1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 83 /* Forward declarations for internal helper functions. */ 84 static int sctp_writeable(struct sock *sk); 85 static void sctp_wfree(struct sk_buff *skb); 86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 87 size_t msg_len); 88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 90 static int sctp_wait_for_accept(struct sock *sk, long timeo); 91 static void sctp_wait_for_close(struct sock *sk, long timeo); 92 static void sctp_destruct_sock(struct sock *sk); 93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 94 union sctp_addr *addr, int len); 95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf(struct sctp_association *asoc, 100 struct sctp_chunk *chunk); 101 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 102 static int sctp_autobind(struct sock *sk); 103 static void sctp_sock_migrate(struct sock *, struct sock *, 104 struct sctp_association *, sctp_socket_type_t); 105 106 static int sctp_memory_pressure; 107 static atomic_long_t sctp_memory_allocated; 108 struct percpu_counter sctp_sockets_allocated; 109 110 static void sctp_enter_memory_pressure(struct sock *sk) 111 { 112 sctp_memory_pressure = 1; 113 } 114 115 116 /* Get the sndbuf space available at the time on the association. */ 117 static inline int sctp_wspace(struct sctp_association *asoc) 118 { 119 int amt; 120 121 if (asoc->ep->sndbuf_policy) 122 amt = asoc->sndbuf_used; 123 else 124 amt = sk_wmem_alloc_get(asoc->base.sk); 125 126 if (amt >= asoc->base.sk->sk_sndbuf) { 127 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 128 amt = 0; 129 else { 130 amt = sk_stream_wspace(asoc->base.sk); 131 if (amt < 0) 132 amt = 0; 133 } 134 } else { 135 amt = asoc->base.sk->sk_sndbuf - amt; 136 } 137 return amt; 138 } 139 140 /* Increment the used sndbuf space count of the corresponding association by 141 * the size of the outgoing data chunk. 142 * Also, set the skb destructor for sndbuf accounting later. 143 * 144 * Since it is always 1-1 between chunk and skb, and also a new skb is always 145 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 146 * destructor in the data chunk skb for the purpose of the sndbuf space 147 * tracking. 148 */ 149 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 150 { 151 struct sctp_association *asoc = chunk->asoc; 152 struct sock *sk = asoc->base.sk; 153 154 /* The sndbuf space is tracked per association. */ 155 sctp_association_hold(asoc); 156 157 skb_set_owner_w(chunk->skb, sk); 158 159 chunk->skb->destructor = sctp_wfree; 160 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 161 skb_shinfo(chunk->skb)->destructor_arg = chunk; 162 163 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 164 sizeof(struct sk_buff) + 165 sizeof(struct sctp_chunk); 166 167 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 168 sk->sk_wmem_queued += chunk->skb->truesize; 169 sk_mem_charge(sk, chunk->skb->truesize); 170 } 171 172 /* Verify that this is a valid address. */ 173 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 174 int len) 175 { 176 struct sctp_af *af; 177 178 /* Verify basic sockaddr. */ 179 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 180 if (!af) 181 return -EINVAL; 182 183 /* Is this a valid SCTP address? */ 184 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 185 return -EINVAL; 186 187 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 188 return -EINVAL; 189 190 return 0; 191 } 192 193 /* Look up the association by its id. If this is not a UDP-style 194 * socket, the ID field is always ignored. 195 */ 196 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 197 { 198 struct sctp_association *asoc = NULL; 199 200 /* If this is not a UDP-style socket, assoc id should be ignored. */ 201 if (!sctp_style(sk, UDP)) { 202 /* Return NULL if the socket state is not ESTABLISHED. It 203 * could be a TCP-style listening socket or a socket which 204 * hasn't yet called connect() to establish an association. 205 */ 206 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 207 return NULL; 208 209 /* Get the first and the only association from the list. */ 210 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 211 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 212 struct sctp_association, asocs); 213 return asoc; 214 } 215 216 /* Otherwise this is a UDP-style socket. */ 217 if (!id || (id == (sctp_assoc_t)-1)) 218 return NULL; 219 220 spin_lock_bh(&sctp_assocs_id_lock); 221 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 222 spin_unlock_bh(&sctp_assocs_id_lock); 223 224 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 225 return NULL; 226 227 return asoc; 228 } 229 230 /* Look up the transport from an address and an assoc id. If both address and 231 * id are specified, the associations matching the address and the id should be 232 * the same. 233 */ 234 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 235 struct sockaddr_storage *addr, 236 sctp_assoc_t id) 237 { 238 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 239 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 240 union sctp_addr *laddr = (union sctp_addr *)addr; 241 struct sctp_transport *transport; 242 243 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 244 return NULL; 245 246 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 247 laddr, 248 &transport); 249 250 if (!addr_asoc) 251 return NULL; 252 253 id_asoc = sctp_id2assoc(sk, id); 254 if (id_asoc && (id_asoc != addr_asoc)) 255 return NULL; 256 257 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 258 (union sctp_addr *)addr); 259 260 return transport; 261 } 262 263 /* API 3.1.2 bind() - UDP Style Syntax 264 * The syntax of bind() is, 265 * 266 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 267 * 268 * sd - the socket descriptor returned by socket(). 269 * addr - the address structure (struct sockaddr_in or struct 270 * sockaddr_in6 [RFC 2553]), 271 * addr_len - the size of the address structure. 272 */ 273 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 274 { 275 int retval = 0; 276 277 lock_sock(sk); 278 279 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 280 addr, addr_len); 281 282 /* Disallow binding twice. */ 283 if (!sctp_sk(sk)->ep->base.bind_addr.port) 284 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 285 addr_len); 286 else 287 retval = -EINVAL; 288 289 release_sock(sk); 290 291 return retval; 292 } 293 294 static long sctp_get_port_local(struct sock *, union sctp_addr *); 295 296 /* Verify this is a valid sockaddr. */ 297 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 298 union sctp_addr *addr, int len) 299 { 300 struct sctp_af *af; 301 302 /* Check minimum size. */ 303 if (len < sizeof (struct sockaddr)) 304 return NULL; 305 306 /* V4 mapped address are really of AF_INET family */ 307 if (addr->sa.sa_family == AF_INET6 && 308 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 309 if (!opt->pf->af_supported(AF_INET, opt)) 310 return NULL; 311 } else { 312 /* Does this PF support this AF? */ 313 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 314 return NULL; 315 } 316 317 /* If we get this far, af is valid. */ 318 af = sctp_get_af_specific(addr->sa.sa_family); 319 320 if (len < af->sockaddr_len) 321 return NULL; 322 323 return af; 324 } 325 326 /* Bind a local address either to an endpoint or to an association. */ 327 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 328 { 329 struct net *net = sock_net(sk); 330 struct sctp_sock *sp = sctp_sk(sk); 331 struct sctp_endpoint *ep = sp->ep; 332 struct sctp_bind_addr *bp = &ep->base.bind_addr; 333 struct sctp_af *af; 334 unsigned short snum; 335 int ret = 0; 336 337 /* Common sockaddr verification. */ 338 af = sctp_sockaddr_af(sp, addr, len); 339 if (!af) { 340 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 341 __func__, sk, addr, len); 342 return -EINVAL; 343 } 344 345 snum = ntohs(addr->v4.sin_port); 346 347 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 348 __func__, sk, &addr->sa, bp->port, snum, len); 349 350 /* PF specific bind() address verification. */ 351 if (!sp->pf->bind_verify(sp, addr)) 352 return -EADDRNOTAVAIL; 353 354 /* We must either be unbound, or bind to the same port. 355 * It's OK to allow 0 ports if we are already bound. 356 * We'll just inhert an already bound port in this case 357 */ 358 if (bp->port) { 359 if (!snum) 360 snum = bp->port; 361 else if (snum != bp->port) { 362 pr_debug("%s: new port %d doesn't match existing port " 363 "%d\n", __func__, snum, bp->port); 364 return -EINVAL; 365 } 366 } 367 368 if (snum && snum < inet_prot_sock(net) && 369 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 370 return -EACCES; 371 372 /* See if the address matches any of the addresses we may have 373 * already bound before checking against other endpoints. 374 */ 375 if (sctp_bind_addr_match(bp, addr, sp)) 376 return -EINVAL; 377 378 /* Make sure we are allowed to bind here. 379 * The function sctp_get_port_local() does duplicate address 380 * detection. 381 */ 382 addr->v4.sin_port = htons(snum); 383 if ((ret = sctp_get_port_local(sk, addr))) { 384 return -EADDRINUSE; 385 } 386 387 /* Refresh ephemeral port. */ 388 if (!bp->port) 389 bp->port = inet_sk(sk)->inet_num; 390 391 /* Add the address to the bind address list. 392 * Use GFP_ATOMIC since BHs will be disabled. 393 */ 394 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 395 SCTP_ADDR_SRC, GFP_ATOMIC); 396 397 /* Copy back into socket for getsockname() use. */ 398 if (!ret) { 399 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 400 sp->pf->to_sk_saddr(addr, sk); 401 } 402 403 return ret; 404 } 405 406 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 407 * 408 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 409 * at any one time. If a sender, after sending an ASCONF chunk, decides 410 * it needs to transfer another ASCONF Chunk, it MUST wait until the 411 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 412 * subsequent ASCONF. Note this restriction binds each side, so at any 413 * time two ASCONF may be in-transit on any given association (one sent 414 * from each endpoint). 415 */ 416 static int sctp_send_asconf(struct sctp_association *asoc, 417 struct sctp_chunk *chunk) 418 { 419 struct net *net = sock_net(asoc->base.sk); 420 int retval = 0; 421 422 /* If there is an outstanding ASCONF chunk, queue it for later 423 * transmission. 424 */ 425 if (asoc->addip_last_asconf) { 426 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 427 goto out; 428 } 429 430 /* Hold the chunk until an ASCONF_ACK is received. */ 431 sctp_chunk_hold(chunk); 432 retval = sctp_primitive_ASCONF(net, asoc, chunk); 433 if (retval) 434 sctp_chunk_free(chunk); 435 else 436 asoc->addip_last_asconf = chunk; 437 438 out: 439 return retval; 440 } 441 442 /* Add a list of addresses as bind addresses to local endpoint or 443 * association. 444 * 445 * Basically run through each address specified in the addrs/addrcnt 446 * array/length pair, determine if it is IPv6 or IPv4 and call 447 * sctp_do_bind() on it. 448 * 449 * If any of them fails, then the operation will be reversed and the 450 * ones that were added will be removed. 451 * 452 * Only sctp_setsockopt_bindx() is supposed to call this function. 453 */ 454 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 455 { 456 int cnt; 457 int retval = 0; 458 void *addr_buf; 459 struct sockaddr *sa_addr; 460 struct sctp_af *af; 461 462 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 463 addrs, addrcnt); 464 465 addr_buf = addrs; 466 for (cnt = 0; cnt < addrcnt; cnt++) { 467 /* The list may contain either IPv4 or IPv6 address; 468 * determine the address length for walking thru the list. 469 */ 470 sa_addr = addr_buf; 471 af = sctp_get_af_specific(sa_addr->sa_family); 472 if (!af) { 473 retval = -EINVAL; 474 goto err_bindx_add; 475 } 476 477 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 478 af->sockaddr_len); 479 480 addr_buf += af->sockaddr_len; 481 482 err_bindx_add: 483 if (retval < 0) { 484 /* Failed. Cleanup the ones that have been added */ 485 if (cnt > 0) 486 sctp_bindx_rem(sk, addrs, cnt); 487 return retval; 488 } 489 } 490 491 return retval; 492 } 493 494 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 495 * associations that are part of the endpoint indicating that a list of local 496 * addresses are added to the endpoint. 497 * 498 * If any of the addresses is already in the bind address list of the 499 * association, we do not send the chunk for that association. But it will not 500 * affect other associations. 501 * 502 * Only sctp_setsockopt_bindx() is supposed to call this function. 503 */ 504 static int sctp_send_asconf_add_ip(struct sock *sk, 505 struct sockaddr *addrs, 506 int addrcnt) 507 { 508 struct net *net = sock_net(sk); 509 struct sctp_sock *sp; 510 struct sctp_endpoint *ep; 511 struct sctp_association *asoc; 512 struct sctp_bind_addr *bp; 513 struct sctp_chunk *chunk; 514 struct sctp_sockaddr_entry *laddr; 515 union sctp_addr *addr; 516 union sctp_addr saveaddr; 517 void *addr_buf; 518 struct sctp_af *af; 519 struct list_head *p; 520 int i; 521 int retval = 0; 522 523 if (!net->sctp.addip_enable) 524 return retval; 525 526 sp = sctp_sk(sk); 527 ep = sp->ep; 528 529 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 530 __func__, sk, addrs, addrcnt); 531 532 list_for_each_entry(asoc, &ep->asocs, asocs) { 533 if (!asoc->peer.asconf_capable) 534 continue; 535 536 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 537 continue; 538 539 if (!sctp_state(asoc, ESTABLISHED)) 540 continue; 541 542 /* Check if any address in the packed array of addresses is 543 * in the bind address list of the association. If so, 544 * do not send the asconf chunk to its peer, but continue with 545 * other associations. 546 */ 547 addr_buf = addrs; 548 for (i = 0; i < addrcnt; i++) { 549 addr = addr_buf; 550 af = sctp_get_af_specific(addr->v4.sin_family); 551 if (!af) { 552 retval = -EINVAL; 553 goto out; 554 } 555 556 if (sctp_assoc_lookup_laddr(asoc, addr)) 557 break; 558 559 addr_buf += af->sockaddr_len; 560 } 561 if (i < addrcnt) 562 continue; 563 564 /* Use the first valid address in bind addr list of 565 * association as Address Parameter of ASCONF CHUNK. 566 */ 567 bp = &asoc->base.bind_addr; 568 p = bp->address_list.next; 569 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 570 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 571 addrcnt, SCTP_PARAM_ADD_IP); 572 if (!chunk) { 573 retval = -ENOMEM; 574 goto out; 575 } 576 577 /* Add the new addresses to the bind address list with 578 * use_as_src set to 0. 579 */ 580 addr_buf = addrs; 581 for (i = 0; i < addrcnt; i++) { 582 addr = addr_buf; 583 af = sctp_get_af_specific(addr->v4.sin_family); 584 memcpy(&saveaddr, addr, af->sockaddr_len); 585 retval = sctp_add_bind_addr(bp, &saveaddr, 586 sizeof(saveaddr), 587 SCTP_ADDR_NEW, GFP_ATOMIC); 588 addr_buf += af->sockaddr_len; 589 } 590 if (asoc->src_out_of_asoc_ok) { 591 struct sctp_transport *trans; 592 593 list_for_each_entry(trans, 594 &asoc->peer.transport_addr_list, transports) { 595 /* Clear the source and route cache */ 596 sctp_transport_dst_release(trans); 597 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 598 2*asoc->pathmtu, 4380)); 599 trans->ssthresh = asoc->peer.i.a_rwnd; 600 trans->rto = asoc->rto_initial; 601 sctp_max_rto(asoc, trans); 602 trans->rtt = trans->srtt = trans->rttvar = 0; 603 sctp_transport_route(trans, NULL, 604 sctp_sk(asoc->base.sk)); 605 } 606 } 607 retval = sctp_send_asconf(asoc, chunk); 608 } 609 610 out: 611 return retval; 612 } 613 614 /* Remove a list of addresses from bind addresses list. Do not remove the 615 * last address. 616 * 617 * Basically run through each address specified in the addrs/addrcnt 618 * array/length pair, determine if it is IPv6 or IPv4 and call 619 * sctp_del_bind() on it. 620 * 621 * If any of them fails, then the operation will be reversed and the 622 * ones that were removed will be added back. 623 * 624 * At least one address has to be left; if only one address is 625 * available, the operation will return -EBUSY. 626 * 627 * Only sctp_setsockopt_bindx() is supposed to call this function. 628 */ 629 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 630 { 631 struct sctp_sock *sp = sctp_sk(sk); 632 struct sctp_endpoint *ep = sp->ep; 633 int cnt; 634 struct sctp_bind_addr *bp = &ep->base.bind_addr; 635 int retval = 0; 636 void *addr_buf; 637 union sctp_addr *sa_addr; 638 struct sctp_af *af; 639 640 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 641 __func__, sk, addrs, addrcnt); 642 643 addr_buf = addrs; 644 for (cnt = 0; cnt < addrcnt; cnt++) { 645 /* If the bind address list is empty or if there is only one 646 * bind address, there is nothing more to be removed (we need 647 * at least one address here). 648 */ 649 if (list_empty(&bp->address_list) || 650 (sctp_list_single_entry(&bp->address_list))) { 651 retval = -EBUSY; 652 goto err_bindx_rem; 653 } 654 655 sa_addr = addr_buf; 656 af = sctp_get_af_specific(sa_addr->sa.sa_family); 657 if (!af) { 658 retval = -EINVAL; 659 goto err_bindx_rem; 660 } 661 662 if (!af->addr_valid(sa_addr, sp, NULL)) { 663 retval = -EADDRNOTAVAIL; 664 goto err_bindx_rem; 665 } 666 667 if (sa_addr->v4.sin_port && 668 sa_addr->v4.sin_port != htons(bp->port)) { 669 retval = -EINVAL; 670 goto err_bindx_rem; 671 } 672 673 if (!sa_addr->v4.sin_port) 674 sa_addr->v4.sin_port = htons(bp->port); 675 676 /* FIXME - There is probably a need to check if sk->sk_saddr and 677 * sk->sk_rcv_addr are currently set to one of the addresses to 678 * be removed. This is something which needs to be looked into 679 * when we are fixing the outstanding issues with multi-homing 680 * socket routing and failover schemes. Refer to comments in 681 * sctp_do_bind(). -daisy 682 */ 683 retval = sctp_del_bind_addr(bp, sa_addr); 684 685 addr_buf += af->sockaddr_len; 686 err_bindx_rem: 687 if (retval < 0) { 688 /* Failed. Add the ones that has been removed back */ 689 if (cnt > 0) 690 sctp_bindx_add(sk, addrs, cnt); 691 return retval; 692 } 693 } 694 695 return retval; 696 } 697 698 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 699 * the associations that are part of the endpoint indicating that a list of 700 * local addresses are removed from the endpoint. 701 * 702 * If any of the addresses is already in the bind address list of the 703 * association, we do not send the chunk for that association. But it will not 704 * affect other associations. 705 * 706 * Only sctp_setsockopt_bindx() is supposed to call this function. 707 */ 708 static int sctp_send_asconf_del_ip(struct sock *sk, 709 struct sockaddr *addrs, 710 int addrcnt) 711 { 712 struct net *net = sock_net(sk); 713 struct sctp_sock *sp; 714 struct sctp_endpoint *ep; 715 struct sctp_association *asoc; 716 struct sctp_transport *transport; 717 struct sctp_bind_addr *bp; 718 struct sctp_chunk *chunk; 719 union sctp_addr *laddr; 720 void *addr_buf; 721 struct sctp_af *af; 722 struct sctp_sockaddr_entry *saddr; 723 int i; 724 int retval = 0; 725 int stored = 0; 726 727 chunk = NULL; 728 if (!net->sctp.addip_enable) 729 return retval; 730 731 sp = sctp_sk(sk); 732 ep = sp->ep; 733 734 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 735 __func__, sk, addrs, addrcnt); 736 737 list_for_each_entry(asoc, &ep->asocs, asocs) { 738 739 if (!asoc->peer.asconf_capable) 740 continue; 741 742 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 743 continue; 744 745 if (!sctp_state(asoc, ESTABLISHED)) 746 continue; 747 748 /* Check if any address in the packed array of addresses is 749 * not present in the bind address list of the association. 750 * If so, do not send the asconf chunk to its peer, but 751 * continue with other associations. 752 */ 753 addr_buf = addrs; 754 for (i = 0; i < addrcnt; i++) { 755 laddr = addr_buf; 756 af = sctp_get_af_specific(laddr->v4.sin_family); 757 if (!af) { 758 retval = -EINVAL; 759 goto out; 760 } 761 762 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 763 break; 764 765 addr_buf += af->sockaddr_len; 766 } 767 if (i < addrcnt) 768 continue; 769 770 /* Find one address in the association's bind address list 771 * that is not in the packed array of addresses. This is to 772 * make sure that we do not delete all the addresses in the 773 * association. 774 */ 775 bp = &asoc->base.bind_addr; 776 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 777 addrcnt, sp); 778 if ((laddr == NULL) && (addrcnt == 1)) { 779 if (asoc->asconf_addr_del_pending) 780 continue; 781 asoc->asconf_addr_del_pending = 782 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 783 if (asoc->asconf_addr_del_pending == NULL) { 784 retval = -ENOMEM; 785 goto out; 786 } 787 asoc->asconf_addr_del_pending->sa.sa_family = 788 addrs->sa_family; 789 asoc->asconf_addr_del_pending->v4.sin_port = 790 htons(bp->port); 791 if (addrs->sa_family == AF_INET) { 792 struct sockaddr_in *sin; 793 794 sin = (struct sockaddr_in *)addrs; 795 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 796 } else if (addrs->sa_family == AF_INET6) { 797 struct sockaddr_in6 *sin6; 798 799 sin6 = (struct sockaddr_in6 *)addrs; 800 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 801 } 802 803 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 804 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 805 asoc->asconf_addr_del_pending); 806 807 asoc->src_out_of_asoc_ok = 1; 808 stored = 1; 809 goto skip_mkasconf; 810 } 811 812 if (laddr == NULL) 813 return -EINVAL; 814 815 /* We do not need RCU protection throughout this loop 816 * because this is done under a socket lock from the 817 * setsockopt call. 818 */ 819 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 820 SCTP_PARAM_DEL_IP); 821 if (!chunk) { 822 retval = -ENOMEM; 823 goto out; 824 } 825 826 skip_mkasconf: 827 /* Reset use_as_src flag for the addresses in the bind address 828 * list that are to be deleted. 829 */ 830 addr_buf = addrs; 831 for (i = 0; i < addrcnt; i++) { 832 laddr = addr_buf; 833 af = sctp_get_af_specific(laddr->v4.sin_family); 834 list_for_each_entry(saddr, &bp->address_list, list) { 835 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 836 saddr->state = SCTP_ADDR_DEL; 837 } 838 addr_buf += af->sockaddr_len; 839 } 840 841 /* Update the route and saddr entries for all the transports 842 * as some of the addresses in the bind address list are 843 * about to be deleted and cannot be used as source addresses. 844 */ 845 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 846 transports) { 847 sctp_transport_dst_release(transport); 848 sctp_transport_route(transport, NULL, 849 sctp_sk(asoc->base.sk)); 850 } 851 852 if (stored) 853 /* We don't need to transmit ASCONF */ 854 continue; 855 retval = sctp_send_asconf(asoc, chunk); 856 } 857 out: 858 return retval; 859 } 860 861 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 862 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 863 { 864 struct sock *sk = sctp_opt2sk(sp); 865 union sctp_addr *addr; 866 struct sctp_af *af; 867 868 /* It is safe to write port space in caller. */ 869 addr = &addrw->a; 870 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 871 af = sctp_get_af_specific(addr->sa.sa_family); 872 if (!af) 873 return -EINVAL; 874 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 875 return -EINVAL; 876 877 if (addrw->state == SCTP_ADDR_NEW) 878 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 879 else 880 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 881 } 882 883 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 884 * 885 * API 8.1 886 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 887 * int flags); 888 * 889 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 890 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 891 * or IPv6 addresses. 892 * 893 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 894 * Section 3.1.2 for this usage. 895 * 896 * addrs is a pointer to an array of one or more socket addresses. Each 897 * address is contained in its appropriate structure (i.e. struct 898 * sockaddr_in or struct sockaddr_in6) the family of the address type 899 * must be used to distinguish the address length (note that this 900 * representation is termed a "packed array" of addresses). The caller 901 * specifies the number of addresses in the array with addrcnt. 902 * 903 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 904 * -1, and sets errno to the appropriate error code. 905 * 906 * For SCTP, the port given in each socket address must be the same, or 907 * sctp_bindx() will fail, setting errno to EINVAL. 908 * 909 * The flags parameter is formed from the bitwise OR of zero or more of 910 * the following currently defined flags: 911 * 912 * SCTP_BINDX_ADD_ADDR 913 * 914 * SCTP_BINDX_REM_ADDR 915 * 916 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 917 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 918 * addresses from the association. The two flags are mutually exclusive; 919 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 920 * not remove all addresses from an association; sctp_bindx() will 921 * reject such an attempt with EINVAL. 922 * 923 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 924 * additional addresses with an endpoint after calling bind(). Or use 925 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 926 * socket is associated with so that no new association accepted will be 927 * associated with those addresses. If the endpoint supports dynamic 928 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 929 * endpoint to send the appropriate message to the peer to change the 930 * peers address lists. 931 * 932 * Adding and removing addresses from a connected association is 933 * optional functionality. Implementations that do not support this 934 * functionality should return EOPNOTSUPP. 935 * 936 * Basically do nothing but copying the addresses from user to kernel 937 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 938 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 939 * from userspace. 940 * 941 * We don't use copy_from_user() for optimization: we first do the 942 * sanity checks (buffer size -fast- and access check-healthy 943 * pointer); if all of those succeed, then we can alloc the memory 944 * (expensive operation) needed to copy the data to kernel. Then we do 945 * the copying without checking the user space area 946 * (__copy_from_user()). 947 * 948 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 949 * it. 950 * 951 * sk The sk of the socket 952 * addrs The pointer to the addresses in user land 953 * addrssize Size of the addrs buffer 954 * op Operation to perform (add or remove, see the flags of 955 * sctp_bindx) 956 * 957 * Returns 0 if ok, <0 errno code on error. 958 */ 959 static int sctp_setsockopt_bindx(struct sock *sk, 960 struct sockaddr __user *addrs, 961 int addrs_size, int op) 962 { 963 struct sockaddr *kaddrs; 964 int err; 965 int addrcnt = 0; 966 int walk_size = 0; 967 struct sockaddr *sa_addr; 968 void *addr_buf; 969 struct sctp_af *af; 970 971 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 972 __func__, sk, addrs, addrs_size, op); 973 974 if (unlikely(addrs_size <= 0)) 975 return -EINVAL; 976 977 /* Check the user passed a healthy pointer. */ 978 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 979 return -EFAULT; 980 981 /* Alloc space for the address array in kernel memory. */ 982 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 983 if (unlikely(!kaddrs)) 984 return -ENOMEM; 985 986 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 987 kfree(kaddrs); 988 return -EFAULT; 989 } 990 991 /* Walk through the addrs buffer and count the number of addresses. */ 992 addr_buf = kaddrs; 993 while (walk_size < addrs_size) { 994 if (walk_size + sizeof(sa_family_t) > addrs_size) { 995 kfree(kaddrs); 996 return -EINVAL; 997 } 998 999 sa_addr = addr_buf; 1000 af = sctp_get_af_specific(sa_addr->sa_family); 1001 1002 /* If the address family is not supported or if this address 1003 * causes the address buffer to overflow return EINVAL. 1004 */ 1005 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1006 kfree(kaddrs); 1007 return -EINVAL; 1008 } 1009 addrcnt++; 1010 addr_buf += af->sockaddr_len; 1011 walk_size += af->sockaddr_len; 1012 } 1013 1014 /* Do the work. */ 1015 switch (op) { 1016 case SCTP_BINDX_ADD_ADDR: 1017 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1018 if (err) 1019 goto out; 1020 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1021 break; 1022 1023 case SCTP_BINDX_REM_ADDR: 1024 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1025 if (err) 1026 goto out; 1027 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1028 break; 1029 1030 default: 1031 err = -EINVAL; 1032 break; 1033 } 1034 1035 out: 1036 kfree(kaddrs); 1037 1038 return err; 1039 } 1040 1041 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1042 * 1043 * Common routine for handling connect() and sctp_connectx(). 1044 * Connect will come in with just a single address. 1045 */ 1046 static int __sctp_connect(struct sock *sk, 1047 struct sockaddr *kaddrs, 1048 int addrs_size, 1049 sctp_assoc_t *assoc_id) 1050 { 1051 struct net *net = sock_net(sk); 1052 struct sctp_sock *sp; 1053 struct sctp_endpoint *ep; 1054 struct sctp_association *asoc = NULL; 1055 struct sctp_association *asoc2; 1056 struct sctp_transport *transport; 1057 union sctp_addr to; 1058 sctp_scope_t scope; 1059 long timeo; 1060 int err = 0; 1061 int addrcnt = 0; 1062 int walk_size = 0; 1063 union sctp_addr *sa_addr = NULL; 1064 void *addr_buf; 1065 unsigned short port; 1066 unsigned int f_flags = 0; 1067 1068 sp = sctp_sk(sk); 1069 ep = sp->ep; 1070 1071 /* connect() cannot be done on a socket that is already in ESTABLISHED 1072 * state - UDP-style peeled off socket or a TCP-style socket that 1073 * is already connected. 1074 * It cannot be done even on a TCP-style listening socket. 