1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 97 struct percpu_counter sctp_sockets_allocated; 98 99 static void sctp_enter_memory_pressure(struct sock *sk) 100 { 101 sctp_memory_pressure = 1; 102 } 103 104 105 /* Get the sndbuf space available at the time on the association. */ 106 static inline int sctp_wspace(struct sctp_association *asoc) 107 { 108 struct sock *sk = asoc->base.sk; 109 110 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 111 : sk_stream_wspace(sk); 112 } 113 114 /* Increment the used sndbuf space count of the corresponding association by 115 * the size of the outgoing data chunk. 116 * Also, set the skb destructor for sndbuf accounting later. 117 * 118 * Since it is always 1-1 between chunk and skb, and also a new skb is always 119 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 120 * destructor in the data chunk skb for the purpose of the sndbuf space 121 * tracking. 122 */ 123 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 124 { 125 struct sctp_association *asoc = chunk->asoc; 126 struct sock *sk = asoc->base.sk; 127 128 /* The sndbuf space is tracked per association. */ 129 sctp_association_hold(asoc); 130 131 if (chunk->shkey) 132 sctp_auth_shkey_hold(chunk->shkey); 133 134 skb_set_owner_w(chunk->skb, sk); 135 136 chunk->skb->destructor = sctp_wfree; 137 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 138 skb_shinfo(chunk->skb)->destructor_arg = chunk; 139 140 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 141 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 143 sk_mem_charge(sk, chunk->skb->truesize); 144 } 145 146 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 147 { 148 skb_orphan(chunk->skb); 149 } 150 151 #define traverse_and_process() \ 152 do { \ 153 msg = chunk->msg; \ 154 if (msg == prev_msg) \ 155 continue; \ 156 list_for_each_entry(c, &msg->chunks, frag_list) { \ 157 if ((clear && asoc->base.sk == c->skb->sk) || \ 158 (!clear && asoc->base.sk != c->skb->sk)) \ 159 cb(c); \ 160 } \ 161 prev_msg = msg; \ 162 } while (0) 163 164 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 165 bool clear, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_datamsg *msg, *prev_msg = NULL; 170 struct sctp_outq *q = &asoc->outqueue; 171 struct sctp_chunk *chunk, *c; 172 struct sctp_transport *t; 173 174 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 175 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 176 traverse_and_process(); 177 178 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 179 traverse_and_process(); 180 181 list_for_each_entry(chunk, &q->sacked, transmitted_list) 182 traverse_and_process(); 183 184 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 185 traverse_and_process(); 186 187 list_for_each_entry(chunk, &q->out_chunk_list, list) 188 traverse_and_process(); 189 } 190 191 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 192 void (*cb)(struct sk_buff *, struct sock *)) 193 194 { 195 struct sk_buff *skb, *tmp; 196 197 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 198 cb(skb, sk); 199 200 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 201 cb(skb, sk); 202 203 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 204 cb(skb, sk); 205 } 206 207 /* Verify that this is a valid address. */ 208 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 209 int len) 210 { 211 struct sctp_af *af; 212 213 /* Verify basic sockaddr. */ 214 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 215 if (!af) 216 return -EINVAL; 217 218 /* Is this a valid SCTP address? */ 219 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 220 return -EINVAL; 221 222 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 223 return -EINVAL; 224 225 return 0; 226 } 227 228 /* Look up the association by its id. If this is not a UDP-style 229 * socket, the ID field is always ignored. 230 */ 231 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 232 { 233 struct sctp_association *asoc = NULL; 234 235 /* If this is not a UDP-style socket, assoc id should be ignored. */ 236 if (!sctp_style(sk, UDP)) { 237 /* Return NULL if the socket state is not ESTABLISHED. It 238 * could be a TCP-style listening socket or a socket which 239 * hasn't yet called connect() to establish an association. 240 */ 241 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 242 return NULL; 243 244 /* Get the first and the only association from the list. */ 245 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 246 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 247 struct sctp_association, asocs); 248 return asoc; 249 } 250 251 /* Otherwise this is a UDP-style socket. */ 252 if (id <= SCTP_ALL_ASSOC) 253 return NULL; 254 255 spin_lock_bh(&sctp_assocs_id_lock); 256 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 257 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 258 asoc = NULL; 259 spin_unlock_bh(&sctp_assocs_id_lock); 260 261 return asoc; 262 } 263 264 /* Look up the transport from an address and an assoc id. If both address and 265 * id are specified, the associations matching the address and the id should be 266 * the same. 267 */ 268 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 269 struct sockaddr_storage *addr, 270 sctp_assoc_t id) 271 { 272 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 273 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 274 union sctp_addr *laddr = (union sctp_addr *)addr; 275 struct sctp_transport *transport; 276 277 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 278 return NULL; 279 280 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 281 laddr, 282 &transport); 283 284 if (!addr_asoc) 285 return NULL; 286 287 id_asoc = sctp_id2assoc(sk, id); 288 if (id_asoc && (id_asoc != addr_asoc)) 289 return NULL; 290 291 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 292 (union sctp_addr *)addr); 293 294 return transport; 295 } 296 297 /* API 3.1.2 bind() - UDP Style Syntax 298 * The syntax of bind() is, 299 * 300 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 301 * 302 * sd - the socket descriptor returned by socket(). 303 * addr - the address structure (struct sockaddr_in or struct 304 * sockaddr_in6 [RFC 2553]), 305 * addr_len - the size of the address structure. 306 */ 307 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 308 { 309 int retval = 0; 310 311 lock_sock(sk); 312 313 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 314 addr, addr_len); 315 316 /* Disallow binding twice. */ 317 if (!sctp_sk(sk)->ep->base.bind_addr.port) 318 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 319 addr_len); 320 else 321 retval = -EINVAL; 322 323 release_sock(sk); 324 325 return retval; 326 } 327 328 static int sctp_get_port_local(struct sock *, union sctp_addr *); 329 330 /* Verify this is a valid sockaddr. */ 331 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 332 union sctp_addr *addr, int len) 333 { 334 struct sctp_af *af; 335 336 /* Check minimum size. */ 337 if (len < sizeof (struct sockaddr)) 338 return NULL; 339 340 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 341 return NULL; 342 343 if (addr->sa.sa_family == AF_INET6) { 344 if (len < SIN6_LEN_RFC2133) 345 return NULL; 346 /* V4 mapped address are really of AF_INET family */ 347 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 348 !opt->pf->af_supported(AF_INET, opt)) 349 return NULL; 350 } 351 352 /* If we get this far, af is valid. */ 353 af = sctp_get_af_specific(addr->sa.sa_family); 354 355 if (len < af->sockaddr_len) 356 return NULL; 357 358 return af; 359 } 360 361 static void sctp_auto_asconf_init(struct sctp_sock *sp) 362 { 363 struct net *net = sock_net(&sp->inet.sk); 364 365 if (net->sctp.default_auto_asconf) { 366 spin_lock(&net->sctp.addr_wq_lock); 367 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 368 spin_unlock(&net->sctp.addr_wq_lock); 369 sp->do_auto_asconf = 1; 370 } 371 } 372 373 /* Bind a local address either to an endpoint or to an association. */ 374 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 375 { 376 struct net *net = sock_net(sk); 377 struct sctp_sock *sp = sctp_sk(sk); 378 struct sctp_endpoint *ep = sp->ep; 379 struct sctp_bind_addr *bp = &ep->base.bind_addr; 380 struct sctp_af *af; 381 unsigned short snum; 382 int ret = 0; 383 384 /* Common sockaddr verification. */ 385 af = sctp_sockaddr_af(sp, addr, len); 386 if (!af) { 387 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 388 __func__, sk, addr, len); 389 return -EINVAL; 390 } 391 392 snum = ntohs(addr->v4.sin_port); 393 394 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 395 __func__, sk, &addr->sa, bp->port, snum, len); 396 397 /* PF specific bind() address verification. */ 398 if (!sp->pf->bind_verify(sp, addr)) 399 return -EADDRNOTAVAIL; 400 401 /* We must either be unbound, or bind to the same port. 402 * It's OK to allow 0 ports if we are already bound. 403 * We'll just inhert an already bound port in this case 404 */ 405 if (bp->port) { 406 if (!snum) 407 snum = bp->port; 408 else if (snum != bp->port) { 409 pr_debug("%s: new port %d doesn't match existing port " 410 "%d\n", __func__, snum, bp->port); 411 return -EINVAL; 412 } 413 } 414 415 if (snum && inet_port_requires_bind_service(net, snum) && 416 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 417 return -EACCES; 418 419 /* See if the address matches any of the addresses we may have 420 * already bound before checking against other endpoints. 421 */ 422 if (sctp_bind_addr_match(bp, addr, sp)) 423 return -EINVAL; 424 425 /* Make sure we are allowed to bind here. 426 * The function sctp_get_port_local() does duplicate address 427 * detection. 428 */ 429 addr->v4.sin_port = htons(snum); 430 if (sctp_get_port_local(sk, addr)) 431 return -EADDRINUSE; 432 433 /* Refresh ephemeral port. */ 434 if (!bp->port) { 435 bp->port = inet_sk(sk)->inet_num; 436 sctp_auto_asconf_init(sp); 437 } 438 439 /* Add the address to the bind address list. 440 * Use GFP_ATOMIC since BHs will be disabled. 441 */ 442 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 443 SCTP_ADDR_SRC, GFP_ATOMIC); 444 445 if (ret) { 446 sctp_put_port(sk); 447 return ret; 448 } 449 /* Copy back into socket for getsockname() use. */ 450 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 451 sp->pf->to_sk_saddr(addr, sk); 452 453 return ret; 454 } 455 456 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 457 * 458 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 459 * at any one time. If a sender, after sending an ASCONF chunk, decides 460 * it needs to transfer another ASCONF Chunk, it MUST wait until the 461 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 462 * subsequent ASCONF. Note this restriction binds each side, so at any 463 * time two ASCONF may be in-transit on any given association (one sent 464 * from each endpoint). 465 */ 466 static int sctp_send_asconf(struct sctp_association *asoc, 467 struct sctp_chunk *chunk) 468 { 469 int retval = 0; 470 471 /* If there is an outstanding ASCONF chunk, queue it for later 472 * transmission. 473 */ 474 if (asoc->addip_last_asconf) { 475 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 476 goto out; 477 } 478 479 /* Hold the chunk until an ASCONF_ACK is received. */ 480 sctp_chunk_hold(chunk); 481 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 482 if (retval) 483 sctp_chunk_free(chunk); 484 else 485 asoc->addip_last_asconf = chunk; 486 487 out: 488 return retval; 489 } 490 491 /* Add a list of addresses as bind addresses to local endpoint or 492 * association. 493 * 494 * Basically run through each address specified in the addrs/addrcnt 495 * array/length pair, determine if it is IPv6 or IPv4 and call 496 * sctp_do_bind() on it. 497 * 498 * If any of them fails, then the operation will be reversed and the 499 * ones that were added will be removed. 500 * 501 * Only sctp_setsockopt_bindx() is supposed to call this function. 502 */ 503 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 504 { 505 int cnt; 506 int retval = 0; 507 void *addr_buf; 508 struct sockaddr *sa_addr; 509 struct sctp_af *af; 510 511 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 512 addrs, addrcnt); 513 514 addr_buf = addrs; 515 for (cnt = 0; cnt < addrcnt; cnt++) { 516 /* The list may contain either IPv4 or IPv6 address; 517 * determine the address length for walking thru the list. 518 */ 519 sa_addr = addr_buf; 520 af = sctp_get_af_specific(sa_addr->sa_family); 521 if (!af) { 522 retval = -EINVAL; 523 goto err_bindx_add; 524 } 525 526 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 527 af->sockaddr_len); 528 529 addr_buf += af->sockaddr_len; 530 531 err_bindx_add: 532 if (retval < 0) { 533 /* Failed. Cleanup the ones that have been added */ 534 if (cnt > 0) 535 sctp_bindx_rem(sk, addrs, cnt); 536 return retval; 537 } 538 } 539 540 return retval; 541 } 542 543 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 544 * associations that are part of the endpoint indicating that a list of local 545 * addresses are added to the endpoint. 546 * 547 * If any of the addresses is already in the bind address list of the 548 * association, we do not send the chunk for that association. But it will not 549 * affect other associations. 550 * 551 * Only sctp_setsockopt_bindx() is supposed to call this function. 552 */ 553 static int sctp_send_asconf_add_ip(struct sock *sk, 554 struct sockaddr *addrs, 555 int addrcnt) 556 { 557 struct sctp_sock *sp; 558 struct sctp_endpoint *ep; 559 struct sctp_association *asoc; 560 struct sctp_bind_addr *bp; 561 struct sctp_chunk *chunk; 562 struct sctp_sockaddr_entry *laddr; 563 union sctp_addr *addr; 564 union sctp_addr saveaddr; 565 void *addr_buf; 566 struct sctp_af *af; 567 struct list_head *p; 568 int i; 569 int retval = 0; 570 571 sp = sctp_sk(sk); 572 ep = sp->ep; 573 574 if (!ep->asconf_enable) 575 return retval; 576 577 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 578 __func__, sk, addrs, addrcnt); 579 580 list_for_each_entry(asoc, &ep->asocs, asocs) { 581 if (!asoc->peer.asconf_capable) 582 continue; 583 584 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 585 continue; 586 587 if (!sctp_state(asoc, ESTABLISHED)) 588 continue; 589 590 /* Check if any address in the packed array of addresses is 591 * in the bind address list of the association. If so, 592 * do not send the asconf chunk to its peer, but continue with 593 * other associations. 594 */ 595 addr_buf = addrs; 596 for (i = 0; i < addrcnt; i++) { 597 addr = addr_buf; 598 af = sctp_get_af_specific(addr->v4.sin_family); 599 if (!af) { 600 retval = -EINVAL; 601 goto out; 602 } 603 604 if (sctp_assoc_lookup_laddr(asoc, addr)) 605 break; 606 607 addr_buf += af->sockaddr_len; 608 } 609 if (i < addrcnt) 610 continue; 611 612 /* Use the first valid address in bind addr list of 613 * association as Address Parameter of ASCONF CHUNK. 614 */ 615 bp = &asoc->base.bind_addr; 616 p = bp->address_list.next; 617 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 618 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 619 addrcnt, SCTP_PARAM_ADD_IP); 620 if (!chunk) { 621 retval = -ENOMEM; 622 goto out; 623 } 624 625 /* Add the new addresses to the bind address list with 626 * use_as_src set to 0. 627 */ 628 addr_buf = addrs; 629 for (i = 0; i < addrcnt; i++) { 630 addr = addr_buf; 631 af = sctp_get_af_specific(addr->v4.sin_family); 632 memcpy(&saveaddr, addr, af->sockaddr_len); 633 retval = sctp_add_bind_addr(bp, &saveaddr, 634 sizeof(saveaddr), 635 SCTP_ADDR_NEW, GFP_ATOMIC); 636 addr_buf += af->sockaddr_len; 637 } 638 if (asoc->src_out_of_asoc_ok) { 639 struct sctp_transport *trans; 640 641 list_for_each_entry(trans, 642 &asoc->peer.transport_addr_list, transports) { 643 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 644 2*asoc->pathmtu, 4380)); 645 trans->ssthresh = asoc->peer.i.a_rwnd; 646 trans->rto = asoc->rto_initial; 647 sctp_max_rto(asoc, trans); 648 trans->rtt = trans->srtt = trans->rttvar = 0; 649 /* Clear the source and route cache */ 650 sctp_transport_route(trans, NULL, 651 sctp_sk(asoc->base.sk)); 652 } 653 } 654 retval = sctp_send_asconf(asoc, chunk); 655 } 656 657 out: 658 return retval; 659 } 660 661 /* Remove a list of addresses from bind addresses list. Do not remove the 662 * last address. 663 * 664 * Basically run through each address specified in the addrs/addrcnt 665 * array/length pair, determine if it is IPv6 or IPv4 and call 666 * sctp_del_bind() on it. 667 * 668 * If any of them fails, then the operation will be reversed and the 669 * ones that were removed will be added back. 670 * 671 * At least one address has to be left; if only one address is 672 * available, the operation will return -EBUSY. 673 * 674 * Only sctp_setsockopt_bindx() is supposed to call this function. 675 */ 676 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 677 { 678 struct sctp_sock *sp = sctp_sk(sk); 679 struct sctp_endpoint *ep = sp->ep; 680 int cnt; 681 struct sctp_bind_addr *bp = &ep->base.bind_addr; 682 int retval = 0; 683 void *addr_buf; 684 union sctp_addr *sa_addr; 685 struct sctp_af *af; 686 687 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 688 __func__, sk, addrs, addrcnt); 689 690 addr_buf = addrs; 691 for (cnt = 0; cnt < addrcnt; cnt++) { 692 /* If the bind address list is empty or if there is only one 693 * bind address, there is nothing more to be removed (we need 694 * at least one address here). 695 */ 696 if (list_empty(&bp->address_list) || 697 (sctp_list_single_entry(&bp->address_list))) { 698 retval = -EBUSY; 699 goto err_bindx_rem; 700 } 701 702 sa_addr = addr_buf; 703 af = sctp_get_af_specific(sa_addr->sa.sa_family); 704 if (!af) { 705 retval = -EINVAL; 706 goto err_bindx_rem; 707 } 708 709 if (!af->addr_valid(sa_addr, sp, NULL)) { 710 retval = -EADDRNOTAVAIL; 711 goto err_bindx_rem; 712 } 713 714 if (sa_addr->v4.sin_port && 715 sa_addr->v4.sin_port != htons(bp->port)) { 716 retval = -EINVAL; 717 goto err_bindx_rem; 718 } 719 720 if (!sa_addr->v4.sin_port) 721 sa_addr->v4.sin_port = htons(bp->port); 722 723 /* FIXME - There is probably a need to check if sk->sk_saddr and 724 * sk->sk_rcv_addr are currently set to one of the addresses to 725 * be removed. This is something which needs to be looked into 726 * when we are fixing the outstanding issues with multi-homing 727 * socket routing and failover schemes. Refer to comments in 728 * sctp_do_bind(). -daisy 729 */ 730 retval = sctp_del_bind_addr(bp, sa_addr); 731 732 addr_buf += af->sockaddr_len; 733 err_bindx_rem: 734 if (retval < 0) { 735 /* Failed. Add the ones that has been removed back */ 736 if (cnt > 0) 737 sctp_bindx_add(sk, addrs, cnt); 738 return retval; 739 } 740 } 741 742 return retval; 743 } 744 745 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 746 * the associations that are part of the endpoint indicating that a list of 747 * local addresses are removed from the endpoint. 748 * 749 * If any of the addresses is already in the bind address list of the 750 * association, we do not send the chunk for that association. But it will not 751 * affect other associations. 752 * 753 * Only sctp_setsockopt_bindx() is supposed to call this function. 754 */ 755 static int sctp_send_asconf_del_ip(struct sock *sk, 756 struct sockaddr *addrs, 757 int addrcnt) 758 { 759 struct sctp_sock *sp; 760 struct sctp_endpoint *ep; 761 struct sctp_association *asoc; 762 struct sctp_transport *transport; 763 struct sctp_bind_addr *bp; 764 struct sctp_chunk *chunk; 765 union sctp_addr *laddr; 766 void *addr_buf; 767 struct sctp_af *af; 768 struct sctp_sockaddr_entry *saddr; 769 int i; 770 int retval = 0; 771 int stored = 0; 772 773 chunk = NULL; 774 sp = sctp_sk(sk); 775 ep = sp->ep; 776 777 if (!ep->asconf_enable) 778 return retval; 779 780 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 781 __func__, sk, addrs, addrcnt); 782 783 list_for_each_entry(asoc, &ep->asocs, asocs) { 784 785 if (!asoc->peer.asconf_capable) 786 continue; 787 788 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 789 continue; 790 791 if (!sctp_state(asoc, ESTABLISHED)) 792 continue; 793 794 /* Check if any address in the packed array of addresses is 795 * not present in the bind address list of the association. 796 * If so, do not send the asconf chunk to its peer, but 797 * continue with other associations. 798 */ 799 addr_buf = addrs; 800 for (i = 0; i < addrcnt; i++) { 801 laddr = addr_buf; 802 af = sctp_get_af_specific(laddr->v4.sin_family); 803 if (!af) { 804 retval = -EINVAL; 805 goto out; 806 } 807 808 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 809 break; 810 811 addr_buf += af->sockaddr_len; 812 } 813 if (i < addrcnt) 814 continue; 815 816 /* Find one address in the association's bind address list 817 * that is not in the packed array of addresses. This is to 818 * make sure that we do not delete all the addresses in the 819 * association. 820 */ 821 bp = &asoc->base.bind_addr; 822 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 823 addrcnt, sp); 824 if ((laddr == NULL) && (addrcnt == 1)) { 825 if (asoc->asconf_addr_del_pending) 826 continue; 827 asoc->asconf_addr_del_pending = 828 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 829 if (asoc->asconf_addr_del_pending == NULL) { 830 retval = -ENOMEM; 831 goto out; 832 } 833 asoc->asconf_addr_del_pending->sa.sa_family = 834 addrs->sa_family; 835 asoc->asconf_addr_del_pending->v4.sin_port = 836 htons(bp->port); 837 if (addrs->sa_family == AF_INET) { 838 struct sockaddr_in *sin; 839 840 sin = (struct sockaddr_in *)addrs; 841 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 842 } else if (addrs->sa_family == AF_INET6) { 843 struct sockaddr_in6 *sin6; 844 845 sin6 = (struct sockaddr_in6 *)addrs; 846 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 847 } 848 849 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 850 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 851 asoc->asconf_addr_del_pending); 852 853 asoc->src_out_of_asoc_ok = 1; 854 stored = 1; 855 goto skip_mkasconf; 856 } 857 858 if (laddr == NULL) 859 return -EINVAL; 860 861 /* We do not need RCU protection throughout this loop 862 * because this is done under a socket lock from the 863 * setsockopt call. 864 */ 865 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 866 SCTP_PARAM_DEL_IP); 867 if (!chunk) { 868 retval = -ENOMEM; 869 goto out; 870 } 871 872 skip_mkasconf: 873 /* Reset use_as_src flag for the addresses in the bind address 874 * list that are to be deleted. 875 */ 876 addr_buf = addrs; 877 for (i = 0; i < addrcnt; i++) { 878 laddr = addr_buf; 879 af = sctp_get_af_specific(laddr->v4.sin_family); 880 list_for_each_entry(saddr, &bp->address_list, list) { 881 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 882 saddr->state = SCTP_ADDR_DEL; 883 } 884 addr_buf += af->sockaddr_len; 885 } 886 887 /* Update the route and saddr entries for all the transports 888 * as some of the addresses in the bind address list are 889 * about to be deleted and cannot be used as source addresses. 890 */ 891 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 892 transports) { 893 sctp_transport_route(transport, NULL, 894 sctp_sk(asoc->base.sk)); 895 } 896 897 if (stored) 898 /* We don't need to transmit ASCONF */ 899 continue; 900 retval = sctp_send_asconf(asoc, chunk); 901 } 902 out: 903 return retval; 904 } 905 906 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 907 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 908 { 909 struct sock *sk = sctp_opt2sk(sp); 910 union sctp_addr *addr; 911 struct sctp_af *af; 912 913 /* It is safe to write port space in caller. */ 914 addr = &addrw->a; 915 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 916 af = sctp_get_af_specific(addr->sa.sa_family); 917 if (!af) 918 return -EINVAL; 919 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 920 return -EINVAL; 921 922 if (addrw->state == SCTP_ADDR_NEW) 923 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 924 else 925 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 926 } 927 928 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 929 * 930 * API 8.1 931 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 932 * int flags); 933 * 934 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 935 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 936 * or IPv6 addresses. 937 * 938 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 939 * Section 3.1.2 for this usage. 940 * 941 * addrs is a pointer to an array of one or more socket addresses. Each 942 * address is contained in its appropriate structure (i.e. struct 943 * sockaddr_in or struct sockaddr_in6) the family of the address type 944 * must be used to distinguish the address length (note that this 945 * representation is termed a "packed array" of addresses). The caller 946 * specifies the number of addresses in the array with addrcnt. 947 * 948 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 949 * -1, and sets errno to the appropriate error code. 950 * 951 * For SCTP, the port given in each socket address must be the same, or 952 * sctp_bindx() will fail, setting errno to EINVAL. 953 * 954 * The flags parameter is formed from the bitwise OR of zero or more of 955 * the following currently defined flags: 956 * 957 * SCTP_BINDX_ADD_ADDR 958 * 959 * SCTP_BINDX_REM_ADDR 960 * 961 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 962 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 963 * addresses from the association. The two flags are mutually exclusive; 964 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 965 * not remove all addresses from an association; sctp_bindx() will 966 * reject such an attempt with EINVAL. 967 * 968 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 969 * additional addresses with an endpoint after calling bind(). Or use 970 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 971 * socket is associated with so that no new association accepted will be 972 * associated with those addresses. If the endpoint supports dynamic 973 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 974 * endpoint to send the appropriate message to the peer to change the 975 * peers address lists. 976 * 977 * Adding and removing addresses from a connected association is 978 * optional functionality. Implementations that do not support this 979 * functionality should return EOPNOTSUPP. 980 * 981 * Basically do nothing but copying the addresses from user to kernel 982 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 983 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 984 * from userspace. 985 * 986 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 987 * it. 988 * 989 * sk The sk of the socket 990 * addrs The pointer to the addresses 991 * addrssize Size of the addrs buffer 992 * op Operation to perform (add or remove, see the flags of 993 * sctp_bindx) 994 * 995 * Returns 0 if ok, <0 errno code on error. 996 */ 997 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 998 int addrs_size, int op) 999 { 1000 int err; 1001 int addrcnt = 0; 1002 int walk_size = 0; 1003 struct sockaddr *sa_addr; 1004 void *addr_buf = addrs; 1005 struct sctp_af *af; 1006 1007 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1008 __func__, sk, addr_buf, addrs_size, op); 1009 1010 if (unlikely(addrs_size <= 0)) 1011 return -EINVAL; 1012 1013 /* Walk through the addrs buffer and count the number of addresses. */ 1014 while (walk_size < addrs_size) { 1015 if (walk_size + sizeof(sa_family_t) > addrs_size) 1016 return -EINVAL; 1017 1018 sa_addr = addr_buf; 1019 af = sctp_get_af_specific(sa_addr->sa_family); 1020 1021 /* If the address family is not supported or if this address 1022 * causes the address buffer to overflow return EINVAL. 1023 */ 1024 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1025 return -EINVAL; 1026 addrcnt++; 1027 addr_buf += af->sockaddr_len; 1028 walk_size += af->sockaddr_len; 1029 } 1030 1031 /* Do the work. */ 1032 switch (op) { 1033 case SCTP_BINDX_ADD_ADDR: 1034 /* Allow security module to validate bindx addresses. */ 1035 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1036 addrs, addrs_size); 1037 if (err) 1038 return err; 1039 err = sctp_bindx_add(sk, addrs, addrcnt); 1040 if (err) 1041 return err; 1042 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1043 case SCTP_BINDX_REM_ADDR: 1044 err = sctp_bindx_rem(sk, addrs, addrcnt); 1045 if (err) 1046 return err; 1047 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1048 1049 default: 1050 return -EINVAL; 1051 } 1052 } 1053 1054 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1055 int addrlen) 1056 { 1057 int err; 1058 1059 lock_sock(sk); 1060 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1061 release_sock(sk); 1062 return err; 1063 } 1064 1065 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1066 const union sctp_addr *daddr, 1067 const struct sctp_initmsg *init, 1068 struct sctp_transport **tp) 1069 { 1070 struct sctp_association *asoc; 1071 struct sock *sk = ep->base.sk; 1072 struct net *net = sock_net(sk); 1073 enum sctp_scope scope; 1074 int err; 1075 1076 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1077 return -EADDRNOTAVAIL; 1078 1079 if (!ep->base.bind_addr.port) { 1080 if (sctp_autobind(sk)) 1081 return -EAGAIN; 1082 } else { 1083 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1084 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1085 return -EACCES; 1086 } 1087 1088 scope = sctp_scope(daddr); 1089 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1090 if (!asoc) 1091 return -ENOMEM; 1092 1093 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1094 if (err < 0) 1095 goto free; 1096 1097 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1098 if (!*tp) { 1099 err = -ENOMEM; 1100 goto free; 1101 } 1102 1103 if (!init) 1104 return 0; 1105 1106 if (init->sinit_num_ostreams) { 1107 __u16 outcnt = init->sinit_num_ostreams; 1108 1109 asoc->c.sinit_num_ostreams = outcnt; 1110 /* outcnt has been changed, need to re-init stream */ 1111 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1112 if (err) 1113 goto free; 1114 } 1115 1116 if (init->sinit_max_instreams) 1117 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1118 1119 if (init->sinit_max_attempts) 1120 asoc->max_init_attempts = init->sinit_max_attempts; 1121 1122 if (init->sinit_max_init_timeo) 1123 asoc->max_init_timeo = 1124 msecs_to_jiffies(init->sinit_max_init_timeo); 1125 1126 return 0; 1127 free: 1128 sctp_association_free(asoc); 1129 return err; 1130 } 1131 1132 static int sctp_connect_add_peer(struct sctp_association *asoc, 1133 union sctp_addr *daddr, int addr_len) 1134 { 1135 struct sctp_endpoint *ep = asoc->ep; 1136 struct sctp_association *old; 1137 struct sctp_transport *t; 1138 int err; 1139 1140 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1141 if (err) 1142 return err; 1143 1144 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1145 if (old && old != asoc) 1146 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1147 : -EALREADY; 1148 1149 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1150 return -EADDRNOTAVAIL; 1151 1152 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1153 if (!t) 1154 return -ENOMEM; 1155 1156 return 0; 1157 } 1158 1159 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1160 * 1161 * Common routine for handling connect() and sctp_connectx(). 1162 * Connect will come in with just a single address. 1163 */ 1164 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1165 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1166 { 1167 struct sctp_sock *sp = sctp_sk(sk); 1168 struct sctp_endpoint *ep = sp->ep; 1169 struct sctp_transport *transport; 1170 struct sctp_association *asoc; 1171 void *addr_buf = kaddrs; 1172 union sctp_addr *daddr; 1173 struct sctp_af *af; 1174 int walk_size, err; 1175 long timeo; 1176 1177 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1178 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1179 return -EISCONN; 1180 1181 daddr = addr_buf; 1182 af = sctp_get_af_specific(daddr->sa.sa_family); 1183 if (!af || af->sockaddr_len > addrs_size) 1184 return -EINVAL; 1185 1186 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1187 if (err) 1188 return err; 1189 1190 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1191 if (asoc) 1192 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1193 : -EALREADY; 1194 1195 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1196 if (err) 1197 return err; 1198 asoc = transport->asoc; 1199 1200 addr_buf += af->sockaddr_len; 1201 walk_size = af->sockaddr_len; 1202 while (walk_size < addrs_size) { 1203 err = -EINVAL; 1204 if (walk_size + sizeof(sa_family_t) > addrs_size) 1205 goto out_free; 1206 1207 daddr = addr_buf; 1208 af = sctp_get_af_specific(daddr->sa.sa_family); 1209 if (!af || af->sockaddr_len + walk_size > addrs_size) 1210 goto out_free; 1211 1212 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1213 goto out_free; 1214 1215 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1216 if (err) 1217 goto out_free; 1218 1219 addr_buf += af->sockaddr_len; 1220 walk_size += af->sockaddr_len; 1221 } 1222 1223 /* In case the user of sctp_connectx() wants an association 1224 * id back, assign one now. 1225 */ 1226 if (assoc_id) { 1227 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1228 if (err < 0) 1229 goto out_free; 1230 } 1231 1232 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1233 if (err < 0) 1234 goto out_free; 1235 1236 /* Initialize sk's dport and daddr for getpeername() */ 1237 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1238 sp->pf->to_sk_daddr(daddr, sk); 1239 sk->sk_err = 0; 1240 1241 if (assoc_id) 1242 *assoc_id = asoc->assoc_id; 1243 1244 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1245 return sctp_wait_for_connect(asoc, &timeo); 1246 1247 out_free: 1248 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1249 __func__, asoc, kaddrs, err); 1250 sctp_association_free(asoc); 1251 return err; 1252 } 1253 1254 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1255 * 1256 * API 8.9 1257 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1258 * sctp_assoc_t *asoc); 1259 * 1260 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1261 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1262 * or IPv6 addresses. 