1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && inet_port_requires_bind_service(net, snum) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if (sctp_get_port_local(sk, addr)) 418 return -EADDRINUSE; 419 420 /* Refresh ephemeral port. */ 421 if (!bp->port) 422 bp->port = inet_sk(sk)->inet_num; 423 424 /* Add the address to the bind address list. 425 * Use GFP_ATOMIC since BHs will be disabled. 426 */ 427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 428 SCTP_ADDR_SRC, GFP_ATOMIC); 429 430 if (ret) { 431 sctp_put_port(sk); 432 return ret; 433 } 434 /* Copy back into socket for getsockname() use. */ 435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 436 sp->pf->to_sk_saddr(addr, sk); 437 438 return ret; 439 } 440 441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 442 * 443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 444 * at any one time. If a sender, after sending an ASCONF chunk, decides 445 * it needs to transfer another ASCONF Chunk, it MUST wait until the 446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 447 * subsequent ASCONF. Note this restriction binds each side, so at any 448 * time two ASCONF may be in-transit on any given association (one sent 449 * from each endpoint). 450 */ 451 static int sctp_send_asconf(struct sctp_association *asoc, 452 struct sctp_chunk *chunk) 453 { 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct sctp_sock *sp; 543 struct sctp_endpoint *ep; 544 struct sctp_association *asoc; 545 struct sctp_bind_addr *bp; 546 struct sctp_chunk *chunk; 547 struct sctp_sockaddr_entry *laddr; 548 union sctp_addr *addr; 549 union sctp_addr saveaddr; 550 void *addr_buf; 551 struct sctp_af *af; 552 struct list_head *p; 553 int i; 554 int retval = 0; 555 556 sp = sctp_sk(sk); 557 ep = sp->ep; 558 559 if (!ep->asconf_enable) 560 return retval; 561 562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 563 __func__, sk, addrs, addrcnt); 564 565 list_for_each_entry(asoc, &ep->asocs, asocs) { 566 if (!asoc->peer.asconf_capable) 567 continue; 568 569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 570 continue; 571 572 if (!sctp_state(asoc, ESTABLISHED)) 573 continue; 574 575 /* Check if any address in the packed array of addresses is 576 * in the bind address list of the association. If so, 577 * do not send the asconf chunk to its peer, but continue with 578 * other associations. 579 */ 580 addr_buf = addrs; 581 for (i = 0; i < addrcnt; i++) { 582 addr = addr_buf; 583 af = sctp_get_af_specific(addr->v4.sin_family); 584 if (!af) { 585 retval = -EINVAL; 586 goto out; 587 } 588 589 if (sctp_assoc_lookup_laddr(asoc, addr)) 590 break; 591 592 addr_buf += af->sockaddr_len; 593 } 594 if (i < addrcnt) 595 continue; 596 597 /* Use the first valid address in bind addr list of 598 * association as Address Parameter of ASCONF CHUNK. 599 */ 600 bp = &asoc->base.bind_addr; 601 p = bp->address_list.next; 602 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 604 addrcnt, SCTP_PARAM_ADD_IP); 605 if (!chunk) { 606 retval = -ENOMEM; 607 goto out; 608 } 609 610 /* Add the new addresses to the bind address list with 611 * use_as_src set to 0. 612 */ 613 addr_buf = addrs; 614 for (i = 0; i < addrcnt; i++) { 615 addr = addr_buf; 616 af = sctp_get_af_specific(addr->v4.sin_family); 617 memcpy(&saveaddr, addr, af->sockaddr_len); 618 retval = sctp_add_bind_addr(bp, &saveaddr, 619 sizeof(saveaddr), 620 SCTP_ADDR_NEW, GFP_ATOMIC); 621 addr_buf += af->sockaddr_len; 622 } 623 if (asoc->src_out_of_asoc_ok) { 624 struct sctp_transport *trans; 625 626 list_for_each_entry(trans, 627 &asoc->peer.transport_addr_list, transports) { 628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 629 2*asoc->pathmtu, 4380)); 630 trans->ssthresh = asoc->peer.i.a_rwnd; 631 trans->rto = asoc->rto_initial; 632 sctp_max_rto(asoc, trans); 633 trans->rtt = trans->srtt = trans->rttvar = 0; 634 /* Clear the source and route cache */ 635 sctp_transport_route(trans, NULL, 636 sctp_sk(asoc->base.sk)); 637 } 638 } 639 retval = sctp_send_asconf(asoc, chunk); 640 } 641 642 out: 643 return retval; 644 } 645 646 /* Remove a list of addresses from bind addresses list. Do not remove the 647 * last address. 648 * 649 * Basically run through each address specified in the addrs/addrcnt 650 * array/length pair, determine if it is IPv6 or IPv4 and call 651 * sctp_del_bind() on it. 652 * 653 * If any of them fails, then the operation will be reversed and the 654 * ones that were removed will be added back. 655 * 656 * At least one address has to be left; if only one address is 657 * available, the operation will return -EBUSY. 658 * 659 * Only sctp_setsockopt_bindx() is supposed to call this function. 660 */ 661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 662 { 663 struct sctp_sock *sp = sctp_sk(sk); 664 struct sctp_endpoint *ep = sp->ep; 665 int cnt; 666 struct sctp_bind_addr *bp = &ep->base.bind_addr; 667 int retval = 0; 668 void *addr_buf; 669 union sctp_addr *sa_addr; 670 struct sctp_af *af; 671 672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 673 __func__, sk, addrs, addrcnt); 674 675 addr_buf = addrs; 676 for (cnt = 0; cnt < addrcnt; cnt++) { 677 /* If the bind address list is empty or if there is only one 678 * bind address, there is nothing more to be removed (we need 679 * at least one address here). 680 */ 681 if (list_empty(&bp->address_list) || 682 (sctp_list_single_entry(&bp->address_list))) { 683 retval = -EBUSY; 684 goto err_bindx_rem; 685 } 686 687 sa_addr = addr_buf; 688 af = sctp_get_af_specific(sa_addr->sa.sa_family); 689 if (!af) { 690 retval = -EINVAL; 691 goto err_bindx_rem; 692 } 693 694 if (!af->addr_valid(sa_addr, sp, NULL)) { 695 retval = -EADDRNOTAVAIL; 696 goto err_bindx_rem; 697 } 698 699 if (sa_addr->v4.sin_port && 700 sa_addr->v4.sin_port != htons(bp->port)) { 701 retval = -EINVAL; 702 goto err_bindx_rem; 703 } 704 705 if (!sa_addr->v4.sin_port) 706 sa_addr->v4.sin_port = htons(bp->port); 707 708 /* FIXME - There is probably a need to check if sk->sk_saddr and 709 * sk->sk_rcv_addr are currently set to one of the addresses to 710 * be removed. This is something which needs to be looked into 711 * when we are fixing the outstanding issues with multi-homing 712 * socket routing and failover schemes. Refer to comments in 713 * sctp_do_bind(). -daisy 714 */ 715 retval = sctp_del_bind_addr(bp, sa_addr); 716 717 addr_buf += af->sockaddr_len; 718 err_bindx_rem: 719 if (retval < 0) { 720 /* Failed. Add the ones that has been removed back */ 721 if (cnt > 0) 722 sctp_bindx_add(sk, addrs, cnt); 723 return retval; 724 } 725 } 726 727 return retval; 728 } 729 730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 731 * the associations that are part of the endpoint indicating that a list of 732 * local addresses are removed from the endpoint. 733 * 734 * If any of the addresses is already in the bind address list of the 735 * association, we do not send the chunk for that association. But it will not 736 * affect other associations. 737 * 738 * Only sctp_setsockopt_bindx() is supposed to call this function. 739 */ 740 static int sctp_send_asconf_del_ip(struct sock *sk, 741 struct sockaddr *addrs, 742 int addrcnt) 743 { 744 struct sctp_sock *sp; 745 struct sctp_endpoint *ep; 746 struct sctp_association *asoc; 747 struct sctp_transport *transport; 748 struct sctp_bind_addr *bp; 749 struct sctp_chunk *chunk; 750 union sctp_addr *laddr; 751 void *addr_buf; 752 struct sctp_af *af; 753 struct sctp_sockaddr_entry *saddr; 754 int i; 755 int retval = 0; 756 int stored = 0; 757 758 chunk = NULL; 759 sp = sctp_sk(sk); 760 ep = sp->ep; 761 762 if (!ep->asconf_enable) 763 return retval; 764 765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 766 __func__, sk, addrs, addrcnt); 767 768 list_for_each_entry(asoc, &ep->asocs, asocs) { 769 770 if (!asoc->peer.asconf_capable) 771 continue; 772 773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 774 continue; 775 776 if (!sctp_state(asoc, ESTABLISHED)) 777 continue; 778 779 /* Check if any address in the packed array of addresses is 780 * not present in the bind address list of the association. 781 * If so, do not send the asconf chunk to its peer, but 782 * continue with other associations. 783 */ 784 addr_buf = addrs; 785 for (i = 0; i < addrcnt; i++) { 786 laddr = addr_buf; 787 af = sctp_get_af_specific(laddr->v4.sin_family); 788 if (!af) { 789 retval = -EINVAL; 790 goto out; 791 } 792 793 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 794 break; 795 796 addr_buf += af->sockaddr_len; 797 } 798 if (i < addrcnt) 799 continue; 800 801 /* Find one address in the association's bind address list 802 * that is not in the packed array of addresses. This is to 803 * make sure that we do not delete all the addresses in the 804 * association. 805 */ 806 bp = &asoc->base.bind_addr; 807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 808 addrcnt, sp); 809 if ((laddr == NULL) && (addrcnt == 1)) { 810 if (asoc->asconf_addr_del_pending) 811 continue; 812 asoc->asconf_addr_del_pending = 813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 814 if (asoc->asconf_addr_del_pending == NULL) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 asoc->asconf_addr_del_pending->sa.sa_family = 819 addrs->sa_family; 820 asoc->asconf_addr_del_pending->v4.sin_port = 821 htons(bp->port); 822 if (addrs->sa_family == AF_INET) { 823 struct sockaddr_in *sin; 824 825 sin = (struct sockaddr_in *)addrs; 826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 827 } else if (addrs->sa_family == AF_INET6) { 828 struct sockaddr_in6 *sin6; 829 830 sin6 = (struct sockaddr_in6 *)addrs; 831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 832 } 833 834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 835 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 836 asoc->asconf_addr_del_pending); 837 838 asoc->src_out_of_asoc_ok = 1; 839 stored = 1; 840 goto skip_mkasconf; 841 } 842 843 if (laddr == NULL) 844 return -EINVAL; 845 846 /* We do not need RCU protection throughout this loop 847 * because this is done under a socket lock from the 848 * setsockopt call. 849 */ 850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 851 SCTP_PARAM_DEL_IP); 852 if (!chunk) { 853 retval = -ENOMEM; 854 goto out; 855 } 856 857 skip_mkasconf: 858 /* Reset use_as_src flag for the addresses in the bind address 859 * list that are to be deleted. 860 */ 861 addr_buf = addrs; 862 for (i = 0; i < addrcnt; i++) { 863 laddr = addr_buf; 864 af = sctp_get_af_specific(laddr->v4.sin_family); 865 list_for_each_entry(saddr, &bp->address_list, list) { 866 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 867 saddr->state = SCTP_ADDR_DEL; 868 } 869 addr_buf += af->sockaddr_len; 870 } 871 872 /* Update the route and saddr entries for all the transports 873 * as some of the addresses in the bind address list are 874 * about to be deleted and cannot be used as source addresses. 875 */ 876 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 877 transports) { 878 sctp_transport_route(transport, NULL, 879 sctp_sk(asoc->base.sk)); 880 } 881 882 if (stored) 883 /* We don't need to transmit ASCONF */ 884 continue; 885 retval = sctp_send_asconf(asoc, chunk); 886 } 887 out: 888 return retval; 889 } 890 891 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 893 { 894 struct sock *sk = sctp_opt2sk(sp); 895 union sctp_addr *addr; 896 struct sctp_af *af; 897 898 /* It is safe to write port space in caller. */ 899 addr = &addrw->a; 900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 901 af = sctp_get_af_specific(addr->sa.sa_family); 902 if (!af) 903 return -EINVAL; 904 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 905 return -EINVAL; 906 907 if (addrw->state == SCTP_ADDR_NEW) 908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 909 else 910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 911 } 912 913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 914 * 915 * API 8.1 916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 917 * int flags); 918 * 919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 921 * or IPv6 addresses. 922 * 923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 924 * Section 3.1.2 for this usage. 925 * 926 * addrs is a pointer to an array of one or more socket addresses. Each 927 * address is contained in its appropriate structure (i.e. struct 928 * sockaddr_in or struct sockaddr_in6) the family of the address type 929 * must be used to distinguish the address length (note that this 930 * representation is termed a "packed array" of addresses). The caller 931 * specifies the number of addresses in the array with addrcnt. 932 * 933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 934 * -1, and sets errno to the appropriate error code. 935 * 936 * For SCTP, the port given in each socket address must be the same, or 937 * sctp_bindx() will fail, setting errno to EINVAL. 938 * 939 * The flags parameter is formed from the bitwise OR of zero or more of 940 * the following currently defined flags: 941 * 942 * SCTP_BINDX_ADD_ADDR 943 * 944 * SCTP_BINDX_REM_ADDR 945 * 946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 948 * addresses from the association. The two flags are mutually exclusive; 949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 950 * not remove all addresses from an association; sctp_bindx() will 951 * reject such an attempt with EINVAL. 952 * 953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 954 * additional addresses with an endpoint after calling bind(). Or use 955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 956 * socket is associated with so that no new association accepted will be 957 * associated with those addresses. If the endpoint supports dynamic 958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 959 * endpoint to send the appropriate message to the peer to change the 960 * peers address lists. 961 * 962 * Adding and removing addresses from a connected association is 963 * optional functionality. Implementations that do not support this 964 * functionality should return EOPNOTSUPP. 965 * 966 * Basically do nothing but copying the addresses from user to kernel 967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 969 * from userspace. 970 * 971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 972 * it. 973 * 974 * sk The sk of the socket 975 * addrs The pointer to the addresses in user land 976 * addrssize Size of the addrs buffer 977 * op Operation to perform (add or remove, see the flags of 978 * sctp_bindx) 979 * 980 * Returns 0 if ok, <0 errno code on error. 981 */ 982 static int sctp_setsockopt_bindx(struct sock *sk, 983 struct sockaddr __user *addrs, 984 int addrs_size, int op) 985 { 986 struct sockaddr *kaddrs; 987 int err; 988 int addrcnt = 0; 989 int walk_size = 0; 990 struct sockaddr *sa_addr; 991 void *addr_buf; 992 struct sctp_af *af; 993 994 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 995 __func__, sk, addrs, addrs_size, op); 996 997 if (unlikely(addrs_size <= 0)) 998 return -EINVAL; 999 1000 kaddrs = memdup_user(addrs, addrs_size); 1001 if (IS_ERR(kaddrs)) 1002 return PTR_ERR(kaddrs); 1003 1004 /* Walk through the addrs buffer and count the number of addresses. */ 1005 addr_buf = kaddrs; 1006 while (walk_size < addrs_size) { 1007 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1008 kfree(kaddrs); 1009 return -EINVAL; 1010 } 1011 1012 sa_addr = addr_buf; 1013 af = sctp_get_af_specific(sa_addr->sa_family); 1014 1015 /* If the address family is not supported or if this address 1016 * causes the address buffer to overflow return EINVAL. 1017 */ 1018 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1019 kfree(kaddrs); 1020 return -EINVAL; 1021 } 1022 addrcnt++; 1023 addr_buf += af->sockaddr_len; 1024 walk_size += af->sockaddr_len; 1025 } 1026 1027 /* Do the work. */ 1028 switch (op) { 1029 case SCTP_BINDX_ADD_ADDR: 1030 /* Allow security module to validate bindx addresses. */ 1031 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1032 (struct sockaddr *)kaddrs, 1033 addrs_size); 1034 if (err) 1035 goto out; 1036 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1037 if (err) 1038 goto out; 1039 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1040 break; 1041 1042 case SCTP_BINDX_REM_ADDR: 1043 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1044 if (err) 1045 goto out; 1046 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1047 break; 1048 1049 default: 1050 err = -EINVAL; 1051 break; 1052 } 1053 1054 out: 1055 kfree(kaddrs); 1056 1057 return err; 1058 } 1059 1060 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1061 const union sctp_addr *daddr, 1062 const struct sctp_initmsg *init, 1063 struct sctp_transport **tp) 1064 { 1065 struct sctp_association *asoc; 1066 struct sock *sk = ep->base.sk; 1067 struct net *net = sock_net(sk); 1068 enum sctp_scope scope; 1069 int err; 1070 1071 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1072 return -EADDRNOTAVAIL; 1073 1074 if (!ep->base.bind_addr.port) { 1075 if (sctp_autobind(sk)) 1076 return -EAGAIN; 1077 } else { 1078 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1079 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1080 return -EACCES; 1081 } 1082 1083 scope = sctp_scope(daddr); 1084 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1085 if (!asoc) 1086 return -ENOMEM; 1087 1088 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1089 if (err < 0) 1090 goto free; 1091 1092 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1093 if (!*tp) { 1094 err = -ENOMEM; 1095 goto free; 1096 } 1097 1098 if (!init) 1099 return 0; 1100 1101 if (init->sinit_num_ostreams) { 1102 __u16 outcnt = init->sinit_num_ostreams; 1103 1104 asoc->c.sinit_num_ostreams = outcnt; 1105 /* outcnt has been changed, need to re-init stream */ 1106 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1107 if (err) 1108 goto free; 1109 } 1110 1111 if (init->sinit_max_instreams) 1112 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1113 1114 if (init->sinit_max_attempts) 1115 asoc->max_init_attempts = init->sinit_max_attempts; 1116 1117 if (init->sinit_max_init_timeo) 1118 asoc->max_init_timeo = 1119 msecs_to_jiffies(init->sinit_max_init_timeo); 1120 1121 return 0; 1122 free: 1123 sctp_association_free(asoc); 1124 return err; 1125 } 1126 1127 static int sctp_connect_add_peer(struct sctp_association *asoc, 1128 union sctp_addr *daddr, int addr_len) 1129 { 1130 struct sctp_endpoint *ep = asoc->ep; 1131 struct sctp_association *old; 1132 struct sctp_transport *t; 1133 int err; 1134 1135 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1136 if (err) 1137 return err; 1138 1139 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1140 if (old && old != asoc) 1141 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1142 : -EALREADY; 1143 1144 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1145 return -EADDRNOTAVAIL; 1146 1147 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1148 if (!t) 1149 return -ENOMEM; 1150 1151 return 0; 1152 } 1153 1154 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1155 * 1156 * Common routine for handling connect() and sctp_connectx(). 1157 * Connect will come in with just a single address. 1158 */ 1159 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1160 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1161 { 1162 struct sctp_sock *sp = sctp_sk(sk); 1163 struct sctp_endpoint *ep = sp->ep; 1164 struct sctp_transport *transport; 1165 struct sctp_association *asoc; 1166 void *addr_buf = kaddrs; 1167 union sctp_addr *daddr; 1168 struct sctp_af *af; 1169 int walk_size, err; 1170 long timeo; 1171 1172 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1173 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1174 return -EISCONN; 1175 1176 daddr = addr_buf; 1177 af = sctp_get_af_specific(daddr->sa.sa_family); 1178 if (!af || af->sockaddr_len > addrs_size) 1179 return -EINVAL; 1180 1181 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1182 if (err) 1183 return err; 1184 1185 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1186 if (asoc) 1187 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1188 : -EALREADY; 1189 1190 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1191 if (err) 1192 return err; 1193 asoc = transport->asoc; 1194 1195 addr_buf += af->sockaddr_len; 1196 walk_size = af->sockaddr_len; 1197 while (walk_size < addrs_size) { 1198 err = -EINVAL; 1199 if (walk_size + sizeof(sa_family_t) > addrs_size) 1200 goto out_free; 1201 1202 daddr = addr_buf; 1203 af = sctp_get_af_specific(daddr->sa.sa_family); 1204 if (!af || af->sockaddr_len + walk_size > addrs_size) 1205 goto out_free; 1206 1207 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1208 goto out_free; 1209 1210 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1211 if (err) 1212 goto out_free; 1213 1214 addr_buf += af->sockaddr_len; 1215 walk_size += af->sockaddr_len; 1216 } 1217 1218 /* In case the user of sctp_connectx() wants an association 1219 * id back, assign one now. 1220 */ 1221 if (assoc_id) { 1222 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1223 if (err < 0) 1224 goto out_free; 1225 } 1226 1227 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1228 if (err < 0) 1229 goto out_free; 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(daddr, sk); 1234 sk->sk_err = 0; 1235 1236 if (assoc_id) 1237 *assoc_id = asoc->assoc_id; 1238 1239 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1240 return sctp_wait_for_connect(asoc, &timeo); 1241 1242 out_free: 1243 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1244 __func__, asoc, kaddrs, err); 1245 sctp_association_free(asoc); 1246 return err; 1247 } 1248 1249 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1250 * 1251 * API 8.9 1252 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1253 * sctp_assoc_t *asoc); 1254 * 1255 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1256 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1257 * or IPv6 addresses. 1258 * 1259 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1260 * Section 3.1.2 for this usage. 1261 * 1262 * addrs is a pointer to an array of one or more socket addresses. Each 1263 * address is contained in its appropriate structure (i.e. struct 1264 * sockaddr_in or struct sockaddr_in6) the family of the address type 1265 * must be used to distengish the address length (note that this 1266 * representation is termed a "packed array" of addresses). The caller 1267 * specifies the number of addresses in the array with addrcnt. 1268 * 1269 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1270 * the association id of the new association. On failure, sctp_connectx() 1271 * returns -1, and sets errno to the appropriate error code. The assoc_id 1272 * is not touched by the kernel. 1273 * 1274 * For SCTP, the port given in each socket address must be the same, or 1275 * sctp_connectx() will fail, setting errno to EINVAL. 1276 * 1277 * An application can use sctp_connectx to initiate an association with 1278 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1279 * allows a caller to specify multiple addresses at which a peer can be 1280 * reached. The way the SCTP stack uses the list of addresses to set up 1281 * the association is implementation dependent. This function only 1282 * specifies that the stack will try to make use of all the addresses in 1283 * the list when needed. 1284 * 1285 * Note that the list of addresses passed in is only used for setting up 1286 * the association. It does not necessarily equal the set of addresses 1287 * the peer uses for the resulting association. If the caller wants to 1288 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1289 * retrieve them after the association has been set up. 1290 * 1291 * Basically do nothing but copying the addresses from user to kernel 1292 * land and invoking either sctp_connectx(). This is used for tunneling 1293 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1294 * 1295 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1296 * it. 1297 * 1298 * sk The sk of the socket 1299 * addrs The pointer to the addresses in user land 1300 * addrssize Size of the addrs buffer 1301 * 1302 * Returns >=0 if ok, <0 errno code on error. 1303 */ 1304 static int __sctp_setsockopt_connectx(struct sock *sk, 1305 struct sockaddr __user *addrs, 1306 int addrs_size, 1307 sctp_assoc_t *assoc_id) 1308 { 1309 struct sockaddr *kaddrs; 1310 int err = 0, flags = 0; 1311 1312 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1313 __func__, sk, addrs, addrs_size); 1314 1315 /* make sure the 1st addr's sa_family is accessible later */ 1316 if (unlikely(addrs_size < sizeof(sa_family_t))) 1317 return -EINVAL; 1318 1319 kaddrs = memdup_user(addrs, addrs_size); 1320 if (IS_ERR(kaddrs)) 1321 return PTR_ERR(kaddrs); 1322 1323 /* Allow security module to validate connectx addresses. */ 1324 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1325 (struct sockaddr *)kaddrs, 1326 addrs_size); 1327 if (err) 1328 goto out_free; 1329 1330 /* in-kernel sockets don't generally have a file allocated to them 1331 * if all they do is call sock_create_kern(). 1332 */ 1333 if (sk->sk_socket->file) 1334 flags = sk->sk_socket->file->f_flags; 1335 1336 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1337 1338 out_free: 1339 kfree(kaddrs); 1340 1341 return err; 1342 } 1343 1344 /* 1345 * This is an older interface. It's kept for backward compatibility 1346 * to the option that doesn't provide association id. 1347 */ 1348 static int sctp_setsockopt_connectx_old(struct sock *sk, 1349 struct sockaddr __user *addrs, 1350 int addrs_size) 1351 { 1352 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1353 } 1354 1355 /* 1356 * New interface for the API. The since the API is done with a socket 1357 * option, to make it simple we feed back the association id is as a return 1358 * indication to the call. Error is always negative and association id is 1359 * always positive. 1360 */ 1361 static int sctp_setsockopt_connectx(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 sctp_assoc_t assoc_id = 0; 1366 int err = 0; 1367 1368 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1369 1370 if (err) 1371 return err; 1372 else 1373 return assoc_id; 1374 } 1375 1376 /* 1377 * New (hopefully final) interface for the API. 1378 * We use the sctp_getaddrs_old structure so that use-space library 1379 * can avoid any unnecessary allocations. The only different part 1380 * is that we store the actual length of the address buffer into the 1381 * addrs_num structure member. That way we can re-use the existing 1382 * code. 1383 */ 1384 #ifdef CONFIG_COMPAT 1385 struct compat_sctp_getaddrs_old { 1386 sctp_assoc_t assoc_id; 1387 s32 addr_num; 1388 compat_uptr_t addrs; /* struct sockaddr * */ 1389 }; 1390 #endif 1391 1392 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1393 char __user *optval, 1394 int __user *optlen) 1395 { 1396 struct sctp_getaddrs_old param; 1397 sctp_assoc_t assoc_id = 0; 1398 int err = 0; 1399 1400 #ifdef CONFIG_COMPAT 1401 if (in_compat_syscall()) { 1402 struct compat_sctp_getaddrs_old param32; 1403 1404 if (len < sizeof(param32)) 1405 return -EINVAL; 1406 if (copy_from_user(¶m32, optval, sizeof(param32))) 1407 return -EFAULT; 1408 1409 param.assoc_id = param32.assoc_id; 1410 param.addr_num = param32.addr_num; 1411 param.addrs = compat_ptr(param32.addrs); 1412 } else 1413 #endif 1414 { 1415 if (len < sizeof(param)) 1416 return -EINVAL; 1417 if (copy_from_user(¶m, optval, sizeof(param))) 1418 return -EFAULT; 1419 } 1420 1421 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1422 param.addrs, param.addr_num, 1423 &assoc_id); 1424 if (err == 0 || err == -EINPROGRESS) { 1425 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1426 return -EFAULT; 1427 if (put_user(sizeof(assoc_id), optlen)) 1428 return -EFAULT; 1429 } 1430 1431 return err; 1432 } 1433 1434 /* API 3.1.4 close() - UDP Style Syntax 1435 * Applications use close() to perform graceful shutdown (as described in 1436 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1437 * by a UDP-style socket. 1438 * 1439 * The syntax is 1440 * 1441 * ret = close(int sd); 1442 * 1443 * sd - the socket descriptor of the associations to be closed. 1444 * 1445 * To gracefully shutdown a specific association represented by the 1446 * UDP-style socket, an application should use the sendmsg() call, 1447 * passing no user data, but including the appropriate flag in the 1448 * ancillary data (see Section xxxx). 1449 * 1450 * If sd in the close() call is a branched-off socket representing only 1451 * one association, the shutdown is performed on that association only. 1452 * 1453 * 4.1.6 close() - TCP Style Syntax 1454 * 1455 * Applications use close() to gracefully close down an association. 1456 * 1457 * The syntax is: 1458 * 1459 * int close(int sd); 1460 * 1461 * sd - the socket descriptor of the association to be closed. 1462 * 1463 * After an application calls close() on a socket descriptor, no further 1464 * socket operations will succeed on that descriptor. 1465 * 1466 * API 7.1.4 SO_LINGER 1467 * 1468 * An application using the TCP-style socket can use this option to 1469 * perform the SCTP ABORT primitive. The linger option structure is: 1470 * 1471 * struct linger { 1472 * int l_onoff; // option on/off 1473 * int l_linger; // linger time 1474 * }; 1475 * 1476 * To enable the option, set l_onoff to 1. If the l_linger value is set 1477 * to 0, calling close() is the same as the ABORT primitive. If the 1478 * value is set to a negative value, the setsockopt() call will return 1479 * an error. If the value is set to a positive value linger_time, the 1480 * close() can be blocked for at most linger_time ms. If the graceful 1481 * shutdown phase does not finish during this period, close() will 1482 * return but the graceful shutdown phase continues in the system. 1483 */ 1484 static void sctp_close(struct sock *sk, long timeout) 1485 { 1486 struct net *net = sock_net(sk); 1487 struct sctp_endpoint *ep; 1488 struct sctp_association *asoc; 1489 struct list_head *pos, *temp; 1490 unsigned int data_was_unread; 1491 1492 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1493 1494 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1495 sk->sk_shutdown = SHUTDOWN_MASK; 1496 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1497 1498 ep = sctp_sk(sk)->ep; 1499 1500 /* Clean up any skbs sitting on the receive queue. */ 1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1503 1504 /* Walk all associations on an endpoint. */ 1505 list_for_each_safe(pos, temp, &ep->asocs) { 1506 asoc = list_entry(pos, struct sctp_association, asocs); 1507 1508 if (sctp_style(sk, TCP)) { 1509 /* A closed association can still be in the list if 1510 * it belongs to a TCP-style listening socket that is 1511 * not yet accepted. If so, free it. If not, send an 1512 * ABORT or SHUTDOWN based on the linger options. 1513 */ 1514 if (sctp_state(asoc, CLOSED)) { 1515 sctp_association_free(asoc); 1516 continue; 1517 } 1518 } 1519 1520 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1521 !skb_queue_empty(&asoc->ulpq.reasm) || 1522 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1523 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1524 struct sctp_chunk *chunk; 1525 1526 chunk = sctp_make_abort_user(asoc, NULL, 0); 1527 sctp_primitive_ABORT(net, asoc, chunk); 1528 } else 1529 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1530 } 1531 1532 /* On a TCP-style socket, block for at most linger_time if set. */ 1533 if (sctp_style(sk, TCP) && timeout) 1534 sctp_wait_for_close(sk, timeout); 1535 1536 /* This will run the backlog queue. */ 1537 release_sock(sk); 1538 1539 /* Supposedly, no process has access to the socket, but 1540 * the net layers still may. 1541 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1542 * held and that should be grabbed before socket lock. 1543 */ 1544 spin_lock_bh(&net->sctp.addr_wq_lock); 1545 bh_lock_sock_nested(sk); 1546 1547 /* Hold the sock, since sk_common_release() will put sock_put() 1548 * and we have just a little more cleanup. 1549 */ 1550 sock_hold(sk); 1551 sk_common_release(sk); 1552 1553 bh_unlock_sock(sk); 1554 spin_unlock_bh(&net->sctp.addr_wq_lock); 1555 1556 sock_put(sk); 1557 1558 SCTP_DBG_OBJCNT_DEC(sock); 1559 } 1560 1561 /* Handle EPIPE error. */ 1562 static int sctp_error(struct sock *sk, int flags, int err) 1563 { 1564 if (err == -EPIPE) 1565 err = sock_error(sk) ? : -EPIPE; 1566 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1567 send_sig(SIGPIPE, current, 0); 1568 return err; 1569 } 1570 1571 /* API 3.1.3 sendmsg() - UDP Style Syntax 1572 * 1573 * An application uses sendmsg() and recvmsg() calls to transmit data to 1574 * and receive data from its peer. 1575 * 1576 * ssize_t sendmsg(int socket, const struct msghdr *message, 1577 * int flags); 1578 * 1579 * socket - the socket descriptor of the endpoint. 1580 * message - pointer to the msghdr structure which contains a single 1581 * user message and possibly some ancillary data. 1582 * 1583 * See Section 5 for complete description of the data 1584 * structures. 1585 * 1586 * flags - flags sent or received with the user message, see Section 1587 * 5 for complete description of the flags. 