xref: /openbmc/linux/net/sctp/socket.c (revision aac5987a)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 
70 #include <net/ip.h>
71 #include <net/icmp.h>
72 #include <net/route.h>
73 #include <net/ipv6.h>
74 #include <net/inet_common.h>
75 #include <net/busy_poll.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <linux/export.h>
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
82 
83 /* Forward declarations for internal helper functions. */
84 static int sctp_writeable(struct sock *sk);
85 static void sctp_wfree(struct sk_buff *skb);
86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
87 				size_t msg_len);
88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
90 static int sctp_wait_for_accept(struct sock *sk, long timeo);
91 static void sctp_wait_for_close(struct sock *sk, long timeo);
92 static void sctp_destruct_sock(struct sock *sk);
93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
94 					union sctp_addr *addr, int len);
95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf(struct sctp_association *asoc,
100 			    struct sctp_chunk *chunk);
101 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
102 static int sctp_autobind(struct sock *sk);
103 static void sctp_sock_migrate(struct sock *, struct sock *,
104 			      struct sctp_association *, sctp_socket_type_t);
105 
106 static int sctp_memory_pressure;
107 static atomic_long_t sctp_memory_allocated;
108 struct percpu_counter sctp_sockets_allocated;
109 
110 static void sctp_enter_memory_pressure(struct sock *sk)
111 {
112 	sctp_memory_pressure = 1;
113 }
114 
115 
116 /* Get the sndbuf space available at the time on the association.  */
117 static inline int sctp_wspace(struct sctp_association *asoc)
118 {
119 	int amt;
120 
121 	if (asoc->ep->sndbuf_policy)
122 		amt = asoc->sndbuf_used;
123 	else
124 		amt = sk_wmem_alloc_get(asoc->base.sk);
125 
126 	if (amt >= asoc->base.sk->sk_sndbuf) {
127 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
128 			amt = 0;
129 		else {
130 			amt = sk_stream_wspace(asoc->base.sk);
131 			if (amt < 0)
132 				amt = 0;
133 		}
134 	} else {
135 		amt = asoc->base.sk->sk_sndbuf - amt;
136 	}
137 	return amt;
138 }
139 
140 /* Increment the used sndbuf space count of the corresponding association by
141  * the size of the outgoing data chunk.
142  * Also, set the skb destructor for sndbuf accounting later.
143  *
144  * Since it is always 1-1 between chunk and skb, and also a new skb is always
145  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
146  * destructor in the data chunk skb for the purpose of the sndbuf space
147  * tracking.
148  */
149 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
150 {
151 	struct sctp_association *asoc = chunk->asoc;
152 	struct sock *sk = asoc->base.sk;
153 
154 	/* The sndbuf space is tracked per association.  */
155 	sctp_association_hold(asoc);
156 
157 	skb_set_owner_w(chunk->skb, sk);
158 
159 	chunk->skb->destructor = sctp_wfree;
160 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
161 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
162 
163 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
164 				sizeof(struct sk_buff) +
165 				sizeof(struct sctp_chunk);
166 
167 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
168 	sk->sk_wmem_queued += chunk->skb->truesize;
169 	sk_mem_charge(sk, chunk->skb->truesize);
170 }
171 
172 /* Verify that this is a valid address. */
173 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
174 				   int len)
175 {
176 	struct sctp_af *af;
177 
178 	/* Verify basic sockaddr. */
179 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
180 	if (!af)
181 		return -EINVAL;
182 
183 	/* Is this a valid SCTP address?  */
184 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
185 		return -EINVAL;
186 
187 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 /* Look up the association by its id.  If this is not a UDP-style
194  * socket, the ID field is always ignored.
195  */
196 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
197 {
198 	struct sctp_association *asoc = NULL;
199 
200 	/* If this is not a UDP-style socket, assoc id should be ignored. */
201 	if (!sctp_style(sk, UDP)) {
202 		/* Return NULL if the socket state is not ESTABLISHED. It
203 		 * could be a TCP-style listening socket or a socket which
204 		 * hasn't yet called connect() to establish an association.
205 		 */
206 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
207 			return NULL;
208 
209 		/* Get the first and the only association from the list. */
210 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
211 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
212 					  struct sctp_association, asocs);
213 		return asoc;
214 	}
215 
216 	/* Otherwise this is a UDP-style socket. */
217 	if (!id || (id == (sctp_assoc_t)-1))
218 		return NULL;
219 
220 	spin_lock_bh(&sctp_assocs_id_lock);
221 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
222 	spin_unlock_bh(&sctp_assocs_id_lock);
223 
224 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
225 		return NULL;
226 
227 	return asoc;
228 }
229 
230 /* Look up the transport from an address and an assoc id. If both address and
231  * id are specified, the associations matching the address and the id should be
232  * the same.
233  */
234 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
235 					      struct sockaddr_storage *addr,
236 					      sctp_assoc_t id)
237 {
238 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
239 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
240 	union sctp_addr *laddr = (union sctp_addr *)addr;
241 	struct sctp_transport *transport;
242 
243 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
244 		return NULL;
245 
246 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
247 					       laddr,
248 					       &transport);
249 
250 	if (!addr_asoc)
251 		return NULL;
252 
253 	id_asoc = sctp_id2assoc(sk, id);
254 	if (id_asoc && (id_asoc != addr_asoc))
255 		return NULL;
256 
257 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
258 						(union sctp_addr *)addr);
259 
260 	return transport;
261 }
262 
263 /* API 3.1.2 bind() - UDP Style Syntax
264  * The syntax of bind() is,
265  *
266  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
267  *
268  *   sd      - the socket descriptor returned by socket().
269  *   addr    - the address structure (struct sockaddr_in or struct
270  *             sockaddr_in6 [RFC 2553]),
271  *   addr_len - the size of the address structure.
272  */
273 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
274 {
275 	int retval = 0;
276 
277 	lock_sock(sk);
278 
279 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
280 		 addr, addr_len);
281 
282 	/* Disallow binding twice. */
283 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
284 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
285 				      addr_len);
286 	else
287 		retval = -EINVAL;
288 
289 	release_sock(sk);
290 
291 	return retval;
292 }
293 
294 static long sctp_get_port_local(struct sock *, union sctp_addr *);
295 
296 /* Verify this is a valid sockaddr. */
297 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
298 					union sctp_addr *addr, int len)
299 {
300 	struct sctp_af *af;
301 
302 	/* Check minimum size.  */
303 	if (len < sizeof (struct sockaddr))
304 		return NULL;
305 
306 	/* V4 mapped address are really of AF_INET family */
307 	if (addr->sa.sa_family == AF_INET6 &&
308 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
309 		if (!opt->pf->af_supported(AF_INET, opt))
310 			return NULL;
311 	} else {
312 		/* Does this PF support this AF? */
313 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
314 			return NULL;
315 	}
316 
317 	/* If we get this far, af is valid. */
318 	af = sctp_get_af_specific(addr->sa.sa_family);
319 
320 	if (len < af->sockaddr_len)
321 		return NULL;
322 
323 	return af;
324 }
325 
326 /* Bind a local address either to an endpoint or to an association.  */
327 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
328 {
329 	struct net *net = sock_net(sk);
330 	struct sctp_sock *sp = sctp_sk(sk);
331 	struct sctp_endpoint *ep = sp->ep;
332 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
333 	struct sctp_af *af;
334 	unsigned short snum;
335 	int ret = 0;
336 
337 	/* Common sockaddr verification. */
338 	af = sctp_sockaddr_af(sp, addr, len);
339 	if (!af) {
340 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
341 			 __func__, sk, addr, len);
342 		return -EINVAL;
343 	}
344 
345 	snum = ntohs(addr->v4.sin_port);
346 
347 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
348 		 __func__, sk, &addr->sa, bp->port, snum, len);
349 
350 	/* PF specific bind() address verification. */
351 	if (!sp->pf->bind_verify(sp, addr))
352 		return -EADDRNOTAVAIL;
353 
354 	/* We must either be unbound, or bind to the same port.
355 	 * It's OK to allow 0 ports if we are already bound.
356 	 * We'll just inhert an already bound port in this case
357 	 */
358 	if (bp->port) {
359 		if (!snum)
360 			snum = bp->port;
361 		else if (snum != bp->port) {
362 			pr_debug("%s: new port %d doesn't match existing port "
363 				 "%d\n", __func__, snum, bp->port);
364 			return -EINVAL;
365 		}
366 	}
367 
368 	if (snum && snum < inet_prot_sock(net) &&
369 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
370 		return -EACCES;
371 
372 	/* See if the address matches any of the addresses we may have
373 	 * already bound before checking against other endpoints.
374 	 */
375 	if (sctp_bind_addr_match(bp, addr, sp))
376 		return -EINVAL;
377 
378 	/* Make sure we are allowed to bind here.
379 	 * The function sctp_get_port_local() does duplicate address
380 	 * detection.
381 	 */
382 	addr->v4.sin_port = htons(snum);
383 	if ((ret = sctp_get_port_local(sk, addr))) {
384 		return -EADDRINUSE;
385 	}
386 
387 	/* Refresh ephemeral port.  */
388 	if (!bp->port)
389 		bp->port = inet_sk(sk)->inet_num;
390 
391 	/* Add the address to the bind address list.
392 	 * Use GFP_ATOMIC since BHs will be disabled.
393 	 */
394 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
395 				 SCTP_ADDR_SRC, GFP_ATOMIC);
396 
397 	/* Copy back into socket for getsockname() use. */
398 	if (!ret) {
399 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
400 		sp->pf->to_sk_saddr(addr, sk);
401 	}
402 
403 	return ret;
404 }
405 
406  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
407  *
408  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
409  * at any one time.  If a sender, after sending an ASCONF chunk, decides
410  * it needs to transfer another ASCONF Chunk, it MUST wait until the
411  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
412  * subsequent ASCONF. Note this restriction binds each side, so at any
413  * time two ASCONF may be in-transit on any given association (one sent
414  * from each endpoint).
415  */
416 static int sctp_send_asconf(struct sctp_association *asoc,
417 			    struct sctp_chunk *chunk)
418 {
419 	struct net 	*net = sock_net(asoc->base.sk);
420 	int		retval = 0;
421 
422 	/* If there is an outstanding ASCONF chunk, queue it for later
423 	 * transmission.
424 	 */
425 	if (asoc->addip_last_asconf) {
426 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
427 		goto out;
428 	}
429 
430 	/* Hold the chunk until an ASCONF_ACK is received. */
431 	sctp_chunk_hold(chunk);
432 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
433 	if (retval)
434 		sctp_chunk_free(chunk);
435 	else
436 		asoc->addip_last_asconf = chunk;
437 
438 out:
439 	return retval;
440 }
441 
442 /* Add a list of addresses as bind addresses to local endpoint or
443  * association.
444  *
445  * Basically run through each address specified in the addrs/addrcnt
446  * array/length pair, determine if it is IPv6 or IPv4 and call
447  * sctp_do_bind() on it.
448  *
449  * If any of them fails, then the operation will be reversed and the
450  * ones that were added will be removed.
451  *
452  * Only sctp_setsockopt_bindx() is supposed to call this function.
453  */
454 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
455 {
456 	int cnt;
457 	int retval = 0;
458 	void *addr_buf;
459 	struct sockaddr *sa_addr;
460 	struct sctp_af *af;
461 
462 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
463 		 addrs, addrcnt);
464 
465 	addr_buf = addrs;
466 	for (cnt = 0; cnt < addrcnt; cnt++) {
467 		/* The list may contain either IPv4 or IPv6 address;
468 		 * determine the address length for walking thru the list.
469 		 */
470 		sa_addr = addr_buf;
471 		af = sctp_get_af_specific(sa_addr->sa_family);
472 		if (!af) {
473 			retval = -EINVAL;
474 			goto err_bindx_add;
475 		}
476 
477 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
478 				      af->sockaddr_len);
479 
480 		addr_buf += af->sockaddr_len;
481 
482 err_bindx_add:
483 		if (retval < 0) {
484 			/* Failed. Cleanup the ones that have been added */
485 			if (cnt > 0)
486 				sctp_bindx_rem(sk, addrs, cnt);
487 			return retval;
488 		}
489 	}
490 
491 	return retval;
492 }
493 
494 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
495  * associations that are part of the endpoint indicating that a list of local
496  * addresses are added to the endpoint.
497  *
498  * If any of the addresses is already in the bind address list of the
499  * association, we do not send the chunk for that association.  But it will not
500  * affect other associations.
501  *
502  * Only sctp_setsockopt_bindx() is supposed to call this function.
503  */
504 static int sctp_send_asconf_add_ip(struct sock		*sk,
505 				   struct sockaddr	*addrs,
506 				   int 			addrcnt)
507 {
508 	struct net *net = sock_net(sk);
509 	struct sctp_sock		*sp;
510 	struct sctp_endpoint		*ep;
511 	struct sctp_association		*asoc;
512 	struct sctp_bind_addr		*bp;
513 	struct sctp_chunk		*chunk;
514 	struct sctp_sockaddr_entry	*laddr;
515 	union sctp_addr			*addr;
516 	union sctp_addr			saveaddr;
517 	void				*addr_buf;
518 	struct sctp_af			*af;
519 	struct list_head		*p;
520 	int 				i;
521 	int 				retval = 0;
522 
523 	if (!net->sctp.addip_enable)
524 		return retval;
525 
526 	sp = sctp_sk(sk);
527 	ep = sp->ep;
528 
529 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
530 		 __func__, sk, addrs, addrcnt);
531 
532 	list_for_each_entry(asoc, &ep->asocs, asocs) {
533 		if (!asoc->peer.asconf_capable)
534 			continue;
535 
536 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
537 			continue;
538 
539 		if (!sctp_state(asoc, ESTABLISHED))
540 			continue;
541 
542 		/* Check if any address in the packed array of addresses is
543 		 * in the bind address list of the association. If so,
544 		 * do not send the asconf chunk to its peer, but continue with
545 		 * other associations.
546 		 */
547 		addr_buf = addrs;
548 		for (i = 0; i < addrcnt; i++) {
549 			addr = addr_buf;
550 			af = sctp_get_af_specific(addr->v4.sin_family);
551 			if (!af) {
552 				retval = -EINVAL;
553 				goto out;
554 			}
555 
556 			if (sctp_assoc_lookup_laddr(asoc, addr))
557 				break;
558 
559 			addr_buf += af->sockaddr_len;
560 		}
561 		if (i < addrcnt)
562 			continue;
563 
564 		/* Use the first valid address in bind addr list of
565 		 * association as Address Parameter of ASCONF CHUNK.
566 		 */
567 		bp = &asoc->base.bind_addr;
568 		p = bp->address_list.next;
569 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
570 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
571 						   addrcnt, SCTP_PARAM_ADD_IP);
572 		if (!chunk) {
573 			retval = -ENOMEM;
574 			goto out;
575 		}
576 
577 		/* Add the new addresses to the bind address list with
578 		 * use_as_src set to 0.
579 		 */
580 		addr_buf = addrs;
581 		for (i = 0; i < addrcnt; i++) {
582 			addr = addr_buf;
583 			af = sctp_get_af_specific(addr->v4.sin_family);
584 			memcpy(&saveaddr, addr, af->sockaddr_len);
585 			retval = sctp_add_bind_addr(bp, &saveaddr,
586 						    sizeof(saveaddr),
587 						    SCTP_ADDR_NEW, GFP_ATOMIC);
588 			addr_buf += af->sockaddr_len;
589 		}
590 		if (asoc->src_out_of_asoc_ok) {
591 			struct sctp_transport *trans;
592 
593 			list_for_each_entry(trans,
594 			    &asoc->peer.transport_addr_list, transports) {
595 				/* Clear the source and route cache */
596 				sctp_transport_dst_release(trans);
597 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
598 				    2*asoc->pathmtu, 4380));
599 				trans->ssthresh = asoc->peer.i.a_rwnd;
600 				trans->rto = asoc->rto_initial;
601 				sctp_max_rto(asoc, trans);
602 				trans->rtt = trans->srtt = trans->rttvar = 0;
603 				sctp_transport_route(trans, NULL,
604 				    sctp_sk(asoc->base.sk));
605 			}
606 		}
607 		retval = sctp_send_asconf(asoc, chunk);
608 	}
609 
610 out:
611 	return retval;
612 }
613 
614 /* Remove a list of addresses from bind addresses list.  Do not remove the
615  * last address.
616  *
617  * Basically run through each address specified in the addrs/addrcnt
618  * array/length pair, determine if it is IPv6 or IPv4 and call
619  * sctp_del_bind() on it.
620  *
621  * If any of them fails, then the operation will be reversed and the
622  * ones that were removed will be added back.
623  *
624  * At least one address has to be left; if only one address is
625  * available, the operation will return -EBUSY.
626  *
627  * Only sctp_setsockopt_bindx() is supposed to call this function.
628  */
629 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
630 {
631 	struct sctp_sock *sp = sctp_sk(sk);
632 	struct sctp_endpoint *ep = sp->ep;
633 	int cnt;
634 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
635 	int retval = 0;
636 	void *addr_buf;
637 	union sctp_addr *sa_addr;
638 	struct sctp_af *af;
639 
640 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
641 		 __func__, sk, addrs, addrcnt);
642 
643 	addr_buf = addrs;
644 	for (cnt = 0; cnt < addrcnt; cnt++) {
645 		/* If the bind address list is empty or if there is only one
646 		 * bind address, there is nothing more to be removed (we need
647 		 * at least one address here).
648 		 */
649 		if (list_empty(&bp->address_list) ||
650 		    (sctp_list_single_entry(&bp->address_list))) {
651 			retval = -EBUSY;
652 			goto err_bindx_rem;
653 		}
654 
655 		sa_addr = addr_buf;
656 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
657 		if (!af) {
658 			retval = -EINVAL;
659 			goto err_bindx_rem;
660 		}
661 
662 		if (!af->addr_valid(sa_addr, sp, NULL)) {
663 			retval = -EADDRNOTAVAIL;
664 			goto err_bindx_rem;
665 		}
666 
667 		if (sa_addr->v4.sin_port &&
668 		    sa_addr->v4.sin_port != htons(bp->port)) {
669 			retval = -EINVAL;
670 			goto err_bindx_rem;
671 		}
672 
673 		if (!sa_addr->v4.sin_port)
674 			sa_addr->v4.sin_port = htons(bp->port);
675 
676 		/* FIXME - There is probably a need to check if sk->sk_saddr and
677 		 * sk->sk_rcv_addr are currently set to one of the addresses to
678 		 * be removed. This is something which needs to be looked into
679 		 * when we are fixing the outstanding issues with multi-homing
680 		 * socket routing and failover schemes. Refer to comments in
681 		 * sctp_do_bind(). -daisy
682 		 */
683 		retval = sctp_del_bind_addr(bp, sa_addr);
684 
685 		addr_buf += af->sockaddr_len;
686 err_bindx_rem:
687 		if (retval < 0) {
688 			/* Failed. Add the ones that has been removed back */
689 			if (cnt > 0)
690 				sctp_bindx_add(sk, addrs, cnt);
691 			return retval;
692 		}
693 	}
694 
695 	return retval;
696 }
697 
698 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
699  * the associations that are part of the endpoint indicating that a list of
700  * local addresses are removed from the endpoint.
701  *
702  * If any of the addresses is already in the bind address list of the
703  * association, we do not send the chunk for that association.  But it will not
704  * affect other associations.
705  *
706  * Only sctp_setsockopt_bindx() is supposed to call this function.
707  */
708 static int sctp_send_asconf_del_ip(struct sock		*sk,
709 				   struct sockaddr	*addrs,
710 				   int			addrcnt)
711 {
712 	struct net *net = sock_net(sk);
713 	struct sctp_sock	*sp;
714 	struct sctp_endpoint	*ep;
715 	struct sctp_association	*asoc;
716 	struct sctp_transport	*transport;
717 	struct sctp_bind_addr	*bp;
718 	struct sctp_chunk	*chunk;
719 	union sctp_addr		*laddr;
720 	void			*addr_buf;
721 	struct sctp_af		*af;
722 	struct sctp_sockaddr_entry *saddr;
723 	int 			i;
724 	int 			retval = 0;
725 	int			stored = 0;
726 
727 	chunk = NULL;
728 	if (!net->sctp.addip_enable)
729 		return retval;
730 
731 	sp = sctp_sk(sk);
732 	ep = sp->ep;
733 
734 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
735 		 __func__, sk, addrs, addrcnt);
736 
737 	list_for_each_entry(asoc, &ep->asocs, asocs) {
738 
739 		if (!asoc->peer.asconf_capable)
740 			continue;
741 
742 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
743 			continue;
744 
745 		if (!sctp_state(asoc, ESTABLISHED))
746 			continue;
747 
748 		/* Check if any address in the packed array of addresses is
749 		 * not present in the bind address list of the association.
750 		 * If so, do not send the asconf chunk to its peer, but
751 		 * continue with other associations.
752 		 */
753 		addr_buf = addrs;
754 		for (i = 0; i < addrcnt; i++) {
755 			laddr = addr_buf;
756 			af = sctp_get_af_specific(laddr->v4.sin_family);
757 			if (!af) {
758 				retval = -EINVAL;
759 				goto out;
760 			}
761 
762 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
763 				break;
764 
765 			addr_buf += af->sockaddr_len;
766 		}
767 		if (i < addrcnt)
768 			continue;
769 
770 		/* Find one address in the association's bind address list
771 		 * that is not in the packed array of addresses. This is to
772 		 * make sure that we do not delete all the addresses in the
773 		 * association.
774 		 */
775 		bp = &asoc->base.bind_addr;
776 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
777 					       addrcnt, sp);
778 		if ((laddr == NULL) && (addrcnt == 1)) {
779 			if (asoc->asconf_addr_del_pending)
780 				continue;
781 			asoc->asconf_addr_del_pending =
782 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
783 			if (asoc->asconf_addr_del_pending == NULL) {
784 				retval = -ENOMEM;
785 				goto out;
786 			}
787 			asoc->asconf_addr_del_pending->sa.sa_family =
788 				    addrs->sa_family;
789 			asoc->asconf_addr_del_pending->v4.sin_port =
790 				    htons(bp->port);
791 			if (addrs->sa_family == AF_INET) {
792 				struct sockaddr_in *sin;
793 
794 				sin = (struct sockaddr_in *)addrs;
795 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
796 			} else if (addrs->sa_family == AF_INET6) {
797 				struct sockaddr_in6 *sin6;
798 
799 				sin6 = (struct sockaddr_in6 *)addrs;
800 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
801 			}
802 
803 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
804 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
805 				 asoc->asconf_addr_del_pending);
806 
807 			asoc->src_out_of_asoc_ok = 1;
808 			stored = 1;
809 			goto skip_mkasconf;
810 		}
811 
812 		if (laddr == NULL)
813 			return -EINVAL;
814 
815 		/* We do not need RCU protection throughout this loop
816 		 * because this is done under a socket lock from the
817 		 * setsockopt call.
818 		 */
819 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
820 						   SCTP_PARAM_DEL_IP);
821 		if (!chunk) {
822 			retval = -ENOMEM;
823 			goto out;
824 		}
825 
826 skip_mkasconf:
827 		/* Reset use_as_src flag for the addresses in the bind address
828 		 * list that are to be deleted.
829 		 */
830 		addr_buf = addrs;
831 		for (i = 0; i < addrcnt; i++) {
832 			laddr = addr_buf;
833 			af = sctp_get_af_specific(laddr->v4.sin_family);
834 			list_for_each_entry(saddr, &bp->address_list, list) {
835 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
836 					saddr->state = SCTP_ADDR_DEL;
837 			}
838 			addr_buf += af->sockaddr_len;
839 		}
840 
841 		/* Update the route and saddr entries for all the transports
842 		 * as some of the addresses in the bind address list are
843 		 * about to be deleted and cannot be used as source addresses.
844 		 */
845 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
846 					transports) {
847 			sctp_transport_dst_release(transport);
848 			sctp_transport_route(transport, NULL,
849 					     sctp_sk(asoc->base.sk));
850 		}
851 
852 		if (stored)
853 			/* We don't need to transmit ASCONF */
854 			continue;
855 		retval = sctp_send_asconf(asoc, chunk);
856 	}
857 out:
858 	return retval;
859 }
860 
861 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
862 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
863 {
864 	struct sock *sk = sctp_opt2sk(sp);
865 	union sctp_addr *addr;
866 	struct sctp_af *af;
867 
868 	/* It is safe to write port space in caller. */
869 	addr = &addrw->a;
870 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
871 	af = sctp_get_af_specific(addr->sa.sa_family);
872 	if (!af)
873 		return -EINVAL;
874 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
875 		return -EINVAL;
876 
877 	if (addrw->state == SCTP_ADDR_NEW)
878 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
879 	else
880 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
881 }
882 
883 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
884  *
885  * API 8.1
886  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
887  *                int flags);
888  *
889  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
890  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
891  * or IPv6 addresses.
892  *
893  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
894  * Section 3.1.2 for this usage.
895  *
896  * addrs is a pointer to an array of one or more socket addresses. Each
897  * address is contained in its appropriate structure (i.e. struct
898  * sockaddr_in or struct sockaddr_in6) the family of the address type
899  * must be used to distinguish the address length (note that this
900  * representation is termed a "packed array" of addresses). The caller
901  * specifies the number of addresses in the array with addrcnt.
902  *
903  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
904  * -1, and sets errno to the appropriate error code.
905  *
906  * For SCTP, the port given in each socket address must be the same, or
907  * sctp_bindx() will fail, setting errno to EINVAL.
908  *
909  * The flags parameter is formed from the bitwise OR of zero or more of
910  * the following currently defined flags:
911  *
912  * SCTP_BINDX_ADD_ADDR
913  *
914  * SCTP_BINDX_REM_ADDR
915  *
916  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
917  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
918  * addresses from the association. The two flags are mutually exclusive;
919  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
920  * not remove all addresses from an association; sctp_bindx() will
921  * reject such an attempt with EINVAL.
922  *
923  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
924  * additional addresses with an endpoint after calling bind().  Or use
925  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
926  * socket is associated with so that no new association accepted will be
927  * associated with those addresses. If the endpoint supports dynamic
928  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
929  * endpoint to send the appropriate message to the peer to change the
930  * peers address lists.
931  *
932  * Adding and removing addresses from a connected association is
933  * optional functionality. Implementations that do not support this
934  * functionality should return EOPNOTSUPP.
935  *
936  * Basically do nothing but copying the addresses from user to kernel
937  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
938  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
939  * from userspace.
940  *
941  * We don't use copy_from_user() for optimization: we first do the
942  * sanity checks (buffer size -fast- and access check-healthy
943  * pointer); if all of those succeed, then we can alloc the memory
944  * (expensive operation) needed to copy the data to kernel. Then we do
945  * the copying without checking the user space area
946  * (__copy_from_user()).
947  *
948  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
949  * it.
950  *
951  * sk        The sk of the socket
952  * addrs     The pointer to the addresses in user land
953  * addrssize Size of the addrs buffer
954  * op        Operation to perform (add or remove, see the flags of
955  *           sctp_bindx)
956  *
957  * Returns 0 if ok, <0 errno code on error.
958  */
959 static int sctp_setsockopt_bindx(struct sock *sk,
960 				 struct sockaddr __user *addrs,
961 				 int addrs_size, int op)
962 {
963 	struct sockaddr *kaddrs;
964 	int err;
965 	int addrcnt = 0;
966 	int walk_size = 0;
967 	struct sockaddr *sa_addr;
968 	void *addr_buf;
969 	struct sctp_af *af;
970 
971 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
972 		 __func__, sk, addrs, addrs_size, op);
973 
974 	if (unlikely(addrs_size <= 0))
975 		return -EINVAL;
976 
977 	/* Check the user passed a healthy pointer.  */
978 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
979 		return -EFAULT;
980 
981 	/* Alloc space for the address array in kernel memory.  */
982 	kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
983 	if (unlikely(!kaddrs))
984 		return -ENOMEM;
985 
986 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
987 		kfree(kaddrs);
988 		return -EFAULT;
989 	}
990 
991 	/* Walk through the addrs buffer and count the number of addresses. */
992 	addr_buf = kaddrs;
993 	while (walk_size < addrs_size) {
994 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
995 			kfree(kaddrs);
996 			return -EINVAL;
997 		}
998 
999 		sa_addr = addr_buf;
1000 		af = sctp_get_af_specific(sa_addr->sa_family);
1001 
1002 		/* If the address family is not supported or if this address
1003 		 * causes the address buffer to overflow return EINVAL.
1004 		 */
1005 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1006 			kfree(kaddrs);
1007 			return -EINVAL;
1008 		}
1009 		addrcnt++;
1010 		addr_buf += af->sockaddr_len;
1011 		walk_size += af->sockaddr_len;
1012 	}
1013 
1014 	/* Do the work. */
1015 	switch (op) {
1016 	case SCTP_BINDX_ADD_ADDR:
1017 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1018 		if (err)
1019 			goto out;
1020 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1021 		break;
1022 
1023 	case SCTP_BINDX_REM_ADDR:
1024 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1025 		if (err)
1026 			goto out;
1027 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1028 		break;
1029 
1030 	default:
1031 		err = -EINVAL;
1032 		break;
1033 	}
1034 
1035 out:
1036 	kfree(kaddrs);
1037 
1038 	return err;
1039 }
1040 
1041 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1042  *
1043  * Common routine for handling connect() and sctp_connectx().
1044  * Connect will come in with just a single address.
1045  */
1046 static int __sctp_connect(struct sock *sk,
1047 			  struct sockaddr *kaddrs,
1048 			  int addrs_size,
1049 			  sctp_assoc_t *assoc_id)
1050 {
1051 	struct net *net = sock_net(sk);
1052 	struct sctp_sock *sp;
1053 	struct sctp_endpoint *ep;
1054 	struct sctp_association *asoc = NULL;
1055 	struct sctp_association *asoc2;
1056 	struct sctp_transport *transport;
1057 	union sctp_addr to;
1058 	sctp_scope_t scope;
1059 	long timeo;
1060 	int err = 0;
1061 	int addrcnt = 0;
1062 	int walk_size = 0;
1063 	union sctp_addr *sa_addr = NULL;
1064 	void *addr_buf;
1065 	unsigned short port;
1066 	unsigned int f_flags = 0;
1067 
1068 	sp = sctp_sk(sk);
1069 	ep = sp->ep;
1070 
1071 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1072 	 * state - UDP-style peeled off socket or a TCP-style socket that
1073 	 * is already connected.
1074 	 * It cannot be done even on a TCP-style listening socket.
1075 	 */
1076 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1077 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1078 		err = -EISCONN;
1079 		goto out_free;
1080 	}
1081 
1082 	/* Walk through the addrs buffer and count the number of addresses. */
1083 	addr_buf = kaddrs;
1084 	while (walk_size < addrs_size) {
1085 		struct sctp_af *af;
1086 
1087 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1088 			err = -EINVAL;
1089 			goto out_free;
1090 		}
1091 
1092 		sa_addr = addr_buf;
1093 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1094 
1095 		/* If the address family is not supported or if this address
1096 		 * causes the address buffer to overflow return EINVAL.
