1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 static void sctp_auto_asconf_init(struct sctp_sock *sp) 361 { 362 struct net *net = sock_net(&sp->inet.sk); 363 364 if (net->sctp.default_auto_asconf) { 365 spin_lock(&net->sctp.addr_wq_lock); 366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 367 spin_unlock(&net->sctp.addr_wq_lock); 368 sp->do_auto_asconf = 1; 369 } 370 } 371 372 /* Bind a local address either to an endpoint or to an association. */ 373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 374 { 375 struct net *net = sock_net(sk); 376 struct sctp_sock *sp = sctp_sk(sk); 377 struct sctp_endpoint *ep = sp->ep; 378 struct sctp_bind_addr *bp = &ep->base.bind_addr; 379 struct sctp_af *af; 380 unsigned short snum; 381 int ret = 0; 382 383 /* Common sockaddr verification. */ 384 af = sctp_sockaddr_af(sp, addr, len); 385 if (!af) { 386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 387 __func__, sk, addr, len); 388 return -EINVAL; 389 } 390 391 snum = ntohs(addr->v4.sin_port); 392 393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 394 __func__, sk, &addr->sa, bp->port, snum, len); 395 396 /* PF specific bind() address verification. */ 397 if (!sp->pf->bind_verify(sp, addr)) 398 return -EADDRNOTAVAIL; 399 400 /* We must either be unbound, or bind to the same port. 401 * It's OK to allow 0 ports if we are already bound. 402 * We'll just inhert an already bound port in this case 403 */ 404 if (bp->port) { 405 if (!snum) 406 snum = bp->port; 407 else if (snum != bp->port) { 408 pr_debug("%s: new port %d doesn't match existing port " 409 "%d\n", __func__, snum, bp->port); 410 return -EINVAL; 411 } 412 } 413 414 if (snum && inet_port_requires_bind_service(net, snum) && 415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 416 return -EACCES; 417 418 /* See if the address matches any of the addresses we may have 419 * already bound before checking against other endpoints. 420 */ 421 if (sctp_bind_addr_match(bp, addr, sp)) 422 return -EINVAL; 423 424 /* Make sure we are allowed to bind here. 425 * The function sctp_get_port_local() does duplicate address 426 * detection. 427 */ 428 addr->v4.sin_port = htons(snum); 429 if (sctp_get_port_local(sk, addr)) 430 return -EADDRINUSE; 431 432 /* Refresh ephemeral port. */ 433 if (!bp->port) { 434 bp->port = inet_sk(sk)->inet_num; 435 sctp_auto_asconf_init(sp); 436 } 437 438 /* Add the address to the bind address list. 439 * Use GFP_ATOMIC since BHs will be disabled. 440 */ 441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 442 SCTP_ADDR_SRC, GFP_ATOMIC); 443 444 if (ret) { 445 sctp_put_port(sk); 446 return ret; 447 } 448 /* Copy back into socket for getsockname() use. */ 449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 450 sp->pf->to_sk_saddr(addr, sk); 451 452 return ret; 453 } 454 455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 456 * 457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 458 * at any one time. If a sender, after sending an ASCONF chunk, decides 459 * it needs to transfer another ASCONF Chunk, it MUST wait until the 460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 461 * subsequent ASCONF. Note this restriction binds each side, so at any 462 * time two ASCONF may be in-transit on any given association (one sent 463 * from each endpoint). 464 */ 465 static int sctp_send_asconf(struct sctp_association *asoc, 466 struct sctp_chunk *chunk) 467 { 468 int retval = 0; 469 470 /* If there is an outstanding ASCONF chunk, queue it for later 471 * transmission. 472 */ 473 if (asoc->addip_last_asconf) { 474 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 475 goto out; 476 } 477 478 /* Hold the chunk until an ASCONF_ACK is received. */ 479 sctp_chunk_hold(chunk); 480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 481 if (retval) 482 sctp_chunk_free(chunk); 483 else 484 asoc->addip_last_asconf = chunk; 485 486 out: 487 return retval; 488 } 489 490 /* Add a list of addresses as bind addresses to local endpoint or 491 * association. 492 * 493 * Basically run through each address specified in the addrs/addrcnt 494 * array/length pair, determine if it is IPv6 or IPv4 and call 495 * sctp_do_bind() on it. 496 * 497 * If any of them fails, then the operation will be reversed and the 498 * ones that were added will be removed. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 503 { 504 int cnt; 505 int retval = 0; 506 void *addr_buf; 507 struct sockaddr *sa_addr; 508 struct sctp_af *af; 509 510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 511 addrs, addrcnt); 512 513 addr_buf = addrs; 514 for (cnt = 0; cnt < addrcnt; cnt++) { 515 /* The list may contain either IPv4 or IPv6 address; 516 * determine the address length for walking thru the list. 517 */ 518 sa_addr = addr_buf; 519 af = sctp_get_af_specific(sa_addr->sa_family); 520 if (!af) { 521 retval = -EINVAL; 522 goto err_bindx_add; 523 } 524 525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 526 af->sockaddr_len); 527 528 addr_buf += af->sockaddr_len; 529 530 err_bindx_add: 531 if (retval < 0) { 532 /* Failed. Cleanup the ones that have been added */ 533 if (cnt > 0) 534 sctp_bindx_rem(sk, addrs, cnt); 535 return retval; 536 } 537 } 538 539 return retval; 540 } 541 542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 543 * associations that are part of the endpoint indicating that a list of local 544 * addresses are added to the endpoint. 545 * 546 * If any of the addresses is already in the bind address list of the 547 * association, we do not send the chunk for that association. But it will not 548 * affect other associations. 549 * 550 * Only sctp_setsockopt_bindx() is supposed to call this function. 551 */ 552 static int sctp_send_asconf_add_ip(struct sock *sk, 553 struct sockaddr *addrs, 554 int addrcnt) 555 { 556 struct sctp_sock *sp; 557 struct sctp_endpoint *ep; 558 struct sctp_association *asoc; 559 struct sctp_bind_addr *bp; 560 struct sctp_chunk *chunk; 561 struct sctp_sockaddr_entry *laddr; 562 union sctp_addr *addr; 563 union sctp_addr saveaddr; 564 void *addr_buf; 565 struct sctp_af *af; 566 struct list_head *p; 567 int i; 568 int retval = 0; 569 570 sp = sctp_sk(sk); 571 ep = sp->ep; 572 573 if (!ep->asconf_enable) 574 return retval; 575 576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 577 __func__, sk, addrs, addrcnt); 578 579 list_for_each_entry(asoc, &ep->asocs, asocs) { 580 if (!asoc->peer.asconf_capable) 581 continue; 582 583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 584 continue; 585 586 if (!sctp_state(asoc, ESTABLISHED)) 587 continue; 588 589 /* Check if any address in the packed array of addresses is 590 * in the bind address list of the association. If so, 591 * do not send the asconf chunk to its peer, but continue with 592 * other associations. 593 */ 594 addr_buf = addrs; 595 for (i = 0; i < addrcnt; i++) { 596 addr = addr_buf; 597 af = sctp_get_af_specific(addr->v4.sin_family); 598 if (!af) { 599 retval = -EINVAL; 600 goto out; 601 } 602 603 if (sctp_assoc_lookup_laddr(asoc, addr)) 604 break; 605 606 addr_buf += af->sockaddr_len; 607 } 608 if (i < addrcnt) 609 continue; 610 611 /* Use the first valid address in bind addr list of 612 * association as Address Parameter of ASCONF CHUNK. 613 */ 614 bp = &asoc->base.bind_addr; 615 p = bp->address_list.next; 616 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 618 addrcnt, SCTP_PARAM_ADD_IP); 619 if (!chunk) { 620 retval = -ENOMEM; 621 goto out; 622 } 623 624 /* Add the new addresses to the bind address list with 625 * use_as_src set to 0. 626 */ 627 addr_buf = addrs; 628 for (i = 0; i < addrcnt; i++) { 629 addr = addr_buf; 630 af = sctp_get_af_specific(addr->v4.sin_family); 631 memcpy(&saveaddr, addr, af->sockaddr_len); 632 retval = sctp_add_bind_addr(bp, &saveaddr, 633 sizeof(saveaddr), 634 SCTP_ADDR_NEW, GFP_ATOMIC); 635 addr_buf += af->sockaddr_len; 636 } 637 if (asoc->src_out_of_asoc_ok) { 638 struct sctp_transport *trans; 639 640 list_for_each_entry(trans, 641 &asoc->peer.transport_addr_list, transports) { 642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 643 2*asoc->pathmtu, 4380)); 644 trans->ssthresh = asoc->peer.i.a_rwnd; 645 trans->rto = asoc->rto_initial; 646 sctp_max_rto(asoc, trans); 647 trans->rtt = trans->srtt = trans->rttvar = 0; 648 /* Clear the source and route cache */ 649 sctp_transport_route(trans, NULL, 650 sctp_sk(asoc->base.sk)); 651 } 652 } 653 retval = sctp_send_asconf(asoc, chunk); 654 } 655 656 out: 657 return retval; 658 } 659 660 /* Remove a list of addresses from bind addresses list. Do not remove the 661 * last address. 662 * 663 * Basically run through each address specified in the addrs/addrcnt 664 * array/length pair, determine if it is IPv6 or IPv4 and call 665 * sctp_del_bind() on it. 666 * 667 * If any of them fails, then the operation will be reversed and the 668 * ones that were removed will be added back. 669 * 670 * At least one address has to be left; if only one address is 671 * available, the operation will return -EBUSY. 672 * 673 * Only sctp_setsockopt_bindx() is supposed to call this function. 674 */ 675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 676 { 677 struct sctp_sock *sp = sctp_sk(sk); 678 struct sctp_endpoint *ep = sp->ep; 679 int cnt; 680 struct sctp_bind_addr *bp = &ep->base.bind_addr; 681 int retval = 0; 682 void *addr_buf; 683 union sctp_addr *sa_addr; 684 struct sctp_af *af; 685 686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 687 __func__, sk, addrs, addrcnt); 688 689 addr_buf = addrs; 690 for (cnt = 0; cnt < addrcnt; cnt++) { 691 /* If the bind address list is empty or if there is only one 692 * bind address, there is nothing more to be removed (we need 693 * at least one address here). 694 */ 695 if (list_empty(&bp->address_list) || 696 (sctp_list_single_entry(&bp->address_list))) { 697 retval = -EBUSY; 698 goto err_bindx_rem; 699 } 700 701 sa_addr = addr_buf; 702 af = sctp_get_af_specific(sa_addr->sa.sa_family); 703 if (!af) { 704 retval = -EINVAL; 705 goto err_bindx_rem; 706 } 707 708 if (!af->addr_valid(sa_addr, sp, NULL)) { 709 retval = -EADDRNOTAVAIL; 710 goto err_bindx_rem; 711 } 712 713 if (sa_addr->v4.sin_port && 714 sa_addr->v4.sin_port != htons(bp->port)) { 715 retval = -EINVAL; 716 goto err_bindx_rem; 717 } 718 719 if (!sa_addr->v4.sin_port) 720 sa_addr->v4.sin_port = htons(bp->port); 721 722 /* FIXME - There is probably a need to check if sk->sk_saddr and 723 * sk->sk_rcv_addr are currently set to one of the addresses to 724 * be removed. This is something which needs to be looked into 725 * when we are fixing the outstanding issues with multi-homing 726 * socket routing and failover schemes. Refer to comments in 727 * sctp_do_bind(). -daisy 728 */ 729 retval = sctp_del_bind_addr(bp, sa_addr); 730 731 addr_buf += af->sockaddr_len; 732 err_bindx_rem: 733 if (retval < 0) { 734 /* Failed. Add the ones that has been removed back */ 735 if (cnt > 0) 736 sctp_bindx_add(sk, addrs, cnt); 737 return retval; 738 } 739 } 740 741 return retval; 742 } 743 744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 745 * the associations that are part of the endpoint indicating that a list of 746 * local addresses are removed from the endpoint. 747 * 748 * If any of the addresses is already in the bind address list of the 749 * association, we do not send the chunk for that association. But it will not 750 * affect other associations. 751 * 752 * Only sctp_setsockopt_bindx() is supposed to call this function. 753 */ 754 static int sctp_send_asconf_del_ip(struct sock *sk, 755 struct sockaddr *addrs, 756 int addrcnt) 757 { 758 struct sctp_sock *sp; 759 struct sctp_endpoint *ep; 760 struct sctp_association *asoc; 761 struct sctp_transport *transport; 762 struct sctp_bind_addr *bp; 763 struct sctp_chunk *chunk; 764 union sctp_addr *laddr; 765 void *addr_buf; 766 struct sctp_af *af; 767 struct sctp_sockaddr_entry *saddr; 768 int i; 769 int retval = 0; 770 int stored = 0; 771 772 chunk = NULL; 773 sp = sctp_sk(sk); 774 ep = sp->ep; 775 776 if (!ep->asconf_enable) 777 return retval; 778 779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 780 __func__, sk, addrs, addrcnt); 781 782 list_for_each_entry(asoc, &ep->asocs, asocs) { 783 784 if (!asoc->peer.asconf_capable) 785 continue; 786 787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 788 continue; 789 790 if (!sctp_state(asoc, ESTABLISHED)) 791 continue; 792 793 /* Check if any address in the packed array of addresses is 794 * not present in the bind address list of the association. 795 * If so, do not send the asconf chunk to its peer, but 796 * continue with other associations. 797 */ 798 addr_buf = addrs; 799 for (i = 0; i < addrcnt; i++) { 800 laddr = addr_buf; 801 af = sctp_get_af_specific(laddr->v4.sin_family); 802 if (!af) { 803 retval = -EINVAL; 804 goto out; 805 } 806 807 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 808 break; 809 810 addr_buf += af->sockaddr_len; 811 } 812 if (i < addrcnt) 813 continue; 814 815 /* Find one address in the association's bind address list 816 * that is not in the packed array of addresses. This is to 817 * make sure that we do not delete all the addresses in the 818 * association. 819 */ 820 bp = &asoc->base.bind_addr; 821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 822 addrcnt, sp); 823 if ((laddr == NULL) && (addrcnt == 1)) { 824 if (asoc->asconf_addr_del_pending) 825 continue; 826 asoc->asconf_addr_del_pending = 827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 828 if (asoc->asconf_addr_del_pending == NULL) { 829 retval = -ENOMEM; 830 goto out; 831 } 832 asoc->asconf_addr_del_pending->sa.sa_family = 833 addrs->sa_family; 834 asoc->asconf_addr_del_pending->v4.sin_port = 835 htons(bp->port); 836 if (addrs->sa_family == AF_INET) { 837 struct sockaddr_in *sin; 838 839 sin = (struct sockaddr_in *)addrs; 840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 841 } else if (addrs->sa_family == AF_INET6) { 842 struct sockaddr_in6 *sin6; 843 844 sin6 = (struct sockaddr_in6 *)addrs; 845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 846 } 847 848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 849 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 850 asoc->asconf_addr_del_pending); 851 852 asoc->src_out_of_asoc_ok = 1; 853 stored = 1; 854 goto skip_mkasconf; 855 } 856 857 if (laddr == NULL) 858 return -EINVAL; 859 860 /* We do not need RCU protection throughout this loop 861 * because this is done under a socket lock from the 862 * setsockopt call. 863 */ 864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 865 SCTP_PARAM_DEL_IP); 866 if (!chunk) { 867 retval = -ENOMEM; 868 goto out; 869 } 870 871 skip_mkasconf: 872 /* Reset use_as_src flag for the addresses in the bind address 873 * list that are to be deleted. 874 */ 875 addr_buf = addrs; 876 for (i = 0; i < addrcnt; i++) { 877 laddr = addr_buf; 878 af = sctp_get_af_specific(laddr->v4.sin_family); 879 list_for_each_entry(saddr, &bp->address_list, list) { 880 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 881 saddr->state = SCTP_ADDR_DEL; 882 } 883 addr_buf += af->sockaddr_len; 884 } 885 886 /* Update the route and saddr entries for all the transports 887 * as some of the addresses in the bind address list are 888 * about to be deleted and cannot be used as source addresses. 889 */ 890 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 891 transports) { 892 sctp_transport_route(transport, NULL, 893 sctp_sk(asoc->base.sk)); 894 } 895 896 if (stored) 897 /* We don't need to transmit ASCONF */ 898 continue; 899 retval = sctp_send_asconf(asoc, chunk); 900 } 901 out: 902 return retval; 903 } 904 905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 907 { 908 struct sock *sk = sctp_opt2sk(sp); 909 union sctp_addr *addr; 910 struct sctp_af *af; 911 912 /* It is safe to write port space in caller. */ 913 addr = &addrw->a; 914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 915 af = sctp_get_af_specific(addr->sa.sa_family); 916 if (!af) 917 return -EINVAL; 918 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 919 return -EINVAL; 920 921 if (addrw->state == SCTP_ADDR_NEW) 922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 923 else 924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 925 } 926 927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 928 * 929 * API 8.1 930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 931 * int flags); 932 * 933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 935 * or IPv6 addresses. 936 * 937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 938 * Section 3.1.2 for this usage. 939 * 940 * addrs is a pointer to an array of one or more socket addresses. Each 941 * address is contained in its appropriate structure (i.e. struct 942 * sockaddr_in or struct sockaddr_in6) the family of the address type 943 * must be used to distinguish the address length (note that this 944 * representation is termed a "packed array" of addresses). The caller 945 * specifies the number of addresses in the array with addrcnt. 946 * 947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 948 * -1, and sets errno to the appropriate error code. 949 * 950 * For SCTP, the port given in each socket address must be the same, or 951 * sctp_bindx() will fail, setting errno to EINVAL. 952 * 953 * The flags parameter is formed from the bitwise OR of zero or more of 954 * the following currently defined flags: 955 * 956 * SCTP_BINDX_ADD_ADDR 957 * 958 * SCTP_BINDX_REM_ADDR 959 * 960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 962 * addresses from the association. The two flags are mutually exclusive; 963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 964 * not remove all addresses from an association; sctp_bindx() will 965 * reject such an attempt with EINVAL. 966 * 967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 968 * additional addresses with an endpoint after calling bind(). Or use 969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 970 * socket is associated with so that no new association accepted will be 971 * associated with those addresses. If the endpoint supports dynamic 972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 973 * endpoint to send the appropriate message to the peer to change the 974 * peers address lists. 975 * 976 * Adding and removing addresses from a connected association is 977 * optional functionality. Implementations that do not support this 978 * functionality should return EOPNOTSUPP. 979 * 980 * Basically do nothing but copying the addresses from user to kernel 981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 983 * from userspace. 984 * 985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 986 * it. 987 * 988 * sk The sk of the socket 989 * addrs The pointer to the addresses 990 * addrssize Size of the addrs buffer 991 * op Operation to perform (add or remove, see the flags of 992 * sctp_bindx) 993 * 994 * Returns 0 if ok, <0 errno code on error. 995 */ 996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 997 int addrs_size, int op) 998 { 999 int err; 1000 int addrcnt = 0; 1001 int walk_size = 0; 1002 struct sockaddr *sa_addr; 1003 void *addr_buf = addrs; 1004 struct sctp_af *af; 1005 1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1007 __func__, sk, addr_buf, addrs_size, op); 1008 1009 if (unlikely(addrs_size <= 0)) 1010 return -EINVAL; 1011 1012 /* Walk through the addrs buffer and count the number of addresses. */ 1013 while (walk_size < addrs_size) { 1014 if (walk_size + sizeof(sa_family_t) > addrs_size) 1015 return -EINVAL; 1016 1017 sa_addr = addr_buf; 1018 af = sctp_get_af_specific(sa_addr->sa_family); 1019 1020 /* If the address family is not supported or if this address 1021 * causes the address buffer to overflow return EINVAL. 1022 */ 1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1024 return -EINVAL; 1025 addrcnt++; 1026 addr_buf += af->sockaddr_len; 1027 walk_size += af->sockaddr_len; 1028 } 1029 1030 /* Do the work. */ 1031 switch (op) { 1032 case SCTP_BINDX_ADD_ADDR: 1033 /* Allow security module to validate bindx addresses. */ 1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1035 addrs, addrs_size); 1036 if (err) 1037 return err; 1038 err = sctp_bindx_add(sk, addrs, addrcnt); 1039 if (err) 1040 return err; 1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1042 case SCTP_BINDX_REM_ADDR: 1043 err = sctp_bindx_rem(sk, addrs, addrcnt); 1044 if (err) 1045 return err; 1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1047 1048 default: 1049 return -EINVAL; 1050 } 1051 } 1052 1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1054 int addrlen) 1055 { 1056 int err; 1057 1058 lock_sock(sk); 1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1060 release_sock(sk); 1061 return err; 1062 } 1063 1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1065 const union sctp_addr *daddr, 1066 const struct sctp_initmsg *init, 1067 struct sctp_transport **tp) 1068 { 1069 struct sctp_association *asoc; 1070 struct sock *sk = ep->base.sk; 1071 struct net *net = sock_net(sk); 1072 enum sctp_scope scope; 1073 int err; 1074 1075 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1076 return -EADDRNOTAVAIL; 1077 1078 if (!ep->base.bind_addr.port) { 1079 if (sctp_autobind(sk)) 1080 return -EAGAIN; 1081 } else { 1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1084 return -EACCES; 1085 } 1086 1087 scope = sctp_scope(daddr); 1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1089 if (!asoc) 1090 return -ENOMEM; 1091 1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1093 if (err < 0) 1094 goto free; 1095 1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1097 if (!*tp) { 1098 err = -ENOMEM; 1099 goto free; 1100 } 1101 1102 if (!init) 1103 return 0; 1104 1105 if (init->sinit_num_ostreams) { 1106 __u16 outcnt = init->sinit_num_ostreams; 1107 1108 asoc->c.sinit_num_ostreams = outcnt; 1109 /* outcnt has been changed, need to re-init stream */ 1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1111 if (err) 1112 goto free; 1113 } 1114 1115 if (init->sinit_max_instreams) 1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1117 1118 if (init->sinit_max_attempts) 1119 asoc->max_init_attempts = init->sinit_max_attempts; 1120 1121 if (init->sinit_max_init_timeo) 1122 asoc->max_init_timeo = 1123 msecs_to_jiffies(init->sinit_max_init_timeo); 1124 1125 return 0; 1126 free: 1127 sctp_association_free(asoc); 1128 return err; 1129 } 1130 1131 static int sctp_connect_add_peer(struct sctp_association *asoc, 1132 union sctp_addr *daddr, int addr_len) 1133 { 1134 struct sctp_endpoint *ep = asoc->ep; 1135 struct sctp_association *old; 1136 struct sctp_transport *t; 1137 int err; 1138 1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1140 if (err) 1141 return err; 1142 1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1144 if (old && old != asoc) 1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1146 : -EALREADY; 1147 1148 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1149 return -EADDRNOTAVAIL; 1150 1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1152 if (!t) 1153 return -ENOMEM; 1154 1155 return 0; 1156 } 1157 1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1159 * 1160 * Common routine for handling connect() and sctp_connectx(). 1161 * Connect will come in with just a single address. 1162 */ 1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1164 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1165 { 1166 struct sctp_sock *sp = sctp_sk(sk); 1167 struct sctp_endpoint *ep = sp->ep; 1168 struct sctp_transport *transport; 1169 struct sctp_association *asoc; 1170 void *addr_buf = kaddrs; 1171 union sctp_addr *daddr; 1172 struct sctp_af *af; 1173 int walk_size, err; 1174 long timeo; 1175 1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1178 return -EISCONN; 1179 1180 daddr = addr_buf; 1181 af = sctp_get_af_specific(daddr->sa.sa_family); 1182 if (!af || af->sockaddr_len > addrs_size) 1183 return -EINVAL; 1184 1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1186 if (err) 1187 return err; 1188 1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1190 if (asoc) 1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1192 : -EALREADY; 1193 1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1195 if (err) 1196 return err; 1197 asoc = transport->asoc; 1198 1199 addr_buf += af->sockaddr_len; 1200 walk_size = af->sockaddr_len; 1201 while (walk_size < addrs_size) { 1202 err = -EINVAL; 1203 if (walk_size + sizeof(sa_family_t) > addrs_size) 1204 goto out_free; 1205 1206 daddr = addr_buf; 1207 af = sctp_get_af_specific(daddr->sa.sa_family); 1208 if (!af || af->sockaddr_len + walk_size > addrs_size) 1209 goto out_free; 1210 1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1212 goto out_free; 1213 1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1215 if (err) 1216 goto out_free; 1217 1218 addr_buf += af->sockaddr_len; 1219 walk_size += af->sockaddr_len; 1220 } 1221 1222 /* In case the user of sctp_connectx() wants an association 1223 * id back, assign one now. 1224 */ 1225 if (assoc_id) { 1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1227 if (err < 0) 1228 goto out_free; 1229 } 1230 1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1232 if (err < 0) 1233 goto out_free; 1234 1235 /* Initialize sk's dport and daddr for getpeername() */ 1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1237 sp->pf->to_sk_daddr(daddr, sk); 1238 sk->sk_err = 0; 1239 1240 if (assoc_id) 1241 *assoc_id = asoc->assoc_id; 1242 1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1244 return sctp_wait_for_connect(asoc, &timeo); 1245 1246 out_free: 1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1248 __func__, asoc, kaddrs, err); 1249 sctp_association_free(asoc); 1250 return err; 1251 } 1252 1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1254 * 1255 * API 8.9 1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1257 * sctp_assoc_t *asoc); 1258 * 1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1261 * or IPv6 addresses. 1262 * 1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1264 * Section 3.1.2 for this usage. 1265 * 1266 * addrs is a pointer to an array of one or more socket addresses. Each 1267 * address is contained in its appropriate structure (i.e. struct 1268 * sockaddr_in or struct sockaddr_in6) the family of the address type 1269 * must be used to distengish the address length (note that this 1270 * representation is termed a "packed array" of addresses). The caller 1271 * specifies the number of addresses in the array with addrcnt. 1272 * 1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1274 * the association id of the new association. On failure, sctp_connectx() 1275 * returns -1, and sets errno to the appropriate error code. The assoc_id 1276 * is not touched by the kernel. 1277 * 1278 * For SCTP, the port given in each socket address must be the same, or 1279 * sctp_connectx() will fail, setting errno to EINVAL. 1280 * 1281 * An application can use sctp_connectx to initiate an association with 1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1283 * allows a caller to specify multiple addresses at which a peer can be 1284 * reached. The way the SCTP stack uses the list of addresses to set up 1285 * the association is implementation dependent. This function only 1286 * specifies that the stack will try to make use of all the addresses in 1287 * the list when needed. 1288 * 1289 * Note that the list of addresses passed in is only used for setting up 1290 * the association. It does not necessarily equal the set of addresses 1291 * the peer uses for the resulting association. If the caller wants to 1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1293 * retrieve them after the association has been set up. 1294 * 1295 * Basically do nothing but copying the addresses from user to kernel 1296 * land and invoking either sctp_connectx(). This is used for tunneling 1297 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1298 * 1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1300 * it. 1301 * 1302 * sk The sk of the socket 1303 * addrs The pointer to the addresses 1304 * addrssize Size of the addrs buffer 1305 * 1306 * Returns >=0 if ok, <0 errno code on error. 1307 */ 1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1309 int addrs_size, sctp_assoc_t *assoc_id) 1310 { 1311 int err = 0, flags = 0; 1312 1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1314 __func__, sk, kaddrs, addrs_size); 1315 1316 /* make sure the 1st addr's sa_family is accessible later */ 1317 if (unlikely(addrs_size < sizeof(sa_family_t))) 1318 return -EINVAL; 1319 1320 /* Allow security module to validate connectx addresses. */ 1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1322 (struct sockaddr *)kaddrs, 1323 addrs_size); 1324 if (err) 1325 return err; 1326 1327 /* in-kernel sockets don't generally have a file allocated to them 1328 * if all they do is call sock_create_kern(). 1329 */ 1330 if (sk->sk_socket->file) 1331 flags = sk->sk_socket->file->f_flags; 1332 1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1334 } 1335 1336 /* 1337 * This is an older interface. It's kept for backward compatibility 1338 * to the option that doesn't provide association id. 1339 */ 1340 static int sctp_setsockopt_connectx_old(struct sock *sk, 1341 struct sockaddr *kaddrs, 1342 int addrs_size) 1343 { 1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1345 } 1346 1347 /* 1348 * New interface for the API. The since the API is done with a socket 1349 * option, to make it simple we feed back the association id is as a return 1350 * indication to the call. Error is always negative and association id is 1351 * always positive. 1352 */ 1353 static int sctp_setsockopt_connectx(struct sock *sk, 1354 struct sockaddr *kaddrs, 1355 int addrs_size) 1356 { 1357 sctp_assoc_t assoc_id = 0; 1358 int err = 0; 1359 1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1361 1362 if (err) 1363 return err; 1364 else 1365 return assoc_id; 1366 } 1367 1368 /* 1369 * New (hopefully final) interface for the API. 1370 * We use the sctp_getaddrs_old structure so that use-space library 1371 * can avoid any unnecessary allocations. The only different part 1372 * is that we store the actual length of the address buffer into the 1373 * addrs_num structure member. That way we can re-use the existing 1374 * code. 1375 */ 1376 #ifdef CONFIG_COMPAT 1377 struct compat_sctp_getaddrs_old { 1378 sctp_assoc_t assoc_id; 1379 s32 addr_num; 1380 compat_uptr_t addrs; /* struct sockaddr * */ 1381 }; 1382 #endif 1383 1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1385 char __user *optval, 1386 int __user *optlen) 1387 { 1388 struct sctp_getaddrs_old param; 1389 sctp_assoc_t assoc_id = 0; 1390 struct sockaddr *kaddrs; 1391 int err = 0; 1392 1393 #ifdef CONFIG_COMPAT 1394 if (in_compat_syscall()) { 1395 struct compat_sctp_getaddrs_old param32; 1396 1397 if (len < sizeof(param32)) 1398 return -EINVAL; 1399 if (copy_from_user(¶m32, optval, sizeof(param32))) 1400 return -EFAULT; 1401 1402 param.assoc_id = param32.assoc_id; 1403 param.addr_num = param32.addr_num; 1404 param.addrs = compat_ptr(param32.addrs); 1405 } else 1406 #endif 1407 { 1408 if (len < sizeof(param)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m, optval, sizeof(param))) 1411 return -EFAULT; 1412 } 1413 1414 kaddrs = memdup_user(param.addrs, param.addr_num); 1415 if (IS_ERR(kaddrs)) 1416 return PTR_ERR(kaddrs); 1417 1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1419 kfree(kaddrs); 1420 if (err == 0 || err == -EINPROGRESS) { 1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1422 return -EFAULT; 1423 if (put_user(sizeof(assoc_id), optlen)) 1424 return -EFAULT; 1425 } 1426 1427 return err; 1428 } 1429 1430 /* API 3.1.4 close() - UDP Style Syntax 1431 * Applications use close() to perform graceful shutdown (as described in 1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1433 * by a UDP-style socket. 1434 * 1435 * The syntax is 1436 * 1437 * ret = close(int sd); 1438 * 1439 * sd - the socket descriptor of the associations to be closed. 1440 * 1441 * To gracefully shutdown a specific association represented by the 1442 * UDP-style socket, an application should use the sendmsg() call, 1443 * passing no user data, but including the appropriate flag in the 1444 * ancillary data (see Section xxxx). 1445 * 1446 * If sd in the close() call is a branched-off socket representing only 1447 * one association, the shutdown is performed on that association only. 1448 * 1449 * 4.1.6 close() - TCP Style Syntax 1450 * 1451 * Applications use close() to gracefully close down an association. 1452 * 1453 * The syntax is: 1454 * 1455 * int close(int sd); 1456 * 1457 * sd - the socket descriptor of the association to be closed. 1458 * 1459 * After an application calls close() on a socket descriptor, no further 1460 * socket operations will succeed on that descriptor. 1461 * 1462 * API 7.1.4 SO_LINGER 1463 * 1464 * An application using the TCP-style socket can use this option to 1465 * perform the SCTP ABORT primitive. The linger option structure is: 1466 * 1467 * struct linger { 1468 * int l_onoff; // option on/off 1469 * int l_linger; // linger time 1470 * }; 1471 * 1472 * To enable the option, set l_onoff to 1. If the l_linger value is set 1473 * to 0, calling close() is the same as the ABORT primitive. If the 1474 * value is set to a negative value, the setsockopt() call will return 1475 * an error. If the value is set to a positive value linger_time, the 1476 * close() can be blocked for at most linger_time ms. If the graceful 1477 * shutdown phase does not finish during this period, close() will 1478 * return but the graceful shutdown phase continues in the system. 1479 */ 1480 static void sctp_close(struct sock *sk, long timeout) 1481 { 1482 struct net *net = sock_net(sk); 1483 struct sctp_endpoint *ep; 1484 struct sctp_association *asoc; 1485 struct list_head *pos, *temp; 1486 unsigned int data_was_unread; 1487 1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1489 1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1491 sk->sk_shutdown = SHUTDOWN_MASK; 1492 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1493 1494 ep = sctp_sk(sk)->ep; 1495 1496 /* Clean up any skbs sitting on the receive queue. */ 1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1499 1500 /* Walk all associations on an endpoint. */ 1501 list_for_each_safe(pos, temp, &ep->asocs) { 1502 asoc = list_entry(pos, struct sctp_association, asocs); 1503 1504 if (sctp_style(sk, TCP)) { 1505 /* A closed association can still be in the list if 1506 * it belongs to a TCP-style listening socket that is 1507 * not yet accepted. If so, free it. If not, send an 1508 * ABORT or SHUTDOWN based on the linger options. 