1263 * 1264 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1265 * Section 3.1.2 for this usage. 1266 * 1267 * addrs is a pointer to an array of one or more socket addresses. Each 1268 * address is contained in its appropriate structure (i.e. struct 1269 * sockaddr_in or struct sockaddr_in6) the family of the address type 1270 * must be used to distengish the address length (note that this 1271 * representation is termed a "packed array" of addresses). The caller 1272 * specifies the number of addresses in the array with addrcnt. 1273 * 1274 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1275 * the association id of the new association. On failure, sctp_connectx() 1276 * returns -1, and sets errno to the appropriate error code. The assoc_id 1277 * is not touched by the kernel. 1278 * 1279 * For SCTP, the port given in each socket address must be the same, or 1280 * sctp_connectx() will fail, setting errno to EINVAL. 1281 * 1282 * An application can use sctp_connectx to initiate an association with 1283 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1284 * allows a caller to specify multiple addresses at which a peer can be 1285 * reached. The way the SCTP stack uses the list of addresses to set up 1286 * the association is implementation dependent. This function only 1287 * specifies that the stack will try to make use of all the addresses in 1288 * the list when needed. 1289 * 1290 * Note that the list of addresses passed in is only used for setting up 1291 * the association. It does not necessarily equal the set of addresses 1292 * the peer uses for the resulting association. If the caller wants to 1293 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1294 * retrieve them after the association has been set up. 1295 * 1296 * Basically do nothing but copying the addresses from user to kernel 1297 * land and invoking either sctp_connectx(). This is used for tunneling 1298 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1299 * 1300 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1301 * it. 1302 * 1303 * sk The sk of the socket 1304 * addrs The pointer to the addresses 1305 * addrssize Size of the addrs buffer 1306 * 1307 * Returns >=0 if ok, <0 errno code on error. 1308 */ 1309 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1310 int addrs_size, sctp_assoc_t *assoc_id) 1311 { 1312 int err = 0, flags = 0; 1313 1314 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1315 __func__, sk, kaddrs, addrs_size); 1316 1317 /* make sure the 1st addr's sa_family is accessible later */ 1318 if (unlikely(addrs_size < sizeof(sa_family_t))) 1319 return -EINVAL; 1320 1321 /* Allow security module to validate connectx addresses. */ 1322 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1323 (struct sockaddr *)kaddrs, 1324 addrs_size); 1325 if (err) 1326 return err; 1327 1328 /* in-kernel sockets don't generally have a file allocated to them 1329 * if all they do is call sock_create_kern(). 1330 */ 1331 if (sk->sk_socket->file) 1332 flags = sk->sk_socket->file->f_flags; 1333 1334 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1335 } 1336 1337 /* 1338 * This is an older interface. It's kept for backward compatibility 1339 * to the option that doesn't provide association id. 1340 */ 1341 static int sctp_setsockopt_connectx_old(struct sock *sk, 1342 struct sockaddr *kaddrs, 1343 int addrs_size) 1344 { 1345 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1346 } 1347 1348 /* 1349 * New interface for the API. The since the API is done with a socket 1350 * option, to make it simple we feed back the association id is as a return 1351 * indication to the call. Error is always negative and association id is 1352 * always positive. 1353 */ 1354 static int sctp_setsockopt_connectx(struct sock *sk, 1355 struct sockaddr *kaddrs, 1356 int addrs_size) 1357 { 1358 sctp_assoc_t assoc_id = 0; 1359 int err = 0; 1360 1361 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1362 1363 if (err) 1364 return err; 1365 else 1366 return assoc_id; 1367 } 1368 1369 /* 1370 * New (hopefully final) interface for the API. 1371 * We use the sctp_getaddrs_old structure so that use-space library 1372 * can avoid any unnecessary allocations. The only different part 1373 * is that we store the actual length of the address buffer into the 1374 * addrs_num structure member. That way we can re-use the existing 1375 * code. 1376 */ 1377 #ifdef CONFIG_COMPAT 1378 struct compat_sctp_getaddrs_old { 1379 sctp_assoc_t assoc_id; 1380 s32 addr_num; 1381 compat_uptr_t addrs; /* struct sockaddr * */ 1382 }; 1383 #endif 1384 1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1386 char __user *optval, 1387 int __user *optlen) 1388 { 1389 struct sctp_getaddrs_old param; 1390 sctp_assoc_t assoc_id = 0; 1391 struct sockaddr *kaddrs; 1392 int err = 0; 1393 1394 #ifdef CONFIG_COMPAT 1395 if (in_compat_syscall()) { 1396 struct compat_sctp_getaddrs_old param32; 1397 1398 if (len < sizeof(param32)) 1399 return -EINVAL; 1400 if (copy_from_user(¶m32, optval, sizeof(param32))) 1401 return -EFAULT; 1402 1403 param.assoc_id = param32.assoc_id; 1404 param.addr_num = param32.addr_num; 1405 param.addrs = compat_ptr(param32.addrs); 1406 } else 1407 #endif 1408 { 1409 if (len < sizeof(param)) 1410 return -EINVAL; 1411 if (copy_from_user(¶m, optval, sizeof(param))) 1412 return -EFAULT; 1413 } 1414 1415 kaddrs = memdup_user(param.addrs, param.addr_num); 1416 if (IS_ERR(kaddrs)) 1417 return PTR_ERR(kaddrs); 1418 1419 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1420 kfree(kaddrs); 1421 if (err == 0 || err == -EINPROGRESS) { 1422 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1423 return -EFAULT; 1424 if (put_user(sizeof(assoc_id), optlen)) 1425 return -EFAULT; 1426 } 1427 1428 return err; 1429 } 1430 1431 /* API 3.1.4 close() - UDP Style Syntax 1432 * Applications use close() to perform graceful shutdown (as described in 1433 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1434 * by a UDP-style socket. 1435 * 1436 * The syntax is 1437 * 1438 * ret = close(int sd); 1439 * 1440 * sd - the socket descriptor of the associations to be closed. 1441 * 1442 * To gracefully shutdown a specific association represented by the 1443 * UDP-style socket, an application should use the sendmsg() call, 1444 * passing no user data, but including the appropriate flag in the 1445 * ancillary data (see Section xxxx). 1446 * 1447 * If sd in the close() call is a branched-off socket representing only 1448 * one association, the shutdown is performed on that association only. 1449 * 1450 * 4.1.6 close() - TCP Style Syntax 1451 * 1452 * Applications use close() to gracefully close down an association. 1453 * 1454 * The syntax is: 1455 * 1456 * int close(int sd); 1457 * 1458 * sd - the socket descriptor of the association to be closed. 1459 * 1460 * After an application calls close() on a socket descriptor, no further 1461 * socket operations will succeed on that descriptor. 1462 * 1463 * API 7.1.4 SO_LINGER 1464 * 1465 * An application using the TCP-style socket can use this option to 1466 * perform the SCTP ABORT primitive. The linger option structure is: 1467 * 1468 * struct linger { 1469 * int l_onoff; // option on/off 1470 * int l_linger; // linger time 1471 * }; 1472 * 1473 * To enable the option, set l_onoff to 1. If the l_linger value is set 1474 * to 0, calling close() is the same as the ABORT primitive. If the 1475 * value is set to a negative value, the setsockopt() call will return 1476 * an error. If the value is set to a positive value linger_time, the 1477 * close() can be blocked for at most linger_time ms. If the graceful 1478 * shutdown phase does not finish during this period, close() will 1479 * return but the graceful shutdown phase continues in the system. 1480 */ 1481 static void sctp_close(struct sock *sk, long timeout) 1482 { 1483 struct net *net = sock_net(sk); 1484 struct sctp_endpoint *ep; 1485 struct sctp_association *asoc; 1486 struct list_head *pos, *temp; 1487 unsigned int data_was_unread; 1488 1489 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1490 1491 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1492 sk->sk_shutdown = SHUTDOWN_MASK; 1493 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1494 1495 ep = sctp_sk(sk)->ep; 1496 1497 /* Clean up any skbs sitting on the receive queue. */ 1498 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1499 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1500 1501 /* Walk all associations on an endpoint. */ 1502 list_for_each_safe(pos, temp, &ep->asocs) { 1503 asoc = list_entry(pos, struct sctp_association, asocs); 1504 1505 if (sctp_style(sk, TCP)) { 1506 /* A closed association can still be in the list if 1507 * it belongs to a TCP-style listening socket that is 1508 * not yet accepted. If so, free it. If not, send an 1509 * ABORT or SHUTDOWN based on the linger options. 1510 */ 1511 if (sctp_state(asoc, CLOSED)) { 1512 sctp_association_free(asoc); 1513 continue; 1514 } 1515 } 1516 1517 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1518 !skb_queue_empty(&asoc->ulpq.reasm) || 1519 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1520 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1521 struct sctp_chunk *chunk; 1522 1523 chunk = sctp_make_abort_user(asoc, NULL, 0); 1524 sctp_primitive_ABORT(net, asoc, chunk); 1525 } else 1526 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1527 } 1528 1529 /* On a TCP-style socket, block for at most linger_time if set. */ 1530 if (sctp_style(sk, TCP) && timeout) 1531 sctp_wait_for_close(sk, timeout); 1532 1533 /* This will run the backlog queue. */ 1534 release_sock(sk); 1535 1536 /* Supposedly, no process has access to the socket, but 1537 * the net layers still may. 1538 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1539 * held and that should be grabbed before socket lock. 1540 */ 1541 spin_lock_bh(&net->sctp.addr_wq_lock); 1542 bh_lock_sock_nested(sk); 1543 1544 /* Hold the sock, since sk_common_release() will put sock_put() 1545 * and we have just a little more cleanup. 1546 */ 1547 sock_hold(sk); 1548 sk_common_release(sk); 1549 1550 bh_unlock_sock(sk); 1551 spin_unlock_bh(&net->sctp.addr_wq_lock); 1552 1553 sock_put(sk); 1554 1555 SCTP_DBG_OBJCNT_DEC(sock); 1556 } 1557 1558 /* Handle EPIPE error. */ 1559 static int sctp_error(struct sock *sk, int flags, int err) 1560 { 1561 if (err == -EPIPE) 1562 err = sock_error(sk) ? : -EPIPE; 1563 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1564 send_sig(SIGPIPE, current, 0); 1565 return err; 1566 } 1567 1568 /* API 3.1.3 sendmsg() - UDP Style Syntax 1569 * 1570 * An application uses sendmsg() and recvmsg() calls to transmit data to 1571 * and receive data from its peer. 1572 * 1573 * ssize_t sendmsg(int socket, const struct msghdr *message, 1574 * int flags); 1575 * 1576 * socket - the socket descriptor of the endpoint. 1577 * message - pointer to the msghdr structure which contains a single 1578 * user message and possibly some ancillary data. 1579 * 1580 * See Section 5 for complete description of the data 1581 * structures. 1582 * 1583 * flags - flags sent or received with the user message, see Section 1584 * 5 for complete description of the flags. 1585 * 1586 * Note: This function could use a rewrite especially when explicit 1587 * connect support comes in. 1588 */ 1589 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1590 1591 static int sctp_msghdr_parse(const struct msghdr *msg, 1592 struct sctp_cmsgs *cmsgs); 1593 1594 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1595 struct sctp_sndrcvinfo *srinfo, 1596 const struct msghdr *msg, size_t msg_len) 1597 { 1598 __u16 sflags; 1599 int err; 1600 1601 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1602 return -EPIPE; 1603 1604 if (msg_len > sk->sk_sndbuf) 1605 return -EMSGSIZE; 1606 1607 memset(cmsgs, 0, sizeof(*cmsgs)); 1608 err = sctp_msghdr_parse(msg, cmsgs); 1609 if (err) { 1610 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1611 return err; 1612 } 1613 1614 memset(srinfo, 0, sizeof(*srinfo)); 1615 if (cmsgs->srinfo) { 1616 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1617 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1618 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1619 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1620 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1621 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1622 } 1623 1624 if (cmsgs->sinfo) { 1625 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1626 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1627 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1628 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1629 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1630 } 1631 1632 if (cmsgs->prinfo) { 1633 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1634 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1635 cmsgs->prinfo->pr_policy); 1636 } 1637 1638 sflags = srinfo->sinfo_flags; 1639 if (!sflags && msg_len) 1640 return 0; 1641 1642 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1643 return -EINVAL; 1644 1645 if (((sflags & SCTP_EOF) && msg_len > 0) || 1646 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1647 return -EINVAL; 1648 1649 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1650 return -EINVAL; 1651 1652 return 0; 1653 } 1654 1655 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1656 struct sctp_cmsgs *cmsgs, 1657 union sctp_addr *daddr, 1658 struct sctp_transport **tp) 1659 { 1660 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1661 struct sctp_association *asoc; 1662 struct cmsghdr *cmsg; 1663 __be32 flowinfo = 0; 1664 struct sctp_af *af; 1665 int err; 1666 1667 *tp = NULL; 1668 1669 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1670 return -EINVAL; 1671 1672 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1673 sctp_sstate(sk, CLOSING))) 1674 return -EADDRNOTAVAIL; 1675 1676 /* Label connection socket for first association 1-to-many 1677 * style for client sequence socket()->sendmsg(). This 1678 * needs to be done before sctp_assoc_add_peer() as that will 1679 * set up the initial packet that needs to account for any 1680 * security ip options (CIPSO/CALIPSO) added to the packet. 1681 */ 1682 af = sctp_get_af_specific(daddr->sa.sa_family); 1683 if (!af) 1684 return -EINVAL; 1685 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1686 (struct sockaddr *)daddr, 1687 af->sockaddr_len); 1688 if (err < 0) 1689 return err; 1690 1691 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1692 if (err) 1693 return err; 1694 asoc = (*tp)->asoc; 1695 1696 if (!cmsgs->addrs_msg) 1697 return 0; 1698 1699 if (daddr->sa.sa_family == AF_INET6) 1700 flowinfo = daddr->v6.sin6_flowinfo; 1701 1702 /* sendv addr list parse */ 1703 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1704 union sctp_addr _daddr; 1705 int dlen; 1706 1707 if (cmsg->cmsg_level != IPPROTO_SCTP || 1708 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1709 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1710 continue; 1711 1712 daddr = &_daddr; 1713 memset(daddr, 0, sizeof(*daddr)); 1714 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1715 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1716 if (dlen < sizeof(struct in_addr)) { 1717 err = -EINVAL; 1718 goto free; 1719 } 1720 1721 dlen = sizeof(struct in_addr); 1722 daddr->v4.sin_family = AF_INET; 1723 daddr->v4.sin_port = htons(asoc->peer.port); 1724 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1725 } else { 1726 if (dlen < sizeof(struct in6_addr)) { 1727 err = -EINVAL; 1728 goto free; 1729 } 1730 1731 dlen = sizeof(struct in6_addr); 1732 daddr->v6.sin6_flowinfo = flowinfo; 1733 daddr->v6.sin6_family = AF_INET6; 1734 daddr->v6.sin6_port = htons(asoc->peer.port); 1735 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1736 } 1737 1738 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1739 if (err) 1740 goto free; 1741 } 1742 1743 return 0; 1744 1745 free: 1746 sctp_association_free(asoc); 1747 return err; 1748 } 1749 1750 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1751 __u16 sflags, struct msghdr *msg, 1752 size_t msg_len) 1753 { 1754 struct sock *sk = asoc->base.sk; 1755 struct net *net = sock_net(sk); 1756 1757 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1758 return -EPIPE; 1759 1760 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1761 !sctp_state(asoc, ESTABLISHED)) 1762 return 0; 1763 1764 if (sflags & SCTP_EOF) { 1765 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1766 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1767 1768 return 0; 1769 } 1770 1771 if (sflags & SCTP_ABORT) { 1772 struct sctp_chunk *chunk; 1773 1774 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1775 if (!chunk) 1776 return -ENOMEM; 1777 1778 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1779 sctp_primitive_ABORT(net, asoc, chunk); 1780 iov_iter_revert(&msg->msg_iter, msg_len); 1781 1782 return 0; 1783 } 1784 1785 return 1; 1786 } 1787 1788 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1789 struct msghdr *msg, size_t msg_len, 1790 struct sctp_transport *transport, 1791 struct sctp_sndrcvinfo *sinfo) 1792 { 1793 struct sock *sk = asoc->base.sk; 1794 struct sctp_sock *sp = sctp_sk(sk); 1795 struct net *net = sock_net(sk); 1796 struct sctp_datamsg *datamsg; 1797 bool wait_connect = false; 1798 struct sctp_chunk *chunk; 1799 long timeo; 1800 int err; 1801 1802 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1803 err = -EINVAL; 1804 goto err; 1805 } 1806 1807 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1808 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1809 if (err) 1810 goto err; 1811 } 1812 1813 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1814 err = -EMSGSIZE; 1815 goto err; 1816 } 1817 1818 if (asoc->pmtu_pending) { 1819 if (sp->param_flags & SPP_PMTUD_ENABLE) 1820 sctp_assoc_sync_pmtu(asoc); 1821 asoc->pmtu_pending = 0; 1822 } 1823 1824 if (sctp_wspace(asoc) < (int)msg_len) 1825 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1826 1827 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1828 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1829 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1830 if (err) 1831 goto err; 1832 } 1833 1834 if (sctp_state(asoc, CLOSED)) { 1835 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1836 if (err) 1837 goto err; 1838 1839 if (asoc->ep->intl_enable) { 1840 timeo = sock_sndtimeo(sk, 0); 1841 err = sctp_wait_for_connect(asoc, &timeo); 1842 if (err) { 1843 err = -ESRCH; 1844 goto err; 1845 } 1846 } else { 1847 wait_connect = true; 1848 } 1849 1850 pr_debug("%s: we associated primitively\n", __func__); 1851 } 1852 1853 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1854 if (IS_ERR(datamsg)) { 1855 err = PTR_ERR(datamsg); 1856 goto err; 1857 } 1858 1859 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1860 1861 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1862 sctp_chunk_hold(chunk); 1863 sctp_set_owner_w(chunk); 1864 chunk->transport = transport; 1865 } 1866 1867 err = sctp_primitive_SEND(net, asoc, datamsg); 1868 if (err) { 1869 sctp_datamsg_free(datamsg); 1870 goto err; 1871 } 1872 1873 pr_debug("%s: we sent primitively\n", __func__); 1874 1875 sctp_datamsg_put(datamsg); 1876 1877 if (unlikely(wait_connect)) { 1878 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1879 sctp_wait_for_connect(asoc, &timeo); 1880 } 1881 1882 err = msg_len; 1883 1884 err: 1885 return err; 1886 } 1887 1888 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1889 const struct msghdr *msg, 1890 struct sctp_cmsgs *cmsgs) 1891 { 1892 union sctp_addr *daddr = NULL; 1893 int err; 1894 1895 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1896 int len = msg->msg_namelen; 1897 1898 if (len > sizeof(*daddr)) 1899 len = sizeof(*daddr); 1900 1901 daddr = (union sctp_addr *)msg->msg_name; 1902 1903 err = sctp_verify_addr(sk, daddr, len); 1904 if (err) 1905 return ERR_PTR(err); 1906 } 1907 1908 return daddr; 1909 } 1910 1911 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1912 struct sctp_sndrcvinfo *sinfo, 1913 struct sctp_cmsgs *cmsgs) 1914 { 1915 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1916 sinfo->sinfo_stream = asoc->default_stream; 1917 sinfo->sinfo_ppid = asoc->default_ppid; 1918 sinfo->sinfo_context = asoc->default_context; 1919 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1920 1921 if (!cmsgs->prinfo) 1922 sinfo->sinfo_flags = asoc->default_flags; 1923 } 1924 1925 if (!cmsgs->srinfo && !cmsgs->prinfo) 1926 sinfo->sinfo_timetolive = asoc->default_timetolive; 1927 1928 if (cmsgs->authinfo) { 1929 /* Reuse sinfo_tsn to indicate that authinfo was set and 1930 * sinfo_ssn to save the keyid on tx path. 1931 */ 1932 sinfo->sinfo_tsn = 1; 1933 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1934 } 1935 } 1936 1937 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1938 { 1939 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1940 struct sctp_transport *transport = NULL; 1941 struct sctp_sndrcvinfo _sinfo, *sinfo; 1942 struct sctp_association *asoc, *tmp; 1943 struct sctp_cmsgs cmsgs; 1944 union sctp_addr *daddr; 1945 bool new = false; 1946 __u16 sflags; 1947 int err; 1948 1949 /* Parse and get snd_info */ 1950 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1951 if (err) 1952 goto out; 1953 1954 sinfo = &_sinfo; 1955 sflags = sinfo->sinfo_flags; 1956 1957 /* Get daddr from msg */ 1958 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1959 if (IS_ERR(daddr)) { 1960 err = PTR_ERR(daddr); 1961 goto out; 1962 } 1963 1964 lock_sock(sk); 1965 1966 /* SCTP_SENDALL process */ 1967 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1968 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1969 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1970 msg_len); 1971 if (err == 0) 1972 continue; 1973 if (err < 0) 1974 goto out_unlock; 1975 1976 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1977 1978 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1979 NULL, sinfo); 1980 if (err < 0) 1981 goto out_unlock; 1982 1983 iov_iter_revert(&msg->msg_iter, err); 1984 } 1985 1986 goto out_unlock; 1987 } 1988 1989 /* Get and check or create asoc */ 1990 if (daddr) { 1991 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1992 if (asoc) { 1993 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1994 msg_len); 1995 if (err <= 0) 1996 goto out_unlock; 1997 } else { 1998 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1999 &transport); 2000 if (err) 2001 goto out_unlock; 2002 2003 asoc = transport->asoc; 2004 new = true; 2005 } 2006 2007 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2008 transport = NULL; 2009 } else { 2010 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2011 if (!asoc) { 2012 err = -EPIPE; 2013 goto out_unlock; 2014 } 2015 2016 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2017 if (err <= 0) 2018 goto out_unlock; 2019 } 2020 2021 /* Update snd_info with the asoc */ 2022 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2023 2024 /* Send msg to the asoc */ 2025 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2026 if (err < 0 && err != -ESRCH && new) 2027 sctp_association_free(asoc); 2028 2029 out_unlock: 2030 release_sock(sk); 2031 out: 2032 return sctp_error(sk, msg->msg_flags, err); 2033 } 2034 2035 /* This is an extended version of skb_pull() that removes the data from the 2036 * start of a skb even when data is spread across the list of skb's in the 2037 * frag_list. len specifies the total amount of data that needs to be removed. 2038 * when 'len' bytes could be removed from the skb, it returns 0. 2039 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2040 * could not be removed. 2041 */ 2042 static int sctp_skb_pull(struct sk_buff *skb, int len) 2043 { 2044 struct sk_buff *list; 2045 int skb_len = skb_headlen(skb); 2046 int rlen; 2047 2048 if (len <= skb_len) { 2049 __skb_pull(skb, len); 2050 return 0; 2051 } 2052 len -= skb_len; 2053 __skb_pull(skb, skb_len); 2054 2055 skb_walk_frags(skb, list) { 2056 rlen = sctp_skb_pull(list, len); 2057 skb->len -= (len-rlen); 2058 skb->data_len -= (len-rlen); 2059 2060 if (!rlen) 2061 return 0; 2062 2063 len = rlen; 2064 } 2065 2066 return len; 2067 } 2068 2069 /* API 3.1.3 recvmsg() - UDP Style Syntax 2070 * 2071 * ssize_t recvmsg(int socket, struct msghdr *message, 2072 * int flags); 2073 * 2074 * socket - the socket descriptor of the endpoint. 2075 * message - pointer to the msghdr structure which contains a single 2076 * user message and possibly some ancillary data. 2077 * 2078 * See Section 5 for complete description of the data 2079 * structures. 2080 * 2081 * flags - flags sent or received with the user message, see Section 2082 * 5 for complete description of the flags. 2083 */ 2084 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2085 int flags, int *addr_len) 2086 { 2087 struct sctp_ulpevent *event = NULL; 2088 struct sctp_sock *sp = sctp_sk(sk); 2089 struct sk_buff *skb, *head_skb; 2090 int copied; 2091 int err = 0; 2092 int skb_len; 2093 2094 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2095 __func__, sk, msg, len, flags, addr_len); 2096 2097 lock_sock(sk); 2098 2099 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2100 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2101 err = -ENOTCONN; 2102 goto out; 2103 } 2104 2105 skb = sctp_skb_recv_datagram(sk, flags, &err); 2106 if (!skb) 2107 goto out; 2108 2109 /* Get the total length of the skb including any skb's in the 2110 * frag_list. 2111 */ 2112 skb_len = skb->len; 2113 2114 copied = skb_len; 2115 if (copied > len) 2116 copied = len; 2117 2118 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2119 2120 event = sctp_skb2event(skb); 2121 2122 if (err) 2123 goto out_free; 2124 2125 if (event->chunk && event->chunk->head_skb) 2126 head_skb = event->chunk->head_skb; 2127 else 2128 head_skb = skb; 2129 sock_recv_cmsgs(msg, sk, head_skb); 2130 if (sctp_ulpevent_is_notification(event)) { 2131 msg->msg_flags |= MSG_NOTIFICATION; 2132 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2133 } else { 2134 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2135 } 2136 2137 /* Check if we allow SCTP_NXTINFO. */ 2138 if (sp->recvnxtinfo) 2139 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2140 /* Check if we allow SCTP_RCVINFO. */ 2141 if (sp->recvrcvinfo) 2142 sctp_ulpevent_read_rcvinfo(event, msg); 2143 /* Check if we allow SCTP_SNDRCVINFO. */ 2144 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2145 sctp_ulpevent_read_sndrcvinfo(event, msg); 2146 2147 err = copied; 2148 2149 /* If skb's length exceeds the user's buffer, update the skb and 2150 * push it back to the receive_queue so that the next call to 2151 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2152 */ 2153 if (skb_len > copied) { 2154 msg->msg_flags &= ~MSG_EOR; 2155 if (flags & MSG_PEEK) 2156 goto out_free; 2157 sctp_skb_pull(skb, copied); 2158 skb_queue_head(&sk->sk_receive_queue, skb); 2159 2160 /* When only partial message is copied to the user, increase 2161 * rwnd by that amount. If all the data in the skb is read, 2162 * rwnd is updated when the event is freed. 2163 */ 2164 if (!sctp_ulpevent_is_notification(event)) 2165 sctp_assoc_rwnd_increase(event->asoc, copied); 2166 goto out; 2167 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2168 (event->msg_flags & MSG_EOR)) 2169 msg->msg_flags |= MSG_EOR; 2170 else 2171 msg->msg_flags &= ~MSG_EOR; 2172 2173 out_free: 2174 if (flags & MSG_PEEK) { 2175 /* Release the skb reference acquired after peeking the skb in 2176 * sctp_skb_recv_datagram(). 2177 */ 2178 kfree_skb(skb); 2179 } else { 2180 /* Free the event which includes releasing the reference to 2181 * the owner of the skb, freeing the skb and updating the 2182 * rwnd. 2183 */ 2184 sctp_ulpevent_free(event); 2185 } 2186 out: 2187 release_sock(sk); 2188 return err; 2189 } 2190 2191 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2192 * 2193 * This option is a on/off flag. If enabled no SCTP message 2194 * fragmentation will be performed. Instead if a message being sent 2195 * exceeds the current PMTU size, the message will NOT be sent and 2196 * instead a error will be indicated to the user. 2197 */ 2198 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2199 unsigned int optlen) 2200 { 2201 if (optlen < sizeof(int)) 2202 return -EINVAL; 2203 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2204 return 0; 2205 } 2206 2207 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2208 unsigned int optlen) 2209 { 2210 struct sctp_sock *sp = sctp_sk(sk); 2211 struct sctp_association *asoc; 2212 int i; 2213 2214 if (optlen > sizeof(struct sctp_event_subscribe)) 2215 return -EINVAL; 2216 2217 for (i = 0; i < optlen; i++) 2218 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2219 sn_type[i]); 2220 2221 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2222 asoc->subscribe = sctp_sk(sk)->subscribe; 2223 2224 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2225 * if there is no data to be sent or retransmit, the stack will 2226 * immediately send up this notification. 2227 */ 2228 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2229 struct sctp_ulpevent *event; 2230 2231 asoc = sctp_id2assoc(sk, 0); 2232 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2233 event = sctp_ulpevent_make_sender_dry_event(asoc, 2234 GFP_USER | __GFP_NOWARN); 2235 if (!event) 2236 return -ENOMEM; 2237 2238 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2239 } 2240 } 2241 2242 return 0; 2243 } 2244 2245 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2246 * 2247 * This socket option is applicable to the UDP-style socket only. When 2248 * set it will cause associations that are idle for more than the 2249 * specified number of seconds to automatically close. An association 2250 * being idle is defined an association that has NOT sent or received 2251 * user data. The special value of '0' indicates that no automatic 2252 * close of any associations should be performed. The option expects an 2253 * integer defining the number of seconds of idle time before an 2254 * association is closed. 2255 */ 2256 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2257 unsigned int optlen) 2258 { 2259 struct sctp_sock *sp = sctp_sk(sk); 2260 struct net *net = sock_net(sk); 2261 2262 /* Applicable to UDP-style socket only */ 2263 if (sctp_style(sk, TCP)) 2264 return -EOPNOTSUPP; 2265 if (optlen != sizeof(int)) 2266 return -EINVAL; 2267 2268 sp->autoclose = *optval; 2269 if (sp->autoclose > net->sctp.max_autoclose) 2270 sp->autoclose = net->sctp.max_autoclose; 2271 2272 return 0; 2273 } 2274 2275 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2276 * 2277 * Applications can enable or disable heartbeats for any peer address of 2278 * an association, modify an address's heartbeat interval, force a 2279 * heartbeat to be sent immediately, and adjust the address's maximum 2280 * number of retransmissions sent before an address is considered 2281 * unreachable. The following structure is used to access and modify an 2282 * address's parameters: 2283 * 2284 * struct sctp_paddrparams { 2285 * sctp_assoc_t spp_assoc_id; 2286 * struct sockaddr_storage spp_address; 2287 * uint32_t spp_hbinterval; 2288 * uint16_t spp_pathmaxrxt; 2289 * uint32_t spp_pathmtu; 2290 * uint32_t spp_sackdelay; 2291 * uint32_t spp_flags; 2292 * uint32_t spp_ipv6_flowlabel; 2293 * uint8_t spp_dscp; 2294 * }; 2295 * 2296 * spp_assoc_id - (one-to-many style socket) This is filled in the 2297 * application, and identifies the association for 2298 * this query. 2299 * spp_address - This specifies which address is of interest. 2300 * spp_hbinterval - This contains the value of the heartbeat interval, 2301 * in milliseconds. If a value of zero 2302 * is present in this field then no changes are to 2303 * be made to this parameter. 2304 * spp_pathmaxrxt - This contains the maximum number of 2305 * retransmissions before this address shall be 2306 * considered unreachable. If a value of zero 2307 * is present in this field then no changes are to 2308 * be made to this parameter. 2309 * spp_pathmtu - When Path MTU discovery is disabled the value 2310 * specified here will be the "fixed" path mtu. 2311 * Note that if the spp_address field is empty 2312 * then all associations on this address will 2313 * have this fixed path mtu set upon them. 2314 * 2315 * spp_sackdelay - When delayed sack is enabled, this value specifies 2316 * the number of milliseconds that sacks will be delayed 2317 * for. This value will apply to all addresses of an 2318 * association if the spp_address field is empty. Note 2319 * also, that if delayed sack is enabled and this 2320 * value is set to 0, no change is made to the last 2321 * recorded delayed sack timer value. 2322 * 2323 * spp_flags - These flags are used to control various features 2324 * on an association. The flag field may contain 2325 * zero or more of the following options. 