1097 		 */
1098 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1099 			err = -EINVAL;
1100 			goto out_free;
1101 		}
1102 
1103 		port = ntohs(sa_addr->v4.sin_port);
1104 
1105 		/* Save current address so we can work with it */
1106 		memcpy(&to, sa_addr, af->sockaddr_len);
1107 
1108 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1109 		if (err)
1110 			goto out_free;
1111 
1112 		/* Make sure the destination port is correctly set
1113 		 * in all addresses.
1114 		 */
1115 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1116 			err = -EINVAL;
1117 			goto out_free;
1118 		}
1119 
1120 		/* Check if there already is a matching association on the
1121 		 * endpoint (other than the one created here).
1122 		 */
1123 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1124 		if (asoc2 && asoc2 != asoc) {
1125 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1126 				err = -EISCONN;
1127 			else
1128 				err = -EALREADY;
1129 			goto out_free;
1130 		}
1131 
1132 		/* If we could not find a matching association on the endpoint,
1133 		 * make sure that there is no peeled-off association matching
1134 		 * the peer address even on another socket.
1135 		 */
1136 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1137 			err = -EADDRNOTAVAIL;
1138 			goto out_free;
1139 		}
1140 
1141 		if (!asoc) {
1142 			/* If a bind() or sctp_bindx() is not called prior to
1143 			 * an sctp_connectx() call, the system picks an
1144 			 * ephemeral port and will choose an address set
1145 			 * equivalent to binding with a wildcard address.
1146 			 */
1147 			if (!ep->base.bind_addr.port) {
1148 				if (sctp_autobind(sk)) {
1149 					err = -EAGAIN;
1150 					goto out_free;
1151 				}
1152 			} else {
1153 				/*
1154 				 * If an unprivileged user inherits a 1-many
1155 				 * style socket with open associations on a
1156 				 * privileged port, it MAY be permitted to
1157 				 * accept new associations, but it SHOULD NOT
1158 				 * be permitted to open new associations.
1159 				 */
1160 				if (ep->base.bind_addr.port <
1161 				    inet_prot_sock(net) &&
1162 				    !ns_capable(net->user_ns,
1163 				    CAP_NET_BIND_SERVICE)) {
1164 					err = -EACCES;
1165 					goto out_free;
1166 				}
1167 			}
1168 
1169 			scope = sctp_scope(&to);
1170 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1171 			if (!asoc) {
1172 				err = -ENOMEM;
1173 				goto out_free;
1174 			}
1175 
1176 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1177 							      GFP_KERNEL);
1178 			if (err < 0) {
1179 				goto out_free;
1180 			}
1181 
1182 		}
1183 
1184 		/* Prime the peer's transport structures.  */
1185 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1186 						SCTP_UNKNOWN);
1187 		if (!transport) {
1188 			err = -ENOMEM;
1189 			goto out_free;
1190 		}
1191 
1192 		addrcnt++;
1193 		addr_buf += af->sockaddr_len;
1194 		walk_size += af->sockaddr_len;
1195 	}
1196 
1197 	/* In case the user of sctp_connectx() wants an association
1198 	 * id back, assign one now.
1199 	 */
1200 	if (assoc_id) {
1201 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1202 		if (err < 0)
1203 			goto out_free;
1204 	}
1205 
1206 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1207 	if (err < 0) {
1208 		goto out_free;
1209 	}
1210 
1211 	/* Initialize sk's dport and daddr for getpeername() */
1212 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1213 	sp->pf->to_sk_daddr(sa_addr, sk);
1214 	sk->sk_err = 0;
1215 
1216 	/* in-kernel sockets don't generally have a file allocated to them
1217 	 * if all they do is call sock_create_kern().
1218 	 */
1219 	if (sk->sk_socket->file)
1220 		f_flags = sk->sk_socket->file->f_flags;
1221 
1222 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1223 
1224 	if (assoc_id)
1225 		*assoc_id = asoc->assoc_id;
1226 	err = sctp_wait_for_connect(asoc, &timeo);
1227 	/* Note: the asoc may be freed after the return of
1228 	 * sctp_wait_for_connect.
1229 	 */
1230 
1231 	/* Don't free association on exit. */
1232 	asoc = NULL;
1233 
1234 out_free:
1235 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1236 		 __func__, asoc, kaddrs, err);
1237 
1238 	if (asoc) {
1239 		/* sctp_primitive_ASSOCIATE may have added this association
1240 		 * To the hash table, try to unhash it, just in case, its a noop
1241 		 * if it wasn't hashed so we're safe
1242 		 */
1243 		sctp_association_free(asoc);
1244 	}
1245 	return err;
1246 }
1247 
1248 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1249  *
1250  * API 8.9
1251  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1252  * 			sctp_assoc_t *asoc);
1253  *
1254  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1255  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1256  * or IPv6 addresses.
1257  *
1258  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1259  * Section 3.1.2 for this usage.
1260  *
1261  * addrs is a pointer to an array of one or more socket addresses. Each
1262  * address is contained in its appropriate structure (i.e. struct
1263  * sockaddr_in or struct sockaddr_in6) the family of the address type
1264  * must be used to distengish the address length (note that this
1265  * representation is termed a "packed array" of addresses). The caller
1266  * specifies the number of addresses in the array with addrcnt.
1267  *
1268  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1269  * the association id of the new association.  On failure, sctp_connectx()
1270  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1271  * is not touched by the kernel.
1272  *
1273  * For SCTP, the port given in each socket address must be the same, or
1274  * sctp_connectx() will fail, setting errno to EINVAL.
1275  *
1276  * An application can use sctp_connectx to initiate an association with
1277  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1278  * allows a caller to specify multiple addresses at which a peer can be
1279  * reached.  The way the SCTP stack uses the list of addresses to set up
1280  * the association is implementation dependent.  This function only
1281  * specifies that the stack will try to make use of all the addresses in
1282  * the list when needed.
1283  *
1284  * Note that the list of addresses passed in is only used for setting up
1285  * the association.  It does not necessarily equal the set of addresses
1286  * the peer uses for the resulting association.  If the caller wants to
1287  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1288  * retrieve them after the association has been set up.
1289  *
1290  * Basically do nothing but copying the addresses from user to kernel
1291  * land and invoking either sctp_connectx(). This is used for tunneling
1292  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1293  *
1294  * We don't use copy_from_user() for optimization: we first do the
1295  * sanity checks (buffer size -fast- and access check-healthy
1296  * pointer); if all of those succeed, then we can alloc the memory
1297  * (expensive operation) needed to copy the data to kernel. Then we do
1298  * the copying without checking the user space area
1299  * (__copy_from_user()).
1300  *
1301  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1302  * it.
1303  *
1304  * sk        The sk of the socket
1305  * addrs     The pointer to the addresses in user land
1306  * addrssize Size of the addrs buffer
1307  *
1308  * Returns >=0 if ok, <0 errno code on error.
1309  */
1310 static int __sctp_setsockopt_connectx(struct sock *sk,
1311 				      struct sockaddr __user *addrs,
1312 				      int addrs_size,
1313 				      sctp_assoc_t *assoc_id)
1314 {
1315 	struct sockaddr *kaddrs;
1316 	gfp_t gfp = GFP_KERNEL;
1317 	int err = 0;
1318 
1319 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1320 		 __func__, sk, addrs, addrs_size);
1321 
1322 	if (unlikely(addrs_size <= 0))
1323 		return -EINVAL;
1324 
1325 	/* Check the user passed a healthy pointer.  */
1326 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1327 		return -EFAULT;
1328 
1329 	/* Alloc space for the address array in kernel memory.  */
1330 	if (sk->sk_socket->file)
1331 		gfp = GFP_USER | __GFP_NOWARN;
1332 	kaddrs = kmalloc(addrs_size, gfp);
1333 	if (unlikely(!kaddrs))
1334 		return -ENOMEM;
1335 
1336 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1337 		err = -EFAULT;
1338 	} else {
1339 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1340 	}
1341 
1342 	kfree(kaddrs);
1343 
1344 	return err;
1345 }
1346 
1347 /*
1348  * This is an older interface.  It's kept for backward compatibility
1349  * to the option that doesn't provide association id.
1350  */
1351 static int sctp_setsockopt_connectx_old(struct sock *sk,
1352 					struct sockaddr __user *addrs,
1353 					int addrs_size)
1354 {
1355 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1356 }
1357 
1358 /*
1359  * New interface for the API.  The since the API is done with a socket
1360  * option, to make it simple we feed back the association id is as a return
1361  * indication to the call.  Error is always negative and association id is
1362  * always positive.
1363  */
1364 static int sctp_setsockopt_connectx(struct sock *sk,
1365 				    struct sockaddr __user *addrs,
1366 				    int addrs_size)
1367 {
1368 	sctp_assoc_t assoc_id = 0;
1369 	int err = 0;
1370 
1371 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1372 
1373 	if (err)
1374 		return err;
1375 	else
1376 		return assoc_id;
1377 }
1378 
1379 /*
1380  * New (hopefully final) interface for the API.
1381  * We use the sctp_getaddrs_old structure so that use-space library
1382  * can avoid any unnecessary allocations. The only different part
1383  * is that we store the actual length of the address buffer into the
1384  * addrs_num structure member. That way we can re-use the existing
1385  * code.
1386  */
1387 #ifdef CONFIG_COMPAT
1388 struct compat_sctp_getaddrs_old {
1389 	sctp_assoc_t	assoc_id;
1390 	s32		addr_num;
1391 	compat_uptr_t	addrs;		/* struct sockaddr * */
1392 };
1393 #endif
1394 
1395 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1396 				     char __user *optval,
1397 				     int __user *optlen)
1398 {
1399 	struct sctp_getaddrs_old param;
1400 	sctp_assoc_t assoc_id = 0;
1401 	int err = 0;
1402 
1403 #ifdef CONFIG_COMPAT
1404 	if (in_compat_syscall()) {
1405 		struct compat_sctp_getaddrs_old param32;
1406 
1407 		if (len < sizeof(param32))
1408 			return -EINVAL;
1409 		if (copy_from_user(&param32, optval, sizeof(param32)))
1410 			return -EFAULT;
1411 
1412 		param.assoc_id = param32.assoc_id;
1413 		param.addr_num = param32.addr_num;
1414 		param.addrs = compat_ptr(param32.addrs);
1415 	} else
1416 #endif
1417 	{
1418 		if (len < sizeof(param))
1419 			return -EINVAL;
1420 		if (copy_from_user(&param, optval, sizeof(param)))
1421 			return -EFAULT;
1422 	}
1423 
1424 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1425 					 param.addrs, param.addr_num,
1426 					 &assoc_id);
1427 	if (err == 0 || err == -EINPROGRESS) {
1428 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1429 			return -EFAULT;
1430 		if (put_user(sizeof(assoc_id), optlen))
1431 			return -EFAULT;
1432 	}
1433 
1434 	return err;
1435 }
1436 
1437 /* API 3.1.4 close() - UDP Style Syntax
1438  * Applications use close() to perform graceful shutdown (as described in
1439  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1440  * by a UDP-style socket.
1441  *
1442  * The syntax is
1443  *
1444  *   ret = close(int sd);
1445  *
1446  *   sd      - the socket descriptor of the associations to be closed.
1447  *
1448  * To gracefully shutdown a specific association represented by the
1449  * UDP-style socket, an application should use the sendmsg() call,
1450  * passing no user data, but including the appropriate flag in the
1451  * ancillary data (see Section xxxx).
1452  *
1453  * If sd in the close() call is a branched-off socket representing only
1454  * one association, the shutdown is performed on that association only.
1455  *
1456  * 4.1.6 close() - TCP Style Syntax
1457  *
1458  * Applications use close() to gracefully close down an association.
1459  *
1460  * The syntax is:
1461  *
1462  *    int close(int sd);
1463  *
1464  *      sd      - the socket descriptor of the association to be closed.
1465  *
1466  * After an application calls close() on a socket descriptor, no further
1467  * socket operations will succeed on that descriptor.
1468  *
1469  * API 7.1.4 SO_LINGER
1470  *
1471  * An application using the TCP-style socket can use this option to
1472  * perform the SCTP ABORT primitive.  The linger option structure is:
1473  *
1474  *  struct  linger {
1475  *     int     l_onoff;                // option on/off
1476  *     int     l_linger;               // linger time
1477  * };
1478  *
1479  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1480  * to 0, calling close() is the same as the ABORT primitive.  If the
1481  * value is set to a negative value, the setsockopt() call will return
1482  * an error.  If the value is set to a positive value linger_time, the
1483  * close() can be blocked for at most linger_time ms.  If the graceful
1484  * shutdown phase does not finish during this period, close() will
1485  * return but the graceful shutdown phase continues in the system.
1486  */
1487 static void sctp_close(struct sock *sk, long timeout)
1488 {
1489 	struct net *net = sock_net(sk);
1490 	struct sctp_endpoint *ep;
1491 	struct sctp_association *asoc;
1492 	struct list_head *pos, *temp;
1493 	unsigned int data_was_unread;
1494 
1495 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1496 
1497 	lock_sock(sk);
1498 	sk->sk_shutdown = SHUTDOWN_MASK;
1499 	sk->sk_state = SCTP_SS_CLOSING;
1500 
1501 	ep = sctp_sk(sk)->ep;
1502 
1503 	/* Clean up any skbs sitting on the receive queue.  */
1504 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1505 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1506 
1507 	/* Walk all associations on an endpoint.  */
1508 	list_for_each_safe(pos, temp, &ep->asocs) {
1509 		asoc = list_entry(pos, struct sctp_association, asocs);
1510 
1511 		if (sctp_style(sk, TCP)) {
1512 			/* A closed association can still be in the list if
1513 			 * it belongs to a TCP-style listening socket that is
1514 			 * not yet accepted. If so, free it. If not, send an
1515 			 * ABORT or SHUTDOWN based on the linger options.
1516 			 */
1517 			if (sctp_state(asoc, CLOSED)) {
1518 				sctp_association_free(asoc);
1519 				continue;
1520 			}
1521 		}
1522 
1523 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1524 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1525 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1526 			struct sctp_chunk *chunk;
1527 
1528 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1529 			sctp_primitive_ABORT(net, asoc, chunk);
1530 		} else
1531 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1532 	}
1533 
1534 	/* On a TCP-style socket, block for at most linger_time if set. */
1535 	if (sctp_style(sk, TCP) && timeout)
1536 		sctp_wait_for_close(sk, timeout);
1537 
1538 	/* This will run the backlog queue.  */
1539 	release_sock(sk);
1540 
1541 	/* Supposedly, no process has access to the socket, but
1542 	 * the net layers still may.
1543 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1544 	 * held and that should be grabbed before socket lock.
1545 	 */
1546 	spin_lock_bh(&net->sctp.addr_wq_lock);
1547 	bh_lock_sock(sk);
1548 
1549 	/* Hold the sock, since sk_common_release() will put sock_put()
1550 	 * and we have just a little more cleanup.
1551 	 */
1552 	sock_hold(sk);
1553 	sk_common_release(sk);
1554 
1555 	bh_unlock_sock(sk);
1556 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1557 
1558 	sock_put(sk);
1559 
1560 	SCTP_DBG_OBJCNT_DEC(sock);
1561 }
1562 
1563 /* Handle EPIPE error. */
1564 static int sctp_error(struct sock *sk, int flags, int err)
1565 {
1566 	if (err == -EPIPE)
1567 		err = sock_error(sk) ? : -EPIPE;
1568 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1569 		send_sig(SIGPIPE, current, 0);
1570 	return err;
1571 }
1572 
1573 /* API 3.1.3 sendmsg() - UDP Style Syntax
1574  *
1575  * An application uses sendmsg() and recvmsg() calls to transmit data to
1576  * and receive data from its peer.
1577  *
1578  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1579  *                  int flags);
1580  *
1581  *  socket  - the socket descriptor of the endpoint.
1582  *  message - pointer to the msghdr structure which contains a single
1583  *            user message and possibly some ancillary data.
1584  *
1585  *            See Section 5 for complete description of the data
1586  *            structures.
1587  *
1588  *  flags   - flags sent or received with the user message, see Section
1589  *            5 for complete description of the flags.
1590  *
1591  * Note:  This function could use a rewrite especially when explicit
1592  * connect support comes in.
1593  */
1594 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1595 
1596 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1597 
1598 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1599 {
1600 	struct net *net = sock_net(sk);
1601 	struct sctp_sock *sp;
1602 	struct sctp_endpoint *ep;
1603 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1604 	struct sctp_transport *transport, *chunk_tp;
1605 	struct sctp_chunk *chunk;
1606 	union sctp_addr to;
1607 	struct sockaddr *msg_name = NULL;
1608 	struct sctp_sndrcvinfo default_sinfo;
1609 	struct sctp_sndrcvinfo *sinfo;
1610 	struct sctp_initmsg *sinit;
1611 	sctp_assoc_t associd = 0;
1612 	sctp_cmsgs_t cmsgs = { NULL };
1613 	sctp_scope_t scope;
1614 	bool fill_sinfo_ttl = false, wait_connect = false;
1615 	struct sctp_datamsg *datamsg;
1616 	int msg_flags = msg->msg_flags;
1617 	__u16 sinfo_flags = 0;
1618 	long timeo;
1619 	int err;
1620 
1621 	err = 0;
1622 	sp = sctp_sk(sk);
1623 	ep = sp->ep;
1624 
1625 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1626 		 msg, msg_len, ep);
1627 
1628 	/* We cannot send a message over a TCP-style listening socket. */
1629 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1630 		err = -EPIPE;
1631 		goto out_nounlock;
1632 	}
1633 
1634 	/* Parse out the SCTP CMSGs.  */
1635 	err = sctp_msghdr_parse(msg, &cmsgs);
1636 	if (err) {
1637 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1638 		goto out_nounlock;
1639 	}
1640 
1641 	/* Fetch the destination address for this packet.  This
1642 	 * address only selects the association--it is not necessarily
1643 	 * the address we will send to.
1644 	 * For a peeled-off socket, msg_name is ignored.
1645 	 */
1646 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1647 		int msg_namelen = msg->msg_namelen;
1648 
1649 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1650 				       msg_namelen);
1651 		if (err)
1652 			return err;
1653 
1654 		if (msg_namelen > sizeof(to))
1655 			msg_namelen = sizeof(to);
1656 		memcpy(&to, msg->msg_name, msg_namelen);
1657 		msg_name = msg->msg_name;
1658 	}
1659 
1660 	sinit = cmsgs.init;
1661 	if (cmsgs.sinfo != NULL) {
1662 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1663 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1664 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1665 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1666 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1667 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1668 
1669 		sinfo = &default_sinfo;
1670 		fill_sinfo_ttl = true;
1671 	} else {
1672 		sinfo = cmsgs.srinfo;
1673 	}
1674 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1675 	if (sinfo) {
1676 		sinfo_flags = sinfo->sinfo_flags;
1677 		associd = sinfo->sinfo_assoc_id;
1678 	}
1679 
1680 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1681 		 msg_len, sinfo_flags);
1682 
1683 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1684 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1685 		err = -EINVAL;
1686 		goto out_nounlock;
1687 	}
1688 
1689 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1690 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1691 	 * If SCTP_ABORT is set, the message length could be non zero with
1692 	 * the msg_iov set to the user abort reason.
1693 	 */
1694 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1695 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1696 		err = -EINVAL;
1697 		goto out_nounlock;
1698 	}
1699 
1700 	/* If SCTP_ADDR_OVER is set, there must be an address
1701 	 * specified in msg_name.
1702 	 */
1703 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1704 		err = -EINVAL;
1705 		goto out_nounlock;
1706 	}
1707 
1708 	transport = NULL;
1709 
1710 	pr_debug("%s: about to look up association\n", __func__);
1711 
1712 	lock_sock(sk);
1713 
1714 	/* If a msg_name has been specified, assume this is to be used.  */
1715 	if (msg_name) {
1716 		/* Look for a matching association on the endpoint. */
1717 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1718 
1719 		/* If we could not find a matching association on the
1720 		 * endpoint, make sure that it is not a TCP-style
1721 		 * socket that already has an association or there is
1722 		 * no peeled-off association on another socket.
1723 		 */
1724 		if (!asoc &&
1725 		    ((sctp_style(sk, TCP) &&
1726 		      (sctp_sstate(sk, ESTABLISHED) ||
1727 		       sctp_sstate(sk, CLOSING))) ||
1728 		     sctp_endpoint_is_peeled_off(ep, &to))) {
1729 			err = -EADDRNOTAVAIL;
1730 			goto out_unlock;
1731 		}
1732 	} else {
1733 		asoc = sctp_id2assoc(sk, associd);
1734 		if (!asoc) {
1735 			err = -EPIPE;
1736 			goto out_unlock;
1737 		}
1738 	}
1739 
1740 	if (asoc) {
1741 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1742 
1743 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1744 		 * socket that has an association in CLOSED state. This can
1745 		 * happen when an accepted socket has an association that is
1746 		 * already CLOSED.
1747 		 */
1748 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1749 			err = -EPIPE;
1750 			goto out_unlock;
1751 		}
1752 
1753 		if (sinfo_flags & SCTP_EOF) {
1754 			pr_debug("%s: shutting down association:%p\n",
1755 				 __func__, asoc);
1756 
1757 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1758 			err = 0;
1759 			goto out_unlock;
1760 		}
1761 		if (sinfo_flags & SCTP_ABORT) {
1762 
1763 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1764 			if (!chunk) {
1765 				err = -ENOMEM;
1766 				goto out_unlock;
1767 			}
1768 
1769 			pr_debug("%s: aborting association:%p\n",
1770 				 __func__, asoc);
1771 
1772 			sctp_primitive_ABORT(net, asoc, chunk);
1773 			err = 0;
1774 			goto out_unlock;
1775 		}
1776 	}
1777 
1778 	/* Do we need to create the association?  */
1779 	if (!asoc) {
1780 		pr_debug("%s: there is no association yet\n", __func__);
1781 
1782 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1783 			err = -EINVAL;
1784 			goto out_unlock;
1785 		}
1786 
1787 		/* Check for invalid stream against the stream counts,
1788 		 * either the default or the user specified stream counts.
1789 		 */
1790 		if (sinfo) {
1791 			if (!sinit || !sinit->sinit_num_ostreams) {
1792 				/* Check against the defaults. */
1793 				if (sinfo->sinfo_stream >=
1794 				    sp->initmsg.sinit_num_ostreams) {
1795 					err = -EINVAL;
1796 					goto out_unlock;
1797 				}
1798 			} else {
1799 				/* Check against the requested.  */
1800 				if (sinfo->sinfo_stream >=
1801 				    sinit->sinit_num_ostreams) {
1802 					err = -EINVAL;
1803 					goto out_unlock;
1804 				}
1805 			}
1806 		}
1807 
1808 		/*
1809 		 * API 3.1.2 bind() - UDP Style Syntax
1810 		 * If a bind() or sctp_bindx() is not called prior to a
1811 		 * sendmsg() call that initiates a new association, the
1812 		 * system picks an ephemeral port and will choose an address
1813 		 * set equivalent to binding with a wildcard address.
1814 		 */
1815 		if (!ep->base.bind_addr.port) {
1816 			if (sctp_autobind(sk)) {
1817 				err = -EAGAIN;
1818 				goto out_unlock;
1819 			}
1820 		} else {
1821 			/*
1822 			 * If an unprivileged user inherits a one-to-many
1823 			 * style socket with open associations on a privileged
1824 			 * port, it MAY be permitted to accept new associations,
1825 			 * but it SHOULD NOT be permitted to open new
1826 			 * associations.
1827 			 */
1828 			if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1829 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1830 				err = -EACCES;
1831 				goto out_unlock;
1832 			}
1833 		}
1834 
1835 		scope = sctp_scope(&to);
1836 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1837 		if (!new_asoc) {
1838 			err = -ENOMEM;
1839 			goto out_unlock;
1840 		}
1841 		asoc = new_asoc;
1842 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1843 		if (err < 0) {
1844 			err = -ENOMEM;
1845 			goto out_free;
1846 		}
1847 
1848 		/* If the SCTP_INIT ancillary data is specified, set all
1849 		 * the association init values accordingly.
1850 		 */
1851 		if (sinit) {
1852 			if (sinit->sinit_num_ostreams) {
1853 				asoc->c.sinit_num_ostreams =
1854 					sinit->sinit_num_ostreams;
1855 			}
1856 			if (sinit->sinit_max_instreams) {
1857 				asoc->c.sinit_max_instreams =
1858 					sinit->sinit_max_instreams;
1859 			}
1860 			if (sinit->sinit_max_attempts) {
1861 				asoc->max_init_attempts
1862 					= sinit->sinit_max_attempts;
1863 			}
1864 			if (sinit->sinit_max_init_timeo) {
1865 				asoc->max_init_timeo =
1866 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1867 			}
1868 		}
1869 
1870 		/* Prime the peer's transport structures.  */
1871 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1872 		if (!transport) {
1873 			err = -ENOMEM;
1874 			goto out_free;
1875 		}
1876 	}
1877 
1878 	/* ASSERT: we have a valid association at this point.  */
1879 	pr_debug("%s: we have a valid association\n", __func__);
1880 
1881 	if (!sinfo) {
1882 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1883 		 * one with some defaults.
1884 		 */
1885 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1886 		default_sinfo.sinfo_stream = asoc->default_stream;
1887 		default_sinfo.sinfo_flags = asoc->default_flags;
1888 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1889 		default_sinfo.sinfo_context = asoc->default_context;
1890 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1891 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1892 
1893 		sinfo = &default_sinfo;
1894 	} else if (fill_sinfo_ttl) {
1895 		/* In case SNDINFO was specified, we still need to fill
1896 		 * it with a default ttl from the assoc here.
1897 		 */
1898 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1899 	}
1900 
1901 	/* API 7.1.7, the sndbuf size per association bounds the
1902 	 * maximum size of data that can be sent in a single send call.
1903 	 */
1904 	if (msg_len > sk->sk_sndbuf) {
1905 		err = -EMSGSIZE;
1906 		goto out_free;
1907 	}
1908 
1909 	if (asoc->pmtu_pending)
1910 		sctp_assoc_pending_pmtu(sk, asoc);
1911 
1912 	/* If fragmentation is disabled and the message length exceeds the
1913 	 * association fragmentation point, return EMSGSIZE.  The I-D
1914 	 * does not specify what this error is, but this looks like
1915 	 * a great fit.
1916 	 */
1917 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1918 		err = -EMSGSIZE;
1919 		goto out_free;
1920 	}
1921 
1922 	/* Check for invalid stream. */
1923 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1924 		err = -EINVAL;
1925 		goto out_free;
1926 	}
1927 
1928 	if (sctp_wspace(asoc) < msg_len)
1929 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1930 
1931 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1932 	if (!sctp_wspace(asoc)) {
1933 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1934 		if (err)
1935 			goto out_free;
1936 	}
1937 
1938 	/* If an address is passed with the sendto/sendmsg call, it is used
1939 	 * to override the primary destination address in the TCP model, or
1940 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1941 	 */
1942 	if ((sctp_style(sk, TCP) && msg_name) ||
1943 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1944 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1945 		if (!chunk_tp) {
1946 			err = -EINVAL;
1947 			goto out_free;
1948 		}
1949 	} else
1950 		chunk_tp = NULL;
1951 
1952 	/* Auto-connect, if we aren't connected already. */
1953 	if (sctp_state(asoc, CLOSED)) {
1954 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1955 		if (err < 0)
1956 			goto out_free;
1957 
1958 		wait_connect = true;
1959 		pr_debug("%s: we associated primitively\n", __func__);
1960 	}
1961 
1962 	/* Break the message into multiple chunks of maximum size. */
1963 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1964 	if (IS_ERR(datamsg)) {
1965 		err = PTR_ERR(datamsg);
1966 		goto out_free;
1967 	}
1968 	datamsg->force_delay = !!(msg->msg_flags & MSG_MORE);
1969 
1970 	/* Now send the (possibly) fragmented message. */
1971 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1972 		sctp_chunk_hold(chunk);
1973 
1974 		/* Do accounting for the write space.  */
1975 		sctp_set_owner_w(chunk);
1976 
1977 		chunk->transport = chunk_tp;
1978 	}
1979 
1980 	/* Send it to the lower layers.  Note:  all chunks
1981 	 * must either fail or succeed.   The lower layer
1982 	 * works that way today.  Keep it that way or this
1983 	 * breaks.
1984 	 */
1985 	err = sctp_primitive_SEND(net, asoc, datamsg);
1986 	/* Did the lower layer accept the chunk? */
1987 	if (err) {
1988 		sctp_datamsg_free(datamsg);
1989 		goto out_free;
1990 	}
1991 
1992 	pr_debug("%s: we sent primitively\n", __func__);
1993 
1994 	sctp_datamsg_put(datamsg);
1995 	err = msg_len;
1996 
1997 	if (unlikely(wait_connect)) {
1998 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1999 		sctp_wait_for_connect(asoc, &timeo);
2000 	}
2001 
2002 	/* If we are already past ASSOCIATE, the lower
2003 	 * layers are responsible for association cleanup.
2004 	 */
2005 	goto out_unlock;
2006 
2007 out_free:
2008 	if (new_asoc)
2009 		sctp_association_free(asoc);
2010 out_unlock:
2011 	release_sock(sk);
2012 
2013 out_nounlock:
2014 	return sctp_error(sk, msg_flags, err);
2015 
2016 #if 0
2017 do_sock_err:
2018 	if (msg_len)
2019 		err = msg_len;
2020 	else
2021 		err = sock_error(sk);
2022 	goto out;
2023 
2024 do_interrupted:
2025 	if (msg_len)
2026 		err = msg_len;
2027 	goto out;
2028 #endif /* 0 */
2029 }
2030 
2031 /* This is an extended version of skb_pull() that removes the data from the
2032  * start of a skb even when data is spread across the list of skb's in the
2033  * frag_list. len specifies the total amount of data that needs to be removed.
2034  * when 'len' bytes could be removed from the skb, it returns 0.
2035  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2036  * could not be removed.
2037  */
2038 static int sctp_skb_pull(struct sk_buff *skb, int len)
2039 {
2040 	struct sk_buff *list;
2041 	int skb_len = skb_headlen(skb);
2042 	int rlen;
2043 
2044 	if (len <= skb_len) {
2045 		__skb_pull(skb, len);
2046 		return 0;
2047 	}
2048 	len -= skb_len;
2049 	__skb_pull(skb, skb_len);
2050 
2051 	skb_walk_frags(skb, list) {
2052 		rlen = sctp_skb_pull(list, len);
2053 		skb->len -= (len-rlen);
2054 		skb->data_len -= (len-rlen);
2055 
2056 		if (!rlen)
2057 			return 0;
2058 
2059 		len = rlen;
2060 	}
2061 
2062 	return len;
2063 }
2064 
2065 /* API 3.1.3  recvmsg() - UDP Style Syntax
2066  *
2067  *  ssize_t recvmsg(int socket, struct msghdr *message,
2068  *                    int flags);
2069  *
2070  *  socket  - the socket descriptor of the endpoint.
2071  *  message - pointer to the msghdr structure which contains a single
2072  *            user message and possibly some ancillary data.
