) +
9442 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9443 	.sysctl_mem	= sysctl_sctp_mem,
9444 	.sysctl_rmem	= sysctl_sctp_rmem,
9445 	.sysctl_wmem	= sysctl_sctp_wmem,
9446 	.memory_pressure = &sctp_memory_pressure,
9447 	.enter_memory_pressure = sctp_enter_memory_pressure,
9448 	.memory_allocated = &sctp_memory_allocated,
9449 	.sockets_allocated = &sctp_sockets_allocated,
9450 };
9451 #endif /* IS_ENABLED(CONFIG_IPV6) */
9452