2326 * 2327 * SPP_HB_ENABLE - Enable heartbeats on the 2328 * specified address. Note that if the address 2329 * field is empty all addresses for the association 2330 * have heartbeats enabled upon them. 2331 * 2332 * SPP_HB_DISABLE - Disable heartbeats on the 2333 * speicifed address. Note that if the address 2334 * field is empty all addresses for the association 2335 * will have their heartbeats disabled. Note also 2336 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2337 * mutually exclusive, only one of these two should 2338 * be specified. Enabling both fields will have 2339 * undetermined results. 2340 * 2341 * SPP_HB_DEMAND - Request a user initiated heartbeat 2342 * to be made immediately. 2343 * 2344 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2345 * heartbeat delayis to be set to the value of 0 2346 * milliseconds. 2347 * 2348 * SPP_PMTUD_ENABLE - This field will enable PMTU 2349 * discovery upon the specified address. Note that 2350 * if the address feild is empty then all addresses 2351 * on the association are effected. 2352 * 2353 * SPP_PMTUD_DISABLE - This field will disable PMTU 2354 * discovery upon the specified address. Note that 2355 * if the address feild is empty then all addresses 2356 * on the association are effected. Not also that 2357 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2358 * exclusive. Enabling both will have undetermined 2359 * results. 2360 * 2361 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2362 * on delayed sack. The time specified in spp_sackdelay 2363 * is used to specify the sack delay for this address. Note 2364 * that if spp_address is empty then all addresses will 2365 * enable delayed sack and take on the sack delay 2366 * value specified in spp_sackdelay. 2367 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2368 * off delayed sack. If the spp_address field is blank then 2369 * delayed sack is disabled for the entire association. Note 2370 * also that this field is mutually exclusive to 2371 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2372 * results. 2373 * 2374 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2375 * setting of the IPV6 flow label value. The value is 2376 * contained in the spp_ipv6_flowlabel field. 2377 * Upon retrieval, this flag will be set to indicate that 2378 * the spp_ipv6_flowlabel field has a valid value returned. 2379 * If a specific destination address is set (in the 2380 * spp_address field), then the value returned is that of 2381 * the address. If just an association is specified (and 2382 * no address), then the association's default flow label 2383 * is returned. If neither an association nor a destination 2384 * is specified, then the socket's default flow label is 2385 * returned. For non-IPv6 sockets, this flag will be left 2386 * cleared. 2387 * 2388 * SPP_DSCP: Setting this flag enables the setting of the 2389 * Differentiated Services Code Point (DSCP) value 2390 * associated with either the association or a specific 2391 * address. The value is obtained in the spp_dscp field. 2392 * Upon retrieval, this flag will be set to indicate that 2393 * the spp_dscp field has a valid value returned. If a 2394 * specific destination address is set when called (in the 2395 * spp_address field), then that specific destination 2396 * address's DSCP value is returned. If just an association 2397 * is specified, then the association's default DSCP is 2398 * returned. If neither an association nor a destination is 2399 * specified, then the socket's default DSCP is returned. 2400 * 2401 * spp_ipv6_flowlabel 2402 * - This field is used in conjunction with the 2403 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2404 * The 20 least significant bits are used for the flow 2405 * label. This setting has precedence over any IPv6-layer 2406 * setting. 2407 * 2408 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2409 * and contains the DSCP. The 6 most significant bits are 2410 * used for the DSCP. This setting has precedence over any 2411 * IPv4- or IPv6- layer setting. 2412 */ 2413 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2414 struct sctp_transport *trans, 2415 struct sctp_association *asoc, 2416 struct sctp_sock *sp, 2417 int hb_change, 2418 int pmtud_change, 2419 int sackdelay_change) 2420 { 2421 int error; 2422 2423 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2424 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2425 trans->asoc, trans); 2426 if (error) 2427 return error; 2428 } 2429 2430 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2431 * this field is ignored. Note also that a value of zero indicates 2432 * the current setting should be left unchanged. 2433 */ 2434 if (params->spp_flags & SPP_HB_ENABLE) { 2435 2436 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2437 * set. This lets us use 0 value when this flag 2438 * is set. 2439 */ 2440 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2441 params->spp_hbinterval = 0; 2442 2443 if (params->spp_hbinterval || 2444 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2445 if (trans) { 2446 trans->hbinterval = 2447 msecs_to_jiffies(params->spp_hbinterval); 2448 } else if (asoc) { 2449 asoc->hbinterval = 2450 msecs_to_jiffies(params->spp_hbinterval); 2451 } else { 2452 sp->hbinterval = params->spp_hbinterval; 2453 } 2454 } 2455 } 2456 2457 if (hb_change) { 2458 if (trans) { 2459 trans->param_flags = 2460 (trans->param_flags & ~SPP_HB) | hb_change; 2461 } else if (asoc) { 2462 asoc->param_flags = 2463 (asoc->param_flags & ~SPP_HB) | hb_change; 2464 } else { 2465 sp->param_flags = 2466 (sp->param_flags & ~SPP_HB) | hb_change; 2467 } 2468 } 2469 2470 /* When Path MTU discovery is disabled the value specified here will 2471 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2472 * include the flag SPP_PMTUD_DISABLE for this field to have any 2473 * effect). 2474 */ 2475 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2476 if (trans) { 2477 trans->pathmtu = params->spp_pathmtu; 2478 sctp_assoc_sync_pmtu(asoc); 2479 } else if (asoc) { 2480 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2481 } else { 2482 sp->pathmtu = params->spp_pathmtu; 2483 } 2484 } 2485 2486 if (pmtud_change) { 2487 if (trans) { 2488 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2489 (params->spp_flags & SPP_PMTUD_ENABLE); 2490 trans->param_flags = 2491 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2492 if (update) { 2493 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2494 sctp_assoc_sync_pmtu(asoc); 2495 } 2496 sctp_transport_pl_reset(trans); 2497 } else if (asoc) { 2498 asoc->param_flags = 2499 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2500 } else { 2501 sp->param_flags = 2502 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2503 } 2504 } 2505 2506 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2507 * value of this field is ignored. Note also that a value of zero 2508 * indicates the current setting should be left unchanged. 2509 */ 2510 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2511 if (trans) { 2512 trans->sackdelay = 2513 msecs_to_jiffies(params->spp_sackdelay); 2514 } else if (asoc) { 2515 asoc->sackdelay = 2516 msecs_to_jiffies(params->spp_sackdelay); 2517 } else { 2518 sp->sackdelay = params->spp_sackdelay; 2519 } 2520 } 2521 2522 if (sackdelay_change) { 2523 if (trans) { 2524 trans->param_flags = 2525 (trans->param_flags & ~SPP_SACKDELAY) | 2526 sackdelay_change; 2527 } else if (asoc) { 2528 asoc->param_flags = 2529 (asoc->param_flags & ~SPP_SACKDELAY) | 2530 sackdelay_change; 2531 } else { 2532 sp->param_flags = 2533 (sp->param_flags & ~SPP_SACKDELAY) | 2534 sackdelay_change; 2535 } 2536 } 2537 2538 /* Note that a value of zero indicates the current setting should be 2539 left unchanged. 2540 */ 2541 if (params->spp_pathmaxrxt) { 2542 if (trans) { 2543 trans->pathmaxrxt = params->spp_pathmaxrxt; 2544 } else if (asoc) { 2545 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2546 } else { 2547 sp->pathmaxrxt = params->spp_pathmaxrxt; 2548 } 2549 } 2550 2551 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2552 if (trans) { 2553 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2554 trans->flowlabel = params->spp_ipv6_flowlabel & 2555 SCTP_FLOWLABEL_VAL_MASK; 2556 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2557 } 2558 } else if (asoc) { 2559 struct sctp_transport *t; 2560 2561 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2562 transports) { 2563 if (t->ipaddr.sa.sa_family != AF_INET6) 2564 continue; 2565 t->flowlabel = params->spp_ipv6_flowlabel & 2566 SCTP_FLOWLABEL_VAL_MASK; 2567 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2568 } 2569 asoc->flowlabel = params->spp_ipv6_flowlabel & 2570 SCTP_FLOWLABEL_VAL_MASK; 2571 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2572 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2573 sp->flowlabel = params->spp_ipv6_flowlabel & 2574 SCTP_FLOWLABEL_VAL_MASK; 2575 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2576 } 2577 } 2578 2579 if (params->spp_flags & SPP_DSCP) { 2580 if (trans) { 2581 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2582 trans->dscp |= SCTP_DSCP_SET_MASK; 2583 } else if (asoc) { 2584 struct sctp_transport *t; 2585 2586 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2587 transports) { 2588 t->dscp = params->spp_dscp & 2589 SCTP_DSCP_VAL_MASK; 2590 t->dscp |= SCTP_DSCP_SET_MASK; 2591 } 2592 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2593 asoc->dscp |= SCTP_DSCP_SET_MASK; 2594 } else { 2595 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2596 sp->dscp |= SCTP_DSCP_SET_MASK; 2597 } 2598 } 2599 2600 return 0; 2601 } 2602 2603 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2604 struct sctp_paddrparams *params, 2605 unsigned int optlen) 2606 { 2607 struct sctp_transport *trans = NULL; 2608 struct sctp_association *asoc = NULL; 2609 struct sctp_sock *sp = sctp_sk(sk); 2610 int error; 2611 int hb_change, pmtud_change, sackdelay_change; 2612 2613 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2614 spp_ipv6_flowlabel), 4)) { 2615 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2616 return -EINVAL; 2617 } else if (optlen != sizeof(*params)) { 2618 return -EINVAL; 2619 } 2620 2621 /* Validate flags and value parameters. */ 2622 hb_change = params->spp_flags & SPP_HB; 2623 pmtud_change = params->spp_flags & SPP_PMTUD; 2624 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2625 2626 if (hb_change == SPP_HB || 2627 pmtud_change == SPP_PMTUD || 2628 sackdelay_change == SPP_SACKDELAY || 2629 params->spp_sackdelay > 500 || 2630 (params->spp_pathmtu && 2631 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2632 return -EINVAL; 2633 2634 /* If an address other than INADDR_ANY is specified, and 2635 * no transport is found, then the request is invalid. 2636 */ 2637 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2638 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2639 params->spp_assoc_id); 2640 if (!trans) 2641 return -EINVAL; 2642 } 2643 2644 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2645 * socket is a one to many style socket, and an association 2646 * was not found, then the id was invalid. 2647 */ 2648 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2649 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2650 sctp_style(sk, UDP)) 2651 return -EINVAL; 2652 2653 /* Heartbeat demand can only be sent on a transport or 2654 * association, but not a socket. 2655 */ 2656 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2657 return -EINVAL; 2658 2659 /* Process parameters. */ 2660 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2661 hb_change, pmtud_change, 2662 sackdelay_change); 2663 2664 if (error) 2665 return error; 2666 2667 /* If changes are for association, also apply parameters to each 2668 * transport. 2669 */ 2670 if (!trans && asoc) { 2671 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2672 transports) { 2673 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2674 hb_change, pmtud_change, 2675 sackdelay_change); 2676 } 2677 } 2678 2679 return 0; 2680 } 2681 2682 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2683 { 2684 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2685 } 2686 2687 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2688 { 2689 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2690 } 2691 2692 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2693 struct sctp_association *asoc) 2694 { 2695 struct sctp_transport *trans; 2696 2697 if (params->sack_delay) { 2698 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2699 asoc->param_flags = 2700 sctp_spp_sackdelay_enable(asoc->param_flags); 2701 } 2702 if (params->sack_freq == 1) { 2703 asoc->param_flags = 2704 sctp_spp_sackdelay_disable(asoc->param_flags); 2705 } else if (params->sack_freq > 1) { 2706 asoc->sackfreq = params->sack_freq; 2707 asoc->param_flags = 2708 sctp_spp_sackdelay_enable(asoc->param_flags); 2709 } 2710 2711 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2712 transports) { 2713 if (params->sack_delay) { 2714 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2715 trans->param_flags = 2716 sctp_spp_sackdelay_enable(trans->param_flags); 2717 } 2718 if (params->sack_freq == 1) { 2719 trans->param_flags = 2720 sctp_spp_sackdelay_disable(trans->param_flags); 2721 } else if (params->sack_freq > 1) { 2722 trans->sackfreq = params->sack_freq; 2723 trans->param_flags = 2724 sctp_spp_sackdelay_enable(trans->param_flags); 2725 } 2726 } 2727 } 2728 2729 /* 2730 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2731 * 2732 * This option will effect the way delayed acks are performed. This 2733 * option allows you to get or set the delayed ack time, in 2734 * milliseconds. It also allows changing the delayed ack frequency. 2735 * Changing the frequency to 1 disables the delayed sack algorithm. If 2736 * the assoc_id is 0, then this sets or gets the endpoints default 2737 * values. If the assoc_id field is non-zero, then the set or get 2738 * effects the specified association for the one to many model (the 2739 * assoc_id field is ignored by the one to one model). Note that if 2740 * sack_delay or sack_freq are 0 when setting this option, then the 2741 * current values will remain unchanged. 2742 * 2743 * struct sctp_sack_info { 2744 * sctp_assoc_t sack_assoc_id; 2745 * uint32_t sack_delay; 2746 * uint32_t sack_freq; 2747 * }; 2748 * 2749 * sack_assoc_id - This parameter, indicates which association the user 2750 * is performing an action upon. Note that if this field's value is 2751 * zero then the endpoints default value is changed (effecting future 2752 * associations only). 2753 * 2754 * sack_delay - This parameter contains the number of milliseconds that 2755 * the user is requesting the delayed ACK timer be set to. Note that 2756 * this value is defined in the standard to be between 200 and 500 2757 * milliseconds. 2758 * 2759 * sack_freq - This parameter contains the number of packets that must 2760 * be received before a sack is sent without waiting for the delay 2761 * timer to expire. The default value for this is 2, setting this 2762 * value to 1 will disable the delayed sack algorithm. 2763 */ 2764 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2765 struct sctp_sack_info *params) 2766 { 2767 struct sctp_sock *sp = sctp_sk(sk); 2768 struct sctp_association *asoc; 2769 2770 /* Validate value parameter. */ 2771 if (params->sack_delay > 500) 2772 return -EINVAL; 2773 2774 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2775 * socket is a one to many style socket, and an association 2776 * was not found, then the id was invalid. 2777 */ 2778 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2779 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2780 sctp_style(sk, UDP)) 2781 return -EINVAL; 2782 2783 if (asoc) { 2784 sctp_apply_asoc_delayed_ack(params, asoc); 2785 2786 return 0; 2787 } 2788 2789 if (sctp_style(sk, TCP)) 2790 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2791 2792 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2793 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2794 if (params->sack_delay) { 2795 sp->sackdelay = params->sack_delay; 2796 sp->param_flags = 2797 sctp_spp_sackdelay_enable(sp->param_flags); 2798 } 2799 if (params->sack_freq == 1) { 2800 sp->param_flags = 2801 sctp_spp_sackdelay_disable(sp->param_flags); 2802 } else if (params->sack_freq > 1) { 2803 sp->sackfreq = params->sack_freq; 2804 sp->param_flags = 2805 sctp_spp_sackdelay_enable(sp->param_flags); 2806 } 2807 } 2808 2809 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2810 params->sack_assoc_id == SCTP_ALL_ASSOC) 2811 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2812 sctp_apply_asoc_delayed_ack(params, asoc); 2813 2814 return 0; 2815 } 2816 2817 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2818 struct sctp_sack_info *params, 2819 unsigned int optlen) 2820 { 2821 if (optlen == sizeof(struct sctp_assoc_value)) { 2822 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2823 struct sctp_sack_info p; 2824 2825 pr_warn_ratelimited(DEPRECATED 2826 "%s (pid %d) " 2827 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2828 "Use struct sctp_sack_info instead\n", 2829 current->comm, task_pid_nr(current)); 2830 2831 p.sack_assoc_id = v->assoc_id; 2832 p.sack_delay = v->assoc_value; 2833 p.sack_freq = v->assoc_value ? 0 : 1; 2834 return __sctp_setsockopt_delayed_ack(sk, &p); 2835 } 2836 2837 if (optlen != sizeof(struct sctp_sack_info)) 2838 return -EINVAL; 2839 if (params->sack_delay == 0 && params->sack_freq == 0) 2840 return 0; 2841 return __sctp_setsockopt_delayed_ack(sk, params); 2842 } 2843 2844 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2845 * 2846 * Applications can specify protocol parameters for the default association 2847 * initialization. The option name argument to setsockopt() and getsockopt() 2848 * is SCTP_INITMSG. 2849 * 2850 * Setting initialization parameters is effective only on an unconnected 2851 * socket (for UDP-style sockets only future associations are effected 2852 * by the change). With TCP-style sockets, this option is inherited by 2853 * sockets derived from a listener socket. 2854 */ 2855 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2856 unsigned int optlen) 2857 { 2858 struct sctp_sock *sp = sctp_sk(sk); 2859 2860 if (optlen != sizeof(struct sctp_initmsg)) 2861 return -EINVAL; 2862 2863 if (sinit->sinit_num_ostreams) 2864 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2865 if (sinit->sinit_max_instreams) 2866 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2867 if (sinit->sinit_max_attempts) 2868 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2869 if (sinit->sinit_max_init_timeo) 2870 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2871 2872 return 0; 2873 } 2874 2875 /* 2876 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2877 * 2878 * Applications that wish to use the sendto() system call may wish to 2879 * specify a default set of parameters that would normally be supplied 2880 * through the inclusion of ancillary data. This socket option allows 2881 * such an application to set the default sctp_sndrcvinfo structure. 2882 * The application that wishes to use this socket option simply passes 2883 * in to this call the sctp_sndrcvinfo structure defined in Section 2884 * 5.2.2) The input parameters accepted by this call include 2885 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2886 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2887 * to this call if the caller is using the UDP model. 2888 */ 2889 static int sctp_setsockopt_default_send_param(struct sock *sk, 2890 struct sctp_sndrcvinfo *info, 2891 unsigned int optlen) 2892 { 2893 struct sctp_sock *sp = sctp_sk(sk); 2894 struct sctp_association *asoc; 2895 2896 if (optlen != sizeof(*info)) 2897 return -EINVAL; 2898 if (info->sinfo_flags & 2899 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2900 SCTP_ABORT | SCTP_EOF)) 2901 return -EINVAL; 2902 2903 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2904 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2905 sctp_style(sk, UDP)) 2906 return -EINVAL; 2907 2908 if (asoc) { 2909 asoc->default_stream = info->sinfo_stream; 2910 asoc->default_flags = info->sinfo_flags; 2911 asoc->default_ppid = info->sinfo_ppid; 2912 asoc->default_context = info->sinfo_context; 2913 asoc->default_timetolive = info->sinfo_timetolive; 2914 2915 return 0; 2916 } 2917 2918 if (sctp_style(sk, TCP)) 2919 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2920 2921 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2922 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2923 sp->default_stream = info->sinfo_stream; 2924 sp->default_flags = info->sinfo_flags; 2925 sp->default_ppid = info->sinfo_ppid; 2926 sp->default_context = info->sinfo_context; 2927 sp->default_timetolive = info->sinfo_timetolive; 2928 } 2929 2930 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2931 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2932 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2933 asoc->default_stream = info->sinfo_stream; 2934 asoc->default_flags = info->sinfo_flags; 2935 asoc->default_ppid = info->sinfo_ppid; 2936 asoc->default_context = info->sinfo_context; 2937 asoc->default_timetolive = info->sinfo_timetolive; 2938 } 2939 } 2940 2941 return 0; 2942 } 2943 2944 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2945 * (SCTP_DEFAULT_SNDINFO) 2946 */ 2947 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2948 struct sctp_sndinfo *info, 2949 unsigned int optlen) 2950 { 2951 struct sctp_sock *sp = sctp_sk(sk); 2952 struct sctp_association *asoc; 2953 2954 if (optlen != sizeof(*info)) 2955 return -EINVAL; 2956 if (info->snd_flags & 2957 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2958 SCTP_ABORT | SCTP_EOF)) 2959 return -EINVAL; 2960 2961 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2962 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2963 sctp_style(sk, UDP)) 2964 return -EINVAL; 2965 2966 if (asoc) { 2967 asoc->default_stream = info->snd_sid; 2968 asoc->default_flags = info->snd_flags; 2969 asoc->default_ppid = info->snd_ppid; 2970 asoc->default_context = info->snd_context; 2971 2972 return 0; 2973 } 2974 2975 if (sctp_style(sk, TCP)) 2976 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2977 2978 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2979 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2980 sp->default_stream = info->snd_sid; 2981 sp->default_flags = info->snd_flags; 2982 sp->default_ppid = info->snd_ppid; 2983 sp->default_context = info->snd_context; 2984 } 2985 2986 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2987 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2988 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2989 asoc->default_stream = info->snd_sid; 2990 asoc->default_flags = info->snd_flags; 2991 asoc->default_ppid = info->snd_ppid; 2992 asoc->default_context = info->snd_context; 2993 } 2994 } 2995 2996 return 0; 2997 } 2998 2999 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3000 * 3001 * Requests that the local SCTP stack use the enclosed peer address as 3002 * the association primary. The enclosed address must be one of the 3003 * association peer's addresses. 3004 */ 3005 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3006 unsigned int optlen) 3007 { 3008 struct sctp_transport *trans; 3009 struct sctp_af *af; 3010 int err; 3011 3012 if (optlen != sizeof(struct sctp_prim)) 3013 return -EINVAL; 3014 3015 /* Allow security module to validate address but need address len. */ 3016 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3017 if (!af) 3018 return -EINVAL; 3019 3020 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3021 (struct sockaddr *)&prim->ssp_addr, 3022 af->sockaddr_len); 3023 if (err) 3024 return err; 3025 3026 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3027 if (!trans) 3028 return -EINVAL; 3029 3030 sctp_assoc_set_primary(trans->asoc, trans); 3031 3032 return 0; 3033 } 3034 3035 /* 3036 * 7.1.5 SCTP_NODELAY 3037 * 3038 * Turn on/off any Nagle-like algorithm. This means that packets are 3039 * generally sent as soon as possible and no unnecessary delays are 3040 * introduced, at the cost of more packets in the network. Expects an 3041 * integer boolean flag. 3042 */ 3043 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3044 unsigned int optlen) 3045 { 3046 if (optlen < sizeof(int)) 3047 return -EINVAL; 3048 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3049 return 0; 3050 } 3051 3052 /* 3053 * 3054 * 7.1.1 SCTP_RTOINFO 3055 * 3056 * The protocol parameters used to initialize and bound retransmission 3057 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3058 * and modify these parameters. 3059 * All parameters are time values, in milliseconds. A value of 0, when 3060 * modifying the parameters, indicates that the current value should not 3061 * be changed. 3062 * 3063 */ 3064 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3065 struct sctp_rtoinfo *rtoinfo, 3066 unsigned int optlen) 3067 { 3068 struct sctp_association *asoc; 3069 unsigned long rto_min, rto_max; 3070 struct sctp_sock *sp = sctp_sk(sk); 3071 3072 if (optlen != sizeof (struct sctp_rtoinfo)) 3073 return -EINVAL; 3074 3075 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3076 3077 /* Set the values to the specific association */ 3078 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3079 sctp_style(sk, UDP)) 3080 return -EINVAL; 3081 3082 rto_max = rtoinfo->srto_max; 3083 rto_min = rtoinfo->srto_min; 3084 3085 if (rto_max) 3086 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3087 else 3088 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3089 3090 if (rto_min) 3091 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3092 else 3093 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3094 3095 if (rto_min > rto_max) 3096 return -EINVAL; 3097 3098 if (asoc) { 3099 if (rtoinfo->srto_initial != 0) 3100 asoc->rto_initial = 3101 msecs_to_jiffies(rtoinfo->srto_initial); 3102 asoc->rto_max = rto_max; 3103 asoc->rto_min = rto_min; 3104 } else { 3105 /* If there is no association or the association-id = 0 3106 * set the values to the endpoint. 3107 */ 3108 if (rtoinfo->srto_initial != 0) 3109 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3110 sp->rtoinfo.srto_max = rto_max; 3111 sp->rtoinfo.srto_min = rto_min; 3112 } 3113 3114 return 0; 3115 } 3116 3117 /* 3118 * 3119 * 7.1.2 SCTP_ASSOCINFO 3120 * 3121 * This option is used to tune the maximum retransmission attempts 3122 * of the association. 3123 * Returns an error if the new association retransmission value is 3124 * greater than the sum of the retransmission value of the peer. 3125 * See [SCTP] for more information. 3126 * 3127 */ 3128 static int sctp_setsockopt_associnfo(struct sock *sk, 3129 struct sctp_assocparams *assocparams, 3130 unsigned int optlen) 3131 { 3132 3133 struct sctp_association *asoc; 3134 3135 if (optlen != sizeof(struct sctp_assocparams)) 3136 return -EINVAL; 3137 3138 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3139 3140 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3141 sctp_style(sk, UDP)) 3142 return -EINVAL; 3143 3144 /* Set the values to the specific association */ 3145 if (asoc) { 3146 if (assocparams->sasoc_asocmaxrxt != 0) { 3147 __u32 path_sum = 0; 3148 int paths = 0; 3149 struct sctp_transport *peer_addr; 3150 3151 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3152 transports) { 3153 path_sum += peer_addr->pathmaxrxt; 3154 paths++; 3155 } 3156 3157 /* Only validate asocmaxrxt if we have more than 3158 * one path/transport. We do this because path 3159 * retransmissions are only counted when we have more 3160 * then one path. 3161 */ 3162 if (paths > 1 && 3163 assocparams->sasoc_asocmaxrxt > path_sum) 3164 return -EINVAL; 3165 3166 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3167 } 3168 3169 if (assocparams->sasoc_cookie_life != 0) 3170 asoc->cookie_life = 3171 ms_to_ktime(assocparams->sasoc_cookie_life); 3172 } else { 3173 /* Set the values to the endpoint */ 3174 struct sctp_sock *sp = sctp_sk(sk); 3175 3176 if (assocparams->sasoc_asocmaxrxt != 0) 3177 sp->assocparams.sasoc_asocmaxrxt = 3178 assocparams->sasoc_asocmaxrxt; 3179 if (assocparams->sasoc_cookie_life != 0) 3180 sp->assocparams.sasoc_cookie_life = 3181 assocparams->sasoc_cookie_life; 3182 } 3183 return 0; 3184 } 3185 3186 /* 3187 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3188 * 3189 * This socket option is a boolean flag which turns on or off mapped V4 3190 * addresses. If this option is turned on and the socket is type 3191 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3192 * If this option is turned off, then no mapping will be done of V4 3193 * addresses and a user will receive both PF_INET6 and PF_INET type 3194 * addresses on the socket. 3195 */ 3196 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3197 unsigned int optlen) 3198 { 3199 struct sctp_sock *sp = sctp_sk(sk); 3200 3201 if (optlen < sizeof(int)) 3202 return -EINVAL; 3203 if (*val) 3204 sp->v4mapped = 1; 3205 else 3206 sp->v4mapped = 0; 3207 3208 return 0; 3209 } 3210 3211 /* 3212 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3213 * This option will get or set the maximum size to put in any outgoing 3214 * SCTP DATA chunk. If a message is larger than this size it will be 3215 * fragmented by SCTP into the specified size. Note that the underlying 3216 * SCTP implementation may fragment into smaller sized chunks when the 3217 * PMTU of the underlying association is smaller than the value set by 3218 * the user. The default value for this option is '0' which indicates 3219 * the user is NOT limiting fragmentation and only the PMTU will effect 3220 * SCTP's choice of DATA chunk size. Note also that values set larger 3221 * than the maximum size of an IP datagram will effectively let SCTP 3222 * control fragmentation (i.e. the same as setting this option to 0). 3223 * 3224 * The following structure is used to access and modify this parameter: 3225 * 3226 * struct sctp_assoc_value { 3227 * sctp_assoc_t assoc_id; 3228 * uint32_t assoc_value; 3229 * }; 3230 * 3231 * assoc_id: This parameter is ignored for one-to-one style sockets. 3232 * For one-to-many style sockets this parameter indicates which 3233 * association the user is performing an action upon. Note that if 3234 * this field's value is zero then the endpoints default value is 3235 * changed (effecting future associations only). 3236 * assoc_value: This parameter specifies the maximum size in bytes. 3237 */ 3238 static int sctp_setsockopt_maxseg(struct sock *sk, 3239 struct sctp_assoc_value *params, 3240 unsigned int optlen) 3241 { 3242 struct sctp_sock *sp = sctp_sk(sk); 3243 struct sctp_association *asoc; 3244 sctp_assoc_t assoc_id; 3245 int val; 3246 3247 if (optlen == sizeof(int)) { 3248 pr_warn_ratelimited(DEPRECATED 3249 "%s (pid %d) " 3250 "Use of int in maxseg socket option.\n" 3251 "Use struct sctp_assoc_value instead\n", 3252 current->comm, task_pid_nr(current)); 3253 assoc_id = SCTP_FUTURE_ASSOC; 3254 val = *(int *)params; 3255 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3256 assoc_id = params->assoc_id; 3257 val = params->assoc_value; 3258 } else { 3259 return -EINVAL; 3260 } 3261 3262 asoc = sctp_id2assoc(sk, assoc_id); 3263 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3264 sctp_style(sk, UDP)) 3265 return -EINVAL; 3266 3267 if (val) { 3268 int min_len, max_len; 3269 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3270 sizeof(struct sctp_data_chunk); 3271 3272 min_len = sctp_min_frag_point(sp, datasize); 3273 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3274 3275 if (val < min_len || val > max_len) 3276 return -EINVAL; 3277 } 3278 3279 if (asoc) { 3280 asoc->user_frag = val; 3281 sctp_assoc_update_frag_point(asoc); 3282 } else { 3283 sp->user_frag = val; 3284 } 3285 3286 return 0; 3287 } 3288 3289 3290 /* 3291 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3292 * 3293 * Requests that the peer mark the enclosed address as the association 3294 * primary. The enclosed address must be one of the association's 3295 * locally bound addresses. The following structure is used to make a 3296 * set primary request: 3297 */ 3298 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3299 struct sctp_setpeerprim *prim, 3300 unsigned int optlen) 3301 { 3302 struct sctp_sock *sp; 3303 struct sctp_association *asoc = NULL; 3304 struct sctp_chunk *chunk; 3305 struct sctp_af *af; 3306 int err; 3307 3308 sp = sctp_sk(sk); 3309 3310 if (!sp->ep->asconf_enable) 3311 return -EPERM; 3312 3313 if (optlen != sizeof(struct sctp_setpeerprim)) 3314 return -EINVAL; 3315 3316 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3317 if (!asoc) 3318 return -EINVAL; 3319 3320 if (!asoc->peer.asconf_capable) 3321 return -EPERM; 3322 3323 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3324 return -EPERM; 3325 3326 if (!sctp_state(asoc, ESTABLISHED)) 3327 return -ENOTCONN; 3328 3329 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3330 if (!af) 3331 return -EINVAL; 3332 3333 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3334 return -EADDRNOTAVAIL; 3335 3336 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3337 return -EADDRNOTAVAIL; 3338 3339 /* Allow security module to validate address. */ 3340 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3341 (struct sockaddr *)&prim->sspp_addr, 3342 af->sockaddr_len); 3343 if (err) 3344 return err; 3345 3346 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3347 chunk = sctp_make_asconf_set_prim(asoc, 3348 (union sctp_addr *)&prim->sspp_addr); 3349 if (!chunk) 3350 return -ENOMEM; 3351 3352 err = sctp_send_asconf(asoc, chunk); 3353 3354 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3355 3356 return err; 3357 } 3358 3359 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3360 struct sctp_setadaptation *adapt, 3361 unsigned int optlen) 3362 { 3363 if (optlen != sizeof(struct sctp_setadaptation)) 3364 return -EINVAL; 3365 3366 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3367 3368 return 0; 3369 } 3370 3371 /* 3372 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3373 * 3374 * The context field in the sctp_sndrcvinfo structure is normally only 3375 * used when a failed message is retrieved holding the value that was 3376 * sent down on the actual send call. This option allows the setting of 3377 * a default context on an association basis that will be received on 3378 * reading messages from the peer. This is especially helpful in the 3379 * one-2-many model for an application to keep some reference to an 3380 * internal state machine that is processing messages on the 3381 * association. Note that the setting of this value only effects 3382 * received messages from the peer and does not effect the value that is 3383 * saved with outbound messages. 