1588 * 1589 * Note: This function could use a rewrite especially when explicit 1590 * connect support comes in. 1591 */ 1592 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1593 1594 static int sctp_msghdr_parse(const struct msghdr *msg, 1595 struct sctp_cmsgs *cmsgs); 1596 1597 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1598 struct sctp_sndrcvinfo *srinfo, 1599 const struct msghdr *msg, size_t msg_len) 1600 { 1601 __u16 sflags; 1602 int err; 1603 1604 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1605 return -EPIPE; 1606 1607 if (msg_len > sk->sk_sndbuf) 1608 return -EMSGSIZE; 1609 1610 memset(cmsgs, 0, sizeof(*cmsgs)); 1611 err = sctp_msghdr_parse(msg, cmsgs); 1612 if (err) { 1613 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1614 return err; 1615 } 1616 1617 memset(srinfo, 0, sizeof(*srinfo)); 1618 if (cmsgs->srinfo) { 1619 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1620 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1621 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1622 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1623 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1624 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1625 } 1626 1627 if (cmsgs->sinfo) { 1628 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1629 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1630 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1631 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1632 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1633 } 1634 1635 if (cmsgs->prinfo) { 1636 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1637 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1638 cmsgs->prinfo->pr_policy); 1639 } 1640 1641 sflags = srinfo->sinfo_flags; 1642 if (!sflags && msg_len) 1643 return 0; 1644 1645 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1646 return -EINVAL; 1647 1648 if (((sflags & SCTP_EOF) && msg_len > 0) || 1649 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1650 return -EINVAL; 1651 1652 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1653 return -EINVAL; 1654 1655 return 0; 1656 } 1657 1658 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1659 struct sctp_cmsgs *cmsgs, 1660 union sctp_addr *daddr, 1661 struct sctp_transport **tp) 1662 { 1663 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1664 struct sctp_association *asoc; 1665 struct cmsghdr *cmsg; 1666 __be32 flowinfo = 0; 1667 struct sctp_af *af; 1668 int err; 1669 1670 *tp = NULL; 1671 1672 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1673 return -EINVAL; 1674 1675 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1676 sctp_sstate(sk, CLOSING))) 1677 return -EADDRNOTAVAIL; 1678 1679 /* Label connection socket for first association 1-to-many 1680 * style for client sequence socket()->sendmsg(). This 1681 * needs to be done before sctp_assoc_add_peer() as that will 1682 * set up the initial packet that needs to account for any 1683 * security ip options (CIPSO/CALIPSO) added to the packet. 1684 */ 1685 af = sctp_get_af_specific(daddr->sa.sa_family); 1686 if (!af) 1687 return -EINVAL; 1688 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1689 (struct sockaddr *)daddr, 1690 af->sockaddr_len); 1691 if (err < 0) 1692 return err; 1693 1694 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1695 if (err) 1696 return err; 1697 asoc = (*tp)->asoc; 1698 1699 if (!cmsgs->addrs_msg) 1700 return 0; 1701 1702 if (daddr->sa.sa_family == AF_INET6) 1703 flowinfo = daddr->v6.sin6_flowinfo; 1704 1705 /* sendv addr list parse */ 1706 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1707 union sctp_addr _daddr; 1708 int dlen; 1709 1710 if (cmsg->cmsg_level != IPPROTO_SCTP || 1711 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1712 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1713 continue; 1714 1715 daddr = &_daddr; 1716 memset(daddr, 0, sizeof(*daddr)); 1717 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1718 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1719 if (dlen < sizeof(struct in_addr)) { 1720 err = -EINVAL; 1721 goto free; 1722 } 1723 1724 dlen = sizeof(struct in_addr); 1725 daddr->v4.sin_family = AF_INET; 1726 daddr->v4.sin_port = htons(asoc->peer.port); 1727 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1728 } else { 1729 if (dlen < sizeof(struct in6_addr)) { 1730 err = -EINVAL; 1731 goto free; 1732 } 1733 1734 dlen = sizeof(struct in6_addr); 1735 daddr->v6.sin6_flowinfo = flowinfo; 1736 daddr->v6.sin6_family = AF_INET6; 1737 daddr->v6.sin6_port = htons(asoc->peer.port); 1738 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1739 } 1740 1741 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1742 if (err) 1743 goto free; 1744 } 1745 1746 return 0; 1747 1748 free: 1749 sctp_association_free(asoc); 1750 return err; 1751 } 1752 1753 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1754 __u16 sflags, struct msghdr *msg, 1755 size_t msg_len) 1756 { 1757 struct sock *sk = asoc->base.sk; 1758 struct net *net = sock_net(sk); 1759 1760 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1761 return -EPIPE; 1762 1763 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1764 !sctp_state(asoc, ESTABLISHED)) 1765 return 0; 1766 1767 if (sflags & SCTP_EOF) { 1768 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1769 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1770 1771 return 0; 1772 } 1773 1774 if (sflags & SCTP_ABORT) { 1775 struct sctp_chunk *chunk; 1776 1777 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1778 if (!chunk) 1779 return -ENOMEM; 1780 1781 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1782 sctp_primitive_ABORT(net, asoc, chunk); 1783 iov_iter_revert(&msg->msg_iter, msg_len); 1784 1785 return 0; 1786 } 1787 1788 return 1; 1789 } 1790 1791 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1792 struct msghdr *msg, size_t msg_len, 1793 struct sctp_transport *transport, 1794 struct sctp_sndrcvinfo *sinfo) 1795 { 1796 struct sock *sk = asoc->base.sk; 1797 struct sctp_sock *sp = sctp_sk(sk); 1798 struct net *net = sock_net(sk); 1799 struct sctp_datamsg *datamsg; 1800 bool wait_connect = false; 1801 struct sctp_chunk *chunk; 1802 long timeo; 1803 int err; 1804 1805 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1806 err = -EINVAL; 1807 goto err; 1808 } 1809 1810 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1811 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1812 if (err) 1813 goto err; 1814 } 1815 1816 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1817 err = -EMSGSIZE; 1818 goto err; 1819 } 1820 1821 if (asoc->pmtu_pending) { 1822 if (sp->param_flags & SPP_PMTUD_ENABLE) 1823 sctp_assoc_sync_pmtu(asoc); 1824 asoc->pmtu_pending = 0; 1825 } 1826 1827 if (sctp_wspace(asoc) < (int)msg_len) 1828 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1829 1830 if (sk_under_memory_pressure(sk)) 1831 sk_mem_reclaim(sk); 1832 1833 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1834 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1835 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1836 if (err) 1837 goto err; 1838 } 1839 1840 if (sctp_state(asoc, CLOSED)) { 1841 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1842 if (err) 1843 goto err; 1844 1845 if (asoc->ep->intl_enable) { 1846 timeo = sock_sndtimeo(sk, 0); 1847 err = sctp_wait_for_connect(asoc, &timeo); 1848 if (err) { 1849 err = -ESRCH; 1850 goto err; 1851 } 1852 } else { 1853 wait_connect = true; 1854 } 1855 1856 pr_debug("%s: we associated primitively\n", __func__); 1857 } 1858 1859 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1860 if (IS_ERR(datamsg)) { 1861 err = PTR_ERR(datamsg); 1862 goto err; 1863 } 1864 1865 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1866 1867 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1868 sctp_chunk_hold(chunk); 1869 sctp_set_owner_w(chunk); 1870 chunk->transport = transport; 1871 } 1872 1873 err = sctp_primitive_SEND(net, asoc, datamsg); 1874 if (err) { 1875 sctp_datamsg_free(datamsg); 1876 goto err; 1877 } 1878 1879 pr_debug("%s: we sent primitively\n", __func__); 1880 1881 sctp_datamsg_put(datamsg); 1882 1883 if (unlikely(wait_connect)) { 1884 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1885 sctp_wait_for_connect(asoc, &timeo); 1886 } 1887 1888 err = msg_len; 1889 1890 err: 1891 return err; 1892 } 1893 1894 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1895 const struct msghdr *msg, 1896 struct sctp_cmsgs *cmsgs) 1897 { 1898 union sctp_addr *daddr = NULL; 1899 int err; 1900 1901 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1902 int len = msg->msg_namelen; 1903 1904 if (len > sizeof(*daddr)) 1905 len = sizeof(*daddr); 1906 1907 daddr = (union sctp_addr *)msg->msg_name; 1908 1909 err = sctp_verify_addr(sk, daddr, len); 1910 if (err) 1911 return ERR_PTR(err); 1912 } 1913 1914 return daddr; 1915 } 1916 1917 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1918 struct sctp_sndrcvinfo *sinfo, 1919 struct sctp_cmsgs *cmsgs) 1920 { 1921 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1922 sinfo->sinfo_stream = asoc->default_stream; 1923 sinfo->sinfo_ppid = asoc->default_ppid; 1924 sinfo->sinfo_context = asoc->default_context; 1925 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1926 1927 if (!cmsgs->prinfo) 1928 sinfo->sinfo_flags = asoc->default_flags; 1929 } 1930 1931 if (!cmsgs->srinfo && !cmsgs->prinfo) 1932 sinfo->sinfo_timetolive = asoc->default_timetolive; 1933 1934 if (cmsgs->authinfo) { 1935 /* Reuse sinfo_tsn to indicate that authinfo was set and 1936 * sinfo_ssn to save the keyid on tx path. 1937 */ 1938 sinfo->sinfo_tsn = 1; 1939 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1940 } 1941 } 1942 1943 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1944 { 1945 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1946 struct sctp_transport *transport = NULL; 1947 struct sctp_sndrcvinfo _sinfo, *sinfo; 1948 struct sctp_association *asoc, *tmp; 1949 struct sctp_cmsgs cmsgs; 1950 union sctp_addr *daddr; 1951 bool new = false; 1952 __u16 sflags; 1953 int err; 1954 1955 /* Parse and get snd_info */ 1956 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1957 if (err) 1958 goto out; 1959 1960 sinfo = &_sinfo; 1961 sflags = sinfo->sinfo_flags; 1962 1963 /* Get daddr from msg */ 1964 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1965 if (IS_ERR(daddr)) { 1966 err = PTR_ERR(daddr); 1967 goto out; 1968 } 1969 1970 lock_sock(sk); 1971 1972 /* SCTP_SENDALL process */ 1973 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1974 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1975 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1976 msg_len); 1977 if (err == 0) 1978 continue; 1979 if (err < 0) 1980 goto out_unlock; 1981 1982 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1983 1984 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1985 NULL, sinfo); 1986 if (err < 0) 1987 goto out_unlock; 1988 1989 iov_iter_revert(&msg->msg_iter, err); 1990 } 1991 1992 goto out_unlock; 1993 } 1994 1995 /* Get and check or create asoc */ 1996 if (daddr) { 1997 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1998 if (asoc) { 1999 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2000 msg_len); 2001 if (err <= 0) 2002 goto out_unlock; 2003 } else { 2004 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2005 &transport); 2006 if (err) 2007 goto out_unlock; 2008 2009 asoc = transport->asoc; 2010 new = true; 2011 } 2012 2013 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2014 transport = NULL; 2015 } else { 2016 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2017 if (!asoc) { 2018 err = -EPIPE; 2019 goto out_unlock; 2020 } 2021 2022 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2023 if (err <= 0) 2024 goto out_unlock; 2025 } 2026 2027 /* Update snd_info with the asoc */ 2028 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2029 2030 /* Send msg to the asoc */ 2031 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2032 if (err < 0 && err != -ESRCH && new) 2033 sctp_association_free(asoc); 2034 2035 out_unlock: 2036 release_sock(sk); 2037 out: 2038 return sctp_error(sk, msg->msg_flags, err); 2039 } 2040 2041 /* This is an extended version of skb_pull() that removes the data from the 2042 * start of a skb even when data is spread across the list of skb's in the 2043 * frag_list. len specifies the total amount of data that needs to be removed. 2044 * when 'len' bytes could be removed from the skb, it returns 0. 2045 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2046 * could not be removed. 2047 */ 2048 static int sctp_skb_pull(struct sk_buff *skb, int len) 2049 { 2050 struct sk_buff *list; 2051 int skb_len = skb_headlen(skb); 2052 int rlen; 2053 2054 if (len <= skb_len) { 2055 __skb_pull(skb, len); 2056 return 0; 2057 } 2058 len -= skb_len; 2059 __skb_pull(skb, skb_len); 2060 2061 skb_walk_frags(skb, list) { 2062 rlen = sctp_skb_pull(list, len); 2063 skb->len -= (len-rlen); 2064 skb->data_len -= (len-rlen); 2065 2066 if (!rlen) 2067 return 0; 2068 2069 len = rlen; 2070 } 2071 2072 return len; 2073 } 2074 2075 /* API 3.1.3 recvmsg() - UDP Style Syntax 2076 * 2077 * ssize_t recvmsg(int socket, struct msghdr *message, 2078 * int flags); 2079 * 2080 * socket - the socket descriptor of the endpoint. 2081 * message - pointer to the msghdr structure which contains a single 2082 * user message and possibly some ancillary data. 2083 * 2084 * See Section 5 for complete description of the data 2085 * structures. 2086 * 2087 * flags - flags sent or received with the user message, see Section 2088 * 5 for complete description of the flags. 2089 */ 2090 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2091 int noblock, int flags, int *addr_len) 2092 { 2093 struct sctp_ulpevent *event = NULL; 2094 struct sctp_sock *sp = sctp_sk(sk); 2095 struct sk_buff *skb, *head_skb; 2096 int copied; 2097 int err = 0; 2098 int skb_len; 2099 2100 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2101 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2102 addr_len); 2103 2104 lock_sock(sk); 2105 2106 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2107 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2108 err = -ENOTCONN; 2109 goto out; 2110 } 2111 2112 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2113 if (!skb) 2114 goto out; 2115 2116 /* Get the total length of the skb including any skb's in the 2117 * frag_list. 2118 */ 2119 skb_len = skb->len; 2120 2121 copied = skb_len; 2122 if (copied > len) 2123 copied = len; 2124 2125 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2126 2127 event = sctp_skb2event(skb); 2128 2129 if (err) 2130 goto out_free; 2131 2132 if (event->chunk && event->chunk->head_skb) 2133 head_skb = event->chunk->head_skb; 2134 else 2135 head_skb = skb; 2136 sock_recv_ts_and_drops(msg, sk, head_skb); 2137 if (sctp_ulpevent_is_notification(event)) { 2138 msg->msg_flags |= MSG_NOTIFICATION; 2139 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2140 } else { 2141 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2142 } 2143 2144 /* Check if we allow SCTP_NXTINFO. */ 2145 if (sp->recvnxtinfo) 2146 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2147 /* Check if we allow SCTP_RCVINFO. */ 2148 if (sp->recvrcvinfo) 2149 sctp_ulpevent_read_rcvinfo(event, msg); 2150 /* Check if we allow SCTP_SNDRCVINFO. */ 2151 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2152 sctp_ulpevent_read_sndrcvinfo(event, msg); 2153 2154 err = copied; 2155 2156 /* If skb's length exceeds the user's buffer, update the skb and 2157 * push it back to the receive_queue so that the next call to 2158 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2159 */ 2160 if (skb_len > copied) { 2161 msg->msg_flags &= ~MSG_EOR; 2162 if (flags & MSG_PEEK) 2163 goto out_free; 2164 sctp_skb_pull(skb, copied); 2165 skb_queue_head(&sk->sk_receive_queue, skb); 2166 2167 /* When only partial message is copied to the user, increase 2168 * rwnd by that amount. If all the data in the skb is read, 2169 * rwnd is updated when the event is freed. 2170 */ 2171 if (!sctp_ulpevent_is_notification(event)) 2172 sctp_assoc_rwnd_increase(event->asoc, copied); 2173 goto out; 2174 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2175 (event->msg_flags & MSG_EOR)) 2176 msg->msg_flags |= MSG_EOR; 2177 else 2178 msg->msg_flags &= ~MSG_EOR; 2179 2180 out_free: 2181 if (flags & MSG_PEEK) { 2182 /* Release the skb reference acquired after peeking the skb in 2183 * sctp_skb_recv_datagram(). 2184 */ 2185 kfree_skb(skb); 2186 } else { 2187 /* Free the event which includes releasing the reference to 2188 * the owner of the skb, freeing the skb and updating the 2189 * rwnd. 2190 */ 2191 sctp_ulpevent_free(event); 2192 } 2193 out: 2194 release_sock(sk); 2195 return err; 2196 } 2197 2198 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2199 * 2200 * This option is a on/off flag. If enabled no SCTP message 2201 * fragmentation will be performed. Instead if a message being sent 2202 * exceeds the current PMTU size, the message will NOT be sent and 2203 * instead a error will be indicated to the user. 2204 */ 2205 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2206 char __user *optval, 2207 unsigned int optlen) 2208 { 2209 int val; 2210 2211 if (optlen < sizeof(int)) 2212 return -EINVAL; 2213 2214 if (get_user(val, (int __user *)optval)) 2215 return -EFAULT; 2216 2217 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2218 2219 return 0; 2220 } 2221 2222 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2223 unsigned int optlen) 2224 { 2225 struct sctp_event_subscribe subscribe; 2226 __u8 *sn_type = (__u8 *)&subscribe; 2227 struct sctp_sock *sp = sctp_sk(sk); 2228 struct sctp_association *asoc; 2229 int i; 2230 2231 if (optlen > sizeof(struct sctp_event_subscribe)) 2232 return -EINVAL; 2233 2234 if (copy_from_user(&subscribe, optval, optlen)) 2235 return -EFAULT; 2236 2237 for (i = 0; i < optlen; i++) 2238 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2239 sn_type[i]); 2240 2241 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2242 asoc->subscribe = sctp_sk(sk)->subscribe; 2243 2244 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2245 * if there is no data to be sent or retransmit, the stack will 2246 * immediately send up this notification. 2247 */ 2248 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2249 struct sctp_ulpevent *event; 2250 2251 asoc = sctp_id2assoc(sk, 0); 2252 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2253 event = sctp_ulpevent_make_sender_dry_event(asoc, 2254 GFP_USER | __GFP_NOWARN); 2255 if (!event) 2256 return -ENOMEM; 2257 2258 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2259 } 2260 } 2261 2262 return 0; 2263 } 2264 2265 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2266 * 2267 * This socket option is applicable to the UDP-style socket only. When 2268 * set it will cause associations that are idle for more than the 2269 * specified number of seconds to automatically close. An association 2270 * being idle is defined an association that has NOT sent or received 2271 * user data. The special value of '0' indicates that no automatic 2272 * close of any associations should be performed. The option expects an 2273 * integer defining the number of seconds of idle time before an 2274 * association is closed. 2275 */ 2276 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2277 unsigned int optlen) 2278 { 2279 struct sctp_sock *sp = sctp_sk(sk); 2280 struct net *net = sock_net(sk); 2281 2282 /* Applicable to UDP-style socket only */ 2283 if (sctp_style(sk, TCP)) 2284 return -EOPNOTSUPP; 2285 if (optlen != sizeof(int)) 2286 return -EINVAL; 2287 if (copy_from_user(&sp->autoclose, optval, optlen)) 2288 return -EFAULT; 2289 2290 if (sp->autoclose > net->sctp.max_autoclose) 2291 sp->autoclose = net->sctp.max_autoclose; 2292 2293 return 0; 2294 } 2295 2296 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2297 * 2298 * Applications can enable or disable heartbeats for any peer address of 2299 * an association, modify an address's heartbeat interval, force a 2300 * heartbeat to be sent immediately, and adjust the address's maximum 2301 * number of retransmissions sent before an address is considered 2302 * unreachable. The following structure is used to access and modify an 2303 * address's parameters: 2304 * 2305 * struct sctp_paddrparams { 2306 * sctp_assoc_t spp_assoc_id; 2307 * struct sockaddr_storage spp_address; 2308 * uint32_t spp_hbinterval; 2309 * uint16_t spp_pathmaxrxt; 2310 * uint32_t spp_pathmtu; 2311 * uint32_t spp_sackdelay; 2312 * uint32_t spp_flags; 2313 * uint32_t spp_ipv6_flowlabel; 2314 * uint8_t spp_dscp; 2315 * }; 2316 * 2317 * spp_assoc_id - (one-to-many style socket) This is filled in the 2318 * application, and identifies the association for 2319 * this query. 2320 * spp_address - This specifies which address is of interest. 2321 * spp_hbinterval - This contains the value of the heartbeat interval, 2322 * in milliseconds. If a value of zero 2323 * is present in this field then no changes are to 2324 * be made to this parameter. 2325 * spp_pathmaxrxt - This contains the maximum number of 2326 * retransmissions before this address shall be 2327 * considered unreachable. If a value of zero 2328 * is present in this field then no changes are to 2329 * be made to this parameter. 2330 * spp_pathmtu - When Path MTU discovery is disabled the value 2331 * specified here will be the "fixed" path mtu. 2332 * Note that if the spp_address field is empty 2333 * then all associations on this address will 2334 * have this fixed path mtu set upon them. 2335 * 2336 * spp_sackdelay - When delayed sack is enabled, this value specifies 2337 * the number of milliseconds that sacks will be delayed 2338 * for. This value will apply to all addresses of an 2339 * association if the spp_address field is empty. Note 2340 * also, that if delayed sack is enabled and this 2341 * value is set to 0, no change is made to the last 2342 * recorded delayed sack timer value. 2343 * 2344 * spp_flags - These flags are used to control various features 2345 * on an association. The flag field may contain 2346 * zero or more of the following options. 2347 * 2348 * SPP_HB_ENABLE - Enable heartbeats on the 2349 * specified address. Note that if the address 2350 * field is empty all addresses for the association 2351 * have heartbeats enabled upon them. 2352 * 2353 * SPP_HB_DISABLE - Disable heartbeats on the 2354 * speicifed address. Note that if the address 2355 * field is empty all addresses for the association 2356 * will have their heartbeats disabled. Note also 2357 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2358 * mutually exclusive, only one of these two should 2359 * be specified. Enabling both fields will have 2360 * undetermined results. 2361 * 2362 * SPP_HB_DEMAND - Request a user initiated heartbeat 2363 * to be made immediately. 2364 * 2365 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2366 * heartbeat delayis to be set to the value of 0 2367 * milliseconds. 2368 * 2369 * SPP_PMTUD_ENABLE - This field will enable PMTU 2370 * discovery upon the specified address. Note that 2371 * if the address feild is empty then all addresses 2372 * on the association are effected. 2373 * 2374 * SPP_PMTUD_DISABLE - This field will disable PMTU 2375 * discovery upon the specified address. Note that 2376 * if the address feild is empty then all addresses 2377 * on the association are effected. Not also that 2378 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2379 * exclusive. Enabling both will have undetermined 2380 * results. 2381 * 2382 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2383 * on delayed sack. The time specified in spp_sackdelay 2384 * is used to specify the sack delay for this address. Note 2385 * that if spp_address is empty then all addresses will 2386 * enable delayed sack and take on the sack delay 2387 * value specified in spp_sackdelay. 2388 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2389 * off delayed sack. If the spp_address field is blank then 2390 * delayed sack is disabled for the entire association. Note 2391 * also that this field is mutually exclusive to 2392 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2393 * results. 2394 * 2395 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2396 * setting of the IPV6 flow label value. The value is 2397 * contained in the spp_ipv6_flowlabel field. 2398 * Upon retrieval, this flag will be set to indicate that 2399 * the spp_ipv6_flowlabel field has a valid value returned. 2400 * If a specific destination address is set (in the 2401 * spp_address field), then the value returned is that of 2402 * the address. If just an association is specified (and 2403 * no address), then the association's default flow label 2404 * is returned. If neither an association nor a destination 2405 * is specified, then the socket's default flow label is 2406 * returned. For non-IPv6 sockets, this flag will be left 2407 * cleared. 2408 * 2409 * SPP_DSCP: Setting this flag enables the setting of the 2410 * Differentiated Services Code Point (DSCP) value 2411 * associated with either the association or a specific 2412 * address. The value is obtained in the spp_dscp field. 2413 * Upon retrieval, this flag will be set to indicate that 2414 * the spp_dscp field has a valid value returned. If a 2415 * specific destination address is set when called (in the 2416 * spp_address field), then that specific destination 2417 * address's DSCP value is returned. If just an association 2418 * is specified, then the association's default DSCP is 2419 * returned. If neither an association nor a destination is 2420 * specified, then the socket's default DSCP is returned. 2421 * 2422 * spp_ipv6_flowlabel 2423 * - This field is used in conjunction with the 2424 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2425 * The 20 least significant bits are used for the flow 2426 * label. This setting has precedence over any IPv6-layer 2427 * setting. 2428 * 2429 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2430 * and contains the DSCP. The 6 most significant bits are 2431 * used for the DSCP. This setting has precedence over any 2432 * IPv4- or IPv6- layer setting. 2433 */ 2434 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2435 struct sctp_transport *trans, 2436 struct sctp_association *asoc, 2437 struct sctp_sock *sp, 2438 int hb_change, 2439 int pmtud_change, 2440 int sackdelay_change) 2441 { 2442 int error; 2443 2444 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2445 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2446 trans->asoc, trans); 2447 if (error) 2448 return error; 2449 } 2450 2451 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2452 * this field is ignored. Note also that a value of zero indicates 2453 * the current setting should be left unchanged. 2454 */ 2455 if (params->spp_flags & SPP_HB_ENABLE) { 2456 2457 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2458 * set. This lets us use 0 value when this flag 2459 * is set. 2460 */ 2461 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2462 params->spp_hbinterval = 0; 2463 2464 if (params->spp_hbinterval || 2465 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2466 if (trans) { 2467 trans->hbinterval = 2468 msecs_to_jiffies(params->spp_hbinterval); 2469 } else if (asoc) { 2470 asoc->hbinterval = 2471 msecs_to_jiffies(params->spp_hbinterval); 2472 } else { 2473 sp->hbinterval = params->spp_hbinterval; 2474 } 2475 } 2476 } 2477 2478 if (hb_change) { 2479 if (trans) { 2480 trans->param_flags = 2481 (trans->param_flags & ~SPP_HB) | hb_change; 2482 } else if (asoc) { 2483 asoc->param_flags = 2484 (asoc->param_flags & ~SPP_HB) | hb_change; 2485 } else { 2486 sp->param_flags = 2487 (sp->param_flags & ~SPP_HB) | hb_change; 2488 } 2489 } 2490 2491 /* When Path MTU discovery is disabled the value specified here will 2492 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2493 * include the flag SPP_PMTUD_DISABLE for this field to have any 2494 * effect). 2495 */ 2496 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2497 if (trans) { 2498 trans->pathmtu = params->spp_pathmtu; 2499 sctp_assoc_sync_pmtu(asoc); 2500 } else if (asoc) { 2501 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2502 } else { 2503 sp->pathmtu = params->spp_pathmtu; 2504 } 2505 } 2506 2507 if (pmtud_change) { 2508 if (trans) { 2509 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2510 (params->spp_flags & SPP_PMTUD_ENABLE); 2511 trans->param_flags = 2512 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2513 if (update) { 2514 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2515 sctp_assoc_sync_pmtu(asoc); 2516 } 2517 } else if (asoc) { 2518 asoc->param_flags = 2519 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2520 } else { 2521 sp->param_flags = 2522 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2523 } 2524 } 2525 2526 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2527 * value of this field is ignored. Note also that a value of zero 2528 * indicates the current setting should be left unchanged. 2529 */ 2530 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2531 if (trans) { 2532 trans->sackdelay = 2533 msecs_to_jiffies(params->spp_sackdelay); 2534 } else if (asoc) { 2535 asoc->sackdelay = 2536 msecs_to_jiffies(params->spp_sackdelay); 2537 } else { 2538 sp->sackdelay = params->spp_sackdelay; 2539 } 2540 } 2541 2542 if (sackdelay_change) { 2543 if (trans) { 2544 trans->param_flags = 2545 (trans->param_flags & ~SPP_SACKDELAY) | 2546 sackdelay_change; 2547 } else if (asoc) { 2548 asoc->param_flags = 2549 (asoc->param_flags & ~SPP_SACKDELAY) | 2550 sackdelay_change; 2551 } else { 2552 sp->param_flags = 2553 (sp->param_flags & ~SPP_SACKDELAY) | 2554 sackdelay_change; 2555 } 2556 } 2557 2558 /* Note that a value of zero indicates the current setting should be 2559 left unchanged. 2560 */ 2561 if (params->spp_pathmaxrxt) { 2562 if (trans) { 2563 trans->pathmaxrxt = params->spp_pathmaxrxt; 2564 } else if (asoc) { 2565 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2566 } else { 2567 sp->pathmaxrxt = params->spp_pathmaxrxt; 2568 } 2569 } 2570 2571 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2572 if (trans) { 2573 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2574 trans->flowlabel = params->spp_ipv6_flowlabel & 2575 SCTP_FLOWLABEL_VAL_MASK; 2576 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2577 } 2578 } else if (asoc) { 2579 struct sctp_transport *t; 2580 2581 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2582 transports) { 2583 if (t->ipaddr.sa.sa_family != AF_INET6) 2584 continue; 2585 t->flowlabel = params->spp_ipv6_flowlabel & 2586 SCTP_FLOWLABEL_VAL_MASK; 2587 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2588 } 2589 asoc->flowlabel = params->spp_ipv6_flowlabel & 2590 SCTP_FLOWLABEL_VAL_MASK; 2591 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2592 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2593 sp->flowlabel = params->spp_ipv6_flowlabel & 2594 SCTP_FLOWLABEL_VAL_MASK; 2595 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2596 } 2597 } 2598 2599 if (params->spp_flags & SPP_DSCP) { 2600 if (trans) { 2601 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2602 trans->dscp |= SCTP_DSCP_SET_MASK; 2603 } else if (asoc) { 2604 struct sctp_transport *t; 2605 2606 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2607 transports) { 2608 t->dscp = params->spp_dscp & 2609 SCTP_DSCP_VAL_MASK; 2610 t->dscp |= SCTP_DSCP_SET_MASK; 2611 } 2612 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2613 asoc->dscp |= SCTP_DSCP_SET_MASK; 2614 } else { 2615 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2616 sp->dscp |= SCTP_DSCP_SET_MASK; 2617 } 2618 } 2619 2620 return 0; 2621 } 2622 2623 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2624 char __user *optval, 2625 unsigned int optlen) 2626 { 2627 struct sctp_paddrparams params; 2628 struct sctp_transport *trans = NULL; 2629 struct sctp_association *asoc = NULL; 2630 struct sctp_sock *sp = sctp_sk(sk); 2631 int error; 2632 int hb_change, pmtud_change, sackdelay_change; 2633 2634 if (optlen == sizeof(params)) { 2635 if (copy_from_user(¶ms, optval, optlen)) 2636 return -EFAULT; 2637 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2638 spp_ipv6_flowlabel), 4)) { 2639 if (copy_from_user(¶ms, optval, optlen)) 2640 return -EFAULT; 2641 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2642 return -EINVAL; 2643 } else { 2644 return -EINVAL; 2645 } 2646 2647 /* Validate flags and value parameters. */ 2648 hb_change = params.spp_flags & SPP_HB; 2649 pmtud_change = params.spp_flags & SPP_PMTUD; 2650 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2651 2652 if (hb_change == SPP_HB || 2653 pmtud_change == SPP_PMTUD || 2654 sackdelay_change == SPP_SACKDELAY || 2655 params.spp_sackdelay > 500 || 2656 (params.spp_pathmtu && 2657 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2658 return -EINVAL; 2659 2660 /* If an address other than INADDR_ANY is specified, and 2661 * no transport is found, then the request is invalid. 2662 */ 2663 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2664 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2665 params.spp_assoc_id); 2666 if (!trans) 2667 return -EINVAL; 2668 } 2669 2670 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2671 * socket is a one to many style socket, and an association 2672 * was not found, then the id was invalid. 2673 */ 2674 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2675 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2676 sctp_style(sk, UDP)) 2677 return -EINVAL; 2678 2679 /* Heartbeat demand can only be sent on a transport or 2680 * association, but not a socket. 2681 */ 2682 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2683 return -EINVAL; 2684 2685 /* Process parameters. */ 2686 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2687 hb_change, pmtud_change, 2688 sackdelay_change); 2689 2690 if (error) 2691 return error; 2692 2693 /* If changes are for association, also apply parameters to each 2694 * transport. 