1509 */ 1510 if (sctp_state(asoc, CLOSED)) { 1511 sctp_association_free(asoc); 1512 continue; 1513 } 1514 } 1515 1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1517 !skb_queue_empty(&asoc->ulpq.reasm) || 1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1520 struct sctp_chunk *chunk; 1521 1522 chunk = sctp_make_abort_user(asoc, NULL, 0); 1523 sctp_primitive_ABORT(net, asoc, chunk); 1524 } else 1525 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1526 } 1527 1528 /* On a TCP-style socket, block for at most linger_time if set. */ 1529 if (sctp_style(sk, TCP) && timeout) 1530 sctp_wait_for_close(sk, timeout); 1531 1532 /* This will run the backlog queue. */ 1533 release_sock(sk); 1534 1535 /* Supposedly, no process has access to the socket, but 1536 * the net layers still may. 1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1538 * held and that should be grabbed before socket lock. 1539 */ 1540 spin_lock_bh(&net->sctp.addr_wq_lock); 1541 bh_lock_sock_nested(sk); 1542 1543 /* Hold the sock, since sk_common_release() will put sock_put() 1544 * and we have just a little more cleanup. 1545 */ 1546 sock_hold(sk); 1547 sk_common_release(sk); 1548 1549 bh_unlock_sock(sk); 1550 spin_unlock_bh(&net->sctp.addr_wq_lock); 1551 1552 sock_put(sk); 1553 1554 SCTP_DBG_OBJCNT_DEC(sock); 1555 } 1556 1557 /* Handle EPIPE error. */ 1558 static int sctp_error(struct sock *sk, int flags, int err) 1559 { 1560 if (err == -EPIPE) 1561 err = sock_error(sk) ? : -EPIPE; 1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1563 send_sig(SIGPIPE, current, 0); 1564 return err; 1565 } 1566 1567 /* API 3.1.3 sendmsg() - UDP Style Syntax 1568 * 1569 * An application uses sendmsg() and recvmsg() calls to transmit data to 1570 * and receive data from its peer. 1571 * 1572 * ssize_t sendmsg(int socket, const struct msghdr *message, 1573 * int flags); 1574 * 1575 * socket - the socket descriptor of the endpoint. 1576 * message - pointer to the msghdr structure which contains a single 1577 * user message and possibly some ancillary data. 1578 * 1579 * See Section 5 for complete description of the data 1580 * structures. 1581 * 1582 * flags - flags sent or received with the user message, see Section 1583 * 5 for complete description of the flags. 1584 * 1585 * Note: This function could use a rewrite especially when explicit 1586 * connect support comes in. 1587 */ 1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1589 1590 static int sctp_msghdr_parse(const struct msghdr *msg, 1591 struct sctp_cmsgs *cmsgs); 1592 1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1594 struct sctp_sndrcvinfo *srinfo, 1595 const struct msghdr *msg, size_t msg_len) 1596 { 1597 __u16 sflags; 1598 int err; 1599 1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1601 return -EPIPE; 1602 1603 if (msg_len > sk->sk_sndbuf) 1604 return -EMSGSIZE; 1605 1606 memset(cmsgs, 0, sizeof(*cmsgs)); 1607 err = sctp_msghdr_parse(msg, cmsgs); 1608 if (err) { 1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1610 return err; 1611 } 1612 1613 memset(srinfo, 0, sizeof(*srinfo)); 1614 if (cmsgs->srinfo) { 1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1621 } 1622 1623 if (cmsgs->sinfo) { 1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1629 } 1630 1631 if (cmsgs->prinfo) { 1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1634 cmsgs->prinfo->pr_policy); 1635 } 1636 1637 sflags = srinfo->sinfo_flags; 1638 if (!sflags && msg_len) 1639 return 0; 1640 1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1642 return -EINVAL; 1643 1644 if (((sflags & SCTP_EOF) && msg_len > 0) || 1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1646 return -EINVAL; 1647 1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1649 return -EINVAL; 1650 1651 return 0; 1652 } 1653 1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1655 struct sctp_cmsgs *cmsgs, 1656 union sctp_addr *daddr, 1657 struct sctp_transport **tp) 1658 { 1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1660 struct sctp_association *asoc; 1661 struct cmsghdr *cmsg; 1662 __be32 flowinfo = 0; 1663 struct sctp_af *af; 1664 int err; 1665 1666 *tp = NULL; 1667 1668 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1669 return -EINVAL; 1670 1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1672 sctp_sstate(sk, CLOSING))) 1673 return -EADDRNOTAVAIL; 1674 1675 /* Label connection socket for first association 1-to-many 1676 * style for client sequence socket()->sendmsg(). This 1677 * needs to be done before sctp_assoc_add_peer() as that will 1678 * set up the initial packet that needs to account for any 1679 * security ip options (CIPSO/CALIPSO) added to the packet. 1680 */ 1681 af = sctp_get_af_specific(daddr->sa.sa_family); 1682 if (!af) 1683 return -EINVAL; 1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1685 (struct sockaddr *)daddr, 1686 af->sockaddr_len); 1687 if (err < 0) 1688 return err; 1689 1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1691 if (err) 1692 return err; 1693 asoc = (*tp)->asoc; 1694 1695 if (!cmsgs->addrs_msg) 1696 return 0; 1697 1698 if (daddr->sa.sa_family == AF_INET6) 1699 flowinfo = daddr->v6.sin6_flowinfo; 1700 1701 /* sendv addr list parse */ 1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1703 union sctp_addr _daddr; 1704 int dlen; 1705 1706 if (cmsg->cmsg_level != IPPROTO_SCTP || 1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1708 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1709 continue; 1710 1711 daddr = &_daddr; 1712 memset(daddr, 0, sizeof(*daddr)); 1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1715 if (dlen < sizeof(struct in_addr)) { 1716 err = -EINVAL; 1717 goto free; 1718 } 1719 1720 dlen = sizeof(struct in_addr); 1721 daddr->v4.sin_family = AF_INET; 1722 daddr->v4.sin_port = htons(asoc->peer.port); 1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1724 } else { 1725 if (dlen < sizeof(struct in6_addr)) { 1726 err = -EINVAL; 1727 goto free; 1728 } 1729 1730 dlen = sizeof(struct in6_addr); 1731 daddr->v6.sin6_flowinfo = flowinfo; 1732 daddr->v6.sin6_family = AF_INET6; 1733 daddr->v6.sin6_port = htons(asoc->peer.port); 1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1735 } 1736 1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1738 if (err) 1739 goto free; 1740 } 1741 1742 return 0; 1743 1744 free: 1745 sctp_association_free(asoc); 1746 return err; 1747 } 1748 1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1750 __u16 sflags, struct msghdr *msg, 1751 size_t msg_len) 1752 { 1753 struct sock *sk = asoc->base.sk; 1754 struct net *net = sock_net(sk); 1755 1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1757 return -EPIPE; 1758 1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1760 !sctp_state(asoc, ESTABLISHED)) 1761 return 0; 1762 1763 if (sflags & SCTP_EOF) { 1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1765 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1766 1767 return 0; 1768 } 1769 1770 if (sflags & SCTP_ABORT) { 1771 struct sctp_chunk *chunk; 1772 1773 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1774 if (!chunk) 1775 return -ENOMEM; 1776 1777 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1778 sctp_primitive_ABORT(net, asoc, chunk); 1779 iov_iter_revert(&msg->msg_iter, msg_len); 1780 1781 return 0; 1782 } 1783 1784 return 1; 1785 } 1786 1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1788 struct msghdr *msg, size_t msg_len, 1789 struct sctp_transport *transport, 1790 struct sctp_sndrcvinfo *sinfo) 1791 { 1792 struct sock *sk = asoc->base.sk; 1793 struct sctp_sock *sp = sctp_sk(sk); 1794 struct net *net = sock_net(sk); 1795 struct sctp_datamsg *datamsg; 1796 bool wait_connect = false; 1797 struct sctp_chunk *chunk; 1798 long timeo; 1799 int err; 1800 1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1802 err = -EINVAL; 1803 goto err; 1804 } 1805 1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1808 if (err) 1809 goto err; 1810 } 1811 1812 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1813 err = -EMSGSIZE; 1814 goto err; 1815 } 1816 1817 if (asoc->pmtu_pending) { 1818 if (sp->param_flags & SPP_PMTUD_ENABLE) 1819 sctp_assoc_sync_pmtu(asoc); 1820 asoc->pmtu_pending = 0; 1821 } 1822 1823 if (sctp_wspace(asoc) < (int)msg_len) 1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1825 1826 if (sk_under_memory_pressure(sk)) 1827 sk_mem_reclaim(sk); 1828 1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1832 if (err) 1833 goto err; 1834 } 1835 1836 if (sctp_state(asoc, CLOSED)) { 1837 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1838 if (err) 1839 goto err; 1840 1841 if (asoc->ep->intl_enable) { 1842 timeo = sock_sndtimeo(sk, 0); 1843 err = sctp_wait_for_connect(asoc, &timeo); 1844 if (err) { 1845 err = -ESRCH; 1846 goto err; 1847 } 1848 } else { 1849 wait_connect = true; 1850 } 1851 1852 pr_debug("%s: we associated primitively\n", __func__); 1853 } 1854 1855 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1856 if (IS_ERR(datamsg)) { 1857 err = PTR_ERR(datamsg); 1858 goto err; 1859 } 1860 1861 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1862 1863 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1864 sctp_chunk_hold(chunk); 1865 sctp_set_owner_w(chunk); 1866 chunk->transport = transport; 1867 } 1868 1869 err = sctp_primitive_SEND(net, asoc, datamsg); 1870 if (err) { 1871 sctp_datamsg_free(datamsg); 1872 goto err; 1873 } 1874 1875 pr_debug("%s: we sent primitively\n", __func__); 1876 1877 sctp_datamsg_put(datamsg); 1878 1879 if (unlikely(wait_connect)) { 1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1881 sctp_wait_for_connect(asoc, &timeo); 1882 } 1883 1884 err = msg_len; 1885 1886 err: 1887 return err; 1888 } 1889 1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1891 const struct msghdr *msg, 1892 struct sctp_cmsgs *cmsgs) 1893 { 1894 union sctp_addr *daddr = NULL; 1895 int err; 1896 1897 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1898 int len = msg->msg_namelen; 1899 1900 if (len > sizeof(*daddr)) 1901 len = sizeof(*daddr); 1902 1903 daddr = (union sctp_addr *)msg->msg_name; 1904 1905 err = sctp_verify_addr(sk, daddr, len); 1906 if (err) 1907 return ERR_PTR(err); 1908 } 1909 1910 return daddr; 1911 } 1912 1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1914 struct sctp_sndrcvinfo *sinfo, 1915 struct sctp_cmsgs *cmsgs) 1916 { 1917 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1918 sinfo->sinfo_stream = asoc->default_stream; 1919 sinfo->sinfo_ppid = asoc->default_ppid; 1920 sinfo->sinfo_context = asoc->default_context; 1921 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1922 1923 if (!cmsgs->prinfo) 1924 sinfo->sinfo_flags = asoc->default_flags; 1925 } 1926 1927 if (!cmsgs->srinfo && !cmsgs->prinfo) 1928 sinfo->sinfo_timetolive = asoc->default_timetolive; 1929 1930 if (cmsgs->authinfo) { 1931 /* Reuse sinfo_tsn to indicate that authinfo was set and 1932 * sinfo_ssn to save the keyid on tx path. 1933 */ 1934 sinfo->sinfo_tsn = 1; 1935 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1936 } 1937 } 1938 1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1940 { 1941 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1942 struct sctp_transport *transport = NULL; 1943 struct sctp_sndrcvinfo _sinfo, *sinfo; 1944 struct sctp_association *asoc, *tmp; 1945 struct sctp_cmsgs cmsgs; 1946 union sctp_addr *daddr; 1947 bool new = false; 1948 __u16 sflags; 1949 int err; 1950 1951 /* Parse and get snd_info */ 1952 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1953 if (err) 1954 goto out; 1955 1956 sinfo = &_sinfo; 1957 sflags = sinfo->sinfo_flags; 1958 1959 /* Get daddr from msg */ 1960 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1961 if (IS_ERR(daddr)) { 1962 err = PTR_ERR(daddr); 1963 goto out; 1964 } 1965 1966 lock_sock(sk); 1967 1968 /* SCTP_SENDALL process */ 1969 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1970 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1971 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1972 msg_len); 1973 if (err == 0) 1974 continue; 1975 if (err < 0) 1976 goto out_unlock; 1977 1978 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1979 1980 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1981 NULL, sinfo); 1982 if (err < 0) 1983 goto out_unlock; 1984 1985 iov_iter_revert(&msg->msg_iter, err); 1986 } 1987 1988 goto out_unlock; 1989 } 1990 1991 /* Get and check or create asoc */ 1992 if (daddr) { 1993 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1994 if (asoc) { 1995 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1996 msg_len); 1997 if (err <= 0) 1998 goto out_unlock; 1999 } else { 2000 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2001 &transport); 2002 if (err) 2003 goto out_unlock; 2004 2005 asoc = transport->asoc; 2006 new = true; 2007 } 2008 2009 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2010 transport = NULL; 2011 } else { 2012 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2013 if (!asoc) { 2014 err = -EPIPE; 2015 goto out_unlock; 2016 } 2017 2018 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2019 if (err <= 0) 2020 goto out_unlock; 2021 } 2022 2023 /* Update snd_info with the asoc */ 2024 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2025 2026 /* Send msg to the asoc */ 2027 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2028 if (err < 0 && err != -ESRCH && new) 2029 sctp_association_free(asoc); 2030 2031 out_unlock: 2032 release_sock(sk); 2033 out: 2034 return sctp_error(sk, msg->msg_flags, err); 2035 } 2036 2037 /* This is an extended version of skb_pull() that removes the data from the 2038 * start of a skb even when data is spread across the list of skb's in the 2039 * frag_list. len specifies the total amount of data that needs to be removed. 2040 * when 'len' bytes could be removed from the skb, it returns 0. 2041 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2042 * could not be removed. 2043 */ 2044 static int sctp_skb_pull(struct sk_buff *skb, int len) 2045 { 2046 struct sk_buff *list; 2047 int skb_len = skb_headlen(skb); 2048 int rlen; 2049 2050 if (len <= skb_len) { 2051 __skb_pull(skb, len); 2052 return 0; 2053 } 2054 len -= skb_len; 2055 __skb_pull(skb, skb_len); 2056 2057 skb_walk_frags(skb, list) { 2058 rlen = sctp_skb_pull(list, len); 2059 skb->len -= (len-rlen); 2060 skb->data_len -= (len-rlen); 2061 2062 if (!rlen) 2063 return 0; 2064 2065 len = rlen; 2066 } 2067 2068 return len; 2069 } 2070 2071 /* API 3.1.3 recvmsg() - UDP Style Syntax 2072 * 2073 * ssize_t recvmsg(int socket, struct msghdr *message, 2074 * int flags); 2075 * 2076 * socket - the socket descriptor of the endpoint. 2077 * message - pointer to the msghdr structure which contains a single 2078 * user message and possibly some ancillary data. 2079 * 2080 * See Section 5 for complete description of the data 2081 * structures. 2082 * 2083 * flags - flags sent or received with the user message, see Section 2084 * 5 for complete description of the flags. 2085 */ 2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2087 int noblock, int flags, int *addr_len) 2088 { 2089 struct sctp_ulpevent *event = NULL; 2090 struct sctp_sock *sp = sctp_sk(sk); 2091 struct sk_buff *skb, *head_skb; 2092 int copied; 2093 int err = 0; 2094 int skb_len; 2095 2096 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2097 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2098 addr_len); 2099 2100 lock_sock(sk); 2101 2102 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2103 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2104 err = -ENOTCONN; 2105 goto out; 2106 } 2107 2108 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2109 if (!skb) 2110 goto out; 2111 2112 /* Get the total length of the skb including any skb's in the 2113 * frag_list. 2114 */ 2115 skb_len = skb->len; 2116 2117 copied = skb_len; 2118 if (copied > len) 2119 copied = len; 2120 2121 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2122 2123 event = sctp_skb2event(skb); 2124 2125 if (err) 2126 goto out_free; 2127 2128 if (event->chunk && event->chunk->head_skb) 2129 head_skb = event->chunk->head_skb; 2130 else 2131 head_skb = skb; 2132 sock_recv_ts_and_drops(msg, sk, head_skb); 2133 if (sctp_ulpevent_is_notification(event)) { 2134 msg->msg_flags |= MSG_NOTIFICATION; 2135 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2136 } else { 2137 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2138 } 2139 2140 /* Check if we allow SCTP_NXTINFO. */ 2141 if (sp->recvnxtinfo) 2142 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2143 /* Check if we allow SCTP_RCVINFO. */ 2144 if (sp->recvrcvinfo) 2145 sctp_ulpevent_read_rcvinfo(event, msg); 2146 /* Check if we allow SCTP_SNDRCVINFO. */ 2147 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2148 sctp_ulpevent_read_sndrcvinfo(event, msg); 2149 2150 err = copied; 2151 2152 /* If skb's length exceeds the user's buffer, update the skb and 2153 * push it back to the receive_queue so that the next call to 2154 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2155 */ 2156 if (skb_len > copied) { 2157 msg->msg_flags &= ~MSG_EOR; 2158 if (flags & MSG_PEEK) 2159 goto out_free; 2160 sctp_skb_pull(skb, copied); 2161 skb_queue_head(&sk->sk_receive_queue, skb); 2162 2163 /* When only partial message is copied to the user, increase 2164 * rwnd by that amount. If all the data in the skb is read, 2165 * rwnd is updated when the event is freed. 2166 */ 2167 if (!sctp_ulpevent_is_notification(event)) 2168 sctp_assoc_rwnd_increase(event->asoc, copied); 2169 goto out; 2170 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2171 (event->msg_flags & MSG_EOR)) 2172 msg->msg_flags |= MSG_EOR; 2173 else 2174 msg->msg_flags &= ~MSG_EOR; 2175 2176 out_free: 2177 if (flags & MSG_PEEK) { 2178 /* Release the skb reference acquired after peeking the skb in 2179 * sctp_skb_recv_datagram(). 2180 */ 2181 kfree_skb(skb); 2182 } else { 2183 /* Free the event which includes releasing the reference to 2184 * the owner of the skb, freeing the skb and updating the 2185 * rwnd. 2186 */ 2187 sctp_ulpevent_free(event); 2188 } 2189 out: 2190 release_sock(sk); 2191 return err; 2192 } 2193 2194 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2195 * 2196 * This option is a on/off flag. If enabled no SCTP message 2197 * fragmentation will be performed. Instead if a message being sent 2198 * exceeds the current PMTU size, the message will NOT be sent and 2199 * instead a error will be indicated to the user. 2200 */ 2201 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2202 unsigned int optlen) 2203 { 2204 if (optlen < sizeof(int)) 2205 return -EINVAL; 2206 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2207 return 0; 2208 } 2209 2210 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2211 unsigned int optlen) 2212 { 2213 struct sctp_sock *sp = sctp_sk(sk); 2214 struct sctp_association *asoc; 2215 int i; 2216 2217 if (optlen > sizeof(struct sctp_event_subscribe)) 2218 return -EINVAL; 2219 2220 for (i = 0; i < optlen; i++) 2221 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2222 sn_type[i]); 2223 2224 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2225 asoc->subscribe = sctp_sk(sk)->subscribe; 2226 2227 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2228 * if there is no data to be sent or retransmit, the stack will 2229 * immediately send up this notification. 2230 */ 2231 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2232 struct sctp_ulpevent *event; 2233 2234 asoc = sctp_id2assoc(sk, 0); 2235 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2236 event = sctp_ulpevent_make_sender_dry_event(asoc, 2237 GFP_USER | __GFP_NOWARN); 2238 if (!event) 2239 return -ENOMEM; 2240 2241 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2242 } 2243 } 2244 2245 return 0; 2246 } 2247 2248 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2249 * 2250 * This socket option is applicable to the UDP-style socket only. When 2251 * set it will cause associations that are idle for more than the 2252 * specified number of seconds to automatically close. An association 2253 * being idle is defined an association that has NOT sent or received 2254 * user data. The special value of '0' indicates that no automatic 2255 * close of any associations should be performed. The option expects an 2256 * integer defining the number of seconds of idle time before an 2257 * association is closed. 2258 */ 2259 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2260 unsigned int optlen) 2261 { 2262 struct sctp_sock *sp = sctp_sk(sk); 2263 struct net *net = sock_net(sk); 2264 2265 /* Applicable to UDP-style socket only */ 2266 if (sctp_style(sk, TCP)) 2267 return -EOPNOTSUPP; 2268 if (optlen != sizeof(int)) 2269 return -EINVAL; 2270 2271 sp->autoclose = *optval; 2272 if (sp->autoclose > net->sctp.max_autoclose) 2273 sp->autoclose = net->sctp.max_autoclose; 2274 2275 return 0; 2276 } 2277 2278 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2279 * 2280 * Applications can enable or disable heartbeats for any peer address of 2281 * an association, modify an address's heartbeat interval, force a 2282 * heartbeat to be sent immediately, and adjust the address's maximum 2283 * number of retransmissions sent before an address is considered 2284 * unreachable. The following structure is used to access and modify an 2285 * address's parameters: 2286 * 2287 * struct sctp_paddrparams { 2288 * sctp_assoc_t spp_assoc_id; 2289 * struct sockaddr_storage spp_address; 2290 * uint32_t spp_hbinterval; 2291 * uint16_t spp_pathmaxrxt; 2292 * uint32_t spp_pathmtu; 2293 * uint32_t spp_sackdelay; 2294 * uint32_t spp_flags; 2295 * uint32_t spp_ipv6_flowlabel; 2296 * uint8_t spp_dscp; 2297 * }; 2298 * 2299 * spp_assoc_id - (one-to-many style socket) This is filled in the 2300 * application, and identifies the association for 2301 * this query. 2302 * spp_address - This specifies which address is of interest. 2303 * spp_hbinterval - This contains the value of the heartbeat interval, 2304 * in milliseconds. If a value of zero 2305 * is present in this field then no changes are to 2306 * be made to this parameter. 2307 * spp_pathmaxrxt - This contains the maximum number of 2308 * retransmissions before this address shall be 2309 * considered unreachable. If a value of zero 2310 * is present in this field then no changes are to 2311 * be made to this parameter. 2312 * spp_pathmtu - When Path MTU discovery is disabled the value 2313 * specified here will be the "fixed" path mtu. 2314 * Note that if the spp_address field is empty 2315 * then all associations on this address will 2316 * have this fixed path mtu set upon them. 2317 * 2318 * spp_sackdelay - When delayed sack is enabled, this value specifies 2319 * the number of milliseconds that sacks will be delayed 2320 * for. This value will apply to all addresses of an 2321 * association if the spp_address field is empty. Note 2322 * also, that if delayed sack is enabled and this 2323 * value is set to 0, no change is made to the last 2324 * recorded delayed sack timer value. 2325 * 2326 * spp_flags - These flags are used to control various features 2327 * on an association. The flag field may contain 2328 * zero or more of the following options. 2329 * 2330 * SPP_HB_ENABLE - Enable heartbeats on the 2331 * specified address. Note that if the address 2332 * field is empty all addresses for the association 2333 * have heartbeats enabled upon them. 2334 * 2335 * SPP_HB_DISABLE - Disable heartbeats on the 2336 * speicifed address. Note that if the address 2337 * field is empty all addresses for the association 2338 * will have their heartbeats disabled. Note also 2339 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2340 * mutually exclusive, only one of these two should 2341 * be specified. Enabling both fields will have 2342 * undetermined results. 2343 * 2344 * SPP_HB_DEMAND - Request a user initiated heartbeat 2345 * to be made immediately. 2346 * 2347 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2348 * heartbeat delayis to be set to the value of 0 2349 * milliseconds. 2350 * 2351 * SPP_PMTUD_ENABLE - This field will enable PMTU 2352 * discovery upon the specified address. Note that 2353 * if the address feild is empty then all addresses 2354 * on the association are effected. 2355 * 2356 * SPP_PMTUD_DISABLE - This field will disable PMTU 2357 * discovery upon the specified address. Note that 2358 * if the address feild is empty then all addresses 2359 * on the association are effected. Not also that 2360 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2361 * exclusive. Enabling both will have undetermined 2362 * results. 2363 * 2364 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2365 * on delayed sack. The time specified in spp_sackdelay 2366 * is used to specify the sack delay for this address. Note 2367 * that if spp_address is empty then all addresses will 2368 * enable delayed sack and take on the sack delay 2369 * value specified in spp_sackdelay. 2370 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2371 * off delayed sack. If the spp_address field is blank then 2372 * delayed sack is disabled for the entire association. Note 2373 * also that this field is mutually exclusive to 2374 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2375 * results. 2376 * 2377 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2378 * setting of the IPV6 flow label value. The value is 2379 * contained in the spp_ipv6_flowlabel field. 2380 * Upon retrieval, this flag will be set to indicate that 2381 * the spp_ipv6_flowlabel field has a valid value returned. 2382 * If a specific destination address is set (in the 2383 * spp_address field), then the value returned is that of 2384 * the address. If just an association is specified (and 2385 * no address), then the association's default flow label 2386 * is returned. If neither an association nor a destination 2387 * is specified, then the socket's default flow label is 2388 * returned. For non-IPv6 sockets, this flag will be left 2389 * cleared. 2390 * 2391 * SPP_DSCP: Setting this flag enables the setting of the 2392 * Differentiated Services Code Point (DSCP) value 2393 * associated with either the association or a specific 2394 * address. The value is obtained in the spp_dscp field. 2395 * Upon retrieval, this flag will be set to indicate that 2396 * the spp_dscp field has a valid value returned. If a 2397 * specific destination address is set when called (in the 2398 * spp_address field), then that specific destination 2399 * address's DSCP value is returned. If just an association 2400 * is specified, then the association's default DSCP is 2401 * returned. If neither an association nor a destination is 2402 * specified, then the socket's default DSCP is returned. 2403 * 2404 * spp_ipv6_flowlabel 2405 * - This field is used in conjunction with the 2406 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2407 * The 20 least significant bits are used for the flow 2408 * label. This setting has precedence over any IPv6-layer 2409 * setting. 2410 * 2411 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2412 * and contains the DSCP. The 6 most significant bits are 2413 * used for the DSCP. This setting has precedence over any 2414 * IPv4- or IPv6- layer setting. 2415 */ 2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2417 struct sctp_transport *trans, 2418 struct sctp_association *asoc, 2419 struct sctp_sock *sp, 2420 int hb_change, 2421 int pmtud_change, 2422 int sackdelay_change) 2423 { 2424 int error; 2425 2426 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2427 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2428 trans->asoc, trans); 2429 if (error) 2430 return error; 2431 } 2432 2433 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2434 * this field is ignored. Note also that a value of zero indicates 2435 * the current setting should be left unchanged. 2436 */ 2437 if (params->spp_flags & SPP_HB_ENABLE) { 2438 2439 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2440 * set. This lets us use 0 value when this flag 2441 * is set. 2442 */ 2443 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2444 params->spp_hbinterval = 0; 2445 2446 if (params->spp_hbinterval || 2447 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2448 if (trans) { 2449 trans->hbinterval = 2450 msecs_to_jiffies(params->spp_hbinterval); 2451 } else if (asoc) { 2452 asoc->hbinterval = 2453 msecs_to_jiffies(params->spp_hbinterval); 2454 } else { 2455 sp->hbinterval = params->spp_hbinterval; 2456 } 2457 } 2458 } 2459 2460 if (hb_change) { 2461 if (trans) { 2462 trans->param_flags = 2463 (trans->param_flags & ~SPP_HB) | hb_change; 2464 } else if (asoc) { 2465 asoc->param_flags = 2466 (asoc->param_flags & ~SPP_HB) | hb_change; 2467 } else { 2468 sp->param_flags = 2469 (sp->param_flags & ~SPP_HB) | hb_change; 2470 } 2471 } 2472 2473 /* When Path MTU discovery is disabled the value specified here will 2474 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2475 * include the flag SPP_PMTUD_DISABLE for this field to have any 2476 * effect). 2477 */ 2478 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2479 if (trans) { 2480 trans->pathmtu = params->spp_pathmtu; 2481 sctp_assoc_sync_pmtu(asoc); 2482 } else if (asoc) { 2483 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2484 } else { 2485 sp->pathmtu = params->spp_pathmtu; 2486 } 2487 } 2488 2489 if (pmtud_change) { 2490 if (trans) { 2491 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2492 (params->spp_flags & SPP_PMTUD_ENABLE); 2493 trans->param_flags = 2494 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2495 if (update) { 2496 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2497 sctp_assoc_sync_pmtu(asoc); 2498 } 2499 sctp_transport_pl_reset(trans); 2500 } else if (asoc) { 2501 asoc->param_flags = 2502 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2503 } else { 2504 sp->param_flags = 2505 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2506 } 2507 } 2508 2509 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2510 * value of this field is ignored. Note also that a value of zero 2511 * indicates the current setting should be left unchanged. 2512 */ 2513 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2514 if (trans) { 2515 trans->sackdelay = 2516 msecs_to_jiffies(params->spp_sackdelay); 2517 } else if (asoc) { 2518 asoc->sackdelay = 2519 msecs_to_jiffies(params->spp_sackdelay); 2520 } else { 2521 sp->sackdelay = params->spp_sackdelay; 2522 } 2523 } 2524 2525 if (sackdelay_change) { 2526 if (trans) { 2527 trans->param_flags = 2528 (trans->param_flags & ~SPP_SACKDELAY) | 2529 sackdelay_change; 2530 } else if (asoc) { 2531 asoc->param_flags = 2532 (asoc->param_flags & ~SPP_SACKDELAY) | 2533 sackdelay_change; 2534 } else { 2535 sp->param_flags = 2536 (sp->param_flags & ~SPP_SACKDELAY) | 2537 sackdelay_change; 2538 } 2539 } 2540 2541 /* Note that a value of zero indicates the current setting should be 2542 left unchanged. 2543 */ 2544 if (params->spp_pathmaxrxt) { 2545 if (trans) { 2546 trans->pathmaxrxt = params->spp_pathmaxrxt; 2547 } else if (asoc) { 2548 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2549 } else { 2550 sp->pathmaxrxt = params->spp_pathmaxrxt; 2551 } 2552 } 2553 2554 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2555 if (trans) { 2556 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2557 trans->flowlabel = params->spp_ipv6_flowlabel & 2558 SCTP_FLOWLABEL_VAL_MASK; 2559 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2560 } 2561 } else if (asoc) { 2562 struct sctp_transport *t; 2563 2564 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2565 transports) { 2566 if (t->ipaddr.sa.sa_family != AF_INET6) 2567 continue; 2568 t->flowlabel = params->spp_ipv6_flowlabel & 2569 SCTP_FLOWLABEL_VAL_MASK; 2570 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2571 } 2572 asoc->flowlabel = params->spp_ipv6_flowlabel & 2573 SCTP_FLOWLABEL_VAL_MASK; 2574 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2575 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2576 sp->flowlabel = params->spp_ipv6_flowlabel & 2577 SCTP_FLOWLABEL_VAL_MASK; 2578 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2579 } 2580 } 2581 2582 if (params->spp_flags & SPP_DSCP) { 2583 if (trans) { 2584 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2585 trans->dscp |= SCTP_DSCP_SET_MASK; 2586 } else if (asoc) { 2587 struct sctp_transport *t; 2588 2589 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2590 transports) { 2591 t->dscp = params->spp_dscp & 2592 SCTP_DSCP_VAL_MASK; 2593 t->dscp |= SCTP_DSCP_SET_MASK; 2594 } 2595 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2596 asoc->dscp |= SCTP_DSCP_SET_MASK; 2597 } else { 2598 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2599 sp->dscp |= SCTP_DSCP_SET_MASK; 2600 } 2601 } 2602 2603 return 0; 2604 } 2605 2606 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2607 struct sctp_paddrparams *params, 2608 unsigned int optlen) 2609 { 2610 struct sctp_transport *trans = NULL; 2611 struct sctp_association *asoc = NULL; 2612 struct sctp_sock *sp = sctp_sk(sk); 2613 int error; 2614 int hb_change, pmtud_change, sackdelay_change; 2615 2616 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2617 spp_ipv6_flowlabel), 4)) { 2618 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2619 return -EINVAL; 2620 } else if (optlen != sizeof(*params)) { 2621 return -EINVAL; 2622 } 2623 2624 /* Validate flags and value parameters. */ 2625 hb_change = params->spp_flags & SPP_HB; 2626 pmtud_change = params->spp_flags & SPP_PMTUD; 2627 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2628 2629 if (hb_change == SPP_HB || 2630 pmtud_change == SPP_PMTUD || 2631 sackdelay_change == SPP_SACKDELAY || 2632 params->spp_sackdelay > 500 || 2633 (params->spp_pathmtu && 2634 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2635 return -EINVAL; 2636 2637 /* If an address other than INADDR_ANY is specified, and 2638 * no transport is found, then the request is invalid. 2639 */ 2640 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2641 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2642 params->spp_assoc_id); 2643 if (!trans) 2644 return -EINVAL; 2645 } 2646 2647 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2648 * socket is a one to many style socket, and an association 2649 * was not found, then the id was invalid. 2650 */ 2651 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2652 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2653 sctp_style(sk, UDP)) 2654 return -EINVAL; 2655 2656 /* Heartbeat demand can only be sent on a transport or 2657 * association, but not a socket. 