xref: /openbmc/linux/net/sctp/socket.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 #define traverse_and_process()	\
151 do {				\
152 	msg = chunk->msg;	\
153 	if (msg == prev_msg)	\
154 		continue;	\
155 	list_for_each_entry(c, &msg->chunks, frag_list) {	\
156 		if ((clear && asoc->base.sk == c->skb->sk) ||	\
157 		    (!clear && asoc->base.sk != c->skb->sk))	\
158 			cb(c);	\
159 	}			\
160 	prev_msg = msg;		\
161 } while (0)
162 
163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 				       bool clear,
165 				       void (*cb)(struct sctp_chunk *))
166 
167 {
168 	struct sctp_datamsg *msg, *prev_msg = NULL;
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_chunk *chunk, *c;
171 	struct sctp_transport *t;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			traverse_and_process();
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		traverse_and_process();
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		traverse_and_process();
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		traverse_and_process();
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		traverse_and_process();
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 static void sctp_auto_asconf_init(struct sctp_sock *sp)
361 {
362 	struct net *net = sock_net(&sp->inet.sk);
363 
364 	if (net->sctp.default_auto_asconf) {
365 		spin_lock(&net->sctp.addr_wq_lock);
366 		list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
367 		spin_unlock(&net->sctp.addr_wq_lock);
368 		sp->do_auto_asconf = 1;
369 	}
370 }
371 
372 /* Bind a local address either to an endpoint or to an association.  */
373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
374 {
375 	struct net *net = sock_net(sk);
376 	struct sctp_sock *sp = sctp_sk(sk);
377 	struct sctp_endpoint *ep = sp->ep;
378 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
379 	struct sctp_af *af;
380 	unsigned short snum;
381 	int ret = 0;
382 
383 	/* Common sockaddr verification. */
384 	af = sctp_sockaddr_af(sp, addr, len);
385 	if (!af) {
386 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
387 			 __func__, sk, addr, len);
388 		return -EINVAL;
389 	}
390 
391 	snum = ntohs(addr->v4.sin_port);
392 
393 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
394 		 __func__, sk, &addr->sa, bp->port, snum, len);
395 
396 	/* PF specific bind() address verification. */
397 	if (!sp->pf->bind_verify(sp, addr))
398 		return -EADDRNOTAVAIL;
399 
400 	/* We must either be unbound, or bind to the same port.
401 	 * It's OK to allow 0 ports if we are already bound.
402 	 * We'll just inhert an already bound port in this case
403 	 */
404 	if (bp->port) {
405 		if (!snum)
406 			snum = bp->port;
407 		else if (snum != bp->port) {
408 			pr_debug("%s: new port %d doesn't match existing port "
409 				 "%d\n", __func__, snum, bp->port);
410 			return -EINVAL;
411 		}
412 	}
413 
414 	if (snum && inet_port_requires_bind_service(net, snum) &&
415 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
416 		return -EACCES;
417 
418 	/* See if the address matches any of the addresses we may have
419 	 * already bound before checking against other endpoints.
420 	 */
421 	if (sctp_bind_addr_match(bp, addr, sp))
422 		return -EINVAL;
423 
424 	/* Make sure we are allowed to bind here.
425 	 * The function sctp_get_port_local() does duplicate address
426 	 * detection.
427 	 */
428 	addr->v4.sin_port = htons(snum);
429 	if (sctp_get_port_local(sk, addr))
430 		return -EADDRINUSE;
431 
432 	/* Refresh ephemeral port.  */
433 	if (!bp->port) {
434 		bp->port = inet_sk(sk)->inet_num;
435 		sctp_auto_asconf_init(sp);
436 	}
437 
438 	/* Add the address to the bind address list.
439 	 * Use GFP_ATOMIC since BHs will be disabled.
440 	 */
441 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
442 				 SCTP_ADDR_SRC, GFP_ATOMIC);
443 
444 	if (ret) {
445 		sctp_put_port(sk);
446 		return ret;
447 	}
448 	/* Copy back into socket for getsockname() use. */
449 	inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
450 	sp->pf->to_sk_saddr(addr, sk);
451 
452 	return ret;
453 }
454 
455  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
456  *
457  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
458  * at any one time.  If a sender, after sending an ASCONF chunk, decides
459  * it needs to transfer another ASCONF Chunk, it MUST wait until the
460  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
461  * subsequent ASCONF. Note this restriction binds each side, so at any
462  * time two ASCONF may be in-transit on any given association (one sent
463  * from each endpoint).
464  */
465 static int sctp_send_asconf(struct sctp_association *asoc,
466 			    struct sctp_chunk *chunk)
467 {
468 	int retval = 0;
469 
470 	/* If there is an outstanding ASCONF chunk, queue it for later
471 	 * transmission.
472 	 */
473 	if (asoc->addip_last_asconf) {
474 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
475 		goto out;
476 	}
477 
478 	/* Hold the chunk until an ASCONF_ACK is received. */
479 	sctp_chunk_hold(chunk);
480 	retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
481 	if (retval)
482 		sctp_chunk_free(chunk);
483 	else
484 		asoc->addip_last_asconf = chunk;
485 
486 out:
487 	return retval;
488 }
489 
490 /* Add a list of addresses as bind addresses to local endpoint or
491  * association.
492  *
493  * Basically run through each address specified in the addrs/addrcnt
494  * array/length pair, determine if it is IPv6 or IPv4 and call
495  * sctp_do_bind() on it.
496  *
497  * If any of them fails, then the operation will be reversed and the
498  * ones that were added will be removed.
499  *
500  * Only sctp_setsockopt_bindx() is supposed to call this function.
501  */
502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
503 {
504 	int cnt;
505 	int retval = 0;
506 	void *addr_buf;
507 	struct sockaddr *sa_addr;
508 	struct sctp_af *af;
509 
510 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
511 		 addrs, addrcnt);
512 
513 	addr_buf = addrs;
514 	for (cnt = 0; cnt < addrcnt; cnt++) {
515 		/* The list may contain either IPv4 or IPv6 address;
516 		 * determine the address length for walking thru the list.
517 		 */
518 		sa_addr = addr_buf;
519 		af = sctp_get_af_specific(sa_addr->sa_family);
520 		if (!af) {
521 			retval = -EINVAL;
522 			goto err_bindx_add;
523 		}
524 
525 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
526 				      af->sockaddr_len);
527 
528 		addr_buf += af->sockaddr_len;
529 
530 err_bindx_add:
531 		if (retval < 0) {
532 			/* Failed. Cleanup the ones that have been added */
533 			if (cnt > 0)
534 				sctp_bindx_rem(sk, addrs, cnt);
535 			return retval;
536 		}
537 	}
538 
539 	return retval;
540 }
541 
542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
543  * associations that are part of the endpoint indicating that a list of local
544  * addresses are added to the endpoint.
545  *
546  * If any of the addresses is already in the bind address list of the
547  * association, we do not send the chunk for that association.  But it will not
548  * affect other associations.
549  *
550  * Only sctp_setsockopt_bindx() is supposed to call this function.
551  */
552 static int sctp_send_asconf_add_ip(struct sock		*sk,
553 				   struct sockaddr	*addrs,
554 				   int 			addrcnt)
555 {
556 	struct sctp_sock		*sp;
557 	struct sctp_endpoint		*ep;
558 	struct sctp_association		*asoc;
559 	struct sctp_bind_addr		*bp;
560 	struct sctp_chunk		*chunk;
561 	struct sctp_sockaddr_entry	*laddr;
562 	union sctp_addr			*addr;
563 	union sctp_addr			saveaddr;
564 	void				*addr_buf;
565 	struct sctp_af			*af;
566 	struct list_head		*p;
567 	int 				i;
568 	int 				retval = 0;
569 
570 	sp = sctp_sk(sk);
571 	ep = sp->ep;
572 
573 	if (!ep->asconf_enable)
574 		return retval;
575 
576 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
577 		 __func__, sk, addrs, addrcnt);
578 
579 	list_for_each_entry(asoc, &ep->asocs, asocs) {
580 		if (!asoc->peer.asconf_capable)
581 			continue;
582 
583 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
584 			continue;
585 
586 		if (!sctp_state(asoc, ESTABLISHED))
587 			continue;
588 
589 		/* Check if any address in the packed array of addresses is
590 		 * in the bind address list of the association. If so,
591 		 * do not send the asconf chunk to its peer, but continue with
592 		 * other associations.
593 		 */
594 		addr_buf = addrs;
595 		for (i = 0; i < addrcnt; i++) {
596 			addr = addr_buf;
597 			af = sctp_get_af_specific(addr->v4.sin_family);
598 			if (!af) {
599 				retval = -EINVAL;
600 				goto out;
601 			}
602 
603 			if (sctp_assoc_lookup_laddr(asoc, addr))
604 				break;
605 
606 			addr_buf += af->sockaddr_len;
607 		}
608 		if (i < addrcnt)
609 			continue;
610 
611 		/* Use the first valid address in bind addr list of
612 		 * association as Address Parameter of ASCONF CHUNK.
613 		 */
614 		bp = &asoc->base.bind_addr;
615 		p = bp->address_list.next;
616 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
617 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
618 						   addrcnt, SCTP_PARAM_ADD_IP);
619 		if (!chunk) {
620 			retval = -ENOMEM;
621 			goto out;
622 		}
623 
624 		/* Add the new addresses to the bind address list with
625 		 * use_as_src set to 0.
626 		 */
627 		addr_buf = addrs;
628 		for (i = 0; i < addrcnt; i++) {
629 			addr = addr_buf;
630 			af = sctp_get_af_specific(addr->v4.sin_family);
631 			memcpy(&saveaddr, addr, af->sockaddr_len);
632 			retval = sctp_add_bind_addr(bp, &saveaddr,
633 						    sizeof(saveaddr),
634 						    SCTP_ADDR_NEW, GFP_ATOMIC);
635 			addr_buf += af->sockaddr_len;
636 		}
637 		if (asoc->src_out_of_asoc_ok) {
638 			struct sctp_transport *trans;
639 
640 			list_for_each_entry(trans,
641 			    &asoc->peer.transport_addr_list, transports) {
642 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
643 				    2*asoc->pathmtu, 4380));
644 				trans->ssthresh = asoc->peer.i.a_rwnd;
645 				trans->rto = asoc->rto_initial;
646 				sctp_max_rto(asoc, trans);
647 				trans->rtt = trans->srtt = trans->rttvar = 0;
648 				/* Clear the source and route cache */
649 				sctp_transport_route(trans, NULL,
650 						     sctp_sk(asoc->base.sk));
651 			}
652 		}
653 		retval = sctp_send_asconf(asoc, chunk);
654 	}
655 
656 out:
657 	return retval;
658 }
659 
660 /* Remove a list of addresses from bind addresses list.  Do not remove the
661  * last address.
662  *
663  * Basically run through each address specified in the addrs/addrcnt
664  * array/length pair, determine if it is IPv6 or IPv4 and call
665  * sctp_del_bind() on it.
666  *
667  * If any of them fails, then the operation will be reversed and the
668  * ones that were removed will be added back.
669  *
670  * At least one address has to be left; if only one address is
671  * available, the operation will return -EBUSY.
672  *
673  * Only sctp_setsockopt_bindx() is supposed to call this function.
674  */
675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
676 {
677 	struct sctp_sock *sp = sctp_sk(sk);
678 	struct sctp_endpoint *ep = sp->ep;
679 	int cnt;
680 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
681 	int retval = 0;
682 	void *addr_buf;
683 	union sctp_addr *sa_addr;
684 	struct sctp_af *af;
685 
686 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
687 		 __func__, sk, addrs, addrcnt);
688 
689 	addr_buf = addrs;
690 	for (cnt = 0; cnt < addrcnt; cnt++) {
691 		/* If the bind address list is empty or if there is only one
692 		 * bind address, there is nothing more to be removed (we need
693 		 * at least one address here).
694 		 */
695 		if (list_empty(&bp->address_list) ||
696 		    (sctp_list_single_entry(&bp->address_list))) {
697 			retval = -EBUSY;
698 			goto err_bindx_rem;
699 		}
700 
701 		sa_addr = addr_buf;
702 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
703 		if (!af) {
704 			retval = -EINVAL;
705 			goto err_bindx_rem;
706 		}
707 
708 		if (!af->addr_valid(sa_addr, sp, NULL)) {
709 			retval = -EADDRNOTAVAIL;
710 			goto err_bindx_rem;
711 		}
712 
713 		if (sa_addr->v4.sin_port &&
714 		    sa_addr->v4.sin_port != htons(bp->port)) {
715 			retval = -EINVAL;
716 			goto err_bindx_rem;
717 		}
718 
719 		if (!sa_addr->v4.sin_port)
720 			sa_addr->v4.sin_port = htons(bp->port);
721 
722 		/* FIXME - There is probably a need to check if sk->sk_saddr and
723 		 * sk->sk_rcv_addr are currently set to one of the addresses to
724 		 * be removed. This is something which needs to be looked into
725 		 * when we are fixing the outstanding issues with multi-homing
726 		 * socket routing and failover schemes. Refer to comments in
727 		 * sctp_do_bind(). -daisy
728 		 */
729 		retval = sctp_del_bind_addr(bp, sa_addr);
730 
731 		addr_buf += af->sockaddr_len;
732 err_bindx_rem:
733 		if (retval < 0) {
734 			/* Failed. Add the ones that has been removed back */
735 			if (cnt > 0)
736 				sctp_bindx_add(sk, addrs, cnt);
737 			return retval;
738 		}
739 	}
740 
741 	return retval;
742 }
743 
744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
745  * the associations that are part of the endpoint indicating that a list of
746  * local addresses are removed from the endpoint.
747  *
748  * If any of the addresses is already in the bind address list of the
749  * association, we do not send the chunk for that association.  But it will not
750  * affect other associations.
751  *
752  * Only sctp_setsockopt_bindx() is supposed to call this function.
753  */
754 static int sctp_send_asconf_del_ip(struct sock		*sk,
755 				   struct sockaddr	*addrs,
756 				   int			addrcnt)
757 {
758 	struct sctp_sock	*sp;
759 	struct sctp_endpoint	*ep;
760 	struct sctp_association	*asoc;
761 	struct sctp_transport	*transport;
762 	struct sctp_bind_addr	*bp;
763 	struct sctp_chunk	*chunk;
764 	union sctp_addr		*laddr;
765 	void			*addr_buf;
766 	struct sctp_af		*af;
767 	struct sctp_sockaddr_entry *saddr;
768 	int 			i;
769 	int 			retval = 0;
770 	int			stored = 0;
771 
772 	chunk = NULL;
773 	sp = sctp_sk(sk);
774 	ep = sp->ep;
775 
776 	if (!ep->asconf_enable)
777 		return retval;
778 
779 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
780 		 __func__, sk, addrs, addrcnt);
781 
782 	list_for_each_entry(asoc, &ep->asocs, asocs) {
783 
784 		if (!asoc->peer.asconf_capable)
785 			continue;
786 
787 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
788 			continue;
789 
790 		if (!sctp_state(asoc, ESTABLISHED))
791 			continue;
792 
793 		/* Check if any address in the packed array of addresses is
794 		 * not present in the bind address list of the association.
795 		 * If so, do not send the asconf chunk to its peer, but
796 		 * continue with other associations.
797 		 */
798 		addr_buf = addrs;
799 		for (i = 0; i < addrcnt; i++) {
800 			laddr = addr_buf;
801 			af = sctp_get_af_specific(laddr->v4.sin_family);
802 			if (!af) {
803 				retval = -EINVAL;
804 				goto out;
805 			}
806 
807 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
808 				break;
809 
810 			addr_buf += af->sockaddr_len;
811 		}
812 		if (i < addrcnt)
813 			continue;
814 
815 		/* Find one address in the association's bind address list
816 		 * that is not in the packed array of addresses. This is to
817 		 * make sure that we do not delete all the addresses in the
818 		 * association.
819 		 */
820 		bp = &asoc->base.bind_addr;
821 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
822 					       addrcnt, sp);
823 		if ((laddr == NULL) && (addrcnt == 1)) {
824 			if (asoc->asconf_addr_del_pending)
825 				continue;
826 			asoc->asconf_addr_del_pending =
827 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
828 			if (asoc->asconf_addr_del_pending == NULL) {
829 				retval = -ENOMEM;
830 				goto out;
831 			}
832 			asoc->asconf_addr_del_pending->sa.sa_family =
833 				    addrs->sa_family;
834 			asoc->asconf_addr_del_pending->v4.sin_port =
835 				    htons(bp->port);
836 			if (addrs->sa_family == AF_INET) {
837 				struct sockaddr_in *sin;
838 
839 				sin = (struct sockaddr_in *)addrs;
840 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
841 			} else if (addrs->sa_family == AF_INET6) {
842 				struct sockaddr_in6 *sin6;
843 
844 				sin6 = (struct sockaddr_in6 *)addrs;
845 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
846 			}
847 
848 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
849 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
850 				 asoc->asconf_addr_del_pending);
851 
852 			asoc->src_out_of_asoc_ok = 1;
853 			stored = 1;
854 			goto skip_mkasconf;
855 		}
856 
857 		if (laddr == NULL)
858 			return -EINVAL;
859 
860 		/* We do not need RCU protection throughout this loop
861 		 * because this is done under a socket lock from the
862 		 * setsockopt call.
863 		 */
864 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
865 						   SCTP_PARAM_DEL_IP);
866 		if (!chunk) {
867 			retval = -ENOMEM;
868 			goto out;
869 		}
870 
871 skip_mkasconf:
872 		/* Reset use_as_src flag for the addresses in the bind address
873 		 * list that are to be deleted.
874 		 */
875 		addr_buf = addrs;
876 		for (i = 0; i < addrcnt; i++) {
877 			laddr = addr_buf;
878 			af = sctp_get_af_specific(laddr->v4.sin_family);
879 			list_for_each_entry(saddr, &bp->address_list, list) {
880 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
881 					saddr->state = SCTP_ADDR_DEL;
882 			}
883 			addr_buf += af->sockaddr_len;
884 		}
885 
886 		/* Update the route and saddr entries for all the transports
887 		 * as some of the addresses in the bind address list are
888 		 * about to be deleted and cannot be used as source addresses.
889 		 */
890 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
891 					transports) {
892 			sctp_transport_route(transport, NULL,
893 					     sctp_sk(asoc->base.sk));
894 		}
895 
896 		if (stored)
897 			/* We don't need to transmit ASCONF */
898 			continue;
899 		retval = sctp_send_asconf(asoc, chunk);
900 	}
901 out:
902 	return retval;
903 }
904 
905 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
907 {
908 	struct sock *sk = sctp_opt2sk(sp);
909 	union sctp_addr *addr;
910 	struct sctp_af *af;
911 
912 	/* It is safe to write port space in caller. */
913 	addr = &addrw->a;
914 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
915 	af = sctp_get_af_specific(addr->sa.sa_family);
916 	if (!af)
917 		return -EINVAL;
918 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
919 		return -EINVAL;
920 
921 	if (addrw->state == SCTP_ADDR_NEW)
922 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
923 	else
924 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
925 }
926 
927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
928  *
929  * API 8.1
930  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
931  *                int flags);
932  *
933  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
934  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
935  * or IPv6 addresses.
936  *
937  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
938  * Section 3.1.2 for this usage.
939  *
940  * addrs is a pointer to an array of one or more socket addresses. Each
941  * address is contained in its appropriate structure (i.e. struct
942  * sockaddr_in or struct sockaddr_in6) the family of the address type
943  * must be used to distinguish the address length (note that this
944  * representation is termed a "packed array" of addresses). The caller
945  * specifies the number of addresses in the array with addrcnt.
946  *
947  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
948  * -1, and sets errno to the appropriate error code.
949  *
950  * For SCTP, the port given in each socket address must be the same, or
951  * sctp_bindx() will fail, setting errno to EINVAL.
952  *
953  * The flags parameter is formed from the bitwise OR of zero or more of
954  * the following currently defined flags:
955  *
956  * SCTP_BINDX_ADD_ADDR
957  *
958  * SCTP_BINDX_REM_ADDR
959  *
960  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
961  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
962  * addresses from the association. The two flags are mutually exclusive;
963  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
964  * not remove all addresses from an association; sctp_bindx() will
965  * reject such an attempt with EINVAL.
966  *
967  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
968  * additional addresses with an endpoint after calling bind().  Or use
969  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
970  * socket is associated with so that no new association accepted will be
971  * associated with those addresses. If the endpoint supports dynamic
972  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
973  * endpoint to send the appropriate message to the peer to change the
974  * peers address lists.
975  *
976  * Adding and removing addresses from a connected association is
977  * optional functionality. Implementations that do not support this
978  * functionality should return EOPNOTSUPP.
979  *
980  * Basically do nothing but copying the addresses from user to kernel
981  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
982  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
983  * from userspace.
984  *
985  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
986  * it.
987  *
988  * sk        The sk of the socket
989  * addrs     The pointer to the addresses
990  * addrssize Size of the addrs buffer
991  * op        Operation to perform (add or remove, see the flags of
992  *           sctp_bindx)
993  *
994  * Returns 0 if ok, <0 errno code on error.
995  */
996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
997 				 int addrs_size, int op)
998 {
999 	int err;
1000 	int addrcnt = 0;
1001 	int walk_size = 0;
1002 	struct sockaddr *sa_addr;
1003 	void *addr_buf = addrs;
1004 	struct sctp_af *af;
1005 
1006 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1007 		 __func__, sk, addr_buf, addrs_size, op);
1008 
1009 	if (unlikely(addrs_size <= 0))
1010 		return -EINVAL;
1011 
1012 	/* Walk through the addrs buffer and count the number of addresses. */
1013 	while (walk_size < addrs_size) {
1014 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1015 			return -EINVAL;
1016 
1017 		sa_addr = addr_buf;
1018 		af = sctp_get_af_specific(sa_addr->sa_family);
1019 
1020 		/* If the address family is not supported or if this address
1021 		 * causes the address buffer to overflow return EINVAL.
1022 		 */
1023 		if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1024 			return -EINVAL;
1025 		addrcnt++;
1026 		addr_buf += af->sockaddr_len;
1027 		walk_size += af->sockaddr_len;
1028 	}
1029 
1030 	/* Do the work. */
1031 	switch (op) {
1032 	case SCTP_BINDX_ADD_ADDR:
1033 		/* Allow security module to validate bindx addresses. */
1034 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1035 						 addrs, addrs_size);
1036 		if (err)
1037 			return err;
1038 		err = sctp_bindx_add(sk, addrs, addrcnt);
1039 		if (err)
1040 			return err;
1041 		return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1042 	case SCTP_BINDX_REM_ADDR:
1043 		err = sctp_bindx_rem(sk, addrs, addrcnt);
1044 		if (err)
1045 			return err;
1046 		return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1047 
1048 	default:
1049 		return -EINVAL;
1050 	}
1051 }
1052 
1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1054 		int addrlen)
1055 {
1056 	int err;
1057 
1058 	lock_sock(sk);
1059 	err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1060 	release_sock(sk);
1061 	return err;
1062 }
1063 
1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1065 				 const union sctp_addr *daddr,
1066 				 const struct sctp_initmsg *init,
1067 				 struct sctp_transport **tp)
1068 {
1069 	struct sctp_association *asoc;
1070 	struct sock *sk = ep->base.sk;
1071 	struct net *net = sock_net(sk);
1072 	enum sctp_scope scope;
1073 	int err;
1074 
1075 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1076 		return -EADDRNOTAVAIL;
1077 
1078 	if (!ep->base.bind_addr.port) {
1079 		if (sctp_autobind(sk))
1080 			return -EAGAIN;
1081 	} else {
1082 		if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1083 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1084 			return -EACCES;
1085 	}
1086 
1087 	scope = sctp_scope(daddr);
1088 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1089 	if (!asoc)
1090 		return -ENOMEM;
1091 
1092 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1093 	if (err < 0)
1094 		goto free;
1095 
1096 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1097 	if (!*tp) {
1098 		err = -ENOMEM;
1099 		goto free;
1100 	}
1101 
1102 	if (!init)
1103 		return 0;
1104 
1105 	if (init->sinit_num_ostreams) {
1106 		__u16 outcnt = init->sinit_num_ostreams;
1107 
1108 		asoc->c.sinit_num_ostreams = outcnt;
1109 		/* outcnt has been changed, need to re-init stream */
1110 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1111 		if (err)
1112 			goto free;
1113 	}
1114 
1115 	if (init->sinit_max_instreams)
1116 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1117 
1118 	if (init->sinit_max_attempts)
1119 		asoc->max_init_attempts = init->sinit_max_attempts;
1120 
1121 	if (init->sinit_max_init_timeo)
1122 		asoc->max_init_timeo =
1123 			msecs_to_jiffies(init->sinit_max_init_timeo);
1124 
1125 	return 0;
1126 free:
1127 	sctp_association_free(asoc);
1128 	return err;
1129 }
1130 
1131 static int sctp_connect_add_peer(struct sctp_association *asoc,
1132 				 union sctp_addr *daddr, int addr_len)
1133 {
1134 	struct sctp_endpoint *ep = asoc->ep;
1135 	struct sctp_association *old;
1136 	struct sctp_transport *t;
1137 	int err;
1138 
1139 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1140 	if (err)
1141 		return err;
1142 
1143 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1144 	if (old && old != asoc)
1145 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1146 							    : -EALREADY;
1147 
1148 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1149 		return -EADDRNOTAVAIL;
1150 
1151 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1152 	if (!t)
1153 		return -ENOMEM;
1154 
1155 	return 0;
1156 }
1157 
1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1159  *
1160  * Common routine for handling connect() and sctp_connectx().
1161  * Connect will come in with just a single address.
1162  */
1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1164 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1165 {
1166 	struct sctp_sock *sp = sctp_sk(sk);
1167 	struct sctp_endpoint *ep = sp->ep;
1168 	struct sctp_transport *transport;
1169 	struct sctp_association *asoc;
1170 	void *addr_buf = kaddrs;
1171 	union sctp_addr *daddr;
1172 	struct sctp_af *af;
1173 	int walk_size, err;
1174 	long timeo;
1175 
1176 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1177 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1178 		return -EISCONN;
1179 
1180 	daddr = addr_buf;
1181 	af = sctp_get_af_specific(daddr->sa.sa_family);
1182 	if (!af || af->sockaddr_len > addrs_size)
1183 		return -EINVAL;
1184 
1185 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1186 	if (err)
1187 		return err;
1188 
1189 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1190 	if (asoc)
1191 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1192 							     : -EALREADY;
1193 
1194 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1195 	if (err)
1196 		return err;
1197 	asoc = transport->asoc;
1198 
1199 	addr_buf += af->sockaddr_len;
1200 	walk_size = af->sockaddr_len;
1201 	while (walk_size < addrs_size) {
1202 		err = -EINVAL;
1203 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1204 			goto out_free;
1205 
1206 		daddr = addr_buf;
1207 		af = sctp_get_af_specific(daddr->sa.sa_family);
1208 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1209 			goto out_free;
1210 
1211 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1212 			goto out_free;
1213 
1214 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1215 		if (err)
1216 			goto out_free;
1217 
1218 		addr_buf  += af->sockaddr_len;
1219 		walk_size += af->sockaddr_len;
1220 	}
1221 
1222 	/* In case the user of sctp_connectx() wants an association
1223 	 * id back, assign one now.
1224 	 */
1225 	if (assoc_id) {
1226 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1227 		if (err < 0)
1228 			goto out_free;
1229 	}
1230 
1231 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1232 	if (err < 0)
1233 		goto out_free;
1234 
1235 	/* Initialize sk's dport and daddr for getpeername() */
1236 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 	sp->pf->to_sk_daddr(daddr, sk);
1238 	sk->sk_err = 0;
1239 
1240 	if (assoc_id)
1241 		*assoc_id = asoc->assoc_id;
1242 
1243 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1244 	return sctp_wait_for_connect(asoc, &timeo);
1245 
1246 out_free:
1247 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1248 		 __func__, asoc, kaddrs, err);
1249 	sctp_association_free(asoc);
1250 	return err;
1251 }
1252 
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254  *
1255  * API 8.9
1256  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257  * 			sctp_assoc_t *asoc);
1258  *
1259  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261  * or IPv6 addresses.
1262  *
1263  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264  * Section 3.1.2 for this usage.
1265  *
1266  * addrs is a pointer to an array of one or more socket addresses. Each
1267  * address is contained in its appropriate structure (i.e. struct
1268  * sockaddr_in or struct sockaddr_in6) the family of the address type
1269  * must be used to distengish the address length (note that this
1270  * representation is termed a "packed array" of addresses). The caller
1271  * specifies the number of addresses in the array with addrcnt.
1272  *
1273  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274  * the association id of the new association.  On failure, sctp_connectx()
1275  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1276  * is not touched by the kernel.
1277  *
1278  * For SCTP, the port given in each socket address must be the same, or
1279  * sctp_connectx() will fail, setting errno to EINVAL.
1280  *
1281  * An application can use sctp_connectx to initiate an association with
1282  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1283  * allows a caller to specify multiple addresses at which a peer can be
1284  * reached.  The way the SCTP stack uses the list of addresses to set up
1285  * the association is implementation dependent.  This function only
1286  * specifies that the stack will try to make use of all the addresses in
1287  * the list when needed.
1288  *
1289  * Note that the list of addresses passed in is only used for setting up
1290  * the association.  It does not necessarily equal the set of addresses
1291  * the peer uses for the resulting association.  If the caller wants to
1292  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293  * retrieve them after the association has been set up.
1294  *
1295  * Basically do nothing but copying the addresses from user to kernel
1296  * land and invoking either sctp_connectx(). This is used for tunneling
1297  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298  *
1299  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1300  * it.
1301  *
1302  * sk        The sk of the socket
1303  * addrs     The pointer to the addresses
1304  * addrssize Size of the addrs buffer
1305  *
1306  * Returns >=0 if ok, <0 errno code on error.
1307  */
1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1309 				      int addrs_size, sctp_assoc_t *assoc_id)
1310 {
1311 	int err = 0, flags = 0;
1312 
1313 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1314 		 __func__, sk, kaddrs, addrs_size);
1315 
1316 	/* make sure the 1st addr's sa_family is accessible later */
1317 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1318 		return -EINVAL;
1319 
1320 	/* Allow security module to validate connectx addresses. */
1321 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1322 					 (struct sockaddr *)kaddrs,
1323 					  addrs_size);
1324 	if (err)
1325 		return err;
1326 
1327 	/* in-kernel sockets don't generally have a file allocated to them
1328 	 * if all they do is call sock_create_kern().
1329 	 */
1330 	if (sk->sk_socket->file)
1331 		flags = sk->sk_socket->file->f_flags;
1332 
1333 	return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1334 }
1335 
1336 /*
1337  * This is an older interface.  It's kept for backward compatibility
1338  * to the option that doesn't provide association id.
1339  */
1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 					struct sockaddr *kaddrs,
1342 					int addrs_size)
1343 {
1344 	return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1345 }
1346 
1347 /*
1348  * New interface for the API.  The since the API is done with a socket
1349  * option, to make it simple we feed back the association id is as a return
1350  * indication to the call.  Error is always negative and association id is
1351  * always positive.
1352  */
1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 				    struct sockaddr *kaddrs,
1355 				    int addrs_size)
1356 {
1357 	sctp_assoc_t assoc_id = 0;
1358 	int err = 0;
1359 
1360 	err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1361 
1362 	if (err)
1363 		return err;
1364 	else
1365 		return assoc_id;
1366 }
1367 
1368 /*
1369  * New (hopefully final) interface for the API.
1370  * We use the sctp_getaddrs_old structure so that use-space library
1371  * can avoid any unnecessary allocations. The only different part
1372  * is that we store the actual length of the address buffer into the
1373  * addrs_num structure member. That way we can re-use the existing
1374  * code.
1375  */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 	sctp_assoc_t	assoc_id;
1379 	s32		addr_num;
1380 	compat_uptr_t	addrs;		/* struct sockaddr * */
1381 };
1382 #endif
1383 
1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 				     char __user *optval,
1386 				     int __user *optlen)
1387 {
1388 	struct sctp_getaddrs_old param;
1389 	sctp_assoc_t assoc_id = 0;
1390 	struct sockaddr *kaddrs;
1391 	int err = 0;
1392 
1393 #ifdef CONFIG_COMPAT
1394 	if (in_compat_syscall()) {
1395 		struct compat_sctp_getaddrs_old param32;
1396 
1397 		if (len < sizeof(param32))
1398 			return -EINVAL;
1399 		if (copy_from_user(&param32, optval, sizeof(param32)))
1400 			return -EFAULT;
1401 
1402 		param.assoc_id = param32.assoc_id;
1403 		param.addr_num = param32.addr_num;
1404 		param.addrs = compat_ptr(param32.addrs);
1405 	} else
1406 #endif
1407 	{
1408 		if (len < sizeof(param))
1409 			return -EINVAL;
1410 		if (copy_from_user(&param, optval, sizeof(param)))
1411 			return -EFAULT;
1412 	}
1413 
1414 	kaddrs = memdup_user(param.addrs, param.addr_num);
1415 	if (IS_ERR(kaddrs))
1416 		return PTR_ERR(kaddrs);
1417 
1418 	err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1419 	kfree(kaddrs);
1420 	if (err == 0 || err == -EINPROGRESS) {
1421 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 			return -EFAULT;
1423 		if (put_user(sizeof(assoc_id), optlen))
1424 			return -EFAULT;
1425 	}
1426 
1427 	return err;
1428 }
1429 
1430 /* API 3.1.4 close() - UDP Style Syntax
1431  * Applications use close() to perform graceful shutdown (as described in
1432  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433  * by a UDP-style socket.
1434  *
1435  * The syntax is
1436  *
1437  *   ret = close(int sd);
1438  *
1439  *   sd      - the socket descriptor of the associations to be closed.
1440  *
1441  * To gracefully shutdown a specific association represented by the
1442  * UDP-style socket, an application should use the sendmsg() call,
1443  * passing no user data, but including the appropriate flag in the
1444  * ancillary data (see Section xxxx).
1445  *
1446  * If sd in the close() call is a branched-off socket representing only
1447  * one association, the shutdown is performed on that association only.
1448  *
1449  * 4.1.6 close() - TCP Style Syntax
1450  *
1451  * Applications use close() to gracefully close down an association.
1452  *
1453  * The syntax is:
1454  *
1455  *    int close(int sd);
1456  *
1457  *      sd      - the socket descriptor of the association to be closed.
1458  *
1459  * After an application calls close() on a socket descriptor, no further
1460  * socket operations will succeed on that descriptor.
1461  *
1462  * API 7.1.4 SO_LINGER
1463  *
1464  * An application using the TCP-style socket can use this option to
1465  * perform the SCTP ABORT primitive.  The linger option structure is:
1466  *
1467  *  struct  linger {
1468  *     int     l_onoff;                // option on/off
1469  *     int     l_linger;               // linger time
1470  * };
1471  *
1472  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1473  * to 0, calling close() is the same as the ABORT primitive.  If the
1474  * value is set to a negative value, the setsockopt() call will return
1475  * an error.  If the value is set to a positive value linger_time, the
1476  * close() can be blocked for at most linger_time ms.  If the graceful
1477  * shutdown phase does not finish during this period, close() will
1478  * return but the graceful shutdown phase continues in the system.