2695 */ 2696 if (!trans && asoc) { 2697 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2698 transports) { 2699 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2700 hb_change, pmtud_change, 2701 sackdelay_change); 2702 } 2703 } 2704 2705 return 0; 2706 } 2707 2708 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2709 { 2710 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2711 } 2712 2713 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2714 { 2715 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2716 } 2717 2718 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2719 struct sctp_association *asoc) 2720 { 2721 struct sctp_transport *trans; 2722 2723 if (params->sack_delay) { 2724 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2725 asoc->param_flags = 2726 sctp_spp_sackdelay_enable(asoc->param_flags); 2727 } 2728 if (params->sack_freq == 1) { 2729 asoc->param_flags = 2730 sctp_spp_sackdelay_disable(asoc->param_flags); 2731 } else if (params->sack_freq > 1) { 2732 asoc->sackfreq = params->sack_freq; 2733 asoc->param_flags = 2734 sctp_spp_sackdelay_enable(asoc->param_flags); 2735 } 2736 2737 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2738 transports) { 2739 if (params->sack_delay) { 2740 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2741 trans->param_flags = 2742 sctp_spp_sackdelay_enable(trans->param_flags); 2743 } 2744 if (params->sack_freq == 1) { 2745 trans->param_flags = 2746 sctp_spp_sackdelay_disable(trans->param_flags); 2747 } else if (params->sack_freq > 1) { 2748 trans->sackfreq = params->sack_freq; 2749 trans->param_flags = 2750 sctp_spp_sackdelay_enable(trans->param_flags); 2751 } 2752 } 2753 } 2754 2755 /* 2756 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2757 * 2758 * This option will effect the way delayed acks are performed. This 2759 * option allows you to get or set the delayed ack time, in 2760 * milliseconds. It also allows changing the delayed ack frequency. 2761 * Changing the frequency to 1 disables the delayed sack algorithm. If 2762 * the assoc_id is 0, then this sets or gets the endpoints default 2763 * values. If the assoc_id field is non-zero, then the set or get 2764 * effects the specified association for the one to many model (the 2765 * assoc_id field is ignored by the one to one model). Note that if 2766 * sack_delay or sack_freq are 0 when setting this option, then the 2767 * current values will remain unchanged. 2768 * 2769 * struct sctp_sack_info { 2770 * sctp_assoc_t sack_assoc_id; 2771 * uint32_t sack_delay; 2772 * uint32_t sack_freq; 2773 * }; 2774 * 2775 * sack_assoc_id - This parameter, indicates which association the user 2776 * is performing an action upon. Note that if this field's value is 2777 * zero then the endpoints default value is changed (effecting future 2778 * associations only). 2779 * 2780 * sack_delay - This parameter contains the number of milliseconds that 2781 * the user is requesting the delayed ACK timer be set to. Note that 2782 * this value is defined in the standard to be between 200 and 500 2783 * milliseconds. 2784 * 2785 * sack_freq - This parameter contains the number of packets that must 2786 * be received before a sack is sent without waiting for the delay 2787 * timer to expire. The default value for this is 2, setting this 2788 * value to 1 will disable the delayed sack algorithm. 2789 */ 2790 2791 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2792 char __user *optval, unsigned int optlen) 2793 { 2794 struct sctp_sock *sp = sctp_sk(sk); 2795 struct sctp_association *asoc; 2796 struct sctp_sack_info params; 2797 2798 if (optlen == sizeof(struct sctp_sack_info)) { 2799 if (copy_from_user(¶ms, optval, optlen)) 2800 return -EFAULT; 2801 2802 if (params.sack_delay == 0 && params.sack_freq == 0) 2803 return 0; 2804 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2805 pr_warn_ratelimited(DEPRECATED 2806 "%s (pid %d) " 2807 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2808 "Use struct sctp_sack_info instead\n", 2809 current->comm, task_pid_nr(current)); 2810 if (copy_from_user(¶ms, optval, optlen)) 2811 return -EFAULT; 2812 2813 if (params.sack_delay == 0) 2814 params.sack_freq = 1; 2815 else 2816 params.sack_freq = 0; 2817 } else 2818 return -EINVAL; 2819 2820 /* Validate value parameter. */ 2821 if (params.sack_delay > 500) 2822 return -EINVAL; 2823 2824 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2825 * socket is a one to many style socket, and an association 2826 * was not found, then the id was invalid. 2827 */ 2828 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2829 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2830 sctp_style(sk, UDP)) 2831 return -EINVAL; 2832 2833 if (asoc) { 2834 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2835 2836 return 0; 2837 } 2838 2839 if (sctp_style(sk, TCP)) 2840 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2841 2842 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2843 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2844 if (params.sack_delay) { 2845 sp->sackdelay = params.sack_delay; 2846 sp->param_flags = 2847 sctp_spp_sackdelay_enable(sp->param_flags); 2848 } 2849 if (params.sack_freq == 1) { 2850 sp->param_flags = 2851 sctp_spp_sackdelay_disable(sp->param_flags); 2852 } else if (params.sack_freq > 1) { 2853 sp->sackfreq = params.sack_freq; 2854 sp->param_flags = 2855 sctp_spp_sackdelay_enable(sp->param_flags); 2856 } 2857 } 2858 2859 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2860 params.sack_assoc_id == SCTP_ALL_ASSOC) 2861 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2862 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2863 2864 return 0; 2865 } 2866 2867 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2868 * 2869 * Applications can specify protocol parameters for the default association 2870 * initialization. The option name argument to setsockopt() and getsockopt() 2871 * is SCTP_INITMSG. 2872 * 2873 * Setting initialization parameters is effective only on an unconnected 2874 * socket (for UDP-style sockets only future associations are effected 2875 * by the change). With TCP-style sockets, this option is inherited by 2876 * sockets derived from a listener socket. 2877 */ 2878 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2879 { 2880 struct sctp_initmsg sinit; 2881 struct sctp_sock *sp = sctp_sk(sk); 2882 2883 if (optlen != sizeof(struct sctp_initmsg)) 2884 return -EINVAL; 2885 if (copy_from_user(&sinit, optval, optlen)) 2886 return -EFAULT; 2887 2888 if (sinit.sinit_num_ostreams) 2889 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2890 if (sinit.sinit_max_instreams) 2891 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2892 if (sinit.sinit_max_attempts) 2893 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2894 if (sinit.sinit_max_init_timeo) 2895 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2896 2897 return 0; 2898 } 2899 2900 /* 2901 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2902 * 2903 * Applications that wish to use the sendto() system call may wish to 2904 * specify a default set of parameters that would normally be supplied 2905 * through the inclusion of ancillary data. This socket option allows 2906 * such an application to set the default sctp_sndrcvinfo structure. 2907 * The application that wishes to use this socket option simply passes 2908 * in to this call the sctp_sndrcvinfo structure defined in Section 2909 * 5.2.2) The input parameters accepted by this call include 2910 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2911 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2912 * to this call if the caller is using the UDP model. 2913 */ 2914 static int sctp_setsockopt_default_send_param(struct sock *sk, 2915 char __user *optval, 2916 unsigned int optlen) 2917 { 2918 struct sctp_sock *sp = sctp_sk(sk); 2919 struct sctp_association *asoc; 2920 struct sctp_sndrcvinfo info; 2921 2922 if (optlen != sizeof(info)) 2923 return -EINVAL; 2924 if (copy_from_user(&info, optval, optlen)) 2925 return -EFAULT; 2926 if (info.sinfo_flags & 2927 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2928 SCTP_ABORT | SCTP_EOF)) 2929 return -EINVAL; 2930 2931 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2932 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 2933 sctp_style(sk, UDP)) 2934 return -EINVAL; 2935 2936 if (asoc) { 2937 asoc->default_stream = info.sinfo_stream; 2938 asoc->default_flags = info.sinfo_flags; 2939 asoc->default_ppid = info.sinfo_ppid; 2940 asoc->default_context = info.sinfo_context; 2941 asoc->default_timetolive = info.sinfo_timetolive; 2942 2943 return 0; 2944 } 2945 2946 if (sctp_style(sk, TCP)) 2947 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2948 2949 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2950 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2951 sp->default_stream = info.sinfo_stream; 2952 sp->default_flags = info.sinfo_flags; 2953 sp->default_ppid = info.sinfo_ppid; 2954 sp->default_context = info.sinfo_context; 2955 sp->default_timetolive = info.sinfo_timetolive; 2956 } 2957 2958 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2959 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2960 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2961 asoc->default_stream = info.sinfo_stream; 2962 asoc->default_flags = info.sinfo_flags; 2963 asoc->default_ppid = info.sinfo_ppid; 2964 asoc->default_context = info.sinfo_context; 2965 asoc->default_timetolive = info.sinfo_timetolive; 2966 } 2967 } 2968 2969 return 0; 2970 } 2971 2972 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2973 * (SCTP_DEFAULT_SNDINFO) 2974 */ 2975 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2976 char __user *optval, 2977 unsigned int optlen) 2978 { 2979 struct sctp_sock *sp = sctp_sk(sk); 2980 struct sctp_association *asoc; 2981 struct sctp_sndinfo info; 2982 2983 if (optlen != sizeof(info)) 2984 return -EINVAL; 2985 if (copy_from_user(&info, optval, optlen)) 2986 return -EFAULT; 2987 if (info.snd_flags & 2988 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2989 SCTP_ABORT | SCTP_EOF)) 2990 return -EINVAL; 2991 2992 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2993 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 2994 sctp_style(sk, UDP)) 2995 return -EINVAL; 2996 2997 if (asoc) { 2998 asoc->default_stream = info.snd_sid; 2999 asoc->default_flags = info.snd_flags; 3000 asoc->default_ppid = info.snd_ppid; 3001 asoc->default_context = info.snd_context; 3002 3003 return 0; 3004 } 3005 3006 if (sctp_style(sk, TCP)) 3007 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3008 3009 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3010 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3011 sp->default_stream = info.snd_sid; 3012 sp->default_flags = info.snd_flags; 3013 sp->default_ppid = info.snd_ppid; 3014 sp->default_context = info.snd_context; 3015 } 3016 3017 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3018 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3019 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3020 asoc->default_stream = info.snd_sid; 3021 asoc->default_flags = info.snd_flags; 3022 asoc->default_ppid = info.snd_ppid; 3023 asoc->default_context = info.snd_context; 3024 } 3025 } 3026 3027 return 0; 3028 } 3029 3030 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3031 * 3032 * Requests that the local SCTP stack use the enclosed peer address as 3033 * the association primary. The enclosed address must be one of the 3034 * association peer's addresses. 3035 */ 3036 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3037 unsigned int optlen) 3038 { 3039 struct sctp_prim prim; 3040 struct sctp_transport *trans; 3041 struct sctp_af *af; 3042 int err; 3043 3044 if (optlen != sizeof(struct sctp_prim)) 3045 return -EINVAL; 3046 3047 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3048 return -EFAULT; 3049 3050 /* Allow security module to validate address but need address len. */ 3051 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3052 if (!af) 3053 return -EINVAL; 3054 3055 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3056 (struct sockaddr *)&prim.ssp_addr, 3057 af->sockaddr_len); 3058 if (err) 3059 return err; 3060 3061 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3062 if (!trans) 3063 return -EINVAL; 3064 3065 sctp_assoc_set_primary(trans->asoc, trans); 3066 3067 return 0; 3068 } 3069 3070 /* 3071 * 7.1.5 SCTP_NODELAY 3072 * 3073 * Turn on/off any Nagle-like algorithm. This means that packets are 3074 * generally sent as soon as possible and no unnecessary delays are 3075 * introduced, at the cost of more packets in the network. Expects an 3076 * integer boolean flag. 3077 */ 3078 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3079 unsigned int optlen) 3080 { 3081 int val; 3082 3083 if (optlen < sizeof(int)) 3084 return -EINVAL; 3085 if (get_user(val, (int __user *)optval)) 3086 return -EFAULT; 3087 3088 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3089 return 0; 3090 } 3091 3092 /* 3093 * 3094 * 7.1.1 SCTP_RTOINFO 3095 * 3096 * The protocol parameters used to initialize and bound retransmission 3097 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3098 * and modify these parameters. 3099 * All parameters are time values, in milliseconds. A value of 0, when 3100 * modifying the parameters, indicates that the current value should not 3101 * be changed. 3102 * 3103 */ 3104 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3105 { 3106 struct sctp_rtoinfo rtoinfo; 3107 struct sctp_association *asoc; 3108 unsigned long rto_min, rto_max; 3109 struct sctp_sock *sp = sctp_sk(sk); 3110 3111 if (optlen != sizeof (struct sctp_rtoinfo)) 3112 return -EINVAL; 3113 3114 if (copy_from_user(&rtoinfo, optval, optlen)) 3115 return -EFAULT; 3116 3117 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3118 3119 /* Set the values to the specific association */ 3120 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3121 sctp_style(sk, UDP)) 3122 return -EINVAL; 3123 3124 rto_max = rtoinfo.srto_max; 3125 rto_min = rtoinfo.srto_min; 3126 3127 if (rto_max) 3128 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3129 else 3130 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3131 3132 if (rto_min) 3133 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3134 else 3135 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3136 3137 if (rto_min > rto_max) 3138 return -EINVAL; 3139 3140 if (asoc) { 3141 if (rtoinfo.srto_initial != 0) 3142 asoc->rto_initial = 3143 msecs_to_jiffies(rtoinfo.srto_initial); 3144 asoc->rto_max = rto_max; 3145 asoc->rto_min = rto_min; 3146 } else { 3147 /* If there is no association or the association-id = 0 3148 * set the values to the endpoint. 3149 */ 3150 if (rtoinfo.srto_initial != 0) 3151 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3152 sp->rtoinfo.srto_max = rto_max; 3153 sp->rtoinfo.srto_min = rto_min; 3154 } 3155 3156 return 0; 3157 } 3158 3159 /* 3160 * 3161 * 7.1.2 SCTP_ASSOCINFO 3162 * 3163 * This option is used to tune the maximum retransmission attempts 3164 * of the association. 3165 * Returns an error if the new association retransmission value is 3166 * greater than the sum of the retransmission value of the peer. 3167 * See [SCTP] for more information. 3168 * 3169 */ 3170 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3171 { 3172 3173 struct sctp_assocparams assocparams; 3174 struct sctp_association *asoc; 3175 3176 if (optlen != sizeof(struct sctp_assocparams)) 3177 return -EINVAL; 3178 if (copy_from_user(&assocparams, optval, optlen)) 3179 return -EFAULT; 3180 3181 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3182 3183 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3184 sctp_style(sk, UDP)) 3185 return -EINVAL; 3186 3187 /* Set the values to the specific association */ 3188 if (asoc) { 3189 if (assocparams.sasoc_asocmaxrxt != 0) { 3190 __u32 path_sum = 0; 3191 int paths = 0; 3192 struct sctp_transport *peer_addr; 3193 3194 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3195 transports) { 3196 path_sum += peer_addr->pathmaxrxt; 3197 paths++; 3198 } 3199 3200 /* Only validate asocmaxrxt if we have more than 3201 * one path/transport. We do this because path 3202 * retransmissions are only counted when we have more 3203 * then one path. 3204 */ 3205 if (paths > 1 && 3206 assocparams.sasoc_asocmaxrxt > path_sum) 3207 return -EINVAL; 3208 3209 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3210 } 3211 3212 if (assocparams.sasoc_cookie_life != 0) 3213 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3214 } else { 3215 /* Set the values to the endpoint */ 3216 struct sctp_sock *sp = sctp_sk(sk); 3217 3218 if (assocparams.sasoc_asocmaxrxt != 0) 3219 sp->assocparams.sasoc_asocmaxrxt = 3220 assocparams.sasoc_asocmaxrxt; 3221 if (assocparams.sasoc_cookie_life != 0) 3222 sp->assocparams.sasoc_cookie_life = 3223 assocparams.sasoc_cookie_life; 3224 } 3225 return 0; 3226 } 3227 3228 /* 3229 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3230 * 3231 * This socket option is a boolean flag which turns on or off mapped V4 3232 * addresses. If this option is turned on and the socket is type 3233 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3234 * If this option is turned off, then no mapping will be done of V4 3235 * addresses and a user will receive both PF_INET6 and PF_INET type 3236 * addresses on the socket. 3237 */ 3238 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3239 { 3240 int val; 3241 struct sctp_sock *sp = sctp_sk(sk); 3242 3243 if (optlen < sizeof(int)) 3244 return -EINVAL; 3245 if (get_user(val, (int __user *)optval)) 3246 return -EFAULT; 3247 if (val) 3248 sp->v4mapped = 1; 3249 else 3250 sp->v4mapped = 0; 3251 3252 return 0; 3253 } 3254 3255 /* 3256 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3257 * This option will get or set the maximum size to put in any outgoing 3258 * SCTP DATA chunk. If a message is larger than this size it will be 3259 * fragmented by SCTP into the specified size. Note that the underlying 3260 * SCTP implementation may fragment into smaller sized chunks when the 3261 * PMTU of the underlying association is smaller than the value set by 3262 * the user. The default value for this option is '0' which indicates 3263 * the user is NOT limiting fragmentation and only the PMTU will effect 3264 * SCTP's choice of DATA chunk size. Note also that values set larger 3265 * than the maximum size of an IP datagram will effectively let SCTP 3266 * control fragmentation (i.e. the same as setting this option to 0). 3267 * 3268 * The following structure is used to access and modify this parameter: 3269 * 3270 * struct sctp_assoc_value { 3271 * sctp_assoc_t assoc_id; 3272 * uint32_t assoc_value; 3273 * }; 3274 * 3275 * assoc_id: This parameter is ignored for one-to-one style sockets. 3276 * For one-to-many style sockets this parameter indicates which 3277 * association the user is performing an action upon. Note that if 3278 * this field's value is zero then the endpoints default value is 3279 * changed (effecting future associations only). 3280 * assoc_value: This parameter specifies the maximum size in bytes. 3281 */ 3282 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3283 { 3284 struct sctp_sock *sp = sctp_sk(sk); 3285 struct sctp_assoc_value params; 3286 struct sctp_association *asoc; 3287 int val; 3288 3289 if (optlen == sizeof(int)) { 3290 pr_warn_ratelimited(DEPRECATED 3291 "%s (pid %d) " 3292 "Use of int in maxseg socket option.\n" 3293 "Use struct sctp_assoc_value instead\n", 3294 current->comm, task_pid_nr(current)); 3295 if (copy_from_user(&val, optval, optlen)) 3296 return -EFAULT; 3297 params.assoc_id = SCTP_FUTURE_ASSOC; 3298 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3299 if (copy_from_user(¶ms, optval, optlen)) 3300 return -EFAULT; 3301 val = params.assoc_value; 3302 } else { 3303 return -EINVAL; 3304 } 3305 3306 asoc = sctp_id2assoc(sk, params.assoc_id); 3307 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3308 sctp_style(sk, UDP)) 3309 return -EINVAL; 3310 3311 if (val) { 3312 int min_len, max_len; 3313 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3314 sizeof(struct sctp_data_chunk); 3315 3316 min_len = sctp_min_frag_point(sp, datasize); 3317 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3318 3319 if (val < min_len || val > max_len) 3320 return -EINVAL; 3321 } 3322 3323 if (asoc) { 3324 asoc->user_frag = val; 3325 sctp_assoc_update_frag_point(asoc); 3326 } else { 3327 sp->user_frag = val; 3328 } 3329 3330 return 0; 3331 } 3332 3333 3334 /* 3335 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3336 * 3337 * Requests that the peer mark the enclosed address as the association 3338 * primary. The enclosed address must be one of the association's 3339 * locally bound addresses. The following structure is used to make a 3340 * set primary request: 3341 */ 3342 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3343 unsigned int optlen) 3344 { 3345 struct sctp_sock *sp; 3346 struct sctp_association *asoc = NULL; 3347 struct sctp_setpeerprim prim; 3348 struct sctp_chunk *chunk; 3349 struct sctp_af *af; 3350 int err; 3351 3352 sp = sctp_sk(sk); 3353 3354 if (!sp->ep->asconf_enable) 3355 return -EPERM; 3356 3357 if (optlen != sizeof(struct sctp_setpeerprim)) 3358 return -EINVAL; 3359 3360 if (copy_from_user(&prim, optval, optlen)) 3361 return -EFAULT; 3362 3363 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3364 if (!asoc) 3365 return -EINVAL; 3366 3367 if (!asoc->peer.asconf_capable) 3368 return -EPERM; 3369 3370 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3371 return -EPERM; 3372 3373 if (!sctp_state(asoc, ESTABLISHED)) 3374 return -ENOTCONN; 3375 3376 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3377 if (!af) 3378 return -EINVAL; 3379 3380 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3381 return -EADDRNOTAVAIL; 3382 3383 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3384 return -EADDRNOTAVAIL; 3385 3386 /* Allow security module to validate address. */ 3387 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3388 (struct sockaddr *)&prim.sspp_addr, 3389 af->sockaddr_len); 3390 if (err) 3391 return err; 3392 3393 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3394 chunk = sctp_make_asconf_set_prim(asoc, 3395 (union sctp_addr *)&prim.sspp_addr); 3396 if (!chunk) 3397 return -ENOMEM; 3398 3399 err = sctp_send_asconf(asoc, chunk); 3400 3401 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3402 3403 return err; 3404 } 3405 3406 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3407 unsigned int optlen) 3408 { 3409 struct sctp_setadaptation adaptation; 3410 3411 if (optlen != sizeof(struct sctp_setadaptation)) 3412 return -EINVAL; 3413 if (copy_from_user(&adaptation, optval, optlen)) 3414 return -EFAULT; 3415 3416 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3417 3418 return 0; 3419 } 3420 3421 /* 3422 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3423 * 3424 * The context field in the sctp_sndrcvinfo structure is normally only 3425 * used when a failed message is retrieved holding the value that was 3426 * sent down on the actual send call. This option allows the setting of 3427 * a default context on an association basis that will be received on 3428 * reading messages from the peer. This is especially helpful in the 3429 * one-2-many model for an application to keep some reference to an 3430 * internal state machine that is processing messages on the 3431 * association. Note that the setting of this value only effects 3432 * received messages from the peer and does not effect the value that is 3433 * saved with outbound messages. 3434 */ 3435 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3436 unsigned int optlen) 3437 { 3438 struct sctp_sock *sp = sctp_sk(sk); 3439 struct sctp_assoc_value params; 3440 struct sctp_association *asoc; 3441 3442 if (optlen != sizeof(struct sctp_assoc_value)) 3443 return -EINVAL; 3444 if (copy_from_user(¶ms, optval, optlen)) 3445 return -EFAULT; 3446 3447 asoc = sctp_id2assoc(sk, params.assoc_id); 3448 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3449 sctp_style(sk, UDP)) 3450 return -EINVAL; 3451 3452 if (asoc) { 3453 asoc->default_rcv_context = params.assoc_value; 3454 3455 return 0; 3456 } 3457 3458 if (sctp_style(sk, TCP)) 3459 params.assoc_id = SCTP_FUTURE_ASSOC; 3460 3461 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3462 params.assoc_id == SCTP_ALL_ASSOC) 3463 sp->default_rcv_context = params.assoc_value; 3464 3465 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3466 params.assoc_id == SCTP_ALL_ASSOC) 3467 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3468 asoc->default_rcv_context = params.assoc_value; 3469 3470 return 0; 3471 } 3472 3473 /* 3474 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3475 * 3476 * This options will at a minimum specify if the implementation is doing 3477 * fragmented interleave. Fragmented interleave, for a one to many 3478 * socket, is when subsequent calls to receive a message may return 3479 * parts of messages from different associations. Some implementations 3480 * may allow you to turn this value on or off. If so, when turned off, 3481 * no fragment interleave will occur (which will cause a head of line 3482 * blocking amongst multiple associations sharing the same one to many 3483 * socket). When this option is turned on, then each receive call may 3484 * come from a different association (thus the user must receive data 3485 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3486 * association each receive belongs to. 3487 * 3488 * This option takes a boolean value. A non-zero value indicates that 3489 * fragmented interleave is on. A value of zero indicates that 3490 * fragmented interleave is off. 3491 * 3492 * Note that it is important that an implementation that allows this 3493 * option to be turned on, have it off by default. Otherwise an unaware 3494 * application using the one to many model may become confused and act 3495 * incorrectly. 3496 */ 3497 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3498 char __user *optval, 3499 unsigned int optlen) 3500 { 3501 int val; 3502 3503 if (optlen != sizeof(int)) 3504 return -EINVAL; 3505 if (get_user(val, (int __user *)optval)) 3506 return -EFAULT; 3507 3508 sctp_sk(sk)->frag_interleave = !!val; 3509 3510 if (!sctp_sk(sk)->frag_interleave) 3511 sctp_sk(sk)->ep->intl_enable = 0; 3512 3513 return 0; 3514 } 3515 3516 /* 3517 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3518 * (SCTP_PARTIAL_DELIVERY_POINT) 3519 * 3520 * This option will set or get the SCTP partial delivery point. This 3521 * point is the size of a message where the partial delivery API will be 3522 * invoked to help free up rwnd space for the peer. Setting this to a 3523 * lower value will cause partial deliveries to happen more often. The 3524 * calls argument is an integer that sets or gets the partial delivery 3525 * point. Note also that the call will fail if the user attempts to set 3526 * this value larger than the socket receive buffer size. 3527 * 3528 * Note that any single message having a length smaller than or equal to 3529 * the SCTP partial delivery point will be delivered in one single read 3530 * call as long as the user provided buffer is large enough to hold the 3531 * message. 3532 */ 3533 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3534 char __user *optval, 3535 unsigned int optlen) 3536 { 3537 u32 val; 3538 3539 if (optlen != sizeof(u32)) 3540 return -EINVAL; 3541 if (get_user(val, (int __user *)optval)) 3542 return -EFAULT; 3543 3544 /* Note: We double the receive buffer from what the user sets 3545 * it to be, also initial rwnd is based on rcvbuf/2. 3546 */ 3547 if (val > (sk->sk_rcvbuf >> 1)) 3548 return -EINVAL; 3549 3550 sctp_sk(sk)->pd_point = val; 3551 3552 return 0; /* is this the right error code? */ 3553 } 3554 3555 /* 3556 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3557 * 3558 * This option will allow a user to change the maximum burst of packets 3559 * that can be emitted by this association. Note that the default value 3560 * is 4, and some implementations may restrict this setting so that it 3561 * can only be lowered. 3562 * 3563 * NOTE: This text doesn't seem right. Do this on a socket basis with 3564 * future associations inheriting the socket value. 3565 */ 3566 static int sctp_setsockopt_maxburst(struct sock *sk, 3567 char __user *optval, 3568 unsigned int optlen) 3569 { 3570 struct sctp_sock *sp = sctp_sk(sk); 3571 struct sctp_assoc_value params; 3572 struct sctp_association *asoc; 3573 3574 if (optlen == sizeof(int)) { 3575 pr_warn_ratelimited(DEPRECATED 3576 "%s (pid %d) " 3577 "Use of int in max_burst socket option deprecated.\n" 3578 "Use struct sctp_assoc_value instead\n", 3579 current->comm, task_pid_nr(current)); 3580 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3581 return -EFAULT; 3582 params.assoc_id = SCTP_FUTURE_ASSOC; 3583 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3584 if (copy_from_user(¶ms, optval, optlen)) 3585 return -EFAULT; 3586 } else 3587 return -EINVAL; 3588 3589 asoc = sctp_id2assoc(sk, params.assoc_id); 3590 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3591 sctp_style(sk, UDP)) 3592 return -EINVAL; 3593 3594 if (asoc) { 3595 asoc->max_burst = params.assoc_value; 3596 3597 return 0; 3598 } 3599 3600 if (sctp_style(sk, TCP)) 3601 params.assoc_id = SCTP_FUTURE_ASSOC; 3602 3603 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3604 params.assoc_id == SCTP_ALL_ASSOC) 3605 sp->max_burst = params.assoc_value; 3606 3607 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3608 params.assoc_id == SCTP_ALL_ASSOC) 3609 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3610 asoc->max_burst = params.assoc_value; 3611 3612 return 0; 3613 } 3614 3615 /* 3616 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3617 * 3618 * This set option adds a chunk type that the user is requesting to be 3619 * received only in an authenticated way. Changes to the list of chunks 3620 * will only effect future associations on the socket. 3621 */ 3622 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3623 char __user *optval, 3624 unsigned int optlen) 3625 { 3626 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3627 struct sctp_authchunk val; 3628 3629 if (!ep->auth_enable) 3630 return -EACCES; 3631 3632 if (optlen != sizeof(struct sctp_authchunk)) 3633 return -EINVAL; 3634 if (copy_from_user(&val, optval, optlen)) 3635 return -EFAULT; 3636 3637 switch (val.sauth_chunk) { 3638 case SCTP_CID_INIT: 3639 case SCTP_CID_INIT_ACK: 3640 case SCTP_CID_SHUTDOWN_COMPLETE: 3641 case SCTP_CID_AUTH: 3642 return -EINVAL; 3643 } 3644 3645 /* add this chunk id to the endpoint */ 3646 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3647 } 3648 3649 /* 3650 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3651 * 3652 * This option gets or sets the list of HMAC algorithms that the local 3653 * endpoint requires the peer to use. 3654 */ 3655 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3656 char __user *optval, 3657 unsigned int optlen) 3658 { 3659 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3660 struct sctp_hmacalgo *hmacs; 3661 u32 idents; 3662 int err; 3663 3664 if (!ep->auth_enable) 3665 return -EACCES; 3666 3667 if (optlen < sizeof(struct sctp_hmacalgo)) 3668 return -EINVAL; 3669 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3670 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3671 3672 hmacs = memdup_user(optval, optlen); 3673 if (IS_ERR(hmacs)) 3674 return PTR_ERR(hmacs); 3675 3676 idents = hmacs->shmac_num_idents; 3677 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3678 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3679 err = -EINVAL; 3680 goto out; 3681 } 3682 3683 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3684 out: 3685 kfree(hmacs); 3686 return err; 3687 } 3688 3689 /* 3690 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3691 * 3692 * This option will set a shared secret key which is used to build an 3693 * association shared key. 3694 */ 3695 static int sctp_setsockopt_auth_key(struct sock *sk, 3696 char __user *optval, 3697 unsigned int optlen) 3698 { 3699 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3700 struct sctp_authkey *authkey; 3701 struct sctp_association *asoc; 3702 int ret = -EINVAL; 3703 3704 if (optlen <= sizeof(struct sctp_authkey)) 3705 return -EINVAL; 3706 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3707 * this. 3708 */ 3709 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3710 3711 authkey = memdup_user(optval, optlen); 3712 if (IS_ERR(authkey)) 3713 return PTR_ERR(authkey); 3714 3715 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3716 goto out; 3717 3718 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3719 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3720 sctp_style(sk, UDP)) 3721 goto out; 3722 3723 if (asoc) { 3724 ret = sctp_auth_set_key(ep, asoc, authkey); 3725 goto out; 3726 } 3727 3728 if (sctp_style(sk, TCP)) 3729 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3730 3731 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3732 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3733 ret = sctp_auth_set_key(ep, asoc, authkey); 3734 if (ret) 3735 goto out; 3736 } 3737 3738 ret = 0; 3739 3740 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3741 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3742 list_for_each_entry(asoc, &ep->asocs, asocs) { 3743 int res = sctp_auth_set_key(ep, asoc, authkey); 3744 3745 if (res && !ret) 3746 ret = res; 3747 } 3748 } 3749 3750 out: 3751 kzfree(authkey); 3752 return ret; 3753 } 3754 3755 /* 3756 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3757 * 3758 * This option will get or set the active shared key to be used to build 3759 * the association shared key. 3760 */ 3761 static int sctp_setsockopt_active_key(struct sock *sk, 3762 char __user *optval, 3763 unsigned int optlen) 3764 { 3765 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3766 struct sctp_association *asoc; 3767 struct sctp_authkeyid val; 3768 int ret = 0; 3769 3770 if (optlen != sizeof(struct sctp_authkeyid)) 3771 return -EINVAL; 3772 if (copy_from_user(&val, optval, optlen)) 3773 return -EFAULT; 3774 3775 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3776 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3777 sctp_style(sk, UDP)) 3778 return -EINVAL; 3779 3780 if (asoc) 3781 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3782 3783 if (sctp_style(sk, TCP)) 3784 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3785 3786 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3787 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3788 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3789 if (ret) 3790 return ret; 3791 } 3792 3793 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3794 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3795 list_for_each_entry(asoc, &ep->asocs, asocs) { 3796 int res = sctp_auth_set_active_key(ep, asoc, 3797 val.scact_keynumber); 3798 3799 if (res && !ret) 3800 ret = res; 3801 } 3802 } 3803 3804 return ret; 3805 } 3806 3807 /* 3808 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3809 * 3810 * This set option will delete a shared secret key from use. 3811 */ 3812 static int sctp_setsockopt_del_key(struct sock *sk, 3813 char __user *optval, 3814 unsigned int optlen) 3815 { 3816 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3817 struct sctp_association *asoc; 3818 struct sctp_authkeyid val; 3819 int ret = 0; 3820 3821 if (optlen != sizeof(struct sctp_authkeyid)) 3822 return -EINVAL; 3823 if (copy_from_user(&val, optval, optlen)) 3824 return -EFAULT; 3825 3826 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3827 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3828 sctp_style(sk, UDP)) 3829 return -EINVAL; 3830 3831 if (asoc) 3832 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3833 3834 if (sctp_style(sk, TCP)) 3835 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3836 3837 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3838 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3839 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3840 if (ret) 3841 return ret; 3842 } 3843 3844 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3845 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3846 list_for_each_entry(asoc, &ep->asocs, asocs) { 3847 int res = sctp_auth_del_key_id(ep, asoc, 3848 val.scact_keynumber); 3849 3850 if (res && !ret) 3851 ret = res; 3852 } 3853 } 3854 3855 return ret; 3856 } 3857 3858 /* 3859 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3860 * 3861 * This set option will deactivate a shared secret key. 3862 */ 3863 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3864 unsigned int optlen) 3865 { 3866 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3867 struct sctp_association *asoc; 3868 struct sctp_authkeyid val; 3869 int ret = 0; 3870 3871 if (optlen != sizeof(struct sctp_authkeyid)) 3872 return -EINVAL; 3873 if (copy_from_user(&val, optval, optlen)) 3874 return -EFAULT; 3875 3876 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3877 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3878 sctp_style(sk, UDP)) 3879 return -EINVAL; 3880 3881 if (asoc) 3882 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3883 3884 if (sctp_style(sk, TCP)) 3885 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3886 3887 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3888 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3889 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3890 if (ret) 3891 return ret; 3892 } 3893 3894 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3895 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3896 list_for_each_entry(asoc, &ep->asocs, asocs) { 3897 int res = sctp_auth_deact_key_id(ep, asoc, 3898 val.scact_keynumber); 3899 3900 if (res && !ret) 3901 ret = res; 3902 } 3903 } 3904 3905 return ret; 3906 } 3907 3908 /* 3909 * 8.1.23 SCTP_AUTO_ASCONF 3910 * 3911 * This option will enable or disable the use of the automatic generation of 3912 * ASCONF chunks to add and delete addresses to an existing association. Note 3913 * that this option has two caveats namely: a) it only affects sockets that 3914 * are bound to all addresses available to the SCTP stack, and b) the system 3915 * administrator may have an overriding control that turns the ASCONF feature 3916 * off no matter what setting the socket option may have. 3917 * This option expects an integer boolean flag, where a non-zero value turns on 3918 * the option, and a zero value turns off the option. 