2658 */ 2659 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2660 return -EINVAL; 2661 2662 /* Process parameters. */ 2663 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2664 hb_change, pmtud_change, 2665 sackdelay_change); 2666 2667 if (error) 2668 return error; 2669 2670 /* If changes are for association, also apply parameters to each 2671 * transport. 2672 */ 2673 if (!trans && asoc) { 2674 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2675 transports) { 2676 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2677 hb_change, pmtud_change, 2678 sackdelay_change); 2679 } 2680 } 2681 2682 return 0; 2683 } 2684 2685 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2686 { 2687 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2688 } 2689 2690 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2691 { 2692 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2693 } 2694 2695 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2696 struct sctp_association *asoc) 2697 { 2698 struct sctp_transport *trans; 2699 2700 if (params->sack_delay) { 2701 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2702 asoc->param_flags = 2703 sctp_spp_sackdelay_enable(asoc->param_flags); 2704 } 2705 if (params->sack_freq == 1) { 2706 asoc->param_flags = 2707 sctp_spp_sackdelay_disable(asoc->param_flags); 2708 } else if (params->sack_freq > 1) { 2709 asoc->sackfreq = params->sack_freq; 2710 asoc->param_flags = 2711 sctp_spp_sackdelay_enable(asoc->param_flags); 2712 } 2713 2714 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2715 transports) { 2716 if (params->sack_delay) { 2717 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2718 trans->param_flags = 2719 sctp_spp_sackdelay_enable(trans->param_flags); 2720 } 2721 if (params->sack_freq == 1) { 2722 trans->param_flags = 2723 sctp_spp_sackdelay_disable(trans->param_flags); 2724 } else if (params->sack_freq > 1) { 2725 trans->sackfreq = params->sack_freq; 2726 trans->param_flags = 2727 sctp_spp_sackdelay_enable(trans->param_flags); 2728 } 2729 } 2730 } 2731 2732 /* 2733 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2734 * 2735 * This option will effect the way delayed acks are performed. This 2736 * option allows you to get or set the delayed ack time, in 2737 * milliseconds. It also allows changing the delayed ack frequency. 2738 * Changing the frequency to 1 disables the delayed sack algorithm. If 2739 * the assoc_id is 0, then this sets or gets the endpoints default 2740 * values. If the assoc_id field is non-zero, then the set or get 2741 * effects the specified association for the one to many model (the 2742 * assoc_id field is ignored by the one to one model). Note that if 2743 * sack_delay or sack_freq are 0 when setting this option, then the 2744 * current values will remain unchanged. 2745 * 2746 * struct sctp_sack_info { 2747 * sctp_assoc_t sack_assoc_id; 2748 * uint32_t sack_delay; 2749 * uint32_t sack_freq; 2750 * }; 2751 * 2752 * sack_assoc_id - This parameter, indicates which association the user 2753 * is performing an action upon. Note that if this field's value is 2754 * zero then the endpoints default value is changed (effecting future 2755 * associations only). 2756 * 2757 * sack_delay - This parameter contains the number of milliseconds that 2758 * the user is requesting the delayed ACK timer be set to. Note that 2759 * this value is defined in the standard to be between 200 and 500 2760 * milliseconds. 2761 * 2762 * sack_freq - This parameter contains the number of packets that must 2763 * be received before a sack is sent without waiting for the delay 2764 * timer to expire. The default value for this is 2, setting this 2765 * value to 1 will disable the delayed sack algorithm. 2766 */ 2767 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2768 struct sctp_sack_info *params) 2769 { 2770 struct sctp_sock *sp = sctp_sk(sk); 2771 struct sctp_association *asoc; 2772 2773 /* Validate value parameter. */ 2774 if (params->sack_delay > 500) 2775 return -EINVAL; 2776 2777 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2778 * socket is a one to many style socket, and an association 2779 * was not found, then the id was invalid. 2780 */ 2781 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2782 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2783 sctp_style(sk, UDP)) 2784 return -EINVAL; 2785 2786 if (asoc) { 2787 sctp_apply_asoc_delayed_ack(params, asoc); 2788 2789 return 0; 2790 } 2791 2792 if (sctp_style(sk, TCP)) 2793 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2794 2795 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2796 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2797 if (params->sack_delay) { 2798 sp->sackdelay = params->sack_delay; 2799 sp->param_flags = 2800 sctp_spp_sackdelay_enable(sp->param_flags); 2801 } 2802 if (params->sack_freq == 1) { 2803 sp->param_flags = 2804 sctp_spp_sackdelay_disable(sp->param_flags); 2805 } else if (params->sack_freq > 1) { 2806 sp->sackfreq = params->sack_freq; 2807 sp->param_flags = 2808 sctp_spp_sackdelay_enable(sp->param_flags); 2809 } 2810 } 2811 2812 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2813 params->sack_assoc_id == SCTP_ALL_ASSOC) 2814 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2815 sctp_apply_asoc_delayed_ack(params, asoc); 2816 2817 return 0; 2818 } 2819 2820 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2821 struct sctp_sack_info *params, 2822 unsigned int optlen) 2823 { 2824 if (optlen == sizeof(struct sctp_assoc_value)) { 2825 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2826 struct sctp_sack_info p; 2827 2828 pr_warn_ratelimited(DEPRECATED 2829 "%s (pid %d) " 2830 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2831 "Use struct sctp_sack_info instead\n", 2832 current->comm, task_pid_nr(current)); 2833 2834 p.sack_assoc_id = v->assoc_id; 2835 p.sack_delay = v->assoc_value; 2836 p.sack_freq = v->assoc_value ? 0 : 1; 2837 return __sctp_setsockopt_delayed_ack(sk, &p); 2838 } 2839 2840 if (optlen != sizeof(struct sctp_sack_info)) 2841 return -EINVAL; 2842 if (params->sack_delay == 0 && params->sack_freq == 0) 2843 return 0; 2844 return __sctp_setsockopt_delayed_ack(sk, params); 2845 } 2846 2847 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2848 * 2849 * Applications can specify protocol parameters for the default association 2850 * initialization. The option name argument to setsockopt() and getsockopt() 2851 * is SCTP_INITMSG. 2852 * 2853 * Setting initialization parameters is effective only on an unconnected 2854 * socket (for UDP-style sockets only future associations are effected 2855 * by the change). With TCP-style sockets, this option is inherited by 2856 * sockets derived from a listener socket. 2857 */ 2858 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2859 unsigned int optlen) 2860 { 2861 struct sctp_sock *sp = sctp_sk(sk); 2862 2863 if (optlen != sizeof(struct sctp_initmsg)) 2864 return -EINVAL; 2865 2866 if (sinit->sinit_num_ostreams) 2867 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2868 if (sinit->sinit_max_instreams) 2869 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2870 if (sinit->sinit_max_attempts) 2871 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2872 if (sinit->sinit_max_init_timeo) 2873 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2874 2875 return 0; 2876 } 2877 2878 /* 2879 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2880 * 2881 * Applications that wish to use the sendto() system call may wish to 2882 * specify a default set of parameters that would normally be supplied 2883 * through the inclusion of ancillary data. This socket option allows 2884 * such an application to set the default sctp_sndrcvinfo structure. 2885 * The application that wishes to use this socket option simply passes 2886 * in to this call the sctp_sndrcvinfo structure defined in Section 2887 * 5.2.2) The input parameters accepted by this call include 2888 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2889 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2890 * to this call if the caller is using the UDP model. 2891 */ 2892 static int sctp_setsockopt_default_send_param(struct sock *sk, 2893 struct sctp_sndrcvinfo *info, 2894 unsigned int optlen) 2895 { 2896 struct sctp_sock *sp = sctp_sk(sk); 2897 struct sctp_association *asoc; 2898 2899 if (optlen != sizeof(*info)) 2900 return -EINVAL; 2901 if (info->sinfo_flags & 2902 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2903 SCTP_ABORT | SCTP_EOF)) 2904 return -EINVAL; 2905 2906 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2907 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2908 sctp_style(sk, UDP)) 2909 return -EINVAL; 2910 2911 if (asoc) { 2912 asoc->default_stream = info->sinfo_stream; 2913 asoc->default_flags = info->sinfo_flags; 2914 asoc->default_ppid = info->sinfo_ppid; 2915 asoc->default_context = info->sinfo_context; 2916 asoc->default_timetolive = info->sinfo_timetolive; 2917 2918 return 0; 2919 } 2920 2921 if (sctp_style(sk, TCP)) 2922 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2923 2924 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2925 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2926 sp->default_stream = info->sinfo_stream; 2927 sp->default_flags = info->sinfo_flags; 2928 sp->default_ppid = info->sinfo_ppid; 2929 sp->default_context = info->sinfo_context; 2930 sp->default_timetolive = info->sinfo_timetolive; 2931 } 2932 2933 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2934 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2935 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2936 asoc->default_stream = info->sinfo_stream; 2937 asoc->default_flags = info->sinfo_flags; 2938 asoc->default_ppid = info->sinfo_ppid; 2939 asoc->default_context = info->sinfo_context; 2940 asoc->default_timetolive = info->sinfo_timetolive; 2941 } 2942 } 2943 2944 return 0; 2945 } 2946 2947 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2948 * (SCTP_DEFAULT_SNDINFO) 2949 */ 2950 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2951 struct sctp_sndinfo *info, 2952 unsigned int optlen) 2953 { 2954 struct sctp_sock *sp = sctp_sk(sk); 2955 struct sctp_association *asoc; 2956 2957 if (optlen != sizeof(*info)) 2958 return -EINVAL; 2959 if (info->snd_flags & 2960 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2961 SCTP_ABORT | SCTP_EOF)) 2962 return -EINVAL; 2963 2964 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2965 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2966 sctp_style(sk, UDP)) 2967 return -EINVAL; 2968 2969 if (asoc) { 2970 asoc->default_stream = info->snd_sid; 2971 asoc->default_flags = info->snd_flags; 2972 asoc->default_ppid = info->snd_ppid; 2973 asoc->default_context = info->snd_context; 2974 2975 return 0; 2976 } 2977 2978 if (sctp_style(sk, TCP)) 2979 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2980 2981 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2982 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2983 sp->default_stream = info->snd_sid; 2984 sp->default_flags = info->snd_flags; 2985 sp->default_ppid = info->snd_ppid; 2986 sp->default_context = info->snd_context; 2987 } 2988 2989 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2990 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2991 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2992 asoc->default_stream = info->snd_sid; 2993 asoc->default_flags = info->snd_flags; 2994 asoc->default_ppid = info->snd_ppid; 2995 asoc->default_context = info->snd_context; 2996 } 2997 } 2998 2999 return 0; 3000 } 3001 3002 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3003 * 3004 * Requests that the local SCTP stack use the enclosed peer address as 3005 * the association primary. The enclosed address must be one of the 3006 * association peer's addresses. 3007 */ 3008 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3009 unsigned int optlen) 3010 { 3011 struct sctp_transport *trans; 3012 struct sctp_af *af; 3013 int err; 3014 3015 if (optlen != sizeof(struct sctp_prim)) 3016 return -EINVAL; 3017 3018 /* Allow security module to validate address but need address len. */ 3019 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3020 if (!af) 3021 return -EINVAL; 3022 3023 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3024 (struct sockaddr *)&prim->ssp_addr, 3025 af->sockaddr_len); 3026 if (err) 3027 return err; 3028 3029 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3030 if (!trans) 3031 return -EINVAL; 3032 3033 sctp_assoc_set_primary(trans->asoc, trans); 3034 3035 return 0; 3036 } 3037 3038 /* 3039 * 7.1.5 SCTP_NODELAY 3040 * 3041 * Turn on/off any Nagle-like algorithm. This means that packets are 3042 * generally sent as soon as possible and no unnecessary delays are 3043 * introduced, at the cost of more packets in the network. Expects an 3044 * integer boolean flag. 3045 */ 3046 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3047 unsigned int optlen) 3048 { 3049 if (optlen < sizeof(int)) 3050 return -EINVAL; 3051 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3052 return 0; 3053 } 3054 3055 /* 3056 * 3057 * 7.1.1 SCTP_RTOINFO 3058 * 3059 * The protocol parameters used to initialize and bound retransmission 3060 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3061 * and modify these parameters. 3062 * All parameters are time values, in milliseconds. A value of 0, when 3063 * modifying the parameters, indicates that the current value should not 3064 * be changed. 3065 * 3066 */ 3067 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3068 struct sctp_rtoinfo *rtoinfo, 3069 unsigned int optlen) 3070 { 3071 struct sctp_association *asoc; 3072 unsigned long rto_min, rto_max; 3073 struct sctp_sock *sp = sctp_sk(sk); 3074 3075 if (optlen != sizeof (struct sctp_rtoinfo)) 3076 return -EINVAL; 3077 3078 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3079 3080 /* Set the values to the specific association */ 3081 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3082 sctp_style(sk, UDP)) 3083 return -EINVAL; 3084 3085 rto_max = rtoinfo->srto_max; 3086 rto_min = rtoinfo->srto_min; 3087 3088 if (rto_max) 3089 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3090 else 3091 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3092 3093 if (rto_min) 3094 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3095 else 3096 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3097 3098 if (rto_min > rto_max) 3099 return -EINVAL; 3100 3101 if (asoc) { 3102 if (rtoinfo->srto_initial != 0) 3103 asoc->rto_initial = 3104 msecs_to_jiffies(rtoinfo->srto_initial); 3105 asoc->rto_max = rto_max; 3106 asoc->rto_min = rto_min; 3107 } else { 3108 /* If there is no association or the association-id = 0 3109 * set the values to the endpoint. 3110 */ 3111 if (rtoinfo->srto_initial != 0) 3112 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3113 sp->rtoinfo.srto_max = rto_max; 3114 sp->rtoinfo.srto_min = rto_min; 3115 } 3116 3117 return 0; 3118 } 3119 3120 /* 3121 * 3122 * 7.1.2 SCTP_ASSOCINFO 3123 * 3124 * This option is used to tune the maximum retransmission attempts 3125 * of the association. 3126 * Returns an error if the new association retransmission value is 3127 * greater than the sum of the retransmission value of the peer. 3128 * See [SCTP] for more information. 3129 * 3130 */ 3131 static int sctp_setsockopt_associnfo(struct sock *sk, 3132 struct sctp_assocparams *assocparams, 3133 unsigned int optlen) 3134 { 3135 3136 struct sctp_association *asoc; 3137 3138 if (optlen != sizeof(struct sctp_assocparams)) 3139 return -EINVAL; 3140 3141 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3142 3143 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3144 sctp_style(sk, UDP)) 3145 return -EINVAL; 3146 3147 /* Set the values to the specific association */ 3148 if (asoc) { 3149 if (assocparams->sasoc_asocmaxrxt != 0) { 3150 __u32 path_sum = 0; 3151 int paths = 0; 3152 struct sctp_transport *peer_addr; 3153 3154 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3155 transports) { 3156 path_sum += peer_addr->pathmaxrxt; 3157 paths++; 3158 } 3159 3160 /* Only validate asocmaxrxt if we have more than 3161 * one path/transport. We do this because path 3162 * retransmissions are only counted when we have more 3163 * then one path. 3164 */ 3165 if (paths > 1 && 3166 assocparams->sasoc_asocmaxrxt > path_sum) 3167 return -EINVAL; 3168 3169 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3170 } 3171 3172 if (assocparams->sasoc_cookie_life != 0) 3173 asoc->cookie_life = 3174 ms_to_ktime(assocparams->sasoc_cookie_life); 3175 } else { 3176 /* Set the values to the endpoint */ 3177 struct sctp_sock *sp = sctp_sk(sk); 3178 3179 if (assocparams->sasoc_asocmaxrxt != 0) 3180 sp->assocparams.sasoc_asocmaxrxt = 3181 assocparams->sasoc_asocmaxrxt; 3182 if (assocparams->sasoc_cookie_life != 0) 3183 sp->assocparams.sasoc_cookie_life = 3184 assocparams->sasoc_cookie_life; 3185 } 3186 return 0; 3187 } 3188 3189 /* 3190 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3191 * 3192 * This socket option is a boolean flag which turns on or off mapped V4 3193 * addresses. If this option is turned on and the socket is type 3194 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3195 * If this option is turned off, then no mapping will be done of V4 3196 * addresses and a user will receive both PF_INET6 and PF_INET type 3197 * addresses on the socket. 3198 */ 3199 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3200 unsigned int optlen) 3201 { 3202 struct sctp_sock *sp = sctp_sk(sk); 3203 3204 if (optlen < sizeof(int)) 3205 return -EINVAL; 3206 if (*val) 3207 sp->v4mapped = 1; 3208 else 3209 sp->v4mapped = 0; 3210 3211 return 0; 3212 } 3213 3214 /* 3215 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3216 * This option will get or set the maximum size to put in any outgoing 3217 * SCTP DATA chunk. If a message is larger than this size it will be 3218 * fragmented by SCTP into the specified size. Note that the underlying 3219 * SCTP implementation may fragment into smaller sized chunks when the 3220 * PMTU of the underlying association is smaller than the value set by 3221 * the user. The default value for this option is '0' which indicates 3222 * the user is NOT limiting fragmentation and only the PMTU will effect 3223 * SCTP's choice of DATA chunk size. Note also that values set larger 3224 * than the maximum size of an IP datagram will effectively let SCTP 3225 * control fragmentation (i.e. the same as setting this option to 0). 3226 * 3227 * The following structure is used to access and modify this parameter: 3228 * 3229 * struct sctp_assoc_value { 3230 * sctp_assoc_t assoc_id; 3231 * uint32_t assoc_value; 3232 * }; 3233 * 3234 * assoc_id: This parameter is ignored for one-to-one style sockets. 3235 * For one-to-many style sockets this parameter indicates which 3236 * association the user is performing an action upon. Note that if 3237 * this field's value is zero then the endpoints default value is 3238 * changed (effecting future associations only). 3239 * assoc_value: This parameter specifies the maximum size in bytes. 3240 */ 3241 static int sctp_setsockopt_maxseg(struct sock *sk, 3242 struct sctp_assoc_value *params, 3243 unsigned int optlen) 3244 { 3245 struct sctp_sock *sp = sctp_sk(sk); 3246 struct sctp_association *asoc; 3247 sctp_assoc_t assoc_id; 3248 int val; 3249 3250 if (optlen == sizeof(int)) { 3251 pr_warn_ratelimited(DEPRECATED 3252 "%s (pid %d) " 3253 "Use of int in maxseg socket option.\n" 3254 "Use struct sctp_assoc_value instead\n", 3255 current->comm, task_pid_nr(current)); 3256 assoc_id = SCTP_FUTURE_ASSOC; 3257 val = *(int *)params; 3258 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3259 assoc_id = params->assoc_id; 3260 val = params->assoc_value; 3261 } else { 3262 return -EINVAL; 3263 } 3264 3265 asoc = sctp_id2assoc(sk, assoc_id); 3266 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3267 sctp_style(sk, UDP)) 3268 return -EINVAL; 3269 3270 if (val) { 3271 int min_len, max_len; 3272 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3273 sizeof(struct sctp_data_chunk); 3274 3275 min_len = sctp_min_frag_point(sp, datasize); 3276 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3277 3278 if (val < min_len || val > max_len) 3279 return -EINVAL; 3280 } 3281 3282 if (asoc) { 3283 asoc->user_frag = val; 3284 sctp_assoc_update_frag_point(asoc); 3285 } else { 3286 sp->user_frag = val; 3287 } 3288 3289 return 0; 3290 } 3291 3292 3293 /* 3294 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3295 * 3296 * Requests that the peer mark the enclosed address as the association 3297 * primary. The enclosed address must be one of the association's 3298 * locally bound addresses. The following structure is used to make a 3299 * set primary request: 3300 */ 3301 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3302 struct sctp_setpeerprim *prim, 3303 unsigned int optlen) 3304 { 3305 struct sctp_sock *sp; 3306 struct sctp_association *asoc = NULL; 3307 struct sctp_chunk *chunk; 3308 struct sctp_af *af; 3309 int err; 3310 3311 sp = sctp_sk(sk); 3312 3313 if (!sp->ep->asconf_enable) 3314 return -EPERM; 3315 3316 if (optlen != sizeof(struct sctp_setpeerprim)) 3317 return -EINVAL; 3318 3319 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3320 if (!asoc) 3321 return -EINVAL; 3322 3323 if (!asoc->peer.asconf_capable) 3324 return -EPERM; 3325 3326 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3327 return -EPERM; 3328 3329 if (!sctp_state(asoc, ESTABLISHED)) 3330 return -ENOTCONN; 3331 3332 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3333 if (!af) 3334 return -EINVAL; 3335 3336 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3337 return -EADDRNOTAVAIL; 3338 3339 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3340 return -EADDRNOTAVAIL; 3341 3342 /* Allow security module to validate address. */ 3343 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3344 (struct sockaddr *)&prim->sspp_addr, 3345 af->sockaddr_len); 3346 if (err) 3347 return err; 3348 3349 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3350 chunk = sctp_make_asconf_set_prim(asoc, 3351 (union sctp_addr *)&prim->sspp_addr); 3352 if (!chunk) 3353 return -ENOMEM; 3354 3355 err = sctp_send_asconf(asoc, chunk); 3356 3357 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3358 3359 return err; 3360 } 3361 3362 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3363 struct sctp_setadaptation *adapt, 3364 unsigned int optlen) 3365 { 3366 if (optlen != sizeof(struct sctp_setadaptation)) 3367 return -EINVAL; 3368 3369 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3370 3371 return 0; 3372 } 3373 3374 /* 3375 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3376 * 3377 * The context field in the sctp_sndrcvinfo structure is normally only 3378 * used when a failed message is retrieved holding the value that was 3379 * sent down on the actual send call. This option allows the setting of 3380 * a default context on an association basis that will be received on 3381 * reading messages from the peer. This is especially helpful in the 3382 * one-2-many model for an application to keep some reference to an 3383 * internal state machine that is processing messages on the 3384 * association. Note that the setting of this value only effects 3385 * received messages from the peer and does not effect the value that is 3386 * saved with outbound messages. 3387 */ 3388 static int sctp_setsockopt_context(struct sock *sk, 3389 struct sctp_assoc_value *params, 3390 unsigned int optlen) 3391 { 3392 struct sctp_sock *sp = sctp_sk(sk); 3393 struct sctp_association *asoc; 3394 3395 if (optlen != sizeof(struct sctp_assoc_value)) 3396 return -EINVAL; 3397 3398 asoc = sctp_id2assoc(sk, params->assoc_id); 3399 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3400 sctp_style(sk, UDP)) 3401 return -EINVAL; 3402 3403 if (asoc) { 3404 asoc->default_rcv_context = params->assoc_value; 3405 3406 return 0; 3407 } 3408 3409 if (sctp_style(sk, TCP)) 3410 params->assoc_id = SCTP_FUTURE_ASSOC; 3411 3412 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3413 params->assoc_id == SCTP_ALL_ASSOC) 3414 sp->default_rcv_context = params->assoc_value; 3415 3416 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3417 params->assoc_id == SCTP_ALL_ASSOC) 3418 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3419 asoc->default_rcv_context = params->assoc_value; 3420 3421 return 0; 3422 } 3423 3424 /* 3425 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3426 * 3427 * This options will at a minimum specify if the implementation is doing 3428 * fragmented interleave. Fragmented interleave, for a one to many 3429 * socket, is when subsequent calls to receive a message may return 3430 * parts of messages from different associations. Some implementations 3431 * may allow you to turn this value on or off. If so, when turned off, 3432 * no fragment interleave will occur (which will cause a head of line 3433 * blocking amongst multiple associations sharing the same one to many 3434 * socket). When this option is turned on, then each receive call may 3435 * come from a different association (thus the user must receive data 3436 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3437 * association each receive belongs to. 3438 * 3439 * This option takes a boolean value. A non-zero value indicates that 3440 * fragmented interleave is on. A value of zero indicates that 3441 * fragmented interleave is off. 3442 * 3443 * Note that it is important that an implementation that allows this 3444 * option to be turned on, have it off by default. Otherwise an unaware 3445 * application using the one to many model may become confused and act 3446 * incorrectly. 3447 */ 3448 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3449 unsigned int optlen) 3450 { 3451 if (optlen != sizeof(int)) 3452 return -EINVAL; 3453 3454 sctp_sk(sk)->frag_interleave = !!*val; 3455 3456 if (!sctp_sk(sk)->frag_interleave) 3457 sctp_sk(sk)->ep->intl_enable = 0; 3458 3459 return 0; 3460 } 3461 3462 /* 3463 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3464 * (SCTP_PARTIAL_DELIVERY_POINT) 3465 * 3466 * This option will set or get the SCTP partial delivery point. This 3467 * point is the size of a message where the partial delivery API will be 3468 * invoked to help free up rwnd space for the peer. Setting this to a 3469 * lower value will cause partial deliveries to happen more often. The 3470 * calls argument is an integer that sets or gets the partial delivery 3471 * point. Note also that the call will fail if the user attempts to set 3472 * this value larger than the socket receive buffer size. 3473 * 3474 * Note that any single message having a length smaller than or equal to 3475 * the SCTP partial delivery point will be delivered in one single read 3476 * call as long as the user provided buffer is large enough to hold the 3477 * message. 3478 */ 3479 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3480 unsigned int optlen) 3481 { 3482 if (optlen != sizeof(u32)) 3483 return -EINVAL; 3484 3485 /* Note: We double the receive buffer from what the user sets 3486 * it to be, also initial rwnd is based on rcvbuf/2. 3487 */ 3488 if (*val > (sk->sk_rcvbuf >> 1)) 3489 return -EINVAL; 3490 3491 sctp_sk(sk)->pd_point = *val; 3492 3493 return 0; /* is this the right error code? */ 3494 } 3495 3496 /* 3497 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3498 * 3499 * This option will allow a user to change the maximum burst of packets 3500 * that can be emitted by this association. Note that the default value 3501 * is 4, and some implementations may restrict this setting so that it 3502 * can only be lowered. 3503 * 3504 * NOTE: This text doesn't seem right. Do this on a socket basis with 3505 * future associations inheriting the socket value. 3506 */ 3507 static int sctp_setsockopt_maxburst(struct sock *sk, 3508 struct sctp_assoc_value *params, 3509 unsigned int optlen) 3510 { 3511 struct sctp_sock *sp = sctp_sk(sk); 3512 struct sctp_association *asoc; 3513 sctp_assoc_t assoc_id; 3514 u32 assoc_value; 3515 3516 if (optlen == sizeof(int)) { 3517 pr_warn_ratelimited(DEPRECATED 3518 "%s (pid %d) " 3519 "Use of int in max_burst socket option deprecated.\n" 3520 "Use struct sctp_assoc_value instead\n", 3521 current->comm, task_pid_nr(current)); 3522 assoc_id = SCTP_FUTURE_ASSOC; 3523 assoc_value = *((int *)params); 3524 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3525 assoc_id = params->assoc_id; 3526 assoc_value = params->assoc_value; 3527 } else 3528 return -EINVAL; 3529 3530 asoc = sctp_id2assoc(sk, assoc_id); 3531 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3532 return -EINVAL; 3533 3534 if (asoc) { 3535 asoc->max_burst = assoc_value; 3536 3537 return 0; 3538 } 3539 3540 if (sctp_style(sk, TCP)) 3541 assoc_id = SCTP_FUTURE_ASSOC; 3542 3543 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3544 sp->max_burst = assoc_value; 3545 3546 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3547 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3548 asoc->max_burst = assoc_value; 3549 3550 return 0; 3551 } 3552 3553 /* 3554 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3555 * 3556 * This set option adds a chunk type that the user is requesting to be 3557 * received only in an authenticated way. Changes to the list of chunks 3558 * will only effect future associations on the socket. 3559 */ 3560 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3561 struct sctp_authchunk *val, 3562 unsigned int optlen) 3563 { 3564 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3565 3566 if (!ep->auth_enable) 3567 return -EACCES; 3568 3569 if (optlen != sizeof(struct sctp_authchunk)) 3570 return -EINVAL; 3571 3572 switch (val->sauth_chunk) { 3573 case SCTP_CID_INIT: 3574 case SCTP_CID_INIT_ACK: 3575 case SCTP_CID_SHUTDOWN_COMPLETE: 3576 case SCTP_CID_AUTH: 3577 return -EINVAL; 3578 } 3579 3580 /* add this chunk id to the endpoint */ 3581 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3582 } 3583 3584 /* 3585 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3586 * 3587 * This option gets or sets the list of HMAC algorithms that the local 3588 * endpoint requires the peer to use. 3589 */ 3590 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3591 struct sctp_hmacalgo *hmacs, 3592 unsigned int optlen) 3593 { 3594 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3595 u32 idents; 3596 3597 if (!ep->auth_enable) 3598 return -EACCES; 3599 3600 if (optlen < sizeof(struct sctp_hmacalgo)) 3601 return -EINVAL; 3602 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3603 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3604 3605 idents = hmacs->shmac_num_idents; 3606 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3607 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3608 return -EINVAL; 3609 3610 return sctp_auth_ep_set_hmacs(ep, hmacs); 3611 } 3612 3613 /* 3614 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3615 * 3616 * This option will set a shared secret key which is used to build an 3617 * association shared key. 3618 */ 3619 static int sctp_setsockopt_auth_key(struct sock *sk, 3620 struct sctp_authkey *authkey, 3621 unsigned int optlen) 3622 { 3623 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3624 struct sctp_association *asoc; 3625 int ret = -EINVAL; 3626 3627 if (optlen <= sizeof(struct sctp_authkey)) 3628 return -EINVAL; 3629 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3630 * this. 3631 */ 3632 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3633 3634 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3635 goto out; 3636 3637 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3638 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3639 sctp_style(sk, UDP)) 3640 goto out; 3641 3642 if (asoc) { 3643 ret = sctp_auth_set_key(ep, asoc, authkey); 3644 goto out; 3645 } 3646 3647 if (sctp_style(sk, TCP)) 3648 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3649 3650 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3651 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3652 ret = sctp_auth_set_key(ep, asoc, authkey); 3653 if (ret) 3654 goto out; 3655 } 3656 3657 ret = 0; 3658 3659 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3660 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3661 list_for_each_entry(asoc, &ep->asocs, asocs) { 3662 int res = sctp_auth_set_key(ep, asoc, authkey); 3663 3664 if (res && !ret) 3665 ret = res; 3666 } 3667 } 3668 3669 out: 3670 memzero_explicit(authkey, optlen); 3671 return ret; 3672 } 3673 3674 /* 3675 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3676 * 3677 * This option will get or set the active shared key to be used to build 3678 * the association shared key. 3679 */ 3680 static int sctp_setsockopt_active_key(struct sock *sk, 3681 struct sctp_authkeyid *val, 3682 unsigned int optlen) 3683 { 3684 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3685 struct sctp_association *asoc; 3686 int ret = 0; 3687 3688 if (optlen != sizeof(struct sctp_authkeyid)) 3689 return -EINVAL; 3690 3691 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3692 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3693 sctp_style(sk, UDP)) 3694 return -EINVAL; 3695 3696 if (asoc) 3697 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3698 3699 if (sctp_style(sk, TCP)) 3700 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3701 3702 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3703 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3704 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3705 if (ret) 3706 return ret; 3707 } 3708 3709 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3710 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3711 list_for_each_entry(asoc, &ep->asocs, asocs) { 3712 int res = sctp_auth_set_active_key(ep, asoc, 3713 val->scact_keynumber); 3714 3715 if (res && !ret) 3716 ret = res; 3717 } 3718 } 3719 3720 return ret; 3721 } 3722 3723 /* 3724 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3725 * 3726 * This set option will delete a shared secret key from use. 3727 */ 3728 static int sctp_setsockopt_del_key(struct sock *sk, 3729 struct sctp_authkeyid *val, 3730 unsigned int optlen) 3731 { 3732 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3733 struct sctp_association *asoc; 3734 int ret = 0; 3735 3736 if (optlen != sizeof(struct sctp_authkeyid)) 3737 return -EINVAL; 3738 3739 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3740 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3741 sctp_style(sk, UDP)) 3742 return -EINVAL; 3743 3744 if (asoc) 3745 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3746 3747 if (sctp_style(sk, TCP)) 3748 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3749 3750 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3751 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3752 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3753 if (ret) 3754 return ret; 3755 } 3756 3757 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3758 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3759 list_for_each_entry(asoc, &ep->asocs, asocs) { 3760 int res = sctp_auth_del_key_id(ep, asoc, 3761 val->scact_keynumber); 3762 3763 if (res && !ret) 3764 ret = res; 3765 } 3766 } 3767 3768 return ret; 3769 } 3770 3771 /* 3772 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3773 * 3774 * This set option will deactivate a shared secret key. 3775 */ 3776 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3777 struct sctp_authkeyid *val, 3778 unsigned int optlen) 3779 { 3780 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3781 struct sctp_association *asoc; 3782 int ret = 0; 3783 3784 if (optlen != sizeof(struct sctp_authkeyid)) 3785 return -EINVAL; 3786 3787 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3788 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3789 sctp_style(sk, UDP)) 3790 return -EINVAL; 3791 3792 if (asoc) 3793 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3794 3795 if (sctp_style(sk, TCP)) 3796 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3797 3798 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3799 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3800 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3801 if (ret) 3802 return ret; 3803 } 3804 3805 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3806 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3807 list_for_each_entry(asoc, &ep->asocs, asocs) { 3808 int res = sctp_auth_deact_key_id(ep, asoc, 3809 val->scact_keynumber); 3810 3811 if (res && !ret) 3812 ret = res; 3813 } 3814 } 3815 3816 return ret; 3817 } 3818 3819 /* 3820 * 8.1.23 SCTP_AUTO_ASCONF 3821 * 3822 * This option will enable or disable the use of the automatic generation of 3823 * ASCONF chunks to add and delete addresses to an existing association. Note 3824 * that this option has two caveats namely: a) it only affects sockets that 3825 * are bound to all addresses available to the SCTP stack, and b) the system 3826 * administrator may have an overriding control that turns the ASCONF feature 3827 * off no matter what setting the socket option may have. 3828 * This option expects an integer boolean flag, where a non-zero value turns on 3829 * the option, and a zero value turns off the option. 