1479  */
1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 	struct net *net = sock_net(sk);
1483 	struct sctp_endpoint *ep;
1484 	struct sctp_association *asoc;
1485 	struct list_head *pos, *temp;
1486 	unsigned int data_was_unread;
1487 
1488 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489 
1490 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1491 	sk->sk_shutdown = SHUTDOWN_MASK;
1492 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1493 
1494 	ep = sctp_sk(sk)->ep;
1495 
1496 	/* Clean up any skbs sitting on the receive queue.  */
1497 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499 
1500 	/* Walk all associations on an endpoint.  */
1501 	list_for_each_safe(pos, temp, &ep->asocs) {
1502 		asoc = list_entry(pos, struct sctp_association, asocs);
1503 
1504 		if (sctp_style(sk, TCP)) {
1505 			/* A closed association can still be in the list if
1506 			 * it belongs to a TCP-style listening socket that is
1507 			 * not yet accepted. If so, free it. If not, send an
1508 			 * ABORT or SHUTDOWN based on the linger options.
1509 			 */
1510 			if (sctp_state(asoc, CLOSED)) {
1511 				sctp_association_free(asoc);
1512 				continue;
1513 			}
1514 		}
1515 
1516 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1519 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1520 			struct sctp_chunk *chunk;
1521 
1522 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1523 			sctp_primitive_ABORT(net, asoc, chunk);
1524 		} else
1525 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1526 	}
1527 
1528 	/* On a TCP-style socket, block for at most linger_time if set. */
1529 	if (sctp_style(sk, TCP) && timeout)
1530 		sctp_wait_for_close(sk, timeout);
1531 
1532 	/* This will run the backlog queue.  */
1533 	release_sock(sk);
1534 
1535 	/* Supposedly, no process has access to the socket, but
1536 	 * the net layers still may.
1537 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1538 	 * held and that should be grabbed before socket lock.
1539 	 */
1540 	spin_lock_bh(&net->sctp.addr_wq_lock);
1541 	bh_lock_sock_nested(sk);
1542 
1543 	/* Hold the sock, since sk_common_release() will put sock_put()
1544 	 * and we have just a little more cleanup.
1545 	 */
1546 	sock_hold(sk);
1547 	sk_common_release(sk);
1548 
1549 	bh_unlock_sock(sk);
1550 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1551 
1552 	sock_put(sk);
1553 
1554 	SCTP_DBG_OBJCNT_DEC(sock);
1555 }
1556 
1557 /* Handle EPIPE error. */
1558 static int sctp_error(struct sock *sk, int flags, int err)
1559 {
1560 	if (err == -EPIPE)
1561 		err = sock_error(sk) ? : -EPIPE;
1562 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1563 		send_sig(SIGPIPE, current, 0);
1564 	return err;
1565 }
1566 
1567 /* API 3.1.3 sendmsg() - UDP Style Syntax
1568  *
1569  * An application uses sendmsg() and recvmsg() calls to transmit data to
1570  * and receive data from its peer.
1571  *
1572  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1573  *                  int flags);
1574  *
1575  *  socket  - the socket descriptor of the endpoint.
1576  *  message - pointer to the msghdr structure which contains a single
1577  *            user message and possibly some ancillary data.
1578  *
1579  *            See Section 5 for complete description of the data
1580  *            structures.
1581  *
1582  *  flags   - flags sent or received with the user message, see Section
1583  *            5 for complete description of the flags.
1584  *
1585  * Note:  This function could use a rewrite especially when explicit
1586  * connect support comes in.
1587  */
1588 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1589 
1590 static int sctp_msghdr_parse(const struct msghdr *msg,
1591 			     struct sctp_cmsgs *cmsgs);
1592 
1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1594 			      struct sctp_sndrcvinfo *srinfo,
1595 			      const struct msghdr *msg, size_t msg_len)
1596 {
1597 	__u16 sflags;
1598 	int err;
1599 
1600 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1601 		return -EPIPE;
1602 
1603 	if (msg_len > sk->sk_sndbuf)
1604 		return -EMSGSIZE;
1605 
1606 	memset(cmsgs, 0, sizeof(*cmsgs));
1607 	err = sctp_msghdr_parse(msg, cmsgs);
1608 	if (err) {
1609 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1610 		return err;
1611 	}
1612 
1613 	memset(srinfo, 0, sizeof(*srinfo));
1614 	if (cmsgs->srinfo) {
1615 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1616 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1617 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1618 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1619 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1620 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1621 	}
1622 
1623 	if (cmsgs->sinfo) {
1624 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1625 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1626 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1627 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1628 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1629 	}
1630 
1631 	if (cmsgs->prinfo) {
1632 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1633 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1634 				   cmsgs->prinfo->pr_policy);
1635 	}
1636 
1637 	sflags = srinfo->sinfo_flags;
1638 	if (!sflags && msg_len)
1639 		return 0;
1640 
1641 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1642 		return -EINVAL;
1643 
1644 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1645 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1646 		return -EINVAL;
1647 
1648 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1649 		return -EINVAL;
1650 
1651 	return 0;
1652 }
1653 
1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1655 				 struct sctp_cmsgs *cmsgs,
1656 				 union sctp_addr *daddr,
1657 				 struct sctp_transport **tp)
1658 {
1659 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1660 	struct sctp_association *asoc;
1661 	struct cmsghdr *cmsg;
1662 	__be32 flowinfo = 0;
1663 	struct sctp_af *af;
1664 	int err;
1665 
1666 	*tp = NULL;
1667 
1668 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1669 		return -EINVAL;
1670 
1671 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1672 				    sctp_sstate(sk, CLOSING)))
1673 		return -EADDRNOTAVAIL;
1674 
1675 	/* Label connection socket for first association 1-to-many
1676 	 * style for client sequence socket()->sendmsg(). This
1677 	 * needs to be done before sctp_assoc_add_peer() as that will
1678 	 * set up the initial packet that needs to account for any
1679 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1680 	 */
1681 	af = sctp_get_af_specific(daddr->sa.sa_family);
1682 	if (!af)
1683 		return -EINVAL;
1684 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1685 					 (struct sockaddr *)daddr,
1686 					 af->sockaddr_len);
1687 	if (err < 0)
1688 		return err;
1689 
1690 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1691 	if (err)
1692 		return err;
1693 	asoc = (*tp)->asoc;
1694 
1695 	if (!cmsgs->addrs_msg)
1696 		return 0;
1697 
1698 	if (daddr->sa.sa_family == AF_INET6)
1699 		flowinfo = daddr->v6.sin6_flowinfo;
1700 
1701 	/* sendv addr list parse */
1702 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1703 		union sctp_addr _daddr;
1704 		int dlen;
1705 
1706 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1707 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1708 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1709 			continue;
1710 
1711 		daddr = &_daddr;
1712 		memset(daddr, 0, sizeof(*daddr));
1713 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1714 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1715 			if (dlen < sizeof(struct in_addr)) {
1716 				err = -EINVAL;
1717 				goto free;
1718 			}
1719 
1720 			dlen = sizeof(struct in_addr);
1721 			daddr->v4.sin_family = AF_INET;
1722 			daddr->v4.sin_port = htons(asoc->peer.port);
1723 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1724 		} else {
1725 			if (dlen < sizeof(struct in6_addr)) {
1726 				err = -EINVAL;
1727 				goto free;
1728 			}
1729 
1730 			dlen = sizeof(struct in6_addr);
1731 			daddr->v6.sin6_flowinfo = flowinfo;
1732 			daddr->v6.sin6_family = AF_INET6;
1733 			daddr->v6.sin6_port = htons(asoc->peer.port);
1734 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1735 		}
1736 
1737 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1738 		if (err)
1739 			goto free;
1740 	}
1741 
1742 	return 0;
1743 
1744 free:
1745 	sctp_association_free(asoc);
1746 	return err;
1747 }
1748 
1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1750 				     __u16 sflags, struct msghdr *msg,
1751 				     size_t msg_len)
1752 {
1753 	struct sock *sk = asoc->base.sk;
1754 	struct net *net = sock_net(sk);
1755 
1756 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1757 		return -EPIPE;
1758 
1759 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1760 	    !sctp_state(asoc, ESTABLISHED))
1761 		return 0;
1762 
1763 	if (sflags & SCTP_EOF) {
1764 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1765 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1766 
1767 		return 0;
1768 	}
1769 
1770 	if (sflags & SCTP_ABORT) {
1771 		struct sctp_chunk *chunk;
1772 
1773 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1774 		if (!chunk)
1775 			return -ENOMEM;
1776 
1777 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1778 		sctp_primitive_ABORT(net, asoc, chunk);
1779 		iov_iter_revert(&msg->msg_iter, msg_len);
1780 
1781 		return 0;
1782 	}
1783 
1784 	return 1;
1785 }
1786 
1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1788 				struct msghdr *msg, size_t msg_len,
1789 				struct sctp_transport *transport,
1790 				struct sctp_sndrcvinfo *sinfo)
1791 {
1792 	struct sock *sk = asoc->base.sk;
1793 	struct sctp_sock *sp = sctp_sk(sk);
1794 	struct net *net = sock_net(sk);
1795 	struct sctp_datamsg *datamsg;
1796 	bool wait_connect = false;
1797 	struct sctp_chunk *chunk;
1798 	long timeo;
1799 	int err;
1800 
1801 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1802 		err = -EINVAL;
1803 		goto err;
1804 	}
1805 
1806 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1807 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1808 		if (err)
1809 			goto err;
1810 	}
1811 
1812 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1813 		err = -EMSGSIZE;
1814 		goto err;
1815 	}
1816 
1817 	if (asoc->pmtu_pending) {
1818 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1819 			sctp_assoc_sync_pmtu(asoc);
1820 		asoc->pmtu_pending = 0;
1821 	}
1822 
1823 	if (sctp_wspace(asoc) < (int)msg_len)
1824 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1825 
1826 	if (sk_under_memory_pressure(sk))
1827 		sk_mem_reclaim(sk);
1828 
1829 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 		if (err)
1833 			goto err;
1834 	}
1835 
1836 	if (sctp_state(asoc, CLOSED)) {
1837 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1838 		if (err)
1839 			goto err;
1840 
1841 		if (asoc->ep->intl_enable) {
1842 			timeo = sock_sndtimeo(sk, 0);
1843 			err = sctp_wait_for_connect(asoc, &timeo);
1844 			if (err) {
1845 				err = -ESRCH;
1846 				goto err;
1847 			}
1848 		} else {
1849 			wait_connect = true;
1850 		}
1851 
1852 		pr_debug("%s: we associated primitively\n", __func__);
1853 	}
1854 
1855 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1856 	if (IS_ERR(datamsg)) {
1857 		err = PTR_ERR(datamsg);
1858 		goto err;
1859 	}
1860 
1861 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1862 
1863 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1864 		sctp_chunk_hold(chunk);
1865 		sctp_set_owner_w(chunk);
1866 		chunk->transport = transport;
1867 	}
1868 
1869 	err = sctp_primitive_SEND(net, asoc, datamsg);
1870 	if (err) {
1871 		sctp_datamsg_free(datamsg);
1872 		goto err;
1873 	}
1874 
1875 	pr_debug("%s: we sent primitively\n", __func__);
1876 
1877 	sctp_datamsg_put(datamsg);
1878 
1879 	if (unlikely(wait_connect)) {
1880 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 		sctp_wait_for_connect(asoc, &timeo);
1882 	}
1883 
1884 	err = msg_len;
1885 
1886 err:
1887 	return err;
1888 }
1889 
1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1891 					       const struct msghdr *msg,
1892 					       struct sctp_cmsgs *cmsgs)
1893 {
1894 	union sctp_addr *daddr = NULL;
1895 	int err;
1896 
1897 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1898 		int len = msg->msg_namelen;
1899 
1900 		if (len > sizeof(*daddr))
1901 			len = sizeof(*daddr);
1902 
1903 		daddr = (union sctp_addr *)msg->msg_name;
1904 
1905 		err = sctp_verify_addr(sk, daddr, len);
1906 		if (err)
1907 			return ERR_PTR(err);
1908 	}
1909 
1910 	return daddr;
1911 }
1912 
1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1914 				      struct sctp_sndrcvinfo *sinfo,
1915 				      struct sctp_cmsgs *cmsgs)
1916 {
1917 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1918 		sinfo->sinfo_stream = asoc->default_stream;
1919 		sinfo->sinfo_ppid = asoc->default_ppid;
1920 		sinfo->sinfo_context = asoc->default_context;
1921 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1922 
1923 		if (!cmsgs->prinfo)
1924 			sinfo->sinfo_flags = asoc->default_flags;
1925 	}
1926 
1927 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1928 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1929 
1930 	if (cmsgs->authinfo) {
1931 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1932 		 * sinfo_ssn to save the keyid on tx path.
1933 		 */
1934 		sinfo->sinfo_tsn = 1;
1935 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1936 	}
1937 }
1938 
1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1940 {
1941 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1942 	struct sctp_transport *transport = NULL;
1943 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1944 	struct sctp_association *asoc, *tmp;
1945 	struct sctp_cmsgs cmsgs;
1946 	union sctp_addr *daddr;
1947 	bool new = false;
1948 	__u16 sflags;
1949 	int err;
1950 
1951 	/* Parse and get snd_info */
1952 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1953 	if (err)
1954 		goto out;
1955 
1956 	sinfo  = &_sinfo;
1957 	sflags = sinfo->sinfo_flags;
1958 
1959 	/* Get daddr from msg */
1960 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1961 	if (IS_ERR(daddr)) {
1962 		err = PTR_ERR(daddr);
1963 		goto out;
1964 	}
1965 
1966 	lock_sock(sk);
1967 
1968 	/* SCTP_SENDALL process */
1969 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1970 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1971 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1972 							msg_len);
1973 			if (err == 0)
1974 				continue;
1975 			if (err < 0)
1976 				goto out_unlock;
1977 
1978 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1979 
1980 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1981 						   NULL, sinfo);
1982 			if (err < 0)
1983 				goto out_unlock;
1984 
1985 			iov_iter_revert(&msg->msg_iter, err);
1986 		}
1987 
1988 		goto out_unlock;
1989 	}
1990 
1991 	/* Get and check or create asoc */
1992 	if (daddr) {
1993 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1994 		if (asoc) {
1995 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1996 							msg_len);
1997 			if (err <= 0)
1998 				goto out_unlock;
1999 		} else {
2000 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2001 						    &transport);
2002 			if (err)
2003 				goto out_unlock;
2004 
2005 			asoc = transport->asoc;
2006 			new = true;
2007 		}
2008 
2009 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2010 			transport = NULL;
2011 	} else {
2012 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2013 		if (!asoc) {
2014 			err = -EPIPE;
2015 			goto out_unlock;
2016 		}
2017 
2018 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2019 		if (err <= 0)
2020 			goto out_unlock;
2021 	}
2022 
2023 	/* Update snd_info with the asoc */
2024 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2025 
2026 	/* Send msg to the asoc */
2027 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2028 	if (err < 0 && err != -ESRCH && new)
2029 		sctp_association_free(asoc);
2030 
2031 out_unlock:
2032 	release_sock(sk);
2033 out:
2034 	return sctp_error(sk, msg->msg_flags, err);
2035 }
2036 
2037 /* This is an extended version of skb_pull() that removes the data from the
2038  * start of a skb even when data is spread across the list of skb's in the
2039  * frag_list. len specifies the total amount of data that needs to be removed.
2040  * when 'len' bytes could be removed from the skb, it returns 0.
2041  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2042  * could not be removed.
2043  */
2044 static int sctp_skb_pull(struct sk_buff *skb, int len)
2045 {
2046 	struct sk_buff *list;
2047 	int skb_len = skb_headlen(skb);
2048 	int rlen;
2049 
2050 	if (len <= skb_len) {
2051 		__skb_pull(skb, len);
2052 		return 0;
2053 	}
2054 	len -= skb_len;
2055 	__skb_pull(skb, skb_len);
2056 
2057 	skb_walk_frags(skb, list) {
2058 		rlen = sctp_skb_pull(list, len);
2059 		skb->len -= (len-rlen);
2060 		skb->data_len -= (len-rlen);
2061 
2062 		if (!rlen)
2063 			return 0;
2064 
2065 		len = rlen;
2066 	}
2067 
2068 	return len;
2069 }
2070 
2071 /* API 3.1.3  recvmsg() - UDP Style Syntax
2072  *
2073  *  ssize_t recvmsg(int socket, struct msghdr *message,
2074  *                    int flags);
2075  *
2076  *  socket  - the socket descriptor of the endpoint.
2077  *  message - pointer to the msghdr structure which contains a single
2078  *            user message and possibly some ancillary data.
2079  *
2080  *            See Section 5 for complete description of the data
2081  *            structures.
2082  *
2083  *  flags   - flags sent or received with the user message, see Section
2084  *            5 for complete description of the flags.
2085  */
2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 			int noblock, int flags, int *addr_len)
2088 {
2089 	struct sctp_ulpevent *event = NULL;
2090 	struct sctp_sock *sp = sctp_sk(sk);
2091 	struct sk_buff *skb, *head_skb;
2092 	int copied;
2093 	int err = 0;
2094 	int skb_len;
2095 
2096 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2097 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2098 		 addr_len);
2099 
2100 	lock_sock(sk);
2101 
2102 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2103 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2104 		err = -ENOTCONN;
2105 		goto out;
2106 	}
2107 
2108 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2109 	if (!skb)
2110 		goto out;
2111 
2112 	/* Get the total length of the skb including any skb's in the
2113 	 * frag_list.
2114 	 */
2115 	skb_len = skb->len;
2116 
2117 	copied = skb_len;
2118 	if (copied > len)
2119 		copied = len;
2120 
2121 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2122 
2123 	event = sctp_skb2event(skb);
2124 
2125 	if (err)
2126 		goto out_free;
2127 
2128 	if (event->chunk && event->chunk->head_skb)
2129 		head_skb = event->chunk->head_skb;
2130 	else
2131 		head_skb = skb;
2132 	sock_recv_ts_and_drops(msg, sk, head_skb);
2133 	if (sctp_ulpevent_is_notification(event)) {
2134 		msg->msg_flags |= MSG_NOTIFICATION;
2135 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2136 	} else {
2137 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2138 	}
2139 
2140 	/* Check if we allow SCTP_NXTINFO. */
2141 	if (sp->recvnxtinfo)
2142 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2143 	/* Check if we allow SCTP_RCVINFO. */
2144 	if (sp->recvrcvinfo)
2145 		sctp_ulpevent_read_rcvinfo(event, msg);
2146 	/* Check if we allow SCTP_SNDRCVINFO. */
2147 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2148 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2149 
2150 	err = copied;
2151 
2152 	/* If skb's length exceeds the user's buffer, update the skb and
2153 	 * push it back to the receive_queue so that the next call to
2154 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2155 	 */
2156 	if (skb_len > copied) {
2157 		msg->msg_flags &= ~MSG_EOR;
2158 		if (flags & MSG_PEEK)
2159 			goto out_free;
2160 		sctp_skb_pull(skb, copied);
2161 		skb_queue_head(&sk->sk_receive_queue, skb);
2162 
2163 		/* When only partial message is copied to the user, increase
2164 		 * rwnd by that amount. If all the data in the skb is read,
2165 		 * rwnd is updated when the event is freed.
2166 		 */
2167 		if (!sctp_ulpevent_is_notification(event))
2168 			sctp_assoc_rwnd_increase(event->asoc, copied);
2169 		goto out;
2170 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2171 		   (event->msg_flags & MSG_EOR))
2172 		msg->msg_flags |= MSG_EOR;
2173 	else
2174 		msg->msg_flags &= ~MSG_EOR;
2175 
2176 out_free:
2177 	if (flags & MSG_PEEK) {
2178 		/* Release the skb reference acquired after peeking the skb in
2179 		 * sctp_skb_recv_datagram().
2180 		 */
2181 		kfree_skb(skb);
2182 	} else {
2183 		/* Free the event which includes releasing the reference to
2184 		 * the owner of the skb, freeing the skb and updating the
2185 		 * rwnd.
2186 		 */
2187 		sctp_ulpevent_free(event);
2188 	}
2189 out:
2190 	release_sock(sk);
2191 	return err;
2192 }
2193 
2194 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2195  *
2196  * This option is a on/off flag.  If enabled no SCTP message
2197  * fragmentation will be performed.  Instead if a message being sent
2198  * exceeds the current PMTU size, the message will NOT be sent and
2199  * instead a error will be indicated to the user.
2200  */
2201 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2202 					     unsigned int optlen)
2203 {
2204 	if (optlen < sizeof(int))
2205 		return -EINVAL;
2206 	sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2207 	return 0;
2208 }
2209 
2210 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2211 				  unsigned int optlen)
2212 {
2213 	struct sctp_sock *sp = sctp_sk(sk);
2214 	struct sctp_association *asoc;
2215 	int i;
2216 
2217 	if (optlen > sizeof(struct sctp_event_subscribe))
2218 		return -EINVAL;
2219 
2220 	for (i = 0; i < optlen; i++)
2221 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2222 				       sn_type[i]);
2223 
2224 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2225 		asoc->subscribe = sctp_sk(sk)->subscribe;
2226 
2227 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2228 	 * if there is no data to be sent or retransmit, the stack will
2229 	 * immediately send up this notification.
2230 	 */
2231 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2232 		struct sctp_ulpevent *event;
2233 
2234 		asoc = sctp_id2assoc(sk, 0);
2235 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2236 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2237 					GFP_USER | __GFP_NOWARN);
2238 			if (!event)
2239 				return -ENOMEM;
2240 
2241 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2242 		}
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2249  *
2250  * This socket option is applicable to the UDP-style socket only.  When
2251  * set it will cause associations that are idle for more than the
2252  * specified number of seconds to automatically close.  An association
2253  * being idle is defined an association that has NOT sent or received
2254  * user data.  The special value of '0' indicates that no automatic
2255  * close of any associations should be performed.  The option expects an
2256  * integer defining the number of seconds of idle time before an
2257  * association is closed.
2258  */
2259 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2260 				     unsigned int optlen)
2261 {
2262 	struct sctp_sock *sp = sctp_sk(sk);
2263 	struct net *net = sock_net(sk);
2264 
2265 	/* Applicable to UDP-style socket only */
2266 	if (sctp_style(sk, TCP))
2267 		return -EOPNOTSUPP;
2268 	if (optlen != sizeof(int))
2269 		return -EINVAL;
2270 
2271 	sp->autoclose = *optval;
2272 	if (sp->autoclose > net->sctp.max_autoclose)
2273 		sp->autoclose = net->sctp.max_autoclose;
2274 
2275 	return 0;
2276 }
2277 
2278 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2279  *
2280  * Applications can enable or disable heartbeats for any peer address of
2281  * an association, modify an address's heartbeat interval, force a
2282  * heartbeat to be sent immediately, and adjust the address's maximum
2283  * number of retransmissions sent before an address is considered
2284  * unreachable.  The following structure is used to access and modify an
2285  * address's parameters:
2286  *
2287  *  struct sctp_paddrparams {
2288  *     sctp_assoc_t            spp_assoc_id;
2289  *     struct sockaddr_storage spp_address;
2290  *     uint32_t                spp_hbinterval;
2291  *     uint16_t                spp_pathmaxrxt;
2292  *     uint32_t                spp_pathmtu;
2293  *     uint32_t                spp_sackdelay;
2294  *     uint32_t                spp_flags;
2295  *     uint32_t                spp_ipv6_flowlabel;
2296  *     uint8_t                 spp_dscp;
2297  * };
2298  *
2299  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2300  *                     application, and identifies the association for
2301  *                     this query.
2302  *   spp_address     - This specifies which address is of interest.
2303  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2304  *                     in milliseconds.  If a  value of zero
2305  *                     is present in this field then no changes are to
2306  *                     be made to this parameter.
2307  *   spp_pathmaxrxt  - This contains the maximum number of
2308  *                     retransmissions before this address shall be
2309  *                     considered unreachable. If a  value of zero
2310  *                     is present in this field then no changes are to
2311  *                     be made to this parameter.
2312  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2313  *                     specified here will be the "fixed" path mtu.
2314  *                     Note that if the spp_address field is empty
2315  *                     then all associations on this address will
2316  *                     have this fixed path mtu set upon them.
2317  *
2318  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2319  *                     the number of milliseconds that sacks will be delayed
2320  *                     for. This value will apply to all addresses of an
2321  *                     association if the spp_address field is empty. Note
2322  *                     also, that if delayed sack is enabled and this
2323  *                     value is set to 0, no change is made to the last
2324  *                     recorded delayed sack timer value.
2325  *
2326  *   spp_flags       - These flags are used to control various features
2327  *                     on an association. The flag field may contain
2328  *                     zero or more of the following options.
2329  *
2330  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2331  *                     specified address. Note that if the address
2332  *                     field is empty all addresses for the association
2333  *                     have heartbeats enabled upon them.
2334  *
2335  *                     SPP_HB_DISABLE - Disable heartbeats on the
2336  *                     speicifed address. Note that if the address
2337  *                     field is empty all addresses for the association
2338  *                     will have their heartbeats disabled. Note also
2339  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2340  *                     mutually exclusive, only one of these two should
2341  *                     be specified. Enabling both fields will have
2342  *                     undetermined results.
2343  *
2344  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2345  *                     to be made immediately.
2346  *
2347  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2348  *                     heartbeat delayis to be set to the value of 0
2349  *                     milliseconds.
2350  *
2351  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2352  *                     discovery upon the specified address. Note that
2353  *                     if the address feild is empty then all addresses
2354  *                     on the association are effected.
2355  *
2356  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2357  *                     discovery upon the specified address. Note that
2358  *                     if the address feild is empty then all addresses
2359  *                     on the association are effected. Not also that
2360  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2361  *                     exclusive. Enabling both will have undetermined
2362  *                     results.
2363  *
2364  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2365  *                     on delayed sack. The time specified in spp_sackdelay
2366  *                     is used to specify the sack delay for this address. Note
2367  *                     that if spp_address is empty then all addresses will
2368  *                     enable delayed sack and take on the sack delay
2369  *                     value specified in spp_sackdelay.
2370  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2371  *                     off delayed sack. If the spp_address field is blank then
2372  *                     delayed sack is disabled for the entire association. Note
2373  *                     also that this field is mutually exclusive to
2374  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2375  *                     results.
2376  *
2377  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2378  *                     setting of the IPV6 flow label value.  The value is
2379  *                     contained in the spp_ipv6_flowlabel field.
2380  *                     Upon retrieval, this flag will be set to indicate that
2381  *                     the spp_ipv6_flowlabel field has a valid value returned.
2382  *                     If a specific destination address is set (in the
2383  *                     spp_address field), then the value returned is that of
2384  *                     the address.  If just an association is specified (and
2385  *                     no address), then the association's default flow label
2386  *                     is returned.  If neither an association nor a destination
2387  *                     is specified, then the socket's default flow label is
2388  *                     returned.  For non-IPv6 sockets, this flag will be left
2389  *                     cleared.
2390  *
2391  *                     SPP_DSCP:  Setting this flag enables the setting of the
2392  *                     Differentiated Services Code Point (DSCP) value
2393  *                     associated with either the association or a specific
2394  *                     address.  The value is obtained in the spp_dscp field.
2395  *                     Upon retrieval, this flag will be set to indicate that
2396  *                     the spp_dscp field has a valid value returned.  If a
2397  *                     specific destination address is set when called (in the
2398  *                     spp_address field), then that specific destination
2399  *                     address's DSCP value is returned.  If just an association
2400  *                     is specified, then the association's default DSCP is
2401  *                     returned.  If neither an association nor a destination is
2402  *                     specified, then the socket's default DSCP is returned.
2403  *
2404  *   spp_ipv6_flowlabel
2405  *                   - This field is used in conjunction with the
2406  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2407  *                     The 20 least significant bits are used for the flow
2408  *                     label.  This setting has precedence over any IPv6-layer
2409  *                     setting.
2410  *
2411  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2412  *                     and contains the DSCP.  The 6 most significant bits are
2413  *                     used for the DSCP.  This setting has precedence over any
2414  *                     IPv4- or IPv6- layer setting.
2415  */
2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2417 				       struct sctp_transport   *trans,
2418 				       struct sctp_association *asoc,
2419 				       struct sctp_sock        *sp,
2420 				       int                      hb_change,
2421 				       int                      pmtud_change,
2422 				       int                      sackdelay_change)
2423 {
2424 	int error;
2425 
2426 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2427 		error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2428 							trans->asoc, trans);
2429 		if (error)
2430 			return error;
2431 	}
2432 
2433 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2434 	 * this field is ignored.  Note also that a value of zero indicates
2435 	 * the current setting should be left unchanged.
2436 	 */
2437 	if (params->spp_flags & SPP_HB_ENABLE) {
2438 
2439 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2440 		 * set.  This lets us use 0 value when this flag
2441 		 * is set.
2442 		 */
2443 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2444 			params->spp_hbinterval = 0;
2445 
2446 		if (params->spp_hbinterval ||
2447 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2448 			if (trans) {
2449 				trans->hbinterval =
2450 				    msecs_to_jiffies(params->spp_hbinterval);
2451 			} else if (asoc) {
2452 				asoc->hbinterval =
2453 				    msecs_to_jiffies(params->spp_hbinterval);
2454 			} else {
2455 				sp->hbinterval = params->spp_hbinterval;
2456 			}
2457 		}
2458 	}
2459 
2460 	if (hb_change) {
2461 		if (trans) {
2462 			trans->param_flags =
2463 				(trans->param_flags & ~SPP_HB) | hb_change;
2464 		} else if (asoc) {
2465 			asoc->param_flags =
2466 				(asoc->param_flags & ~SPP_HB) | hb_change;
2467 		} else {
2468 			sp->param_flags =
2469 				(sp->param_flags & ~SPP_HB) | hb_change;
2470 		}
2471 	}
2472 
2473 	/* When Path MTU discovery is disabled the value specified here will
2474 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2475 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2476 	 * effect).
2477 	 */
2478 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2479 		if (trans) {
2480 			trans->pathmtu = params->spp_pathmtu;
2481 			sctp_assoc_sync_pmtu(asoc);
2482 		} else if (asoc) {
2483 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2484 		} else {
2485 			sp->pathmtu = params->spp_pathmtu;
2486 		}
2487 	}
2488 
2489 	if (pmtud_change) {
2490 		if (trans) {
2491 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2492 				(params->spp_flags & SPP_PMTUD_ENABLE);
2493 			trans->param_flags =
2494 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2495 			if (update) {
2496 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2497 				sctp_assoc_sync_pmtu(asoc);
2498 			}
2499 			sctp_transport_pl_reset(trans);
2500 		} else if (asoc) {
2501 			asoc->param_flags =
2502 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2503 		} else {
2504 			sp->param_flags =
2505 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2506 		}
2507 	}
2508 
2509 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2510 	 * value of this field is ignored.  Note also that a value of zero
2511 	 * indicates the current setting should be left unchanged.
2512 	 */
2513 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2514 		if (trans) {
2515 			trans->sackdelay =
2516 				msecs_to_jiffies(params->spp_sackdelay);
2517 		} else if (asoc) {
2518 			asoc->sackdelay =
2519 				msecs_to_jiffies(params->spp_sackdelay);
2520 		} else {
2521 			sp->sackdelay = params->spp_sackdelay;
2522 		}
2523 	}
2524 
2525 	if (sackdelay_change) {
2526 		if (trans) {
2527 			trans->param_flags =
2528 				(trans->param_flags & ~SPP_SACKDELAY) |
2529 				sackdelay_change;
2530 		} else if (asoc) {
2531 			asoc->param_flags =
2532 				(asoc->param_flags & ~SPP_SACKDELAY) |
2533 				sackdelay_change;
2534 		} else {
2535 			sp->param_flags =
2536 				(sp->param_flags & ~SPP_SACKDELAY) |
2537 				sackdelay_change;
2538 		}
2539 	}
2540 
2541 	/* Note that a value of zero indicates the current setting should be
2542 	   left unchanged.
2543 	 */
2544 	if (params->spp_pathmaxrxt) {
2545 		if (trans) {
2546 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2547 		} else if (asoc) {
2548 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2549 		} else {
2550 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2551 		}
2552 	}
2553 
2554 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2555 		if (trans) {
2556 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2557 				trans->flowlabel = params->spp_ipv6_flowlabel &
2558 						   SCTP_FLOWLABEL_VAL_MASK;
2559 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2560 			}
2561 		} else if (asoc) {
2562 			struct sctp_transport *t;
2563 
2564 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2565 					    transports) {
2566 				if (t->ipaddr.sa.sa_family != AF_INET6)
2567 					continue;
2568 				t->flowlabel = params->spp_ipv6_flowlabel &
2569 					       SCTP_FLOWLABEL_VAL_MASK;
2570 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2571 			}
2572 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2573 					  SCTP_FLOWLABEL_VAL_MASK;
2574 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2575 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2576 			sp->flowlabel = params->spp_ipv6_flowlabel &
2577 					SCTP_FLOWLABEL_VAL_MASK;
2578 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2579 		}
2580 	}
2581 
2582 	if (params->spp_flags & SPP_DSCP) {
2583 		if (trans) {
2584 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2585 			trans->dscp |= SCTP_DSCP_SET_MASK;
2586 		} else if (asoc) {
2587 			struct sctp_transport *t;
2588 
2589 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2590 					    transports) {
2591 				t->dscp = params->spp_dscp &
2592 					  SCTP_DSCP_VAL_MASK;
2593 				t->dscp |= SCTP_DSCP_SET_MASK;
2594 			}
2595 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2596 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2597 		} else {
2598 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2599 			sp->dscp |= SCTP_DSCP_SET_MASK;
2600 		}
2601 	}
2602 
2603 	return 0;
2604 }
2605 
2606 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2607 					    struct sctp_paddrparams *params,
2608 					    unsigned int optlen)
2609 {
2610 	struct sctp_transport   *trans = NULL;
2611 	struct sctp_association *asoc = NULL;
2612 	struct sctp_sock        *sp = sctp_sk(sk);
2613 	int error;
2614 	int hb_change, pmtud_change, sackdelay_change;
2615 
2616 	if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2617 					    spp_ipv6_flowlabel), 4)) {
2618 		if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2619 			return -EINVAL;
2620 	} else if (optlen != sizeof(*params)) {
2621 		return -EINVAL;
2622 	}
2623 
2624 	/* Validate flags and value parameters. */
2625 	hb_change        = params->spp_flags & SPP_HB;
2626 	pmtud_change     = params->spp_flags & SPP_PMTUD;
2627 	sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2628 
2629 	if (hb_change        == SPP_HB ||
2630 	    pmtud_change     == SPP_PMTUD ||
2631 	    sackdelay_change == SPP_SACKDELAY ||
2632 	    params->spp_sackdelay > 500 ||
2633 	    (params->spp_pathmtu &&
2634 	     params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2635 		return -EINVAL;
2636 
2637 	/* If an address other than INADDR_ANY is specified, and
2638 	 * no transport is found, then the request is invalid.
2639 	 */
2640 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
2641 		trans = sctp_addr_id2transport(sk, &params->spp_address,
2642 					       params->spp_assoc_id);
2643 		if (!trans)
2644 			return -EINVAL;
2645 	}
2646 
2647 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2648 	 * socket is a one to many style socket, and an association
2649 	 * was not found, then the id was invalid.
2650 	 */
2651 	asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2652 	if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2653 	    sctp_style(sk, UDP))
2654 		return -EINVAL;
2655 
2656 	/* Heartbeat demand can only be sent on a transport or
2657 	 * association, but not a socket.
2658 	 */
2659 	if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2660 		return -EINVAL;
2661 
2662 	/* Process parameters. */
2663 	error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2664 					    hb_change, pmtud_change,
2665 					    sackdelay_change);
2666 
2667 	if (error)
2668 		return error;
2669 
2670 	/* If changes are for association, also apply parameters to each
2671 	 * transport.