3919 * Note. In this implementation, socket operation overrides default parameter 3920 * being set by sysctl as well as FreeBSD implementation 3921 */ 3922 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3923 unsigned int optlen) 3924 { 3925 int val; 3926 struct sctp_sock *sp = sctp_sk(sk); 3927 3928 if (optlen < sizeof(int)) 3929 return -EINVAL; 3930 if (get_user(val, (int __user *)optval)) 3931 return -EFAULT; 3932 if (!sctp_is_ep_boundall(sk) && val) 3933 return -EINVAL; 3934 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3935 return 0; 3936 3937 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3938 if (val == 0 && sp->do_auto_asconf) { 3939 list_del(&sp->auto_asconf_list); 3940 sp->do_auto_asconf = 0; 3941 } else if (val && !sp->do_auto_asconf) { 3942 list_add_tail(&sp->auto_asconf_list, 3943 &sock_net(sk)->sctp.auto_asconf_splist); 3944 sp->do_auto_asconf = 1; 3945 } 3946 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3947 return 0; 3948 } 3949 3950 /* 3951 * SCTP_PEER_ADDR_THLDS 3952 * 3953 * This option allows us to alter the partially failed threshold for one or all 3954 * transports in an association. See Section 6.1 of: 3955 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3956 */ 3957 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3958 char __user *optval, 3959 unsigned int optlen, bool v2) 3960 { 3961 struct sctp_paddrthlds_v2 val; 3962 struct sctp_transport *trans; 3963 struct sctp_association *asoc; 3964 int len; 3965 3966 len = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 3967 if (optlen < len) 3968 return -EINVAL; 3969 if (copy_from_user(&val, optval, len)) 3970 return -EFAULT; 3971 3972 if (v2 && val.spt_pathpfthld > val.spt_pathcpthld) 3973 return -EINVAL; 3974 3975 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3976 trans = sctp_addr_id2transport(sk, &val.spt_address, 3977 val.spt_assoc_id); 3978 if (!trans) 3979 return -ENOENT; 3980 3981 if (val.spt_pathmaxrxt) 3982 trans->pathmaxrxt = val.spt_pathmaxrxt; 3983 if (v2) 3984 trans->ps_retrans = val.spt_pathcpthld; 3985 trans->pf_retrans = val.spt_pathpfthld; 3986 3987 return 0; 3988 } 3989 3990 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3991 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 3992 sctp_style(sk, UDP)) 3993 return -EINVAL; 3994 3995 if (asoc) { 3996 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3997 transports) { 3998 if (val.spt_pathmaxrxt) 3999 trans->pathmaxrxt = val.spt_pathmaxrxt; 4000 if (v2) 4001 trans->ps_retrans = val.spt_pathcpthld; 4002 trans->pf_retrans = val.spt_pathpfthld; 4003 } 4004 4005 if (val.spt_pathmaxrxt) 4006 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4007 if (v2) 4008 asoc->ps_retrans = val.spt_pathcpthld; 4009 asoc->pf_retrans = val.spt_pathpfthld; 4010 } else { 4011 struct sctp_sock *sp = sctp_sk(sk); 4012 4013 if (val.spt_pathmaxrxt) 4014 sp->pathmaxrxt = val.spt_pathmaxrxt; 4015 if (v2) 4016 sp->ps_retrans = val.spt_pathcpthld; 4017 sp->pf_retrans = val.spt_pathpfthld; 4018 } 4019 4020 return 0; 4021 } 4022 4023 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4024 char __user *optval, 4025 unsigned int optlen) 4026 { 4027 int val; 4028 4029 if (optlen < sizeof(int)) 4030 return -EINVAL; 4031 if (get_user(val, (int __user *) optval)) 4032 return -EFAULT; 4033 4034 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4035 4036 return 0; 4037 } 4038 4039 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4040 char __user *optval, 4041 unsigned int optlen) 4042 { 4043 int val; 4044 4045 if (optlen < sizeof(int)) 4046 return -EINVAL; 4047 if (get_user(val, (int __user *) optval)) 4048 return -EFAULT; 4049 4050 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4051 4052 return 0; 4053 } 4054 4055 static int sctp_setsockopt_pr_supported(struct sock *sk, 4056 char __user *optval, 4057 unsigned int optlen) 4058 { 4059 struct sctp_assoc_value params; 4060 struct sctp_association *asoc; 4061 4062 if (optlen != sizeof(params)) 4063 return -EINVAL; 4064 4065 if (copy_from_user(¶ms, optval, optlen)) 4066 return -EFAULT; 4067 4068 asoc = sctp_id2assoc(sk, params.assoc_id); 4069 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4070 sctp_style(sk, UDP)) 4071 return -EINVAL; 4072 4073 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4074 4075 return 0; 4076 } 4077 4078 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4079 char __user *optval, 4080 unsigned int optlen) 4081 { 4082 struct sctp_sock *sp = sctp_sk(sk); 4083 struct sctp_default_prinfo info; 4084 struct sctp_association *asoc; 4085 int retval = -EINVAL; 4086 4087 if (optlen != sizeof(info)) 4088 goto out; 4089 4090 if (copy_from_user(&info, optval, sizeof(info))) { 4091 retval = -EFAULT; 4092 goto out; 4093 } 4094 4095 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4096 goto out; 4097 4098 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4099 info.pr_value = 0; 4100 4101 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4102 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4103 sctp_style(sk, UDP)) 4104 goto out; 4105 4106 retval = 0; 4107 4108 if (asoc) { 4109 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4110 asoc->default_timetolive = info.pr_value; 4111 goto out; 4112 } 4113 4114 if (sctp_style(sk, TCP)) 4115 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4116 4117 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4118 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4119 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4120 sp->default_timetolive = info.pr_value; 4121 } 4122 4123 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4124 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4125 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4126 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4127 asoc->default_timetolive = info.pr_value; 4128 } 4129 } 4130 4131 out: 4132 return retval; 4133 } 4134 4135 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4136 char __user *optval, 4137 unsigned int optlen) 4138 { 4139 struct sctp_assoc_value params; 4140 struct sctp_association *asoc; 4141 int retval = -EINVAL; 4142 4143 if (optlen != sizeof(params)) 4144 goto out; 4145 4146 if (copy_from_user(¶ms, optval, optlen)) { 4147 retval = -EFAULT; 4148 goto out; 4149 } 4150 4151 asoc = sctp_id2assoc(sk, params.assoc_id); 4152 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4153 sctp_style(sk, UDP)) 4154 goto out; 4155 4156 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4157 4158 retval = 0; 4159 4160 out: 4161 return retval; 4162 } 4163 4164 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4165 char __user *optval, 4166 unsigned int optlen) 4167 { 4168 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4169 struct sctp_assoc_value params; 4170 struct sctp_association *asoc; 4171 int retval = -EINVAL; 4172 4173 if (optlen != sizeof(params)) 4174 goto out; 4175 4176 if (copy_from_user(¶ms, optval, optlen)) { 4177 retval = -EFAULT; 4178 goto out; 4179 } 4180 4181 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4182 goto out; 4183 4184 asoc = sctp_id2assoc(sk, params.assoc_id); 4185 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4186 sctp_style(sk, UDP)) 4187 goto out; 4188 4189 retval = 0; 4190 4191 if (asoc) { 4192 asoc->strreset_enable = params.assoc_value; 4193 goto out; 4194 } 4195 4196 if (sctp_style(sk, TCP)) 4197 params.assoc_id = SCTP_FUTURE_ASSOC; 4198 4199 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4200 params.assoc_id == SCTP_ALL_ASSOC) 4201 ep->strreset_enable = params.assoc_value; 4202 4203 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4204 params.assoc_id == SCTP_ALL_ASSOC) 4205 list_for_each_entry(asoc, &ep->asocs, asocs) 4206 asoc->strreset_enable = params.assoc_value; 4207 4208 out: 4209 return retval; 4210 } 4211 4212 static int sctp_setsockopt_reset_streams(struct sock *sk, 4213 char __user *optval, 4214 unsigned int optlen) 4215 { 4216 struct sctp_reset_streams *params; 4217 struct sctp_association *asoc; 4218 int retval = -EINVAL; 4219 4220 if (optlen < sizeof(*params)) 4221 return -EINVAL; 4222 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4223 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4224 sizeof(__u16) * sizeof(*params)); 4225 4226 params = memdup_user(optval, optlen); 4227 if (IS_ERR(params)) 4228 return PTR_ERR(params); 4229 4230 if (params->srs_number_streams * sizeof(__u16) > 4231 optlen - sizeof(*params)) 4232 goto out; 4233 4234 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4235 if (!asoc) 4236 goto out; 4237 4238 retval = sctp_send_reset_streams(asoc, params); 4239 4240 out: 4241 kfree(params); 4242 return retval; 4243 } 4244 4245 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4246 char __user *optval, 4247 unsigned int optlen) 4248 { 4249 struct sctp_association *asoc; 4250 sctp_assoc_t associd; 4251 int retval = -EINVAL; 4252 4253 if (optlen != sizeof(associd)) 4254 goto out; 4255 4256 if (copy_from_user(&associd, optval, optlen)) { 4257 retval = -EFAULT; 4258 goto out; 4259 } 4260 4261 asoc = sctp_id2assoc(sk, associd); 4262 if (!asoc) 4263 goto out; 4264 4265 retval = sctp_send_reset_assoc(asoc); 4266 4267 out: 4268 return retval; 4269 } 4270 4271 static int sctp_setsockopt_add_streams(struct sock *sk, 4272 char __user *optval, 4273 unsigned int optlen) 4274 { 4275 struct sctp_association *asoc; 4276 struct sctp_add_streams params; 4277 int retval = -EINVAL; 4278 4279 if (optlen != sizeof(params)) 4280 goto out; 4281 4282 if (copy_from_user(¶ms, optval, optlen)) { 4283 retval = -EFAULT; 4284 goto out; 4285 } 4286 4287 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4288 if (!asoc) 4289 goto out; 4290 4291 retval = sctp_send_add_streams(asoc, ¶ms); 4292 4293 out: 4294 return retval; 4295 } 4296 4297 static int sctp_setsockopt_scheduler(struct sock *sk, 4298 char __user *optval, 4299 unsigned int optlen) 4300 { 4301 struct sctp_sock *sp = sctp_sk(sk); 4302 struct sctp_association *asoc; 4303 struct sctp_assoc_value params; 4304 int retval = 0; 4305 4306 if (optlen < sizeof(params)) 4307 return -EINVAL; 4308 4309 optlen = sizeof(params); 4310 if (copy_from_user(¶ms, optval, optlen)) 4311 return -EFAULT; 4312 4313 if (params.assoc_value > SCTP_SS_MAX) 4314 return -EINVAL; 4315 4316 asoc = sctp_id2assoc(sk, params.assoc_id); 4317 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4318 sctp_style(sk, UDP)) 4319 return -EINVAL; 4320 4321 if (asoc) 4322 return sctp_sched_set_sched(asoc, params.assoc_value); 4323 4324 if (sctp_style(sk, TCP)) 4325 params.assoc_id = SCTP_FUTURE_ASSOC; 4326 4327 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4328 params.assoc_id == SCTP_ALL_ASSOC) 4329 sp->default_ss = params.assoc_value; 4330 4331 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4332 params.assoc_id == SCTP_ALL_ASSOC) { 4333 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4334 int ret = sctp_sched_set_sched(asoc, 4335 params.assoc_value); 4336 4337 if (ret && !retval) 4338 retval = ret; 4339 } 4340 } 4341 4342 return retval; 4343 } 4344 4345 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4346 char __user *optval, 4347 unsigned int optlen) 4348 { 4349 struct sctp_stream_value params; 4350 struct sctp_association *asoc; 4351 int retval = -EINVAL; 4352 4353 if (optlen < sizeof(params)) 4354 goto out; 4355 4356 optlen = sizeof(params); 4357 if (copy_from_user(¶ms, optval, optlen)) { 4358 retval = -EFAULT; 4359 goto out; 4360 } 4361 4362 asoc = sctp_id2assoc(sk, params.assoc_id); 4363 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4364 sctp_style(sk, UDP)) 4365 goto out; 4366 4367 if (asoc) { 4368 retval = sctp_sched_set_value(asoc, params.stream_id, 4369 params.stream_value, GFP_KERNEL); 4370 goto out; 4371 } 4372 4373 retval = 0; 4374 4375 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4376 int ret = sctp_sched_set_value(asoc, params.stream_id, 4377 params.stream_value, GFP_KERNEL); 4378 if (ret && !retval) /* try to return the 1st error. */ 4379 retval = ret; 4380 } 4381 4382 out: 4383 return retval; 4384 } 4385 4386 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4387 char __user *optval, 4388 unsigned int optlen) 4389 { 4390 struct sctp_sock *sp = sctp_sk(sk); 4391 struct sctp_assoc_value params; 4392 struct sctp_association *asoc; 4393 int retval = -EINVAL; 4394 4395 if (optlen < sizeof(params)) 4396 goto out; 4397 4398 optlen = sizeof(params); 4399 if (copy_from_user(¶ms, optval, optlen)) { 4400 retval = -EFAULT; 4401 goto out; 4402 } 4403 4404 asoc = sctp_id2assoc(sk, params.assoc_id); 4405 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4406 sctp_style(sk, UDP)) 4407 goto out; 4408 4409 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4410 retval = -EPERM; 4411 goto out; 4412 } 4413 4414 sp->ep->intl_enable = !!params.assoc_value; 4415 4416 retval = 0; 4417 4418 out: 4419 return retval; 4420 } 4421 4422 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4423 unsigned int optlen) 4424 { 4425 int val; 4426 4427 if (!sctp_style(sk, TCP)) 4428 return -EOPNOTSUPP; 4429 4430 if (sctp_sk(sk)->ep->base.bind_addr.port) 4431 return -EFAULT; 4432 4433 if (optlen < sizeof(int)) 4434 return -EINVAL; 4435 4436 if (get_user(val, (int __user *)optval)) 4437 return -EFAULT; 4438 4439 sctp_sk(sk)->reuse = !!val; 4440 4441 return 0; 4442 } 4443 4444 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4445 struct sctp_association *asoc) 4446 { 4447 struct sctp_ulpevent *event; 4448 4449 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4450 4451 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4452 if (sctp_outq_is_empty(&asoc->outqueue)) { 4453 event = sctp_ulpevent_make_sender_dry_event(asoc, 4454 GFP_USER | __GFP_NOWARN); 4455 if (!event) 4456 return -ENOMEM; 4457 4458 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4459 } 4460 } 4461 4462 return 0; 4463 } 4464 4465 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4466 unsigned int optlen) 4467 { 4468 struct sctp_sock *sp = sctp_sk(sk); 4469 struct sctp_association *asoc; 4470 struct sctp_event param; 4471 int retval = 0; 4472 4473 if (optlen < sizeof(param)) 4474 return -EINVAL; 4475 4476 optlen = sizeof(param); 4477 if (copy_from_user(¶m, optval, optlen)) 4478 return -EFAULT; 4479 4480 if (param.se_type < SCTP_SN_TYPE_BASE || 4481 param.se_type > SCTP_SN_TYPE_MAX) 4482 return -EINVAL; 4483 4484 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4485 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4486 sctp_style(sk, UDP)) 4487 return -EINVAL; 4488 4489 if (asoc) 4490 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4491 4492 if (sctp_style(sk, TCP)) 4493 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4494 4495 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4496 param.se_assoc_id == SCTP_ALL_ASSOC) 4497 sctp_ulpevent_type_set(&sp->subscribe, 4498 param.se_type, param.se_on); 4499 4500 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4501 param.se_assoc_id == SCTP_ALL_ASSOC) { 4502 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4503 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4504 4505 if (ret && !retval) 4506 retval = ret; 4507 } 4508 } 4509 4510 return retval; 4511 } 4512 4513 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4514 char __user *optval, 4515 unsigned int optlen) 4516 { 4517 struct sctp_assoc_value params; 4518 struct sctp_association *asoc; 4519 struct sctp_endpoint *ep; 4520 int retval = -EINVAL; 4521 4522 if (optlen != sizeof(params)) 4523 goto out; 4524 4525 if (copy_from_user(¶ms, optval, optlen)) { 4526 retval = -EFAULT; 4527 goto out; 4528 } 4529 4530 asoc = sctp_id2assoc(sk, params.assoc_id); 4531 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4532 sctp_style(sk, UDP)) 4533 goto out; 4534 4535 ep = sctp_sk(sk)->ep; 4536 ep->asconf_enable = !!params.assoc_value; 4537 4538 if (ep->asconf_enable && ep->auth_enable) { 4539 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4540 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4541 } 4542 4543 retval = 0; 4544 4545 out: 4546 return retval; 4547 } 4548 4549 static int sctp_setsockopt_auth_supported(struct sock *sk, 4550 char __user *optval, 4551 unsigned int optlen) 4552 { 4553 struct sctp_assoc_value params; 4554 struct sctp_association *asoc; 4555 struct sctp_endpoint *ep; 4556 int retval = -EINVAL; 4557 4558 if (optlen != sizeof(params)) 4559 goto out; 4560 4561 if (copy_from_user(¶ms, optval, optlen)) { 4562 retval = -EFAULT; 4563 goto out; 4564 } 4565 4566 asoc = sctp_id2assoc(sk, params.assoc_id); 4567 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4568 sctp_style(sk, UDP)) 4569 goto out; 4570 4571 ep = sctp_sk(sk)->ep; 4572 if (params.assoc_value) { 4573 retval = sctp_auth_init(ep, GFP_KERNEL); 4574 if (retval) 4575 goto out; 4576 if (ep->asconf_enable) { 4577 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4578 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4579 } 4580 } 4581 4582 ep->auth_enable = !!params.assoc_value; 4583 retval = 0; 4584 4585 out: 4586 return retval; 4587 } 4588 4589 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4590 char __user *optval, 4591 unsigned int optlen) 4592 { 4593 struct sctp_assoc_value params; 4594 struct sctp_association *asoc; 4595 int retval = -EINVAL; 4596 4597 if (optlen != sizeof(params)) 4598 goto out; 4599 4600 if (copy_from_user(¶ms, optval, optlen)) { 4601 retval = -EFAULT; 4602 goto out; 4603 } 4604 4605 asoc = sctp_id2assoc(sk, params.assoc_id); 4606 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4607 sctp_style(sk, UDP)) 4608 goto out; 4609 4610 sctp_sk(sk)->ep->ecn_enable = !!params.assoc_value; 4611 retval = 0; 4612 4613 out: 4614 return retval; 4615 } 4616 4617 static int sctp_setsockopt_pf_expose(struct sock *sk, 4618 char __user *optval, 4619 unsigned int optlen) 4620 { 4621 struct sctp_assoc_value params; 4622 struct sctp_association *asoc; 4623 int retval = -EINVAL; 4624 4625 if (optlen != sizeof(params)) 4626 goto out; 4627 4628 if (copy_from_user(¶ms, optval, optlen)) { 4629 retval = -EFAULT; 4630 goto out; 4631 } 4632 4633 if (params.assoc_value > SCTP_PF_EXPOSE_MAX) 4634 goto out; 4635 4636 asoc = sctp_id2assoc(sk, params.assoc_id); 4637 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4638 sctp_style(sk, UDP)) 4639 goto out; 4640 4641 if (asoc) 4642 asoc->pf_expose = params.assoc_value; 4643 else 4644 sctp_sk(sk)->pf_expose = params.assoc_value; 4645 retval = 0; 4646 4647 out: 4648 return retval; 4649 } 4650 4651 /* API 6.2 setsockopt(), getsockopt() 4652 * 4653 * Applications use setsockopt() and getsockopt() to set or retrieve 4654 * socket options. Socket options are used to change the default 4655 * behavior of sockets calls. They are described in Section 7. 4656 * 4657 * The syntax is: 4658 * 4659 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4660 * int __user *optlen); 4661 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4662 * int optlen); 4663 * 4664 * sd - the socket descript. 4665 * level - set to IPPROTO_SCTP for all SCTP options. 4666 * optname - the option name. 4667 * optval - the buffer to store the value of the option. 4668 * optlen - the size of the buffer. 4669 */ 4670 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4671 char __user *optval, unsigned int optlen) 4672 { 4673 int retval = 0; 4674 4675 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4676 4677 /* I can hardly begin to describe how wrong this is. This is 4678 * so broken as to be worse than useless. The API draft 4679 * REALLY is NOT helpful here... I am not convinced that the 4680 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4681 * are at all well-founded. 4682 */ 4683 if (level != SOL_SCTP) { 4684 struct sctp_af *af = sctp_sk(sk)->pf->af; 4685 retval = af->setsockopt(sk, level, optname, optval, optlen); 4686 goto out_nounlock; 4687 } 4688 4689 lock_sock(sk); 4690 4691 switch (optname) { 4692 case SCTP_SOCKOPT_BINDX_ADD: 4693 /* 'optlen' is the size of the addresses buffer. */ 4694 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4695 optlen, SCTP_BINDX_ADD_ADDR); 4696 break; 4697 4698 case SCTP_SOCKOPT_BINDX_REM: 4699 /* 'optlen' is the size of the addresses buffer. */ 4700 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4701 optlen, SCTP_BINDX_REM_ADDR); 4702 break; 4703 4704 case SCTP_SOCKOPT_CONNECTX_OLD: 4705 /* 'optlen' is the size of the addresses buffer. */ 4706 retval = sctp_setsockopt_connectx_old(sk, 4707 (struct sockaddr __user *)optval, 4708 optlen); 4709 break; 4710 4711 case SCTP_SOCKOPT_CONNECTX: 4712 /* 'optlen' is the size of the addresses buffer. */ 4713 retval = sctp_setsockopt_connectx(sk, 4714 (struct sockaddr __user *)optval, 4715 optlen); 4716 break; 4717 4718 case SCTP_DISABLE_FRAGMENTS: 4719 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4720 break; 4721 4722 case SCTP_EVENTS: 4723 retval = sctp_setsockopt_events(sk, optval, optlen); 4724 break; 4725 4726 case SCTP_AUTOCLOSE: 4727 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4728 break; 4729 4730 case SCTP_PEER_ADDR_PARAMS: 4731 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4732 break; 4733 4734 case SCTP_DELAYED_SACK: 4735 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4736 break; 4737 case SCTP_PARTIAL_DELIVERY_POINT: 4738 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4739 break; 4740 4741 case SCTP_INITMSG: 4742 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4743 break; 4744 case SCTP_DEFAULT_SEND_PARAM: 4745 retval = sctp_setsockopt_default_send_param(sk, optval, 4746 optlen); 4747 break; 4748 case SCTP_DEFAULT_SNDINFO: 4749 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4750 break; 4751 case SCTP_PRIMARY_ADDR: 4752 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4753 break; 4754 case SCTP_SET_PEER_PRIMARY_ADDR: 4755 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4756 break; 4757 case SCTP_NODELAY: 4758 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4759 break; 4760 case SCTP_RTOINFO: 4761 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4762 break; 4763 case SCTP_ASSOCINFO: 4764 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4765 break; 4766 case SCTP_I_WANT_MAPPED_V4_ADDR: 4767 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4768 break; 4769 case SCTP_MAXSEG: 4770 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4771 break; 4772 case SCTP_ADAPTATION_LAYER: 4773 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4774 break; 4775 case SCTP_CONTEXT: 4776 retval = sctp_setsockopt_context(sk, optval, optlen); 4777 break; 4778 case SCTP_FRAGMENT_INTERLEAVE: 4779 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4780 break; 4781 case SCTP_MAX_BURST: 4782 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4783 break; 4784 case SCTP_AUTH_CHUNK: 4785 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4786 break; 4787 case SCTP_HMAC_IDENT: 4788 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4789 break; 4790 case SCTP_AUTH_KEY: 4791 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4792 break; 4793 case SCTP_AUTH_ACTIVE_KEY: 4794 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4795 break; 4796 case SCTP_AUTH_DELETE_KEY: 4797 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4798 break; 4799 case SCTP_AUTH_DEACTIVATE_KEY: 4800 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4801 break; 4802 case SCTP_AUTO_ASCONF: 4803 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4804 break; 4805 case SCTP_PEER_ADDR_THLDS: 4806 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen, 4807 false); 4808 break; 4809 case SCTP_PEER_ADDR_THLDS_V2: 4810 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen, 4811 true); 4812 break; 4813 case SCTP_RECVRCVINFO: 4814 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4815 break; 4816 case SCTP_RECVNXTINFO: 4817 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4818 break; 4819 case SCTP_PR_SUPPORTED: 4820 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4821 break; 4822 case SCTP_DEFAULT_PRINFO: 4823 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4824 break; 4825 case SCTP_RECONFIG_SUPPORTED: 4826 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4827 break; 4828 case SCTP_ENABLE_STREAM_RESET: 4829 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4830 break; 4831 case SCTP_RESET_STREAMS: 4832 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4833 break; 4834 case SCTP_RESET_ASSOC: 4835 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4836 break; 4837 case SCTP_ADD_STREAMS: 4838 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4839 break; 4840 case SCTP_STREAM_SCHEDULER: 4841 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4842 break; 4843 case SCTP_STREAM_SCHEDULER_VALUE: 4844 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4845 break; 4846 case SCTP_INTERLEAVING_SUPPORTED: 4847 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4848 optlen); 4849 break; 4850 case SCTP_REUSE_PORT: 4851 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4852 break; 4853 case SCTP_EVENT: 4854 retval = sctp_setsockopt_event(sk, optval, optlen); 4855 break; 4856 case SCTP_ASCONF_SUPPORTED: 4857 retval = sctp_setsockopt_asconf_supported(sk, optval, optlen); 4858 break; 4859 case SCTP_AUTH_SUPPORTED: 4860 retval = sctp_setsockopt_auth_supported(sk, optval, optlen); 4861 break; 4862 case SCTP_ECN_SUPPORTED: 4863 retval = sctp_setsockopt_ecn_supported(sk, optval, optlen); 4864 break; 4865 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4866 retval = sctp_setsockopt_pf_expose(sk, optval, optlen); 4867 break; 4868 default: 4869 retval = -ENOPROTOOPT; 4870 break; 4871 } 4872 4873 release_sock(sk); 4874 4875 out_nounlock: 4876 return retval; 4877 } 4878 4879 /* API 3.1.6 connect() - UDP Style Syntax 4880 * 4881 * An application may use the connect() call in the UDP model to initiate an 4882 * association without sending data. 4883 * 4884 * The syntax is: 4885 * 4886 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4887 * 4888 * sd: the socket descriptor to have a new association added to. 4889 * 4890 * nam: the address structure (either struct sockaddr_in or struct 4891 * sockaddr_in6 defined in RFC2553 [7]). 4892 * 4893 * len: the size of the address. 4894 */ 4895 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4896 int addr_len, int flags) 4897 { 4898 struct sctp_af *af; 4899 int err = -EINVAL; 4900 4901 lock_sock(sk); 4902 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4903 addr, addr_len); 4904 4905 /* Validate addr_len before calling common connect/connectx routine. */ 4906 af = sctp_get_af_specific(addr->sa_family); 4907 if (af && addr_len >= af->sockaddr_len) 4908 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4909 4910 release_sock(sk); 4911 return err; 4912 } 4913 4914 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4915 int addr_len, int flags) 4916 { 4917 if (addr_len < sizeof(uaddr->sa_family)) 4918 return -EINVAL; 4919 4920 if (uaddr->sa_family == AF_UNSPEC) 4921 return -EOPNOTSUPP; 4922 4923 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4924 } 4925 4926 /* FIXME: Write comments. */ 4927 static int sctp_disconnect(struct sock *sk, int flags) 4928 { 4929 return -EOPNOTSUPP; /* STUB */ 4930 } 4931 4932 /* 4.1.4 accept() - TCP Style Syntax 4933 * 4934 * Applications use accept() call to remove an established SCTP 4935 * association from the accept queue of the endpoint. A new socket 4936 * descriptor will be returned from accept() to represent the newly 4937 * formed association. 4938 */ 4939 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4940 { 4941 struct sctp_sock *sp; 4942 struct sctp_endpoint *ep; 4943 struct sock *newsk = NULL; 4944 struct sctp_association *asoc; 4945 long timeo; 4946 int error = 0; 4947 4948 lock_sock(sk); 4949 4950 sp = sctp_sk(sk); 4951 ep = sp->ep; 4952 4953 if (!sctp_style(sk, TCP)) { 4954 error = -EOPNOTSUPP; 4955 goto out; 4956 } 4957 4958 if (!sctp_sstate(sk, LISTENING)) { 4959 error = -EINVAL; 4960 goto out; 4961 } 4962 4963 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4964 4965 error = sctp_wait_for_accept(sk, timeo); 4966 if (error) 4967 goto out; 4968 4969 /* We treat the list of associations on the endpoint as the accept 4970 * queue and pick the first association on the list. 4971 */ 4972 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4973 4974 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4975 if (!newsk) { 4976 error = -ENOMEM; 4977 goto out; 4978 } 4979 4980 /* Populate the fields of the newsk from the oldsk and migrate the 4981 * asoc to the newsk. 4982 */ 4983 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4984 if (error) { 4985 sk_common_release(newsk); 4986 newsk = NULL; 4987 } 4988 4989 out: 4990 release_sock(sk); 4991 *err = error; 4992 return newsk; 4993 } 4994 4995 /* The SCTP ioctl handler. */ 4996 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4997 { 4998 int rc = -ENOTCONN; 4999 5000 lock_sock(sk); 5001 5002 /* 5003 * SEQPACKET-style sockets in LISTENING state are valid, for 5004 * SCTP, so only discard TCP-style sockets in LISTENING state. 5005 */ 5006 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5007 goto out; 5008 5009 switch (cmd) { 5010 case SIOCINQ: { 5011 struct sk_buff *skb; 5012 unsigned int amount = 0; 5013 5014 skb = skb_peek(&sk->sk_receive_queue); 5015 if (skb != NULL) { 5016 /* 5017 * We will only return the amount of this packet since 5018 * that is all that will be read. 5019 */ 5020 amount = skb->len; 5021 } 5022 rc = put_user(amount, (int __user *)arg); 5023 break; 5024 } 5025 default: 5026 rc = -ENOIOCTLCMD; 5027 break; 5028 } 5029 out: 5030 release_sock(sk); 5031 return rc; 5032 } 5033 5034 /* This is the function which gets called during socket creation to 5035 * initialized the SCTP-specific portion of the sock. 5036 * The sock structure should already be zero-filled memory. 