1075 */ 1076 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1077 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1078 err = -EISCONN; 1079 goto out_free; 1080 } 1081 1082 /* Walk through the addrs buffer and count the number of addresses. */ 1083 addr_buf = kaddrs; 1084 while (walk_size < addrs_size) { 1085 struct sctp_af *af; 1086 1087 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1088 err = -EINVAL; 1089 goto out_free; 1090 } 1091 1092 sa_addr = addr_buf; 1093 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1094 1095 /* If the address family is not supported or if this address 1096 * causes the address buffer to overflow return EINVAL. 1097 */ 1098 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1099 err = -EINVAL; 1100 goto out_free; 1101 } 1102 1103 port = ntohs(sa_addr->v4.sin_port); 1104 1105 /* Save current address so we can work with it */ 1106 memcpy(&to, sa_addr, af->sockaddr_len); 1107 1108 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1109 if (err) 1110 goto out_free; 1111 1112 /* Make sure the destination port is correctly set 1113 * in all addresses. 1114 */ 1115 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1116 err = -EINVAL; 1117 goto out_free; 1118 } 1119 1120 /* Check if there already is a matching association on the 1121 * endpoint (other than the one created here). 1122 */ 1123 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1124 if (asoc2 && asoc2 != asoc) { 1125 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1126 err = -EISCONN; 1127 else 1128 err = -EALREADY; 1129 goto out_free; 1130 } 1131 1132 /* If we could not find a matching association on the endpoint, 1133 * make sure that there is no peeled-off association matching 1134 * the peer address even on another socket. 1135 */ 1136 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1137 err = -EADDRNOTAVAIL; 1138 goto out_free; 1139 } 1140 1141 if (!asoc) { 1142 /* If a bind() or sctp_bindx() is not called prior to 1143 * an sctp_connectx() call, the system picks an 1144 * ephemeral port and will choose an address set 1145 * equivalent to binding with a wildcard address. 1146 */ 1147 if (!ep->base.bind_addr.port) { 1148 if (sctp_autobind(sk)) { 1149 err = -EAGAIN; 1150 goto out_free; 1151 } 1152 } else { 1153 /* 1154 * If an unprivileged user inherits a 1-many 1155 * style socket with open associations on a 1156 * privileged port, it MAY be permitted to 1157 * accept new associations, but it SHOULD NOT 1158 * be permitted to open new associations. 1159 */ 1160 if (ep->base.bind_addr.port < 1161 inet_prot_sock(net) && 1162 !ns_capable(net->user_ns, 1163 CAP_NET_BIND_SERVICE)) { 1164 err = -EACCES; 1165 goto out_free; 1166 } 1167 } 1168 1169 scope = sctp_scope(&to); 1170 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1171 if (!asoc) { 1172 err = -ENOMEM; 1173 goto out_free; 1174 } 1175 1176 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1177 GFP_KERNEL); 1178 if (err < 0) { 1179 goto out_free; 1180 } 1181 1182 } 1183 1184 /* Prime the peer's transport structures. */ 1185 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1186 SCTP_UNKNOWN); 1187 if (!transport) { 1188 err = -ENOMEM; 1189 goto out_free; 1190 } 1191 1192 addrcnt++; 1193 addr_buf += af->sockaddr_len; 1194 walk_size += af->sockaddr_len; 1195 } 1196 1197 /* In case the user of sctp_connectx() wants an association 1198 * id back, assign one now. 1199 */ 1200 if (assoc_id) { 1201 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1202 if (err < 0) 1203 goto out_free; 1204 } 1205 1206 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1207 if (err < 0) { 1208 goto out_free; 1209 } 1210 1211 /* Initialize sk's dport and daddr for getpeername() */ 1212 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1213 sp->pf->to_sk_daddr(sa_addr, sk); 1214 sk->sk_err = 0; 1215 1216 /* in-kernel sockets don't generally have a file allocated to them 1217 * if all they do is call sock_create_kern(). 1218 */ 1219 if (sk->sk_socket->file) 1220 f_flags = sk->sk_socket->file->f_flags; 1221 1222 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1223 1224 if (assoc_id) 1225 *assoc_id = asoc->assoc_id; 1226 err = sctp_wait_for_connect(asoc, &timeo); 1227 /* Note: the asoc may be freed after the return of 1228 * sctp_wait_for_connect. 1229 */ 1230 1231 /* Don't free association on exit. */ 1232 asoc = NULL; 1233 1234 out_free: 1235 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1236 __func__, asoc, kaddrs, err); 1237 1238 if (asoc) { 1239 /* sctp_primitive_ASSOCIATE may have added this association 1240 * To the hash table, try to unhash it, just in case, its a noop 1241 * if it wasn't hashed so we're safe 1242 */ 1243 sctp_association_free(asoc); 1244 } 1245 return err; 1246 } 1247 1248 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1249 * 1250 * API 8.9 1251 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1252 * sctp_assoc_t *asoc); 1253 * 1254 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1255 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1256 * or IPv6 addresses. 1257 * 1258 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1259 * Section 3.1.2 for this usage. 1260 * 1261 * addrs is a pointer to an array of one or more socket addresses. Each 1262 * address is contained in its appropriate structure (i.e. struct 1263 * sockaddr_in or struct sockaddr_in6) the family of the address type 1264 * must be used to distengish the address length (note that this 1265 * representation is termed a "packed array" of addresses). The caller 1266 * specifies the number of addresses in the array with addrcnt. 1267 * 1268 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1269 * the association id of the new association. On failure, sctp_connectx() 1270 * returns -1, and sets errno to the appropriate error code. The assoc_id 1271 * is not touched by the kernel. 1272 * 1273 * For SCTP, the port given in each socket address must be the same, or 1274 * sctp_connectx() will fail, setting errno to EINVAL. 1275 * 1276 * An application can use sctp_connectx to initiate an association with 1277 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1278 * allows a caller to specify multiple addresses at which a peer can be 1279 * reached. The way the SCTP stack uses the list of addresses to set up 1280 * the association is implementation dependent. This function only 1281 * specifies that the stack will try to make use of all the addresses in 1282 * the list when needed. 1283 * 1284 * Note that the list of addresses passed in is only used for setting up 1285 * the association. It does not necessarily equal the set of addresses 1286 * the peer uses for the resulting association. If the caller wants to 1287 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1288 * retrieve them after the association has been set up. 1289 * 1290 * Basically do nothing but copying the addresses from user to kernel 1291 * land and invoking either sctp_connectx(). This is used for tunneling 1292 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1293 * 1294 * We don't use copy_from_user() for optimization: we first do the 1295 * sanity checks (buffer size -fast- and access check-healthy 1296 * pointer); if all of those succeed, then we can alloc the memory 1297 * (expensive operation) needed to copy the data to kernel. Then we do 1298 * the copying without checking the user space area 1299 * (__copy_from_user()). 1300 * 1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1302 * it. 1303 * 1304 * sk The sk of the socket 1305 * addrs The pointer to the addresses in user land 1306 * addrssize Size of the addrs buffer 1307 * 1308 * Returns >=0 if ok, <0 errno code on error. 1309 */ 1310 static int __sctp_setsockopt_connectx(struct sock *sk, 1311 struct sockaddr __user *addrs, 1312 int addrs_size, 1313 sctp_assoc_t *assoc_id) 1314 { 1315 struct sockaddr *kaddrs; 1316 gfp_t gfp = GFP_KERNEL; 1317 int err = 0; 1318 1319 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1320 __func__, sk, addrs, addrs_size); 1321 1322 if (unlikely(addrs_size <= 0)) 1323 return -EINVAL; 1324 1325 /* Check the user passed a healthy pointer. */ 1326 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1327 return -EFAULT; 1328 1329 /* Alloc space for the address array in kernel memory. */ 1330 if (sk->sk_socket->file) 1331 gfp = GFP_USER | __GFP_NOWARN; 1332 kaddrs = kmalloc(addrs_size, gfp); 1333 if (unlikely(!kaddrs)) 1334 return -ENOMEM; 1335 1336 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1337 err = -EFAULT; 1338 } else { 1339 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1340 } 1341 1342 kfree(kaddrs); 1343 1344 return err; 1345 } 1346 1347 /* 1348 * This is an older interface. It's kept for backward compatibility 1349 * to the option that doesn't provide association id. 1350 */ 1351 static int sctp_setsockopt_connectx_old(struct sock *sk, 1352 struct sockaddr __user *addrs, 1353 int addrs_size) 1354 { 1355 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1356 } 1357 1358 /* 1359 * New interface for the API. The since the API is done with a socket 1360 * option, to make it simple we feed back the association id is as a return 1361 * indication to the call. Error is always negative and association id is 1362 * always positive. 1363 */ 1364 static int sctp_setsockopt_connectx(struct sock *sk, 1365 struct sockaddr __user *addrs, 1366 int addrs_size) 1367 { 1368 sctp_assoc_t assoc_id = 0; 1369 int err = 0; 1370 1371 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1372 1373 if (err) 1374 return err; 1375 else 1376 return assoc_id; 1377 } 1378 1379 /* 1380 * New (hopefully final) interface for the API. 1381 * We use the sctp_getaddrs_old structure so that use-space library 1382 * can avoid any unnecessary allocations. The only different part 1383 * is that we store the actual length of the address buffer into the 1384 * addrs_num structure member. That way we can re-use the existing 1385 * code. 1386 */ 1387 #ifdef CONFIG_COMPAT 1388 struct compat_sctp_getaddrs_old { 1389 sctp_assoc_t assoc_id; 1390 s32 addr_num; 1391 compat_uptr_t addrs; /* struct sockaddr * */ 1392 }; 1393 #endif 1394 1395 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1396 char __user *optval, 1397 int __user *optlen) 1398 { 1399 struct sctp_getaddrs_old param; 1400 sctp_assoc_t assoc_id = 0; 1401 int err = 0; 1402 1403 #ifdef CONFIG_COMPAT 1404 if (in_compat_syscall()) { 1405 struct compat_sctp_getaddrs_old param32; 1406 1407 if (len < sizeof(param32)) 1408 return -EINVAL; 1409 if (copy_from_user(¶m32, optval, sizeof(param32))) 1410 return -EFAULT; 1411 1412 param.assoc_id = param32.assoc_id; 1413 param.addr_num = param32.addr_num; 1414 param.addrs = compat_ptr(param32.addrs); 1415 } else 1416 #endif 1417 { 1418 if (len < sizeof(param)) 1419 return -EINVAL; 1420 if (copy_from_user(¶m, optval, sizeof(param))) 1421 return -EFAULT; 1422 } 1423 1424 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1425 param.addrs, param.addr_num, 1426 &assoc_id); 1427 if (err == 0 || err == -EINPROGRESS) { 1428 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1429 return -EFAULT; 1430 if (put_user(sizeof(assoc_id), optlen)) 1431 return -EFAULT; 1432 } 1433 1434 return err; 1435 } 1436 1437 /* API 3.1.4 close() - UDP Style Syntax 1438 * Applications use close() to perform graceful shutdown (as described in 1439 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1440 * by a UDP-style socket. 1441 * 1442 * The syntax is 1443 * 1444 * ret = close(int sd); 1445 * 1446 * sd - the socket descriptor of the associations to be closed. 1447 * 1448 * To gracefully shutdown a specific association represented by the 1449 * UDP-style socket, an application should use the sendmsg() call, 1450 * passing no user data, but including the appropriate flag in the 1451 * ancillary data (see Section xxxx). 1452 * 1453 * If sd in the close() call is a branched-off socket representing only 1454 * one association, the shutdown is performed on that association only. 1455 * 1456 * 4.1.6 close() - TCP Style Syntax 1457 * 1458 * Applications use close() to gracefully close down an association. 1459 * 1460 * The syntax is: 1461 * 1462 * int close(int sd); 1463 * 1464 * sd - the socket descriptor of the association to be closed. 1465 * 1466 * After an application calls close() on a socket descriptor, no further 1467 * socket operations will succeed on that descriptor. 1468 * 1469 * API 7.1.4 SO_LINGER 1470 * 1471 * An application using the TCP-style socket can use this option to 1472 * perform the SCTP ABORT primitive. The linger option structure is: 1473 * 1474 * struct linger { 1475 * int l_onoff; // option on/off 1476 * int l_linger; // linger time 1477 * }; 1478 * 1479 * To enable the option, set l_onoff to 1. If the l_linger value is set 1480 * to 0, calling close() is the same as the ABORT primitive. If the 1481 * value is set to a negative value, the setsockopt() call will return 1482 * an error. If the value is set to a positive value linger_time, the 1483 * close() can be blocked for at most linger_time ms. If the graceful 1484 * shutdown phase does not finish during this period, close() will 1485 * return but the graceful shutdown phase continues in the system. 1486 */ 1487 static void sctp_close(struct sock *sk, long timeout) 1488 { 1489 struct net *net = sock_net(sk); 1490 struct sctp_endpoint *ep; 1491 struct sctp_association *asoc; 1492 struct list_head *pos, *temp; 1493 unsigned int data_was_unread; 1494 1495 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1496 1497 lock_sock(sk); 1498 sk->sk_shutdown = SHUTDOWN_MASK; 1499 sk->sk_state = SCTP_SS_CLOSING; 1500 1501 ep = sctp_sk(sk)->ep; 1502 1503 /* Clean up any skbs sitting on the receive queue. */ 1504 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1505 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1506 1507 /* Walk all associations on an endpoint. */ 1508 list_for_each_safe(pos, temp, &ep->asocs) { 1509 asoc = list_entry(pos, struct sctp_association, asocs); 1510 1511 if (sctp_style(sk, TCP)) { 1512 /* A closed association can still be in the list if 1513 * it belongs to a TCP-style listening socket that is 1514 * not yet accepted. If so, free it. If not, send an 1515 * ABORT or SHUTDOWN based on the linger options. 1516 */ 1517 if (sctp_state(asoc, CLOSED)) { 1518 sctp_association_free(asoc); 1519 continue; 1520 } 1521 } 1522 1523 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1524 !skb_queue_empty(&asoc->ulpq.reasm) || 1525 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1526 struct sctp_chunk *chunk; 1527 1528 chunk = sctp_make_abort_user(asoc, NULL, 0); 1529 sctp_primitive_ABORT(net, asoc, chunk); 1530 } else 1531 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1532 } 1533 1534 /* On a TCP-style socket, block for at most linger_time if set. */ 1535 if (sctp_style(sk, TCP) && timeout) 1536 sctp_wait_for_close(sk, timeout); 1537 1538 /* This will run the backlog queue. */ 1539 release_sock(sk); 1540 1541 /* Supposedly, no process has access to the socket, but 1542 * the net layers still may. 1543 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1544 * held and that should be grabbed before socket lock. 1545 */ 1546 spin_lock_bh(&net->sctp.addr_wq_lock); 1547 bh_lock_sock(sk); 1548 1549 /* Hold the sock, since sk_common_release() will put sock_put() 1550 * and we have just a little more cleanup. 1551 */ 1552 sock_hold(sk); 1553 sk_common_release(sk); 1554 1555 bh_unlock_sock(sk); 1556 spin_unlock_bh(&net->sctp.addr_wq_lock); 1557 1558 sock_put(sk); 1559 1560 SCTP_DBG_OBJCNT_DEC(sock); 1561 } 1562 1563 /* Handle EPIPE error. */ 1564 static int sctp_error(struct sock *sk, int flags, int err) 1565 { 1566 if (err == -EPIPE) 1567 err = sock_error(sk) ? : -EPIPE; 1568 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1569 send_sig(SIGPIPE, current, 0); 1570 return err; 1571 } 1572 1573 /* API 3.1.3 sendmsg() - UDP Style Syntax 1574 * 1575 * An application uses sendmsg() and recvmsg() calls to transmit data to 1576 * and receive data from its peer. 1577 * 1578 * ssize_t sendmsg(int socket, const struct msghdr *message, 1579 * int flags); 1580 * 1581 * socket - the socket descriptor of the endpoint. 1582 * message - pointer to the msghdr structure which contains a single 1583 * user message and possibly some ancillary data. 1584 * 1585 * See Section 5 for complete description of the data 1586 * structures. 1587 * 1588 * flags - flags sent or received with the user message, see Section 1589 * 5 for complete description of the flags. 1590 * 1591 * Note: This function could use a rewrite especially when explicit 1592 * connect support comes in. 1593 */ 1594 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1595 1596 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1597 1598 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1599 { 1600 struct net *net = sock_net(sk); 1601 struct sctp_sock *sp; 1602 struct sctp_endpoint *ep; 1603 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1604 struct sctp_transport *transport, *chunk_tp; 1605 struct sctp_chunk *chunk; 1606 union sctp_addr to; 1607 struct sockaddr *msg_name = NULL; 1608 struct sctp_sndrcvinfo default_sinfo; 1609 struct sctp_sndrcvinfo *sinfo; 1610 struct sctp_initmsg *sinit; 1611 sctp_assoc_t associd = 0; 1612 sctp_cmsgs_t cmsgs = { NULL }; 1613 sctp_scope_t scope; 1614 bool fill_sinfo_ttl = false, wait_connect = false; 1615 struct sctp_datamsg *datamsg; 1616 int msg_flags = msg->msg_flags; 1617 __u16 sinfo_flags = 0; 1618 long timeo; 1619 int err; 1620 1621 err = 0; 1622 sp = sctp_sk(sk); 1623 ep = sp->ep; 1624 1625 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1626 msg, msg_len, ep); 1627 1628 /* We cannot send a message over a TCP-style listening socket. */ 1629 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1630 err = -EPIPE; 1631 goto out_nounlock; 1632 } 1633 1634 /* Parse out the SCTP CMSGs. */ 1635 err = sctp_msghdr_parse(msg, &cmsgs); 1636 if (err) { 1637 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1638 goto out_nounlock; 1639 } 1640 1641 /* Fetch the destination address for this packet. This 1642 * address only selects the association--it is not necessarily 1643 * the address we will send to. 1644 * For a peeled-off socket, msg_name is ignored. 1645 */ 1646 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1647 int msg_namelen = msg->msg_namelen; 1648 1649 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1650 msg_namelen); 1651 if (err) 1652 return err; 1653 1654 if (msg_namelen > sizeof(to)) 1655 msg_namelen = sizeof(to); 1656 memcpy(&to, msg->msg_name, msg_namelen); 1657 msg_name = msg->msg_name; 1658 } 1659 1660 sinit = cmsgs.init; 1661 if (cmsgs.sinfo != NULL) { 1662 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1663 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1664 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1665 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1666 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1667 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1668 1669 sinfo = &default_sinfo; 1670 fill_sinfo_ttl = true; 1671 } else { 1672 sinfo = cmsgs.srinfo; 1673 } 1674 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1675 if (sinfo) { 1676 sinfo_flags = sinfo->sinfo_flags; 1677 associd = sinfo->sinfo_assoc_id; 1678 } 1679 1680 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1681 msg_len, sinfo_flags); 1682 1683 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1684 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1685 err = -EINVAL; 1686 goto out_nounlock; 1687 } 1688 1689 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1690 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1691 * If SCTP_ABORT is set, the message length could be non zero with 1692 * the msg_iov set to the user abort reason. 1693 */ 1694 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1695 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1696 err = -EINVAL; 1697 goto out_nounlock; 1698 } 1699 1700 /* If SCTP_ADDR_OVER is set, there must be an address 1701 * specified in msg_name. 1702 */ 1703 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1704 err = -EINVAL; 1705 goto out_nounlock; 1706 } 1707 1708 transport = NULL; 1709 1710 pr_debug("%s: about to look up association\n", __func__); 1711 1712 lock_sock(sk); 1713 1714 /* If a msg_name has been specified, assume this is to be used. */ 1715 if (msg_name) { 1716 /* Look for a matching association on the endpoint. */ 1717 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1718 1719 /* If we could not find a matching association on the 1720 * endpoint, make sure that it is not a TCP-style 1721 * socket that already has an association or there is 1722 * no peeled-off association on another socket. 1723 */ 1724 if (!asoc && 1725 ((sctp_style(sk, TCP) && 1726 (sctp_sstate(sk, ESTABLISHED) || 1727 sctp_sstate(sk, CLOSING))) || 1728 sctp_endpoint_is_peeled_off(ep, &to))) { 1729 err = -EADDRNOTAVAIL; 1730 goto out_unlock; 1731 } 1732 } else { 1733 asoc = sctp_id2assoc(sk, associd); 1734 if (!asoc) { 1735 err = -EPIPE; 1736 goto out_unlock; 1737 } 1738 } 1739 1740 if (asoc) { 1741 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1742 1743 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1744 * socket that has an association in CLOSED state. This can 1745 * happen when an accepted socket has an association that is 1746 * already CLOSED. 1747 */ 1748 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1749 err = -EPIPE; 1750 goto out_unlock; 1751 } 1752 1753 if (sinfo_flags & SCTP_EOF) { 1754 pr_debug("%s: shutting down association:%p\n", 1755 __func__, asoc); 1756 1757 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1758 err = 0; 1759 goto out_unlock; 1760 } 1761 if (sinfo_flags & SCTP_ABORT) { 1762 1763 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1764 if (!chunk) { 1765 err = -ENOMEM; 1766 goto out_unlock; 1767 } 1768 1769 pr_debug("%s: aborting association:%p\n", 1770 __func__, asoc); 1771 1772 sctp_primitive_ABORT(net, asoc, chunk); 1773 err = 0; 1774 goto out_unlock; 1775 } 1776 } 1777 1778 /* Do we need to create the association? */ 1779 if (!asoc) { 1780 pr_debug("%s: there is no association yet\n", __func__); 1781 1782 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1783 err = -EINVAL; 1784 goto out_unlock; 1785 } 1786 1787 /* Check for invalid stream against the stream counts, 1788 * either the default or the user specified stream counts. 1789 */ 1790 if (sinfo) { 1791 if (!sinit || !sinit->sinit_num_ostreams) { 1792 /* Check against the defaults. */ 1793 if (sinfo->sinfo_stream >= 1794 sp->initmsg.sinit_num_ostreams) { 1795 err = -EINVAL; 1796 goto out_unlock; 1797 } 1798 } else { 1799 /* Check against the requested. */ 1800 if (sinfo->sinfo_stream >= 1801 sinit->sinit_num_ostreams) { 1802 err = -EINVAL; 1803 goto out_unlock; 1804 } 1805 } 1806 } 1807 1808 /* 1809 * API 3.1.2 bind() - UDP Style Syntax 1810 * If a bind() or sctp_bindx() is not called prior to a 1811 * sendmsg() call that initiates a new association, the 1812 * system picks an ephemeral port and will choose an address 1813 * set equivalent to binding with a wildcard address. 1814 */ 1815 if (!ep->base.bind_addr.port) { 1816 if (sctp_autobind(sk)) { 1817 err = -EAGAIN; 1818 goto out_unlock; 1819 } 1820 } else { 1821 /* 1822 * If an unprivileged user inherits a one-to-many 1823 * style socket with open associations on a privileged 1824 * port, it MAY be permitted to accept new associations, 1825 * but it SHOULD NOT be permitted to open new 1826 * associations. 1827 */ 1828 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1829 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1830 err = -EACCES; 1831 goto out_unlock; 1832 } 1833 } 1834 1835 scope = sctp_scope(&to); 1836 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1837 if (!new_asoc) { 1838 err = -ENOMEM; 1839 goto out_unlock; 1840 } 1841 asoc = new_asoc; 1842 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1843 if (err < 0) { 1844 err = -ENOMEM; 1845 goto out_free; 1846 } 1847 1848 /* If the SCTP_INIT ancillary data is specified, set all 1849 * the association init values accordingly. 1850 */ 1851 if (sinit) { 1852 if (sinit->sinit_num_ostreams) { 1853 asoc->c.sinit_num_ostreams = 1854 sinit->sinit_num_ostreams; 1855 } 1856 if (sinit->sinit_max_instreams) { 1857 asoc->c.sinit_max_instreams = 1858 sinit->sinit_max_instreams; 1859 } 1860 if (sinit->sinit_max_attempts) { 1861 asoc->max_init_attempts 1862 = sinit->sinit_max_attempts; 1863 } 1864 if (sinit->sinit_max_init_timeo) { 1865 asoc->max_init_timeo = 1866 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1867 } 1868 } 1869 1870 /* Prime the peer's transport structures. */ 1871 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1872 if (!transport) { 1873 err = -ENOMEM; 1874 goto out_free; 1875 } 1876 } 1877 1878 /* ASSERT: we have a valid association at this point. */ 1879 pr_debug("%s: we have a valid association\n", __func__); 1880 1881 if (!sinfo) { 1882 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1883 * one with some defaults. 1884 */ 1885 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1886 default_sinfo.sinfo_stream = asoc->default_stream; 1887 default_sinfo.sinfo_flags = asoc->default_flags; 1888 default_sinfo.sinfo_ppid = asoc->default_ppid; 1889 default_sinfo.sinfo_context = asoc->default_context; 1890 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1891 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1892 1893 sinfo = &default_sinfo; 1894 } else if (fill_sinfo_ttl) { 1895 /* In case SNDINFO was specified, we still need to fill 1896 * it with a default ttl from the assoc here. 1897 */ 1898 sinfo->sinfo_timetolive = asoc->default_timetolive; 1899 } 1900 1901 /* API 7.1.7, the sndbuf size per association bounds the 1902 * maximum size of data that can be sent in a single send call. 1903 */ 1904 if (msg_len > sk->sk_sndbuf) { 1905 err = -EMSGSIZE; 1906 goto out_free; 1907 } 1908 1909 if (asoc->pmtu_pending) 1910 sctp_assoc_pending_pmtu(sk, asoc); 1911 1912 /* If fragmentation is disabled and the message length exceeds the 1913 * association fragmentation point, return EMSGSIZE. The I-D 1914 * does not specify what this error is, but this looks like 1915 * a great fit. 1916 */ 1917 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1918 err = -EMSGSIZE; 1919 goto out_free; 1920 } 1921 1922 /* Check for invalid stream. */ 1923 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1924 err = -EINVAL; 1925 goto out_free; 1926 } 1927 1928 if (sctp_wspace(asoc) < msg_len) 1929 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1930 1931 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1932 if (!sctp_wspace(asoc)) { 1933 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1934 if (err) 1935 goto out_free; 1936 } 1937 1938 /* If an address is passed with the sendto/sendmsg call, it is used 1939 * to override the primary destination address in the TCP model, or 1940 * when SCTP_ADDR_OVER flag is set in the UDP model. 1941 */ 1942 if ((sctp_style(sk, TCP) && msg_name) || 1943 (sinfo_flags & SCTP_ADDR_OVER)) { 1944 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1945 if (!chunk_tp) { 1946 err = -EINVAL; 1947 goto out_free; 1948 } 1949 } else 1950 chunk_tp = NULL; 1951 1952 /* Auto-connect, if we aren't connected already. */ 1953 if (sctp_state(asoc, CLOSED)) { 1954 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1955 if (err < 0) 1956 goto out_free; 1957 1958 wait_connect = true; 1959 pr_debug("%s: we associated primitively\n", __func__); 1960 } 1961 1962 /* Break the message into multiple chunks of maximum size. */ 1963 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1964 if (IS_ERR(datamsg)) { 1965 err = PTR_ERR(datamsg); 1966 goto out_free; 1967 } 1968 datamsg->force_delay = !!(msg->msg_flags & MSG_MORE); 1969 1970 /* Now send the (possibly) fragmented message. */ 1971 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1972 sctp_chunk_hold(chunk); 1973 1974 /* Do accounting for the write space. */ 1975 sctp_set_owner_w(chunk); 1976 1977 chunk->transport = chunk_tp; 1978 } 1979 1980 /* Send it to the lower layers. Note: all chunks 1981 * must either fail or succeed. The lower layer 1982 * works that way today. Keep it that way or this 1983 * breaks. 1984 */ 1985 err = sctp_primitive_SEND(net, asoc, datamsg); 1986 /* Did the lower layer accept the chunk? */ 1987 if (err) { 1988 sctp_datamsg_free(datamsg); 1989 goto out_free; 1990 } 1991 1992 pr_debug("%s: we sent primitively\n", __func__); 1993 1994 sctp_datamsg_put(datamsg); 1995 err = msg_len; 1996 1997 if (unlikely(wait_connect)) { 1998 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1999 sctp_wait_for_connect(asoc, &timeo); 2000 } 2001 2002 /* If we are already past ASSOCIATE, the lower 2003 * layers are responsible for association cleanup. 2004 */ 2005 goto out_unlock; 2006 2007 out_free: 2008 if (new_asoc) 2009 sctp_association_free(asoc); 2010 out_unlock: 2011 release_sock(sk); 2012 2013 out_nounlock: 2014 return sctp_error(sk, msg_flags, err); 2015 2016 #if 0 2017 do_sock_err: 2018 if (msg_len) 2019 err = msg_len; 2020 else 2021 err = sock_error(sk); 2022 goto out; 2023 2024 do_interrupted: 2025 if (msg_len) 2026 err = msg_len; 2027 goto out; 2028 #endif /* 0 */ 2029 } 2030 2031 /* This is an extended version of skb_pull() that removes the data from the 2032 * start of a skb even when data is spread across the list of skb's in the 2033 * frag_list. len specifies the total amount of data that needs to be removed. 2034 * when 'len' bytes could be removed from the skb, it returns 0. 2035 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2036 * could not be removed. 2037 */ 2038 static int sctp_skb_pull(struct sk_buff *skb, int len) 2039 { 2040 struct sk_buff *list; 2041 int skb_len = skb_headlen(skb); 2042 int rlen; 2043 2044 if (len <= skb_len) { 2045 __skb_pull(skb, len); 2046 return 0; 2047 } 2048 len -= skb_len; 2049 __skb_pull(skb, skb_len); 2050 2051 skb_walk_frags(skb, list) { 2052 rlen = sctp_skb_pull(list, len); 2053 skb->len -= (len-rlen); 2054 skb->data_len -= (len-rlen); 2055 2056 if (!rlen) 2057 return 0; 2058 2059 len = rlen; 2060 } 2061 2062 return len; 2063 } 2064 2065 /* API 3.1.3 recvmsg() - UDP Style Syntax 2066 * 2067 * ssize_t recvmsg(int socket, struct msghdr *message, 2068 * int flags); 2069 * 2070 * socket - the socket descriptor of the endpoint. 