3384 */ 3385 static int sctp_setsockopt_context(struct sock *sk, 3386 struct sctp_assoc_value *params, 3387 unsigned int optlen) 3388 { 3389 struct sctp_sock *sp = sctp_sk(sk); 3390 struct sctp_association *asoc; 3391 3392 if (optlen != sizeof(struct sctp_assoc_value)) 3393 return -EINVAL; 3394 3395 asoc = sctp_id2assoc(sk, params->assoc_id); 3396 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3397 sctp_style(sk, UDP)) 3398 return -EINVAL; 3399 3400 if (asoc) { 3401 asoc->default_rcv_context = params->assoc_value; 3402 3403 return 0; 3404 } 3405 3406 if (sctp_style(sk, TCP)) 3407 params->assoc_id = SCTP_FUTURE_ASSOC; 3408 3409 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3410 params->assoc_id == SCTP_ALL_ASSOC) 3411 sp->default_rcv_context = params->assoc_value; 3412 3413 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3414 params->assoc_id == SCTP_ALL_ASSOC) 3415 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3416 asoc->default_rcv_context = params->assoc_value; 3417 3418 return 0; 3419 } 3420 3421 /* 3422 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3423 * 3424 * This options will at a minimum specify if the implementation is doing 3425 * fragmented interleave. Fragmented interleave, for a one to many 3426 * socket, is when subsequent calls to receive a message may return 3427 * parts of messages from different associations. Some implementations 3428 * may allow you to turn this value on or off. If so, when turned off, 3429 * no fragment interleave will occur (which will cause a head of line 3430 * blocking amongst multiple associations sharing the same one to many 3431 * socket). When this option is turned on, then each receive call may 3432 * come from a different association (thus the user must receive data 3433 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3434 * association each receive belongs to. 3435 * 3436 * This option takes a boolean value. A non-zero value indicates that 3437 * fragmented interleave is on. A value of zero indicates that 3438 * fragmented interleave is off. 3439 * 3440 * Note that it is important that an implementation that allows this 3441 * option to be turned on, have it off by default. Otherwise an unaware 3442 * application using the one to many model may become confused and act 3443 * incorrectly. 3444 */ 3445 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3446 unsigned int optlen) 3447 { 3448 if (optlen != sizeof(int)) 3449 return -EINVAL; 3450 3451 sctp_sk(sk)->frag_interleave = !!*val; 3452 3453 if (!sctp_sk(sk)->frag_interleave) 3454 sctp_sk(sk)->ep->intl_enable = 0; 3455 3456 return 0; 3457 } 3458 3459 /* 3460 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3461 * (SCTP_PARTIAL_DELIVERY_POINT) 3462 * 3463 * This option will set or get the SCTP partial delivery point. This 3464 * point is the size of a message where the partial delivery API will be 3465 * invoked to help free up rwnd space for the peer. Setting this to a 3466 * lower value will cause partial deliveries to happen more often. The 3467 * calls argument is an integer that sets or gets the partial delivery 3468 * point. Note also that the call will fail if the user attempts to set 3469 * this value larger than the socket receive buffer size. 3470 * 3471 * Note that any single message having a length smaller than or equal to 3472 * the SCTP partial delivery point will be delivered in one single read 3473 * call as long as the user provided buffer is large enough to hold the 3474 * message. 3475 */ 3476 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3477 unsigned int optlen) 3478 { 3479 if (optlen != sizeof(u32)) 3480 return -EINVAL; 3481 3482 /* Note: We double the receive buffer from what the user sets 3483 * it to be, also initial rwnd is based on rcvbuf/2. 3484 */ 3485 if (*val > (sk->sk_rcvbuf >> 1)) 3486 return -EINVAL; 3487 3488 sctp_sk(sk)->pd_point = *val; 3489 3490 return 0; /* is this the right error code? */ 3491 } 3492 3493 /* 3494 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3495 * 3496 * This option will allow a user to change the maximum burst of packets 3497 * that can be emitted by this association. Note that the default value 3498 * is 4, and some implementations may restrict this setting so that it 3499 * can only be lowered. 3500 * 3501 * NOTE: This text doesn't seem right. Do this on a socket basis with 3502 * future associations inheriting the socket value. 3503 */ 3504 static int sctp_setsockopt_maxburst(struct sock *sk, 3505 struct sctp_assoc_value *params, 3506 unsigned int optlen) 3507 { 3508 struct sctp_sock *sp = sctp_sk(sk); 3509 struct sctp_association *asoc; 3510 sctp_assoc_t assoc_id; 3511 u32 assoc_value; 3512 3513 if (optlen == sizeof(int)) { 3514 pr_warn_ratelimited(DEPRECATED 3515 "%s (pid %d) " 3516 "Use of int in max_burst socket option deprecated.\n" 3517 "Use struct sctp_assoc_value instead\n", 3518 current->comm, task_pid_nr(current)); 3519 assoc_id = SCTP_FUTURE_ASSOC; 3520 assoc_value = *((int *)params); 3521 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3522 assoc_id = params->assoc_id; 3523 assoc_value = params->assoc_value; 3524 } else 3525 return -EINVAL; 3526 3527 asoc = sctp_id2assoc(sk, assoc_id); 3528 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3529 return -EINVAL; 3530 3531 if (asoc) { 3532 asoc->max_burst = assoc_value; 3533 3534 return 0; 3535 } 3536 3537 if (sctp_style(sk, TCP)) 3538 assoc_id = SCTP_FUTURE_ASSOC; 3539 3540 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3541 sp->max_burst = assoc_value; 3542 3543 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3544 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3545 asoc->max_burst = assoc_value; 3546 3547 return 0; 3548 } 3549 3550 /* 3551 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3552 * 3553 * This set option adds a chunk type that the user is requesting to be 3554 * received only in an authenticated way. Changes to the list of chunks 3555 * will only effect future associations on the socket. 3556 */ 3557 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3558 struct sctp_authchunk *val, 3559 unsigned int optlen) 3560 { 3561 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3562 3563 if (!ep->auth_enable) 3564 return -EACCES; 3565 3566 if (optlen != sizeof(struct sctp_authchunk)) 3567 return -EINVAL; 3568 3569 switch (val->sauth_chunk) { 3570 case SCTP_CID_INIT: 3571 case SCTP_CID_INIT_ACK: 3572 case SCTP_CID_SHUTDOWN_COMPLETE: 3573 case SCTP_CID_AUTH: 3574 return -EINVAL; 3575 } 3576 3577 /* add this chunk id to the endpoint */ 3578 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3579 } 3580 3581 /* 3582 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3583 * 3584 * This option gets or sets the list of HMAC algorithms that the local 3585 * endpoint requires the peer to use. 3586 */ 3587 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3588 struct sctp_hmacalgo *hmacs, 3589 unsigned int optlen) 3590 { 3591 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3592 u32 idents; 3593 3594 if (!ep->auth_enable) 3595 return -EACCES; 3596 3597 if (optlen < sizeof(struct sctp_hmacalgo)) 3598 return -EINVAL; 3599 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3600 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3601 3602 idents = hmacs->shmac_num_idents; 3603 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3604 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3605 return -EINVAL; 3606 3607 return sctp_auth_ep_set_hmacs(ep, hmacs); 3608 } 3609 3610 /* 3611 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3612 * 3613 * This option will set a shared secret key which is used to build an 3614 * association shared key. 3615 */ 3616 static int sctp_setsockopt_auth_key(struct sock *sk, 3617 struct sctp_authkey *authkey, 3618 unsigned int optlen) 3619 { 3620 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3621 struct sctp_association *asoc; 3622 int ret = -EINVAL; 3623 3624 if (optlen <= sizeof(struct sctp_authkey)) 3625 return -EINVAL; 3626 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3627 * this. 3628 */ 3629 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3630 3631 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3632 goto out; 3633 3634 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3635 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3636 sctp_style(sk, UDP)) 3637 goto out; 3638 3639 if (asoc) { 3640 ret = sctp_auth_set_key(ep, asoc, authkey); 3641 goto out; 3642 } 3643 3644 if (sctp_style(sk, TCP)) 3645 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3646 3647 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3648 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3649 ret = sctp_auth_set_key(ep, asoc, authkey); 3650 if (ret) 3651 goto out; 3652 } 3653 3654 ret = 0; 3655 3656 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3657 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3658 list_for_each_entry(asoc, &ep->asocs, asocs) { 3659 int res = sctp_auth_set_key(ep, asoc, authkey); 3660 3661 if (res && !ret) 3662 ret = res; 3663 } 3664 } 3665 3666 out: 3667 memzero_explicit(authkey, optlen); 3668 return ret; 3669 } 3670 3671 /* 3672 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3673 * 3674 * This option will get or set the active shared key to be used to build 3675 * the association shared key. 3676 */ 3677 static int sctp_setsockopt_active_key(struct sock *sk, 3678 struct sctp_authkeyid *val, 3679 unsigned int optlen) 3680 { 3681 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3682 struct sctp_association *asoc; 3683 int ret = 0; 3684 3685 if (optlen != sizeof(struct sctp_authkeyid)) 3686 return -EINVAL; 3687 3688 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3689 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3690 sctp_style(sk, UDP)) 3691 return -EINVAL; 3692 3693 if (asoc) 3694 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3695 3696 if (sctp_style(sk, TCP)) 3697 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3698 3699 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3700 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3701 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3702 if (ret) 3703 return ret; 3704 } 3705 3706 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3707 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3708 list_for_each_entry(asoc, &ep->asocs, asocs) { 3709 int res = sctp_auth_set_active_key(ep, asoc, 3710 val->scact_keynumber); 3711 3712 if (res && !ret) 3713 ret = res; 3714 } 3715 } 3716 3717 return ret; 3718 } 3719 3720 /* 3721 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3722 * 3723 * This set option will delete a shared secret key from use. 3724 */ 3725 static int sctp_setsockopt_del_key(struct sock *sk, 3726 struct sctp_authkeyid *val, 3727 unsigned int optlen) 3728 { 3729 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3730 struct sctp_association *asoc; 3731 int ret = 0; 3732 3733 if (optlen != sizeof(struct sctp_authkeyid)) 3734 return -EINVAL; 3735 3736 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3737 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3738 sctp_style(sk, UDP)) 3739 return -EINVAL; 3740 3741 if (asoc) 3742 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3743 3744 if (sctp_style(sk, TCP)) 3745 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3746 3747 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3748 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3749 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3750 if (ret) 3751 return ret; 3752 } 3753 3754 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3755 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3756 list_for_each_entry(asoc, &ep->asocs, asocs) { 3757 int res = sctp_auth_del_key_id(ep, asoc, 3758 val->scact_keynumber); 3759 3760 if (res && !ret) 3761 ret = res; 3762 } 3763 } 3764 3765 return ret; 3766 } 3767 3768 /* 3769 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3770 * 3771 * This set option will deactivate a shared secret key. 3772 */ 3773 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3774 struct sctp_authkeyid *val, 3775 unsigned int optlen) 3776 { 3777 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3778 struct sctp_association *asoc; 3779 int ret = 0; 3780 3781 if (optlen != sizeof(struct sctp_authkeyid)) 3782 return -EINVAL; 3783 3784 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3785 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3786 sctp_style(sk, UDP)) 3787 return -EINVAL; 3788 3789 if (asoc) 3790 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3791 3792 if (sctp_style(sk, TCP)) 3793 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3794 3795 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3796 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3797 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3798 if (ret) 3799 return ret; 3800 } 3801 3802 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3803 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3804 list_for_each_entry(asoc, &ep->asocs, asocs) { 3805 int res = sctp_auth_deact_key_id(ep, asoc, 3806 val->scact_keynumber); 3807 3808 if (res && !ret) 3809 ret = res; 3810 } 3811 } 3812 3813 return ret; 3814 } 3815 3816 /* 3817 * 8.1.23 SCTP_AUTO_ASCONF 3818 * 3819 * This option will enable or disable the use of the automatic generation of 3820 * ASCONF chunks to add and delete addresses to an existing association. Note 3821 * that this option has two caveats namely: a) it only affects sockets that 3822 * are bound to all addresses available to the SCTP stack, and b) the system 3823 * administrator may have an overriding control that turns the ASCONF feature 3824 * off no matter what setting the socket option may have. 3825 * This option expects an integer boolean flag, where a non-zero value turns on 3826 * the option, and a zero value turns off the option. 3827 * Note. In this implementation, socket operation overrides default parameter 3828 * being set by sysctl as well as FreeBSD implementation 3829 */ 3830 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3831 unsigned int optlen) 3832 { 3833 struct sctp_sock *sp = sctp_sk(sk); 3834 3835 if (optlen < sizeof(int)) 3836 return -EINVAL; 3837 if (!sctp_is_ep_boundall(sk) && *val) 3838 return -EINVAL; 3839 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3840 return 0; 3841 3842 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3843 if (*val == 0 && sp->do_auto_asconf) { 3844 list_del(&sp->auto_asconf_list); 3845 sp->do_auto_asconf = 0; 3846 } else if (*val && !sp->do_auto_asconf) { 3847 list_add_tail(&sp->auto_asconf_list, 3848 &sock_net(sk)->sctp.auto_asconf_splist); 3849 sp->do_auto_asconf = 1; 3850 } 3851 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3852 return 0; 3853 } 3854 3855 /* 3856 * SCTP_PEER_ADDR_THLDS 3857 * 3858 * This option allows us to alter the partially failed threshold for one or all 3859 * transports in an association. See Section 6.1 of: 3860 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3861 */ 3862 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3863 struct sctp_paddrthlds_v2 *val, 3864 unsigned int optlen, bool v2) 3865 { 3866 struct sctp_transport *trans; 3867 struct sctp_association *asoc; 3868 int len; 3869 3870 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3871 if (optlen < len) 3872 return -EINVAL; 3873 3874 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3875 return -EINVAL; 3876 3877 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3878 trans = sctp_addr_id2transport(sk, &val->spt_address, 3879 val->spt_assoc_id); 3880 if (!trans) 3881 return -ENOENT; 3882 3883 if (val->spt_pathmaxrxt) 3884 trans->pathmaxrxt = val->spt_pathmaxrxt; 3885 if (v2) 3886 trans->ps_retrans = val->spt_pathcpthld; 3887 trans->pf_retrans = val->spt_pathpfthld; 3888 3889 return 0; 3890 } 3891 3892 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3893 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3894 sctp_style(sk, UDP)) 3895 return -EINVAL; 3896 3897 if (asoc) { 3898 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3899 transports) { 3900 if (val->spt_pathmaxrxt) 3901 trans->pathmaxrxt = val->spt_pathmaxrxt; 3902 if (v2) 3903 trans->ps_retrans = val->spt_pathcpthld; 3904 trans->pf_retrans = val->spt_pathpfthld; 3905 } 3906 3907 if (val->spt_pathmaxrxt) 3908 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3909 if (v2) 3910 asoc->ps_retrans = val->spt_pathcpthld; 3911 asoc->pf_retrans = val->spt_pathpfthld; 3912 } else { 3913 struct sctp_sock *sp = sctp_sk(sk); 3914 3915 if (val->spt_pathmaxrxt) 3916 sp->pathmaxrxt = val->spt_pathmaxrxt; 3917 if (v2) 3918 sp->ps_retrans = val->spt_pathcpthld; 3919 sp->pf_retrans = val->spt_pathpfthld; 3920 } 3921 3922 return 0; 3923 } 3924 3925 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3926 unsigned int optlen) 3927 { 3928 if (optlen < sizeof(int)) 3929 return -EINVAL; 3930 3931 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3932 3933 return 0; 3934 } 3935 3936 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3937 unsigned int optlen) 3938 { 3939 if (optlen < sizeof(int)) 3940 return -EINVAL; 3941 3942 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3943 3944 return 0; 3945 } 3946 3947 static int sctp_setsockopt_pr_supported(struct sock *sk, 3948 struct sctp_assoc_value *params, 3949 unsigned int optlen) 3950 { 3951 struct sctp_association *asoc; 3952 3953 if (optlen != sizeof(*params)) 3954 return -EINVAL; 3955 3956 asoc = sctp_id2assoc(sk, params->assoc_id); 3957 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3958 sctp_style(sk, UDP)) 3959 return -EINVAL; 3960 3961 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3962 3963 return 0; 3964 } 3965 3966 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3967 struct sctp_default_prinfo *info, 3968 unsigned int optlen) 3969 { 3970 struct sctp_sock *sp = sctp_sk(sk); 3971 struct sctp_association *asoc; 3972 int retval = -EINVAL; 3973 3974 if (optlen != sizeof(*info)) 3975 goto out; 3976 3977 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3978 goto out; 3979 3980 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3981 info->pr_value = 0; 3982 3983 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3984 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3985 sctp_style(sk, UDP)) 3986 goto out; 3987 3988 retval = 0; 3989 3990 if (asoc) { 3991 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3992 asoc->default_timetolive = info->pr_value; 3993 goto out; 3994 } 3995 3996 if (sctp_style(sk, TCP)) 3997 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 3998 3999 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4000 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4001 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4002 sp->default_timetolive = info->pr_value; 4003 } 4004 4005 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4006 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4007 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4008 SCTP_PR_SET_POLICY(asoc->default_flags, 4009 info->pr_policy); 4010 asoc->default_timetolive = info->pr_value; 4011 } 4012 } 4013 4014 out: 4015 return retval; 4016 } 4017 4018 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4019 struct sctp_assoc_value *params, 4020 unsigned int optlen) 4021 { 4022 struct sctp_association *asoc; 4023 int retval = -EINVAL; 4024 4025 if (optlen != sizeof(*params)) 4026 goto out; 4027 4028 asoc = sctp_id2assoc(sk, params->assoc_id); 4029 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4030 sctp_style(sk, UDP)) 4031 goto out; 4032 4033 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4034 4035 retval = 0; 4036 4037 out: 4038 return retval; 4039 } 4040 4041 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4042 struct sctp_assoc_value *params, 4043 unsigned int optlen) 4044 { 4045 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4046 struct sctp_association *asoc; 4047 int retval = -EINVAL; 4048 4049 if (optlen != sizeof(*params)) 4050 goto out; 4051 4052 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4053 goto out; 4054 4055 asoc = sctp_id2assoc(sk, params->assoc_id); 4056 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4057 sctp_style(sk, UDP)) 4058 goto out; 4059 4060 retval = 0; 4061 4062 if (asoc) { 4063 asoc->strreset_enable = params->assoc_value; 4064 goto out; 4065 } 4066 4067 if (sctp_style(sk, TCP)) 4068 params->assoc_id = SCTP_FUTURE_ASSOC; 4069 4070 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4071 params->assoc_id == SCTP_ALL_ASSOC) 4072 ep->strreset_enable = params->assoc_value; 4073 4074 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4075 params->assoc_id == SCTP_ALL_ASSOC) 4076 list_for_each_entry(asoc, &ep->asocs, asocs) 4077 asoc->strreset_enable = params->assoc_value; 4078 4079 out: 4080 return retval; 4081 } 4082 4083 static int sctp_setsockopt_reset_streams(struct sock *sk, 4084 struct sctp_reset_streams *params, 4085 unsigned int optlen) 4086 { 4087 struct sctp_association *asoc; 4088 4089 if (optlen < sizeof(*params)) 4090 return -EINVAL; 4091 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4092 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4093 sizeof(__u16) * sizeof(*params)); 4094 4095 if (params->srs_number_streams * sizeof(__u16) > 4096 optlen - sizeof(*params)) 4097 return -EINVAL; 4098 4099 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4100 if (!asoc) 4101 return -EINVAL; 4102 4103 return sctp_send_reset_streams(asoc, params); 4104 } 4105 4106 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4107 unsigned int optlen) 4108 { 4109 struct sctp_association *asoc; 4110 4111 if (optlen != sizeof(*associd)) 4112 return -EINVAL; 4113 4114 asoc = sctp_id2assoc(sk, *associd); 4115 if (!asoc) 4116 return -EINVAL; 4117 4118 return sctp_send_reset_assoc(asoc); 4119 } 4120 4121 static int sctp_setsockopt_add_streams(struct sock *sk, 4122 struct sctp_add_streams *params, 4123 unsigned int optlen) 4124 { 4125 struct sctp_association *asoc; 4126 4127 if (optlen != sizeof(*params)) 4128 return -EINVAL; 4129 4130 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4131 if (!asoc) 4132 return -EINVAL; 4133 4134 return sctp_send_add_streams(asoc, params); 4135 } 4136 4137 static int sctp_setsockopt_scheduler(struct sock *sk, 4138 struct sctp_assoc_value *params, 4139 unsigned int optlen) 4140 { 4141 struct sctp_sock *sp = sctp_sk(sk); 4142 struct sctp_association *asoc; 4143 int retval = 0; 4144 4145 if (optlen < sizeof(*params)) 4146 return -EINVAL; 4147 4148 if (params->assoc_value > SCTP_SS_MAX) 4149 return -EINVAL; 4150 4151 asoc = sctp_id2assoc(sk, params->assoc_id); 4152 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4153 sctp_style(sk, UDP)) 4154 return -EINVAL; 4155 4156 if (asoc) 4157 return sctp_sched_set_sched(asoc, params->assoc_value); 4158 4159 if (sctp_style(sk, TCP)) 4160 params->assoc_id = SCTP_FUTURE_ASSOC; 4161 4162 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4163 params->assoc_id == SCTP_ALL_ASSOC) 4164 sp->default_ss = params->assoc_value; 4165 4166 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4167 params->assoc_id == SCTP_ALL_ASSOC) { 4168 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4169 int ret = sctp_sched_set_sched(asoc, 4170 params->assoc_value); 4171 4172 if (ret && !retval) 4173 retval = ret; 4174 } 4175 } 4176 4177 return retval; 4178 } 4179 4180 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4181 struct sctp_stream_value *params, 4182 unsigned int optlen) 4183 { 4184 struct sctp_association *asoc; 4185 int retval = -EINVAL; 4186 4187 if (optlen < sizeof(*params)) 4188 goto out; 4189 4190 asoc = sctp_id2assoc(sk, params->assoc_id); 4191 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4192 sctp_style(sk, UDP)) 4193 goto out; 4194 4195 if (asoc) { 4196 retval = sctp_sched_set_value(asoc, params->stream_id, 4197 params->stream_value, GFP_KERNEL); 4198 goto out; 4199 } 4200 4201 retval = 0; 4202 4203 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4204 int ret = sctp_sched_set_value(asoc, params->stream_id, 4205 params->stream_value, 4206 GFP_KERNEL); 4207 if (ret && !retval) /* try to return the 1st error. */ 4208 retval = ret; 4209 } 4210 4211 out: 4212 return retval; 4213 } 4214 4215 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4216 struct sctp_assoc_value *p, 4217 unsigned int optlen) 4218 { 4219 struct sctp_sock *sp = sctp_sk(sk); 4220 struct sctp_association *asoc; 4221 4222 if (optlen < sizeof(*p)) 4223 return -EINVAL; 4224 4225 asoc = sctp_id2assoc(sk, p->assoc_id); 4226 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4227 return -EINVAL; 4228 4229 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4230 return -EPERM; 4231 } 4232 4233 sp->ep->intl_enable = !!p->assoc_value; 4234 return 0; 4235 } 4236 4237 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4238 unsigned int optlen) 4239 { 4240 if (!sctp_style(sk, TCP)) 4241 return -EOPNOTSUPP; 4242 4243 if (sctp_sk(sk)->ep->base.bind_addr.port) 4244 return -EFAULT; 4245 4246 if (optlen < sizeof(int)) 4247 return -EINVAL; 4248 4249 sctp_sk(sk)->reuse = !!*val; 4250 4251 return 0; 4252 } 4253 4254 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4255 struct sctp_association *asoc) 4256 { 4257 struct sctp_ulpevent *event; 4258 4259 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4260 4261 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4262 if (sctp_outq_is_empty(&asoc->outqueue)) { 4263 event = sctp_ulpevent_make_sender_dry_event(asoc, 4264 GFP_USER | __GFP_NOWARN); 4265 if (!event) 4266 return -ENOMEM; 4267 4268 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4269 } 4270 } 4271 4272 return 0; 4273 } 4274 4275 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4276 unsigned int optlen) 4277 { 4278 struct sctp_sock *sp = sctp_sk(sk); 4279 struct sctp_association *asoc; 4280 int retval = 0; 4281 4282 if (optlen < sizeof(*param)) 4283 return -EINVAL; 4284 4285 if (param->se_type < SCTP_SN_TYPE_BASE || 4286 param->se_type > SCTP_SN_TYPE_MAX) 4287 return -EINVAL; 4288 4289 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4290 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4291 sctp_style(sk, UDP)) 4292 return -EINVAL; 4293 4294 if (asoc) 4295 return sctp_assoc_ulpevent_type_set(param, asoc); 4296 4297 if (sctp_style(sk, TCP)) 4298 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4299 4300 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4301 param->se_assoc_id == SCTP_ALL_ASSOC) 4302 sctp_ulpevent_type_set(&sp->subscribe, 4303 param->se_type, param->se_on); 4304 4305 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4306 param->se_assoc_id == SCTP_ALL_ASSOC) { 4307 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4308 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4309 4310 if (ret && !retval) 4311 retval = ret; 4312 } 4313 } 4314 4315 return retval; 4316 } 4317 4318 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4319 struct sctp_assoc_value *params, 4320 unsigned int optlen) 4321 { 4322 struct sctp_association *asoc; 4323 struct sctp_endpoint *ep; 4324 int retval = -EINVAL; 4325 4326 if (optlen != sizeof(*params)) 4327 goto out; 4328 4329 asoc = sctp_id2assoc(sk, params->assoc_id); 4330 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4331 sctp_style(sk, UDP)) 4332 goto out; 4333 4334 ep = sctp_sk(sk)->ep; 4335 ep->asconf_enable = !!params->assoc_value; 4336 4337 if (ep->asconf_enable && ep->auth_enable) { 4338 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4339 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4340 } 4341 4342 retval = 0; 4343 4344 out: 4345 return retval; 4346 } 4347 4348 static int sctp_setsockopt_auth_supported(struct sock *sk, 4349 struct sctp_assoc_value *params, 4350 unsigned int optlen) 4351 { 4352 struct sctp_association *asoc; 4353 struct sctp_endpoint *ep; 4354 int retval = -EINVAL; 4355 4356 if (optlen != sizeof(*params)) 4357 goto out; 4358 4359 asoc = sctp_id2assoc(sk, params->assoc_id); 4360 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4361 sctp_style(sk, UDP)) 4362 goto out; 4363 4364 ep = sctp_sk(sk)->ep; 4365 if (params->assoc_value) { 4366 retval = sctp_auth_init(ep, GFP_KERNEL); 4367 if (retval) 4368 goto out; 4369 if (ep->asconf_enable) { 4370 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4371 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4372 } 4373 } 4374 4375 ep->auth_enable = !!params->assoc_value; 4376 retval = 0; 4377 4378 out: 4379 return retval; 4380 } 4381 4382 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4383 struct sctp_assoc_value *params, 4384 unsigned int optlen) 4385 { 4386 struct sctp_association *asoc; 4387 int retval = -EINVAL; 4388 4389 if (optlen != sizeof(*params)) 4390 goto out; 4391 4392 asoc = sctp_id2assoc(sk, params->assoc_id); 4393 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4394 sctp_style(sk, UDP)) 4395 goto out; 4396 4397 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4398 retval = 0; 4399 4400 out: 4401 return retval; 4402 } 4403 4404 static int sctp_setsockopt_pf_expose(struct sock *sk, 4405 struct sctp_assoc_value *params, 4406 unsigned int optlen) 4407 { 4408 struct sctp_association *asoc; 4409 int retval = -EINVAL; 4410 4411 if (optlen != sizeof(*params)) 4412 goto out; 4413 4414 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4415 goto out; 4416 4417 asoc = sctp_id2assoc(sk, params->assoc_id); 4418 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4419 sctp_style(sk, UDP)) 4420 goto out; 4421 4422 if (asoc) 4423 asoc->pf_expose = params->assoc_value; 4424 else 4425 sctp_sk(sk)->pf_expose = params->assoc_value; 4426 retval = 0; 4427 4428 out: 4429 return retval; 4430 } 4431 4432 static int sctp_setsockopt_encap_port(struct sock *sk, 4433 struct sctp_udpencaps *encap, 4434 unsigned int optlen) 4435 { 4436 struct sctp_association *asoc; 4437 struct sctp_transport *t; 4438 __be16 encap_port; 4439 4440 if (optlen != sizeof(*encap)) 4441 return -EINVAL; 4442 4443 /* If an address other than INADDR_ANY is specified, and 4444 * no transport is found, then the request is invalid. 4445 */ 4446 encap_port = (__force __be16)encap->sue_port; 4447 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4448 t = sctp_addr_id2transport(sk, &encap->sue_address, 4449 encap->sue_assoc_id); 4450 if (!t) 4451 return -EINVAL; 4452 4453 t->encap_port = encap_port; 4454 return 0; 4455 } 4456 4457 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4458 * socket is a one to many style socket, and an association 4459 * was not found, then the id was invalid. 4460 */ 4461 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4462 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4463 sctp_style(sk, UDP)) 4464 return -EINVAL; 4465 4466 /* If changes are for association, also apply encap_port to 4467 * each transport. 4468 */ 4469 if (asoc) { 4470 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4471 transports) 4472 t->encap_port = encap_port; 4473 4474 asoc->encap_port = encap_port; 4475 return 0; 4476 } 4477 4478 sctp_sk(sk)->encap_port = encap_port; 4479 return 0; 4480 } 4481 4482 static int sctp_setsockopt_probe_interval(struct sock *sk, 4483 struct sctp_probeinterval *params, 4484 unsigned int optlen) 4485 { 4486 struct sctp_association *asoc; 4487 struct sctp_transport *t; 4488 __u32 probe_interval; 4489 4490 if (optlen != sizeof(*params)) 4491 return -EINVAL; 4492 4493 probe_interval = params->spi_interval; 4494 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4495 return -EINVAL; 4496 4497 /* If an address other than INADDR_ANY is specified, and 4498 * no transport is found, then the request is invalid. 4499 */ 4500 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4501 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4502 params->spi_assoc_id); 4503 if (!t) 4504 return -EINVAL; 4505 4506 t->probe_interval = msecs_to_jiffies(probe_interval); 4507 sctp_transport_pl_reset(t); 4508 return 0; 4509 } 4510 4511 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4512 * socket is a one to many style socket, and an association 4513 * was not found, then the id was invalid. 