5037 */ 5038 static int sctp_init_sock(struct sock *sk) 5039 { 5040 struct net *net = sock_net(sk); 5041 struct sctp_sock *sp; 5042 5043 pr_debug("%s: sk:%p\n", __func__, sk); 5044 5045 sp = sctp_sk(sk); 5046 5047 /* Initialize the SCTP per socket area. */ 5048 switch (sk->sk_type) { 5049 case SOCK_SEQPACKET: 5050 sp->type = SCTP_SOCKET_UDP; 5051 break; 5052 case SOCK_STREAM: 5053 sp->type = SCTP_SOCKET_TCP; 5054 break; 5055 default: 5056 return -ESOCKTNOSUPPORT; 5057 } 5058 5059 sk->sk_gso_type = SKB_GSO_SCTP; 5060 5061 /* Initialize default send parameters. These parameters can be 5062 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5063 */ 5064 sp->default_stream = 0; 5065 sp->default_ppid = 0; 5066 sp->default_flags = 0; 5067 sp->default_context = 0; 5068 sp->default_timetolive = 0; 5069 5070 sp->default_rcv_context = 0; 5071 sp->max_burst = net->sctp.max_burst; 5072 5073 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5074 5075 /* Initialize default setup parameters. These parameters 5076 * can be modified with the SCTP_INITMSG socket option or 5077 * overridden by the SCTP_INIT CMSG. 5078 */ 5079 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5080 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5081 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5082 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5083 5084 /* Initialize default RTO related parameters. These parameters can 5085 * be modified for with the SCTP_RTOINFO socket option. 5086 */ 5087 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5088 sp->rtoinfo.srto_max = net->sctp.rto_max; 5089 sp->rtoinfo.srto_min = net->sctp.rto_min; 5090 5091 /* Initialize default association related parameters. These parameters 5092 * can be modified with the SCTP_ASSOCINFO socket option. 5093 */ 5094 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5095 sp->assocparams.sasoc_number_peer_destinations = 0; 5096 sp->assocparams.sasoc_peer_rwnd = 0; 5097 sp->assocparams.sasoc_local_rwnd = 0; 5098 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5099 5100 /* Initialize default event subscriptions. By default, all the 5101 * options are off. 5102 */ 5103 sp->subscribe = 0; 5104 5105 /* Default Peer Address Parameters. These defaults can 5106 * be modified via SCTP_PEER_ADDR_PARAMS 5107 */ 5108 sp->hbinterval = net->sctp.hb_interval; 5109 sp->pathmaxrxt = net->sctp.max_retrans_path; 5110 sp->pf_retrans = net->sctp.pf_retrans; 5111 sp->ps_retrans = net->sctp.ps_retrans; 5112 sp->pf_expose = net->sctp.pf_expose; 5113 sp->pathmtu = 0; /* allow default discovery */ 5114 sp->sackdelay = net->sctp.sack_timeout; 5115 sp->sackfreq = 2; 5116 sp->param_flags = SPP_HB_ENABLE | 5117 SPP_PMTUD_ENABLE | 5118 SPP_SACKDELAY_ENABLE; 5119 sp->default_ss = SCTP_SS_DEFAULT; 5120 5121 /* If enabled no SCTP message fragmentation will be performed. 5122 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5123 */ 5124 sp->disable_fragments = 0; 5125 5126 /* Enable Nagle algorithm by default. */ 5127 sp->nodelay = 0; 5128 5129 sp->recvrcvinfo = 0; 5130 sp->recvnxtinfo = 0; 5131 5132 /* Enable by default. */ 5133 sp->v4mapped = 1; 5134 5135 /* Auto-close idle associations after the configured 5136 * number of seconds. A value of 0 disables this 5137 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5138 * for UDP-style sockets only. 5139 */ 5140 sp->autoclose = 0; 5141 5142 /* User specified fragmentation limit. */ 5143 sp->user_frag = 0; 5144 5145 sp->adaptation_ind = 0; 5146 5147 sp->pf = sctp_get_pf_specific(sk->sk_family); 5148 5149 /* Control variables for partial data delivery. */ 5150 atomic_set(&sp->pd_mode, 0); 5151 skb_queue_head_init(&sp->pd_lobby); 5152 sp->frag_interleave = 0; 5153 5154 /* Create a per socket endpoint structure. Even if we 5155 * change the data structure relationships, this may still 5156 * be useful for storing pre-connect address information. 5157 */ 5158 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5159 if (!sp->ep) 5160 return -ENOMEM; 5161 5162 sp->hmac = NULL; 5163 5164 sk->sk_destruct = sctp_destruct_sock; 5165 5166 SCTP_DBG_OBJCNT_INC(sock); 5167 5168 local_bh_disable(); 5169 sk_sockets_allocated_inc(sk); 5170 sock_prot_inuse_add(net, sk->sk_prot, 1); 5171 5172 /* Nothing can fail after this block, otherwise 5173 * sctp_destroy_sock() will be called without addr_wq_lock held 5174 */ 5175 if (net->sctp.default_auto_asconf) { 5176 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5177 list_add_tail(&sp->auto_asconf_list, 5178 &net->sctp.auto_asconf_splist); 5179 sp->do_auto_asconf = 1; 5180 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5181 } else { 5182 sp->do_auto_asconf = 0; 5183 } 5184 5185 local_bh_enable(); 5186 5187 return 0; 5188 } 5189 5190 /* Cleanup any SCTP per socket resources. Must be called with 5191 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5192 */ 5193 static void sctp_destroy_sock(struct sock *sk) 5194 { 5195 struct sctp_sock *sp; 5196 5197 pr_debug("%s: sk:%p\n", __func__, sk); 5198 5199 /* Release our hold on the endpoint. */ 5200 sp = sctp_sk(sk); 5201 /* This could happen during socket init, thus we bail out 5202 * early, since the rest of the below is not setup either. 5203 */ 5204 if (sp->ep == NULL) 5205 return; 5206 5207 if (sp->do_auto_asconf) { 5208 sp->do_auto_asconf = 0; 5209 list_del(&sp->auto_asconf_list); 5210 } 5211 sctp_endpoint_free(sp->ep); 5212 local_bh_disable(); 5213 sk_sockets_allocated_dec(sk); 5214 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5215 local_bh_enable(); 5216 } 5217 5218 /* Triggered when there are no references on the socket anymore */ 5219 static void sctp_destruct_sock(struct sock *sk) 5220 { 5221 struct sctp_sock *sp = sctp_sk(sk); 5222 5223 /* Free up the HMAC transform. */ 5224 crypto_free_shash(sp->hmac); 5225 5226 inet_sock_destruct(sk); 5227 } 5228 5229 /* API 4.1.7 shutdown() - TCP Style Syntax 5230 * int shutdown(int socket, int how); 5231 * 5232 * sd - the socket descriptor of the association to be closed. 5233 * how - Specifies the type of shutdown. The values are 5234 * as follows: 5235 * SHUT_RD 5236 * Disables further receive operations. No SCTP 5237 * protocol action is taken. 5238 * SHUT_WR 5239 * Disables further send operations, and initiates 5240 * the SCTP shutdown sequence. 5241 * SHUT_RDWR 5242 * Disables further send and receive operations 5243 * and initiates the SCTP shutdown sequence. 5244 */ 5245 static void sctp_shutdown(struct sock *sk, int how) 5246 { 5247 struct net *net = sock_net(sk); 5248 struct sctp_endpoint *ep; 5249 5250 if (!sctp_style(sk, TCP)) 5251 return; 5252 5253 ep = sctp_sk(sk)->ep; 5254 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5255 struct sctp_association *asoc; 5256 5257 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5258 asoc = list_entry(ep->asocs.next, 5259 struct sctp_association, asocs); 5260 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5261 } 5262 } 5263 5264 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5265 struct sctp_info *info) 5266 { 5267 struct sctp_transport *prim; 5268 struct list_head *pos; 5269 int mask; 5270 5271 memset(info, 0, sizeof(*info)); 5272 if (!asoc) { 5273 struct sctp_sock *sp = sctp_sk(sk); 5274 5275 info->sctpi_s_autoclose = sp->autoclose; 5276 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5277 info->sctpi_s_pd_point = sp->pd_point; 5278 info->sctpi_s_nodelay = sp->nodelay; 5279 info->sctpi_s_disable_fragments = sp->disable_fragments; 5280 info->sctpi_s_v4mapped = sp->v4mapped; 5281 info->sctpi_s_frag_interleave = sp->frag_interleave; 5282 info->sctpi_s_type = sp->type; 5283 5284 return 0; 5285 } 5286 5287 info->sctpi_tag = asoc->c.my_vtag; 5288 info->sctpi_state = asoc->state; 5289 info->sctpi_rwnd = asoc->a_rwnd; 5290 info->sctpi_unackdata = asoc->unack_data; 5291 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5292 info->sctpi_instrms = asoc->stream.incnt; 5293 info->sctpi_outstrms = asoc->stream.outcnt; 5294 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5295 info->sctpi_inqueue++; 5296 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5297 info->sctpi_outqueue++; 5298 info->sctpi_overall_error = asoc->overall_error_count; 5299 info->sctpi_max_burst = asoc->max_burst; 5300 info->sctpi_maxseg = asoc->frag_point; 5301 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5302 info->sctpi_peer_tag = asoc->c.peer_vtag; 5303 5304 mask = asoc->peer.ecn_capable << 1; 5305 mask = (mask | asoc->peer.ipv4_address) << 1; 5306 mask = (mask | asoc->peer.ipv6_address) << 1; 5307 mask = (mask | asoc->peer.hostname_address) << 1; 5308 mask = (mask | asoc->peer.asconf_capable) << 1; 5309 mask = (mask | asoc->peer.prsctp_capable) << 1; 5310 mask = (mask | asoc->peer.auth_capable); 5311 info->sctpi_peer_capable = mask; 5312 mask = asoc->peer.sack_needed << 1; 5313 mask = (mask | asoc->peer.sack_generation) << 1; 5314 mask = (mask | asoc->peer.zero_window_announced); 5315 info->sctpi_peer_sack = mask; 5316 5317 info->sctpi_isacks = asoc->stats.isacks; 5318 info->sctpi_osacks = asoc->stats.osacks; 5319 info->sctpi_opackets = asoc->stats.opackets; 5320 info->sctpi_ipackets = asoc->stats.ipackets; 5321 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5322 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5323 info->sctpi_idupchunks = asoc->stats.idupchunks; 5324 info->sctpi_gapcnt = asoc->stats.gapcnt; 5325 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5326 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5327 info->sctpi_oodchunks = asoc->stats.oodchunks; 5328 info->sctpi_iodchunks = asoc->stats.iodchunks; 5329 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5330 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5331 5332 prim = asoc->peer.primary_path; 5333 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5334 info->sctpi_p_state = prim->state; 5335 info->sctpi_p_cwnd = prim->cwnd; 5336 info->sctpi_p_srtt = prim->srtt; 5337 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5338 info->sctpi_p_hbinterval = prim->hbinterval; 5339 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5340 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5341 info->sctpi_p_ssthresh = prim->ssthresh; 5342 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5343 info->sctpi_p_flight_size = prim->flight_size; 5344 info->sctpi_p_error = prim->error_count; 5345 5346 return 0; 5347 } 5348 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5349 5350 /* use callback to avoid exporting the core structure */ 5351 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5352 { 5353 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5354 5355 rhashtable_walk_start(iter); 5356 } 5357 5358 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5359 { 5360 rhashtable_walk_stop(iter); 5361 rhashtable_walk_exit(iter); 5362 } 5363 5364 struct sctp_transport *sctp_transport_get_next(struct net *net, 5365 struct rhashtable_iter *iter) 5366 { 5367 struct sctp_transport *t; 5368 5369 t = rhashtable_walk_next(iter); 5370 for (; t; t = rhashtable_walk_next(iter)) { 5371 if (IS_ERR(t)) { 5372 if (PTR_ERR(t) == -EAGAIN) 5373 continue; 5374 break; 5375 } 5376 5377 if (!sctp_transport_hold(t)) 5378 continue; 5379 5380 if (net_eq(t->asoc->base.net, net) && 5381 t->asoc->peer.primary_path == t) 5382 break; 5383 5384 sctp_transport_put(t); 5385 } 5386 5387 return t; 5388 } 5389 5390 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5391 struct rhashtable_iter *iter, 5392 int pos) 5393 { 5394 struct sctp_transport *t; 5395 5396 if (!pos) 5397 return SEQ_START_TOKEN; 5398 5399 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5400 if (!--pos) 5401 break; 5402 sctp_transport_put(t); 5403 } 5404 5405 return t; 5406 } 5407 5408 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5409 void *p) { 5410 int err = 0; 5411 int hash = 0; 5412 struct sctp_ep_common *epb; 5413 struct sctp_hashbucket *head; 5414 5415 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5416 hash++, head++) { 5417 read_lock_bh(&head->lock); 5418 sctp_for_each_hentry(epb, &head->chain) { 5419 err = cb(sctp_ep(epb), p); 5420 if (err) 5421 break; 5422 } 5423 read_unlock_bh(&head->lock); 5424 } 5425 5426 return err; 5427 } 5428 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5429 5430 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5431 struct net *net, 5432 const union sctp_addr *laddr, 5433 const union sctp_addr *paddr, void *p) 5434 { 5435 struct sctp_transport *transport; 5436 int err; 5437 5438 rcu_read_lock(); 5439 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5440 rcu_read_unlock(); 5441 if (!transport) 5442 return -ENOENT; 5443 5444 err = cb(transport, p); 5445 sctp_transport_put(transport); 5446 5447 return err; 5448 } 5449 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5450 5451 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5452 int (*cb_done)(struct sctp_transport *, void *), 5453 struct net *net, int *pos, void *p) { 5454 struct rhashtable_iter hti; 5455 struct sctp_transport *tsp; 5456 int ret; 5457 5458 again: 5459 ret = 0; 5460 sctp_transport_walk_start(&hti); 5461 5462 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5463 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5464 ret = cb(tsp, p); 5465 if (ret) 5466 break; 5467 (*pos)++; 5468 sctp_transport_put(tsp); 5469 } 5470 sctp_transport_walk_stop(&hti); 5471 5472 if (ret) { 5473 if (cb_done && !cb_done(tsp, p)) { 5474 (*pos)++; 5475 sctp_transport_put(tsp); 5476 goto again; 5477 } 5478 sctp_transport_put(tsp); 5479 } 5480 5481 return ret; 5482 } 5483 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5484 5485 /* 7.2.1 Association Status (SCTP_STATUS) 5486 5487 * Applications can retrieve current status information about an 5488 * association, including association state, peer receiver window size, 5489 * number of unacked data chunks, and number of data chunks pending 5490 * receipt. This information is read-only. 5491 */ 5492 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5493 char __user *optval, 5494 int __user *optlen) 5495 { 5496 struct sctp_status status; 5497 struct sctp_association *asoc = NULL; 5498 struct sctp_transport *transport; 5499 sctp_assoc_t associd; 5500 int retval = 0; 5501 5502 if (len < sizeof(status)) { 5503 retval = -EINVAL; 5504 goto out; 5505 } 5506 5507 len = sizeof(status); 5508 if (copy_from_user(&status, optval, len)) { 5509 retval = -EFAULT; 5510 goto out; 5511 } 5512 5513 associd = status.sstat_assoc_id; 5514 asoc = sctp_id2assoc(sk, associd); 5515 if (!asoc) { 5516 retval = -EINVAL; 5517 goto out; 5518 } 5519 5520 transport = asoc->peer.primary_path; 5521 5522 status.sstat_assoc_id = sctp_assoc2id(asoc); 5523 status.sstat_state = sctp_assoc_to_state(asoc); 5524 status.sstat_rwnd = asoc->peer.rwnd; 5525 status.sstat_unackdata = asoc->unack_data; 5526 5527 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5528 status.sstat_instrms = asoc->stream.incnt; 5529 status.sstat_outstrms = asoc->stream.outcnt; 5530 status.sstat_fragmentation_point = asoc->frag_point; 5531 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5532 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5533 transport->af_specific->sockaddr_len); 5534 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5535 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5536 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5537 status.sstat_primary.spinfo_state = transport->state; 5538 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5539 status.sstat_primary.spinfo_srtt = transport->srtt; 5540 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5541 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5542 5543 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5544 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5545 5546 if (put_user(len, optlen)) { 5547 retval = -EFAULT; 5548 goto out; 5549 } 5550 5551 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5552 __func__, len, status.sstat_state, status.sstat_rwnd, 5553 status.sstat_assoc_id); 5554 5555 if (copy_to_user(optval, &status, len)) { 5556 retval = -EFAULT; 5557 goto out; 5558 } 5559 5560 out: 5561 return retval; 5562 } 5563 5564 5565 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5566 * 5567 * Applications can retrieve information about a specific peer address 5568 * of an association, including its reachability state, congestion 5569 * window, and retransmission timer values. This information is 5570 * read-only. 5571 */ 5572 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5573 char __user *optval, 5574 int __user *optlen) 5575 { 5576 struct sctp_paddrinfo pinfo; 5577 struct sctp_transport *transport; 5578 int retval = 0; 5579 5580 if (len < sizeof(pinfo)) { 5581 retval = -EINVAL; 5582 goto out; 5583 } 5584 5585 len = sizeof(pinfo); 5586 if (copy_from_user(&pinfo, optval, len)) { 5587 retval = -EFAULT; 5588 goto out; 5589 } 5590 5591 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5592 pinfo.spinfo_assoc_id); 5593 if (!transport) { 5594 retval = -EINVAL; 5595 goto out; 5596 } 5597 5598 if (transport->state == SCTP_PF && 5599 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5600 retval = -EACCES; 5601 goto out; 5602 } 5603 5604 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5605 pinfo.spinfo_state = transport->state; 5606 pinfo.spinfo_cwnd = transport->cwnd; 5607 pinfo.spinfo_srtt = transport->srtt; 5608 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5609 pinfo.spinfo_mtu = transport->pathmtu; 5610 5611 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5612 pinfo.spinfo_state = SCTP_ACTIVE; 5613 5614 if (put_user(len, optlen)) { 5615 retval = -EFAULT; 5616 goto out; 5617 } 5618 5619 if (copy_to_user(optval, &pinfo, len)) { 5620 retval = -EFAULT; 5621 goto out; 5622 } 5623 5624 out: 5625 return retval; 5626 } 5627 5628 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5629 * 5630 * This option is a on/off flag. If enabled no SCTP message 5631 * fragmentation will be performed. Instead if a message being sent 5632 * exceeds the current PMTU size, the message will NOT be sent and 5633 * instead a error will be indicated to the user. 5634 */ 5635 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5636 char __user *optval, int __user *optlen) 5637 { 5638 int val; 5639 5640 if (len < sizeof(int)) 5641 return -EINVAL; 5642 5643 len = sizeof(int); 5644 val = (sctp_sk(sk)->disable_fragments == 1); 5645 if (put_user(len, optlen)) 5646 return -EFAULT; 5647 if (copy_to_user(optval, &val, len)) 5648 return -EFAULT; 5649 return 0; 5650 } 5651 5652 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5653 * 5654 * This socket option is used to specify various notifications and 5655 * ancillary data the user wishes to receive. 5656 */ 5657 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5658 int __user *optlen) 5659 { 5660 struct sctp_event_subscribe subscribe; 5661 __u8 *sn_type = (__u8 *)&subscribe; 5662 int i; 5663 5664 if (len == 0) 5665 return -EINVAL; 5666 if (len > sizeof(struct sctp_event_subscribe)) 5667 len = sizeof(struct sctp_event_subscribe); 5668 if (put_user(len, optlen)) 5669 return -EFAULT; 5670 5671 for (i = 0; i < len; i++) 5672 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5673 SCTP_SN_TYPE_BASE + i); 5674 5675 if (copy_to_user(optval, &subscribe, len)) 5676 return -EFAULT; 5677 5678 return 0; 5679 } 5680 5681 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5682 * 5683 * This socket option is applicable to the UDP-style socket only. When 5684 * set it will cause associations that are idle for more than the 5685 * specified number of seconds to automatically close. An association 5686 * being idle is defined an association that has NOT sent or received 5687 * user data. The special value of '0' indicates that no automatic 5688 * close of any associations should be performed. The option expects an 5689 * integer defining the number of seconds of idle time before an 5690 * association is closed. 5691 */ 5692 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5693 { 5694 /* Applicable to UDP-style socket only */ 5695 if (sctp_style(sk, TCP)) 5696 return -EOPNOTSUPP; 5697 if (len < sizeof(int)) 5698 return -EINVAL; 5699 len = sizeof(int); 5700 if (put_user(len, optlen)) 5701 return -EFAULT; 5702 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5703 return -EFAULT; 5704 return 0; 5705 } 5706 5707 /* Helper routine to branch off an association to a new socket. */ 5708 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5709 { 5710 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5711 struct sctp_sock *sp = sctp_sk(sk); 5712 struct socket *sock; 5713 int err = 0; 5714 5715 /* Do not peel off from one netns to another one. */ 5716 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5717 return -EINVAL; 5718 5719 if (!asoc) 5720 return -EINVAL; 5721 5722 /* An association cannot be branched off from an already peeled-off 5723 * socket, nor is this supported for tcp style sockets. 5724 */ 5725 if (!sctp_style(sk, UDP)) 5726 return -EINVAL; 5727 5728 /* Create a new socket. */ 5729 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5730 if (err < 0) 5731 return err; 5732 5733 sctp_copy_sock(sock->sk, sk, asoc); 5734 5735 /* Make peeled-off sockets more like 1-1 accepted sockets. 5736 * Set the daddr and initialize id to something more random and also 5737 * copy over any ip options. 5738 */ 5739 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5740 sp->pf->copy_ip_options(sk, sock->sk); 5741 5742 /* Populate the fields of the newsk from the oldsk and migrate the 5743 * asoc to the newsk. 5744 */ 5745 err = sctp_sock_migrate(sk, sock->sk, asoc, 5746 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5747 if (err) { 5748 sock_release(sock); 5749 sock = NULL; 5750 } 5751 5752 *sockp = sock; 5753 5754 return err; 5755 } 5756 EXPORT_SYMBOL(sctp_do_peeloff); 5757 5758 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5759 struct file **newfile, unsigned flags) 5760 { 5761 struct socket *newsock; 5762 int retval; 5763 5764 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5765 if (retval < 0) 5766 goto out; 5767 5768 /* Map the socket to an unused fd that can be returned to the user. */ 5769 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5770 if (retval < 0) { 5771 sock_release(newsock); 5772 goto out; 5773 } 5774 5775 *newfile = sock_alloc_file(newsock, 0, NULL); 5776 if (IS_ERR(*newfile)) { 5777 put_unused_fd(retval); 5778 retval = PTR_ERR(*newfile); 5779 *newfile = NULL; 5780 return retval; 5781 } 5782 5783 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5784 retval); 5785 5786 peeloff->sd = retval; 5787 5788 if (flags & SOCK_NONBLOCK) 5789 (*newfile)->f_flags |= O_NONBLOCK; 5790 out: 5791 return retval; 5792 } 5793 5794 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5795 { 5796 sctp_peeloff_arg_t peeloff; 5797 struct file *newfile = NULL; 5798 int retval = 0; 5799 5800 if (len < sizeof(sctp_peeloff_arg_t)) 5801 return -EINVAL; 5802 len = sizeof(sctp_peeloff_arg_t); 5803 if (copy_from_user(&peeloff, optval, len)) 5804 return -EFAULT; 5805 5806 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5807 if (retval < 0) 5808 goto out; 5809 5810 /* Return the fd mapped to the new socket. */ 5811 if (put_user(len, optlen)) { 5812 fput(newfile); 5813 put_unused_fd(retval); 5814 return -EFAULT; 5815 } 5816 5817 if (copy_to_user(optval, &peeloff, len)) { 5818 fput(newfile); 5819 put_unused_fd(retval); 5820 return -EFAULT; 5821 } 5822 fd_install(retval, newfile); 5823 out: 5824 return retval; 5825 } 5826 5827 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5828 char __user *optval, int __user *optlen) 5829 { 5830 sctp_peeloff_flags_arg_t peeloff; 5831 struct file *newfile = NULL; 5832 int retval = 0; 5833 5834 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5835 return -EINVAL; 5836 len = sizeof(sctp_peeloff_flags_arg_t); 5837 if (copy_from_user(&peeloff, optval, len)) 5838 return -EFAULT; 5839 5840 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5841 &newfile, peeloff.flags); 5842 if (retval < 0) 5843 goto out; 5844 5845 /* Return the fd mapped to the new socket. */ 5846 if (put_user(len, optlen)) { 5847 fput(newfile); 5848 put_unused_fd(retval); 5849 return -EFAULT; 5850 } 5851 5852 if (copy_to_user(optval, &peeloff, len)) { 5853 fput(newfile); 5854 put_unused_fd(retval); 5855 return -EFAULT; 5856 } 5857 fd_install(retval, newfile); 5858 out: 5859 return retval; 5860 } 5861 5862 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5863 * 5864 * Applications can enable or disable heartbeats for any peer address of 5865 * an association, modify an address's heartbeat interval, force a 5866 * heartbeat to be sent immediately, and adjust the address's maximum 5867 * number of retransmissions sent before an address is considered 5868 * unreachable. The following structure is used to access and modify an 5869 * address's parameters: 5870 * 5871 * struct sctp_paddrparams { 5872 * sctp_assoc_t spp_assoc_id; 5873 * struct sockaddr_storage spp_address; 5874 * uint32_t spp_hbinterval; 5875 * uint16_t spp_pathmaxrxt; 5876 * uint32_t spp_pathmtu; 5877 * uint32_t spp_sackdelay; 5878 * uint32_t spp_flags; 5879 * }; 5880 * 5881 * spp_assoc_id - (one-to-many style socket) This is filled in the 5882 * application, and identifies the association for 5883 * this query. 5884 * spp_address - This specifies which address is of interest. 5885 * spp_hbinterval - This contains the value of the heartbeat interval, 5886 * in milliseconds. If a value of zero 5887 * is present in this field then no changes are to 5888 * be made to this parameter. 5889 * spp_pathmaxrxt - This contains the maximum number of 5890 * retransmissions before this address shall be 5891 * considered unreachable. If a value of zero 5892 * is present in this field then no changes are to 5893 * be made to this parameter. 5894 * spp_pathmtu - When Path MTU discovery is disabled the value 5895 * specified here will be the "fixed" path mtu. 5896 * Note that if the spp_address field is empty 5897 * then all associations on this address will 5898 * have this fixed path mtu set upon them. 5899 * 5900 * spp_sackdelay - When delayed sack is enabled, this value specifies 5901 * the number of milliseconds that sacks will be delayed 5902 * for. This value will apply to all addresses of an 5903 * association if the spp_address field is empty. Note 5904 * also, that if delayed sack is enabled and this 5905 * value is set to 0, no change is made to the last 5906 * recorded delayed sack timer value. 5907 * 5908 * spp_flags - These flags are used to control various features 5909 * on an association. The flag field may contain 5910 * zero or more of the following options. 5911 * 5912 * SPP_HB_ENABLE - Enable heartbeats on the 5913 * specified address. Note that if the address 5914 * field is empty all addresses for the association 5915 * have heartbeats enabled upon them. 5916 * 5917 * SPP_HB_DISABLE - Disable heartbeats on the 5918 * speicifed address. Note that if the address 5919 * field is empty all addresses for the association 5920 * will have their heartbeats disabled. Note also 5921 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5922 * mutually exclusive, only one of these two should 5923 * be specified. Enabling both fields will have 5924 * undetermined results. 5925 * 5926 * SPP_HB_DEMAND - Request a user initiated heartbeat 5927 * to be made immediately. 5928 * 5929 * SPP_PMTUD_ENABLE - This field will enable PMTU 5930 * discovery upon the specified address. Note that 5931 * if the address feild is empty then all addresses 5932 * on the association are effected. 5933 * 5934 * SPP_PMTUD_DISABLE - This field will disable PMTU 5935 * discovery upon the specified address. Note that 5936 * if the address feild is empty then all addresses 5937 * on the association are effected. Not also that 5938 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5939 * exclusive. Enabling both will have undetermined 5940 * results. 5941 * 5942 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5943 * on delayed sack. The time specified in spp_sackdelay 5944 * is used to specify the sack delay for this address. Note 5945 * that if spp_address is empty then all addresses will 5946 * enable delayed sack and take on the sack delay 5947 * value specified in spp_sackdelay. 5948 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5949 * off delayed sack. If the spp_address field is blank then 5950 * delayed sack is disabled for the entire association. Note 5951 * also that this field is mutually exclusive to 5952 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5953 * results. 5954 * 5955 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5956 * setting of the IPV6 flow label value. The value is 5957 * contained in the spp_ipv6_flowlabel field. 5958 * Upon retrieval, this flag will be set to indicate that 5959 * the spp_ipv6_flowlabel field has a valid value returned. 5960 * If a specific destination address is set (in the 5961 * spp_address field), then the value returned is that of 5962 * the address. If just an association is specified (and 5963 * no address), then the association's default flow label 5964 * is returned. If neither an association nor a destination 5965 * is specified, then the socket's default flow label is 5966 * returned. For non-IPv6 sockets, this flag will be left 5967 * cleared. 5968 * 5969 * SPP_DSCP: Setting this flag enables the setting of the 5970 * Differentiated Services Code Point (DSCP) value 5971 * associated with either the association or a specific 5972 * address. The value is obtained in the spp_dscp field. 5973 * Upon retrieval, this flag will be set to indicate that 5974 * the spp_dscp field has a valid value returned. If a 5975 * specific destination address is set when called (in the 5976 * spp_address field), then that specific destination 5977 * address's DSCP value is returned. If just an association 5978 * is specified, then the association's default DSCP is 5979 * returned. If neither an association nor a destination is 5980 * specified, then the socket's default DSCP is returned. 5981 * 5982 * spp_ipv6_flowlabel 5983 * - This field is used in conjunction with the 5984 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5985 * The 20 least significant bits are used for the flow 5986 * label. This setting has precedence over any IPv6-layer 5987 * setting. 5988 * 5989 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5990 * and contains the DSCP. The 6 most significant bits are 5991 * used for the DSCP. This setting has precedence over any 5992 * IPv4- or IPv6- layer setting. 5993 */ 5994 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5995 char __user *optval, int __user *optlen) 5996 { 5997 struct sctp_paddrparams params; 5998 struct sctp_transport *trans = NULL; 5999 struct sctp_association *asoc = NULL; 6000 struct sctp_sock *sp = sctp_sk(sk); 6001 6002 if (len >= sizeof(params)) 6003 len = sizeof(params); 6004 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 6005 spp_ipv6_flowlabel), 4)) 6006 len = ALIGN(offsetof(struct sctp_paddrparams, 6007 spp_ipv6_flowlabel), 4); 6008 else 6009 return -EINVAL; 6010 6011 if (copy_from_user(¶ms, optval, len)) 6012 return -EFAULT; 6013 6014 /* If an address other than INADDR_ANY is specified, and 6015 * no transport is found, then the request is invalid. 6016 */ 6017 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 6018 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 6019 params.spp_assoc_id); 6020 if (!trans) { 6021 pr_debug("%s: failed no transport\n", __func__); 6022 return -EINVAL; 6023 } 6024 } 6025 6026 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 6027 * socket is a one to many style socket, and an association 6028 * was not found, then the id was invalid. 6029 */ 6030 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 6031 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 6032 sctp_style(sk, UDP)) { 6033 pr_debug("%s: failed no association\n", __func__); 6034 return -EINVAL; 6035 } 6036 6037 if (trans) { 6038 /* Fetch transport values. */ 6039 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 6040 params.spp_pathmtu = trans->pathmtu; 6041 params.spp_pathmaxrxt = trans->pathmaxrxt; 6042 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 6043 6044 /*draft-11 doesn't say what to return in spp_flags*/ 6045 params.spp_flags = trans->param_flags; 6046 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6047 params.spp_ipv6_flowlabel = trans->flowlabel & 6048 SCTP_FLOWLABEL_VAL_MASK; 6049 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6050 } 6051 if (trans->dscp & SCTP_DSCP_SET_MASK) { 6052 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 6053 params.spp_flags |= SPP_DSCP; 6054 } 6055 } else if (asoc) { 6056 /* Fetch association values. */ 6057 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6058 params.spp_pathmtu = asoc->pathmtu; 6059 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6060 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6061 6062 /*draft-11 doesn't say what to return in spp_flags*/ 6063 params.spp_flags = asoc->param_flags; 6064 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6065 params.spp_ipv6_flowlabel = asoc->flowlabel & 6066 SCTP_FLOWLABEL_VAL_MASK; 6067 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6068 } 6069 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6070 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6071 params.spp_flags |= SPP_DSCP; 6072 } 6073 } else { 6074 /* Fetch socket values. */ 6075 params.spp_hbinterval = sp->hbinterval; 6076 params.spp_pathmtu = sp->pathmtu; 6077 params.spp_sackdelay = sp->sackdelay; 6078 params.spp_pathmaxrxt = sp->pathmaxrxt; 6079 6080 /*draft-11 doesn't say what to return in spp_flags*/ 6081 params.spp_flags = sp->param_flags; 6082 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6083 params.spp_ipv6_flowlabel = sp->flowlabel & 6084 SCTP_FLOWLABEL_VAL_MASK; 6085 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6086 } 6087 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6088 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6089 params.spp_flags |= SPP_DSCP; 6090 } 6091 } 6092 6093 if (copy_to_user(optval, ¶ms, len)) 6094 return -EFAULT; 6095 6096 if (put_user(len, optlen)) 6097 return -EFAULT; 6098 6099 return 0; 6100 } 6101 6102 /* 6103 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6104 * 6105 * This option will effect the way delayed acks are performed. This 6106 * option allows you to get or set the delayed ack time, in 6107 * milliseconds. It also allows changing the delayed ack frequency. 