2071 * message - pointer to the msghdr structure which contains a single 2072 * user message and possibly some ancillary data. 2073 * 2074 * See Section 5 for complete description of the data 2075 * structures. 2076 * 2077 * flags - flags sent or received with the user message, see Section 2078 * 5 for complete description of the flags. 2079 */ 2080 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2081 int noblock, int flags, int *addr_len) 2082 { 2083 struct sctp_ulpevent *event = NULL; 2084 struct sctp_sock *sp = sctp_sk(sk); 2085 struct sk_buff *skb, *head_skb; 2086 int copied; 2087 int err = 0; 2088 int skb_len; 2089 2090 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2091 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2092 addr_len); 2093 2094 lock_sock(sk); 2095 2096 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2097 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2098 err = -ENOTCONN; 2099 goto out; 2100 } 2101 2102 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2103 if (!skb) 2104 goto out; 2105 2106 /* Get the total length of the skb including any skb's in the 2107 * frag_list. 2108 */ 2109 skb_len = skb->len; 2110 2111 copied = skb_len; 2112 if (copied > len) 2113 copied = len; 2114 2115 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2116 2117 event = sctp_skb2event(skb); 2118 2119 if (err) 2120 goto out_free; 2121 2122 if (event->chunk && event->chunk->head_skb) 2123 head_skb = event->chunk->head_skb; 2124 else 2125 head_skb = skb; 2126 sock_recv_ts_and_drops(msg, sk, head_skb); 2127 if (sctp_ulpevent_is_notification(event)) { 2128 msg->msg_flags |= MSG_NOTIFICATION; 2129 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2130 } else { 2131 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2132 } 2133 2134 /* Check if we allow SCTP_NXTINFO. */ 2135 if (sp->recvnxtinfo) 2136 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2137 /* Check if we allow SCTP_RCVINFO. */ 2138 if (sp->recvrcvinfo) 2139 sctp_ulpevent_read_rcvinfo(event, msg); 2140 /* Check if we allow SCTP_SNDRCVINFO. */ 2141 if (sp->subscribe.sctp_data_io_event) 2142 sctp_ulpevent_read_sndrcvinfo(event, msg); 2143 2144 err = copied; 2145 2146 /* If skb's length exceeds the user's buffer, update the skb and 2147 * push it back to the receive_queue so that the next call to 2148 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2149 */ 2150 if (skb_len > copied) { 2151 msg->msg_flags &= ~MSG_EOR; 2152 if (flags & MSG_PEEK) 2153 goto out_free; 2154 sctp_skb_pull(skb, copied); 2155 skb_queue_head(&sk->sk_receive_queue, skb); 2156 2157 /* When only partial message is copied to the user, increase 2158 * rwnd by that amount. If all the data in the skb is read, 2159 * rwnd is updated when the event is freed. 2160 */ 2161 if (!sctp_ulpevent_is_notification(event)) 2162 sctp_assoc_rwnd_increase(event->asoc, copied); 2163 goto out; 2164 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2165 (event->msg_flags & MSG_EOR)) 2166 msg->msg_flags |= MSG_EOR; 2167 else 2168 msg->msg_flags &= ~MSG_EOR; 2169 2170 out_free: 2171 if (flags & MSG_PEEK) { 2172 /* Release the skb reference acquired after peeking the skb in 2173 * sctp_skb_recv_datagram(). 2174 */ 2175 kfree_skb(skb); 2176 } else { 2177 /* Free the event which includes releasing the reference to 2178 * the owner of the skb, freeing the skb and updating the 2179 * rwnd. 2180 */ 2181 sctp_ulpevent_free(event); 2182 } 2183 out: 2184 release_sock(sk); 2185 return err; 2186 } 2187 2188 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2189 * 2190 * This option is a on/off flag. If enabled no SCTP message 2191 * fragmentation will be performed. Instead if a message being sent 2192 * exceeds the current PMTU size, the message will NOT be sent and 2193 * instead a error will be indicated to the user. 2194 */ 2195 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2196 char __user *optval, 2197 unsigned int optlen) 2198 { 2199 int val; 2200 2201 if (optlen < sizeof(int)) 2202 return -EINVAL; 2203 2204 if (get_user(val, (int __user *)optval)) 2205 return -EFAULT; 2206 2207 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2208 2209 return 0; 2210 } 2211 2212 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2213 unsigned int optlen) 2214 { 2215 struct sctp_association *asoc; 2216 struct sctp_ulpevent *event; 2217 2218 if (optlen > sizeof(struct sctp_event_subscribe)) 2219 return -EINVAL; 2220 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2221 return -EFAULT; 2222 2223 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2224 * if there is no data to be sent or retransmit, the stack will 2225 * immediately send up this notification. 2226 */ 2227 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2228 &sctp_sk(sk)->subscribe)) { 2229 asoc = sctp_id2assoc(sk, 0); 2230 2231 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2232 event = sctp_ulpevent_make_sender_dry_event(asoc, 2233 GFP_ATOMIC); 2234 if (!event) 2235 return -ENOMEM; 2236 2237 sctp_ulpq_tail_event(&asoc->ulpq, event); 2238 } 2239 } 2240 2241 return 0; 2242 } 2243 2244 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2245 * 2246 * This socket option is applicable to the UDP-style socket only. When 2247 * set it will cause associations that are idle for more than the 2248 * specified number of seconds to automatically close. An association 2249 * being idle is defined an association that has NOT sent or received 2250 * user data. The special value of '0' indicates that no automatic 2251 * close of any associations should be performed. The option expects an 2252 * integer defining the number of seconds of idle time before an 2253 * association is closed. 2254 */ 2255 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2256 unsigned int optlen) 2257 { 2258 struct sctp_sock *sp = sctp_sk(sk); 2259 struct net *net = sock_net(sk); 2260 2261 /* Applicable to UDP-style socket only */ 2262 if (sctp_style(sk, TCP)) 2263 return -EOPNOTSUPP; 2264 if (optlen != sizeof(int)) 2265 return -EINVAL; 2266 if (copy_from_user(&sp->autoclose, optval, optlen)) 2267 return -EFAULT; 2268 2269 if (sp->autoclose > net->sctp.max_autoclose) 2270 sp->autoclose = net->sctp.max_autoclose; 2271 2272 return 0; 2273 } 2274 2275 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2276 * 2277 * Applications can enable or disable heartbeats for any peer address of 2278 * an association, modify an address's heartbeat interval, force a 2279 * heartbeat to be sent immediately, and adjust the address's maximum 2280 * number of retransmissions sent before an address is considered 2281 * unreachable. The following structure is used to access and modify an 2282 * address's parameters: 2283 * 2284 * struct sctp_paddrparams { 2285 * sctp_assoc_t spp_assoc_id; 2286 * struct sockaddr_storage spp_address; 2287 * uint32_t spp_hbinterval; 2288 * uint16_t spp_pathmaxrxt; 2289 * uint32_t spp_pathmtu; 2290 * uint32_t spp_sackdelay; 2291 * uint32_t spp_flags; 2292 * }; 2293 * 2294 * spp_assoc_id - (one-to-many style socket) This is filled in the 2295 * application, and identifies the association for 2296 * this query. 2297 * spp_address - This specifies which address is of interest. 2298 * spp_hbinterval - This contains the value of the heartbeat interval, 2299 * in milliseconds. If a value of zero 2300 * is present in this field then no changes are to 2301 * be made to this parameter. 2302 * spp_pathmaxrxt - This contains the maximum number of 2303 * retransmissions before this address shall be 2304 * considered unreachable. If a value of zero 2305 * is present in this field then no changes are to 2306 * be made to this parameter. 2307 * spp_pathmtu - When Path MTU discovery is disabled the value 2308 * specified here will be the "fixed" path mtu. 2309 * Note that if the spp_address field is empty 2310 * then all associations on this address will 2311 * have this fixed path mtu set upon them. 2312 * 2313 * spp_sackdelay - When delayed sack is enabled, this value specifies 2314 * the number of milliseconds that sacks will be delayed 2315 * for. This value will apply to all addresses of an 2316 * association if the spp_address field is empty. Note 2317 * also, that if delayed sack is enabled and this 2318 * value is set to 0, no change is made to the last 2319 * recorded delayed sack timer value. 2320 * 2321 * spp_flags - These flags are used to control various features 2322 * on an association. The flag field may contain 2323 * zero or more of the following options. 2324 * 2325 * SPP_HB_ENABLE - Enable heartbeats on the 2326 * specified address. Note that if the address 2327 * field is empty all addresses for the association 2328 * have heartbeats enabled upon them. 2329 * 2330 * SPP_HB_DISABLE - Disable heartbeats on the 2331 * speicifed address. Note that if the address 2332 * field is empty all addresses for the association 2333 * will have their heartbeats disabled. Note also 2334 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2335 * mutually exclusive, only one of these two should 2336 * be specified. Enabling both fields will have 2337 * undetermined results. 2338 * 2339 * SPP_HB_DEMAND - Request a user initiated heartbeat 2340 * to be made immediately. 2341 * 2342 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2343 * heartbeat delayis to be set to the value of 0 2344 * milliseconds. 2345 * 2346 * SPP_PMTUD_ENABLE - This field will enable PMTU 2347 * discovery upon the specified address. Note that 2348 * if the address feild is empty then all addresses 2349 * on the association are effected. 2350 * 2351 * SPP_PMTUD_DISABLE - This field will disable PMTU 2352 * discovery upon the specified address. Note that 2353 * if the address feild is empty then all addresses 2354 * on the association are effected. Not also that 2355 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2356 * exclusive. Enabling both will have undetermined 2357 * results. 2358 * 2359 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2360 * on delayed sack. The time specified in spp_sackdelay 2361 * is used to specify the sack delay for this address. Note 2362 * that if spp_address is empty then all addresses will 2363 * enable delayed sack and take on the sack delay 2364 * value specified in spp_sackdelay. 2365 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2366 * off delayed sack. If the spp_address field is blank then 2367 * delayed sack is disabled for the entire association. Note 2368 * also that this field is mutually exclusive to 2369 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2370 * results. 2371 */ 2372 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2373 struct sctp_transport *trans, 2374 struct sctp_association *asoc, 2375 struct sctp_sock *sp, 2376 int hb_change, 2377 int pmtud_change, 2378 int sackdelay_change) 2379 { 2380 int error; 2381 2382 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2383 struct net *net = sock_net(trans->asoc->base.sk); 2384 2385 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2386 if (error) 2387 return error; 2388 } 2389 2390 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2391 * this field is ignored. Note also that a value of zero indicates 2392 * the current setting should be left unchanged. 2393 */ 2394 if (params->spp_flags & SPP_HB_ENABLE) { 2395 2396 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2397 * set. This lets us use 0 value when this flag 2398 * is set. 2399 */ 2400 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2401 params->spp_hbinterval = 0; 2402 2403 if (params->spp_hbinterval || 2404 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2405 if (trans) { 2406 trans->hbinterval = 2407 msecs_to_jiffies(params->spp_hbinterval); 2408 } else if (asoc) { 2409 asoc->hbinterval = 2410 msecs_to_jiffies(params->spp_hbinterval); 2411 } else { 2412 sp->hbinterval = params->spp_hbinterval; 2413 } 2414 } 2415 } 2416 2417 if (hb_change) { 2418 if (trans) { 2419 trans->param_flags = 2420 (trans->param_flags & ~SPP_HB) | hb_change; 2421 } else if (asoc) { 2422 asoc->param_flags = 2423 (asoc->param_flags & ~SPP_HB) | hb_change; 2424 } else { 2425 sp->param_flags = 2426 (sp->param_flags & ~SPP_HB) | hb_change; 2427 } 2428 } 2429 2430 /* When Path MTU discovery is disabled the value specified here will 2431 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2432 * include the flag SPP_PMTUD_DISABLE for this field to have any 2433 * effect). 2434 */ 2435 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2436 if (trans) { 2437 trans->pathmtu = params->spp_pathmtu; 2438 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2439 } else if (asoc) { 2440 asoc->pathmtu = params->spp_pathmtu; 2441 } else { 2442 sp->pathmtu = params->spp_pathmtu; 2443 } 2444 } 2445 2446 if (pmtud_change) { 2447 if (trans) { 2448 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2449 (params->spp_flags & SPP_PMTUD_ENABLE); 2450 trans->param_flags = 2451 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2452 if (update) { 2453 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2454 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2455 } 2456 } else if (asoc) { 2457 asoc->param_flags = 2458 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2459 } else { 2460 sp->param_flags = 2461 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2462 } 2463 } 2464 2465 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2466 * value of this field is ignored. Note also that a value of zero 2467 * indicates the current setting should be left unchanged. 2468 */ 2469 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2470 if (trans) { 2471 trans->sackdelay = 2472 msecs_to_jiffies(params->spp_sackdelay); 2473 } else if (asoc) { 2474 asoc->sackdelay = 2475 msecs_to_jiffies(params->spp_sackdelay); 2476 } else { 2477 sp->sackdelay = params->spp_sackdelay; 2478 } 2479 } 2480 2481 if (sackdelay_change) { 2482 if (trans) { 2483 trans->param_flags = 2484 (trans->param_flags & ~SPP_SACKDELAY) | 2485 sackdelay_change; 2486 } else if (asoc) { 2487 asoc->param_flags = 2488 (asoc->param_flags & ~SPP_SACKDELAY) | 2489 sackdelay_change; 2490 } else { 2491 sp->param_flags = 2492 (sp->param_flags & ~SPP_SACKDELAY) | 2493 sackdelay_change; 2494 } 2495 } 2496 2497 /* Note that a value of zero indicates the current setting should be 2498 left unchanged. 2499 */ 2500 if (params->spp_pathmaxrxt) { 2501 if (trans) { 2502 trans->pathmaxrxt = params->spp_pathmaxrxt; 2503 } else if (asoc) { 2504 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2505 } else { 2506 sp->pathmaxrxt = params->spp_pathmaxrxt; 2507 } 2508 } 2509 2510 return 0; 2511 } 2512 2513 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2514 char __user *optval, 2515 unsigned int optlen) 2516 { 2517 struct sctp_paddrparams params; 2518 struct sctp_transport *trans = NULL; 2519 struct sctp_association *asoc = NULL; 2520 struct sctp_sock *sp = sctp_sk(sk); 2521 int error; 2522 int hb_change, pmtud_change, sackdelay_change; 2523 2524 if (optlen != sizeof(struct sctp_paddrparams)) 2525 return -EINVAL; 2526 2527 if (copy_from_user(¶ms, optval, optlen)) 2528 return -EFAULT; 2529 2530 /* Validate flags and value parameters. */ 2531 hb_change = params.spp_flags & SPP_HB; 2532 pmtud_change = params.spp_flags & SPP_PMTUD; 2533 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2534 2535 if (hb_change == SPP_HB || 2536 pmtud_change == SPP_PMTUD || 2537 sackdelay_change == SPP_SACKDELAY || 2538 params.spp_sackdelay > 500 || 2539 (params.spp_pathmtu && 2540 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2541 return -EINVAL; 2542 2543 /* If an address other than INADDR_ANY is specified, and 2544 * no transport is found, then the request is invalid. 2545 */ 2546 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2547 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2548 params.spp_assoc_id); 2549 if (!trans) 2550 return -EINVAL; 2551 } 2552 2553 /* Get association, if assoc_id != 0 and the socket is a one 2554 * to many style socket, and an association was not found, then 2555 * the id was invalid. 2556 */ 2557 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2558 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2559 return -EINVAL; 2560 2561 /* Heartbeat demand can only be sent on a transport or 2562 * association, but not a socket. 2563 */ 2564 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2565 return -EINVAL; 2566 2567 /* Process parameters. */ 2568 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2569 hb_change, pmtud_change, 2570 sackdelay_change); 2571 2572 if (error) 2573 return error; 2574 2575 /* If changes are for association, also apply parameters to each 2576 * transport. 2577 */ 2578 if (!trans && asoc) { 2579 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2580 transports) { 2581 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2582 hb_change, pmtud_change, 2583 sackdelay_change); 2584 } 2585 } 2586 2587 return 0; 2588 } 2589 2590 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2591 { 2592 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2593 } 2594 2595 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2596 { 2597 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2598 } 2599 2600 /* 2601 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2602 * 2603 * This option will effect the way delayed acks are performed. This 2604 * option allows you to get or set the delayed ack time, in 2605 * milliseconds. It also allows changing the delayed ack frequency. 2606 * Changing the frequency to 1 disables the delayed sack algorithm. If 2607 * the assoc_id is 0, then this sets or gets the endpoints default 2608 * values. If the assoc_id field is non-zero, then the set or get 2609 * effects the specified association for the one to many model (the 2610 * assoc_id field is ignored by the one to one model). Note that if 2611 * sack_delay or sack_freq are 0 when setting this option, then the 2612 * current values will remain unchanged. 2613 * 2614 * struct sctp_sack_info { 2615 * sctp_assoc_t sack_assoc_id; 2616 * uint32_t sack_delay; 2617 * uint32_t sack_freq; 2618 * }; 2619 * 2620 * sack_assoc_id - This parameter, indicates which association the user 2621 * is performing an action upon. Note that if this field's value is 2622 * zero then the endpoints default value is changed (effecting future 2623 * associations only). 2624 * 2625 * sack_delay - This parameter contains the number of milliseconds that 2626 * the user is requesting the delayed ACK timer be set to. Note that 2627 * this value is defined in the standard to be between 200 and 500 2628 * milliseconds. 2629 * 2630 * sack_freq - This parameter contains the number of packets that must 2631 * be received before a sack is sent without waiting for the delay 2632 * timer to expire. The default value for this is 2, setting this 2633 * value to 1 will disable the delayed sack algorithm. 2634 */ 2635 2636 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2637 char __user *optval, unsigned int optlen) 2638 { 2639 struct sctp_sack_info params; 2640 struct sctp_transport *trans = NULL; 2641 struct sctp_association *asoc = NULL; 2642 struct sctp_sock *sp = sctp_sk(sk); 2643 2644 if (optlen == sizeof(struct sctp_sack_info)) { 2645 if (copy_from_user(¶ms, optval, optlen)) 2646 return -EFAULT; 2647 2648 if (params.sack_delay == 0 && params.sack_freq == 0) 2649 return 0; 2650 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2651 pr_warn_ratelimited(DEPRECATED 2652 "%s (pid %d) " 2653 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2654 "Use struct sctp_sack_info instead\n", 2655 current->comm, task_pid_nr(current)); 2656 if (copy_from_user(¶ms, optval, optlen)) 2657 return -EFAULT; 2658 2659 if (params.sack_delay == 0) 2660 params.sack_freq = 1; 2661 else 2662 params.sack_freq = 0; 2663 } else 2664 return -EINVAL; 2665 2666 /* Validate value parameter. */ 2667 if (params.sack_delay > 500) 2668 return -EINVAL; 2669 2670 /* Get association, if sack_assoc_id != 0 and the socket is a one 2671 * to many style socket, and an association was not found, then 2672 * the id was invalid. 2673 */ 2674 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2675 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2676 return -EINVAL; 2677 2678 if (params.sack_delay) { 2679 if (asoc) { 2680 asoc->sackdelay = 2681 msecs_to_jiffies(params.sack_delay); 2682 asoc->param_flags = 2683 sctp_spp_sackdelay_enable(asoc->param_flags); 2684 } else { 2685 sp->sackdelay = params.sack_delay; 2686 sp->param_flags = 2687 sctp_spp_sackdelay_enable(sp->param_flags); 2688 } 2689 } 2690 2691 if (params.sack_freq == 1) { 2692 if (asoc) { 2693 asoc->param_flags = 2694 sctp_spp_sackdelay_disable(asoc->param_flags); 2695 } else { 2696 sp->param_flags = 2697 sctp_spp_sackdelay_disable(sp->param_flags); 2698 } 2699 } else if (params.sack_freq > 1) { 2700 if (asoc) { 2701 asoc->sackfreq = params.sack_freq; 2702 asoc->param_flags = 2703 sctp_spp_sackdelay_enable(asoc->param_flags); 2704 } else { 2705 sp->sackfreq = params.sack_freq; 2706 sp->param_flags = 2707 sctp_spp_sackdelay_enable(sp->param_flags); 2708 } 2709 } 2710 2711 /* If change is for association, also apply to each transport. */ 2712 if (asoc) { 2713 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2714 transports) { 2715 if (params.sack_delay) { 2716 trans->sackdelay = 2717 msecs_to_jiffies(params.sack_delay); 2718 trans->param_flags = 2719 sctp_spp_sackdelay_enable(trans->param_flags); 2720 } 2721 if (params.sack_freq == 1) { 2722 trans->param_flags = 2723 sctp_spp_sackdelay_disable(trans->param_flags); 2724 } else if (params.sack_freq > 1) { 2725 trans->sackfreq = params.sack_freq; 2726 trans->param_flags = 2727 sctp_spp_sackdelay_enable(trans->param_flags); 2728 } 2729 } 2730 } 2731 2732 return 0; 2733 } 2734 2735 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2736 * 2737 * Applications can specify protocol parameters for the default association 2738 * initialization. The option name argument to setsockopt() and getsockopt() 2739 * is SCTP_INITMSG. 2740 * 2741 * Setting initialization parameters is effective only on an unconnected 2742 * socket (for UDP-style sockets only future associations are effected 2743 * by the change). With TCP-style sockets, this option is inherited by 2744 * sockets derived from a listener socket. 2745 */ 2746 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2747 { 2748 struct sctp_initmsg sinit; 2749 struct sctp_sock *sp = sctp_sk(sk); 2750 2751 if (optlen != sizeof(struct sctp_initmsg)) 2752 return -EINVAL; 2753 if (copy_from_user(&sinit, optval, optlen)) 2754 return -EFAULT; 2755 2756 if (sinit.sinit_num_ostreams) 2757 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2758 if (sinit.sinit_max_instreams) 2759 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2760 if (sinit.sinit_max_attempts) 2761 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2762 if (sinit.sinit_max_init_timeo) 2763 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2764 2765 return 0; 2766 } 2767 2768 /* 2769 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2770 * 2771 * Applications that wish to use the sendto() system call may wish to 2772 * specify a default set of parameters that would normally be supplied 2773 * through the inclusion of ancillary data. This socket option allows 2774 * such an application to set the default sctp_sndrcvinfo structure. 2775 * The application that wishes to use this socket option simply passes 2776 * in to this call the sctp_sndrcvinfo structure defined in Section 2777 * 5.2.2) The input parameters accepted by this call include 2778 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2779 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2780 * to this call if the caller is using the UDP model. 2781 */ 2782 static int sctp_setsockopt_default_send_param(struct sock *sk, 2783 char __user *optval, 2784 unsigned int optlen) 2785 { 2786 struct sctp_sock *sp = sctp_sk(sk); 2787 struct sctp_association *asoc; 2788 struct sctp_sndrcvinfo info; 2789 2790 if (optlen != sizeof(info)) 2791 return -EINVAL; 2792 if (copy_from_user(&info, optval, optlen)) 2793 return -EFAULT; 2794 if (info.sinfo_flags & 2795 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2796 SCTP_ABORT | SCTP_EOF)) 2797 return -EINVAL; 2798 2799 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2800 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2801 return -EINVAL; 2802 if (asoc) { 2803 asoc->default_stream = info.sinfo_stream; 2804 asoc->default_flags = info.sinfo_flags; 2805 asoc->default_ppid = info.sinfo_ppid; 2806 asoc->default_context = info.sinfo_context; 2807 asoc->default_timetolive = info.sinfo_timetolive; 2808 } else { 2809 sp->default_stream = info.sinfo_stream; 2810 sp->default_flags = info.sinfo_flags; 2811 sp->default_ppid = info.sinfo_ppid; 2812 sp->default_context = info.sinfo_context; 2813 sp->default_timetolive = info.sinfo_timetolive; 2814 } 2815 2816 return 0; 2817 } 2818 2819 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2820 * (SCTP_DEFAULT_SNDINFO) 2821 */ 2822 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2823 char __user *optval, 2824 unsigned int optlen) 2825 { 2826 struct sctp_sock *sp = sctp_sk(sk); 2827 struct sctp_association *asoc; 2828 struct sctp_sndinfo info; 2829 2830 if (optlen != sizeof(info)) 2831 return -EINVAL; 2832 if (copy_from_user(&info, optval, optlen)) 2833 return -EFAULT; 2834 if (info.snd_flags & 2835 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2836 SCTP_ABORT | SCTP_EOF)) 2837 return -EINVAL; 2838 2839 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2840 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2841 return -EINVAL; 2842 if (asoc) { 2843 asoc->default_stream = info.snd_sid; 2844 asoc->default_flags = info.snd_flags; 2845 asoc->default_ppid = info.snd_ppid; 2846 asoc->default_context = info.snd_context; 2847 } else { 2848 sp->default_stream = info.snd_sid; 2849 sp->default_flags = info.snd_flags; 2850 sp->default_ppid = info.snd_ppid; 2851 sp->default_context = info.snd_context; 2852 } 2853 2854 return 0; 2855 } 2856 2857 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2858 * 2859 * Requests that the local SCTP stack use the enclosed peer address as 2860 * the association primary. The enclosed address must be one of the 2861 * association peer's addresses. 2862 */ 2863 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2864 unsigned int optlen) 2865 { 2866 struct sctp_prim prim; 2867 struct sctp_transport *trans; 2868 2869 if (optlen != sizeof(struct sctp_prim)) 2870 return -EINVAL; 2871 2872 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2873 return -EFAULT; 2874 2875 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2876 if (!trans) 2877 return -EINVAL; 2878 2879 sctp_assoc_set_primary(trans->asoc, trans); 2880 2881 return 0; 2882 } 2883 2884 /* 2885 * 7.1.5 SCTP_NODELAY 2886 * 2887 * Turn on/off any Nagle-like algorithm. This means that packets are 2888 * generally sent as soon as possible and no unnecessary delays are 2889 * introduced, at the cost of more packets in the network. Expects an 2890 * integer boolean flag. 2891 */ 2892 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2893 unsigned int optlen) 2894 { 2895 int val; 2896 2897 if (optlen < sizeof(int)) 2898 return -EINVAL; 2899 if (get_user(val, (int __user *)optval)) 2900 return -EFAULT; 2901 2902 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2903 return 0; 2904 } 2905 2906 /* 2907 * 2908 * 7.1.1 SCTP_RTOINFO 2909 * 2910 * The protocol parameters used to initialize and bound retransmission 2911 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2912 * and modify these parameters. 2913 * All parameters are time values, in milliseconds. A value of 0, when 2914 * modifying the parameters, indicates that the current value should not 2915 * be changed. 2916 * 2917 */ 2918 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2919 { 2920 struct sctp_rtoinfo rtoinfo; 2921 struct sctp_association *asoc; 2922 unsigned long rto_min, rto_max; 2923 struct sctp_sock *sp = sctp_sk(sk); 2924 2925 if (optlen != sizeof (struct sctp_rtoinfo)) 2926 return -EINVAL; 2927 2928 if (copy_from_user(&rtoinfo, optval, optlen)) 2929 return -EFAULT; 2930 2931 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2932 2933 /* Set the values to the specific association */ 2934 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2935 return -EINVAL; 2936 2937 rto_max = rtoinfo.srto_max; 2938 rto_min = rtoinfo.srto_min; 2939 2940 if (rto_max) 2941 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2942 else 2943 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2944 2945 if (rto_min) 2946 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2947 else 2948 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2949 2950 if (rto_min > rto_max) 2951 return -EINVAL; 2952 2953 if (asoc) { 2954 if (rtoinfo.srto_initial != 0) 2955 asoc->rto_initial = 2956 msecs_to_jiffies(rtoinfo.srto_initial); 2957 asoc->rto_max = rto_max; 2958 asoc->rto_min = rto_min; 2959 } else { 2960 /* If there is no association or the association-id = 0 2961 * set the values to the endpoint. 2962 */ 2963 if (rtoinfo.srto_initial != 0) 2964 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2965 sp->rtoinfo.srto_max = rto_max; 2966 sp->rtoinfo.srto_min = rto_min; 2967 } 2968 2969 return 0; 2970 } 2971 2972 /* 2973 * 2974 * 7.1.2 SCTP_ASSOCINFO 2975 * 2976 * This option is used to tune the maximum retransmission attempts 2977 * of the association. 2978 * Returns an error if the new association retransmission value is 2979 * greater than the sum of the retransmission value of the peer. 2980 * See [SCTP] for more information. 