4514 */ 4515 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4516 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4517 sctp_style(sk, UDP)) 4518 return -EINVAL; 4519 4520 /* If changes are for association, also apply probe_interval to 4521 * each transport. 4522 */ 4523 if (asoc) { 4524 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4525 t->probe_interval = msecs_to_jiffies(probe_interval); 4526 sctp_transport_pl_reset(t); 4527 } 4528 4529 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4530 return 0; 4531 } 4532 4533 sctp_sk(sk)->probe_interval = probe_interval; 4534 return 0; 4535 } 4536 4537 /* API 6.2 setsockopt(), getsockopt() 4538 * 4539 * Applications use setsockopt() and getsockopt() to set or retrieve 4540 * socket options. Socket options are used to change the default 4541 * behavior of sockets calls. They are described in Section 7. 4542 * 4543 * The syntax is: 4544 * 4545 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4546 * int __user *optlen); 4547 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4548 * int optlen); 4549 * 4550 * sd - the socket descript. 4551 * level - set to IPPROTO_SCTP for all SCTP options. 4552 * optname - the option name. 4553 * optval - the buffer to store the value of the option. 4554 * optlen - the size of the buffer. 4555 */ 4556 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4557 sockptr_t optval, unsigned int optlen) 4558 { 4559 void *kopt = NULL; 4560 int retval = 0; 4561 4562 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4563 4564 /* I can hardly begin to describe how wrong this is. This is 4565 * so broken as to be worse than useless. The API draft 4566 * REALLY is NOT helpful here... I am not convinced that the 4567 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4568 * are at all well-founded. 4569 */ 4570 if (level != SOL_SCTP) { 4571 struct sctp_af *af = sctp_sk(sk)->pf->af; 4572 4573 return af->setsockopt(sk, level, optname, optval, optlen); 4574 } 4575 4576 if (optlen > 0) { 4577 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4578 optlen = min_t(unsigned int, optlen, 4579 PAGE_ALIGN(USHRT_MAX + 4580 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4581 kopt = memdup_sockptr(optval, optlen); 4582 if (IS_ERR(kopt)) 4583 return PTR_ERR(kopt); 4584 } 4585 4586 lock_sock(sk); 4587 4588 switch (optname) { 4589 case SCTP_SOCKOPT_BINDX_ADD: 4590 /* 'optlen' is the size of the addresses buffer. */ 4591 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4592 SCTP_BINDX_ADD_ADDR); 4593 break; 4594 4595 case SCTP_SOCKOPT_BINDX_REM: 4596 /* 'optlen' is the size of the addresses buffer. */ 4597 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4598 SCTP_BINDX_REM_ADDR); 4599 break; 4600 4601 case SCTP_SOCKOPT_CONNECTX_OLD: 4602 /* 'optlen' is the size of the addresses buffer. */ 4603 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4604 break; 4605 4606 case SCTP_SOCKOPT_CONNECTX: 4607 /* 'optlen' is the size of the addresses buffer. */ 4608 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4609 break; 4610 4611 case SCTP_DISABLE_FRAGMENTS: 4612 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4613 break; 4614 4615 case SCTP_EVENTS: 4616 retval = sctp_setsockopt_events(sk, kopt, optlen); 4617 break; 4618 4619 case SCTP_AUTOCLOSE: 4620 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4621 break; 4622 4623 case SCTP_PEER_ADDR_PARAMS: 4624 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4625 break; 4626 4627 case SCTP_DELAYED_SACK: 4628 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4629 break; 4630 case SCTP_PARTIAL_DELIVERY_POINT: 4631 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4632 break; 4633 4634 case SCTP_INITMSG: 4635 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4636 break; 4637 case SCTP_DEFAULT_SEND_PARAM: 4638 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4639 break; 4640 case SCTP_DEFAULT_SNDINFO: 4641 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4642 break; 4643 case SCTP_PRIMARY_ADDR: 4644 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4645 break; 4646 case SCTP_SET_PEER_PRIMARY_ADDR: 4647 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4648 break; 4649 case SCTP_NODELAY: 4650 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4651 break; 4652 case SCTP_RTOINFO: 4653 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4654 break; 4655 case SCTP_ASSOCINFO: 4656 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4657 break; 4658 case SCTP_I_WANT_MAPPED_V4_ADDR: 4659 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4660 break; 4661 case SCTP_MAXSEG: 4662 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4663 break; 4664 case SCTP_ADAPTATION_LAYER: 4665 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4666 break; 4667 case SCTP_CONTEXT: 4668 retval = sctp_setsockopt_context(sk, kopt, optlen); 4669 break; 4670 case SCTP_FRAGMENT_INTERLEAVE: 4671 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4672 break; 4673 case SCTP_MAX_BURST: 4674 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4675 break; 4676 case SCTP_AUTH_CHUNK: 4677 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4678 break; 4679 case SCTP_HMAC_IDENT: 4680 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4681 break; 4682 case SCTP_AUTH_KEY: 4683 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4684 break; 4685 case SCTP_AUTH_ACTIVE_KEY: 4686 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4687 break; 4688 case SCTP_AUTH_DELETE_KEY: 4689 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4690 break; 4691 case SCTP_AUTH_DEACTIVATE_KEY: 4692 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4693 break; 4694 case SCTP_AUTO_ASCONF: 4695 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4696 break; 4697 case SCTP_PEER_ADDR_THLDS: 4698 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4699 false); 4700 break; 4701 case SCTP_PEER_ADDR_THLDS_V2: 4702 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4703 true); 4704 break; 4705 case SCTP_RECVRCVINFO: 4706 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4707 break; 4708 case SCTP_RECVNXTINFO: 4709 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4710 break; 4711 case SCTP_PR_SUPPORTED: 4712 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4713 break; 4714 case SCTP_DEFAULT_PRINFO: 4715 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4716 break; 4717 case SCTP_RECONFIG_SUPPORTED: 4718 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4719 break; 4720 case SCTP_ENABLE_STREAM_RESET: 4721 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4722 break; 4723 case SCTP_RESET_STREAMS: 4724 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4725 break; 4726 case SCTP_RESET_ASSOC: 4727 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4728 break; 4729 case SCTP_ADD_STREAMS: 4730 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4731 break; 4732 case SCTP_STREAM_SCHEDULER: 4733 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4734 break; 4735 case SCTP_STREAM_SCHEDULER_VALUE: 4736 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4737 break; 4738 case SCTP_INTERLEAVING_SUPPORTED: 4739 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4740 optlen); 4741 break; 4742 case SCTP_REUSE_PORT: 4743 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4744 break; 4745 case SCTP_EVENT: 4746 retval = sctp_setsockopt_event(sk, kopt, optlen); 4747 break; 4748 case SCTP_ASCONF_SUPPORTED: 4749 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4750 break; 4751 case SCTP_AUTH_SUPPORTED: 4752 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4753 break; 4754 case SCTP_ECN_SUPPORTED: 4755 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4756 break; 4757 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4758 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4759 break; 4760 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4761 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4762 break; 4763 case SCTP_PLPMTUD_PROBE_INTERVAL: 4764 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4765 break; 4766 default: 4767 retval = -ENOPROTOOPT; 4768 break; 4769 } 4770 4771 release_sock(sk); 4772 kfree(kopt); 4773 return retval; 4774 } 4775 4776 /* API 3.1.6 connect() - UDP Style Syntax 4777 * 4778 * An application may use the connect() call in the UDP model to initiate an 4779 * association without sending data. 4780 * 4781 * The syntax is: 4782 * 4783 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4784 * 4785 * sd: the socket descriptor to have a new association added to. 4786 * 4787 * nam: the address structure (either struct sockaddr_in or struct 4788 * sockaddr_in6 defined in RFC2553 [7]). 4789 * 4790 * len: the size of the address. 4791 */ 4792 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4793 int addr_len, int flags) 4794 { 4795 struct sctp_af *af; 4796 int err = -EINVAL; 4797 4798 lock_sock(sk); 4799 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4800 addr, addr_len); 4801 4802 /* Validate addr_len before calling common connect/connectx routine. */ 4803 af = sctp_get_af_specific(addr->sa_family); 4804 if (af && addr_len >= af->sockaddr_len) 4805 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4806 4807 release_sock(sk); 4808 return err; 4809 } 4810 4811 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4812 int addr_len, int flags) 4813 { 4814 if (addr_len < sizeof(uaddr->sa_family)) 4815 return -EINVAL; 4816 4817 if (uaddr->sa_family == AF_UNSPEC) 4818 return -EOPNOTSUPP; 4819 4820 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4821 } 4822 4823 /* FIXME: Write comments. */ 4824 static int sctp_disconnect(struct sock *sk, int flags) 4825 { 4826 return -EOPNOTSUPP; /* STUB */ 4827 } 4828 4829 /* 4.1.4 accept() - TCP Style Syntax 4830 * 4831 * Applications use accept() call to remove an established SCTP 4832 * association from the accept queue of the endpoint. A new socket 4833 * descriptor will be returned from accept() to represent the newly 4834 * formed association. 4835 */ 4836 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4837 { 4838 struct sctp_sock *sp; 4839 struct sctp_endpoint *ep; 4840 struct sock *newsk = NULL; 4841 struct sctp_association *asoc; 4842 long timeo; 4843 int error = 0; 4844 4845 lock_sock(sk); 4846 4847 sp = sctp_sk(sk); 4848 ep = sp->ep; 4849 4850 if (!sctp_style(sk, TCP)) { 4851 error = -EOPNOTSUPP; 4852 goto out; 4853 } 4854 4855 if (!sctp_sstate(sk, LISTENING)) { 4856 error = -EINVAL; 4857 goto out; 4858 } 4859 4860 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4861 4862 error = sctp_wait_for_accept(sk, timeo); 4863 if (error) 4864 goto out; 4865 4866 /* We treat the list of associations on the endpoint as the accept 4867 * queue and pick the first association on the list. 4868 */ 4869 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4870 4871 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4872 if (!newsk) { 4873 error = -ENOMEM; 4874 goto out; 4875 } 4876 4877 /* Populate the fields of the newsk from the oldsk and migrate the 4878 * asoc to the newsk. 4879 */ 4880 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4881 if (error) { 4882 sk_common_release(newsk); 4883 newsk = NULL; 4884 } 4885 4886 out: 4887 release_sock(sk); 4888 *err = error; 4889 return newsk; 4890 } 4891 4892 /* The SCTP ioctl handler. */ 4893 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4894 { 4895 int rc = -ENOTCONN; 4896 4897 lock_sock(sk); 4898 4899 /* 4900 * SEQPACKET-style sockets in LISTENING state are valid, for 4901 * SCTP, so only discard TCP-style sockets in LISTENING state. 4902 */ 4903 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4904 goto out; 4905 4906 switch (cmd) { 4907 case SIOCINQ: { 4908 struct sk_buff *skb; 4909 unsigned int amount = 0; 4910 4911 skb = skb_peek(&sk->sk_receive_queue); 4912 if (skb != NULL) { 4913 /* 4914 * We will only return the amount of this packet since 4915 * that is all that will be read. 4916 */ 4917 amount = skb->len; 4918 } 4919 rc = put_user(amount, (int __user *)arg); 4920 break; 4921 } 4922 default: 4923 rc = -ENOIOCTLCMD; 4924 break; 4925 } 4926 out: 4927 release_sock(sk); 4928 return rc; 4929 } 4930 4931 /* This is the function which gets called during socket creation to 4932 * initialized the SCTP-specific portion of the sock. 4933 * The sock structure should already be zero-filled memory. 4934 */ 4935 static int sctp_init_sock(struct sock *sk) 4936 { 4937 struct net *net = sock_net(sk); 4938 struct sctp_sock *sp; 4939 4940 pr_debug("%s: sk:%p\n", __func__, sk); 4941 4942 sp = sctp_sk(sk); 4943 4944 /* Initialize the SCTP per socket area. */ 4945 switch (sk->sk_type) { 4946 case SOCK_SEQPACKET: 4947 sp->type = SCTP_SOCKET_UDP; 4948 break; 4949 case SOCK_STREAM: 4950 sp->type = SCTP_SOCKET_TCP; 4951 break; 4952 default: 4953 return -ESOCKTNOSUPPORT; 4954 } 4955 4956 sk->sk_gso_type = SKB_GSO_SCTP; 4957 4958 /* Initialize default send parameters. These parameters can be 4959 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4960 */ 4961 sp->default_stream = 0; 4962 sp->default_ppid = 0; 4963 sp->default_flags = 0; 4964 sp->default_context = 0; 4965 sp->default_timetolive = 0; 4966 4967 sp->default_rcv_context = 0; 4968 sp->max_burst = net->sctp.max_burst; 4969 4970 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4971 4972 /* Initialize default setup parameters. These parameters 4973 * can be modified with the SCTP_INITMSG socket option or 4974 * overridden by the SCTP_INIT CMSG. 4975 */ 4976 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4977 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4978 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4979 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4980 4981 /* Initialize default RTO related parameters. These parameters can 4982 * be modified for with the SCTP_RTOINFO socket option. 4983 */ 4984 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4985 sp->rtoinfo.srto_max = net->sctp.rto_max; 4986 sp->rtoinfo.srto_min = net->sctp.rto_min; 4987 4988 /* Initialize default association related parameters. These parameters 4989 * can be modified with the SCTP_ASSOCINFO socket option. 4990 */ 4991 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4992 sp->assocparams.sasoc_number_peer_destinations = 0; 4993 sp->assocparams.sasoc_peer_rwnd = 0; 4994 sp->assocparams.sasoc_local_rwnd = 0; 4995 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4996 4997 /* Initialize default event subscriptions. By default, all the 4998 * options are off. 4999 */ 5000 sp->subscribe = 0; 5001 5002 /* Default Peer Address Parameters. These defaults can 5003 * be modified via SCTP_PEER_ADDR_PARAMS 5004 */ 5005 sp->hbinterval = net->sctp.hb_interval; 5006 sp->udp_port = htons(net->sctp.udp_port); 5007 sp->encap_port = htons(net->sctp.encap_port); 5008 sp->pathmaxrxt = net->sctp.max_retrans_path; 5009 sp->pf_retrans = net->sctp.pf_retrans; 5010 sp->ps_retrans = net->sctp.ps_retrans; 5011 sp->pf_expose = net->sctp.pf_expose; 5012 sp->pathmtu = 0; /* allow default discovery */ 5013 sp->sackdelay = net->sctp.sack_timeout; 5014 sp->sackfreq = 2; 5015 sp->param_flags = SPP_HB_ENABLE | 5016 SPP_PMTUD_ENABLE | 5017 SPP_SACKDELAY_ENABLE; 5018 sp->default_ss = SCTP_SS_DEFAULT; 5019 5020 /* If enabled no SCTP message fragmentation will be performed. 5021 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5022 */ 5023 sp->disable_fragments = 0; 5024 5025 /* Enable Nagle algorithm by default. */ 5026 sp->nodelay = 0; 5027 5028 sp->recvrcvinfo = 0; 5029 sp->recvnxtinfo = 0; 5030 5031 /* Enable by default. */ 5032 sp->v4mapped = 1; 5033 5034 /* Auto-close idle associations after the configured 5035 * number of seconds. A value of 0 disables this 5036 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5037 * for UDP-style sockets only. 5038 */ 5039 sp->autoclose = 0; 5040 5041 /* User specified fragmentation limit. */ 5042 sp->user_frag = 0; 5043 5044 sp->adaptation_ind = 0; 5045 5046 sp->pf = sctp_get_pf_specific(sk->sk_family); 5047 5048 /* Control variables for partial data delivery. */ 5049 atomic_set(&sp->pd_mode, 0); 5050 skb_queue_head_init(&sp->pd_lobby); 5051 sp->frag_interleave = 0; 5052 sp->probe_interval = net->sctp.probe_interval; 5053 5054 /* Create a per socket endpoint structure. Even if we 5055 * change the data structure relationships, this may still 5056 * be useful for storing pre-connect address information. 5057 */ 5058 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5059 if (!sp->ep) 5060 return -ENOMEM; 5061 5062 sp->hmac = NULL; 5063 5064 sk->sk_destruct = sctp_destruct_sock; 5065 5066 SCTP_DBG_OBJCNT_INC(sock); 5067 5068 sk_sockets_allocated_inc(sk); 5069 sock_prot_inuse_add(net, sk->sk_prot, 1); 5070 5071 return 0; 5072 } 5073 5074 /* Cleanup any SCTP per socket resources. Must be called with 5075 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5076 */ 5077 static void sctp_destroy_sock(struct sock *sk) 5078 { 5079 struct sctp_sock *sp; 5080 5081 pr_debug("%s: sk:%p\n", __func__, sk); 5082 5083 /* Release our hold on the endpoint. */ 5084 sp = sctp_sk(sk); 5085 /* This could happen during socket init, thus we bail out 5086 * early, since the rest of the below is not setup either. 5087 */ 5088 if (sp->ep == NULL) 5089 return; 5090 5091 if (sp->do_auto_asconf) { 5092 sp->do_auto_asconf = 0; 5093 list_del(&sp->auto_asconf_list); 5094 } 5095 sctp_endpoint_free(sp->ep); 5096 sk_sockets_allocated_dec(sk); 5097 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5098 } 5099 5100 /* Triggered when there are no references on the socket anymore */ 5101 static void sctp_destruct_common(struct sock *sk) 5102 { 5103 struct sctp_sock *sp = sctp_sk(sk); 5104 5105 /* Free up the HMAC transform. */ 5106 crypto_free_shash(sp->hmac); 5107 } 5108 5109 static void sctp_destruct_sock(struct sock *sk) 5110 { 5111 sctp_destruct_common(sk); 5112 inet_sock_destruct(sk); 5113 } 5114 5115 /* API 4.1.7 shutdown() - TCP Style Syntax 5116 * int shutdown(int socket, int how); 5117 * 5118 * sd - the socket descriptor of the association to be closed. 5119 * how - Specifies the type of shutdown. The values are 5120 * as follows: 5121 * SHUT_RD 5122 * Disables further receive operations. No SCTP 5123 * protocol action is taken. 5124 * SHUT_WR 5125 * Disables further send operations, and initiates 5126 * the SCTP shutdown sequence. 5127 * SHUT_RDWR 5128 * Disables further send and receive operations 5129 * and initiates the SCTP shutdown sequence. 5130 */ 5131 static void sctp_shutdown(struct sock *sk, int how) 5132 { 5133 struct net *net = sock_net(sk); 5134 struct sctp_endpoint *ep; 5135 5136 if (!sctp_style(sk, TCP)) 5137 return; 5138 5139 ep = sctp_sk(sk)->ep; 5140 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5141 struct sctp_association *asoc; 5142 5143 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5144 asoc = list_entry(ep->asocs.next, 5145 struct sctp_association, asocs); 5146 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5147 } 5148 } 5149 5150 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5151 struct sctp_info *info) 5152 { 5153 struct sctp_transport *prim; 5154 struct list_head *pos; 5155 int mask; 5156 5157 memset(info, 0, sizeof(*info)); 5158 if (!asoc) { 5159 struct sctp_sock *sp = sctp_sk(sk); 5160 5161 info->sctpi_s_autoclose = sp->autoclose; 5162 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5163 info->sctpi_s_pd_point = sp->pd_point; 5164 info->sctpi_s_nodelay = sp->nodelay; 5165 info->sctpi_s_disable_fragments = sp->disable_fragments; 5166 info->sctpi_s_v4mapped = sp->v4mapped; 5167 info->sctpi_s_frag_interleave = sp->frag_interleave; 5168 info->sctpi_s_type = sp->type; 5169 5170 return 0; 5171 } 5172 5173 info->sctpi_tag = asoc->c.my_vtag; 5174 info->sctpi_state = asoc->state; 5175 info->sctpi_rwnd = asoc->a_rwnd; 5176 info->sctpi_unackdata = asoc->unack_data; 5177 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5178 info->sctpi_instrms = asoc->stream.incnt; 5179 info->sctpi_outstrms = asoc->stream.outcnt; 5180 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5181 info->sctpi_inqueue++; 5182 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5183 info->sctpi_outqueue++; 5184 info->sctpi_overall_error = asoc->overall_error_count; 5185 info->sctpi_max_burst = asoc->max_burst; 5186 info->sctpi_maxseg = asoc->frag_point; 5187 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5188 info->sctpi_peer_tag = asoc->c.peer_vtag; 5189 5190 mask = asoc->peer.ecn_capable << 1; 5191 mask = (mask | asoc->peer.ipv4_address) << 1; 5192 mask = (mask | asoc->peer.ipv6_address) << 1; 5193 mask = (mask | asoc->peer.hostname_address) << 1; 5194 mask = (mask | asoc->peer.asconf_capable) << 1; 5195 mask = (mask | asoc->peer.prsctp_capable) << 1; 5196 mask = (mask | asoc->peer.auth_capable); 5197 info->sctpi_peer_capable = mask; 5198 mask = asoc->peer.sack_needed << 1; 5199 mask = (mask | asoc->peer.sack_generation) << 1; 5200 mask = (mask | asoc->peer.zero_window_announced); 5201 info->sctpi_peer_sack = mask; 5202 5203 info->sctpi_isacks = asoc->stats.isacks; 5204 info->sctpi_osacks = asoc->stats.osacks; 5205 info->sctpi_opackets = asoc->stats.opackets; 5206 info->sctpi_ipackets = asoc->stats.ipackets; 5207 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5208 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5209 info->sctpi_idupchunks = asoc->stats.idupchunks; 5210 info->sctpi_gapcnt = asoc->stats.gapcnt; 5211 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5212 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5213 info->sctpi_oodchunks = asoc->stats.oodchunks; 5214 info->sctpi_iodchunks = asoc->stats.iodchunks; 5215 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5216 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5217 5218 prim = asoc->peer.primary_path; 5219 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5220 info->sctpi_p_state = prim->state; 5221 info->sctpi_p_cwnd = prim->cwnd; 5222 info->sctpi_p_srtt = prim->srtt; 5223 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5224 info->sctpi_p_hbinterval = prim->hbinterval; 5225 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5226 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5227 info->sctpi_p_ssthresh = prim->ssthresh; 5228 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5229 info->sctpi_p_flight_size = prim->flight_size; 5230 info->sctpi_p_error = prim->error_count; 5231 5232 return 0; 5233 } 5234 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5235 5236 /* use callback to avoid exporting the core structure */ 5237 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5238 { 5239 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5240 5241 rhashtable_walk_start(iter); 5242 } 5243 5244 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5245 { 5246 rhashtable_walk_stop(iter); 5247 rhashtable_walk_exit(iter); 5248 } 5249 5250 struct sctp_transport *sctp_transport_get_next(struct net *net, 5251 struct rhashtable_iter *iter) 5252 { 5253 struct sctp_transport *t; 5254 5255 t = rhashtable_walk_next(iter); 5256 for (; t; t = rhashtable_walk_next(iter)) { 5257 if (IS_ERR(t)) { 5258 if (PTR_ERR(t) == -EAGAIN) 5259 continue; 5260 break; 5261 } 5262 5263 if (!sctp_transport_hold(t)) 5264 continue; 5265 5266 if (net_eq(t->asoc->base.net, net) && 5267 t->asoc->peer.primary_path == t) 5268 break; 5269 5270 sctp_transport_put(t); 5271 } 5272 5273 return t; 5274 } 5275 5276 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5277 struct rhashtable_iter *iter, 5278 int pos) 5279 { 5280 struct sctp_transport *t; 5281 5282 if (!pos) 5283 return SEQ_START_TOKEN; 5284 5285 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5286 if (!--pos) 5287 break; 5288 sctp_transport_put(t); 5289 } 5290 5291 return t; 5292 } 5293 5294 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5295 void *p) { 5296 int err = 0; 5297 int hash = 0; 5298 struct sctp_endpoint *ep; 5299 struct sctp_hashbucket *head; 5300 5301 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5302 hash++, head++) { 5303 read_lock_bh(&head->lock); 5304 sctp_for_each_hentry(ep, &head->chain) { 5305 err = cb(ep, p); 5306 if (err) 5307 break; 5308 } 5309 read_unlock_bh(&head->lock); 5310 } 5311 5312 return err; 5313 } 5314 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5315 5316 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5317 const union sctp_addr *laddr, 5318 const union sctp_addr *paddr, void *p, int dif) 5319 { 5320 struct sctp_transport *transport; 5321 struct sctp_endpoint *ep; 5322 int err = -ENOENT; 5323 5324 rcu_read_lock(); 5325 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5326 if (!transport) { 5327 rcu_read_unlock(); 5328 return err; 5329 } 5330 ep = transport->asoc->ep; 5331 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5332 sctp_transport_put(transport); 5333 rcu_read_unlock(); 5334 return err; 5335 } 5336 rcu_read_unlock(); 5337 5338 err = cb(ep, transport, p); 5339 sctp_endpoint_put(ep); 5340 sctp_transport_put(transport); 5341 return err; 5342 } 5343 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5344 5345 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5346 struct net *net, int *pos, void *p) 5347 { 5348 struct rhashtable_iter hti; 5349 struct sctp_transport *tsp; 5350 struct sctp_endpoint *ep; 5351 int ret; 5352 5353 again: 5354 ret = 0; 5355 sctp_transport_walk_start(&hti); 5356 5357 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5358 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5359 ep = tsp->asoc->ep; 5360 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5361 ret = cb(ep, tsp, p); 5362 if (ret) 5363 break; 5364 sctp_endpoint_put(ep); 5365 } 5366 (*pos)++; 5367 sctp_transport_put(tsp); 5368 } 5369 sctp_transport_walk_stop(&hti); 5370 5371 if (ret) { 5372 if (cb_done && !cb_done(ep, tsp, p)) { 5373 (*pos)++; 5374 sctp_endpoint_put(ep); 5375 sctp_transport_put(tsp); 5376 goto again; 5377 } 5378 sctp_endpoint_put(ep); 5379 sctp_transport_put(tsp); 5380 } 5381 5382 return ret; 5383 } 5384 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5385 5386 /* 7.2.1 Association Status (SCTP_STATUS) 5387 5388 * Applications can retrieve current status information about an 5389 * association, including association state, peer receiver window size, 5390 * number of unacked data chunks, and number of data chunks pending 5391 * receipt. This information is read-only. 5392 */ 5393 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5394 char __user *optval, 5395 int __user *optlen) 5396 { 5397 struct sctp_status status; 5398 struct sctp_association *asoc = NULL; 5399 struct sctp_transport *transport; 5400 sctp_assoc_t associd; 5401 int retval = 0; 5402 5403 if (len < sizeof(status)) { 5404 retval = -EINVAL; 5405 goto out; 5406 } 5407 5408 len = sizeof(status); 5409 if (copy_from_user(&status, optval, len)) { 5410 retval = -EFAULT; 5411 goto out; 5412 } 5413 5414 associd = status.sstat_assoc_id; 5415 asoc = sctp_id2assoc(sk, associd); 5416 if (!asoc) { 5417 retval = -EINVAL; 5418 goto out; 5419 } 5420 5421 transport = asoc->peer.primary_path; 5422 5423 status.sstat_assoc_id = sctp_assoc2id(asoc); 5424 status.sstat_state = sctp_assoc_to_state(asoc); 5425 status.sstat_rwnd = asoc->peer.rwnd; 5426 status.sstat_unackdata = asoc->unack_data; 5427 5428 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5429 status.sstat_instrms = asoc->stream.incnt; 5430 status.sstat_outstrms = asoc->stream.outcnt; 5431 status.sstat_fragmentation_point = asoc->frag_point; 5432 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5433 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5434 transport->af_specific->sockaddr_len); 5435 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5436 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5437 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5438 status.sstat_primary.spinfo_state = transport->state; 5439 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5440 status.sstat_primary.spinfo_srtt = transport->srtt; 5441 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5442 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5443 5444 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5445 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5446 5447 if (put_user(len, optlen)) { 5448 retval = -EFAULT; 5449 goto out; 5450 } 5451 5452 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5453 __func__, len, status.sstat_state, status.sstat_rwnd, 5454 status.sstat_assoc_id); 5455 5456 if (copy_to_user(optval, &status, len)) { 5457 retval = -EFAULT; 5458 goto out; 5459 } 5460 5461 out: 5462 return retval; 5463 } 5464 5465 5466 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5467 * 5468 * Applications can retrieve information about a specific peer address 5469 * of an association, including its reachability state, congestion 5470 * window, and retransmission timer values. This information is 5471 * read-only. 5472 */ 5473 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5474 char __user *optval, 5475 int __user *optlen) 5476 { 5477 struct sctp_paddrinfo pinfo; 5478 struct sctp_transport *transport; 5479 int retval = 0; 5480 5481 if (len < sizeof(pinfo)) { 5482 retval = -EINVAL; 5483 goto out; 5484 } 5485 5486 len = sizeof(pinfo); 5487 if (copy_from_user(&pinfo, optval, len)) { 5488 retval = -EFAULT; 5489 goto out; 5490 } 5491 5492 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5493 pinfo.spinfo_assoc_id); 5494 if (!transport) { 5495 retval = -EINVAL; 5496 goto out; 5497 } 5498 5499 if (transport->state == SCTP_PF && 5500 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5501 retval = -EACCES; 5502 goto out; 5503 } 5504 5505 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5506 pinfo.spinfo_state = transport->state; 5507 pinfo.spinfo_cwnd = transport->cwnd; 5508 pinfo.spinfo_srtt = transport->srtt; 5509 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5510 pinfo.spinfo_mtu = transport->pathmtu; 5511 5512 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5513 pinfo.spinfo_state = SCTP_ACTIVE; 5514 5515 if (put_user(len, optlen)) { 5516 retval = -EFAULT; 5517 goto out; 5518 } 5519 5520 if (copy_to_user(optval, &pinfo, len)) { 5521 retval = -EFAULT; 5522 goto out; 5523 } 5524 5525 out: 5526 return retval; 5527 } 5528 5529 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5530 * 5531 * This option is a on/off flag. If enabled no SCTP message 5532 * fragmentation will be performed. Instead if a message being sent 5533 * exceeds the current PMTU size, the message will NOT be sent and 5534 * instead a error will be indicated to the user. 5535 */ 5536 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5537 char __user *optval, int __user *optlen) 5538 { 5539 int val; 5540 5541 if (len < sizeof(int)) 5542 return -EINVAL; 5543 5544 len = sizeof(int); 5545 val = (sctp_sk(sk)->disable_fragments == 1); 5546 if (put_user(len, optlen)) 5547 return -EFAULT; 5548 if (copy_to_user(optval, &val, len)) 5549 return -EFAULT; 5550 return 0; 5551 } 5552 5553 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5554 * 5555 * This socket option is used to specify various notifications and 5556 * ancillary data the user wishes to receive. 5557 */ 5558 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5559 int __user *optlen) 5560 { 5561 struct sctp_event_subscribe subscribe; 5562 __u8 *sn_type = (__u8 *)&subscribe; 5563 int i; 5564 5565 if (len == 0) 5566 return -EINVAL; 5567 if (len > sizeof(struct sctp_event_subscribe)) 5568 len = sizeof(struct sctp_event_subscribe); 5569 if (put_user(len, optlen)) 5570 return -EFAULT; 5571 5572 for (i = 0; i < len; i++) 5573 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5574 SCTP_SN_TYPE_BASE + i); 5575 5576 if (copy_to_user(optval, &subscribe, len)) 5577 return -EFAULT; 5578 5579 return 0; 5580 } 5581 5582 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5583 * 5584 * This socket option is applicable to the UDP-style socket only. When 5585 * set it will cause associations that are idle for more than the 5586 * specified number of seconds to automatically close. An association 5587 * being idle is defined an association that has NOT sent or received 5588 * user data. The special value of '0' indicates that no automatic 5589 * close of any associations should be performed. The option expects an 5590 * integer defining the number of seconds of idle time before an 5591 * association is closed. 5592 */ 5593 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5594 { 5595 /* Applicable to UDP-style socket only */ 5596 if (sctp_style(sk, TCP)) 5597 return -EOPNOTSUPP; 5598 if (len < sizeof(int)) 5599 return -EINVAL; 5600 len = sizeof(int); 5601 if (put_user(len, optlen)) 5602 return -EFAULT; 5603 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5604 return -EFAULT; 5605 return 0; 5606 } 5607 5608 /* Helper routine to branch off an association to a new socket. */ 5609 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5610 { 5611 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5612 struct sctp_sock *sp = sctp_sk(sk); 5613 struct socket *sock; 5614 int err = 0; 5615 5616 /* Do not peel off from one netns to another one. */ 5617 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5618 return -EINVAL; 5619 5620 if (!asoc) 5621 return -EINVAL; 5622 5623 /* An association cannot be branched off from an already peeled-off 5624 * socket, nor is this supported for tcp style sockets. 5625 */ 5626 if (!sctp_style(sk, UDP)) 5627 return -EINVAL; 5628 5629 /* Create a new socket. */ 5630 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5631 if (err < 0) 5632 return err; 5633 5634 sctp_copy_sock(sock->sk, sk, asoc); 5635 5636 /* Make peeled-off sockets more like 1-1 accepted sockets. 