6108 * Changing the frequency to 1 disables the delayed sack algorithm. If 6109 * the assoc_id is 0, then this sets or gets the endpoints default 6110 * values. If the assoc_id field is non-zero, then the set or get 6111 * effects the specified association for the one to many model (the 6112 * assoc_id field is ignored by the one to one model). Note that if 6113 * sack_delay or sack_freq are 0 when setting this option, then the 6114 * current values will remain unchanged. 6115 * 6116 * struct sctp_sack_info { 6117 * sctp_assoc_t sack_assoc_id; 6118 * uint32_t sack_delay; 6119 * uint32_t sack_freq; 6120 * }; 6121 * 6122 * sack_assoc_id - This parameter, indicates which association the user 6123 * is performing an action upon. Note that if this field's value is 6124 * zero then the endpoints default value is changed (effecting future 6125 * associations only). 6126 * 6127 * sack_delay - This parameter contains the number of milliseconds that 6128 * the user is requesting the delayed ACK timer be set to. Note that 6129 * this value is defined in the standard to be between 200 and 500 6130 * milliseconds. 6131 * 6132 * sack_freq - This parameter contains the number of packets that must 6133 * be received before a sack is sent without waiting for the delay 6134 * timer to expire. The default value for this is 2, setting this 6135 * value to 1 will disable the delayed sack algorithm. 6136 */ 6137 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6138 char __user *optval, 6139 int __user *optlen) 6140 { 6141 struct sctp_sack_info params; 6142 struct sctp_association *asoc = NULL; 6143 struct sctp_sock *sp = sctp_sk(sk); 6144 6145 if (len >= sizeof(struct sctp_sack_info)) { 6146 len = sizeof(struct sctp_sack_info); 6147 6148 if (copy_from_user(¶ms, optval, len)) 6149 return -EFAULT; 6150 } else if (len == sizeof(struct sctp_assoc_value)) { 6151 pr_warn_ratelimited(DEPRECATED 6152 "%s (pid %d) " 6153 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6154 "Use struct sctp_sack_info instead\n", 6155 current->comm, task_pid_nr(current)); 6156 if (copy_from_user(¶ms, optval, len)) 6157 return -EFAULT; 6158 } else 6159 return -EINVAL; 6160 6161 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6162 * socket is a one to many style socket, and an association 6163 * was not found, then the id was invalid. 6164 */ 6165 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6166 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6167 sctp_style(sk, UDP)) 6168 return -EINVAL; 6169 6170 if (asoc) { 6171 /* Fetch association values. */ 6172 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6173 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6174 params.sack_freq = asoc->sackfreq; 6175 6176 } else { 6177 params.sack_delay = 0; 6178 params.sack_freq = 1; 6179 } 6180 } else { 6181 /* Fetch socket values. */ 6182 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6183 params.sack_delay = sp->sackdelay; 6184 params.sack_freq = sp->sackfreq; 6185 } else { 6186 params.sack_delay = 0; 6187 params.sack_freq = 1; 6188 } 6189 } 6190 6191 if (copy_to_user(optval, ¶ms, len)) 6192 return -EFAULT; 6193 6194 if (put_user(len, optlen)) 6195 return -EFAULT; 6196 6197 return 0; 6198 } 6199 6200 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6201 * 6202 * Applications can specify protocol parameters for the default association 6203 * initialization. The option name argument to setsockopt() and getsockopt() 6204 * is SCTP_INITMSG. 6205 * 6206 * Setting initialization parameters is effective only on an unconnected 6207 * socket (for UDP-style sockets only future associations are effected 6208 * by the change). With TCP-style sockets, this option is inherited by 6209 * sockets derived from a listener socket. 6210 */ 6211 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6212 { 6213 if (len < sizeof(struct sctp_initmsg)) 6214 return -EINVAL; 6215 len = sizeof(struct sctp_initmsg); 6216 if (put_user(len, optlen)) 6217 return -EFAULT; 6218 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6219 return -EFAULT; 6220 return 0; 6221 } 6222 6223 6224 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6225 char __user *optval, int __user *optlen) 6226 { 6227 struct sctp_association *asoc; 6228 int cnt = 0; 6229 struct sctp_getaddrs getaddrs; 6230 struct sctp_transport *from; 6231 void __user *to; 6232 union sctp_addr temp; 6233 struct sctp_sock *sp = sctp_sk(sk); 6234 int addrlen; 6235 size_t space_left; 6236 int bytes_copied; 6237 6238 if (len < sizeof(struct sctp_getaddrs)) 6239 return -EINVAL; 6240 6241 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6242 return -EFAULT; 6243 6244 /* For UDP-style sockets, id specifies the association to query. */ 6245 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6246 if (!asoc) 6247 return -EINVAL; 6248 6249 to = optval + offsetof(struct sctp_getaddrs, addrs); 6250 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6251 6252 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6253 transports) { 6254 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6255 addrlen = sctp_get_pf_specific(sk->sk_family) 6256 ->addr_to_user(sp, &temp); 6257 if (space_left < addrlen) 6258 return -ENOMEM; 6259 if (copy_to_user(to, &temp, addrlen)) 6260 return -EFAULT; 6261 to += addrlen; 6262 cnt++; 6263 space_left -= addrlen; 6264 } 6265 6266 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6267 return -EFAULT; 6268 bytes_copied = ((char __user *)to) - optval; 6269 if (put_user(bytes_copied, optlen)) 6270 return -EFAULT; 6271 6272 return 0; 6273 } 6274 6275 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6276 size_t space_left, int *bytes_copied) 6277 { 6278 struct sctp_sockaddr_entry *addr; 6279 union sctp_addr temp; 6280 int cnt = 0; 6281 int addrlen; 6282 struct net *net = sock_net(sk); 6283 6284 rcu_read_lock(); 6285 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6286 if (!addr->valid) 6287 continue; 6288 6289 if ((PF_INET == sk->sk_family) && 6290 (AF_INET6 == addr->a.sa.sa_family)) 6291 continue; 6292 if ((PF_INET6 == sk->sk_family) && 6293 inet_v6_ipv6only(sk) && 6294 (AF_INET == addr->a.sa.sa_family)) 6295 continue; 6296 memcpy(&temp, &addr->a, sizeof(temp)); 6297 if (!temp.v4.sin_port) 6298 temp.v4.sin_port = htons(port); 6299 6300 addrlen = sctp_get_pf_specific(sk->sk_family) 6301 ->addr_to_user(sctp_sk(sk), &temp); 6302 6303 if (space_left < addrlen) { 6304 cnt = -ENOMEM; 6305 break; 6306 } 6307 memcpy(to, &temp, addrlen); 6308 6309 to += addrlen; 6310 cnt++; 6311 space_left -= addrlen; 6312 *bytes_copied += addrlen; 6313 } 6314 rcu_read_unlock(); 6315 6316 return cnt; 6317 } 6318 6319 6320 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6321 char __user *optval, int __user *optlen) 6322 { 6323 struct sctp_bind_addr *bp; 6324 struct sctp_association *asoc; 6325 int cnt = 0; 6326 struct sctp_getaddrs getaddrs; 6327 struct sctp_sockaddr_entry *addr; 6328 void __user *to; 6329 union sctp_addr temp; 6330 struct sctp_sock *sp = sctp_sk(sk); 6331 int addrlen; 6332 int err = 0; 6333 size_t space_left; 6334 int bytes_copied = 0; 6335 void *addrs; 6336 void *buf; 6337 6338 if (len < sizeof(struct sctp_getaddrs)) 6339 return -EINVAL; 6340 6341 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6342 return -EFAULT; 6343 6344 /* 6345 * For UDP-style sockets, id specifies the association to query. 6346 * If the id field is set to the value '0' then the locally bound 6347 * addresses are returned without regard to any particular 6348 * association. 6349 */ 6350 if (0 == getaddrs.assoc_id) { 6351 bp = &sctp_sk(sk)->ep->base.bind_addr; 6352 } else { 6353 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6354 if (!asoc) 6355 return -EINVAL; 6356 bp = &asoc->base.bind_addr; 6357 } 6358 6359 to = optval + offsetof(struct sctp_getaddrs, addrs); 6360 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6361 6362 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6363 if (!addrs) 6364 return -ENOMEM; 6365 6366 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6367 * addresses from the global local address list. 6368 */ 6369 if (sctp_list_single_entry(&bp->address_list)) { 6370 addr = list_entry(bp->address_list.next, 6371 struct sctp_sockaddr_entry, list); 6372 if (sctp_is_any(sk, &addr->a)) { 6373 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6374 space_left, &bytes_copied); 6375 if (cnt < 0) { 6376 err = cnt; 6377 goto out; 6378 } 6379 goto copy_getaddrs; 6380 } 6381 } 6382 6383 buf = addrs; 6384 /* Protection on the bound address list is not needed since 6385 * in the socket option context we hold a socket lock and 6386 * thus the bound address list can't change. 6387 */ 6388 list_for_each_entry(addr, &bp->address_list, list) { 6389 memcpy(&temp, &addr->a, sizeof(temp)); 6390 addrlen = sctp_get_pf_specific(sk->sk_family) 6391 ->addr_to_user(sp, &temp); 6392 if (space_left < addrlen) { 6393 err = -ENOMEM; /*fixme: right error?*/ 6394 goto out; 6395 } 6396 memcpy(buf, &temp, addrlen); 6397 buf += addrlen; 6398 bytes_copied += addrlen; 6399 cnt++; 6400 space_left -= addrlen; 6401 } 6402 6403 copy_getaddrs: 6404 if (copy_to_user(to, addrs, bytes_copied)) { 6405 err = -EFAULT; 6406 goto out; 6407 } 6408 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6409 err = -EFAULT; 6410 goto out; 6411 } 6412 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6413 * but we can't change it anymore. 6414 */ 6415 if (put_user(bytes_copied, optlen)) 6416 err = -EFAULT; 6417 out: 6418 kfree(addrs); 6419 return err; 6420 } 6421 6422 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6423 * 6424 * Requests that the local SCTP stack use the enclosed peer address as 6425 * the association primary. The enclosed address must be one of the 6426 * association peer's addresses. 6427 */ 6428 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6429 char __user *optval, int __user *optlen) 6430 { 6431 struct sctp_prim prim; 6432 struct sctp_association *asoc; 6433 struct sctp_sock *sp = sctp_sk(sk); 6434 6435 if (len < sizeof(struct sctp_prim)) 6436 return -EINVAL; 6437 6438 len = sizeof(struct sctp_prim); 6439 6440 if (copy_from_user(&prim, optval, len)) 6441 return -EFAULT; 6442 6443 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6444 if (!asoc) 6445 return -EINVAL; 6446 6447 if (!asoc->peer.primary_path) 6448 return -ENOTCONN; 6449 6450 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6451 asoc->peer.primary_path->af_specific->sockaddr_len); 6452 6453 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6454 (union sctp_addr *)&prim.ssp_addr); 6455 6456 if (put_user(len, optlen)) 6457 return -EFAULT; 6458 if (copy_to_user(optval, &prim, len)) 6459 return -EFAULT; 6460 6461 return 0; 6462 } 6463 6464 /* 6465 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6466 * 6467 * Requests that the local endpoint set the specified Adaptation Layer 6468 * Indication parameter for all future INIT and INIT-ACK exchanges. 6469 */ 6470 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6471 char __user *optval, int __user *optlen) 6472 { 6473 struct sctp_setadaptation adaptation; 6474 6475 if (len < sizeof(struct sctp_setadaptation)) 6476 return -EINVAL; 6477 6478 len = sizeof(struct sctp_setadaptation); 6479 6480 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6481 6482 if (put_user(len, optlen)) 6483 return -EFAULT; 6484 if (copy_to_user(optval, &adaptation, len)) 6485 return -EFAULT; 6486 6487 return 0; 6488 } 6489 6490 /* 6491 * 6492 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6493 * 6494 * Applications that wish to use the sendto() system call may wish to 6495 * specify a default set of parameters that would normally be supplied 6496 * through the inclusion of ancillary data. This socket option allows 6497 * such an application to set the default sctp_sndrcvinfo structure. 6498 6499 6500 * The application that wishes to use this socket option simply passes 6501 * in to this call the sctp_sndrcvinfo structure defined in Section 6502 * 5.2.2) The input parameters accepted by this call include 6503 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6504 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6505 * to this call if the caller is using the UDP model. 6506 * 6507 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6508 */ 6509 static int sctp_getsockopt_default_send_param(struct sock *sk, 6510 int len, char __user *optval, 6511 int __user *optlen) 6512 { 6513 struct sctp_sock *sp = sctp_sk(sk); 6514 struct sctp_association *asoc; 6515 struct sctp_sndrcvinfo info; 6516 6517 if (len < sizeof(info)) 6518 return -EINVAL; 6519 6520 len = sizeof(info); 6521 6522 if (copy_from_user(&info, optval, len)) 6523 return -EFAULT; 6524 6525 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6526 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6527 sctp_style(sk, UDP)) 6528 return -EINVAL; 6529 6530 if (asoc) { 6531 info.sinfo_stream = asoc->default_stream; 6532 info.sinfo_flags = asoc->default_flags; 6533 info.sinfo_ppid = asoc->default_ppid; 6534 info.sinfo_context = asoc->default_context; 6535 info.sinfo_timetolive = asoc->default_timetolive; 6536 } else { 6537 info.sinfo_stream = sp->default_stream; 6538 info.sinfo_flags = sp->default_flags; 6539 info.sinfo_ppid = sp->default_ppid; 6540 info.sinfo_context = sp->default_context; 6541 info.sinfo_timetolive = sp->default_timetolive; 6542 } 6543 6544 if (put_user(len, optlen)) 6545 return -EFAULT; 6546 if (copy_to_user(optval, &info, len)) 6547 return -EFAULT; 6548 6549 return 0; 6550 } 6551 6552 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6553 * (SCTP_DEFAULT_SNDINFO) 6554 */ 6555 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6556 char __user *optval, 6557 int __user *optlen) 6558 { 6559 struct sctp_sock *sp = sctp_sk(sk); 6560 struct sctp_association *asoc; 6561 struct sctp_sndinfo info; 6562 6563 if (len < sizeof(info)) 6564 return -EINVAL; 6565 6566 len = sizeof(info); 6567 6568 if (copy_from_user(&info, optval, len)) 6569 return -EFAULT; 6570 6571 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6572 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6573 sctp_style(sk, UDP)) 6574 return -EINVAL; 6575 6576 if (asoc) { 6577 info.snd_sid = asoc->default_stream; 6578 info.snd_flags = asoc->default_flags; 6579 info.snd_ppid = asoc->default_ppid; 6580 info.snd_context = asoc->default_context; 6581 } else { 6582 info.snd_sid = sp->default_stream; 6583 info.snd_flags = sp->default_flags; 6584 info.snd_ppid = sp->default_ppid; 6585 info.snd_context = sp->default_context; 6586 } 6587 6588 if (put_user(len, optlen)) 6589 return -EFAULT; 6590 if (copy_to_user(optval, &info, len)) 6591 return -EFAULT; 6592 6593 return 0; 6594 } 6595 6596 /* 6597 * 6598 * 7.1.5 SCTP_NODELAY 6599 * 6600 * Turn on/off any Nagle-like algorithm. This means that packets are 6601 * generally sent as soon as possible and no unnecessary delays are 6602 * introduced, at the cost of more packets in the network. Expects an 6603 * integer boolean flag. 6604 */ 6605 6606 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6607 char __user *optval, int __user *optlen) 6608 { 6609 int val; 6610 6611 if (len < sizeof(int)) 6612 return -EINVAL; 6613 6614 len = sizeof(int); 6615 val = (sctp_sk(sk)->nodelay == 1); 6616 if (put_user(len, optlen)) 6617 return -EFAULT; 6618 if (copy_to_user(optval, &val, len)) 6619 return -EFAULT; 6620 return 0; 6621 } 6622 6623 /* 6624 * 6625 * 7.1.1 SCTP_RTOINFO 6626 * 6627 * The protocol parameters used to initialize and bound retransmission 6628 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6629 * and modify these parameters. 6630 * All parameters are time values, in milliseconds. A value of 0, when 6631 * modifying the parameters, indicates that the current value should not 6632 * be changed. 6633 * 6634 */ 6635 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6636 char __user *optval, 6637 int __user *optlen) { 6638 struct sctp_rtoinfo rtoinfo; 6639 struct sctp_association *asoc; 6640 6641 if (len < sizeof (struct sctp_rtoinfo)) 6642 return -EINVAL; 6643 6644 len = sizeof(struct sctp_rtoinfo); 6645 6646 if (copy_from_user(&rtoinfo, optval, len)) 6647 return -EFAULT; 6648 6649 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6650 6651 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6652 sctp_style(sk, UDP)) 6653 return -EINVAL; 6654 6655 /* Values corresponding to the specific association. */ 6656 if (asoc) { 6657 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6658 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6659 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6660 } else { 6661 /* Values corresponding to the endpoint. */ 6662 struct sctp_sock *sp = sctp_sk(sk); 6663 6664 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6665 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6666 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6667 } 6668 6669 if (put_user(len, optlen)) 6670 return -EFAULT; 6671 6672 if (copy_to_user(optval, &rtoinfo, len)) 6673 return -EFAULT; 6674 6675 return 0; 6676 } 6677 6678 /* 6679 * 6680 * 7.1.2 SCTP_ASSOCINFO 6681 * 6682 * This option is used to tune the maximum retransmission attempts 6683 * of the association. 6684 * Returns an error if the new association retransmission value is 6685 * greater than the sum of the retransmission value of the peer. 6686 * See [SCTP] for more information. 6687 * 6688 */ 6689 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6690 char __user *optval, 6691 int __user *optlen) 6692 { 6693 6694 struct sctp_assocparams assocparams; 6695 struct sctp_association *asoc; 6696 struct list_head *pos; 6697 int cnt = 0; 6698 6699 if (len < sizeof (struct sctp_assocparams)) 6700 return -EINVAL; 6701 6702 len = sizeof(struct sctp_assocparams); 6703 6704 if (copy_from_user(&assocparams, optval, len)) 6705 return -EFAULT; 6706 6707 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6708 6709 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6710 sctp_style(sk, UDP)) 6711 return -EINVAL; 6712 6713 /* Values correspoinding to the specific association */ 6714 if (asoc) { 6715 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6716 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6717 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6718 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6719 6720 list_for_each(pos, &asoc->peer.transport_addr_list) { 6721 cnt++; 6722 } 6723 6724 assocparams.sasoc_number_peer_destinations = cnt; 6725 } else { 6726 /* Values corresponding to the endpoint */ 6727 struct sctp_sock *sp = sctp_sk(sk); 6728 6729 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6730 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6731 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6732 assocparams.sasoc_cookie_life = 6733 sp->assocparams.sasoc_cookie_life; 6734 assocparams.sasoc_number_peer_destinations = 6735 sp->assocparams. 6736 sasoc_number_peer_destinations; 6737 } 6738 6739 if (put_user(len, optlen)) 6740 return -EFAULT; 6741 6742 if (copy_to_user(optval, &assocparams, len)) 6743 return -EFAULT; 6744 6745 return 0; 6746 } 6747 6748 /* 6749 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6750 * 6751 * This socket option is a boolean flag which turns on or off mapped V4 6752 * addresses. If this option is turned on and the socket is type 6753 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6754 * If this option is turned off, then no mapping will be done of V4 6755 * addresses and a user will receive both PF_INET6 and PF_INET type 6756 * addresses on the socket. 6757 */ 6758 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6759 char __user *optval, int __user *optlen) 6760 { 6761 int val; 6762 struct sctp_sock *sp = sctp_sk(sk); 6763 6764 if (len < sizeof(int)) 6765 return -EINVAL; 6766 6767 len = sizeof(int); 6768 val = sp->v4mapped; 6769 if (put_user(len, optlen)) 6770 return -EFAULT; 6771 if (copy_to_user(optval, &val, len)) 6772 return -EFAULT; 6773 6774 return 0; 6775 } 6776 6777 /* 6778 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6779 * (chapter and verse is quoted at sctp_setsockopt_context()) 6780 */ 6781 static int sctp_getsockopt_context(struct sock *sk, int len, 6782 char __user *optval, int __user *optlen) 6783 { 6784 struct sctp_assoc_value params; 6785 struct sctp_association *asoc; 6786 6787 if (len < sizeof(struct sctp_assoc_value)) 6788 return -EINVAL; 6789 6790 len = sizeof(struct sctp_assoc_value); 6791 6792 if (copy_from_user(¶ms, optval, len)) 6793 return -EFAULT; 6794 6795 asoc = sctp_id2assoc(sk, params.assoc_id); 6796 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6797 sctp_style(sk, UDP)) 6798 return -EINVAL; 6799 6800 params.assoc_value = asoc ? asoc->default_rcv_context 6801 : sctp_sk(sk)->default_rcv_context; 6802 6803 if (put_user(len, optlen)) 6804 return -EFAULT; 6805 if (copy_to_user(optval, ¶ms, len)) 6806 return -EFAULT; 6807 6808 return 0; 6809 } 6810 6811 /* 6812 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6813 * This option will get or set the maximum size to put in any outgoing 6814 * SCTP DATA chunk. If a message is larger than this size it will be 6815 * fragmented by SCTP into the specified size. Note that the underlying 6816 * SCTP implementation may fragment into smaller sized chunks when the 6817 * PMTU of the underlying association is smaller than the value set by 6818 * the user. The default value for this option is '0' which indicates 6819 * the user is NOT limiting fragmentation and only the PMTU will effect 6820 * SCTP's choice of DATA chunk size. Note also that values set larger 6821 * than the maximum size of an IP datagram will effectively let SCTP 6822 * control fragmentation (i.e. the same as setting this option to 0). 6823 * 6824 * The following structure is used to access and modify this parameter: 6825 * 6826 * struct sctp_assoc_value { 6827 * sctp_assoc_t assoc_id; 6828 * uint32_t assoc_value; 6829 * }; 6830 * 6831 * assoc_id: This parameter is ignored for one-to-one style sockets. 6832 * For one-to-many style sockets this parameter indicates which 6833 * association the user is performing an action upon. Note that if 6834 * this field's value is zero then the endpoints default value is 6835 * changed (effecting future associations only). 6836 * assoc_value: This parameter specifies the maximum size in bytes. 6837 */ 6838 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6839 char __user *optval, int __user *optlen) 6840 { 6841 struct sctp_assoc_value params; 6842 struct sctp_association *asoc; 6843 6844 if (len == sizeof(int)) { 6845 pr_warn_ratelimited(DEPRECATED 6846 "%s (pid %d) " 6847 "Use of int in maxseg socket option.\n" 6848 "Use struct sctp_assoc_value instead\n", 6849 current->comm, task_pid_nr(current)); 6850 params.assoc_id = SCTP_FUTURE_ASSOC; 6851 } else if (len >= sizeof(struct sctp_assoc_value)) { 6852 len = sizeof(struct sctp_assoc_value); 6853 if (copy_from_user(¶ms, optval, len)) 6854 return -EFAULT; 6855 } else 6856 return -EINVAL; 6857 6858 asoc = sctp_id2assoc(sk, params.assoc_id); 6859 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6860 sctp_style(sk, UDP)) 6861 return -EINVAL; 6862 6863 if (asoc) 6864 params.assoc_value = asoc->frag_point; 6865 else 6866 params.assoc_value = sctp_sk(sk)->user_frag; 6867 6868 if (put_user(len, optlen)) 6869 return -EFAULT; 6870 if (len == sizeof(int)) { 6871 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6872 return -EFAULT; 6873 } else { 6874 if (copy_to_user(optval, ¶ms, len)) 6875 return -EFAULT; 6876 } 6877 6878 return 0; 6879 } 6880 6881 /* 6882 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6883 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6884 */ 6885 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6886 char __user *optval, int __user *optlen) 6887 { 6888 int val; 6889 6890 if (len < sizeof(int)) 6891 return -EINVAL; 6892 6893 len = sizeof(int); 6894 6895 val = sctp_sk(sk)->frag_interleave; 6896 if (put_user(len, optlen)) 6897 return -EFAULT; 6898 if (copy_to_user(optval, &val, len)) 6899 return -EFAULT; 6900 6901 return 0; 6902 } 6903 6904 /* 6905 * 7.1.25. Set or Get the sctp partial delivery point 6906 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6907 */ 6908 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6909 char __user *optval, 6910 int __user *optlen) 6911 { 6912 u32 val; 6913 6914 if (len < sizeof(u32)) 6915 return -EINVAL; 6916 6917 len = sizeof(u32); 6918 6919 val = sctp_sk(sk)->pd_point; 6920 if (put_user(len, optlen)) 6921 return -EFAULT; 6922 if (copy_to_user(optval, &val, len)) 6923 return -EFAULT; 6924 6925 return 0; 6926 } 6927 6928 /* 6929 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6930 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6931 */ 6932 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6933 char __user *optval, 6934 int __user *optlen) 6935 { 6936 struct sctp_assoc_value params; 6937 struct sctp_association *asoc; 6938 6939 if (len == sizeof(int)) { 6940 pr_warn_ratelimited(DEPRECATED 6941 "%s (pid %d) " 6942 "Use of int in max_burst socket option.\n" 6943 "Use struct sctp_assoc_value instead\n", 6944 current->comm, task_pid_nr(current)); 6945 params.assoc_id = SCTP_FUTURE_ASSOC; 6946 } else if (len >= sizeof(struct sctp_assoc_value)) { 6947 len = sizeof(struct sctp_assoc_value); 6948 if (copy_from_user(¶ms, optval, len)) 6949 return -EFAULT; 6950 } else 6951 return -EINVAL; 6952 6953 asoc = sctp_id2assoc(sk, params.assoc_id); 6954 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6955 sctp_style(sk, UDP)) 6956 return -EINVAL; 6957 6958 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6959 6960 if (len == sizeof(int)) { 6961 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6962 return -EFAULT; 6963 } else { 6964 if (copy_to_user(optval, ¶ms, len)) 6965 return -EFAULT; 6966 } 6967 6968 return 0; 6969 6970 } 6971 6972 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6973 char __user *optval, int __user *optlen) 6974 { 6975 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6976 struct sctp_hmacalgo __user *p = (void __user *)optval; 6977 struct sctp_hmac_algo_param *hmacs; 6978 __u16 data_len = 0; 6979 u32 num_idents; 6980 int i; 6981 6982 if (!ep->auth_enable) 6983 return -EACCES; 6984 6985 hmacs = ep->auth_hmacs_list; 6986 data_len = ntohs(hmacs->param_hdr.length) - 6987 sizeof(struct sctp_paramhdr); 6988 6989 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6990 return -EINVAL; 6991 6992 len = sizeof(struct sctp_hmacalgo) + data_len; 6993 num_idents = data_len / sizeof(u16); 6994 6995 if (put_user(len, optlen)) 6996 return -EFAULT; 6997 if (put_user(num_idents, &p->shmac_num_idents)) 6998 return -EFAULT; 6999 for (i = 0; i < num_idents; i++) { 7000 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 7001 7002 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 7003 return -EFAULT; 7004 } 7005 return 0; 7006 } 7007 7008 static int sctp_getsockopt_active_key(struct sock *sk, int len, 7009 char __user *optval, int __user *optlen) 7010 { 7011 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7012 struct sctp_authkeyid val; 7013 struct sctp_association *asoc; 7014 7015 if (len < sizeof(struct sctp_authkeyid)) 7016 return -EINVAL; 7017 7018 len = sizeof(struct sctp_authkeyid); 7019 if (copy_from_user(&val, optval, len)) 7020 return -EFAULT; 7021 7022 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 7023 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 7024 return -EINVAL; 7025 7026 if (asoc) { 7027 if (!asoc->peer.auth_capable) 7028 return -EACCES; 7029 val.scact_keynumber = asoc->active_key_id; 7030 } else { 7031 if (!ep->auth_enable) 7032 return -EACCES; 7033 val.scact_keynumber = ep->active_key_id; 7034 } 7035 7036 if (put_user(len, optlen)) 7037 return -EFAULT; 7038 if (copy_to_user(optval, &val, len)) 7039 return -EFAULT; 7040 7041 return 0; 7042 } 7043 7044 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 7045 char __user *optval, int __user *optlen) 7046 { 7047 struct sctp_authchunks __user *p = (void __user *)optval; 7048 struct sctp_authchunks val; 7049 struct sctp_association *asoc; 7050 struct sctp_chunks_param *ch; 7051 u32 num_chunks = 0; 7052 char __user *to; 7053 7054 if (len < sizeof(struct sctp_authchunks)) 7055 return -EINVAL; 7056 7057 if (copy_from_user(&val, optval, sizeof(val))) 7058 return -EFAULT; 7059 7060 to = p->gauth_chunks; 7061 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7062 if (!asoc) 7063 return -EINVAL; 7064 7065 if (!asoc->peer.auth_capable) 7066 return -EACCES; 7067 7068 ch = asoc->peer.peer_chunks; 7069 if (!ch) 7070 goto num; 7071 7072 /* See if the user provided enough room for all the data */ 7073 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7074 if (len < num_chunks) 7075 return -EINVAL; 7076 7077 if (copy_to_user(to, ch->chunks, num_chunks)) 7078 return -EFAULT; 7079 num: 7080 len = sizeof(struct sctp_authchunks) + num_chunks; 7081 if (put_user(len, optlen)) 7082 return -EFAULT; 7083 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7084 return -EFAULT; 7085 return 0; 7086 } 7087 7088 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7089 char __user *optval, int __user *optlen) 7090 { 7091 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7092 struct sctp_authchunks __user *p = (void __user *)optval; 7093 struct sctp_authchunks val; 7094 struct sctp_association *asoc; 7095 struct sctp_chunks_param *ch; 7096 u32 num_chunks = 0; 7097 char __user *to; 7098 7099 if (len < sizeof(struct sctp_authchunks)) 7100 return -EINVAL; 7101 7102 if (copy_from_user(&val, optval, sizeof(val))) 7103 return -EFAULT; 7104 7105 to = p->gauth_chunks; 7106 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7107 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7108 sctp_style(sk, UDP)) 7109 return -EINVAL; 7110 7111 if (asoc) { 7112 if (!asoc->peer.auth_capable) 7113 return -EACCES; 7114 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7115 } else { 7116 if (!ep->auth_enable) 7117 return -EACCES; 7118 ch = ep->auth_chunk_list; 7119 } 7120 if (!ch) 7121 goto num; 7122 7123 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7124 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7125 return -EINVAL; 7126 7127 if (copy_to_user(to, ch->chunks, num_chunks)) 7128 return -EFAULT; 7129 num: 7130 len = sizeof(struct sctp_authchunks) + num_chunks; 7131 if (put_user(len, optlen)) 7132 return -EFAULT; 7133 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7134 return -EFAULT; 7135 7136 return 0; 7137 } 7138 7139 /* 7140 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7141 * This option gets the current number of associations that are attached 7142 * to a one-to-many style socket. The option value is an uint32_t. 7143 */ 7144 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7145 char __user *optval, int __user *optlen) 7146 { 7147 struct sctp_sock *sp = sctp_sk(sk); 7148 struct sctp_association *asoc; 7149 u32 val = 0; 7150 7151 if (sctp_style(sk, TCP)) 7152 return -EOPNOTSUPP; 7153 7154 if (len < sizeof(u32)) 7155 return -EINVAL; 7156 7157 len = sizeof(u32); 7158 7159 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7160 val++; 7161 } 7162 7163 if (put_user(len, optlen)) 7164 return -EFAULT; 7165 if (copy_to_user(optval, &val, len)) 7166 return -EFAULT; 7167 7168 return 0; 7169 } 7170 7171 /* 7172 * 8.1.23 SCTP_AUTO_ASCONF 7173 * See the corresponding setsockopt entry as description 7174 */ 7175 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7176 char __user *optval, int __user *optlen) 7177 { 7178 int val = 0; 7179 7180 if (len < sizeof(int)) 7181 return -EINVAL; 7182 7183 len = sizeof(int); 7184 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7185 val = 1; 7186 if (put_user(len, optlen)) 7187 return -EFAULT; 7188 if (copy_to_user(optval, &val, len)) 7189 return -EFAULT; 7190 return 0; 7191 } 7192 7193 /* 7194 * 8.2.6. Get the Current Identifiers of Associations 7195 * (SCTP_GET_ASSOC_ID_LIST) 7196 * 7197 * This option gets the current list of SCTP association identifiers of 7198 * the SCTP associations handled by a one-to-many style socket. 