2981 * 2982 */ 2983 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2984 { 2985 2986 struct sctp_assocparams assocparams; 2987 struct sctp_association *asoc; 2988 2989 if (optlen != sizeof(struct sctp_assocparams)) 2990 return -EINVAL; 2991 if (copy_from_user(&assocparams, optval, optlen)) 2992 return -EFAULT; 2993 2994 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2995 2996 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2997 return -EINVAL; 2998 2999 /* Set the values to the specific association */ 3000 if (asoc) { 3001 if (assocparams.sasoc_asocmaxrxt != 0) { 3002 __u32 path_sum = 0; 3003 int paths = 0; 3004 struct sctp_transport *peer_addr; 3005 3006 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3007 transports) { 3008 path_sum += peer_addr->pathmaxrxt; 3009 paths++; 3010 } 3011 3012 /* Only validate asocmaxrxt if we have more than 3013 * one path/transport. We do this because path 3014 * retransmissions are only counted when we have more 3015 * then one path. 3016 */ 3017 if (paths > 1 && 3018 assocparams.sasoc_asocmaxrxt > path_sum) 3019 return -EINVAL; 3020 3021 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3022 } 3023 3024 if (assocparams.sasoc_cookie_life != 0) 3025 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3026 } else { 3027 /* Set the values to the endpoint */ 3028 struct sctp_sock *sp = sctp_sk(sk); 3029 3030 if (assocparams.sasoc_asocmaxrxt != 0) 3031 sp->assocparams.sasoc_asocmaxrxt = 3032 assocparams.sasoc_asocmaxrxt; 3033 if (assocparams.sasoc_cookie_life != 0) 3034 sp->assocparams.sasoc_cookie_life = 3035 assocparams.sasoc_cookie_life; 3036 } 3037 return 0; 3038 } 3039 3040 /* 3041 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3042 * 3043 * This socket option is a boolean flag which turns on or off mapped V4 3044 * addresses. If this option is turned on and the socket is type 3045 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3046 * If this option is turned off, then no mapping will be done of V4 3047 * addresses and a user will receive both PF_INET6 and PF_INET type 3048 * addresses on the socket. 3049 */ 3050 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3051 { 3052 int val; 3053 struct sctp_sock *sp = sctp_sk(sk); 3054 3055 if (optlen < sizeof(int)) 3056 return -EINVAL; 3057 if (get_user(val, (int __user *)optval)) 3058 return -EFAULT; 3059 if (val) 3060 sp->v4mapped = 1; 3061 else 3062 sp->v4mapped = 0; 3063 3064 return 0; 3065 } 3066 3067 /* 3068 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3069 * This option will get or set the maximum size to put in any outgoing 3070 * SCTP DATA chunk. If a message is larger than this size it will be 3071 * fragmented by SCTP into the specified size. Note that the underlying 3072 * SCTP implementation may fragment into smaller sized chunks when the 3073 * PMTU of the underlying association is smaller than the value set by 3074 * the user. The default value for this option is '0' which indicates 3075 * the user is NOT limiting fragmentation and only the PMTU will effect 3076 * SCTP's choice of DATA chunk size. Note also that values set larger 3077 * than the maximum size of an IP datagram will effectively let SCTP 3078 * control fragmentation (i.e. the same as setting this option to 0). 3079 * 3080 * The following structure is used to access and modify this parameter: 3081 * 3082 * struct sctp_assoc_value { 3083 * sctp_assoc_t assoc_id; 3084 * uint32_t assoc_value; 3085 * }; 3086 * 3087 * assoc_id: This parameter is ignored for one-to-one style sockets. 3088 * For one-to-many style sockets this parameter indicates which 3089 * association the user is performing an action upon. Note that if 3090 * this field's value is zero then the endpoints default value is 3091 * changed (effecting future associations only). 3092 * assoc_value: This parameter specifies the maximum size in bytes. 3093 */ 3094 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3095 { 3096 struct sctp_assoc_value params; 3097 struct sctp_association *asoc; 3098 struct sctp_sock *sp = sctp_sk(sk); 3099 int val; 3100 3101 if (optlen == sizeof(int)) { 3102 pr_warn_ratelimited(DEPRECATED 3103 "%s (pid %d) " 3104 "Use of int in maxseg socket option.\n" 3105 "Use struct sctp_assoc_value instead\n", 3106 current->comm, task_pid_nr(current)); 3107 if (copy_from_user(&val, optval, optlen)) 3108 return -EFAULT; 3109 params.assoc_id = 0; 3110 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3111 if (copy_from_user(¶ms, optval, optlen)) 3112 return -EFAULT; 3113 val = params.assoc_value; 3114 } else 3115 return -EINVAL; 3116 3117 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3118 return -EINVAL; 3119 3120 asoc = sctp_id2assoc(sk, params.assoc_id); 3121 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3122 return -EINVAL; 3123 3124 if (asoc) { 3125 if (val == 0) { 3126 val = asoc->pathmtu; 3127 val -= sp->pf->af->net_header_len; 3128 val -= sizeof(struct sctphdr) + 3129 sizeof(struct sctp_data_chunk); 3130 } 3131 asoc->user_frag = val; 3132 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3133 } else { 3134 sp->user_frag = val; 3135 } 3136 3137 return 0; 3138 } 3139 3140 3141 /* 3142 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3143 * 3144 * Requests that the peer mark the enclosed address as the association 3145 * primary. The enclosed address must be one of the association's 3146 * locally bound addresses. The following structure is used to make a 3147 * set primary request: 3148 */ 3149 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3150 unsigned int optlen) 3151 { 3152 struct net *net = sock_net(sk); 3153 struct sctp_sock *sp; 3154 struct sctp_association *asoc = NULL; 3155 struct sctp_setpeerprim prim; 3156 struct sctp_chunk *chunk; 3157 struct sctp_af *af; 3158 int err; 3159 3160 sp = sctp_sk(sk); 3161 3162 if (!net->sctp.addip_enable) 3163 return -EPERM; 3164 3165 if (optlen != sizeof(struct sctp_setpeerprim)) 3166 return -EINVAL; 3167 3168 if (copy_from_user(&prim, optval, optlen)) 3169 return -EFAULT; 3170 3171 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3172 if (!asoc) 3173 return -EINVAL; 3174 3175 if (!asoc->peer.asconf_capable) 3176 return -EPERM; 3177 3178 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3179 return -EPERM; 3180 3181 if (!sctp_state(asoc, ESTABLISHED)) 3182 return -ENOTCONN; 3183 3184 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3185 if (!af) 3186 return -EINVAL; 3187 3188 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3189 return -EADDRNOTAVAIL; 3190 3191 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3192 return -EADDRNOTAVAIL; 3193 3194 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3195 chunk = sctp_make_asconf_set_prim(asoc, 3196 (union sctp_addr *)&prim.sspp_addr); 3197 if (!chunk) 3198 return -ENOMEM; 3199 3200 err = sctp_send_asconf(asoc, chunk); 3201 3202 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3203 3204 return err; 3205 } 3206 3207 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3208 unsigned int optlen) 3209 { 3210 struct sctp_setadaptation adaptation; 3211 3212 if (optlen != sizeof(struct sctp_setadaptation)) 3213 return -EINVAL; 3214 if (copy_from_user(&adaptation, optval, optlen)) 3215 return -EFAULT; 3216 3217 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3218 3219 return 0; 3220 } 3221 3222 /* 3223 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3224 * 3225 * The context field in the sctp_sndrcvinfo structure is normally only 3226 * used when a failed message is retrieved holding the value that was 3227 * sent down on the actual send call. This option allows the setting of 3228 * a default context on an association basis that will be received on 3229 * reading messages from the peer. This is especially helpful in the 3230 * one-2-many model for an application to keep some reference to an 3231 * internal state machine that is processing messages on the 3232 * association. Note that the setting of this value only effects 3233 * received messages from the peer and does not effect the value that is 3234 * saved with outbound messages. 3235 */ 3236 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3237 unsigned int optlen) 3238 { 3239 struct sctp_assoc_value params; 3240 struct sctp_sock *sp; 3241 struct sctp_association *asoc; 3242 3243 if (optlen != sizeof(struct sctp_assoc_value)) 3244 return -EINVAL; 3245 if (copy_from_user(¶ms, optval, optlen)) 3246 return -EFAULT; 3247 3248 sp = sctp_sk(sk); 3249 3250 if (params.assoc_id != 0) { 3251 asoc = sctp_id2assoc(sk, params.assoc_id); 3252 if (!asoc) 3253 return -EINVAL; 3254 asoc->default_rcv_context = params.assoc_value; 3255 } else { 3256 sp->default_rcv_context = params.assoc_value; 3257 } 3258 3259 return 0; 3260 } 3261 3262 /* 3263 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3264 * 3265 * This options will at a minimum specify if the implementation is doing 3266 * fragmented interleave. Fragmented interleave, for a one to many 3267 * socket, is when subsequent calls to receive a message may return 3268 * parts of messages from different associations. Some implementations 3269 * may allow you to turn this value on or off. If so, when turned off, 3270 * no fragment interleave will occur (which will cause a head of line 3271 * blocking amongst multiple associations sharing the same one to many 3272 * socket). When this option is turned on, then each receive call may 3273 * come from a different association (thus the user must receive data 3274 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3275 * association each receive belongs to. 3276 * 3277 * This option takes a boolean value. A non-zero value indicates that 3278 * fragmented interleave is on. A value of zero indicates that 3279 * fragmented interleave is off. 3280 * 3281 * Note that it is important that an implementation that allows this 3282 * option to be turned on, have it off by default. Otherwise an unaware 3283 * application using the one to many model may become confused and act 3284 * incorrectly. 3285 */ 3286 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3287 char __user *optval, 3288 unsigned int optlen) 3289 { 3290 int val; 3291 3292 if (optlen != sizeof(int)) 3293 return -EINVAL; 3294 if (get_user(val, (int __user *)optval)) 3295 return -EFAULT; 3296 3297 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3298 3299 return 0; 3300 } 3301 3302 /* 3303 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3304 * (SCTP_PARTIAL_DELIVERY_POINT) 3305 * 3306 * This option will set or get the SCTP partial delivery point. This 3307 * point is the size of a message where the partial delivery API will be 3308 * invoked to help free up rwnd space for the peer. Setting this to a 3309 * lower value will cause partial deliveries to happen more often. The 3310 * calls argument is an integer that sets or gets the partial delivery 3311 * point. Note also that the call will fail if the user attempts to set 3312 * this value larger than the socket receive buffer size. 3313 * 3314 * Note that any single message having a length smaller than or equal to 3315 * the SCTP partial delivery point will be delivered in one single read 3316 * call as long as the user provided buffer is large enough to hold the 3317 * message. 3318 */ 3319 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3320 char __user *optval, 3321 unsigned int optlen) 3322 { 3323 u32 val; 3324 3325 if (optlen != sizeof(u32)) 3326 return -EINVAL; 3327 if (get_user(val, (int __user *)optval)) 3328 return -EFAULT; 3329 3330 /* Note: We double the receive buffer from what the user sets 3331 * it to be, also initial rwnd is based on rcvbuf/2. 3332 */ 3333 if (val > (sk->sk_rcvbuf >> 1)) 3334 return -EINVAL; 3335 3336 sctp_sk(sk)->pd_point = val; 3337 3338 return 0; /* is this the right error code? */ 3339 } 3340 3341 /* 3342 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3343 * 3344 * This option will allow a user to change the maximum burst of packets 3345 * that can be emitted by this association. Note that the default value 3346 * is 4, and some implementations may restrict this setting so that it 3347 * can only be lowered. 3348 * 3349 * NOTE: This text doesn't seem right. Do this on a socket basis with 3350 * future associations inheriting the socket value. 3351 */ 3352 static int sctp_setsockopt_maxburst(struct sock *sk, 3353 char __user *optval, 3354 unsigned int optlen) 3355 { 3356 struct sctp_assoc_value params; 3357 struct sctp_sock *sp; 3358 struct sctp_association *asoc; 3359 int val; 3360 int assoc_id = 0; 3361 3362 if (optlen == sizeof(int)) { 3363 pr_warn_ratelimited(DEPRECATED 3364 "%s (pid %d) " 3365 "Use of int in max_burst socket option deprecated.\n" 3366 "Use struct sctp_assoc_value instead\n", 3367 current->comm, task_pid_nr(current)); 3368 if (copy_from_user(&val, optval, optlen)) 3369 return -EFAULT; 3370 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3371 if (copy_from_user(¶ms, optval, optlen)) 3372 return -EFAULT; 3373 val = params.assoc_value; 3374 assoc_id = params.assoc_id; 3375 } else 3376 return -EINVAL; 3377 3378 sp = sctp_sk(sk); 3379 3380 if (assoc_id != 0) { 3381 asoc = sctp_id2assoc(sk, assoc_id); 3382 if (!asoc) 3383 return -EINVAL; 3384 asoc->max_burst = val; 3385 } else 3386 sp->max_burst = val; 3387 3388 return 0; 3389 } 3390 3391 /* 3392 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3393 * 3394 * This set option adds a chunk type that the user is requesting to be 3395 * received only in an authenticated way. Changes to the list of chunks 3396 * will only effect future associations on the socket. 3397 */ 3398 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3399 char __user *optval, 3400 unsigned int optlen) 3401 { 3402 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3403 struct sctp_authchunk val; 3404 3405 if (!ep->auth_enable) 3406 return -EACCES; 3407 3408 if (optlen != sizeof(struct sctp_authchunk)) 3409 return -EINVAL; 3410 if (copy_from_user(&val, optval, optlen)) 3411 return -EFAULT; 3412 3413 switch (val.sauth_chunk) { 3414 case SCTP_CID_INIT: 3415 case SCTP_CID_INIT_ACK: 3416 case SCTP_CID_SHUTDOWN_COMPLETE: 3417 case SCTP_CID_AUTH: 3418 return -EINVAL; 3419 } 3420 3421 /* add this chunk id to the endpoint */ 3422 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3423 } 3424 3425 /* 3426 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3427 * 3428 * This option gets or sets the list of HMAC algorithms that the local 3429 * endpoint requires the peer to use. 3430 */ 3431 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3432 char __user *optval, 3433 unsigned int optlen) 3434 { 3435 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3436 struct sctp_hmacalgo *hmacs; 3437 u32 idents; 3438 int err; 3439 3440 if (!ep->auth_enable) 3441 return -EACCES; 3442 3443 if (optlen < sizeof(struct sctp_hmacalgo)) 3444 return -EINVAL; 3445 3446 hmacs = memdup_user(optval, optlen); 3447 if (IS_ERR(hmacs)) 3448 return PTR_ERR(hmacs); 3449 3450 idents = hmacs->shmac_num_idents; 3451 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3452 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3453 err = -EINVAL; 3454 goto out; 3455 } 3456 3457 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3458 out: 3459 kfree(hmacs); 3460 return err; 3461 } 3462 3463 /* 3464 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3465 * 3466 * This option will set a shared secret key which is used to build an 3467 * association shared key. 3468 */ 3469 static int sctp_setsockopt_auth_key(struct sock *sk, 3470 char __user *optval, 3471 unsigned int optlen) 3472 { 3473 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3474 struct sctp_authkey *authkey; 3475 struct sctp_association *asoc; 3476 int ret; 3477 3478 if (!ep->auth_enable) 3479 return -EACCES; 3480 3481 if (optlen <= sizeof(struct sctp_authkey)) 3482 return -EINVAL; 3483 3484 authkey = memdup_user(optval, optlen); 3485 if (IS_ERR(authkey)) 3486 return PTR_ERR(authkey); 3487 3488 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3489 ret = -EINVAL; 3490 goto out; 3491 } 3492 3493 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3494 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3495 ret = -EINVAL; 3496 goto out; 3497 } 3498 3499 ret = sctp_auth_set_key(ep, asoc, authkey); 3500 out: 3501 kzfree(authkey); 3502 return ret; 3503 } 3504 3505 /* 3506 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3507 * 3508 * This option will get or set the active shared key to be used to build 3509 * the association shared key. 3510 */ 3511 static int sctp_setsockopt_active_key(struct sock *sk, 3512 char __user *optval, 3513 unsigned int optlen) 3514 { 3515 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3516 struct sctp_authkeyid val; 3517 struct sctp_association *asoc; 3518 3519 if (!ep->auth_enable) 3520 return -EACCES; 3521 3522 if (optlen != sizeof(struct sctp_authkeyid)) 3523 return -EINVAL; 3524 if (copy_from_user(&val, optval, optlen)) 3525 return -EFAULT; 3526 3527 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3528 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3529 return -EINVAL; 3530 3531 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3532 } 3533 3534 /* 3535 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3536 * 3537 * This set option will delete a shared secret key from use. 3538 */ 3539 static int sctp_setsockopt_del_key(struct sock *sk, 3540 char __user *optval, 3541 unsigned int optlen) 3542 { 3543 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3544 struct sctp_authkeyid val; 3545 struct sctp_association *asoc; 3546 3547 if (!ep->auth_enable) 3548 return -EACCES; 3549 3550 if (optlen != sizeof(struct sctp_authkeyid)) 3551 return -EINVAL; 3552 if (copy_from_user(&val, optval, optlen)) 3553 return -EFAULT; 3554 3555 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3556 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3557 return -EINVAL; 3558 3559 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3560 3561 } 3562 3563 /* 3564 * 8.1.23 SCTP_AUTO_ASCONF 3565 * 3566 * This option will enable or disable the use of the automatic generation of 3567 * ASCONF chunks to add and delete addresses to an existing association. Note 3568 * that this option has two caveats namely: a) it only affects sockets that 3569 * are bound to all addresses available to the SCTP stack, and b) the system 3570 * administrator may have an overriding control that turns the ASCONF feature 3571 * off no matter what setting the socket option may have. 3572 * This option expects an integer boolean flag, where a non-zero value turns on 3573 * the option, and a zero value turns off the option. 3574 * Note. In this implementation, socket operation overrides default parameter 3575 * being set by sysctl as well as FreeBSD implementation 3576 */ 3577 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3578 unsigned int optlen) 3579 { 3580 int val; 3581 struct sctp_sock *sp = sctp_sk(sk); 3582 3583 if (optlen < sizeof(int)) 3584 return -EINVAL; 3585 if (get_user(val, (int __user *)optval)) 3586 return -EFAULT; 3587 if (!sctp_is_ep_boundall(sk) && val) 3588 return -EINVAL; 3589 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3590 return 0; 3591 3592 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3593 if (val == 0 && sp->do_auto_asconf) { 3594 list_del(&sp->auto_asconf_list); 3595 sp->do_auto_asconf = 0; 3596 } else if (val && !sp->do_auto_asconf) { 3597 list_add_tail(&sp->auto_asconf_list, 3598 &sock_net(sk)->sctp.auto_asconf_splist); 3599 sp->do_auto_asconf = 1; 3600 } 3601 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3602 return 0; 3603 } 3604 3605 /* 3606 * SCTP_PEER_ADDR_THLDS 3607 * 3608 * This option allows us to alter the partially failed threshold for one or all 3609 * transports in an association. See Section 6.1 of: 3610 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3611 */ 3612 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3613 char __user *optval, 3614 unsigned int optlen) 3615 { 3616 struct sctp_paddrthlds val; 3617 struct sctp_transport *trans; 3618 struct sctp_association *asoc; 3619 3620 if (optlen < sizeof(struct sctp_paddrthlds)) 3621 return -EINVAL; 3622 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3623 sizeof(struct sctp_paddrthlds))) 3624 return -EFAULT; 3625 3626 3627 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3628 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3629 if (!asoc) 3630 return -ENOENT; 3631 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3632 transports) { 3633 if (val.spt_pathmaxrxt) 3634 trans->pathmaxrxt = val.spt_pathmaxrxt; 3635 trans->pf_retrans = val.spt_pathpfthld; 3636 } 3637 3638 if (val.spt_pathmaxrxt) 3639 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3640 asoc->pf_retrans = val.spt_pathpfthld; 3641 } else { 3642 trans = sctp_addr_id2transport(sk, &val.spt_address, 3643 val.spt_assoc_id); 3644 if (!trans) 3645 return -ENOENT; 3646 3647 if (val.spt_pathmaxrxt) 3648 trans->pathmaxrxt = val.spt_pathmaxrxt; 3649 trans->pf_retrans = val.spt_pathpfthld; 3650 } 3651 3652 return 0; 3653 } 3654 3655 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3656 char __user *optval, 3657 unsigned int optlen) 3658 { 3659 int val; 3660 3661 if (optlen < sizeof(int)) 3662 return -EINVAL; 3663 if (get_user(val, (int __user *) optval)) 3664 return -EFAULT; 3665 3666 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3667 3668 return 0; 3669 } 3670 3671 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3672 char __user *optval, 3673 unsigned int optlen) 3674 { 3675 int val; 3676 3677 if (optlen < sizeof(int)) 3678 return -EINVAL; 3679 if (get_user(val, (int __user *) optval)) 3680 return -EFAULT; 3681 3682 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3683 3684 return 0; 3685 } 3686 3687 static int sctp_setsockopt_pr_supported(struct sock *sk, 3688 char __user *optval, 3689 unsigned int optlen) 3690 { 3691 struct sctp_assoc_value params; 3692 struct sctp_association *asoc; 3693 int retval = -EINVAL; 3694 3695 if (optlen != sizeof(params)) 3696 goto out; 3697 3698 if (copy_from_user(¶ms, optval, optlen)) { 3699 retval = -EFAULT; 3700 goto out; 3701 } 3702 3703 asoc = sctp_id2assoc(sk, params.assoc_id); 3704 if (asoc) { 3705 asoc->prsctp_enable = !!params.assoc_value; 3706 } else if (!params.assoc_id) { 3707 struct sctp_sock *sp = sctp_sk(sk); 3708 3709 sp->ep->prsctp_enable = !!params.assoc_value; 3710 } else { 3711 goto out; 3712 } 3713 3714 retval = 0; 3715 3716 out: 3717 return retval; 3718 } 3719 3720 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3721 char __user *optval, 3722 unsigned int optlen) 3723 { 3724 struct sctp_default_prinfo info; 3725 struct sctp_association *asoc; 3726 int retval = -EINVAL; 3727 3728 if (optlen != sizeof(info)) 3729 goto out; 3730 3731 if (copy_from_user(&info, optval, sizeof(info))) { 3732 retval = -EFAULT; 3733 goto out; 3734 } 3735 3736 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3737 goto out; 3738 3739 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3740 info.pr_value = 0; 3741 3742 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3743 if (asoc) { 3744 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3745 asoc->default_timetolive = info.pr_value; 3746 } else if (!info.pr_assoc_id) { 3747 struct sctp_sock *sp = sctp_sk(sk); 3748 3749 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3750 sp->default_timetolive = info.pr_value; 3751 } else { 3752 goto out; 3753 } 3754 3755 retval = 0; 3756 3757 out: 3758 return retval; 3759 } 3760 3761 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3762 char __user *optval, 3763 unsigned int optlen) 3764 { 3765 struct sctp_assoc_value params; 3766 struct sctp_association *asoc; 3767 int retval = -EINVAL; 3768 3769 if (optlen != sizeof(params)) 3770 goto out; 3771 3772 if (copy_from_user(¶ms, optval, optlen)) { 3773 retval = -EFAULT; 3774 goto out; 3775 } 3776 3777 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3778 goto out; 3779 3780 asoc = sctp_id2assoc(sk, params.assoc_id); 3781 if (asoc) { 3782 asoc->strreset_enable = params.assoc_value; 3783 } else if (!params.assoc_id) { 3784 struct sctp_sock *sp = sctp_sk(sk); 3785 3786 sp->ep->strreset_enable = params.assoc_value; 3787 } else { 3788 goto out; 3789 } 3790 3791 retval = 0; 3792 3793 out: 3794 return retval; 3795 } 3796 3797 static int sctp_setsockopt_reset_streams(struct sock *sk, 3798 char __user *optval, 3799 unsigned int optlen) 3800 { 3801 struct sctp_reset_streams *params; 3802 struct sctp_association *asoc; 3803 int retval = -EINVAL; 3804 3805 if (optlen < sizeof(struct sctp_reset_streams)) 3806 return -EINVAL; 3807 3808 params = memdup_user(optval, optlen); 3809 if (IS_ERR(params)) 3810 return PTR_ERR(params); 3811 3812 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3813 if (!asoc) 3814 goto out; 3815 3816 retval = sctp_send_reset_streams(asoc, params); 3817 3818 out: 3819 kfree(params); 3820 return retval; 3821 } 3822 3823 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3824 char __user *optval, 3825 unsigned int optlen) 3826 { 3827 struct sctp_association *asoc; 3828 sctp_assoc_t associd; 3829 int retval = -EINVAL; 3830 3831 if (optlen != sizeof(associd)) 3832 goto out; 3833 3834 if (copy_from_user(&associd, optval, optlen)) { 3835 retval = -EFAULT; 3836 goto out; 3837 } 3838 3839 asoc = sctp_id2assoc(sk, associd); 3840 if (!asoc) 3841 goto out; 3842 3843 retval = sctp_send_reset_assoc(asoc); 3844 3845 out: 3846 return retval; 3847 } 3848 3849 static int sctp_setsockopt_add_streams(struct sock *sk, 3850 char __user *optval, 3851 unsigned int optlen) 3852 { 3853 struct sctp_association *asoc; 3854 struct sctp_add_streams params; 3855 int retval = -EINVAL; 3856 3857 if (optlen != sizeof(params)) 3858 goto out; 3859 3860 if (copy_from_user(¶ms, optval, optlen)) { 3861 retval = -EFAULT; 3862 goto out; 3863 } 3864 3865 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3866 if (!asoc) 3867 goto out; 3868 3869 retval = sctp_send_add_streams(asoc, ¶ms); 3870 3871 out: 3872 return retval; 3873 } 3874 3875 /* API 6.2 setsockopt(), getsockopt() 3876 * 3877 * Applications use setsockopt() and getsockopt() to set or retrieve 3878 * socket options. Socket options are used to change the default 3879 * behavior of sockets calls. They are described in Section 7. 3880 * 3881 * The syntax is: 3882 * 3883 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3884 * int __user *optlen); 3885 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3886 * int optlen); 3887 * 3888 * sd - the socket descript. 3889 * level - set to IPPROTO_SCTP for all SCTP options. 3890 * optname - the option name. 3891 * optval - the buffer to store the value of the option. 3892 * optlen - the size of the buffer. 3893 */ 3894 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3895 char __user *optval, unsigned int optlen) 3896 { 3897 int retval = 0; 3898 3899 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3900 3901 /* I can hardly begin to describe how wrong this is. This is 3902 * so broken as to be worse than useless. The API draft 3903 * REALLY is NOT helpful here... I am not convinced that the 3904 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3905 * are at all well-founded. 3906 */ 3907 if (level != SOL_SCTP) { 3908 struct sctp_af *af = sctp_sk(sk)->pf->af; 3909 retval = af->setsockopt(sk, level, optname, optval, optlen); 3910 goto out_nounlock; 3911 } 3912 3913 lock_sock(sk); 3914 3915 switch (optname) { 3916 case SCTP_SOCKOPT_BINDX_ADD: 3917 /* 'optlen' is the size of the addresses buffer. */ 3918 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3919 optlen, SCTP_BINDX_ADD_ADDR); 3920 break; 3921 3922 case SCTP_SOCKOPT_BINDX_REM: 3923 /* 'optlen' is the size of the addresses buffer. */ 3924 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3925 optlen, SCTP_BINDX_REM_ADDR); 3926 break; 3927 3928 case SCTP_SOCKOPT_CONNECTX_OLD: 3929 /* 'optlen' is the size of the addresses buffer. */ 3930 retval = sctp_setsockopt_connectx_old(sk, 3931 (struct sockaddr __user *)optval, 3932 optlen); 3933 break; 3934 3935 case SCTP_SOCKOPT_CONNECTX: 3936 /* 'optlen' is the size of the addresses buffer. */ 3937 retval = sctp_setsockopt_connectx(sk, 3938 (struct sockaddr __user *)optval, 3939 optlen); 3940 break; 3941 3942 case SCTP_DISABLE_FRAGMENTS: 3943 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3944 break; 3945 3946 case SCTP_EVENTS: 3947 retval = sctp_setsockopt_events(sk, optval, optlen); 3948 break; 3949 3950 case SCTP_AUTOCLOSE: 3951 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3952 break; 3953 3954 case SCTP_PEER_ADDR_PARAMS: 3955 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3956 break; 3957 3958 case SCTP_DELAYED_SACK: 3959 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3960 break; 3961 case SCTP_PARTIAL_DELIVERY_POINT: 3962 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3963 break; 3964 3965 case SCTP_INITMSG: 3966 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3967 break; 3968 case SCTP_DEFAULT_SEND_PARAM: 3969 retval = sctp_setsockopt_default_send_param(sk, optval, 3970 optlen); 3971 break; 3972 case SCTP_DEFAULT_SNDINFO: 3973 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3974 break; 3975 case SCTP_PRIMARY_ADDR: 3976 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3977 break; 3978 case SCTP_SET_PEER_PRIMARY_ADDR: 3979 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3980 break; 3981 case SCTP_NODELAY: 3982 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3983 break; 3984 case SCTP_RTOINFO: 3985 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3986 break; 3987 case SCTP_ASSOCINFO: 3988 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3989 break; 3990 case SCTP_I_WANT_MAPPED_V4_ADDR: 3991 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3992 break; 3993 case SCTP_MAXSEG: 3994 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3995 break; 3996 case SCTP_ADAPTATION_LAYER: 3997 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3998 break; 3999 case SCTP_CONTEXT: 4000 retval = sctp_setsockopt_context(sk, optval, optlen); 4001 break; 4002 case SCTP_FRAGMENT_INTERLEAVE: 4003 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4004 break; 4005 case SCTP_MAX_BURST: 4006 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4007 break; 4008 case SCTP_AUTH_CHUNK: 4009 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4010 break; 4011 case SCTP_HMAC_IDENT: 4012 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4013 break; 4014 case SCTP_AUTH_KEY: 4015 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4016 break; 4017 case SCTP_AUTH_ACTIVE_KEY: 4018 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4019 break; 4020 case SCTP_AUTH_DELETE_KEY: 4021 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4022 break; 4023 case SCTP_AUTO_ASCONF: 4024 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4025 break; 4026 case SCTP_PEER_ADDR_THLDS: 4027 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4028 break; 4029 case SCTP_RECVRCVINFO: 4030 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4031 break; 4032 case SCTP_RECVNXTINFO: 4033 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4034 break; 4035 case SCTP_PR_SUPPORTED: 4036 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4037 break; 4038 case SCTP_DEFAULT_PRINFO: 4039 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4040 break; 4041 case SCTP_ENABLE_STREAM_RESET: 4042 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4043 break; 4044 case SCTP_RESET_STREAMS: 4045 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4046 break; 4047 case SCTP_RESET_ASSOC: 4048 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4049 break; 4050 case SCTP_ADD_STREAMS: 4051 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4052 break; 4053 default: 4054 retval = -ENOPROTOOPT; 4055 break; 4056 } 4057 4058 release_sock(sk); 4059 4060 out_nounlock: 4061 return retval; 4062 } 4063 4064 /* API 3.1.6 connect() - UDP Style Syntax 4065 * 4066 * An application may use the connect() call in the UDP model to initiate an 4067 * association without sending data. 4068 * 4069 * The syntax is: 4070 * 4071 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4072 * 4073 * sd: the socket descriptor to have a new association added to. 4074 * 4075 * nam: the address structure (either struct sockaddr_in or struct 4076 * sockaddr_in6 defined in RFC2553 [7]). 