2672 	 */
2673 	if (!trans && asoc) {
2674 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2675 				transports) {
2676 			sctp_apply_peer_addr_params(params, trans, asoc, sp,
2677 						    hb_change, pmtud_change,
2678 						    sackdelay_change);
2679 		}
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2686 {
2687 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2688 }
2689 
2690 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2691 {
2692 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2693 }
2694 
2695 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2696 					struct sctp_association *asoc)
2697 {
2698 	struct sctp_transport *trans;
2699 
2700 	if (params->sack_delay) {
2701 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2702 		asoc->param_flags =
2703 			sctp_spp_sackdelay_enable(asoc->param_flags);
2704 	}
2705 	if (params->sack_freq == 1) {
2706 		asoc->param_flags =
2707 			sctp_spp_sackdelay_disable(asoc->param_flags);
2708 	} else if (params->sack_freq > 1) {
2709 		asoc->sackfreq = params->sack_freq;
2710 		asoc->param_flags =
2711 			sctp_spp_sackdelay_enable(asoc->param_flags);
2712 	}
2713 
2714 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2715 			    transports) {
2716 		if (params->sack_delay) {
2717 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2718 			trans->param_flags =
2719 				sctp_spp_sackdelay_enable(trans->param_flags);
2720 		}
2721 		if (params->sack_freq == 1) {
2722 			trans->param_flags =
2723 				sctp_spp_sackdelay_disable(trans->param_flags);
2724 		} else if (params->sack_freq > 1) {
2725 			trans->sackfreq = params->sack_freq;
2726 			trans->param_flags =
2727 				sctp_spp_sackdelay_enable(trans->param_flags);
2728 		}
2729 	}
2730 }
2731 
2732 /*
2733  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2734  *
2735  * This option will effect the way delayed acks are performed.  This
2736  * option allows you to get or set the delayed ack time, in
2737  * milliseconds.  It also allows changing the delayed ack frequency.
2738  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2739  * the assoc_id is 0, then this sets or gets the endpoints default
2740  * values.  If the assoc_id field is non-zero, then the set or get
2741  * effects the specified association for the one to many model (the
2742  * assoc_id field is ignored by the one to one model).  Note that if
2743  * sack_delay or sack_freq are 0 when setting this option, then the
2744  * current values will remain unchanged.
2745  *
2746  * struct sctp_sack_info {
2747  *     sctp_assoc_t            sack_assoc_id;
2748  *     uint32_t                sack_delay;
2749  *     uint32_t                sack_freq;
2750  * };
2751  *
2752  * sack_assoc_id -  This parameter, indicates which association the user
2753  *    is performing an action upon.  Note that if this field's value is
2754  *    zero then the endpoints default value is changed (effecting future
2755  *    associations only).
2756  *
2757  * sack_delay -  This parameter contains the number of milliseconds that
2758  *    the user is requesting the delayed ACK timer be set to.  Note that
2759  *    this value is defined in the standard to be between 200 and 500
2760  *    milliseconds.
2761  *
2762  * sack_freq -  This parameter contains the number of packets that must
2763  *    be received before a sack is sent without waiting for the delay
2764  *    timer to expire.  The default value for this is 2, setting this
2765  *    value to 1 will disable the delayed sack algorithm.
2766  */
2767 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2768 					 struct sctp_sack_info *params)
2769 {
2770 	struct sctp_sock *sp = sctp_sk(sk);
2771 	struct sctp_association *asoc;
2772 
2773 	/* Validate value parameter. */
2774 	if (params->sack_delay > 500)
2775 		return -EINVAL;
2776 
2777 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2778 	 * socket is a one to many style socket, and an association
2779 	 * was not found, then the id was invalid.
2780 	 */
2781 	asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2782 	if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2783 	    sctp_style(sk, UDP))
2784 		return -EINVAL;
2785 
2786 	if (asoc) {
2787 		sctp_apply_asoc_delayed_ack(params, asoc);
2788 
2789 		return 0;
2790 	}
2791 
2792 	if (sctp_style(sk, TCP))
2793 		params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2794 
2795 	if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2796 	    params->sack_assoc_id == SCTP_ALL_ASSOC) {
2797 		if (params->sack_delay) {
2798 			sp->sackdelay = params->sack_delay;
2799 			sp->param_flags =
2800 				sctp_spp_sackdelay_enable(sp->param_flags);
2801 		}
2802 		if (params->sack_freq == 1) {
2803 			sp->param_flags =
2804 				sctp_spp_sackdelay_disable(sp->param_flags);
2805 		} else if (params->sack_freq > 1) {
2806 			sp->sackfreq = params->sack_freq;
2807 			sp->param_flags =
2808 				sctp_spp_sackdelay_enable(sp->param_flags);
2809 		}
2810 	}
2811 
2812 	if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2813 	    params->sack_assoc_id == SCTP_ALL_ASSOC)
2814 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2815 			sctp_apply_asoc_delayed_ack(params, asoc);
2816 
2817 	return 0;
2818 }
2819 
2820 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2821 				       struct sctp_sack_info *params,
2822 				       unsigned int optlen)
2823 {
2824 	if (optlen == sizeof(struct sctp_assoc_value)) {
2825 		struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2826 		struct sctp_sack_info p;
2827 
2828 		pr_warn_ratelimited(DEPRECATED
2829 				    "%s (pid %d) "
2830 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2831 				    "Use struct sctp_sack_info instead\n",
2832 				    current->comm, task_pid_nr(current));
2833 
2834 		p.sack_assoc_id = v->assoc_id;
2835 		p.sack_delay = v->assoc_value;
2836 		p.sack_freq = v->assoc_value ? 0 : 1;
2837 		return __sctp_setsockopt_delayed_ack(sk, &p);
2838 	}
2839 
2840 	if (optlen != sizeof(struct sctp_sack_info))
2841 		return -EINVAL;
2842 	if (params->sack_delay == 0 && params->sack_freq == 0)
2843 		return 0;
2844 	return __sctp_setsockopt_delayed_ack(sk, params);
2845 }
2846 
2847 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2848  *
2849  * Applications can specify protocol parameters for the default association
2850  * initialization.  The option name argument to setsockopt() and getsockopt()
2851  * is SCTP_INITMSG.
2852  *
2853  * Setting initialization parameters is effective only on an unconnected
2854  * socket (for UDP-style sockets only future associations are effected
2855  * by the change).  With TCP-style sockets, this option is inherited by
2856  * sockets derived from a listener socket.
2857  */
2858 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2859 				   unsigned int optlen)
2860 {
2861 	struct sctp_sock *sp = sctp_sk(sk);
2862 
2863 	if (optlen != sizeof(struct sctp_initmsg))
2864 		return -EINVAL;
2865 
2866 	if (sinit->sinit_num_ostreams)
2867 		sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2868 	if (sinit->sinit_max_instreams)
2869 		sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2870 	if (sinit->sinit_max_attempts)
2871 		sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2872 	if (sinit->sinit_max_init_timeo)
2873 		sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2874 
2875 	return 0;
2876 }
2877 
2878 /*
2879  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2880  *
2881  *   Applications that wish to use the sendto() system call may wish to
2882  *   specify a default set of parameters that would normally be supplied
2883  *   through the inclusion of ancillary data.  This socket option allows
2884  *   such an application to set the default sctp_sndrcvinfo structure.
2885  *   The application that wishes to use this socket option simply passes
2886  *   in to this call the sctp_sndrcvinfo structure defined in Section
2887  *   5.2.2) The input parameters accepted by this call include
2888  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2889  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2890  *   to this call if the caller is using the UDP model.
2891  */
2892 static int sctp_setsockopt_default_send_param(struct sock *sk,
2893 					      struct sctp_sndrcvinfo *info,
2894 					      unsigned int optlen)
2895 {
2896 	struct sctp_sock *sp = sctp_sk(sk);
2897 	struct sctp_association *asoc;
2898 
2899 	if (optlen != sizeof(*info))
2900 		return -EINVAL;
2901 	if (info->sinfo_flags &
2902 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2903 	      SCTP_ABORT | SCTP_EOF))
2904 		return -EINVAL;
2905 
2906 	asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2907 	if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2908 	    sctp_style(sk, UDP))
2909 		return -EINVAL;
2910 
2911 	if (asoc) {
2912 		asoc->default_stream = info->sinfo_stream;
2913 		asoc->default_flags = info->sinfo_flags;
2914 		asoc->default_ppid = info->sinfo_ppid;
2915 		asoc->default_context = info->sinfo_context;
2916 		asoc->default_timetolive = info->sinfo_timetolive;
2917 
2918 		return 0;
2919 	}
2920 
2921 	if (sctp_style(sk, TCP))
2922 		info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2923 
2924 	if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2925 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2926 		sp->default_stream = info->sinfo_stream;
2927 		sp->default_flags = info->sinfo_flags;
2928 		sp->default_ppid = info->sinfo_ppid;
2929 		sp->default_context = info->sinfo_context;
2930 		sp->default_timetolive = info->sinfo_timetolive;
2931 	}
2932 
2933 	if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2934 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2935 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2936 			asoc->default_stream = info->sinfo_stream;
2937 			asoc->default_flags = info->sinfo_flags;
2938 			asoc->default_ppid = info->sinfo_ppid;
2939 			asoc->default_context = info->sinfo_context;
2940 			asoc->default_timetolive = info->sinfo_timetolive;
2941 		}
2942 	}
2943 
2944 	return 0;
2945 }
2946 
2947 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2948  * (SCTP_DEFAULT_SNDINFO)
2949  */
2950 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2951 					   struct sctp_sndinfo *info,
2952 					   unsigned int optlen)
2953 {
2954 	struct sctp_sock *sp = sctp_sk(sk);
2955 	struct sctp_association *asoc;
2956 
2957 	if (optlen != sizeof(*info))
2958 		return -EINVAL;
2959 	if (info->snd_flags &
2960 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2961 	      SCTP_ABORT | SCTP_EOF))
2962 		return -EINVAL;
2963 
2964 	asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2965 	if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2966 	    sctp_style(sk, UDP))
2967 		return -EINVAL;
2968 
2969 	if (asoc) {
2970 		asoc->default_stream = info->snd_sid;
2971 		asoc->default_flags = info->snd_flags;
2972 		asoc->default_ppid = info->snd_ppid;
2973 		asoc->default_context = info->snd_context;
2974 
2975 		return 0;
2976 	}
2977 
2978 	if (sctp_style(sk, TCP))
2979 		info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2980 
2981 	if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2982 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2983 		sp->default_stream = info->snd_sid;
2984 		sp->default_flags = info->snd_flags;
2985 		sp->default_ppid = info->snd_ppid;
2986 		sp->default_context = info->snd_context;
2987 	}
2988 
2989 	if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2990 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2991 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2992 			asoc->default_stream = info->snd_sid;
2993 			asoc->default_flags = info->snd_flags;
2994 			asoc->default_ppid = info->snd_ppid;
2995 			asoc->default_context = info->snd_context;
2996 		}
2997 	}
2998 
2999 	return 0;
3000 }
3001 
3002 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3003  *
3004  * Requests that the local SCTP stack use the enclosed peer address as
3005  * the association primary.  The enclosed address must be one of the
3006  * association peer's addresses.
3007  */
3008 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3009 					unsigned int optlen)
3010 {
3011 	struct sctp_transport *trans;
3012 	struct sctp_af *af;
3013 	int err;
3014 
3015 	if (optlen != sizeof(struct sctp_prim))
3016 		return -EINVAL;
3017 
3018 	/* Allow security module to validate address but need address len. */
3019 	af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3020 	if (!af)
3021 		return -EINVAL;
3022 
3023 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3024 					 (struct sockaddr *)&prim->ssp_addr,
3025 					 af->sockaddr_len);
3026 	if (err)
3027 		return err;
3028 
3029 	trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3030 	if (!trans)
3031 		return -EINVAL;
3032 
3033 	sctp_assoc_set_primary(trans->asoc, trans);
3034 
3035 	return 0;
3036 }
3037 
3038 /*
3039  * 7.1.5 SCTP_NODELAY
3040  *
3041  * Turn on/off any Nagle-like algorithm.  This means that packets are
3042  * generally sent as soon as possible and no unnecessary delays are
3043  * introduced, at the cost of more packets in the network.  Expects an
3044  *  integer boolean flag.
3045  */
3046 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3047 				   unsigned int optlen)
3048 {
3049 	if (optlen < sizeof(int))
3050 		return -EINVAL;
3051 	sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3052 	return 0;
3053 }
3054 
3055 /*
3056  *
3057  * 7.1.1 SCTP_RTOINFO
3058  *
3059  * The protocol parameters used to initialize and bound retransmission
3060  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3061  * and modify these parameters.
3062  * All parameters are time values, in milliseconds.  A value of 0, when
3063  * modifying the parameters, indicates that the current value should not
3064  * be changed.
3065  *
3066  */
3067 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3068 				   struct sctp_rtoinfo *rtoinfo,
3069 				   unsigned int optlen)
3070 {
3071 	struct sctp_association *asoc;
3072 	unsigned long rto_min, rto_max;
3073 	struct sctp_sock *sp = sctp_sk(sk);
3074 
3075 	if (optlen != sizeof (struct sctp_rtoinfo))
3076 		return -EINVAL;
3077 
3078 	asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3079 
3080 	/* Set the values to the specific association */
3081 	if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3082 	    sctp_style(sk, UDP))
3083 		return -EINVAL;
3084 
3085 	rto_max = rtoinfo->srto_max;
3086 	rto_min = rtoinfo->srto_min;
3087 
3088 	if (rto_max)
3089 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3090 	else
3091 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3092 
3093 	if (rto_min)
3094 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3095 	else
3096 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3097 
3098 	if (rto_min > rto_max)
3099 		return -EINVAL;
3100 
3101 	if (asoc) {
3102 		if (rtoinfo->srto_initial != 0)
3103 			asoc->rto_initial =
3104 				msecs_to_jiffies(rtoinfo->srto_initial);
3105 		asoc->rto_max = rto_max;
3106 		asoc->rto_min = rto_min;
3107 	} else {
3108 		/* If there is no association or the association-id = 0
3109 		 * set the values to the endpoint.
3110 		 */
3111 		if (rtoinfo->srto_initial != 0)
3112 			sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3113 		sp->rtoinfo.srto_max = rto_max;
3114 		sp->rtoinfo.srto_min = rto_min;
3115 	}
3116 
3117 	return 0;
3118 }
3119 
3120 /*
3121  *
3122  * 7.1.2 SCTP_ASSOCINFO
3123  *
3124  * This option is used to tune the maximum retransmission attempts
3125  * of the association.
3126  * Returns an error if the new association retransmission value is
3127  * greater than the sum of the retransmission value  of the peer.
3128  * See [SCTP] for more information.
3129  *
3130  */
3131 static int sctp_setsockopt_associnfo(struct sock *sk,
3132 				     struct sctp_assocparams *assocparams,
3133 				     unsigned int optlen)
3134 {
3135 
3136 	struct sctp_association *asoc;
3137 
3138 	if (optlen != sizeof(struct sctp_assocparams))
3139 		return -EINVAL;
3140 
3141 	asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3142 
3143 	if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3144 	    sctp_style(sk, UDP))
3145 		return -EINVAL;
3146 
3147 	/* Set the values to the specific association */
3148 	if (asoc) {
3149 		if (assocparams->sasoc_asocmaxrxt != 0) {
3150 			__u32 path_sum = 0;
3151 			int   paths = 0;
3152 			struct sctp_transport *peer_addr;
3153 
3154 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3155 					transports) {
3156 				path_sum += peer_addr->pathmaxrxt;
3157 				paths++;
3158 			}
3159 
3160 			/* Only validate asocmaxrxt if we have more than
3161 			 * one path/transport.  We do this because path
3162 			 * retransmissions are only counted when we have more
3163 			 * then one path.
3164 			 */
3165 			if (paths > 1 &&
3166 			    assocparams->sasoc_asocmaxrxt > path_sum)
3167 				return -EINVAL;
3168 
3169 			asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3170 		}
3171 
3172 		if (assocparams->sasoc_cookie_life != 0)
3173 			asoc->cookie_life =
3174 				ms_to_ktime(assocparams->sasoc_cookie_life);
3175 	} else {
3176 		/* Set the values to the endpoint */
3177 		struct sctp_sock *sp = sctp_sk(sk);
3178 
3179 		if (assocparams->sasoc_asocmaxrxt != 0)
3180 			sp->assocparams.sasoc_asocmaxrxt =
3181 						assocparams->sasoc_asocmaxrxt;
3182 		if (assocparams->sasoc_cookie_life != 0)
3183 			sp->assocparams.sasoc_cookie_life =
3184 						assocparams->sasoc_cookie_life;
3185 	}
3186 	return 0;
3187 }
3188 
3189 /*
3190  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3191  *
3192  * This socket option is a boolean flag which turns on or off mapped V4
3193  * addresses.  If this option is turned on and the socket is type
3194  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3195  * If this option is turned off, then no mapping will be done of V4
3196  * addresses and a user will receive both PF_INET6 and PF_INET type
3197  * addresses on the socket.
3198  */
3199 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3200 				    unsigned int optlen)
3201 {
3202 	struct sctp_sock *sp = sctp_sk(sk);
3203 
3204 	if (optlen < sizeof(int))
3205 		return -EINVAL;
3206 	if (*val)
3207 		sp->v4mapped = 1;
3208 	else
3209 		sp->v4mapped = 0;
3210 
3211 	return 0;
3212 }
3213 
3214 /*
3215  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3216  * This option will get or set the maximum size to put in any outgoing
3217  * SCTP DATA chunk.  If a message is larger than this size it will be
3218  * fragmented by SCTP into the specified size.  Note that the underlying
3219  * SCTP implementation may fragment into smaller sized chunks when the
3220  * PMTU of the underlying association is smaller than the value set by
3221  * the user.  The default value for this option is '0' which indicates
3222  * the user is NOT limiting fragmentation and only the PMTU will effect
3223  * SCTP's choice of DATA chunk size.  Note also that values set larger
3224  * than the maximum size of an IP datagram will effectively let SCTP
3225  * control fragmentation (i.e. the same as setting this option to 0).
3226  *
3227  * The following structure is used to access and modify this parameter:
3228  *
3229  * struct sctp_assoc_value {
3230  *   sctp_assoc_t assoc_id;
3231  *   uint32_t assoc_value;
3232  * };
3233  *
3234  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3235  *    For one-to-many style sockets this parameter indicates which
3236  *    association the user is performing an action upon.  Note that if
3237  *    this field's value is zero then the endpoints default value is
3238  *    changed (effecting future associations only).
3239  * assoc_value:  This parameter specifies the maximum size in bytes.
3240  */
3241 static int sctp_setsockopt_maxseg(struct sock *sk,
3242 				  struct sctp_assoc_value *params,
3243 				  unsigned int optlen)
3244 {
3245 	struct sctp_sock *sp = sctp_sk(sk);
3246 	struct sctp_association *asoc;
3247 	sctp_assoc_t assoc_id;
3248 	int val;
3249 
3250 	if (optlen == sizeof(int)) {
3251 		pr_warn_ratelimited(DEPRECATED
3252 				    "%s (pid %d) "
3253 				    "Use of int in maxseg socket option.\n"
3254 				    "Use struct sctp_assoc_value instead\n",
3255 				    current->comm, task_pid_nr(current));
3256 		assoc_id = SCTP_FUTURE_ASSOC;
3257 		val = *(int *)params;
3258 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3259 		assoc_id = params->assoc_id;
3260 		val = params->assoc_value;
3261 	} else {
3262 		return -EINVAL;
3263 	}
3264 
3265 	asoc = sctp_id2assoc(sk, assoc_id);
3266 	if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3267 	    sctp_style(sk, UDP))
3268 		return -EINVAL;
3269 
3270 	if (val) {
3271 		int min_len, max_len;
3272 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3273 				 sizeof(struct sctp_data_chunk);
3274 
3275 		min_len = sctp_min_frag_point(sp, datasize);
3276 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3277 
3278 		if (val < min_len || val > max_len)
3279 			return -EINVAL;
3280 	}
3281 
3282 	if (asoc) {
3283 		asoc->user_frag = val;
3284 		sctp_assoc_update_frag_point(asoc);
3285 	} else {
3286 		sp->user_frag = val;
3287 	}
3288 
3289 	return 0;
3290 }
3291 
3292 
3293 /*
3294  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3295  *
3296  *   Requests that the peer mark the enclosed address as the association
3297  *   primary. The enclosed address must be one of the association's
3298  *   locally bound addresses. The following structure is used to make a
3299  *   set primary request:
3300  */
3301 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3302 					     struct sctp_setpeerprim *prim,
3303 					     unsigned int optlen)
3304 {
3305 	struct sctp_sock	*sp;
3306 	struct sctp_association	*asoc = NULL;
3307 	struct sctp_chunk	*chunk;
3308 	struct sctp_af		*af;
3309 	int 			err;
3310 
3311 	sp = sctp_sk(sk);
3312 
3313 	if (!sp->ep->asconf_enable)
3314 		return -EPERM;
3315 
3316 	if (optlen != sizeof(struct sctp_setpeerprim))
3317 		return -EINVAL;
3318 
3319 	asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3320 	if (!asoc)
3321 		return -EINVAL;
3322 
3323 	if (!asoc->peer.asconf_capable)
3324 		return -EPERM;
3325 
3326 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3327 		return -EPERM;
3328 
3329 	if (!sctp_state(asoc, ESTABLISHED))
3330 		return -ENOTCONN;
3331 
3332 	af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3333 	if (!af)
3334 		return -EINVAL;
3335 
3336 	if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3337 		return -EADDRNOTAVAIL;
3338 
3339 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3340 		return -EADDRNOTAVAIL;
3341 
3342 	/* Allow security module to validate address. */
3343 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3344 					 (struct sockaddr *)&prim->sspp_addr,
3345 					 af->sockaddr_len);
3346 	if (err)
3347 		return err;
3348 
3349 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3350 	chunk = sctp_make_asconf_set_prim(asoc,
3351 					  (union sctp_addr *)&prim->sspp_addr);
3352 	if (!chunk)
3353 		return -ENOMEM;
3354 
3355 	err = sctp_send_asconf(asoc, chunk);
3356 
3357 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3358 
3359 	return err;
3360 }
3361 
3362 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3363 					    struct sctp_setadaptation *adapt,
3364 					    unsigned int optlen)
3365 {
3366 	if (optlen != sizeof(struct sctp_setadaptation))
3367 		return -EINVAL;
3368 
3369 	sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3370 
3371 	return 0;
3372 }
3373 
3374 /*
3375  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3376  *
3377  * The context field in the sctp_sndrcvinfo structure is normally only
3378  * used when a failed message is retrieved holding the value that was
3379  * sent down on the actual send call.  This option allows the setting of
3380  * a default context on an association basis that will be received on
3381  * reading messages from the peer.  This is especially helpful in the
3382  * one-2-many model for an application to keep some reference to an
3383  * internal state machine that is processing messages on the
3384  * association.  Note that the setting of this value only effects
3385  * received messages from the peer and does not effect the value that is
3386  * saved with outbound messages.
3387  */
3388 static int sctp_setsockopt_context(struct sock *sk,
3389 				   struct sctp_assoc_value *params,
3390 				   unsigned int optlen)
3391 {
3392 	struct sctp_sock *sp = sctp_sk(sk);
3393 	struct sctp_association *asoc;
3394 
3395 	if (optlen != sizeof(struct sctp_assoc_value))
3396 		return -EINVAL;
3397 
3398 	asoc = sctp_id2assoc(sk, params->assoc_id);
3399 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3400 	    sctp_style(sk, UDP))
3401 		return -EINVAL;
3402 
3403 	if (asoc) {
3404 		asoc->default_rcv_context = params->assoc_value;
3405 
3406 		return 0;
3407 	}
3408 
3409 	if (sctp_style(sk, TCP))
3410 		params->assoc_id = SCTP_FUTURE_ASSOC;
3411 
3412 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3413 	    params->assoc_id == SCTP_ALL_ASSOC)
3414 		sp->default_rcv_context = params->assoc_value;
3415 
3416 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3417 	    params->assoc_id == SCTP_ALL_ASSOC)
3418 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3419 			asoc->default_rcv_context = params->assoc_value;
3420 
3421 	return 0;
3422 }
3423 
3424 /*
3425  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3426  *
3427  * This options will at a minimum specify if the implementation is doing
3428  * fragmented interleave.  Fragmented interleave, for a one to many
3429  * socket, is when subsequent calls to receive a message may return
3430  * parts of messages from different associations.  Some implementations
3431  * may allow you to turn this value on or off.  If so, when turned off,
3432  * no fragment interleave will occur (which will cause a head of line
3433  * blocking amongst multiple associations sharing the same one to many
3434  * socket).  When this option is turned on, then each receive call may
3435  * come from a different association (thus the user must receive data
3436  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3437  * association each receive belongs to.
3438  *
3439  * This option takes a boolean value.  A non-zero value indicates that
3440  * fragmented interleave is on.  A value of zero indicates that
3441  * fragmented interleave is off.
3442  *
3443  * Note that it is important that an implementation that allows this
3444  * option to be turned on, have it off by default.  Otherwise an unaware
3445  * application using the one to many model may become confused and act
3446  * incorrectly.
3447  */
3448 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3449 					       unsigned int optlen)
3450 {
3451 	if (optlen != sizeof(int))
3452 		return -EINVAL;
3453 
3454 	sctp_sk(sk)->frag_interleave = !!*val;
3455 
3456 	if (!sctp_sk(sk)->frag_interleave)
3457 		sctp_sk(sk)->ep->intl_enable = 0;
3458 
3459 	return 0;
3460 }
3461 
3462 /*
3463  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3464  *       (SCTP_PARTIAL_DELIVERY_POINT)
3465  *
3466  * This option will set or get the SCTP partial delivery point.  This
3467  * point is the size of a message where the partial delivery API will be
3468  * invoked to help free up rwnd space for the peer.  Setting this to a
3469  * lower value will cause partial deliveries to happen more often.  The
3470  * calls argument is an integer that sets or gets the partial delivery
3471  * point.  Note also that the call will fail if the user attempts to set
3472  * this value larger than the socket receive buffer size.
3473  *
3474  * Note that any single message having a length smaller than or equal to
3475  * the SCTP partial delivery point will be delivered in one single read
3476  * call as long as the user provided buffer is large enough to hold the
3477  * message.
3478  */
3479 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3480 						  unsigned int optlen)
3481 {
3482 	if (optlen != sizeof(u32))
3483 		return -EINVAL;
3484 
3485 	/* Note: We double the receive buffer from what the user sets
3486 	 * it to be, also initial rwnd is based on rcvbuf/2.
3487 	 */
3488 	if (*val > (sk->sk_rcvbuf >> 1))
3489 		return -EINVAL;
3490 
3491 	sctp_sk(sk)->pd_point = *val;
3492 
3493 	return 0; /* is this the right error code? */
3494 }
3495 
3496 /*
3497  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3498  *
3499  * This option will allow a user to change the maximum burst of packets
3500  * that can be emitted by this association.  Note that the default value
3501  * is 4, and some implementations may restrict this setting so that it
3502  * can only be lowered.
3503  *
3504  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3505  * future associations inheriting the socket value.
3506  */
3507 static int sctp_setsockopt_maxburst(struct sock *sk,
3508 				    struct sctp_assoc_value *params,
3509 				    unsigned int optlen)
3510 {
3511 	struct sctp_sock *sp = sctp_sk(sk);
3512 	struct sctp_association *asoc;
3513 	sctp_assoc_t assoc_id;
3514 	u32 assoc_value;
3515 
3516 	if (optlen == sizeof(int)) {
3517 		pr_warn_ratelimited(DEPRECATED
3518 				    "%s (pid %d) "
3519 				    "Use of int in max_burst socket option deprecated.\n"
3520 				    "Use struct sctp_assoc_value instead\n",
3521 				    current->comm, task_pid_nr(current));
3522 		assoc_id = SCTP_FUTURE_ASSOC;
3523 		assoc_value = *((int *)params);
3524 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3525 		assoc_id = params->assoc_id;
3526 		assoc_value = params->assoc_value;
3527 	} else
3528 		return -EINVAL;
3529 
3530 	asoc = sctp_id2assoc(sk, assoc_id);
3531 	if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3532 		return -EINVAL;
3533 
3534 	if (asoc) {
3535 		asoc->max_burst = assoc_value;
3536 
3537 		return 0;
3538 	}
3539 
3540 	if (sctp_style(sk, TCP))
3541 		assoc_id = SCTP_FUTURE_ASSOC;
3542 
3543 	if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3544 		sp->max_burst = assoc_value;
3545 
3546 	if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3547 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3548 			asoc->max_burst = assoc_value;
3549 
3550 	return 0;
3551 }
3552 
3553 /*
3554  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3555  *
3556  * This set option adds a chunk type that the user is requesting to be
3557  * received only in an authenticated way.  Changes to the list of chunks
3558  * will only effect future associations on the socket.
3559  */
3560 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3561 				      struct sctp_authchunk *val,
3562 				      unsigned int optlen)
3563 {
3564 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3565 
3566 	if (!ep->auth_enable)
3567 		return -EACCES;
3568 
3569 	if (optlen != sizeof(struct sctp_authchunk))
3570 		return -EINVAL;
3571 
3572 	switch (val->sauth_chunk) {
3573 	case SCTP_CID_INIT:
3574 	case SCTP_CID_INIT_ACK:
3575 	case SCTP_CID_SHUTDOWN_COMPLETE:
3576 	case SCTP_CID_AUTH:
3577 		return -EINVAL;
3578 	}
3579 
3580 	/* add this chunk id to the endpoint */
3581 	return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3582 }
3583 
3584 /*
3585  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3586  *
3587  * This option gets or sets the list of HMAC algorithms that the local
3588  * endpoint requires the peer to use.
3589  */
3590 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3591 				      struct sctp_hmacalgo *hmacs,
3592 				      unsigned int optlen)
3593 {
3594 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3595 	u32 idents;
3596 
3597 	if (!ep->auth_enable)
3598 		return -EACCES;
3599 
3600 	if (optlen < sizeof(struct sctp_hmacalgo))
3601 		return -EINVAL;
3602 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3603 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3604 
3605 	idents = hmacs->shmac_num_idents;
3606 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3607 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3608 		return -EINVAL;
3609 
3610 	return sctp_auth_ep_set_hmacs(ep, hmacs);
3611 }
3612 
3613 /*
3614  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3615  *
3616  * This option will set a shared secret key which is used to build an
3617  * association shared key.
3618  */
3619 static int sctp_setsockopt_auth_key(struct sock *sk,
3620 				    struct sctp_authkey *authkey,
3621 				    unsigned int optlen)
3622 {
3623 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3624 	struct sctp_association *asoc;
3625 	int ret = -EINVAL;
3626 
3627 	if (optlen <= sizeof(struct sctp_authkey))
3628 		return -EINVAL;
3629 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3630 	 * this.
3631 	 */
3632 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3633 
3634 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3635 		goto out;
3636 
3637 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3638 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3639 	    sctp_style(sk, UDP))
3640 		goto out;
3641 
3642 	if (asoc) {
3643 		ret = sctp_auth_set_key(ep, asoc, authkey);
3644 		goto out;
3645 	}
3646 
3647 	if (sctp_style(sk, TCP))
3648 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3649 
3650 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3651 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3652 		ret = sctp_auth_set_key(ep, asoc, authkey);
3653 		if (ret)
3654 			goto out;
3655 	}
3656 
3657 	ret = 0;
3658 
3659 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3660 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3661 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3662 			int res = sctp_auth_set_key(ep, asoc, authkey);
3663 
3664 			if (res && !ret)
3665 				ret = res;
3666 		}
3667 	}
3668 
3669 out:
3670 	memzero_explicit(authkey, optlen);
3671 	return ret;
3672 }
3673 
3674 /*
3675  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3676  *
3677  * This option will get or set the active shared key to be used to build
3678  * the association shared key.
3679  */
3680 static int sctp_setsockopt_active_key(struct sock *sk,
3681 				      struct sctp_authkeyid *val,
3682 				      unsigned int optlen)
3683 {
3684 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3685 	struct sctp_association *asoc;
3686 	int ret = 0;
3687 
3688 	if (optlen != sizeof(struct sctp_authkeyid))
3689 		return -EINVAL;
3690 
3691 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3692 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3693 	    sctp_style(sk, UDP))
3694 		return -EINVAL;
3695 
3696 	if (asoc)
3697 		return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3698 
3699 	if (sctp_style(sk, TCP))
3700 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3701 
3702 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3703 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3704 		ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3705 		if (ret)
3706 			return ret;
3707 	}
3708 
3709 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3710 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3711 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3712 			int res = sctp_auth_set_active_key(ep, asoc,
3713 							   val->scact_keynumber);
3714 
3715 			if (res && !ret)
3716 				ret = res;
3717 		}
3718 	}
3719 
3720 	return ret;
3721 }
3722 
3723 /*
3724  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3725  *
3726  * This set option will delete a shared secret key from use.
3727  */
3728 static int sctp_setsockopt_del_key(struct sock *sk,
3729 				   struct sctp_authkeyid *val,
3730 				   unsigned int optlen)
3731 {
3732 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3733 	struct sctp_association *asoc;
3734 	int ret = 0;
3735 
3736 	if (optlen != sizeof(struct sctp_authkeyid))
3737 		return -EINVAL;
3738 
3739 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3740 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3741 	    sctp_style(sk, UDP))
3742 		return -EINVAL;
3743 
3744 	if (asoc)
3745 		return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3746 
3747 	if (sctp_style(sk, TCP))
3748 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3749 
3750 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3751 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3752 		ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3753 		if (ret)
3754 			return ret;
3755 	}
3756 
3757 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3758 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3759 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3760 			int res = sctp_auth_del_key_id(ep, asoc,
3761 						       val->scact_keynumber);
3762 
3763 			if (res && !ret)
3764 				ret = res;
3765 		}
3766 	}
3767 
3768 	return ret;
3769 }
3770 
3771 /*
3772  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3773  *
3774  * This set option will deactivate a shared secret key.
3775  */
3776 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3777 					  struct sctp_authkeyid *val,
3778 					  unsigned int optlen)
3779 {
3780 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3781 	struct sctp_association *asoc;
3782 	int ret = 0;
3783 
3784 	if (optlen != sizeof(struct sctp_authkeyid))
3785 		return -EINVAL;
3786 
3787 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3788 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3789 	    sctp_style(sk, UDP))
3790 		return -EINVAL;
3791 
3792 	if (asoc)
3793 		return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3794 
3795 	if (sctp_style(sk, TCP))
3796 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3797 
3798 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3799 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3800 		ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3801 		if (ret)
3802 			return ret;
3803 	}
3804 
3805 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3806 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3807 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3808 			int res = sctp_auth_deact_key_id(ep, asoc,
3809 							 val->scact_keynumber);
3810 
3811 			if (res && !ret)
3812 				ret = res;
3813 		}
3814 	}
3815 
3816 	return ret;
3817 }
3818 
3819 /*
3820  * 8.1.23 SCTP_AUTO_ASCONF
3821  *
3822  * This option will enable or disable the use of the automatic generation of
3823  * ASCONF chunks to add and delete addresses to an existing association.  Note
3824  * that this option has two caveats namely: a) it only affects sockets that
3825  * are bound to all addresses available to the SCTP stack, and b) the system
3826  * administrator may have an overriding control that turns the ASCONF feature
3827  * off no matter what setting the socket option may have.
3828  * This option expects an integer boolean flag, where a non-zero value turns on
3829  * the option, and a zero value turns off the option.