7199 */ 7200 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7201 char __user *optval, int __user *optlen) 7202 { 7203 struct sctp_sock *sp = sctp_sk(sk); 7204 struct sctp_association *asoc; 7205 struct sctp_assoc_ids *ids; 7206 u32 num = 0; 7207 7208 if (sctp_style(sk, TCP)) 7209 return -EOPNOTSUPP; 7210 7211 if (len < sizeof(struct sctp_assoc_ids)) 7212 return -EINVAL; 7213 7214 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7215 num++; 7216 } 7217 7218 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7219 return -EINVAL; 7220 7221 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7222 7223 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7224 if (unlikely(!ids)) 7225 return -ENOMEM; 7226 7227 ids->gaids_number_of_ids = num; 7228 num = 0; 7229 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7230 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7231 } 7232 7233 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7234 kfree(ids); 7235 return -EFAULT; 7236 } 7237 7238 kfree(ids); 7239 return 0; 7240 } 7241 7242 /* 7243 * SCTP_PEER_ADDR_THLDS 7244 * 7245 * This option allows us to fetch the partially failed threshold for one or all 7246 * transports in an association. See Section 6.1 of: 7247 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7248 */ 7249 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7250 char __user *optval, int len, 7251 int __user *optlen, bool v2) 7252 { 7253 struct sctp_paddrthlds_v2 val; 7254 struct sctp_transport *trans; 7255 struct sctp_association *asoc; 7256 int min; 7257 7258 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7259 if (len < min) 7260 return -EINVAL; 7261 len = min; 7262 if (copy_from_user(&val, optval, len)) 7263 return -EFAULT; 7264 7265 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7266 trans = sctp_addr_id2transport(sk, &val.spt_address, 7267 val.spt_assoc_id); 7268 if (!trans) 7269 return -ENOENT; 7270 7271 val.spt_pathmaxrxt = trans->pathmaxrxt; 7272 val.spt_pathpfthld = trans->pf_retrans; 7273 val.spt_pathcpthld = trans->ps_retrans; 7274 7275 goto out; 7276 } 7277 7278 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7279 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7280 sctp_style(sk, UDP)) 7281 return -EINVAL; 7282 7283 if (asoc) { 7284 val.spt_pathpfthld = asoc->pf_retrans; 7285 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7286 val.spt_pathcpthld = asoc->ps_retrans; 7287 } else { 7288 struct sctp_sock *sp = sctp_sk(sk); 7289 7290 val.spt_pathpfthld = sp->pf_retrans; 7291 val.spt_pathmaxrxt = sp->pathmaxrxt; 7292 val.spt_pathcpthld = sp->ps_retrans; 7293 } 7294 7295 out: 7296 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7297 return -EFAULT; 7298 7299 return 0; 7300 } 7301 7302 /* 7303 * SCTP_GET_ASSOC_STATS 7304 * 7305 * This option retrieves local per endpoint statistics. It is modeled 7306 * after OpenSolaris' implementation 7307 */ 7308 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7309 char __user *optval, 7310 int __user *optlen) 7311 { 7312 struct sctp_assoc_stats sas; 7313 struct sctp_association *asoc = NULL; 7314 7315 /* User must provide at least the assoc id */ 7316 if (len < sizeof(sctp_assoc_t)) 7317 return -EINVAL; 7318 7319 /* Allow the struct to grow and fill in as much as possible */ 7320 len = min_t(size_t, len, sizeof(sas)); 7321 7322 if (copy_from_user(&sas, optval, len)) 7323 return -EFAULT; 7324 7325 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7326 if (!asoc) 7327 return -EINVAL; 7328 7329 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7330 sas.sas_gapcnt = asoc->stats.gapcnt; 7331 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7332 sas.sas_osacks = asoc->stats.osacks; 7333 sas.sas_isacks = asoc->stats.isacks; 7334 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7335 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7336 sas.sas_oodchunks = asoc->stats.oodchunks; 7337 sas.sas_iodchunks = asoc->stats.iodchunks; 7338 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7339 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7340 sas.sas_idupchunks = asoc->stats.idupchunks; 7341 sas.sas_opackets = asoc->stats.opackets; 7342 sas.sas_ipackets = asoc->stats.ipackets; 7343 7344 /* New high max rto observed, will return 0 if not a single 7345 * RTO update took place. obs_rto_ipaddr will be bogus 7346 * in such a case 7347 */ 7348 sas.sas_maxrto = asoc->stats.max_obs_rto; 7349 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7350 sizeof(struct sockaddr_storage)); 7351 7352 /* Mark beginning of a new observation period */ 7353 asoc->stats.max_obs_rto = asoc->rto_min; 7354 7355 if (put_user(len, optlen)) 7356 return -EFAULT; 7357 7358 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7359 7360 if (copy_to_user(optval, &sas, len)) 7361 return -EFAULT; 7362 7363 return 0; 7364 } 7365 7366 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7367 char __user *optval, 7368 int __user *optlen) 7369 { 7370 int val = 0; 7371 7372 if (len < sizeof(int)) 7373 return -EINVAL; 7374 7375 len = sizeof(int); 7376 if (sctp_sk(sk)->recvrcvinfo) 7377 val = 1; 7378 if (put_user(len, optlen)) 7379 return -EFAULT; 7380 if (copy_to_user(optval, &val, len)) 7381 return -EFAULT; 7382 7383 return 0; 7384 } 7385 7386 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7387 char __user *optval, 7388 int __user *optlen) 7389 { 7390 int val = 0; 7391 7392 if (len < sizeof(int)) 7393 return -EINVAL; 7394 7395 len = sizeof(int); 7396 if (sctp_sk(sk)->recvnxtinfo) 7397 val = 1; 7398 if (put_user(len, optlen)) 7399 return -EFAULT; 7400 if (copy_to_user(optval, &val, len)) 7401 return -EFAULT; 7402 7403 return 0; 7404 } 7405 7406 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7407 char __user *optval, 7408 int __user *optlen) 7409 { 7410 struct sctp_assoc_value params; 7411 struct sctp_association *asoc; 7412 int retval = -EFAULT; 7413 7414 if (len < sizeof(params)) { 7415 retval = -EINVAL; 7416 goto out; 7417 } 7418 7419 len = sizeof(params); 7420 if (copy_from_user(¶ms, optval, len)) 7421 goto out; 7422 7423 asoc = sctp_id2assoc(sk, params.assoc_id); 7424 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7425 sctp_style(sk, UDP)) { 7426 retval = -EINVAL; 7427 goto out; 7428 } 7429 7430 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7431 : sctp_sk(sk)->ep->prsctp_enable; 7432 7433 if (put_user(len, optlen)) 7434 goto out; 7435 7436 if (copy_to_user(optval, ¶ms, len)) 7437 goto out; 7438 7439 retval = 0; 7440 7441 out: 7442 return retval; 7443 } 7444 7445 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7446 char __user *optval, 7447 int __user *optlen) 7448 { 7449 struct sctp_default_prinfo info; 7450 struct sctp_association *asoc; 7451 int retval = -EFAULT; 7452 7453 if (len < sizeof(info)) { 7454 retval = -EINVAL; 7455 goto out; 7456 } 7457 7458 len = sizeof(info); 7459 if (copy_from_user(&info, optval, len)) 7460 goto out; 7461 7462 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7463 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7464 sctp_style(sk, UDP)) { 7465 retval = -EINVAL; 7466 goto out; 7467 } 7468 7469 if (asoc) { 7470 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7471 info.pr_value = asoc->default_timetolive; 7472 } else { 7473 struct sctp_sock *sp = sctp_sk(sk); 7474 7475 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7476 info.pr_value = sp->default_timetolive; 7477 } 7478 7479 if (put_user(len, optlen)) 7480 goto out; 7481 7482 if (copy_to_user(optval, &info, len)) 7483 goto out; 7484 7485 retval = 0; 7486 7487 out: 7488 return retval; 7489 } 7490 7491 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7492 char __user *optval, 7493 int __user *optlen) 7494 { 7495 struct sctp_prstatus params; 7496 struct sctp_association *asoc; 7497 int policy; 7498 int retval = -EINVAL; 7499 7500 if (len < sizeof(params)) 7501 goto out; 7502 7503 len = sizeof(params); 7504 if (copy_from_user(¶ms, optval, len)) { 7505 retval = -EFAULT; 7506 goto out; 7507 } 7508 7509 policy = params.sprstat_policy; 7510 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7511 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7512 goto out; 7513 7514 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7515 if (!asoc) 7516 goto out; 7517 7518 if (policy == SCTP_PR_SCTP_ALL) { 7519 params.sprstat_abandoned_unsent = 0; 7520 params.sprstat_abandoned_sent = 0; 7521 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7522 params.sprstat_abandoned_unsent += 7523 asoc->abandoned_unsent[policy]; 7524 params.sprstat_abandoned_sent += 7525 asoc->abandoned_sent[policy]; 7526 } 7527 } else { 7528 params.sprstat_abandoned_unsent = 7529 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7530 params.sprstat_abandoned_sent = 7531 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7532 } 7533 7534 if (put_user(len, optlen)) { 7535 retval = -EFAULT; 7536 goto out; 7537 } 7538 7539 if (copy_to_user(optval, ¶ms, len)) { 7540 retval = -EFAULT; 7541 goto out; 7542 } 7543 7544 retval = 0; 7545 7546 out: 7547 return retval; 7548 } 7549 7550 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7551 char __user *optval, 7552 int __user *optlen) 7553 { 7554 struct sctp_stream_out_ext *streamoute; 7555 struct sctp_association *asoc; 7556 struct sctp_prstatus params; 7557 int retval = -EINVAL; 7558 int policy; 7559 7560 if (len < sizeof(params)) 7561 goto out; 7562 7563 len = sizeof(params); 7564 if (copy_from_user(¶ms, optval, len)) { 7565 retval = -EFAULT; 7566 goto out; 7567 } 7568 7569 policy = params.sprstat_policy; 7570 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7571 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7572 goto out; 7573 7574 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7575 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7576 goto out; 7577 7578 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7579 if (!streamoute) { 7580 /* Not allocated yet, means all stats are 0 */ 7581 params.sprstat_abandoned_unsent = 0; 7582 params.sprstat_abandoned_sent = 0; 7583 retval = 0; 7584 goto out; 7585 } 7586 7587 if (policy == SCTP_PR_SCTP_ALL) { 7588 params.sprstat_abandoned_unsent = 0; 7589 params.sprstat_abandoned_sent = 0; 7590 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7591 params.sprstat_abandoned_unsent += 7592 streamoute->abandoned_unsent[policy]; 7593 params.sprstat_abandoned_sent += 7594 streamoute->abandoned_sent[policy]; 7595 } 7596 } else { 7597 params.sprstat_abandoned_unsent = 7598 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7599 params.sprstat_abandoned_sent = 7600 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7601 } 7602 7603 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7604 retval = -EFAULT; 7605 goto out; 7606 } 7607 7608 retval = 0; 7609 7610 out: 7611 return retval; 7612 } 7613 7614 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7615 char __user *optval, 7616 int __user *optlen) 7617 { 7618 struct sctp_assoc_value params; 7619 struct sctp_association *asoc; 7620 int retval = -EFAULT; 7621 7622 if (len < sizeof(params)) { 7623 retval = -EINVAL; 7624 goto out; 7625 } 7626 7627 len = sizeof(params); 7628 if (copy_from_user(¶ms, optval, len)) 7629 goto out; 7630 7631 asoc = sctp_id2assoc(sk, params.assoc_id); 7632 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7633 sctp_style(sk, UDP)) { 7634 retval = -EINVAL; 7635 goto out; 7636 } 7637 7638 params.assoc_value = asoc ? asoc->peer.reconf_capable 7639 : sctp_sk(sk)->ep->reconf_enable; 7640 7641 if (put_user(len, optlen)) 7642 goto out; 7643 7644 if (copy_to_user(optval, ¶ms, len)) 7645 goto out; 7646 7647 retval = 0; 7648 7649 out: 7650 return retval; 7651 } 7652 7653 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7654 char __user *optval, 7655 int __user *optlen) 7656 { 7657 struct sctp_assoc_value params; 7658 struct sctp_association *asoc; 7659 int retval = -EFAULT; 7660 7661 if (len < sizeof(params)) { 7662 retval = -EINVAL; 7663 goto out; 7664 } 7665 7666 len = sizeof(params); 7667 if (copy_from_user(¶ms, optval, len)) 7668 goto out; 7669 7670 asoc = sctp_id2assoc(sk, params.assoc_id); 7671 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7672 sctp_style(sk, UDP)) { 7673 retval = -EINVAL; 7674 goto out; 7675 } 7676 7677 params.assoc_value = asoc ? asoc->strreset_enable 7678 : sctp_sk(sk)->ep->strreset_enable; 7679 7680 if (put_user(len, optlen)) 7681 goto out; 7682 7683 if (copy_to_user(optval, ¶ms, len)) 7684 goto out; 7685 7686 retval = 0; 7687 7688 out: 7689 return retval; 7690 } 7691 7692 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7693 char __user *optval, 7694 int __user *optlen) 7695 { 7696 struct sctp_assoc_value params; 7697 struct sctp_association *asoc; 7698 int retval = -EFAULT; 7699 7700 if (len < sizeof(params)) { 7701 retval = -EINVAL; 7702 goto out; 7703 } 7704 7705 len = sizeof(params); 7706 if (copy_from_user(¶ms, optval, len)) 7707 goto out; 7708 7709 asoc = sctp_id2assoc(sk, params.assoc_id); 7710 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7711 sctp_style(sk, UDP)) { 7712 retval = -EINVAL; 7713 goto out; 7714 } 7715 7716 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7717 : sctp_sk(sk)->default_ss; 7718 7719 if (put_user(len, optlen)) 7720 goto out; 7721 7722 if (copy_to_user(optval, ¶ms, len)) 7723 goto out; 7724 7725 retval = 0; 7726 7727 out: 7728 return retval; 7729 } 7730 7731 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7732 char __user *optval, 7733 int __user *optlen) 7734 { 7735 struct sctp_stream_value params; 7736 struct sctp_association *asoc; 7737 int retval = -EFAULT; 7738 7739 if (len < sizeof(params)) { 7740 retval = -EINVAL; 7741 goto out; 7742 } 7743 7744 len = sizeof(params); 7745 if (copy_from_user(¶ms, optval, len)) 7746 goto out; 7747 7748 asoc = sctp_id2assoc(sk, params.assoc_id); 7749 if (!asoc) { 7750 retval = -EINVAL; 7751 goto out; 7752 } 7753 7754 retval = sctp_sched_get_value(asoc, params.stream_id, 7755 ¶ms.stream_value); 7756 if (retval) 7757 goto out; 7758 7759 if (put_user(len, optlen)) { 7760 retval = -EFAULT; 7761 goto out; 7762 } 7763 7764 if (copy_to_user(optval, ¶ms, len)) { 7765 retval = -EFAULT; 7766 goto out; 7767 } 7768 7769 out: 7770 return retval; 7771 } 7772 7773 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7774 char __user *optval, 7775 int __user *optlen) 7776 { 7777 struct sctp_assoc_value params; 7778 struct sctp_association *asoc; 7779 int retval = -EFAULT; 7780 7781 if (len < sizeof(params)) { 7782 retval = -EINVAL; 7783 goto out; 7784 } 7785 7786 len = sizeof(params); 7787 if (copy_from_user(¶ms, optval, len)) 7788 goto out; 7789 7790 asoc = sctp_id2assoc(sk, params.assoc_id); 7791 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7792 sctp_style(sk, UDP)) { 7793 retval = -EINVAL; 7794 goto out; 7795 } 7796 7797 params.assoc_value = asoc ? asoc->peer.intl_capable 7798 : sctp_sk(sk)->ep->intl_enable; 7799 7800 if (put_user(len, optlen)) 7801 goto out; 7802 7803 if (copy_to_user(optval, ¶ms, len)) 7804 goto out; 7805 7806 retval = 0; 7807 7808 out: 7809 return retval; 7810 } 7811 7812 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7813 char __user *optval, 7814 int __user *optlen) 7815 { 7816 int val; 7817 7818 if (len < sizeof(int)) 7819 return -EINVAL; 7820 7821 len = sizeof(int); 7822 val = sctp_sk(sk)->reuse; 7823 if (put_user(len, optlen)) 7824 return -EFAULT; 7825 7826 if (copy_to_user(optval, &val, len)) 7827 return -EFAULT; 7828 7829 return 0; 7830 } 7831 7832 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7833 int __user *optlen) 7834 { 7835 struct sctp_association *asoc; 7836 struct sctp_event param; 7837 __u16 subscribe; 7838 7839 if (len < sizeof(param)) 7840 return -EINVAL; 7841 7842 len = sizeof(param); 7843 if (copy_from_user(¶m, optval, len)) 7844 return -EFAULT; 7845 7846 if (param.se_type < SCTP_SN_TYPE_BASE || 7847 param.se_type > SCTP_SN_TYPE_MAX) 7848 return -EINVAL; 7849 7850 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7851 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7852 sctp_style(sk, UDP)) 7853 return -EINVAL; 7854 7855 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7856 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7857 7858 if (put_user(len, optlen)) 7859 return -EFAULT; 7860 7861 if (copy_to_user(optval, ¶m, len)) 7862 return -EFAULT; 7863 7864 return 0; 7865 } 7866 7867 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7868 char __user *optval, 7869 int __user *optlen) 7870 { 7871 struct sctp_assoc_value params; 7872 struct sctp_association *asoc; 7873 int retval = -EFAULT; 7874 7875 if (len < sizeof(params)) { 7876 retval = -EINVAL; 7877 goto out; 7878 } 7879 7880 len = sizeof(params); 7881 if (copy_from_user(¶ms, optval, len)) 7882 goto out; 7883 7884 asoc = sctp_id2assoc(sk, params.assoc_id); 7885 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7886 sctp_style(sk, UDP)) { 7887 retval = -EINVAL; 7888 goto out; 7889 } 7890 7891 params.assoc_value = asoc ? asoc->peer.asconf_capable 7892 : sctp_sk(sk)->ep->asconf_enable; 7893 7894 if (put_user(len, optlen)) 7895 goto out; 7896 7897 if (copy_to_user(optval, ¶ms, len)) 7898 goto out; 7899 7900 retval = 0; 7901 7902 out: 7903 return retval; 7904 } 7905 7906 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7907 char __user *optval, 7908 int __user *optlen) 7909 { 7910 struct sctp_assoc_value params; 7911 struct sctp_association *asoc; 7912 int retval = -EFAULT; 7913 7914 if (len < sizeof(params)) { 7915 retval = -EINVAL; 7916 goto out; 7917 } 7918 7919 len = sizeof(params); 7920 if (copy_from_user(¶ms, optval, len)) 7921 goto out; 7922 7923 asoc = sctp_id2assoc(sk, params.assoc_id); 7924 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7925 sctp_style(sk, UDP)) { 7926 retval = -EINVAL; 7927 goto out; 7928 } 7929 7930 params.assoc_value = asoc ? asoc->peer.auth_capable 7931 : sctp_sk(sk)->ep->auth_enable; 7932 7933 if (put_user(len, optlen)) 7934 goto out; 7935 7936 if (copy_to_user(optval, ¶ms, len)) 7937 goto out; 7938 7939 retval = 0; 7940 7941 out: 7942 return retval; 7943 } 7944 7945 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7946 char __user *optval, 7947 int __user *optlen) 7948 { 7949 struct sctp_assoc_value params; 7950 struct sctp_association *asoc; 7951 int retval = -EFAULT; 7952 7953 if (len < sizeof(params)) { 7954 retval = -EINVAL; 7955 goto out; 7956 } 7957 7958 len = sizeof(params); 7959 if (copy_from_user(¶ms, optval, len)) 7960 goto out; 7961 7962 asoc = sctp_id2assoc(sk, params.assoc_id); 7963 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7964 sctp_style(sk, UDP)) { 7965 retval = -EINVAL; 7966 goto out; 7967 } 7968 7969 params.assoc_value = asoc ? asoc->peer.ecn_capable 7970 : sctp_sk(sk)->ep->ecn_enable; 7971 7972 if (put_user(len, optlen)) 7973 goto out; 7974 7975 if (copy_to_user(optval, ¶ms, len)) 7976 goto out; 7977 7978 retval = 0; 7979 7980 out: 7981 return retval; 7982 } 7983 7984 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7985 char __user *optval, 7986 int __user *optlen) 7987 { 7988 struct sctp_assoc_value params; 7989 struct sctp_association *asoc; 7990 int retval = -EFAULT; 7991 7992 if (len < sizeof(params)) { 7993 retval = -EINVAL; 7994 goto out; 7995 } 7996 7997 len = sizeof(params); 7998 if (copy_from_user(¶ms, optval, len)) 7999 goto out; 8000 8001 asoc = sctp_id2assoc(sk, params.assoc_id); 8002 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 8003 sctp_style(sk, UDP)) { 8004 retval = -EINVAL; 8005 goto out; 8006 } 8007 8008 params.assoc_value = asoc ? asoc->pf_expose 8009 : sctp_sk(sk)->pf_expose; 8010 8011 if (put_user(len, optlen)) 8012 goto out; 8013 8014 if (copy_to_user(optval, ¶ms, len)) 8015 goto out; 8016 8017 retval = 0; 8018 8019 out: 8020 return retval; 8021 } 8022 8023 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8024 char __user *optval, int __user *optlen) 8025 { 8026 int retval = 0; 8027 int len; 8028 8029 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8030 8031 /* I can hardly begin to describe how wrong this is. This is 8032 * so broken as to be worse than useless. The API draft 8033 * REALLY is NOT helpful here... I am not convinced that the 8034 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8035 * are at all well-founded. 8036 */ 8037 if (level != SOL_SCTP) { 8038 struct sctp_af *af = sctp_sk(sk)->pf->af; 8039 8040 retval = af->getsockopt(sk, level, optname, optval, optlen); 8041 return retval; 8042 } 8043 8044 if (get_user(len, optlen)) 8045 return -EFAULT; 8046 8047 if (len < 0) 8048 return -EINVAL; 8049 8050 lock_sock(sk); 8051 8052 switch (optname) { 8053 case SCTP_STATUS: 8054 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8055 break; 8056 case SCTP_DISABLE_FRAGMENTS: 8057 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8058 optlen); 8059 break; 8060 case SCTP_EVENTS: 8061 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8062 break; 8063 case SCTP_AUTOCLOSE: 8064 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8065 break; 8066 case SCTP_SOCKOPT_PEELOFF: 8067 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8068 break; 8069 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8070 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8071 break; 8072 case SCTP_PEER_ADDR_PARAMS: 8073 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8074 optlen); 8075 break; 8076 case SCTP_DELAYED_SACK: 8077 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8078 optlen); 8079 break; 8080 case SCTP_INITMSG: 8081 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8082 break; 8083 case SCTP_GET_PEER_ADDRS: 8084 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8085 optlen); 8086 break; 8087 case SCTP_GET_LOCAL_ADDRS: 8088 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8089 optlen); 8090 break; 8091 case SCTP_SOCKOPT_CONNECTX3: 8092 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8093 break; 8094 case SCTP_DEFAULT_SEND_PARAM: 8095 retval = sctp_getsockopt_default_send_param(sk, len, 8096 optval, optlen); 8097 break; 8098 case SCTP_DEFAULT_SNDINFO: 8099 retval = sctp_getsockopt_default_sndinfo(sk, len, 8100 optval, optlen); 8101 break; 8102 case SCTP_PRIMARY_ADDR: 8103 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8104 break; 8105 case SCTP_NODELAY: 8106 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8107 break; 8108 case SCTP_RTOINFO: 8109 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8110 break; 8111 case SCTP_ASSOCINFO: 8112 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8113 break; 8114 case SCTP_I_WANT_MAPPED_V4_ADDR: 8115 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8116 break; 8117 case SCTP_MAXSEG: 8118 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8119 break; 8120 case SCTP_GET_PEER_ADDR_INFO: 8121 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8122 optlen); 8123 break; 8124 case SCTP_ADAPTATION_LAYER: 8125 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8126 optlen); 8127 break; 8128 case SCTP_CONTEXT: 8129 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8130 break; 8131 case SCTP_FRAGMENT_INTERLEAVE: 8132 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8133 optlen); 8134 break; 8135 case SCTP_PARTIAL_DELIVERY_POINT: 8136 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8137 optlen); 8138 break; 8139 case SCTP_MAX_BURST: 8140 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8141 break; 8142 case SCTP_AUTH_KEY: 8143 case SCTP_AUTH_CHUNK: 8144 case SCTP_AUTH_DELETE_KEY: 8145 case SCTP_AUTH_DEACTIVATE_KEY: 8146 retval = -EOPNOTSUPP; 8147 break; 8148 case SCTP_HMAC_IDENT: 8149 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8150 break; 8151 case SCTP_AUTH_ACTIVE_KEY: 8152 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8153 break; 8154 case SCTP_PEER_AUTH_CHUNKS: 8155 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8156 optlen); 8157 break; 8158 case SCTP_LOCAL_AUTH_CHUNKS: 8159 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8160 optlen); 8161 break; 8162 case SCTP_GET_ASSOC_NUMBER: 8163 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8164 break; 8165 case SCTP_GET_ASSOC_ID_LIST: 8166 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8167 break; 8168 case SCTP_AUTO_ASCONF: 8169 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8170 break; 8171 case SCTP_PEER_ADDR_THLDS: 8172 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8173 optlen, false); 8174 break; 8175 case SCTP_PEER_ADDR_THLDS_V2: 8176 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8177 optlen, true); 8178 break; 8179 case SCTP_GET_ASSOC_STATS: 8180 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8181 break; 8182 case SCTP_RECVRCVINFO: 8183 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8184 break; 8185 case SCTP_RECVNXTINFO: 8186 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8187 break; 8188 case SCTP_PR_SUPPORTED: 8189 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8190 break; 8191 case SCTP_DEFAULT_PRINFO: 8192 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8193 optlen); 8194 break; 8195 case SCTP_PR_ASSOC_STATUS: 8196 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8197 optlen); 8198 break; 8199 case SCTP_PR_STREAM_STATUS: 8200 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8201 optlen); 8202 break; 8203 case SCTP_RECONFIG_SUPPORTED: 8204 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8205 optlen); 8206 break; 8207 case SCTP_ENABLE_STREAM_RESET: 8208 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8209 optlen); 8210 break; 8211 case SCTP_STREAM_SCHEDULER: 8212 retval = sctp_getsockopt_scheduler(sk, len, optval, 8213 optlen); 8214 break; 8215 case SCTP_STREAM_SCHEDULER_VALUE: 8216 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8217 optlen); 8218 break; 8219 case SCTP_INTERLEAVING_SUPPORTED: 8220 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8221 optlen); 8222 break; 8223 case SCTP_REUSE_PORT: 8224 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8225 break; 8226 case SCTP_EVENT: 8227 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8228 break; 8229 case SCTP_ASCONF_SUPPORTED: 8230 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8231 optlen); 8232 break; 8233 case SCTP_AUTH_SUPPORTED: 8234 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8235 optlen); 8236 break; 8237 case SCTP_ECN_SUPPORTED: 8238 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8239 break; 8240 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8241 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8242 break; 8243 default: 8244 retval = -ENOPROTOOPT; 8245 break; 8246 } 8247 8248 release_sock(sk); 8249 return retval; 8250 } 8251 8252 static int sctp_hash(struct sock *sk) 8253 { 8254 /* STUB */ 8255 return 0; 8256 } 8257 8258 static void sctp_unhash(struct sock *sk) 8259 { 8260 /* STUB */ 8261 } 8262 8263 /* Check if port is acceptable. Possibly find first available port. 8264 * 8265 * The port hash table (contained in the 'global' SCTP protocol storage 8266 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8267 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8268 * list (the list number is the port number hashed out, so as you 8269 * would expect from a hash function, all the ports in a given list have 8270 * such a number that hashes out to the same list number; you were 8271 * expecting that, right?); so each list has a set of ports, with a 8272 * link to the socket (struct sock) that uses it, the port number and 8273 * a fastreuse flag (FIXME: NPI ipg). 8274 */ 8275 static struct sctp_bind_bucket *sctp_bucket_create( 8276 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8277 8278 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8279 { 8280 struct sctp_sock *sp = sctp_sk(sk); 8281 bool reuse = (sk->sk_reuse || sp->reuse); 8282 struct sctp_bind_hashbucket *head; /* hash list */ 8283 struct net *net = sock_net(sk); 8284 kuid_t uid = sock_i_uid(sk); 8285 struct sctp_bind_bucket *pp; 8286 unsigned short snum; 8287 int ret; 8288 8289 snum = ntohs(addr->v4.sin_port); 8290 8291 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8292 8293 local_bh_disable(); 8294 8295 if (snum == 0) { 8296 /* Search for an available port. */ 8297 int low, high, remaining, index; 8298 unsigned int rover; 8299 8300 inet_get_local_port_range(net, &low, &high); 8301 remaining = (high - low) + 1; 8302 rover = prandom_u32() % remaining + low; 8303 8304 do { 8305 rover++; 8306 if ((rover < low) || (rover > high)) 8307 rover = low; 8308 if (inet_is_local_reserved_port(net, rover)) 8309 continue; 8310 index = sctp_phashfn(net, rover); 8311 head = &sctp_port_hashtable[index]; 8312 spin_lock(&head->lock); 8313 sctp_for_each_hentry(pp, &head->chain) 8314 if ((pp->port == rover) && 8315 net_eq(net, pp->net)) 8316 goto next; 8317 break; 8318 next: 8319 spin_unlock(&head->lock); 8320 } while (--remaining > 0); 8321 8322 /* Exhausted local port range during search? */ 8323 ret = 1; 8324 if (remaining <= 0) 8325 goto fail; 8326 8327 /* OK, here is the one we will use. HEAD (the port 8328 * hash table list entry) is non-NULL and we hold it's 8329 * mutex. 8330 */ 8331 snum = rover; 8332 } else { 8333 /* We are given an specific port number; we verify 8334 * that it is not being used. If it is used, we will 8335 * exahust the search in the hash list corresponding 8336 * to the port number (snum) - we detect that with the 8337 * port iterator, pp being NULL. 8338 */ 8339 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8340 spin_lock(&head->lock); 8341 sctp_for_each_hentry(pp, &head->chain) { 8342 if ((pp->port == snum) && net_eq(pp->net, net)) 8343 goto pp_found; 8344 } 8345 } 8346 pp = NULL; 8347 goto pp_not_found; 8348 pp_found: 8349 if (!hlist_empty(&pp->owner)) { 8350 /* We had a port hash table hit - there is an 8351 * available port (pp != NULL) and it is being 8352 * used by other socket (pp->owner not empty); that other 8353 * socket is going to be sk2. 8354 */ 8355 struct sock *sk2; 8356 8357 pr_debug("%s: found a possible match\n", __func__); 8358 8359 if ((pp->fastreuse && reuse && 8360 sk->sk_state != SCTP_SS_LISTENING) || 8361 (pp->fastreuseport && sk->sk_reuseport && 8362 uid_eq(pp->fastuid, uid))) 8363 goto success; 8364 8365 /* Run through the list of sockets bound to the port 8366 * (pp->port) [via the pointers bind_next and 8367 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8368 * we get the endpoint they describe and run through 8369 * the endpoint's list of IP (v4 or v6) addresses, 8370 * comparing each of the addresses with the address of 8371 * the socket sk. If we find a match, then that means 8372 * that this port/socket (sk) combination are already 8373 * in an endpoint. 8374 */ 8375 sk_for_each_bound(sk2, &pp->owner) { 8376 struct sctp_sock *sp2 = sctp_sk(sk2); 8377 struct sctp_endpoint *ep2 = sp2->ep; 8378 8379 if (sk == sk2 || 8380 (reuse && (sk2->sk_reuse || sp2->reuse) && 8381 sk2->sk_state != SCTP_SS_LISTENING) || 8382 (sk->sk_reuseport && sk2->sk_reuseport && 8383 uid_eq(uid, sock_i_uid(sk2)))) 8384 continue; 8385 8386 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8387 addr, sp2, sp)) { 8388 ret = 1; 8389 goto fail_unlock; 8390 } 8391 } 8392 8393 pr_debug("%s: found a match\n", __func__); 8394 } 8395 pp_not_found: 8396 /* If there was a hash table miss, create a new port. */ 8397 ret = 1; 8398 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8399 goto fail_unlock; 8400 8401 /* In either case (hit or miss), make sure fastreuse is 1 only 8402 * if sk->sk_reuse is too (that is, if the caller requested 8403 * SO_REUSEADDR on this socket -sk-). 8404 */ 8405 if (hlist_empty(&pp->owner)) { 8406 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8407 pp->fastreuse = 1; 8408 else 8409 pp->fastreuse = 0; 8410 8411 if (sk->sk_reuseport) { 8412 pp->fastreuseport = 1; 8413 pp->fastuid = uid; 8414 } else { 8415 pp->fastreuseport = 0; 8416 } 8417 } else { 8418 if (pp->fastreuse && 8419 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8420 pp->fastreuse = 0; 8421 8422 if (pp->fastreuseport && 8423 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8424 pp->fastreuseport = 0; 8425 } 8426 8427 /* We are set, so fill up all the data in the hash table 8428 * entry, tie the socket list information with the rest of the 8429 * sockets FIXME: Blurry, NPI (ipg). 8430 */ 8431 success: 8432 if (!sp->bind_hash) { 8433 inet_sk(sk)->inet_num = snum; 8434 sk_add_bind_node(sk, &pp->owner); 8435 sp->bind_hash = pp; 8436 } 8437 ret = 0; 8438 8439 fail_unlock: 8440 spin_unlock(&head->lock); 8441 8442 fail: 8443 local_bh_enable(); 8444 return ret; 8445 } 8446 8447 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8448 * port is requested. 8449 */ 8450 static int sctp_get_port(struct sock *sk, unsigned short snum) 8451 { 8452 union sctp_addr addr; 8453 struct sctp_af *af = sctp_sk(sk)->pf->af; 8454 8455 /* Set up a dummy address struct from the sk. */ 8456 af->from_sk(&addr, sk); 8457 addr.v4.sin_port = htons(snum); 8458 8459 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8460 return sctp_get_port_local(sk, &addr); 8461 } 8462 8463 /* 8464 * Move a socket to LISTENING state. 8465 */ 8466 static int sctp_listen_start(struct sock *sk, int backlog) 8467 { 8468 struct sctp_sock *sp = sctp_sk(sk); 8469 struct sctp_endpoint *ep = sp->ep; 8470 struct crypto_shash *tfm = NULL; 8471 char alg[32]; 8472 8473 /* Allocate HMAC for generating cookie. */ 8474 if (!sp->hmac && sp->sctp_hmac_alg) { 8475 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8476 tfm = crypto_alloc_shash(alg, 0, 0); 8477 if (IS_ERR(tfm)) { 8478 net_info_ratelimited("failed to load transform for %s: %ld\n", 8479 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8480 return -ENOSYS; 8481 } 8482 sctp_sk(sk)->hmac = tfm; 8483 } 8484 8485 /* 8486 * If a bind() or sctp_bindx() is not called prior to a listen() 8487 * call that allows new associations to be accepted, the system 8488 * picks an ephemeral port and will choose an address set equivalent 8489 * to binding with a wildcard address. 8490 * 8491 * This is not currently spelled out in the SCTP sockets 8492 * extensions draft, but follows the practice as seen in TCP 8493 * sockets. 8494 * 8495 */ 8496 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8497 if (!ep->base.bind_addr.port) { 8498 if (sctp_autobind(sk)) 8499 return -EAGAIN; 8500 } else { 8501 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8502 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8503 return -EADDRINUSE; 8504 } 8505 } 8506 8507 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8508 return sctp_hash_endpoint(ep); 8509 } 8510 8511 /* 8512 * 4.1.3 / 5.1.3 listen() 8513 * 8514 * By default, new associations are not accepted for UDP style sockets. 8515 * An application uses listen() to mark a socket as being able to 8516 * accept new associations. 8517 * 8518 * On TCP style sockets, applications use listen() to ready the SCTP 8519 * endpoint for accepting inbound associations. 8520 * 8521 * On both types of endpoints a backlog of '0' disables listening. 8522 * 8523 * Move a socket to LISTENING state. 8524 */ 8525 int sctp_inet_listen(struct socket *sock, int backlog) 8526 { 8527 struct sock *sk = sock->sk; 8528 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8529 int err = -EINVAL; 8530 8531 if (unlikely(backlog < 0)) 8532 return err; 8533 8534 lock_sock(sk); 8535 8536 /* Peeled-off sockets are not allowed to listen(). */ 8537 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8538 goto out; 8539 8540 if (sock->state != SS_UNCONNECTED) 8541 goto out; 8542 8543 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8544 goto out; 8545 8546 /* If backlog is zero, disable listening. */ 8547 if (!backlog) { 8548 if (sctp_sstate(sk, CLOSED)) 8549 goto out; 8550 8551 err = 0; 8552 sctp_unhash_endpoint(ep); 8553 sk->sk_state = SCTP_SS_CLOSED; 8554 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8555 sctp_sk(sk)->bind_hash->fastreuse = 1; 8556 goto out; 8557 } 8558 8559 /* If we are already listening, just update the backlog */ 8560 if (sctp_sstate(sk, LISTENING)) 8561 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8562 else { 8563 err = sctp_listen_start(sk, backlog); 8564 if (err) 8565 goto out; 8566 } 8567 8568 err = 0; 8569 out: 8570 release_sock(sk); 8571 return err; 8572 } 8573 8574 /* 8575 * This function is done by modeling the current datagram_poll() and the 8576 * tcp_poll(). Note that, based on these implementations, we don't 8577 * lock the socket in this function, even though it seems that, 8578 * ideally, locking or some other mechanisms can be used to ensure 8579 * the integrity of the counters (sndbuf and wmem_alloc) used 8580 * in this place. We assume that we don't need locks either until proven 8581 * otherwise. 