3830 * Note. In this implementation, socket operation overrides default parameter 3831 * being set by sysctl as well as FreeBSD implementation 3832 */ 3833 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3834 unsigned int optlen) 3835 { 3836 struct sctp_sock *sp = sctp_sk(sk); 3837 3838 if (optlen < sizeof(int)) 3839 return -EINVAL; 3840 if (!sctp_is_ep_boundall(sk) && *val) 3841 return -EINVAL; 3842 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3843 return 0; 3844 3845 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3846 if (*val == 0 && sp->do_auto_asconf) { 3847 list_del(&sp->auto_asconf_list); 3848 sp->do_auto_asconf = 0; 3849 } else if (*val && !sp->do_auto_asconf) { 3850 list_add_tail(&sp->auto_asconf_list, 3851 &sock_net(sk)->sctp.auto_asconf_splist); 3852 sp->do_auto_asconf = 1; 3853 } 3854 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3855 return 0; 3856 } 3857 3858 /* 3859 * SCTP_PEER_ADDR_THLDS 3860 * 3861 * This option allows us to alter the partially failed threshold for one or all 3862 * transports in an association. See Section 6.1 of: 3863 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3864 */ 3865 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3866 struct sctp_paddrthlds_v2 *val, 3867 unsigned int optlen, bool v2) 3868 { 3869 struct sctp_transport *trans; 3870 struct sctp_association *asoc; 3871 int len; 3872 3873 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3874 if (optlen < len) 3875 return -EINVAL; 3876 3877 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3878 return -EINVAL; 3879 3880 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3881 trans = sctp_addr_id2transport(sk, &val->spt_address, 3882 val->spt_assoc_id); 3883 if (!trans) 3884 return -ENOENT; 3885 3886 if (val->spt_pathmaxrxt) 3887 trans->pathmaxrxt = val->spt_pathmaxrxt; 3888 if (v2) 3889 trans->ps_retrans = val->spt_pathcpthld; 3890 trans->pf_retrans = val->spt_pathpfthld; 3891 3892 return 0; 3893 } 3894 3895 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3896 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3897 sctp_style(sk, UDP)) 3898 return -EINVAL; 3899 3900 if (asoc) { 3901 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3902 transports) { 3903 if (val->spt_pathmaxrxt) 3904 trans->pathmaxrxt = val->spt_pathmaxrxt; 3905 if (v2) 3906 trans->ps_retrans = val->spt_pathcpthld; 3907 trans->pf_retrans = val->spt_pathpfthld; 3908 } 3909 3910 if (val->spt_pathmaxrxt) 3911 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3912 if (v2) 3913 asoc->ps_retrans = val->spt_pathcpthld; 3914 asoc->pf_retrans = val->spt_pathpfthld; 3915 } else { 3916 struct sctp_sock *sp = sctp_sk(sk); 3917 3918 if (val->spt_pathmaxrxt) 3919 sp->pathmaxrxt = val->spt_pathmaxrxt; 3920 if (v2) 3921 sp->ps_retrans = val->spt_pathcpthld; 3922 sp->pf_retrans = val->spt_pathpfthld; 3923 } 3924 3925 return 0; 3926 } 3927 3928 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3929 unsigned int optlen) 3930 { 3931 if (optlen < sizeof(int)) 3932 return -EINVAL; 3933 3934 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3935 3936 return 0; 3937 } 3938 3939 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3940 unsigned int optlen) 3941 { 3942 if (optlen < sizeof(int)) 3943 return -EINVAL; 3944 3945 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3946 3947 return 0; 3948 } 3949 3950 static int sctp_setsockopt_pr_supported(struct sock *sk, 3951 struct sctp_assoc_value *params, 3952 unsigned int optlen) 3953 { 3954 struct sctp_association *asoc; 3955 3956 if (optlen != sizeof(*params)) 3957 return -EINVAL; 3958 3959 asoc = sctp_id2assoc(sk, params->assoc_id); 3960 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3961 sctp_style(sk, UDP)) 3962 return -EINVAL; 3963 3964 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3965 3966 return 0; 3967 } 3968 3969 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3970 struct sctp_default_prinfo *info, 3971 unsigned int optlen) 3972 { 3973 struct sctp_sock *sp = sctp_sk(sk); 3974 struct sctp_association *asoc; 3975 int retval = -EINVAL; 3976 3977 if (optlen != sizeof(*info)) 3978 goto out; 3979 3980 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3981 goto out; 3982 3983 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3984 info->pr_value = 0; 3985 3986 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3987 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3988 sctp_style(sk, UDP)) 3989 goto out; 3990 3991 retval = 0; 3992 3993 if (asoc) { 3994 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3995 asoc->default_timetolive = info->pr_value; 3996 goto out; 3997 } 3998 3999 if (sctp_style(sk, TCP)) 4000 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4001 4002 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4003 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4004 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4005 sp->default_timetolive = info->pr_value; 4006 } 4007 4008 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4009 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4010 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4011 SCTP_PR_SET_POLICY(asoc->default_flags, 4012 info->pr_policy); 4013 asoc->default_timetolive = info->pr_value; 4014 } 4015 } 4016 4017 out: 4018 return retval; 4019 } 4020 4021 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4022 struct sctp_assoc_value *params, 4023 unsigned int optlen) 4024 { 4025 struct sctp_association *asoc; 4026 int retval = -EINVAL; 4027 4028 if (optlen != sizeof(*params)) 4029 goto out; 4030 4031 asoc = sctp_id2assoc(sk, params->assoc_id); 4032 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4033 sctp_style(sk, UDP)) 4034 goto out; 4035 4036 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4037 4038 retval = 0; 4039 4040 out: 4041 return retval; 4042 } 4043 4044 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4045 struct sctp_assoc_value *params, 4046 unsigned int optlen) 4047 { 4048 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4049 struct sctp_association *asoc; 4050 int retval = -EINVAL; 4051 4052 if (optlen != sizeof(*params)) 4053 goto out; 4054 4055 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4056 goto out; 4057 4058 asoc = sctp_id2assoc(sk, params->assoc_id); 4059 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4060 sctp_style(sk, UDP)) 4061 goto out; 4062 4063 retval = 0; 4064 4065 if (asoc) { 4066 asoc->strreset_enable = params->assoc_value; 4067 goto out; 4068 } 4069 4070 if (sctp_style(sk, TCP)) 4071 params->assoc_id = SCTP_FUTURE_ASSOC; 4072 4073 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4074 params->assoc_id == SCTP_ALL_ASSOC) 4075 ep->strreset_enable = params->assoc_value; 4076 4077 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4078 params->assoc_id == SCTP_ALL_ASSOC) 4079 list_for_each_entry(asoc, &ep->asocs, asocs) 4080 asoc->strreset_enable = params->assoc_value; 4081 4082 out: 4083 return retval; 4084 } 4085 4086 static int sctp_setsockopt_reset_streams(struct sock *sk, 4087 struct sctp_reset_streams *params, 4088 unsigned int optlen) 4089 { 4090 struct sctp_association *asoc; 4091 4092 if (optlen < sizeof(*params)) 4093 return -EINVAL; 4094 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4095 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4096 sizeof(__u16) * sizeof(*params)); 4097 4098 if (params->srs_number_streams * sizeof(__u16) > 4099 optlen - sizeof(*params)) 4100 return -EINVAL; 4101 4102 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4103 if (!asoc) 4104 return -EINVAL; 4105 4106 return sctp_send_reset_streams(asoc, params); 4107 } 4108 4109 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4110 unsigned int optlen) 4111 { 4112 struct sctp_association *asoc; 4113 4114 if (optlen != sizeof(*associd)) 4115 return -EINVAL; 4116 4117 asoc = sctp_id2assoc(sk, *associd); 4118 if (!asoc) 4119 return -EINVAL; 4120 4121 return sctp_send_reset_assoc(asoc); 4122 } 4123 4124 static int sctp_setsockopt_add_streams(struct sock *sk, 4125 struct sctp_add_streams *params, 4126 unsigned int optlen) 4127 { 4128 struct sctp_association *asoc; 4129 4130 if (optlen != sizeof(*params)) 4131 return -EINVAL; 4132 4133 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4134 if (!asoc) 4135 return -EINVAL; 4136 4137 return sctp_send_add_streams(asoc, params); 4138 } 4139 4140 static int sctp_setsockopt_scheduler(struct sock *sk, 4141 struct sctp_assoc_value *params, 4142 unsigned int optlen) 4143 { 4144 struct sctp_sock *sp = sctp_sk(sk); 4145 struct sctp_association *asoc; 4146 int retval = 0; 4147 4148 if (optlen < sizeof(*params)) 4149 return -EINVAL; 4150 4151 if (params->assoc_value > SCTP_SS_MAX) 4152 return -EINVAL; 4153 4154 asoc = sctp_id2assoc(sk, params->assoc_id); 4155 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4156 sctp_style(sk, UDP)) 4157 return -EINVAL; 4158 4159 if (asoc) 4160 return sctp_sched_set_sched(asoc, params->assoc_value); 4161 4162 if (sctp_style(sk, TCP)) 4163 params->assoc_id = SCTP_FUTURE_ASSOC; 4164 4165 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4166 params->assoc_id == SCTP_ALL_ASSOC) 4167 sp->default_ss = params->assoc_value; 4168 4169 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4170 params->assoc_id == SCTP_ALL_ASSOC) { 4171 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4172 int ret = sctp_sched_set_sched(asoc, 4173 params->assoc_value); 4174 4175 if (ret && !retval) 4176 retval = ret; 4177 } 4178 } 4179 4180 return retval; 4181 } 4182 4183 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4184 struct sctp_stream_value *params, 4185 unsigned int optlen) 4186 { 4187 struct sctp_association *asoc; 4188 int retval = -EINVAL; 4189 4190 if (optlen < sizeof(*params)) 4191 goto out; 4192 4193 asoc = sctp_id2assoc(sk, params->assoc_id); 4194 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4195 sctp_style(sk, UDP)) 4196 goto out; 4197 4198 if (asoc) { 4199 retval = sctp_sched_set_value(asoc, params->stream_id, 4200 params->stream_value, GFP_KERNEL); 4201 goto out; 4202 } 4203 4204 retval = 0; 4205 4206 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4207 int ret = sctp_sched_set_value(asoc, params->stream_id, 4208 params->stream_value, 4209 GFP_KERNEL); 4210 if (ret && !retval) /* try to return the 1st error. */ 4211 retval = ret; 4212 } 4213 4214 out: 4215 return retval; 4216 } 4217 4218 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4219 struct sctp_assoc_value *p, 4220 unsigned int optlen) 4221 { 4222 struct sctp_sock *sp = sctp_sk(sk); 4223 struct sctp_association *asoc; 4224 4225 if (optlen < sizeof(*p)) 4226 return -EINVAL; 4227 4228 asoc = sctp_id2assoc(sk, p->assoc_id); 4229 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4230 return -EINVAL; 4231 4232 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4233 return -EPERM; 4234 } 4235 4236 sp->ep->intl_enable = !!p->assoc_value; 4237 return 0; 4238 } 4239 4240 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4241 unsigned int optlen) 4242 { 4243 if (!sctp_style(sk, TCP)) 4244 return -EOPNOTSUPP; 4245 4246 if (sctp_sk(sk)->ep->base.bind_addr.port) 4247 return -EFAULT; 4248 4249 if (optlen < sizeof(int)) 4250 return -EINVAL; 4251 4252 sctp_sk(sk)->reuse = !!*val; 4253 4254 return 0; 4255 } 4256 4257 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4258 struct sctp_association *asoc) 4259 { 4260 struct sctp_ulpevent *event; 4261 4262 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4263 4264 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4265 if (sctp_outq_is_empty(&asoc->outqueue)) { 4266 event = sctp_ulpevent_make_sender_dry_event(asoc, 4267 GFP_USER | __GFP_NOWARN); 4268 if (!event) 4269 return -ENOMEM; 4270 4271 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4272 } 4273 } 4274 4275 return 0; 4276 } 4277 4278 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4279 unsigned int optlen) 4280 { 4281 struct sctp_sock *sp = sctp_sk(sk); 4282 struct sctp_association *asoc; 4283 int retval = 0; 4284 4285 if (optlen < sizeof(*param)) 4286 return -EINVAL; 4287 4288 if (param->se_type < SCTP_SN_TYPE_BASE || 4289 param->se_type > SCTP_SN_TYPE_MAX) 4290 return -EINVAL; 4291 4292 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4293 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4294 sctp_style(sk, UDP)) 4295 return -EINVAL; 4296 4297 if (asoc) 4298 return sctp_assoc_ulpevent_type_set(param, asoc); 4299 4300 if (sctp_style(sk, TCP)) 4301 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4302 4303 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4304 param->se_assoc_id == SCTP_ALL_ASSOC) 4305 sctp_ulpevent_type_set(&sp->subscribe, 4306 param->se_type, param->se_on); 4307 4308 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4309 param->se_assoc_id == SCTP_ALL_ASSOC) { 4310 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4311 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4312 4313 if (ret && !retval) 4314 retval = ret; 4315 } 4316 } 4317 4318 return retval; 4319 } 4320 4321 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4322 struct sctp_assoc_value *params, 4323 unsigned int optlen) 4324 { 4325 struct sctp_association *asoc; 4326 struct sctp_endpoint *ep; 4327 int retval = -EINVAL; 4328 4329 if (optlen != sizeof(*params)) 4330 goto out; 4331 4332 asoc = sctp_id2assoc(sk, params->assoc_id); 4333 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4334 sctp_style(sk, UDP)) 4335 goto out; 4336 4337 ep = sctp_sk(sk)->ep; 4338 ep->asconf_enable = !!params->assoc_value; 4339 4340 if (ep->asconf_enable && ep->auth_enable) { 4341 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4342 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4343 } 4344 4345 retval = 0; 4346 4347 out: 4348 return retval; 4349 } 4350 4351 static int sctp_setsockopt_auth_supported(struct sock *sk, 4352 struct sctp_assoc_value *params, 4353 unsigned int optlen) 4354 { 4355 struct sctp_association *asoc; 4356 struct sctp_endpoint *ep; 4357 int retval = -EINVAL; 4358 4359 if (optlen != sizeof(*params)) 4360 goto out; 4361 4362 asoc = sctp_id2assoc(sk, params->assoc_id); 4363 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4364 sctp_style(sk, UDP)) 4365 goto out; 4366 4367 ep = sctp_sk(sk)->ep; 4368 if (params->assoc_value) { 4369 retval = sctp_auth_init(ep, GFP_KERNEL); 4370 if (retval) 4371 goto out; 4372 if (ep->asconf_enable) { 4373 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4374 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4375 } 4376 } 4377 4378 ep->auth_enable = !!params->assoc_value; 4379 retval = 0; 4380 4381 out: 4382 return retval; 4383 } 4384 4385 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4386 struct sctp_assoc_value *params, 4387 unsigned int optlen) 4388 { 4389 struct sctp_association *asoc; 4390 int retval = -EINVAL; 4391 4392 if (optlen != sizeof(*params)) 4393 goto out; 4394 4395 asoc = sctp_id2assoc(sk, params->assoc_id); 4396 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4397 sctp_style(sk, UDP)) 4398 goto out; 4399 4400 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4401 retval = 0; 4402 4403 out: 4404 return retval; 4405 } 4406 4407 static int sctp_setsockopt_pf_expose(struct sock *sk, 4408 struct sctp_assoc_value *params, 4409 unsigned int optlen) 4410 { 4411 struct sctp_association *asoc; 4412 int retval = -EINVAL; 4413 4414 if (optlen != sizeof(*params)) 4415 goto out; 4416 4417 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4418 goto out; 4419 4420 asoc = sctp_id2assoc(sk, params->assoc_id); 4421 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4422 sctp_style(sk, UDP)) 4423 goto out; 4424 4425 if (asoc) 4426 asoc->pf_expose = params->assoc_value; 4427 else 4428 sctp_sk(sk)->pf_expose = params->assoc_value; 4429 retval = 0; 4430 4431 out: 4432 return retval; 4433 } 4434 4435 static int sctp_setsockopt_encap_port(struct sock *sk, 4436 struct sctp_udpencaps *encap, 4437 unsigned int optlen) 4438 { 4439 struct sctp_association *asoc; 4440 struct sctp_transport *t; 4441 __be16 encap_port; 4442 4443 if (optlen != sizeof(*encap)) 4444 return -EINVAL; 4445 4446 /* If an address other than INADDR_ANY is specified, and 4447 * no transport is found, then the request is invalid. 4448 */ 4449 encap_port = (__force __be16)encap->sue_port; 4450 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4451 t = sctp_addr_id2transport(sk, &encap->sue_address, 4452 encap->sue_assoc_id); 4453 if (!t) 4454 return -EINVAL; 4455 4456 t->encap_port = encap_port; 4457 return 0; 4458 } 4459 4460 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4461 * socket is a one to many style socket, and an association 4462 * was not found, then the id was invalid. 4463 */ 4464 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4465 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4466 sctp_style(sk, UDP)) 4467 return -EINVAL; 4468 4469 /* If changes are for association, also apply encap_port to 4470 * each transport. 4471 */ 4472 if (asoc) { 4473 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4474 transports) 4475 t->encap_port = encap_port; 4476 4477 asoc->encap_port = encap_port; 4478 return 0; 4479 } 4480 4481 sctp_sk(sk)->encap_port = encap_port; 4482 return 0; 4483 } 4484 4485 static int sctp_setsockopt_probe_interval(struct sock *sk, 4486 struct sctp_probeinterval *params, 4487 unsigned int optlen) 4488 { 4489 struct sctp_association *asoc; 4490 struct sctp_transport *t; 4491 __u32 probe_interval; 4492 4493 if (optlen != sizeof(*params)) 4494 return -EINVAL; 4495 4496 probe_interval = params->spi_interval; 4497 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4498 return -EINVAL; 4499 4500 /* If an address other than INADDR_ANY is specified, and 4501 * no transport is found, then the request is invalid. 4502 */ 4503 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4504 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4505 params->spi_assoc_id); 4506 if (!t) 4507 return -EINVAL; 4508 4509 t->probe_interval = msecs_to_jiffies(probe_interval); 4510 sctp_transport_pl_reset(t); 4511 return 0; 4512 } 4513 4514 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4515 * socket is a one to many style socket, and an association 4516 * was not found, then the id was invalid. 4517 */ 4518 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4519 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4520 sctp_style(sk, UDP)) 4521 return -EINVAL; 4522 4523 /* If changes are for association, also apply probe_interval to 4524 * each transport. 4525 */ 4526 if (asoc) { 4527 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4528 t->probe_interval = msecs_to_jiffies(probe_interval); 4529 sctp_transport_pl_reset(t); 4530 } 4531 4532 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4533 return 0; 4534 } 4535 4536 sctp_sk(sk)->probe_interval = probe_interval; 4537 return 0; 4538 } 4539 4540 /* API 6.2 setsockopt(), getsockopt() 4541 * 4542 * Applications use setsockopt() and getsockopt() to set or retrieve 4543 * socket options. Socket options are used to change the default 4544 * behavior of sockets calls. They are described in Section 7. 4545 * 4546 * The syntax is: 4547 * 4548 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4549 * int __user *optlen); 4550 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4551 * int optlen); 4552 * 4553 * sd - the socket descript. 4554 * level - set to IPPROTO_SCTP for all SCTP options. 4555 * optname - the option name. 4556 * optval - the buffer to store the value of the option. 4557 * optlen - the size of the buffer. 4558 */ 4559 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4560 sockptr_t optval, unsigned int optlen) 4561 { 4562 void *kopt = NULL; 4563 int retval = 0; 4564 4565 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4566 4567 /* I can hardly begin to describe how wrong this is. This is 4568 * so broken as to be worse than useless. The API draft 4569 * REALLY is NOT helpful here... I am not convinced that the 4570 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4571 * are at all well-founded. 4572 */ 4573 if (level != SOL_SCTP) { 4574 struct sctp_af *af = sctp_sk(sk)->pf->af; 4575 4576 return af->setsockopt(sk, level, optname, optval, optlen); 4577 } 4578 4579 if (optlen > 0) { 4580 kopt = memdup_sockptr(optval, optlen); 4581 if (IS_ERR(kopt)) 4582 return PTR_ERR(kopt); 4583 } 4584 4585 lock_sock(sk); 4586 4587 switch (optname) { 4588 case SCTP_SOCKOPT_BINDX_ADD: 4589 /* 'optlen' is the size of the addresses buffer. */ 4590 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4591 SCTP_BINDX_ADD_ADDR); 4592 break; 4593 4594 case SCTP_SOCKOPT_BINDX_REM: 4595 /* 'optlen' is the size of the addresses buffer. */ 4596 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4597 SCTP_BINDX_REM_ADDR); 4598 break; 4599 4600 case SCTP_SOCKOPT_CONNECTX_OLD: 4601 /* 'optlen' is the size of the addresses buffer. */ 4602 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4603 break; 4604 4605 case SCTP_SOCKOPT_CONNECTX: 4606 /* 'optlen' is the size of the addresses buffer. */ 4607 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4608 break; 4609 4610 case SCTP_DISABLE_FRAGMENTS: 4611 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4612 break; 4613 4614 case SCTP_EVENTS: 4615 retval = sctp_setsockopt_events(sk, kopt, optlen); 4616 break; 4617 4618 case SCTP_AUTOCLOSE: 4619 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4620 break; 4621 4622 case SCTP_PEER_ADDR_PARAMS: 4623 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4624 break; 4625 4626 case SCTP_DELAYED_SACK: 4627 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4628 break; 4629 case SCTP_PARTIAL_DELIVERY_POINT: 4630 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4631 break; 4632 4633 case SCTP_INITMSG: 4634 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4635 break; 4636 case SCTP_DEFAULT_SEND_PARAM: 4637 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4638 break; 4639 case SCTP_DEFAULT_SNDINFO: 4640 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4641 break; 4642 case SCTP_PRIMARY_ADDR: 4643 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4644 break; 4645 case SCTP_SET_PEER_PRIMARY_ADDR: 4646 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4647 break; 4648 case SCTP_NODELAY: 4649 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4650 break; 4651 case SCTP_RTOINFO: 4652 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4653 break; 4654 case SCTP_ASSOCINFO: 4655 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4656 break; 4657 case SCTP_I_WANT_MAPPED_V4_ADDR: 4658 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4659 break; 4660 case SCTP_MAXSEG: 4661 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4662 break; 4663 case SCTP_ADAPTATION_LAYER: 4664 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4665 break; 4666 case SCTP_CONTEXT: 4667 retval = sctp_setsockopt_context(sk, kopt, optlen); 4668 break; 4669 case SCTP_FRAGMENT_INTERLEAVE: 4670 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4671 break; 4672 case SCTP_MAX_BURST: 4673 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4674 break; 4675 case SCTP_AUTH_CHUNK: 4676 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4677 break; 4678 case SCTP_HMAC_IDENT: 4679 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4680 break; 4681 case SCTP_AUTH_KEY: 4682 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4683 break; 4684 case SCTP_AUTH_ACTIVE_KEY: 4685 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4686 break; 4687 case SCTP_AUTH_DELETE_KEY: 4688 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4689 break; 4690 case SCTP_AUTH_DEACTIVATE_KEY: 4691 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4692 break; 4693 case SCTP_AUTO_ASCONF: 4694 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4695 break; 4696 case SCTP_PEER_ADDR_THLDS: 4697 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4698 false); 4699 break; 4700 case SCTP_PEER_ADDR_THLDS_V2: 4701 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4702 true); 4703 break; 4704 case SCTP_RECVRCVINFO: 4705 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4706 break; 4707 case SCTP_RECVNXTINFO: 4708 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4709 break; 4710 case SCTP_PR_SUPPORTED: 4711 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4712 break; 4713 case SCTP_DEFAULT_PRINFO: 4714 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4715 break; 4716 case SCTP_RECONFIG_SUPPORTED: 4717 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4718 break; 4719 case SCTP_ENABLE_STREAM_RESET: 4720 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4721 break; 4722 case SCTP_RESET_STREAMS: 4723 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4724 break; 4725 case SCTP_RESET_ASSOC: 4726 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4727 break; 4728 case SCTP_ADD_STREAMS: 4729 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4730 break; 4731 case SCTP_STREAM_SCHEDULER: 4732 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4733 break; 4734 case SCTP_STREAM_SCHEDULER_VALUE: 4735 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4736 break; 4737 case SCTP_INTERLEAVING_SUPPORTED: 4738 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4739 optlen); 4740 break; 4741 case SCTP_REUSE_PORT: 4742 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4743 break; 4744 case SCTP_EVENT: 4745 retval = sctp_setsockopt_event(sk, kopt, optlen); 4746 break; 4747 case SCTP_ASCONF_SUPPORTED: 4748 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4749 break; 4750 case SCTP_AUTH_SUPPORTED: 4751 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4752 break; 4753 case SCTP_ECN_SUPPORTED: 4754 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4755 break; 4756 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4757 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4758 break; 4759 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4760 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4761 break; 4762 case SCTP_PLPMTUD_PROBE_INTERVAL: 4763 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4764 break; 4765 default: 4766 retval = -ENOPROTOOPT; 4767 break; 4768 } 4769 4770 release_sock(sk); 4771 kfree(kopt); 4772 return retval; 4773 } 4774 4775 /* API 3.1.6 connect() - UDP Style Syntax 4776 * 4777 * An application may use the connect() call in the UDP model to initiate an 4778 * association without sending data. 4779 * 4780 * The syntax is: 4781 * 4782 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4783 * 4784 * sd: the socket descriptor to have a new association added to. 4785 * 4786 * nam: the address structure (either struct sockaddr_in or struct 4787 * sockaddr_in6 defined in RFC2553 [7]). 4788 * 4789 * len: the size of the address. 4790 */ 4791 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4792 int addr_len, int flags) 4793 { 4794 struct sctp_af *af; 4795 int err = -EINVAL; 4796 4797 lock_sock(sk); 4798 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4799 addr, addr_len); 4800 4801 /* Validate addr_len before calling common connect/connectx routine. */ 4802 af = sctp_get_af_specific(addr->sa_family); 4803 if (af && addr_len >= af->sockaddr_len) 4804 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4805 4806 release_sock(sk); 4807 return err; 4808 } 4809 4810 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4811 int addr_len, int flags) 4812 { 4813 if (addr_len < sizeof(uaddr->sa_family)) 4814 return -EINVAL; 4815 4816 if (uaddr->sa_family == AF_UNSPEC) 4817 return -EOPNOTSUPP; 4818 4819 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4820 } 4821 4822 /* FIXME: Write comments. */ 4823 static int sctp_disconnect(struct sock *sk, int flags) 4824 { 4825 return -EOPNOTSUPP; /* STUB */ 4826 } 4827 4828 /* 4.1.4 accept() - TCP Style Syntax 4829 * 4830 * Applications use accept() call to remove an established SCTP 4831 * association from the accept queue of the endpoint. A new socket 4832 * descriptor will be returned from accept() to represent the newly 4833 * formed association. 4834 */ 4835 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4836 { 4837 struct sctp_sock *sp; 4838 struct sctp_endpoint *ep; 4839 struct sock *newsk = NULL; 4840 struct sctp_association *asoc; 4841 long timeo; 4842 int error = 0; 4843 4844 lock_sock(sk); 4845 4846 sp = sctp_sk(sk); 4847 ep = sp->ep; 4848 4849 if (!sctp_style(sk, TCP)) { 4850 error = -EOPNOTSUPP; 4851 goto out; 4852 } 4853 4854 if (!sctp_sstate(sk, LISTENING)) { 4855 error = -EINVAL; 4856 goto out; 4857 } 4858 4859 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4860 4861 error = sctp_wait_for_accept(sk, timeo); 4862 if (error) 4863 goto out; 4864 4865 /* We treat the list of associations on the endpoint as the accept 4866 * queue and pick the first association on the list. 4867 */ 4868 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4869 4870 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4871 if (!newsk) { 4872 error = -ENOMEM; 4873 goto out; 4874 } 4875 4876 /* Populate the fields of the newsk from the oldsk and migrate the 4877 * asoc to the newsk. 4878 */ 4879 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4880 if (error) { 4881 sk_common_release(newsk); 4882 newsk = NULL; 4883 } 4884 4885 out: 4886 release_sock(sk); 4887 *err = error; 4888 return newsk; 4889 } 4890 4891 /* The SCTP ioctl handler. */ 4892 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4893 { 4894 int rc = -ENOTCONN; 4895 4896 lock_sock(sk); 4897 4898 /* 4899 * SEQPACKET-style sockets in LISTENING state are valid, for 4900 * SCTP, so only discard TCP-style sockets in LISTENING state. 4901 */ 4902 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4903 goto out; 4904 4905 switch (cmd) { 4906 case SIOCINQ: { 4907 struct sk_buff *skb; 4908 unsigned int amount = 0; 4909 4910 skb = skb_peek(&sk->sk_receive_queue); 4911 if (skb != NULL) { 4912 /* 4913 * We will only return the amount of this packet since 4914 * that is all that will be read. 4915 */ 4916 amount = skb->len; 4917 } 4918 rc = put_user(amount, (int __user *)arg); 4919 break; 4920 } 4921 default: 4922 rc = -ENOIOCTLCMD; 4923 break; 4924 } 4925 out: 4926 release_sock(sk); 4927 return rc; 4928 } 4929 4930 /* This is the function which gets called during socket creation to 4931 * initialized the SCTP-specific portion of the sock. 4932 * The sock structure should already be zero-filled memory. 4933 */ 4934 static int sctp_init_sock(struct sock *sk) 4935 { 4936 struct net *net = sock_net(sk); 4937 struct sctp_sock *sp; 4938 4939 pr_debug("%s: sk:%p\n", __func__, sk); 4940 4941 sp = sctp_sk(sk); 4942 4943 /* Initialize the SCTP per socket area. */ 4944 switch (sk->sk_type) { 4945 case SOCK_SEQPACKET: 4946 sp->type = SCTP_SOCKET_UDP; 4947 break; 4948 case SOCK_STREAM: 4949 sp->type = SCTP_SOCKET_TCP; 4950 break; 4951 default: 4952 return -ESOCKTNOSUPPORT; 4953 } 4954 4955 sk->sk_gso_type = SKB_GSO_SCTP; 4956 4957 /* Initialize default send parameters. These parameters can be 4958 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4959 */ 4960 sp->default_stream = 0; 4961 sp->default_ppid = 0; 4962 sp->default_flags = 0; 4963 sp->default_context = 0; 4964 sp->default_timetolive = 0; 4965 4966 sp->default_rcv_context = 0; 4967 sp->max_burst = net->sctp.max_burst; 4968 4969 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4970 4971 /* Initialize default setup parameters. These parameters 4972 * can be modified with the SCTP_INITMSG socket option or 4973 * overridden by the SCTP_INIT CMSG. 4974 */ 4975 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4976 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4977 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4978 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4979 4980 /* Initialize default RTO related parameters. These parameters can 4981 * be modified for with the SCTP_RTOINFO socket option. 