2073  *
2074  *            See Section 5 for complete description of the data
2075  *            structures.
2076  *
2077  *  flags   - flags sent or received with the user message, see Section
2078  *            5 for complete description of the flags.
2079  */
2080 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2081 			int noblock, int flags, int *addr_len)
2082 {
2083 	struct sctp_ulpevent *event = NULL;
2084 	struct sctp_sock *sp = sctp_sk(sk);
2085 	struct sk_buff *skb, *head_skb;
2086 	int copied;
2087 	int err = 0;
2088 	int skb_len;
2089 
2090 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2091 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2092 		 addr_len);
2093 
2094 	lock_sock(sk);
2095 
2096 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2097 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2098 		err = -ENOTCONN;
2099 		goto out;
2100 	}
2101 
2102 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2103 	if (!skb)
2104 		goto out;
2105 
2106 	/* Get the total length of the skb including any skb's in the
2107 	 * frag_list.
2108 	 */
2109 	skb_len = skb->len;
2110 
2111 	copied = skb_len;
2112 	if (copied > len)
2113 		copied = len;
2114 
2115 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2116 
2117 	event = sctp_skb2event(skb);
2118 
2119 	if (err)
2120 		goto out_free;
2121 
2122 	if (event->chunk && event->chunk->head_skb)
2123 		head_skb = event->chunk->head_skb;
2124 	else
2125 		head_skb = skb;
2126 	sock_recv_ts_and_drops(msg, sk, head_skb);
2127 	if (sctp_ulpevent_is_notification(event)) {
2128 		msg->msg_flags |= MSG_NOTIFICATION;
2129 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2130 	} else {
2131 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2132 	}
2133 
2134 	/* Check if we allow SCTP_NXTINFO. */
2135 	if (sp->recvnxtinfo)
2136 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2137 	/* Check if we allow SCTP_RCVINFO. */
2138 	if (sp->recvrcvinfo)
2139 		sctp_ulpevent_read_rcvinfo(event, msg);
2140 	/* Check if we allow SCTP_SNDRCVINFO. */
2141 	if (sp->subscribe.sctp_data_io_event)
2142 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2143 
2144 	err = copied;
2145 
2146 	/* If skb's length exceeds the user's buffer, update the skb and
2147 	 * push it back to the receive_queue so that the next call to
2148 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2149 	 */
2150 	if (skb_len > copied) {
2151 		msg->msg_flags &= ~MSG_EOR;
2152 		if (flags & MSG_PEEK)
2153 			goto out_free;
2154 		sctp_skb_pull(skb, copied);
2155 		skb_queue_head(&sk->sk_receive_queue, skb);
2156 
2157 		/* When only partial message is copied to the user, increase
2158 		 * rwnd by that amount. If all the data in the skb is read,
2159 		 * rwnd is updated when the event is freed.
2160 		 */
2161 		if (!sctp_ulpevent_is_notification(event))
2162 			sctp_assoc_rwnd_increase(event->asoc, copied);
2163 		goto out;
2164 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2165 		   (event->msg_flags & MSG_EOR))
2166 		msg->msg_flags |= MSG_EOR;
2167 	else
2168 		msg->msg_flags &= ~MSG_EOR;
2169 
2170 out_free:
2171 	if (flags & MSG_PEEK) {
2172 		/* Release the skb reference acquired after peeking the skb in
2173 		 * sctp_skb_recv_datagram().
2174 		 */
2175 		kfree_skb(skb);
2176 	} else {
2177 		/* Free the event which includes releasing the reference to
2178 		 * the owner of the skb, freeing the skb and updating the
2179 		 * rwnd.
2180 		 */
2181 		sctp_ulpevent_free(event);
2182 	}
2183 out:
2184 	release_sock(sk);
2185 	return err;
2186 }
2187 
2188 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2189  *
2190  * This option is a on/off flag.  If enabled no SCTP message
2191  * fragmentation will be performed.  Instead if a message being sent
2192  * exceeds the current PMTU size, the message will NOT be sent and
2193  * instead a error will be indicated to the user.
2194  */
2195 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2196 					     char __user *optval,
2197 					     unsigned int optlen)
2198 {
2199 	int val;
2200 
2201 	if (optlen < sizeof(int))
2202 		return -EINVAL;
2203 
2204 	if (get_user(val, (int __user *)optval))
2205 		return -EFAULT;
2206 
2207 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2208 
2209 	return 0;
2210 }
2211 
2212 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2213 				  unsigned int optlen)
2214 {
2215 	struct sctp_association *asoc;
2216 	struct sctp_ulpevent *event;
2217 
2218 	if (optlen > sizeof(struct sctp_event_subscribe))
2219 		return -EINVAL;
2220 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2221 		return -EFAULT;
2222 
2223 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2224 	 * if there is no data to be sent or retransmit, the stack will
2225 	 * immediately send up this notification.
2226 	 */
2227 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2228 				       &sctp_sk(sk)->subscribe)) {
2229 		asoc = sctp_id2assoc(sk, 0);
2230 
2231 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2232 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2233 					GFP_ATOMIC);
2234 			if (!event)
2235 				return -ENOMEM;
2236 
2237 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2238 		}
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2245  *
2246  * This socket option is applicable to the UDP-style socket only.  When
2247  * set it will cause associations that are idle for more than the
2248  * specified number of seconds to automatically close.  An association
2249  * being idle is defined an association that has NOT sent or received
2250  * user data.  The special value of '0' indicates that no automatic
2251  * close of any associations should be performed.  The option expects an
2252  * integer defining the number of seconds of idle time before an
2253  * association is closed.
2254  */
2255 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2256 				     unsigned int optlen)
2257 {
2258 	struct sctp_sock *sp = sctp_sk(sk);
2259 	struct net *net = sock_net(sk);
2260 
2261 	/* Applicable to UDP-style socket only */
2262 	if (sctp_style(sk, TCP))
2263 		return -EOPNOTSUPP;
2264 	if (optlen != sizeof(int))
2265 		return -EINVAL;
2266 	if (copy_from_user(&sp->autoclose, optval, optlen))
2267 		return -EFAULT;
2268 
2269 	if (sp->autoclose > net->sctp.max_autoclose)
2270 		sp->autoclose = net->sctp.max_autoclose;
2271 
2272 	return 0;
2273 }
2274 
2275 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2276  *
2277  * Applications can enable or disable heartbeats for any peer address of
2278  * an association, modify an address's heartbeat interval, force a
2279  * heartbeat to be sent immediately, and adjust the address's maximum
2280  * number of retransmissions sent before an address is considered
2281  * unreachable.  The following structure is used to access and modify an
2282  * address's parameters:
2283  *
2284  *  struct sctp_paddrparams {
2285  *     sctp_assoc_t            spp_assoc_id;
2286  *     struct sockaddr_storage spp_address;
2287  *     uint32_t                spp_hbinterval;
2288  *     uint16_t                spp_pathmaxrxt;
2289  *     uint32_t                spp_pathmtu;
2290  *     uint32_t                spp_sackdelay;
2291  *     uint32_t                spp_flags;
2292  * };
2293  *
2294  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2295  *                     application, and identifies the association for
2296  *                     this query.
2297  *   spp_address     - This specifies which address is of interest.
2298  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2299  *                     in milliseconds.  If a  value of zero
2300  *                     is present in this field then no changes are to
2301  *                     be made to this parameter.
2302  *   spp_pathmaxrxt  - This contains the maximum number of
2303  *                     retransmissions before this address shall be
2304  *                     considered unreachable. If a  value of zero
2305  *                     is present in this field then no changes are to
2306  *                     be made to this parameter.
2307  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2308  *                     specified here will be the "fixed" path mtu.
2309  *                     Note that if the spp_address field is empty
2310  *                     then all associations on this address will
2311  *                     have this fixed path mtu set upon them.
2312  *
2313  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2314  *                     the number of milliseconds that sacks will be delayed
2315  *                     for. This value will apply to all addresses of an
2316  *                     association if the spp_address field is empty. Note
2317  *                     also, that if delayed sack is enabled and this
2318  *                     value is set to 0, no change is made to the last
2319  *                     recorded delayed sack timer value.
2320  *
2321  *   spp_flags       - These flags are used to control various features
2322  *                     on an association. The flag field may contain
2323  *                     zero or more of the following options.
2324  *
2325  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2326  *                     specified address. Note that if the address
2327  *                     field is empty all addresses for the association
2328  *                     have heartbeats enabled upon them.
2329  *
2330  *                     SPP_HB_DISABLE - Disable heartbeats on the
2331  *                     speicifed address. Note that if the address
2332  *                     field is empty all addresses for the association
2333  *                     will have their heartbeats disabled. Note also
2334  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2335  *                     mutually exclusive, only one of these two should
2336  *                     be specified. Enabling both fields will have
2337  *                     undetermined results.
2338  *
2339  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2340  *                     to be made immediately.
2341  *
2342  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2343  *                     heartbeat delayis to be set to the value of 0
2344  *                     milliseconds.
2345  *
2346  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2347  *                     discovery upon the specified address. Note that
2348  *                     if the address feild is empty then all addresses
2349  *                     on the association are effected.
2350  *
2351  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2352  *                     discovery upon the specified address. Note that
2353  *                     if the address feild is empty then all addresses
2354  *                     on the association are effected. Not also that
2355  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2356  *                     exclusive. Enabling both will have undetermined
2357  *                     results.
2358  *
2359  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2360  *                     on delayed sack. The time specified in spp_sackdelay
2361  *                     is used to specify the sack delay for this address. Note
2362  *                     that if spp_address is empty then all addresses will
2363  *                     enable delayed sack and take on the sack delay
2364  *                     value specified in spp_sackdelay.
2365  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2366  *                     off delayed sack. If the spp_address field is blank then
2367  *                     delayed sack is disabled for the entire association. Note
2368  *                     also that this field is mutually exclusive to
2369  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2370  *                     results.
2371  */
2372 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2373 				       struct sctp_transport   *trans,
2374 				       struct sctp_association *asoc,
2375 				       struct sctp_sock        *sp,
2376 				       int                      hb_change,
2377 				       int                      pmtud_change,
2378 				       int                      sackdelay_change)
2379 {
2380 	int error;
2381 
2382 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2383 		struct net *net = sock_net(trans->asoc->base.sk);
2384 
2385 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2386 		if (error)
2387 			return error;
2388 	}
2389 
2390 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2391 	 * this field is ignored.  Note also that a value of zero indicates
2392 	 * the current setting should be left unchanged.
2393 	 */
2394 	if (params->spp_flags & SPP_HB_ENABLE) {
2395 
2396 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2397 		 * set.  This lets us use 0 value when this flag
2398 		 * is set.
2399 		 */
2400 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2401 			params->spp_hbinterval = 0;
2402 
2403 		if (params->spp_hbinterval ||
2404 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2405 			if (trans) {
2406 				trans->hbinterval =
2407 				    msecs_to_jiffies(params->spp_hbinterval);
2408 			} else if (asoc) {
2409 				asoc->hbinterval =
2410 				    msecs_to_jiffies(params->spp_hbinterval);
2411 			} else {
2412 				sp->hbinterval = params->spp_hbinterval;
2413 			}
2414 		}
2415 	}
2416 
2417 	if (hb_change) {
2418 		if (trans) {
2419 			trans->param_flags =
2420 				(trans->param_flags & ~SPP_HB) | hb_change;
2421 		} else if (asoc) {
2422 			asoc->param_flags =
2423 				(asoc->param_flags & ~SPP_HB) | hb_change;
2424 		} else {
2425 			sp->param_flags =
2426 				(sp->param_flags & ~SPP_HB) | hb_change;
2427 		}
2428 	}
2429 
2430 	/* When Path MTU discovery is disabled the value specified here will
2431 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2432 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2433 	 * effect).
2434 	 */
2435 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2436 		if (trans) {
2437 			trans->pathmtu = params->spp_pathmtu;
2438 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2439 		} else if (asoc) {
2440 			asoc->pathmtu = params->spp_pathmtu;
2441 		} else {
2442 			sp->pathmtu = params->spp_pathmtu;
2443 		}
2444 	}
2445 
2446 	if (pmtud_change) {
2447 		if (trans) {
2448 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2449 				(params->spp_flags & SPP_PMTUD_ENABLE);
2450 			trans->param_flags =
2451 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2452 			if (update) {
2453 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2454 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2455 			}
2456 		} else if (asoc) {
2457 			asoc->param_flags =
2458 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2459 		} else {
2460 			sp->param_flags =
2461 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2462 		}
2463 	}
2464 
2465 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2466 	 * value of this field is ignored.  Note also that a value of zero
2467 	 * indicates the current setting should be left unchanged.
2468 	 */
2469 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2470 		if (trans) {
2471 			trans->sackdelay =
2472 				msecs_to_jiffies(params->spp_sackdelay);
2473 		} else if (asoc) {
2474 			asoc->sackdelay =
2475 				msecs_to_jiffies(params->spp_sackdelay);
2476 		} else {
2477 			sp->sackdelay = params->spp_sackdelay;
2478 		}
2479 	}
2480 
2481 	if (sackdelay_change) {
2482 		if (trans) {
2483 			trans->param_flags =
2484 				(trans->param_flags & ~SPP_SACKDELAY) |
2485 				sackdelay_change;
2486 		} else if (asoc) {
2487 			asoc->param_flags =
2488 				(asoc->param_flags & ~SPP_SACKDELAY) |
2489 				sackdelay_change;
2490 		} else {
2491 			sp->param_flags =
2492 				(sp->param_flags & ~SPP_SACKDELAY) |
2493 				sackdelay_change;
2494 		}
2495 	}
2496 
2497 	/* Note that a value of zero indicates the current setting should be
2498 	   left unchanged.
2499 	 */
2500 	if (params->spp_pathmaxrxt) {
2501 		if (trans) {
2502 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2503 		} else if (asoc) {
2504 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2505 		} else {
2506 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2507 		}
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2514 					    char __user *optval,
2515 					    unsigned int optlen)
2516 {
2517 	struct sctp_paddrparams  params;
2518 	struct sctp_transport   *trans = NULL;
2519 	struct sctp_association *asoc = NULL;
2520 	struct sctp_sock        *sp = sctp_sk(sk);
2521 	int error;
2522 	int hb_change, pmtud_change, sackdelay_change;
2523 
2524 	if (optlen != sizeof(struct sctp_paddrparams))
2525 		return -EINVAL;
2526 
2527 	if (copy_from_user(&params, optval, optlen))
2528 		return -EFAULT;
2529 
2530 	/* Validate flags and value parameters. */
2531 	hb_change        = params.spp_flags & SPP_HB;
2532 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2533 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2534 
2535 	if (hb_change        == SPP_HB ||
2536 	    pmtud_change     == SPP_PMTUD ||
2537 	    sackdelay_change == SPP_SACKDELAY ||
2538 	    params.spp_sackdelay > 500 ||
2539 	    (params.spp_pathmtu &&
2540 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2541 		return -EINVAL;
2542 
2543 	/* If an address other than INADDR_ANY is specified, and
2544 	 * no transport is found, then the request is invalid.
2545 	 */
2546 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2547 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2548 					       params.spp_assoc_id);
2549 		if (!trans)
2550 			return -EINVAL;
2551 	}
2552 
2553 	/* Get association, if assoc_id != 0 and the socket is a one
2554 	 * to many style socket, and an association was not found, then
2555 	 * the id was invalid.
2556 	 */
2557 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2558 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2559 		return -EINVAL;
2560 
2561 	/* Heartbeat demand can only be sent on a transport or
2562 	 * association, but not a socket.
2563 	 */
2564 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2565 		return -EINVAL;
2566 
2567 	/* Process parameters. */
2568 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2569 					    hb_change, pmtud_change,
2570 					    sackdelay_change);
2571 
2572 	if (error)
2573 		return error;
2574 
2575 	/* If changes are for association, also apply parameters to each
2576 	 * transport.
2577 	 */
2578 	if (!trans && asoc) {
2579 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2580 				transports) {
2581 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2582 						    hb_change, pmtud_change,
2583 						    sackdelay_change);
2584 		}
2585 	}
2586 
2587 	return 0;
2588 }
2589 
2590 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2591 {
2592 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2593 }
2594 
2595 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2596 {
2597 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2598 }
2599 
2600 /*
2601  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2602  *
2603  * This option will effect the way delayed acks are performed.  This
2604  * option allows you to get or set the delayed ack time, in
2605  * milliseconds.  It also allows changing the delayed ack frequency.
2606  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2607  * the assoc_id is 0, then this sets or gets the endpoints default
2608  * values.  If the assoc_id field is non-zero, then the set or get
2609  * effects the specified association for the one to many model (the
2610  * assoc_id field is ignored by the one to one model).  Note that if
2611  * sack_delay or sack_freq are 0 when setting this option, then the
2612  * current values will remain unchanged.
2613  *
2614  * struct sctp_sack_info {
2615  *     sctp_assoc_t            sack_assoc_id;
2616  *     uint32_t                sack_delay;
2617  *     uint32_t                sack_freq;
2618  * };
2619  *
2620  * sack_assoc_id -  This parameter, indicates which association the user
2621  *    is performing an action upon.  Note that if this field's value is
2622  *    zero then the endpoints default value is changed (effecting future
2623  *    associations only).
2624  *
2625  * sack_delay -  This parameter contains the number of milliseconds that
2626  *    the user is requesting the delayed ACK timer be set to.  Note that
2627  *    this value is defined in the standard to be between 200 and 500
2628  *    milliseconds.
2629  *
2630  * sack_freq -  This parameter contains the number of packets that must
2631  *    be received before a sack is sent without waiting for the delay
2632  *    timer to expire.  The default value for this is 2, setting this
2633  *    value to 1 will disable the delayed sack algorithm.
2634  */
2635 
2636 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2637 				       char __user *optval, unsigned int optlen)
2638 {
2639 	struct sctp_sack_info    params;
2640 	struct sctp_transport   *trans = NULL;
2641 	struct sctp_association *asoc = NULL;
2642 	struct sctp_sock        *sp = sctp_sk(sk);
2643 
2644 	if (optlen == sizeof(struct sctp_sack_info)) {
2645 		if (copy_from_user(&params, optval, optlen))
2646 			return -EFAULT;
2647 
2648 		if (params.sack_delay == 0 && params.sack_freq == 0)
2649 			return 0;
2650 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2651 		pr_warn_ratelimited(DEPRECATED
2652 				    "%s (pid %d) "
2653 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2654 				    "Use struct sctp_sack_info instead\n",
2655 				    current->comm, task_pid_nr(current));
2656 		if (copy_from_user(&params, optval, optlen))
2657 			return -EFAULT;
2658 
2659 		if (params.sack_delay == 0)
2660 			params.sack_freq = 1;
2661 		else
2662 			params.sack_freq = 0;
2663 	} else
2664 		return -EINVAL;
2665 
2666 	/* Validate value parameter. */
2667 	if (params.sack_delay > 500)
2668 		return -EINVAL;
2669 
2670 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2671 	 * to many style socket, and an association was not found, then
2672 	 * the id was invalid.
2673 	 */
2674 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2675 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2676 		return -EINVAL;
2677 
2678 	if (params.sack_delay) {
2679 		if (asoc) {
2680 			asoc->sackdelay =
2681 				msecs_to_jiffies(params.sack_delay);
2682 			asoc->param_flags =
2683 				sctp_spp_sackdelay_enable(asoc->param_flags);
2684 		} else {
2685 			sp->sackdelay = params.sack_delay;
2686 			sp->param_flags =
2687 				sctp_spp_sackdelay_enable(sp->param_flags);
2688 		}
2689 	}
2690 
2691 	if (params.sack_freq == 1) {
2692 		if (asoc) {
2693 			asoc->param_flags =
2694 				sctp_spp_sackdelay_disable(asoc->param_flags);
2695 		} else {
2696 			sp->param_flags =
2697 				sctp_spp_sackdelay_disable(sp->param_flags);
2698 		}
2699 	} else if (params.sack_freq > 1) {
2700 		if (asoc) {
2701 			asoc->sackfreq = params.sack_freq;
2702 			asoc->param_flags =
2703 				sctp_spp_sackdelay_enable(asoc->param_flags);
2704 		} else {
2705 			sp->sackfreq = params.sack_freq;
2706 			sp->param_flags =
2707 				sctp_spp_sackdelay_enable(sp->param_flags);
2708 		}
2709 	}
2710 
2711 	/* If change is for association, also apply to each transport. */
2712 	if (asoc) {
2713 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2714 				transports) {
2715 			if (params.sack_delay) {
2716 				trans->sackdelay =
2717 					msecs_to_jiffies(params.sack_delay);
2718 				trans->param_flags =
2719 					sctp_spp_sackdelay_enable(trans->param_flags);
2720 			}
2721 			if (params.sack_freq == 1) {
2722 				trans->param_flags =
2723 					sctp_spp_sackdelay_disable(trans->param_flags);
2724 			} else if (params.sack_freq > 1) {
2725 				trans->sackfreq = params.sack_freq;
2726 				trans->param_flags =
2727 					sctp_spp_sackdelay_enable(trans->param_flags);
2728 			}
2729 		}
2730 	}
2731 
2732 	return 0;
2733 }
2734 
2735 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2736  *
2737  * Applications can specify protocol parameters for the default association
2738  * initialization.  The option name argument to setsockopt() and getsockopt()
2739  * is SCTP_INITMSG.
2740  *
2741  * Setting initialization parameters is effective only on an unconnected
2742  * socket (for UDP-style sockets only future associations are effected
2743  * by the change).  With TCP-style sockets, this option is inherited by
2744  * sockets derived from a listener socket.
2745  */
2746 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2747 {
2748 	struct sctp_initmsg sinit;
2749 	struct sctp_sock *sp = sctp_sk(sk);
2750 
2751 	if (optlen != sizeof(struct sctp_initmsg))
2752 		return -EINVAL;
2753 	if (copy_from_user(&sinit, optval, optlen))
2754 		return -EFAULT;
2755 
2756 	if (sinit.sinit_num_ostreams)
2757 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2758 	if (sinit.sinit_max_instreams)
2759 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2760 	if (sinit.sinit_max_attempts)
2761 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2762 	if (sinit.sinit_max_init_timeo)
2763 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2764 
2765 	return 0;
2766 }
2767 
2768 /*
2769  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2770  *
2771  *   Applications that wish to use the sendto() system call may wish to
2772  *   specify a default set of parameters that would normally be supplied
2773  *   through the inclusion of ancillary data.  This socket option allows
2774  *   such an application to set the default sctp_sndrcvinfo structure.
2775  *   The application that wishes to use this socket option simply passes
2776  *   in to this call the sctp_sndrcvinfo structure defined in Section
2777  *   5.2.2) The input parameters accepted by this call include
2778  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2779  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2780  *   to this call if the caller is using the UDP model.
2781  */
2782 static int sctp_setsockopt_default_send_param(struct sock *sk,
2783 					      char __user *optval,
2784 					      unsigned int optlen)
2785 {
2786 	struct sctp_sock *sp = sctp_sk(sk);
2787 	struct sctp_association *asoc;
2788 	struct sctp_sndrcvinfo info;
2789 
2790 	if (optlen != sizeof(info))
2791 		return -EINVAL;
2792 	if (copy_from_user(&info, optval, optlen))
2793 		return -EFAULT;
2794 	if (info.sinfo_flags &
2795 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2796 	      SCTP_ABORT | SCTP_EOF))
2797 		return -EINVAL;
2798 
2799 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2800 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2801 		return -EINVAL;
2802 	if (asoc) {
2803 		asoc->default_stream = info.sinfo_stream;
2804 		asoc->default_flags = info.sinfo_flags;
2805 		asoc->default_ppid = info.sinfo_ppid;
2806 		asoc->default_context = info.sinfo_context;
2807 		asoc->default_timetolive = info.sinfo_timetolive;
2808 	} else {
2809 		sp->default_stream = info.sinfo_stream;
2810 		sp->default_flags = info.sinfo_flags;
2811 		sp->default_ppid = info.sinfo_ppid;
2812 		sp->default_context = info.sinfo_context;
2813 		sp->default_timetolive = info.sinfo_timetolive;
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2820  * (SCTP_DEFAULT_SNDINFO)
2821  */
2822 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2823 					   char __user *optval,
2824 					   unsigned int optlen)
2825 {
2826 	struct sctp_sock *sp = sctp_sk(sk);
2827 	struct sctp_association *asoc;
2828 	struct sctp_sndinfo info;
2829 
2830 	if (optlen != sizeof(info))
2831 		return -EINVAL;
2832 	if (copy_from_user(&info, optval, optlen))
2833 		return -EFAULT;
2834 	if (info.snd_flags &
2835 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2836 	      SCTP_ABORT | SCTP_EOF))
2837 		return -EINVAL;
2838 
2839 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2840 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2841 		return -EINVAL;
2842 	if (asoc) {
2843 		asoc->default_stream = info.snd_sid;
2844 		asoc->default_flags = info.snd_flags;
2845 		asoc->default_ppid = info.snd_ppid;
2846 		asoc->default_context = info.snd_context;
2847 	} else {
2848 		sp->default_stream = info.snd_sid;
2849 		sp->default_flags = info.snd_flags;
2850 		sp->default_ppid = info.snd_ppid;
2851 		sp->default_context = info.snd_context;
2852 	}
2853 
2854 	return 0;
2855 }
2856 
2857 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2858  *
2859  * Requests that the local SCTP stack use the enclosed peer address as
2860  * the association primary.  The enclosed address must be one of the
2861  * association peer's addresses.
2862  */
2863 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2864 					unsigned int optlen)
2865 {
2866 	struct sctp_prim prim;
2867 	struct sctp_transport *trans;
2868 
2869 	if (optlen != sizeof(struct sctp_prim))
2870 		return -EINVAL;
2871 
2872 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2873 		return -EFAULT;
2874 
2875 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2876 	if (!trans)
2877 		return -EINVAL;
2878 
2879 	sctp_assoc_set_primary(trans->asoc, trans);
2880 
2881 	return 0;
2882 }
2883 
2884 /*
2885  * 7.1.5 SCTP_NODELAY
2886  *
2887  * Turn on/off any Nagle-like algorithm.  This means that packets are
2888  * generally sent as soon as possible and no unnecessary delays are
2889  * introduced, at the cost of more packets in the network.  Expects an
2890  *  integer boolean flag.
2891  */
2892 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2893 				   unsigned int optlen)
2894 {
2895 	int val;
2896 
2897 	if (optlen < sizeof(int))
2898 		return -EINVAL;
2899 	if (get_user(val, (int __user *)optval))
2900 		return -EFAULT;
2901 
2902 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2903 	return 0;
2904 }
2905 
2906 /*
2907  *
2908  * 7.1.1 SCTP_RTOINFO
2909  *
2910  * The protocol parameters used to initialize and bound retransmission
2911  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2912  * and modify these parameters.
2913  * All parameters are time values, in milliseconds.  A value of 0, when
2914  * modifying the parameters, indicates that the current value should not
2915  * be changed.
2916  *
2917  */
2918 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2919 {
2920 	struct sctp_rtoinfo rtoinfo;
2921 	struct sctp_association *asoc;
2922 	unsigned long rto_min, rto_max;
2923 	struct sctp_sock *sp = sctp_sk(sk);
2924 
2925 	if (optlen != sizeof (struct sctp_rtoinfo))
2926 		return -EINVAL;
2927 
2928 	if (copy_from_user(&rtoinfo, optval, optlen))
2929 		return -EFAULT;
2930 
2931 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2932 
2933 	/* Set the values to the specific association */
2934 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2935 		return -EINVAL;
2936 
2937 	rto_max = rtoinfo.srto_max;
2938 	rto_min = rtoinfo.srto_min;
2939 
2940 	if (rto_max)
2941 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2942 	else
2943 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2944 
2945 	if (rto_min)
2946 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2947 	else
2948 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2949 
2950 	if (rto_min > rto_max)
2951 		return -EINVAL;
2952 
2953 	if (asoc) {
2954 		if (rtoinfo.srto_initial != 0)
2955 			asoc->rto_initial =
2956 				msecs_to_jiffies(rtoinfo.srto_initial);
2957 		asoc->rto_max = rto_max;
2958 		asoc->rto_min = rto_min;
2959 	} else {
2960 		/* If there is no association or the association-id = 0
2961 		 * set the values to the endpoint.
2962 		 */
2963 		if (rtoinfo.srto_initial != 0)
2964 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2965 		sp->rtoinfo.srto_max = rto_max;
2966 		sp->rtoinfo.srto_min = rto_min;
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 /*
2973  *
2974  * 7.1.2 SCTP_ASSOCINFO
2975  *
2976  * This option is used to tune the maximum retransmission attempts
2977  * of the association.
2978  * Returns an error if the new association retransmission value is
2979  * greater than the sum of the retransmission value  of the peer.
2980  * See [SCTP] for more information.
2981  *
2982  */
2983 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2984 {
2985 
2986 	struct sctp_assocparams assocparams;
2987 	struct sctp_association *asoc;
2988 
2989 	if (optlen != sizeof(struct sctp_assocparams))
2990 		return -EINVAL;
2991 	if (copy_from_user(&assocparams, optval, optlen))
2992 		return -EFAULT;
2993 
2994 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2995 
2996 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2997 		return -EINVAL;
2998 
2999 	/* Set the values to the specific association */
3000 	if (asoc) {
3001 		if (assocparams.sasoc_asocmaxrxt != 0) {
3002 			__u32 path_sum = 0;
3003 			int   paths = 0;
3004 			struct sctp_transport *peer_addr;
3005 
3006 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3007 					transports) {
3008 				path_sum += peer_addr->pathmaxrxt;
3009 				paths++;
3010 			}
3011 
3012 			/* Only validate asocmaxrxt if we have more than
3013 			 * one path/transport.  We do this because path
3014 			 * retransmissions are only counted when we have more
3015 			 * then one path.
3016 			 */
3017 			if (paths > 1 &&
3018 			    assocparams.sasoc_asocmaxrxt > path_sum)
3019 				return -EINVAL;
3020 
3021 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3022 		}
3023 
3024 		if (assocparams.sasoc_cookie_life != 0)
3025 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3026 	} else {
3027 		/* Set the values to the endpoint */
3028 		struct sctp_sock *sp = sctp_sk(sk);
3029 
3030 		if (assocparams.sasoc_asocmaxrxt != 0)
3031 			sp->assocparams.sasoc_asocmaxrxt =
3032 						assocparams.sasoc_asocmaxrxt;
3033 		if (assocparams.sasoc_cookie_life != 0)
3034 			sp->assocparams.sasoc_cookie_life =
3035 						assocparams.sasoc_cookie_life;
3036 	}
3037 	return 0;
3038 }
3039 
3040 /*
3041  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3042  *
3043  * This socket option is a boolean flag which turns on or off mapped V4
3044  * addresses.  If this option is turned on and the socket is type
3045  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3046  * If this option is turned off, then no mapping will be done of V4
3047  * addresses and a user will receive both PF_INET6 and PF_INET type
3048  * addresses on the socket.