4077 * 4078 * len: the size of the address. 4079 */ 4080 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4081 int addr_len) 4082 { 4083 int err = 0; 4084 struct sctp_af *af; 4085 4086 lock_sock(sk); 4087 4088 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4089 addr, addr_len); 4090 4091 /* Validate addr_len before calling common connect/connectx routine. */ 4092 af = sctp_get_af_specific(addr->sa_family); 4093 if (!af || addr_len < af->sockaddr_len) { 4094 err = -EINVAL; 4095 } else { 4096 /* Pass correct addr len to common routine (so it knows there 4097 * is only one address being passed. 4098 */ 4099 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4100 } 4101 4102 release_sock(sk); 4103 return err; 4104 } 4105 4106 /* FIXME: Write comments. */ 4107 static int sctp_disconnect(struct sock *sk, int flags) 4108 { 4109 return -EOPNOTSUPP; /* STUB */ 4110 } 4111 4112 /* 4.1.4 accept() - TCP Style Syntax 4113 * 4114 * Applications use accept() call to remove an established SCTP 4115 * association from the accept queue of the endpoint. A new socket 4116 * descriptor will be returned from accept() to represent the newly 4117 * formed association. 4118 */ 4119 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 4120 { 4121 struct sctp_sock *sp; 4122 struct sctp_endpoint *ep; 4123 struct sock *newsk = NULL; 4124 struct sctp_association *asoc; 4125 long timeo; 4126 int error = 0; 4127 4128 lock_sock(sk); 4129 4130 sp = sctp_sk(sk); 4131 ep = sp->ep; 4132 4133 if (!sctp_style(sk, TCP)) { 4134 error = -EOPNOTSUPP; 4135 goto out; 4136 } 4137 4138 if (!sctp_sstate(sk, LISTENING)) { 4139 error = -EINVAL; 4140 goto out; 4141 } 4142 4143 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4144 4145 error = sctp_wait_for_accept(sk, timeo); 4146 if (error) 4147 goto out; 4148 4149 /* We treat the list of associations on the endpoint as the accept 4150 * queue and pick the first association on the list. 4151 */ 4152 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4153 4154 newsk = sp->pf->create_accept_sk(sk, asoc); 4155 if (!newsk) { 4156 error = -ENOMEM; 4157 goto out; 4158 } 4159 4160 /* Populate the fields of the newsk from the oldsk and migrate the 4161 * asoc to the newsk. 4162 */ 4163 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4164 4165 out: 4166 release_sock(sk); 4167 *err = error; 4168 return newsk; 4169 } 4170 4171 /* The SCTP ioctl handler. */ 4172 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4173 { 4174 int rc = -ENOTCONN; 4175 4176 lock_sock(sk); 4177 4178 /* 4179 * SEQPACKET-style sockets in LISTENING state are valid, for 4180 * SCTP, so only discard TCP-style sockets in LISTENING state. 4181 */ 4182 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4183 goto out; 4184 4185 switch (cmd) { 4186 case SIOCINQ: { 4187 struct sk_buff *skb; 4188 unsigned int amount = 0; 4189 4190 skb = skb_peek(&sk->sk_receive_queue); 4191 if (skb != NULL) { 4192 /* 4193 * We will only return the amount of this packet since 4194 * that is all that will be read. 4195 */ 4196 amount = skb->len; 4197 } 4198 rc = put_user(amount, (int __user *)arg); 4199 break; 4200 } 4201 default: 4202 rc = -ENOIOCTLCMD; 4203 break; 4204 } 4205 out: 4206 release_sock(sk); 4207 return rc; 4208 } 4209 4210 /* This is the function which gets called during socket creation to 4211 * initialized the SCTP-specific portion of the sock. 4212 * The sock structure should already be zero-filled memory. 4213 */ 4214 static int sctp_init_sock(struct sock *sk) 4215 { 4216 struct net *net = sock_net(sk); 4217 struct sctp_sock *sp; 4218 4219 pr_debug("%s: sk:%p\n", __func__, sk); 4220 4221 sp = sctp_sk(sk); 4222 4223 /* Initialize the SCTP per socket area. */ 4224 switch (sk->sk_type) { 4225 case SOCK_SEQPACKET: 4226 sp->type = SCTP_SOCKET_UDP; 4227 break; 4228 case SOCK_STREAM: 4229 sp->type = SCTP_SOCKET_TCP; 4230 break; 4231 default: 4232 return -ESOCKTNOSUPPORT; 4233 } 4234 4235 sk->sk_gso_type = SKB_GSO_SCTP; 4236 4237 /* Initialize default send parameters. These parameters can be 4238 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4239 */ 4240 sp->default_stream = 0; 4241 sp->default_ppid = 0; 4242 sp->default_flags = 0; 4243 sp->default_context = 0; 4244 sp->default_timetolive = 0; 4245 4246 sp->default_rcv_context = 0; 4247 sp->max_burst = net->sctp.max_burst; 4248 4249 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4250 4251 /* Initialize default setup parameters. These parameters 4252 * can be modified with the SCTP_INITMSG socket option or 4253 * overridden by the SCTP_INIT CMSG. 4254 */ 4255 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4256 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4257 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4258 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4259 4260 /* Initialize default RTO related parameters. These parameters can 4261 * be modified for with the SCTP_RTOINFO socket option. 4262 */ 4263 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4264 sp->rtoinfo.srto_max = net->sctp.rto_max; 4265 sp->rtoinfo.srto_min = net->sctp.rto_min; 4266 4267 /* Initialize default association related parameters. These parameters 4268 * can be modified with the SCTP_ASSOCINFO socket option. 4269 */ 4270 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4271 sp->assocparams.sasoc_number_peer_destinations = 0; 4272 sp->assocparams.sasoc_peer_rwnd = 0; 4273 sp->assocparams.sasoc_local_rwnd = 0; 4274 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4275 4276 /* Initialize default event subscriptions. By default, all the 4277 * options are off. 4278 */ 4279 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4280 4281 /* Default Peer Address Parameters. These defaults can 4282 * be modified via SCTP_PEER_ADDR_PARAMS 4283 */ 4284 sp->hbinterval = net->sctp.hb_interval; 4285 sp->pathmaxrxt = net->sctp.max_retrans_path; 4286 sp->pathmtu = 0; /* allow default discovery */ 4287 sp->sackdelay = net->sctp.sack_timeout; 4288 sp->sackfreq = 2; 4289 sp->param_flags = SPP_HB_ENABLE | 4290 SPP_PMTUD_ENABLE | 4291 SPP_SACKDELAY_ENABLE; 4292 4293 /* If enabled no SCTP message fragmentation will be performed. 4294 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4295 */ 4296 sp->disable_fragments = 0; 4297 4298 /* Enable Nagle algorithm by default. */ 4299 sp->nodelay = 0; 4300 4301 sp->recvrcvinfo = 0; 4302 sp->recvnxtinfo = 0; 4303 4304 /* Enable by default. */ 4305 sp->v4mapped = 1; 4306 4307 /* Auto-close idle associations after the configured 4308 * number of seconds. A value of 0 disables this 4309 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4310 * for UDP-style sockets only. 4311 */ 4312 sp->autoclose = 0; 4313 4314 /* User specified fragmentation limit. */ 4315 sp->user_frag = 0; 4316 4317 sp->adaptation_ind = 0; 4318 4319 sp->pf = sctp_get_pf_specific(sk->sk_family); 4320 4321 /* Control variables for partial data delivery. */ 4322 atomic_set(&sp->pd_mode, 0); 4323 skb_queue_head_init(&sp->pd_lobby); 4324 sp->frag_interleave = 0; 4325 4326 /* Create a per socket endpoint structure. Even if we 4327 * change the data structure relationships, this may still 4328 * be useful for storing pre-connect address information. 4329 */ 4330 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4331 if (!sp->ep) 4332 return -ENOMEM; 4333 4334 sp->hmac = NULL; 4335 4336 sk->sk_destruct = sctp_destruct_sock; 4337 4338 SCTP_DBG_OBJCNT_INC(sock); 4339 4340 local_bh_disable(); 4341 percpu_counter_inc(&sctp_sockets_allocated); 4342 sock_prot_inuse_add(net, sk->sk_prot, 1); 4343 4344 /* Nothing can fail after this block, otherwise 4345 * sctp_destroy_sock() will be called without addr_wq_lock held 4346 */ 4347 if (net->sctp.default_auto_asconf) { 4348 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4349 list_add_tail(&sp->auto_asconf_list, 4350 &net->sctp.auto_asconf_splist); 4351 sp->do_auto_asconf = 1; 4352 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4353 } else { 4354 sp->do_auto_asconf = 0; 4355 } 4356 4357 local_bh_enable(); 4358 4359 return 0; 4360 } 4361 4362 /* Cleanup any SCTP per socket resources. Must be called with 4363 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4364 */ 4365 static void sctp_destroy_sock(struct sock *sk) 4366 { 4367 struct sctp_sock *sp; 4368 4369 pr_debug("%s: sk:%p\n", __func__, sk); 4370 4371 /* Release our hold on the endpoint. */ 4372 sp = sctp_sk(sk); 4373 /* This could happen during socket init, thus we bail out 4374 * early, since the rest of the below is not setup either. 4375 */ 4376 if (sp->ep == NULL) 4377 return; 4378 4379 if (sp->do_auto_asconf) { 4380 sp->do_auto_asconf = 0; 4381 list_del(&sp->auto_asconf_list); 4382 } 4383 sctp_endpoint_free(sp->ep); 4384 local_bh_disable(); 4385 percpu_counter_dec(&sctp_sockets_allocated); 4386 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4387 local_bh_enable(); 4388 } 4389 4390 /* Triggered when there are no references on the socket anymore */ 4391 static void sctp_destruct_sock(struct sock *sk) 4392 { 4393 struct sctp_sock *sp = sctp_sk(sk); 4394 4395 /* Free up the HMAC transform. */ 4396 crypto_free_shash(sp->hmac); 4397 4398 inet_sock_destruct(sk); 4399 } 4400 4401 /* API 4.1.7 shutdown() - TCP Style Syntax 4402 * int shutdown(int socket, int how); 4403 * 4404 * sd - the socket descriptor of the association to be closed. 4405 * how - Specifies the type of shutdown. The values are 4406 * as follows: 4407 * SHUT_RD 4408 * Disables further receive operations. No SCTP 4409 * protocol action is taken. 4410 * SHUT_WR 4411 * Disables further send operations, and initiates 4412 * the SCTP shutdown sequence. 4413 * SHUT_RDWR 4414 * Disables further send and receive operations 4415 * and initiates the SCTP shutdown sequence. 4416 */ 4417 static void sctp_shutdown(struct sock *sk, int how) 4418 { 4419 struct net *net = sock_net(sk); 4420 struct sctp_endpoint *ep; 4421 4422 if (!sctp_style(sk, TCP)) 4423 return; 4424 4425 ep = sctp_sk(sk)->ep; 4426 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4427 struct sctp_association *asoc; 4428 4429 sk->sk_state = SCTP_SS_CLOSING; 4430 asoc = list_entry(ep->asocs.next, 4431 struct sctp_association, asocs); 4432 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4433 } 4434 } 4435 4436 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4437 struct sctp_info *info) 4438 { 4439 struct sctp_transport *prim; 4440 struct list_head *pos; 4441 int mask; 4442 4443 memset(info, 0, sizeof(*info)); 4444 if (!asoc) { 4445 struct sctp_sock *sp = sctp_sk(sk); 4446 4447 info->sctpi_s_autoclose = sp->autoclose; 4448 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4449 info->sctpi_s_pd_point = sp->pd_point; 4450 info->sctpi_s_nodelay = sp->nodelay; 4451 info->sctpi_s_disable_fragments = sp->disable_fragments; 4452 info->sctpi_s_v4mapped = sp->v4mapped; 4453 info->sctpi_s_frag_interleave = sp->frag_interleave; 4454 info->sctpi_s_type = sp->type; 4455 4456 return 0; 4457 } 4458 4459 info->sctpi_tag = asoc->c.my_vtag; 4460 info->sctpi_state = asoc->state; 4461 info->sctpi_rwnd = asoc->a_rwnd; 4462 info->sctpi_unackdata = asoc->unack_data; 4463 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4464 info->sctpi_instrms = asoc->c.sinit_max_instreams; 4465 info->sctpi_outstrms = asoc->c.sinit_num_ostreams; 4466 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4467 info->sctpi_inqueue++; 4468 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4469 info->sctpi_outqueue++; 4470 info->sctpi_overall_error = asoc->overall_error_count; 4471 info->sctpi_max_burst = asoc->max_burst; 4472 info->sctpi_maxseg = asoc->frag_point; 4473 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4474 info->sctpi_peer_tag = asoc->c.peer_vtag; 4475 4476 mask = asoc->peer.ecn_capable << 1; 4477 mask = (mask | asoc->peer.ipv4_address) << 1; 4478 mask = (mask | asoc->peer.ipv6_address) << 1; 4479 mask = (mask | asoc->peer.hostname_address) << 1; 4480 mask = (mask | asoc->peer.asconf_capable) << 1; 4481 mask = (mask | asoc->peer.prsctp_capable) << 1; 4482 mask = (mask | asoc->peer.auth_capable); 4483 info->sctpi_peer_capable = mask; 4484 mask = asoc->peer.sack_needed << 1; 4485 mask = (mask | asoc->peer.sack_generation) << 1; 4486 mask = (mask | asoc->peer.zero_window_announced); 4487 info->sctpi_peer_sack = mask; 4488 4489 info->sctpi_isacks = asoc->stats.isacks; 4490 info->sctpi_osacks = asoc->stats.osacks; 4491 info->sctpi_opackets = asoc->stats.opackets; 4492 info->sctpi_ipackets = asoc->stats.ipackets; 4493 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4494 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4495 info->sctpi_idupchunks = asoc->stats.idupchunks; 4496 info->sctpi_gapcnt = asoc->stats.gapcnt; 4497 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4498 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4499 info->sctpi_oodchunks = asoc->stats.oodchunks; 4500 info->sctpi_iodchunks = asoc->stats.iodchunks; 4501 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4502 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4503 4504 prim = asoc->peer.primary_path; 4505 memcpy(&info->sctpi_p_address, &prim->ipaddr, 4506 sizeof(struct sockaddr_storage)); 4507 info->sctpi_p_state = prim->state; 4508 info->sctpi_p_cwnd = prim->cwnd; 4509 info->sctpi_p_srtt = prim->srtt; 4510 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4511 info->sctpi_p_hbinterval = prim->hbinterval; 4512 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4513 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4514 info->sctpi_p_ssthresh = prim->ssthresh; 4515 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4516 info->sctpi_p_flight_size = prim->flight_size; 4517 info->sctpi_p_error = prim->error_count; 4518 4519 return 0; 4520 } 4521 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4522 4523 /* use callback to avoid exporting the core structure */ 4524 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4525 { 4526 int err; 4527 4528 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4529 4530 err = rhashtable_walk_start(iter); 4531 if (err && err != -EAGAIN) { 4532 rhashtable_walk_stop(iter); 4533 rhashtable_walk_exit(iter); 4534 return err; 4535 } 4536 4537 return 0; 4538 } 4539 4540 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4541 { 4542 rhashtable_walk_stop(iter); 4543 rhashtable_walk_exit(iter); 4544 } 4545 4546 struct sctp_transport *sctp_transport_get_next(struct net *net, 4547 struct rhashtable_iter *iter) 4548 { 4549 struct sctp_transport *t; 4550 4551 t = rhashtable_walk_next(iter); 4552 for (; t; t = rhashtable_walk_next(iter)) { 4553 if (IS_ERR(t)) { 4554 if (PTR_ERR(t) == -EAGAIN) 4555 continue; 4556 break; 4557 } 4558 4559 if (net_eq(sock_net(t->asoc->base.sk), net) && 4560 t->asoc->peer.primary_path == t) 4561 break; 4562 } 4563 4564 return t; 4565 } 4566 4567 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4568 struct rhashtable_iter *iter, 4569 int pos) 4570 { 4571 void *obj = SEQ_START_TOKEN; 4572 4573 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4574 !IS_ERR(obj)) 4575 pos--; 4576 4577 return obj; 4578 } 4579 4580 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4581 void *p) { 4582 int err = 0; 4583 int hash = 0; 4584 struct sctp_ep_common *epb; 4585 struct sctp_hashbucket *head; 4586 4587 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4588 hash++, head++) { 4589 read_lock(&head->lock); 4590 sctp_for_each_hentry(epb, &head->chain) { 4591 err = cb(sctp_ep(epb), p); 4592 if (err) 4593 break; 4594 } 4595 read_unlock(&head->lock); 4596 } 4597 4598 return err; 4599 } 4600 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4601 4602 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4603 struct net *net, 4604 const union sctp_addr *laddr, 4605 const union sctp_addr *paddr, void *p) 4606 { 4607 struct sctp_transport *transport; 4608 int err; 4609 4610 rcu_read_lock(); 4611 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4612 rcu_read_unlock(); 4613 if (!transport) 4614 return -ENOENT; 4615 4616 err = cb(transport, p); 4617 sctp_transport_put(transport); 4618 4619 return err; 4620 } 4621 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4622 4623 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4624 struct net *net, int pos, void *p) { 4625 struct rhashtable_iter hti; 4626 void *obj; 4627 int err; 4628 4629 err = sctp_transport_walk_start(&hti); 4630 if (err) 4631 return err; 4632 4633 sctp_transport_get_idx(net, &hti, pos); 4634 obj = sctp_transport_get_next(net, &hti); 4635 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) { 4636 struct sctp_transport *transport = obj; 4637 4638 if (!sctp_transport_hold(transport)) 4639 continue; 4640 err = cb(transport, p); 4641 sctp_transport_put(transport); 4642 if (err) 4643 break; 4644 } 4645 sctp_transport_walk_stop(&hti); 4646 4647 return err; 4648 } 4649 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4650 4651 /* 7.2.1 Association Status (SCTP_STATUS) 4652 4653 * Applications can retrieve current status information about an 4654 * association, including association state, peer receiver window size, 4655 * number of unacked data chunks, and number of data chunks pending 4656 * receipt. This information is read-only. 4657 */ 4658 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4659 char __user *optval, 4660 int __user *optlen) 4661 { 4662 struct sctp_status status; 4663 struct sctp_association *asoc = NULL; 4664 struct sctp_transport *transport; 4665 sctp_assoc_t associd; 4666 int retval = 0; 4667 4668 if (len < sizeof(status)) { 4669 retval = -EINVAL; 4670 goto out; 4671 } 4672 4673 len = sizeof(status); 4674 if (copy_from_user(&status, optval, len)) { 4675 retval = -EFAULT; 4676 goto out; 4677 } 4678 4679 associd = status.sstat_assoc_id; 4680 asoc = sctp_id2assoc(sk, associd); 4681 if (!asoc) { 4682 retval = -EINVAL; 4683 goto out; 4684 } 4685 4686 transport = asoc->peer.primary_path; 4687 4688 status.sstat_assoc_id = sctp_assoc2id(asoc); 4689 status.sstat_state = sctp_assoc_to_state(asoc); 4690 status.sstat_rwnd = asoc->peer.rwnd; 4691 status.sstat_unackdata = asoc->unack_data; 4692 4693 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4694 status.sstat_instrms = asoc->c.sinit_max_instreams; 4695 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4696 status.sstat_fragmentation_point = asoc->frag_point; 4697 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4698 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4699 transport->af_specific->sockaddr_len); 4700 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4701 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4702 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4703 status.sstat_primary.spinfo_state = transport->state; 4704 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4705 status.sstat_primary.spinfo_srtt = transport->srtt; 4706 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4707 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4708 4709 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4710 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4711 4712 if (put_user(len, optlen)) { 4713 retval = -EFAULT; 4714 goto out; 4715 } 4716 4717 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4718 __func__, len, status.sstat_state, status.sstat_rwnd, 4719 status.sstat_assoc_id); 4720 4721 if (copy_to_user(optval, &status, len)) { 4722 retval = -EFAULT; 4723 goto out; 4724 } 4725 4726 out: 4727 return retval; 4728 } 4729 4730 4731 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4732 * 4733 * Applications can retrieve information about a specific peer address 4734 * of an association, including its reachability state, congestion 4735 * window, and retransmission timer values. This information is 4736 * read-only. 4737 */ 4738 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4739 char __user *optval, 4740 int __user *optlen) 4741 { 4742 struct sctp_paddrinfo pinfo; 4743 struct sctp_transport *transport; 4744 int retval = 0; 4745 4746 if (len < sizeof(pinfo)) { 4747 retval = -EINVAL; 4748 goto out; 4749 } 4750 4751 len = sizeof(pinfo); 4752 if (copy_from_user(&pinfo, optval, len)) { 4753 retval = -EFAULT; 4754 goto out; 4755 } 4756 4757 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4758 pinfo.spinfo_assoc_id); 4759 if (!transport) 4760 return -EINVAL; 4761 4762 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4763 pinfo.spinfo_state = transport->state; 4764 pinfo.spinfo_cwnd = transport->cwnd; 4765 pinfo.spinfo_srtt = transport->srtt; 4766 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4767 pinfo.spinfo_mtu = transport->pathmtu; 4768 4769 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4770 pinfo.spinfo_state = SCTP_ACTIVE; 4771 4772 if (put_user(len, optlen)) { 4773 retval = -EFAULT; 4774 goto out; 4775 } 4776 4777 if (copy_to_user(optval, &pinfo, len)) { 4778 retval = -EFAULT; 4779 goto out; 4780 } 4781 4782 out: 4783 return retval; 4784 } 4785 4786 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4787 * 4788 * This option is a on/off flag. If enabled no SCTP message 4789 * fragmentation will be performed. Instead if a message being sent 4790 * exceeds the current PMTU size, the message will NOT be sent and 4791 * instead a error will be indicated to the user. 4792 */ 4793 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4794 char __user *optval, int __user *optlen) 4795 { 4796 int val; 4797 4798 if (len < sizeof(int)) 4799 return -EINVAL; 4800 4801 len = sizeof(int); 4802 val = (sctp_sk(sk)->disable_fragments == 1); 4803 if (put_user(len, optlen)) 4804 return -EFAULT; 4805 if (copy_to_user(optval, &val, len)) 4806 return -EFAULT; 4807 return 0; 4808 } 4809 4810 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4811 * 4812 * This socket option is used to specify various notifications and 4813 * ancillary data the user wishes to receive. 4814 */ 4815 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4816 int __user *optlen) 4817 { 4818 if (len == 0) 4819 return -EINVAL; 4820 if (len > sizeof(struct sctp_event_subscribe)) 4821 len = sizeof(struct sctp_event_subscribe); 4822 if (put_user(len, optlen)) 4823 return -EFAULT; 4824 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4825 return -EFAULT; 4826 return 0; 4827 } 4828 4829 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4830 * 4831 * This socket option is applicable to the UDP-style socket only. When 4832 * set it will cause associations that are idle for more than the 4833 * specified number of seconds to automatically close. An association 4834 * being idle is defined an association that has NOT sent or received 4835 * user data. The special value of '0' indicates that no automatic 4836 * close of any associations should be performed. The option expects an 4837 * integer defining the number of seconds of idle time before an 4838 * association is closed. 4839 */ 4840 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4841 { 4842 /* Applicable to UDP-style socket only */ 4843 if (sctp_style(sk, TCP)) 4844 return -EOPNOTSUPP; 4845 if (len < sizeof(int)) 4846 return -EINVAL; 4847 len = sizeof(int); 4848 if (put_user(len, optlen)) 4849 return -EFAULT; 4850 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4851 return -EFAULT; 4852 return 0; 4853 } 4854 4855 /* Helper routine to branch off an association to a new socket. */ 4856 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4857 { 4858 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4859 struct sctp_sock *sp = sctp_sk(sk); 4860 struct socket *sock; 4861 int err = 0; 4862 4863 if (!asoc) 4864 return -EINVAL; 4865 4866 /* If there is a thread waiting on more sndbuf space for 4867 * sending on this asoc, it cannot be peeled. 4868 */ 4869 if (waitqueue_active(&asoc->wait)) 4870 return -EBUSY; 4871 4872 /* An association cannot be branched off from an already peeled-off 4873 * socket, nor is this supported for tcp style sockets. 4874 */ 4875 if (!sctp_style(sk, UDP)) 4876 return -EINVAL; 4877 4878 /* Create a new socket. */ 4879 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4880 if (err < 0) 4881 return err; 4882 4883 sctp_copy_sock(sock->sk, sk, asoc); 4884 4885 /* Make peeled-off sockets more like 1-1 accepted sockets. 4886 * Set the daddr and initialize id to something more random 4887 */ 4888 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4889 4890 /* Populate the fields of the newsk from the oldsk and migrate the 4891 * asoc to the newsk. 4892 */ 4893 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4894 4895 *sockp = sock; 4896 4897 return err; 4898 } 4899 EXPORT_SYMBOL(sctp_do_peeloff); 4900 4901 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4902 { 4903 sctp_peeloff_arg_t peeloff; 4904 struct socket *newsock; 4905 struct file *newfile; 4906 int retval = 0; 4907 4908 if (len < sizeof(sctp_peeloff_arg_t)) 4909 return -EINVAL; 4910 len = sizeof(sctp_peeloff_arg_t); 4911 if (copy_from_user(&peeloff, optval, len)) 4912 return -EFAULT; 4913 4914 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4915 if (retval < 0) 4916 goto out; 4917 4918 /* Map the socket to an unused fd that can be returned to the user. */ 4919 retval = get_unused_fd_flags(0); 4920 if (retval < 0) { 4921 sock_release(newsock); 4922 goto out; 4923 } 4924 4925 newfile = sock_alloc_file(newsock, 0, NULL); 4926 if (IS_ERR(newfile)) { 4927 put_unused_fd(retval); 4928 sock_release(newsock); 4929 return PTR_ERR(newfile); 4930 } 4931 4932 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4933 retval); 4934 4935 /* Return the fd mapped to the new socket. */ 4936 if (put_user(len, optlen)) { 4937 fput(newfile); 4938 put_unused_fd(retval); 4939 return -EFAULT; 4940 } 4941 peeloff.sd = retval; 4942 if (copy_to_user(optval, &peeloff, len)) { 4943 fput(newfile); 4944 put_unused_fd(retval); 4945 return -EFAULT; 4946 } 4947 fd_install(retval, newfile); 4948 out: 4949 return retval; 4950 } 4951 4952 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4953 * 4954 * Applications can enable or disable heartbeats for any peer address of 4955 * an association, modify an address's heartbeat interval, force a 4956 * heartbeat to be sent immediately, and adjust the address's maximum 4957 * number of retransmissions sent before an address is considered 4958 * unreachable. The following structure is used to access and modify an 4959 * address's parameters: 4960 * 4961 * struct sctp_paddrparams { 4962 * sctp_assoc_t spp_assoc_id; 4963 * struct sockaddr_storage spp_address; 4964 * uint32_t spp_hbinterval; 4965 * uint16_t spp_pathmaxrxt; 4966 * uint32_t spp_pathmtu; 4967 * uint32_t spp_sackdelay; 4968 * uint32_t spp_flags; 4969 * }; 4970 * 4971 * spp_assoc_id - (one-to-many style socket) This is filled in the 4972 * application, and identifies the association for 4973 * this query. 4974 * spp_address - This specifies which address is of interest. 4975 * spp_hbinterval - This contains the value of the heartbeat interval, 4976 * in milliseconds. If a value of zero 4977 * is present in this field then no changes are to 4978 * be made to this parameter. 4979 * spp_pathmaxrxt - This contains the maximum number of 4980 * retransmissions before this address shall be 4981 * considered unreachable. If a value of zero 4982 * is present in this field then no changes are to 4983 * be made to this parameter. 4984 * spp_pathmtu - When Path MTU discovery is disabled the value 4985 * specified here will be the "fixed" path mtu. 4986 * Note that if the spp_address field is empty 4987 * then all associations on this address will 4988 * have this fixed path mtu set upon them. 4989 * 4990 * spp_sackdelay - When delayed sack is enabled, this value specifies 4991 * the number of milliseconds that sacks will be delayed 4992 * for. This value will apply to all addresses of an 4993 * association if the spp_address field is empty. Note 4994 * also, that if delayed sack is enabled and this 4995 * value is set to 0, no change is made to the last 4996 * recorded delayed sack timer value. 4997 * 4998 * spp_flags - These flags are used to control various features 4999 * on an association. The flag field may contain 5000 * zero or more of the following options. 