4982 */ 4983 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4984 sp->rtoinfo.srto_max = net->sctp.rto_max; 4985 sp->rtoinfo.srto_min = net->sctp.rto_min; 4986 4987 /* Initialize default association related parameters. These parameters 4988 * can be modified with the SCTP_ASSOCINFO socket option. 4989 */ 4990 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4991 sp->assocparams.sasoc_number_peer_destinations = 0; 4992 sp->assocparams.sasoc_peer_rwnd = 0; 4993 sp->assocparams.sasoc_local_rwnd = 0; 4994 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4995 4996 /* Initialize default event subscriptions. By default, all the 4997 * options are off. 4998 */ 4999 sp->subscribe = 0; 5000 5001 /* Default Peer Address Parameters. These defaults can 5002 * be modified via SCTP_PEER_ADDR_PARAMS 5003 */ 5004 sp->hbinterval = net->sctp.hb_interval; 5005 sp->udp_port = htons(net->sctp.udp_port); 5006 sp->encap_port = htons(net->sctp.encap_port); 5007 sp->pathmaxrxt = net->sctp.max_retrans_path; 5008 sp->pf_retrans = net->sctp.pf_retrans; 5009 sp->ps_retrans = net->sctp.ps_retrans; 5010 sp->pf_expose = net->sctp.pf_expose; 5011 sp->pathmtu = 0; /* allow default discovery */ 5012 sp->sackdelay = net->sctp.sack_timeout; 5013 sp->sackfreq = 2; 5014 sp->param_flags = SPP_HB_ENABLE | 5015 SPP_PMTUD_ENABLE | 5016 SPP_SACKDELAY_ENABLE; 5017 sp->default_ss = SCTP_SS_DEFAULT; 5018 5019 /* If enabled no SCTP message fragmentation will be performed. 5020 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5021 */ 5022 sp->disable_fragments = 0; 5023 5024 /* Enable Nagle algorithm by default. */ 5025 sp->nodelay = 0; 5026 5027 sp->recvrcvinfo = 0; 5028 sp->recvnxtinfo = 0; 5029 5030 /* Enable by default. */ 5031 sp->v4mapped = 1; 5032 5033 /* Auto-close idle associations after the configured 5034 * number of seconds. A value of 0 disables this 5035 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5036 * for UDP-style sockets only. 5037 */ 5038 sp->autoclose = 0; 5039 5040 /* User specified fragmentation limit. */ 5041 sp->user_frag = 0; 5042 5043 sp->adaptation_ind = 0; 5044 5045 sp->pf = sctp_get_pf_specific(sk->sk_family); 5046 5047 /* Control variables for partial data delivery. */ 5048 atomic_set(&sp->pd_mode, 0); 5049 skb_queue_head_init(&sp->pd_lobby); 5050 sp->frag_interleave = 0; 5051 sp->probe_interval = net->sctp.probe_interval; 5052 5053 /* Create a per socket endpoint structure. Even if we 5054 * change the data structure relationships, this may still 5055 * be useful for storing pre-connect address information. 5056 */ 5057 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5058 if (!sp->ep) 5059 return -ENOMEM; 5060 5061 sp->hmac = NULL; 5062 5063 sk->sk_destruct = sctp_destruct_sock; 5064 5065 SCTP_DBG_OBJCNT_INC(sock); 5066 5067 local_bh_disable(); 5068 sk_sockets_allocated_inc(sk); 5069 sock_prot_inuse_add(net, sk->sk_prot, 1); 5070 5071 local_bh_enable(); 5072 5073 return 0; 5074 } 5075 5076 /* Cleanup any SCTP per socket resources. Must be called with 5077 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5078 */ 5079 static void sctp_destroy_sock(struct sock *sk) 5080 { 5081 struct sctp_sock *sp; 5082 5083 pr_debug("%s: sk:%p\n", __func__, sk); 5084 5085 /* Release our hold on the endpoint. */ 5086 sp = sctp_sk(sk); 5087 /* This could happen during socket init, thus we bail out 5088 * early, since the rest of the below is not setup either. 5089 */ 5090 if (sp->ep == NULL) 5091 return; 5092 5093 if (sp->do_auto_asconf) { 5094 sp->do_auto_asconf = 0; 5095 list_del(&sp->auto_asconf_list); 5096 } 5097 sctp_endpoint_free(sp->ep); 5098 local_bh_disable(); 5099 sk_sockets_allocated_dec(sk); 5100 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5101 local_bh_enable(); 5102 } 5103 5104 /* Triggered when there are no references on the socket anymore */ 5105 static void sctp_destruct_sock(struct sock *sk) 5106 { 5107 struct sctp_sock *sp = sctp_sk(sk); 5108 5109 /* Free up the HMAC transform. */ 5110 crypto_free_shash(sp->hmac); 5111 5112 inet_sock_destruct(sk); 5113 } 5114 5115 /* API 4.1.7 shutdown() - TCP Style Syntax 5116 * int shutdown(int socket, int how); 5117 * 5118 * sd - the socket descriptor of the association to be closed. 5119 * how - Specifies the type of shutdown. The values are 5120 * as follows: 5121 * SHUT_RD 5122 * Disables further receive operations. No SCTP 5123 * protocol action is taken. 5124 * SHUT_WR 5125 * Disables further send operations, and initiates 5126 * the SCTP shutdown sequence. 5127 * SHUT_RDWR 5128 * Disables further send and receive operations 5129 * and initiates the SCTP shutdown sequence. 5130 */ 5131 static void sctp_shutdown(struct sock *sk, int how) 5132 { 5133 struct net *net = sock_net(sk); 5134 struct sctp_endpoint *ep; 5135 5136 if (!sctp_style(sk, TCP)) 5137 return; 5138 5139 ep = sctp_sk(sk)->ep; 5140 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5141 struct sctp_association *asoc; 5142 5143 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5144 asoc = list_entry(ep->asocs.next, 5145 struct sctp_association, asocs); 5146 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5147 } 5148 } 5149 5150 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5151 struct sctp_info *info) 5152 { 5153 struct sctp_transport *prim; 5154 struct list_head *pos; 5155 int mask; 5156 5157 memset(info, 0, sizeof(*info)); 5158 if (!asoc) { 5159 struct sctp_sock *sp = sctp_sk(sk); 5160 5161 info->sctpi_s_autoclose = sp->autoclose; 5162 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5163 info->sctpi_s_pd_point = sp->pd_point; 5164 info->sctpi_s_nodelay = sp->nodelay; 5165 info->sctpi_s_disable_fragments = sp->disable_fragments; 5166 info->sctpi_s_v4mapped = sp->v4mapped; 5167 info->sctpi_s_frag_interleave = sp->frag_interleave; 5168 info->sctpi_s_type = sp->type; 5169 5170 return 0; 5171 } 5172 5173 info->sctpi_tag = asoc->c.my_vtag; 5174 info->sctpi_state = asoc->state; 5175 info->sctpi_rwnd = asoc->a_rwnd; 5176 info->sctpi_unackdata = asoc->unack_data; 5177 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5178 info->sctpi_instrms = asoc->stream.incnt; 5179 info->sctpi_outstrms = asoc->stream.outcnt; 5180 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5181 info->sctpi_inqueue++; 5182 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5183 info->sctpi_outqueue++; 5184 info->sctpi_overall_error = asoc->overall_error_count; 5185 info->sctpi_max_burst = asoc->max_burst; 5186 info->sctpi_maxseg = asoc->frag_point; 5187 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5188 info->sctpi_peer_tag = asoc->c.peer_vtag; 5189 5190 mask = asoc->peer.ecn_capable << 1; 5191 mask = (mask | asoc->peer.ipv4_address) << 1; 5192 mask = (mask | asoc->peer.ipv6_address) << 1; 5193 mask = (mask | asoc->peer.hostname_address) << 1; 5194 mask = (mask | asoc->peer.asconf_capable) << 1; 5195 mask = (mask | asoc->peer.prsctp_capable) << 1; 5196 mask = (mask | asoc->peer.auth_capable); 5197 info->sctpi_peer_capable = mask; 5198 mask = asoc->peer.sack_needed << 1; 5199 mask = (mask | asoc->peer.sack_generation) << 1; 5200 mask = (mask | asoc->peer.zero_window_announced); 5201 info->sctpi_peer_sack = mask; 5202 5203 info->sctpi_isacks = asoc->stats.isacks; 5204 info->sctpi_osacks = asoc->stats.osacks; 5205 info->sctpi_opackets = asoc->stats.opackets; 5206 info->sctpi_ipackets = asoc->stats.ipackets; 5207 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5208 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5209 info->sctpi_idupchunks = asoc->stats.idupchunks; 5210 info->sctpi_gapcnt = asoc->stats.gapcnt; 5211 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5212 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5213 info->sctpi_oodchunks = asoc->stats.oodchunks; 5214 info->sctpi_iodchunks = asoc->stats.iodchunks; 5215 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5216 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5217 5218 prim = asoc->peer.primary_path; 5219 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5220 info->sctpi_p_state = prim->state; 5221 info->sctpi_p_cwnd = prim->cwnd; 5222 info->sctpi_p_srtt = prim->srtt; 5223 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5224 info->sctpi_p_hbinterval = prim->hbinterval; 5225 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5226 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5227 info->sctpi_p_ssthresh = prim->ssthresh; 5228 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5229 info->sctpi_p_flight_size = prim->flight_size; 5230 info->sctpi_p_error = prim->error_count; 5231 5232 return 0; 5233 } 5234 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5235 5236 /* use callback to avoid exporting the core structure */ 5237 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5238 { 5239 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5240 5241 rhashtable_walk_start(iter); 5242 } 5243 5244 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5245 { 5246 rhashtable_walk_stop(iter); 5247 rhashtable_walk_exit(iter); 5248 } 5249 5250 struct sctp_transport *sctp_transport_get_next(struct net *net, 5251 struct rhashtable_iter *iter) 5252 { 5253 struct sctp_transport *t; 5254 5255 t = rhashtable_walk_next(iter); 5256 for (; t; t = rhashtable_walk_next(iter)) { 5257 if (IS_ERR(t)) { 5258 if (PTR_ERR(t) == -EAGAIN) 5259 continue; 5260 break; 5261 } 5262 5263 if (!sctp_transport_hold(t)) 5264 continue; 5265 5266 if (net_eq(t->asoc->base.net, net) && 5267 t->asoc->peer.primary_path == t) 5268 break; 5269 5270 sctp_transport_put(t); 5271 } 5272 5273 return t; 5274 } 5275 5276 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5277 struct rhashtable_iter *iter, 5278 int pos) 5279 { 5280 struct sctp_transport *t; 5281 5282 if (!pos) 5283 return SEQ_START_TOKEN; 5284 5285 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5286 if (!--pos) 5287 break; 5288 sctp_transport_put(t); 5289 } 5290 5291 return t; 5292 } 5293 5294 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5295 void *p) { 5296 int err = 0; 5297 int hash = 0; 5298 struct sctp_ep_common *epb; 5299 struct sctp_hashbucket *head; 5300 5301 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5302 hash++, head++) { 5303 read_lock_bh(&head->lock); 5304 sctp_for_each_hentry(epb, &head->chain) { 5305 err = cb(sctp_ep(epb), p); 5306 if (err) 5307 break; 5308 } 5309 read_unlock_bh(&head->lock); 5310 } 5311 5312 return err; 5313 } 5314 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5315 5316 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5317 struct net *net, 5318 const union sctp_addr *laddr, 5319 const union sctp_addr *paddr, void *p) 5320 { 5321 struct sctp_transport *transport; 5322 int err; 5323 5324 rcu_read_lock(); 5325 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5326 rcu_read_unlock(); 5327 if (!transport) 5328 return -ENOENT; 5329 5330 err = cb(transport, p); 5331 sctp_transport_put(transport); 5332 5333 return err; 5334 } 5335 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5336 5337 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5338 int (*cb_done)(struct sctp_transport *, void *), 5339 struct net *net, int *pos, void *p) { 5340 struct rhashtable_iter hti; 5341 struct sctp_transport *tsp; 5342 int ret; 5343 5344 again: 5345 ret = 0; 5346 sctp_transport_walk_start(&hti); 5347 5348 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5349 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5350 ret = cb(tsp, p); 5351 if (ret) 5352 break; 5353 (*pos)++; 5354 sctp_transport_put(tsp); 5355 } 5356 sctp_transport_walk_stop(&hti); 5357 5358 if (ret) { 5359 if (cb_done && !cb_done(tsp, p)) { 5360 (*pos)++; 5361 sctp_transport_put(tsp); 5362 goto again; 5363 } 5364 sctp_transport_put(tsp); 5365 } 5366 5367 return ret; 5368 } 5369 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5370 5371 /* 7.2.1 Association Status (SCTP_STATUS) 5372 5373 * Applications can retrieve current status information about an 5374 * association, including association state, peer receiver window size, 5375 * number of unacked data chunks, and number of data chunks pending 5376 * receipt. This information is read-only. 5377 */ 5378 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5379 char __user *optval, 5380 int __user *optlen) 5381 { 5382 struct sctp_status status; 5383 struct sctp_association *asoc = NULL; 5384 struct sctp_transport *transport; 5385 sctp_assoc_t associd; 5386 int retval = 0; 5387 5388 if (len < sizeof(status)) { 5389 retval = -EINVAL; 5390 goto out; 5391 } 5392 5393 len = sizeof(status); 5394 if (copy_from_user(&status, optval, len)) { 5395 retval = -EFAULT; 5396 goto out; 5397 } 5398 5399 associd = status.sstat_assoc_id; 5400 asoc = sctp_id2assoc(sk, associd); 5401 if (!asoc) { 5402 retval = -EINVAL; 5403 goto out; 5404 } 5405 5406 transport = asoc->peer.primary_path; 5407 5408 status.sstat_assoc_id = sctp_assoc2id(asoc); 5409 status.sstat_state = sctp_assoc_to_state(asoc); 5410 status.sstat_rwnd = asoc->peer.rwnd; 5411 status.sstat_unackdata = asoc->unack_data; 5412 5413 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5414 status.sstat_instrms = asoc->stream.incnt; 5415 status.sstat_outstrms = asoc->stream.outcnt; 5416 status.sstat_fragmentation_point = asoc->frag_point; 5417 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5418 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5419 transport->af_specific->sockaddr_len); 5420 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5421 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5422 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5423 status.sstat_primary.spinfo_state = transport->state; 5424 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5425 status.sstat_primary.spinfo_srtt = transport->srtt; 5426 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5427 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5428 5429 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5430 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5431 5432 if (put_user(len, optlen)) { 5433 retval = -EFAULT; 5434 goto out; 5435 } 5436 5437 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5438 __func__, len, status.sstat_state, status.sstat_rwnd, 5439 status.sstat_assoc_id); 5440 5441 if (copy_to_user(optval, &status, len)) { 5442 retval = -EFAULT; 5443 goto out; 5444 } 5445 5446 out: 5447 return retval; 5448 } 5449 5450 5451 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5452 * 5453 * Applications can retrieve information about a specific peer address 5454 * of an association, including its reachability state, congestion 5455 * window, and retransmission timer values. This information is 5456 * read-only. 5457 */ 5458 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5459 char __user *optval, 5460 int __user *optlen) 5461 { 5462 struct sctp_paddrinfo pinfo; 5463 struct sctp_transport *transport; 5464 int retval = 0; 5465 5466 if (len < sizeof(pinfo)) { 5467 retval = -EINVAL; 5468 goto out; 5469 } 5470 5471 len = sizeof(pinfo); 5472 if (copy_from_user(&pinfo, optval, len)) { 5473 retval = -EFAULT; 5474 goto out; 5475 } 5476 5477 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5478 pinfo.spinfo_assoc_id); 5479 if (!transport) { 5480 retval = -EINVAL; 5481 goto out; 5482 } 5483 5484 if (transport->state == SCTP_PF && 5485 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5486 retval = -EACCES; 5487 goto out; 5488 } 5489 5490 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5491 pinfo.spinfo_state = transport->state; 5492 pinfo.spinfo_cwnd = transport->cwnd; 5493 pinfo.spinfo_srtt = transport->srtt; 5494 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5495 pinfo.spinfo_mtu = transport->pathmtu; 5496 5497 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5498 pinfo.spinfo_state = SCTP_ACTIVE; 5499 5500 if (put_user(len, optlen)) { 5501 retval = -EFAULT; 5502 goto out; 5503 } 5504 5505 if (copy_to_user(optval, &pinfo, len)) { 5506 retval = -EFAULT; 5507 goto out; 5508 } 5509 5510 out: 5511 return retval; 5512 } 5513 5514 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5515 * 5516 * This option is a on/off flag. If enabled no SCTP message 5517 * fragmentation will be performed. Instead if a message being sent 5518 * exceeds the current PMTU size, the message will NOT be sent and 5519 * instead a error will be indicated to the user. 5520 */ 5521 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5522 char __user *optval, int __user *optlen) 5523 { 5524 int val; 5525 5526 if (len < sizeof(int)) 5527 return -EINVAL; 5528 5529 len = sizeof(int); 5530 val = (sctp_sk(sk)->disable_fragments == 1); 5531 if (put_user(len, optlen)) 5532 return -EFAULT; 5533 if (copy_to_user(optval, &val, len)) 5534 return -EFAULT; 5535 return 0; 5536 } 5537 5538 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5539 * 5540 * This socket option is used to specify various notifications and 5541 * ancillary data the user wishes to receive. 5542 */ 5543 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5544 int __user *optlen) 5545 { 5546 struct sctp_event_subscribe subscribe; 5547 __u8 *sn_type = (__u8 *)&subscribe; 5548 int i; 5549 5550 if (len == 0) 5551 return -EINVAL; 5552 if (len > sizeof(struct sctp_event_subscribe)) 5553 len = sizeof(struct sctp_event_subscribe); 5554 if (put_user(len, optlen)) 5555 return -EFAULT; 5556 5557 for (i = 0; i < len; i++) 5558 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5559 SCTP_SN_TYPE_BASE + i); 5560 5561 if (copy_to_user(optval, &subscribe, len)) 5562 return -EFAULT; 5563 5564 return 0; 5565 } 5566 5567 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5568 * 5569 * This socket option is applicable to the UDP-style socket only. When 5570 * set it will cause associations that are idle for more than the 5571 * specified number of seconds to automatically close. An association 5572 * being idle is defined an association that has NOT sent or received 5573 * user data. The special value of '0' indicates that no automatic 5574 * close of any associations should be performed. The option expects an 5575 * integer defining the number of seconds of idle time before an 5576 * association is closed. 5577 */ 5578 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5579 { 5580 /* Applicable to UDP-style socket only */ 5581 if (sctp_style(sk, TCP)) 5582 return -EOPNOTSUPP; 5583 if (len < sizeof(int)) 5584 return -EINVAL; 5585 len = sizeof(int); 5586 if (put_user(len, optlen)) 5587 return -EFAULT; 5588 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5589 return -EFAULT; 5590 return 0; 5591 } 5592 5593 /* Helper routine to branch off an association to a new socket. */ 5594 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5595 { 5596 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5597 struct sctp_sock *sp = sctp_sk(sk); 5598 struct socket *sock; 5599 int err = 0; 5600 5601 /* Do not peel off from one netns to another one. */ 5602 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5603 return -EINVAL; 5604 5605 if (!asoc) 5606 return -EINVAL; 5607 5608 /* An association cannot be branched off from an already peeled-off 5609 * socket, nor is this supported for tcp style sockets. 5610 */ 5611 if (!sctp_style(sk, UDP)) 5612 return -EINVAL; 5613 5614 /* Create a new socket. */ 5615 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5616 if (err < 0) 5617 return err; 5618 5619 sctp_copy_sock(sock->sk, sk, asoc); 5620 5621 /* Make peeled-off sockets more like 1-1 accepted sockets. 5622 * Set the daddr and initialize id to something more random and also 5623 * copy over any ip options. 5624 */ 5625 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5626 sp->pf->copy_ip_options(sk, sock->sk); 5627 5628 /* Populate the fields of the newsk from the oldsk and migrate the 5629 * asoc to the newsk. 5630 */ 5631 err = sctp_sock_migrate(sk, sock->sk, asoc, 5632 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5633 if (err) { 5634 sock_release(sock); 5635 sock = NULL; 5636 } 5637 5638 *sockp = sock; 5639 5640 return err; 5641 } 5642 EXPORT_SYMBOL(sctp_do_peeloff); 5643 5644 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5645 struct file **newfile, unsigned flags) 5646 { 5647 struct socket *newsock; 5648 int retval; 5649 5650 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5651 if (retval < 0) 5652 goto out; 5653 5654 /* Map the socket to an unused fd that can be returned to the user. */ 5655 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5656 if (retval < 0) { 5657 sock_release(newsock); 5658 goto out; 5659 } 5660 5661 *newfile = sock_alloc_file(newsock, 0, NULL); 5662 if (IS_ERR(*newfile)) { 5663 put_unused_fd(retval); 5664 retval = PTR_ERR(*newfile); 5665 *newfile = NULL; 5666 return retval; 5667 } 5668 5669 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5670 retval); 5671 5672 peeloff->sd = retval; 5673 5674 if (flags & SOCK_NONBLOCK) 5675 (*newfile)->f_flags |= O_NONBLOCK; 5676 out: 5677 return retval; 5678 } 5679 5680 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5681 { 5682 sctp_peeloff_arg_t peeloff; 5683 struct file *newfile = NULL; 5684 int retval = 0; 5685 5686 if (len < sizeof(sctp_peeloff_arg_t)) 5687 return -EINVAL; 5688 len = sizeof(sctp_peeloff_arg_t); 5689 if (copy_from_user(&peeloff, optval, len)) 5690 return -EFAULT; 5691 5692 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5693 if (retval < 0) 5694 goto out; 5695 5696 /* Return the fd mapped to the new socket. */ 5697 if (put_user(len, optlen)) { 5698 fput(newfile); 5699 put_unused_fd(retval); 5700 return -EFAULT; 5701 } 5702 5703 if (copy_to_user(optval, &peeloff, len)) { 5704 fput(newfile); 5705 put_unused_fd(retval); 5706 return -EFAULT; 5707 } 5708 fd_install(retval, newfile); 5709 out: 5710 return retval; 5711 } 5712 5713 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5714 char __user *optval, int __user *optlen) 5715 { 5716 sctp_peeloff_flags_arg_t peeloff; 5717 struct file *newfile = NULL; 5718 int retval = 0; 5719 5720 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5721 return -EINVAL; 5722 len = sizeof(sctp_peeloff_flags_arg_t); 5723 if (copy_from_user(&peeloff, optval, len)) 5724 return -EFAULT; 5725 5726 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5727 &newfile, peeloff.flags); 5728 if (retval < 0) 5729 goto out; 5730 5731 /* Return the fd mapped to the new socket. */ 5732 if (put_user(len, optlen)) { 5733 fput(newfile); 5734 put_unused_fd(retval); 5735 return -EFAULT; 5736 } 5737 5738 if (copy_to_user(optval, &peeloff, len)) { 5739 fput(newfile); 5740 put_unused_fd(retval); 5741 return -EFAULT; 5742 } 5743 fd_install(retval, newfile); 5744 out: 5745 return retval; 5746 } 5747 5748 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5749 * 5750 * Applications can enable or disable heartbeats for any peer address of 5751 * an association, modify an address's heartbeat interval, force a 5752 * heartbeat to be sent immediately, and adjust the address's maximum 5753 * number of retransmissions sent before an address is considered 5754 * unreachable. The following structure is used to access and modify an 5755 * address's parameters: 5756 * 5757 * struct sctp_paddrparams { 5758 * sctp_assoc_t spp_assoc_id; 5759 * struct sockaddr_storage spp_address; 5760 * uint32_t spp_hbinterval; 5761 * uint16_t spp_pathmaxrxt; 5762 * uint32_t spp_pathmtu; 5763 * uint32_t spp_sackdelay; 5764 * uint32_t spp_flags; 5765 * }; 5766 * 5767 * spp_assoc_id - (one-to-many style socket) This is filled in the 5768 * application, and identifies the association for 5769 * this query. 5770 * spp_address - This specifies which address is of interest. 5771 * spp_hbinterval - This contains the value of the heartbeat interval, 5772 * in milliseconds. If a value of zero 5773 * is present in this field then no changes are to 5774 * be made to this parameter. 5775 * spp_pathmaxrxt - This contains the maximum number of 5776 * retransmissions before this address shall be 5777 * considered unreachable. If a value of zero 5778 * is present in this field then no changes are to 5779 * be made to this parameter. 5780 * spp_pathmtu - When Path MTU discovery is disabled the value 5781 * specified here will be the "fixed" path mtu. 5782 * Note that if the spp_address field is empty 5783 * then all associations on this address will 5784 * have this fixed path mtu set upon them. 5785 * 5786 * spp_sackdelay - When delayed sack is enabled, this value specifies 5787 * the number of milliseconds that sacks will be delayed 5788 * for. This value will apply to all addresses of an 5789 * association if the spp_address field is empty. Note 5790 * also, that if delayed sack is enabled and this 5791 * value is set to 0, no change is made to the last 5792 * recorded delayed sack timer value. 5793 * 5794 * spp_flags - These flags are used to control various features 5795 * on an association. The flag field may contain 5796 * zero or more of the following options. 5797 * 5798 * SPP_HB_ENABLE - Enable heartbeats on the 5799 * specified address. Note that if the address 5800 * field is empty all addresses for the association 5801 * have heartbeats enabled upon them. 5802 * 5803 * SPP_HB_DISABLE - Disable heartbeats on the 5804 * speicifed address. Note that if the address 5805 * field is empty all addresses for the association 5806 * will have their heartbeats disabled. Note also 5807 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5808 * mutually exclusive, only one of these two should 5809 * be specified. Enabling both fields will have 5810 * undetermined results. 5811 * 5812 * SPP_HB_DEMAND - Request a user initiated heartbeat 5813 * to be made immediately. 5814 * 5815 * SPP_PMTUD_ENABLE - This field will enable PMTU 5816 * discovery upon the specified address. Note that 5817 * if the address feild is empty then all addresses 5818 * on the association are effected. 5819 * 5820 * SPP_PMTUD_DISABLE - This field will disable PMTU 5821 * discovery upon the specified address. Note that 5822 * if the address feild is empty then all addresses 5823 * on the association are effected. Not also that 5824 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5825 * exclusive. Enabling both will have undetermined 5826 * results. 5827 * 5828 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5829 * on delayed sack. The time specified in spp_sackdelay 5830 * is used to specify the sack delay for this address. Note 5831 * that if spp_address is empty then all addresses will 5832 * enable delayed sack and take on the sack delay 5833 * value specified in spp_sackdelay. 5834 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5835 * off delayed sack. If the spp_address field is blank then 5836 * delayed sack is disabled for the entire association. Note 5837 * also that this field is mutually exclusive to 5838 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5839 * results. 5840 * 5841 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5842 * setting of the IPV6 flow label value. The value is 5843 * contained in the spp_ipv6_flowlabel field. 5844 * Upon retrieval, this flag will be set to indicate that 5845 * the spp_ipv6_flowlabel field has a valid value returned. 5846 * If a specific destination address is set (in the 5847 * spp_address field), then the value returned is that of 5848 * the address. If just an association is specified (and 5849 * no address), then the association's default flow label 5850 * is returned. If neither an association nor a destination 5851 * is specified, then the socket's default flow label is 5852 * returned. For non-IPv6 sockets, this flag will be left 5853 * cleared. 5854 * 5855 * SPP_DSCP: Setting this flag enables the setting of the 5856 * Differentiated Services Code Point (DSCP) value 5857 * associated with either the association or a specific 5858 * address. The value is obtained in the spp_dscp field. 5859 * Upon retrieval, this flag will be set to indicate that 5860 * the spp_dscp field has a valid value returned. If a 5861 * specific destination address is set when called (in the 5862 * spp_address field), then that specific destination 5863 * address's DSCP value is returned. If just an association 5864 * is specified, then the association's default DSCP is 5865 * returned. If neither an association nor a destination is 5866 * specified, then the socket's default DSCP is returned. 5867 * 5868 * spp_ipv6_flowlabel 5869 * - This field is used in conjunction with the 5870 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5871 * The 20 least significant bits are used for the flow 5872 * label. This setting has precedence over any IPv6-layer 5873 * setting. 5874 * 5875 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5876 * and contains the DSCP. The 6 most significant bits are 5877 * used for the DSCP. This setting has precedence over any 5878 * IPv4- or IPv6- layer setting. 5879 */ 5880 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5881 char __user *optval, int __user *optlen) 5882 { 5883 struct sctp_paddrparams params; 5884 struct sctp_transport *trans = NULL; 5885 struct sctp_association *asoc = NULL; 5886 struct sctp_sock *sp = sctp_sk(sk); 5887 5888 if (len >= sizeof(params)) 5889 len = sizeof(params); 5890 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5891 spp_ipv6_flowlabel), 4)) 5892 len = ALIGN(offsetof(struct sctp_paddrparams, 5893 spp_ipv6_flowlabel), 4); 5894 else 5895 return -EINVAL; 5896 5897 if (copy_from_user(¶ms, optval, len)) 5898 return -EFAULT; 5899 5900 /* If an address other than INADDR_ANY is specified, and 5901 * no transport is found, then the request is invalid. 5902 */ 5903 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5904 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5905 params.spp_assoc_id); 5906 if (!trans) { 5907 pr_debug("%s: failed no transport\n", __func__); 5908 return -EINVAL; 5909 } 5910 } 5911 5912 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5913 * socket is a one to many style socket, and an association 5914 * was not found, then the id was invalid. 5915 */ 5916 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5917 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5918 sctp_style(sk, UDP)) { 5919 pr_debug("%s: failed no association\n", __func__); 5920 return -EINVAL; 5921 } 5922 5923 if (trans) { 5924 /* Fetch transport values. */ 5925 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5926 params.spp_pathmtu = trans->pathmtu; 5927 params.spp_pathmaxrxt = trans->pathmaxrxt; 5928 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5929 5930 /*draft-11 doesn't say what to return in spp_flags*/ 5931 params.spp_flags = trans->param_flags; 5932 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5933 params.spp_ipv6_flowlabel = trans->flowlabel & 5934 SCTP_FLOWLABEL_VAL_MASK; 5935 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5936 } 5937 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5938 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5939 params.spp_flags |= SPP_DSCP; 5940 } 5941 } else if (asoc) { 5942 /* Fetch association values. */ 5943 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5944 params.spp_pathmtu = asoc->pathmtu; 5945 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5946 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5947 5948 /*draft-11 doesn't say what to return in spp_flags*/ 5949 params.spp_flags = asoc->param_flags; 5950 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5951 params.spp_ipv6_flowlabel = asoc->flowlabel & 5952 SCTP_FLOWLABEL_VAL_MASK; 5953 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5954 } 5955 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5956 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5957 params.spp_flags |= SPP_DSCP; 5958 } 5959 } else { 5960 /* Fetch socket values. */ 5961 params.spp_hbinterval = sp->hbinterval; 5962 params.spp_pathmtu = sp->pathmtu; 5963 params.spp_sackdelay = sp->sackdelay; 5964 params.spp_pathmaxrxt = sp->pathmaxrxt; 5965 5966 /*draft-11 doesn't say what to return in spp_flags*/ 5967 params.spp_flags = sp->param_flags; 5968 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5969 params.spp_ipv6_flowlabel = sp->flowlabel & 5970 SCTP_FLOWLABEL_VAL_MASK; 5971 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5972 } 5973 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5974 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5975 params.spp_flags |= SPP_DSCP; 5976 } 5977 } 5978 5979 if (copy_to_user(optval, ¶ms, len)) 5980 return -EFAULT; 5981 5982 if (put_user(len, optlen)) 5983 return -EFAULT; 5984 5985 return 0; 5986 } 5987 5988 /* 5989 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5990 * 5991 * This option will effect the way delayed acks are performed. This 5992 * option allows you to get or set the delayed ack time, in 5993 * milliseconds. It also allows changing the delayed ack frequency. 5994 * Changing the frequency to 1 disables the delayed sack algorithm. If 5995 * the assoc_id is 0, then this sets or gets the endpoints default 5996 * values. If the assoc_id field is non-zero, then the set or get 5997 * effects the specified association for the one to many model (the 5998 * assoc_id field is ignored by the one to one model). Note that if 5999 * sack_delay or sack_freq are 0 when setting this option, then the 6000 * current values will remain unchanged. 6001 * 6002 * struct sctp_sack_info { 6003 * sctp_assoc_t sack_assoc_id; 6004 * uint32_t sack_delay; 6005 * uint32_t sack_freq; 6006 * }; 6007 * 6008 * sack_assoc_id - This parameter, indicates which association the user 6009 * is performing an action upon. Note that if this field's value is 6010 * zero then the endpoints default value is changed (effecting future 6011 * associations only). 6012 * 6013 * sack_delay - This parameter contains the number of milliseconds that 6014 * the user is requesting the delayed ACK timer be set to. Note that 6015 * this value is defined in the standard to be between 200 and 500 6016 * milliseconds. 6017 * 6018 * sack_freq - This parameter contains the number of packets that must 6019 * be received before a sack is sent without waiting for the delay 6020 * timer to expire. The default value for this is 2, setting this 6021 * value to 1 will disable the delayed sack algorithm. 