3049  */
3050 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3051 {
3052 	int val;
3053 	struct sctp_sock *sp = sctp_sk(sk);
3054 
3055 	if (optlen < sizeof(int))
3056 		return -EINVAL;
3057 	if (get_user(val, (int __user *)optval))
3058 		return -EFAULT;
3059 	if (val)
3060 		sp->v4mapped = 1;
3061 	else
3062 		sp->v4mapped = 0;
3063 
3064 	return 0;
3065 }
3066 
3067 /*
3068  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3069  * This option will get or set the maximum size to put in any outgoing
3070  * SCTP DATA chunk.  If a message is larger than this size it will be
3071  * fragmented by SCTP into the specified size.  Note that the underlying
3072  * SCTP implementation may fragment into smaller sized chunks when the
3073  * PMTU of the underlying association is smaller than the value set by
3074  * the user.  The default value for this option is '0' which indicates
3075  * the user is NOT limiting fragmentation and only the PMTU will effect
3076  * SCTP's choice of DATA chunk size.  Note also that values set larger
3077  * than the maximum size of an IP datagram will effectively let SCTP
3078  * control fragmentation (i.e. the same as setting this option to 0).
3079  *
3080  * The following structure is used to access and modify this parameter:
3081  *
3082  * struct sctp_assoc_value {
3083  *   sctp_assoc_t assoc_id;
3084  *   uint32_t assoc_value;
3085  * };
3086  *
3087  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3088  *    For one-to-many style sockets this parameter indicates which
3089  *    association the user is performing an action upon.  Note that if
3090  *    this field's value is zero then the endpoints default value is
3091  *    changed (effecting future associations only).
3092  * assoc_value:  This parameter specifies the maximum size in bytes.
3093  */
3094 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3095 {
3096 	struct sctp_assoc_value params;
3097 	struct sctp_association *asoc;
3098 	struct sctp_sock *sp = sctp_sk(sk);
3099 	int val;
3100 
3101 	if (optlen == sizeof(int)) {
3102 		pr_warn_ratelimited(DEPRECATED
3103 				    "%s (pid %d) "
3104 				    "Use of int in maxseg socket option.\n"
3105 				    "Use struct sctp_assoc_value instead\n",
3106 				    current->comm, task_pid_nr(current));
3107 		if (copy_from_user(&val, optval, optlen))
3108 			return -EFAULT;
3109 		params.assoc_id = 0;
3110 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3111 		if (copy_from_user(&params, optval, optlen))
3112 			return -EFAULT;
3113 		val = params.assoc_value;
3114 	} else
3115 		return -EINVAL;
3116 
3117 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3118 		return -EINVAL;
3119 
3120 	asoc = sctp_id2assoc(sk, params.assoc_id);
3121 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3122 		return -EINVAL;
3123 
3124 	if (asoc) {
3125 		if (val == 0) {
3126 			val = asoc->pathmtu;
3127 			val -= sp->pf->af->net_header_len;
3128 			val -= sizeof(struct sctphdr) +
3129 					sizeof(struct sctp_data_chunk);
3130 		}
3131 		asoc->user_frag = val;
3132 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3133 	} else {
3134 		sp->user_frag = val;
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 
3141 /*
3142  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3143  *
3144  *   Requests that the peer mark the enclosed address as the association
3145  *   primary. The enclosed address must be one of the association's
3146  *   locally bound addresses. The following structure is used to make a
3147  *   set primary request:
3148  */
3149 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3150 					     unsigned int optlen)
3151 {
3152 	struct net *net = sock_net(sk);
3153 	struct sctp_sock	*sp;
3154 	struct sctp_association	*asoc = NULL;
3155 	struct sctp_setpeerprim	prim;
3156 	struct sctp_chunk	*chunk;
3157 	struct sctp_af		*af;
3158 	int 			err;
3159 
3160 	sp = sctp_sk(sk);
3161 
3162 	if (!net->sctp.addip_enable)
3163 		return -EPERM;
3164 
3165 	if (optlen != sizeof(struct sctp_setpeerprim))
3166 		return -EINVAL;
3167 
3168 	if (copy_from_user(&prim, optval, optlen))
3169 		return -EFAULT;
3170 
3171 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3172 	if (!asoc)
3173 		return -EINVAL;
3174 
3175 	if (!asoc->peer.asconf_capable)
3176 		return -EPERM;
3177 
3178 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3179 		return -EPERM;
3180 
3181 	if (!sctp_state(asoc, ESTABLISHED))
3182 		return -ENOTCONN;
3183 
3184 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3185 	if (!af)
3186 		return -EINVAL;
3187 
3188 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3189 		return -EADDRNOTAVAIL;
3190 
3191 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3192 		return -EADDRNOTAVAIL;
3193 
3194 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3195 	chunk = sctp_make_asconf_set_prim(asoc,
3196 					  (union sctp_addr *)&prim.sspp_addr);
3197 	if (!chunk)
3198 		return -ENOMEM;
3199 
3200 	err = sctp_send_asconf(asoc, chunk);
3201 
3202 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3203 
3204 	return err;
3205 }
3206 
3207 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3208 					    unsigned int optlen)
3209 {
3210 	struct sctp_setadaptation adaptation;
3211 
3212 	if (optlen != sizeof(struct sctp_setadaptation))
3213 		return -EINVAL;
3214 	if (copy_from_user(&adaptation, optval, optlen))
3215 		return -EFAULT;
3216 
3217 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3218 
3219 	return 0;
3220 }
3221 
3222 /*
3223  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3224  *
3225  * The context field in the sctp_sndrcvinfo structure is normally only
3226  * used when a failed message is retrieved holding the value that was
3227  * sent down on the actual send call.  This option allows the setting of
3228  * a default context on an association basis that will be received on
3229  * reading messages from the peer.  This is especially helpful in the
3230  * one-2-many model for an application to keep some reference to an
3231  * internal state machine that is processing messages on the
3232  * association.  Note that the setting of this value only effects
3233  * received messages from the peer and does not effect the value that is
3234  * saved with outbound messages.
3235  */
3236 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3237 				   unsigned int optlen)
3238 {
3239 	struct sctp_assoc_value params;
3240 	struct sctp_sock *sp;
3241 	struct sctp_association *asoc;
3242 
3243 	if (optlen != sizeof(struct sctp_assoc_value))
3244 		return -EINVAL;
3245 	if (copy_from_user(&params, optval, optlen))
3246 		return -EFAULT;
3247 
3248 	sp = sctp_sk(sk);
3249 
3250 	if (params.assoc_id != 0) {
3251 		asoc = sctp_id2assoc(sk, params.assoc_id);
3252 		if (!asoc)
3253 			return -EINVAL;
3254 		asoc->default_rcv_context = params.assoc_value;
3255 	} else {
3256 		sp->default_rcv_context = params.assoc_value;
3257 	}
3258 
3259 	return 0;
3260 }
3261 
3262 /*
3263  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3264  *
3265  * This options will at a minimum specify if the implementation is doing
3266  * fragmented interleave.  Fragmented interleave, for a one to many
3267  * socket, is when subsequent calls to receive a message may return
3268  * parts of messages from different associations.  Some implementations
3269  * may allow you to turn this value on or off.  If so, when turned off,
3270  * no fragment interleave will occur (which will cause a head of line
3271  * blocking amongst multiple associations sharing the same one to many
3272  * socket).  When this option is turned on, then each receive call may
3273  * come from a different association (thus the user must receive data
3274  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3275  * association each receive belongs to.
3276  *
3277  * This option takes a boolean value.  A non-zero value indicates that
3278  * fragmented interleave is on.  A value of zero indicates that
3279  * fragmented interleave is off.
3280  *
3281  * Note that it is important that an implementation that allows this
3282  * option to be turned on, have it off by default.  Otherwise an unaware
3283  * application using the one to many model may become confused and act
3284  * incorrectly.
3285  */
3286 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3287 					       char __user *optval,
3288 					       unsigned int optlen)
3289 {
3290 	int val;
3291 
3292 	if (optlen != sizeof(int))
3293 		return -EINVAL;
3294 	if (get_user(val, (int __user *)optval))
3295 		return -EFAULT;
3296 
3297 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3298 
3299 	return 0;
3300 }
3301 
3302 /*
3303  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3304  *       (SCTP_PARTIAL_DELIVERY_POINT)
3305  *
3306  * This option will set or get the SCTP partial delivery point.  This
3307  * point is the size of a message where the partial delivery API will be
3308  * invoked to help free up rwnd space for the peer.  Setting this to a
3309  * lower value will cause partial deliveries to happen more often.  The
3310  * calls argument is an integer that sets or gets the partial delivery
3311  * point.  Note also that the call will fail if the user attempts to set
3312  * this value larger than the socket receive buffer size.
3313  *
3314  * Note that any single message having a length smaller than or equal to
3315  * the SCTP partial delivery point will be delivered in one single read
3316  * call as long as the user provided buffer is large enough to hold the
3317  * message.
3318  */
3319 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3320 						  char __user *optval,
3321 						  unsigned int optlen)
3322 {
3323 	u32 val;
3324 
3325 	if (optlen != sizeof(u32))
3326 		return -EINVAL;
3327 	if (get_user(val, (int __user *)optval))
3328 		return -EFAULT;
3329 
3330 	/* Note: We double the receive buffer from what the user sets
3331 	 * it to be, also initial rwnd is based on rcvbuf/2.
3332 	 */
3333 	if (val > (sk->sk_rcvbuf >> 1))
3334 		return -EINVAL;
3335 
3336 	sctp_sk(sk)->pd_point = val;
3337 
3338 	return 0; /* is this the right error code? */
3339 }
3340 
3341 /*
3342  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3343  *
3344  * This option will allow a user to change the maximum burst of packets
3345  * that can be emitted by this association.  Note that the default value
3346  * is 4, and some implementations may restrict this setting so that it
3347  * can only be lowered.
3348  *
3349  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3350  * future associations inheriting the socket value.
3351  */
3352 static int sctp_setsockopt_maxburst(struct sock *sk,
3353 				    char __user *optval,
3354 				    unsigned int optlen)
3355 {
3356 	struct sctp_assoc_value params;
3357 	struct sctp_sock *sp;
3358 	struct sctp_association *asoc;
3359 	int val;
3360 	int assoc_id = 0;
3361 
3362 	if (optlen == sizeof(int)) {
3363 		pr_warn_ratelimited(DEPRECATED
3364 				    "%s (pid %d) "
3365 				    "Use of int in max_burst socket option deprecated.\n"
3366 				    "Use struct sctp_assoc_value instead\n",
3367 				    current->comm, task_pid_nr(current));
3368 		if (copy_from_user(&val, optval, optlen))
3369 			return -EFAULT;
3370 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3371 		if (copy_from_user(&params, optval, optlen))
3372 			return -EFAULT;
3373 		val = params.assoc_value;
3374 		assoc_id = params.assoc_id;
3375 	} else
3376 		return -EINVAL;
3377 
3378 	sp = sctp_sk(sk);
3379 
3380 	if (assoc_id != 0) {
3381 		asoc = sctp_id2assoc(sk, assoc_id);
3382 		if (!asoc)
3383 			return -EINVAL;
3384 		asoc->max_burst = val;
3385 	} else
3386 		sp->max_burst = val;
3387 
3388 	return 0;
3389 }
3390 
3391 /*
3392  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3393  *
3394  * This set option adds a chunk type that the user is requesting to be
3395  * received only in an authenticated way.  Changes to the list of chunks
3396  * will only effect future associations on the socket.
3397  */
3398 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3399 				      char __user *optval,
3400 				      unsigned int optlen)
3401 {
3402 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3403 	struct sctp_authchunk val;
3404 
3405 	if (!ep->auth_enable)
3406 		return -EACCES;
3407 
3408 	if (optlen != sizeof(struct sctp_authchunk))
3409 		return -EINVAL;
3410 	if (copy_from_user(&val, optval, optlen))
3411 		return -EFAULT;
3412 
3413 	switch (val.sauth_chunk) {
3414 	case SCTP_CID_INIT:
3415 	case SCTP_CID_INIT_ACK:
3416 	case SCTP_CID_SHUTDOWN_COMPLETE:
3417 	case SCTP_CID_AUTH:
3418 		return -EINVAL;
3419 	}
3420 
3421 	/* add this chunk id to the endpoint */
3422 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3423 }
3424 
3425 /*
3426  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3427  *
3428  * This option gets or sets the list of HMAC algorithms that the local
3429  * endpoint requires the peer to use.
3430  */
3431 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3432 				      char __user *optval,
3433 				      unsigned int optlen)
3434 {
3435 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3436 	struct sctp_hmacalgo *hmacs;
3437 	u32 idents;
3438 	int err;
3439 
3440 	if (!ep->auth_enable)
3441 		return -EACCES;
3442 
3443 	if (optlen < sizeof(struct sctp_hmacalgo))
3444 		return -EINVAL;
3445 
3446 	hmacs = memdup_user(optval, optlen);
3447 	if (IS_ERR(hmacs))
3448 		return PTR_ERR(hmacs);
3449 
3450 	idents = hmacs->shmac_num_idents;
3451 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3452 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3453 		err = -EINVAL;
3454 		goto out;
3455 	}
3456 
3457 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3458 out:
3459 	kfree(hmacs);
3460 	return err;
3461 }
3462 
3463 /*
3464  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3465  *
3466  * This option will set a shared secret key which is used to build an
3467  * association shared key.
3468  */
3469 static int sctp_setsockopt_auth_key(struct sock *sk,
3470 				    char __user *optval,
3471 				    unsigned int optlen)
3472 {
3473 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3474 	struct sctp_authkey *authkey;
3475 	struct sctp_association *asoc;
3476 	int ret;
3477 
3478 	if (!ep->auth_enable)
3479 		return -EACCES;
3480 
3481 	if (optlen <= sizeof(struct sctp_authkey))
3482 		return -EINVAL;
3483 
3484 	authkey = memdup_user(optval, optlen);
3485 	if (IS_ERR(authkey))
3486 		return PTR_ERR(authkey);
3487 
3488 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3489 		ret = -EINVAL;
3490 		goto out;
3491 	}
3492 
3493 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3494 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3495 		ret = -EINVAL;
3496 		goto out;
3497 	}
3498 
3499 	ret = sctp_auth_set_key(ep, asoc, authkey);
3500 out:
3501 	kzfree(authkey);
3502 	return ret;
3503 }
3504 
3505 /*
3506  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3507  *
3508  * This option will get or set the active shared key to be used to build
3509  * the association shared key.
3510  */
3511 static int sctp_setsockopt_active_key(struct sock *sk,
3512 				      char __user *optval,
3513 				      unsigned int optlen)
3514 {
3515 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3516 	struct sctp_authkeyid val;
3517 	struct sctp_association *asoc;
3518 
3519 	if (!ep->auth_enable)
3520 		return -EACCES;
3521 
3522 	if (optlen != sizeof(struct sctp_authkeyid))
3523 		return -EINVAL;
3524 	if (copy_from_user(&val, optval, optlen))
3525 		return -EFAULT;
3526 
3527 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3528 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3529 		return -EINVAL;
3530 
3531 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3532 }
3533 
3534 /*
3535  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3536  *
3537  * This set option will delete a shared secret key from use.
3538  */
3539 static int sctp_setsockopt_del_key(struct sock *sk,
3540 				   char __user *optval,
3541 				   unsigned int optlen)
3542 {
3543 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3544 	struct sctp_authkeyid val;
3545 	struct sctp_association *asoc;
3546 
3547 	if (!ep->auth_enable)
3548 		return -EACCES;
3549 
3550 	if (optlen != sizeof(struct sctp_authkeyid))
3551 		return -EINVAL;
3552 	if (copy_from_user(&val, optval, optlen))
3553 		return -EFAULT;
3554 
3555 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3556 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3557 		return -EINVAL;
3558 
3559 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3560 
3561 }
3562 
3563 /*
3564  * 8.1.23 SCTP_AUTO_ASCONF
3565  *
3566  * This option will enable or disable the use of the automatic generation of
3567  * ASCONF chunks to add and delete addresses to an existing association.  Note
3568  * that this option has two caveats namely: a) it only affects sockets that
3569  * are bound to all addresses available to the SCTP stack, and b) the system
3570  * administrator may have an overriding control that turns the ASCONF feature
3571  * off no matter what setting the socket option may have.
3572  * This option expects an integer boolean flag, where a non-zero value turns on
3573  * the option, and a zero value turns off the option.
3574  * Note. In this implementation, socket operation overrides default parameter
3575  * being set by sysctl as well as FreeBSD implementation
3576  */
3577 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3578 					unsigned int optlen)
3579 {
3580 	int val;
3581 	struct sctp_sock *sp = sctp_sk(sk);
3582 
3583 	if (optlen < sizeof(int))
3584 		return -EINVAL;
3585 	if (get_user(val, (int __user *)optval))
3586 		return -EFAULT;
3587 	if (!sctp_is_ep_boundall(sk) && val)
3588 		return -EINVAL;
3589 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3590 		return 0;
3591 
3592 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3593 	if (val == 0 && sp->do_auto_asconf) {
3594 		list_del(&sp->auto_asconf_list);
3595 		sp->do_auto_asconf = 0;
3596 	} else if (val && !sp->do_auto_asconf) {
3597 		list_add_tail(&sp->auto_asconf_list,
3598 		    &sock_net(sk)->sctp.auto_asconf_splist);
3599 		sp->do_auto_asconf = 1;
3600 	}
3601 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3602 	return 0;
3603 }
3604 
3605 /*
3606  * SCTP_PEER_ADDR_THLDS
3607  *
3608  * This option allows us to alter the partially failed threshold for one or all
3609  * transports in an association.  See Section 6.1 of:
3610  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3611  */
3612 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3613 					    char __user *optval,
3614 					    unsigned int optlen)
3615 {
3616 	struct sctp_paddrthlds val;
3617 	struct sctp_transport *trans;
3618 	struct sctp_association *asoc;
3619 
3620 	if (optlen < sizeof(struct sctp_paddrthlds))
3621 		return -EINVAL;
3622 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3623 			   sizeof(struct sctp_paddrthlds)))
3624 		return -EFAULT;
3625 
3626 
3627 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3628 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3629 		if (!asoc)
3630 			return -ENOENT;
3631 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3632 				    transports) {
3633 			if (val.spt_pathmaxrxt)
3634 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3635 			trans->pf_retrans = val.spt_pathpfthld;
3636 		}
3637 
3638 		if (val.spt_pathmaxrxt)
3639 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3640 		asoc->pf_retrans = val.spt_pathpfthld;
3641 	} else {
3642 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3643 					       val.spt_assoc_id);
3644 		if (!trans)
3645 			return -ENOENT;
3646 
3647 		if (val.spt_pathmaxrxt)
3648 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3649 		trans->pf_retrans = val.spt_pathpfthld;
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3656 				       char __user *optval,
3657 				       unsigned int optlen)
3658 {
3659 	int val;
3660 
3661 	if (optlen < sizeof(int))
3662 		return -EINVAL;
3663 	if (get_user(val, (int __user *) optval))
3664 		return -EFAULT;
3665 
3666 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3667 
3668 	return 0;
3669 }
3670 
3671 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3672 				       char __user *optval,
3673 				       unsigned int optlen)
3674 {
3675 	int val;
3676 
3677 	if (optlen < sizeof(int))
3678 		return -EINVAL;
3679 	if (get_user(val, (int __user *) optval))
3680 		return -EFAULT;
3681 
3682 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3683 
3684 	return 0;
3685 }
3686 
3687 static int sctp_setsockopt_pr_supported(struct sock *sk,
3688 					char __user *optval,
3689 					unsigned int optlen)
3690 {
3691 	struct sctp_assoc_value params;
3692 	struct sctp_association *asoc;
3693 	int retval = -EINVAL;
3694 
3695 	if (optlen != sizeof(params))
3696 		goto out;
3697 
3698 	if (copy_from_user(&params, optval, optlen)) {
3699 		retval = -EFAULT;
3700 		goto out;
3701 	}
3702 
3703 	asoc = sctp_id2assoc(sk, params.assoc_id);
3704 	if (asoc) {
3705 		asoc->prsctp_enable = !!params.assoc_value;
3706 	} else if (!params.assoc_id) {
3707 		struct sctp_sock *sp = sctp_sk(sk);
3708 
3709 		sp->ep->prsctp_enable = !!params.assoc_value;
3710 	} else {
3711 		goto out;
3712 	}
3713 
3714 	retval = 0;
3715 
3716 out:
3717 	return retval;
3718 }
3719 
3720 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3721 					  char __user *optval,
3722 					  unsigned int optlen)
3723 {
3724 	struct sctp_default_prinfo info;
3725 	struct sctp_association *asoc;
3726 	int retval = -EINVAL;
3727 
3728 	if (optlen != sizeof(info))
3729 		goto out;
3730 
3731 	if (copy_from_user(&info, optval, sizeof(info))) {
3732 		retval = -EFAULT;
3733 		goto out;
3734 	}
3735 
3736 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3737 		goto out;
3738 
3739 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3740 		info.pr_value = 0;
3741 
3742 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3743 	if (asoc) {
3744 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3745 		asoc->default_timetolive = info.pr_value;
3746 	} else if (!info.pr_assoc_id) {
3747 		struct sctp_sock *sp = sctp_sk(sk);
3748 
3749 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3750 		sp->default_timetolive = info.pr_value;
3751 	} else {
3752 		goto out;
3753 	}
3754 
3755 	retval = 0;
3756 
3757 out:
3758 	return retval;
3759 }
3760 
3761 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3762 					   char __user *optval,
3763 					   unsigned int optlen)
3764 {
3765 	struct sctp_assoc_value params;
3766 	struct sctp_association *asoc;
3767 	int retval = -EINVAL;
3768 
3769 	if (optlen != sizeof(params))
3770 		goto out;
3771 
3772 	if (copy_from_user(&params, optval, optlen)) {
3773 		retval = -EFAULT;
3774 		goto out;
3775 	}
3776 
3777 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3778 		goto out;
3779 
3780 	asoc = sctp_id2assoc(sk, params.assoc_id);
3781 	if (asoc) {
3782 		asoc->strreset_enable = params.assoc_value;
3783 	} else if (!params.assoc_id) {
3784 		struct sctp_sock *sp = sctp_sk(sk);
3785 
3786 		sp->ep->strreset_enable = params.assoc_value;
3787 	} else {
3788 		goto out;
3789 	}
3790 
3791 	retval = 0;
3792 
3793 out:
3794 	return retval;
3795 }
3796 
3797 static int sctp_setsockopt_reset_streams(struct sock *sk,
3798 					 char __user *optval,
3799 					 unsigned int optlen)
3800 {
3801 	struct sctp_reset_streams *params;
3802 	struct sctp_association *asoc;
3803 	int retval = -EINVAL;
3804 
3805 	if (optlen < sizeof(struct sctp_reset_streams))
3806 		return -EINVAL;
3807 
3808 	params = memdup_user(optval, optlen);
3809 	if (IS_ERR(params))
3810 		return PTR_ERR(params);
3811 
3812 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3813 	if (!asoc)
3814 		goto out;
3815 
3816 	retval = sctp_send_reset_streams(asoc, params);
3817 
3818 out:
3819 	kfree(params);
3820 	return retval;
3821 }
3822 
3823 static int sctp_setsockopt_reset_assoc(struct sock *sk,
3824 				       char __user *optval,
3825 				       unsigned int optlen)
3826 {
3827 	struct sctp_association *asoc;
3828 	sctp_assoc_t associd;
3829 	int retval = -EINVAL;
3830 
3831 	if (optlen != sizeof(associd))
3832 		goto out;
3833 
3834 	if (copy_from_user(&associd, optval, optlen)) {
3835 		retval = -EFAULT;
3836 		goto out;
3837 	}
3838 
3839 	asoc = sctp_id2assoc(sk, associd);
3840 	if (!asoc)
3841 		goto out;
3842 
3843 	retval = sctp_send_reset_assoc(asoc);
3844 
3845 out:
3846 	return retval;
3847 }
3848 
3849 static int sctp_setsockopt_add_streams(struct sock *sk,
3850 				       char __user *optval,
3851 				       unsigned int optlen)
3852 {
3853 	struct sctp_association *asoc;
3854 	struct sctp_add_streams params;
3855 	int retval = -EINVAL;
3856 
3857 	if (optlen != sizeof(params))
3858 		goto out;
3859 
3860 	if (copy_from_user(&params, optval, optlen)) {
3861 		retval = -EFAULT;
3862 		goto out;
3863 	}
3864 
3865 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
3866 	if (!asoc)
3867 		goto out;
3868 
3869 	retval = sctp_send_add_streams(asoc, &params);
3870 
3871 out:
3872 	return retval;
3873 }
3874 
3875 /* API 6.2 setsockopt(), getsockopt()
3876  *
3877  * Applications use setsockopt() and getsockopt() to set or retrieve
3878  * socket options.  Socket options are used to change the default
3879  * behavior of sockets calls.  They are described in Section 7.
3880  *
3881  * The syntax is:
3882  *
3883  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3884  *                    int __user *optlen);
3885  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3886  *                    int optlen);
3887  *
3888  *   sd      - the socket descript.
3889  *   level   - set to IPPROTO_SCTP for all SCTP options.
3890  *   optname - the option name.
3891  *   optval  - the buffer to store the value of the option.
3892  *   optlen  - the size of the buffer.
3893  */
3894 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3895 			   char __user *optval, unsigned int optlen)
3896 {
3897 	int retval = 0;
3898 
3899 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3900 
3901 	/* I can hardly begin to describe how wrong this is.  This is
3902 	 * so broken as to be worse than useless.  The API draft
3903 	 * REALLY is NOT helpful here...  I am not convinced that the
3904 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3905 	 * are at all well-founded.
3906 	 */
3907 	if (level != SOL_SCTP) {
3908 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3909 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3910 		goto out_nounlock;
3911 	}
3912 
3913 	lock_sock(sk);
3914 
3915 	switch (optname) {
3916 	case SCTP_SOCKOPT_BINDX_ADD:
3917 		/* 'optlen' is the size of the addresses buffer. */
3918 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3919 					       optlen, SCTP_BINDX_ADD_ADDR);
3920 		break;
3921 
3922 	case SCTP_SOCKOPT_BINDX_REM:
3923 		/* 'optlen' is the size of the addresses buffer. */
3924 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3925 					       optlen, SCTP_BINDX_REM_ADDR);
3926 		break;
3927 
3928 	case SCTP_SOCKOPT_CONNECTX_OLD:
3929 		/* 'optlen' is the size of the addresses buffer. */
3930 		retval = sctp_setsockopt_connectx_old(sk,
3931 					    (struct sockaddr __user *)optval,
3932 					    optlen);
3933 		break;
3934 
3935 	case SCTP_SOCKOPT_CONNECTX:
3936 		/* 'optlen' is the size of the addresses buffer. */
3937 		retval = sctp_setsockopt_connectx(sk,
3938 					    (struct sockaddr __user *)optval,
3939 					    optlen);
3940 		break;
3941 
3942 	case SCTP_DISABLE_FRAGMENTS:
3943 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3944 		break;
3945 
3946 	case SCTP_EVENTS:
3947 		retval = sctp_setsockopt_events(sk, optval, optlen);
3948 		break;
3949 
3950 	case SCTP_AUTOCLOSE:
3951 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3952 		break;
3953 
3954 	case SCTP_PEER_ADDR_PARAMS:
3955 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3956 		break;
3957 
3958 	case SCTP_DELAYED_SACK:
3959 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3960 		break;
3961 	case SCTP_PARTIAL_DELIVERY_POINT:
3962 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3963 		break;
3964 
3965 	case SCTP_INITMSG:
3966 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3967 		break;
3968 	case SCTP_DEFAULT_SEND_PARAM:
3969 		retval = sctp_setsockopt_default_send_param(sk, optval,
3970 							    optlen);
3971 		break;
3972 	case SCTP_DEFAULT_SNDINFO:
3973 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3974 		break;
3975 	case SCTP_PRIMARY_ADDR:
3976 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3977 		break;
3978 	case SCTP_SET_PEER_PRIMARY_ADDR:
3979 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3980 		break;
3981 	case SCTP_NODELAY:
3982 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3983 		break;
3984 	case SCTP_RTOINFO:
3985 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3986 		break;
3987 	case SCTP_ASSOCINFO:
3988 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3989 		break;
3990 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3991 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3992 		break;
3993 	case SCTP_MAXSEG:
3994 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3995 		break;
3996 	case SCTP_ADAPTATION_LAYER:
3997 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3998 		break;
3999 	case SCTP_CONTEXT:
4000 		retval = sctp_setsockopt_context(sk, optval, optlen);
4001 		break;
4002 	case SCTP_FRAGMENT_INTERLEAVE:
4003 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4004 		break;
4005 	case SCTP_MAX_BURST:
4006 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4007 		break;
4008 	case SCTP_AUTH_CHUNK:
4009 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4010 		break;
4011 	case SCTP_HMAC_IDENT:
4012 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4013 		break;
4014 	case SCTP_AUTH_KEY:
4015 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4016 		break;
4017 	case SCTP_AUTH_ACTIVE_KEY:
4018 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4019 		break;
4020 	case SCTP_AUTH_DELETE_KEY:
4021 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4022 		break;
4023 	case SCTP_AUTO_ASCONF:
4024 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4025 		break;
4026 	case SCTP_PEER_ADDR_THLDS:
4027 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4028 		break;
4029 	case SCTP_RECVRCVINFO:
4030 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4031 		break;
4032 	case SCTP_RECVNXTINFO:
4033 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4034 		break;
4035 	case SCTP_PR_SUPPORTED:
4036 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4037 		break;
4038 	case SCTP_DEFAULT_PRINFO:
4039 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4040 		break;
4041 	case SCTP_ENABLE_STREAM_RESET:
4042 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4043 		break;
4044 	case SCTP_RESET_STREAMS:
4045 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4046 		break;
4047 	case SCTP_RESET_ASSOC:
4048 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4049 		break;
4050 	case SCTP_ADD_STREAMS:
4051 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4052 		break;
4053 	default:
4054 		retval = -ENOPROTOOPT;
4055 		break;
4056 	}
4057 
4058 	release_sock(sk);
4059 
4060 out_nounlock:
4061 	return retval;
4062 }
4063 
4064 /* API 3.1.6 connect() - UDP Style Syntax
4065  *
4066  * An application may use the connect() call in the UDP model to initiate an
4067  * association without sending data.
4068  *
4069  * The syntax is:
4070  *
4071  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4072  *
4073  * sd: the socket descriptor to have a new association added to.
4074  *
4075  * nam: the address structure (either struct sockaddr_in or struct
4076  *    sockaddr_in6 defined in RFC2553 [7]).
4077  *
4078  * len: the size of the address.
4079  */
4080 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4081 			int addr_len)
4082 {
4083 	int err = 0;
4084 	struct sctp_af *af;
4085 
4086 	lock_sock(sk);
4087 
4088 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4089 		 addr, addr_len);
4090 
4091 	/* Validate addr_len before calling common connect/connectx routine. */
4092 	af = sctp_get_af_specific(addr->sa_family);
4093 	if (!af || addr_len < af->sockaddr_len) {
4094 		err = -EINVAL;
4095 	} else {
4096 		/* Pass correct addr len to common routine (so it knows there
4097 		 * is only one address being passed.