5001 * 5002 * SPP_HB_ENABLE - Enable heartbeats on the 5003 * specified address. Note that if the address 5004 * field is empty all addresses for the association 5005 * have heartbeats enabled upon them. 5006 * 5007 * SPP_HB_DISABLE - Disable heartbeats on the 5008 * speicifed address. Note that if the address 5009 * field is empty all addresses for the association 5010 * will have their heartbeats disabled. Note also 5011 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5012 * mutually exclusive, only one of these two should 5013 * be specified. Enabling both fields will have 5014 * undetermined results. 5015 * 5016 * SPP_HB_DEMAND - Request a user initiated heartbeat 5017 * to be made immediately. 5018 * 5019 * SPP_PMTUD_ENABLE - This field will enable PMTU 5020 * discovery upon the specified address. Note that 5021 * if the address feild is empty then all addresses 5022 * on the association are effected. 5023 * 5024 * SPP_PMTUD_DISABLE - This field will disable PMTU 5025 * discovery upon the specified address. Note that 5026 * if the address feild is empty then all addresses 5027 * on the association are effected. Not also that 5028 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5029 * exclusive. Enabling both will have undetermined 5030 * results. 5031 * 5032 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5033 * on delayed sack. The time specified in spp_sackdelay 5034 * is used to specify the sack delay for this address. Note 5035 * that if spp_address is empty then all addresses will 5036 * enable delayed sack and take on the sack delay 5037 * value specified in spp_sackdelay. 5038 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5039 * off delayed sack. If the spp_address field is blank then 5040 * delayed sack is disabled for the entire association. Note 5041 * also that this field is mutually exclusive to 5042 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5043 * results. 5044 */ 5045 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5046 char __user *optval, int __user *optlen) 5047 { 5048 struct sctp_paddrparams params; 5049 struct sctp_transport *trans = NULL; 5050 struct sctp_association *asoc = NULL; 5051 struct sctp_sock *sp = sctp_sk(sk); 5052 5053 if (len < sizeof(struct sctp_paddrparams)) 5054 return -EINVAL; 5055 len = sizeof(struct sctp_paddrparams); 5056 if (copy_from_user(¶ms, optval, len)) 5057 return -EFAULT; 5058 5059 /* If an address other than INADDR_ANY is specified, and 5060 * no transport is found, then the request is invalid. 5061 */ 5062 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5063 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5064 params.spp_assoc_id); 5065 if (!trans) { 5066 pr_debug("%s: failed no transport\n", __func__); 5067 return -EINVAL; 5068 } 5069 } 5070 5071 /* Get association, if assoc_id != 0 and the socket is a one 5072 * to many style socket, and an association was not found, then 5073 * the id was invalid. 5074 */ 5075 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5076 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5077 pr_debug("%s: failed no association\n", __func__); 5078 return -EINVAL; 5079 } 5080 5081 if (trans) { 5082 /* Fetch transport values. */ 5083 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5084 params.spp_pathmtu = trans->pathmtu; 5085 params.spp_pathmaxrxt = trans->pathmaxrxt; 5086 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5087 5088 /*draft-11 doesn't say what to return in spp_flags*/ 5089 params.spp_flags = trans->param_flags; 5090 } else if (asoc) { 5091 /* Fetch association values. */ 5092 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5093 params.spp_pathmtu = asoc->pathmtu; 5094 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5095 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5096 5097 /*draft-11 doesn't say what to return in spp_flags*/ 5098 params.spp_flags = asoc->param_flags; 5099 } else { 5100 /* Fetch socket values. */ 5101 params.spp_hbinterval = sp->hbinterval; 5102 params.spp_pathmtu = sp->pathmtu; 5103 params.spp_sackdelay = sp->sackdelay; 5104 params.spp_pathmaxrxt = sp->pathmaxrxt; 5105 5106 /*draft-11 doesn't say what to return in spp_flags*/ 5107 params.spp_flags = sp->param_flags; 5108 } 5109 5110 if (copy_to_user(optval, ¶ms, len)) 5111 return -EFAULT; 5112 5113 if (put_user(len, optlen)) 5114 return -EFAULT; 5115 5116 return 0; 5117 } 5118 5119 /* 5120 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5121 * 5122 * This option will effect the way delayed acks are performed. This 5123 * option allows you to get or set the delayed ack time, in 5124 * milliseconds. It also allows changing the delayed ack frequency. 5125 * Changing the frequency to 1 disables the delayed sack algorithm. If 5126 * the assoc_id is 0, then this sets or gets the endpoints default 5127 * values. If the assoc_id field is non-zero, then the set or get 5128 * effects the specified association for the one to many model (the 5129 * assoc_id field is ignored by the one to one model). Note that if 5130 * sack_delay or sack_freq are 0 when setting this option, then the 5131 * current values will remain unchanged. 5132 * 5133 * struct sctp_sack_info { 5134 * sctp_assoc_t sack_assoc_id; 5135 * uint32_t sack_delay; 5136 * uint32_t sack_freq; 5137 * }; 5138 * 5139 * sack_assoc_id - This parameter, indicates which association the user 5140 * is performing an action upon. Note that if this field's value is 5141 * zero then the endpoints default value is changed (effecting future 5142 * associations only). 5143 * 5144 * sack_delay - This parameter contains the number of milliseconds that 5145 * the user is requesting the delayed ACK timer be set to. Note that 5146 * this value is defined in the standard to be between 200 and 500 5147 * milliseconds. 5148 * 5149 * sack_freq - This parameter contains the number of packets that must 5150 * be received before a sack is sent without waiting for the delay 5151 * timer to expire. The default value for this is 2, setting this 5152 * value to 1 will disable the delayed sack algorithm. 5153 */ 5154 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5155 char __user *optval, 5156 int __user *optlen) 5157 { 5158 struct sctp_sack_info params; 5159 struct sctp_association *asoc = NULL; 5160 struct sctp_sock *sp = sctp_sk(sk); 5161 5162 if (len >= sizeof(struct sctp_sack_info)) { 5163 len = sizeof(struct sctp_sack_info); 5164 5165 if (copy_from_user(¶ms, optval, len)) 5166 return -EFAULT; 5167 } else if (len == sizeof(struct sctp_assoc_value)) { 5168 pr_warn_ratelimited(DEPRECATED 5169 "%s (pid %d) " 5170 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5171 "Use struct sctp_sack_info instead\n", 5172 current->comm, task_pid_nr(current)); 5173 if (copy_from_user(¶ms, optval, len)) 5174 return -EFAULT; 5175 } else 5176 return -EINVAL; 5177 5178 /* Get association, if sack_assoc_id != 0 and the socket is a one 5179 * to many style socket, and an association was not found, then 5180 * the id was invalid. 5181 */ 5182 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5183 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5184 return -EINVAL; 5185 5186 if (asoc) { 5187 /* Fetch association values. */ 5188 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5189 params.sack_delay = jiffies_to_msecs( 5190 asoc->sackdelay); 5191 params.sack_freq = asoc->sackfreq; 5192 5193 } else { 5194 params.sack_delay = 0; 5195 params.sack_freq = 1; 5196 } 5197 } else { 5198 /* Fetch socket values. */ 5199 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5200 params.sack_delay = sp->sackdelay; 5201 params.sack_freq = sp->sackfreq; 5202 } else { 5203 params.sack_delay = 0; 5204 params.sack_freq = 1; 5205 } 5206 } 5207 5208 if (copy_to_user(optval, ¶ms, len)) 5209 return -EFAULT; 5210 5211 if (put_user(len, optlen)) 5212 return -EFAULT; 5213 5214 return 0; 5215 } 5216 5217 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5218 * 5219 * Applications can specify protocol parameters for the default association 5220 * initialization. The option name argument to setsockopt() and getsockopt() 5221 * is SCTP_INITMSG. 5222 * 5223 * Setting initialization parameters is effective only on an unconnected 5224 * socket (for UDP-style sockets only future associations are effected 5225 * by the change). With TCP-style sockets, this option is inherited by 5226 * sockets derived from a listener socket. 5227 */ 5228 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5229 { 5230 if (len < sizeof(struct sctp_initmsg)) 5231 return -EINVAL; 5232 len = sizeof(struct sctp_initmsg); 5233 if (put_user(len, optlen)) 5234 return -EFAULT; 5235 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5236 return -EFAULT; 5237 return 0; 5238 } 5239 5240 5241 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5242 char __user *optval, int __user *optlen) 5243 { 5244 struct sctp_association *asoc; 5245 int cnt = 0; 5246 struct sctp_getaddrs getaddrs; 5247 struct sctp_transport *from; 5248 void __user *to; 5249 union sctp_addr temp; 5250 struct sctp_sock *sp = sctp_sk(sk); 5251 int addrlen; 5252 size_t space_left; 5253 int bytes_copied; 5254 5255 if (len < sizeof(struct sctp_getaddrs)) 5256 return -EINVAL; 5257 5258 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5259 return -EFAULT; 5260 5261 /* For UDP-style sockets, id specifies the association to query. */ 5262 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5263 if (!asoc) 5264 return -EINVAL; 5265 5266 to = optval + offsetof(struct sctp_getaddrs, addrs); 5267 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5268 5269 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5270 transports) { 5271 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5272 addrlen = sctp_get_pf_specific(sk->sk_family) 5273 ->addr_to_user(sp, &temp); 5274 if (space_left < addrlen) 5275 return -ENOMEM; 5276 if (copy_to_user(to, &temp, addrlen)) 5277 return -EFAULT; 5278 to += addrlen; 5279 cnt++; 5280 space_left -= addrlen; 5281 } 5282 5283 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5284 return -EFAULT; 5285 bytes_copied = ((char __user *)to) - optval; 5286 if (put_user(bytes_copied, optlen)) 5287 return -EFAULT; 5288 5289 return 0; 5290 } 5291 5292 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5293 size_t space_left, int *bytes_copied) 5294 { 5295 struct sctp_sockaddr_entry *addr; 5296 union sctp_addr temp; 5297 int cnt = 0; 5298 int addrlen; 5299 struct net *net = sock_net(sk); 5300 5301 rcu_read_lock(); 5302 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5303 if (!addr->valid) 5304 continue; 5305 5306 if ((PF_INET == sk->sk_family) && 5307 (AF_INET6 == addr->a.sa.sa_family)) 5308 continue; 5309 if ((PF_INET6 == sk->sk_family) && 5310 inet_v6_ipv6only(sk) && 5311 (AF_INET == addr->a.sa.sa_family)) 5312 continue; 5313 memcpy(&temp, &addr->a, sizeof(temp)); 5314 if (!temp.v4.sin_port) 5315 temp.v4.sin_port = htons(port); 5316 5317 addrlen = sctp_get_pf_specific(sk->sk_family) 5318 ->addr_to_user(sctp_sk(sk), &temp); 5319 5320 if (space_left < addrlen) { 5321 cnt = -ENOMEM; 5322 break; 5323 } 5324 memcpy(to, &temp, addrlen); 5325 5326 to += addrlen; 5327 cnt++; 5328 space_left -= addrlen; 5329 *bytes_copied += addrlen; 5330 } 5331 rcu_read_unlock(); 5332 5333 return cnt; 5334 } 5335 5336 5337 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5338 char __user *optval, int __user *optlen) 5339 { 5340 struct sctp_bind_addr *bp; 5341 struct sctp_association *asoc; 5342 int cnt = 0; 5343 struct sctp_getaddrs getaddrs; 5344 struct sctp_sockaddr_entry *addr; 5345 void __user *to; 5346 union sctp_addr temp; 5347 struct sctp_sock *sp = sctp_sk(sk); 5348 int addrlen; 5349 int err = 0; 5350 size_t space_left; 5351 int bytes_copied = 0; 5352 void *addrs; 5353 void *buf; 5354 5355 if (len < sizeof(struct sctp_getaddrs)) 5356 return -EINVAL; 5357 5358 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5359 return -EFAULT; 5360 5361 /* 5362 * For UDP-style sockets, id specifies the association to query. 5363 * If the id field is set to the value '0' then the locally bound 5364 * addresses are returned without regard to any particular 5365 * association. 5366 */ 5367 if (0 == getaddrs.assoc_id) { 5368 bp = &sctp_sk(sk)->ep->base.bind_addr; 5369 } else { 5370 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5371 if (!asoc) 5372 return -EINVAL; 5373 bp = &asoc->base.bind_addr; 5374 } 5375 5376 to = optval + offsetof(struct sctp_getaddrs, addrs); 5377 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5378 5379 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5380 if (!addrs) 5381 return -ENOMEM; 5382 5383 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5384 * addresses from the global local address list. 5385 */ 5386 if (sctp_list_single_entry(&bp->address_list)) { 5387 addr = list_entry(bp->address_list.next, 5388 struct sctp_sockaddr_entry, list); 5389 if (sctp_is_any(sk, &addr->a)) { 5390 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5391 space_left, &bytes_copied); 5392 if (cnt < 0) { 5393 err = cnt; 5394 goto out; 5395 } 5396 goto copy_getaddrs; 5397 } 5398 } 5399 5400 buf = addrs; 5401 /* Protection on the bound address list is not needed since 5402 * in the socket option context we hold a socket lock and 5403 * thus the bound address list can't change. 5404 */ 5405 list_for_each_entry(addr, &bp->address_list, list) { 5406 memcpy(&temp, &addr->a, sizeof(temp)); 5407 addrlen = sctp_get_pf_specific(sk->sk_family) 5408 ->addr_to_user(sp, &temp); 5409 if (space_left < addrlen) { 5410 err = -ENOMEM; /*fixme: right error?*/ 5411 goto out; 5412 } 5413 memcpy(buf, &temp, addrlen); 5414 buf += addrlen; 5415 bytes_copied += addrlen; 5416 cnt++; 5417 space_left -= addrlen; 5418 } 5419 5420 copy_getaddrs: 5421 if (copy_to_user(to, addrs, bytes_copied)) { 5422 err = -EFAULT; 5423 goto out; 5424 } 5425 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5426 err = -EFAULT; 5427 goto out; 5428 } 5429 if (put_user(bytes_copied, optlen)) 5430 err = -EFAULT; 5431 out: 5432 kfree(addrs); 5433 return err; 5434 } 5435 5436 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5437 * 5438 * Requests that the local SCTP stack use the enclosed peer address as 5439 * the association primary. The enclosed address must be one of the 5440 * association peer's addresses. 5441 */ 5442 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5443 char __user *optval, int __user *optlen) 5444 { 5445 struct sctp_prim prim; 5446 struct sctp_association *asoc; 5447 struct sctp_sock *sp = sctp_sk(sk); 5448 5449 if (len < sizeof(struct sctp_prim)) 5450 return -EINVAL; 5451 5452 len = sizeof(struct sctp_prim); 5453 5454 if (copy_from_user(&prim, optval, len)) 5455 return -EFAULT; 5456 5457 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5458 if (!asoc) 5459 return -EINVAL; 5460 5461 if (!asoc->peer.primary_path) 5462 return -ENOTCONN; 5463 5464 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5465 asoc->peer.primary_path->af_specific->sockaddr_len); 5466 5467 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5468 (union sctp_addr *)&prim.ssp_addr); 5469 5470 if (put_user(len, optlen)) 5471 return -EFAULT; 5472 if (copy_to_user(optval, &prim, len)) 5473 return -EFAULT; 5474 5475 return 0; 5476 } 5477 5478 /* 5479 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5480 * 5481 * Requests that the local endpoint set the specified Adaptation Layer 5482 * Indication parameter for all future INIT and INIT-ACK exchanges. 5483 */ 5484 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5485 char __user *optval, int __user *optlen) 5486 { 5487 struct sctp_setadaptation adaptation; 5488 5489 if (len < sizeof(struct sctp_setadaptation)) 5490 return -EINVAL; 5491 5492 len = sizeof(struct sctp_setadaptation); 5493 5494 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5495 5496 if (put_user(len, optlen)) 5497 return -EFAULT; 5498 if (copy_to_user(optval, &adaptation, len)) 5499 return -EFAULT; 5500 5501 return 0; 5502 } 5503 5504 /* 5505 * 5506 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5507 * 5508 * Applications that wish to use the sendto() system call may wish to 5509 * specify a default set of parameters that would normally be supplied 5510 * through the inclusion of ancillary data. This socket option allows 5511 * such an application to set the default sctp_sndrcvinfo structure. 5512 5513 5514 * The application that wishes to use this socket option simply passes 5515 * in to this call the sctp_sndrcvinfo structure defined in Section 5516 * 5.2.2) The input parameters accepted by this call include 5517 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5518 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5519 * to this call if the caller is using the UDP model. 5520 * 5521 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5522 */ 5523 static int sctp_getsockopt_default_send_param(struct sock *sk, 5524 int len, char __user *optval, 5525 int __user *optlen) 5526 { 5527 struct sctp_sock *sp = sctp_sk(sk); 5528 struct sctp_association *asoc; 5529 struct sctp_sndrcvinfo info; 5530 5531 if (len < sizeof(info)) 5532 return -EINVAL; 5533 5534 len = sizeof(info); 5535 5536 if (copy_from_user(&info, optval, len)) 5537 return -EFAULT; 5538 5539 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5540 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5541 return -EINVAL; 5542 if (asoc) { 5543 info.sinfo_stream = asoc->default_stream; 5544 info.sinfo_flags = asoc->default_flags; 5545 info.sinfo_ppid = asoc->default_ppid; 5546 info.sinfo_context = asoc->default_context; 5547 info.sinfo_timetolive = asoc->default_timetolive; 5548 } else { 5549 info.sinfo_stream = sp->default_stream; 5550 info.sinfo_flags = sp->default_flags; 5551 info.sinfo_ppid = sp->default_ppid; 5552 info.sinfo_context = sp->default_context; 5553 info.sinfo_timetolive = sp->default_timetolive; 5554 } 5555 5556 if (put_user(len, optlen)) 5557 return -EFAULT; 5558 if (copy_to_user(optval, &info, len)) 5559 return -EFAULT; 5560 5561 return 0; 5562 } 5563 5564 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5565 * (SCTP_DEFAULT_SNDINFO) 5566 */ 5567 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5568 char __user *optval, 5569 int __user *optlen) 5570 { 5571 struct sctp_sock *sp = sctp_sk(sk); 5572 struct sctp_association *asoc; 5573 struct sctp_sndinfo info; 5574 5575 if (len < sizeof(info)) 5576 return -EINVAL; 5577 5578 len = sizeof(info); 5579 5580 if (copy_from_user(&info, optval, len)) 5581 return -EFAULT; 5582 5583 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5584 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5585 return -EINVAL; 5586 if (asoc) { 5587 info.snd_sid = asoc->default_stream; 5588 info.snd_flags = asoc->default_flags; 5589 info.snd_ppid = asoc->default_ppid; 5590 info.snd_context = asoc->default_context; 5591 } else { 5592 info.snd_sid = sp->default_stream; 5593 info.snd_flags = sp->default_flags; 5594 info.snd_ppid = sp->default_ppid; 5595 info.snd_context = sp->default_context; 5596 } 5597 5598 if (put_user(len, optlen)) 5599 return -EFAULT; 5600 if (copy_to_user(optval, &info, len)) 5601 return -EFAULT; 5602 5603 return 0; 5604 } 5605 5606 /* 5607 * 5608 * 7.1.5 SCTP_NODELAY 5609 * 5610 * Turn on/off any Nagle-like algorithm. This means that packets are 5611 * generally sent as soon as possible and no unnecessary delays are 5612 * introduced, at the cost of more packets in the network. Expects an 5613 * integer boolean flag. 5614 */ 5615 5616 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5617 char __user *optval, int __user *optlen) 5618 { 5619 int val; 5620 5621 if (len < sizeof(int)) 5622 return -EINVAL; 5623 5624 len = sizeof(int); 5625 val = (sctp_sk(sk)->nodelay == 1); 5626 if (put_user(len, optlen)) 5627 return -EFAULT; 5628 if (copy_to_user(optval, &val, len)) 5629 return -EFAULT; 5630 return 0; 5631 } 5632 5633 /* 5634 * 5635 * 7.1.1 SCTP_RTOINFO 5636 * 5637 * The protocol parameters used to initialize and bound retransmission 5638 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5639 * and modify these parameters. 5640 * All parameters are time values, in milliseconds. A value of 0, when 5641 * modifying the parameters, indicates that the current value should not 5642 * be changed. 5643 * 5644 */ 5645 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5646 char __user *optval, 5647 int __user *optlen) { 5648 struct sctp_rtoinfo rtoinfo; 5649 struct sctp_association *asoc; 5650 5651 if (len < sizeof (struct sctp_rtoinfo)) 5652 return -EINVAL; 5653 5654 len = sizeof(struct sctp_rtoinfo); 5655 5656 if (copy_from_user(&rtoinfo, optval, len)) 5657 return -EFAULT; 5658 5659 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5660 5661 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5662 return -EINVAL; 5663 5664 /* Values corresponding to the specific association. */ 5665 if (asoc) { 5666 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5667 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5668 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5669 } else { 5670 /* Values corresponding to the endpoint. */ 5671 struct sctp_sock *sp = sctp_sk(sk); 5672 5673 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5674 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5675 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5676 } 5677 5678 if (put_user(len, optlen)) 5679 return -EFAULT; 5680 5681 if (copy_to_user(optval, &rtoinfo, len)) 5682 return -EFAULT; 5683 5684 return 0; 5685 } 5686 5687 /* 5688 * 5689 * 7.1.2 SCTP_ASSOCINFO 5690 * 5691 * This option is used to tune the maximum retransmission attempts 5692 * of the association. 5693 * Returns an error if the new association retransmission value is 5694 * greater than the sum of the retransmission value of the peer. 5695 * See [SCTP] for more information. 5696 * 5697 */ 5698 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5699 char __user *optval, 5700 int __user *optlen) 5701 { 5702 5703 struct sctp_assocparams assocparams; 5704 struct sctp_association *asoc; 5705 struct list_head *pos; 5706 int cnt = 0; 5707 5708 if (len < sizeof (struct sctp_assocparams)) 5709 return -EINVAL; 5710 5711 len = sizeof(struct sctp_assocparams); 5712 5713 if (copy_from_user(&assocparams, optval, len)) 5714 return -EFAULT; 5715 5716 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5717 5718 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5719 return -EINVAL; 5720 5721 /* Values correspoinding to the specific association */ 5722 if (asoc) { 5723 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5724 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5725 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5726 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5727 5728 list_for_each(pos, &asoc->peer.transport_addr_list) { 5729 cnt++; 5730 } 5731 5732 assocparams.sasoc_number_peer_destinations = cnt; 5733 } else { 5734 /* Values corresponding to the endpoint */ 5735 struct sctp_sock *sp = sctp_sk(sk); 5736 5737 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5738 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5739 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5740 assocparams.sasoc_cookie_life = 5741 sp->assocparams.sasoc_cookie_life; 5742 assocparams.sasoc_number_peer_destinations = 5743 sp->assocparams. 5744 sasoc_number_peer_destinations; 5745 } 5746 5747 if (put_user(len, optlen)) 5748 return -EFAULT; 5749 5750 if (copy_to_user(optval, &assocparams, len)) 5751 return -EFAULT; 5752 5753 return 0; 5754 } 5755 5756 /* 5757 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5758 * 5759 * This socket option is a boolean flag which turns on or off mapped V4 5760 * addresses. If this option is turned on and the socket is type 5761 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5762 * If this option is turned off, then no mapping will be done of V4 5763 * addresses and a user will receive both PF_INET6 and PF_INET type 5764 * addresses on the socket. 5765 */ 5766 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5767 char __user *optval, int __user *optlen) 5768 { 5769 int val; 5770 struct sctp_sock *sp = sctp_sk(sk); 5771 5772 if (len < sizeof(int)) 5773 return -EINVAL; 5774 5775 len = sizeof(int); 5776 val = sp->v4mapped; 5777 if (put_user(len, optlen)) 5778 return -EFAULT; 5779 if (copy_to_user(optval, &val, len)) 5780 return -EFAULT; 5781 5782 return 0; 5783 } 5784 5785 /* 5786 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5787 * (chapter and verse is quoted at sctp_setsockopt_context()) 5788 */ 5789 static int sctp_getsockopt_context(struct sock *sk, int len, 5790 char __user *optval, int __user *optlen) 5791 { 5792 struct sctp_assoc_value params; 5793 struct sctp_sock *sp; 5794 struct sctp_association *asoc; 5795 5796 if (len < sizeof(struct sctp_assoc_value)) 5797 return -EINVAL; 5798 5799 len = sizeof(struct sctp_assoc_value); 5800 5801 if (copy_from_user(¶ms, optval, len)) 5802 return -EFAULT; 5803 5804 sp = sctp_sk(sk); 5805 5806 if (params.assoc_id != 0) { 5807 asoc = sctp_id2assoc(sk, params.assoc_id); 5808 if (!asoc) 5809 return -EINVAL; 5810 params.assoc_value = asoc->default_rcv_context; 5811 } else { 5812 params.assoc_value = sp->default_rcv_context; 5813 } 5814 5815 if (put_user(len, optlen)) 5816 return -EFAULT; 5817 if (copy_to_user(optval, ¶ms, len)) 5818 return -EFAULT; 5819 5820 return 0; 5821 } 5822 5823 /* 5824 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5825 * This option will get or set the maximum size to put in any outgoing 5826 * SCTP DATA chunk. If a message is larger than this size it will be 5827 * fragmented by SCTP into the specified size. Note that the underlying 5828 * SCTP implementation may fragment into smaller sized chunks when the 5829 * PMTU of the underlying association is smaller than the value set by 5830 * the user. The default value for this option is '0' which indicates 5831 * the user is NOT limiting fragmentation and only the PMTU will effect 5832 * SCTP's choice of DATA chunk size. Note also that values set larger 5833 * than the maximum size of an IP datagram will effectively let SCTP 5834 * control fragmentation (i.e. the same as setting this option to 0). 5835 * 5836 * The following structure is used to access and modify this parameter: 5837 * 5838 * struct sctp_assoc_value { 5839 * sctp_assoc_t assoc_id; 5840 * uint32_t assoc_value; 5841 * }; 5842 * 5843 * assoc_id: This parameter is ignored for one-to-one style sockets. 5844 * For one-to-many style sockets this parameter indicates which 5845 * association the user is performing an action upon. Note that if 5846 * this field's value is zero then the endpoints default value is 5847 * changed (effecting future associations only). 5848 * assoc_value: This parameter specifies the maximum size in bytes. 5849 */ 5850 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5851 char __user *optval, int __user *optlen) 5852 { 5853 struct sctp_assoc_value params; 5854 struct sctp_association *asoc; 5855 5856 if (len == sizeof(int)) { 5857 pr_warn_ratelimited(DEPRECATED 5858 "%s (pid %d) " 5859 "Use of int in maxseg socket option.\n" 5860 "Use struct sctp_assoc_value instead\n", 5861 current->comm, task_pid_nr(current)); 5862 params.assoc_id = 0; 5863 } else if (len >= sizeof(struct sctp_assoc_value)) { 5864 len = sizeof(struct sctp_assoc_value); 5865 if (copy_from_user(¶ms, optval, sizeof(params))) 5866 return -EFAULT; 5867 } else 5868 return -EINVAL; 5869 5870 asoc = sctp_id2assoc(sk, params.assoc_id); 5871 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5872 return -EINVAL; 5873 5874 if (asoc) 5875 params.assoc_value = asoc->frag_point; 5876 else 5877 params.assoc_value = sctp_sk(sk)->user_frag; 5878 5879 if (put_user(len, optlen)) 5880 return -EFAULT; 5881 if (len == sizeof(int)) { 5882 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5883 return -EFAULT; 5884 } else { 5885 if (copy_to_user(optval, ¶ms, len)) 5886 return -EFAULT; 5887 } 5888 5889 return 0; 5890 } 5891 5892 /* 5893 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5894 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5895 */ 5896 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5897 char __user *optval, int __user *optlen) 5898 { 5899 int val; 5900 5901 if (len < sizeof(int)) 5902 return -EINVAL; 5903 5904 len = sizeof(int); 5905 5906 val = sctp_sk(sk)->frag_interleave; 5907 if (put_user(len, optlen)) 5908 return -EFAULT; 5909 if (copy_to_user(optval, &val, len)) 5910 return -EFAULT; 5911 5912 return 0; 5913 } 5914 5915 /* 5916 * 7.1.25. Set or Get the sctp partial delivery point 5917 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5918 */ 5919 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5920 char __user *optval, 5921 int __user *optlen) 5922 { 5923 u32 val; 5924 5925 if (len < sizeof(u32)) 5926 return -EINVAL; 5927 5928 len = sizeof(u32); 5929 5930 val = sctp_sk(sk)->pd_point; 5931 if (put_user(len, optlen)) 5932 return -EFAULT; 5933 if (copy_to_user(optval, &val, len)) 5934 return -EFAULT; 5935 5936 return 0; 5937 } 5938 5939 /* 5940 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5941 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5942 */ 5943 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5944 char __user *optval, 5945 int __user *optlen) 5946 { 5947 struct sctp_assoc_value params; 5948 struct sctp_sock *sp; 5949 struct sctp_association *asoc; 5950 5951 if (len == sizeof(int)) { 5952 pr_warn_ratelimited(DEPRECATED 5953 "%s (pid %d) " 5954 "Use of int in max_burst socket option.