6022 */ 6023 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6024 char __user *optval, 6025 int __user *optlen) 6026 { 6027 struct sctp_sack_info params; 6028 struct sctp_association *asoc = NULL; 6029 struct sctp_sock *sp = sctp_sk(sk); 6030 6031 if (len >= sizeof(struct sctp_sack_info)) { 6032 len = sizeof(struct sctp_sack_info); 6033 6034 if (copy_from_user(¶ms, optval, len)) 6035 return -EFAULT; 6036 } else if (len == sizeof(struct sctp_assoc_value)) { 6037 pr_warn_ratelimited(DEPRECATED 6038 "%s (pid %d) " 6039 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6040 "Use struct sctp_sack_info instead\n", 6041 current->comm, task_pid_nr(current)); 6042 if (copy_from_user(¶ms, optval, len)) 6043 return -EFAULT; 6044 } else 6045 return -EINVAL; 6046 6047 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6048 * socket is a one to many style socket, and an association 6049 * was not found, then the id was invalid. 6050 */ 6051 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6052 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6053 sctp_style(sk, UDP)) 6054 return -EINVAL; 6055 6056 if (asoc) { 6057 /* Fetch association values. */ 6058 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6059 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6060 params.sack_freq = asoc->sackfreq; 6061 6062 } else { 6063 params.sack_delay = 0; 6064 params.sack_freq = 1; 6065 } 6066 } else { 6067 /* Fetch socket values. */ 6068 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6069 params.sack_delay = sp->sackdelay; 6070 params.sack_freq = sp->sackfreq; 6071 } else { 6072 params.sack_delay = 0; 6073 params.sack_freq = 1; 6074 } 6075 } 6076 6077 if (copy_to_user(optval, ¶ms, len)) 6078 return -EFAULT; 6079 6080 if (put_user(len, optlen)) 6081 return -EFAULT; 6082 6083 return 0; 6084 } 6085 6086 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6087 * 6088 * Applications can specify protocol parameters for the default association 6089 * initialization. The option name argument to setsockopt() and getsockopt() 6090 * is SCTP_INITMSG. 6091 * 6092 * Setting initialization parameters is effective only on an unconnected 6093 * socket (for UDP-style sockets only future associations are effected 6094 * by the change). With TCP-style sockets, this option is inherited by 6095 * sockets derived from a listener socket. 6096 */ 6097 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6098 { 6099 if (len < sizeof(struct sctp_initmsg)) 6100 return -EINVAL; 6101 len = sizeof(struct sctp_initmsg); 6102 if (put_user(len, optlen)) 6103 return -EFAULT; 6104 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6105 return -EFAULT; 6106 return 0; 6107 } 6108 6109 6110 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6111 char __user *optval, int __user *optlen) 6112 { 6113 struct sctp_association *asoc; 6114 int cnt = 0; 6115 struct sctp_getaddrs getaddrs; 6116 struct sctp_transport *from; 6117 void __user *to; 6118 union sctp_addr temp; 6119 struct sctp_sock *sp = sctp_sk(sk); 6120 int addrlen; 6121 size_t space_left; 6122 int bytes_copied; 6123 6124 if (len < sizeof(struct sctp_getaddrs)) 6125 return -EINVAL; 6126 6127 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6128 return -EFAULT; 6129 6130 /* For UDP-style sockets, id specifies the association to query. */ 6131 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6132 if (!asoc) 6133 return -EINVAL; 6134 6135 to = optval + offsetof(struct sctp_getaddrs, addrs); 6136 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6137 6138 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6139 transports) { 6140 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6141 addrlen = sctp_get_pf_specific(sk->sk_family) 6142 ->addr_to_user(sp, &temp); 6143 if (space_left < addrlen) 6144 return -ENOMEM; 6145 if (copy_to_user(to, &temp, addrlen)) 6146 return -EFAULT; 6147 to += addrlen; 6148 cnt++; 6149 space_left -= addrlen; 6150 } 6151 6152 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6153 return -EFAULT; 6154 bytes_copied = ((char __user *)to) - optval; 6155 if (put_user(bytes_copied, optlen)) 6156 return -EFAULT; 6157 6158 return 0; 6159 } 6160 6161 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6162 size_t space_left, int *bytes_copied) 6163 { 6164 struct sctp_sockaddr_entry *addr; 6165 union sctp_addr temp; 6166 int cnt = 0; 6167 int addrlen; 6168 struct net *net = sock_net(sk); 6169 6170 rcu_read_lock(); 6171 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6172 if (!addr->valid) 6173 continue; 6174 6175 if ((PF_INET == sk->sk_family) && 6176 (AF_INET6 == addr->a.sa.sa_family)) 6177 continue; 6178 if ((PF_INET6 == sk->sk_family) && 6179 inet_v6_ipv6only(sk) && 6180 (AF_INET == addr->a.sa.sa_family)) 6181 continue; 6182 memcpy(&temp, &addr->a, sizeof(temp)); 6183 if (!temp.v4.sin_port) 6184 temp.v4.sin_port = htons(port); 6185 6186 addrlen = sctp_get_pf_specific(sk->sk_family) 6187 ->addr_to_user(sctp_sk(sk), &temp); 6188 6189 if (space_left < addrlen) { 6190 cnt = -ENOMEM; 6191 break; 6192 } 6193 memcpy(to, &temp, addrlen); 6194 6195 to += addrlen; 6196 cnt++; 6197 space_left -= addrlen; 6198 *bytes_copied += addrlen; 6199 } 6200 rcu_read_unlock(); 6201 6202 return cnt; 6203 } 6204 6205 6206 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6207 char __user *optval, int __user *optlen) 6208 { 6209 struct sctp_bind_addr *bp; 6210 struct sctp_association *asoc; 6211 int cnt = 0; 6212 struct sctp_getaddrs getaddrs; 6213 struct sctp_sockaddr_entry *addr; 6214 void __user *to; 6215 union sctp_addr temp; 6216 struct sctp_sock *sp = sctp_sk(sk); 6217 int addrlen; 6218 int err = 0; 6219 size_t space_left; 6220 int bytes_copied = 0; 6221 void *addrs; 6222 void *buf; 6223 6224 if (len < sizeof(struct sctp_getaddrs)) 6225 return -EINVAL; 6226 6227 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6228 return -EFAULT; 6229 6230 /* 6231 * For UDP-style sockets, id specifies the association to query. 6232 * If the id field is set to the value '0' then the locally bound 6233 * addresses are returned without regard to any particular 6234 * association. 6235 */ 6236 if (0 == getaddrs.assoc_id) { 6237 bp = &sctp_sk(sk)->ep->base.bind_addr; 6238 } else { 6239 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6240 if (!asoc) 6241 return -EINVAL; 6242 bp = &asoc->base.bind_addr; 6243 } 6244 6245 to = optval + offsetof(struct sctp_getaddrs, addrs); 6246 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6247 6248 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6249 if (!addrs) 6250 return -ENOMEM; 6251 6252 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6253 * addresses from the global local address list. 6254 */ 6255 if (sctp_list_single_entry(&bp->address_list)) { 6256 addr = list_entry(bp->address_list.next, 6257 struct sctp_sockaddr_entry, list); 6258 if (sctp_is_any(sk, &addr->a)) { 6259 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6260 space_left, &bytes_copied); 6261 if (cnt < 0) { 6262 err = cnt; 6263 goto out; 6264 } 6265 goto copy_getaddrs; 6266 } 6267 } 6268 6269 buf = addrs; 6270 /* Protection on the bound address list is not needed since 6271 * in the socket option context we hold a socket lock and 6272 * thus the bound address list can't change. 6273 */ 6274 list_for_each_entry(addr, &bp->address_list, list) { 6275 memcpy(&temp, &addr->a, sizeof(temp)); 6276 addrlen = sctp_get_pf_specific(sk->sk_family) 6277 ->addr_to_user(sp, &temp); 6278 if (space_left < addrlen) { 6279 err = -ENOMEM; /*fixme: right error?*/ 6280 goto out; 6281 } 6282 memcpy(buf, &temp, addrlen); 6283 buf += addrlen; 6284 bytes_copied += addrlen; 6285 cnt++; 6286 space_left -= addrlen; 6287 } 6288 6289 copy_getaddrs: 6290 if (copy_to_user(to, addrs, bytes_copied)) { 6291 err = -EFAULT; 6292 goto out; 6293 } 6294 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6295 err = -EFAULT; 6296 goto out; 6297 } 6298 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6299 * but we can't change it anymore. 6300 */ 6301 if (put_user(bytes_copied, optlen)) 6302 err = -EFAULT; 6303 out: 6304 kfree(addrs); 6305 return err; 6306 } 6307 6308 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6309 * 6310 * Requests that the local SCTP stack use the enclosed peer address as 6311 * the association primary. The enclosed address must be one of the 6312 * association peer's addresses. 6313 */ 6314 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6315 char __user *optval, int __user *optlen) 6316 { 6317 struct sctp_prim prim; 6318 struct sctp_association *asoc; 6319 struct sctp_sock *sp = sctp_sk(sk); 6320 6321 if (len < sizeof(struct sctp_prim)) 6322 return -EINVAL; 6323 6324 len = sizeof(struct sctp_prim); 6325 6326 if (copy_from_user(&prim, optval, len)) 6327 return -EFAULT; 6328 6329 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6330 if (!asoc) 6331 return -EINVAL; 6332 6333 if (!asoc->peer.primary_path) 6334 return -ENOTCONN; 6335 6336 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6337 asoc->peer.primary_path->af_specific->sockaddr_len); 6338 6339 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6340 (union sctp_addr *)&prim.ssp_addr); 6341 6342 if (put_user(len, optlen)) 6343 return -EFAULT; 6344 if (copy_to_user(optval, &prim, len)) 6345 return -EFAULT; 6346 6347 return 0; 6348 } 6349 6350 /* 6351 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6352 * 6353 * Requests that the local endpoint set the specified Adaptation Layer 6354 * Indication parameter for all future INIT and INIT-ACK exchanges. 6355 */ 6356 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6357 char __user *optval, int __user *optlen) 6358 { 6359 struct sctp_setadaptation adaptation; 6360 6361 if (len < sizeof(struct sctp_setadaptation)) 6362 return -EINVAL; 6363 6364 len = sizeof(struct sctp_setadaptation); 6365 6366 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6367 6368 if (put_user(len, optlen)) 6369 return -EFAULT; 6370 if (copy_to_user(optval, &adaptation, len)) 6371 return -EFAULT; 6372 6373 return 0; 6374 } 6375 6376 /* 6377 * 6378 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6379 * 6380 * Applications that wish to use the sendto() system call may wish to 6381 * specify a default set of parameters that would normally be supplied 6382 * through the inclusion of ancillary data. This socket option allows 6383 * such an application to set the default sctp_sndrcvinfo structure. 6384 6385 6386 * The application that wishes to use this socket option simply passes 6387 * in to this call the sctp_sndrcvinfo structure defined in Section 6388 * 5.2.2) The input parameters accepted by this call include 6389 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6390 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6391 * to this call if the caller is using the UDP model. 6392 * 6393 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6394 */ 6395 static int sctp_getsockopt_default_send_param(struct sock *sk, 6396 int len, char __user *optval, 6397 int __user *optlen) 6398 { 6399 struct sctp_sock *sp = sctp_sk(sk); 6400 struct sctp_association *asoc; 6401 struct sctp_sndrcvinfo info; 6402 6403 if (len < sizeof(info)) 6404 return -EINVAL; 6405 6406 len = sizeof(info); 6407 6408 if (copy_from_user(&info, optval, len)) 6409 return -EFAULT; 6410 6411 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6412 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6413 sctp_style(sk, UDP)) 6414 return -EINVAL; 6415 6416 if (asoc) { 6417 info.sinfo_stream = asoc->default_stream; 6418 info.sinfo_flags = asoc->default_flags; 6419 info.sinfo_ppid = asoc->default_ppid; 6420 info.sinfo_context = asoc->default_context; 6421 info.sinfo_timetolive = asoc->default_timetolive; 6422 } else { 6423 info.sinfo_stream = sp->default_stream; 6424 info.sinfo_flags = sp->default_flags; 6425 info.sinfo_ppid = sp->default_ppid; 6426 info.sinfo_context = sp->default_context; 6427 info.sinfo_timetolive = sp->default_timetolive; 6428 } 6429 6430 if (put_user(len, optlen)) 6431 return -EFAULT; 6432 if (copy_to_user(optval, &info, len)) 6433 return -EFAULT; 6434 6435 return 0; 6436 } 6437 6438 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6439 * (SCTP_DEFAULT_SNDINFO) 6440 */ 6441 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6442 char __user *optval, 6443 int __user *optlen) 6444 { 6445 struct sctp_sock *sp = sctp_sk(sk); 6446 struct sctp_association *asoc; 6447 struct sctp_sndinfo info; 6448 6449 if (len < sizeof(info)) 6450 return -EINVAL; 6451 6452 len = sizeof(info); 6453 6454 if (copy_from_user(&info, optval, len)) 6455 return -EFAULT; 6456 6457 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6458 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6459 sctp_style(sk, UDP)) 6460 return -EINVAL; 6461 6462 if (asoc) { 6463 info.snd_sid = asoc->default_stream; 6464 info.snd_flags = asoc->default_flags; 6465 info.snd_ppid = asoc->default_ppid; 6466 info.snd_context = asoc->default_context; 6467 } else { 6468 info.snd_sid = sp->default_stream; 6469 info.snd_flags = sp->default_flags; 6470 info.snd_ppid = sp->default_ppid; 6471 info.snd_context = sp->default_context; 6472 } 6473 6474 if (put_user(len, optlen)) 6475 return -EFAULT; 6476 if (copy_to_user(optval, &info, len)) 6477 return -EFAULT; 6478 6479 return 0; 6480 } 6481 6482 /* 6483 * 6484 * 7.1.5 SCTP_NODELAY 6485 * 6486 * Turn on/off any Nagle-like algorithm. This means that packets are 6487 * generally sent as soon as possible and no unnecessary delays are 6488 * introduced, at the cost of more packets in the network. Expects an 6489 * integer boolean flag. 6490 */ 6491 6492 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6493 char __user *optval, int __user *optlen) 6494 { 6495 int val; 6496 6497 if (len < sizeof(int)) 6498 return -EINVAL; 6499 6500 len = sizeof(int); 6501 val = (sctp_sk(sk)->nodelay == 1); 6502 if (put_user(len, optlen)) 6503 return -EFAULT; 6504 if (copy_to_user(optval, &val, len)) 6505 return -EFAULT; 6506 return 0; 6507 } 6508 6509 /* 6510 * 6511 * 7.1.1 SCTP_RTOINFO 6512 * 6513 * The protocol parameters used to initialize and bound retransmission 6514 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6515 * and modify these parameters. 6516 * All parameters are time values, in milliseconds. A value of 0, when 6517 * modifying the parameters, indicates that the current value should not 6518 * be changed. 6519 * 6520 */ 6521 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6522 char __user *optval, 6523 int __user *optlen) { 6524 struct sctp_rtoinfo rtoinfo; 6525 struct sctp_association *asoc; 6526 6527 if (len < sizeof (struct sctp_rtoinfo)) 6528 return -EINVAL; 6529 6530 len = sizeof(struct sctp_rtoinfo); 6531 6532 if (copy_from_user(&rtoinfo, optval, len)) 6533 return -EFAULT; 6534 6535 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6536 6537 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6538 sctp_style(sk, UDP)) 6539 return -EINVAL; 6540 6541 /* Values corresponding to the specific association. */ 6542 if (asoc) { 6543 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6544 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6545 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6546 } else { 6547 /* Values corresponding to the endpoint. */ 6548 struct sctp_sock *sp = sctp_sk(sk); 6549 6550 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6551 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6552 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6553 } 6554 6555 if (put_user(len, optlen)) 6556 return -EFAULT; 6557 6558 if (copy_to_user(optval, &rtoinfo, len)) 6559 return -EFAULT; 6560 6561 return 0; 6562 } 6563 6564 /* 6565 * 6566 * 7.1.2 SCTP_ASSOCINFO 6567 * 6568 * This option is used to tune the maximum retransmission attempts 6569 * of the association. 6570 * Returns an error if the new association retransmission value is 6571 * greater than the sum of the retransmission value of the peer. 6572 * See [SCTP] for more information. 6573 * 6574 */ 6575 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6576 char __user *optval, 6577 int __user *optlen) 6578 { 6579 6580 struct sctp_assocparams assocparams; 6581 struct sctp_association *asoc; 6582 struct list_head *pos; 6583 int cnt = 0; 6584 6585 if (len < sizeof (struct sctp_assocparams)) 6586 return -EINVAL; 6587 6588 len = sizeof(struct sctp_assocparams); 6589 6590 if (copy_from_user(&assocparams, optval, len)) 6591 return -EFAULT; 6592 6593 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6594 6595 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6596 sctp_style(sk, UDP)) 6597 return -EINVAL; 6598 6599 /* Values correspoinding to the specific association */ 6600 if (asoc) { 6601 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6602 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6603 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6604 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6605 6606 list_for_each(pos, &asoc->peer.transport_addr_list) { 6607 cnt++; 6608 } 6609 6610 assocparams.sasoc_number_peer_destinations = cnt; 6611 } else { 6612 /* Values corresponding to the endpoint */ 6613 struct sctp_sock *sp = sctp_sk(sk); 6614 6615 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6616 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6617 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6618 assocparams.sasoc_cookie_life = 6619 sp->assocparams.sasoc_cookie_life; 6620 assocparams.sasoc_number_peer_destinations = 6621 sp->assocparams. 6622 sasoc_number_peer_destinations; 6623 } 6624 6625 if (put_user(len, optlen)) 6626 return -EFAULT; 6627 6628 if (copy_to_user(optval, &assocparams, len)) 6629 return -EFAULT; 6630 6631 return 0; 6632 } 6633 6634 /* 6635 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6636 * 6637 * This socket option is a boolean flag which turns on or off mapped V4 6638 * addresses. If this option is turned on and the socket is type 6639 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6640 * If this option is turned off, then no mapping will be done of V4 6641 * addresses and a user will receive both PF_INET6 and PF_INET type 6642 * addresses on the socket. 6643 */ 6644 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6645 char __user *optval, int __user *optlen) 6646 { 6647 int val; 6648 struct sctp_sock *sp = sctp_sk(sk); 6649 6650 if (len < sizeof(int)) 6651 return -EINVAL; 6652 6653 len = sizeof(int); 6654 val = sp->v4mapped; 6655 if (put_user(len, optlen)) 6656 return -EFAULT; 6657 if (copy_to_user(optval, &val, len)) 6658 return -EFAULT; 6659 6660 return 0; 6661 } 6662 6663 /* 6664 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6665 * (chapter and verse is quoted at sctp_setsockopt_context()) 6666 */ 6667 static int sctp_getsockopt_context(struct sock *sk, int len, 6668 char __user *optval, int __user *optlen) 6669 { 6670 struct sctp_assoc_value params; 6671 struct sctp_association *asoc; 6672 6673 if (len < sizeof(struct sctp_assoc_value)) 6674 return -EINVAL; 6675 6676 len = sizeof(struct sctp_assoc_value); 6677 6678 if (copy_from_user(¶ms, optval, len)) 6679 return -EFAULT; 6680 6681 asoc = sctp_id2assoc(sk, params.assoc_id); 6682 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6683 sctp_style(sk, UDP)) 6684 return -EINVAL; 6685 6686 params.assoc_value = asoc ? asoc->default_rcv_context 6687 : sctp_sk(sk)->default_rcv_context; 6688 6689 if (put_user(len, optlen)) 6690 return -EFAULT; 6691 if (copy_to_user(optval, ¶ms, len)) 6692 return -EFAULT; 6693 6694 return 0; 6695 } 6696 6697 /* 6698 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6699 * This option will get or set the maximum size to put in any outgoing 6700 * SCTP DATA chunk. If a message is larger than this size it will be 6701 * fragmented by SCTP into the specified size. Note that the underlying 6702 * SCTP implementation may fragment into smaller sized chunks when the 6703 * PMTU of the underlying association is smaller than the value set by 6704 * the user. The default value for this option is '0' which indicates 6705 * the user is NOT limiting fragmentation and only the PMTU will effect 6706 * SCTP's choice of DATA chunk size. Note also that values set larger 6707 * than the maximum size of an IP datagram will effectively let SCTP 6708 * control fragmentation (i.e. the same as setting this option to 0). 6709 * 6710 * The following structure is used to access and modify this parameter: 6711 * 6712 * struct sctp_assoc_value { 6713 * sctp_assoc_t assoc_id; 6714 * uint32_t assoc_value; 6715 * }; 6716 * 6717 * assoc_id: This parameter is ignored for one-to-one style sockets. 6718 * For one-to-many style sockets this parameter indicates which 6719 * association the user is performing an action upon. Note that if 6720 * this field's value is zero then the endpoints default value is 6721 * changed (effecting future associations only). 6722 * assoc_value: This parameter specifies the maximum size in bytes. 6723 */ 6724 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6725 char __user *optval, int __user *optlen) 6726 { 6727 struct sctp_assoc_value params; 6728 struct sctp_association *asoc; 6729 6730 if (len == sizeof(int)) { 6731 pr_warn_ratelimited(DEPRECATED 6732 "%s (pid %d) " 6733 "Use of int in maxseg socket option.\n" 6734 "Use struct sctp_assoc_value instead\n", 6735 current->comm, task_pid_nr(current)); 6736 params.assoc_id = SCTP_FUTURE_ASSOC; 6737 } else if (len >= sizeof(struct sctp_assoc_value)) { 6738 len = sizeof(struct sctp_assoc_value); 6739 if (copy_from_user(¶ms, optval, len)) 6740 return -EFAULT; 6741 } else 6742 return -EINVAL; 6743 6744 asoc = sctp_id2assoc(sk, params.assoc_id); 6745 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6746 sctp_style(sk, UDP)) 6747 return -EINVAL; 6748 6749 if (asoc) 6750 params.assoc_value = asoc->frag_point; 6751 else 6752 params.assoc_value = sctp_sk(sk)->user_frag; 6753 6754 if (put_user(len, optlen)) 6755 return -EFAULT; 6756 if (len == sizeof(int)) { 6757 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6758 return -EFAULT; 6759 } else { 6760 if (copy_to_user(optval, ¶ms, len)) 6761 return -EFAULT; 6762 } 6763 6764 return 0; 6765 } 6766 6767 /* 6768 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6769 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6770 */ 6771 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6772 char __user *optval, int __user *optlen) 6773 { 6774 int val; 6775 6776 if (len < sizeof(int)) 6777 return -EINVAL; 6778 6779 len = sizeof(int); 6780 6781 val = sctp_sk(sk)->frag_interleave; 6782 if (put_user(len, optlen)) 6783 return -EFAULT; 6784 if (copy_to_user(optval, &val, len)) 6785 return -EFAULT; 6786 6787 return 0; 6788 } 6789 6790 /* 6791 * 7.1.25. Set or Get the sctp partial delivery point 6792 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6793 */ 6794 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6795 char __user *optval, 6796 int __user *optlen) 6797 { 6798 u32 val; 6799 6800 if (len < sizeof(u32)) 6801 return -EINVAL; 6802 6803 len = sizeof(u32); 6804 6805 val = sctp_sk(sk)->pd_point; 6806 if (put_user(len, optlen)) 6807 return -EFAULT; 6808 if (copy_to_user(optval, &val, len)) 6809 return -EFAULT; 6810 6811 return 0; 6812 } 6813 6814 /* 6815 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6816 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6817 */ 6818 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6819 char __user *optval, 6820 int __user *optlen) 6821 { 6822 struct sctp_assoc_value params; 6823 struct sctp_association *asoc; 6824 6825 if (len == sizeof(int)) { 6826 pr_warn_ratelimited(DEPRECATED 6827 "%s (pid %d) " 6828 "Use of int in max_burst socket option.\n" 6829 "Use struct sctp_assoc_value instead\n", 6830 current->comm, task_pid_nr(current)); 6831 params.assoc_id = SCTP_FUTURE_ASSOC; 6832 } else if (len >= sizeof(struct sctp_assoc_value)) { 6833 len = sizeof(struct sctp_assoc_value); 6834 if (copy_from_user(¶ms, optval, len)) 6835 return -EFAULT; 6836 } else 6837 return -EINVAL; 6838 6839 asoc = sctp_id2assoc(sk, params.assoc_id); 6840 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6841 sctp_style(sk, UDP)) 6842 return -EINVAL; 6843 6844 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6845 6846 if (len == sizeof(int)) { 6847 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6848 return -EFAULT; 6849 } else { 6850 if (copy_to_user(optval, ¶ms, len)) 6851 return -EFAULT; 6852 } 6853 6854 return 0; 6855 6856 } 6857 6858 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6859 char __user *optval, int __user *optlen) 6860 { 6861 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6862 struct sctp_hmacalgo __user *p = (void __user *)optval; 6863 struct sctp_hmac_algo_param *hmacs; 6864 __u16 data_len = 0; 6865 u32 num_idents; 6866 int i; 6867 6868 if (!ep->auth_enable) 6869 return -EACCES; 6870 6871 hmacs = ep->auth_hmacs_list; 6872 data_len = ntohs(hmacs->param_hdr.length) - 6873 sizeof(struct sctp_paramhdr); 6874 6875 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6876 return -EINVAL; 6877 6878 len = sizeof(struct sctp_hmacalgo) + data_len; 6879 num_idents = data_len / sizeof(u16); 6880 6881 if (put_user(len, optlen)) 6882 return -EFAULT; 6883 if (put_user(num_idents, &p->shmac_num_idents)) 6884 return -EFAULT; 6885 for (i = 0; i < num_idents; i++) { 6886 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6887 6888 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6889 return -EFAULT; 6890 } 6891 return 0; 6892 } 6893 6894 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6895 char __user *optval, int __user *optlen) 6896 { 6897 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6898 struct sctp_authkeyid val; 6899 struct sctp_association *asoc; 6900 6901 if (len < sizeof(struct sctp_authkeyid)) 6902 return -EINVAL; 6903 6904 len = sizeof(struct sctp_authkeyid); 6905 if (copy_from_user(&val, optval, len)) 6906 return -EFAULT; 6907 6908 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6909 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6910 return -EINVAL; 6911 6912 if (asoc) { 6913 if (!asoc->peer.auth_capable) 6914 return -EACCES; 6915 val.scact_keynumber = asoc->active_key_id; 6916 } else { 6917 if (!ep->auth_enable) 6918 return -EACCES; 6919 val.scact_keynumber = ep->active_key_id; 6920 } 6921 6922 if (put_user(len, optlen)) 6923 return -EFAULT; 6924 if (copy_to_user(optval, &val, len)) 6925 return -EFAULT; 6926 6927 return 0; 6928 } 6929 6930 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6931 char __user *optval, int __user *optlen) 6932 { 6933 struct sctp_authchunks __user *p = (void __user *)optval; 6934 struct sctp_authchunks val; 6935 struct sctp_association *asoc; 6936 struct sctp_chunks_param *ch; 6937 u32 num_chunks = 0; 6938 char __user *to; 6939 6940 if (len < sizeof(struct sctp_authchunks)) 6941 return -EINVAL; 6942 6943 if (copy_from_user(&val, optval, sizeof(val))) 6944 return -EFAULT; 6945 6946 to = p->gauth_chunks; 6947 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6948 if (!asoc) 6949 return -EINVAL; 6950 6951 if (!asoc->peer.auth_capable) 6952 return -EACCES; 6953 6954 ch = asoc->peer.peer_chunks; 6955 if (!ch) 6956 goto num; 6957 6958 /* See if the user provided enough room for all the data */ 6959 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6960 if (len < num_chunks) 6961 return -EINVAL; 6962 6963 if (copy_to_user(to, ch->chunks, num_chunks)) 6964 return -EFAULT; 6965 num: 6966 len = sizeof(struct sctp_authchunks) + num_chunks; 6967 if (put_user(len, optlen)) 6968 return -EFAULT; 6969 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6970 return -EFAULT; 6971 return 0; 6972 } 6973 6974 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6975 char __user *optval, int __user *optlen) 6976 { 6977 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6978 struct sctp_authchunks __user *p = (void __user *)optval; 6979 struct sctp_authchunks val; 6980 struct sctp_association *asoc; 6981 struct sctp_chunks_param *ch; 6982 u32 num_chunks = 0; 6983 char __user *to; 6984 6985 if (len < sizeof(struct sctp_authchunks)) 6986 return -EINVAL; 6987 6988 if (copy_from_user(&val, optval, sizeof(val))) 6989 return -EFAULT; 6990 6991 to = p->gauth_chunks; 6992 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6993 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 6994 sctp_style(sk, UDP)) 6995 return -EINVAL; 6996 6997 if (asoc) { 6998 if (!asoc->peer.auth_capable) 6999 return -EACCES; 7000 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7001 } else { 7002 if (!ep->auth_enable) 7003 return -EACCES; 7004 ch = ep->auth_chunk_list; 7005 } 7006 if (!ch) 7007 goto num; 7008 7009 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7010 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7011 return -EINVAL; 7012 7013 if (copy_to_user(to, ch->chunks, num_chunks)) 7014 return -EFAULT; 7015 num: 7016 len = sizeof(struct sctp_authchunks) + num_chunks; 7017 if (put_user(len, optlen)) 7018 return -EFAULT; 7019 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7020 return -EFAULT; 7021 7022 return 0; 7023 } 7024 7025 /* 7026 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7027 * This option gets the current number of associations that are attached 7028 * to a one-to-many style socket. The option value is an uint32_t. 7029 */ 7030 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7031 char __user *optval, int __user *optlen) 7032 { 7033 struct sctp_sock *sp = sctp_sk(sk); 7034 struct sctp_association *asoc; 7035 u32 val = 0; 7036 7037 if (sctp_style(sk, TCP)) 7038 return -EOPNOTSUPP; 7039 7040 if (len < sizeof(u32)) 7041 return -EINVAL; 7042 7043 len = sizeof(u32); 7044 7045 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7046 val++; 7047 } 7048 7049 if (put_user(len, optlen)) 7050 return -EFAULT; 7051 if (copy_to_user(optval, &val, len)) 7052 return -EFAULT; 7053 7054 return 0; 7055 } 7056 7057 /* 7058 * 8.1.23 SCTP_AUTO_ASCONF 7059 * See the corresponding setsockopt entry as description 7060 */ 7061 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7062 char __user *optval, int __user *optlen) 7063 { 7064 int val = 0; 7065 7066 if (len < sizeof(int)) 7067 return -EINVAL; 7068 7069 len = sizeof(int); 7070 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7071 val = 1; 7072 if (put_user(len, optlen)) 7073 return -EFAULT; 7074 if (copy_to_user(optval, &val, len)) 7075 return -EFAULT; 7076 return 0; 7077 } 7078 7079 /* 7080 * 8.2.6. Get the Current Identifiers of Associations 7081 * (SCTP_GET_ASSOC_ID_LIST) 7082 * 7083 * This option gets the current list of SCTP association identifiers of 7084 * the SCTP associations handled by a one-to-many style socket. 