3830  * Note. In this implementation, socket operation overrides default parameter
3831  * being set by sysctl as well as FreeBSD implementation
3832  */
3833 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3834 					unsigned int optlen)
3835 {
3836 	struct sctp_sock *sp = sctp_sk(sk);
3837 
3838 	if (optlen < sizeof(int))
3839 		return -EINVAL;
3840 	if (!sctp_is_ep_boundall(sk) && *val)
3841 		return -EINVAL;
3842 	if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3843 		return 0;
3844 
3845 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3846 	if (*val == 0 && sp->do_auto_asconf) {
3847 		list_del(&sp->auto_asconf_list);
3848 		sp->do_auto_asconf = 0;
3849 	} else if (*val && !sp->do_auto_asconf) {
3850 		list_add_tail(&sp->auto_asconf_list,
3851 		    &sock_net(sk)->sctp.auto_asconf_splist);
3852 		sp->do_auto_asconf = 1;
3853 	}
3854 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3855 	return 0;
3856 }
3857 
3858 /*
3859  * SCTP_PEER_ADDR_THLDS
3860  *
3861  * This option allows us to alter the partially failed threshold for one or all
3862  * transports in an association.  See Section 6.1 of:
3863  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3864  */
3865 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3866 					    struct sctp_paddrthlds_v2 *val,
3867 					    unsigned int optlen, bool v2)
3868 {
3869 	struct sctp_transport *trans;
3870 	struct sctp_association *asoc;
3871 	int len;
3872 
3873 	len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3874 	if (optlen < len)
3875 		return -EINVAL;
3876 
3877 	if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3878 		return -EINVAL;
3879 
3880 	if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3881 		trans = sctp_addr_id2transport(sk, &val->spt_address,
3882 					       val->spt_assoc_id);
3883 		if (!trans)
3884 			return -ENOENT;
3885 
3886 		if (val->spt_pathmaxrxt)
3887 			trans->pathmaxrxt = val->spt_pathmaxrxt;
3888 		if (v2)
3889 			trans->ps_retrans = val->spt_pathcpthld;
3890 		trans->pf_retrans = val->spt_pathpfthld;
3891 
3892 		return 0;
3893 	}
3894 
3895 	asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3896 	if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3897 	    sctp_style(sk, UDP))
3898 		return -EINVAL;
3899 
3900 	if (asoc) {
3901 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3902 				    transports) {
3903 			if (val->spt_pathmaxrxt)
3904 				trans->pathmaxrxt = val->spt_pathmaxrxt;
3905 			if (v2)
3906 				trans->ps_retrans = val->spt_pathcpthld;
3907 			trans->pf_retrans = val->spt_pathpfthld;
3908 		}
3909 
3910 		if (val->spt_pathmaxrxt)
3911 			asoc->pathmaxrxt = val->spt_pathmaxrxt;
3912 		if (v2)
3913 			asoc->ps_retrans = val->spt_pathcpthld;
3914 		asoc->pf_retrans = val->spt_pathpfthld;
3915 	} else {
3916 		struct sctp_sock *sp = sctp_sk(sk);
3917 
3918 		if (val->spt_pathmaxrxt)
3919 			sp->pathmaxrxt = val->spt_pathmaxrxt;
3920 		if (v2)
3921 			sp->ps_retrans = val->spt_pathcpthld;
3922 		sp->pf_retrans = val->spt_pathpfthld;
3923 	}
3924 
3925 	return 0;
3926 }
3927 
3928 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3929 				       unsigned int optlen)
3930 {
3931 	if (optlen < sizeof(int))
3932 		return -EINVAL;
3933 
3934 	sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3935 
3936 	return 0;
3937 }
3938 
3939 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3940 				       unsigned int optlen)
3941 {
3942 	if (optlen < sizeof(int))
3943 		return -EINVAL;
3944 
3945 	sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3946 
3947 	return 0;
3948 }
3949 
3950 static int sctp_setsockopt_pr_supported(struct sock *sk,
3951 					struct sctp_assoc_value *params,
3952 					unsigned int optlen)
3953 {
3954 	struct sctp_association *asoc;
3955 
3956 	if (optlen != sizeof(*params))
3957 		return -EINVAL;
3958 
3959 	asoc = sctp_id2assoc(sk, params->assoc_id);
3960 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3961 	    sctp_style(sk, UDP))
3962 		return -EINVAL;
3963 
3964 	sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3965 
3966 	return 0;
3967 }
3968 
3969 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3970 					  struct sctp_default_prinfo *info,
3971 					  unsigned int optlen)
3972 {
3973 	struct sctp_sock *sp = sctp_sk(sk);
3974 	struct sctp_association *asoc;
3975 	int retval = -EINVAL;
3976 
3977 	if (optlen != sizeof(*info))
3978 		goto out;
3979 
3980 	if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3981 		goto out;
3982 
3983 	if (info->pr_policy == SCTP_PR_SCTP_NONE)
3984 		info->pr_value = 0;
3985 
3986 	asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3987 	if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3988 	    sctp_style(sk, UDP))
3989 		goto out;
3990 
3991 	retval = 0;
3992 
3993 	if (asoc) {
3994 		SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3995 		asoc->default_timetolive = info->pr_value;
3996 		goto out;
3997 	}
3998 
3999 	if (sctp_style(sk, TCP))
4000 		info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4001 
4002 	if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4003 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
4004 		SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4005 		sp->default_timetolive = info->pr_value;
4006 	}
4007 
4008 	if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4009 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
4010 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4011 			SCTP_PR_SET_POLICY(asoc->default_flags,
4012 					   info->pr_policy);
4013 			asoc->default_timetolive = info->pr_value;
4014 		}
4015 	}
4016 
4017 out:
4018 	return retval;
4019 }
4020 
4021 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4022 					      struct sctp_assoc_value *params,
4023 					      unsigned int optlen)
4024 {
4025 	struct sctp_association *asoc;
4026 	int retval = -EINVAL;
4027 
4028 	if (optlen != sizeof(*params))
4029 		goto out;
4030 
4031 	asoc = sctp_id2assoc(sk, params->assoc_id);
4032 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4033 	    sctp_style(sk, UDP))
4034 		goto out;
4035 
4036 	sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4037 
4038 	retval = 0;
4039 
4040 out:
4041 	return retval;
4042 }
4043 
4044 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4045 					   struct sctp_assoc_value *params,
4046 					   unsigned int optlen)
4047 {
4048 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4049 	struct sctp_association *asoc;
4050 	int retval = -EINVAL;
4051 
4052 	if (optlen != sizeof(*params))
4053 		goto out;
4054 
4055 	if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4056 		goto out;
4057 
4058 	asoc = sctp_id2assoc(sk, params->assoc_id);
4059 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4060 	    sctp_style(sk, UDP))
4061 		goto out;
4062 
4063 	retval = 0;
4064 
4065 	if (asoc) {
4066 		asoc->strreset_enable = params->assoc_value;
4067 		goto out;
4068 	}
4069 
4070 	if (sctp_style(sk, TCP))
4071 		params->assoc_id = SCTP_FUTURE_ASSOC;
4072 
4073 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4074 	    params->assoc_id == SCTP_ALL_ASSOC)
4075 		ep->strreset_enable = params->assoc_value;
4076 
4077 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4078 	    params->assoc_id == SCTP_ALL_ASSOC)
4079 		list_for_each_entry(asoc, &ep->asocs, asocs)
4080 			asoc->strreset_enable = params->assoc_value;
4081 
4082 out:
4083 	return retval;
4084 }
4085 
4086 static int sctp_setsockopt_reset_streams(struct sock *sk,
4087 					 struct sctp_reset_streams *params,
4088 					 unsigned int optlen)
4089 {
4090 	struct sctp_association *asoc;
4091 
4092 	if (optlen < sizeof(*params))
4093 		return -EINVAL;
4094 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4095 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4096 					     sizeof(__u16) * sizeof(*params));
4097 
4098 	if (params->srs_number_streams * sizeof(__u16) >
4099 	    optlen - sizeof(*params))
4100 		return -EINVAL;
4101 
4102 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4103 	if (!asoc)
4104 		return -EINVAL;
4105 
4106 	return sctp_send_reset_streams(asoc, params);
4107 }
4108 
4109 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4110 				       unsigned int optlen)
4111 {
4112 	struct sctp_association *asoc;
4113 
4114 	if (optlen != sizeof(*associd))
4115 		return -EINVAL;
4116 
4117 	asoc = sctp_id2assoc(sk, *associd);
4118 	if (!asoc)
4119 		return -EINVAL;
4120 
4121 	return sctp_send_reset_assoc(asoc);
4122 }
4123 
4124 static int sctp_setsockopt_add_streams(struct sock *sk,
4125 				       struct sctp_add_streams *params,
4126 				       unsigned int optlen)
4127 {
4128 	struct sctp_association *asoc;
4129 
4130 	if (optlen != sizeof(*params))
4131 		return -EINVAL;
4132 
4133 	asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4134 	if (!asoc)
4135 		return -EINVAL;
4136 
4137 	return sctp_send_add_streams(asoc, params);
4138 }
4139 
4140 static int sctp_setsockopt_scheduler(struct sock *sk,
4141 				     struct sctp_assoc_value *params,
4142 				     unsigned int optlen)
4143 {
4144 	struct sctp_sock *sp = sctp_sk(sk);
4145 	struct sctp_association *asoc;
4146 	int retval = 0;
4147 
4148 	if (optlen < sizeof(*params))
4149 		return -EINVAL;
4150 
4151 	if (params->assoc_value > SCTP_SS_MAX)
4152 		return -EINVAL;
4153 
4154 	asoc = sctp_id2assoc(sk, params->assoc_id);
4155 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4156 	    sctp_style(sk, UDP))
4157 		return -EINVAL;
4158 
4159 	if (asoc)
4160 		return sctp_sched_set_sched(asoc, params->assoc_value);
4161 
4162 	if (sctp_style(sk, TCP))
4163 		params->assoc_id = SCTP_FUTURE_ASSOC;
4164 
4165 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4166 	    params->assoc_id == SCTP_ALL_ASSOC)
4167 		sp->default_ss = params->assoc_value;
4168 
4169 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4170 	    params->assoc_id == SCTP_ALL_ASSOC) {
4171 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4172 			int ret = sctp_sched_set_sched(asoc,
4173 						       params->assoc_value);
4174 
4175 			if (ret && !retval)
4176 				retval = ret;
4177 		}
4178 	}
4179 
4180 	return retval;
4181 }
4182 
4183 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4184 					   struct sctp_stream_value *params,
4185 					   unsigned int optlen)
4186 {
4187 	struct sctp_association *asoc;
4188 	int retval = -EINVAL;
4189 
4190 	if (optlen < sizeof(*params))
4191 		goto out;
4192 
4193 	asoc = sctp_id2assoc(sk, params->assoc_id);
4194 	if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4195 	    sctp_style(sk, UDP))
4196 		goto out;
4197 
4198 	if (asoc) {
4199 		retval = sctp_sched_set_value(asoc, params->stream_id,
4200 					      params->stream_value, GFP_KERNEL);
4201 		goto out;
4202 	}
4203 
4204 	retval = 0;
4205 
4206 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4207 		int ret = sctp_sched_set_value(asoc, params->stream_id,
4208 					       params->stream_value,
4209 					       GFP_KERNEL);
4210 		if (ret && !retval) /* try to return the 1st error. */
4211 			retval = ret;
4212 	}
4213 
4214 out:
4215 	return retval;
4216 }
4217 
4218 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4219 						  struct sctp_assoc_value *p,
4220 						  unsigned int optlen)
4221 {
4222 	struct sctp_sock *sp = sctp_sk(sk);
4223 	struct sctp_association *asoc;
4224 
4225 	if (optlen < sizeof(*p))
4226 		return -EINVAL;
4227 
4228 	asoc = sctp_id2assoc(sk, p->assoc_id);
4229 	if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4230 		return -EINVAL;
4231 
4232 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4233 		return -EPERM;
4234 	}
4235 
4236 	sp->ep->intl_enable = !!p->assoc_value;
4237 	return 0;
4238 }
4239 
4240 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4241 				      unsigned int optlen)
4242 {
4243 	if (!sctp_style(sk, TCP))
4244 		return -EOPNOTSUPP;
4245 
4246 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4247 		return -EFAULT;
4248 
4249 	if (optlen < sizeof(int))
4250 		return -EINVAL;
4251 
4252 	sctp_sk(sk)->reuse = !!*val;
4253 
4254 	return 0;
4255 }
4256 
4257 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4258 					struct sctp_association *asoc)
4259 {
4260 	struct sctp_ulpevent *event;
4261 
4262 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4263 
4264 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4265 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4266 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4267 					GFP_USER | __GFP_NOWARN);
4268 			if (!event)
4269 				return -ENOMEM;
4270 
4271 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4272 		}
4273 	}
4274 
4275 	return 0;
4276 }
4277 
4278 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4279 				 unsigned int optlen)
4280 {
4281 	struct sctp_sock *sp = sctp_sk(sk);
4282 	struct sctp_association *asoc;
4283 	int retval = 0;
4284 
4285 	if (optlen < sizeof(*param))
4286 		return -EINVAL;
4287 
4288 	if (param->se_type < SCTP_SN_TYPE_BASE ||
4289 	    param->se_type > SCTP_SN_TYPE_MAX)
4290 		return -EINVAL;
4291 
4292 	asoc = sctp_id2assoc(sk, param->se_assoc_id);
4293 	if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4294 	    sctp_style(sk, UDP))
4295 		return -EINVAL;
4296 
4297 	if (asoc)
4298 		return sctp_assoc_ulpevent_type_set(param, asoc);
4299 
4300 	if (sctp_style(sk, TCP))
4301 		param->se_assoc_id = SCTP_FUTURE_ASSOC;
4302 
4303 	if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4304 	    param->se_assoc_id == SCTP_ALL_ASSOC)
4305 		sctp_ulpevent_type_set(&sp->subscribe,
4306 				       param->se_type, param->se_on);
4307 
4308 	if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4309 	    param->se_assoc_id == SCTP_ALL_ASSOC) {
4310 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4311 			int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4312 
4313 			if (ret && !retval)
4314 				retval = ret;
4315 		}
4316 	}
4317 
4318 	return retval;
4319 }
4320 
4321 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4322 					    struct sctp_assoc_value *params,
4323 					    unsigned int optlen)
4324 {
4325 	struct sctp_association *asoc;
4326 	struct sctp_endpoint *ep;
4327 	int retval = -EINVAL;
4328 
4329 	if (optlen != sizeof(*params))
4330 		goto out;
4331 
4332 	asoc = sctp_id2assoc(sk, params->assoc_id);
4333 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4334 	    sctp_style(sk, UDP))
4335 		goto out;
4336 
4337 	ep = sctp_sk(sk)->ep;
4338 	ep->asconf_enable = !!params->assoc_value;
4339 
4340 	if (ep->asconf_enable && ep->auth_enable) {
4341 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4342 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4343 	}
4344 
4345 	retval = 0;
4346 
4347 out:
4348 	return retval;
4349 }
4350 
4351 static int sctp_setsockopt_auth_supported(struct sock *sk,
4352 					  struct sctp_assoc_value *params,
4353 					  unsigned int optlen)
4354 {
4355 	struct sctp_association *asoc;
4356 	struct sctp_endpoint *ep;
4357 	int retval = -EINVAL;
4358 
4359 	if (optlen != sizeof(*params))
4360 		goto out;
4361 
4362 	asoc = sctp_id2assoc(sk, params->assoc_id);
4363 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4364 	    sctp_style(sk, UDP))
4365 		goto out;
4366 
4367 	ep = sctp_sk(sk)->ep;
4368 	if (params->assoc_value) {
4369 		retval = sctp_auth_init(ep, GFP_KERNEL);
4370 		if (retval)
4371 			goto out;
4372 		if (ep->asconf_enable) {
4373 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4374 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4375 		}
4376 	}
4377 
4378 	ep->auth_enable = !!params->assoc_value;
4379 	retval = 0;
4380 
4381 out:
4382 	return retval;
4383 }
4384 
4385 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4386 					 struct sctp_assoc_value *params,
4387 					 unsigned int optlen)
4388 {
4389 	struct sctp_association *asoc;
4390 	int retval = -EINVAL;
4391 
4392 	if (optlen != sizeof(*params))
4393 		goto out;
4394 
4395 	asoc = sctp_id2assoc(sk, params->assoc_id);
4396 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4397 	    sctp_style(sk, UDP))
4398 		goto out;
4399 
4400 	sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4401 	retval = 0;
4402 
4403 out:
4404 	return retval;
4405 }
4406 
4407 static int sctp_setsockopt_pf_expose(struct sock *sk,
4408 				     struct sctp_assoc_value *params,
4409 				     unsigned int optlen)
4410 {
4411 	struct sctp_association *asoc;
4412 	int retval = -EINVAL;
4413 
4414 	if (optlen != sizeof(*params))
4415 		goto out;
4416 
4417 	if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4418 		goto out;
4419 
4420 	asoc = sctp_id2assoc(sk, params->assoc_id);
4421 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4422 	    sctp_style(sk, UDP))
4423 		goto out;
4424 
4425 	if (asoc)
4426 		asoc->pf_expose = params->assoc_value;
4427 	else
4428 		sctp_sk(sk)->pf_expose = params->assoc_value;
4429 	retval = 0;
4430 
4431 out:
4432 	return retval;
4433 }
4434 
4435 static int sctp_setsockopt_encap_port(struct sock *sk,
4436 				      struct sctp_udpencaps *encap,
4437 				      unsigned int optlen)
4438 {
4439 	struct sctp_association *asoc;
4440 	struct sctp_transport *t;
4441 	__be16 encap_port;
4442 
4443 	if (optlen != sizeof(*encap))
4444 		return -EINVAL;
4445 
4446 	/* If an address other than INADDR_ANY is specified, and
4447 	 * no transport is found, then the request is invalid.
4448 	 */
4449 	encap_port = (__force __be16)encap->sue_port;
4450 	if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4451 		t = sctp_addr_id2transport(sk, &encap->sue_address,
4452 					   encap->sue_assoc_id);
4453 		if (!t)
4454 			return -EINVAL;
4455 
4456 		t->encap_port = encap_port;
4457 		return 0;
4458 	}
4459 
4460 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4461 	 * socket is a one to many style socket, and an association
4462 	 * was not found, then the id was invalid.
4463 	 */
4464 	asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4465 	if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4466 	    sctp_style(sk, UDP))
4467 		return -EINVAL;
4468 
4469 	/* If changes are for association, also apply encap_port to
4470 	 * each transport.
4471 	 */
4472 	if (asoc) {
4473 		list_for_each_entry(t, &asoc->peer.transport_addr_list,
4474 				    transports)
4475 			t->encap_port = encap_port;
4476 
4477 		asoc->encap_port = encap_port;
4478 		return 0;
4479 	}
4480 
4481 	sctp_sk(sk)->encap_port = encap_port;
4482 	return 0;
4483 }
4484 
4485 static int sctp_setsockopt_probe_interval(struct sock *sk,
4486 					  struct sctp_probeinterval *params,
4487 					  unsigned int optlen)
4488 {
4489 	struct sctp_association *asoc;
4490 	struct sctp_transport *t;
4491 	__u32 probe_interval;
4492 
4493 	if (optlen != sizeof(*params))
4494 		return -EINVAL;
4495 
4496 	probe_interval = params->spi_interval;
4497 	if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4498 		return -EINVAL;
4499 
4500 	/* If an address other than INADDR_ANY is specified, and
4501 	 * no transport is found, then the request is invalid.
4502 	 */
4503 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spi_address)) {
4504 		t = sctp_addr_id2transport(sk, &params->spi_address,
4505 					   params->spi_assoc_id);
4506 		if (!t)
4507 			return -EINVAL;
4508 
4509 		t->probe_interval = msecs_to_jiffies(probe_interval);
4510 		sctp_transport_pl_reset(t);
4511 		return 0;
4512 	}
4513 
4514 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4515 	 * socket is a one to many style socket, and an association
4516 	 * was not found, then the id was invalid.
4517 	 */
4518 	asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4519 	if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4520 	    sctp_style(sk, UDP))
4521 		return -EINVAL;
4522 
4523 	/* If changes are for association, also apply probe_interval to
4524 	 * each transport.
4525 	 */
4526 	if (asoc) {
4527 		list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4528 			t->probe_interval = msecs_to_jiffies(probe_interval);
4529 			sctp_transport_pl_reset(t);
4530 		}
4531 
4532 		asoc->probe_interval = msecs_to_jiffies(probe_interval);
4533 		return 0;
4534 	}
4535 
4536 	sctp_sk(sk)->probe_interval = probe_interval;
4537 	return 0;
4538 }
4539 
4540 /* API 6.2 setsockopt(), getsockopt()
4541  *
4542  * Applications use setsockopt() and getsockopt() to set or retrieve
4543  * socket options.  Socket options are used to change the default
4544  * behavior of sockets calls.  They are described in Section 7.
4545  *
4546  * The syntax is:
4547  *
4548  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4549  *                    int __user *optlen);
4550  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4551  *                    int optlen);
4552  *
4553  *   sd      - the socket descript.
4554  *   level   - set to IPPROTO_SCTP for all SCTP options.
4555  *   optname - the option name.
4556  *   optval  - the buffer to store the value of the option.
4557  *   optlen  - the size of the buffer.
4558  */
4559 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4560 			   sockptr_t optval, unsigned int optlen)
4561 {
4562 	void *kopt = NULL;
4563 	int retval = 0;
4564 
4565 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4566 
4567 	/* I can hardly begin to describe how wrong this is.  This is
4568 	 * so broken as to be worse than useless.  The API draft
4569 	 * REALLY is NOT helpful here...  I am not convinced that the
4570 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4571 	 * are at all well-founded.
4572 	 */
4573 	if (level != SOL_SCTP) {
4574 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4575 
4576 		return af->setsockopt(sk, level, optname, optval, optlen);
4577 	}
4578 
4579 	if (optlen > 0) {
4580 		kopt = memdup_sockptr(optval, optlen);
4581 		if (IS_ERR(kopt))
4582 			return PTR_ERR(kopt);
4583 	}
4584 
4585 	lock_sock(sk);
4586 
4587 	switch (optname) {
4588 	case SCTP_SOCKOPT_BINDX_ADD:
4589 		/* 'optlen' is the size of the addresses buffer. */
4590 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4591 					       SCTP_BINDX_ADD_ADDR);
4592 		break;
4593 
4594 	case SCTP_SOCKOPT_BINDX_REM:
4595 		/* 'optlen' is the size of the addresses buffer. */
4596 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4597 					       SCTP_BINDX_REM_ADDR);
4598 		break;
4599 
4600 	case SCTP_SOCKOPT_CONNECTX_OLD:
4601 		/* 'optlen' is the size of the addresses buffer. */
4602 		retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4603 		break;
4604 
4605 	case SCTP_SOCKOPT_CONNECTX:
4606 		/* 'optlen' is the size of the addresses buffer. */
4607 		retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4608 		break;
4609 
4610 	case SCTP_DISABLE_FRAGMENTS:
4611 		retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4612 		break;
4613 
4614 	case SCTP_EVENTS:
4615 		retval = sctp_setsockopt_events(sk, kopt, optlen);
4616 		break;
4617 
4618 	case SCTP_AUTOCLOSE:
4619 		retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4620 		break;
4621 
4622 	case SCTP_PEER_ADDR_PARAMS:
4623 		retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4624 		break;
4625 
4626 	case SCTP_DELAYED_SACK:
4627 		retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4628 		break;
4629 	case SCTP_PARTIAL_DELIVERY_POINT:
4630 		retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4631 		break;
4632 
4633 	case SCTP_INITMSG:
4634 		retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4635 		break;
4636 	case SCTP_DEFAULT_SEND_PARAM:
4637 		retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4638 		break;
4639 	case SCTP_DEFAULT_SNDINFO:
4640 		retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4641 		break;
4642 	case SCTP_PRIMARY_ADDR:
4643 		retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4644 		break;
4645 	case SCTP_SET_PEER_PRIMARY_ADDR:
4646 		retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4647 		break;
4648 	case SCTP_NODELAY:
4649 		retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4650 		break;
4651 	case SCTP_RTOINFO:
4652 		retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4653 		break;
4654 	case SCTP_ASSOCINFO:
4655 		retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4656 		break;
4657 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4658 		retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4659 		break;
4660 	case SCTP_MAXSEG:
4661 		retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4662 		break;
4663 	case SCTP_ADAPTATION_LAYER:
4664 		retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4665 		break;
4666 	case SCTP_CONTEXT:
4667 		retval = sctp_setsockopt_context(sk, kopt, optlen);
4668 		break;
4669 	case SCTP_FRAGMENT_INTERLEAVE:
4670 		retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4671 		break;
4672 	case SCTP_MAX_BURST:
4673 		retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4674 		break;
4675 	case SCTP_AUTH_CHUNK:
4676 		retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4677 		break;
4678 	case SCTP_HMAC_IDENT:
4679 		retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4680 		break;
4681 	case SCTP_AUTH_KEY:
4682 		retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4683 		break;
4684 	case SCTP_AUTH_ACTIVE_KEY:
4685 		retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4686 		break;
4687 	case SCTP_AUTH_DELETE_KEY:
4688 		retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4689 		break;
4690 	case SCTP_AUTH_DEACTIVATE_KEY:
4691 		retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4692 		break;
4693 	case SCTP_AUTO_ASCONF:
4694 		retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4695 		break;
4696 	case SCTP_PEER_ADDR_THLDS:
4697 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4698 							  false);
4699 		break;
4700 	case SCTP_PEER_ADDR_THLDS_V2:
4701 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4702 							  true);
4703 		break;
4704 	case SCTP_RECVRCVINFO:
4705 		retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4706 		break;
4707 	case SCTP_RECVNXTINFO:
4708 		retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4709 		break;
4710 	case SCTP_PR_SUPPORTED:
4711 		retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4712 		break;
4713 	case SCTP_DEFAULT_PRINFO:
4714 		retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4715 		break;
4716 	case SCTP_RECONFIG_SUPPORTED:
4717 		retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4718 		break;
4719 	case SCTP_ENABLE_STREAM_RESET:
4720 		retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4721 		break;
4722 	case SCTP_RESET_STREAMS:
4723 		retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4724 		break;
4725 	case SCTP_RESET_ASSOC:
4726 		retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4727 		break;
4728 	case SCTP_ADD_STREAMS:
4729 		retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4730 		break;
4731 	case SCTP_STREAM_SCHEDULER:
4732 		retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4733 		break;
4734 	case SCTP_STREAM_SCHEDULER_VALUE:
4735 		retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4736 		break;
4737 	case SCTP_INTERLEAVING_SUPPORTED:
4738 		retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4739 								optlen);
4740 		break;
4741 	case SCTP_REUSE_PORT:
4742 		retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4743 		break;
4744 	case SCTP_EVENT:
4745 		retval = sctp_setsockopt_event(sk, kopt, optlen);
4746 		break;
4747 	case SCTP_ASCONF_SUPPORTED:
4748 		retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4749 		break;
4750 	case SCTP_AUTH_SUPPORTED:
4751 		retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4752 		break;
4753 	case SCTP_ECN_SUPPORTED:
4754 		retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4755 		break;
4756 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4757 		retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4758 		break;
4759 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
4760 		retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4761 		break;
4762 	case SCTP_PLPMTUD_PROBE_INTERVAL:
4763 		retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4764 		break;
4765 	default:
4766 		retval = -ENOPROTOOPT;
4767 		break;
4768 	}
4769 
4770 	release_sock(sk);
4771 	kfree(kopt);
4772 	return retval;
4773 }
4774 
4775 /* API 3.1.6 connect() - UDP Style Syntax
4776  *
4777  * An application may use the connect() call in the UDP model to initiate an
4778  * association without sending data.
4779  *
4780  * The syntax is:
4781  *
4782  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4783  *
4784  * sd: the socket descriptor to have a new association added to.
4785  *
4786  * nam: the address structure (either struct sockaddr_in or struct
4787  *    sockaddr_in6 defined in RFC2553 [7]).
4788  *
4789  * len: the size of the address.
4790  */
4791 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4792 			int addr_len, int flags)
4793 {
4794 	struct sctp_af *af;
4795 	int err = -EINVAL;
4796 
4797 	lock_sock(sk);
4798 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4799 		 addr, addr_len);
4800 
4801 	/* Validate addr_len before calling common connect/connectx routine. */
4802 	af = sctp_get_af_specific(addr->sa_family);
4803 	if (af && addr_len >= af->sockaddr_len)
4804 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4805 
4806 	release_sock(sk);
4807 	return err;
4808 }
4809 
4810 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4811 		      int addr_len, int flags)
4812 {
4813 	if (addr_len < sizeof(uaddr->sa_family))
4814 		return -EINVAL;
4815 
4816 	if (uaddr->sa_family == AF_UNSPEC)
4817 		return -EOPNOTSUPP;
4818 
4819 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4820 }
4821 
4822 /* FIXME: Write comments. */
4823 static int sctp_disconnect(struct sock *sk, int flags)
4824 {
4825 	return -EOPNOTSUPP; /* STUB */
4826 }
4827 
4828 /* 4.1.4 accept() - TCP Style Syntax
4829  *
4830  * Applications use accept() call to remove an established SCTP
4831  * association from the accept queue of the endpoint.  A new socket
4832  * descriptor will be returned from accept() to represent the newly
4833  * formed association.
4834  */
4835 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4836 {
4837 	struct sctp_sock *sp;
4838 	struct sctp_endpoint *ep;
4839 	struct sock *newsk = NULL;
4840 	struct sctp_association *asoc;
4841 	long timeo;
4842 	int error = 0;
4843 
4844 	lock_sock(sk);
4845 
4846 	sp = sctp_sk(sk);
4847 	ep = sp->ep;
4848 
4849 	if (!sctp_style(sk, TCP)) {
4850 		error = -EOPNOTSUPP;
4851 		goto out;
4852 	}
4853 
4854 	if (!sctp_sstate(sk, LISTENING)) {
4855 		error = -EINVAL;
4856 		goto out;
4857 	}
4858 
4859 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4860 
4861 	error = sctp_wait_for_accept(sk, timeo);
4862 	if (error)
4863 		goto out;
4864 
4865 	/* We treat the list of associations on the endpoint as the accept
4866 	 * queue and pick the first association on the list.
4867 	 */
4868 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4869 
4870 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4871 	if (!newsk) {
4872 		error = -ENOMEM;
4873 		goto out;
4874 	}
4875 
4876 	/* Populate the fields of the newsk from the oldsk and migrate the
4877 	 * asoc to the newsk.
4878 	 */
4879 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4880 	if (error) {
4881 		sk_common_release(newsk);
4882 		newsk = NULL;
4883 	}
4884 
4885 out:
4886 	release_sock(sk);
4887 	*err = error;
4888 	return newsk;
4889 }
4890 
4891 /* The SCTP ioctl handler. */
4892 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4893 {
4894 	int rc = -ENOTCONN;
4895 
4896 	lock_sock(sk);
4897 
4898 	/*
4899 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4900 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4901 	 */
4902 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4903 		goto out;
4904 
4905 	switch (cmd) {
4906 	case SIOCINQ: {
4907 		struct sk_buff *skb;
4908 		unsigned int amount = 0;
4909 
4910 		skb = skb_peek(&sk->sk_receive_queue);
4911 		if (skb != NULL) {
4912 			/*
4913 			 * We will only return the amount of this packet since
4914 			 * that is all that will be read.
4915 			 */
4916 			amount = skb->len;
4917 		}
4918 		rc = put_user(amount, (int __user *)arg);
4919 		break;
4920 	}
4921 	default:
4922 		rc = -ENOIOCTLCMD;
4923 		break;
4924 	}
4925 out:
4926 	release_sock(sk);
4927 	return rc;
4928 }
4929 
4930 /* This is the function which gets called during socket creation to
4931  * initialized the SCTP-specific portion of the sock.
4932  * The sock structure should already be zero-filled memory.
4933  */
4934 static int sctp_init_sock(struct sock *sk)
4935 {
4936 	struct net *net = sock_net(sk);
4937 	struct sctp_sock *sp;
4938 
4939 	pr_debug("%s: sk:%p\n", __func__, sk);
4940 
4941 	sp = sctp_sk(sk);
4942 
4943 	/* Initialize the SCTP per socket area.  */
4944 	switch (sk->sk_type) {
4945 	case SOCK_SEQPACKET:
4946 		sp->type = SCTP_SOCKET_UDP;
4947 		break;
4948 	case SOCK_STREAM:
4949 		sp->type = SCTP_SOCKET_TCP;
4950 		break;
4951 	default:
4952 		return -ESOCKTNOSUPPORT;
4953 	}
4954 
4955 	sk->sk_gso_type = SKB_GSO_SCTP;
4956 
4957 	/* Initialize default send parameters. These parameters can be
4958 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4959 	 */
4960 	sp->default_stream = 0;
4961 	sp->default_ppid = 0;
4962 	sp->default_flags = 0;
4963 	sp->default_context = 0;
4964 	sp->default_timetolive = 0;
4965 
4966 	sp->default_rcv_context = 0;
4967 	sp->max_burst = net->sctp.max_burst;
4968 
4969 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4970 
4971 	/* Initialize default setup parameters. These parameters
4972 	 * can be modified with the SCTP_INITMSG socket option or
4973 	 * overridden by the SCTP_INIT CMSG.
4974 	 */
4975 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4976 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4977 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4978 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4979 
4980 	/* Initialize default RTO related parameters.  These parameters can
4981 	 * be modified for with the SCTP_RTOINFO socket option.
4982 	 */
4983 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4984 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4985 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4986 
4987 	/* Initialize default association related parameters. These parameters
4988 	 * can be modified with the SCTP_ASSOCINFO socket option.
4989 	 */
4990 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4991 	sp->assocparams.sasoc_number_peer_destinations = 0;
4992 	sp->assocparams.sasoc_peer_rwnd = 0;
4993 	sp->assocparams.sasoc_local_rwnd = 0;
4994 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4995 
4996 	/* Initialize default event subscriptions. By default, all the
4997 	 * options are off.
4998 	 */
4999 	sp->subscribe = 0;
5000 
5001 	/* Default Peer Address Parameters.  These defaults can
5002 	 * be modified via SCTP_PEER_ADDR_PARAMS
5003 	 */
5004 	sp->hbinterval  = net->sctp.hb_interval;
5005 	sp->udp_port    = htons(net->sctp.udp_port);
5006 	sp->encap_port  = htons(net->sctp.encap_port);
5007 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5008 	sp->pf_retrans  = net->sctp.pf_retrans;
5009 	sp->ps_retrans  = net->sctp.ps_retrans;
5010 	sp->pf_expose   = net->sctp.pf_expose;
5011 	sp->pathmtu     = 0; /* allow default discovery */
5012 	sp->sackdelay   = net->sctp.sack_timeout;
5013 	sp->sackfreq	= 2;
5014 	sp->param_flags = SPP_HB_ENABLE |
5015 			  SPP_PMTUD_ENABLE |
5016 			  SPP_SACKDELAY_ENABLE;
5017 	sp->default_ss = SCTP_SS_DEFAULT;
5018 
5019 	/* If enabled no SCTP message fragmentation will be performed.
5020 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5021 	 */
5022 	sp->disable_fragments = 0;
5023 
5024 	/* Enable Nagle algorithm by default.  */
5025 	sp->nodelay           = 0;
5026 
5027 	sp->recvrcvinfo = 0;
5028 	sp->recvnxtinfo = 0;
5029 
5030 	/* Enable by default. */
5031 	sp->v4mapped          = 1;
5032 
5033 	/* Auto-close idle associations after the configured
5034 	 * number of seconds.  A value of 0 disables this
5035 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5036 	 * for UDP-style sockets only.