\n" 5955 "Use struct sctp_assoc_value instead\n", 5956 current->comm, task_pid_nr(current)); 5957 params.assoc_id = 0; 5958 } else if (len >= sizeof(struct sctp_assoc_value)) { 5959 len = sizeof(struct sctp_assoc_value); 5960 if (copy_from_user(¶ms, optval, len)) 5961 return -EFAULT; 5962 } else 5963 return -EINVAL; 5964 5965 sp = sctp_sk(sk); 5966 5967 if (params.assoc_id != 0) { 5968 asoc = sctp_id2assoc(sk, params.assoc_id); 5969 if (!asoc) 5970 return -EINVAL; 5971 params.assoc_value = asoc->max_burst; 5972 } else 5973 params.assoc_value = sp->max_burst; 5974 5975 if (len == sizeof(int)) { 5976 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5977 return -EFAULT; 5978 } else { 5979 if (copy_to_user(optval, ¶ms, len)) 5980 return -EFAULT; 5981 } 5982 5983 return 0; 5984 5985 } 5986 5987 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5988 char __user *optval, int __user *optlen) 5989 { 5990 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5991 struct sctp_hmacalgo __user *p = (void __user *)optval; 5992 struct sctp_hmac_algo_param *hmacs; 5993 __u16 data_len = 0; 5994 u32 num_idents; 5995 int i; 5996 5997 if (!ep->auth_enable) 5998 return -EACCES; 5999 6000 hmacs = ep->auth_hmacs_list; 6001 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 6002 6003 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6004 return -EINVAL; 6005 6006 len = sizeof(struct sctp_hmacalgo) + data_len; 6007 num_idents = data_len / sizeof(u16); 6008 6009 if (put_user(len, optlen)) 6010 return -EFAULT; 6011 if (put_user(num_idents, &p->shmac_num_idents)) 6012 return -EFAULT; 6013 for (i = 0; i < num_idents; i++) { 6014 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6015 6016 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6017 return -EFAULT; 6018 } 6019 return 0; 6020 } 6021 6022 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6023 char __user *optval, int __user *optlen) 6024 { 6025 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6026 struct sctp_authkeyid val; 6027 struct sctp_association *asoc; 6028 6029 if (!ep->auth_enable) 6030 return -EACCES; 6031 6032 if (len < sizeof(struct sctp_authkeyid)) 6033 return -EINVAL; 6034 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 6035 return -EFAULT; 6036 6037 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6038 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6039 return -EINVAL; 6040 6041 if (asoc) 6042 val.scact_keynumber = asoc->active_key_id; 6043 else 6044 val.scact_keynumber = ep->active_key_id; 6045 6046 len = sizeof(struct sctp_authkeyid); 6047 if (put_user(len, optlen)) 6048 return -EFAULT; 6049 if (copy_to_user(optval, &val, len)) 6050 return -EFAULT; 6051 6052 return 0; 6053 } 6054 6055 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6056 char __user *optval, int __user *optlen) 6057 { 6058 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6059 struct sctp_authchunks __user *p = (void __user *)optval; 6060 struct sctp_authchunks val; 6061 struct sctp_association *asoc; 6062 struct sctp_chunks_param *ch; 6063 u32 num_chunks = 0; 6064 char __user *to; 6065 6066 if (!ep->auth_enable) 6067 return -EACCES; 6068 6069 if (len < sizeof(struct sctp_authchunks)) 6070 return -EINVAL; 6071 6072 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6073 return -EFAULT; 6074 6075 to = p->gauth_chunks; 6076 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6077 if (!asoc) 6078 return -EINVAL; 6079 6080 ch = asoc->peer.peer_chunks; 6081 if (!ch) 6082 goto num; 6083 6084 /* See if the user provided enough room for all the data */ 6085 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 6086 if (len < num_chunks) 6087 return -EINVAL; 6088 6089 if (copy_to_user(to, ch->chunks, num_chunks)) 6090 return -EFAULT; 6091 num: 6092 len = sizeof(struct sctp_authchunks) + num_chunks; 6093 if (put_user(len, optlen)) 6094 return -EFAULT; 6095 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6096 return -EFAULT; 6097 return 0; 6098 } 6099 6100 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6101 char __user *optval, int __user *optlen) 6102 { 6103 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6104 struct sctp_authchunks __user *p = (void __user *)optval; 6105 struct sctp_authchunks val; 6106 struct sctp_association *asoc; 6107 struct sctp_chunks_param *ch; 6108 u32 num_chunks = 0; 6109 char __user *to; 6110 6111 if (!ep->auth_enable) 6112 return -EACCES; 6113 6114 if (len < sizeof(struct sctp_authchunks)) 6115 return -EINVAL; 6116 6117 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6118 return -EFAULT; 6119 6120 to = p->gauth_chunks; 6121 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6122 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6123 return -EINVAL; 6124 6125 if (asoc) 6126 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6127 else 6128 ch = ep->auth_chunk_list; 6129 6130 if (!ch) 6131 goto num; 6132 6133 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 6134 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6135 return -EINVAL; 6136 6137 if (copy_to_user(to, ch->chunks, num_chunks)) 6138 return -EFAULT; 6139 num: 6140 len = sizeof(struct sctp_authchunks) + num_chunks; 6141 if (put_user(len, optlen)) 6142 return -EFAULT; 6143 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6144 return -EFAULT; 6145 6146 return 0; 6147 } 6148 6149 /* 6150 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6151 * This option gets the current number of associations that are attached 6152 * to a one-to-many style socket. The option value is an uint32_t. 6153 */ 6154 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6155 char __user *optval, int __user *optlen) 6156 { 6157 struct sctp_sock *sp = sctp_sk(sk); 6158 struct sctp_association *asoc; 6159 u32 val = 0; 6160 6161 if (sctp_style(sk, TCP)) 6162 return -EOPNOTSUPP; 6163 6164 if (len < sizeof(u32)) 6165 return -EINVAL; 6166 6167 len = sizeof(u32); 6168 6169 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6170 val++; 6171 } 6172 6173 if (put_user(len, optlen)) 6174 return -EFAULT; 6175 if (copy_to_user(optval, &val, len)) 6176 return -EFAULT; 6177 6178 return 0; 6179 } 6180 6181 /* 6182 * 8.1.23 SCTP_AUTO_ASCONF 6183 * See the corresponding setsockopt entry as description 6184 */ 6185 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6186 char __user *optval, int __user *optlen) 6187 { 6188 int val = 0; 6189 6190 if (len < sizeof(int)) 6191 return -EINVAL; 6192 6193 len = sizeof(int); 6194 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6195 val = 1; 6196 if (put_user(len, optlen)) 6197 return -EFAULT; 6198 if (copy_to_user(optval, &val, len)) 6199 return -EFAULT; 6200 return 0; 6201 } 6202 6203 /* 6204 * 8.2.6. Get the Current Identifiers of Associations 6205 * (SCTP_GET_ASSOC_ID_LIST) 6206 * 6207 * This option gets the current list of SCTP association identifiers of 6208 * the SCTP associations handled by a one-to-many style socket. 6209 */ 6210 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6211 char __user *optval, int __user *optlen) 6212 { 6213 struct sctp_sock *sp = sctp_sk(sk); 6214 struct sctp_association *asoc; 6215 struct sctp_assoc_ids *ids; 6216 u32 num = 0; 6217 6218 if (sctp_style(sk, TCP)) 6219 return -EOPNOTSUPP; 6220 6221 if (len < sizeof(struct sctp_assoc_ids)) 6222 return -EINVAL; 6223 6224 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6225 num++; 6226 } 6227 6228 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6229 return -EINVAL; 6230 6231 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6232 6233 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6234 if (unlikely(!ids)) 6235 return -ENOMEM; 6236 6237 ids->gaids_number_of_ids = num; 6238 num = 0; 6239 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6240 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6241 } 6242 6243 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6244 kfree(ids); 6245 return -EFAULT; 6246 } 6247 6248 kfree(ids); 6249 return 0; 6250 } 6251 6252 /* 6253 * SCTP_PEER_ADDR_THLDS 6254 * 6255 * This option allows us to fetch the partially failed threshold for one or all 6256 * transports in an association. See Section 6.1 of: 6257 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6258 */ 6259 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6260 char __user *optval, 6261 int len, 6262 int __user *optlen) 6263 { 6264 struct sctp_paddrthlds val; 6265 struct sctp_transport *trans; 6266 struct sctp_association *asoc; 6267 6268 if (len < sizeof(struct sctp_paddrthlds)) 6269 return -EINVAL; 6270 len = sizeof(struct sctp_paddrthlds); 6271 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6272 return -EFAULT; 6273 6274 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6275 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6276 if (!asoc) 6277 return -ENOENT; 6278 6279 val.spt_pathpfthld = asoc->pf_retrans; 6280 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6281 } else { 6282 trans = sctp_addr_id2transport(sk, &val.spt_address, 6283 val.spt_assoc_id); 6284 if (!trans) 6285 return -ENOENT; 6286 6287 val.spt_pathmaxrxt = trans->pathmaxrxt; 6288 val.spt_pathpfthld = trans->pf_retrans; 6289 } 6290 6291 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6292 return -EFAULT; 6293 6294 return 0; 6295 } 6296 6297 /* 6298 * SCTP_GET_ASSOC_STATS 6299 * 6300 * This option retrieves local per endpoint statistics. It is modeled 6301 * after OpenSolaris' implementation 6302 */ 6303 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6304 char __user *optval, 6305 int __user *optlen) 6306 { 6307 struct sctp_assoc_stats sas; 6308 struct sctp_association *asoc = NULL; 6309 6310 /* User must provide at least the assoc id */ 6311 if (len < sizeof(sctp_assoc_t)) 6312 return -EINVAL; 6313 6314 /* Allow the struct to grow and fill in as much as possible */ 6315 len = min_t(size_t, len, sizeof(sas)); 6316 6317 if (copy_from_user(&sas, optval, len)) 6318 return -EFAULT; 6319 6320 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6321 if (!asoc) 6322 return -EINVAL; 6323 6324 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6325 sas.sas_gapcnt = asoc->stats.gapcnt; 6326 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6327 sas.sas_osacks = asoc->stats.osacks; 6328 sas.sas_isacks = asoc->stats.isacks; 6329 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6330 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6331 sas.sas_oodchunks = asoc->stats.oodchunks; 6332 sas.sas_iodchunks = asoc->stats.iodchunks; 6333 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6334 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6335 sas.sas_idupchunks = asoc->stats.idupchunks; 6336 sas.sas_opackets = asoc->stats.opackets; 6337 sas.sas_ipackets = asoc->stats.ipackets; 6338 6339 /* New high max rto observed, will return 0 if not a single 6340 * RTO update took place. obs_rto_ipaddr will be bogus 6341 * in such a case 6342 */ 6343 sas.sas_maxrto = asoc->stats.max_obs_rto; 6344 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6345 sizeof(struct sockaddr_storage)); 6346 6347 /* Mark beginning of a new observation period */ 6348 asoc->stats.max_obs_rto = asoc->rto_min; 6349 6350 if (put_user(len, optlen)) 6351 return -EFAULT; 6352 6353 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6354 6355 if (copy_to_user(optval, &sas, len)) 6356 return -EFAULT; 6357 6358 return 0; 6359 } 6360 6361 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6362 char __user *optval, 6363 int __user *optlen) 6364 { 6365 int val = 0; 6366 6367 if (len < sizeof(int)) 6368 return -EINVAL; 6369 6370 len = sizeof(int); 6371 if (sctp_sk(sk)->recvrcvinfo) 6372 val = 1; 6373 if (put_user(len, optlen)) 6374 return -EFAULT; 6375 if (copy_to_user(optval, &val, len)) 6376 return -EFAULT; 6377 6378 return 0; 6379 } 6380 6381 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6382 char __user *optval, 6383 int __user *optlen) 6384 { 6385 int val = 0; 6386 6387 if (len < sizeof(int)) 6388 return -EINVAL; 6389 6390 len = sizeof(int); 6391 if (sctp_sk(sk)->recvnxtinfo) 6392 val = 1; 6393 if (put_user(len, optlen)) 6394 return -EFAULT; 6395 if (copy_to_user(optval, &val, len)) 6396 return -EFAULT; 6397 6398 return 0; 6399 } 6400 6401 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6402 char __user *optval, 6403 int __user *optlen) 6404 { 6405 struct sctp_assoc_value params; 6406 struct sctp_association *asoc; 6407 int retval = -EFAULT; 6408 6409 if (len < sizeof(params)) { 6410 retval = -EINVAL; 6411 goto out; 6412 } 6413 6414 len = sizeof(params); 6415 if (copy_from_user(¶ms, optval, len)) 6416 goto out; 6417 6418 asoc = sctp_id2assoc(sk, params.assoc_id); 6419 if (asoc) { 6420 params.assoc_value = asoc->prsctp_enable; 6421 } else if (!params.assoc_id) { 6422 struct sctp_sock *sp = sctp_sk(sk); 6423 6424 params.assoc_value = sp->ep->prsctp_enable; 6425 } else { 6426 retval = -EINVAL; 6427 goto out; 6428 } 6429 6430 if (put_user(len, optlen)) 6431 goto out; 6432 6433 if (copy_to_user(optval, ¶ms, len)) 6434 goto out; 6435 6436 retval = 0; 6437 6438 out: 6439 return retval; 6440 } 6441 6442 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6443 char __user *optval, 6444 int __user *optlen) 6445 { 6446 struct sctp_default_prinfo info; 6447 struct sctp_association *asoc; 6448 int retval = -EFAULT; 6449 6450 if (len < sizeof(info)) { 6451 retval = -EINVAL; 6452 goto out; 6453 } 6454 6455 len = sizeof(info); 6456 if (copy_from_user(&info, optval, len)) 6457 goto out; 6458 6459 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6460 if (asoc) { 6461 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6462 info.pr_value = asoc->default_timetolive; 6463 } else if (!info.pr_assoc_id) { 6464 struct sctp_sock *sp = sctp_sk(sk); 6465 6466 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6467 info.pr_value = sp->default_timetolive; 6468 } else { 6469 retval = -EINVAL; 6470 goto out; 6471 } 6472 6473 if (put_user(len, optlen)) 6474 goto out; 6475 6476 if (copy_to_user(optval, &info, len)) 6477 goto out; 6478 6479 retval = 0; 6480 6481 out: 6482 return retval; 6483 } 6484 6485 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6486 char __user *optval, 6487 int __user *optlen) 6488 { 6489 struct sctp_prstatus params; 6490 struct sctp_association *asoc; 6491 int policy; 6492 int retval = -EINVAL; 6493 6494 if (len < sizeof(params)) 6495 goto out; 6496 6497 len = sizeof(params); 6498 if (copy_from_user(¶ms, optval, len)) { 6499 retval = -EFAULT; 6500 goto out; 6501 } 6502 6503 policy = params.sprstat_policy; 6504 if (policy & ~SCTP_PR_SCTP_MASK) 6505 goto out; 6506 6507 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6508 if (!asoc) 6509 goto out; 6510 6511 if (policy == SCTP_PR_SCTP_NONE) { 6512 params.sprstat_abandoned_unsent = 0; 6513 params.sprstat_abandoned_sent = 0; 6514 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6515 params.sprstat_abandoned_unsent += 6516 asoc->abandoned_unsent[policy]; 6517 params.sprstat_abandoned_sent += 6518 asoc->abandoned_sent[policy]; 6519 } 6520 } else { 6521 params.sprstat_abandoned_unsent = 6522 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6523 params.sprstat_abandoned_sent = 6524 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6525 } 6526 6527 if (put_user(len, optlen)) { 6528 retval = -EFAULT; 6529 goto out; 6530 } 6531 6532 if (copy_to_user(optval, ¶ms, len)) { 6533 retval = -EFAULT; 6534 goto out; 6535 } 6536 6537 retval = 0; 6538 6539 out: 6540 return retval; 6541 } 6542 6543 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6544 char __user *optval, 6545 int __user *optlen) 6546 { 6547 struct sctp_assoc_value params; 6548 struct sctp_association *asoc; 6549 int retval = -EFAULT; 6550 6551 if (len < sizeof(params)) { 6552 retval = -EINVAL; 6553 goto out; 6554 } 6555 6556 len = sizeof(params); 6557 if (copy_from_user(¶ms, optval, len)) 6558 goto out; 6559 6560 asoc = sctp_id2assoc(sk, params.assoc_id); 6561 if (asoc) { 6562 params.assoc_value = asoc->strreset_enable; 6563 } else if (!params.assoc_id) { 6564 struct sctp_sock *sp = sctp_sk(sk); 6565 6566 params.assoc_value = sp->ep->strreset_enable; 6567 } else { 6568 retval = -EINVAL; 6569 goto out; 6570 } 6571 6572 if (put_user(len, optlen)) 6573 goto out; 6574 6575 if (copy_to_user(optval, ¶ms, len)) 6576 goto out; 6577 6578 retval = 0; 6579 6580 out: 6581 return retval; 6582 } 6583 6584 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6585 char __user *optval, int __user *optlen) 6586 { 6587 int retval = 0; 6588 int len; 6589 6590 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6591 6592 /* I can hardly begin to describe how wrong this is. This is 6593 * so broken as to be worse than useless. The API draft 6594 * REALLY is NOT helpful here... I am not convinced that the 6595 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6596 * are at all well-founded. 6597 */ 6598 if (level != SOL_SCTP) { 6599 struct sctp_af *af = sctp_sk(sk)->pf->af; 6600 6601 retval = af->getsockopt(sk, level, optname, optval, optlen); 6602 return retval; 6603 } 6604 6605 if (get_user(len, optlen)) 6606 return -EFAULT; 6607 6608 if (len < 0) 6609 return -EINVAL; 6610 6611 lock_sock(sk); 6612 6613 switch (optname) { 6614 case SCTP_STATUS: 6615 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6616 break; 6617 case SCTP_DISABLE_FRAGMENTS: 6618 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6619 optlen); 6620 break; 6621 case SCTP_EVENTS: 6622 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6623 break; 6624 case SCTP_AUTOCLOSE: 6625 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6626 break; 6627 case SCTP_SOCKOPT_PEELOFF: 6628 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6629 break; 6630 case SCTP_PEER_ADDR_PARAMS: 6631 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6632 optlen); 6633 break; 6634 case SCTP_DELAYED_SACK: 6635 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6636 optlen); 6637 break; 6638 case SCTP_INITMSG: 6639 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6640 break; 6641 case SCTP_GET_PEER_ADDRS: 6642 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6643 optlen); 6644 break; 6645 case SCTP_GET_LOCAL_ADDRS: 6646 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6647 optlen); 6648 break; 6649 case SCTP_SOCKOPT_CONNECTX3: 6650 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6651 break; 6652 case SCTP_DEFAULT_SEND_PARAM: 6653 retval = sctp_getsockopt_default_send_param(sk, len, 6654 optval, optlen); 6655 break; 6656 case SCTP_DEFAULT_SNDINFO: 6657 retval = sctp_getsockopt_default_sndinfo(sk, len, 6658 optval, optlen); 6659 break; 6660 case SCTP_PRIMARY_ADDR: 6661 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6662 break; 6663 case SCTP_NODELAY: 6664 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6665 break; 6666 case SCTP_RTOINFO: 6667 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6668 break; 6669 case SCTP_ASSOCINFO: 6670 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6671 break; 6672 case SCTP_I_WANT_MAPPED_V4_ADDR: 6673 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6674 break; 6675 case SCTP_MAXSEG: 6676 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6677 break; 6678 case SCTP_GET_PEER_ADDR_INFO: 6679 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6680 optlen); 6681 break; 6682 case SCTP_ADAPTATION_LAYER: 6683 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6684 optlen); 6685 break; 6686 case SCTP_CONTEXT: 6687 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6688 break; 6689 case SCTP_FRAGMENT_INTERLEAVE: 6690 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6691 optlen); 6692 break; 6693 case SCTP_PARTIAL_DELIVERY_POINT: 6694 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6695 optlen); 6696 break; 6697 case SCTP_MAX_BURST: 6698 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6699 break; 6700 case SCTP_AUTH_KEY: 6701 case SCTP_AUTH_CHUNK: 6702 case SCTP_AUTH_DELETE_KEY: 6703 retval = -EOPNOTSUPP; 6704 break; 6705 case SCTP_HMAC_IDENT: 6706 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6707 break; 6708 case SCTP_AUTH_ACTIVE_KEY: 6709 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6710 break; 6711 case SCTP_PEER_AUTH_CHUNKS: 6712 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6713 optlen); 6714 break; 6715 case SCTP_LOCAL_AUTH_CHUNKS: 6716 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6717 optlen); 6718 break; 6719 case SCTP_GET_ASSOC_NUMBER: 6720 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6721 break; 6722 case SCTP_GET_ASSOC_ID_LIST: 6723 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6724 break; 6725 case SCTP_AUTO_ASCONF: 6726 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6727 break; 6728 case SCTP_PEER_ADDR_THLDS: 6729 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6730 break; 6731 case SCTP_GET_ASSOC_STATS: 6732 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6733 break; 6734 case SCTP_RECVRCVINFO: 6735 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6736 break; 6737 case SCTP_RECVNXTINFO: 6738 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6739 break; 6740 case SCTP_PR_SUPPORTED: 6741 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6742 break; 6743 case SCTP_DEFAULT_PRINFO: 6744 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6745 optlen); 6746 break; 6747 case SCTP_PR_ASSOC_STATUS: 6748 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6749 optlen); 6750 break; 6751 case SCTP_ENABLE_STREAM_RESET: 6752 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 6753 optlen); 6754 break; 6755 default: 6756 retval = -ENOPROTOOPT; 6757 break; 6758 } 6759 6760 release_sock(sk); 6761 return retval; 6762 } 6763 6764 static int sctp_hash(struct sock *sk) 6765 { 6766 /* STUB */ 6767 return 0; 6768 } 6769 6770 static void sctp_unhash(struct sock *sk) 6771 { 6772 /* STUB */ 6773 } 6774 6775 /* Check if port is acceptable. Possibly find first available port. 6776 * 6777 * The port hash table (contained in the 'global' SCTP protocol storage 6778 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6779 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6780 * list (the list number is the port number hashed out, so as you 6781 * would expect from a hash function, all the ports in a given list have 6782 * such a number that hashes out to the same list number; you were 6783 * expecting that, right?); so each list has a set of ports, with a 6784 * link to the socket (struct sock) that uses it, the port number and 6785 * a fastreuse flag (FIXME: NPI ipg). 6786 */ 6787 static struct sctp_bind_bucket *sctp_bucket_create( 6788 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6789 6790 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6791 { 6792 struct sctp_bind_hashbucket *head; /* hash list */ 6793 struct sctp_bind_bucket *pp; 6794 unsigned short snum; 6795 int ret; 6796 6797 snum = ntohs(addr->v4.sin_port); 6798 6799 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6800 6801 local_bh_disable(); 6802 6803 if (snum == 0) { 6804 /* Search for an available port. */ 6805 int low, high, remaining, index; 6806 unsigned int rover; 6807 struct net *net = sock_net(sk); 6808 6809 inet_get_local_port_range(net, &low, &high); 6810 remaining = (high - low) + 1; 6811 rover = prandom_u32() % remaining + low; 6812 6813 do { 6814 rover++; 6815 if ((rover < low) || (rover > high)) 6816 rover = low; 6817 if (inet_is_local_reserved_port(net, rover)) 6818 continue; 6819 index = sctp_phashfn(sock_net(sk), rover); 6820 head = &sctp_port_hashtable[index]; 6821 spin_lock(&head->lock); 6822 sctp_for_each_hentry(pp, &head->chain) 6823 if ((pp->port == rover) && 6824 net_eq(sock_net(sk), pp->net)) 6825 goto next; 6826 break; 6827 next: 6828 spin_unlock(&head->lock); 6829 } while (--remaining > 0); 6830 6831 /* Exhausted local port range during search? */ 6832 ret = 1; 6833 if (remaining <= 0) 6834 goto fail; 6835 6836 /* OK, here is the one we will use. HEAD (the port 6837 * hash table list entry) is non-NULL and we hold it's 6838 * mutex. 6839 */ 6840 snum = rover; 6841 } else { 6842 /* We are given an specific port number; we verify 6843 * that it is not being used. If it is used, we will 6844 * exahust the search in the hash list corresponding 6845 * to the port number (snum) - we detect that with the 6846 * port iterator, pp being NULL. 6847 */ 6848 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6849 spin_lock(&head->lock); 6850 sctp_for_each_hentry(pp, &head->chain) { 6851 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6852 goto pp_found; 6853 } 6854 } 6855 pp = NULL; 6856 goto pp_not_found; 6857 pp_found: 6858 if (!hlist_empty(&pp->owner)) { 6859 /* We had a port hash table hit - there is an 6860 * available port (pp != NULL) and it is being 6861 * used by other socket (pp->owner not empty); that other 6862 * socket is going to be sk2. 6863 */ 6864 int reuse = sk->sk_reuse; 6865 struct sock *sk2; 6866 6867 pr_debug("%s: found a possible match\n", __func__); 6868 6869 if (pp->fastreuse && sk->sk_reuse && 6870 sk->sk_state != SCTP_SS_LISTENING) 6871 goto success; 6872 6873 /* Run through the list of sockets bound to the port 6874 * (pp->port) [via the pointers bind_next and 6875 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6876 * we get the endpoint they describe and run through 6877 * the endpoint's list of IP (v4 or v6) addresses, 6878 * comparing each of the addresses with the address of 6879 * the socket sk. If we find a match, then that means 6880 * that this port/socket (sk) combination are already 6881 * in an endpoint. 6882 */ 6883 sk_for_each_bound(sk2, &pp->owner) { 6884 struct sctp_endpoint *ep2; 6885 ep2 = sctp_sk(sk2)->ep; 6886 6887 if (sk == sk2 || 6888 (reuse && sk2->sk_reuse && 6889 sk2->sk_state != SCTP_SS_LISTENING)) 6890 continue; 6891 6892 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6893 sctp_sk(sk2), sctp_sk(sk))) { 6894 ret = (long)sk2; 6895 goto fail_unlock; 6896 } 6897 } 6898 6899 pr_debug("%s: found a match\n", __func__); 6900 } 6901 pp_not_found: 6902 /* If there was a hash table miss, create a new port. */ 6903 ret = 1; 6904 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6905 goto fail_unlock; 6906 6907 /* In either case (hit or miss), make sure fastreuse is 1 only 6908 * if sk->sk_reuse is too (that is, if the caller requested 6909 * SO_REUSEADDR on this socket -sk-). 6910 */ 6911 if (hlist_empty(&pp->owner)) { 6912 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6913 pp->fastreuse = 1; 6914 else 6915 pp->fastreuse = 0; 6916 } else if (pp->fastreuse && 6917 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6918 pp->fastreuse = 0; 6919 6920 /* We are set, so fill up all the data in the hash table 6921 * entry, tie the socket list information with the rest of the 6922 * sockets FIXME: Blurry, NPI (ipg). 6923 */ 6924 success: 6925 if (!sctp_sk(sk)->bind_hash) { 6926 inet_sk(sk)->inet_num = snum; 6927 sk_add_bind_node(sk, &pp->owner); 6928 sctp_sk(sk)->bind_hash = pp; 6929 } 6930 ret = 0; 6931 6932 fail_unlock: 6933 spin_unlock(&head->lock); 6934 6935 fail: 6936 local_bh_enable(); 6937 return ret; 6938 } 6939 6940 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6941 * port is requested. 6942 */ 6943 static int sctp_get_port(struct sock *sk, unsigned short snum) 6944 { 6945 union sctp_addr addr; 6946 struct sctp_af *af = sctp_sk(sk)->pf->af; 6947 6948 /* Set up a dummy address struct from the sk. */ 6949 af->from_sk(&addr, sk); 6950 addr.v4.sin_port = htons(snum); 6951 6952 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6953 return !!sctp_get_port_local(sk, &addr); 6954 } 6955 6956 /* 6957 * Move a socket to LISTENING state. 6958 */ 6959 static int sctp_listen_start(struct sock *sk, int backlog) 6960 { 6961 struct sctp_sock *sp = sctp_sk(sk); 6962 struct sctp_endpoint *ep = sp->ep; 6963 struct crypto_shash *tfm = NULL; 6964 char alg[32]; 6965 6966 /* Allocate HMAC for generating cookie. */ 6967 if (!sp->hmac && sp->sctp_hmac_alg) { 6968 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6969 tfm = crypto_alloc_shash(alg, 0, 0); 6970 if (IS_ERR(tfm)) { 6971 net_info_ratelimited("failed to load transform for %s: %ld\n", 6972 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6973 return -ENOSYS; 6974 } 6975 sctp_sk(sk)->hmac = tfm; 6976 } 6977 6978 /* 6979 * If a bind() or sctp_bindx() is not called prior to a listen() 6980 * call that allows new associations to be accepted, the system 6981 * picks an ephemeral port and will choose an address set equivalent 6982 * to binding with a wildcard address. 6983 * 6984 * This is not currently spelled out in the SCTP sockets 6985 * extensions draft, but follows the practice as seen in TCP 6986 * sockets. 6987 * 6988 */ 6989 sk->sk_state = SCTP_SS_LISTENING; 6990 if (!ep->base.bind_addr.port) { 6991 if (sctp_autobind(sk)) 6992 return -EAGAIN; 6993 } else { 6994 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6995 sk->sk_state = SCTP_SS_CLOSED; 6996 return -EADDRINUSE; 6997 } 6998 } 6999 7000 sk->sk_max_ack_backlog = backlog; 7001 sctp_hash_endpoint(ep); 7002 return 0; 7003 } 7004 7005 /* 7006 * 4.1.3 / 5.1.3 listen() 7007 * 7008 * By default, new associations are not accepted for UDP style sockets. 7009 * An application uses listen() to mark a socket as being able to 7010 * accept new associations. 7011 * 7012 * On TCP style sockets, applications use listen() to ready the SCTP 7013 * endpoint for accepting inbound associations. 7014 * 7015 * On both types of endpoints a backlog of '0' disables listening. 7016 * 7017 * Move a socket to LISTENING state. 7018 */ 7019 int sctp_inet_listen(struct socket *sock, int backlog) 7020 { 7021 struct sock *sk = sock->sk; 7022 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7023 int err = -EINVAL; 7024 7025 if (unlikely(backlog < 0)) 7026 return err; 7027 7028 lock_sock(sk); 7029 7030 /* Peeled-off sockets are not allowed to listen(). */ 7031 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7032 goto out; 7033 7034 if (sock->state != SS_UNCONNECTED) 7035 goto out; 7036 7037 /* If backlog is zero, disable listening. */ 7038 if (!backlog) { 7039 if (sctp_sstate(sk, CLOSED)) 7040 goto out; 7041 7042 err = 0; 7043 sctp_unhash_endpoint(ep); 7044 sk->sk_state = SCTP_SS_CLOSED; 7045 if (sk->sk_reuse) 7046 sctp_sk(sk)->bind_hash->fastreuse = 1; 7047 goto out; 7048 } 7049 7050 /* If we are already listening, just update the backlog */ 7051 if (sctp_sstate(sk, LISTENING)) 7052 sk->sk_max_ack_backlog = backlog; 7053 else { 7054 err = sctp_listen_start(sk, backlog); 7055 if (err) 7056 goto out; 7057 } 7058 7059 err = 0; 7060 out: 7061 release_sock(sk); 7062 return err; 7063 } 7064 7065 /* 7066 * This function is done by modeling the current datagram_poll() and the 7067 * tcp_poll(). Note that, based on these implementations, we don't 7068 * lock the socket in this function, even though it seems that, 7069 * ideally, locking or some other mechanisms can be used to ensure 7070 * the integrity of the counters (sndbuf and wmem_alloc) used 7071 * in this place. We assume that we don't need locks either until proven 7072 * otherwise. 