7085 */ 7086 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7087 char __user *optval, int __user *optlen) 7088 { 7089 struct sctp_sock *sp = sctp_sk(sk); 7090 struct sctp_association *asoc; 7091 struct sctp_assoc_ids *ids; 7092 u32 num = 0; 7093 7094 if (sctp_style(sk, TCP)) 7095 return -EOPNOTSUPP; 7096 7097 if (len < sizeof(struct sctp_assoc_ids)) 7098 return -EINVAL; 7099 7100 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7101 num++; 7102 } 7103 7104 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7105 return -EINVAL; 7106 7107 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7108 7109 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7110 if (unlikely(!ids)) 7111 return -ENOMEM; 7112 7113 ids->gaids_number_of_ids = num; 7114 num = 0; 7115 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7116 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7117 } 7118 7119 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7120 kfree(ids); 7121 return -EFAULT; 7122 } 7123 7124 kfree(ids); 7125 return 0; 7126 } 7127 7128 /* 7129 * SCTP_PEER_ADDR_THLDS 7130 * 7131 * This option allows us to fetch the partially failed threshold for one or all 7132 * transports in an association. See Section 6.1 of: 7133 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7134 */ 7135 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7136 char __user *optval, int len, 7137 int __user *optlen, bool v2) 7138 { 7139 struct sctp_paddrthlds_v2 val; 7140 struct sctp_transport *trans; 7141 struct sctp_association *asoc; 7142 int min; 7143 7144 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7145 if (len < min) 7146 return -EINVAL; 7147 len = min; 7148 if (copy_from_user(&val, optval, len)) 7149 return -EFAULT; 7150 7151 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7152 trans = sctp_addr_id2transport(sk, &val.spt_address, 7153 val.spt_assoc_id); 7154 if (!trans) 7155 return -ENOENT; 7156 7157 val.spt_pathmaxrxt = trans->pathmaxrxt; 7158 val.spt_pathpfthld = trans->pf_retrans; 7159 val.spt_pathcpthld = trans->ps_retrans; 7160 7161 goto out; 7162 } 7163 7164 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7165 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7166 sctp_style(sk, UDP)) 7167 return -EINVAL; 7168 7169 if (asoc) { 7170 val.spt_pathpfthld = asoc->pf_retrans; 7171 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7172 val.spt_pathcpthld = asoc->ps_retrans; 7173 } else { 7174 struct sctp_sock *sp = sctp_sk(sk); 7175 7176 val.spt_pathpfthld = sp->pf_retrans; 7177 val.spt_pathmaxrxt = sp->pathmaxrxt; 7178 val.spt_pathcpthld = sp->ps_retrans; 7179 } 7180 7181 out: 7182 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7183 return -EFAULT; 7184 7185 return 0; 7186 } 7187 7188 /* 7189 * SCTP_GET_ASSOC_STATS 7190 * 7191 * This option retrieves local per endpoint statistics. It is modeled 7192 * after OpenSolaris' implementation 7193 */ 7194 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7195 char __user *optval, 7196 int __user *optlen) 7197 { 7198 struct sctp_assoc_stats sas; 7199 struct sctp_association *asoc = NULL; 7200 7201 /* User must provide at least the assoc id */ 7202 if (len < sizeof(sctp_assoc_t)) 7203 return -EINVAL; 7204 7205 /* Allow the struct to grow and fill in as much as possible */ 7206 len = min_t(size_t, len, sizeof(sas)); 7207 7208 if (copy_from_user(&sas, optval, len)) 7209 return -EFAULT; 7210 7211 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7212 if (!asoc) 7213 return -EINVAL; 7214 7215 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7216 sas.sas_gapcnt = asoc->stats.gapcnt; 7217 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7218 sas.sas_osacks = asoc->stats.osacks; 7219 sas.sas_isacks = asoc->stats.isacks; 7220 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7221 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7222 sas.sas_oodchunks = asoc->stats.oodchunks; 7223 sas.sas_iodchunks = asoc->stats.iodchunks; 7224 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7225 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7226 sas.sas_idupchunks = asoc->stats.idupchunks; 7227 sas.sas_opackets = asoc->stats.opackets; 7228 sas.sas_ipackets = asoc->stats.ipackets; 7229 7230 /* New high max rto observed, will return 0 if not a single 7231 * RTO update took place. obs_rto_ipaddr will be bogus 7232 * in such a case 7233 */ 7234 sas.sas_maxrto = asoc->stats.max_obs_rto; 7235 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7236 sizeof(struct sockaddr_storage)); 7237 7238 /* Mark beginning of a new observation period */ 7239 asoc->stats.max_obs_rto = asoc->rto_min; 7240 7241 if (put_user(len, optlen)) 7242 return -EFAULT; 7243 7244 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7245 7246 if (copy_to_user(optval, &sas, len)) 7247 return -EFAULT; 7248 7249 return 0; 7250 } 7251 7252 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7253 char __user *optval, 7254 int __user *optlen) 7255 { 7256 int val = 0; 7257 7258 if (len < sizeof(int)) 7259 return -EINVAL; 7260 7261 len = sizeof(int); 7262 if (sctp_sk(sk)->recvrcvinfo) 7263 val = 1; 7264 if (put_user(len, optlen)) 7265 return -EFAULT; 7266 if (copy_to_user(optval, &val, len)) 7267 return -EFAULT; 7268 7269 return 0; 7270 } 7271 7272 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7273 char __user *optval, 7274 int __user *optlen) 7275 { 7276 int val = 0; 7277 7278 if (len < sizeof(int)) 7279 return -EINVAL; 7280 7281 len = sizeof(int); 7282 if (sctp_sk(sk)->recvnxtinfo) 7283 val = 1; 7284 if (put_user(len, optlen)) 7285 return -EFAULT; 7286 if (copy_to_user(optval, &val, len)) 7287 return -EFAULT; 7288 7289 return 0; 7290 } 7291 7292 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7293 char __user *optval, 7294 int __user *optlen) 7295 { 7296 struct sctp_assoc_value params; 7297 struct sctp_association *asoc; 7298 int retval = -EFAULT; 7299 7300 if (len < sizeof(params)) { 7301 retval = -EINVAL; 7302 goto out; 7303 } 7304 7305 len = sizeof(params); 7306 if (copy_from_user(¶ms, optval, len)) 7307 goto out; 7308 7309 asoc = sctp_id2assoc(sk, params.assoc_id); 7310 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7311 sctp_style(sk, UDP)) { 7312 retval = -EINVAL; 7313 goto out; 7314 } 7315 7316 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7317 : sctp_sk(sk)->ep->prsctp_enable; 7318 7319 if (put_user(len, optlen)) 7320 goto out; 7321 7322 if (copy_to_user(optval, ¶ms, len)) 7323 goto out; 7324 7325 retval = 0; 7326 7327 out: 7328 return retval; 7329 } 7330 7331 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7332 char __user *optval, 7333 int __user *optlen) 7334 { 7335 struct sctp_default_prinfo info; 7336 struct sctp_association *asoc; 7337 int retval = -EFAULT; 7338 7339 if (len < sizeof(info)) { 7340 retval = -EINVAL; 7341 goto out; 7342 } 7343 7344 len = sizeof(info); 7345 if (copy_from_user(&info, optval, len)) 7346 goto out; 7347 7348 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7349 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7350 sctp_style(sk, UDP)) { 7351 retval = -EINVAL; 7352 goto out; 7353 } 7354 7355 if (asoc) { 7356 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7357 info.pr_value = asoc->default_timetolive; 7358 } else { 7359 struct sctp_sock *sp = sctp_sk(sk); 7360 7361 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7362 info.pr_value = sp->default_timetolive; 7363 } 7364 7365 if (put_user(len, optlen)) 7366 goto out; 7367 7368 if (copy_to_user(optval, &info, len)) 7369 goto out; 7370 7371 retval = 0; 7372 7373 out: 7374 return retval; 7375 } 7376 7377 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7378 char __user *optval, 7379 int __user *optlen) 7380 { 7381 struct sctp_prstatus params; 7382 struct sctp_association *asoc; 7383 int policy; 7384 int retval = -EINVAL; 7385 7386 if (len < sizeof(params)) 7387 goto out; 7388 7389 len = sizeof(params); 7390 if (copy_from_user(¶ms, optval, len)) { 7391 retval = -EFAULT; 7392 goto out; 7393 } 7394 7395 policy = params.sprstat_policy; 7396 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7397 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7398 goto out; 7399 7400 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7401 if (!asoc) 7402 goto out; 7403 7404 if (policy == SCTP_PR_SCTP_ALL) { 7405 params.sprstat_abandoned_unsent = 0; 7406 params.sprstat_abandoned_sent = 0; 7407 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7408 params.sprstat_abandoned_unsent += 7409 asoc->abandoned_unsent[policy]; 7410 params.sprstat_abandoned_sent += 7411 asoc->abandoned_sent[policy]; 7412 } 7413 } else { 7414 params.sprstat_abandoned_unsent = 7415 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7416 params.sprstat_abandoned_sent = 7417 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7418 } 7419 7420 if (put_user(len, optlen)) { 7421 retval = -EFAULT; 7422 goto out; 7423 } 7424 7425 if (copy_to_user(optval, ¶ms, len)) { 7426 retval = -EFAULT; 7427 goto out; 7428 } 7429 7430 retval = 0; 7431 7432 out: 7433 return retval; 7434 } 7435 7436 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7437 char __user *optval, 7438 int __user *optlen) 7439 { 7440 struct sctp_stream_out_ext *streamoute; 7441 struct sctp_association *asoc; 7442 struct sctp_prstatus params; 7443 int retval = -EINVAL; 7444 int policy; 7445 7446 if (len < sizeof(params)) 7447 goto out; 7448 7449 len = sizeof(params); 7450 if (copy_from_user(¶ms, optval, len)) { 7451 retval = -EFAULT; 7452 goto out; 7453 } 7454 7455 policy = params.sprstat_policy; 7456 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7457 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7458 goto out; 7459 7460 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7461 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7462 goto out; 7463 7464 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7465 if (!streamoute) { 7466 /* Not allocated yet, means all stats are 0 */ 7467 params.sprstat_abandoned_unsent = 0; 7468 params.sprstat_abandoned_sent = 0; 7469 retval = 0; 7470 goto out; 7471 } 7472 7473 if (policy == SCTP_PR_SCTP_ALL) { 7474 params.sprstat_abandoned_unsent = 0; 7475 params.sprstat_abandoned_sent = 0; 7476 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7477 params.sprstat_abandoned_unsent += 7478 streamoute->abandoned_unsent[policy]; 7479 params.sprstat_abandoned_sent += 7480 streamoute->abandoned_sent[policy]; 7481 } 7482 } else { 7483 params.sprstat_abandoned_unsent = 7484 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7485 params.sprstat_abandoned_sent = 7486 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7487 } 7488 7489 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7490 retval = -EFAULT; 7491 goto out; 7492 } 7493 7494 retval = 0; 7495 7496 out: 7497 return retval; 7498 } 7499 7500 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7501 char __user *optval, 7502 int __user *optlen) 7503 { 7504 struct sctp_assoc_value params; 7505 struct sctp_association *asoc; 7506 int retval = -EFAULT; 7507 7508 if (len < sizeof(params)) { 7509 retval = -EINVAL; 7510 goto out; 7511 } 7512 7513 len = sizeof(params); 7514 if (copy_from_user(¶ms, optval, len)) 7515 goto out; 7516 7517 asoc = sctp_id2assoc(sk, params.assoc_id); 7518 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7519 sctp_style(sk, UDP)) { 7520 retval = -EINVAL; 7521 goto out; 7522 } 7523 7524 params.assoc_value = asoc ? asoc->peer.reconf_capable 7525 : sctp_sk(sk)->ep->reconf_enable; 7526 7527 if (put_user(len, optlen)) 7528 goto out; 7529 7530 if (copy_to_user(optval, ¶ms, len)) 7531 goto out; 7532 7533 retval = 0; 7534 7535 out: 7536 return retval; 7537 } 7538 7539 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7540 char __user *optval, 7541 int __user *optlen) 7542 { 7543 struct sctp_assoc_value params; 7544 struct sctp_association *asoc; 7545 int retval = -EFAULT; 7546 7547 if (len < sizeof(params)) { 7548 retval = -EINVAL; 7549 goto out; 7550 } 7551 7552 len = sizeof(params); 7553 if (copy_from_user(¶ms, optval, len)) 7554 goto out; 7555 7556 asoc = sctp_id2assoc(sk, params.assoc_id); 7557 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7558 sctp_style(sk, UDP)) { 7559 retval = -EINVAL; 7560 goto out; 7561 } 7562 7563 params.assoc_value = asoc ? asoc->strreset_enable 7564 : sctp_sk(sk)->ep->strreset_enable; 7565 7566 if (put_user(len, optlen)) 7567 goto out; 7568 7569 if (copy_to_user(optval, ¶ms, len)) 7570 goto out; 7571 7572 retval = 0; 7573 7574 out: 7575 return retval; 7576 } 7577 7578 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7579 char __user *optval, 7580 int __user *optlen) 7581 { 7582 struct sctp_assoc_value params; 7583 struct sctp_association *asoc; 7584 int retval = -EFAULT; 7585 7586 if (len < sizeof(params)) { 7587 retval = -EINVAL; 7588 goto out; 7589 } 7590 7591 len = sizeof(params); 7592 if (copy_from_user(¶ms, optval, len)) 7593 goto out; 7594 7595 asoc = sctp_id2assoc(sk, params.assoc_id); 7596 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7597 sctp_style(sk, UDP)) { 7598 retval = -EINVAL; 7599 goto out; 7600 } 7601 7602 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7603 : sctp_sk(sk)->default_ss; 7604 7605 if (put_user(len, optlen)) 7606 goto out; 7607 7608 if (copy_to_user(optval, ¶ms, len)) 7609 goto out; 7610 7611 retval = 0; 7612 7613 out: 7614 return retval; 7615 } 7616 7617 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7618 char __user *optval, 7619 int __user *optlen) 7620 { 7621 struct sctp_stream_value params; 7622 struct sctp_association *asoc; 7623 int retval = -EFAULT; 7624 7625 if (len < sizeof(params)) { 7626 retval = -EINVAL; 7627 goto out; 7628 } 7629 7630 len = sizeof(params); 7631 if (copy_from_user(¶ms, optval, len)) 7632 goto out; 7633 7634 asoc = sctp_id2assoc(sk, params.assoc_id); 7635 if (!asoc) { 7636 retval = -EINVAL; 7637 goto out; 7638 } 7639 7640 retval = sctp_sched_get_value(asoc, params.stream_id, 7641 ¶ms.stream_value); 7642 if (retval) 7643 goto out; 7644 7645 if (put_user(len, optlen)) { 7646 retval = -EFAULT; 7647 goto out; 7648 } 7649 7650 if (copy_to_user(optval, ¶ms, len)) { 7651 retval = -EFAULT; 7652 goto out; 7653 } 7654 7655 out: 7656 return retval; 7657 } 7658 7659 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7660 char __user *optval, 7661 int __user *optlen) 7662 { 7663 struct sctp_assoc_value params; 7664 struct sctp_association *asoc; 7665 int retval = -EFAULT; 7666 7667 if (len < sizeof(params)) { 7668 retval = -EINVAL; 7669 goto out; 7670 } 7671 7672 len = sizeof(params); 7673 if (copy_from_user(¶ms, optval, len)) 7674 goto out; 7675 7676 asoc = sctp_id2assoc(sk, params.assoc_id); 7677 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7678 sctp_style(sk, UDP)) { 7679 retval = -EINVAL; 7680 goto out; 7681 } 7682 7683 params.assoc_value = asoc ? asoc->peer.intl_capable 7684 : sctp_sk(sk)->ep->intl_enable; 7685 7686 if (put_user(len, optlen)) 7687 goto out; 7688 7689 if (copy_to_user(optval, ¶ms, len)) 7690 goto out; 7691 7692 retval = 0; 7693 7694 out: 7695 return retval; 7696 } 7697 7698 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7699 char __user *optval, 7700 int __user *optlen) 7701 { 7702 int val; 7703 7704 if (len < sizeof(int)) 7705 return -EINVAL; 7706 7707 len = sizeof(int); 7708 val = sctp_sk(sk)->reuse; 7709 if (put_user(len, optlen)) 7710 return -EFAULT; 7711 7712 if (copy_to_user(optval, &val, len)) 7713 return -EFAULT; 7714 7715 return 0; 7716 } 7717 7718 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7719 int __user *optlen) 7720 { 7721 struct sctp_association *asoc; 7722 struct sctp_event param; 7723 __u16 subscribe; 7724 7725 if (len < sizeof(param)) 7726 return -EINVAL; 7727 7728 len = sizeof(param); 7729 if (copy_from_user(¶m, optval, len)) 7730 return -EFAULT; 7731 7732 if (param.se_type < SCTP_SN_TYPE_BASE || 7733 param.se_type > SCTP_SN_TYPE_MAX) 7734 return -EINVAL; 7735 7736 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7737 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7738 sctp_style(sk, UDP)) 7739 return -EINVAL; 7740 7741 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7742 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7743 7744 if (put_user(len, optlen)) 7745 return -EFAULT; 7746 7747 if (copy_to_user(optval, ¶m, len)) 7748 return -EFAULT; 7749 7750 return 0; 7751 } 7752 7753 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7754 char __user *optval, 7755 int __user *optlen) 7756 { 7757 struct sctp_assoc_value params; 7758 struct sctp_association *asoc; 7759 int retval = -EFAULT; 7760 7761 if (len < sizeof(params)) { 7762 retval = -EINVAL; 7763 goto out; 7764 } 7765 7766 len = sizeof(params); 7767 if (copy_from_user(¶ms, optval, len)) 7768 goto out; 7769 7770 asoc = sctp_id2assoc(sk, params.assoc_id); 7771 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7772 sctp_style(sk, UDP)) { 7773 retval = -EINVAL; 7774 goto out; 7775 } 7776 7777 params.assoc_value = asoc ? asoc->peer.asconf_capable 7778 : sctp_sk(sk)->ep->asconf_enable; 7779 7780 if (put_user(len, optlen)) 7781 goto out; 7782 7783 if (copy_to_user(optval, ¶ms, len)) 7784 goto out; 7785 7786 retval = 0; 7787 7788 out: 7789 return retval; 7790 } 7791 7792 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7793 char __user *optval, 7794 int __user *optlen) 7795 { 7796 struct sctp_assoc_value params; 7797 struct sctp_association *asoc; 7798 int retval = -EFAULT; 7799 7800 if (len < sizeof(params)) { 7801 retval = -EINVAL; 7802 goto out; 7803 } 7804 7805 len = sizeof(params); 7806 if (copy_from_user(¶ms, optval, len)) 7807 goto out; 7808 7809 asoc = sctp_id2assoc(sk, params.assoc_id); 7810 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7811 sctp_style(sk, UDP)) { 7812 retval = -EINVAL; 7813 goto out; 7814 } 7815 7816 params.assoc_value = asoc ? asoc->peer.auth_capable 7817 : sctp_sk(sk)->ep->auth_enable; 7818 7819 if (put_user(len, optlen)) 7820 goto out; 7821 7822 if (copy_to_user(optval, ¶ms, len)) 7823 goto out; 7824 7825 retval = 0; 7826 7827 out: 7828 return retval; 7829 } 7830 7831 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7832 char __user *optval, 7833 int __user *optlen) 7834 { 7835 struct sctp_assoc_value params; 7836 struct sctp_association *asoc; 7837 int retval = -EFAULT; 7838 7839 if (len < sizeof(params)) { 7840 retval = -EINVAL; 7841 goto out; 7842 } 7843 7844 len = sizeof(params); 7845 if (copy_from_user(¶ms, optval, len)) 7846 goto out; 7847 7848 asoc = sctp_id2assoc(sk, params.assoc_id); 7849 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7850 sctp_style(sk, UDP)) { 7851 retval = -EINVAL; 7852 goto out; 7853 } 7854 7855 params.assoc_value = asoc ? asoc->peer.ecn_capable 7856 : sctp_sk(sk)->ep->ecn_enable; 7857 7858 if (put_user(len, optlen)) 7859 goto out; 7860 7861 if (copy_to_user(optval, ¶ms, len)) 7862 goto out; 7863 7864 retval = 0; 7865 7866 out: 7867 return retval; 7868 } 7869 7870 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7871 char __user *optval, 7872 int __user *optlen) 7873 { 7874 struct sctp_assoc_value params; 7875 struct sctp_association *asoc; 7876 int retval = -EFAULT; 7877 7878 if (len < sizeof(params)) { 7879 retval = -EINVAL; 7880 goto out; 7881 } 7882 7883 len = sizeof(params); 7884 if (copy_from_user(¶ms, optval, len)) 7885 goto out; 7886 7887 asoc = sctp_id2assoc(sk, params.assoc_id); 7888 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7889 sctp_style(sk, UDP)) { 7890 retval = -EINVAL; 7891 goto out; 7892 } 7893 7894 params.assoc_value = asoc ? asoc->pf_expose 7895 : sctp_sk(sk)->pf_expose; 7896 7897 if (put_user(len, optlen)) 7898 goto out; 7899 7900 if (copy_to_user(optval, ¶ms, len)) 7901 goto out; 7902 7903 retval = 0; 7904 7905 out: 7906 return retval; 7907 } 7908 7909 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7910 char __user *optval, int __user *optlen) 7911 { 7912 struct sctp_association *asoc; 7913 struct sctp_udpencaps encap; 7914 struct sctp_transport *t; 7915 __be16 encap_port; 7916 7917 if (len < sizeof(encap)) 7918 return -EINVAL; 7919 7920 len = sizeof(encap); 7921 if (copy_from_user(&encap, optval, len)) 7922 return -EFAULT; 7923 7924 /* If an address other than INADDR_ANY is specified, and 7925 * no transport is found, then the request is invalid. 7926 */ 7927 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7928 t = sctp_addr_id2transport(sk, &encap.sue_address, 7929 encap.sue_assoc_id); 7930 if (!t) { 7931 pr_debug("%s: failed no transport\n", __func__); 7932 return -EINVAL; 7933 } 7934 7935 encap_port = t->encap_port; 7936 goto out; 7937 } 7938 7939 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7940 * socket is a one to many style socket, and an association 7941 * was not found, then the id was invalid. 7942 */ 7943 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7944 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7945 sctp_style(sk, UDP)) { 7946 pr_debug("%s: failed no association\n", __func__); 7947 return -EINVAL; 7948 } 7949 7950 if (asoc) { 7951 encap_port = asoc->encap_port; 7952 goto out; 7953 } 7954 7955 encap_port = sctp_sk(sk)->encap_port; 7956 7957 out: 7958 encap.sue_port = (__force uint16_t)encap_port; 7959 if (copy_to_user(optval, &encap, len)) 7960 return -EFAULT; 7961 7962 if (put_user(len, optlen)) 7963 return -EFAULT; 7964 7965 return 0; 7966 } 7967 7968 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 7969 char __user *optval, 7970 int __user *optlen) 7971 { 7972 struct sctp_probeinterval params; 7973 struct sctp_association *asoc; 7974 struct sctp_transport *t; 7975 __u32 probe_interval; 7976 7977 if (len < sizeof(params)) 7978 return -EINVAL; 7979 7980 len = sizeof(params); 7981 if (copy_from_user(¶ms, optval, len)) 7982 return -EFAULT; 7983 7984 /* If an address other than INADDR_ANY is specified, and 7985 * no transport is found, then the request is invalid. 7986 */ 7987 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 7988 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 7989 params.spi_assoc_id); 7990 if (!t) { 7991 pr_debug("%s: failed no transport\n", __func__); 7992 return -EINVAL; 7993 } 7994 7995 probe_interval = jiffies_to_msecs(t->probe_interval); 7996 goto out; 7997 } 7998 7999 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8000 * socket is a one to many style socket, and an association 8001 * was not found, then the id was invalid. 8002 */ 8003 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8004 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8005 sctp_style(sk, UDP)) { 8006 pr_debug("%s: failed no association\n", __func__); 8007 return -EINVAL; 8008 } 8009 8010 if (asoc) { 8011 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8012 goto out; 8013 } 8014 8015 probe_interval = sctp_sk(sk)->probe_interval; 8016 8017 out: 8018 params.spi_interval = probe_interval; 8019 if (copy_to_user(optval, ¶ms, len)) 8020 return -EFAULT; 8021 8022 if (put_user(len, optlen)) 8023 return -EFAULT; 8024 8025 return 0; 8026 } 8027 8028 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8029 char __user *optval, int __user *optlen) 8030 { 8031 int retval = 0; 8032 int len; 8033 8034 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8035 8036 /* I can hardly begin to describe how wrong this is. This is 8037 * so broken as to be worse than useless. The API draft 8038 * REALLY is NOT helpful here... I am not convinced that the 8039 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8040 * are at all well-founded. 8041 */ 8042 if (level != SOL_SCTP) { 8043 struct sctp_af *af = sctp_sk(sk)->pf->af; 8044 8045 retval = af->getsockopt(sk, level, optname, optval, optlen); 8046 return retval; 8047 } 8048 8049 if (get_user(len, optlen)) 8050 return -EFAULT; 8051 8052 if (len < 0) 8053 return -EINVAL; 8054 8055 lock_sock(sk); 8056 8057 switch (optname) { 8058 case SCTP_STATUS: 8059 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8060 break; 8061 case SCTP_DISABLE_FRAGMENTS: 8062 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8063 optlen); 8064 break; 8065 case SCTP_EVENTS: 8066 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8067 break; 8068 case SCTP_AUTOCLOSE: 8069 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8070 break; 8071 case SCTP_SOCKOPT_PEELOFF: 8072 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8073 break; 8074 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8075 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8076 break; 8077 case SCTP_PEER_ADDR_PARAMS: 8078 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8079 optlen); 8080 break; 8081 case SCTP_DELAYED_SACK: 8082 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8083 optlen); 8084 break; 8085 case SCTP_INITMSG: 8086 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8087 break; 8088 case SCTP_GET_PEER_ADDRS: 8089 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8090 optlen); 8091 break; 8092 case SCTP_GET_LOCAL_ADDRS: 8093 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8094 optlen); 8095 break; 8096 case SCTP_SOCKOPT_CONNECTX3: 8097 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8098 break; 8099 case SCTP_DEFAULT_SEND_PARAM: 8100 retval = sctp_getsockopt_default_send_param(sk, len, 8101 optval, optlen); 8102 break; 8103 case SCTP_DEFAULT_SNDINFO: 8104 retval = sctp_getsockopt_default_sndinfo(sk, len, 8105 optval, optlen); 8106 break; 8107 case SCTP_PRIMARY_ADDR: 8108 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8109 break; 8110 case SCTP_NODELAY: 8111 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8112 break; 8113 case SCTP_RTOINFO: 8114 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8115 break; 8116 case SCTP_ASSOCINFO: 8117 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8118 break; 8119 case SCTP_I_WANT_MAPPED_V4_ADDR: 8120 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8121 break; 8122 case SCTP_MAXSEG: 8123 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8124 break; 8125 case SCTP_GET_PEER_ADDR_INFO: 8126 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8127 optlen); 8128 break; 8129 case SCTP_ADAPTATION_LAYER: 8130 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8131 optlen); 8132 break; 8133 case SCTP_CONTEXT: 8134 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8135 break; 8136 case SCTP_FRAGMENT_INTERLEAVE: 8137 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8138 optlen); 8139 break; 8140 case SCTP_PARTIAL_DELIVERY_POINT: 8141 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8142 optlen); 8143 break; 8144 case SCTP_MAX_BURST: 8145 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8146 break; 8147 case SCTP_AUTH_KEY: 8148 case SCTP_AUTH_CHUNK: 8149 case SCTP_AUTH_DELETE_KEY: 8150 case SCTP_AUTH_DEACTIVATE_KEY: 8151 retval = -EOPNOTSUPP; 8152 break; 8153 case SCTP_HMAC_IDENT: 8154 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8155 break; 8156 case SCTP_AUTH_ACTIVE_KEY: 8157 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8158 break; 8159 case SCTP_PEER_AUTH_CHUNKS: 8160 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8161 optlen); 8162 break; 8163 case SCTP_LOCAL_AUTH_CHUNKS: 8164 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8165 optlen); 8166 break; 8167 case SCTP_GET_ASSOC_NUMBER: 8168 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8169 break; 8170 case SCTP_GET_ASSOC_ID_LIST: 8171 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8172 break; 8173 case SCTP_AUTO_ASCONF: 8174 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8175 break; 8176 case SCTP_PEER_ADDR_THLDS: 8177 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8178 optlen, false); 8179 break; 8180 case SCTP_PEER_ADDR_THLDS_V2: 8181 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8182 optlen, true); 8183 break; 8184 case SCTP_GET_ASSOC_STATS: 8185 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8186 break; 8187 case SCTP_RECVRCVINFO: 8188 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8189 break; 8190 case SCTP_RECVNXTINFO: 8191 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8192 break; 8193 case SCTP_PR_SUPPORTED: 8194 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8195 break; 8196 case SCTP_DEFAULT_PRINFO: 8197 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8198 optlen); 8199 break; 8200 case SCTP_PR_ASSOC_STATUS: 8201 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8202 optlen); 8203 break; 8204 case SCTP_PR_STREAM_STATUS: 8205 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8206 optlen); 8207 break; 8208 case SCTP_RECONFIG_SUPPORTED: 8209 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8210 optlen); 8211 break; 8212 case SCTP_ENABLE_STREAM_RESET: 8213 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8214 optlen); 8215 break; 8216 case SCTP_STREAM_SCHEDULER: 8217 retval = sctp_getsockopt_scheduler(sk, len, optval, 8218 optlen); 8219 break; 8220 case SCTP_STREAM_SCHEDULER_VALUE: 8221 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8222 optlen); 8223 break; 8224 case SCTP_INTERLEAVING_SUPPORTED: 8225 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8226 optlen); 8227 break; 8228 case SCTP_REUSE_PORT: 8229 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8230 break; 8231 case SCTP_EVENT: 8232 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8233 break; 8234 case SCTP_ASCONF_SUPPORTED: 8235 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8236 optlen); 8237 break; 8238 case SCTP_AUTH_SUPPORTED: 8239 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8240 optlen); 8241 break; 8242 case SCTP_ECN_SUPPORTED: 8243 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8244 break; 8245 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8246 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8247 break; 8248 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8249 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8250 break; 8251 case SCTP_PLPMTUD_PROBE_INTERVAL: 8252 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8253 break; 8254 default: 8255 retval = -ENOPROTOOPT; 8256 break; 8257 } 8258 8259 release_sock(sk); 8260 return retval; 8261 } 8262 8263 static int sctp_hash(struct sock *sk) 8264 { 8265 /* STUB */ 8266 return 0; 8267 } 8268 8269 static void sctp_unhash(struct sock *sk) 8270 { 8271 /* STUB */ 8272 } 8273 8274 /* Check if port is acceptable. Possibly find first available port. 8275 * 8276 * The port hash table (contained in the 'global' SCTP protocol storage 8277 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8278 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8279 * list (the list number is the port number hashed out, so as you 8280 * would expect from a hash function, all the ports in a given list have 8281 * such a number that hashes out to the same list number; you were 8282 * expecting that, right?); so each list has a set of ports, with a 8283 * link to the socket (struct sock) that uses it, the port number and 8284 * a fastreuse flag (FIXME: NPI ipg). 8285 */ 8286 static struct sctp_bind_bucket *sctp_bucket_create( 8287 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8288 8289 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8290 { 8291 struct sctp_sock *sp = sctp_sk(sk); 8292 bool reuse = (sk->sk_reuse || sp->reuse); 8293 struct sctp_bind_hashbucket *head; /* hash list */ 8294 struct net *net = sock_net(sk); 8295 kuid_t uid = sock_i_uid(sk); 8296 struct sctp_bind_bucket *pp; 8297 unsigned short snum; 8298 int ret; 8299 8300 snum = ntohs(addr->v4.sin_port); 8301 8302 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8303 8304 if (snum == 0) { 8305 /* Search for an available port. */ 8306 int low, high, remaining, index; 8307 unsigned int rover; 8308 8309 inet_get_local_port_range(net, &low, &high); 8310 remaining = (high - low) + 1; 8311 rover = prandom_u32() % remaining + low; 8312 8313 do { 8314 rover++; 8315 if ((rover < low) || (rover > high)) 8316 rover = low; 8317 if (inet_is_local_reserved_port(net, rover)) 8318 continue; 8319 index = sctp_phashfn(net, rover); 8320 head = &sctp_port_hashtable[index]; 8321 spin_lock_bh(&head->lock); 8322 sctp_for_each_hentry(pp, &head->chain) 8323 if ((pp->port == rover) && 8324 net_eq(net, pp->net)) 8325 goto next; 8326 break; 8327 next: 8328 spin_unlock_bh(&head->lock); 8329 cond_resched(); 8330 } while (--remaining > 0); 8331 8332 /* Exhausted local port range during search? */ 8333 ret = 1; 8334 if (remaining <= 0) 8335 return ret; 8336 8337 /* OK, here is the one we will use. HEAD (the port 8338 * hash table list entry) is non-NULL and we hold it's 8339 * mutex. 8340 */ 8341 snum = rover; 8342 } else { 8343 /* We are given an specific port number; we verify 8344 * that it is not being used. If it is used, we will 8345 * exahust the search in the hash list corresponding 8346 * to the port number (snum) - we detect that with the 8347 * port iterator, pp being NULL. 8348 */ 8349 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8350 spin_lock_bh(&head->lock); 8351 sctp_for_each_hentry(pp, &head->chain) { 8352 if ((pp->port == snum) && net_eq(pp->net, net)) 8353 goto pp_found; 8354 } 8355 } 8356 pp = NULL; 8357 goto pp_not_found; 8358 pp_found: 8359 if (!hlist_empty(&pp->owner)) { 8360 /* We had a port hash table hit - there is an 8361 * available port (pp != NULL) and it is being 8362 * used by other socket (pp->owner not empty); that other 8363 * socket is going to be sk2. 8364 */ 8365 struct sock *sk2; 8366 8367 pr_debug("%s: found a possible match\n", __func__); 8368 8369 if ((pp->fastreuse && reuse && 8370 sk->sk_state != SCTP_SS_LISTENING) || 8371 (pp->fastreuseport && sk->sk_reuseport && 8372 uid_eq(pp->fastuid, uid))) 8373 goto success; 8374 8375 /* Run through the list of sockets bound to the port 8376 * (pp->port) [via the pointers bind_next and 8377 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8378 * we get the endpoint they describe and run through 8379 * the endpoint's list of IP (v4 or v6) addresses, 8380 * comparing each of the addresses with the address of 8381 * the socket sk. If we find a match, then that means 8382 * that this port/socket (sk) combination are already 8383 * in an endpoint. 8384 */ 8385 sk_for_each_bound(sk2, &pp->owner) { 8386 struct sctp_sock *sp2 = sctp_sk(sk2); 8387 struct sctp_endpoint *ep2 = sp2->ep; 8388 8389 if (sk == sk2 || 8390 (reuse && (sk2->sk_reuse || sp2->reuse) && 8391 sk2->sk_state != SCTP_SS_LISTENING) || 8392 (sk->sk_reuseport && sk2->sk_reuseport && 8393 uid_eq(uid, sock_i_uid(sk2)))) 8394 continue; 8395 8396 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8397 addr, sp2, sp)) { 8398 ret = 1; 8399 goto fail_unlock; 8400 } 8401 } 8402 8403 pr_debug("%s: found a match\n", __func__); 8404 } 8405 pp_not_found: 8406 /* If there was a hash table miss, create a new port. */ 8407 ret = 1; 8408 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8409 goto fail_unlock; 8410 8411 /* In either case (hit or miss), make sure fastreuse is 1 only 8412 * if sk->sk_reuse is too (that is, if the caller requested 8413 * SO_REUSEADDR on this socket -sk-). 8414 */ 8415 if (hlist_empty(&pp->owner)) { 8416 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8417 pp->fastreuse = 1; 8418 else 8419 pp->fastreuse = 0; 8420 8421 if (sk->sk_reuseport) { 8422 pp->fastreuseport = 1; 8423 pp->fastuid = uid; 8424 } else { 8425 pp->fastreuseport = 0; 8426 } 8427 } else { 8428 if (pp->fastreuse && 8429 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8430 pp->fastreuse = 0; 8431 8432 if (pp->fastreuseport && 8433 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8434 pp->fastreuseport = 0; 8435 } 8436 8437 /* We are set, so fill up all the data in the hash table 8438 * entry, tie the socket list information with the rest of the 8439 * sockets FIXME: Blurry, NPI (ipg). 8440 */ 8441 success: 8442 if (!sp->bind_hash) { 8443 inet_sk(sk)->inet_num = snum; 8444 sk_add_bind_node(sk, &pp->owner); 8445 sp->bind_hash = pp; 8446 } 8447 ret = 0; 8448 8449 fail_unlock: 8450 spin_unlock_bh(&head->lock); 8451 return ret; 8452 } 8453 8454 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8455 * port is requested. 8456 */ 8457 static int sctp_get_port(struct sock *sk, unsigned short snum) 8458 { 8459 union sctp_addr addr; 8460 struct sctp_af *af = sctp_sk(sk)->pf->af; 8461 8462 /* Set up a dummy address struct from the sk. */ 8463 af->from_sk(&addr, sk); 8464 addr.v4.sin_port = htons(snum); 8465 8466 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8467 return sctp_get_port_local(sk, &addr); 8468 } 8469 8470 /* 8471 * Move a socket to LISTENING state. 8472 */ 8473 static int sctp_listen_start(struct sock *sk, int backlog) 8474 { 8475 struct sctp_sock *sp = sctp_sk(sk); 8476 struct sctp_endpoint *ep = sp->ep; 8477 struct crypto_shash *tfm = NULL; 8478 char alg[32]; 8479 8480 /* Allocate HMAC for generating cookie. */ 8481 if (!sp->hmac && sp->sctp_hmac_alg) { 8482 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8483 tfm = crypto_alloc_shash(alg, 0, 0); 8484 if (IS_ERR(tfm)) { 8485 net_info_ratelimited("failed to load transform for %s: %ld\n", 8486 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8487 return -ENOSYS; 8488 } 8489 sctp_sk(sk)->hmac = tfm; 8490 } 8491 8492 /* 8493 * If a bind() or sctp_bindx() is not called prior to a listen() 8494 * call that allows new associations to be accepted, the system 8495 * picks an ephemeral port and will choose an address set equivalent 8496 * to binding with a wildcard address. 8497 * 8498 * This is not currently spelled out in the SCTP sockets 8499 * extensions draft, but follows the practice as seen in TCP 8500 * sockets. 8501 * 8502 */ 8503 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8504 if (!ep->base.bind_addr.port) { 8505 if (sctp_autobind(sk)) 8506 return -EAGAIN; 8507 } else { 8508 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8509 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8510 return -EADDRINUSE; 8511 } 8512 } 8513 8514 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8515 return sctp_hash_endpoint(ep); 8516 } 8517 8518 /* 8519 * 4.1.3 / 5.1.3 listen() 8520 * 8521 * By default, new associations are not accepted for UDP style sockets. 8522 * An application uses listen() to mark a socket as being able to 8523 * accept new associations. 8524 * 8525 * On TCP style sockets, applications use listen() to ready the SCTP 8526 * endpoint for accepting inbound associations. 8527 * 8528 * On both types of endpoints a backlog of '0' disables listening. 8529 * 8530 * Move a socket to LISTENING state. 