5037 	 */
5038 	sp->autoclose         = 0;
5039 
5040 	/* User specified fragmentation limit. */
5041 	sp->user_frag         = 0;
5042 
5043 	sp->adaptation_ind = 0;
5044 
5045 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5046 
5047 	/* Control variables for partial data delivery. */
5048 	atomic_set(&sp->pd_mode, 0);
5049 	skb_queue_head_init(&sp->pd_lobby);
5050 	sp->frag_interleave = 0;
5051 	sp->probe_interval = net->sctp.probe_interval;
5052 
5053 	/* Create a per socket endpoint structure.  Even if we
5054 	 * change the data structure relationships, this may still
5055 	 * be useful for storing pre-connect address information.
5056 	 */
5057 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5058 	if (!sp->ep)
5059 		return -ENOMEM;
5060 
5061 	sp->hmac = NULL;
5062 
5063 	sk->sk_destruct = sctp_destruct_sock;
5064 
5065 	SCTP_DBG_OBJCNT_INC(sock);
5066 
5067 	local_bh_disable();
5068 	sk_sockets_allocated_inc(sk);
5069 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5070 
5071 	local_bh_enable();
5072 
5073 	return 0;
5074 }
5075 
5076 /* Cleanup any SCTP per socket resources. Must be called with
5077  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5078  */
5079 static void sctp_destroy_sock(struct sock *sk)
5080 {
5081 	struct sctp_sock *sp;
5082 
5083 	pr_debug("%s: sk:%p\n", __func__, sk);
5084 
5085 	/* Release our hold on the endpoint. */
5086 	sp = sctp_sk(sk);
5087 	/* This could happen during socket init, thus we bail out
5088 	 * early, since the rest of the below is not setup either.
5089 	 */
5090 	if (sp->ep == NULL)
5091 		return;
5092 
5093 	if (sp->do_auto_asconf) {
5094 		sp->do_auto_asconf = 0;
5095 		list_del(&sp->auto_asconf_list);
5096 	}
5097 	sctp_endpoint_free(sp->ep);
5098 	local_bh_disable();
5099 	sk_sockets_allocated_dec(sk);
5100 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5101 	local_bh_enable();
5102 }
5103 
5104 /* Triggered when there are no references on the socket anymore */
5105 static void sctp_destruct_sock(struct sock *sk)
5106 {
5107 	struct sctp_sock *sp = sctp_sk(sk);
5108 
5109 	/* Free up the HMAC transform. */
5110 	crypto_free_shash(sp->hmac);
5111 
5112 	inet_sock_destruct(sk);
5113 }
5114 
5115 /* API 4.1.7 shutdown() - TCP Style Syntax
5116  *     int shutdown(int socket, int how);
5117  *
5118  *     sd      - the socket descriptor of the association to be closed.
5119  *     how     - Specifies the type of shutdown.  The  values  are
5120  *               as follows:
5121  *               SHUT_RD
5122  *                     Disables further receive operations. No SCTP
5123  *                     protocol action is taken.
5124  *               SHUT_WR
5125  *                     Disables further send operations, and initiates
5126  *                     the SCTP shutdown sequence.
5127  *               SHUT_RDWR
5128  *                     Disables further send  and  receive  operations
5129  *                     and initiates the SCTP shutdown sequence.
5130  */
5131 static void sctp_shutdown(struct sock *sk, int how)
5132 {
5133 	struct net *net = sock_net(sk);
5134 	struct sctp_endpoint *ep;
5135 
5136 	if (!sctp_style(sk, TCP))
5137 		return;
5138 
5139 	ep = sctp_sk(sk)->ep;
5140 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5141 		struct sctp_association *asoc;
5142 
5143 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5144 		asoc = list_entry(ep->asocs.next,
5145 				  struct sctp_association, asocs);
5146 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5147 	}
5148 }
5149 
5150 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5151 		       struct sctp_info *info)
5152 {
5153 	struct sctp_transport *prim;
5154 	struct list_head *pos;
5155 	int mask;
5156 
5157 	memset(info, 0, sizeof(*info));
5158 	if (!asoc) {
5159 		struct sctp_sock *sp = sctp_sk(sk);
5160 
5161 		info->sctpi_s_autoclose = sp->autoclose;
5162 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5163 		info->sctpi_s_pd_point = sp->pd_point;
5164 		info->sctpi_s_nodelay = sp->nodelay;
5165 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5166 		info->sctpi_s_v4mapped = sp->v4mapped;
5167 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5168 		info->sctpi_s_type = sp->type;
5169 
5170 		return 0;
5171 	}
5172 
5173 	info->sctpi_tag = asoc->c.my_vtag;
5174 	info->sctpi_state = asoc->state;
5175 	info->sctpi_rwnd = asoc->a_rwnd;
5176 	info->sctpi_unackdata = asoc->unack_data;
5177 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5178 	info->sctpi_instrms = asoc->stream.incnt;
5179 	info->sctpi_outstrms = asoc->stream.outcnt;
5180 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5181 		info->sctpi_inqueue++;
5182 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5183 		info->sctpi_outqueue++;
5184 	info->sctpi_overall_error = asoc->overall_error_count;
5185 	info->sctpi_max_burst = asoc->max_burst;
5186 	info->sctpi_maxseg = asoc->frag_point;
5187 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5188 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5189 
5190 	mask = asoc->peer.ecn_capable << 1;
5191 	mask = (mask | asoc->peer.ipv4_address) << 1;
5192 	mask = (mask | asoc->peer.ipv6_address) << 1;
5193 	mask = (mask | asoc->peer.hostname_address) << 1;
5194 	mask = (mask | asoc->peer.asconf_capable) << 1;
5195 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5196 	mask = (mask | asoc->peer.auth_capable);
5197 	info->sctpi_peer_capable = mask;
5198 	mask = asoc->peer.sack_needed << 1;
5199 	mask = (mask | asoc->peer.sack_generation) << 1;
5200 	mask = (mask | asoc->peer.zero_window_announced);
5201 	info->sctpi_peer_sack = mask;
5202 
5203 	info->sctpi_isacks = asoc->stats.isacks;
5204 	info->sctpi_osacks = asoc->stats.osacks;
5205 	info->sctpi_opackets = asoc->stats.opackets;
5206 	info->sctpi_ipackets = asoc->stats.ipackets;
5207 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5208 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5209 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5210 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5211 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5212 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5213 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5214 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5215 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5216 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5217 
5218 	prim = asoc->peer.primary_path;
5219 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5220 	info->sctpi_p_state = prim->state;
5221 	info->sctpi_p_cwnd = prim->cwnd;
5222 	info->sctpi_p_srtt = prim->srtt;
5223 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5224 	info->sctpi_p_hbinterval = prim->hbinterval;
5225 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5226 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5227 	info->sctpi_p_ssthresh = prim->ssthresh;
5228 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5229 	info->sctpi_p_flight_size = prim->flight_size;
5230 	info->sctpi_p_error = prim->error_count;
5231 
5232 	return 0;
5233 }
5234 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5235 
5236 /* use callback to avoid exporting the core structure */
5237 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5238 {
5239 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5240 
5241 	rhashtable_walk_start(iter);
5242 }
5243 
5244 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5245 {
5246 	rhashtable_walk_stop(iter);
5247 	rhashtable_walk_exit(iter);
5248 }
5249 
5250 struct sctp_transport *sctp_transport_get_next(struct net *net,
5251 					       struct rhashtable_iter *iter)
5252 {
5253 	struct sctp_transport *t;
5254 
5255 	t = rhashtable_walk_next(iter);
5256 	for (; t; t = rhashtable_walk_next(iter)) {
5257 		if (IS_ERR(t)) {
5258 			if (PTR_ERR(t) == -EAGAIN)
5259 				continue;
5260 			break;
5261 		}
5262 
5263 		if (!sctp_transport_hold(t))
5264 			continue;
5265 
5266 		if (net_eq(t->asoc->base.net, net) &&
5267 		    t->asoc->peer.primary_path == t)
5268 			break;
5269 
5270 		sctp_transport_put(t);
5271 	}
5272 
5273 	return t;
5274 }
5275 
5276 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5277 					      struct rhashtable_iter *iter,
5278 					      int pos)
5279 {
5280 	struct sctp_transport *t;
5281 
5282 	if (!pos)
5283 		return SEQ_START_TOKEN;
5284 
5285 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5286 		if (!--pos)
5287 			break;
5288 		sctp_transport_put(t);
5289 	}
5290 
5291 	return t;
5292 }
5293 
5294 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5295 			   void *p) {
5296 	int err = 0;
5297 	int hash = 0;
5298 	struct sctp_ep_common *epb;
5299 	struct sctp_hashbucket *head;
5300 
5301 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5302 	     hash++, head++) {
5303 		read_lock_bh(&head->lock);
5304 		sctp_for_each_hentry(epb, &head->chain) {
5305 			err = cb(sctp_ep(epb), p);
5306 			if (err)
5307 				break;
5308 		}
5309 		read_unlock_bh(&head->lock);
5310 	}
5311 
5312 	return err;
5313 }
5314 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5315 
5316 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5317 				  struct net *net,
5318 				  const union sctp_addr *laddr,
5319 				  const union sctp_addr *paddr, void *p)
5320 {
5321 	struct sctp_transport *transport;
5322 	int err;
5323 
5324 	rcu_read_lock();
5325 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5326 	rcu_read_unlock();
5327 	if (!transport)
5328 		return -ENOENT;
5329 
5330 	err = cb(transport, p);
5331 	sctp_transport_put(transport);
5332 
5333 	return err;
5334 }
5335 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5336 
5337 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5338 			    int (*cb_done)(struct sctp_transport *, void *),
5339 			    struct net *net, int *pos, void *p) {
5340 	struct rhashtable_iter hti;
5341 	struct sctp_transport *tsp;
5342 	int ret;
5343 
5344 again:
5345 	ret = 0;
5346 	sctp_transport_walk_start(&hti);
5347 
5348 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5349 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5350 		ret = cb(tsp, p);
5351 		if (ret)
5352 			break;
5353 		(*pos)++;
5354 		sctp_transport_put(tsp);
5355 	}
5356 	sctp_transport_walk_stop(&hti);
5357 
5358 	if (ret) {
5359 		if (cb_done && !cb_done(tsp, p)) {
5360 			(*pos)++;
5361 			sctp_transport_put(tsp);
5362 			goto again;
5363 		}
5364 		sctp_transport_put(tsp);
5365 	}
5366 
5367 	return ret;
5368 }
5369 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5370 
5371 /* 7.2.1 Association Status (SCTP_STATUS)
5372 
5373  * Applications can retrieve current status information about an
5374  * association, including association state, peer receiver window size,
5375  * number of unacked data chunks, and number of data chunks pending
5376  * receipt.  This information is read-only.
5377  */
5378 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5379 				       char __user *optval,
5380 				       int __user *optlen)
5381 {
5382 	struct sctp_status status;
5383 	struct sctp_association *asoc = NULL;
5384 	struct sctp_transport *transport;
5385 	sctp_assoc_t associd;
5386 	int retval = 0;
5387 
5388 	if (len < sizeof(status)) {
5389 		retval = -EINVAL;
5390 		goto out;
5391 	}
5392 
5393 	len = sizeof(status);
5394 	if (copy_from_user(&status, optval, len)) {
5395 		retval = -EFAULT;
5396 		goto out;
5397 	}
5398 
5399 	associd = status.sstat_assoc_id;
5400 	asoc = sctp_id2assoc(sk, associd);
5401 	if (!asoc) {
5402 		retval = -EINVAL;
5403 		goto out;
5404 	}
5405 
5406 	transport = asoc->peer.primary_path;
5407 
5408 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5409 	status.sstat_state = sctp_assoc_to_state(asoc);
5410 	status.sstat_rwnd =  asoc->peer.rwnd;
5411 	status.sstat_unackdata = asoc->unack_data;
5412 
5413 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5414 	status.sstat_instrms = asoc->stream.incnt;
5415 	status.sstat_outstrms = asoc->stream.outcnt;
5416 	status.sstat_fragmentation_point = asoc->frag_point;
5417 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5418 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5419 			transport->af_specific->sockaddr_len);
5420 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5421 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5422 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5423 	status.sstat_primary.spinfo_state = transport->state;
5424 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5425 	status.sstat_primary.spinfo_srtt = transport->srtt;
5426 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5427 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5428 
5429 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5430 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5431 
5432 	if (put_user(len, optlen)) {
5433 		retval = -EFAULT;
5434 		goto out;
5435 	}
5436 
5437 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5438 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5439 		 status.sstat_assoc_id);
5440 
5441 	if (copy_to_user(optval, &status, len)) {
5442 		retval = -EFAULT;
5443 		goto out;
5444 	}
5445 
5446 out:
5447 	return retval;
5448 }
5449 
5450 
5451 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5452  *
5453  * Applications can retrieve information about a specific peer address
5454  * of an association, including its reachability state, congestion
5455  * window, and retransmission timer values.  This information is
5456  * read-only.
5457  */
5458 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5459 					  char __user *optval,
5460 					  int __user *optlen)
5461 {
5462 	struct sctp_paddrinfo pinfo;
5463 	struct sctp_transport *transport;
5464 	int retval = 0;
5465 
5466 	if (len < sizeof(pinfo)) {
5467 		retval = -EINVAL;
5468 		goto out;
5469 	}
5470 
5471 	len = sizeof(pinfo);
5472 	if (copy_from_user(&pinfo, optval, len)) {
5473 		retval = -EFAULT;
5474 		goto out;
5475 	}
5476 
5477 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5478 					   pinfo.spinfo_assoc_id);
5479 	if (!transport) {
5480 		retval = -EINVAL;
5481 		goto out;
5482 	}
5483 
5484 	if (transport->state == SCTP_PF &&
5485 	    transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5486 		retval = -EACCES;
5487 		goto out;
5488 	}
5489 
5490 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5491 	pinfo.spinfo_state = transport->state;
5492 	pinfo.spinfo_cwnd = transport->cwnd;
5493 	pinfo.spinfo_srtt = transport->srtt;
5494 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5495 	pinfo.spinfo_mtu = transport->pathmtu;
5496 
5497 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5498 		pinfo.spinfo_state = SCTP_ACTIVE;
5499 
5500 	if (put_user(len, optlen)) {
5501 		retval = -EFAULT;
5502 		goto out;
5503 	}
5504 
5505 	if (copy_to_user(optval, &pinfo, len)) {
5506 		retval = -EFAULT;
5507 		goto out;
5508 	}
5509 
5510 out:
5511 	return retval;
5512 }
5513 
5514 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5515  *
5516  * This option is a on/off flag.  If enabled no SCTP message
5517  * fragmentation will be performed.  Instead if a message being sent
5518  * exceeds the current PMTU size, the message will NOT be sent and
5519  * instead a error will be indicated to the user.
5520  */
5521 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5522 					char __user *optval, int __user *optlen)
5523 {
5524 	int val;
5525 
5526 	if (len < sizeof(int))
5527 		return -EINVAL;
5528 
5529 	len = sizeof(int);
5530 	val = (sctp_sk(sk)->disable_fragments == 1);
5531 	if (put_user(len, optlen))
5532 		return -EFAULT;
5533 	if (copy_to_user(optval, &val, len))
5534 		return -EFAULT;
5535 	return 0;
5536 }
5537 
5538 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5539  *
5540  * This socket option is used to specify various notifications and
5541  * ancillary data the user wishes to receive.
5542  */
5543 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5544 				  int __user *optlen)
5545 {
5546 	struct sctp_event_subscribe subscribe;
5547 	__u8 *sn_type = (__u8 *)&subscribe;
5548 	int i;
5549 
5550 	if (len == 0)
5551 		return -EINVAL;
5552 	if (len > sizeof(struct sctp_event_subscribe))
5553 		len = sizeof(struct sctp_event_subscribe);
5554 	if (put_user(len, optlen))
5555 		return -EFAULT;
5556 
5557 	for (i = 0; i < len; i++)
5558 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5559 							SCTP_SN_TYPE_BASE + i);
5560 
5561 	if (copy_to_user(optval, &subscribe, len))
5562 		return -EFAULT;
5563 
5564 	return 0;
5565 }
5566 
5567 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5568  *
5569  * This socket option is applicable to the UDP-style socket only.  When
5570  * set it will cause associations that are idle for more than the
5571  * specified number of seconds to automatically close.  An association
5572  * being idle is defined an association that has NOT sent or received
5573  * user data.  The special value of '0' indicates that no automatic
5574  * close of any associations should be performed.  The option expects an
5575  * integer defining the number of seconds of idle time before an
5576  * association is closed.
5577  */
5578 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5579 {
5580 	/* Applicable to UDP-style socket only */
5581 	if (sctp_style(sk, TCP))
5582 		return -EOPNOTSUPP;
5583 	if (len < sizeof(int))
5584 		return -EINVAL;
5585 	len = sizeof(int);
5586 	if (put_user(len, optlen))
5587 		return -EFAULT;
5588 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5589 		return -EFAULT;
5590 	return 0;
5591 }
5592 
5593 /* Helper routine to branch off an association to a new socket.  */
5594 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5595 {
5596 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5597 	struct sctp_sock *sp = sctp_sk(sk);
5598 	struct socket *sock;
5599 	int err = 0;
5600 
5601 	/* Do not peel off from one netns to another one. */
5602 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5603 		return -EINVAL;
5604 
5605 	if (!asoc)
5606 		return -EINVAL;
5607 
5608 	/* An association cannot be branched off from an already peeled-off
5609 	 * socket, nor is this supported for tcp style sockets.
5610 	 */
5611 	if (!sctp_style(sk, UDP))
5612 		return -EINVAL;
5613 
5614 	/* Create a new socket.  */
5615 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5616 	if (err < 0)
5617 		return err;
5618 
5619 	sctp_copy_sock(sock->sk, sk, asoc);
5620 
5621 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5622 	 * Set the daddr and initialize id to something more random and also
5623 	 * copy over any ip options.
5624 	 */
5625 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5626 	sp->pf->copy_ip_options(sk, sock->sk);
5627 
5628 	/* Populate the fields of the newsk from the oldsk and migrate the
5629 	 * asoc to the newsk.
5630 	 */
5631 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5632 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5633 	if (err) {
5634 		sock_release(sock);
5635 		sock = NULL;
5636 	}
5637 
5638 	*sockp = sock;
5639 
5640 	return err;
5641 }
5642 EXPORT_SYMBOL(sctp_do_peeloff);
5643 
5644 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5645 					  struct file **newfile, unsigned flags)
5646 {
5647 	struct socket *newsock;
5648 	int retval;
5649 
5650 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5651 	if (retval < 0)
5652 		goto out;
5653 
5654 	/* Map the socket to an unused fd that can be returned to the user.  */
5655 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5656 	if (retval < 0) {
5657 		sock_release(newsock);
5658 		goto out;
5659 	}
5660 
5661 	*newfile = sock_alloc_file(newsock, 0, NULL);
5662 	if (IS_ERR(*newfile)) {
5663 		put_unused_fd(retval);
5664 		retval = PTR_ERR(*newfile);
5665 		*newfile = NULL;
5666 		return retval;
5667 	}
5668 
5669 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5670 		 retval);
5671 
5672 	peeloff->sd = retval;
5673 
5674 	if (flags & SOCK_NONBLOCK)
5675 		(*newfile)->f_flags |= O_NONBLOCK;
5676 out:
5677 	return retval;
5678 }
5679 
5680 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5681 {
5682 	sctp_peeloff_arg_t peeloff;
5683 	struct file *newfile = NULL;
5684 	int retval = 0;
5685 
5686 	if (len < sizeof(sctp_peeloff_arg_t))
5687 		return -EINVAL;
5688 	len = sizeof(sctp_peeloff_arg_t);
5689 	if (copy_from_user(&peeloff, optval, len))
5690 		return -EFAULT;
5691 
5692 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5693 	if (retval < 0)
5694 		goto out;
5695 
5696 	/* Return the fd mapped to the new socket.  */
5697 	if (put_user(len, optlen)) {
5698 		fput(newfile);
5699 		put_unused_fd(retval);
5700 		return -EFAULT;
5701 	}
5702 
5703 	if (copy_to_user(optval, &peeloff, len)) {
5704 		fput(newfile);
5705 		put_unused_fd(retval);
5706 		return -EFAULT;
5707 	}
5708 	fd_install(retval, newfile);
5709 out:
5710 	return retval;
5711 }
5712 
5713 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5714 					 char __user *optval, int __user *optlen)
5715 {
5716 	sctp_peeloff_flags_arg_t peeloff;
5717 	struct file *newfile = NULL;
5718 	int retval = 0;
5719 
5720 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5721 		return -EINVAL;
5722 	len = sizeof(sctp_peeloff_flags_arg_t);
5723 	if (copy_from_user(&peeloff, optval, len))
5724 		return -EFAULT;
5725 
5726 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5727 						&newfile, peeloff.flags);
5728 	if (retval < 0)
5729 		goto out;
5730 
5731 	/* Return the fd mapped to the new socket.  */
5732 	if (put_user(len, optlen)) {
5733 		fput(newfile);
5734 		put_unused_fd(retval);
5735 		return -EFAULT;
5736 	}
5737 
5738 	if (copy_to_user(optval, &peeloff, len)) {
5739 		fput(newfile);
5740 		put_unused_fd(retval);
5741 		return -EFAULT;
5742 	}
5743 	fd_install(retval, newfile);
5744 out:
5745 	return retval;
5746 }
5747 
5748 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5749  *
5750  * Applications can enable or disable heartbeats for any peer address of
5751  * an association, modify an address's heartbeat interval, force a
5752  * heartbeat to be sent immediately, and adjust the address's maximum
5753  * number of retransmissions sent before an address is considered
5754  * unreachable.  The following structure is used to access and modify an
5755  * address's parameters:
5756  *
5757  *  struct sctp_paddrparams {
5758  *     sctp_assoc_t            spp_assoc_id;
5759  *     struct sockaddr_storage spp_address;
5760  *     uint32_t                spp_hbinterval;
5761  *     uint16_t                spp_pathmaxrxt;
5762  *     uint32_t                spp_pathmtu;
5763  *     uint32_t                spp_sackdelay;
5764  *     uint32_t                spp_flags;
5765  * };
5766  *
5767  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5768  *                     application, and identifies the association for
5769  *                     this query.
5770  *   spp_address     - This specifies which address is of interest.
5771  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5772  *                     in milliseconds.  If a  value of zero
5773  *                     is present in this field then no changes are to
5774  *                     be made to this parameter.
5775  *   spp_pathmaxrxt  - This contains the maximum number of
5776  *                     retransmissions before this address shall be
5777  *                     considered unreachable. If a  value of zero
5778  *                     is present in this field then no changes are to
5779  *                     be made to this parameter.
5780  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5781  *                     specified here will be the "fixed" path mtu.
5782  *                     Note that if the spp_address field is empty
5783  *                     then all associations on this address will
5784  *                     have this fixed path mtu set upon them.
5785  *
5786  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5787  *                     the number of milliseconds that sacks will be delayed
5788  *                     for. This value will apply to all addresses of an
5789  *                     association if the spp_address field is empty. Note
5790  *                     also, that if delayed sack is enabled and this
5791  *                     value is set to 0, no change is made to the last
5792  *                     recorded delayed sack timer value.
5793  *
5794  *   spp_flags       - These flags are used to control various features
5795  *                     on an association. The flag field may contain
5796  *                     zero or more of the following options.
5797  *
5798  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5799  *                     specified address. Note that if the address
5800  *                     field is empty all addresses for the association
5801  *                     have heartbeats enabled upon them.
5802  *
5803  *                     SPP_HB_DISABLE - Disable heartbeats on the
5804  *                     speicifed address. Note that if the address
5805  *                     field is empty all addresses for the association
5806  *                     will have their heartbeats disabled. Note also
5807  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5808  *                     mutually exclusive, only one of these two should
5809  *                     be specified. Enabling both fields will have
5810  *                     undetermined results.
5811  *
5812  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5813  *                     to be made immediately.
5814  *
5815  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5816  *                     discovery upon the specified address. Note that
5817  *                     if the address feild is empty then all addresses
5818  *                     on the association are effected.
5819  *
5820  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5821  *                     discovery upon the specified address. Note that
5822  *                     if the address feild is empty then all addresses
5823  *                     on the association are effected. Not also that
5824  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5825  *                     exclusive. Enabling both will have undetermined
5826  *                     results.
5827  *
5828  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5829  *                     on delayed sack. The time specified in spp_sackdelay
5830  *                     is used to specify the sack delay for this address. Note
5831  *                     that if spp_address is empty then all addresses will
5832  *                     enable delayed sack and take on the sack delay
5833  *                     value specified in spp_sackdelay.
5834  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5835  *                     off delayed sack. If the spp_address field is blank then
5836  *                     delayed sack is disabled for the entire association. Note
5837  *                     also that this field is mutually exclusive to
5838  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5839  *                     results.
5840  *
5841  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5842  *                     setting of the IPV6 flow label value.  The value is
5843  *                     contained in the spp_ipv6_flowlabel field.
5844  *                     Upon retrieval, this flag will be set to indicate that
5845  *                     the spp_ipv6_flowlabel field has a valid value returned.
5846  *                     If a specific destination address is set (in the
5847  *                     spp_address field), then the value returned is that of
5848  *                     the address.  If just an association is specified (and
5849  *                     no address), then the association's default flow label
5850  *                     is returned.  If neither an association nor a destination
5851  *                     is specified, then the socket's default flow label is
5852  *                     returned.  For non-IPv6 sockets, this flag will be left
5853  *                     cleared.
5854  *
5855  *                     SPP_DSCP:  Setting this flag enables the setting of the
5856  *                     Differentiated Services Code Point (DSCP) value
5857  *                     associated with either the association or a specific
5858  *                     address.  The value is obtained in the spp_dscp field.
5859  *                     Upon retrieval, this flag will be set to indicate that
5860  *                     the spp_dscp field has a valid value returned.  If a
5861  *                     specific destination address is set when called (in the
5862  *                     spp_address field), then that specific destination
5863  *                     address's DSCP value is returned.  If just an association
5864  *                     is specified, then the association's default DSCP is
5865  *                     returned.  If neither an association nor a destination is
5866  *                     specified, then the socket's default DSCP is returned.
5867  *
5868  *   spp_ipv6_flowlabel
5869  *                   - This field is used in conjunction with the
5870  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5871  *                     The 20 least significant bits are used for the flow
5872  *                     label.  This setting has precedence over any IPv6-layer
5873  *                     setting.
5874  *
5875  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5876  *                     and contains the DSCP.  The 6 most significant bits are
5877  *                     used for the DSCP.  This setting has precedence over any
5878  *                     IPv4- or IPv6- layer setting.
5879  */
5880 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5881 					    char __user *optval, int __user *optlen)
5882 {
5883 	struct sctp_paddrparams  params;
5884 	struct sctp_transport   *trans = NULL;
5885 	struct sctp_association *asoc = NULL;
5886 	struct sctp_sock        *sp = sctp_sk(sk);
5887 
5888 	if (len >= sizeof(params))
5889 		len = sizeof(params);
5890 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5891 				       spp_ipv6_flowlabel), 4))
5892 		len = ALIGN(offsetof(struct sctp_paddrparams,
5893 				     spp_ipv6_flowlabel), 4);
5894 	else
5895 		return -EINVAL;
5896 
5897 	if (copy_from_user(&params, optval, len))
5898 		return -EFAULT;
5899 
5900 	/* If an address other than INADDR_ANY is specified, and
5901 	 * no transport is found, then the request is invalid.
5902 	 */
5903 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5904 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5905 					       params.spp_assoc_id);
5906 		if (!trans) {
5907 			pr_debug("%s: failed no transport\n", __func__);
5908 			return -EINVAL;
5909 		}
5910 	}
5911 
5912 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5913 	 * socket is a one to many style socket, and an association
5914 	 * was not found, then the id was invalid.
5915 	 */
5916 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5917 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5918 	    sctp_style(sk, UDP)) {
5919 		pr_debug("%s: failed no association\n", __func__);
5920 		return -EINVAL;
5921 	}
5922 
5923 	if (trans) {
5924 		/* Fetch transport values. */
5925 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5926 		params.spp_pathmtu    = trans->pathmtu;
5927 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5928 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5929 
5930 		/*draft-11 doesn't say what to return in spp_flags*/
5931 		params.spp_flags      = trans->param_flags;
5932 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5933 			params.spp_ipv6_flowlabel = trans->flowlabel &
5934 						    SCTP_FLOWLABEL_VAL_MASK;
5935 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5936 		}
5937 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5938 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5939 			params.spp_flags |= SPP_DSCP;
5940 		}
5941 	} else if (asoc) {
5942 		/* Fetch association values. */
5943 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5944 		params.spp_pathmtu    = asoc->pathmtu;
5945 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5946 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5947 
5948 		/*draft-11 doesn't say what to return in spp_flags*/
5949 		params.spp_flags      = asoc->param_flags;
5950 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5951 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5952 						    SCTP_FLOWLABEL_VAL_MASK;
5953 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5954 		}
5955 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5956 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5957 			params.spp_flags |= SPP_DSCP;
5958 		}
5959 	} else {
5960 		/* Fetch socket values. */
5961 		params.spp_hbinterval = sp->hbinterval;
5962 		params.spp_pathmtu    = sp->pathmtu;
5963 		params.spp_sackdelay  = sp->sackdelay;
5964 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5965 
5966 		/*draft-11 doesn't say what to return in spp_flags*/
5967 		params.spp_flags      = sp->param_flags;
5968 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5969 			params.spp_ipv6_flowlabel = sp->flowlabel &
5970 						    SCTP_FLOWLABEL_VAL_MASK;
5971 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5972 		}
5973 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5974 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5975 			params.spp_flags |= SPP_DSCP;
5976 		}
5977 	}
5978 
5979 	if (copy_to_user(optval, &params, len))
5980 		return -EFAULT;
5981 
5982 	if (put_user(len, optlen))
5983 		return -EFAULT;
5984 
5985 	return 0;
5986 }
5987 
5988 /*
5989  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5990  *
5991  * This option will effect the way delayed acks are performed.  This
5992  * option allows you to get or set the delayed ack time, in
5993  * milliseconds.  It also allows changing the delayed ack frequency.
5994  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5995  * the assoc_id is 0, then this sets or gets the endpoints default
5996  * values.  If the assoc_id field is non-zero, then the set or get
5997  * effects the specified association for the one to many model (the
5998  * assoc_id field is ignored by the one to one model).  Note that if
5999  * sack_delay or sack_freq are 0 when setting this option, then the
6000  * current values will remain unchanged.
6001  *
6002  * struct sctp_sack_info {
6003  *     sctp_assoc_t            sack_assoc_id;
6004  *     uint32_t                sack_delay;
6005  *     uint32_t                sack_freq;
6006  * };
6007  *
6008  * sack_assoc_id -  This parameter, indicates which association the user
6009  *    is performing an action upon.  Note that if this field's value is
6010  *    zero then the endpoints default value is changed (effecting future
6011  *    associations only).
6012  *
6013  * sack_delay -  This parameter contains the number of milliseconds that
6014  *    the user is requesting the delayed ACK timer be set to.  Note that
6015  *    this value is defined in the standard to be between 200 and 500
6016  *    milliseconds.
6017  *
6018  * sack_freq -  This parameter contains the number of packets that must
6019  *    be received before a sack is sent without waiting for the delay
6020  *    timer to expire.  The default value for this is 2, setting this
6021  *    value to 1 will disable the delayed sack algorithm.
6022  */
6023 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6024 					    char __user *optval,
6025 					    int __user *optlen)
6026 {
6027 	struct sctp_sack_info    params;
6028 	struct sctp_association *asoc = NULL;
6029 	struct sctp_sock        *sp = sctp_sk(sk);
6030 
6031 	if (len >= sizeof(struct sctp_sack_info)) {
6032 		len = sizeof(struct sctp_sack_info);
6033 
6034 		if (copy_from_user(&params, optval, len))
6035 			return -EFAULT;
6036 	} else if (len == sizeof(struct sctp_assoc_value)) {
6037 		pr_warn_ratelimited(DEPRECATED
6038 				    "%s (pid %d) "
6039 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6040 				    "Use struct sctp_sack_info instead\n",
6041 				    current->comm, task_pid_nr(current));
6042 		if (copy_from_user(&params, optval, len))
6043 			return -EFAULT;
6044 	} else
6045 		return -EINVAL;
6046 
6047 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6048 	 * socket is a one to many style socket, and an association
6049 	 * was not found, then the id was invalid.
6050 	 */
6051 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6052 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6053 	    sctp_style(sk, UDP))
6054 		return -EINVAL;
6055 
6056 	if (asoc) {
6057 		/* Fetch association values. */
6058 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6059 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6060 			params.sack_freq = asoc->sackfreq;
6061 
6062 		} else {
6063 			params.sack_delay = 0;
6064 			params.sack_freq = 1;
6065 		}
6066 	} else {
6067 		/* Fetch socket values. */
6068 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6069 			params.sack_delay  = sp->sackdelay;
6070 			params.sack_freq = sp->sackfreq;
6071 		} else {
6072 			params.sack_delay  = 0;
6073 			params.sack_freq = 1;
6074 		}
6075 	}
6076 
6077 	if (copy_to_user(optval, &params, len))
6078 		return -EFAULT;
6079 
6080 	if (put_user(len, optlen))
6081 		return -EFAULT;
6082 
6083 	return 0;
6084 }
6085 
6086 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6087  *
6088  * Applications can specify protocol parameters for the default association
6089  * initialization.  The option name argument to setsockopt() and getsockopt()
6090  * is SCTP_INITMSG.
6091  *
6092  * Setting initialization parameters is effective only on an unconnected
6093  * socket (for UDP-style sockets only future associations are effected
6094  * by the change).  With TCP-style sockets, this option is inherited by
6095  * sockets derived from a listener socket.