8582 * 8583 * Another thing to note is that we include the Async I/O support 8584 * here, again, by modeling the current TCP/UDP code. We don't have 8585 * a good way to test with it yet. 8586 */ 8587 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8588 { 8589 struct sock *sk = sock->sk; 8590 struct sctp_sock *sp = sctp_sk(sk); 8591 __poll_t mask; 8592 8593 poll_wait(file, sk_sleep(sk), wait); 8594 8595 sock_rps_record_flow(sk); 8596 8597 /* A TCP-style listening socket becomes readable when the accept queue 8598 * is not empty. 8599 */ 8600 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8601 return (!list_empty(&sp->ep->asocs)) ? 8602 (EPOLLIN | EPOLLRDNORM) : 0; 8603 8604 mask = 0; 8605 8606 /* Is there any exceptional events? */ 8607 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8608 mask |= EPOLLERR | 8609 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8610 if (sk->sk_shutdown & RCV_SHUTDOWN) 8611 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8612 if (sk->sk_shutdown == SHUTDOWN_MASK) 8613 mask |= EPOLLHUP; 8614 8615 /* Is it readable? Reconsider this code with TCP-style support. */ 8616 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8617 mask |= EPOLLIN | EPOLLRDNORM; 8618 8619 /* The association is either gone or not ready. */ 8620 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8621 return mask; 8622 8623 /* Is it writable? */ 8624 if (sctp_writeable(sk)) { 8625 mask |= EPOLLOUT | EPOLLWRNORM; 8626 } else { 8627 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8628 /* 8629 * Since the socket is not locked, the buffer 8630 * might be made available after the writeable check and 8631 * before the bit is set. This could cause a lost I/O 8632 * signal. tcp_poll() has a race breaker for this race 8633 * condition. Based on their implementation, we put 8634 * in the following code to cover it as well. 8635 */ 8636 if (sctp_writeable(sk)) 8637 mask |= EPOLLOUT | EPOLLWRNORM; 8638 } 8639 return mask; 8640 } 8641 8642 /******************************************************************** 8643 * 2nd Level Abstractions 8644 ********************************************************************/ 8645 8646 static struct sctp_bind_bucket *sctp_bucket_create( 8647 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8648 { 8649 struct sctp_bind_bucket *pp; 8650 8651 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8652 if (pp) { 8653 SCTP_DBG_OBJCNT_INC(bind_bucket); 8654 pp->port = snum; 8655 pp->fastreuse = 0; 8656 INIT_HLIST_HEAD(&pp->owner); 8657 pp->net = net; 8658 hlist_add_head(&pp->node, &head->chain); 8659 } 8660 return pp; 8661 } 8662 8663 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8664 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8665 { 8666 if (pp && hlist_empty(&pp->owner)) { 8667 __hlist_del(&pp->node); 8668 kmem_cache_free(sctp_bucket_cachep, pp); 8669 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8670 } 8671 } 8672 8673 /* Release this socket's reference to a local port. */ 8674 static inline void __sctp_put_port(struct sock *sk) 8675 { 8676 struct sctp_bind_hashbucket *head = 8677 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8678 inet_sk(sk)->inet_num)]; 8679 struct sctp_bind_bucket *pp; 8680 8681 spin_lock(&head->lock); 8682 pp = sctp_sk(sk)->bind_hash; 8683 __sk_del_bind_node(sk); 8684 sctp_sk(sk)->bind_hash = NULL; 8685 inet_sk(sk)->inet_num = 0; 8686 sctp_bucket_destroy(pp); 8687 spin_unlock(&head->lock); 8688 } 8689 8690 void sctp_put_port(struct sock *sk) 8691 { 8692 local_bh_disable(); 8693 __sctp_put_port(sk); 8694 local_bh_enable(); 8695 } 8696 8697 /* 8698 * The system picks an ephemeral port and choose an address set equivalent 8699 * to binding with a wildcard address. 8700 * One of those addresses will be the primary address for the association. 8701 * This automatically enables the multihoming capability of SCTP. 8702 */ 8703 static int sctp_autobind(struct sock *sk) 8704 { 8705 union sctp_addr autoaddr; 8706 struct sctp_af *af; 8707 __be16 port; 8708 8709 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8710 af = sctp_sk(sk)->pf->af; 8711 8712 port = htons(inet_sk(sk)->inet_num); 8713 af->inaddr_any(&autoaddr, port); 8714 8715 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8716 } 8717 8718 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8719 * 8720 * From RFC 2292 8721 * 4.2 The cmsghdr Structure * 8722 * 8723 * When ancillary data is sent or received, any number of ancillary data 8724 * objects can be specified by the msg_control and msg_controllen members of 8725 * the msghdr structure, because each object is preceded by 8726 * a cmsghdr structure defining the object's length (the cmsg_len member). 8727 * Historically Berkeley-derived implementations have passed only one object 8728 * at a time, but this API allows multiple objects to be 8729 * passed in a single call to sendmsg() or recvmsg(). The following example 8730 * shows two ancillary data objects in a control buffer. 8731 * 8732 * |<--------------------------- msg_controllen -------------------------->| 8733 * | | 8734 * 8735 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8736 * 8737 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8738 * | | | 8739 * 8740 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8741 * 8742 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8743 * | | | | | 8744 * 8745 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8746 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8747 * 8748 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8749 * 8750 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8751 * ^ 8752 * | 8753 * 8754 * msg_control 8755 * points here 8756 */ 8757 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8758 { 8759 struct msghdr *my_msg = (struct msghdr *)msg; 8760 struct cmsghdr *cmsg; 8761 8762 for_each_cmsghdr(cmsg, my_msg) { 8763 if (!CMSG_OK(my_msg, cmsg)) 8764 return -EINVAL; 8765 8766 /* Should we parse this header or ignore? */ 8767 if (cmsg->cmsg_level != IPPROTO_SCTP) 8768 continue; 8769 8770 /* Strictly check lengths following example in SCM code. */ 8771 switch (cmsg->cmsg_type) { 8772 case SCTP_INIT: 8773 /* SCTP Socket API Extension 8774 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8775 * 8776 * This cmsghdr structure provides information for 8777 * initializing new SCTP associations with sendmsg(). 8778 * The SCTP_INITMSG socket option uses this same data 8779 * structure. This structure is not used for 8780 * recvmsg(). 8781 * 8782 * cmsg_level cmsg_type cmsg_data[] 8783 * ------------ ------------ ---------------------- 8784 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8785 */ 8786 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8787 return -EINVAL; 8788 8789 cmsgs->init = CMSG_DATA(cmsg); 8790 break; 8791 8792 case SCTP_SNDRCV: 8793 /* SCTP Socket API Extension 8794 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8795 * 8796 * This cmsghdr structure specifies SCTP options for 8797 * sendmsg() and describes SCTP header information 8798 * about a received message through recvmsg(). 8799 * 8800 * cmsg_level cmsg_type cmsg_data[] 8801 * ------------ ------------ ---------------------- 8802 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8803 */ 8804 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8805 return -EINVAL; 8806 8807 cmsgs->srinfo = CMSG_DATA(cmsg); 8808 8809 if (cmsgs->srinfo->sinfo_flags & 8810 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8811 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8812 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8813 return -EINVAL; 8814 break; 8815 8816 case SCTP_SNDINFO: 8817 /* SCTP Socket API Extension 8818 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8819 * 8820 * This cmsghdr structure specifies SCTP options for 8821 * sendmsg(). This structure and SCTP_RCVINFO replaces 8822 * SCTP_SNDRCV which has been deprecated. 8823 * 8824 * cmsg_level cmsg_type cmsg_data[] 8825 * ------------ ------------ --------------------- 8826 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8827 */ 8828 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8829 return -EINVAL; 8830 8831 cmsgs->sinfo = CMSG_DATA(cmsg); 8832 8833 if (cmsgs->sinfo->snd_flags & 8834 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8835 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8836 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8837 return -EINVAL; 8838 break; 8839 case SCTP_PRINFO: 8840 /* SCTP Socket API Extension 8841 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8842 * 8843 * This cmsghdr structure specifies SCTP options for sendmsg(). 8844 * 8845 * cmsg_level cmsg_type cmsg_data[] 8846 * ------------ ------------ --------------------- 8847 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8848 */ 8849 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8850 return -EINVAL; 8851 8852 cmsgs->prinfo = CMSG_DATA(cmsg); 8853 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8854 return -EINVAL; 8855 8856 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8857 cmsgs->prinfo->pr_value = 0; 8858 break; 8859 case SCTP_AUTHINFO: 8860 /* SCTP Socket API Extension 8861 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8862 * 8863 * This cmsghdr structure specifies SCTP options for sendmsg(). 8864 * 8865 * cmsg_level cmsg_type cmsg_data[] 8866 * ------------ ------------ --------------------- 8867 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8868 */ 8869 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8870 return -EINVAL; 8871 8872 cmsgs->authinfo = CMSG_DATA(cmsg); 8873 break; 8874 case SCTP_DSTADDRV4: 8875 case SCTP_DSTADDRV6: 8876 /* SCTP Socket API Extension 8877 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8878 * 8879 * This cmsghdr structure specifies SCTP options for sendmsg(). 8880 * 8881 * cmsg_level cmsg_type cmsg_data[] 8882 * ------------ ------------ --------------------- 8883 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8884 * ------------ ------------ --------------------- 8885 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8886 */ 8887 cmsgs->addrs_msg = my_msg; 8888 break; 8889 default: 8890 return -EINVAL; 8891 } 8892 } 8893 8894 return 0; 8895 } 8896 8897 /* 8898 * Wait for a packet.. 8899 * Note: This function is the same function as in core/datagram.c 8900 * with a few modifications to make lksctp work. 8901 */ 8902 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8903 { 8904 int error; 8905 DEFINE_WAIT(wait); 8906 8907 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8908 8909 /* Socket errors? */ 8910 error = sock_error(sk); 8911 if (error) 8912 goto out; 8913 8914 if (!skb_queue_empty(&sk->sk_receive_queue)) 8915 goto ready; 8916 8917 /* Socket shut down? */ 8918 if (sk->sk_shutdown & RCV_SHUTDOWN) 8919 goto out; 8920 8921 /* Sequenced packets can come disconnected. If so we report the 8922 * problem. 8923 */ 8924 error = -ENOTCONN; 8925 8926 /* Is there a good reason to think that we may receive some data? */ 8927 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8928 goto out; 8929 8930 /* Handle signals. */ 8931 if (signal_pending(current)) 8932 goto interrupted; 8933 8934 /* Let another process have a go. Since we are going to sleep 8935 * anyway. Note: This may cause odd behaviors if the message 8936 * does not fit in the user's buffer, but this seems to be the 8937 * only way to honor MSG_DONTWAIT realistically. 8938 */ 8939 release_sock(sk); 8940 *timeo_p = schedule_timeout(*timeo_p); 8941 lock_sock(sk); 8942 8943 ready: 8944 finish_wait(sk_sleep(sk), &wait); 8945 return 0; 8946 8947 interrupted: 8948 error = sock_intr_errno(*timeo_p); 8949 8950 out: 8951 finish_wait(sk_sleep(sk), &wait); 8952 *err = error; 8953 return error; 8954 } 8955 8956 /* Receive a datagram. 8957 * Note: This is pretty much the same routine as in core/datagram.c 8958 * with a few changes to make lksctp work. 8959 */ 8960 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8961 int noblock, int *err) 8962 { 8963 int error; 8964 struct sk_buff *skb; 8965 long timeo; 8966 8967 timeo = sock_rcvtimeo(sk, noblock); 8968 8969 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8970 MAX_SCHEDULE_TIMEOUT); 8971 8972 do { 8973 /* Again only user level code calls this function, 8974 * so nothing interrupt level 8975 * will suddenly eat the receive_queue. 8976 * 8977 * Look at current nfs client by the way... 8978 * However, this function was correct in any case. 8) 8979 */ 8980 if (flags & MSG_PEEK) { 8981 skb = skb_peek(&sk->sk_receive_queue); 8982 if (skb) 8983 refcount_inc(&skb->users); 8984 } else { 8985 skb = __skb_dequeue(&sk->sk_receive_queue); 8986 } 8987 8988 if (skb) 8989 return skb; 8990 8991 /* Caller is allowed not to check sk->sk_err before calling. */ 8992 error = sock_error(sk); 8993 if (error) 8994 goto no_packet; 8995 8996 if (sk->sk_shutdown & RCV_SHUTDOWN) 8997 break; 8998 8999 if (sk_can_busy_loop(sk)) { 9000 sk_busy_loop(sk, noblock); 9001 9002 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9003 continue; 9004 } 9005 9006 /* User doesn't want to wait. */ 9007 error = -EAGAIN; 9008 if (!timeo) 9009 goto no_packet; 9010 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9011 9012 return NULL; 9013 9014 no_packet: 9015 *err = error; 9016 return NULL; 9017 } 9018 9019 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9020 static void __sctp_write_space(struct sctp_association *asoc) 9021 { 9022 struct sock *sk = asoc->base.sk; 9023 9024 if (sctp_wspace(asoc) <= 0) 9025 return; 9026 9027 if (waitqueue_active(&asoc->wait)) 9028 wake_up_interruptible(&asoc->wait); 9029 9030 if (sctp_writeable(sk)) { 9031 struct socket_wq *wq; 9032 9033 rcu_read_lock(); 9034 wq = rcu_dereference(sk->sk_wq); 9035 if (wq) { 9036 if (waitqueue_active(&wq->wait)) 9037 wake_up_interruptible(&wq->wait); 9038 9039 /* Note that we try to include the Async I/O support 9040 * here by modeling from the current TCP/UDP code. 9041 * We have not tested with it yet. 9042 */ 9043 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9044 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9045 } 9046 rcu_read_unlock(); 9047 } 9048 } 9049 9050 static void sctp_wake_up_waiters(struct sock *sk, 9051 struct sctp_association *asoc) 9052 { 9053 struct sctp_association *tmp = asoc; 9054 9055 /* We do accounting for the sndbuf space per association, 9056 * so we only need to wake our own association. 9057 */ 9058 if (asoc->ep->sndbuf_policy) 9059 return __sctp_write_space(asoc); 9060 9061 /* If association goes down and is just flushing its 9062 * outq, then just normally notify others. 9063 */ 9064 if (asoc->base.dead) 9065 return sctp_write_space(sk); 9066 9067 /* Accounting for the sndbuf space is per socket, so we 9068 * need to wake up others, try to be fair and in case of 9069 * other associations, let them have a go first instead 9070 * of just doing a sctp_write_space() call. 9071 * 9072 * Note that we reach sctp_wake_up_waiters() only when 9073 * associations free up queued chunks, thus we are under 9074 * lock and the list of associations on a socket is 9075 * guaranteed not to change. 9076 */ 9077 for (tmp = list_next_entry(tmp, asocs); 1; 9078 tmp = list_next_entry(tmp, asocs)) { 9079 /* Manually skip the head element. */ 9080 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9081 continue; 9082 /* Wake up association. */ 9083 __sctp_write_space(tmp); 9084 /* We've reached the end. */ 9085 if (tmp == asoc) 9086 break; 9087 } 9088 } 9089 9090 /* Do accounting for the sndbuf space. 9091 * Decrement the used sndbuf space of the corresponding association by the 9092 * data size which was just transmitted(freed). 9093 */ 9094 static void sctp_wfree(struct sk_buff *skb) 9095 { 9096 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9097 struct sctp_association *asoc = chunk->asoc; 9098 struct sock *sk = asoc->base.sk; 9099 9100 sk_mem_uncharge(sk, skb->truesize); 9101 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9102 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9103 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9104 &sk->sk_wmem_alloc)); 9105 9106 if (chunk->shkey) { 9107 struct sctp_shared_key *shkey = chunk->shkey; 9108 9109 /* refcnt == 2 and !list_empty mean after this release, it's 9110 * not being used anywhere, and it's time to notify userland 9111 * that this shkey can be freed if it's been deactivated. 9112 */ 9113 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9114 refcount_read(&shkey->refcnt) == 2) { 9115 struct sctp_ulpevent *ev; 9116 9117 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9118 SCTP_AUTH_FREE_KEY, 9119 GFP_KERNEL); 9120 if (ev) 9121 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9122 } 9123 sctp_auth_shkey_release(chunk->shkey); 9124 } 9125 9126 sock_wfree(skb); 9127 sctp_wake_up_waiters(sk, asoc); 9128 9129 sctp_association_put(asoc); 9130 } 9131 9132 /* Do accounting for the receive space on the socket. 9133 * Accounting for the association is done in ulpevent.c 9134 * We set this as a destructor for the cloned data skbs so that 9135 * accounting is done at the correct time. 9136 */ 9137 void sctp_sock_rfree(struct sk_buff *skb) 9138 { 9139 struct sock *sk = skb->sk; 9140 struct sctp_ulpevent *event = sctp_skb2event(skb); 9141 9142 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9143 9144 /* 9145 * Mimic the behavior of sock_rfree 9146 */ 9147 sk_mem_uncharge(sk, event->rmem_len); 9148 } 9149 9150 9151 /* Helper function to wait for space in the sndbuf. */ 9152 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9153 size_t msg_len) 9154 { 9155 struct sock *sk = asoc->base.sk; 9156 long current_timeo = *timeo_p; 9157 DEFINE_WAIT(wait); 9158 int err = 0; 9159 9160 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9161 *timeo_p, msg_len); 9162 9163 /* Increment the association's refcnt. */ 9164 sctp_association_hold(asoc); 9165 9166 /* Wait on the association specific sndbuf space. */ 9167 for (;;) { 9168 prepare_to_wait_exclusive(&asoc->wait, &wait, 9169 TASK_INTERRUPTIBLE); 9170 if (asoc->base.dead) 9171 goto do_dead; 9172 if (!*timeo_p) 9173 goto do_nonblock; 9174 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9175 goto do_error; 9176 if (signal_pending(current)) 9177 goto do_interrupted; 9178 if (sk_under_memory_pressure(sk)) 9179 sk_mem_reclaim(sk); 9180 if ((int)msg_len <= sctp_wspace(asoc) && 9181 sk_wmem_schedule(sk, msg_len)) 9182 break; 9183 9184 /* Let another process have a go. Since we are going 9185 * to sleep anyway. 9186 */ 9187 release_sock(sk); 9188 current_timeo = schedule_timeout(current_timeo); 9189 lock_sock(sk); 9190 if (sk != asoc->base.sk) 9191 goto do_error; 9192 9193 *timeo_p = current_timeo; 9194 } 9195 9196 out: 9197 finish_wait(&asoc->wait, &wait); 9198 9199 /* Release the association's refcnt. */ 9200 sctp_association_put(asoc); 9201 9202 return err; 9203 9204 do_dead: 9205 err = -ESRCH; 9206 goto out; 9207 9208 do_error: 9209 err = -EPIPE; 9210 goto out; 9211 9212 do_interrupted: 9213 err = sock_intr_errno(*timeo_p); 9214 goto out; 9215 9216 do_nonblock: 9217 err = -EAGAIN; 9218 goto out; 9219 } 9220 9221 void sctp_data_ready(struct sock *sk) 9222 { 9223 struct socket_wq *wq; 9224 9225 rcu_read_lock(); 9226 wq = rcu_dereference(sk->sk_wq); 9227 if (skwq_has_sleeper(wq)) 9228 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9229 EPOLLRDNORM | EPOLLRDBAND); 9230 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9231 rcu_read_unlock(); 9232 } 9233 9234 /* If socket sndbuf has changed, wake up all per association waiters. */ 9235 void sctp_write_space(struct sock *sk) 9236 { 9237 struct sctp_association *asoc; 9238 9239 /* Wake up the tasks in each wait queue. */ 9240 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9241 __sctp_write_space(asoc); 9242 } 9243 } 9244 9245 /* Is there any sndbuf space available on the socket? 9246 * 9247 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9248 * associations on the same socket. For a UDP-style socket with 9249 * multiple associations, it is possible for it to be "unwriteable" 9250 * prematurely. I assume that this is acceptable because 9251 * a premature "unwriteable" is better than an accidental "writeable" which 9252 * would cause an unwanted block under certain circumstances. For the 1-1 9253 * UDP-style sockets or TCP-style sockets, this code should work. 9254 * - Daisy 9255 */ 9256 static bool sctp_writeable(struct sock *sk) 9257 { 9258 return sk->sk_sndbuf > sk->sk_wmem_queued; 9259 } 9260 9261 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9262 * returns immediately with EINPROGRESS. 9263 */ 9264 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9265 { 9266 struct sock *sk = asoc->base.sk; 9267 int err = 0; 9268 long current_timeo = *timeo_p; 9269 DEFINE_WAIT(wait); 9270 9271 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9272 9273 /* Increment the association's refcnt. */ 9274 sctp_association_hold(asoc); 9275 9276 for (;;) { 9277 prepare_to_wait_exclusive(&asoc->wait, &wait, 9278 TASK_INTERRUPTIBLE); 9279 if (!*timeo_p) 9280 goto do_nonblock; 9281 if (sk->sk_shutdown & RCV_SHUTDOWN) 9282 break; 9283 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9284 asoc->base.dead) 9285 goto do_error; 9286 if (signal_pending(current)) 9287 goto do_interrupted; 9288 9289 if (sctp_state(asoc, ESTABLISHED)) 9290 break; 9291 9292 /* Let another process have a go. Since we are going 9293 * to sleep anyway. 9294 */ 9295 release_sock(sk); 9296 current_timeo = schedule_timeout(current_timeo); 9297 lock_sock(sk); 9298 9299 *timeo_p = current_timeo; 9300 } 9301 9302 out: 9303 finish_wait(&asoc->wait, &wait); 9304 9305 /* Release the association's refcnt. */ 9306 sctp_association_put(asoc); 9307 9308 return err; 9309 9310 do_error: 9311 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9312 err = -ETIMEDOUT; 9313 else 9314 err = -ECONNREFUSED; 9315 goto out; 9316 9317 do_interrupted: 9318 err = sock_intr_errno(*timeo_p); 9319 goto out; 9320 9321 do_nonblock: 9322 err = -EINPROGRESS; 9323 goto out; 9324 } 9325 9326 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9327 { 9328 struct sctp_endpoint *ep; 9329 int err = 0; 9330 DEFINE_WAIT(wait); 9331 9332 ep = sctp_sk(sk)->ep; 9333 9334 9335 for (;;) { 9336 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9337 TASK_INTERRUPTIBLE); 9338 9339 if (list_empty(&ep->asocs)) { 9340 release_sock(sk); 9341 timeo = schedule_timeout(timeo); 9342 lock_sock(sk); 9343 } 9344 9345 err = -EINVAL; 9346 if (!sctp_sstate(sk, LISTENING)) 9347 break; 9348 9349 err = 0; 9350 if (!list_empty(&ep->asocs)) 9351 break; 9352 9353 err = sock_intr_errno(timeo); 9354 if (signal_pending(current)) 9355 break; 9356 9357 err = -EAGAIN; 9358 if (!timeo) 9359 break; 9360 } 9361 9362 finish_wait(sk_sleep(sk), &wait); 9363 9364 return err; 9365 } 9366 9367 static void sctp_wait_for_close(struct sock *sk, long timeout) 9368 { 9369 DEFINE_WAIT(wait); 9370 9371 do { 9372 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9373 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9374 break; 9375 release_sock(sk); 9376 timeout = schedule_timeout(timeout); 9377 lock_sock(sk); 9378 } while (!signal_pending(current) && timeout); 9379 9380 finish_wait(sk_sleep(sk), &wait); 9381 } 9382 9383 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9384 { 9385 struct sk_buff *frag; 9386 9387 if (!skb->data_len) 9388 goto done; 9389 9390 /* Don't forget the fragments. */ 9391 skb_walk_frags(skb, frag) 9392 sctp_skb_set_owner_r_frag(frag, sk); 9393 9394 done: 9395 sctp_skb_set_owner_r(skb, sk); 9396 } 9397 9398 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9399 struct sctp_association *asoc) 9400 { 9401 struct inet_sock *inet = inet_sk(sk); 9402 struct inet_sock *newinet; 9403 struct sctp_sock *sp = sctp_sk(sk); 9404 struct sctp_endpoint *ep = sp->ep; 9405 9406 newsk->sk_type = sk->sk_type; 9407 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9408 newsk->sk_flags = sk->sk_flags; 9409 newsk->sk_tsflags = sk->sk_tsflags; 9410 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9411 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9412 newsk->sk_reuse = sk->sk_reuse; 9413 sctp_sk(newsk)->reuse = sp->reuse; 9414 9415 newsk->sk_shutdown = sk->sk_shutdown; 9416 newsk->sk_destruct = sctp_destruct_sock; 9417 newsk->sk_family = sk->sk_family; 9418 newsk->sk_protocol = IPPROTO_SCTP; 9419 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9420 newsk->sk_sndbuf = sk->sk_sndbuf; 9421 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9422 newsk->sk_lingertime = sk->sk_lingertime; 9423 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9424 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9425 newsk->sk_rxhash = sk->sk_rxhash; 9426 9427 newinet = inet_sk(newsk); 9428 9429 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9430 * getsockname() and getpeername() 9431 */ 9432 newinet->inet_sport = inet->inet_sport; 9433 newinet->inet_saddr = inet->inet_saddr; 9434 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9435 newinet->inet_dport = htons(asoc->peer.port); 9436 newinet->pmtudisc = inet->pmtudisc; 9437 newinet->inet_id = prandom_u32(); 9438 9439 newinet->uc_ttl = inet->uc_ttl; 9440 newinet->mc_loop = 1; 9441 newinet->mc_ttl = 1; 9442 newinet->mc_index = 0; 9443 newinet->mc_list = NULL; 9444 9445 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9446 net_enable_timestamp(); 9447 9448 /* Set newsk security attributes from orginal sk and connection 9449 * security attribute from ep. 9450 */ 9451 security_sctp_sk_clone(ep, sk, newsk); 9452 } 9453 9454 static inline void sctp_copy_descendant(struct sock *sk_to, 9455 const struct sock *sk_from) 9456 { 9457 int ancestor_size = sizeof(struct inet_sock) + 9458 sizeof(struct sctp_sock) - 9459 offsetof(struct sctp_sock, pd_lobby); 9460 9461 if (sk_from->sk_family == PF_INET6) 9462 ancestor_size += sizeof(struct ipv6_pinfo); 9463 9464 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9465 } 9466 9467 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9468 * and its messages to the newsk. 9469 */ 9470 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9471 struct sctp_association *assoc, 9472 enum sctp_socket_type type) 9473 { 9474 struct sctp_sock *oldsp = sctp_sk(oldsk); 9475 struct sctp_sock *newsp = sctp_sk(newsk); 9476 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9477 struct sctp_endpoint *newep = newsp->ep; 9478 struct sk_buff *skb, *tmp; 9479 struct sctp_ulpevent *event; 9480 struct sctp_bind_hashbucket *head; 9481 int err; 9482 9483 /* Migrate socket buffer sizes and all the socket level options to the 9484 * new socket. 9485 */ 9486 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9487 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9488 /* Brute force copy old sctp opt. */ 9489 sctp_copy_descendant(newsk, oldsk); 9490 9491 /* Restore the ep value that was overwritten with the above structure 9492 * copy. 9493 */ 9494 newsp->ep = newep; 9495 newsp->hmac = NULL; 9496 9497 /* Hook this new socket in to the bind_hash list. */ 9498 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9499 inet_sk(oldsk)->inet_num)]; 9500 spin_lock_bh(&head->lock); 9501 pp = sctp_sk(oldsk)->bind_hash; 9502 sk_add_bind_node(newsk, &pp->owner); 9503 sctp_sk(newsk)->bind_hash = pp; 9504 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9505 spin_unlock_bh(&head->lock); 9506 9507 /* Copy the bind_addr list from the original endpoint to the new 9508 * endpoint so that we can handle restarts properly 9509 */ 9510 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9511 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9512 if (err) 9513 return err; 9514 9515 /* New ep's auth_hmacs should be set if old ep's is set, in case 9516 * that net->sctp.auth_enable has been changed to 0 by users and 9517 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9518 */ 9519 if (oldsp->ep->auth_hmacs) { 9520 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9521 if (err) 9522 return err; 9523 } 9524 9525 /* Move any messages in the old socket's receive queue that are for the 9526 * peeled off association to the new socket's receive queue. 9527 */ 9528 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9529 event = sctp_skb2event(skb); 9530 if (event->asoc == assoc) { 9531 __skb_unlink(skb, &oldsk->sk_receive_queue); 9532 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9533 sctp_skb_set_owner_r_frag(skb, newsk); 9534 } 9535 } 9536 9537 /* Clean up any messages pending delivery due to partial 9538 * delivery. Three cases: 9539 * 1) No partial deliver; no work. 9540 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9541 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9542 */ 9543 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9544 9545 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9546 struct sk_buff_head *queue; 9547 9548 /* Decide which queue to move pd_lobby skbs to. */ 9549 if (assoc->ulpq.pd_mode) { 9550 queue = &newsp->pd_lobby; 9551 } else 9552 queue = &newsk->sk_receive_queue; 9553 9554 /* Walk through the pd_lobby, looking for skbs that 9555 * need moved to the new socket. 9556 */ 9557 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9558 event = sctp_skb2event(skb); 9559 if (event->asoc == assoc) { 9560 __skb_unlink(skb, &oldsp->pd_lobby); 9561 __skb_queue_tail(queue, skb); 9562 sctp_skb_set_owner_r_frag(skb, newsk); 9563 } 9564 } 9565 9566 /* Clear up any skbs waiting for the partial 9567 * delivery to finish. 9568 */ 9569 if (assoc->ulpq.pd_mode) 9570 sctp_clear_pd(oldsk, NULL); 9571 9572 } 9573 9574 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9575 9576 /* Set the type of socket to indicate that it is peeled off from the 9577 * original UDP-style socket or created with the accept() call on a 9578 * TCP-style socket.. 9579 */ 9580 newsp->type = type; 9581 9582 /* Mark the new socket "in-use" by the user so that any packets 9583 * that may arrive on the association after we've moved it are 9584 * queued to the backlog. This prevents a potential race between 9585 * backlog processing on the old socket and new-packet processing 9586 * on the new socket. 9587 * 9588 * The caller has just allocated newsk so we can guarantee that other 9589 * paths won't try to lock it and then oldsk. 9590 */ 9591 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9592 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9593 sctp_assoc_migrate(assoc, newsk); 9594 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9595 9596 /* If the association on the newsk is already closed before accept() 9597 * is called, set RCV_SHUTDOWN flag. 9598 */ 9599 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9600 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9601 newsk->sk_shutdown |= RCV_SHUTDOWN; 9602 } else { 9603 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9604 } 9605 9606 release_sock(newsk); 9607 9608 return 0; 9609 } 9610 9611 9612 /* This proto struct describes the ULP interface for SCTP. */ 9613 struct proto sctp_prot = { 9614 .name = "SCTP", 9615 .owner = THIS_MODULE, 9616 .close = sctp_close, 9617 .disconnect = sctp_disconnect, 9618 .accept = sctp_accept, 9619 .ioctl = sctp_ioctl, 9620 .init = sctp_init_sock, 9621 .destroy = sctp_destroy_sock, 9622 .shutdown = sctp_shutdown, 9623 .setsockopt = sctp_setsockopt, 9624 .getsockopt = sctp_getsockopt, 9625 .sendmsg = sctp_sendmsg, 9626 .recvmsg = sctp_recvmsg, 9627 .bind = sctp_bind, 9628 .backlog_rcv = sctp_backlog_rcv, 9629 .hash = sctp_hash, 9630 .unhash = sctp_unhash, 9631 .no_autobind = true, 9632 .obj_size = sizeof(struct sctp_sock), 9633 .useroffset = offsetof(struct sctp_sock, subscribe), 9634 .usersize = offsetof(struct sctp_sock, initmsg) - 9635 offsetof(struct sctp_sock, subscribe) + 9636 sizeof_field(struct sctp_sock, initmsg), 9637 .sysctl_mem = sysctl_sctp_mem, 9638 .sysctl_rmem = sysctl_sctp_rmem, 9639 .sysctl_wmem = sysctl_sctp_wmem, 9640 .memory_pressure = &sctp_memory_pressure, 9641 .enter_memory_pressure = sctp_enter_memory_pressure, 9642 .memory_allocated = &sctp_memory_allocated, 9643 .sockets_allocated = &sctp_sockets_allocated, 9644 }; 9645 9646 #if IS_ENABLED(CONFIG_IPV6) 9647 9648 #include <net/transp_v6.h> 9649 static void sctp_v6_destroy_sock(struct sock *sk) 9650 { 9651 sctp_destroy_sock(sk); 9652 inet6_destroy_sock(sk); 9653 } 9654 9655 struct proto sctpv6_prot = { 9656 .name = "SCTPv6", 9657 .owner = THIS_MODULE, 9658 .close = sctp_close, 9659 .disconnect = sctp_disconnect, 9660 .accept = sctp_accept, 9661 .ioctl = sctp_ioctl, 9662 .init = sctp_init_sock, 9663 .destroy = sctp_v6_destroy_sock, 9664 .shutdown = sctp_shutdown, 9665 .setsockopt = sctp_setsockopt, 9666 .getsockopt = sctp_getsockopt, 9667 .sendmsg = sctp_sendmsg, 9668 .recvmsg = sctp_recvmsg, 9669 .bind = sctp_bind, 9670 .backlog_rcv = sctp_backlog_rcv, 9671 .hash = sctp_hash, 9672 .unhash = sctp_unhash, 9673 .no_autobind = true, 9674 .obj_size = sizeof(struct sctp6_sock), 9675 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9676 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9677 offsetof(struct sctp6_sock, sctp.subscribe) + 9678 sizeof_field(struct sctp6_sock, sctp.initmsg), 9679 .sysctl_mem = sysctl_sctp_mem, 9680 .sysctl_rmem = sysctl_sctp_rmem, 9681 .sysctl_wmem = sysctl_sctp_wmem, 9682 .memory_pressure = &sctp_memory_pressure, 9683 .enter_memory_pressure = sctp_enter_memory_pressure, 9684 .memory_allocated = &sctp_memory_allocated, 9685 .sockets_allocated = &sctp_sockets_allocated, 9686 }; 9687 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9688