8531 */ 8532 int sctp_inet_listen(struct socket *sock, int backlog) 8533 { 8534 struct sock *sk = sock->sk; 8535 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8536 int err = -EINVAL; 8537 8538 if (unlikely(backlog < 0)) 8539 return err; 8540 8541 lock_sock(sk); 8542 8543 /* Peeled-off sockets are not allowed to listen(). */ 8544 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8545 goto out; 8546 8547 if (sock->state != SS_UNCONNECTED) 8548 goto out; 8549 8550 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8551 goto out; 8552 8553 /* If backlog is zero, disable listening. */ 8554 if (!backlog) { 8555 if (sctp_sstate(sk, CLOSED)) 8556 goto out; 8557 8558 err = 0; 8559 sctp_unhash_endpoint(ep); 8560 sk->sk_state = SCTP_SS_CLOSED; 8561 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8562 sctp_sk(sk)->bind_hash->fastreuse = 1; 8563 goto out; 8564 } 8565 8566 /* If we are already listening, just update the backlog */ 8567 if (sctp_sstate(sk, LISTENING)) 8568 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8569 else { 8570 err = sctp_listen_start(sk, backlog); 8571 if (err) 8572 goto out; 8573 } 8574 8575 err = 0; 8576 out: 8577 release_sock(sk); 8578 return err; 8579 } 8580 8581 /* 8582 * This function is done by modeling the current datagram_poll() and the 8583 * tcp_poll(). Note that, based on these implementations, we don't 8584 * lock the socket in this function, even though it seems that, 8585 * ideally, locking or some other mechanisms can be used to ensure 8586 * the integrity of the counters (sndbuf and wmem_alloc) used 8587 * in this place. We assume that we don't need locks either until proven 8588 * otherwise. 8589 * 8590 * Another thing to note is that we include the Async I/O support 8591 * here, again, by modeling the current TCP/UDP code. We don't have 8592 * a good way to test with it yet. 8593 */ 8594 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8595 { 8596 struct sock *sk = sock->sk; 8597 struct sctp_sock *sp = sctp_sk(sk); 8598 __poll_t mask; 8599 8600 poll_wait(file, sk_sleep(sk), wait); 8601 8602 sock_rps_record_flow(sk); 8603 8604 /* A TCP-style listening socket becomes readable when the accept queue 8605 * is not empty. 8606 */ 8607 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8608 return (!list_empty(&sp->ep->asocs)) ? 8609 (EPOLLIN | EPOLLRDNORM) : 0; 8610 8611 mask = 0; 8612 8613 /* Is there any exceptional events? */ 8614 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8615 mask |= EPOLLERR | 8616 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8617 if (sk->sk_shutdown & RCV_SHUTDOWN) 8618 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8619 if (sk->sk_shutdown == SHUTDOWN_MASK) 8620 mask |= EPOLLHUP; 8621 8622 /* Is it readable? Reconsider this code with TCP-style support. */ 8623 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8624 mask |= EPOLLIN | EPOLLRDNORM; 8625 8626 /* The association is either gone or not ready. */ 8627 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8628 return mask; 8629 8630 /* Is it writable? */ 8631 if (sctp_writeable(sk)) { 8632 mask |= EPOLLOUT | EPOLLWRNORM; 8633 } else { 8634 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8635 /* 8636 * Since the socket is not locked, the buffer 8637 * might be made available after the writeable check and 8638 * before the bit is set. This could cause a lost I/O 8639 * signal. tcp_poll() has a race breaker for this race 8640 * condition. Based on their implementation, we put 8641 * in the following code to cover it as well. 8642 */ 8643 if (sctp_writeable(sk)) 8644 mask |= EPOLLOUT | EPOLLWRNORM; 8645 } 8646 return mask; 8647 } 8648 8649 /******************************************************************** 8650 * 2nd Level Abstractions 8651 ********************************************************************/ 8652 8653 static struct sctp_bind_bucket *sctp_bucket_create( 8654 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8655 { 8656 struct sctp_bind_bucket *pp; 8657 8658 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8659 if (pp) { 8660 SCTP_DBG_OBJCNT_INC(bind_bucket); 8661 pp->port = snum; 8662 pp->fastreuse = 0; 8663 INIT_HLIST_HEAD(&pp->owner); 8664 pp->net = net; 8665 hlist_add_head(&pp->node, &head->chain); 8666 } 8667 return pp; 8668 } 8669 8670 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8671 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8672 { 8673 if (pp && hlist_empty(&pp->owner)) { 8674 __hlist_del(&pp->node); 8675 kmem_cache_free(sctp_bucket_cachep, pp); 8676 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8677 } 8678 } 8679 8680 /* Release this socket's reference to a local port. */ 8681 static inline void __sctp_put_port(struct sock *sk) 8682 { 8683 struct sctp_bind_hashbucket *head = 8684 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8685 inet_sk(sk)->inet_num)]; 8686 struct sctp_bind_bucket *pp; 8687 8688 spin_lock(&head->lock); 8689 pp = sctp_sk(sk)->bind_hash; 8690 __sk_del_bind_node(sk); 8691 sctp_sk(sk)->bind_hash = NULL; 8692 inet_sk(sk)->inet_num = 0; 8693 sctp_bucket_destroy(pp); 8694 spin_unlock(&head->lock); 8695 } 8696 8697 void sctp_put_port(struct sock *sk) 8698 { 8699 local_bh_disable(); 8700 __sctp_put_port(sk); 8701 local_bh_enable(); 8702 } 8703 8704 /* 8705 * The system picks an ephemeral port and choose an address set equivalent 8706 * to binding with a wildcard address. 8707 * One of those addresses will be the primary address for the association. 8708 * This automatically enables the multihoming capability of SCTP. 8709 */ 8710 static int sctp_autobind(struct sock *sk) 8711 { 8712 union sctp_addr autoaddr; 8713 struct sctp_af *af; 8714 __be16 port; 8715 8716 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8717 af = sctp_sk(sk)->pf->af; 8718 8719 port = htons(inet_sk(sk)->inet_num); 8720 af->inaddr_any(&autoaddr, port); 8721 8722 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8723 } 8724 8725 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8726 * 8727 * From RFC 2292 8728 * 4.2 The cmsghdr Structure * 8729 * 8730 * When ancillary data is sent or received, any number of ancillary data 8731 * objects can be specified by the msg_control and msg_controllen members of 8732 * the msghdr structure, because each object is preceded by 8733 * a cmsghdr structure defining the object's length (the cmsg_len member). 8734 * Historically Berkeley-derived implementations have passed only one object 8735 * at a time, but this API allows multiple objects to be 8736 * passed in a single call to sendmsg() or recvmsg(). The following example 8737 * shows two ancillary data objects in a control buffer. 8738 * 8739 * |<--------------------------- msg_controllen -------------------------->| 8740 * | | 8741 * 8742 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8743 * 8744 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8745 * | | | 8746 * 8747 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8748 * 8749 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8750 * | | | | | 8751 * 8752 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8753 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8754 * 8755 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8756 * 8757 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8758 * ^ 8759 * | 8760 * 8761 * msg_control 8762 * points here 8763 */ 8764 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8765 { 8766 struct msghdr *my_msg = (struct msghdr *)msg; 8767 struct cmsghdr *cmsg; 8768 8769 for_each_cmsghdr(cmsg, my_msg) { 8770 if (!CMSG_OK(my_msg, cmsg)) 8771 return -EINVAL; 8772 8773 /* Should we parse this header or ignore? */ 8774 if (cmsg->cmsg_level != IPPROTO_SCTP) 8775 continue; 8776 8777 /* Strictly check lengths following example in SCM code. */ 8778 switch (cmsg->cmsg_type) { 8779 case SCTP_INIT: 8780 /* SCTP Socket API Extension 8781 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8782 * 8783 * This cmsghdr structure provides information for 8784 * initializing new SCTP associations with sendmsg(). 8785 * The SCTP_INITMSG socket option uses this same data 8786 * structure. This structure is not used for 8787 * recvmsg(). 8788 * 8789 * cmsg_level cmsg_type cmsg_data[] 8790 * ------------ ------------ ---------------------- 8791 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8792 */ 8793 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8794 return -EINVAL; 8795 8796 cmsgs->init = CMSG_DATA(cmsg); 8797 break; 8798 8799 case SCTP_SNDRCV: 8800 /* SCTP Socket API Extension 8801 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8802 * 8803 * This cmsghdr structure specifies SCTP options for 8804 * sendmsg() and describes SCTP header information 8805 * about a received message through recvmsg(). 8806 * 8807 * cmsg_level cmsg_type cmsg_data[] 8808 * ------------ ------------ ---------------------- 8809 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8810 */ 8811 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8812 return -EINVAL; 8813 8814 cmsgs->srinfo = CMSG_DATA(cmsg); 8815 8816 if (cmsgs->srinfo->sinfo_flags & 8817 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8818 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8819 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8820 return -EINVAL; 8821 break; 8822 8823 case SCTP_SNDINFO: 8824 /* SCTP Socket API Extension 8825 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8826 * 8827 * This cmsghdr structure specifies SCTP options for 8828 * sendmsg(). This structure and SCTP_RCVINFO replaces 8829 * SCTP_SNDRCV which has been deprecated. 8830 * 8831 * cmsg_level cmsg_type cmsg_data[] 8832 * ------------ ------------ --------------------- 8833 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8834 */ 8835 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8836 return -EINVAL; 8837 8838 cmsgs->sinfo = CMSG_DATA(cmsg); 8839 8840 if (cmsgs->sinfo->snd_flags & 8841 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8842 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8843 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8844 return -EINVAL; 8845 break; 8846 case SCTP_PRINFO: 8847 /* SCTP Socket API Extension 8848 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8849 * 8850 * This cmsghdr structure specifies SCTP options for sendmsg(). 8851 * 8852 * cmsg_level cmsg_type cmsg_data[] 8853 * ------------ ------------ --------------------- 8854 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8855 */ 8856 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8857 return -EINVAL; 8858 8859 cmsgs->prinfo = CMSG_DATA(cmsg); 8860 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8861 return -EINVAL; 8862 8863 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8864 cmsgs->prinfo->pr_value = 0; 8865 break; 8866 case SCTP_AUTHINFO: 8867 /* SCTP Socket API Extension 8868 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8869 * 8870 * This cmsghdr structure specifies SCTP options for sendmsg(). 8871 * 8872 * cmsg_level cmsg_type cmsg_data[] 8873 * ------------ ------------ --------------------- 8874 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8875 */ 8876 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8877 return -EINVAL; 8878 8879 cmsgs->authinfo = CMSG_DATA(cmsg); 8880 break; 8881 case SCTP_DSTADDRV4: 8882 case SCTP_DSTADDRV6: 8883 /* SCTP Socket API Extension 8884 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8885 * 8886 * This cmsghdr structure specifies SCTP options for sendmsg(). 8887 * 8888 * cmsg_level cmsg_type cmsg_data[] 8889 * ------------ ------------ --------------------- 8890 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8891 * ------------ ------------ --------------------- 8892 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8893 */ 8894 cmsgs->addrs_msg = my_msg; 8895 break; 8896 default: 8897 return -EINVAL; 8898 } 8899 } 8900 8901 return 0; 8902 } 8903 8904 /* 8905 * Wait for a packet.. 8906 * Note: This function is the same function as in core/datagram.c 8907 * with a few modifications to make lksctp work. 8908 */ 8909 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8910 { 8911 int error; 8912 DEFINE_WAIT(wait); 8913 8914 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8915 8916 /* Socket errors? */ 8917 error = sock_error(sk); 8918 if (error) 8919 goto out; 8920 8921 if (!skb_queue_empty(&sk->sk_receive_queue)) 8922 goto ready; 8923 8924 /* Socket shut down? */ 8925 if (sk->sk_shutdown & RCV_SHUTDOWN) 8926 goto out; 8927 8928 /* Sequenced packets can come disconnected. If so we report the 8929 * problem. 8930 */ 8931 error = -ENOTCONN; 8932 8933 /* Is there a good reason to think that we may receive some data? */ 8934 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8935 goto out; 8936 8937 /* Handle signals. */ 8938 if (signal_pending(current)) 8939 goto interrupted; 8940 8941 /* Let another process have a go. Since we are going to sleep 8942 * anyway. Note: This may cause odd behaviors if the message 8943 * does not fit in the user's buffer, but this seems to be the 8944 * only way to honor MSG_DONTWAIT realistically. 8945 */ 8946 release_sock(sk); 8947 *timeo_p = schedule_timeout(*timeo_p); 8948 lock_sock(sk); 8949 8950 ready: 8951 finish_wait(sk_sleep(sk), &wait); 8952 return 0; 8953 8954 interrupted: 8955 error = sock_intr_errno(*timeo_p); 8956 8957 out: 8958 finish_wait(sk_sleep(sk), &wait); 8959 *err = error; 8960 return error; 8961 } 8962 8963 /* Receive a datagram. 8964 * Note: This is pretty much the same routine as in core/datagram.c 8965 * with a few changes to make lksctp work. 8966 */ 8967 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8968 int noblock, int *err) 8969 { 8970 int error; 8971 struct sk_buff *skb; 8972 long timeo; 8973 8974 timeo = sock_rcvtimeo(sk, noblock); 8975 8976 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8977 MAX_SCHEDULE_TIMEOUT); 8978 8979 do { 8980 /* Again only user level code calls this function, 8981 * so nothing interrupt level 8982 * will suddenly eat the receive_queue. 8983 * 8984 * Look at current nfs client by the way... 8985 * However, this function was correct in any case. 8) 8986 */ 8987 if (flags & MSG_PEEK) { 8988 skb = skb_peek(&sk->sk_receive_queue); 8989 if (skb) 8990 refcount_inc(&skb->users); 8991 } else { 8992 skb = __skb_dequeue(&sk->sk_receive_queue); 8993 } 8994 8995 if (skb) 8996 return skb; 8997 8998 /* Caller is allowed not to check sk->sk_err before calling. */ 8999 error = sock_error(sk); 9000 if (error) 9001 goto no_packet; 9002 9003 if (sk->sk_shutdown & RCV_SHUTDOWN) 9004 break; 9005 9006 if (sk_can_busy_loop(sk)) { 9007 sk_busy_loop(sk, noblock); 9008 9009 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9010 continue; 9011 } 9012 9013 /* User doesn't want to wait. */ 9014 error = -EAGAIN; 9015 if (!timeo) 9016 goto no_packet; 9017 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9018 9019 return NULL; 9020 9021 no_packet: 9022 *err = error; 9023 return NULL; 9024 } 9025 9026 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9027 static void __sctp_write_space(struct sctp_association *asoc) 9028 { 9029 struct sock *sk = asoc->base.sk; 9030 9031 if (sctp_wspace(asoc) <= 0) 9032 return; 9033 9034 if (waitqueue_active(&asoc->wait)) 9035 wake_up_interruptible(&asoc->wait); 9036 9037 if (sctp_writeable(sk)) { 9038 struct socket_wq *wq; 9039 9040 rcu_read_lock(); 9041 wq = rcu_dereference(sk->sk_wq); 9042 if (wq) { 9043 if (waitqueue_active(&wq->wait)) 9044 wake_up_interruptible(&wq->wait); 9045 9046 /* Note that we try to include the Async I/O support 9047 * here by modeling from the current TCP/UDP code. 9048 * We have not tested with it yet. 9049 */ 9050 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9051 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9052 } 9053 rcu_read_unlock(); 9054 } 9055 } 9056 9057 static void sctp_wake_up_waiters(struct sock *sk, 9058 struct sctp_association *asoc) 9059 { 9060 struct sctp_association *tmp = asoc; 9061 9062 /* We do accounting for the sndbuf space per association, 9063 * so we only need to wake our own association. 9064 */ 9065 if (asoc->ep->sndbuf_policy) 9066 return __sctp_write_space(asoc); 9067 9068 /* If association goes down and is just flushing its 9069 * outq, then just normally notify others. 9070 */ 9071 if (asoc->base.dead) 9072 return sctp_write_space(sk); 9073 9074 /* Accounting for the sndbuf space is per socket, so we 9075 * need to wake up others, try to be fair and in case of 9076 * other associations, let them have a go first instead 9077 * of just doing a sctp_write_space() call. 9078 * 9079 * Note that we reach sctp_wake_up_waiters() only when 9080 * associations free up queued chunks, thus we are under 9081 * lock and the list of associations on a socket is 9082 * guaranteed not to change. 9083 */ 9084 for (tmp = list_next_entry(tmp, asocs); 1; 9085 tmp = list_next_entry(tmp, asocs)) { 9086 /* Manually skip the head element. */ 9087 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9088 continue; 9089 /* Wake up association. */ 9090 __sctp_write_space(tmp); 9091 /* We've reached the end. */ 9092 if (tmp == asoc) 9093 break; 9094 } 9095 } 9096 9097 /* Do accounting for the sndbuf space. 9098 * Decrement the used sndbuf space of the corresponding association by the 9099 * data size which was just transmitted(freed). 9100 */ 9101 static void sctp_wfree(struct sk_buff *skb) 9102 { 9103 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9104 struct sctp_association *asoc = chunk->asoc; 9105 struct sock *sk = asoc->base.sk; 9106 9107 sk_mem_uncharge(sk, skb->truesize); 9108 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9109 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9110 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9111 &sk->sk_wmem_alloc)); 9112 9113 if (chunk->shkey) { 9114 struct sctp_shared_key *shkey = chunk->shkey; 9115 9116 /* refcnt == 2 and !list_empty mean after this release, it's 9117 * not being used anywhere, and it's time to notify userland 9118 * that this shkey can be freed if it's been deactivated. 9119 */ 9120 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9121 refcount_read(&shkey->refcnt) == 2) { 9122 struct sctp_ulpevent *ev; 9123 9124 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9125 SCTP_AUTH_FREE_KEY, 9126 GFP_KERNEL); 9127 if (ev) 9128 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9129 } 9130 sctp_auth_shkey_release(chunk->shkey); 9131 } 9132 9133 sock_wfree(skb); 9134 sctp_wake_up_waiters(sk, asoc); 9135 9136 sctp_association_put(asoc); 9137 } 9138 9139 /* Do accounting for the receive space on the socket. 9140 * Accounting for the association is done in ulpevent.c 9141 * We set this as a destructor for the cloned data skbs so that 9142 * accounting is done at the correct time. 9143 */ 9144 void sctp_sock_rfree(struct sk_buff *skb) 9145 { 9146 struct sock *sk = skb->sk; 9147 struct sctp_ulpevent *event = sctp_skb2event(skb); 9148 9149 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9150 9151 /* 9152 * Mimic the behavior of sock_rfree 9153 */ 9154 sk_mem_uncharge(sk, event->rmem_len); 9155 } 9156 9157 9158 /* Helper function to wait for space in the sndbuf. */ 9159 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9160 size_t msg_len) 9161 { 9162 struct sock *sk = asoc->base.sk; 9163 long current_timeo = *timeo_p; 9164 DEFINE_WAIT(wait); 9165 int err = 0; 9166 9167 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9168 *timeo_p, msg_len); 9169 9170 /* Increment the association's refcnt. */ 9171 sctp_association_hold(asoc); 9172 9173 /* Wait on the association specific sndbuf space. */ 9174 for (;;) { 9175 prepare_to_wait_exclusive(&asoc->wait, &wait, 9176 TASK_INTERRUPTIBLE); 9177 if (asoc->base.dead) 9178 goto do_dead; 9179 if (!*timeo_p) 9180 goto do_nonblock; 9181 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9182 goto do_error; 9183 if (signal_pending(current)) 9184 goto do_interrupted; 9185 if (sk_under_memory_pressure(sk)) 9186 sk_mem_reclaim(sk); 9187 if ((int)msg_len <= sctp_wspace(asoc) && 9188 sk_wmem_schedule(sk, msg_len)) 9189 break; 9190 9191 /* Let another process have a go. Since we are going 9192 * to sleep anyway. 9193 */ 9194 release_sock(sk); 9195 current_timeo = schedule_timeout(current_timeo); 9196 lock_sock(sk); 9197 if (sk != asoc->base.sk) 9198 goto do_error; 9199 9200 *timeo_p = current_timeo; 9201 } 9202 9203 out: 9204 finish_wait(&asoc->wait, &wait); 9205 9206 /* Release the association's refcnt. */ 9207 sctp_association_put(asoc); 9208 9209 return err; 9210 9211 do_dead: 9212 err = -ESRCH; 9213 goto out; 9214 9215 do_error: 9216 err = -EPIPE; 9217 goto out; 9218 9219 do_interrupted: 9220 err = sock_intr_errno(*timeo_p); 9221 goto out; 9222 9223 do_nonblock: 9224 err = -EAGAIN; 9225 goto out; 9226 } 9227 9228 void sctp_data_ready(struct sock *sk) 9229 { 9230 struct socket_wq *wq; 9231 9232 rcu_read_lock(); 9233 wq = rcu_dereference(sk->sk_wq); 9234 if (skwq_has_sleeper(wq)) 9235 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9236 EPOLLRDNORM | EPOLLRDBAND); 9237 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9238 rcu_read_unlock(); 9239 } 9240 9241 /* If socket sndbuf has changed, wake up all per association waiters. */ 9242 void sctp_write_space(struct sock *sk) 9243 { 9244 struct sctp_association *asoc; 9245 9246 /* Wake up the tasks in each wait queue. */ 9247 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9248 __sctp_write_space(asoc); 9249 } 9250 } 9251 9252 /* Is there any sndbuf space available on the socket? 9253 * 9254 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9255 * associations on the same socket. For a UDP-style socket with 9256 * multiple associations, it is possible for it to be "unwriteable" 9257 * prematurely. I assume that this is acceptable because 9258 * a premature "unwriteable" is better than an accidental "writeable" which 9259 * would cause an unwanted block under certain circumstances. For the 1-1 9260 * UDP-style sockets or TCP-style sockets, this code should work. 9261 * - Daisy 9262 */ 9263 static bool sctp_writeable(struct sock *sk) 9264 { 9265 return sk->sk_sndbuf > sk->sk_wmem_queued; 9266 } 9267 9268 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9269 * returns immediately with EINPROGRESS. 9270 */ 9271 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9272 { 9273 struct sock *sk = asoc->base.sk; 9274 int err = 0; 9275 long current_timeo = *timeo_p; 9276 DEFINE_WAIT(wait); 9277 9278 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9279 9280 /* Increment the association's refcnt. */ 9281 sctp_association_hold(asoc); 9282 9283 for (;;) { 9284 prepare_to_wait_exclusive(&asoc->wait, &wait, 9285 TASK_INTERRUPTIBLE); 9286 if (!*timeo_p) 9287 goto do_nonblock; 9288 if (sk->sk_shutdown & RCV_SHUTDOWN) 9289 break; 9290 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9291 asoc->base.dead) 9292 goto do_error; 9293 if (signal_pending(current)) 9294 goto do_interrupted; 9295 9296 if (sctp_state(asoc, ESTABLISHED)) 9297 break; 9298 9299 /* Let another process have a go. Since we are going 9300 * to sleep anyway. 9301 */ 9302 release_sock(sk); 9303 current_timeo = schedule_timeout(current_timeo); 9304 lock_sock(sk); 9305 9306 *timeo_p = current_timeo; 9307 } 9308 9309 out: 9310 finish_wait(&asoc->wait, &wait); 9311 9312 /* Release the association's refcnt. */ 9313 sctp_association_put(asoc); 9314 9315 return err; 9316 9317 do_error: 9318 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9319 err = -ETIMEDOUT; 9320 else 9321 err = -ECONNREFUSED; 9322 goto out; 9323 9324 do_interrupted: 9325 err = sock_intr_errno(*timeo_p); 9326 goto out; 9327 9328 do_nonblock: 9329 err = -EINPROGRESS; 9330 goto out; 9331 } 9332 9333 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9334 { 9335 struct sctp_endpoint *ep; 9336 int err = 0; 9337 DEFINE_WAIT(wait); 9338 9339 ep = sctp_sk(sk)->ep; 9340 9341 9342 for (;;) { 9343 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9344 TASK_INTERRUPTIBLE); 9345 9346 if (list_empty(&ep->asocs)) { 9347 release_sock(sk); 9348 timeo = schedule_timeout(timeo); 9349 lock_sock(sk); 9350 } 9351 9352 err = -EINVAL; 9353 if (!sctp_sstate(sk, LISTENING)) 9354 break; 9355 9356 err = 0; 9357 if (!list_empty(&ep->asocs)) 9358 break; 9359 9360 err = sock_intr_errno(timeo); 9361 if (signal_pending(current)) 9362 break; 9363 9364 err = -EAGAIN; 9365 if (!timeo) 9366 break; 9367 } 9368 9369 finish_wait(sk_sleep(sk), &wait); 9370 9371 return err; 9372 } 9373 9374 static void sctp_wait_for_close(struct sock *sk, long timeout) 9375 { 9376 DEFINE_WAIT(wait); 9377 9378 do { 9379 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9380 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9381 break; 9382 release_sock(sk); 9383 timeout = schedule_timeout(timeout); 9384 lock_sock(sk); 9385 } while (!signal_pending(current) && timeout); 9386 9387 finish_wait(sk_sleep(sk), &wait); 9388 } 9389 9390 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9391 { 9392 struct sk_buff *frag; 9393 9394 if (!skb->data_len) 9395 goto done; 9396 9397 /* Don't forget the fragments. */ 9398 skb_walk_frags(skb, frag) 9399 sctp_skb_set_owner_r_frag(frag, sk); 9400 9401 done: 9402 sctp_skb_set_owner_r(skb, sk); 9403 } 9404 9405 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9406 struct sctp_association *asoc) 9407 { 9408 struct inet_sock *inet = inet_sk(sk); 9409 struct inet_sock *newinet; 9410 struct sctp_sock *sp = sctp_sk(sk); 9411 struct sctp_endpoint *ep = sp->ep; 9412 9413 newsk->sk_type = sk->sk_type; 9414 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9415 newsk->sk_flags = sk->sk_flags; 9416 newsk->sk_tsflags = sk->sk_tsflags; 9417 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9418 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9419 newsk->sk_reuse = sk->sk_reuse; 9420 sctp_sk(newsk)->reuse = sp->reuse; 9421 9422 newsk->sk_shutdown = sk->sk_shutdown; 9423 newsk->sk_destruct = sctp_destruct_sock; 9424 newsk->sk_family = sk->sk_family; 9425 newsk->sk_protocol = IPPROTO_SCTP; 9426 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9427 newsk->sk_sndbuf = sk->sk_sndbuf; 9428 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9429 newsk->sk_lingertime = sk->sk_lingertime; 9430 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9431 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9432 newsk->sk_rxhash = sk->sk_rxhash; 9433 9434 newinet = inet_sk(newsk); 9435 9436 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9437 * getsockname() and getpeername() 9438 */ 9439 newinet->inet_sport = inet->inet_sport; 9440 newinet->inet_saddr = inet->inet_saddr; 9441 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9442 newinet->inet_dport = htons(asoc->peer.port); 9443 newinet->pmtudisc = inet->pmtudisc; 9444 newinet->inet_id = prandom_u32(); 9445 9446 newinet->uc_ttl = inet->uc_ttl; 9447 newinet->mc_loop = 1; 9448 newinet->mc_ttl = 1; 9449 newinet->mc_index = 0; 9450 newinet->mc_list = NULL; 9451 9452 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9453 net_enable_timestamp(); 9454 9455 /* Set newsk security attributes from original sk and connection 9456 * security attribute from ep. 9457 */ 9458 security_sctp_sk_clone(ep, sk, newsk); 9459 } 9460 9461 static inline void sctp_copy_descendant(struct sock *sk_to, 9462 const struct sock *sk_from) 9463 { 9464 size_t ancestor_size = sizeof(struct inet_sock); 9465 9466 ancestor_size += sk_from->sk_prot->obj_size; 9467 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9468 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9469 } 9470 9471 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9472 * and its messages to the newsk. 9473 */ 9474 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9475 struct sctp_association *assoc, 9476 enum sctp_socket_type type) 9477 { 9478 struct sctp_sock *oldsp = sctp_sk(oldsk); 9479 struct sctp_sock *newsp = sctp_sk(newsk); 9480 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9481 struct sctp_endpoint *newep = newsp->ep; 9482 struct sk_buff *skb, *tmp; 9483 struct sctp_ulpevent *event; 9484 struct sctp_bind_hashbucket *head; 9485 int err; 9486 9487 /* Migrate socket buffer sizes and all the socket level options to the 9488 * new socket. 9489 */ 9490 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9491 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9492 /* Brute force copy old sctp opt. */ 9493 sctp_copy_descendant(newsk, oldsk); 9494 9495 /* Restore the ep value that was overwritten with the above structure 9496 * copy. 9497 */ 9498 newsp->ep = newep; 9499 newsp->hmac = NULL; 9500 9501 /* Hook this new socket in to the bind_hash list. */ 9502 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9503 inet_sk(oldsk)->inet_num)]; 9504 spin_lock_bh(&head->lock); 9505 pp = sctp_sk(oldsk)->bind_hash; 9506 sk_add_bind_node(newsk, &pp->owner); 9507 sctp_sk(newsk)->bind_hash = pp; 9508 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9509 spin_unlock_bh(&head->lock); 9510 9511 /* Copy the bind_addr list from the original endpoint to the new 9512 * endpoint so that we can handle restarts properly 9513 */ 9514 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9515 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9516 if (err) 9517 return err; 9518 9519 /* New ep's auth_hmacs should be set if old ep's is set, in case 9520 * that net->sctp.auth_enable has been changed to 0 by users and 9521 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9522 */ 9523 if (oldsp->ep->auth_hmacs) { 9524 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9525 if (err) 9526 return err; 9527 } 9528 9529 sctp_auto_asconf_init(newsp); 9530 9531 /* Move any messages in the old socket's receive queue that are for the 9532 * peeled off association to the new socket's receive queue. 9533 */ 9534 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9535 event = sctp_skb2event(skb); 9536 if (event->asoc == assoc) { 9537 __skb_unlink(skb, &oldsk->sk_receive_queue); 9538 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9539 sctp_skb_set_owner_r_frag(skb, newsk); 9540 } 9541 } 9542 9543 /* Clean up any messages pending delivery due to partial 9544 * delivery. Three cases: 9545 * 1) No partial deliver; no work. 9546 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9547 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9548 */ 9549 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9550 9551 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9552 struct sk_buff_head *queue; 9553 9554 /* Decide which queue to move pd_lobby skbs to. */ 9555 if (assoc->ulpq.pd_mode) { 9556 queue = &newsp->pd_lobby; 9557 } else 9558 queue = &newsk->sk_receive_queue; 9559 9560 /* Walk through the pd_lobby, looking for skbs that 9561 * need moved to the new socket. 9562 */ 9563 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9564 event = sctp_skb2event(skb); 9565 if (event->asoc == assoc) { 9566 __skb_unlink(skb, &oldsp->pd_lobby); 9567 __skb_queue_tail(queue, skb); 9568 sctp_skb_set_owner_r_frag(skb, newsk); 9569 } 9570 } 9571 9572 /* Clear up any skbs waiting for the partial 9573 * delivery to finish. 9574 */ 9575 if (assoc->ulpq.pd_mode) 9576 sctp_clear_pd(oldsk, NULL); 9577 9578 } 9579 9580 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9581 9582 /* Set the type of socket to indicate that it is peeled off from the 9583 * original UDP-style socket or created with the accept() call on a 9584 * TCP-style socket.. 9585 */ 9586 newsp->type = type; 9587 9588 /* Mark the new socket "in-use" by the user so that any packets 9589 * that may arrive on the association after we've moved it are 9590 * queued to the backlog. This prevents a potential race between 9591 * backlog processing on the old socket and new-packet processing 9592 * on the new socket. 9593 * 9594 * The caller has just allocated newsk so we can guarantee that other 9595 * paths won't try to lock it and then oldsk. 9596 */ 9597 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9598 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9599 sctp_assoc_migrate(assoc, newsk); 9600 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9601 9602 /* If the association on the newsk is already closed before accept() 9603 * is called, set RCV_SHUTDOWN flag. 9604 */ 9605 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9606 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9607 newsk->sk_shutdown |= RCV_SHUTDOWN; 9608 } else { 9609 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9610 } 9611 9612 release_sock(newsk); 9613 9614 return 0; 9615 } 9616 9617 9618 /* This proto struct describes the ULP interface for SCTP. */ 9619 struct proto sctp_prot = { 9620 .name = "SCTP", 9621 .owner = THIS_MODULE, 9622 .close = sctp_close, 9623 .disconnect = sctp_disconnect, 9624 .accept = sctp_accept, 9625 .ioctl = sctp_ioctl, 9626 .init = sctp_init_sock, 9627 .destroy = sctp_destroy_sock, 9628 .shutdown = sctp_shutdown, 9629 .setsockopt = sctp_setsockopt, 9630 .getsockopt = sctp_getsockopt, 9631 .sendmsg = sctp_sendmsg, 9632 .recvmsg = sctp_recvmsg, 9633 .bind = sctp_bind, 9634 .bind_add = sctp_bind_add, 9635 .backlog_rcv = sctp_backlog_rcv, 9636 .hash = sctp_hash, 9637 .unhash = sctp_unhash, 9638 .no_autobind = true, 9639 .obj_size = sizeof(struct sctp_sock), 9640 .useroffset = offsetof(struct sctp_sock, subscribe), 9641 .usersize = offsetof(struct sctp_sock, initmsg) - 9642 offsetof(struct sctp_sock, subscribe) + 9643 sizeof_field(struct sctp_sock, initmsg), 9644 .sysctl_mem = sysctl_sctp_mem, 9645 .sysctl_rmem = sysctl_sctp_rmem, 9646 .sysctl_wmem = sysctl_sctp_wmem, 9647 .memory_pressure = &sctp_memory_pressure, 9648 .enter_memory_pressure = sctp_enter_memory_pressure, 9649 .memory_allocated = &sctp_memory_allocated, 9650 .sockets_allocated = &sctp_sockets_allocated, 9651 }; 9652 9653 #if IS_ENABLED(CONFIG_IPV6) 9654 9655 #include <net/transp_v6.h> 9656 static void sctp_v6_destroy_sock(struct sock *sk) 9657 { 9658 sctp_destroy_sock(sk); 9659 inet6_destroy_sock(sk); 9660 } 9661 9662 struct proto sctpv6_prot = { 9663 .name = "SCTPv6", 9664 .owner = THIS_MODULE, 9665 .close = sctp_close, 9666 .disconnect = sctp_disconnect, 9667 .accept = sctp_accept, 9668 .ioctl = sctp_ioctl, 9669 .init = sctp_init_sock, 9670 .destroy = sctp_v6_destroy_sock, 9671 .shutdown = sctp_shutdown, 9672 .setsockopt = sctp_setsockopt, 9673 .getsockopt = sctp_getsockopt, 9674 .sendmsg = sctp_sendmsg, 9675 .recvmsg = sctp_recvmsg, 9676 .bind = sctp_bind, 9677 .bind_add = sctp_bind_add, 9678 .backlog_rcv = sctp_backlog_rcv, 9679 .hash = sctp_hash, 9680 .unhash = sctp_unhash, 9681 .no_autobind = true, 9682 .obj_size = sizeof(struct sctp6_sock), 9683 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9684 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9685 offsetof(struct sctp6_sock, sctp.subscribe) + 9686 sizeof_field(struct sctp6_sock, sctp.initmsg), 9687 .sysctl_mem = sysctl_sctp_mem, 9688 .sysctl_rmem = sysctl_sctp_rmem, 9689 .sysctl_wmem = sysctl_sctp_wmem, 9690 .memory_pressure = &sctp_memory_pressure, 9691 .enter_memory_pressure = sctp_enter_memory_pressure, 9692 .memory_allocated = &sctp_memory_allocated, 9693 .sockets_allocated = &sctp_sockets_allocated, 9694 }; 9695 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9696