6096  */
6097 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6098 {
6099 	if (len < sizeof(struct sctp_initmsg))
6100 		return -EINVAL;
6101 	len = sizeof(struct sctp_initmsg);
6102 	if (put_user(len, optlen))
6103 		return -EFAULT;
6104 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6105 		return -EFAULT;
6106 	return 0;
6107 }
6108 
6109 
6110 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6111 				      char __user *optval, int __user *optlen)
6112 {
6113 	struct sctp_association *asoc;
6114 	int cnt = 0;
6115 	struct sctp_getaddrs getaddrs;
6116 	struct sctp_transport *from;
6117 	void __user *to;
6118 	union sctp_addr temp;
6119 	struct sctp_sock *sp = sctp_sk(sk);
6120 	int addrlen;
6121 	size_t space_left;
6122 	int bytes_copied;
6123 
6124 	if (len < sizeof(struct sctp_getaddrs))
6125 		return -EINVAL;
6126 
6127 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6128 		return -EFAULT;
6129 
6130 	/* For UDP-style sockets, id specifies the association to query.  */
6131 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6132 	if (!asoc)
6133 		return -EINVAL;
6134 
6135 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6136 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6137 
6138 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6139 				transports) {
6140 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6141 		addrlen = sctp_get_pf_specific(sk->sk_family)
6142 			      ->addr_to_user(sp, &temp);
6143 		if (space_left < addrlen)
6144 			return -ENOMEM;
6145 		if (copy_to_user(to, &temp, addrlen))
6146 			return -EFAULT;
6147 		to += addrlen;
6148 		cnt++;
6149 		space_left -= addrlen;
6150 	}
6151 
6152 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6153 		return -EFAULT;
6154 	bytes_copied = ((char __user *)to) - optval;
6155 	if (put_user(bytes_copied, optlen))
6156 		return -EFAULT;
6157 
6158 	return 0;
6159 }
6160 
6161 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6162 			    size_t space_left, int *bytes_copied)
6163 {
6164 	struct sctp_sockaddr_entry *addr;
6165 	union sctp_addr temp;
6166 	int cnt = 0;
6167 	int addrlen;
6168 	struct net *net = sock_net(sk);
6169 
6170 	rcu_read_lock();
6171 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6172 		if (!addr->valid)
6173 			continue;
6174 
6175 		if ((PF_INET == sk->sk_family) &&
6176 		    (AF_INET6 == addr->a.sa.sa_family))
6177 			continue;
6178 		if ((PF_INET6 == sk->sk_family) &&
6179 		    inet_v6_ipv6only(sk) &&
6180 		    (AF_INET == addr->a.sa.sa_family))
6181 			continue;
6182 		memcpy(&temp, &addr->a, sizeof(temp));
6183 		if (!temp.v4.sin_port)
6184 			temp.v4.sin_port = htons(port);
6185 
6186 		addrlen = sctp_get_pf_specific(sk->sk_family)
6187 			      ->addr_to_user(sctp_sk(sk), &temp);
6188 
6189 		if (space_left < addrlen) {
6190 			cnt =  -ENOMEM;
6191 			break;
6192 		}
6193 		memcpy(to, &temp, addrlen);
6194 
6195 		to += addrlen;
6196 		cnt++;
6197 		space_left -= addrlen;
6198 		*bytes_copied += addrlen;
6199 	}
6200 	rcu_read_unlock();
6201 
6202 	return cnt;
6203 }
6204 
6205 
6206 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6207 				       char __user *optval, int __user *optlen)
6208 {
6209 	struct sctp_bind_addr *bp;
6210 	struct sctp_association *asoc;
6211 	int cnt = 0;
6212 	struct sctp_getaddrs getaddrs;
6213 	struct sctp_sockaddr_entry *addr;
6214 	void __user *to;
6215 	union sctp_addr temp;
6216 	struct sctp_sock *sp = sctp_sk(sk);
6217 	int addrlen;
6218 	int err = 0;
6219 	size_t space_left;
6220 	int bytes_copied = 0;
6221 	void *addrs;
6222 	void *buf;
6223 
6224 	if (len < sizeof(struct sctp_getaddrs))
6225 		return -EINVAL;
6226 
6227 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6228 		return -EFAULT;
6229 
6230 	/*
6231 	 *  For UDP-style sockets, id specifies the association to query.
6232 	 *  If the id field is set to the value '0' then the locally bound
6233 	 *  addresses are returned without regard to any particular
6234 	 *  association.
6235 	 */
6236 	if (0 == getaddrs.assoc_id) {
6237 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6238 	} else {
6239 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6240 		if (!asoc)
6241 			return -EINVAL;
6242 		bp = &asoc->base.bind_addr;
6243 	}
6244 
6245 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6246 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6247 
6248 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6249 	if (!addrs)
6250 		return -ENOMEM;
6251 
6252 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6253 	 * addresses from the global local address list.
6254 	 */
6255 	if (sctp_list_single_entry(&bp->address_list)) {
6256 		addr = list_entry(bp->address_list.next,
6257 				  struct sctp_sockaddr_entry, list);
6258 		if (sctp_is_any(sk, &addr->a)) {
6259 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6260 						space_left, &bytes_copied);
6261 			if (cnt < 0) {
6262 				err = cnt;
6263 				goto out;
6264 			}
6265 			goto copy_getaddrs;
6266 		}
6267 	}
6268 
6269 	buf = addrs;
6270 	/* Protection on the bound address list is not needed since
6271 	 * in the socket option context we hold a socket lock and
6272 	 * thus the bound address list can't change.
6273 	 */
6274 	list_for_each_entry(addr, &bp->address_list, list) {
6275 		memcpy(&temp, &addr->a, sizeof(temp));
6276 		addrlen = sctp_get_pf_specific(sk->sk_family)
6277 			      ->addr_to_user(sp, &temp);
6278 		if (space_left < addrlen) {
6279 			err =  -ENOMEM; /*fixme: right error?*/
6280 			goto out;
6281 		}
6282 		memcpy(buf, &temp, addrlen);
6283 		buf += addrlen;
6284 		bytes_copied += addrlen;
6285 		cnt++;
6286 		space_left -= addrlen;
6287 	}
6288 
6289 copy_getaddrs:
6290 	if (copy_to_user(to, addrs, bytes_copied)) {
6291 		err = -EFAULT;
6292 		goto out;
6293 	}
6294 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6295 		err = -EFAULT;
6296 		goto out;
6297 	}
6298 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6299 	 * but we can't change it anymore.
6300 	 */
6301 	if (put_user(bytes_copied, optlen))
6302 		err = -EFAULT;
6303 out:
6304 	kfree(addrs);
6305 	return err;
6306 }
6307 
6308 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6309  *
6310  * Requests that the local SCTP stack use the enclosed peer address as
6311  * the association primary.  The enclosed address must be one of the
6312  * association peer's addresses.
6313  */
6314 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6315 					char __user *optval, int __user *optlen)
6316 {
6317 	struct sctp_prim prim;
6318 	struct sctp_association *asoc;
6319 	struct sctp_sock *sp = sctp_sk(sk);
6320 
6321 	if (len < sizeof(struct sctp_prim))
6322 		return -EINVAL;
6323 
6324 	len = sizeof(struct sctp_prim);
6325 
6326 	if (copy_from_user(&prim, optval, len))
6327 		return -EFAULT;
6328 
6329 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6330 	if (!asoc)
6331 		return -EINVAL;
6332 
6333 	if (!asoc->peer.primary_path)
6334 		return -ENOTCONN;
6335 
6336 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6337 		asoc->peer.primary_path->af_specific->sockaddr_len);
6338 
6339 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6340 			(union sctp_addr *)&prim.ssp_addr);
6341 
6342 	if (put_user(len, optlen))
6343 		return -EFAULT;
6344 	if (copy_to_user(optval, &prim, len))
6345 		return -EFAULT;
6346 
6347 	return 0;
6348 }
6349 
6350 /*
6351  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6352  *
6353  * Requests that the local endpoint set the specified Adaptation Layer
6354  * Indication parameter for all future INIT and INIT-ACK exchanges.
6355  */
6356 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6357 				  char __user *optval, int __user *optlen)
6358 {
6359 	struct sctp_setadaptation adaptation;
6360 
6361 	if (len < sizeof(struct sctp_setadaptation))
6362 		return -EINVAL;
6363 
6364 	len = sizeof(struct sctp_setadaptation);
6365 
6366 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6367 
6368 	if (put_user(len, optlen))
6369 		return -EFAULT;
6370 	if (copy_to_user(optval, &adaptation, len))
6371 		return -EFAULT;
6372 
6373 	return 0;
6374 }
6375 
6376 /*
6377  *
6378  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6379  *
6380  *   Applications that wish to use the sendto() system call may wish to
6381  *   specify a default set of parameters that would normally be supplied
6382  *   through the inclusion of ancillary data.  This socket option allows
6383  *   such an application to set the default sctp_sndrcvinfo structure.
6384 
6385 
6386  *   The application that wishes to use this socket option simply passes
6387  *   in to this call the sctp_sndrcvinfo structure defined in Section
6388  *   5.2.2) The input parameters accepted by this call include
6389  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6390  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6391  *   to this call if the caller is using the UDP model.
6392  *
6393  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6394  */
6395 static int sctp_getsockopt_default_send_param(struct sock *sk,
6396 					int len, char __user *optval,
6397 					int __user *optlen)
6398 {
6399 	struct sctp_sock *sp = sctp_sk(sk);
6400 	struct sctp_association *asoc;
6401 	struct sctp_sndrcvinfo info;
6402 
6403 	if (len < sizeof(info))
6404 		return -EINVAL;
6405 
6406 	len = sizeof(info);
6407 
6408 	if (copy_from_user(&info, optval, len))
6409 		return -EFAULT;
6410 
6411 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6412 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6413 	    sctp_style(sk, UDP))
6414 		return -EINVAL;
6415 
6416 	if (asoc) {
6417 		info.sinfo_stream = asoc->default_stream;
6418 		info.sinfo_flags = asoc->default_flags;
6419 		info.sinfo_ppid = asoc->default_ppid;
6420 		info.sinfo_context = asoc->default_context;
6421 		info.sinfo_timetolive = asoc->default_timetolive;
6422 	} else {
6423 		info.sinfo_stream = sp->default_stream;
6424 		info.sinfo_flags = sp->default_flags;
6425 		info.sinfo_ppid = sp->default_ppid;
6426 		info.sinfo_context = sp->default_context;
6427 		info.sinfo_timetolive = sp->default_timetolive;
6428 	}
6429 
6430 	if (put_user(len, optlen))
6431 		return -EFAULT;
6432 	if (copy_to_user(optval, &info, len))
6433 		return -EFAULT;
6434 
6435 	return 0;
6436 }
6437 
6438 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6439  * (SCTP_DEFAULT_SNDINFO)
6440  */
6441 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6442 					   char __user *optval,
6443 					   int __user *optlen)
6444 {
6445 	struct sctp_sock *sp = sctp_sk(sk);
6446 	struct sctp_association *asoc;
6447 	struct sctp_sndinfo info;
6448 
6449 	if (len < sizeof(info))
6450 		return -EINVAL;
6451 
6452 	len = sizeof(info);
6453 
6454 	if (copy_from_user(&info, optval, len))
6455 		return -EFAULT;
6456 
6457 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6458 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6459 	    sctp_style(sk, UDP))
6460 		return -EINVAL;
6461 
6462 	if (asoc) {
6463 		info.snd_sid = asoc->default_stream;
6464 		info.snd_flags = asoc->default_flags;
6465 		info.snd_ppid = asoc->default_ppid;
6466 		info.snd_context = asoc->default_context;
6467 	} else {
6468 		info.snd_sid = sp->default_stream;
6469 		info.snd_flags = sp->default_flags;
6470 		info.snd_ppid = sp->default_ppid;
6471 		info.snd_context = sp->default_context;
6472 	}
6473 
6474 	if (put_user(len, optlen))
6475 		return -EFAULT;
6476 	if (copy_to_user(optval, &info, len))
6477 		return -EFAULT;
6478 
6479 	return 0;
6480 }
6481 
6482 /*
6483  *
6484  * 7.1.5 SCTP_NODELAY
6485  *
6486  * Turn on/off any Nagle-like algorithm.  This means that packets are
6487  * generally sent as soon as possible and no unnecessary delays are
6488  * introduced, at the cost of more packets in the network.  Expects an
6489  * integer boolean flag.
6490  */
6491 
6492 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6493 				   char __user *optval, int __user *optlen)
6494 {
6495 	int val;
6496 
6497 	if (len < sizeof(int))
6498 		return -EINVAL;
6499 
6500 	len = sizeof(int);
6501 	val = (sctp_sk(sk)->nodelay == 1);
6502 	if (put_user(len, optlen))
6503 		return -EFAULT;
6504 	if (copy_to_user(optval, &val, len))
6505 		return -EFAULT;
6506 	return 0;
6507 }
6508 
6509 /*
6510  *
6511  * 7.1.1 SCTP_RTOINFO
6512  *
6513  * The protocol parameters used to initialize and bound retransmission
6514  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6515  * and modify these parameters.
6516  * All parameters are time values, in milliseconds.  A value of 0, when
6517  * modifying the parameters, indicates that the current value should not
6518  * be changed.
6519  *
6520  */
6521 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6522 				char __user *optval,
6523 				int __user *optlen) {
6524 	struct sctp_rtoinfo rtoinfo;
6525 	struct sctp_association *asoc;
6526 
6527 	if (len < sizeof (struct sctp_rtoinfo))
6528 		return -EINVAL;
6529 
6530 	len = sizeof(struct sctp_rtoinfo);
6531 
6532 	if (copy_from_user(&rtoinfo, optval, len))
6533 		return -EFAULT;
6534 
6535 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6536 
6537 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6538 	    sctp_style(sk, UDP))
6539 		return -EINVAL;
6540 
6541 	/* Values corresponding to the specific association. */
6542 	if (asoc) {
6543 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6544 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6545 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6546 	} else {
6547 		/* Values corresponding to the endpoint. */
6548 		struct sctp_sock *sp = sctp_sk(sk);
6549 
6550 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6551 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6552 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6553 	}
6554 
6555 	if (put_user(len, optlen))
6556 		return -EFAULT;
6557 
6558 	if (copy_to_user(optval, &rtoinfo, len))
6559 		return -EFAULT;
6560 
6561 	return 0;
6562 }
6563 
6564 /*
6565  *
6566  * 7.1.2 SCTP_ASSOCINFO
6567  *
6568  * This option is used to tune the maximum retransmission attempts
6569  * of the association.
6570  * Returns an error if the new association retransmission value is
6571  * greater than the sum of the retransmission value  of the peer.
6572  * See [SCTP] for more information.
6573  *
6574  */
6575 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6576 				     char __user *optval,
6577 				     int __user *optlen)
6578 {
6579 
6580 	struct sctp_assocparams assocparams;
6581 	struct sctp_association *asoc;
6582 	struct list_head *pos;
6583 	int cnt = 0;
6584 
6585 	if (len < sizeof (struct sctp_assocparams))
6586 		return -EINVAL;
6587 
6588 	len = sizeof(struct sctp_assocparams);
6589 
6590 	if (copy_from_user(&assocparams, optval, len))
6591 		return -EFAULT;
6592 
6593 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6594 
6595 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6596 	    sctp_style(sk, UDP))
6597 		return -EINVAL;
6598 
6599 	/* Values correspoinding to the specific association */
6600 	if (asoc) {
6601 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6602 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6603 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6604 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6605 
6606 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6607 			cnt++;
6608 		}
6609 
6610 		assocparams.sasoc_number_peer_destinations = cnt;
6611 	} else {
6612 		/* Values corresponding to the endpoint */
6613 		struct sctp_sock *sp = sctp_sk(sk);
6614 
6615 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6616 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6617 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6618 		assocparams.sasoc_cookie_life =
6619 					sp->assocparams.sasoc_cookie_life;
6620 		assocparams.sasoc_number_peer_destinations =
6621 					sp->assocparams.
6622 					sasoc_number_peer_destinations;
6623 	}
6624 
6625 	if (put_user(len, optlen))
6626 		return -EFAULT;
6627 
6628 	if (copy_to_user(optval, &assocparams, len))
6629 		return -EFAULT;
6630 
6631 	return 0;
6632 }
6633 
6634 /*
6635  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6636  *
6637  * This socket option is a boolean flag which turns on or off mapped V4
6638  * addresses.  If this option is turned on and the socket is type
6639  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6640  * If this option is turned off, then no mapping will be done of V4
6641  * addresses and a user will receive both PF_INET6 and PF_INET type
6642  * addresses on the socket.
6643  */
6644 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6645 				    char __user *optval, int __user *optlen)
6646 {
6647 	int val;
6648 	struct sctp_sock *sp = sctp_sk(sk);
6649 
6650 	if (len < sizeof(int))
6651 		return -EINVAL;
6652 
6653 	len = sizeof(int);
6654 	val = sp->v4mapped;
6655 	if (put_user(len, optlen))
6656 		return -EFAULT;
6657 	if (copy_to_user(optval, &val, len))
6658 		return -EFAULT;
6659 
6660 	return 0;
6661 }
6662 
6663 /*
6664  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6665  * (chapter and verse is quoted at sctp_setsockopt_context())
6666  */
6667 static int sctp_getsockopt_context(struct sock *sk, int len,
6668 				   char __user *optval, int __user *optlen)
6669 {
6670 	struct sctp_assoc_value params;
6671 	struct sctp_association *asoc;
6672 
6673 	if (len < sizeof(struct sctp_assoc_value))
6674 		return -EINVAL;
6675 
6676 	len = sizeof(struct sctp_assoc_value);
6677 
6678 	if (copy_from_user(&params, optval, len))
6679 		return -EFAULT;
6680 
6681 	asoc = sctp_id2assoc(sk, params.assoc_id);
6682 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6683 	    sctp_style(sk, UDP))
6684 		return -EINVAL;
6685 
6686 	params.assoc_value = asoc ? asoc->default_rcv_context
6687 				  : sctp_sk(sk)->default_rcv_context;
6688 
6689 	if (put_user(len, optlen))
6690 		return -EFAULT;
6691 	if (copy_to_user(optval, &params, len))
6692 		return -EFAULT;
6693 
6694 	return 0;
6695 }
6696 
6697 /*
6698  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6699  * This option will get or set the maximum size to put in any outgoing
6700  * SCTP DATA chunk.  If a message is larger than this size it will be
6701  * fragmented by SCTP into the specified size.  Note that the underlying
6702  * SCTP implementation may fragment into smaller sized chunks when the
6703  * PMTU of the underlying association is smaller than the value set by
6704  * the user.  The default value for this option is '0' which indicates
6705  * the user is NOT limiting fragmentation and only the PMTU will effect
6706  * SCTP's choice of DATA chunk size.  Note also that values set larger
6707  * than the maximum size of an IP datagram will effectively let SCTP
6708  * control fragmentation (i.e. the same as setting this option to 0).
6709  *
6710  * The following structure is used to access and modify this parameter:
6711  *
6712  * struct sctp_assoc_value {
6713  *   sctp_assoc_t assoc_id;
6714  *   uint32_t assoc_value;
6715  * };
6716  *
6717  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6718  *    For one-to-many style sockets this parameter indicates which
6719  *    association the user is performing an action upon.  Note that if
6720  *    this field's value is zero then the endpoints default value is
6721  *    changed (effecting future associations only).
6722  * assoc_value:  This parameter specifies the maximum size in bytes.
6723  */
6724 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6725 				  char __user *optval, int __user *optlen)
6726 {
6727 	struct sctp_assoc_value params;
6728 	struct sctp_association *asoc;
6729 
6730 	if (len == sizeof(int)) {
6731 		pr_warn_ratelimited(DEPRECATED
6732 				    "%s (pid %d) "
6733 				    "Use of int in maxseg socket option.\n"
6734 				    "Use struct sctp_assoc_value instead\n",
6735 				    current->comm, task_pid_nr(current));
6736 		params.assoc_id = SCTP_FUTURE_ASSOC;
6737 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6738 		len = sizeof(struct sctp_assoc_value);
6739 		if (copy_from_user(&params, optval, len))
6740 			return -EFAULT;
6741 	} else
6742 		return -EINVAL;
6743 
6744 	asoc = sctp_id2assoc(sk, params.assoc_id);
6745 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6746 	    sctp_style(sk, UDP))
6747 		return -EINVAL;
6748 
6749 	if (asoc)
6750 		params.assoc_value = asoc->frag_point;
6751 	else
6752 		params.assoc_value = sctp_sk(sk)->user_frag;
6753 
6754 	if (put_user(len, optlen))
6755 		return -EFAULT;
6756 	if (len == sizeof(int)) {
6757 		if (copy_to_user(optval, &params.assoc_value, len))
6758 			return -EFAULT;
6759 	} else {
6760 		if (copy_to_user(optval, &params, len))
6761 			return -EFAULT;
6762 	}
6763 
6764 	return 0;
6765 }
6766 
6767 /*
6768  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6769  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6770  */
6771 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6772 					       char __user *optval, int __user *optlen)
6773 {
6774 	int val;
6775 
6776 	if (len < sizeof(int))
6777 		return -EINVAL;
6778 
6779 	len = sizeof(int);
6780 
6781 	val = sctp_sk(sk)->frag_interleave;
6782 	if (put_user(len, optlen))
6783 		return -EFAULT;
6784 	if (copy_to_user(optval, &val, len))
6785 		return -EFAULT;
6786 
6787 	return 0;
6788 }
6789 
6790 /*
6791  * 7.1.25.  Set or Get the sctp partial delivery point
6792  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6793  */
6794 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6795 						  char __user *optval,
6796 						  int __user *optlen)
6797 {
6798 	u32 val;
6799 
6800 	if (len < sizeof(u32))
6801 		return -EINVAL;
6802 
6803 	len = sizeof(u32);
6804 
6805 	val = sctp_sk(sk)->pd_point;
6806 	if (put_user(len, optlen))
6807 		return -EFAULT;
6808 	if (copy_to_user(optval, &val, len))
6809 		return -EFAULT;
6810 
6811 	return 0;
6812 }
6813 
6814 /*
6815  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6816  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6817  */
6818 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6819 				    char __user *optval,
6820 				    int __user *optlen)
6821 {
6822 	struct sctp_assoc_value params;
6823 	struct sctp_association *asoc;
6824 
6825 	if (len == sizeof(int)) {
6826 		pr_warn_ratelimited(DEPRECATED
6827 				    "%s (pid %d) "
6828 				    "Use of int in max_burst socket option.\n"
6829 				    "Use struct sctp_assoc_value instead\n",
6830 				    current->comm, task_pid_nr(current));
6831 		params.assoc_id = SCTP_FUTURE_ASSOC;
6832 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6833 		len = sizeof(struct sctp_assoc_value);
6834 		if (copy_from_user(&params, optval, len))
6835 			return -EFAULT;
6836 	} else
6837 		return -EINVAL;
6838 
6839 	asoc = sctp_id2assoc(sk, params.assoc_id);
6840 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6841 	    sctp_style(sk, UDP))
6842 		return -EINVAL;
6843 
6844 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6845 
6846 	if (len == sizeof(int)) {
6847 		if (copy_to_user(optval, &params.assoc_value, len))
6848 			return -EFAULT;
6849 	} else {
6850 		if (copy_to_user(optval, &params, len))
6851 			return -EFAULT;
6852 	}
6853 
6854 	return 0;
6855 
6856 }
6857 
6858 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6859 				    char __user *optval, int __user *optlen)
6860 {
6861 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6862 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6863 	struct sctp_hmac_algo_param *hmacs;
6864 	__u16 data_len = 0;
6865 	u32 num_idents;
6866 	int i;
6867 
6868 	if (!ep->auth_enable)
6869 		return -EACCES;
6870 
6871 	hmacs = ep->auth_hmacs_list;
6872 	data_len = ntohs(hmacs->param_hdr.length) -
6873 		   sizeof(struct sctp_paramhdr);
6874 
6875 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6876 		return -EINVAL;
6877 
6878 	len = sizeof(struct sctp_hmacalgo) + data_len;
6879 	num_idents = data_len / sizeof(u16);
6880 
6881 	if (put_user(len, optlen))
6882 		return -EFAULT;
6883 	if (put_user(num_idents, &p->shmac_num_idents))
6884 		return -EFAULT;
6885 	for (i = 0; i < num_idents; i++) {
6886 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6887 
6888 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6889 			return -EFAULT;
6890 	}
6891 	return 0;
6892 }
6893 
6894 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6895 				    char __user *optval, int __user *optlen)
6896 {
6897 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6898 	struct sctp_authkeyid val;
6899 	struct sctp_association *asoc;
6900 
6901 	if (len < sizeof(struct sctp_authkeyid))
6902 		return -EINVAL;
6903 
6904 	len = sizeof(struct sctp_authkeyid);
6905 	if (copy_from_user(&val, optval, len))
6906 		return -EFAULT;
6907 
6908 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6909 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6910 		return -EINVAL;
6911 
6912 	if (asoc) {
6913 		if (!asoc->peer.auth_capable)
6914 			return -EACCES;
6915 		val.scact_keynumber = asoc->active_key_id;
6916 	} else {
6917 		if (!ep->auth_enable)
6918 			return -EACCES;
6919 		val.scact_keynumber = ep->active_key_id;
6920 	}
6921 
6922 	if (put_user(len, optlen))
6923 		return -EFAULT;
6924 	if (copy_to_user(optval, &val, len))
6925 		return -EFAULT;
6926 
6927 	return 0;
6928 }
6929 
6930 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6931 				    char __user *optval, int __user *optlen)
6932 {
6933 	struct sctp_authchunks __user *p = (void __user *)optval;
6934 	struct sctp_authchunks val;
6935 	struct sctp_association *asoc;
6936 	struct sctp_chunks_param *ch;
6937 	u32    num_chunks = 0;
6938 	char __user *to;
6939 
6940 	if (len < sizeof(struct sctp_authchunks))
6941 		return -EINVAL;
6942 
6943 	if (copy_from_user(&val, optval, sizeof(val)))
6944 		return -EFAULT;
6945 
6946 	to = p->gauth_chunks;
6947 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6948 	if (!asoc)
6949 		return -EINVAL;
6950 
6951 	if (!asoc->peer.auth_capable)
6952 		return -EACCES;
6953 
6954 	ch = asoc->peer.peer_chunks;
6955 	if (!ch)
6956 		goto num;
6957 
6958 	/* See if the user provided enough room for all the data */
6959 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6960 	if (len < num_chunks)
6961 		return -EINVAL;
6962 
6963 	if (copy_to_user(to, ch->chunks, num_chunks))
6964 		return -EFAULT;
6965 num:
6966 	len = sizeof(struct sctp_authchunks) + num_chunks;
6967 	if (put_user(len, optlen))
6968 		return -EFAULT;
6969 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6970 		return -EFAULT;
6971 	return 0;
6972 }
6973 
6974 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6975 				    char __user *optval, int __user *optlen)
6976 {
6977 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6978 	struct sctp_authchunks __user *p = (void __user *)optval;
6979 	struct sctp_authchunks val;
6980 	struct sctp_association *asoc;
6981 	struct sctp_chunks_param *ch;
6982 	u32    num_chunks = 0;
6983 	char __user *to;
6984 
6985 	if (len < sizeof(struct sctp_authchunks))
6986 		return -EINVAL;
6987 
6988 	if (copy_from_user(&val, optval, sizeof(val)))
6989 		return -EFAULT;
6990 
6991 	to = p->gauth_chunks;
6992 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6993 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6994 	    sctp_style(sk, UDP))
6995 		return -EINVAL;
6996 
6997 	if (asoc) {
6998 		if (!asoc->peer.auth_capable)
6999 			return -EACCES;
7000 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7001 	} else {
7002 		if (!ep->auth_enable)
7003 			return -EACCES;
7004 		ch = ep->auth_chunk_list;
7005 	}
7006 	if (!ch)
7007 		goto num;
7008 
7009 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7010 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7011 		return -EINVAL;
7012 
7013 	if (copy_to_user(to, ch->chunks, num_chunks))
7014 		return -EFAULT;
7015 num:
7016 	len = sizeof(struct sctp_authchunks) + num_chunks;
7017 	if (put_user(len, optlen))
7018 		return -EFAULT;
7019 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7020 		return -EFAULT;
7021 
7022 	return 0;
7023 }
7024 
7025 /*
7026  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7027  * This option gets the current number of associations that are attached
7028  * to a one-to-many style socket.  The option value is an uint32_t.
7029  */
7030 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7031 				    char __user *optval, int __user *optlen)
7032 {
7033 	struct sctp_sock *sp = sctp_sk(sk);
7034 	struct sctp_association *asoc;
7035 	u32 val = 0;
7036 
7037 	if (sctp_style(sk, TCP))
7038 		return -EOPNOTSUPP;
7039 
7040 	if (len < sizeof(u32))
7041 		return -EINVAL;
7042 
7043 	len = sizeof(u32);
7044 
7045 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7046 		val++;
7047 	}
7048 
7049 	if (put_user(len, optlen))
7050 		return -EFAULT;
7051 	if (copy_to_user(optval, &val, len))
7052 		return -EFAULT;
7053 
7054 	return 0;
7055 }
7056 
7057 /*
7058  * 8.1.23 SCTP_AUTO_ASCONF
7059  * See the corresponding setsockopt entry as description
7060  */
7061 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7062 				   char __user *optval, int __user *optlen)
7063 {
7064 	int val = 0;
7065 
7066 	if (len < sizeof(int))
7067 		return -EINVAL;
7068 
7069 	len = sizeof(int);
7070 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7071 		val = 1;
7072 	if (put_user(len, optlen))
7073 		return -EFAULT;
7074 	if (copy_to_user(optval, &val, len))
7075 		return -EFAULT;
7076 	return 0;
7077 }
7078 
7079 /*
7080  * 8.2.6. Get the Current Identifiers of Associations
7081  *        (SCTP_GET_ASSOC_ID_LIST)
7082  *
7083  * This option gets the current list of SCTP association identifiers of
7084  * the SCTP associations handled by a one-to-many style socket.