4098 		 */
4099 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
4100 	}
4101 
4102 	release_sock(sk);
4103 	return err;
4104 }
4105 
4106 /* FIXME: Write comments. */
4107 static int sctp_disconnect(struct sock *sk, int flags)
4108 {
4109 	return -EOPNOTSUPP; /* STUB */
4110 }
4111 
4112 /* 4.1.4 accept() - TCP Style Syntax
4113  *
4114  * Applications use accept() call to remove an established SCTP
4115  * association from the accept queue of the endpoint.  A new socket
4116  * descriptor will be returned from accept() to represent the newly
4117  * formed association.
4118  */
4119 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
4120 {
4121 	struct sctp_sock *sp;
4122 	struct sctp_endpoint *ep;
4123 	struct sock *newsk = NULL;
4124 	struct sctp_association *asoc;
4125 	long timeo;
4126 	int error = 0;
4127 
4128 	lock_sock(sk);
4129 
4130 	sp = sctp_sk(sk);
4131 	ep = sp->ep;
4132 
4133 	if (!sctp_style(sk, TCP)) {
4134 		error = -EOPNOTSUPP;
4135 		goto out;
4136 	}
4137 
4138 	if (!sctp_sstate(sk, LISTENING)) {
4139 		error = -EINVAL;
4140 		goto out;
4141 	}
4142 
4143 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4144 
4145 	error = sctp_wait_for_accept(sk, timeo);
4146 	if (error)
4147 		goto out;
4148 
4149 	/* We treat the list of associations on the endpoint as the accept
4150 	 * queue and pick the first association on the list.
4151 	 */
4152 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4153 
4154 	newsk = sp->pf->create_accept_sk(sk, asoc);
4155 	if (!newsk) {
4156 		error = -ENOMEM;
4157 		goto out;
4158 	}
4159 
4160 	/* Populate the fields of the newsk from the oldsk and migrate the
4161 	 * asoc to the newsk.
4162 	 */
4163 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4164 
4165 out:
4166 	release_sock(sk);
4167 	*err = error;
4168 	return newsk;
4169 }
4170 
4171 /* The SCTP ioctl handler. */
4172 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4173 {
4174 	int rc = -ENOTCONN;
4175 
4176 	lock_sock(sk);
4177 
4178 	/*
4179 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4180 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4181 	 */
4182 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4183 		goto out;
4184 
4185 	switch (cmd) {
4186 	case SIOCINQ: {
4187 		struct sk_buff *skb;
4188 		unsigned int amount = 0;
4189 
4190 		skb = skb_peek(&sk->sk_receive_queue);
4191 		if (skb != NULL) {
4192 			/*
4193 			 * We will only return the amount of this packet since
4194 			 * that is all that will be read.
4195 			 */
4196 			amount = skb->len;
4197 		}
4198 		rc = put_user(amount, (int __user *)arg);
4199 		break;
4200 	}
4201 	default:
4202 		rc = -ENOIOCTLCMD;
4203 		break;
4204 	}
4205 out:
4206 	release_sock(sk);
4207 	return rc;
4208 }
4209 
4210 /* This is the function which gets called during socket creation to
4211  * initialized the SCTP-specific portion of the sock.
4212  * The sock structure should already be zero-filled memory.
4213  */
4214 static int sctp_init_sock(struct sock *sk)
4215 {
4216 	struct net *net = sock_net(sk);
4217 	struct sctp_sock *sp;
4218 
4219 	pr_debug("%s: sk:%p\n", __func__, sk);
4220 
4221 	sp = sctp_sk(sk);
4222 
4223 	/* Initialize the SCTP per socket area.  */
4224 	switch (sk->sk_type) {
4225 	case SOCK_SEQPACKET:
4226 		sp->type = SCTP_SOCKET_UDP;
4227 		break;
4228 	case SOCK_STREAM:
4229 		sp->type = SCTP_SOCKET_TCP;
4230 		break;
4231 	default:
4232 		return -ESOCKTNOSUPPORT;
4233 	}
4234 
4235 	sk->sk_gso_type = SKB_GSO_SCTP;
4236 
4237 	/* Initialize default send parameters. These parameters can be
4238 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4239 	 */
4240 	sp->default_stream = 0;
4241 	sp->default_ppid = 0;
4242 	sp->default_flags = 0;
4243 	sp->default_context = 0;
4244 	sp->default_timetolive = 0;
4245 
4246 	sp->default_rcv_context = 0;
4247 	sp->max_burst = net->sctp.max_burst;
4248 
4249 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4250 
4251 	/* Initialize default setup parameters. These parameters
4252 	 * can be modified with the SCTP_INITMSG socket option or
4253 	 * overridden by the SCTP_INIT CMSG.
4254 	 */
4255 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4256 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4257 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4258 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4259 
4260 	/* Initialize default RTO related parameters.  These parameters can
4261 	 * be modified for with the SCTP_RTOINFO socket option.
4262 	 */
4263 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4264 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4265 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4266 
4267 	/* Initialize default association related parameters. These parameters
4268 	 * can be modified with the SCTP_ASSOCINFO socket option.
4269 	 */
4270 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4271 	sp->assocparams.sasoc_number_peer_destinations = 0;
4272 	sp->assocparams.sasoc_peer_rwnd = 0;
4273 	sp->assocparams.sasoc_local_rwnd = 0;
4274 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4275 
4276 	/* Initialize default event subscriptions. By default, all the
4277 	 * options are off.
4278 	 */
4279 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4280 
4281 	/* Default Peer Address Parameters.  These defaults can
4282 	 * be modified via SCTP_PEER_ADDR_PARAMS
4283 	 */
4284 	sp->hbinterval  = net->sctp.hb_interval;
4285 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4286 	sp->pathmtu     = 0; /* allow default discovery */
4287 	sp->sackdelay   = net->sctp.sack_timeout;
4288 	sp->sackfreq	= 2;
4289 	sp->param_flags = SPP_HB_ENABLE |
4290 			  SPP_PMTUD_ENABLE |
4291 			  SPP_SACKDELAY_ENABLE;
4292 
4293 	/* If enabled no SCTP message fragmentation will be performed.
4294 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4295 	 */
4296 	sp->disable_fragments = 0;
4297 
4298 	/* Enable Nagle algorithm by default.  */
4299 	sp->nodelay           = 0;
4300 
4301 	sp->recvrcvinfo = 0;
4302 	sp->recvnxtinfo = 0;
4303 
4304 	/* Enable by default. */
4305 	sp->v4mapped          = 1;
4306 
4307 	/* Auto-close idle associations after the configured
4308 	 * number of seconds.  A value of 0 disables this
4309 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4310 	 * for UDP-style sockets only.
4311 	 */
4312 	sp->autoclose         = 0;
4313 
4314 	/* User specified fragmentation limit. */
4315 	sp->user_frag         = 0;
4316 
4317 	sp->adaptation_ind = 0;
4318 
4319 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4320 
4321 	/* Control variables for partial data delivery. */
4322 	atomic_set(&sp->pd_mode, 0);
4323 	skb_queue_head_init(&sp->pd_lobby);
4324 	sp->frag_interleave = 0;
4325 
4326 	/* Create a per socket endpoint structure.  Even if we
4327 	 * change the data structure relationships, this may still
4328 	 * be useful for storing pre-connect address information.
4329 	 */
4330 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4331 	if (!sp->ep)
4332 		return -ENOMEM;
4333 
4334 	sp->hmac = NULL;
4335 
4336 	sk->sk_destruct = sctp_destruct_sock;
4337 
4338 	SCTP_DBG_OBJCNT_INC(sock);
4339 
4340 	local_bh_disable();
4341 	percpu_counter_inc(&sctp_sockets_allocated);
4342 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4343 
4344 	/* Nothing can fail after this block, otherwise
4345 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4346 	 */
4347 	if (net->sctp.default_auto_asconf) {
4348 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4349 		list_add_tail(&sp->auto_asconf_list,
4350 		    &net->sctp.auto_asconf_splist);
4351 		sp->do_auto_asconf = 1;
4352 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4353 	} else {
4354 		sp->do_auto_asconf = 0;
4355 	}
4356 
4357 	local_bh_enable();
4358 
4359 	return 0;
4360 }
4361 
4362 /* Cleanup any SCTP per socket resources. Must be called with
4363  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4364  */
4365 static void sctp_destroy_sock(struct sock *sk)
4366 {
4367 	struct sctp_sock *sp;
4368 
4369 	pr_debug("%s: sk:%p\n", __func__, sk);
4370 
4371 	/* Release our hold on the endpoint. */
4372 	sp = sctp_sk(sk);
4373 	/* This could happen during socket init, thus we bail out
4374 	 * early, since the rest of the below is not setup either.
4375 	 */
4376 	if (sp->ep == NULL)
4377 		return;
4378 
4379 	if (sp->do_auto_asconf) {
4380 		sp->do_auto_asconf = 0;
4381 		list_del(&sp->auto_asconf_list);
4382 	}
4383 	sctp_endpoint_free(sp->ep);
4384 	local_bh_disable();
4385 	percpu_counter_dec(&sctp_sockets_allocated);
4386 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4387 	local_bh_enable();
4388 }
4389 
4390 /* Triggered when there are no references on the socket anymore */
4391 static void sctp_destruct_sock(struct sock *sk)
4392 {
4393 	struct sctp_sock *sp = sctp_sk(sk);
4394 
4395 	/* Free up the HMAC transform. */
4396 	crypto_free_shash(sp->hmac);
4397 
4398 	inet_sock_destruct(sk);
4399 }
4400 
4401 /* API 4.1.7 shutdown() - TCP Style Syntax
4402  *     int shutdown(int socket, int how);
4403  *
4404  *     sd      - the socket descriptor of the association to be closed.
4405  *     how     - Specifies the type of shutdown.  The  values  are
4406  *               as follows:
4407  *               SHUT_RD
4408  *                     Disables further receive operations. No SCTP
4409  *                     protocol action is taken.
4410  *               SHUT_WR
4411  *                     Disables further send operations, and initiates
4412  *                     the SCTP shutdown sequence.
4413  *               SHUT_RDWR
4414  *                     Disables further send  and  receive  operations
4415  *                     and initiates the SCTP shutdown sequence.
4416  */
4417 static void sctp_shutdown(struct sock *sk, int how)
4418 {
4419 	struct net *net = sock_net(sk);
4420 	struct sctp_endpoint *ep;
4421 
4422 	if (!sctp_style(sk, TCP))
4423 		return;
4424 
4425 	ep = sctp_sk(sk)->ep;
4426 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4427 		struct sctp_association *asoc;
4428 
4429 		sk->sk_state = SCTP_SS_CLOSING;
4430 		asoc = list_entry(ep->asocs.next,
4431 				  struct sctp_association, asocs);
4432 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4433 	}
4434 }
4435 
4436 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4437 		       struct sctp_info *info)
4438 {
4439 	struct sctp_transport *prim;
4440 	struct list_head *pos;
4441 	int mask;
4442 
4443 	memset(info, 0, sizeof(*info));
4444 	if (!asoc) {
4445 		struct sctp_sock *sp = sctp_sk(sk);
4446 
4447 		info->sctpi_s_autoclose = sp->autoclose;
4448 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4449 		info->sctpi_s_pd_point = sp->pd_point;
4450 		info->sctpi_s_nodelay = sp->nodelay;
4451 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4452 		info->sctpi_s_v4mapped = sp->v4mapped;
4453 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4454 		info->sctpi_s_type = sp->type;
4455 
4456 		return 0;
4457 	}
4458 
4459 	info->sctpi_tag = asoc->c.my_vtag;
4460 	info->sctpi_state = asoc->state;
4461 	info->sctpi_rwnd = asoc->a_rwnd;
4462 	info->sctpi_unackdata = asoc->unack_data;
4463 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4464 	info->sctpi_instrms = asoc->c.sinit_max_instreams;
4465 	info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4466 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4467 		info->sctpi_inqueue++;
4468 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4469 		info->sctpi_outqueue++;
4470 	info->sctpi_overall_error = asoc->overall_error_count;
4471 	info->sctpi_max_burst = asoc->max_burst;
4472 	info->sctpi_maxseg = asoc->frag_point;
4473 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4474 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4475 
4476 	mask = asoc->peer.ecn_capable << 1;
4477 	mask = (mask | asoc->peer.ipv4_address) << 1;
4478 	mask = (mask | asoc->peer.ipv6_address) << 1;
4479 	mask = (mask | asoc->peer.hostname_address) << 1;
4480 	mask = (mask | asoc->peer.asconf_capable) << 1;
4481 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4482 	mask = (mask | asoc->peer.auth_capable);
4483 	info->sctpi_peer_capable = mask;
4484 	mask = asoc->peer.sack_needed << 1;
4485 	mask = (mask | asoc->peer.sack_generation) << 1;
4486 	mask = (mask | asoc->peer.zero_window_announced);
4487 	info->sctpi_peer_sack = mask;
4488 
4489 	info->sctpi_isacks = asoc->stats.isacks;
4490 	info->sctpi_osacks = asoc->stats.osacks;
4491 	info->sctpi_opackets = asoc->stats.opackets;
4492 	info->sctpi_ipackets = asoc->stats.ipackets;
4493 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4494 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4495 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4496 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4497 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4498 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4499 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4500 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4501 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4502 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4503 
4504 	prim = asoc->peer.primary_path;
4505 	memcpy(&info->sctpi_p_address, &prim->ipaddr,
4506 	       sizeof(struct sockaddr_storage));
4507 	info->sctpi_p_state = prim->state;
4508 	info->sctpi_p_cwnd = prim->cwnd;
4509 	info->sctpi_p_srtt = prim->srtt;
4510 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4511 	info->sctpi_p_hbinterval = prim->hbinterval;
4512 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4513 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4514 	info->sctpi_p_ssthresh = prim->ssthresh;
4515 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4516 	info->sctpi_p_flight_size = prim->flight_size;
4517 	info->sctpi_p_error = prim->error_count;
4518 
4519 	return 0;
4520 }
4521 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4522 
4523 /* use callback to avoid exporting the core structure */
4524 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4525 {
4526 	int err;
4527 
4528 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
4529 
4530 	err = rhashtable_walk_start(iter);
4531 	if (err && err != -EAGAIN) {
4532 		rhashtable_walk_stop(iter);
4533 		rhashtable_walk_exit(iter);
4534 		return err;
4535 	}
4536 
4537 	return 0;
4538 }
4539 
4540 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4541 {
4542 	rhashtable_walk_stop(iter);
4543 	rhashtable_walk_exit(iter);
4544 }
4545 
4546 struct sctp_transport *sctp_transport_get_next(struct net *net,
4547 					       struct rhashtable_iter *iter)
4548 {
4549 	struct sctp_transport *t;
4550 
4551 	t = rhashtable_walk_next(iter);
4552 	for (; t; t = rhashtable_walk_next(iter)) {
4553 		if (IS_ERR(t)) {
4554 			if (PTR_ERR(t) == -EAGAIN)
4555 				continue;
4556 			break;
4557 		}
4558 
4559 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
4560 		    t->asoc->peer.primary_path == t)
4561 			break;
4562 	}
4563 
4564 	return t;
4565 }
4566 
4567 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4568 					      struct rhashtable_iter *iter,
4569 					      int pos)
4570 {
4571 	void *obj = SEQ_START_TOKEN;
4572 
4573 	while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4574 	       !IS_ERR(obj))
4575 		pos--;
4576 
4577 	return obj;
4578 }
4579 
4580 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4581 			   void *p) {
4582 	int err = 0;
4583 	int hash = 0;
4584 	struct sctp_ep_common *epb;
4585 	struct sctp_hashbucket *head;
4586 
4587 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4588 	     hash++, head++) {
4589 		read_lock(&head->lock);
4590 		sctp_for_each_hentry(epb, &head->chain) {
4591 			err = cb(sctp_ep(epb), p);
4592 			if (err)
4593 				break;
4594 		}
4595 		read_unlock(&head->lock);
4596 	}
4597 
4598 	return err;
4599 }
4600 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4601 
4602 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4603 				  struct net *net,
4604 				  const union sctp_addr *laddr,
4605 				  const union sctp_addr *paddr, void *p)
4606 {
4607 	struct sctp_transport *transport;
4608 	int err;
4609 
4610 	rcu_read_lock();
4611 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4612 	rcu_read_unlock();
4613 	if (!transport)
4614 		return -ENOENT;
4615 
4616 	err = cb(transport, p);
4617 	sctp_transport_put(transport);
4618 
4619 	return err;
4620 }
4621 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4622 
4623 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4624 			    struct net *net, int pos, void *p) {
4625 	struct rhashtable_iter hti;
4626 	void *obj;
4627 	int err;
4628 
4629 	err = sctp_transport_walk_start(&hti);
4630 	if (err)
4631 		return err;
4632 
4633 	sctp_transport_get_idx(net, &hti, pos);
4634 	obj = sctp_transport_get_next(net, &hti);
4635 	for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4636 		struct sctp_transport *transport = obj;
4637 
4638 		if (!sctp_transport_hold(transport))
4639 			continue;
4640 		err = cb(transport, p);
4641 		sctp_transport_put(transport);
4642 		if (err)
4643 			break;
4644 	}
4645 	sctp_transport_walk_stop(&hti);
4646 
4647 	return err;
4648 }
4649 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4650 
4651 /* 7.2.1 Association Status (SCTP_STATUS)
4652 
4653  * Applications can retrieve current status information about an
4654  * association, including association state, peer receiver window size,
4655  * number of unacked data chunks, and number of data chunks pending
4656  * receipt.  This information is read-only.
4657  */
4658 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4659 				       char __user *optval,
4660 				       int __user *optlen)
4661 {
4662 	struct sctp_status status;
4663 	struct sctp_association *asoc = NULL;
4664 	struct sctp_transport *transport;
4665 	sctp_assoc_t associd;
4666 	int retval = 0;
4667 
4668 	if (len < sizeof(status)) {
4669 		retval = -EINVAL;
4670 		goto out;
4671 	}
4672 
4673 	len = sizeof(status);
4674 	if (copy_from_user(&status, optval, len)) {
4675 		retval = -EFAULT;
4676 		goto out;
4677 	}
4678 
4679 	associd = status.sstat_assoc_id;
4680 	asoc = sctp_id2assoc(sk, associd);
4681 	if (!asoc) {
4682 		retval = -EINVAL;
4683 		goto out;
4684 	}
4685 
4686 	transport = asoc->peer.primary_path;
4687 
4688 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4689 	status.sstat_state = sctp_assoc_to_state(asoc);
4690 	status.sstat_rwnd =  asoc->peer.rwnd;
4691 	status.sstat_unackdata = asoc->unack_data;
4692 
4693 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4694 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4695 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4696 	status.sstat_fragmentation_point = asoc->frag_point;
4697 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4698 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4699 			transport->af_specific->sockaddr_len);
4700 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4701 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4702 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4703 	status.sstat_primary.spinfo_state = transport->state;
4704 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4705 	status.sstat_primary.spinfo_srtt = transport->srtt;
4706 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4707 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4708 
4709 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4710 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4711 
4712 	if (put_user(len, optlen)) {
4713 		retval = -EFAULT;
4714 		goto out;
4715 	}
4716 
4717 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4718 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4719 		 status.sstat_assoc_id);
4720 
4721 	if (copy_to_user(optval, &status, len)) {
4722 		retval = -EFAULT;
4723 		goto out;
4724 	}
4725 
4726 out:
4727 	return retval;
4728 }
4729 
4730 
4731 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4732  *
4733  * Applications can retrieve information about a specific peer address
4734  * of an association, including its reachability state, congestion
4735  * window, and retransmission timer values.  This information is
4736  * read-only.
4737  */
4738 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4739 					  char __user *optval,
4740 					  int __user *optlen)
4741 {
4742 	struct sctp_paddrinfo pinfo;
4743 	struct sctp_transport *transport;
4744 	int retval = 0;
4745 
4746 	if (len < sizeof(pinfo)) {
4747 		retval = -EINVAL;
4748 		goto out;
4749 	}
4750 
4751 	len = sizeof(pinfo);
4752 	if (copy_from_user(&pinfo, optval, len)) {
4753 		retval = -EFAULT;
4754 		goto out;
4755 	}
4756 
4757 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4758 					   pinfo.spinfo_assoc_id);
4759 	if (!transport)
4760 		return -EINVAL;
4761 
4762 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4763 	pinfo.spinfo_state = transport->state;
4764 	pinfo.spinfo_cwnd = transport->cwnd;
4765 	pinfo.spinfo_srtt = transport->srtt;
4766 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4767 	pinfo.spinfo_mtu = transport->pathmtu;
4768 
4769 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4770 		pinfo.spinfo_state = SCTP_ACTIVE;
4771 
4772 	if (put_user(len, optlen)) {
4773 		retval = -EFAULT;
4774 		goto out;
4775 	}
4776 
4777 	if (copy_to_user(optval, &pinfo, len)) {
4778 		retval = -EFAULT;
4779 		goto out;
4780 	}
4781 
4782 out:
4783 	return retval;
4784 }
4785 
4786 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4787  *
4788  * This option is a on/off flag.  If enabled no SCTP message
4789  * fragmentation will be performed.  Instead if a message being sent
4790  * exceeds the current PMTU size, the message will NOT be sent and
4791  * instead a error will be indicated to the user.
4792  */
4793 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4794 					char __user *optval, int __user *optlen)
4795 {
4796 	int val;
4797 
4798 	if (len < sizeof(int))
4799 		return -EINVAL;
4800 
4801 	len = sizeof(int);
4802 	val = (sctp_sk(sk)->disable_fragments == 1);
4803 	if (put_user(len, optlen))
4804 		return -EFAULT;
4805 	if (copy_to_user(optval, &val, len))
4806 		return -EFAULT;
4807 	return 0;
4808 }
4809 
4810 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4811  *
4812  * This socket option is used to specify various notifications and
4813  * ancillary data the user wishes to receive.
4814  */
4815 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4816 				  int __user *optlen)
4817 {
4818 	if (len == 0)
4819 		return -EINVAL;
4820 	if (len > sizeof(struct sctp_event_subscribe))
4821 		len = sizeof(struct sctp_event_subscribe);
4822 	if (put_user(len, optlen))
4823 		return -EFAULT;
4824 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4825 		return -EFAULT;
4826 	return 0;
4827 }
4828 
4829 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4830  *
4831  * This socket option is applicable to the UDP-style socket only.  When
4832  * set it will cause associations that are idle for more than the
4833  * specified number of seconds to automatically close.  An association
4834  * being idle is defined an association that has NOT sent or received
4835  * user data.  The special value of '0' indicates that no automatic
4836  * close of any associations should be performed.  The option expects an
4837  * integer defining the number of seconds of idle time before an
4838  * association is closed.
4839  */
4840 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4841 {
4842 	/* Applicable to UDP-style socket only */
4843 	if (sctp_style(sk, TCP))
4844 		return -EOPNOTSUPP;
4845 	if (len < sizeof(int))
4846 		return -EINVAL;
4847 	len = sizeof(int);
4848 	if (put_user(len, optlen))
4849 		return -EFAULT;
4850 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4851 		return -EFAULT;
4852 	return 0;
4853 }
4854 
4855 /* Helper routine to branch off an association to a new socket.  */
4856 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4857 {
4858 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4859 	struct sctp_sock *sp = sctp_sk(sk);
4860 	struct socket *sock;
4861 	int err = 0;
4862 
4863 	if (!asoc)
4864 		return -EINVAL;
4865 
4866 	/* If there is a thread waiting on more sndbuf space for
4867 	 * sending on this asoc, it cannot be peeled.
4868 	 */
4869 	if (waitqueue_active(&asoc->wait))
4870 		return -EBUSY;
4871 
4872 	/* An association cannot be branched off from an already peeled-off
4873 	 * socket, nor is this supported for tcp style sockets.
4874 	 */
4875 	if (!sctp_style(sk, UDP))
4876 		return -EINVAL;
4877 
4878 	/* Create a new socket.  */
4879 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4880 	if (err < 0)
4881 		return err;
4882 
4883 	sctp_copy_sock(sock->sk, sk, asoc);
4884 
4885 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4886 	 * Set the daddr and initialize id to something more random
4887 	 */
4888 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4889 
4890 	/* Populate the fields of the newsk from the oldsk and migrate the
4891 	 * asoc to the newsk.
4892 	 */
4893 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4894 
4895 	*sockp = sock;
4896 
4897 	return err;
4898 }
4899 EXPORT_SYMBOL(sctp_do_peeloff);
4900 
4901 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4902 {
4903 	sctp_peeloff_arg_t peeloff;
4904 	struct socket *newsock;
4905 	struct file *newfile;
4906 	int retval = 0;
4907 
4908 	if (len < sizeof(sctp_peeloff_arg_t))
4909 		return -EINVAL;
4910 	len = sizeof(sctp_peeloff_arg_t);
4911 	if (copy_from_user(&peeloff, optval, len))
4912 		return -EFAULT;
4913 
4914 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4915 	if (retval < 0)
4916 		goto out;
4917 
4918 	/* Map the socket to an unused fd that can be returned to the user.  */
4919 	retval = get_unused_fd_flags(0);
4920 	if (retval < 0) {
4921 		sock_release(newsock);
4922 		goto out;
4923 	}
4924 
4925 	newfile = sock_alloc_file(newsock, 0, NULL);
4926 	if (IS_ERR(newfile)) {
4927 		put_unused_fd(retval);
4928 		sock_release(newsock);
4929 		return PTR_ERR(newfile);
4930 	}
4931 
4932 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4933 		 retval);
4934 
4935 	/* Return the fd mapped to the new socket.  */
4936 	if (put_user(len, optlen)) {
4937 		fput(newfile);
4938 		put_unused_fd(retval);
4939 		return -EFAULT;
4940 	}
4941 	peeloff.sd = retval;
4942 	if (copy_to_user(optval, &peeloff, len)) {
4943 		fput(newfile);
4944 		put_unused_fd(retval);
4945 		return -EFAULT;
4946 	}
4947 	fd_install(retval, newfile);
4948 out:
4949 	return retval;
4950 }
4951 
4952 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4953  *
4954  * Applications can enable or disable heartbeats for any peer address of
4955  * an association, modify an address's heartbeat interval, force a
4956  * heartbeat to be sent immediately, and adjust the address's maximum
4957  * number of retransmissions sent before an address is considered
4958  * unreachable.  The following structure is used to access and modify an
4959  * address's parameters:
4960  *
4961  *  struct sctp_paddrparams {
4962  *     sctp_assoc_t            spp_assoc_id;
4963  *     struct sockaddr_storage spp_address;
4964  *     uint32_t                spp_hbinterval;
4965  *     uint16_t                spp_pathmaxrxt;
4966  *     uint32_t                spp_pathmtu;
4967  *     uint32_t                spp_sackdelay;
4968  *     uint32_t                spp_flags;
4969  * };
4970  *
4971  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4972  *                     application, and identifies the association for
4973  *                     this query.
4974  *   spp_address     - This specifies which address is of interest.
4975  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4976  *                     in milliseconds.  If a  value of zero
4977  *                     is present in this field then no changes are to
4978  *                     be made to this parameter.
4979  *   spp_pathmaxrxt  - This contains the maximum number of
4980  *                     retransmissions before this address shall be
4981  *                     considered unreachable. If a  value of zero
4982  *                     is present in this field then no changes are to
4983  *                     be made to this parameter.
4984  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4985  *                     specified here will be the "fixed" path mtu.
4986  *                     Note that if the spp_address field is empty
4987  *                     then all associations on this address will
4988  *                     have this fixed path mtu set upon them.
4989  *
4990  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4991  *                     the number of milliseconds that sacks will be delayed
4992  *                     for. This value will apply to all addresses of an
4993  *                     association if the spp_address field is empty. Note
4994  *                     also, that if delayed sack is enabled and this
4995  *                     value is set to 0, no change is made to the last
4996  *                     recorded delayed sack timer value.
4997  *
4998  *   spp_flags       - These flags are used to control various features
4999  *                     on an association. The flag field may contain
5000  *                     zero or more of the following options.
5001  *
5002  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5003  *                     specified address. Note that if the address
5004  *                     field is empty all addresses for the association
5005  *                     have heartbeats enabled upon them.
5006  *
5007  *                     SPP_HB_DISABLE - Disable heartbeats on the
5008  *                     speicifed address. Note that if the address
5009  *                     field is empty all addresses for the association
5010  *                     will have their heartbeats disabled. Note also
5011  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5012  *                     mutually exclusive, only one of these two should
5013  *                     be specified. Enabling both fields will have
5014  *                     undetermined results.
5015  *
5016  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5017  *                     to be made immediately.
5018  *
5019  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5020  *                     discovery upon the specified address. Note that
5021  *                     if the address feild is empty then all addresses
5022  *                     on the association are effected.
5023  *
5024  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5025  *                     discovery upon the specified address. Note that
5026  *                     if the address feild is empty then all addresses
5027  *                     on the association are effected. Not also that
5028  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5029  *                     exclusive. Enabling both will have undetermined
5030  *                     results.
5031  *
5032  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5033  *                     on delayed sack. The time specified in spp_sackdelay
5034  *                     is used to specify the sack delay for this address. Note
5035  *                     that if spp_address is empty then all addresses will
5036  *                     enable delayed sack and take on the sack delay
5037  *                     value specified in spp_sackdelay.
5038  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5039  *                     off delayed sack. If the spp_address field is blank then
5040  *                     delayed sack is disabled for the entire association. Note
5041  *                     also that this field is mutually exclusive to
5042  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5043  *                     results.
5044  */
5045 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5046 					    char __user *optval, int __user *optlen)
5047 {
5048 	struct sctp_paddrparams  params;
5049 	struct sctp_transport   *trans = NULL;
5050 	struct sctp_association *asoc = NULL;
5051 	struct sctp_sock        *sp = sctp_sk(sk);
5052 
5053 	if (len < sizeof(struct sctp_paddrparams))
5054 		return -EINVAL;
5055 	len = sizeof(struct sctp_paddrparams);
5056 	if (copy_from_user(&params, optval, len))
5057 		return -EFAULT;
5058 
5059 	/* If an address other than INADDR_ANY is specified, and
5060 	 * no transport is found, then the request is invalid.
5061 	 */
5062 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5063 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5064 					       params.spp_assoc_id);
5065 		if (!trans) {
5066 			pr_debug("%s: failed no transport\n", __func__);
5067 			return -EINVAL;
5068 		}
5069 	}
5070 
5071 	/* Get association, if assoc_id != 0 and the socket is a one
5072 	 * to many style socket, and an association was not found, then
5073 	 * the id was invalid.