5637 * Set the daddr and initialize id to something more random and also 5638 * copy over any ip options. 5639 */ 5640 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); 5641 sp->pf->copy_ip_options(sk, sock->sk); 5642 5643 /* Populate the fields of the newsk from the oldsk and migrate the 5644 * asoc to the newsk. 5645 */ 5646 err = sctp_sock_migrate(sk, sock->sk, asoc, 5647 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5648 if (err) { 5649 sock_release(sock); 5650 sock = NULL; 5651 } 5652 5653 *sockp = sock; 5654 5655 return err; 5656 } 5657 EXPORT_SYMBOL(sctp_do_peeloff); 5658 5659 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5660 struct file **newfile, unsigned flags) 5661 { 5662 struct socket *newsock; 5663 int retval; 5664 5665 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5666 if (retval < 0) 5667 goto out; 5668 5669 /* Map the socket to an unused fd that can be returned to the user. */ 5670 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5671 if (retval < 0) { 5672 sock_release(newsock); 5673 goto out; 5674 } 5675 5676 *newfile = sock_alloc_file(newsock, 0, NULL); 5677 if (IS_ERR(*newfile)) { 5678 put_unused_fd(retval); 5679 retval = PTR_ERR(*newfile); 5680 *newfile = NULL; 5681 return retval; 5682 } 5683 5684 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5685 retval); 5686 5687 peeloff->sd = retval; 5688 5689 if (flags & SOCK_NONBLOCK) 5690 (*newfile)->f_flags |= O_NONBLOCK; 5691 out: 5692 return retval; 5693 } 5694 5695 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5696 { 5697 sctp_peeloff_arg_t peeloff; 5698 struct file *newfile = NULL; 5699 int retval = 0; 5700 5701 if (len < sizeof(sctp_peeloff_arg_t)) 5702 return -EINVAL; 5703 len = sizeof(sctp_peeloff_arg_t); 5704 if (copy_from_user(&peeloff, optval, len)) 5705 return -EFAULT; 5706 5707 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5708 if (retval < 0) 5709 goto out; 5710 5711 /* Return the fd mapped to the new socket. */ 5712 if (put_user(len, optlen)) { 5713 fput(newfile); 5714 put_unused_fd(retval); 5715 return -EFAULT; 5716 } 5717 5718 if (copy_to_user(optval, &peeloff, len)) { 5719 fput(newfile); 5720 put_unused_fd(retval); 5721 return -EFAULT; 5722 } 5723 fd_install(retval, newfile); 5724 out: 5725 return retval; 5726 } 5727 5728 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5729 char __user *optval, int __user *optlen) 5730 { 5731 sctp_peeloff_flags_arg_t peeloff; 5732 struct file *newfile = NULL; 5733 int retval = 0; 5734 5735 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5736 return -EINVAL; 5737 len = sizeof(sctp_peeloff_flags_arg_t); 5738 if (copy_from_user(&peeloff, optval, len)) 5739 return -EFAULT; 5740 5741 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5742 &newfile, peeloff.flags); 5743 if (retval < 0) 5744 goto out; 5745 5746 /* Return the fd mapped to the new socket. */ 5747 if (put_user(len, optlen)) { 5748 fput(newfile); 5749 put_unused_fd(retval); 5750 return -EFAULT; 5751 } 5752 5753 if (copy_to_user(optval, &peeloff, len)) { 5754 fput(newfile); 5755 put_unused_fd(retval); 5756 return -EFAULT; 5757 } 5758 fd_install(retval, newfile); 5759 out: 5760 return retval; 5761 } 5762 5763 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5764 * 5765 * Applications can enable or disable heartbeats for any peer address of 5766 * an association, modify an address's heartbeat interval, force a 5767 * heartbeat to be sent immediately, and adjust the address's maximum 5768 * number of retransmissions sent before an address is considered 5769 * unreachable. The following structure is used to access and modify an 5770 * address's parameters: 5771 * 5772 * struct sctp_paddrparams { 5773 * sctp_assoc_t spp_assoc_id; 5774 * struct sockaddr_storage spp_address; 5775 * uint32_t spp_hbinterval; 5776 * uint16_t spp_pathmaxrxt; 5777 * uint32_t spp_pathmtu; 5778 * uint32_t spp_sackdelay; 5779 * uint32_t spp_flags; 5780 * }; 5781 * 5782 * spp_assoc_id - (one-to-many style socket) This is filled in the 5783 * application, and identifies the association for 5784 * this query. 5785 * spp_address - This specifies which address is of interest. 5786 * spp_hbinterval - This contains the value of the heartbeat interval, 5787 * in milliseconds. If a value of zero 5788 * is present in this field then no changes are to 5789 * be made to this parameter. 5790 * spp_pathmaxrxt - This contains the maximum number of 5791 * retransmissions before this address shall be 5792 * considered unreachable. If a value of zero 5793 * is present in this field then no changes are to 5794 * be made to this parameter. 5795 * spp_pathmtu - When Path MTU discovery is disabled the value 5796 * specified here will be the "fixed" path mtu. 5797 * Note that if the spp_address field is empty 5798 * then all associations on this address will 5799 * have this fixed path mtu set upon them. 5800 * 5801 * spp_sackdelay - When delayed sack is enabled, this value specifies 5802 * the number of milliseconds that sacks will be delayed 5803 * for. This value will apply to all addresses of an 5804 * association if the spp_address field is empty. Note 5805 * also, that if delayed sack is enabled and this 5806 * value is set to 0, no change is made to the last 5807 * recorded delayed sack timer value. 5808 * 5809 * spp_flags - These flags are used to control various features 5810 * on an association. The flag field may contain 5811 * zero or more of the following options. 5812 * 5813 * SPP_HB_ENABLE - Enable heartbeats on the 5814 * specified address. Note that if the address 5815 * field is empty all addresses for the association 5816 * have heartbeats enabled upon them. 5817 * 5818 * SPP_HB_DISABLE - Disable heartbeats on the 5819 * speicifed address. Note that if the address 5820 * field is empty all addresses for the association 5821 * will have their heartbeats disabled. Note also 5822 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5823 * mutually exclusive, only one of these two should 5824 * be specified. Enabling both fields will have 5825 * undetermined results. 5826 * 5827 * SPP_HB_DEMAND - Request a user initiated heartbeat 5828 * to be made immediately. 5829 * 5830 * SPP_PMTUD_ENABLE - This field will enable PMTU 5831 * discovery upon the specified address. Note that 5832 * if the address feild is empty then all addresses 5833 * on the association are effected. 5834 * 5835 * SPP_PMTUD_DISABLE - This field will disable PMTU 5836 * discovery upon the specified address. Note that 5837 * if the address feild is empty then all addresses 5838 * on the association are effected. Not also that 5839 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5840 * exclusive. Enabling both will have undetermined 5841 * results. 5842 * 5843 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5844 * on delayed sack. The time specified in spp_sackdelay 5845 * is used to specify the sack delay for this address. Note 5846 * that if spp_address is empty then all addresses will 5847 * enable delayed sack and take on the sack delay 5848 * value specified in spp_sackdelay. 5849 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5850 * off delayed sack. If the spp_address field is blank then 5851 * delayed sack is disabled for the entire association. Note 5852 * also that this field is mutually exclusive to 5853 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5854 * results. 5855 * 5856 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5857 * setting of the IPV6 flow label value. The value is 5858 * contained in the spp_ipv6_flowlabel field. 5859 * Upon retrieval, this flag will be set to indicate that 5860 * the spp_ipv6_flowlabel field has a valid value returned. 5861 * If a specific destination address is set (in the 5862 * spp_address field), then the value returned is that of 5863 * the address. If just an association is specified (and 5864 * no address), then the association's default flow label 5865 * is returned. If neither an association nor a destination 5866 * is specified, then the socket's default flow label is 5867 * returned. For non-IPv6 sockets, this flag will be left 5868 * cleared. 5869 * 5870 * SPP_DSCP: Setting this flag enables the setting of the 5871 * Differentiated Services Code Point (DSCP) value 5872 * associated with either the association or a specific 5873 * address. The value is obtained in the spp_dscp field. 5874 * Upon retrieval, this flag will be set to indicate that 5875 * the spp_dscp field has a valid value returned. If a 5876 * specific destination address is set when called (in the 5877 * spp_address field), then that specific destination 5878 * address's DSCP value is returned. If just an association 5879 * is specified, then the association's default DSCP is 5880 * returned. If neither an association nor a destination is 5881 * specified, then the socket's default DSCP is returned. 5882 * 5883 * spp_ipv6_flowlabel 5884 * - This field is used in conjunction with the 5885 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5886 * The 20 least significant bits are used for the flow 5887 * label. This setting has precedence over any IPv6-layer 5888 * setting. 5889 * 5890 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5891 * and contains the DSCP. The 6 most significant bits are 5892 * used for the DSCP. This setting has precedence over any 5893 * IPv4- or IPv6- layer setting. 5894 */ 5895 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5896 char __user *optval, int __user *optlen) 5897 { 5898 struct sctp_paddrparams params; 5899 struct sctp_transport *trans = NULL; 5900 struct sctp_association *asoc = NULL; 5901 struct sctp_sock *sp = sctp_sk(sk); 5902 5903 if (len >= sizeof(params)) 5904 len = sizeof(params); 5905 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5906 spp_ipv6_flowlabel), 4)) 5907 len = ALIGN(offsetof(struct sctp_paddrparams, 5908 spp_ipv6_flowlabel), 4); 5909 else 5910 return -EINVAL; 5911 5912 if (copy_from_user(¶ms, optval, len)) 5913 return -EFAULT; 5914 5915 /* If an address other than INADDR_ANY is specified, and 5916 * no transport is found, then the request is invalid. 5917 */ 5918 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5919 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5920 params.spp_assoc_id); 5921 if (!trans) { 5922 pr_debug("%s: failed no transport\n", __func__); 5923 return -EINVAL; 5924 } 5925 } 5926 5927 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5928 * socket is a one to many style socket, and an association 5929 * was not found, then the id was invalid. 5930 */ 5931 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5932 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5933 sctp_style(sk, UDP)) { 5934 pr_debug("%s: failed no association\n", __func__); 5935 return -EINVAL; 5936 } 5937 5938 if (trans) { 5939 /* Fetch transport values. */ 5940 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5941 params.spp_pathmtu = trans->pathmtu; 5942 params.spp_pathmaxrxt = trans->pathmaxrxt; 5943 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5944 5945 /*draft-11 doesn't say what to return in spp_flags*/ 5946 params.spp_flags = trans->param_flags; 5947 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5948 params.spp_ipv6_flowlabel = trans->flowlabel & 5949 SCTP_FLOWLABEL_VAL_MASK; 5950 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5951 } 5952 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5953 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5954 params.spp_flags |= SPP_DSCP; 5955 } 5956 } else if (asoc) { 5957 /* Fetch association values. */ 5958 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5959 params.spp_pathmtu = asoc->pathmtu; 5960 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5961 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5962 5963 /*draft-11 doesn't say what to return in spp_flags*/ 5964 params.spp_flags = asoc->param_flags; 5965 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5966 params.spp_ipv6_flowlabel = asoc->flowlabel & 5967 SCTP_FLOWLABEL_VAL_MASK; 5968 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5969 } 5970 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5971 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5972 params.spp_flags |= SPP_DSCP; 5973 } 5974 } else { 5975 /* Fetch socket values. */ 5976 params.spp_hbinterval = sp->hbinterval; 5977 params.spp_pathmtu = sp->pathmtu; 5978 params.spp_sackdelay = sp->sackdelay; 5979 params.spp_pathmaxrxt = sp->pathmaxrxt; 5980 5981 /*draft-11 doesn't say what to return in spp_flags*/ 5982 params.spp_flags = sp->param_flags; 5983 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5984 params.spp_ipv6_flowlabel = sp->flowlabel & 5985 SCTP_FLOWLABEL_VAL_MASK; 5986 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5987 } 5988 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5989 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5990 params.spp_flags |= SPP_DSCP; 5991 } 5992 } 5993 5994 if (copy_to_user(optval, ¶ms, len)) 5995 return -EFAULT; 5996 5997 if (put_user(len, optlen)) 5998 return -EFAULT; 5999 6000 return 0; 6001 } 6002 6003 /* 6004 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6005 * 6006 * This option will effect the way delayed acks are performed. This 6007 * option allows you to get or set the delayed ack time, in 6008 * milliseconds. It also allows changing the delayed ack frequency. 6009 * Changing the frequency to 1 disables the delayed sack algorithm. If 6010 * the assoc_id is 0, then this sets or gets the endpoints default 6011 * values. If the assoc_id field is non-zero, then the set or get 6012 * effects the specified association for the one to many model (the 6013 * assoc_id field is ignored by the one to one model). Note that if 6014 * sack_delay or sack_freq are 0 when setting this option, then the 6015 * current values will remain unchanged. 6016 * 6017 * struct sctp_sack_info { 6018 * sctp_assoc_t sack_assoc_id; 6019 * uint32_t sack_delay; 6020 * uint32_t sack_freq; 6021 * }; 6022 * 6023 * sack_assoc_id - This parameter, indicates which association the user 6024 * is performing an action upon. Note that if this field's value is 6025 * zero then the endpoints default value is changed (effecting future 6026 * associations only). 6027 * 6028 * sack_delay - This parameter contains the number of milliseconds that 6029 * the user is requesting the delayed ACK timer be set to. Note that 6030 * this value is defined in the standard to be between 200 and 500 6031 * milliseconds. 6032 * 6033 * sack_freq - This parameter contains the number of packets that must 6034 * be received before a sack is sent without waiting for the delay 6035 * timer to expire. The default value for this is 2, setting this 6036 * value to 1 will disable the delayed sack algorithm. 6037 */ 6038 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6039 char __user *optval, 6040 int __user *optlen) 6041 { 6042 struct sctp_sack_info params; 6043 struct sctp_association *asoc = NULL; 6044 struct sctp_sock *sp = sctp_sk(sk); 6045 6046 if (len >= sizeof(struct sctp_sack_info)) { 6047 len = sizeof(struct sctp_sack_info); 6048 6049 if (copy_from_user(¶ms, optval, len)) 6050 return -EFAULT; 6051 } else if (len == sizeof(struct sctp_assoc_value)) { 6052 pr_warn_ratelimited(DEPRECATED 6053 "%s (pid %d) " 6054 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6055 "Use struct sctp_sack_info instead\n", 6056 current->comm, task_pid_nr(current)); 6057 if (copy_from_user(¶ms, optval, len)) 6058 return -EFAULT; 6059 } else 6060 return -EINVAL; 6061 6062 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6063 * socket is a one to many style socket, and an association 6064 * was not found, then the id was invalid. 6065 */ 6066 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6067 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6068 sctp_style(sk, UDP)) 6069 return -EINVAL; 6070 6071 if (asoc) { 6072 /* Fetch association values. */ 6073 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6074 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6075 params.sack_freq = asoc->sackfreq; 6076 6077 } else { 6078 params.sack_delay = 0; 6079 params.sack_freq = 1; 6080 } 6081 } else { 6082 /* Fetch socket values. */ 6083 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6084 params.sack_delay = sp->sackdelay; 6085 params.sack_freq = sp->sackfreq; 6086 } else { 6087 params.sack_delay = 0; 6088 params.sack_freq = 1; 6089 } 6090 } 6091 6092 if (copy_to_user(optval, ¶ms, len)) 6093 return -EFAULT; 6094 6095 if (put_user(len, optlen)) 6096 return -EFAULT; 6097 6098 return 0; 6099 } 6100 6101 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6102 * 6103 * Applications can specify protocol parameters for the default association 6104 * initialization. The option name argument to setsockopt() and getsockopt() 6105 * is SCTP_INITMSG. 6106 * 6107 * Setting initialization parameters is effective only on an unconnected 6108 * socket (for UDP-style sockets only future associations are effected 6109 * by the change). With TCP-style sockets, this option is inherited by 6110 * sockets derived from a listener socket. 6111 */ 6112 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6113 { 6114 if (len < sizeof(struct sctp_initmsg)) 6115 return -EINVAL; 6116 len = sizeof(struct sctp_initmsg); 6117 if (put_user(len, optlen)) 6118 return -EFAULT; 6119 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6120 return -EFAULT; 6121 return 0; 6122 } 6123 6124 6125 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6126 char __user *optval, int __user *optlen) 6127 { 6128 struct sctp_association *asoc; 6129 int cnt = 0; 6130 struct sctp_getaddrs getaddrs; 6131 struct sctp_transport *from; 6132 void __user *to; 6133 union sctp_addr temp; 6134 struct sctp_sock *sp = sctp_sk(sk); 6135 int addrlen; 6136 size_t space_left; 6137 int bytes_copied; 6138 6139 if (len < sizeof(struct sctp_getaddrs)) 6140 return -EINVAL; 6141 6142 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6143 return -EFAULT; 6144 6145 /* For UDP-style sockets, id specifies the association to query. */ 6146 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6147 if (!asoc) 6148 return -EINVAL; 6149 6150 to = optval + offsetof(struct sctp_getaddrs, addrs); 6151 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6152 6153 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6154 transports) { 6155 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6156 addrlen = sctp_get_pf_specific(sk->sk_family) 6157 ->addr_to_user(sp, &temp); 6158 if (space_left < addrlen) 6159 return -ENOMEM; 6160 if (copy_to_user(to, &temp, addrlen)) 6161 return -EFAULT; 6162 to += addrlen; 6163 cnt++; 6164 space_left -= addrlen; 6165 } 6166 6167 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6168 return -EFAULT; 6169 bytes_copied = ((char __user *)to) - optval; 6170 if (put_user(bytes_copied, optlen)) 6171 return -EFAULT; 6172 6173 return 0; 6174 } 6175 6176 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6177 size_t space_left, int *bytes_copied) 6178 { 6179 struct sctp_sockaddr_entry *addr; 6180 union sctp_addr temp; 6181 int cnt = 0; 6182 int addrlen; 6183 struct net *net = sock_net(sk); 6184 6185 rcu_read_lock(); 6186 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6187 if (!addr->valid) 6188 continue; 6189 6190 if ((PF_INET == sk->sk_family) && 6191 (AF_INET6 == addr->a.sa.sa_family)) 6192 continue; 6193 if ((PF_INET6 == sk->sk_family) && 6194 inet_v6_ipv6only(sk) && 6195 (AF_INET == addr->a.sa.sa_family)) 6196 continue; 6197 memcpy(&temp, &addr->a, sizeof(temp)); 6198 if (!temp.v4.sin_port) 6199 temp.v4.sin_port = htons(port); 6200 6201 addrlen = sctp_get_pf_specific(sk->sk_family) 6202 ->addr_to_user(sctp_sk(sk), &temp); 6203 6204 if (space_left < addrlen) { 6205 cnt = -ENOMEM; 6206 break; 6207 } 6208 memcpy(to, &temp, addrlen); 6209 6210 to += addrlen; 6211 cnt++; 6212 space_left -= addrlen; 6213 *bytes_copied += addrlen; 6214 } 6215 rcu_read_unlock(); 6216 6217 return cnt; 6218 } 6219 6220 6221 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6222 char __user *optval, int __user *optlen) 6223 { 6224 struct sctp_bind_addr *bp; 6225 struct sctp_association *asoc; 6226 int cnt = 0; 6227 struct sctp_getaddrs getaddrs; 6228 struct sctp_sockaddr_entry *addr; 6229 void __user *to; 6230 union sctp_addr temp; 6231 struct sctp_sock *sp = sctp_sk(sk); 6232 int addrlen; 6233 int err = 0; 6234 size_t space_left; 6235 int bytes_copied = 0; 6236 void *addrs; 6237 void *buf; 6238 6239 if (len < sizeof(struct sctp_getaddrs)) 6240 return -EINVAL; 6241 6242 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6243 return -EFAULT; 6244 6245 /* 6246 * For UDP-style sockets, id specifies the association to query. 6247 * If the id field is set to the value '0' then the locally bound 6248 * addresses are returned without regard to any particular 6249 * association. 6250 */ 6251 if (0 == getaddrs.assoc_id) { 6252 bp = &sctp_sk(sk)->ep->base.bind_addr; 6253 } else { 6254 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6255 if (!asoc) 6256 return -EINVAL; 6257 bp = &asoc->base.bind_addr; 6258 } 6259 6260 to = optval + offsetof(struct sctp_getaddrs, addrs); 6261 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6262 6263 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6264 if (!addrs) 6265 return -ENOMEM; 6266 6267 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6268 * addresses from the global local address list. 6269 */ 6270 if (sctp_list_single_entry(&bp->address_list)) { 6271 addr = list_entry(bp->address_list.next, 6272 struct sctp_sockaddr_entry, list); 6273 if (sctp_is_any(sk, &addr->a)) { 6274 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6275 space_left, &bytes_copied); 6276 if (cnt < 0) { 6277 err = cnt; 6278 goto out; 6279 } 6280 goto copy_getaddrs; 6281 } 6282 } 6283 6284 buf = addrs; 6285 /* Protection on the bound address list is not needed since 6286 * in the socket option context we hold a socket lock and 6287 * thus the bound address list can't change. 6288 */ 6289 list_for_each_entry(addr, &bp->address_list, list) { 6290 memcpy(&temp, &addr->a, sizeof(temp)); 6291 addrlen = sctp_get_pf_specific(sk->sk_family) 6292 ->addr_to_user(sp, &temp); 6293 if (space_left < addrlen) { 6294 err = -ENOMEM; /*fixme: right error?*/ 6295 goto out; 6296 } 6297 memcpy(buf, &temp, addrlen); 6298 buf += addrlen; 6299 bytes_copied += addrlen; 6300 cnt++; 6301 space_left -= addrlen; 6302 } 6303 6304 copy_getaddrs: 6305 if (copy_to_user(to, addrs, bytes_copied)) { 6306 err = -EFAULT; 6307 goto out; 6308 } 6309 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6310 err = -EFAULT; 6311 goto out; 6312 } 6313 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6314 * but we can't change it anymore. 6315 */ 6316 if (put_user(bytes_copied, optlen)) 6317 err = -EFAULT; 6318 out: 6319 kfree(addrs); 6320 return err; 6321 } 6322 6323 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6324 * 6325 * Requests that the local SCTP stack use the enclosed peer address as 6326 * the association primary. The enclosed address must be one of the 6327 * association peer's addresses. 6328 */ 6329 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6330 char __user *optval, int __user *optlen) 6331 { 6332 struct sctp_prim prim; 6333 struct sctp_association *asoc; 6334 struct sctp_sock *sp = sctp_sk(sk); 6335 6336 if (len < sizeof(struct sctp_prim)) 6337 return -EINVAL; 6338 6339 len = sizeof(struct sctp_prim); 6340 6341 if (copy_from_user(&prim, optval, len)) 6342 return -EFAULT; 6343 6344 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6345 if (!asoc) 6346 return -EINVAL; 6347 6348 if (!asoc->peer.primary_path) 6349 return -ENOTCONN; 6350 6351 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6352 asoc->peer.primary_path->af_specific->sockaddr_len); 6353 6354 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6355 (union sctp_addr *)&prim.ssp_addr); 6356 6357 if (put_user(len, optlen)) 6358 return -EFAULT; 6359 if (copy_to_user(optval, &prim, len)) 6360 return -EFAULT; 6361 6362 return 0; 6363 } 6364 6365 /* 6366 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6367 * 6368 * Requests that the local endpoint set the specified Adaptation Layer 6369 * Indication parameter for all future INIT and INIT-ACK exchanges. 6370 */ 6371 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6372 char __user *optval, int __user *optlen) 6373 { 6374 struct sctp_setadaptation adaptation; 6375 6376 if (len < sizeof(struct sctp_setadaptation)) 6377 return -EINVAL; 6378 6379 len = sizeof(struct sctp_setadaptation); 6380 6381 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6382 6383 if (put_user(len, optlen)) 6384 return -EFAULT; 6385 if (copy_to_user(optval, &adaptation, len)) 6386 return -EFAULT; 6387 6388 return 0; 6389 } 6390 6391 /* 6392 * 6393 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6394 * 6395 * Applications that wish to use the sendto() system call may wish to 6396 * specify a default set of parameters that would normally be supplied 6397 * through the inclusion of ancillary data. This socket option allows 6398 * such an application to set the default sctp_sndrcvinfo structure. 6399 6400 6401 * The application that wishes to use this socket option simply passes 6402 * in to this call the sctp_sndrcvinfo structure defined in Section 6403 * 5.2.2) The input parameters accepted by this call include 6404 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6405 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6406 * to this call if the caller is using the UDP model. 6407 * 6408 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6409 */ 6410 static int sctp_getsockopt_default_send_param(struct sock *sk, 6411 int len, char __user *optval, 6412 int __user *optlen) 6413 { 6414 struct sctp_sock *sp = sctp_sk(sk); 6415 struct sctp_association *asoc; 6416 struct sctp_sndrcvinfo info; 6417 6418 if (len < sizeof(info)) 6419 return -EINVAL; 6420 6421 len = sizeof(info); 6422 6423 if (copy_from_user(&info, optval, len)) 6424 return -EFAULT; 6425 6426 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6427 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6428 sctp_style(sk, UDP)) 6429 return -EINVAL; 6430 6431 if (asoc) { 6432 info.sinfo_stream = asoc->default_stream; 6433 info.sinfo_flags = asoc->default_flags; 6434 info.sinfo_ppid = asoc->default_ppid; 6435 info.sinfo_context = asoc->default_context; 6436 info.sinfo_timetolive = asoc->default_timetolive; 6437 } else { 6438 info.sinfo_stream = sp->default_stream; 6439 info.sinfo_flags = sp->default_flags; 6440 info.sinfo_ppid = sp->default_ppid; 6441 info.sinfo_context = sp->default_context; 6442 info.sinfo_timetolive = sp->default_timetolive; 6443 } 6444 6445 if (put_user(len, optlen)) 6446 return -EFAULT; 6447 if (copy_to_user(optval, &info, len)) 6448 return -EFAULT; 6449 6450 return 0; 6451 } 6452 6453 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6454 * (SCTP_DEFAULT_SNDINFO) 6455 */ 6456 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6457 char __user *optval, 6458 int __user *optlen) 6459 { 6460 struct sctp_sock *sp = sctp_sk(sk); 6461 struct sctp_association *asoc; 6462 struct sctp_sndinfo info; 6463 6464 if (len < sizeof(info)) 6465 return -EINVAL; 6466 6467 len = sizeof(info); 6468 6469 if (copy_from_user(&info, optval, len)) 6470 return -EFAULT; 6471 6472 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6473 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6474 sctp_style(sk, UDP)) 6475 return -EINVAL; 6476 6477 if (asoc) { 6478 info.snd_sid = asoc->default_stream; 6479 info.snd_flags = asoc->default_flags; 6480 info.snd_ppid = asoc->default_ppid; 6481 info.snd_context = asoc->default_context; 6482 } else { 6483 info.snd_sid = sp->default_stream; 6484 info.snd_flags = sp->default_flags; 6485 info.snd_ppid = sp->default_ppid; 6486 info.snd_context = sp->default_context; 6487 } 6488 6489 if (put_user(len, optlen)) 6490 return -EFAULT; 6491 if (copy_to_user(optval, &info, len)) 6492 return -EFAULT; 6493 6494 return 0; 6495 } 6496 6497 /* 6498 * 6499 * 7.1.5 SCTP_NODELAY 6500 * 6501 * Turn on/off any Nagle-like algorithm. This means that packets are 6502 * generally sent as soon as possible and no unnecessary delays are 6503 * introduced, at the cost of more packets in the network. Expects an 6504 * integer boolean flag. 6505 */ 6506 6507 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6508 char __user *optval, int __user *optlen) 6509 { 6510 int val; 6511 6512 if (len < sizeof(int)) 6513 return -EINVAL; 6514 6515 len = sizeof(int); 6516 val = (sctp_sk(sk)->nodelay == 1); 6517 if (put_user(len, optlen)) 6518 return -EFAULT; 6519 if (copy_to_user(optval, &val, len)) 6520 return -EFAULT; 6521 return 0; 6522 } 6523 6524 /* 6525 * 6526 * 7.1.1 SCTP_RTOINFO 6527 * 6528 * The protocol parameters used to initialize and bound retransmission 6529 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6530 * and modify these parameters. 6531 * All parameters are time values, in milliseconds. A value of 0, when 6532 * modifying the parameters, indicates that the current value should not 6533 * be changed. 6534 * 6535 */ 6536 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6537 char __user *optval, 6538 int __user *optlen) { 6539 struct sctp_rtoinfo rtoinfo; 6540 struct sctp_association *asoc; 6541 6542 if (len < sizeof (struct sctp_rtoinfo)) 6543 return -EINVAL; 6544 6545 len = sizeof(struct sctp_rtoinfo); 6546 6547 if (copy_from_user(&rtoinfo, optval, len)) 6548 return -EFAULT; 6549 6550 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6551 6552 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6553 sctp_style(sk, UDP)) 6554 return -EINVAL; 6555 6556 /* Values corresponding to the specific association. */ 6557 if (asoc) { 6558 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6559 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6560 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6561 } else { 6562 /* Values corresponding to the endpoint. */ 6563 struct sctp_sock *sp = sctp_sk(sk); 6564 6565 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6566 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6567 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6568 } 6569 6570 if (put_user(len, optlen)) 6571 return -EFAULT; 6572 6573 if (copy_to_user(optval, &rtoinfo, len)) 6574 return -EFAULT; 6575 6576 return 0; 6577 } 6578 6579 /* 6580 * 6581 * 7.1.2 SCTP_ASSOCINFO 6582 * 6583 * This option is used to tune the maximum retransmission attempts 6584 * of the association. 6585 * Returns an error if the new association retransmission value is 6586 * greater than the sum of the retransmission value of the peer. 6587 * See [SCTP] for more information. 6588 * 6589 */ 6590 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6591 char __user *optval, 6592 int __user *optlen) 6593 { 6594 6595 struct sctp_assocparams assocparams; 6596 struct sctp_association *asoc; 6597 struct list_head *pos; 6598 int cnt = 0; 6599 6600 if (len < sizeof (struct sctp_assocparams)) 6601 return -EINVAL; 6602 6603 len = sizeof(struct sctp_assocparams); 6604 6605 if (copy_from_user(&assocparams, optval, len)) 6606 return -EFAULT; 6607 6608 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6609 6610 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6611 sctp_style(sk, UDP)) 6612 return -EINVAL; 6613 6614 /* Values correspoinding to the specific association */ 6615 if (asoc) { 6616 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6617 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6618 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6619 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6620 6621 list_for_each(pos, &asoc->peer.transport_addr_list) { 6622 cnt++; 6623 } 6624 6625 assocparams.sasoc_number_peer_destinations = cnt; 6626 } else { 6627 /* Values corresponding to the endpoint */ 6628 struct sctp_sock *sp = sctp_sk(sk); 6629 6630 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6631 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6632 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6633 assocparams.sasoc_cookie_life = 6634 sp->assocparams.sasoc_cookie_life; 6635 assocparams.sasoc_number_peer_destinations = 6636 sp->assocparams. 6637 sasoc_number_peer_destinations; 6638 } 6639 6640 if (put_user(len, optlen)) 6641 return -EFAULT; 6642 6643 if (copy_to_user(optval, &assocparams, len)) 6644 return -EFAULT; 6645 6646 return 0; 6647 } 6648 6649 /* 6650 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6651 * 6652 * This socket option is a boolean flag which turns on or off mapped V4 6653 * addresses. If this option is turned on and the socket is type 6654 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6655 * If this option is turned off, then no mapping will be done of V4 6656 * addresses and a user will receive both PF_INET6 and PF_INET type 6657 * addresses on the socket. 