7085  */
7086 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7087 				    char __user *optval, int __user *optlen)
7088 {
7089 	struct sctp_sock *sp = sctp_sk(sk);
7090 	struct sctp_association *asoc;
7091 	struct sctp_assoc_ids *ids;
7092 	u32 num = 0;
7093 
7094 	if (sctp_style(sk, TCP))
7095 		return -EOPNOTSUPP;
7096 
7097 	if (len < sizeof(struct sctp_assoc_ids))
7098 		return -EINVAL;
7099 
7100 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7101 		num++;
7102 	}
7103 
7104 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7105 		return -EINVAL;
7106 
7107 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7108 
7109 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7110 	if (unlikely(!ids))
7111 		return -ENOMEM;
7112 
7113 	ids->gaids_number_of_ids = num;
7114 	num = 0;
7115 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7116 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7117 	}
7118 
7119 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7120 		kfree(ids);
7121 		return -EFAULT;
7122 	}
7123 
7124 	kfree(ids);
7125 	return 0;
7126 }
7127 
7128 /*
7129  * SCTP_PEER_ADDR_THLDS
7130  *
7131  * This option allows us to fetch the partially failed threshold for one or all
7132  * transports in an association.  See Section 6.1 of:
7133  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7134  */
7135 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7136 					    char __user *optval, int len,
7137 					    int __user *optlen, bool v2)
7138 {
7139 	struct sctp_paddrthlds_v2 val;
7140 	struct sctp_transport *trans;
7141 	struct sctp_association *asoc;
7142 	int min;
7143 
7144 	min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7145 	if (len < min)
7146 		return -EINVAL;
7147 	len = min;
7148 	if (copy_from_user(&val, optval, len))
7149 		return -EFAULT;
7150 
7151 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7152 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7153 					       val.spt_assoc_id);
7154 		if (!trans)
7155 			return -ENOENT;
7156 
7157 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7158 		val.spt_pathpfthld = trans->pf_retrans;
7159 		val.spt_pathcpthld = trans->ps_retrans;
7160 
7161 		goto out;
7162 	}
7163 
7164 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7165 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7166 	    sctp_style(sk, UDP))
7167 		return -EINVAL;
7168 
7169 	if (asoc) {
7170 		val.spt_pathpfthld = asoc->pf_retrans;
7171 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7172 		val.spt_pathcpthld = asoc->ps_retrans;
7173 	} else {
7174 		struct sctp_sock *sp = sctp_sk(sk);
7175 
7176 		val.spt_pathpfthld = sp->pf_retrans;
7177 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7178 		val.spt_pathcpthld = sp->ps_retrans;
7179 	}
7180 
7181 out:
7182 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7183 		return -EFAULT;
7184 
7185 	return 0;
7186 }
7187 
7188 /*
7189  * SCTP_GET_ASSOC_STATS
7190  *
7191  * This option retrieves local per endpoint statistics. It is modeled
7192  * after OpenSolaris' implementation
7193  */
7194 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7195 				       char __user *optval,
7196 				       int __user *optlen)
7197 {
7198 	struct sctp_assoc_stats sas;
7199 	struct sctp_association *asoc = NULL;
7200 
7201 	/* User must provide at least the assoc id */
7202 	if (len < sizeof(sctp_assoc_t))
7203 		return -EINVAL;
7204 
7205 	/* Allow the struct to grow and fill in as much as possible */
7206 	len = min_t(size_t, len, sizeof(sas));
7207 
7208 	if (copy_from_user(&sas, optval, len))
7209 		return -EFAULT;
7210 
7211 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7212 	if (!asoc)
7213 		return -EINVAL;
7214 
7215 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7216 	sas.sas_gapcnt = asoc->stats.gapcnt;
7217 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7218 	sas.sas_osacks = asoc->stats.osacks;
7219 	sas.sas_isacks = asoc->stats.isacks;
7220 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7221 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7222 	sas.sas_oodchunks = asoc->stats.oodchunks;
7223 	sas.sas_iodchunks = asoc->stats.iodchunks;
7224 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7225 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7226 	sas.sas_idupchunks = asoc->stats.idupchunks;
7227 	sas.sas_opackets = asoc->stats.opackets;
7228 	sas.sas_ipackets = asoc->stats.ipackets;
7229 
7230 	/* New high max rto observed, will return 0 if not a single
7231 	 * RTO update took place. obs_rto_ipaddr will be bogus
7232 	 * in such a case
7233 	 */
7234 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7235 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7236 		sizeof(struct sockaddr_storage));
7237 
7238 	/* Mark beginning of a new observation period */
7239 	asoc->stats.max_obs_rto = asoc->rto_min;
7240 
7241 	if (put_user(len, optlen))
7242 		return -EFAULT;
7243 
7244 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7245 
7246 	if (copy_to_user(optval, &sas, len))
7247 		return -EFAULT;
7248 
7249 	return 0;
7250 }
7251 
7252 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7253 				       char __user *optval,
7254 				       int __user *optlen)
7255 {
7256 	int val = 0;
7257 
7258 	if (len < sizeof(int))
7259 		return -EINVAL;
7260 
7261 	len = sizeof(int);
7262 	if (sctp_sk(sk)->recvrcvinfo)
7263 		val = 1;
7264 	if (put_user(len, optlen))
7265 		return -EFAULT;
7266 	if (copy_to_user(optval, &val, len))
7267 		return -EFAULT;
7268 
7269 	return 0;
7270 }
7271 
7272 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7273 				       char __user *optval,
7274 				       int __user *optlen)
7275 {
7276 	int val = 0;
7277 
7278 	if (len < sizeof(int))
7279 		return -EINVAL;
7280 
7281 	len = sizeof(int);
7282 	if (sctp_sk(sk)->recvnxtinfo)
7283 		val = 1;
7284 	if (put_user(len, optlen))
7285 		return -EFAULT;
7286 	if (copy_to_user(optval, &val, len))
7287 		return -EFAULT;
7288 
7289 	return 0;
7290 }
7291 
7292 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7293 					char __user *optval,
7294 					int __user *optlen)
7295 {
7296 	struct sctp_assoc_value params;
7297 	struct sctp_association *asoc;
7298 	int retval = -EFAULT;
7299 
7300 	if (len < sizeof(params)) {
7301 		retval = -EINVAL;
7302 		goto out;
7303 	}
7304 
7305 	len = sizeof(params);
7306 	if (copy_from_user(&params, optval, len))
7307 		goto out;
7308 
7309 	asoc = sctp_id2assoc(sk, params.assoc_id);
7310 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7311 	    sctp_style(sk, UDP)) {
7312 		retval = -EINVAL;
7313 		goto out;
7314 	}
7315 
7316 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7317 				  : sctp_sk(sk)->ep->prsctp_enable;
7318 
7319 	if (put_user(len, optlen))
7320 		goto out;
7321 
7322 	if (copy_to_user(optval, &params, len))
7323 		goto out;
7324 
7325 	retval = 0;
7326 
7327 out:
7328 	return retval;
7329 }
7330 
7331 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7332 					  char __user *optval,
7333 					  int __user *optlen)
7334 {
7335 	struct sctp_default_prinfo info;
7336 	struct sctp_association *asoc;
7337 	int retval = -EFAULT;
7338 
7339 	if (len < sizeof(info)) {
7340 		retval = -EINVAL;
7341 		goto out;
7342 	}
7343 
7344 	len = sizeof(info);
7345 	if (copy_from_user(&info, optval, len))
7346 		goto out;
7347 
7348 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7349 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7350 	    sctp_style(sk, UDP)) {
7351 		retval = -EINVAL;
7352 		goto out;
7353 	}
7354 
7355 	if (asoc) {
7356 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7357 		info.pr_value = asoc->default_timetolive;
7358 	} else {
7359 		struct sctp_sock *sp = sctp_sk(sk);
7360 
7361 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7362 		info.pr_value = sp->default_timetolive;
7363 	}
7364 
7365 	if (put_user(len, optlen))
7366 		goto out;
7367 
7368 	if (copy_to_user(optval, &info, len))
7369 		goto out;
7370 
7371 	retval = 0;
7372 
7373 out:
7374 	return retval;
7375 }
7376 
7377 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7378 					  char __user *optval,
7379 					  int __user *optlen)
7380 {
7381 	struct sctp_prstatus params;
7382 	struct sctp_association *asoc;
7383 	int policy;
7384 	int retval = -EINVAL;
7385 
7386 	if (len < sizeof(params))
7387 		goto out;
7388 
7389 	len = sizeof(params);
7390 	if (copy_from_user(&params, optval, len)) {
7391 		retval = -EFAULT;
7392 		goto out;
7393 	}
7394 
7395 	policy = params.sprstat_policy;
7396 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7397 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7398 		goto out;
7399 
7400 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7401 	if (!asoc)
7402 		goto out;
7403 
7404 	if (policy == SCTP_PR_SCTP_ALL) {
7405 		params.sprstat_abandoned_unsent = 0;
7406 		params.sprstat_abandoned_sent = 0;
7407 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7408 			params.sprstat_abandoned_unsent +=
7409 				asoc->abandoned_unsent[policy];
7410 			params.sprstat_abandoned_sent +=
7411 				asoc->abandoned_sent[policy];
7412 		}
7413 	} else {
7414 		params.sprstat_abandoned_unsent =
7415 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7416 		params.sprstat_abandoned_sent =
7417 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7418 	}
7419 
7420 	if (put_user(len, optlen)) {
7421 		retval = -EFAULT;
7422 		goto out;
7423 	}
7424 
7425 	if (copy_to_user(optval, &params, len)) {
7426 		retval = -EFAULT;
7427 		goto out;
7428 	}
7429 
7430 	retval = 0;
7431 
7432 out:
7433 	return retval;
7434 }
7435 
7436 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7437 					   char __user *optval,
7438 					   int __user *optlen)
7439 {
7440 	struct sctp_stream_out_ext *streamoute;
7441 	struct sctp_association *asoc;
7442 	struct sctp_prstatus params;
7443 	int retval = -EINVAL;
7444 	int policy;
7445 
7446 	if (len < sizeof(params))
7447 		goto out;
7448 
7449 	len = sizeof(params);
7450 	if (copy_from_user(&params, optval, len)) {
7451 		retval = -EFAULT;
7452 		goto out;
7453 	}
7454 
7455 	policy = params.sprstat_policy;
7456 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7457 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7458 		goto out;
7459 
7460 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7461 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7462 		goto out;
7463 
7464 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7465 	if (!streamoute) {
7466 		/* Not allocated yet, means all stats are 0 */
7467 		params.sprstat_abandoned_unsent = 0;
7468 		params.sprstat_abandoned_sent = 0;
7469 		retval = 0;
7470 		goto out;
7471 	}
7472 
7473 	if (policy == SCTP_PR_SCTP_ALL) {
7474 		params.sprstat_abandoned_unsent = 0;
7475 		params.sprstat_abandoned_sent = 0;
7476 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7477 			params.sprstat_abandoned_unsent +=
7478 				streamoute->abandoned_unsent[policy];
7479 			params.sprstat_abandoned_sent +=
7480 				streamoute->abandoned_sent[policy];
7481 		}
7482 	} else {
7483 		params.sprstat_abandoned_unsent =
7484 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7485 		params.sprstat_abandoned_sent =
7486 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7487 	}
7488 
7489 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7490 		retval = -EFAULT;
7491 		goto out;
7492 	}
7493 
7494 	retval = 0;
7495 
7496 out:
7497 	return retval;
7498 }
7499 
7500 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7501 					      char __user *optval,
7502 					      int __user *optlen)
7503 {
7504 	struct sctp_assoc_value params;
7505 	struct sctp_association *asoc;
7506 	int retval = -EFAULT;
7507 
7508 	if (len < sizeof(params)) {
7509 		retval = -EINVAL;
7510 		goto out;
7511 	}
7512 
7513 	len = sizeof(params);
7514 	if (copy_from_user(&params, optval, len))
7515 		goto out;
7516 
7517 	asoc = sctp_id2assoc(sk, params.assoc_id);
7518 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7519 	    sctp_style(sk, UDP)) {
7520 		retval = -EINVAL;
7521 		goto out;
7522 	}
7523 
7524 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7525 				  : sctp_sk(sk)->ep->reconf_enable;
7526 
7527 	if (put_user(len, optlen))
7528 		goto out;
7529 
7530 	if (copy_to_user(optval, &params, len))
7531 		goto out;
7532 
7533 	retval = 0;
7534 
7535 out:
7536 	return retval;
7537 }
7538 
7539 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7540 					   char __user *optval,
7541 					   int __user *optlen)
7542 {
7543 	struct sctp_assoc_value params;
7544 	struct sctp_association *asoc;
7545 	int retval = -EFAULT;
7546 
7547 	if (len < sizeof(params)) {
7548 		retval = -EINVAL;
7549 		goto out;
7550 	}
7551 
7552 	len = sizeof(params);
7553 	if (copy_from_user(&params, optval, len))
7554 		goto out;
7555 
7556 	asoc = sctp_id2assoc(sk, params.assoc_id);
7557 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7558 	    sctp_style(sk, UDP)) {
7559 		retval = -EINVAL;
7560 		goto out;
7561 	}
7562 
7563 	params.assoc_value = asoc ? asoc->strreset_enable
7564 				  : sctp_sk(sk)->ep->strreset_enable;
7565 
7566 	if (put_user(len, optlen))
7567 		goto out;
7568 
7569 	if (copy_to_user(optval, &params, len))
7570 		goto out;
7571 
7572 	retval = 0;
7573 
7574 out:
7575 	return retval;
7576 }
7577 
7578 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7579 				     char __user *optval,
7580 				     int __user *optlen)
7581 {
7582 	struct sctp_assoc_value params;
7583 	struct sctp_association *asoc;
7584 	int retval = -EFAULT;
7585 
7586 	if (len < sizeof(params)) {
7587 		retval = -EINVAL;
7588 		goto out;
7589 	}
7590 
7591 	len = sizeof(params);
7592 	if (copy_from_user(&params, optval, len))
7593 		goto out;
7594 
7595 	asoc = sctp_id2assoc(sk, params.assoc_id);
7596 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7597 	    sctp_style(sk, UDP)) {
7598 		retval = -EINVAL;
7599 		goto out;
7600 	}
7601 
7602 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7603 				  : sctp_sk(sk)->default_ss;
7604 
7605 	if (put_user(len, optlen))
7606 		goto out;
7607 
7608 	if (copy_to_user(optval, &params, len))
7609 		goto out;
7610 
7611 	retval = 0;
7612 
7613 out:
7614 	return retval;
7615 }
7616 
7617 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7618 					   char __user *optval,
7619 					   int __user *optlen)
7620 {
7621 	struct sctp_stream_value params;
7622 	struct sctp_association *asoc;
7623 	int retval = -EFAULT;
7624 
7625 	if (len < sizeof(params)) {
7626 		retval = -EINVAL;
7627 		goto out;
7628 	}
7629 
7630 	len = sizeof(params);
7631 	if (copy_from_user(&params, optval, len))
7632 		goto out;
7633 
7634 	asoc = sctp_id2assoc(sk, params.assoc_id);
7635 	if (!asoc) {
7636 		retval = -EINVAL;
7637 		goto out;
7638 	}
7639 
7640 	retval = sctp_sched_get_value(asoc, params.stream_id,
7641 				      &params.stream_value);
7642 	if (retval)
7643 		goto out;
7644 
7645 	if (put_user(len, optlen)) {
7646 		retval = -EFAULT;
7647 		goto out;
7648 	}
7649 
7650 	if (copy_to_user(optval, &params, len)) {
7651 		retval = -EFAULT;
7652 		goto out;
7653 	}
7654 
7655 out:
7656 	return retval;
7657 }
7658 
7659 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7660 						  char __user *optval,
7661 						  int __user *optlen)
7662 {
7663 	struct sctp_assoc_value params;
7664 	struct sctp_association *asoc;
7665 	int retval = -EFAULT;
7666 
7667 	if (len < sizeof(params)) {
7668 		retval = -EINVAL;
7669 		goto out;
7670 	}
7671 
7672 	len = sizeof(params);
7673 	if (copy_from_user(&params, optval, len))
7674 		goto out;
7675 
7676 	asoc = sctp_id2assoc(sk, params.assoc_id);
7677 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7678 	    sctp_style(sk, UDP)) {
7679 		retval = -EINVAL;
7680 		goto out;
7681 	}
7682 
7683 	params.assoc_value = asoc ? asoc->peer.intl_capable
7684 				  : sctp_sk(sk)->ep->intl_enable;
7685 
7686 	if (put_user(len, optlen))
7687 		goto out;
7688 
7689 	if (copy_to_user(optval, &params, len))
7690 		goto out;
7691 
7692 	retval = 0;
7693 
7694 out:
7695 	return retval;
7696 }
7697 
7698 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7699 				      char __user *optval,
7700 				      int __user *optlen)
7701 {
7702 	int val;
7703 
7704 	if (len < sizeof(int))
7705 		return -EINVAL;
7706 
7707 	len = sizeof(int);
7708 	val = sctp_sk(sk)->reuse;
7709 	if (put_user(len, optlen))
7710 		return -EFAULT;
7711 
7712 	if (copy_to_user(optval, &val, len))
7713 		return -EFAULT;
7714 
7715 	return 0;
7716 }
7717 
7718 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7719 				 int __user *optlen)
7720 {
7721 	struct sctp_association *asoc;
7722 	struct sctp_event param;
7723 	__u16 subscribe;
7724 
7725 	if (len < sizeof(param))
7726 		return -EINVAL;
7727 
7728 	len = sizeof(param);
7729 	if (copy_from_user(&param, optval, len))
7730 		return -EFAULT;
7731 
7732 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7733 	    param.se_type > SCTP_SN_TYPE_MAX)
7734 		return -EINVAL;
7735 
7736 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7737 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7738 	    sctp_style(sk, UDP))
7739 		return -EINVAL;
7740 
7741 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7742 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7743 
7744 	if (put_user(len, optlen))
7745 		return -EFAULT;
7746 
7747 	if (copy_to_user(optval, &param, len))
7748 		return -EFAULT;
7749 
7750 	return 0;
7751 }
7752 
7753 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7754 					    char __user *optval,
7755 					    int __user *optlen)
7756 {
7757 	struct sctp_assoc_value params;
7758 	struct sctp_association *asoc;
7759 	int retval = -EFAULT;
7760 
7761 	if (len < sizeof(params)) {
7762 		retval = -EINVAL;
7763 		goto out;
7764 	}
7765 
7766 	len = sizeof(params);
7767 	if (copy_from_user(&params, optval, len))
7768 		goto out;
7769 
7770 	asoc = sctp_id2assoc(sk, params.assoc_id);
7771 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7772 	    sctp_style(sk, UDP)) {
7773 		retval = -EINVAL;
7774 		goto out;
7775 	}
7776 
7777 	params.assoc_value = asoc ? asoc->peer.asconf_capable
7778 				  : sctp_sk(sk)->ep->asconf_enable;
7779 
7780 	if (put_user(len, optlen))
7781 		goto out;
7782 
7783 	if (copy_to_user(optval, &params, len))
7784 		goto out;
7785 
7786 	retval = 0;
7787 
7788 out:
7789 	return retval;
7790 }
7791 
7792 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7793 					  char __user *optval,
7794 					  int __user *optlen)
7795 {
7796 	struct sctp_assoc_value params;
7797 	struct sctp_association *asoc;
7798 	int retval = -EFAULT;
7799 
7800 	if (len < sizeof(params)) {
7801 		retval = -EINVAL;
7802 		goto out;
7803 	}
7804 
7805 	len = sizeof(params);
7806 	if (copy_from_user(&params, optval, len))
7807 		goto out;
7808 
7809 	asoc = sctp_id2assoc(sk, params.assoc_id);
7810 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7811 	    sctp_style(sk, UDP)) {
7812 		retval = -EINVAL;
7813 		goto out;
7814 	}
7815 
7816 	params.assoc_value = asoc ? asoc->peer.auth_capable
7817 				  : sctp_sk(sk)->ep->auth_enable;
7818 
7819 	if (put_user(len, optlen))
7820 		goto out;
7821 
7822 	if (copy_to_user(optval, &params, len))
7823 		goto out;
7824 
7825 	retval = 0;
7826 
7827 out:
7828 	return retval;
7829 }
7830 
7831 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7832 					 char __user *optval,
7833 					 int __user *optlen)
7834 {
7835 	struct sctp_assoc_value params;
7836 	struct sctp_association *asoc;
7837 	int retval = -EFAULT;
7838 
7839 	if (len < sizeof(params)) {
7840 		retval = -EINVAL;
7841 		goto out;
7842 	}
7843 
7844 	len = sizeof(params);
7845 	if (copy_from_user(&params, optval, len))
7846 		goto out;
7847 
7848 	asoc = sctp_id2assoc(sk, params.assoc_id);
7849 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7850 	    sctp_style(sk, UDP)) {
7851 		retval = -EINVAL;
7852 		goto out;
7853 	}
7854 
7855 	params.assoc_value = asoc ? asoc->peer.ecn_capable
7856 				  : sctp_sk(sk)->ep->ecn_enable;
7857 
7858 	if (put_user(len, optlen))
7859 		goto out;
7860 
7861 	if (copy_to_user(optval, &params, len))
7862 		goto out;
7863 
7864 	retval = 0;
7865 
7866 out:
7867 	return retval;
7868 }
7869 
7870 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7871 				     char __user *optval,
7872 				     int __user *optlen)
7873 {
7874 	struct sctp_assoc_value params;
7875 	struct sctp_association *asoc;
7876 	int retval = -EFAULT;
7877 
7878 	if (len < sizeof(params)) {
7879 		retval = -EINVAL;
7880 		goto out;
7881 	}
7882 
7883 	len = sizeof(params);
7884 	if (copy_from_user(&params, optval, len))
7885 		goto out;
7886 
7887 	asoc = sctp_id2assoc(sk, params.assoc_id);
7888 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7889 	    sctp_style(sk, UDP)) {
7890 		retval = -EINVAL;
7891 		goto out;
7892 	}
7893 
7894 	params.assoc_value = asoc ? asoc->pf_expose
7895 				  : sctp_sk(sk)->pf_expose;
7896 
7897 	if (put_user(len, optlen))
7898 		goto out;
7899 
7900 	if (copy_to_user(optval, &params, len))
7901 		goto out;
7902 
7903 	retval = 0;
7904 
7905 out:
7906 	return retval;
7907 }
7908 
7909 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7910 				      char __user *optval, int __user *optlen)
7911 {
7912 	struct sctp_association *asoc;
7913 	struct sctp_udpencaps encap;
7914 	struct sctp_transport *t;
7915 	__be16 encap_port;
7916 
7917 	if (len < sizeof(encap))
7918 		return -EINVAL;
7919 
7920 	len = sizeof(encap);
7921 	if (copy_from_user(&encap, optval, len))
7922 		return -EFAULT;
7923 
7924 	/* If an address other than INADDR_ANY is specified, and
7925 	 * no transport is found, then the request is invalid.
7926 	 */
7927 	if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7928 		t = sctp_addr_id2transport(sk, &encap.sue_address,
7929 					   encap.sue_assoc_id);
7930 		if (!t) {
7931 			pr_debug("%s: failed no transport\n", __func__);
7932 			return -EINVAL;
7933 		}
7934 
7935 		encap_port = t->encap_port;
7936 		goto out;
7937 	}
7938 
7939 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7940 	 * socket is a one to many style socket, and an association
7941 	 * was not found, then the id was invalid.
7942 	 */
7943 	asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7944 	if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7945 	    sctp_style(sk, UDP)) {
7946 		pr_debug("%s: failed no association\n", __func__);
7947 		return -EINVAL;
7948 	}
7949 
7950 	if (asoc) {
7951 		encap_port = asoc->encap_port;
7952 		goto out;
7953 	}
7954 
7955 	encap_port = sctp_sk(sk)->encap_port;
7956 
7957 out:
7958 	encap.sue_port = (__force uint16_t)encap_port;
7959 	if (copy_to_user(optval, &encap, len))
7960 		return -EFAULT;
7961 
7962 	if (put_user(len, optlen))
7963 		return -EFAULT;
7964 
7965 	return 0;
7966 }
7967 
7968 static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7969 					  char __user *optval,
7970 					  int __user *optlen)
7971 {
7972 	struct sctp_probeinterval params;
7973 	struct sctp_association *asoc;
7974 	struct sctp_transport *t;
7975 	__u32 probe_interval;
7976 
7977 	if (len < sizeof(params))
7978 		return -EINVAL;
7979 
7980 	len = sizeof(params);
7981 	if (copy_from_user(&params, optval, len))
7982 		return -EFAULT;
7983 
7984 	/* If an address other than INADDR_ANY is specified, and
7985 	 * no transport is found, then the request is invalid.
7986 	 */
7987 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spi_address)) {
7988 		t = sctp_addr_id2transport(sk, &params.spi_address,
7989 					   params.spi_assoc_id);
7990 		if (!t) {
7991 			pr_debug("%s: failed no transport\n", __func__);
7992 			return -EINVAL;
7993 		}
7994 
7995 		probe_interval = jiffies_to_msecs(t->probe_interval);
7996 		goto out;
7997 	}
7998 
7999 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8000 	 * socket is a one to many style socket, and an association
8001 	 * was not found, then the id was invalid.
8002 	 */
8003 	asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8004 	if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8005 	    sctp_style(sk, UDP)) {
8006 		pr_debug("%s: failed no association\n", __func__);
8007 		return -EINVAL;
8008 	}
8009 
8010 	if (asoc) {
8011 		probe_interval = jiffies_to_msecs(asoc->probe_interval);
8012 		goto out;
8013 	}
8014 
8015 	probe_interval = sctp_sk(sk)->probe_interval;
8016 
8017 out:
8018 	params.spi_interval = probe_interval;
8019 	if (copy_to_user(optval, &params, len))
8020 		return -EFAULT;
8021 
8022 	if (put_user(len, optlen))
8023 		return -EFAULT;
8024 
8025 	return 0;
8026 }
8027 
8028 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8029 			   char __user *optval, int __user *optlen)
8030 {
8031 	int retval = 0;
8032 	int len;
8033 
8034 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8035 
8036 	/* I can hardly begin to describe how wrong this is.  This is
8037 	 * so broken as to be worse than useless.  The API draft
8038 	 * REALLY is NOT helpful here...  I am not convinced that the
8039 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8040 	 * are at all well-founded.
8041 	 */
8042 	if (level != SOL_SCTP) {
8043 		struct sctp_af *af = sctp_sk(sk)->pf->af;
8044 
8045 		retval = af->getsockopt(sk, level, optname, optval, optlen);
8046 		return retval;
8047 	}
8048 
8049 	if (get_user(len, optlen))
8050 		return -EFAULT;
8051 
8052 	if (len < 0)
8053 		return -EINVAL;
8054 
8055 	lock_sock(sk);
8056 
8057 	switch (optname) {
8058 	case SCTP_STATUS:
8059 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8060 		break;
8061 	case SCTP_DISABLE_FRAGMENTS:
8062 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8063 							   optlen);
8064 		break;
8065 	case SCTP_EVENTS:
8066 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
8067 		break;
8068 	case SCTP_AUTOCLOSE:
8069 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8070 		break;
8071 	case SCTP_SOCKOPT_PEELOFF:
8072 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8073 		break;
8074 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
8075 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8076 		break;
8077 	case SCTP_PEER_ADDR_PARAMS:
8078 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8079 							  optlen);
8080 		break;
8081 	case SCTP_DELAYED_SACK:
8082 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8083 							  optlen);
8084 		break;
8085 	case SCTP_INITMSG:
8086 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8087 		break;
8088 	case SCTP_GET_PEER_ADDRS:
8089 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8090 						    optlen);
8091 		break;
8092 	case SCTP_GET_LOCAL_ADDRS:
8093 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
8094 						     optlen);
8095 		break;
8096 	case SCTP_SOCKOPT_CONNECTX3:
8097 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8098 		break;
8099 	case SCTP_DEFAULT_SEND_PARAM:
8100 		retval = sctp_getsockopt_default_send_param(sk, len,
8101 							    optval, optlen);
8102 		break;
8103 	case SCTP_DEFAULT_SNDINFO:
8104 		retval = sctp_getsockopt_default_sndinfo(sk, len,
8105 							 optval, optlen);
8106 		break;
8107 	case SCTP_PRIMARY_ADDR:
8108 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8109 		break;
8110 	case SCTP_NODELAY:
8111 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8112 		break;
8113 	case SCTP_RTOINFO:
8114 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8115 		break;
8116 	case SCTP_ASSOCINFO:
8117 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8118 		break;
8119 	case SCTP_I_WANT_MAPPED_V4_ADDR:
8120 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8121 		break;
8122 	case SCTP_MAXSEG:
8123 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8124 		break;
8125 	case SCTP_GET_PEER_ADDR_INFO:
8126 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8127 							optlen);
8128 		break;
8129 	case SCTP_ADAPTATION_LAYER:
8130 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8131 							optlen);
8132 		break;
8133 	case SCTP_CONTEXT:
8134 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
8135 		break;
8136 	case SCTP_FRAGMENT_INTERLEAVE:
8137 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8138 							     optlen);
8139 		break;
8140 	case SCTP_PARTIAL_DELIVERY_POINT:
8141 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8142 								optlen);
8143 		break;
8144 	case SCTP_MAX_BURST:
8145 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8146 		break;
8147 	case SCTP_AUTH_KEY:
8148 	case SCTP_AUTH_CHUNK:
8149 	case SCTP_AUTH_DELETE_KEY:
8150 	case SCTP_AUTH_DEACTIVATE_KEY:
8151 		retval = -EOPNOTSUPP;
8152 		break;
8153 	case SCTP_HMAC_IDENT:
8154 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8155 		break;
8156 	case SCTP_AUTH_ACTIVE_KEY:
8157 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8158 		break;
8159 	case SCTP_PEER_AUTH_CHUNKS:
8160 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8161 							optlen);
8162 		break;
8163 	case SCTP_LOCAL_AUTH_CHUNKS:
8164 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8165 							optlen);
8166 		break;
8167 	case SCTP_GET_ASSOC_NUMBER:
8168 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8169 		break;
8170 	case SCTP_GET_ASSOC_ID_LIST:
8171 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8172 		break;
8173 	case SCTP_AUTO_ASCONF:
8174 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8175 		break;
8176 	case SCTP_PEER_ADDR_THLDS:
8177 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8178 							  optlen, false);
8179 		break;
8180 	case SCTP_PEER_ADDR_THLDS_V2:
8181 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8182 							  optlen, true);
8183 		break;
8184 	case SCTP_GET_ASSOC_STATS:
8185 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8186 		break;
8187 	case SCTP_RECVRCVINFO:
8188 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8189 		break;
8190 	case SCTP_RECVNXTINFO:
8191 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8192 		break;
8193 	case SCTP_PR_SUPPORTED:
8194 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8195 		break;
8196 	case SCTP_DEFAULT_PRINFO:
8197 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8198 							optlen);
8199 		break;
8200 	case SCTP_PR_ASSOC_STATUS:
8201 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8202 							optlen);
8203 		break;
8204 	case SCTP_PR_STREAM_STATUS:
8205 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8206 							 optlen);
8207 		break;
8208 	case SCTP_RECONFIG_SUPPORTED:
8209 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8210 							    optlen);
8211 		break;
8212 	case SCTP_ENABLE_STREAM_RESET:
8213 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8214 							 optlen);
8215 		break;
8216 	case SCTP_STREAM_SCHEDULER:
8217 		retval = sctp_getsockopt_scheduler(sk, len, optval,
8218 						   optlen);
8219 		break;
8220 	case SCTP_STREAM_SCHEDULER_VALUE:
8221 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8222 							 optlen);
8223 		break;
8224 	case SCTP_INTERLEAVING_SUPPORTED:
8225 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8226 								optlen);
8227 		break;
8228 	case SCTP_REUSE_PORT:
8229 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8230 		break;
8231 	case SCTP_EVENT:
8232 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
8233 		break;
8234 	case SCTP_ASCONF_SUPPORTED:
8235 		retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8236 							  optlen);
8237 		break;
8238 	case SCTP_AUTH_SUPPORTED:
8239 		retval = sctp_getsockopt_auth_supported(sk, len, optval,
8240 							optlen);
8241 		break;
8242 	case SCTP_ECN_SUPPORTED:
8243 		retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8244 		break;
8245 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8246 		retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8247 		break;
8248 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
8249 		retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8250 		break;
8251 	case SCTP_PLPMTUD_PROBE_INTERVAL:
8252 		retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8253 		break;
8254 	default:
8255 		retval = -ENOPROTOOPT;
8256 		break;
8257 	}
8258 
8259 	release_sock(sk);
8260 	return retval;
8261 }
8262 
8263 static int sctp_hash(struct sock *sk)
8264 {
8265 	/* STUB */
8266 	return 0;
8267 }
8268 
8269 static void sctp_unhash(struct sock *sk)
8270 {
8271 	/* STUB */
8272 }
8273 
8274 /* Check if port is acceptable.  Possibly find first available port.
8275  *
8276  * The port hash table (contained in the 'global' SCTP protocol storage
8277  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8278  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8279  * list (the list number is the port number hashed out, so as you
8280  * would expect from a hash function, all the ports in a given list have
8281  * such a number that hashes out to the same list number; you were
8282  * expecting that, right?); so each list has a set of ports, with a
8283  * link to the socket (struct sock) that uses it, the port number and
8284  * a fastreuse flag (FIXME: NPI ipg).
8285  */
8286 static struct sctp_bind_bucket *sctp_bucket_create(
8287 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8288 
8289 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8290 {
8291 	struct sctp_sock *sp = sctp_sk(sk);
8292 	bool reuse = (sk->sk_reuse || sp->reuse);
8293 	struct sctp_bind_hashbucket *head; /* hash list */
8294 	struct net *net = sock_net(sk);
8295 	kuid_t uid = sock_i_uid(sk);
8296 	struct sctp_bind_bucket *pp;
8297 	unsigned short snum;
8298 	int ret;
8299 
8300 	snum = ntohs(addr->v4.sin_port);
8301 
8302 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8303 
8304 	if (snum == 0) {
8305 		/* Search for an available port. */
8306 		int low, high, remaining, index;
8307 		unsigned int rover;
8308 
8309 		inet_get_local_port_range(net, &low, &high);
8310 		remaining = (high - low) + 1;
8311 		rover = prandom_u32() % remaining + low;
8312 
8313 		do {
8314 			rover++;
8315 			if ((rover < low) || (rover > high))
8316 				rover = low;
8317 			if (inet_is_local_reserved_port(net, rover))
8318 				continue;
8319 			index = sctp_phashfn(net, rover);
8320 			head = &sctp_port_hashtable[index];
8321 			spin_lock_bh(&head->lock);
8322 			sctp_for_each_hentry(pp, &head->chain)
8323 				if ((pp->port == rover) &&
8324 				    net_eq(net, pp->net))
8325 					goto next;
8326 			break;
8327 		next:
8328 			spin_unlock_bh(&head->lock);
8329 			cond_resched();
8330 		} while (--remaining > 0);
8331 
8332 		/* Exhausted local port range during search? */
8333 		ret = 1;
8334 		if (remaining <= 0)
8335 			return ret;
8336 
8337 		/* OK, here is the one we will use.  HEAD (the port
8338 		 * hash table list entry) is non-NULL and we hold it's
8339 		 * mutex.
8340 		 */
8341 		snum = rover;
8342 	} else {
8343 		/* We are given an specific port number; we verify
8344 		 * that it is not being used. If it is used, we will
8345 		 * exahust the search in the hash list corresponding
8346 		 * to the port number (snum) - we detect that with the
8347 		 * port iterator, pp being NULL.
8348 		 */
8349 		head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8350 		spin_lock_bh(&head->lock);
8351 		sctp_for_each_hentry(pp, &head->chain) {
8352 			if ((pp->port == snum) && net_eq(pp->net, net))
8353 				goto pp_found;
8354 		}
8355 	}
8356 	pp = NULL;
8357 	goto pp_not_found;
8358 pp_found:
8359 	if (!hlist_empty(&pp->owner)) {
8360 		/* We had a port hash table hit - there is an
8361 		 * available port (pp != NULL) and it is being
8362 		 * used by other socket (pp->owner not empty); that other
8363 		 * socket is going to be sk2.
8364 		 */
8365 		struct sock *sk2;
8366 
8367 		pr_debug("%s: found a possible match\n", __func__);
8368 
8369 		if ((pp->fastreuse && reuse &&
8370 		     sk->sk_state != SCTP_SS_LISTENING) ||
8371 		    (pp->fastreuseport && sk->sk_reuseport &&
8372 		     uid_eq(pp->fastuid, uid)))
8373 			goto success;
8374 
8375 		/* Run through the list of sockets bound to the port
8376 		 * (pp->port) [via the pointers bind_next and
8377 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8378 		 * we get the endpoint they describe and run through
8379 		 * the endpoint's list of IP (v4 or v6) addresses,
8380 		 * comparing each of the addresses with the address of
8381 		 * the socket sk. If we find a match, then that means
8382 		 * that this port/socket (sk) combination are already
8383 		 * in an endpoint.
8384 		 */
8385 		sk_for_each_bound(sk2, &pp->owner) {
8386 			struct sctp_sock *sp2 = sctp_sk(sk2);
8387 			struct sctp_endpoint *ep2 = sp2->ep;
8388 
8389 			if (sk == sk2 ||
8390 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8391 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8392 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8393 			     uid_eq(uid, sock_i_uid(sk2))))
8394 				continue;
8395 
8396 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8397 						    addr, sp2, sp)) {
8398 				ret = 1;
8399 				goto fail_unlock;
8400 			}
8401 		}
8402 
8403 		pr_debug("%s: found a match\n", __func__);
8404 	}
8405 pp_not_found:
8406 	/* If there was a hash table miss, create a new port.  */
8407 	ret = 1;
8408 	if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8409 		goto fail_unlock;
8410 
8411 	/* In either case (hit or miss), make sure fastreuse is 1 only
8412 	 * if sk->sk_reuse is too (that is, if the caller requested
8413 	 * SO_REUSEADDR on this socket -sk-).
8414 	 */
8415 	if (hlist_empty(&pp->owner)) {
8416 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8417 			pp->fastreuse = 1;
8418 		else
8419 			pp->fastreuse = 0;
8420 
8421 		if (sk->sk_reuseport) {
8422 			pp->fastreuseport = 1;
8423 			pp->fastuid = uid;
8424 		} else {
8425 			pp->fastreuseport = 0;
8426 		}
8427 	} else {
8428 		if (pp->fastreuse &&
8429 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8430 			pp->fastreuse = 0;
8431 
8432 		if (pp->fastreuseport &&
8433 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8434 			pp->fastreuseport = 0;
8435 	}
8436 
8437 	/* We are set, so fill up all the data in the hash table
8438 	 * entry, tie the socket list information with the rest of the
8439 	 * sockets FIXME: Blurry, NPI (ipg).
8440 	 */
8441 success:
8442 	if (!sp->bind_hash) {
8443 		inet_sk(sk)->inet_num = snum;
8444 		sk_add_bind_node(sk, &pp->owner);
8445 		sp->bind_hash = pp;
8446 	}
8447 	ret = 0;
8448 
8449 fail_unlock:
8450 	spin_unlock_bh(&head->lock);
8451 	return ret;
8452 }
8453 
8454 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8455  * port is requested.
8456  */
8457 static int sctp_get_port(struct sock *sk, unsigned short snum)
8458 {
8459 	union sctp_addr addr;
8460 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8461 
8462 	/* Set up a dummy address struct from the sk. */
8463 	af->from_sk(&addr, sk);
8464 	addr.v4.sin_port = htons(snum);
8465 
8466 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8467 	return sctp_get_port_local(sk, &addr);
8468 }
8469 
8470 /*
8471  *  Move a socket to LISTENING state.
8472  */
8473 static int sctp_listen_start(struct sock *sk, int backlog)
8474 {
8475 	struct sctp_sock *sp = sctp_sk(sk);
8476 	struct sctp_endpoint *ep = sp->ep;
8477 	struct crypto_shash *tfm = NULL;
8478 	char alg[32];
8479 
8480 	/* Allocate HMAC for generating cookie. */
8481 	if (!sp->hmac && sp->sctp_hmac_alg) {
8482 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8483 		tfm = crypto_alloc_shash(alg, 0, 0);
8484 		if (IS_ERR(tfm)) {
8485 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8486 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8487 			return -ENOSYS;
8488 		}
8489 		sctp_sk(sk)->hmac = tfm;
8490 	}
8491 
8492 	/*
8493 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8494 	 * call that allows new associations to be accepted, the system
8495 	 * picks an ephemeral port and will choose an address set equivalent
8496 	 * to binding with a wildcard address.
8497 	 *
8498 	 * This is not currently spelled out in the SCTP sockets
8499 	 * extensions draft, but follows the practice as seen in TCP
8500 	 * sockets.
8501 	 *
8502 	 */
8503 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8504 	if (!ep->base.bind_addr.port) {
8505 		if (sctp_autobind(sk))
8506 			return -EAGAIN;
8507 	} else {
8508 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8509 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8510 			return -EADDRINUSE;
8511 		}
8512 	}
8513 
8514 	WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8515 	return sctp_hash_endpoint(ep);
8516 }
8517 
8518 /*
8519  * 4.1.3 / 5.1.3 listen()
8520  *
8521  *   By default, new associations are not accepted for UDP style sockets.
8522  *   An application uses listen() to mark a socket as being able to
8523  *   accept new associations.
8524  *
8525  *   On TCP style sockets, applications use listen() to ready the SCTP
8526  *   endpoint for accepting inbound associations.
8527  *
8528  *   On both types of endpoints a backlog of '0' disables listening.
8529  *
8530  *  Move a socket to LISTENING state.
8531  */
8532 int sctp_inet_listen(struct socket *sock, int backlog)
8533 {
8534 	struct sock *sk = sock->sk;
8535 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8536 	int err = -EINVAL;
8537 
8538 	if (unlikely(backlog < 0))
8539 		return err;
8540 
8541 	lock_sock(sk);
8542 
8543 	/* Peeled-off sockets are not allowed to listen().  */
8544 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8545 		goto out;
8546 
8547 	if (sock->state != SS_UNCONNECTED)
8548 		goto out;
8549 
8550 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8551 		goto out;
8552 
8553 	/* If backlog is zero, disable listening. */
8554 	if (!backlog) {
8555 		if (sctp_sstate(sk, CLOSED))
8556 			goto out;
8557 
8558 		err = 0;
8559 		sctp_unhash_endpoint(ep);
8560 		sk->sk_state = SCTP_SS_CLOSED;
8561 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8562 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8563 		goto out;
8564 	}
8565 
8566 	/* If we are already listening, just update the backlog */
8567 	if (sctp_sstate(sk, LISTENING))
8568 		WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8569 	else {
8570 		err = sctp_listen_start(sk, backlog);
8571 		if (err)
8572 			goto out;
8573 	}
8574 
8575 	err = 0;
8576 out:
8577 	release_sock(sk);
8578 	return err;
8579 }
8580 
8581 /*
8582  * This function is done by modeling the current datagram_poll() and the
8583  * tcp_poll().  Note that, based on these implementations, we don't
8584  * lock the socket in this function, even though it seems that,
8585  * ideally, locking or some other mechanisms can be used to ensure
8586  * the integrity of the counters (sndbuf and wmem_alloc) used
8587  * in this place.  We assume that we don't need locks either until proven
8588  * otherwise.