5074 	 */
5075 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5076 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5077 		pr_debug("%s: failed no association\n", __func__);
5078 		return -EINVAL;
5079 	}
5080 
5081 	if (trans) {
5082 		/* Fetch transport values. */
5083 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5084 		params.spp_pathmtu    = trans->pathmtu;
5085 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5086 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5087 
5088 		/*draft-11 doesn't say what to return in spp_flags*/
5089 		params.spp_flags      = trans->param_flags;
5090 	} else if (asoc) {
5091 		/* Fetch association values. */
5092 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5093 		params.spp_pathmtu    = asoc->pathmtu;
5094 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5095 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5096 
5097 		/*draft-11 doesn't say what to return in spp_flags*/
5098 		params.spp_flags      = asoc->param_flags;
5099 	} else {
5100 		/* Fetch socket values. */
5101 		params.spp_hbinterval = sp->hbinterval;
5102 		params.spp_pathmtu    = sp->pathmtu;
5103 		params.spp_sackdelay  = sp->sackdelay;
5104 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5105 
5106 		/*draft-11 doesn't say what to return in spp_flags*/
5107 		params.spp_flags      = sp->param_flags;
5108 	}
5109 
5110 	if (copy_to_user(optval, &params, len))
5111 		return -EFAULT;
5112 
5113 	if (put_user(len, optlen))
5114 		return -EFAULT;
5115 
5116 	return 0;
5117 }
5118 
5119 /*
5120  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5121  *
5122  * This option will effect the way delayed acks are performed.  This
5123  * option allows you to get or set the delayed ack time, in
5124  * milliseconds.  It also allows changing the delayed ack frequency.
5125  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5126  * the assoc_id is 0, then this sets or gets the endpoints default
5127  * values.  If the assoc_id field is non-zero, then the set or get
5128  * effects the specified association for the one to many model (the
5129  * assoc_id field is ignored by the one to one model).  Note that if
5130  * sack_delay or sack_freq are 0 when setting this option, then the
5131  * current values will remain unchanged.
5132  *
5133  * struct sctp_sack_info {
5134  *     sctp_assoc_t            sack_assoc_id;
5135  *     uint32_t                sack_delay;
5136  *     uint32_t                sack_freq;
5137  * };
5138  *
5139  * sack_assoc_id -  This parameter, indicates which association the user
5140  *    is performing an action upon.  Note that if this field's value is
5141  *    zero then the endpoints default value is changed (effecting future
5142  *    associations only).
5143  *
5144  * sack_delay -  This parameter contains the number of milliseconds that
5145  *    the user is requesting the delayed ACK timer be set to.  Note that
5146  *    this value is defined in the standard to be between 200 and 500
5147  *    milliseconds.
5148  *
5149  * sack_freq -  This parameter contains the number of packets that must
5150  *    be received before a sack is sent without waiting for the delay
5151  *    timer to expire.  The default value for this is 2, setting this
5152  *    value to 1 will disable the delayed sack algorithm.
5153  */
5154 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5155 					    char __user *optval,
5156 					    int __user *optlen)
5157 {
5158 	struct sctp_sack_info    params;
5159 	struct sctp_association *asoc = NULL;
5160 	struct sctp_sock        *sp = sctp_sk(sk);
5161 
5162 	if (len >= sizeof(struct sctp_sack_info)) {
5163 		len = sizeof(struct sctp_sack_info);
5164 
5165 		if (copy_from_user(&params, optval, len))
5166 			return -EFAULT;
5167 	} else if (len == sizeof(struct sctp_assoc_value)) {
5168 		pr_warn_ratelimited(DEPRECATED
5169 				    "%s (pid %d) "
5170 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5171 				    "Use struct sctp_sack_info instead\n",
5172 				    current->comm, task_pid_nr(current));
5173 		if (copy_from_user(&params, optval, len))
5174 			return -EFAULT;
5175 	} else
5176 		return -EINVAL;
5177 
5178 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5179 	 * to many style socket, and an association was not found, then
5180 	 * the id was invalid.
5181 	 */
5182 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5183 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5184 		return -EINVAL;
5185 
5186 	if (asoc) {
5187 		/* Fetch association values. */
5188 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5189 			params.sack_delay = jiffies_to_msecs(
5190 				asoc->sackdelay);
5191 			params.sack_freq = asoc->sackfreq;
5192 
5193 		} else {
5194 			params.sack_delay = 0;
5195 			params.sack_freq = 1;
5196 		}
5197 	} else {
5198 		/* Fetch socket values. */
5199 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5200 			params.sack_delay  = sp->sackdelay;
5201 			params.sack_freq = sp->sackfreq;
5202 		} else {
5203 			params.sack_delay  = 0;
5204 			params.sack_freq = 1;
5205 		}
5206 	}
5207 
5208 	if (copy_to_user(optval, &params, len))
5209 		return -EFAULT;
5210 
5211 	if (put_user(len, optlen))
5212 		return -EFAULT;
5213 
5214 	return 0;
5215 }
5216 
5217 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5218  *
5219  * Applications can specify protocol parameters for the default association
5220  * initialization.  The option name argument to setsockopt() and getsockopt()
5221  * is SCTP_INITMSG.
5222  *
5223  * Setting initialization parameters is effective only on an unconnected
5224  * socket (for UDP-style sockets only future associations are effected
5225  * by the change).  With TCP-style sockets, this option is inherited by
5226  * sockets derived from a listener socket.
5227  */
5228 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5229 {
5230 	if (len < sizeof(struct sctp_initmsg))
5231 		return -EINVAL;
5232 	len = sizeof(struct sctp_initmsg);
5233 	if (put_user(len, optlen))
5234 		return -EFAULT;
5235 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5236 		return -EFAULT;
5237 	return 0;
5238 }
5239 
5240 
5241 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5242 				      char __user *optval, int __user *optlen)
5243 {
5244 	struct sctp_association *asoc;
5245 	int cnt = 0;
5246 	struct sctp_getaddrs getaddrs;
5247 	struct sctp_transport *from;
5248 	void __user *to;
5249 	union sctp_addr temp;
5250 	struct sctp_sock *sp = sctp_sk(sk);
5251 	int addrlen;
5252 	size_t space_left;
5253 	int bytes_copied;
5254 
5255 	if (len < sizeof(struct sctp_getaddrs))
5256 		return -EINVAL;
5257 
5258 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5259 		return -EFAULT;
5260 
5261 	/* For UDP-style sockets, id specifies the association to query.  */
5262 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5263 	if (!asoc)
5264 		return -EINVAL;
5265 
5266 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5267 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5268 
5269 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5270 				transports) {
5271 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5272 		addrlen = sctp_get_pf_specific(sk->sk_family)
5273 			      ->addr_to_user(sp, &temp);
5274 		if (space_left < addrlen)
5275 			return -ENOMEM;
5276 		if (copy_to_user(to, &temp, addrlen))
5277 			return -EFAULT;
5278 		to += addrlen;
5279 		cnt++;
5280 		space_left -= addrlen;
5281 	}
5282 
5283 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5284 		return -EFAULT;
5285 	bytes_copied = ((char __user *)to) - optval;
5286 	if (put_user(bytes_copied, optlen))
5287 		return -EFAULT;
5288 
5289 	return 0;
5290 }
5291 
5292 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5293 			    size_t space_left, int *bytes_copied)
5294 {
5295 	struct sctp_sockaddr_entry *addr;
5296 	union sctp_addr temp;
5297 	int cnt = 0;
5298 	int addrlen;
5299 	struct net *net = sock_net(sk);
5300 
5301 	rcu_read_lock();
5302 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5303 		if (!addr->valid)
5304 			continue;
5305 
5306 		if ((PF_INET == sk->sk_family) &&
5307 		    (AF_INET6 == addr->a.sa.sa_family))
5308 			continue;
5309 		if ((PF_INET6 == sk->sk_family) &&
5310 		    inet_v6_ipv6only(sk) &&
5311 		    (AF_INET == addr->a.sa.sa_family))
5312 			continue;
5313 		memcpy(&temp, &addr->a, sizeof(temp));
5314 		if (!temp.v4.sin_port)
5315 			temp.v4.sin_port = htons(port);
5316 
5317 		addrlen = sctp_get_pf_specific(sk->sk_family)
5318 			      ->addr_to_user(sctp_sk(sk), &temp);
5319 
5320 		if (space_left < addrlen) {
5321 			cnt =  -ENOMEM;
5322 			break;
5323 		}
5324 		memcpy(to, &temp, addrlen);
5325 
5326 		to += addrlen;
5327 		cnt++;
5328 		space_left -= addrlen;
5329 		*bytes_copied += addrlen;
5330 	}
5331 	rcu_read_unlock();
5332 
5333 	return cnt;
5334 }
5335 
5336 
5337 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5338 				       char __user *optval, int __user *optlen)
5339 {
5340 	struct sctp_bind_addr *bp;
5341 	struct sctp_association *asoc;
5342 	int cnt = 0;
5343 	struct sctp_getaddrs getaddrs;
5344 	struct sctp_sockaddr_entry *addr;
5345 	void __user *to;
5346 	union sctp_addr temp;
5347 	struct sctp_sock *sp = sctp_sk(sk);
5348 	int addrlen;
5349 	int err = 0;
5350 	size_t space_left;
5351 	int bytes_copied = 0;
5352 	void *addrs;
5353 	void *buf;
5354 
5355 	if (len < sizeof(struct sctp_getaddrs))
5356 		return -EINVAL;
5357 
5358 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5359 		return -EFAULT;
5360 
5361 	/*
5362 	 *  For UDP-style sockets, id specifies the association to query.
5363 	 *  If the id field is set to the value '0' then the locally bound
5364 	 *  addresses are returned without regard to any particular
5365 	 *  association.
5366 	 */
5367 	if (0 == getaddrs.assoc_id) {
5368 		bp = &sctp_sk(sk)->ep->base.bind_addr;
5369 	} else {
5370 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5371 		if (!asoc)
5372 			return -EINVAL;
5373 		bp = &asoc->base.bind_addr;
5374 	}
5375 
5376 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5377 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5378 
5379 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5380 	if (!addrs)
5381 		return -ENOMEM;
5382 
5383 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5384 	 * addresses from the global local address list.
5385 	 */
5386 	if (sctp_list_single_entry(&bp->address_list)) {
5387 		addr = list_entry(bp->address_list.next,
5388 				  struct sctp_sockaddr_entry, list);
5389 		if (sctp_is_any(sk, &addr->a)) {
5390 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5391 						space_left, &bytes_copied);
5392 			if (cnt < 0) {
5393 				err = cnt;
5394 				goto out;
5395 			}
5396 			goto copy_getaddrs;
5397 		}
5398 	}
5399 
5400 	buf = addrs;
5401 	/* Protection on the bound address list is not needed since
5402 	 * in the socket option context we hold a socket lock and
5403 	 * thus the bound address list can't change.
5404 	 */
5405 	list_for_each_entry(addr, &bp->address_list, list) {
5406 		memcpy(&temp, &addr->a, sizeof(temp));
5407 		addrlen = sctp_get_pf_specific(sk->sk_family)
5408 			      ->addr_to_user(sp, &temp);
5409 		if (space_left < addrlen) {
5410 			err =  -ENOMEM; /*fixme: right error?*/
5411 			goto out;
5412 		}
5413 		memcpy(buf, &temp, addrlen);
5414 		buf += addrlen;
5415 		bytes_copied += addrlen;
5416 		cnt++;
5417 		space_left -= addrlen;
5418 	}
5419 
5420 copy_getaddrs:
5421 	if (copy_to_user(to, addrs, bytes_copied)) {
5422 		err = -EFAULT;
5423 		goto out;
5424 	}
5425 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5426 		err = -EFAULT;
5427 		goto out;
5428 	}
5429 	if (put_user(bytes_copied, optlen))
5430 		err = -EFAULT;
5431 out:
5432 	kfree(addrs);
5433 	return err;
5434 }
5435 
5436 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5437  *
5438  * Requests that the local SCTP stack use the enclosed peer address as
5439  * the association primary.  The enclosed address must be one of the
5440  * association peer's addresses.
5441  */
5442 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5443 					char __user *optval, int __user *optlen)
5444 {
5445 	struct sctp_prim prim;
5446 	struct sctp_association *asoc;
5447 	struct sctp_sock *sp = sctp_sk(sk);
5448 
5449 	if (len < sizeof(struct sctp_prim))
5450 		return -EINVAL;
5451 
5452 	len = sizeof(struct sctp_prim);
5453 
5454 	if (copy_from_user(&prim, optval, len))
5455 		return -EFAULT;
5456 
5457 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5458 	if (!asoc)
5459 		return -EINVAL;
5460 
5461 	if (!asoc->peer.primary_path)
5462 		return -ENOTCONN;
5463 
5464 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5465 		asoc->peer.primary_path->af_specific->sockaddr_len);
5466 
5467 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5468 			(union sctp_addr *)&prim.ssp_addr);
5469 
5470 	if (put_user(len, optlen))
5471 		return -EFAULT;
5472 	if (copy_to_user(optval, &prim, len))
5473 		return -EFAULT;
5474 
5475 	return 0;
5476 }
5477 
5478 /*
5479  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5480  *
5481  * Requests that the local endpoint set the specified Adaptation Layer
5482  * Indication parameter for all future INIT and INIT-ACK exchanges.
5483  */
5484 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5485 				  char __user *optval, int __user *optlen)
5486 {
5487 	struct sctp_setadaptation adaptation;
5488 
5489 	if (len < sizeof(struct sctp_setadaptation))
5490 		return -EINVAL;
5491 
5492 	len = sizeof(struct sctp_setadaptation);
5493 
5494 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5495 
5496 	if (put_user(len, optlen))
5497 		return -EFAULT;
5498 	if (copy_to_user(optval, &adaptation, len))
5499 		return -EFAULT;
5500 
5501 	return 0;
5502 }
5503 
5504 /*
5505  *
5506  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5507  *
5508  *   Applications that wish to use the sendto() system call may wish to
5509  *   specify a default set of parameters that would normally be supplied
5510  *   through the inclusion of ancillary data.  This socket option allows
5511  *   such an application to set the default sctp_sndrcvinfo structure.
5512 
5513 
5514  *   The application that wishes to use this socket option simply passes
5515  *   in to this call the sctp_sndrcvinfo structure defined in Section
5516  *   5.2.2) The input parameters accepted by this call include
5517  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5518  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5519  *   to this call if the caller is using the UDP model.
5520  *
5521  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5522  */
5523 static int sctp_getsockopt_default_send_param(struct sock *sk,
5524 					int len, char __user *optval,
5525 					int __user *optlen)
5526 {
5527 	struct sctp_sock *sp = sctp_sk(sk);
5528 	struct sctp_association *asoc;
5529 	struct sctp_sndrcvinfo info;
5530 
5531 	if (len < sizeof(info))
5532 		return -EINVAL;
5533 
5534 	len = sizeof(info);
5535 
5536 	if (copy_from_user(&info, optval, len))
5537 		return -EFAULT;
5538 
5539 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5540 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5541 		return -EINVAL;
5542 	if (asoc) {
5543 		info.sinfo_stream = asoc->default_stream;
5544 		info.sinfo_flags = asoc->default_flags;
5545 		info.sinfo_ppid = asoc->default_ppid;
5546 		info.sinfo_context = asoc->default_context;
5547 		info.sinfo_timetolive = asoc->default_timetolive;
5548 	} else {
5549 		info.sinfo_stream = sp->default_stream;
5550 		info.sinfo_flags = sp->default_flags;
5551 		info.sinfo_ppid = sp->default_ppid;
5552 		info.sinfo_context = sp->default_context;
5553 		info.sinfo_timetolive = sp->default_timetolive;
5554 	}
5555 
5556 	if (put_user(len, optlen))
5557 		return -EFAULT;
5558 	if (copy_to_user(optval, &info, len))
5559 		return -EFAULT;
5560 
5561 	return 0;
5562 }
5563 
5564 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5565  * (SCTP_DEFAULT_SNDINFO)
5566  */
5567 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5568 					   char __user *optval,
5569 					   int __user *optlen)
5570 {
5571 	struct sctp_sock *sp = sctp_sk(sk);
5572 	struct sctp_association *asoc;
5573 	struct sctp_sndinfo info;
5574 
5575 	if (len < sizeof(info))
5576 		return -EINVAL;
5577 
5578 	len = sizeof(info);
5579 
5580 	if (copy_from_user(&info, optval, len))
5581 		return -EFAULT;
5582 
5583 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5584 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5585 		return -EINVAL;
5586 	if (asoc) {
5587 		info.snd_sid = asoc->default_stream;
5588 		info.snd_flags = asoc->default_flags;
5589 		info.snd_ppid = asoc->default_ppid;
5590 		info.snd_context = asoc->default_context;
5591 	} else {
5592 		info.snd_sid = sp->default_stream;
5593 		info.snd_flags = sp->default_flags;
5594 		info.snd_ppid = sp->default_ppid;
5595 		info.snd_context = sp->default_context;
5596 	}
5597 
5598 	if (put_user(len, optlen))
5599 		return -EFAULT;
5600 	if (copy_to_user(optval, &info, len))
5601 		return -EFAULT;
5602 
5603 	return 0;
5604 }
5605 
5606 /*
5607  *
5608  * 7.1.5 SCTP_NODELAY
5609  *
5610  * Turn on/off any Nagle-like algorithm.  This means that packets are
5611  * generally sent as soon as possible and no unnecessary delays are
5612  * introduced, at the cost of more packets in the network.  Expects an
5613  * integer boolean flag.
5614  */
5615 
5616 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5617 				   char __user *optval, int __user *optlen)
5618 {
5619 	int val;
5620 
5621 	if (len < sizeof(int))
5622 		return -EINVAL;
5623 
5624 	len = sizeof(int);
5625 	val = (sctp_sk(sk)->nodelay == 1);
5626 	if (put_user(len, optlen))
5627 		return -EFAULT;
5628 	if (copy_to_user(optval, &val, len))
5629 		return -EFAULT;
5630 	return 0;
5631 }
5632 
5633 /*
5634  *
5635  * 7.1.1 SCTP_RTOINFO
5636  *
5637  * The protocol parameters used to initialize and bound retransmission
5638  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5639  * and modify these parameters.
5640  * All parameters are time values, in milliseconds.  A value of 0, when
5641  * modifying the parameters, indicates that the current value should not
5642  * be changed.
5643  *
5644  */
5645 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5646 				char __user *optval,
5647 				int __user *optlen) {
5648 	struct sctp_rtoinfo rtoinfo;
5649 	struct sctp_association *asoc;
5650 
5651 	if (len < sizeof (struct sctp_rtoinfo))
5652 		return -EINVAL;
5653 
5654 	len = sizeof(struct sctp_rtoinfo);
5655 
5656 	if (copy_from_user(&rtoinfo, optval, len))
5657 		return -EFAULT;
5658 
5659 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5660 
5661 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5662 		return -EINVAL;
5663 
5664 	/* Values corresponding to the specific association. */
5665 	if (asoc) {
5666 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5667 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5668 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5669 	} else {
5670 		/* Values corresponding to the endpoint. */
5671 		struct sctp_sock *sp = sctp_sk(sk);
5672 
5673 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5674 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5675 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5676 	}
5677 
5678 	if (put_user(len, optlen))
5679 		return -EFAULT;
5680 
5681 	if (copy_to_user(optval, &rtoinfo, len))
5682 		return -EFAULT;
5683 
5684 	return 0;
5685 }
5686 
5687 /*
5688  *
5689  * 7.1.2 SCTP_ASSOCINFO
5690  *
5691  * This option is used to tune the maximum retransmission attempts
5692  * of the association.
5693  * Returns an error if the new association retransmission value is
5694  * greater than the sum of the retransmission value  of the peer.
5695  * See [SCTP] for more information.
5696  *
5697  */
5698 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5699 				     char __user *optval,
5700 				     int __user *optlen)
5701 {
5702 
5703 	struct sctp_assocparams assocparams;
5704 	struct sctp_association *asoc;
5705 	struct list_head *pos;
5706 	int cnt = 0;
5707 
5708 	if (len < sizeof (struct sctp_assocparams))
5709 		return -EINVAL;
5710 
5711 	len = sizeof(struct sctp_assocparams);
5712 
5713 	if (copy_from_user(&assocparams, optval, len))
5714 		return -EFAULT;
5715 
5716 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5717 
5718 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5719 		return -EINVAL;
5720 
5721 	/* Values correspoinding to the specific association */
5722 	if (asoc) {
5723 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5724 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5725 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5726 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5727 
5728 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5729 			cnt++;
5730 		}
5731 
5732 		assocparams.sasoc_number_peer_destinations = cnt;
5733 	} else {
5734 		/* Values corresponding to the endpoint */
5735 		struct sctp_sock *sp = sctp_sk(sk);
5736 
5737 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5738 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5739 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5740 		assocparams.sasoc_cookie_life =
5741 					sp->assocparams.sasoc_cookie_life;
5742 		assocparams.sasoc_number_peer_destinations =
5743 					sp->assocparams.
5744 					sasoc_number_peer_destinations;
5745 	}
5746 
5747 	if (put_user(len, optlen))
5748 		return -EFAULT;
5749 
5750 	if (copy_to_user(optval, &assocparams, len))
5751 		return -EFAULT;
5752 
5753 	return 0;
5754 }
5755 
5756 /*
5757  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5758  *
5759  * This socket option is a boolean flag which turns on or off mapped V4
5760  * addresses.  If this option is turned on and the socket is type
5761  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5762  * If this option is turned off, then no mapping will be done of V4
5763  * addresses and a user will receive both PF_INET6 and PF_INET type
5764  * addresses on the socket.
5765  */
5766 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5767 				    char __user *optval, int __user *optlen)
5768 {
5769 	int val;
5770 	struct sctp_sock *sp = sctp_sk(sk);
5771 
5772 	if (len < sizeof(int))
5773 		return -EINVAL;
5774 
5775 	len = sizeof(int);
5776 	val = sp->v4mapped;
5777 	if (put_user(len, optlen))
5778 		return -EFAULT;
5779 	if (copy_to_user(optval, &val, len))
5780 		return -EFAULT;
5781 
5782 	return 0;
5783 }
5784 
5785 /*
5786  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5787  * (chapter and verse is quoted at sctp_setsockopt_context())
5788  */
5789 static int sctp_getsockopt_context(struct sock *sk, int len,
5790 				   char __user *optval, int __user *optlen)
5791 {
5792 	struct sctp_assoc_value params;
5793 	struct sctp_sock *sp;
5794 	struct sctp_association *asoc;
5795 
5796 	if (len < sizeof(struct sctp_assoc_value))
5797 		return -EINVAL;
5798 
5799 	len = sizeof(struct sctp_assoc_value);
5800 
5801 	if (copy_from_user(&params, optval, len))
5802 		return -EFAULT;
5803 
5804 	sp = sctp_sk(sk);
5805 
5806 	if (params.assoc_id != 0) {
5807 		asoc = sctp_id2assoc(sk, params.assoc_id);
5808 		if (!asoc)
5809 			return -EINVAL;
5810 		params.assoc_value = asoc->default_rcv_context;
5811 	} else {
5812 		params.assoc_value = sp->default_rcv_context;
5813 	}
5814 
5815 	if (put_user(len, optlen))
5816 		return -EFAULT;
5817 	if (copy_to_user(optval, &params, len))
5818 		return -EFAULT;
5819 
5820 	return 0;
5821 }
5822 
5823 /*
5824  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5825  * This option will get or set the maximum size to put in any outgoing
5826  * SCTP DATA chunk.  If a message is larger than this size it will be
5827  * fragmented by SCTP into the specified size.  Note that the underlying
5828  * SCTP implementation may fragment into smaller sized chunks when the
5829  * PMTU of the underlying association is smaller than the value set by
5830  * the user.  The default value for this option is '0' which indicates
5831  * the user is NOT limiting fragmentation and only the PMTU will effect
5832  * SCTP's choice of DATA chunk size.  Note also that values set larger
5833  * than the maximum size of an IP datagram will effectively let SCTP
5834  * control fragmentation (i.e. the same as setting this option to 0).
5835  *
5836  * The following structure is used to access and modify this parameter:
5837  *
5838  * struct sctp_assoc_value {
5839  *   sctp_assoc_t assoc_id;
5840  *   uint32_t assoc_value;
5841  * };
5842  *
5843  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5844  *    For one-to-many style sockets this parameter indicates which
5845  *    association the user is performing an action upon.  Note that if
5846  *    this field's value is zero then the endpoints default value is
5847  *    changed (effecting future associations only).
5848  * assoc_value:  This parameter specifies the maximum size in bytes.
5849  */
5850 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5851 				  char __user *optval, int __user *optlen)
5852 {
5853 	struct sctp_assoc_value params;
5854 	struct sctp_association *asoc;
5855 
5856 	if (len == sizeof(int)) {
5857 		pr_warn_ratelimited(DEPRECATED
5858 				    "%s (pid %d) "
5859 				    "Use of int in maxseg socket option.\n"
5860 				    "Use struct sctp_assoc_value instead\n",
5861 				    current->comm, task_pid_nr(current));
5862 		params.assoc_id = 0;
5863 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5864 		len = sizeof(struct sctp_assoc_value);
5865 		if (copy_from_user(&params, optval, sizeof(params)))
5866 			return -EFAULT;
5867 	} else
5868 		return -EINVAL;
5869 
5870 	asoc = sctp_id2assoc(sk, params.assoc_id);
5871 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5872 		return -EINVAL;
5873 
5874 	if (asoc)
5875 		params.assoc_value = asoc->frag_point;
5876 	else
5877 		params.assoc_value = sctp_sk(sk)->user_frag;
5878 
5879 	if (put_user(len, optlen))
5880 		return -EFAULT;
5881 	if (len == sizeof(int)) {
5882 		if (copy_to_user(optval, &params.assoc_value, len))
5883 			return -EFAULT;
5884 	} else {
5885 		if (copy_to_user(optval, &params, len))
5886 			return -EFAULT;
5887 	}
5888 
5889 	return 0;
5890 }
5891 
5892 /*
5893  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5894  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5895  */
5896 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5897 					       char __user *optval, int __user *optlen)
5898 {
5899 	int val;
5900 
5901 	if (len < sizeof(int))
5902 		return -EINVAL;
5903 
5904 	len = sizeof(int);
5905 
5906 	val = sctp_sk(sk)->frag_interleave;
5907 	if (put_user(len, optlen))
5908 		return -EFAULT;
5909 	if (copy_to_user(optval, &val, len))
5910 		return -EFAULT;
5911 
5912 	return 0;
5913 }
5914 
5915 /*
5916  * 7.1.25.  Set or Get the sctp partial delivery point
5917  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5918  */
5919 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5920 						  char __user *optval,
5921 						  int __user *optlen)
5922 {
5923 	u32 val;
5924 
5925 	if (len < sizeof(u32))
5926 		return -EINVAL;
5927 
5928 	len = sizeof(u32);
5929 
5930 	val = sctp_sk(sk)->pd_point;
5931 	if (put_user(len, optlen))
5932 		return -EFAULT;
5933 	if (copy_to_user(optval, &val, len))
5934 		return -EFAULT;
5935 
5936 	return 0;
5937 }
5938 
5939 /*
5940  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5941  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5942  */
5943 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5944 				    char __user *optval,
5945 				    int __user *optlen)
5946 {
5947 	struct sctp_assoc_value params;
5948 	struct sctp_sock *sp;
5949 	struct sctp_association *asoc;
5950 
5951 	if (len == sizeof(int)) {
5952 		pr_warn_ratelimited(DEPRECATED
5953 				    "%s (pid %d) "
5954 				    "Use of int in max_burst socket option.\n"
5955 				    "Use struct sctp_assoc_value instead\n",
5956 				    current->comm, task_pid_nr(current));
5957 		params.assoc_id = 0;
5958 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5959 		len = sizeof(struct sctp_assoc_value);
5960 		if (copy_from_user(&params, optval, len))
5961 			return -EFAULT;
5962 	} else
5963 		return -EINVAL;
5964 
5965 	sp = sctp_sk(sk);
5966 
5967 	if (params.assoc_id != 0) {
5968 		asoc = sctp_id2assoc(sk, params.assoc_id);
5969 		if (!asoc)
5970 			return -EINVAL;
5971 		params.assoc_value = asoc->max_burst;
5972 	} else
5973 		params.assoc_value = sp->max_burst;
5974 
5975 	if (len == sizeof(int)) {
5976 		if (copy_to_user(optval, &params.assoc_value, len))
5977 			return -EFAULT;
5978 	} else {
5979 		if (copy_to_user(optval, &params, len))
5980 			return -EFAULT;
5981 	}
5982 
5983 	return 0;
5984 
5985 }
5986 
5987 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5988 				    char __user *optval, int __user *optlen)
5989 {
5990 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5991 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5992 	struct sctp_hmac_algo_param *hmacs;
5993 	__u16 data_len = 0;
5994 	u32 num_idents;
5995 	int i;
5996 
5997 	if (!ep->auth_enable)
5998 		return -EACCES;
5999 
6000 	hmacs = ep->auth_hmacs_list;
6001 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
6002 
6003 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6004 		return -EINVAL;
6005 
6006 	len = sizeof(struct sctp_hmacalgo) + data_len;
6007 	num_idents = data_len / sizeof(u16);
6008 
6009 	if (put_user(len, optlen))
6010 		return -EFAULT;
6011 	if (put_user(num_idents, &p->shmac_num_idents))
6012 		return -EFAULT;
6013 	for (i = 0; i < num_idents; i++) {
6014 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6015 
6016 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6017 			return -EFAULT;
6018 	}
6019 	return 0;
6020 }
6021 
6022 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6023 				    char __user *optval, int __user *optlen)
6024 {
6025 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6026 	struct sctp_authkeyid val;
6027 	struct sctp_association *asoc;
6028 
6029 	if (!ep->auth_enable)
6030 		return -EACCES;
6031 
6032 	if (len < sizeof(struct sctp_authkeyid))
6033 		return -EINVAL;
6034 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
6035 		return -EFAULT;
6036 
6037 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6038 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6039 		return -EINVAL;
6040 
6041 	if (asoc)
6042 		val.scact_keynumber = asoc->active_key_id;
6043 	else
6044 		val.scact_keynumber = ep->active_key_id;
6045 
6046 	len = sizeof(struct sctp_authkeyid);
6047 	if (put_user(len, optlen))
6048 		return -EFAULT;
6049 	if (copy_to_user(optval, &val, len))
6050 		return -EFAULT;
6051 
6052 	return 0;
6053 }
6054 
6055 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6056 				    char __user *optval, int __user *optlen)
6057 {
6058 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6059 	struct sctp_authchunks __user *p = (void __user *)optval;
6060 	struct sctp_authchunks val;
6061 	struct sctp_association *asoc;
6062 	struct sctp_chunks_param *ch;
6063 	u32    num_chunks = 0;
6064 	char __user *to;
6065 
6066 	if (!ep->auth_enable)
6067 		return -EACCES;
6068 
6069 	if (len < sizeof(struct sctp_authchunks))
6070 		return -EINVAL;
6071 
6072 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6073 		return -EFAULT;
6074 
6075 	to = p->gauth_chunks;
6076 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6077 	if (!asoc)
6078 		return -EINVAL;
6079 
6080 	ch = asoc->peer.peer_chunks;
6081 	if (!ch)
6082 		goto num;
6083 
6084 	/* See if the user provided enough room for all the data */
6085 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6086 	if (len < num_chunks)
6087 		return -EINVAL;
6088 
6089 	if (copy_to_user(to, ch->chunks, num_chunks))
6090 		return -EFAULT;
6091 num:
6092 	len = sizeof(struct sctp_authchunks) + num_chunks;
6093 	if (put_user(len, optlen))
6094 		return -EFAULT;
6095 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6096 		return -EFAULT;
6097 	return 0;
6098 }
6099 
6100 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6101 				    char __user *optval, int __user *optlen)
6102 {
6103 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6104 	struct sctp_authchunks __user *p = (void __user *)optval;
6105 	struct sctp_authchunks val;
6106 	struct sctp_association *asoc;
6107 	struct sctp_chunks_param *ch;
6108 	u32    num_chunks = 0;
6109 	char __user *to;
6110 
6111 	if (!ep->auth_enable)
6112 		return -EACCES;
6113 
6114 	if (len < sizeof(struct sctp_authchunks))
6115 		return -EINVAL;
6116 
6117 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6118 		return -EFAULT;
6119 
6120 	to = p->gauth_chunks;
6121 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6122 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6123 		return -EINVAL;
6124 
6125 	if (asoc)
6126 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6127 	else
6128 		ch = ep->auth_chunk_list;
6129 
6130 	if (!ch)
6131 		goto num;
6132 
6133 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6134 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6135 		return -EINVAL;
6136 
6137 	if (copy_to_user(to, ch->chunks, num_chunks))
6138 		return -EFAULT;
6139 num:
6140 	len = sizeof(struct sctp_authchunks) + num_chunks;
6141 	if (put_user(len, optlen))
6142 		return -EFAULT;
6143 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6144 		return -EFAULT;
6145 
6146 	return 0;
6147 }
6148 
6149 /*
6150  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6151  * This option gets the current number of associations that are attached
6152  * to a one-to-many style socket.  The option value is an uint32_t.