7073 * 7074 * Another thing to note is that we include the Async I/O support 7075 * here, again, by modeling the current TCP/UDP code. We don't have 7076 * a good way to test with it yet. 7077 */ 7078 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7079 { 7080 struct sock *sk = sock->sk; 7081 struct sctp_sock *sp = sctp_sk(sk); 7082 unsigned int mask; 7083 7084 poll_wait(file, sk_sleep(sk), wait); 7085 7086 sock_rps_record_flow(sk); 7087 7088 /* A TCP-style listening socket becomes readable when the accept queue 7089 * is not empty. 7090 */ 7091 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7092 return (!list_empty(&sp->ep->asocs)) ? 7093 (POLLIN | POLLRDNORM) : 0; 7094 7095 mask = 0; 7096 7097 /* Is there any exceptional events? */ 7098 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7099 mask |= POLLERR | 7100 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7101 if (sk->sk_shutdown & RCV_SHUTDOWN) 7102 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7103 if (sk->sk_shutdown == SHUTDOWN_MASK) 7104 mask |= POLLHUP; 7105 7106 /* Is it readable? Reconsider this code with TCP-style support. */ 7107 if (!skb_queue_empty(&sk->sk_receive_queue)) 7108 mask |= POLLIN | POLLRDNORM; 7109 7110 /* The association is either gone or not ready. */ 7111 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7112 return mask; 7113 7114 /* Is it writable? */ 7115 if (sctp_writeable(sk)) { 7116 mask |= POLLOUT | POLLWRNORM; 7117 } else { 7118 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7119 /* 7120 * Since the socket is not locked, the buffer 7121 * might be made available after the writeable check and 7122 * before the bit is set. This could cause a lost I/O 7123 * signal. tcp_poll() has a race breaker for this race 7124 * condition. Based on their implementation, we put 7125 * in the following code to cover it as well. 7126 */ 7127 if (sctp_writeable(sk)) 7128 mask |= POLLOUT | POLLWRNORM; 7129 } 7130 return mask; 7131 } 7132 7133 /******************************************************************** 7134 * 2nd Level Abstractions 7135 ********************************************************************/ 7136 7137 static struct sctp_bind_bucket *sctp_bucket_create( 7138 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7139 { 7140 struct sctp_bind_bucket *pp; 7141 7142 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7143 if (pp) { 7144 SCTP_DBG_OBJCNT_INC(bind_bucket); 7145 pp->port = snum; 7146 pp->fastreuse = 0; 7147 INIT_HLIST_HEAD(&pp->owner); 7148 pp->net = net; 7149 hlist_add_head(&pp->node, &head->chain); 7150 } 7151 return pp; 7152 } 7153 7154 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7155 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7156 { 7157 if (pp && hlist_empty(&pp->owner)) { 7158 __hlist_del(&pp->node); 7159 kmem_cache_free(sctp_bucket_cachep, pp); 7160 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7161 } 7162 } 7163 7164 /* Release this socket's reference to a local port. */ 7165 static inline void __sctp_put_port(struct sock *sk) 7166 { 7167 struct sctp_bind_hashbucket *head = 7168 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7169 inet_sk(sk)->inet_num)]; 7170 struct sctp_bind_bucket *pp; 7171 7172 spin_lock(&head->lock); 7173 pp = sctp_sk(sk)->bind_hash; 7174 __sk_del_bind_node(sk); 7175 sctp_sk(sk)->bind_hash = NULL; 7176 inet_sk(sk)->inet_num = 0; 7177 sctp_bucket_destroy(pp); 7178 spin_unlock(&head->lock); 7179 } 7180 7181 void sctp_put_port(struct sock *sk) 7182 { 7183 local_bh_disable(); 7184 __sctp_put_port(sk); 7185 local_bh_enable(); 7186 } 7187 7188 /* 7189 * The system picks an ephemeral port and choose an address set equivalent 7190 * to binding with a wildcard address. 7191 * One of those addresses will be the primary address for the association. 7192 * This automatically enables the multihoming capability of SCTP. 7193 */ 7194 static int sctp_autobind(struct sock *sk) 7195 { 7196 union sctp_addr autoaddr; 7197 struct sctp_af *af; 7198 __be16 port; 7199 7200 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7201 af = sctp_sk(sk)->pf->af; 7202 7203 port = htons(inet_sk(sk)->inet_num); 7204 af->inaddr_any(&autoaddr, port); 7205 7206 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7207 } 7208 7209 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7210 * 7211 * From RFC 2292 7212 * 4.2 The cmsghdr Structure * 7213 * 7214 * When ancillary data is sent or received, any number of ancillary data 7215 * objects can be specified by the msg_control and msg_controllen members of 7216 * the msghdr structure, because each object is preceded by 7217 * a cmsghdr structure defining the object's length (the cmsg_len member). 7218 * Historically Berkeley-derived implementations have passed only one object 7219 * at a time, but this API allows multiple objects to be 7220 * passed in a single call to sendmsg() or recvmsg(). The following example 7221 * shows two ancillary data objects in a control buffer. 7222 * 7223 * |<--------------------------- msg_controllen -------------------------->| 7224 * | | 7225 * 7226 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7227 * 7228 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7229 * | | | 7230 * 7231 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7232 * 7233 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7234 * | | | | | 7235 * 7236 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7237 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7238 * 7239 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7240 * 7241 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7242 * ^ 7243 * | 7244 * 7245 * msg_control 7246 * points here 7247 */ 7248 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 7249 { 7250 struct cmsghdr *cmsg; 7251 struct msghdr *my_msg = (struct msghdr *)msg; 7252 7253 for_each_cmsghdr(cmsg, my_msg) { 7254 if (!CMSG_OK(my_msg, cmsg)) 7255 return -EINVAL; 7256 7257 /* Should we parse this header or ignore? */ 7258 if (cmsg->cmsg_level != IPPROTO_SCTP) 7259 continue; 7260 7261 /* Strictly check lengths following example in SCM code. */ 7262 switch (cmsg->cmsg_type) { 7263 case SCTP_INIT: 7264 /* SCTP Socket API Extension 7265 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7266 * 7267 * This cmsghdr structure provides information for 7268 * initializing new SCTP associations with sendmsg(). 7269 * The SCTP_INITMSG socket option uses this same data 7270 * structure. This structure is not used for 7271 * recvmsg(). 7272 * 7273 * cmsg_level cmsg_type cmsg_data[] 7274 * ------------ ------------ ---------------------- 7275 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7276 */ 7277 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7278 return -EINVAL; 7279 7280 cmsgs->init = CMSG_DATA(cmsg); 7281 break; 7282 7283 case SCTP_SNDRCV: 7284 /* SCTP Socket API Extension 7285 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7286 * 7287 * This cmsghdr structure specifies SCTP options for 7288 * sendmsg() and describes SCTP header information 7289 * about a received message through recvmsg(). 7290 * 7291 * cmsg_level cmsg_type cmsg_data[] 7292 * ------------ ------------ ---------------------- 7293 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7294 */ 7295 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7296 return -EINVAL; 7297 7298 cmsgs->srinfo = CMSG_DATA(cmsg); 7299 7300 if (cmsgs->srinfo->sinfo_flags & 7301 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7302 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7303 SCTP_ABORT | SCTP_EOF)) 7304 return -EINVAL; 7305 break; 7306 7307 case SCTP_SNDINFO: 7308 /* SCTP Socket API Extension 7309 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7310 * 7311 * This cmsghdr structure specifies SCTP options for 7312 * sendmsg(). This structure and SCTP_RCVINFO replaces 7313 * SCTP_SNDRCV which has been deprecated. 7314 * 7315 * cmsg_level cmsg_type cmsg_data[] 7316 * ------------ ------------ --------------------- 7317 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7318 */ 7319 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7320 return -EINVAL; 7321 7322 cmsgs->sinfo = CMSG_DATA(cmsg); 7323 7324 if (cmsgs->sinfo->snd_flags & 7325 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7326 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7327 SCTP_ABORT | SCTP_EOF)) 7328 return -EINVAL; 7329 break; 7330 default: 7331 return -EINVAL; 7332 } 7333 } 7334 7335 return 0; 7336 } 7337 7338 /* 7339 * Wait for a packet.. 7340 * Note: This function is the same function as in core/datagram.c 7341 * with a few modifications to make lksctp work. 7342 */ 7343 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7344 { 7345 int error; 7346 DEFINE_WAIT(wait); 7347 7348 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7349 7350 /* Socket errors? */ 7351 error = sock_error(sk); 7352 if (error) 7353 goto out; 7354 7355 if (!skb_queue_empty(&sk->sk_receive_queue)) 7356 goto ready; 7357 7358 /* Socket shut down? */ 7359 if (sk->sk_shutdown & RCV_SHUTDOWN) 7360 goto out; 7361 7362 /* Sequenced packets can come disconnected. If so we report the 7363 * problem. 7364 */ 7365 error = -ENOTCONN; 7366 7367 /* Is there a good reason to think that we may receive some data? */ 7368 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7369 goto out; 7370 7371 /* Handle signals. */ 7372 if (signal_pending(current)) 7373 goto interrupted; 7374 7375 /* Let another process have a go. Since we are going to sleep 7376 * anyway. Note: This may cause odd behaviors if the message 7377 * does not fit in the user's buffer, but this seems to be the 7378 * only way to honor MSG_DONTWAIT realistically. 7379 */ 7380 release_sock(sk); 7381 *timeo_p = schedule_timeout(*timeo_p); 7382 lock_sock(sk); 7383 7384 ready: 7385 finish_wait(sk_sleep(sk), &wait); 7386 return 0; 7387 7388 interrupted: 7389 error = sock_intr_errno(*timeo_p); 7390 7391 out: 7392 finish_wait(sk_sleep(sk), &wait); 7393 *err = error; 7394 return error; 7395 } 7396 7397 /* Receive a datagram. 7398 * Note: This is pretty much the same routine as in core/datagram.c 7399 * with a few changes to make lksctp work. 7400 */ 7401 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7402 int noblock, int *err) 7403 { 7404 int error; 7405 struct sk_buff *skb; 7406 long timeo; 7407 7408 timeo = sock_rcvtimeo(sk, noblock); 7409 7410 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7411 MAX_SCHEDULE_TIMEOUT); 7412 7413 do { 7414 /* Again only user level code calls this function, 7415 * so nothing interrupt level 7416 * will suddenly eat the receive_queue. 7417 * 7418 * Look at current nfs client by the way... 7419 * However, this function was correct in any case. 8) 7420 */ 7421 if (flags & MSG_PEEK) { 7422 skb = skb_peek(&sk->sk_receive_queue); 7423 if (skb) 7424 atomic_inc(&skb->users); 7425 } else { 7426 skb = __skb_dequeue(&sk->sk_receive_queue); 7427 } 7428 7429 if (skb) 7430 return skb; 7431 7432 /* Caller is allowed not to check sk->sk_err before calling. */ 7433 error = sock_error(sk); 7434 if (error) 7435 goto no_packet; 7436 7437 if (sk->sk_shutdown & RCV_SHUTDOWN) 7438 break; 7439 7440 if (sk_can_busy_loop(sk) && 7441 sk_busy_loop(sk, noblock)) 7442 continue; 7443 7444 /* User doesn't want to wait. */ 7445 error = -EAGAIN; 7446 if (!timeo) 7447 goto no_packet; 7448 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7449 7450 return NULL; 7451 7452 no_packet: 7453 *err = error; 7454 return NULL; 7455 } 7456 7457 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7458 static void __sctp_write_space(struct sctp_association *asoc) 7459 { 7460 struct sock *sk = asoc->base.sk; 7461 7462 if (sctp_wspace(asoc) <= 0) 7463 return; 7464 7465 if (waitqueue_active(&asoc->wait)) 7466 wake_up_interruptible(&asoc->wait); 7467 7468 if (sctp_writeable(sk)) { 7469 struct socket_wq *wq; 7470 7471 rcu_read_lock(); 7472 wq = rcu_dereference(sk->sk_wq); 7473 if (wq) { 7474 if (waitqueue_active(&wq->wait)) 7475 wake_up_interruptible(&wq->wait); 7476 7477 /* Note that we try to include the Async I/O support 7478 * here by modeling from the current TCP/UDP code. 7479 * We have not tested with it yet. 7480 */ 7481 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7482 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7483 } 7484 rcu_read_unlock(); 7485 } 7486 } 7487 7488 static void sctp_wake_up_waiters(struct sock *sk, 7489 struct sctp_association *asoc) 7490 { 7491 struct sctp_association *tmp = asoc; 7492 7493 /* We do accounting for the sndbuf space per association, 7494 * so we only need to wake our own association. 7495 */ 7496 if (asoc->ep->sndbuf_policy) 7497 return __sctp_write_space(asoc); 7498 7499 /* If association goes down and is just flushing its 7500 * outq, then just normally notify others. 7501 */ 7502 if (asoc->base.dead) 7503 return sctp_write_space(sk); 7504 7505 /* Accounting for the sndbuf space is per socket, so we 7506 * need to wake up others, try to be fair and in case of 7507 * other associations, let them have a go first instead 7508 * of just doing a sctp_write_space() call. 7509 * 7510 * Note that we reach sctp_wake_up_waiters() only when 7511 * associations free up queued chunks, thus we are under 7512 * lock and the list of associations on a socket is 7513 * guaranteed not to change. 7514 */ 7515 for (tmp = list_next_entry(tmp, asocs); 1; 7516 tmp = list_next_entry(tmp, asocs)) { 7517 /* Manually skip the head element. */ 7518 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7519 continue; 7520 /* Wake up association. */ 7521 __sctp_write_space(tmp); 7522 /* We've reached the end. */ 7523 if (tmp == asoc) 7524 break; 7525 } 7526 } 7527 7528 /* Do accounting for the sndbuf space. 7529 * Decrement the used sndbuf space of the corresponding association by the 7530 * data size which was just transmitted(freed). 7531 */ 7532 static void sctp_wfree(struct sk_buff *skb) 7533 { 7534 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7535 struct sctp_association *asoc = chunk->asoc; 7536 struct sock *sk = asoc->base.sk; 7537 7538 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7539 sizeof(struct sk_buff) + 7540 sizeof(struct sctp_chunk); 7541 7542 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 7543 7544 /* 7545 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7546 */ 7547 sk->sk_wmem_queued -= skb->truesize; 7548 sk_mem_uncharge(sk, skb->truesize); 7549 7550 sock_wfree(skb); 7551 sctp_wake_up_waiters(sk, asoc); 7552 7553 sctp_association_put(asoc); 7554 } 7555 7556 /* Do accounting for the receive space on the socket. 7557 * Accounting for the association is done in ulpevent.c 7558 * We set this as a destructor for the cloned data skbs so that 7559 * accounting is done at the correct time. 7560 */ 7561 void sctp_sock_rfree(struct sk_buff *skb) 7562 { 7563 struct sock *sk = skb->sk; 7564 struct sctp_ulpevent *event = sctp_skb2event(skb); 7565 7566 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7567 7568 /* 7569 * Mimic the behavior of sock_rfree 7570 */ 7571 sk_mem_uncharge(sk, event->rmem_len); 7572 } 7573 7574 7575 /* Helper function to wait for space in the sndbuf. */ 7576 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7577 size_t msg_len) 7578 { 7579 struct sock *sk = asoc->base.sk; 7580 int err = 0; 7581 long current_timeo = *timeo_p; 7582 DEFINE_WAIT(wait); 7583 7584 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7585 *timeo_p, msg_len); 7586 7587 /* Increment the association's refcnt. */ 7588 sctp_association_hold(asoc); 7589 7590 /* Wait on the association specific sndbuf space. */ 7591 for (;;) { 7592 prepare_to_wait_exclusive(&asoc->wait, &wait, 7593 TASK_INTERRUPTIBLE); 7594 if (!*timeo_p) 7595 goto do_nonblock; 7596 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7597 asoc->base.dead) 7598 goto do_error; 7599 if (signal_pending(current)) 7600 goto do_interrupted; 7601 if (msg_len <= sctp_wspace(asoc)) 7602 break; 7603 7604 /* Let another process have a go. Since we are going 7605 * to sleep anyway. 7606 */ 7607 release_sock(sk); 7608 current_timeo = schedule_timeout(current_timeo); 7609 lock_sock(sk); 7610 7611 *timeo_p = current_timeo; 7612 } 7613 7614 out: 7615 finish_wait(&asoc->wait, &wait); 7616 7617 /* Release the association's refcnt. */ 7618 sctp_association_put(asoc); 7619 7620 return err; 7621 7622 do_error: 7623 err = -EPIPE; 7624 goto out; 7625 7626 do_interrupted: 7627 err = sock_intr_errno(*timeo_p); 7628 goto out; 7629 7630 do_nonblock: 7631 err = -EAGAIN; 7632 goto out; 7633 } 7634 7635 void sctp_data_ready(struct sock *sk) 7636 { 7637 struct socket_wq *wq; 7638 7639 rcu_read_lock(); 7640 wq = rcu_dereference(sk->sk_wq); 7641 if (skwq_has_sleeper(wq)) 7642 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7643 POLLRDNORM | POLLRDBAND); 7644 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7645 rcu_read_unlock(); 7646 } 7647 7648 /* If socket sndbuf has changed, wake up all per association waiters. */ 7649 void sctp_write_space(struct sock *sk) 7650 { 7651 struct sctp_association *asoc; 7652 7653 /* Wake up the tasks in each wait queue. */ 7654 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7655 __sctp_write_space(asoc); 7656 } 7657 } 7658 7659 /* Is there any sndbuf space available on the socket? 7660 * 7661 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7662 * associations on the same socket. For a UDP-style socket with 7663 * multiple associations, it is possible for it to be "unwriteable" 7664 * prematurely. I assume that this is acceptable because 7665 * a premature "unwriteable" is better than an accidental "writeable" which 7666 * would cause an unwanted block under certain circumstances. For the 1-1 7667 * UDP-style sockets or TCP-style sockets, this code should work. 7668 * - Daisy 7669 */ 7670 static int sctp_writeable(struct sock *sk) 7671 { 7672 int amt = 0; 7673 7674 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7675 if (amt < 0) 7676 amt = 0; 7677 return amt; 7678 } 7679 7680 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7681 * returns immediately with EINPROGRESS. 7682 */ 7683 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7684 { 7685 struct sock *sk = asoc->base.sk; 7686 int err = 0; 7687 long current_timeo = *timeo_p; 7688 DEFINE_WAIT(wait); 7689 7690 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7691 7692 /* Increment the association's refcnt. */ 7693 sctp_association_hold(asoc); 7694 7695 for (;;) { 7696 prepare_to_wait_exclusive(&asoc->wait, &wait, 7697 TASK_INTERRUPTIBLE); 7698 if (!*timeo_p) 7699 goto do_nonblock; 7700 if (sk->sk_shutdown & RCV_SHUTDOWN) 7701 break; 7702 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7703 asoc->base.dead) 7704 goto do_error; 7705 if (signal_pending(current)) 7706 goto do_interrupted; 7707 7708 if (sctp_state(asoc, ESTABLISHED)) 7709 break; 7710 7711 /* Let another process have a go. Since we are going 7712 * to sleep anyway. 7713 */ 7714 release_sock(sk); 7715 current_timeo = schedule_timeout(current_timeo); 7716 lock_sock(sk); 7717 7718 *timeo_p = current_timeo; 7719 } 7720 7721 out: 7722 finish_wait(&asoc->wait, &wait); 7723 7724 /* Release the association's refcnt. */ 7725 sctp_association_put(asoc); 7726 7727 return err; 7728 7729 do_error: 7730 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7731 err = -ETIMEDOUT; 7732 else 7733 err = -ECONNREFUSED; 7734 goto out; 7735 7736 do_interrupted: 7737 err = sock_intr_errno(*timeo_p); 7738 goto out; 7739 7740 do_nonblock: 7741 err = -EINPROGRESS; 7742 goto out; 7743 } 7744 7745 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7746 { 7747 struct sctp_endpoint *ep; 7748 int err = 0; 7749 DEFINE_WAIT(wait); 7750 7751 ep = sctp_sk(sk)->ep; 7752 7753 7754 for (;;) { 7755 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7756 TASK_INTERRUPTIBLE); 7757 7758 if (list_empty(&ep->asocs)) { 7759 release_sock(sk); 7760 timeo = schedule_timeout(timeo); 7761 lock_sock(sk); 7762 } 7763 7764 err = -EINVAL; 7765 if (!sctp_sstate(sk, LISTENING)) 7766 break; 7767 7768 err = 0; 7769 if (!list_empty(&ep->asocs)) 7770 break; 7771 7772 err = sock_intr_errno(timeo); 7773 if (signal_pending(current)) 7774 break; 7775 7776 err = -EAGAIN; 7777 if (!timeo) 7778 break; 7779 } 7780 7781 finish_wait(sk_sleep(sk), &wait); 7782 7783 return err; 7784 } 7785 7786 static void sctp_wait_for_close(struct sock *sk, long timeout) 7787 { 7788 DEFINE_WAIT(wait); 7789 7790 do { 7791 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7792 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7793 break; 7794 release_sock(sk); 7795 timeout = schedule_timeout(timeout); 7796 lock_sock(sk); 7797 } while (!signal_pending(current) && timeout); 7798 7799 finish_wait(sk_sleep(sk), &wait); 7800 } 7801 7802 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7803 { 7804 struct sk_buff *frag; 7805 7806 if (!skb->data_len) 7807 goto done; 7808 7809 /* Don't forget the fragments. */ 7810 skb_walk_frags(skb, frag) 7811 sctp_skb_set_owner_r_frag(frag, sk); 7812 7813 done: 7814 sctp_skb_set_owner_r(skb, sk); 7815 } 7816 7817 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7818 struct sctp_association *asoc) 7819 { 7820 struct inet_sock *inet = inet_sk(sk); 7821 struct inet_sock *newinet; 7822 7823 newsk->sk_type = sk->sk_type; 7824 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7825 newsk->sk_flags = sk->sk_flags; 7826 newsk->sk_tsflags = sk->sk_tsflags; 7827 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7828 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7829 newsk->sk_reuse = sk->sk_reuse; 7830 7831 newsk->sk_shutdown = sk->sk_shutdown; 7832 newsk->sk_destruct = sctp_destruct_sock; 7833 newsk->sk_family = sk->sk_family; 7834 newsk->sk_protocol = IPPROTO_SCTP; 7835 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7836 newsk->sk_sndbuf = sk->sk_sndbuf; 7837 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7838 newsk->sk_lingertime = sk->sk_lingertime; 7839 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7840 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7841 newsk->sk_rxhash = sk->sk_rxhash; 7842 7843 newinet = inet_sk(newsk); 7844 7845 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7846 * getsockname() and getpeername() 7847 */ 7848 newinet->inet_sport = inet->inet_sport; 7849 newinet->inet_saddr = inet->inet_saddr; 7850 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7851 newinet->inet_dport = htons(asoc->peer.port); 7852 newinet->pmtudisc = inet->pmtudisc; 7853 newinet->inet_id = asoc->next_tsn ^ jiffies; 7854 7855 newinet->uc_ttl = inet->uc_ttl; 7856 newinet->mc_loop = 1; 7857 newinet->mc_ttl = 1; 7858 newinet->mc_index = 0; 7859 newinet->mc_list = NULL; 7860 7861 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 7862 net_enable_timestamp(); 7863 7864 security_sk_clone(sk, newsk); 7865 } 7866 7867 static inline void sctp_copy_descendant(struct sock *sk_to, 7868 const struct sock *sk_from) 7869 { 7870 int ancestor_size = sizeof(struct inet_sock) + 7871 sizeof(struct sctp_sock) - 7872 offsetof(struct sctp_sock, auto_asconf_list); 7873 7874 if (sk_from->sk_family == PF_INET6) 7875 ancestor_size += sizeof(struct ipv6_pinfo); 7876 7877 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 7878 } 7879 7880 /* Populate the fields of the newsk from the oldsk and migrate the assoc 7881 * and its messages to the newsk. 7882 */ 7883 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7884 struct sctp_association *assoc, 7885 sctp_socket_type_t type) 7886 { 7887 struct sctp_sock *oldsp = sctp_sk(oldsk); 7888 struct sctp_sock *newsp = sctp_sk(newsk); 7889 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7890 struct sctp_endpoint *newep = newsp->ep; 7891 struct sk_buff *skb, *tmp; 7892 struct sctp_ulpevent *event; 7893 struct sctp_bind_hashbucket *head; 7894 7895 /* Migrate socket buffer sizes and all the socket level options to the 7896 * new socket. 7897 */ 7898 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7899 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7900 /* Brute force copy old sctp opt. */ 7901 sctp_copy_descendant(newsk, oldsk); 7902 7903 /* Restore the ep value that was overwritten with the above structure 7904 * copy. 7905 */ 7906 newsp->ep = newep; 7907 newsp->hmac = NULL; 7908 7909 /* Hook this new socket in to the bind_hash list. */ 7910 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7911 inet_sk(oldsk)->inet_num)]; 7912 spin_lock_bh(&head->lock); 7913 pp = sctp_sk(oldsk)->bind_hash; 7914 sk_add_bind_node(newsk, &pp->owner); 7915 sctp_sk(newsk)->bind_hash = pp; 7916 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7917 spin_unlock_bh(&head->lock); 7918 7919 /* Copy the bind_addr list from the original endpoint to the new 7920 * endpoint so that we can handle restarts properly 7921 */ 7922 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7923 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7924 7925 /* Move any messages in the old socket's receive queue that are for the 7926 * peeled off association to the new socket's receive queue. 7927 */ 7928 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7929 event = sctp_skb2event(skb); 7930 if (event->asoc == assoc) { 7931 __skb_unlink(skb, &oldsk->sk_receive_queue); 7932 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7933 sctp_skb_set_owner_r_frag(skb, newsk); 7934 } 7935 } 7936 7937 /* Clean up any messages pending delivery due to partial 7938 * delivery. Three cases: 7939 * 1) No partial deliver; no work. 7940 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7941 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7942 */ 7943 skb_queue_head_init(&newsp->pd_lobby); 7944 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7945 7946 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7947 struct sk_buff_head *queue; 7948 7949 /* Decide which queue to move pd_lobby skbs to. */ 7950 if (assoc->ulpq.pd_mode) { 7951 queue = &newsp->pd_lobby; 7952 } else 7953 queue = &newsk->sk_receive_queue; 7954 7955 /* Walk through the pd_lobby, looking for skbs that 7956 * need moved to the new socket. 7957 */ 7958 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7959 event = sctp_skb2event(skb); 7960 if (event->asoc == assoc) { 7961 __skb_unlink(skb, &oldsp->pd_lobby); 7962 __skb_queue_tail(queue, skb); 7963 sctp_skb_set_owner_r_frag(skb, newsk); 7964 } 7965 } 7966 7967 /* Clear up any skbs waiting for the partial 7968 * delivery to finish. 7969 */ 7970 if (assoc->ulpq.pd_mode) 7971 sctp_clear_pd(oldsk, NULL); 7972 7973 } 7974 7975 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7976 sctp_skb_set_owner_r_frag(skb, newsk); 7977 7978 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7979 sctp_skb_set_owner_r_frag(skb, newsk); 7980 7981 /* Set the type of socket to indicate that it is peeled off from the 7982 * original UDP-style socket or created with the accept() call on a 7983 * TCP-style socket.. 7984 */ 7985 newsp->type = type; 7986 7987 /* Mark the new socket "in-use" by the user so that any packets 7988 * that may arrive on the association after we've moved it are 7989 * queued to the backlog. This prevents a potential race between 7990 * backlog processing on the old socket and new-packet processing 7991 * on the new socket. 7992 * 7993 * The caller has just allocated newsk so we can guarantee that other 7994 * paths won't try to lock it and then oldsk. 7995 */ 7996 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7997 sctp_assoc_migrate(assoc, newsk); 7998 7999 /* If the association on the newsk is already closed before accept() 8000 * is called, set RCV_SHUTDOWN flag. 8001 */ 8002 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8003 newsk->sk_state = SCTP_SS_CLOSED; 8004 newsk->sk_shutdown |= RCV_SHUTDOWN; 8005 } else { 8006 newsk->sk_state = SCTP_SS_ESTABLISHED; 8007 } 8008 8009 release_sock(newsk); 8010 } 8011 8012 8013 /* This proto struct describes the ULP interface for SCTP. */ 8014 struct proto sctp_prot = { 8015 .name = "SCTP", 8016 .owner = THIS_MODULE, 8017 .close = sctp_close, 8018 .connect = sctp_connect, 8019 .disconnect = sctp_disconnect, 8020 .accept = sctp_accept, 8021 .ioctl = sctp_ioctl, 8022 .init = sctp_init_sock, 8023 .destroy = sctp_destroy_sock, 8024 .shutdown = sctp_shutdown, 8025 .setsockopt = sctp_setsockopt, 8026 .getsockopt = sctp_getsockopt, 8027 .sendmsg = sctp_sendmsg, 8028 .recvmsg = sctp_recvmsg, 8029 .bind = sctp_bind, 8030 .backlog_rcv = sctp_backlog_rcv, 8031 .hash = sctp_hash, 8032 .unhash = sctp_unhash, 8033 .get_port = sctp_get_port, 8034 .obj_size = sizeof(struct sctp_sock), 8035 .sysctl_mem = sysctl_sctp_mem, 8036 .sysctl_rmem = sysctl_sctp_rmem, 8037 .sysctl_wmem = sysctl_sctp_wmem, 8038 .memory_pressure = &sctp_memory_pressure, 8039 .enter_memory_pressure = sctp_enter_memory_pressure, 8040 .memory_allocated = &sctp_memory_allocated, 8041 .sockets_allocated = &sctp_sockets_allocated, 8042 }; 8043 8044 #if IS_ENABLED(CONFIG_IPV6) 8045 8046 #include <net/transp_v6.h> 8047 static void sctp_v6_destroy_sock(struct sock *sk) 8048 { 8049 sctp_destroy_sock(sk); 8050 inet6_destroy_sock(sk); 8051 } 8052 8053 struct proto sctpv6_prot = { 8054 .name = "SCTPv6", 8055 .owner = THIS_MODULE, 8056 .close = sctp_close, 8057 .connect = sctp_connect, 8058 .disconnect = sctp_disconnect, 8059 .accept = sctp_accept, 8060 .ioctl = sctp_ioctl, 8061 .init = sctp_init_sock, 8062 .destroy = sctp_v6_destroy_sock, 8063 .shutdown = sctp_shutdown, 8064 .setsockopt = sctp_setsockopt, 8065 .getsockopt = sctp_getsockopt, 8066 .sendmsg = sctp_sendmsg, 8067 .recvmsg = sctp_recvmsg, 8068 .bind = sctp_bind, 8069 .backlog_rcv = sctp_backlog_rcv, 8070 .hash = sctp_hash, 8071 .unhash = sctp_unhash, 8072 .get_port = sctp_get_port, 8073 .obj_size = sizeof(struct sctp6_sock), 8074 .sysctl_mem = sysctl_sctp_mem, 8075 .sysctl_rmem = sysctl_sctp_rmem, 8076 .sysctl_wmem = sysctl_sctp_wmem, 8077 .memory_pressure = &sctp_memory_pressure, 8078 .enter_memory_pressure = sctp_enter_memory_pressure, 8079 .memory_allocated = &sctp_memory_allocated, 8080 .sockets_allocated = &sctp_sockets_allocated, 8081 }; 8082 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8083