8589  *
8590  * Another thing to note is that we include the Async I/O support
8591  * here, again, by modeling the current TCP/UDP code.  We don't have
8592  * a good way to test with it yet.
8593  */
8594 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8595 {
8596 	struct sock *sk = sock->sk;
8597 	struct sctp_sock *sp = sctp_sk(sk);
8598 	__poll_t mask;
8599 
8600 	poll_wait(file, sk_sleep(sk), wait);
8601 
8602 	sock_rps_record_flow(sk);
8603 
8604 	/* A TCP-style listening socket becomes readable when the accept queue
8605 	 * is not empty.
8606 	 */
8607 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8608 		return (!list_empty(&sp->ep->asocs)) ?
8609 			(EPOLLIN | EPOLLRDNORM) : 0;
8610 
8611 	mask = 0;
8612 
8613 	/* Is there any exceptional events?  */
8614 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8615 		mask |= EPOLLERR |
8616 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8617 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8618 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8619 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8620 		mask |= EPOLLHUP;
8621 
8622 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8623 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8624 		mask |= EPOLLIN | EPOLLRDNORM;
8625 
8626 	/* The association is either gone or not ready.  */
8627 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8628 		return mask;
8629 
8630 	/* Is it writable?  */
8631 	if (sctp_writeable(sk)) {
8632 		mask |= EPOLLOUT | EPOLLWRNORM;
8633 	} else {
8634 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8635 		/*
8636 		 * Since the socket is not locked, the buffer
8637 		 * might be made available after the writeable check and
8638 		 * before the bit is set.  This could cause a lost I/O
8639 		 * signal.  tcp_poll() has a race breaker for this race
8640 		 * condition.  Based on their implementation, we put
8641 		 * in the following code to cover it as well.
8642 		 */
8643 		if (sctp_writeable(sk))
8644 			mask |= EPOLLOUT | EPOLLWRNORM;
8645 	}
8646 	return mask;
8647 }
8648 
8649 /********************************************************************
8650  * 2nd Level Abstractions
8651  ********************************************************************/
8652 
8653 static struct sctp_bind_bucket *sctp_bucket_create(
8654 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8655 {
8656 	struct sctp_bind_bucket *pp;
8657 
8658 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8659 	if (pp) {
8660 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8661 		pp->port = snum;
8662 		pp->fastreuse = 0;
8663 		INIT_HLIST_HEAD(&pp->owner);
8664 		pp->net = net;
8665 		hlist_add_head(&pp->node, &head->chain);
8666 	}
8667 	return pp;
8668 }
8669 
8670 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8671 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8672 {
8673 	if (pp && hlist_empty(&pp->owner)) {
8674 		__hlist_del(&pp->node);
8675 		kmem_cache_free(sctp_bucket_cachep, pp);
8676 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8677 	}
8678 }
8679 
8680 /* Release this socket's reference to a local port.  */
8681 static inline void __sctp_put_port(struct sock *sk)
8682 {
8683 	struct sctp_bind_hashbucket *head =
8684 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8685 						  inet_sk(sk)->inet_num)];
8686 	struct sctp_bind_bucket *pp;
8687 
8688 	spin_lock(&head->lock);
8689 	pp = sctp_sk(sk)->bind_hash;
8690 	__sk_del_bind_node(sk);
8691 	sctp_sk(sk)->bind_hash = NULL;
8692 	inet_sk(sk)->inet_num = 0;
8693 	sctp_bucket_destroy(pp);
8694 	spin_unlock(&head->lock);
8695 }
8696 
8697 void sctp_put_port(struct sock *sk)
8698 {
8699 	local_bh_disable();
8700 	__sctp_put_port(sk);
8701 	local_bh_enable();
8702 }
8703 
8704 /*
8705  * The system picks an ephemeral port and choose an address set equivalent
8706  * to binding with a wildcard address.
8707  * One of those addresses will be the primary address for the association.
8708  * This automatically enables the multihoming capability of SCTP.
8709  */
8710 static int sctp_autobind(struct sock *sk)
8711 {
8712 	union sctp_addr autoaddr;
8713 	struct sctp_af *af;
8714 	__be16 port;
8715 
8716 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8717 	af = sctp_sk(sk)->pf->af;
8718 
8719 	port = htons(inet_sk(sk)->inet_num);
8720 	af->inaddr_any(&autoaddr, port);
8721 
8722 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8723 }
8724 
8725 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8726  *
8727  * From RFC 2292
8728  * 4.2 The cmsghdr Structure *
8729  *
8730  * When ancillary data is sent or received, any number of ancillary data
8731  * objects can be specified by the msg_control and msg_controllen members of
8732  * the msghdr structure, because each object is preceded by
8733  * a cmsghdr structure defining the object's length (the cmsg_len member).
8734  * Historically Berkeley-derived implementations have passed only one object
8735  * at a time, but this API allows multiple objects to be
8736  * passed in a single call to sendmsg() or recvmsg(). The following example
8737  * shows two ancillary data objects in a control buffer.
8738  *
8739  *   |<--------------------------- msg_controllen -------------------------->|
8740  *   |                                                                       |
8741  *
8742  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8743  *
8744  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8745  *   |                                   |                                   |
8746  *
8747  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8748  *
8749  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8750  *   |                                |  |                                |  |
8751  *
8752  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8753  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8754  *
8755  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8756  *
8757  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8758  *    ^
8759  *    |
8760  *
8761  * msg_control
8762  * points here
8763  */
8764 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8765 {
8766 	struct msghdr *my_msg = (struct msghdr *)msg;
8767 	struct cmsghdr *cmsg;
8768 
8769 	for_each_cmsghdr(cmsg, my_msg) {
8770 		if (!CMSG_OK(my_msg, cmsg))
8771 			return -EINVAL;
8772 
8773 		/* Should we parse this header or ignore?  */
8774 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8775 			continue;
8776 
8777 		/* Strictly check lengths following example in SCM code.  */
8778 		switch (cmsg->cmsg_type) {
8779 		case SCTP_INIT:
8780 			/* SCTP Socket API Extension
8781 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8782 			 *
8783 			 * This cmsghdr structure provides information for
8784 			 * initializing new SCTP associations with sendmsg().
8785 			 * The SCTP_INITMSG socket option uses this same data
8786 			 * structure.  This structure is not used for
8787 			 * recvmsg().
8788 			 *
8789 			 * cmsg_level    cmsg_type      cmsg_data[]
8790 			 * ------------  ------------   ----------------------
8791 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8792 			 */
8793 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8794 				return -EINVAL;
8795 
8796 			cmsgs->init = CMSG_DATA(cmsg);
8797 			break;
8798 
8799 		case SCTP_SNDRCV:
8800 			/* SCTP Socket API Extension
8801 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8802 			 *
8803 			 * This cmsghdr structure specifies SCTP options for
8804 			 * sendmsg() and describes SCTP header information
8805 			 * about a received message through recvmsg().
8806 			 *
8807 			 * cmsg_level    cmsg_type      cmsg_data[]
8808 			 * ------------  ------------   ----------------------
8809 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8810 			 */
8811 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8812 				return -EINVAL;
8813 
8814 			cmsgs->srinfo = CMSG_DATA(cmsg);
8815 
8816 			if (cmsgs->srinfo->sinfo_flags &
8817 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8818 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8819 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8820 				return -EINVAL;
8821 			break;
8822 
8823 		case SCTP_SNDINFO:
8824 			/* SCTP Socket API Extension
8825 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8826 			 *
8827 			 * This cmsghdr structure specifies SCTP options for
8828 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8829 			 * SCTP_SNDRCV which has been deprecated.
8830 			 *
8831 			 * cmsg_level    cmsg_type      cmsg_data[]
8832 			 * ------------  ------------   ---------------------
8833 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8834 			 */
8835 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8836 				return -EINVAL;
8837 
8838 			cmsgs->sinfo = CMSG_DATA(cmsg);
8839 
8840 			if (cmsgs->sinfo->snd_flags &
8841 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8842 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8843 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8844 				return -EINVAL;
8845 			break;
8846 		case SCTP_PRINFO:
8847 			/* SCTP Socket API Extension
8848 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8849 			 *
8850 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8851 			 *
8852 			 * cmsg_level    cmsg_type      cmsg_data[]
8853 			 * ------------  ------------   ---------------------
8854 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8855 			 */
8856 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8857 				return -EINVAL;
8858 
8859 			cmsgs->prinfo = CMSG_DATA(cmsg);
8860 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8861 				return -EINVAL;
8862 
8863 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8864 				cmsgs->prinfo->pr_value = 0;
8865 			break;
8866 		case SCTP_AUTHINFO:
8867 			/* SCTP Socket API Extension
8868 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8869 			 *
8870 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8871 			 *
8872 			 * cmsg_level    cmsg_type      cmsg_data[]
8873 			 * ------------  ------------   ---------------------
8874 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8875 			 */
8876 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8877 				return -EINVAL;
8878 
8879 			cmsgs->authinfo = CMSG_DATA(cmsg);
8880 			break;
8881 		case SCTP_DSTADDRV4:
8882 		case SCTP_DSTADDRV6:
8883 			/* SCTP Socket API Extension
8884 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8885 			 *
8886 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8887 			 *
8888 			 * cmsg_level    cmsg_type         cmsg_data[]
8889 			 * ------------  ------------   ---------------------
8890 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8891 			 * ------------  ------------   ---------------------
8892 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8893 			 */
8894 			cmsgs->addrs_msg = my_msg;
8895 			break;
8896 		default:
8897 			return -EINVAL;
8898 		}
8899 	}
8900 
8901 	return 0;
8902 }
8903 
8904 /*
8905  * Wait for a packet..
8906  * Note: This function is the same function as in core/datagram.c
8907  * with a few modifications to make lksctp work.
8908  */
8909 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8910 {
8911 	int error;
8912 	DEFINE_WAIT(wait);
8913 
8914 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8915 
8916 	/* Socket errors? */
8917 	error = sock_error(sk);
8918 	if (error)
8919 		goto out;
8920 
8921 	if (!skb_queue_empty(&sk->sk_receive_queue))
8922 		goto ready;
8923 
8924 	/* Socket shut down?  */
8925 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8926 		goto out;
8927 
8928 	/* Sequenced packets can come disconnected.  If so we report the
8929 	 * problem.
8930 	 */
8931 	error = -ENOTCONN;
8932 
8933 	/* Is there a good reason to think that we may receive some data?  */
8934 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8935 		goto out;
8936 
8937 	/* Handle signals.  */
8938 	if (signal_pending(current))
8939 		goto interrupted;
8940 
8941 	/* Let another process have a go.  Since we are going to sleep
8942 	 * anyway.  Note: This may cause odd behaviors if the message
8943 	 * does not fit in the user's buffer, but this seems to be the
8944 	 * only way to honor MSG_DONTWAIT realistically.
8945 	 */
8946 	release_sock(sk);
8947 	*timeo_p = schedule_timeout(*timeo_p);
8948 	lock_sock(sk);
8949 
8950 ready:
8951 	finish_wait(sk_sleep(sk), &wait);
8952 	return 0;
8953 
8954 interrupted:
8955 	error = sock_intr_errno(*timeo_p);
8956 
8957 out:
8958 	finish_wait(sk_sleep(sk), &wait);
8959 	*err = error;
8960 	return error;
8961 }
8962 
8963 /* Receive a datagram.
8964  * Note: This is pretty much the same routine as in core/datagram.c
8965  * with a few changes to make lksctp work.
8966  */
8967 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8968 				       int noblock, int *err)
8969 {
8970 	int error;
8971 	struct sk_buff *skb;
8972 	long timeo;
8973 
8974 	timeo = sock_rcvtimeo(sk, noblock);
8975 
8976 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8977 		 MAX_SCHEDULE_TIMEOUT);
8978 
8979 	do {
8980 		/* Again only user level code calls this function,
8981 		 * so nothing interrupt level
8982 		 * will suddenly eat the receive_queue.
8983 		 *
8984 		 *  Look at current nfs client by the way...
8985 		 *  However, this function was correct in any case. 8)
8986 		 */
8987 		if (flags & MSG_PEEK) {
8988 			skb = skb_peek(&sk->sk_receive_queue);
8989 			if (skb)
8990 				refcount_inc(&skb->users);
8991 		} else {
8992 			skb = __skb_dequeue(&sk->sk_receive_queue);
8993 		}
8994 
8995 		if (skb)
8996 			return skb;
8997 
8998 		/* Caller is allowed not to check sk->sk_err before calling. */
8999 		error = sock_error(sk);
9000 		if (error)
9001 			goto no_packet;
9002 
9003 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9004 			break;
9005 
9006 		if (sk_can_busy_loop(sk)) {
9007 			sk_busy_loop(sk, noblock);
9008 
9009 			if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9010 				continue;
9011 		}
9012 
9013 		/* User doesn't want to wait.  */
9014 		error = -EAGAIN;
9015 		if (!timeo)
9016 			goto no_packet;
9017 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9018 
9019 	return NULL;
9020 
9021 no_packet:
9022 	*err = error;
9023 	return NULL;
9024 }
9025 
9026 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
9027 static void __sctp_write_space(struct sctp_association *asoc)
9028 {
9029 	struct sock *sk = asoc->base.sk;
9030 
9031 	if (sctp_wspace(asoc) <= 0)
9032 		return;
9033 
9034 	if (waitqueue_active(&asoc->wait))
9035 		wake_up_interruptible(&asoc->wait);
9036 
9037 	if (sctp_writeable(sk)) {
9038 		struct socket_wq *wq;
9039 
9040 		rcu_read_lock();
9041 		wq = rcu_dereference(sk->sk_wq);
9042 		if (wq) {
9043 			if (waitqueue_active(&wq->wait))
9044 				wake_up_interruptible(&wq->wait);
9045 
9046 			/* Note that we try to include the Async I/O support
9047 			 * here by modeling from the current TCP/UDP code.
9048 			 * We have not tested with it yet.
9049 			 */
9050 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9051 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9052 		}
9053 		rcu_read_unlock();
9054 	}
9055 }
9056 
9057 static void sctp_wake_up_waiters(struct sock *sk,
9058 				 struct sctp_association *asoc)
9059 {
9060 	struct sctp_association *tmp = asoc;
9061 
9062 	/* We do accounting for the sndbuf space per association,
9063 	 * so we only need to wake our own association.
9064 	 */
9065 	if (asoc->ep->sndbuf_policy)
9066 		return __sctp_write_space(asoc);
9067 
9068 	/* If association goes down and is just flushing its
9069 	 * outq, then just normally notify others.
9070 	 */
9071 	if (asoc->base.dead)
9072 		return sctp_write_space(sk);
9073 
9074 	/* Accounting for the sndbuf space is per socket, so we
9075 	 * need to wake up others, try to be fair and in case of
9076 	 * other associations, let them have a go first instead
9077 	 * of just doing a sctp_write_space() call.
9078 	 *
9079 	 * Note that we reach sctp_wake_up_waiters() only when
9080 	 * associations free up queued chunks, thus we are under
9081 	 * lock and the list of associations on a socket is
9082 	 * guaranteed not to change.
9083 	 */
9084 	for (tmp = list_next_entry(tmp, asocs); 1;
9085 	     tmp = list_next_entry(tmp, asocs)) {
9086 		/* Manually skip the head element. */
9087 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9088 			continue;
9089 		/* Wake up association. */
9090 		__sctp_write_space(tmp);
9091 		/* We've reached the end. */
9092 		if (tmp == asoc)
9093 			break;
9094 	}
9095 }
9096 
9097 /* Do accounting for the sndbuf space.
9098  * Decrement the used sndbuf space of the corresponding association by the
9099  * data size which was just transmitted(freed).
9100  */
9101 static void sctp_wfree(struct sk_buff *skb)
9102 {
9103 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9104 	struct sctp_association *asoc = chunk->asoc;
9105 	struct sock *sk = asoc->base.sk;
9106 
9107 	sk_mem_uncharge(sk, skb->truesize);
9108 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
9109 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9110 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9111 				      &sk->sk_wmem_alloc));
9112 
9113 	if (chunk->shkey) {
9114 		struct sctp_shared_key *shkey = chunk->shkey;
9115 
9116 		/* refcnt == 2 and !list_empty mean after this release, it's
9117 		 * not being used anywhere, and it's time to notify userland
9118 		 * that this shkey can be freed if it's been deactivated.
9119 		 */
9120 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9121 		    refcount_read(&shkey->refcnt) == 2) {
9122 			struct sctp_ulpevent *ev;
9123 
9124 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9125 							SCTP_AUTH_FREE_KEY,
9126 							GFP_KERNEL);
9127 			if (ev)
9128 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9129 		}
9130 		sctp_auth_shkey_release(chunk->shkey);
9131 	}
9132 
9133 	sock_wfree(skb);
9134 	sctp_wake_up_waiters(sk, asoc);
9135 
9136 	sctp_association_put(asoc);
9137 }
9138 
9139 /* Do accounting for the receive space on the socket.
9140  * Accounting for the association is done in ulpevent.c
9141  * We set this as a destructor for the cloned data skbs so that
9142  * accounting is done at the correct time.
9143  */
9144 void sctp_sock_rfree(struct sk_buff *skb)
9145 {
9146 	struct sock *sk = skb->sk;
9147 	struct sctp_ulpevent *event = sctp_skb2event(skb);
9148 
9149 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9150 
9151 	/*
9152 	 * Mimic the behavior of sock_rfree
9153 	 */
9154 	sk_mem_uncharge(sk, event->rmem_len);
9155 }
9156 
9157 
9158 /* Helper function to wait for space in the sndbuf.  */
9159 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9160 				size_t msg_len)
9161 {
9162 	struct sock *sk = asoc->base.sk;
9163 	long current_timeo = *timeo_p;
9164 	DEFINE_WAIT(wait);
9165 	int err = 0;
9166 
9167 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9168 		 *timeo_p, msg_len);
9169 
9170 	/* Increment the association's refcnt.  */
9171 	sctp_association_hold(asoc);
9172 
9173 	/* Wait on the association specific sndbuf space. */
9174 	for (;;) {
9175 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9176 					  TASK_INTERRUPTIBLE);
9177 		if (asoc->base.dead)
9178 			goto do_dead;
9179 		if (!*timeo_p)
9180 			goto do_nonblock;
9181 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9182 			goto do_error;
9183 		if (signal_pending(current))
9184 			goto do_interrupted;
9185 		if (sk_under_memory_pressure(sk))
9186 			sk_mem_reclaim(sk);
9187 		if ((int)msg_len <= sctp_wspace(asoc) &&
9188 		    sk_wmem_schedule(sk, msg_len))
9189 			break;
9190 
9191 		/* Let another process have a go.  Since we are going
9192 		 * to sleep anyway.
9193 		 */
9194 		release_sock(sk);
9195 		current_timeo = schedule_timeout(current_timeo);
9196 		lock_sock(sk);
9197 		if (sk != asoc->base.sk)
9198 			goto do_error;
9199 
9200 		*timeo_p = current_timeo;
9201 	}
9202 
9203 out:
9204 	finish_wait(&asoc->wait, &wait);
9205 
9206 	/* Release the association's refcnt.  */
9207 	sctp_association_put(asoc);
9208 
9209 	return err;
9210 
9211 do_dead:
9212 	err = -ESRCH;
9213 	goto out;
9214 
9215 do_error:
9216 	err = -EPIPE;
9217 	goto out;
9218 
9219 do_interrupted:
9220 	err = sock_intr_errno(*timeo_p);
9221 	goto out;
9222 
9223 do_nonblock:
9224 	err = -EAGAIN;
9225 	goto out;
9226 }
9227 
9228 void sctp_data_ready(struct sock *sk)
9229 {
9230 	struct socket_wq *wq;
9231 
9232 	rcu_read_lock();
9233 	wq = rcu_dereference(sk->sk_wq);
9234 	if (skwq_has_sleeper(wq))
9235 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9236 						EPOLLRDNORM | EPOLLRDBAND);
9237 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9238 	rcu_read_unlock();
9239 }
9240 
9241 /* If socket sndbuf has changed, wake up all per association waiters.  */
9242 void sctp_write_space(struct sock *sk)
9243 {
9244 	struct sctp_association *asoc;
9245 
9246 	/* Wake up the tasks in each wait queue.  */
9247 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9248 		__sctp_write_space(asoc);
9249 	}
9250 }
9251 
9252 /* Is there any sndbuf space available on the socket?
9253  *
9254  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9255  * associations on the same socket.  For a UDP-style socket with
9256  * multiple associations, it is possible for it to be "unwriteable"
9257  * prematurely.  I assume that this is acceptable because
9258  * a premature "unwriteable" is better than an accidental "writeable" which
9259  * would cause an unwanted block under certain circumstances.  For the 1-1
9260  * UDP-style sockets or TCP-style sockets, this code should work.
9261  *  - Daisy
9262  */
9263 static bool sctp_writeable(struct sock *sk)
9264 {
9265 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9266 }
9267 
9268 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9269  * returns immediately with EINPROGRESS.
9270  */
9271 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9272 {
9273 	struct sock *sk = asoc->base.sk;
9274 	int err = 0;
9275 	long current_timeo = *timeo_p;
9276 	DEFINE_WAIT(wait);
9277 
9278 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9279 
9280 	/* Increment the association's refcnt.  */
9281 	sctp_association_hold(asoc);
9282 
9283 	for (;;) {
9284 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9285 					  TASK_INTERRUPTIBLE);
9286 		if (!*timeo_p)
9287 			goto do_nonblock;
9288 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9289 			break;
9290 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9291 		    asoc->base.dead)
9292 			goto do_error;
9293 		if (signal_pending(current))
9294 			goto do_interrupted;
9295 
9296 		if (sctp_state(asoc, ESTABLISHED))
9297 			break;
9298 
9299 		/* Let another process have a go.  Since we are going
9300 		 * to sleep anyway.
9301 		 */
9302 		release_sock(sk);
9303 		current_timeo = schedule_timeout(current_timeo);
9304 		lock_sock(sk);
9305 
9306 		*timeo_p = current_timeo;
9307 	}
9308 
9309 out:
9310 	finish_wait(&asoc->wait, &wait);
9311 
9312 	/* Release the association's refcnt.  */
9313 	sctp_association_put(asoc);
9314 
9315 	return err;
9316 
9317 do_error:
9318 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9319 		err = -ETIMEDOUT;
9320 	else
9321 		err = -ECONNREFUSED;
9322 	goto out;
9323 
9324 do_interrupted:
9325 	err = sock_intr_errno(*timeo_p);
9326 	goto out;
9327 
9328 do_nonblock:
9329 	err = -EINPROGRESS;
9330 	goto out;
9331 }
9332 
9333 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9334 {
9335 	struct sctp_endpoint *ep;
9336 	int err = 0;
9337 	DEFINE_WAIT(wait);
9338 
9339 	ep = sctp_sk(sk)->ep;
9340 
9341 
9342 	for (;;) {
9343 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9344 					  TASK_INTERRUPTIBLE);
9345 
9346 		if (list_empty(&ep->asocs)) {
9347 			release_sock(sk);
9348 			timeo = schedule_timeout(timeo);
9349 			lock_sock(sk);
9350 		}
9351 
9352 		err = -EINVAL;
9353 		if (!sctp_sstate(sk, LISTENING))
9354 			break;
9355 
9356 		err = 0;
9357 		if (!list_empty(&ep->asocs))
9358 			break;
9359 
9360 		err = sock_intr_errno(timeo);
9361 		if (signal_pending(current))
9362 			break;
9363 
9364 		err = -EAGAIN;
9365 		if (!timeo)
9366 			break;
9367 	}
9368 
9369 	finish_wait(sk_sleep(sk), &wait);
9370 
9371 	return err;
9372 }
9373 
9374 static void sctp_wait_for_close(struct sock *sk, long timeout)
9375 {
9376 	DEFINE_WAIT(wait);
9377 
9378 	do {
9379 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9380 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9381 			break;
9382 		release_sock(sk);
9383 		timeout = schedule_timeout(timeout);
9384 		lock_sock(sk);
9385 	} while (!signal_pending(current) && timeout);
9386 
9387 	finish_wait(sk_sleep(sk), &wait);
9388 }
9389 
9390 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9391 {
9392 	struct sk_buff *frag;
9393 
9394 	if (!skb->data_len)
9395 		goto done;
9396 
9397 	/* Don't forget the fragments. */
9398 	skb_walk_frags(skb, frag)
9399 		sctp_skb_set_owner_r_frag(frag, sk);
9400 
9401 done:
9402 	sctp_skb_set_owner_r(skb, sk);
9403 }
9404 
9405 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9406 		    struct sctp_association *asoc)
9407 {
9408 	struct inet_sock *inet = inet_sk(sk);
9409 	struct inet_sock *newinet;
9410 	struct sctp_sock *sp = sctp_sk(sk);
9411 	struct sctp_endpoint *ep = sp->ep;
9412 
9413 	newsk->sk_type = sk->sk_type;
9414 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9415 	newsk->sk_flags = sk->sk_flags;
9416 	newsk->sk_tsflags = sk->sk_tsflags;
9417 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9418 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9419 	newsk->sk_reuse = sk->sk_reuse;
9420 	sctp_sk(newsk)->reuse = sp->reuse;
9421 
9422 	newsk->sk_shutdown = sk->sk_shutdown;
9423 	newsk->sk_destruct = sctp_destruct_sock;
9424 	newsk->sk_family = sk->sk_family;
9425 	newsk->sk_protocol = IPPROTO_SCTP;
9426 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9427 	newsk->sk_sndbuf = sk->sk_sndbuf;
9428 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9429 	newsk->sk_lingertime = sk->sk_lingertime;
9430 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9431 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9432 	newsk->sk_rxhash = sk->sk_rxhash;
9433 
9434 	newinet = inet_sk(newsk);
9435 
9436 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9437 	 * getsockname() and getpeername()
9438 	 */
9439 	newinet->inet_sport = inet->inet_sport;
9440 	newinet->inet_saddr = inet->inet_saddr;
9441 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9442 	newinet->inet_dport = htons(asoc->peer.port);
9443 	newinet->pmtudisc = inet->pmtudisc;
9444 	newinet->inet_id = prandom_u32();
9445 
9446 	newinet->uc_ttl = inet->uc_ttl;
9447 	newinet->mc_loop = 1;
9448 	newinet->mc_ttl = 1;
9449 	newinet->mc_index = 0;
9450 	newinet->mc_list = NULL;
9451 
9452 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9453 		net_enable_timestamp();
9454 
9455 	/* Set newsk security attributes from original sk and connection
9456 	 * security attribute from ep.
9457 	 */
9458 	security_sctp_sk_clone(ep, sk, newsk);
9459 }
9460 
9461 static inline void sctp_copy_descendant(struct sock *sk_to,
9462 					const struct sock *sk_from)
9463 {
9464 	size_t ancestor_size = sizeof(struct inet_sock);
9465 
9466 	ancestor_size += sk_from->sk_prot->obj_size;
9467 	ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9468 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9469 }
9470 
9471 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9472  * and its messages to the newsk.
9473  */
9474 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9475 			     struct sctp_association *assoc,
9476 			     enum sctp_socket_type type)
9477 {
9478 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9479 	struct sctp_sock *newsp = sctp_sk(newsk);
9480 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9481 	struct sctp_endpoint *newep = newsp->ep;
9482 	struct sk_buff *skb, *tmp;
9483 	struct sctp_ulpevent *event;
9484 	struct sctp_bind_hashbucket *head;
9485 	int err;
9486 
9487 	/* Migrate socket buffer sizes and all the socket level options to the
9488 	 * new socket.
9489 	 */
9490 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9491 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9492 	/* Brute force copy old sctp opt. */
9493 	sctp_copy_descendant(newsk, oldsk);
9494 
9495 	/* Restore the ep value that was overwritten with the above structure
9496 	 * copy.
9497 	 */
9498 	newsp->ep = newep;
9499 	newsp->hmac = NULL;
9500 
9501 	/* Hook this new socket in to the bind_hash list. */
9502 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9503 						 inet_sk(oldsk)->inet_num)];
9504 	spin_lock_bh(&head->lock);
9505 	pp = sctp_sk(oldsk)->bind_hash;
9506 	sk_add_bind_node(newsk, &pp->owner);
9507 	sctp_sk(newsk)->bind_hash = pp;
9508 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9509 	spin_unlock_bh(&head->lock);
9510 
9511 	/* Copy the bind_addr list from the original endpoint to the new
9512 	 * endpoint so that we can handle restarts properly
9513 	 */
9514 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9515 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9516 	if (err)
9517 		return err;
9518 
9519 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9520 	 * that net->sctp.auth_enable has been changed to 0 by users and
9521 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9522 	 */
9523 	if (oldsp->ep->auth_hmacs) {
9524 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9525 		if (err)
9526 			return err;
9527 	}
9528 
9529 	sctp_auto_asconf_init(newsp);
9530 
9531 	/* Move any messages in the old socket's receive queue that are for the
9532 	 * peeled off association to the new socket's receive queue.
9533 	 */
9534 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9535 		event = sctp_skb2event(skb);
9536 		if (event->asoc == assoc) {
9537 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9538 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9539 			sctp_skb_set_owner_r_frag(skb, newsk);
9540 		}
9541 	}
9542 
9543 	/* Clean up any messages pending delivery due to partial
9544 	 * delivery.   Three cases:
9545 	 * 1) No partial deliver;  no work.
9546 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9547 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9548 	 */
9549 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9550 
9551 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9552 		struct sk_buff_head *queue;
9553 
9554 		/* Decide which queue to move pd_lobby skbs to. */
9555 		if (assoc->ulpq.pd_mode) {
9556 			queue = &newsp->pd_lobby;
9557 		} else
9558 			queue = &newsk->sk_receive_queue;
9559 
9560 		/* Walk through the pd_lobby, looking for skbs that
9561 		 * need moved to the new socket.
9562 		 */
9563 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9564 			event = sctp_skb2event(skb);
9565 			if (event->asoc == assoc) {
9566 				__skb_unlink(skb, &oldsp->pd_lobby);
9567 				__skb_queue_tail(queue, skb);
9568 				sctp_skb_set_owner_r_frag(skb, newsk);
9569 			}
9570 		}
9571 
9572 		/* Clear up any skbs waiting for the partial
9573 		 * delivery to finish.
9574 		 */
9575 		if (assoc->ulpq.pd_mode)
9576 			sctp_clear_pd(oldsk, NULL);
9577 
9578 	}
9579 
9580 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9581 
9582 	/* Set the type of socket to indicate that it is peeled off from the
9583 	 * original UDP-style socket or created with the accept() call on a
9584 	 * TCP-style socket..
9585 	 */
9586 	newsp->type = type;
9587 
9588 	/* Mark the new socket "in-use" by the user so that any packets
9589 	 * that may arrive on the association after we've moved it are
9590 	 * queued to the backlog.  This prevents a potential race between
9591 	 * backlog processing on the old socket and new-packet processing
9592 	 * on the new socket.
9593 	 *
9594 	 * The caller has just allocated newsk so we can guarantee that other
9595 	 * paths won't try to lock it and then oldsk.
9596 	 */
9597 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9598 	sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9599 	sctp_assoc_migrate(assoc, newsk);
9600 	sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9601 
9602 	/* If the association on the newsk is already closed before accept()
9603 	 * is called, set RCV_SHUTDOWN flag.
9604 	 */
9605 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9606 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9607 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9608 	} else {
9609 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9610 	}
9611 
9612 	release_sock(newsk);
9613 
9614 	return 0;
9615 }
9616 
9617 
9618 /* This proto struct describes the ULP interface for SCTP.  */
9619 struct proto sctp_prot = {
9620 	.name        =	"SCTP",
9621 	.owner       =	THIS_MODULE,
9622 	.close       =	sctp_close,
9623 	.disconnect  =	sctp_disconnect,
9624 	.accept      =	sctp_accept,
9625 	.ioctl       =	sctp_ioctl,
9626 	.init        =	sctp_init_sock,
9627 	.destroy     =	sctp_destroy_sock,
9628 	.shutdown    =	sctp_shutdown,
9629 	.setsockopt  =	sctp_setsockopt,
9630 	.getsockopt  =	sctp_getsockopt,
9631 	.sendmsg     =	sctp_sendmsg,
9632 	.recvmsg     =	sctp_recvmsg,
9633 	.bind        =	sctp_bind,
9634 	.bind_add    =  sctp_bind_add,
9635 	.backlog_rcv =	sctp_backlog_rcv,
9636 	.hash        =	sctp_hash,
9637 	.unhash      =	sctp_unhash,
9638 	.no_autobind =	true,
9639 	.obj_size    =  sizeof(struct sctp_sock),
9640 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9641 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9642 				offsetof(struct sctp_sock, subscribe) +
9643 				sizeof_field(struct sctp_sock, initmsg),
9644 	.sysctl_mem  =  sysctl_sctp_mem,
9645 	.sysctl_rmem =  sysctl_sctp_rmem,
9646 	.sysctl_wmem =  sysctl_sctp_wmem,
9647 	.memory_pressure = &sctp_memory_pressure,
9648 	.enter_memory_pressure = sctp_enter_memory_pressure,
9649 	.memory_allocated = &sctp_memory_allocated,
9650 	.sockets_allocated = &sctp_sockets_allocated,
9651 };
9652 
9653 #if IS_ENABLED(CONFIG_IPV6)
9654 
9655 #include <net/transp_v6.h>
9656 static void sctp_v6_destroy_sock(struct sock *sk)
9657 {
9658 	sctp_destroy_sock(sk);
9659 	inet6_destroy_sock(sk);
9660 }
9661 
9662 struct proto sctpv6_prot = {
9663 	.name		= "SCTPv6",
9664 	.owner		= THIS_MODULE,
9665 	.close		= sctp_close,
9666 	.disconnect	= sctp_disconnect,
9667 	.accept		= sctp_accept,
9668 	.ioctl		= sctp_ioctl,
9669 	.init		= sctp_init_sock,
9670 	.destroy	= sctp_v6_destroy_sock,
9671 	.shutdown	= sctp_shutdown,
9672 	.setsockopt	= sctp_setsockopt,
9673 	.getsockopt	= sctp_getsockopt,
9674 	.sendmsg	= sctp_sendmsg,
9675 	.recvmsg	= sctp_recvmsg,
9676 	.bind		= sctp_bind,
9677 	.bind_add	= sctp_bind_add,
9678 	.backlog_rcv	= sctp_backlog_rcv,
9679 	.hash		= sctp_hash,
9680 	.unhash		= sctp_unhash,
9681 	.no_autobind	= true,
9682 	.obj_size	= sizeof(struct sctp6_sock),
9683 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9684 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9685 				offsetof(struct sctp6_sock, sctp.subscribe) +
9686 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9687 	.sysctl_mem	= sysctl_sctp_mem,
9688 	.sysctl_rmem	= sysctl_sctp_rmem,
9689 	.sysctl_wmem	= sysctl_sctp_wmem,
9690 	.memory_pressure = &sctp_memory_pressure,
9691 	.enter_memory_pressure = sctp_enter_memory_pressure,
9692 	.memory_allocated = &sctp_memory_allocated,
9693 	.sockets_allocated = &sctp_sockets_allocated,
9694 };
9695 #endif /* IS_ENABLED(CONFIG_IPV6) */
9696