6658 */ 6659 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6660 char __user *optval, int __user *optlen) 6661 { 6662 int val; 6663 struct sctp_sock *sp = sctp_sk(sk); 6664 6665 if (len < sizeof(int)) 6666 return -EINVAL; 6667 6668 len = sizeof(int); 6669 val = sp->v4mapped; 6670 if (put_user(len, optlen)) 6671 return -EFAULT; 6672 if (copy_to_user(optval, &val, len)) 6673 return -EFAULT; 6674 6675 return 0; 6676 } 6677 6678 /* 6679 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6680 * (chapter and verse is quoted at sctp_setsockopt_context()) 6681 */ 6682 static int sctp_getsockopt_context(struct sock *sk, int len, 6683 char __user *optval, int __user *optlen) 6684 { 6685 struct sctp_assoc_value params; 6686 struct sctp_association *asoc; 6687 6688 if (len < sizeof(struct sctp_assoc_value)) 6689 return -EINVAL; 6690 6691 len = sizeof(struct sctp_assoc_value); 6692 6693 if (copy_from_user(¶ms, optval, len)) 6694 return -EFAULT; 6695 6696 asoc = sctp_id2assoc(sk, params.assoc_id); 6697 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6698 sctp_style(sk, UDP)) 6699 return -EINVAL; 6700 6701 params.assoc_value = asoc ? asoc->default_rcv_context 6702 : sctp_sk(sk)->default_rcv_context; 6703 6704 if (put_user(len, optlen)) 6705 return -EFAULT; 6706 if (copy_to_user(optval, ¶ms, len)) 6707 return -EFAULT; 6708 6709 return 0; 6710 } 6711 6712 /* 6713 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6714 * This option will get or set the maximum size to put in any outgoing 6715 * SCTP DATA chunk. If a message is larger than this size it will be 6716 * fragmented by SCTP into the specified size. Note that the underlying 6717 * SCTP implementation may fragment into smaller sized chunks when the 6718 * PMTU of the underlying association is smaller than the value set by 6719 * the user. The default value for this option is '0' which indicates 6720 * the user is NOT limiting fragmentation and only the PMTU will effect 6721 * SCTP's choice of DATA chunk size. Note also that values set larger 6722 * than the maximum size of an IP datagram will effectively let SCTP 6723 * control fragmentation (i.e. the same as setting this option to 0). 6724 * 6725 * The following structure is used to access and modify this parameter: 6726 * 6727 * struct sctp_assoc_value { 6728 * sctp_assoc_t assoc_id; 6729 * uint32_t assoc_value; 6730 * }; 6731 * 6732 * assoc_id: This parameter is ignored for one-to-one style sockets. 6733 * For one-to-many style sockets this parameter indicates which 6734 * association the user is performing an action upon. Note that if 6735 * this field's value is zero then the endpoints default value is 6736 * changed (effecting future associations only). 6737 * assoc_value: This parameter specifies the maximum size in bytes. 6738 */ 6739 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6740 char __user *optval, int __user *optlen) 6741 { 6742 struct sctp_assoc_value params; 6743 struct sctp_association *asoc; 6744 6745 if (len == sizeof(int)) { 6746 pr_warn_ratelimited(DEPRECATED 6747 "%s (pid %d) " 6748 "Use of int in maxseg socket option.\n" 6749 "Use struct sctp_assoc_value instead\n", 6750 current->comm, task_pid_nr(current)); 6751 params.assoc_id = SCTP_FUTURE_ASSOC; 6752 } else if (len >= sizeof(struct sctp_assoc_value)) { 6753 len = sizeof(struct sctp_assoc_value); 6754 if (copy_from_user(¶ms, optval, len)) 6755 return -EFAULT; 6756 } else 6757 return -EINVAL; 6758 6759 asoc = sctp_id2assoc(sk, params.assoc_id); 6760 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6761 sctp_style(sk, UDP)) 6762 return -EINVAL; 6763 6764 if (asoc) 6765 params.assoc_value = asoc->frag_point; 6766 else 6767 params.assoc_value = sctp_sk(sk)->user_frag; 6768 6769 if (put_user(len, optlen)) 6770 return -EFAULT; 6771 if (len == sizeof(int)) { 6772 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6773 return -EFAULT; 6774 } else { 6775 if (copy_to_user(optval, ¶ms, len)) 6776 return -EFAULT; 6777 } 6778 6779 return 0; 6780 } 6781 6782 /* 6783 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6784 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6785 */ 6786 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6787 char __user *optval, int __user *optlen) 6788 { 6789 int val; 6790 6791 if (len < sizeof(int)) 6792 return -EINVAL; 6793 6794 len = sizeof(int); 6795 6796 val = sctp_sk(sk)->frag_interleave; 6797 if (put_user(len, optlen)) 6798 return -EFAULT; 6799 if (copy_to_user(optval, &val, len)) 6800 return -EFAULT; 6801 6802 return 0; 6803 } 6804 6805 /* 6806 * 7.1.25. Set or Get the sctp partial delivery point 6807 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6808 */ 6809 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6810 char __user *optval, 6811 int __user *optlen) 6812 { 6813 u32 val; 6814 6815 if (len < sizeof(u32)) 6816 return -EINVAL; 6817 6818 len = sizeof(u32); 6819 6820 val = sctp_sk(sk)->pd_point; 6821 if (put_user(len, optlen)) 6822 return -EFAULT; 6823 if (copy_to_user(optval, &val, len)) 6824 return -EFAULT; 6825 6826 return 0; 6827 } 6828 6829 /* 6830 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6831 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6832 */ 6833 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6834 char __user *optval, 6835 int __user *optlen) 6836 { 6837 struct sctp_assoc_value params; 6838 struct sctp_association *asoc; 6839 6840 if (len == sizeof(int)) { 6841 pr_warn_ratelimited(DEPRECATED 6842 "%s (pid %d) " 6843 "Use of int in max_burst socket option.\n" 6844 "Use struct sctp_assoc_value instead\n", 6845 current->comm, task_pid_nr(current)); 6846 params.assoc_id = SCTP_FUTURE_ASSOC; 6847 } else if (len >= sizeof(struct sctp_assoc_value)) { 6848 len = sizeof(struct sctp_assoc_value); 6849 if (copy_from_user(¶ms, optval, len)) 6850 return -EFAULT; 6851 } else 6852 return -EINVAL; 6853 6854 asoc = sctp_id2assoc(sk, params.assoc_id); 6855 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6856 sctp_style(sk, UDP)) 6857 return -EINVAL; 6858 6859 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6860 6861 if (len == sizeof(int)) { 6862 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6863 return -EFAULT; 6864 } else { 6865 if (copy_to_user(optval, ¶ms, len)) 6866 return -EFAULT; 6867 } 6868 6869 return 0; 6870 6871 } 6872 6873 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6874 char __user *optval, int __user *optlen) 6875 { 6876 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6877 struct sctp_hmacalgo __user *p = (void __user *)optval; 6878 struct sctp_hmac_algo_param *hmacs; 6879 __u16 data_len = 0; 6880 u32 num_idents; 6881 int i; 6882 6883 if (!ep->auth_enable) 6884 return -EACCES; 6885 6886 hmacs = ep->auth_hmacs_list; 6887 data_len = ntohs(hmacs->param_hdr.length) - 6888 sizeof(struct sctp_paramhdr); 6889 6890 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6891 return -EINVAL; 6892 6893 len = sizeof(struct sctp_hmacalgo) + data_len; 6894 num_idents = data_len / sizeof(u16); 6895 6896 if (put_user(len, optlen)) 6897 return -EFAULT; 6898 if (put_user(num_idents, &p->shmac_num_idents)) 6899 return -EFAULT; 6900 for (i = 0; i < num_idents; i++) { 6901 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6902 6903 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6904 return -EFAULT; 6905 } 6906 return 0; 6907 } 6908 6909 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6910 char __user *optval, int __user *optlen) 6911 { 6912 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6913 struct sctp_authkeyid val; 6914 struct sctp_association *asoc; 6915 6916 if (len < sizeof(struct sctp_authkeyid)) 6917 return -EINVAL; 6918 6919 len = sizeof(struct sctp_authkeyid); 6920 if (copy_from_user(&val, optval, len)) 6921 return -EFAULT; 6922 6923 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6924 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6925 return -EINVAL; 6926 6927 if (asoc) { 6928 if (!asoc->peer.auth_capable) 6929 return -EACCES; 6930 val.scact_keynumber = asoc->active_key_id; 6931 } else { 6932 if (!ep->auth_enable) 6933 return -EACCES; 6934 val.scact_keynumber = ep->active_key_id; 6935 } 6936 6937 if (put_user(len, optlen)) 6938 return -EFAULT; 6939 if (copy_to_user(optval, &val, len)) 6940 return -EFAULT; 6941 6942 return 0; 6943 } 6944 6945 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6946 char __user *optval, int __user *optlen) 6947 { 6948 struct sctp_authchunks __user *p = (void __user *)optval; 6949 struct sctp_authchunks val; 6950 struct sctp_association *asoc; 6951 struct sctp_chunks_param *ch; 6952 u32 num_chunks = 0; 6953 char __user *to; 6954 6955 if (len < sizeof(struct sctp_authchunks)) 6956 return -EINVAL; 6957 6958 if (copy_from_user(&val, optval, sizeof(val))) 6959 return -EFAULT; 6960 6961 to = p->gauth_chunks; 6962 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6963 if (!asoc) 6964 return -EINVAL; 6965 6966 if (!asoc->peer.auth_capable) 6967 return -EACCES; 6968 6969 ch = asoc->peer.peer_chunks; 6970 if (!ch) 6971 goto num; 6972 6973 /* See if the user provided enough room for all the data */ 6974 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6975 if (len < num_chunks) 6976 return -EINVAL; 6977 6978 if (copy_to_user(to, ch->chunks, num_chunks)) 6979 return -EFAULT; 6980 num: 6981 len = sizeof(struct sctp_authchunks) + num_chunks; 6982 if (put_user(len, optlen)) 6983 return -EFAULT; 6984 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6985 return -EFAULT; 6986 return 0; 6987 } 6988 6989 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6990 char __user *optval, int __user *optlen) 6991 { 6992 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6993 struct sctp_authchunks __user *p = (void __user *)optval; 6994 struct sctp_authchunks val; 6995 struct sctp_association *asoc; 6996 struct sctp_chunks_param *ch; 6997 u32 num_chunks = 0; 6998 char __user *to; 6999 7000 if (len < sizeof(struct sctp_authchunks)) 7001 return -EINVAL; 7002 7003 if (copy_from_user(&val, optval, sizeof(val))) 7004 return -EFAULT; 7005 7006 to = p->gauth_chunks; 7007 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7008 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7009 sctp_style(sk, UDP)) 7010 return -EINVAL; 7011 7012 if (asoc) { 7013 if (!asoc->peer.auth_capable) 7014 return -EACCES; 7015 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7016 } else { 7017 if (!ep->auth_enable) 7018 return -EACCES; 7019 ch = ep->auth_chunk_list; 7020 } 7021 if (!ch) 7022 goto num; 7023 7024 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7025 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7026 return -EINVAL; 7027 7028 if (copy_to_user(to, ch->chunks, num_chunks)) 7029 return -EFAULT; 7030 num: 7031 len = sizeof(struct sctp_authchunks) + num_chunks; 7032 if (put_user(len, optlen)) 7033 return -EFAULT; 7034 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7035 return -EFAULT; 7036 7037 return 0; 7038 } 7039 7040 /* 7041 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7042 * This option gets the current number of associations that are attached 7043 * to a one-to-many style socket. The option value is an uint32_t. 7044 */ 7045 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7046 char __user *optval, int __user *optlen) 7047 { 7048 struct sctp_sock *sp = sctp_sk(sk); 7049 struct sctp_association *asoc; 7050 u32 val = 0; 7051 7052 if (sctp_style(sk, TCP)) 7053 return -EOPNOTSUPP; 7054 7055 if (len < sizeof(u32)) 7056 return -EINVAL; 7057 7058 len = sizeof(u32); 7059 7060 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7061 val++; 7062 } 7063 7064 if (put_user(len, optlen)) 7065 return -EFAULT; 7066 if (copy_to_user(optval, &val, len)) 7067 return -EFAULT; 7068 7069 return 0; 7070 } 7071 7072 /* 7073 * 8.1.23 SCTP_AUTO_ASCONF 7074 * See the corresponding setsockopt entry as description 7075 */ 7076 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7077 char __user *optval, int __user *optlen) 7078 { 7079 int val = 0; 7080 7081 if (len < sizeof(int)) 7082 return -EINVAL; 7083 7084 len = sizeof(int); 7085 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7086 val = 1; 7087 if (put_user(len, optlen)) 7088 return -EFAULT; 7089 if (copy_to_user(optval, &val, len)) 7090 return -EFAULT; 7091 return 0; 7092 } 7093 7094 /* 7095 * 8.2.6. Get the Current Identifiers of Associations 7096 * (SCTP_GET_ASSOC_ID_LIST) 7097 * 7098 * This option gets the current list of SCTP association identifiers of 7099 * the SCTP associations handled by a one-to-many style socket. 7100 */ 7101 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7102 char __user *optval, int __user *optlen) 7103 { 7104 struct sctp_sock *sp = sctp_sk(sk); 7105 struct sctp_association *asoc; 7106 struct sctp_assoc_ids *ids; 7107 u32 num = 0; 7108 7109 if (sctp_style(sk, TCP)) 7110 return -EOPNOTSUPP; 7111 7112 if (len < sizeof(struct sctp_assoc_ids)) 7113 return -EINVAL; 7114 7115 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7116 num++; 7117 } 7118 7119 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7120 return -EINVAL; 7121 7122 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7123 7124 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7125 if (unlikely(!ids)) 7126 return -ENOMEM; 7127 7128 ids->gaids_number_of_ids = num; 7129 num = 0; 7130 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7131 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7132 } 7133 7134 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7135 kfree(ids); 7136 return -EFAULT; 7137 } 7138 7139 kfree(ids); 7140 return 0; 7141 } 7142 7143 /* 7144 * SCTP_PEER_ADDR_THLDS 7145 * 7146 * This option allows us to fetch the partially failed threshold for one or all 7147 * transports in an association. See Section 6.1 of: 7148 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7149 */ 7150 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7151 char __user *optval, int len, 7152 int __user *optlen, bool v2) 7153 { 7154 struct sctp_paddrthlds_v2 val; 7155 struct sctp_transport *trans; 7156 struct sctp_association *asoc; 7157 int min; 7158 7159 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7160 if (len < min) 7161 return -EINVAL; 7162 len = min; 7163 if (copy_from_user(&val, optval, len)) 7164 return -EFAULT; 7165 7166 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7167 trans = sctp_addr_id2transport(sk, &val.spt_address, 7168 val.spt_assoc_id); 7169 if (!trans) 7170 return -ENOENT; 7171 7172 val.spt_pathmaxrxt = trans->pathmaxrxt; 7173 val.spt_pathpfthld = trans->pf_retrans; 7174 val.spt_pathcpthld = trans->ps_retrans; 7175 7176 goto out; 7177 } 7178 7179 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7180 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7181 sctp_style(sk, UDP)) 7182 return -EINVAL; 7183 7184 if (asoc) { 7185 val.spt_pathpfthld = asoc->pf_retrans; 7186 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7187 val.spt_pathcpthld = asoc->ps_retrans; 7188 } else { 7189 struct sctp_sock *sp = sctp_sk(sk); 7190 7191 val.spt_pathpfthld = sp->pf_retrans; 7192 val.spt_pathmaxrxt = sp->pathmaxrxt; 7193 val.spt_pathcpthld = sp->ps_retrans; 7194 } 7195 7196 out: 7197 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7198 return -EFAULT; 7199 7200 return 0; 7201 } 7202 7203 /* 7204 * SCTP_GET_ASSOC_STATS 7205 * 7206 * This option retrieves local per endpoint statistics. It is modeled 7207 * after OpenSolaris' implementation 7208 */ 7209 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7210 char __user *optval, 7211 int __user *optlen) 7212 { 7213 struct sctp_assoc_stats sas; 7214 struct sctp_association *asoc = NULL; 7215 7216 /* User must provide at least the assoc id */ 7217 if (len < sizeof(sctp_assoc_t)) 7218 return -EINVAL; 7219 7220 /* Allow the struct to grow and fill in as much as possible */ 7221 len = min_t(size_t, len, sizeof(sas)); 7222 7223 if (copy_from_user(&sas, optval, len)) 7224 return -EFAULT; 7225 7226 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7227 if (!asoc) 7228 return -EINVAL; 7229 7230 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7231 sas.sas_gapcnt = asoc->stats.gapcnt; 7232 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7233 sas.sas_osacks = asoc->stats.osacks; 7234 sas.sas_isacks = asoc->stats.isacks; 7235 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7236 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7237 sas.sas_oodchunks = asoc->stats.oodchunks; 7238 sas.sas_iodchunks = asoc->stats.iodchunks; 7239 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7240 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7241 sas.sas_idupchunks = asoc->stats.idupchunks; 7242 sas.sas_opackets = asoc->stats.opackets; 7243 sas.sas_ipackets = asoc->stats.ipackets; 7244 7245 /* New high max rto observed, will return 0 if not a single 7246 * RTO update took place. obs_rto_ipaddr will be bogus 7247 * in such a case 7248 */ 7249 sas.sas_maxrto = asoc->stats.max_obs_rto; 7250 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7251 sizeof(struct sockaddr_storage)); 7252 7253 /* Mark beginning of a new observation period */ 7254 asoc->stats.max_obs_rto = asoc->rto_min; 7255 7256 if (put_user(len, optlen)) 7257 return -EFAULT; 7258 7259 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7260 7261 if (copy_to_user(optval, &sas, len)) 7262 return -EFAULT; 7263 7264 return 0; 7265 } 7266 7267 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7268 char __user *optval, 7269 int __user *optlen) 7270 { 7271 int val = 0; 7272 7273 if (len < sizeof(int)) 7274 return -EINVAL; 7275 7276 len = sizeof(int); 7277 if (sctp_sk(sk)->recvrcvinfo) 7278 val = 1; 7279 if (put_user(len, optlen)) 7280 return -EFAULT; 7281 if (copy_to_user(optval, &val, len)) 7282 return -EFAULT; 7283 7284 return 0; 7285 } 7286 7287 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7288 char __user *optval, 7289 int __user *optlen) 7290 { 7291 int val = 0; 7292 7293 if (len < sizeof(int)) 7294 return -EINVAL; 7295 7296 len = sizeof(int); 7297 if (sctp_sk(sk)->recvnxtinfo) 7298 val = 1; 7299 if (put_user(len, optlen)) 7300 return -EFAULT; 7301 if (copy_to_user(optval, &val, len)) 7302 return -EFAULT; 7303 7304 return 0; 7305 } 7306 7307 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7308 char __user *optval, 7309 int __user *optlen) 7310 { 7311 struct sctp_assoc_value params; 7312 struct sctp_association *asoc; 7313 int retval = -EFAULT; 7314 7315 if (len < sizeof(params)) { 7316 retval = -EINVAL; 7317 goto out; 7318 } 7319 7320 len = sizeof(params); 7321 if (copy_from_user(¶ms, optval, len)) 7322 goto out; 7323 7324 asoc = sctp_id2assoc(sk, params.assoc_id); 7325 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7326 sctp_style(sk, UDP)) { 7327 retval = -EINVAL; 7328 goto out; 7329 } 7330 7331 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7332 : sctp_sk(sk)->ep->prsctp_enable; 7333 7334 if (put_user(len, optlen)) 7335 goto out; 7336 7337 if (copy_to_user(optval, ¶ms, len)) 7338 goto out; 7339 7340 retval = 0; 7341 7342 out: 7343 return retval; 7344 } 7345 7346 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7347 char __user *optval, 7348 int __user *optlen) 7349 { 7350 struct sctp_default_prinfo info; 7351 struct sctp_association *asoc; 7352 int retval = -EFAULT; 7353 7354 if (len < sizeof(info)) { 7355 retval = -EINVAL; 7356 goto out; 7357 } 7358 7359 len = sizeof(info); 7360 if (copy_from_user(&info, optval, len)) 7361 goto out; 7362 7363 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7364 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7365 sctp_style(sk, UDP)) { 7366 retval = -EINVAL; 7367 goto out; 7368 } 7369 7370 if (asoc) { 7371 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7372 info.pr_value = asoc->default_timetolive; 7373 } else { 7374 struct sctp_sock *sp = sctp_sk(sk); 7375 7376 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7377 info.pr_value = sp->default_timetolive; 7378 } 7379 7380 if (put_user(len, optlen)) 7381 goto out; 7382 7383 if (copy_to_user(optval, &info, len)) 7384 goto out; 7385 7386 retval = 0; 7387 7388 out: 7389 return retval; 7390 } 7391 7392 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7393 char __user *optval, 7394 int __user *optlen) 7395 { 7396 struct sctp_prstatus params; 7397 struct sctp_association *asoc; 7398 int policy; 7399 int retval = -EINVAL; 7400 7401 if (len < sizeof(params)) 7402 goto out; 7403 7404 len = sizeof(params); 7405 if (copy_from_user(¶ms, optval, len)) { 7406 retval = -EFAULT; 7407 goto out; 7408 } 7409 7410 policy = params.sprstat_policy; 7411 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7412 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7413 goto out; 7414 7415 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7416 if (!asoc) 7417 goto out; 7418 7419 if (policy == SCTP_PR_SCTP_ALL) { 7420 params.sprstat_abandoned_unsent = 0; 7421 params.sprstat_abandoned_sent = 0; 7422 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7423 params.sprstat_abandoned_unsent += 7424 asoc->abandoned_unsent[policy]; 7425 params.sprstat_abandoned_sent += 7426 asoc->abandoned_sent[policy]; 7427 } 7428 } else { 7429 params.sprstat_abandoned_unsent = 7430 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7431 params.sprstat_abandoned_sent = 7432 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7433 } 7434 7435 if (put_user(len, optlen)) { 7436 retval = -EFAULT; 7437 goto out; 7438 } 7439 7440 if (copy_to_user(optval, ¶ms, len)) { 7441 retval = -EFAULT; 7442 goto out; 7443 } 7444 7445 retval = 0; 7446 7447 out: 7448 return retval; 7449 } 7450 7451 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7452 char __user *optval, 7453 int __user *optlen) 7454 { 7455 struct sctp_stream_out_ext *streamoute; 7456 struct sctp_association *asoc; 7457 struct sctp_prstatus params; 7458 int retval = -EINVAL; 7459 int policy; 7460 7461 if (len < sizeof(params)) 7462 goto out; 7463 7464 len = sizeof(params); 7465 if (copy_from_user(¶ms, optval, len)) { 7466 retval = -EFAULT; 7467 goto out; 7468 } 7469 7470 policy = params.sprstat_policy; 7471 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7472 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7473 goto out; 7474 7475 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7476 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7477 goto out; 7478 7479 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7480 if (!streamoute) { 7481 /* Not allocated yet, means all stats are 0 */ 7482 params.sprstat_abandoned_unsent = 0; 7483 params.sprstat_abandoned_sent = 0; 7484 retval = 0; 7485 goto out; 7486 } 7487 7488 if (policy == SCTP_PR_SCTP_ALL) { 7489 params.sprstat_abandoned_unsent = 0; 7490 params.sprstat_abandoned_sent = 0; 7491 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7492 params.sprstat_abandoned_unsent += 7493 streamoute->abandoned_unsent[policy]; 7494 params.sprstat_abandoned_sent += 7495 streamoute->abandoned_sent[policy]; 7496 } 7497 } else { 7498 params.sprstat_abandoned_unsent = 7499 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7500 params.sprstat_abandoned_sent = 7501 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7502 } 7503 7504 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7505 retval = -EFAULT; 7506 goto out; 7507 } 7508 7509 retval = 0; 7510 7511 out: 7512 return retval; 7513 } 7514 7515 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7516 char __user *optval, 7517 int __user *optlen) 7518 { 7519 struct sctp_assoc_value params; 7520 struct sctp_association *asoc; 7521 int retval = -EFAULT; 7522 7523 if (len < sizeof(params)) { 7524 retval = -EINVAL; 7525 goto out; 7526 } 7527 7528 len = sizeof(params); 7529 if (copy_from_user(¶ms, optval, len)) 7530 goto out; 7531 7532 asoc = sctp_id2assoc(sk, params.assoc_id); 7533 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7534 sctp_style(sk, UDP)) { 7535 retval = -EINVAL; 7536 goto out; 7537 } 7538 7539 params.assoc_value = asoc ? asoc->peer.reconf_capable 7540 : sctp_sk(sk)->ep->reconf_enable; 7541 7542 if (put_user(len, optlen)) 7543 goto out; 7544 7545 if (copy_to_user(optval, ¶ms, len)) 7546 goto out; 7547 7548 retval = 0; 7549 7550 out: 7551 return retval; 7552 } 7553 7554 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7555 char __user *optval, 7556 int __user *optlen) 7557 { 7558 struct sctp_assoc_value params; 7559 struct sctp_association *asoc; 7560 int retval = -EFAULT; 7561 7562 if (len < sizeof(params)) { 7563 retval = -EINVAL; 7564 goto out; 7565 } 7566 7567 len = sizeof(params); 7568 if (copy_from_user(¶ms, optval, len)) 7569 goto out; 7570 7571 asoc = sctp_id2assoc(sk, params.assoc_id); 7572 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7573 sctp_style(sk, UDP)) { 7574 retval = -EINVAL; 7575 goto out; 7576 } 7577 7578 params.assoc_value = asoc ? asoc->strreset_enable 7579 : sctp_sk(sk)->ep->strreset_enable; 7580 7581 if (put_user(len, optlen)) 7582 goto out; 7583 7584 if (copy_to_user(optval, ¶ms, len)) 7585 goto out; 7586 7587 retval = 0; 7588 7589 out: 7590 return retval; 7591 } 7592 7593 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7594 char __user *optval, 7595 int __user *optlen) 7596 { 7597 struct sctp_assoc_value params; 7598 struct sctp_association *asoc; 7599 int retval = -EFAULT; 7600 7601 if (len < sizeof(params)) { 7602 retval = -EINVAL; 7603 goto out; 7604 } 7605 7606 len = sizeof(params); 7607 if (copy_from_user(¶ms, optval, len)) 7608 goto out; 7609 7610 asoc = sctp_id2assoc(sk, params.assoc_id); 7611 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7612 sctp_style(sk, UDP)) { 7613 retval = -EINVAL; 7614 goto out; 7615 } 7616 7617 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7618 : sctp_sk(sk)->default_ss; 7619 7620 if (put_user(len, optlen)) 7621 goto out; 7622 7623 if (copy_to_user(optval, ¶ms, len)) 7624 goto out; 7625 7626 retval = 0; 7627 7628 out: 7629 return retval; 7630 } 7631 7632 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7633 char __user *optval, 7634 int __user *optlen) 7635 { 7636 struct sctp_stream_value params; 7637 struct sctp_association *asoc; 7638 int retval = -EFAULT; 7639 7640 if (len < sizeof(params)) { 7641 retval = -EINVAL; 7642 goto out; 7643 } 7644 7645 len = sizeof(params); 7646 if (copy_from_user(¶ms, optval, len)) 7647 goto out; 7648 7649 asoc = sctp_id2assoc(sk, params.assoc_id); 7650 if (!asoc) { 7651 retval = -EINVAL; 7652 goto out; 7653 } 7654 7655 retval = sctp_sched_get_value(asoc, params.stream_id, 7656 ¶ms.stream_value); 7657 if (retval) 7658 goto out; 7659 7660 if (put_user(len, optlen)) { 7661 retval = -EFAULT; 7662 goto out; 7663 } 7664 7665 if (copy_to_user(optval, ¶ms, len)) { 7666 retval = -EFAULT; 7667 goto out; 7668 } 7669 7670 out: 7671 return retval; 7672 } 7673 7674 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7675 char __user *optval, 7676 int __user *optlen) 7677 { 7678 struct sctp_assoc_value params; 7679 struct sctp_association *asoc; 7680 int retval = -EFAULT; 7681 7682 if (len < sizeof(params)) { 7683 retval = -EINVAL; 7684 goto out; 7685 } 7686 7687 len = sizeof(params); 7688 if (copy_from_user(¶ms, optval, len)) 7689 goto out; 7690 7691 asoc = sctp_id2assoc(sk, params.assoc_id); 7692 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7693 sctp_style(sk, UDP)) { 7694 retval = -EINVAL; 7695 goto out; 7696 } 7697 7698 params.assoc_value = asoc ? asoc->peer.intl_capable 7699 : sctp_sk(sk)->ep->intl_enable; 7700 7701 if (put_user(len, optlen)) 7702 goto out; 7703 7704 if (copy_to_user(optval, ¶ms, len)) 7705 goto out; 7706 7707 retval = 0; 7708 7709 out: 7710 return retval; 7711 } 7712 7713 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7714 char __user *optval, 7715 int __user *optlen) 7716 { 7717 int val; 7718 7719 if (len < sizeof(int)) 7720 return -EINVAL; 7721 7722 len = sizeof(int); 7723 val = sctp_sk(sk)->reuse; 7724 if (put_user(len, optlen)) 7725 return -EFAULT; 7726 7727 if (copy_to_user(optval, &val, len)) 7728 return -EFAULT; 7729 7730 return 0; 7731 } 7732 7733 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7734 int __user *optlen) 7735 { 7736 struct sctp_association *asoc; 7737 struct sctp_event param; 7738 __u16 subscribe; 7739 7740 if (len < sizeof(param)) 7741 return -EINVAL; 7742 7743 len = sizeof(param); 7744 if (copy_from_user(¶m, optval, len)) 7745 return -EFAULT; 7746 7747 if (param.se_type < SCTP_SN_TYPE_BASE || 7748 param.se_type > SCTP_SN_TYPE_MAX) 7749 return -EINVAL; 7750 7751 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7752 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7753 sctp_style(sk, UDP)) 7754 return -EINVAL; 7755 7756 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7757 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7758 7759 if (put_user(len, optlen)) 7760 return -EFAULT; 7761 7762 if (copy_to_user(optval, ¶m, len)) 7763 return -EFAULT; 7764 7765 return 0; 7766 } 7767 7768 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7769 char __user *optval, 7770 int __user *optlen) 7771 { 7772 struct sctp_assoc_value params; 7773 struct sctp_association *asoc; 7774 int retval = -EFAULT; 7775 7776 if (len < sizeof(params)) { 7777 retval = -EINVAL; 7778 goto out; 7779 } 7780 7781 len = sizeof(params); 7782 if (copy_from_user(¶ms, optval, len)) 7783 goto out; 7784 7785 asoc = sctp_id2assoc(sk, params.assoc_id); 7786 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7787 sctp_style(sk, UDP)) { 7788 retval = -EINVAL; 7789 goto out; 7790 } 7791 7792 params.assoc_value = asoc ? asoc->peer.asconf_capable 7793 : sctp_sk(sk)->ep->asconf_enable; 7794 7795 if (put_user(len, optlen)) 7796 goto out; 7797 7798 if (copy_to_user(optval, ¶ms, len)) 7799 goto out; 7800 7801 retval = 0; 7802 7803 out: 7804 return retval; 7805 } 7806 7807 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7808 char __user *optval, 7809 int __user *optlen) 7810 { 7811 struct sctp_assoc_value params; 7812 struct sctp_association *asoc; 7813 int retval = -EFAULT; 7814 7815 if (len < sizeof(params)) { 7816 retval = -EINVAL; 7817 goto out; 7818 } 7819 7820 len = sizeof(params); 7821 if (copy_from_user(¶ms, optval, len)) 7822 goto out; 7823 7824 asoc = sctp_id2assoc(sk, params.assoc_id); 7825 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7826 sctp_style(sk, UDP)) { 7827 retval = -EINVAL; 7828 goto out; 7829 } 7830 7831 params.assoc_value = asoc ? asoc->peer.auth_capable 7832 : sctp_sk(sk)->ep->auth_enable; 7833 7834 if (put_user(len, optlen)) 7835 goto out; 7836 7837 if (copy_to_user(optval, ¶ms, len)) 7838 goto out; 7839 7840 retval = 0; 7841 7842 out: 7843 return retval; 7844 } 7845 7846 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7847 char __user *optval, 7848 int __user *optlen) 7849 { 7850 struct sctp_assoc_value params; 7851 struct sctp_association *asoc; 7852 int retval = -EFAULT; 7853 7854 if (len < sizeof(params)) { 7855 retval = -EINVAL; 7856 goto out; 7857 } 7858 7859 len = sizeof(params); 7860 if (copy_from_user(¶ms, optval, len)) 7861 goto out; 7862 7863 asoc = sctp_id2assoc(sk, params.assoc_id); 7864 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7865 sctp_style(sk, UDP)) { 7866 retval = -EINVAL; 7867 goto out; 7868 } 7869 7870 params.assoc_value = asoc ? asoc->peer.ecn_capable 7871 : sctp_sk(sk)->ep->ecn_enable; 7872 7873 if (put_user(len, optlen)) 7874 goto out; 7875 7876 if (copy_to_user(optval, ¶ms, len)) 7877 goto out; 7878 7879 retval = 0; 7880 7881 out: 7882 return retval; 7883 } 7884 7885 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7886 char __user *optval, 7887 int __user *optlen) 7888 { 7889 struct sctp_assoc_value params; 7890 struct sctp_association *asoc; 7891 int retval = -EFAULT; 7892 7893 if (len < sizeof(params)) { 7894 retval = -EINVAL; 7895 goto out; 7896 } 7897 7898 len = sizeof(params); 7899 if (copy_from_user(¶ms, optval, len)) 7900 goto out; 7901 7902 asoc = sctp_id2assoc(sk, params.assoc_id); 7903 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7904 sctp_style(sk, UDP)) { 7905 retval = -EINVAL; 7906 goto out; 7907 } 7908 7909 params.assoc_value = asoc ? asoc->pf_expose 7910 : sctp_sk(sk)->pf_expose; 7911 7912 if (put_user(len, optlen)) 7913 goto out; 7914 7915 if (copy_to_user(optval, ¶ms, len)) 7916 goto out; 7917 7918 retval = 0; 7919 7920 out: 7921 return retval; 7922 } 7923 7924 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7925 char __user *optval, int __user *optlen) 7926 { 7927 struct sctp_association *asoc; 7928 struct sctp_udpencaps encap; 7929 struct sctp_transport *t; 7930 __be16 encap_port; 7931 7932 if (len < sizeof(encap)) 7933 return -EINVAL; 7934 7935 len = sizeof(encap); 7936 if (copy_from_user(&encap, optval, len)) 7937 return -EFAULT; 7938 7939 /* If an address other than INADDR_ANY is specified, and 7940 * no transport is found, then the request is invalid. 7941 */ 7942 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7943 t = sctp_addr_id2transport(sk, &encap.sue_address, 7944 encap.sue_assoc_id); 7945 if (!t) { 7946 pr_debug("%s: failed no transport\n", __func__); 7947 return -EINVAL; 7948 } 7949 7950 encap_port = t->encap_port; 7951 goto out; 7952 } 7953 7954 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7955 * socket is a one to many style socket, and an association 7956 * was not found, then the id was invalid. 7957 */ 7958 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7959 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7960 sctp_style(sk, UDP)) { 7961 pr_debug("%s: failed no association\n", __func__); 7962 return -EINVAL; 7963 } 7964 7965 if (asoc) { 7966 encap_port = asoc->encap_port; 7967 goto out; 7968 } 7969 7970 encap_port = sctp_sk(sk)->encap_port; 7971 7972 out: 7973 encap.sue_port = (__force uint16_t)encap_port; 7974 if (copy_to_user(optval, &encap, len)) 7975 return -EFAULT; 7976 7977 if (put_user(len, optlen)) 7978 return -EFAULT; 7979 7980 return 0; 7981 } 7982 7983 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 7984 char __user *optval, 7985 int __user *optlen) 7986 { 7987 struct sctp_probeinterval params; 7988 struct sctp_association *asoc; 7989 struct sctp_transport *t; 7990 __u32 probe_interval; 7991 7992 if (len < sizeof(params)) 7993 return -EINVAL; 7994 7995 len = sizeof(params); 7996 if (copy_from_user(¶ms, optval, len)) 7997 return -EFAULT; 7998 7999 /* If an address other than INADDR_ANY is specified, and 8000 * no transport is found, then the request is invalid. 