6153  */
6154 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6155 				    char __user *optval, int __user *optlen)
6156 {
6157 	struct sctp_sock *sp = sctp_sk(sk);
6158 	struct sctp_association *asoc;
6159 	u32 val = 0;
6160 
6161 	if (sctp_style(sk, TCP))
6162 		return -EOPNOTSUPP;
6163 
6164 	if (len < sizeof(u32))
6165 		return -EINVAL;
6166 
6167 	len = sizeof(u32);
6168 
6169 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6170 		val++;
6171 	}
6172 
6173 	if (put_user(len, optlen))
6174 		return -EFAULT;
6175 	if (copy_to_user(optval, &val, len))
6176 		return -EFAULT;
6177 
6178 	return 0;
6179 }
6180 
6181 /*
6182  * 8.1.23 SCTP_AUTO_ASCONF
6183  * See the corresponding setsockopt entry as description
6184  */
6185 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6186 				   char __user *optval, int __user *optlen)
6187 {
6188 	int val = 0;
6189 
6190 	if (len < sizeof(int))
6191 		return -EINVAL;
6192 
6193 	len = sizeof(int);
6194 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6195 		val = 1;
6196 	if (put_user(len, optlen))
6197 		return -EFAULT;
6198 	if (copy_to_user(optval, &val, len))
6199 		return -EFAULT;
6200 	return 0;
6201 }
6202 
6203 /*
6204  * 8.2.6. Get the Current Identifiers of Associations
6205  *        (SCTP_GET_ASSOC_ID_LIST)
6206  *
6207  * This option gets the current list of SCTP association identifiers of
6208  * the SCTP associations handled by a one-to-many style socket.
6209  */
6210 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6211 				    char __user *optval, int __user *optlen)
6212 {
6213 	struct sctp_sock *sp = sctp_sk(sk);
6214 	struct sctp_association *asoc;
6215 	struct sctp_assoc_ids *ids;
6216 	u32 num = 0;
6217 
6218 	if (sctp_style(sk, TCP))
6219 		return -EOPNOTSUPP;
6220 
6221 	if (len < sizeof(struct sctp_assoc_ids))
6222 		return -EINVAL;
6223 
6224 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6225 		num++;
6226 	}
6227 
6228 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6229 		return -EINVAL;
6230 
6231 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6232 
6233 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6234 	if (unlikely(!ids))
6235 		return -ENOMEM;
6236 
6237 	ids->gaids_number_of_ids = num;
6238 	num = 0;
6239 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6240 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6241 	}
6242 
6243 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6244 		kfree(ids);
6245 		return -EFAULT;
6246 	}
6247 
6248 	kfree(ids);
6249 	return 0;
6250 }
6251 
6252 /*
6253  * SCTP_PEER_ADDR_THLDS
6254  *
6255  * This option allows us to fetch the partially failed threshold for one or all
6256  * transports in an association.  See Section 6.1 of:
6257  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6258  */
6259 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6260 					    char __user *optval,
6261 					    int len,
6262 					    int __user *optlen)
6263 {
6264 	struct sctp_paddrthlds val;
6265 	struct sctp_transport *trans;
6266 	struct sctp_association *asoc;
6267 
6268 	if (len < sizeof(struct sctp_paddrthlds))
6269 		return -EINVAL;
6270 	len = sizeof(struct sctp_paddrthlds);
6271 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6272 		return -EFAULT;
6273 
6274 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6275 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6276 		if (!asoc)
6277 			return -ENOENT;
6278 
6279 		val.spt_pathpfthld = asoc->pf_retrans;
6280 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6281 	} else {
6282 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6283 					       val.spt_assoc_id);
6284 		if (!trans)
6285 			return -ENOENT;
6286 
6287 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6288 		val.spt_pathpfthld = trans->pf_retrans;
6289 	}
6290 
6291 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6292 		return -EFAULT;
6293 
6294 	return 0;
6295 }
6296 
6297 /*
6298  * SCTP_GET_ASSOC_STATS
6299  *
6300  * This option retrieves local per endpoint statistics. It is modeled
6301  * after OpenSolaris' implementation
6302  */
6303 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6304 				       char __user *optval,
6305 				       int __user *optlen)
6306 {
6307 	struct sctp_assoc_stats sas;
6308 	struct sctp_association *asoc = NULL;
6309 
6310 	/* User must provide at least the assoc id */
6311 	if (len < sizeof(sctp_assoc_t))
6312 		return -EINVAL;
6313 
6314 	/* Allow the struct to grow and fill in as much as possible */
6315 	len = min_t(size_t, len, sizeof(sas));
6316 
6317 	if (copy_from_user(&sas, optval, len))
6318 		return -EFAULT;
6319 
6320 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6321 	if (!asoc)
6322 		return -EINVAL;
6323 
6324 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6325 	sas.sas_gapcnt = asoc->stats.gapcnt;
6326 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6327 	sas.sas_osacks = asoc->stats.osacks;
6328 	sas.sas_isacks = asoc->stats.isacks;
6329 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6330 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6331 	sas.sas_oodchunks = asoc->stats.oodchunks;
6332 	sas.sas_iodchunks = asoc->stats.iodchunks;
6333 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6334 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6335 	sas.sas_idupchunks = asoc->stats.idupchunks;
6336 	sas.sas_opackets = asoc->stats.opackets;
6337 	sas.sas_ipackets = asoc->stats.ipackets;
6338 
6339 	/* New high max rto observed, will return 0 if not a single
6340 	 * RTO update took place. obs_rto_ipaddr will be bogus
6341 	 * in such a case
6342 	 */
6343 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6344 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6345 		sizeof(struct sockaddr_storage));
6346 
6347 	/* Mark beginning of a new observation period */
6348 	asoc->stats.max_obs_rto = asoc->rto_min;
6349 
6350 	if (put_user(len, optlen))
6351 		return -EFAULT;
6352 
6353 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6354 
6355 	if (copy_to_user(optval, &sas, len))
6356 		return -EFAULT;
6357 
6358 	return 0;
6359 }
6360 
6361 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
6362 				       char __user *optval,
6363 				       int __user *optlen)
6364 {
6365 	int val = 0;
6366 
6367 	if (len < sizeof(int))
6368 		return -EINVAL;
6369 
6370 	len = sizeof(int);
6371 	if (sctp_sk(sk)->recvrcvinfo)
6372 		val = 1;
6373 	if (put_user(len, optlen))
6374 		return -EFAULT;
6375 	if (copy_to_user(optval, &val, len))
6376 		return -EFAULT;
6377 
6378 	return 0;
6379 }
6380 
6381 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
6382 				       char __user *optval,
6383 				       int __user *optlen)
6384 {
6385 	int val = 0;
6386 
6387 	if (len < sizeof(int))
6388 		return -EINVAL;
6389 
6390 	len = sizeof(int);
6391 	if (sctp_sk(sk)->recvnxtinfo)
6392 		val = 1;
6393 	if (put_user(len, optlen))
6394 		return -EFAULT;
6395 	if (copy_to_user(optval, &val, len))
6396 		return -EFAULT;
6397 
6398 	return 0;
6399 }
6400 
6401 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6402 					char __user *optval,
6403 					int __user *optlen)
6404 {
6405 	struct sctp_assoc_value params;
6406 	struct sctp_association *asoc;
6407 	int retval = -EFAULT;
6408 
6409 	if (len < sizeof(params)) {
6410 		retval = -EINVAL;
6411 		goto out;
6412 	}
6413 
6414 	len = sizeof(params);
6415 	if (copy_from_user(&params, optval, len))
6416 		goto out;
6417 
6418 	asoc = sctp_id2assoc(sk, params.assoc_id);
6419 	if (asoc) {
6420 		params.assoc_value = asoc->prsctp_enable;
6421 	} else if (!params.assoc_id) {
6422 		struct sctp_sock *sp = sctp_sk(sk);
6423 
6424 		params.assoc_value = sp->ep->prsctp_enable;
6425 	} else {
6426 		retval = -EINVAL;
6427 		goto out;
6428 	}
6429 
6430 	if (put_user(len, optlen))
6431 		goto out;
6432 
6433 	if (copy_to_user(optval, &params, len))
6434 		goto out;
6435 
6436 	retval = 0;
6437 
6438 out:
6439 	return retval;
6440 }
6441 
6442 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6443 					  char __user *optval,
6444 					  int __user *optlen)
6445 {
6446 	struct sctp_default_prinfo info;
6447 	struct sctp_association *asoc;
6448 	int retval = -EFAULT;
6449 
6450 	if (len < sizeof(info)) {
6451 		retval = -EINVAL;
6452 		goto out;
6453 	}
6454 
6455 	len = sizeof(info);
6456 	if (copy_from_user(&info, optval, len))
6457 		goto out;
6458 
6459 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6460 	if (asoc) {
6461 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6462 		info.pr_value = asoc->default_timetolive;
6463 	} else if (!info.pr_assoc_id) {
6464 		struct sctp_sock *sp = sctp_sk(sk);
6465 
6466 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6467 		info.pr_value = sp->default_timetolive;
6468 	} else {
6469 		retval = -EINVAL;
6470 		goto out;
6471 	}
6472 
6473 	if (put_user(len, optlen))
6474 		goto out;
6475 
6476 	if (copy_to_user(optval, &info, len))
6477 		goto out;
6478 
6479 	retval = 0;
6480 
6481 out:
6482 	return retval;
6483 }
6484 
6485 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6486 					  char __user *optval,
6487 					  int __user *optlen)
6488 {
6489 	struct sctp_prstatus params;
6490 	struct sctp_association *asoc;
6491 	int policy;
6492 	int retval = -EINVAL;
6493 
6494 	if (len < sizeof(params))
6495 		goto out;
6496 
6497 	len = sizeof(params);
6498 	if (copy_from_user(&params, optval, len)) {
6499 		retval = -EFAULT;
6500 		goto out;
6501 	}
6502 
6503 	policy = params.sprstat_policy;
6504 	if (policy & ~SCTP_PR_SCTP_MASK)
6505 		goto out;
6506 
6507 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6508 	if (!asoc)
6509 		goto out;
6510 
6511 	if (policy == SCTP_PR_SCTP_NONE) {
6512 		params.sprstat_abandoned_unsent = 0;
6513 		params.sprstat_abandoned_sent = 0;
6514 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6515 			params.sprstat_abandoned_unsent +=
6516 				asoc->abandoned_unsent[policy];
6517 			params.sprstat_abandoned_sent +=
6518 				asoc->abandoned_sent[policy];
6519 		}
6520 	} else {
6521 		params.sprstat_abandoned_unsent =
6522 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6523 		params.sprstat_abandoned_sent =
6524 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6525 	}
6526 
6527 	if (put_user(len, optlen)) {
6528 		retval = -EFAULT;
6529 		goto out;
6530 	}
6531 
6532 	if (copy_to_user(optval, &params, len)) {
6533 		retval = -EFAULT;
6534 		goto out;
6535 	}
6536 
6537 	retval = 0;
6538 
6539 out:
6540 	return retval;
6541 }
6542 
6543 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6544 					   char __user *optval,
6545 					   int __user *optlen)
6546 {
6547 	struct sctp_assoc_value params;
6548 	struct sctp_association *asoc;
6549 	int retval = -EFAULT;
6550 
6551 	if (len < sizeof(params)) {
6552 		retval = -EINVAL;
6553 		goto out;
6554 	}
6555 
6556 	len = sizeof(params);
6557 	if (copy_from_user(&params, optval, len))
6558 		goto out;
6559 
6560 	asoc = sctp_id2assoc(sk, params.assoc_id);
6561 	if (asoc) {
6562 		params.assoc_value = asoc->strreset_enable;
6563 	} else if (!params.assoc_id) {
6564 		struct sctp_sock *sp = sctp_sk(sk);
6565 
6566 		params.assoc_value = sp->ep->strreset_enable;
6567 	} else {
6568 		retval = -EINVAL;
6569 		goto out;
6570 	}
6571 
6572 	if (put_user(len, optlen))
6573 		goto out;
6574 
6575 	if (copy_to_user(optval, &params, len))
6576 		goto out;
6577 
6578 	retval = 0;
6579 
6580 out:
6581 	return retval;
6582 }
6583 
6584 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6585 			   char __user *optval, int __user *optlen)
6586 {
6587 	int retval = 0;
6588 	int len;
6589 
6590 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6591 
6592 	/* I can hardly begin to describe how wrong this is.  This is
6593 	 * so broken as to be worse than useless.  The API draft
6594 	 * REALLY is NOT helpful here...  I am not convinced that the
6595 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6596 	 * are at all well-founded.
6597 	 */
6598 	if (level != SOL_SCTP) {
6599 		struct sctp_af *af = sctp_sk(sk)->pf->af;
6600 
6601 		retval = af->getsockopt(sk, level, optname, optval, optlen);
6602 		return retval;
6603 	}
6604 
6605 	if (get_user(len, optlen))
6606 		return -EFAULT;
6607 
6608 	if (len < 0)
6609 		return -EINVAL;
6610 
6611 	lock_sock(sk);
6612 
6613 	switch (optname) {
6614 	case SCTP_STATUS:
6615 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6616 		break;
6617 	case SCTP_DISABLE_FRAGMENTS:
6618 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6619 							   optlen);
6620 		break;
6621 	case SCTP_EVENTS:
6622 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
6623 		break;
6624 	case SCTP_AUTOCLOSE:
6625 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6626 		break;
6627 	case SCTP_SOCKOPT_PEELOFF:
6628 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6629 		break;
6630 	case SCTP_PEER_ADDR_PARAMS:
6631 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6632 							  optlen);
6633 		break;
6634 	case SCTP_DELAYED_SACK:
6635 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6636 							  optlen);
6637 		break;
6638 	case SCTP_INITMSG:
6639 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6640 		break;
6641 	case SCTP_GET_PEER_ADDRS:
6642 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6643 						    optlen);
6644 		break;
6645 	case SCTP_GET_LOCAL_ADDRS:
6646 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6647 						     optlen);
6648 		break;
6649 	case SCTP_SOCKOPT_CONNECTX3:
6650 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6651 		break;
6652 	case SCTP_DEFAULT_SEND_PARAM:
6653 		retval = sctp_getsockopt_default_send_param(sk, len,
6654 							    optval, optlen);
6655 		break;
6656 	case SCTP_DEFAULT_SNDINFO:
6657 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6658 							 optval, optlen);
6659 		break;
6660 	case SCTP_PRIMARY_ADDR:
6661 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6662 		break;
6663 	case SCTP_NODELAY:
6664 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6665 		break;
6666 	case SCTP_RTOINFO:
6667 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6668 		break;
6669 	case SCTP_ASSOCINFO:
6670 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6671 		break;
6672 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6673 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6674 		break;
6675 	case SCTP_MAXSEG:
6676 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6677 		break;
6678 	case SCTP_GET_PEER_ADDR_INFO:
6679 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6680 							optlen);
6681 		break;
6682 	case SCTP_ADAPTATION_LAYER:
6683 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6684 							optlen);
6685 		break;
6686 	case SCTP_CONTEXT:
6687 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6688 		break;
6689 	case SCTP_FRAGMENT_INTERLEAVE:
6690 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6691 							     optlen);
6692 		break;
6693 	case SCTP_PARTIAL_DELIVERY_POINT:
6694 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6695 								optlen);
6696 		break;
6697 	case SCTP_MAX_BURST:
6698 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6699 		break;
6700 	case SCTP_AUTH_KEY:
6701 	case SCTP_AUTH_CHUNK:
6702 	case SCTP_AUTH_DELETE_KEY:
6703 		retval = -EOPNOTSUPP;
6704 		break;
6705 	case SCTP_HMAC_IDENT:
6706 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6707 		break;
6708 	case SCTP_AUTH_ACTIVE_KEY:
6709 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6710 		break;
6711 	case SCTP_PEER_AUTH_CHUNKS:
6712 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6713 							optlen);
6714 		break;
6715 	case SCTP_LOCAL_AUTH_CHUNKS:
6716 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6717 							optlen);
6718 		break;
6719 	case SCTP_GET_ASSOC_NUMBER:
6720 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6721 		break;
6722 	case SCTP_GET_ASSOC_ID_LIST:
6723 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6724 		break;
6725 	case SCTP_AUTO_ASCONF:
6726 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6727 		break;
6728 	case SCTP_PEER_ADDR_THLDS:
6729 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6730 		break;
6731 	case SCTP_GET_ASSOC_STATS:
6732 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6733 		break;
6734 	case SCTP_RECVRCVINFO:
6735 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6736 		break;
6737 	case SCTP_RECVNXTINFO:
6738 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6739 		break;
6740 	case SCTP_PR_SUPPORTED:
6741 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6742 		break;
6743 	case SCTP_DEFAULT_PRINFO:
6744 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6745 							optlen);
6746 		break;
6747 	case SCTP_PR_ASSOC_STATUS:
6748 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6749 							optlen);
6750 		break;
6751 	case SCTP_ENABLE_STREAM_RESET:
6752 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
6753 							 optlen);
6754 		break;
6755 	default:
6756 		retval = -ENOPROTOOPT;
6757 		break;
6758 	}
6759 
6760 	release_sock(sk);
6761 	return retval;
6762 }
6763 
6764 static int sctp_hash(struct sock *sk)
6765 {
6766 	/* STUB */
6767 	return 0;
6768 }
6769 
6770 static void sctp_unhash(struct sock *sk)
6771 {
6772 	/* STUB */
6773 }
6774 
6775 /* Check if port is acceptable.  Possibly find first available port.
6776  *
6777  * The port hash table (contained in the 'global' SCTP protocol storage
6778  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6779  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6780  * list (the list number is the port number hashed out, so as you
6781  * would expect from a hash function, all the ports in a given list have
6782  * such a number that hashes out to the same list number; you were
6783  * expecting that, right?); so each list has a set of ports, with a
6784  * link to the socket (struct sock) that uses it, the port number and
6785  * a fastreuse flag (FIXME: NPI ipg).
6786  */
6787 static struct sctp_bind_bucket *sctp_bucket_create(
6788 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6789 
6790 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6791 {
6792 	struct sctp_bind_hashbucket *head; /* hash list */
6793 	struct sctp_bind_bucket *pp;
6794 	unsigned short snum;
6795 	int ret;
6796 
6797 	snum = ntohs(addr->v4.sin_port);
6798 
6799 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6800 
6801 	local_bh_disable();
6802 
6803 	if (snum == 0) {
6804 		/* Search for an available port. */
6805 		int low, high, remaining, index;
6806 		unsigned int rover;
6807 		struct net *net = sock_net(sk);
6808 
6809 		inet_get_local_port_range(net, &low, &high);
6810 		remaining = (high - low) + 1;
6811 		rover = prandom_u32() % remaining + low;
6812 
6813 		do {
6814 			rover++;
6815 			if ((rover < low) || (rover > high))
6816 				rover = low;
6817 			if (inet_is_local_reserved_port(net, rover))
6818 				continue;
6819 			index = sctp_phashfn(sock_net(sk), rover);
6820 			head = &sctp_port_hashtable[index];
6821 			spin_lock(&head->lock);
6822 			sctp_for_each_hentry(pp, &head->chain)
6823 				if ((pp->port == rover) &&
6824 				    net_eq(sock_net(sk), pp->net))
6825 					goto next;
6826 			break;
6827 		next:
6828 			spin_unlock(&head->lock);
6829 		} while (--remaining > 0);
6830 
6831 		/* Exhausted local port range during search? */
6832 		ret = 1;
6833 		if (remaining <= 0)
6834 			goto fail;
6835 
6836 		/* OK, here is the one we will use.  HEAD (the port
6837 		 * hash table list entry) is non-NULL and we hold it's
6838 		 * mutex.
6839 		 */
6840 		snum = rover;
6841 	} else {
6842 		/* We are given an specific port number; we verify
6843 		 * that it is not being used. If it is used, we will
6844 		 * exahust the search in the hash list corresponding
6845 		 * to the port number (snum) - we detect that with the
6846 		 * port iterator, pp being NULL.
6847 		 */
6848 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6849 		spin_lock(&head->lock);
6850 		sctp_for_each_hentry(pp, &head->chain) {
6851 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6852 				goto pp_found;
6853 		}
6854 	}
6855 	pp = NULL;
6856 	goto pp_not_found;
6857 pp_found:
6858 	if (!hlist_empty(&pp->owner)) {
6859 		/* We had a port hash table hit - there is an
6860 		 * available port (pp != NULL) and it is being
6861 		 * used by other socket (pp->owner not empty); that other
6862 		 * socket is going to be sk2.
6863 		 */
6864 		int reuse = sk->sk_reuse;
6865 		struct sock *sk2;
6866 
6867 		pr_debug("%s: found a possible match\n", __func__);
6868 
6869 		if (pp->fastreuse && sk->sk_reuse &&
6870 			sk->sk_state != SCTP_SS_LISTENING)
6871 			goto success;
6872 
6873 		/* Run through the list of sockets bound to the port
6874 		 * (pp->port) [via the pointers bind_next and
6875 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6876 		 * we get the endpoint they describe and run through
6877 		 * the endpoint's list of IP (v4 or v6) addresses,
6878 		 * comparing each of the addresses with the address of
6879 		 * the socket sk. If we find a match, then that means
6880 		 * that this port/socket (sk) combination are already
6881 		 * in an endpoint.
6882 		 */
6883 		sk_for_each_bound(sk2, &pp->owner) {
6884 			struct sctp_endpoint *ep2;
6885 			ep2 = sctp_sk(sk2)->ep;
6886 
6887 			if (sk == sk2 ||
6888 			    (reuse && sk2->sk_reuse &&
6889 			     sk2->sk_state != SCTP_SS_LISTENING))
6890 				continue;
6891 
6892 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6893 						 sctp_sk(sk2), sctp_sk(sk))) {
6894 				ret = (long)sk2;
6895 				goto fail_unlock;
6896 			}
6897 		}
6898 
6899 		pr_debug("%s: found a match\n", __func__);
6900 	}
6901 pp_not_found:
6902 	/* If there was a hash table miss, create a new port.  */
6903 	ret = 1;
6904 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6905 		goto fail_unlock;
6906 
6907 	/* In either case (hit or miss), make sure fastreuse is 1 only
6908 	 * if sk->sk_reuse is too (that is, if the caller requested
6909 	 * SO_REUSEADDR on this socket -sk-).
6910 	 */
6911 	if (hlist_empty(&pp->owner)) {
6912 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6913 			pp->fastreuse = 1;
6914 		else
6915 			pp->fastreuse = 0;
6916 	} else if (pp->fastreuse &&
6917 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6918 		pp->fastreuse = 0;
6919 
6920 	/* We are set, so fill up all the data in the hash table
6921 	 * entry, tie the socket list information with the rest of the
6922 	 * sockets FIXME: Blurry, NPI (ipg).
6923 	 */
6924 success:
6925 	if (!sctp_sk(sk)->bind_hash) {
6926 		inet_sk(sk)->inet_num = snum;
6927 		sk_add_bind_node(sk, &pp->owner);
6928 		sctp_sk(sk)->bind_hash = pp;
6929 	}
6930 	ret = 0;
6931 
6932 fail_unlock:
6933 	spin_unlock(&head->lock);
6934 
6935 fail:
6936 	local_bh_enable();
6937 	return ret;
6938 }
6939 
6940 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6941  * port is requested.
6942  */
6943 static int sctp_get_port(struct sock *sk, unsigned short snum)
6944 {
6945 	union sctp_addr addr;
6946 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6947 
6948 	/* Set up a dummy address struct from the sk. */
6949 	af->from_sk(&addr, sk);
6950 	addr.v4.sin_port = htons(snum);
6951 
6952 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6953 	return !!sctp_get_port_local(sk, &addr);
6954 }
6955 
6956 /*
6957  *  Move a socket to LISTENING state.
6958  */
6959 static int sctp_listen_start(struct sock *sk, int backlog)
6960 {
6961 	struct sctp_sock *sp = sctp_sk(sk);
6962 	struct sctp_endpoint *ep = sp->ep;
6963 	struct crypto_shash *tfm = NULL;
6964 	char alg[32];
6965 
6966 	/* Allocate HMAC for generating cookie. */
6967 	if (!sp->hmac && sp->sctp_hmac_alg) {
6968 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6969 		tfm = crypto_alloc_shash(alg, 0, 0);
6970 		if (IS_ERR(tfm)) {
6971 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6972 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6973 			return -ENOSYS;
6974 		}
6975 		sctp_sk(sk)->hmac = tfm;
6976 	}
6977 
6978 	/*
6979 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6980 	 * call that allows new associations to be accepted, the system
6981 	 * picks an ephemeral port and will choose an address set equivalent
6982 	 * to binding with a wildcard address.
6983 	 *
6984 	 * This is not currently spelled out in the SCTP sockets
6985 	 * extensions draft, but follows the practice as seen in TCP
6986 	 * sockets.
6987 	 *
6988 	 */
6989 	sk->sk_state = SCTP_SS_LISTENING;
6990 	if (!ep->base.bind_addr.port) {
6991 		if (sctp_autobind(sk))
6992 			return -EAGAIN;
6993 	} else {
6994 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6995 			sk->sk_state = SCTP_SS_CLOSED;
6996 			return -EADDRINUSE;
6997 		}
6998 	}
6999 
7000 	sk->sk_max_ack_backlog = backlog;
7001 	sctp_hash_endpoint(ep);
7002 	return 0;
7003 }
7004 
7005 /*
7006  * 4.1.3 / 5.1.3 listen()
7007  *
7008  *   By default, new associations are not accepted for UDP style sockets.
7009  *   An application uses listen() to mark a socket as being able to
7010  *   accept new associations.
7011  *
7012  *   On TCP style sockets, applications use listen() to ready the SCTP
7013  *   endpoint for accepting inbound associations.
7014  *
7015  *   On both types of endpoints a backlog of '0' disables listening.
7016  *
7017  *  Move a socket to LISTENING state.
7018  */
7019 int sctp_inet_listen(struct socket *sock, int backlog)
7020 {
7021 	struct sock *sk = sock->sk;
7022 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7023 	int err = -EINVAL;
7024 
7025 	if (unlikely(backlog < 0))
7026 		return err;
7027 
7028 	lock_sock(sk);
7029 
7030 	/* Peeled-off sockets are not allowed to listen().  */
7031 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7032 		goto out;
7033 
7034 	if (sock->state != SS_UNCONNECTED)
7035 		goto out;
7036 
7037 	/* If backlog is zero, disable listening. */
7038 	if (!backlog) {
7039 		if (sctp_sstate(sk, CLOSED))
7040 			goto out;
7041 
7042 		err = 0;
7043 		sctp_unhash_endpoint(ep);
7044 		sk->sk_state = SCTP_SS_CLOSED;
7045 		if (sk->sk_reuse)
7046 			sctp_sk(sk)->bind_hash->fastreuse = 1;
7047 		goto out;
7048 	}
7049 
7050 	/* If we are already listening, just update the backlog */
7051 	if (sctp_sstate(sk, LISTENING))
7052 		sk->sk_max_ack_backlog = backlog;
7053 	else {
7054 		err = sctp_listen_start(sk, backlog);
7055 		if (err)
7056 			goto out;
7057 	}
7058 
7059 	err = 0;
7060 out:
7061 	release_sock(sk);
7062 	return err;
7063 }
7064 
7065 /*
7066  * This function is done by modeling the current datagram_poll() and the
7067  * tcp_poll().  Note that, based on these implementations, we don't
7068  * lock the socket in this function, even though it seems that,
7069  * ideally, locking or some other mechanisms can be used to ensure
7070  * the integrity of the counters (sndbuf and wmem_alloc) used
7071  * in this place.  We assume that we don't need locks either until proven
7072  * otherwise.
7073  *
7074  * Another thing to note is that we include the Async I/O support
7075  * here, again, by modeling the current TCP/UDP code.  We don't have
7076  * a good way to test with it yet.
7077  */
7078 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7079 {
7080 	struct sock *sk = sock->sk;
7081 	struct sctp_sock *sp = sctp_sk(sk);
7082 	unsigned int mask;
7083 
7084 	poll_wait(file, sk_sleep(sk), wait);
7085 
7086 	sock_rps_record_flow(sk);
7087 
7088 	/* A TCP-style listening socket becomes readable when the accept queue
7089 	 * is not empty.
7090 	 */
7091 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7092 		return (!list_empty(&sp->ep->asocs)) ?
7093 			(POLLIN | POLLRDNORM) : 0;
7094 
7095 	mask = 0;
7096 
7097 	/* Is there any exceptional events?  */
7098 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7099 		mask |= POLLERR |
7100 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7101 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7102 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7103 	if (sk->sk_shutdown == SHUTDOWN_MASK)
7104 		mask |= POLLHUP;
7105 
7106 	/* Is it readable?  Reconsider this code with TCP-style support.  */
7107 	if (!skb_queue_empty(&sk->sk_receive_queue))
7108 		mask |= POLLIN | POLLRDNORM;
7109 
7110 	/* The association is either gone or not ready.  */
7111 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7112 		return mask;
7113 
7114 	/* Is it writable?  */
7115 	if (sctp_writeable(sk)) {
7116 		mask |= POLLOUT | POLLWRNORM;
7117 	} else {
7118 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7119 		/*
7120 		 * Since the socket is not locked, the buffer
7121 		 * might be made available after the writeable check and
7122 		 * before the bit is set.  This could cause a lost I/O
7123 		 * signal.  tcp_poll() has a race breaker for this race
7124 		 * condition.  Based on their implementation, we put
7125 		 * in the following code to cover it as well.
7126 		 */
7127 		if (sctp_writeable(sk))
7128 			mask |= POLLOUT | POLLWRNORM;
7129 	}
7130 	return mask;
7131 }
7132 
7133 /********************************************************************
7134  * 2nd Level Abstractions
7135  ********************************************************************/
7136 
7137 static struct sctp_bind_bucket *sctp_bucket_create(
7138 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7139 {
7140 	struct sctp_bind_bucket *pp;
7141 
7142 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7143 	if (pp) {
7144 		SCTP_DBG_OBJCNT_INC(bind_bucket);
7145 		pp->port = snum;
7146 		pp->fastreuse = 0;
7147 		INIT_HLIST_HEAD(&pp->owner);
7148 		pp->net = net;
7149 		hlist_add_head(&pp->node, &head->chain);
7150 	}
7151 	return pp;
7152 }
7153 
7154 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7155 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7156 {
7157 	if (pp && hlist_empty(&pp->owner)) {
7158 		__hlist_del(&pp->node);
7159 		kmem_cache_free(sctp_bucket_cachep, pp);
7160 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
7161 	}
7162 }
7163 
7164 /* Release this socket's reference to a local port.  */
7165 static inline void __sctp_put_port(struct sock *sk)
7166 {
7167 	struct sctp_bind_hashbucket *head =
7168 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7169 						  inet_sk(sk)->inet_num)];
7170 	struct sctp_bind_bucket *pp;
7171 
7172 	spin_lock(&head->lock);
7173 	pp = sctp_sk(sk)->bind_hash;
7174 	__sk_del_bind_node(sk);
7175 	sctp_sk(sk)->bind_hash = NULL;
7176 	inet_sk(sk)->inet_num = 0;
7177 	sctp_bucket_destroy(pp);
7178 	spin_unlock(&head->lock);
7179 }
7180 
7181 void sctp_put_port(struct sock *sk)
7182 {
7183 	local_bh_disable();
7184 	__sctp_put_port(sk);
7185 	local_bh_enable();
7186 }
7187 
7188 /*
7189  * The system picks an ephemeral port and choose an address set equivalent
7190  * to binding with a wildcard address.
7191  * One of those addresses will be the primary address for the association.
7192  * This automatically enables the multihoming capability of SCTP.
7193  */
7194 static int sctp_autobind(struct sock *sk)
7195 {
7196 	union sctp_addr autoaddr;
7197 	struct sctp_af *af;
7198 	__be16 port;
7199 
7200 	/* Initialize a local sockaddr structure to INADDR_ANY. */
7201 	af = sctp_sk(sk)->pf->af;
7202 
7203 	port = htons(inet_sk(sk)->inet_num);
7204 	af->inaddr_any(&autoaddr, port);
7205 
7206 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7207 }
7208 
7209 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
7210  *
7211  * From RFC 2292
7212  * 4.2 The cmsghdr Structure *
7213  *
7214  * When ancillary data is sent or received, any number of ancillary data
7215  * objects can be specified by the msg_control and msg_controllen members of
7216  * the msghdr structure, because each object is preceded by
7217  * a cmsghdr structure defining the object's length (the cmsg_len member).
7218  * Historically Berkeley-derived implementations have passed only one object
7219  * at a time, but this API allows multiple objects to be
7220  * passed in a single call to sendmsg() or recvmsg(). The following example
7221  * shows two ancillary data objects in a control buffer.
7222  *
7223  *   |<--------------------------- msg_controllen -------------------------->|
7224  *   |                                                                       |
7225  *
7226  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
7227  *
7228  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7229  *   |                                   |                                   |
7230  *
7231  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
7232  *
7233  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
7234  *   |                                |  |                                |  |
7235  *
7236  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7237  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
7238  *
7239  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
7240  *
7241  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7242  *    ^
7243  *    |
7244  *
7245  * msg_control
7246  * points here
7247  */
7248 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7249 {
7250 	struct cmsghdr *cmsg;
7251 	struct msghdr *my_msg = (struct msghdr *)msg;
7252 
7253 	for_each_cmsghdr(cmsg, my_msg) {
7254 		if (!CMSG_OK(my_msg, cmsg))
7255 			return -EINVAL;
7256 
7257 		/* Should we parse this header or ignore?  */
7258 		if (cmsg->cmsg_level != IPPROTO_SCTP)
7259 			continue;
7260 
7261 		/* Strictly check lengths following example in SCM code.  */
7262 		switch (cmsg->cmsg_type) {
7263 		case SCTP_INIT:
7264 			/* SCTP Socket API Extension
7265 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7266 			 *
7267 			 * This cmsghdr structure provides information for
7268 			 * initializing new SCTP associations with sendmsg().
7269 			 * The SCTP_INITMSG socket option uses this same data
7270 			 * structure.  This structure is not used for
7271 			 * recvmsg().
7272 			 *
7273 			 * cmsg_level    cmsg_type      cmsg_data[]
7274 			 * ------------  ------------   ----------------------
7275 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
7276 			 */
7277 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7278 				return -EINVAL;
7279 
7280 			cmsgs->init = CMSG_DATA(cmsg);
7281 			break;
7282 
7283 		case SCTP_SNDRCV:
7284 			/* SCTP Socket API Extension
7285 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7286 			 *
7287 			 * This cmsghdr structure specifies SCTP options for
7288 			 * sendmsg() and describes SCTP header information
7289 			 * about a received message through recvmsg().
7290 			 *
7291 			 * cmsg_level    cmsg_type      cmsg_data[]
7292 			 * ------------  ------------   ----------------------
7293 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
7294 			 */
7295 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7296 				return -EINVAL;
7297 
7298 			cmsgs->srinfo = CMSG_DATA(cmsg);
7299 
7300 			if (cmsgs->srinfo->sinfo_flags &
7301 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7302 			      SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7303 			      SCTP_ABORT | SCTP_EOF))
7304 				return -EINVAL;
7305 			break;
7306 
7307 		case SCTP_SNDINFO:
7308 			/* SCTP Socket API Extension
7309 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7310 			 *
7311 			 * This cmsghdr structure specifies SCTP options for
7312 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
7313 			 * SCTP_SNDRCV which has been deprecated.
7314 			 *
7315 			 * cmsg_level    cmsg_type      cmsg_data[]
7316 			 * ------------  ------------   ---------------------
7317 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
7318 			 */
7319 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7320 				return -EINVAL;
7321 
7322 			cmsgs->sinfo = CMSG_DATA(cmsg);
7323 
7324 			if (cmsgs->sinfo->snd_flags &
7325 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7326 			      SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7327 			      SCTP_ABORT | SCTP_EOF))
7328 				return -EINVAL;
7329 			break;
7330 		default:
7331 			return -EINVAL;
7332 		}
7333 	}
7334 
7335 	return 0;
7336 }
7337 
7338 /*
7339  * Wait for a packet..
7340  * Note: This function is the same function as in core/datagram.c
7341  * with a few modifications to make lksctp work.
7342  */
7343 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7344 {
7345 	int error;
7346 	DEFINE_WAIT(wait);
7347 
7348 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7349 
7350 	/* Socket errors? */
7351 	error = sock_error(sk);
7352 	if (error)
7353 		goto out;
7354 
7355 	if (!skb_queue_empty(&sk->sk_receive_queue))
7356 		goto ready;
7357 
7358 	/* Socket shut down?  */
7359 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7360 		goto out;
7361 
7362 	/* Sequenced packets can come disconnected.  If so we report the
7363 	 * problem.
7364 	 */
7365 	error = -ENOTCONN;
7366 
7367 	/* Is there a good reason to think that we may receive some data?  */
7368 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7369 		goto out;
7370 
7371 	/* Handle signals.  */
7372 	if (signal_pending(current))
7373 		goto interrupted;
7374 
7375 	/* Let another process have a go.  Since we are going to sleep
7376 	 * anyway.  Note: This may cause odd behaviors if the message
7377 	 * does not fit in the user's buffer, but this seems to be the
7378 	 * only way to honor MSG_DONTWAIT realistically.
7379 	 */
7380 	release_sock(sk);
7381 	*timeo_p = schedule_timeout(*timeo_p);
7382 	lock_sock(sk);
7383 
7384 ready:
7385 	finish_wait(sk_sleep(sk), &wait);
7386 	return 0;
7387 
7388 interrupted:
7389 	error = sock_intr_errno(*timeo_p);
7390 
7391 out:
7392 	finish_wait(sk_sleep(sk), &wait);
7393 	*err = error;
7394 	return error;
7395 }
7396 
7397 /* Receive a datagram.
7398  * Note: This is pretty much the same routine as in core/datagram.c
7399  * with a few changes to make lksctp work.
7400  */
7401 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7402 				       int noblock, int *err)
7403 {
7404 	int error;
7405 	struct sk_buff *skb;
7406 	long timeo;
7407 
7408 	timeo = sock_rcvtimeo(sk, noblock);
7409 
7410 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7411 		 MAX_SCHEDULE_TIMEOUT);
7412 
7413 	do {
7414 		/* Again only user level code calls this function,
7415 		 * so nothing interrupt level
7416 		 * will suddenly eat the receive_queue.
7417 		 *
7418 		 *  Look at current nfs client by the way...
7419 		 *  However, this function was correct in any case. 8)
7420 		 */
7421 		if (flags & MSG_PEEK) {
7422 			skb = skb_peek(&sk->sk_receive_queue);
7423 			if (skb)
7424 				atomic_inc(&skb->users);
7425 		} else {
7426 			skb = __skb_dequeue(&sk->sk_receive_queue);
7427 		}
7428 
7429 		if (skb)
7430 			return skb;
7431 
7432 		/* Caller is allowed not to check sk->sk_err before calling. */
7433 		error = sock_error(sk);
7434 		if (error)
7435 			goto no_packet;
7436 
7437 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7438 			break;
7439 
7440 		if (sk_can_busy_loop(sk) &&
7441 		    sk_busy_loop(sk, noblock))
7442 			continue;
7443 
7444 		/* User doesn't want to wait.  */
7445 		error = -EAGAIN;
7446 		if (!timeo)
7447 			goto no_packet;
7448 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7449 
7450 	return NULL;
7451 
7452 no_packet:
7453 	*err = error;
7454 	return NULL;
7455 }
7456 
7457 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
7458 static void __sctp_write_space(struct sctp_association *asoc)
7459 {
7460 	struct sock *sk = asoc->base.sk;
7461 
7462 	if (sctp_wspace(asoc) <= 0)
7463 		return;
7464 
7465 	if (waitqueue_active(&asoc->wait))
7466 		wake_up_interruptible(&asoc->wait);
7467 
7468 	if (sctp_writeable(sk)) {
7469 		struct socket_wq *wq;
7470 
7471 		rcu_read_lock();
7472 		wq = rcu_dereference(sk->sk_wq);
7473 		if (wq) {
7474 			if (waitqueue_active(&wq->wait))
7475 				wake_up_interruptible(&wq->wait);
7476 
7477 			/* Note that we try to include the Async I/O support
7478 			 * here by modeling from the current TCP/UDP code.
7479 			 * We have not tested with it yet.
7480 			 */
7481 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7482 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7483 		}
7484 		rcu_read_unlock();
7485 	}
7486 }
7487 
7488 static void sctp_wake_up_waiters(struct sock *sk,
7489 				 struct sctp_association *asoc)
7490 {
7491 	struct sctp_association *tmp = asoc;
7492 
7493 	/* We do accounting for the sndbuf space per association,
7494 	 * so we only need to wake our own association.
7495 	 */
7496 	if (asoc->ep->sndbuf_policy)
7497 		return __sctp_write_space(asoc);
7498 
7499 	/* If association goes down and is just flushing its
7500 	 * outq, then just normally notify others.
7501 	 */
7502 	if (asoc->base.dead)
7503 		return sctp_write_space(sk);
7504 
7505 	/* Accounting for the sndbuf space is per socket, so we
7506 	 * need to wake up others, try to be fair and in case of
7507 	 * other associations, let them have a go first instead
7508 	 * of just doing a sctp_write_space() call.
7509 	 *
7510 	 * Note that we reach sctp_wake_up_waiters() only when
7511 	 * associations free up queued chunks, thus we are under
7512 	 * lock and the list of associations on a socket is
7513 	 * guaranteed not to change.
7514 	 */
7515 	for (tmp = list_next_entry(tmp, asocs); 1;
7516 	     tmp = list_next_entry(tmp, asocs)) {
7517 		/* Manually skip the head element. */
7518 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7519 			continue;
7520 		/* Wake up association. */
7521 		__sctp_write_space(tmp);
7522 		/* We've reached the end. */
7523 		if (tmp == asoc)
7524 			break;
7525 	}
7526 }
7527 
7528 /* Do accounting for the sndbuf space.
7529  * Decrement the used sndbuf space of the corresponding association by the
7530  * data size which was just transmitted(freed).
7531  */
7532 static void sctp_wfree(struct sk_buff *skb)
7533 {
7534 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7535 	struct sctp_association *asoc = chunk->asoc;
7536 	struct sock *sk = asoc->base.sk;
7537 
7538 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7539 				sizeof(struct sk_buff) +
7540 				sizeof(struct sctp_chunk);
7541 
7542 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7543 
7544 	/*
7545 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7546 	 */
7547 	sk->sk_wmem_queued   -= skb->truesize;
7548 	sk_mem_uncharge(sk, skb->truesize);
7549 
7550 	sock_wfree(skb);
7551 	sctp_wake_up_waiters(sk, asoc);
7552 
7553 	sctp_association_put(asoc);
7554 }
7555 
7556 /* Do accounting for the receive space on the socket.
7557  * Accounting for the association is done in ulpevent.c
7558  * We set this as a destructor for the cloned data skbs so that
7559  * accounting is done at the correct time.
7560  */
7561 void sctp_sock_rfree(struct sk_buff *skb)
7562 {
7563 	struct sock *sk = skb->sk;
7564 	struct sctp_ulpevent *event = sctp_skb2event(skb);
7565 
7566 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7567 
7568 	/*
7569 	 * Mimic the behavior of sock_rfree
7570 	 */
7571 	sk_mem_uncharge(sk, event->rmem_len);
7572 }
7573 
7574 
7575 /* Helper function to wait for space in the sndbuf.  */
7576 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7577 				size_t msg_len)
7578 {
7579 	struct sock *sk = asoc->base.sk;
7580 	int err = 0;
7581 	long current_timeo = *timeo_p;
7582 	DEFINE_WAIT(wait);
7583 
7584 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7585 		 *timeo_p, msg_len);
7586 
7587 	/* Increment the association's refcnt.  */
7588 	sctp_association_hold(asoc);
7589 
7590 	/* Wait on the association specific sndbuf space. */
7591 	for (;;) {
7592 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7593 					  TASK_INTERRUPTIBLE);
7594 		if (!*timeo_p)
7595 			goto do_nonblock;
7596 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7597 		    asoc->base.dead)
7598 			goto do_error;
7599 		if (signal_pending(current))
7600 			goto do_interrupted;
7601 		if (msg_len <= sctp_wspace(asoc))
7602 			break;
7603 
7604 		/* Let another process have a go.  Since we are going
7605 		 * to sleep anyway.
7606 		 */
7607 		release_sock(sk);
7608 		current_timeo = schedule_timeout(current_timeo);
7609 		lock_sock(sk);
7610 
7611 		*timeo_p = current_timeo;
7612 	}
7613 
7614 out:
7615 	finish_wait(&asoc->wait, &wait);
7616 
7617 	/* Release the association's refcnt.  */
7618 	sctp_association_put(asoc);
7619 
7620 	return err;
7621 
7622 do_error:
7623 	err = -EPIPE;
7624 	goto out;
7625 
7626 do_interrupted:
7627 	err = sock_intr_errno(*timeo_p);
7628 	goto out;
7629 
7630 do_nonblock:
7631 	err = -EAGAIN;
7632 	goto out;
7633 }
7634 
7635 void sctp_data_ready(struct sock *sk)
7636 {
7637 	struct socket_wq *wq;
7638 
7639 	rcu_read_lock();
7640 	wq = rcu_dereference(sk->sk_wq);
7641 	if (skwq_has_sleeper(wq))
7642 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7643 						POLLRDNORM | POLLRDBAND);
7644 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7645 	rcu_read_unlock();
7646 }
7647 
7648 /* If socket sndbuf has changed, wake up all per association waiters.  */
7649 void sctp_write_space(struct sock *sk)
7650 {
7651 	struct sctp_association *asoc;
7652 
7653 	/* Wake up the tasks in each wait queue.  */
7654 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7655 		__sctp_write_space(asoc);
7656 	}
7657 }
7658 
7659 /* Is there any sndbuf space available on the socket?
7660  *
7661  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7662  * associations on the same socket.  For a UDP-style socket with
7663  * multiple associations, it is possible for it to be "unwriteable"
7664  * prematurely.  I assume that this is acceptable because
7665  * a premature "unwriteable" is better than an accidental "writeable" which
7666  * would cause an unwanted block under certain circumstances.  For the 1-1
7667  * UDP-style sockets or TCP-style sockets, this code should work.
7668  *  - Daisy
7669  */
7670 static int sctp_writeable(struct sock *sk)
7671 {
7672 	int amt = 0;
7673 
7674 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7675 	if (amt < 0)
7676 		amt = 0;
7677 	return amt;
7678 }
7679 
7680 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7681  * returns immediately with EINPROGRESS.
7682  */
7683 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7684 {
7685 	struct sock *sk = asoc->base.sk;
7686 	int err = 0;
7687 	long current_timeo = *timeo_p;
7688 	DEFINE_WAIT(wait);
7689 
7690 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7691 
7692 	/* Increment the association's refcnt.  */
7693 	sctp_association_hold(asoc);
7694 
7695 	for (;;) {
7696 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7697 					  TASK_INTERRUPTIBLE);
7698 		if (!*timeo_p)
7699 			goto do_nonblock;
7700 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7701 			break;
7702 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7703 		    asoc->base.dead)
7704 			goto do_error;
7705 		if (signal_pending(current))
7706 			goto do_interrupted;
7707 
7708 		if (sctp_state(asoc, ESTABLISHED))
7709 			break;
7710 
7711 		/* Let another process have a go.  Since we are going
7712 		 * to sleep anyway.
7713 		 */
7714 		release_sock(sk);
7715 		current_timeo = schedule_timeout(current_timeo);
7716 		lock_sock(sk);
7717 
7718 		*timeo_p = current_timeo;
7719 	}
7720 
7721 out:
7722 	finish_wait(&asoc->wait, &wait);
7723 
7724 	/* Release the association's refcnt.  */
7725 	sctp_association_put(asoc);
7726 
7727 	return err;
7728 
7729 do_error:
7730 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7731 		err = -ETIMEDOUT;
7732 	else
7733 		err = -ECONNREFUSED;
7734 	goto out;
7735 
7736 do_interrupted:
7737 	err = sock_intr_errno(*timeo_p);
7738 	goto out;
7739 
7740 do_nonblock:
7741 	err = -EINPROGRESS;
7742 	goto out;
7743 }
7744 
7745 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7746 {
7747 	struct sctp_endpoint *ep;
7748 	int err = 0;
7749 	DEFINE_WAIT(wait);
7750 
7751 	ep = sctp_sk(sk)->ep;
7752 
7753 
7754 	for (;;) {
7755 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7756 					  TASK_INTERRUPTIBLE);
7757 
7758 		if (list_empty(&ep->asocs)) {
7759 			release_sock(sk);
7760 			timeo = schedule_timeout(timeo);
7761 			lock_sock(sk);
7762 		}
7763 
7764 		err = -EINVAL;
7765 		if (!sctp_sstate(sk, LISTENING))
7766 			break;
7767 
7768 		err = 0;
7769 		if (!list_empty(&ep->asocs))
7770 			break;
7771 
7772 		err = sock_intr_errno(timeo);
7773 		if (signal_pending(current))
7774 			break;
7775 
7776 		err = -EAGAIN;
7777 		if (!timeo)
7778 			break;
7779 	}
7780 
7781 	finish_wait(sk_sleep(sk), &wait);
7782 
7783 	return err;
7784 }
7785 
7786 static void sctp_wait_for_close(struct sock *sk, long timeout)
7787 {
7788 	DEFINE_WAIT(wait);
7789 
7790 	do {
7791 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7792 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7793 			break;
7794 		release_sock(sk);
7795 		timeout = schedule_timeout(timeout);
7796 		lock_sock(sk);
7797 	} while (!signal_pending(current) && timeout);
7798 
7799 	finish_wait(sk_sleep(sk), &wait);
7800 }
7801 
7802 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7803 {
7804 	struct sk_buff *frag;
7805 
7806 	if (!skb->data_len)
7807 		goto done;
7808 
7809 	/* Don't forget the fragments. */
7810 	skb_walk_frags(skb, frag)
7811 		sctp_skb_set_owner_r_frag(frag, sk);
7812 
7813 done:
7814 	sctp_skb_set_owner_r(skb, sk);
7815 }
7816 
7817 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7818 		    struct sctp_association *asoc)
7819 {
7820 	struct inet_sock *inet = inet_sk(sk);
7821 	struct inet_sock *newinet;
7822 
7823 	newsk->sk_type = sk->sk_type;
7824 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7825 	newsk->sk_flags = sk->sk_flags;
7826 	newsk->sk_tsflags = sk->sk_tsflags;
7827 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7828 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7829 	newsk->sk_reuse = sk->sk_reuse;
7830 
7831 	newsk->sk_shutdown = sk->sk_shutdown;
7832 	newsk->sk_destruct = sctp_destruct_sock;
7833 	newsk->sk_family = sk->sk_family;
7834 	newsk->sk_protocol = IPPROTO_SCTP;
7835 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7836 	newsk->sk_sndbuf = sk->sk_sndbuf;
7837 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7838 	newsk->sk_lingertime = sk->sk_lingertime;
7839 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7840 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7841 	newsk->sk_rxhash = sk->sk_rxhash;
7842 
7843 	newinet = inet_sk(newsk);
7844 
7845 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7846 	 * getsockname() and getpeername()
7847 	 */
7848 	newinet->inet_sport = inet->inet_sport;
7849 	newinet->inet_saddr = inet->inet_saddr;
7850 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7851 	newinet->inet_dport = htons(asoc->peer.port);
7852 	newinet->pmtudisc = inet->pmtudisc;
7853 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7854 
7855 	newinet->uc_ttl = inet->uc_ttl;
7856 	newinet->mc_loop = 1;
7857 	newinet->mc_ttl = 1;
7858 	newinet->mc_index = 0;
7859 	newinet->mc_list = NULL;
7860 
7861 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7862 		net_enable_timestamp();
7863 
7864 	security_sk_clone(sk, newsk);
7865 }
7866 
7867 static inline void sctp_copy_descendant(struct sock *sk_to,
7868 					const struct sock *sk_from)
7869 {
7870 	int ancestor_size = sizeof(struct inet_sock) +
7871 			    sizeof(struct sctp_sock) -
7872 			    offsetof(struct sctp_sock, auto_asconf_list);
7873 
7874 	if (sk_from->sk_family == PF_INET6)
7875 		ancestor_size += sizeof(struct ipv6_pinfo);
7876 
7877 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7878 }
7879 
7880 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7881  * and its messages to the newsk.
7882  */
7883 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7884 			      struct sctp_association *assoc,
7885 			      sctp_socket_type_t type)
7886 {
7887 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7888 	struct sctp_sock *newsp = sctp_sk(newsk);
7889 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7890 	struct sctp_endpoint *newep = newsp->ep;
7891 	struct sk_buff *skb, *tmp;
7892 	struct sctp_ulpevent *event;
7893 	struct sctp_bind_hashbucket *head;
7894 
7895 	/* Migrate socket buffer sizes and all the socket level options to the
7896 	 * new socket.
7897 	 */
7898 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7899 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7900 	/* Brute force copy old sctp opt. */
7901 	sctp_copy_descendant(newsk, oldsk);
7902 
7903 	/* Restore the ep value that was overwritten with the above structure
7904 	 * copy.
7905 	 */
7906 	newsp->ep = newep;
7907 	newsp->hmac = NULL;
7908 
7909 	/* Hook this new socket in to the bind_hash list. */
7910 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7911 						 inet_sk(oldsk)->inet_num)];
7912 	spin_lock_bh(&head->lock);
7913 	pp = sctp_sk(oldsk)->bind_hash;
7914 	sk_add_bind_node(newsk, &pp->owner);
7915 	sctp_sk(newsk)->bind_hash = pp;
7916 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7917 	spin_unlock_bh(&head->lock);
7918 
7919 	/* Copy the bind_addr list from the original endpoint to the new
7920 	 * endpoint so that we can handle restarts properly
7921 	 */
7922 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7923 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7924 
7925 	/* Move any messages in the old socket's receive queue that are for the
7926 	 * peeled off association to the new socket's receive queue.
7927 	 */
7928 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7929 		event = sctp_skb2event(skb);
7930 		if (event->asoc == assoc) {
7931 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7932 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7933 			sctp_skb_set_owner_r_frag(skb, newsk);
7934 		}
7935 	}
7936 
7937 	/* Clean up any messages pending delivery due to partial
7938 	 * delivery.   Three cases:
7939 	 * 1) No partial deliver;  no work.
7940 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7941 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7942 	 */
7943 	skb_queue_head_init(&newsp->pd_lobby);
7944 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7945 
7946 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7947 		struct sk_buff_head *queue;
7948 
7949 		/* Decide which queue to move pd_lobby skbs to. */
7950 		if (assoc->ulpq.pd_mode) {
7951 			queue = &newsp->pd_lobby;
7952 		} else
7953 			queue = &newsk->sk_receive_queue;
7954 
7955 		/* Walk through the pd_lobby, looking for skbs that
7956 		 * need moved to the new socket.
7957 		 */
7958 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7959 			event = sctp_skb2event(skb);
7960 			if (event->asoc == assoc) {
7961 				__skb_unlink(skb, &oldsp->pd_lobby);
7962 				__skb_queue_tail(queue, skb);
7963 				sctp_skb_set_owner_r_frag(skb, newsk);
7964 			}
7965 		}
7966 
7967 		/* Clear up any skbs waiting for the partial
7968 		 * delivery to finish.
7969 		 */
7970 		if (assoc->ulpq.pd_mode)
7971 			sctp_clear_pd(oldsk, NULL);
7972 
7973 	}
7974 
7975 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7976 		sctp_skb_set_owner_r_frag(skb, newsk);
7977 
7978 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7979 		sctp_skb_set_owner_r_frag(skb, newsk);
7980 
7981 	/* Set the type of socket to indicate that it is peeled off from the
7982 	 * original UDP-style socket or created with the accept() call on a
7983 	 * TCP-style socket..
7984 	 */
7985 	newsp->type = type;
7986 
7987 	/* Mark the new socket "in-use" by the user so that any packets
7988 	 * that may arrive on the association after we've moved it are
7989 	 * queued to the backlog.  This prevents a potential race between
7990 	 * backlog processing on the old socket and new-packet processing
7991 	 * on the new socket.
7992 	 *
7993 	 * The caller has just allocated newsk so we can guarantee that other
7994 	 * paths won't try to lock it and then oldsk.
7995 	 */
7996 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7997 	sctp_assoc_migrate(assoc, newsk);
7998 
7999 	/* If the association on the newsk is already closed before accept()
8000 	 * is called, set RCV_SHUTDOWN flag.
8001 	 */
8002 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8003 		newsk->sk_state = SCTP_SS_CLOSED;
8004 		newsk->sk_shutdown |= RCV_SHUTDOWN;
8005 	} else {
8006 		newsk->sk_state = SCTP_SS_ESTABLISHED;
8007 	}
8008 
8009 	release_sock(newsk);
8010 }
8011 
8012 
8013 /* This proto struct describes the ULP interface for SCTP.  */
8014 struct proto sctp_prot = {
8015 	.name        =	"SCTP",
8016 	.owner       =	THIS_MODULE,
8017 	.close       =	sctp_close,
8018 	.connect     =	sctp_connect,
8019 	.disconnect  =	sctp_disconnect,
8020 	.accept      =	sctp_accept,
8021 	.ioctl       =	sctp_ioctl,
8022 	.init        =	sctp_init_sock,
8023 	.destroy     =	sctp_destroy_sock,
8024 	.shutdown    =	sctp_shutdown,
8025 	.setsockopt  =	sctp_setsockopt,
8026 	.getsockopt  =	sctp_getsockopt,
8027 	.sendmsg     =	sctp_sendmsg,
8028 	.recvmsg     =	sctp_recvmsg,
8029 	.bind        =	sctp_bind,
8030 	.backlog_rcv =	sctp_backlog_rcv,
8031 	.hash        =	sctp_hash,
8032 	.unhash      =	sctp_unhash,
8033 	.get_port    =	sctp_get_port,
8034 	.obj_size    =  sizeof(struct sctp_sock),
8035 	.sysctl_mem  =  sysctl_sctp_mem,
8036 	.sysctl_rmem =  sysctl_sctp_rmem,
8037 	.sysctl_wmem =  sysctl_sctp_wmem,
8038 	.memory_pressure = &sctp_memory_pressure,
8039 	.enter_memory_pressure = sctp_enter_memory_pressure,
8040 	.memory_allocated = &sctp_memory_allocated,
8041 	.sockets_allocated = &sctp_sockets_allocated,
8042 };
8043 
8044 #if IS_ENABLED(CONFIG_IPV6)
8045 
8046 #include <net/transp_v6.h>
8047 static void sctp_v6_destroy_sock(struct sock *sk)
8048 {
8049 	sctp_destroy_sock(sk);
8050 	inet6_destroy_sock(sk);
8051 }
8052 
8053 struct proto sctpv6_prot = {
8054 	.name		= "SCTPv6",
8055 	.owner		= THIS_MODULE,
8056 	.close		= sctp_close,
8057 	.connect	= sctp_connect,
8058 	.disconnect	= sctp_disconnect,
8059 	.accept		= sctp_accept,
8060 	.ioctl		= sctp_ioctl,
8061 	.init		= sctp_init_sock,
8062 	.destroy	= sctp_v6_destroy_sock,
8063 	.shutdown	= sctp_shutdown,
8064 	.setsockopt	= sctp_setsockopt,
8065 	.getsockopt	= sctp_getsockopt,
8066 	.sendmsg	= sctp_sendmsg,
8067 	.recvmsg	= sctp_recvmsg,
8068 	.bind		= sctp_bind,
8069 	.backlog_rcv	= sctp_backlog_rcv,
8070 	.hash		= sctp_hash,
8071 	.unhash		= sctp_unhash,
8072 	.get_port	= sctp_get_port,
8073 	.obj_size	= sizeof(struct sctp6_sock),
8074 	.sysctl_mem	= sysctl_sctp_mem,
8075 	.sysctl_rmem	= sysctl_sctp_rmem,
8076 	.sysctl_wmem	= sysctl_sctp_wmem,
8077 	.memory_pressure = &sctp_memory_pressure,
8078 	.enter_memory_pressure = sctp_enter_memory_pressure,
8079 	.memory_allocated = &sctp_memory_allocated,
8080 	.sockets_allocated = &sctp_sockets_allocated,
8081 };
8082 #endif /* IS_ENABLED(CONFIG_IPV6) */
8083