8001 */ 8002 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8003 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8004 params.spi_assoc_id); 8005 if (!t) { 8006 pr_debug("%s: failed no transport\n", __func__); 8007 return -EINVAL; 8008 } 8009 8010 probe_interval = jiffies_to_msecs(t->probe_interval); 8011 goto out; 8012 } 8013 8014 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8015 * socket is a one to many style socket, and an association 8016 * was not found, then the id was invalid. 8017 */ 8018 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8019 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8020 sctp_style(sk, UDP)) { 8021 pr_debug("%s: failed no association\n", __func__); 8022 return -EINVAL; 8023 } 8024 8025 if (asoc) { 8026 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8027 goto out; 8028 } 8029 8030 probe_interval = sctp_sk(sk)->probe_interval; 8031 8032 out: 8033 params.spi_interval = probe_interval; 8034 if (copy_to_user(optval, ¶ms, len)) 8035 return -EFAULT; 8036 8037 if (put_user(len, optlen)) 8038 return -EFAULT; 8039 8040 return 0; 8041 } 8042 8043 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8044 char __user *optval, int __user *optlen) 8045 { 8046 int retval = 0; 8047 int len; 8048 8049 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8050 8051 /* I can hardly begin to describe how wrong this is. This is 8052 * so broken as to be worse than useless. The API draft 8053 * REALLY is NOT helpful here... I am not convinced that the 8054 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8055 * are at all well-founded. 8056 */ 8057 if (level != SOL_SCTP) { 8058 struct sctp_af *af = sctp_sk(sk)->pf->af; 8059 8060 retval = af->getsockopt(sk, level, optname, optval, optlen); 8061 return retval; 8062 } 8063 8064 if (get_user(len, optlen)) 8065 return -EFAULT; 8066 8067 if (len < 0) 8068 return -EINVAL; 8069 8070 lock_sock(sk); 8071 8072 switch (optname) { 8073 case SCTP_STATUS: 8074 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8075 break; 8076 case SCTP_DISABLE_FRAGMENTS: 8077 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8078 optlen); 8079 break; 8080 case SCTP_EVENTS: 8081 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8082 break; 8083 case SCTP_AUTOCLOSE: 8084 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8085 break; 8086 case SCTP_SOCKOPT_PEELOFF: 8087 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8088 break; 8089 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8090 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8091 break; 8092 case SCTP_PEER_ADDR_PARAMS: 8093 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8094 optlen); 8095 break; 8096 case SCTP_DELAYED_SACK: 8097 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8098 optlen); 8099 break; 8100 case SCTP_INITMSG: 8101 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8102 break; 8103 case SCTP_GET_PEER_ADDRS: 8104 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8105 optlen); 8106 break; 8107 case SCTP_GET_LOCAL_ADDRS: 8108 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8109 optlen); 8110 break; 8111 case SCTP_SOCKOPT_CONNECTX3: 8112 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8113 break; 8114 case SCTP_DEFAULT_SEND_PARAM: 8115 retval = sctp_getsockopt_default_send_param(sk, len, 8116 optval, optlen); 8117 break; 8118 case SCTP_DEFAULT_SNDINFO: 8119 retval = sctp_getsockopt_default_sndinfo(sk, len, 8120 optval, optlen); 8121 break; 8122 case SCTP_PRIMARY_ADDR: 8123 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8124 break; 8125 case SCTP_NODELAY: 8126 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8127 break; 8128 case SCTP_RTOINFO: 8129 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8130 break; 8131 case SCTP_ASSOCINFO: 8132 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8133 break; 8134 case SCTP_I_WANT_MAPPED_V4_ADDR: 8135 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8136 break; 8137 case SCTP_MAXSEG: 8138 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8139 break; 8140 case SCTP_GET_PEER_ADDR_INFO: 8141 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8142 optlen); 8143 break; 8144 case SCTP_ADAPTATION_LAYER: 8145 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8146 optlen); 8147 break; 8148 case SCTP_CONTEXT: 8149 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8150 break; 8151 case SCTP_FRAGMENT_INTERLEAVE: 8152 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8153 optlen); 8154 break; 8155 case SCTP_PARTIAL_DELIVERY_POINT: 8156 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8157 optlen); 8158 break; 8159 case SCTP_MAX_BURST: 8160 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8161 break; 8162 case SCTP_AUTH_KEY: 8163 case SCTP_AUTH_CHUNK: 8164 case SCTP_AUTH_DELETE_KEY: 8165 case SCTP_AUTH_DEACTIVATE_KEY: 8166 retval = -EOPNOTSUPP; 8167 break; 8168 case SCTP_HMAC_IDENT: 8169 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8170 break; 8171 case SCTP_AUTH_ACTIVE_KEY: 8172 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8173 break; 8174 case SCTP_PEER_AUTH_CHUNKS: 8175 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8176 optlen); 8177 break; 8178 case SCTP_LOCAL_AUTH_CHUNKS: 8179 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8180 optlen); 8181 break; 8182 case SCTP_GET_ASSOC_NUMBER: 8183 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8184 break; 8185 case SCTP_GET_ASSOC_ID_LIST: 8186 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8187 break; 8188 case SCTP_AUTO_ASCONF: 8189 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8190 break; 8191 case SCTP_PEER_ADDR_THLDS: 8192 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8193 optlen, false); 8194 break; 8195 case SCTP_PEER_ADDR_THLDS_V2: 8196 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8197 optlen, true); 8198 break; 8199 case SCTP_GET_ASSOC_STATS: 8200 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8201 break; 8202 case SCTP_RECVRCVINFO: 8203 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8204 break; 8205 case SCTP_RECVNXTINFO: 8206 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8207 break; 8208 case SCTP_PR_SUPPORTED: 8209 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8210 break; 8211 case SCTP_DEFAULT_PRINFO: 8212 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8213 optlen); 8214 break; 8215 case SCTP_PR_ASSOC_STATUS: 8216 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8217 optlen); 8218 break; 8219 case SCTP_PR_STREAM_STATUS: 8220 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8221 optlen); 8222 break; 8223 case SCTP_RECONFIG_SUPPORTED: 8224 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8225 optlen); 8226 break; 8227 case SCTP_ENABLE_STREAM_RESET: 8228 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8229 optlen); 8230 break; 8231 case SCTP_STREAM_SCHEDULER: 8232 retval = sctp_getsockopt_scheduler(sk, len, optval, 8233 optlen); 8234 break; 8235 case SCTP_STREAM_SCHEDULER_VALUE: 8236 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8237 optlen); 8238 break; 8239 case SCTP_INTERLEAVING_SUPPORTED: 8240 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8241 optlen); 8242 break; 8243 case SCTP_REUSE_PORT: 8244 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8245 break; 8246 case SCTP_EVENT: 8247 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8248 break; 8249 case SCTP_ASCONF_SUPPORTED: 8250 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8251 optlen); 8252 break; 8253 case SCTP_AUTH_SUPPORTED: 8254 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8255 optlen); 8256 break; 8257 case SCTP_ECN_SUPPORTED: 8258 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8259 break; 8260 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8261 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8262 break; 8263 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8264 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8265 break; 8266 case SCTP_PLPMTUD_PROBE_INTERVAL: 8267 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8268 break; 8269 default: 8270 retval = -ENOPROTOOPT; 8271 break; 8272 } 8273 8274 release_sock(sk); 8275 return retval; 8276 } 8277 8278 static int sctp_hash(struct sock *sk) 8279 { 8280 /* STUB */ 8281 return 0; 8282 } 8283 8284 static void sctp_unhash(struct sock *sk) 8285 { 8286 /* STUB */ 8287 } 8288 8289 /* Check if port is acceptable. Possibly find first available port. 8290 * 8291 * The port hash table (contained in the 'global' SCTP protocol storage 8292 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8293 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8294 * list (the list number is the port number hashed out, so as you 8295 * would expect from a hash function, all the ports in a given list have 8296 * such a number that hashes out to the same list number; you were 8297 * expecting that, right?); so each list has a set of ports, with a 8298 * link to the socket (struct sock) that uses it, the port number and 8299 * a fastreuse flag (FIXME: NPI ipg). 8300 */ 8301 static struct sctp_bind_bucket *sctp_bucket_create( 8302 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8303 8304 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8305 { 8306 struct sctp_sock *sp = sctp_sk(sk); 8307 bool reuse = (sk->sk_reuse || sp->reuse); 8308 struct sctp_bind_hashbucket *head; /* hash list */ 8309 struct net *net = sock_net(sk); 8310 kuid_t uid = sock_i_uid(sk); 8311 struct sctp_bind_bucket *pp; 8312 unsigned short snum; 8313 int ret; 8314 8315 snum = ntohs(addr->v4.sin_port); 8316 8317 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8318 8319 if (snum == 0) { 8320 /* Search for an available port. */ 8321 int low, high, remaining, index; 8322 unsigned int rover; 8323 8324 inet_get_local_port_range(net, &low, &high); 8325 remaining = (high - low) + 1; 8326 rover = prandom_u32_max(remaining) + low; 8327 8328 do { 8329 rover++; 8330 if ((rover < low) || (rover > high)) 8331 rover = low; 8332 if (inet_is_local_reserved_port(net, rover)) 8333 continue; 8334 index = sctp_phashfn(net, rover); 8335 head = &sctp_port_hashtable[index]; 8336 spin_lock_bh(&head->lock); 8337 sctp_for_each_hentry(pp, &head->chain) 8338 if ((pp->port == rover) && 8339 net_eq(net, pp->net)) 8340 goto next; 8341 break; 8342 next: 8343 spin_unlock_bh(&head->lock); 8344 cond_resched(); 8345 } while (--remaining > 0); 8346 8347 /* Exhausted local port range during search? */ 8348 ret = 1; 8349 if (remaining <= 0) 8350 return ret; 8351 8352 /* OK, here is the one we will use. HEAD (the port 8353 * hash table list entry) is non-NULL and we hold it's 8354 * mutex. 8355 */ 8356 snum = rover; 8357 } else { 8358 /* We are given an specific port number; we verify 8359 * that it is not being used. If it is used, we will 8360 * exahust the search in the hash list corresponding 8361 * to the port number (snum) - we detect that with the 8362 * port iterator, pp being NULL. 8363 */ 8364 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8365 spin_lock_bh(&head->lock); 8366 sctp_for_each_hentry(pp, &head->chain) { 8367 if ((pp->port == snum) && net_eq(pp->net, net)) 8368 goto pp_found; 8369 } 8370 } 8371 pp = NULL; 8372 goto pp_not_found; 8373 pp_found: 8374 if (!hlist_empty(&pp->owner)) { 8375 /* We had a port hash table hit - there is an 8376 * available port (pp != NULL) and it is being 8377 * used by other socket (pp->owner not empty); that other 8378 * socket is going to be sk2. 8379 */ 8380 struct sock *sk2; 8381 8382 pr_debug("%s: found a possible match\n", __func__); 8383 8384 if ((pp->fastreuse && reuse && 8385 sk->sk_state != SCTP_SS_LISTENING) || 8386 (pp->fastreuseport && sk->sk_reuseport && 8387 uid_eq(pp->fastuid, uid))) 8388 goto success; 8389 8390 /* Run through the list of sockets bound to the port 8391 * (pp->port) [via the pointers bind_next and 8392 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8393 * we get the endpoint they describe and run through 8394 * the endpoint's list of IP (v4 or v6) addresses, 8395 * comparing each of the addresses with the address of 8396 * the socket sk. If we find a match, then that means 8397 * that this port/socket (sk) combination are already 8398 * in an endpoint. 8399 */ 8400 sk_for_each_bound(sk2, &pp->owner) { 8401 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8402 struct sctp_sock *sp2 = sctp_sk(sk2); 8403 struct sctp_endpoint *ep2 = sp2->ep; 8404 8405 if (sk == sk2 || 8406 (reuse && (sk2->sk_reuse || sp2->reuse) && 8407 sk2->sk_state != SCTP_SS_LISTENING) || 8408 (sk->sk_reuseport && sk2->sk_reuseport && 8409 uid_eq(uid, sock_i_uid(sk2)))) 8410 continue; 8411 8412 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8413 sk->sk_bound_dev_if == bound_dev_if2) && 8414 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8415 addr, sp2, sp)) { 8416 ret = 1; 8417 goto fail_unlock; 8418 } 8419 } 8420 8421 pr_debug("%s: found a match\n", __func__); 8422 } 8423 pp_not_found: 8424 /* If there was a hash table miss, create a new port. */ 8425 ret = 1; 8426 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8427 goto fail_unlock; 8428 8429 /* In either case (hit or miss), make sure fastreuse is 1 only 8430 * if sk->sk_reuse is too (that is, if the caller requested 8431 * SO_REUSEADDR on this socket -sk-). 8432 */ 8433 if (hlist_empty(&pp->owner)) { 8434 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8435 pp->fastreuse = 1; 8436 else 8437 pp->fastreuse = 0; 8438 8439 if (sk->sk_reuseport) { 8440 pp->fastreuseport = 1; 8441 pp->fastuid = uid; 8442 } else { 8443 pp->fastreuseport = 0; 8444 } 8445 } else { 8446 if (pp->fastreuse && 8447 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8448 pp->fastreuse = 0; 8449 8450 if (pp->fastreuseport && 8451 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8452 pp->fastreuseport = 0; 8453 } 8454 8455 /* We are set, so fill up all the data in the hash table 8456 * entry, tie the socket list information with the rest of the 8457 * sockets FIXME: Blurry, NPI (ipg). 8458 */ 8459 success: 8460 if (!sp->bind_hash) { 8461 inet_sk(sk)->inet_num = snum; 8462 sk_add_bind_node(sk, &pp->owner); 8463 sp->bind_hash = pp; 8464 } 8465 ret = 0; 8466 8467 fail_unlock: 8468 spin_unlock_bh(&head->lock); 8469 return ret; 8470 } 8471 8472 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8473 * port is requested. 8474 */ 8475 static int sctp_get_port(struct sock *sk, unsigned short snum) 8476 { 8477 union sctp_addr addr; 8478 struct sctp_af *af = sctp_sk(sk)->pf->af; 8479 8480 /* Set up a dummy address struct from the sk. */ 8481 af->from_sk(&addr, sk); 8482 addr.v4.sin_port = htons(snum); 8483 8484 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8485 return sctp_get_port_local(sk, &addr); 8486 } 8487 8488 /* 8489 * Move a socket to LISTENING state. 8490 */ 8491 static int sctp_listen_start(struct sock *sk, int backlog) 8492 { 8493 struct sctp_sock *sp = sctp_sk(sk); 8494 struct sctp_endpoint *ep = sp->ep; 8495 struct crypto_shash *tfm = NULL; 8496 char alg[32]; 8497 8498 /* Allocate HMAC for generating cookie. */ 8499 if (!sp->hmac && sp->sctp_hmac_alg) { 8500 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8501 tfm = crypto_alloc_shash(alg, 0, 0); 8502 if (IS_ERR(tfm)) { 8503 net_info_ratelimited("failed to load transform for %s: %ld\n", 8504 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8505 return -ENOSYS; 8506 } 8507 sctp_sk(sk)->hmac = tfm; 8508 } 8509 8510 /* 8511 * If a bind() or sctp_bindx() is not called prior to a listen() 8512 * call that allows new associations to be accepted, the system 8513 * picks an ephemeral port and will choose an address set equivalent 8514 * to binding with a wildcard address. 8515 * 8516 * This is not currently spelled out in the SCTP sockets 8517 * extensions draft, but follows the practice as seen in TCP 8518 * sockets. 8519 * 8520 */ 8521 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8522 if (!ep->base.bind_addr.port) { 8523 if (sctp_autobind(sk)) 8524 return -EAGAIN; 8525 } else { 8526 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8527 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8528 return -EADDRINUSE; 8529 } 8530 } 8531 8532 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8533 return sctp_hash_endpoint(ep); 8534 } 8535 8536 /* 8537 * 4.1.3 / 5.1.3 listen() 8538 * 8539 * By default, new associations are not accepted for UDP style sockets. 8540 * An application uses listen() to mark a socket as being able to 8541 * accept new associations. 8542 * 8543 * On TCP style sockets, applications use listen() to ready the SCTP 8544 * endpoint for accepting inbound associations. 8545 * 8546 * On both types of endpoints a backlog of '0' disables listening. 8547 * 8548 * Move a socket to LISTENING state. 8549 */ 8550 int sctp_inet_listen(struct socket *sock, int backlog) 8551 { 8552 struct sock *sk = sock->sk; 8553 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8554 int err = -EINVAL; 8555 8556 if (unlikely(backlog < 0)) 8557 return err; 8558 8559 lock_sock(sk); 8560 8561 /* Peeled-off sockets are not allowed to listen(). */ 8562 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8563 goto out; 8564 8565 if (sock->state != SS_UNCONNECTED) 8566 goto out; 8567 8568 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8569 goto out; 8570 8571 /* If backlog is zero, disable listening. */ 8572 if (!backlog) { 8573 if (sctp_sstate(sk, CLOSED)) 8574 goto out; 8575 8576 err = 0; 8577 sctp_unhash_endpoint(ep); 8578 sk->sk_state = SCTP_SS_CLOSED; 8579 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8580 sctp_sk(sk)->bind_hash->fastreuse = 1; 8581 goto out; 8582 } 8583 8584 /* If we are already listening, just update the backlog */ 8585 if (sctp_sstate(sk, LISTENING)) 8586 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8587 else { 8588 err = sctp_listen_start(sk, backlog); 8589 if (err) 8590 goto out; 8591 } 8592 8593 err = 0; 8594 out: 8595 release_sock(sk); 8596 return err; 8597 } 8598 8599 /* 8600 * This function is done by modeling the current datagram_poll() and the 8601 * tcp_poll(). Note that, based on these implementations, we don't 8602 * lock the socket in this function, even though it seems that, 8603 * ideally, locking or some other mechanisms can be used to ensure 8604 * the integrity of the counters (sndbuf and wmem_alloc) used 8605 * in this place. We assume that we don't need locks either until proven 8606 * otherwise. 8607 * 8608 * Another thing to note is that we include the Async I/O support 8609 * here, again, by modeling the current TCP/UDP code. We don't have 8610 * a good way to test with it yet. 8611 */ 8612 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8613 { 8614 struct sock *sk = sock->sk; 8615 struct sctp_sock *sp = sctp_sk(sk); 8616 __poll_t mask; 8617 8618 poll_wait(file, sk_sleep(sk), wait); 8619 8620 sock_rps_record_flow(sk); 8621 8622 /* A TCP-style listening socket becomes readable when the accept queue 8623 * is not empty. 8624 */ 8625 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8626 return (!list_empty(&sp->ep->asocs)) ? 8627 (EPOLLIN | EPOLLRDNORM) : 0; 8628 8629 mask = 0; 8630 8631 /* Is there any exceptional events? */ 8632 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8633 mask |= EPOLLERR | 8634 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8635 if (sk->sk_shutdown & RCV_SHUTDOWN) 8636 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8637 if (sk->sk_shutdown == SHUTDOWN_MASK) 8638 mask |= EPOLLHUP; 8639 8640 /* Is it readable? Reconsider this code with TCP-style support. */ 8641 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8642 mask |= EPOLLIN | EPOLLRDNORM; 8643 8644 /* The association is either gone or not ready. */ 8645 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8646 return mask; 8647 8648 /* Is it writable? */ 8649 if (sctp_writeable(sk)) { 8650 mask |= EPOLLOUT | EPOLLWRNORM; 8651 } else { 8652 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8653 /* 8654 * Since the socket is not locked, the buffer 8655 * might be made available after the writeable check and 8656 * before the bit is set. This could cause a lost I/O 8657 * signal. tcp_poll() has a race breaker for this race 8658 * condition. Based on their implementation, we put 8659 * in the following code to cover it as well. 8660 */ 8661 if (sctp_writeable(sk)) 8662 mask |= EPOLLOUT | EPOLLWRNORM; 8663 } 8664 return mask; 8665 } 8666 8667 /******************************************************************** 8668 * 2nd Level Abstractions 8669 ********************************************************************/ 8670 8671 static struct sctp_bind_bucket *sctp_bucket_create( 8672 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8673 { 8674 struct sctp_bind_bucket *pp; 8675 8676 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8677 if (pp) { 8678 SCTP_DBG_OBJCNT_INC(bind_bucket); 8679 pp->port = snum; 8680 pp->fastreuse = 0; 8681 INIT_HLIST_HEAD(&pp->owner); 8682 pp->net = net; 8683 hlist_add_head(&pp->node, &head->chain); 8684 } 8685 return pp; 8686 } 8687 8688 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8689 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8690 { 8691 if (pp && hlist_empty(&pp->owner)) { 8692 __hlist_del(&pp->node); 8693 kmem_cache_free(sctp_bucket_cachep, pp); 8694 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8695 } 8696 } 8697 8698 /* Release this socket's reference to a local port. */ 8699 static inline void __sctp_put_port(struct sock *sk) 8700 { 8701 struct sctp_bind_hashbucket *head = 8702 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8703 inet_sk(sk)->inet_num)]; 8704 struct sctp_bind_bucket *pp; 8705 8706 spin_lock(&head->lock); 8707 pp = sctp_sk(sk)->bind_hash; 8708 __sk_del_bind_node(sk); 8709 sctp_sk(sk)->bind_hash = NULL; 8710 inet_sk(sk)->inet_num = 0; 8711 sctp_bucket_destroy(pp); 8712 spin_unlock(&head->lock); 8713 } 8714 8715 void sctp_put_port(struct sock *sk) 8716 { 8717 local_bh_disable(); 8718 __sctp_put_port(sk); 8719 local_bh_enable(); 8720 } 8721 8722 /* 8723 * The system picks an ephemeral port and choose an address set equivalent 8724 * to binding with a wildcard address. 8725 * One of those addresses will be the primary address for the association. 8726 * This automatically enables the multihoming capability of SCTP. 8727 */ 8728 static int sctp_autobind(struct sock *sk) 8729 { 8730 union sctp_addr autoaddr; 8731 struct sctp_af *af; 8732 __be16 port; 8733 8734 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8735 af = sctp_sk(sk)->pf->af; 8736 8737 port = htons(inet_sk(sk)->inet_num); 8738 af->inaddr_any(&autoaddr, port); 8739 8740 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8741 } 8742 8743 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8744 * 8745 * From RFC 2292 8746 * 4.2 The cmsghdr Structure * 8747 * 8748 * When ancillary data is sent or received, any number of ancillary data 8749 * objects can be specified by the msg_control and msg_controllen members of 8750 * the msghdr structure, because each object is preceded by 8751 * a cmsghdr structure defining the object's length (the cmsg_len member). 8752 * Historically Berkeley-derived implementations have passed only one object 8753 * at a time, but this API allows multiple objects to be 8754 * passed in a single call to sendmsg() or recvmsg(). The following example 8755 * shows two ancillary data objects in a control buffer. 8756 * 8757 * |<--------------------------- msg_controllen -------------------------->| 8758 * | | 8759 * 8760 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8761 * 8762 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8763 * | | | 8764 * 8765 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8766 * 8767 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8768 * | | | | | 8769 * 8770 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8771 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8772 * 8773 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8774 * 8775 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8776 * ^ 8777 * | 8778 * 8779 * msg_control 8780 * points here 8781 */ 8782 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8783 { 8784 struct msghdr *my_msg = (struct msghdr *)msg; 8785 struct cmsghdr *cmsg; 8786 8787 for_each_cmsghdr(cmsg, my_msg) { 8788 if (!CMSG_OK(my_msg, cmsg)) 8789 return -EINVAL; 8790 8791 /* Should we parse this header or ignore? */ 8792 if (cmsg->cmsg_level != IPPROTO_SCTP) 8793 continue; 8794 8795 /* Strictly check lengths following example in SCM code. */ 8796 switch (cmsg->cmsg_type) { 8797 case SCTP_INIT: 8798 /* SCTP Socket API Extension 8799 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8800 * 8801 * This cmsghdr structure provides information for 8802 * initializing new SCTP associations with sendmsg(). 8803 * The SCTP_INITMSG socket option uses this same data 8804 * structure. This structure is not used for 8805 * recvmsg(). 8806 * 8807 * cmsg_level cmsg_type cmsg_data[] 8808 * ------------ ------------ ---------------------- 8809 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8810 */ 8811 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8812 return -EINVAL; 8813 8814 cmsgs->init = CMSG_DATA(cmsg); 8815 break; 8816 8817 case SCTP_SNDRCV: 8818 /* SCTP Socket API Extension 8819 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8820 * 8821 * This cmsghdr structure specifies SCTP options for 8822 * sendmsg() and describes SCTP header information 8823 * about a received message through recvmsg(). 8824 * 8825 * cmsg_level cmsg_type cmsg_data[] 8826 * ------------ ------------ ---------------------- 8827 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8828 */ 8829 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8830 return -EINVAL; 8831 8832 cmsgs->srinfo = CMSG_DATA(cmsg); 8833 8834 if (cmsgs->srinfo->sinfo_flags & 8835 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8836 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8837 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8838 return -EINVAL; 8839 break; 8840 8841 case SCTP_SNDINFO: 8842 /* SCTP Socket API Extension 8843 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8844 * 8845 * This cmsghdr structure specifies SCTP options for 8846 * sendmsg(). This structure and SCTP_RCVINFO replaces 8847 * SCTP_SNDRCV which has been deprecated. 8848 * 8849 * cmsg_level cmsg_type cmsg_data[] 8850 * ------------ ------------ --------------------- 8851 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8852 */ 8853 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8854 return -EINVAL; 8855 8856 cmsgs->sinfo = CMSG_DATA(cmsg); 8857 8858 if (cmsgs->sinfo->snd_flags & 8859 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8860 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8861 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8862 return -EINVAL; 8863 break; 8864 case SCTP_PRINFO: 8865 /* SCTP Socket API Extension 8866 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8867 * 8868 * This cmsghdr structure specifies SCTP options for sendmsg(). 8869 * 8870 * cmsg_level cmsg_type cmsg_data[] 8871 * ------------ ------------ --------------------- 8872 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8873 */ 8874 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8875 return -EINVAL; 8876 8877 cmsgs->prinfo = CMSG_DATA(cmsg); 8878 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8879 return -EINVAL; 8880 8881 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8882 cmsgs->prinfo->pr_value = 0; 8883 break; 8884 case SCTP_AUTHINFO: 8885 /* SCTP Socket API Extension 8886 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8887 * 8888 * This cmsghdr structure specifies SCTP options for sendmsg(). 8889 * 8890 * cmsg_level cmsg_type cmsg_data[] 8891 * ------------ ------------ --------------------- 8892 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8893 */ 8894 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8895 return -EINVAL; 8896 8897 cmsgs->authinfo = CMSG_DATA(cmsg); 8898 break; 8899 case SCTP_DSTADDRV4: 8900 case SCTP_DSTADDRV6: 8901 /* SCTP Socket API Extension 8902 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8903 * 8904 * This cmsghdr structure specifies SCTP options for sendmsg(). 8905 * 8906 * cmsg_level cmsg_type cmsg_data[] 8907 * ------------ ------------ --------------------- 8908 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8909 * ------------ ------------ --------------------- 8910 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8911 */ 8912 cmsgs->addrs_msg = my_msg; 8913 break; 8914 default: 8915 return -EINVAL; 8916 } 8917 } 8918 8919 return 0; 8920 } 8921 8922 /* 8923 * Wait for a packet.. 8924 * Note: This function is the same function as in core/datagram.c 8925 * with a few modifications to make lksctp work. 8926 */ 8927 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8928 { 8929 int error; 8930 DEFINE_WAIT(wait); 8931 8932 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8933 8934 /* Socket errors? */ 8935 error = sock_error(sk); 8936 if (error) 8937 goto out; 8938 8939 if (!skb_queue_empty(&sk->sk_receive_queue)) 8940 goto ready; 8941 8942 /* Socket shut down? */ 8943 if (sk->sk_shutdown & RCV_SHUTDOWN) 8944 goto out; 8945 8946 /* Sequenced packets can come disconnected. If so we report the 8947 * problem. 8948 */ 8949 error = -ENOTCONN; 8950 8951 /* Is there a good reason to think that we may receive some data? */ 8952 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8953 goto out; 8954 8955 /* Handle signals. */ 8956 if (signal_pending(current)) 8957 goto interrupted; 8958 8959 /* Let another process have a go. Since we are going to sleep 8960 * anyway. Note: This may cause odd behaviors if the message 8961 * does not fit in the user's buffer, but this seems to be the 8962 * only way to honor MSG_DONTWAIT realistically. 8963 */ 8964 release_sock(sk); 8965 *timeo_p = schedule_timeout(*timeo_p); 8966 lock_sock(sk); 8967 8968 ready: 8969 finish_wait(sk_sleep(sk), &wait); 8970 return 0; 8971 8972 interrupted: 8973 error = sock_intr_errno(*timeo_p); 8974 8975 out: 8976 finish_wait(sk_sleep(sk), &wait); 8977 *err = error; 8978 return error; 8979 } 8980 8981 /* Receive a datagram. 8982 * Note: This is pretty much the same routine as in core/datagram.c 8983 * with a few changes to make lksctp work. 8984 */ 8985 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 8986 { 8987 int error; 8988 struct sk_buff *skb; 8989 long timeo; 8990 8991 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 8992 8993 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8994 MAX_SCHEDULE_TIMEOUT); 8995 8996 do { 8997 /* Again only user level code calls this function, 8998 * so nothing interrupt level 8999 * will suddenly eat the receive_queue. 9000 * 9001 * Look at current nfs client by the way... 9002 * However, this function was correct in any case. 8) 9003 */ 9004 if (flags & MSG_PEEK) { 9005 skb = skb_peek(&sk->sk_receive_queue); 9006 if (skb) 9007 refcount_inc(&skb->users); 9008 } else { 9009 skb = __skb_dequeue(&sk->sk_receive_queue); 9010 } 9011 9012 if (skb) 9013 return skb; 9014 9015 /* Caller is allowed not to check sk->sk_err before calling. */ 9016 error = sock_error(sk); 9017 if (error) 9018 goto no_packet; 9019 9020 if (sk->sk_shutdown & RCV_SHUTDOWN) 9021 break; 9022 9023 if (sk_can_busy_loop(sk)) { 9024 sk_busy_loop(sk, flags & MSG_DONTWAIT); 9025 9026 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9027 continue; 9028 } 9029 9030 /* User doesn't want to wait. */ 9031 error = -EAGAIN; 9032 if (!timeo) 9033 goto no_packet; 9034 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9035 9036 return NULL; 9037 9038 no_packet: 9039 *err = error; 9040 return NULL; 9041 } 9042 9043 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9044 static void __sctp_write_space(struct sctp_association *asoc) 9045 { 9046 struct sock *sk = asoc->base.sk; 9047 9048 if (sctp_wspace(asoc) <= 0) 9049 return; 9050 9051 if (waitqueue_active(&asoc->wait)) 9052 wake_up_interruptible(&asoc->wait); 9053 9054 if (sctp_writeable(sk)) { 9055 struct socket_wq *wq; 9056 9057 rcu_read_lock(); 9058 wq = rcu_dereference(sk->sk_wq); 9059 if (wq) { 9060 if (waitqueue_active(&wq->wait)) 9061 wake_up_interruptible(&wq->wait); 9062 9063 /* Note that we try to include the Async I/O support 9064 * here by modeling from the current TCP/UDP code. 9065 * We have not tested with it yet. 9066 */ 9067 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9068 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9069 } 9070 rcu_read_unlock(); 9071 } 9072 } 9073 9074 static void sctp_wake_up_waiters(struct sock *sk, 9075 struct sctp_association *asoc) 9076 { 9077 struct sctp_association *tmp = asoc; 9078 9079 /* We do accounting for the sndbuf space per association, 9080 * so we only need to wake our own association. 9081 */ 9082 if (asoc->ep->sndbuf_policy) 9083 return __sctp_write_space(asoc); 9084 9085 /* If association goes down and is just flushing its 9086 * outq, then just normally notify others. 9087 */ 9088 if (asoc->base.dead) 9089 return sctp_write_space(sk); 9090 9091 /* Accounting for the sndbuf space is per socket, so we 9092 * need to wake up others, try to be fair and in case of 9093 * other associations, let them have a go first instead 9094 * of just doing a sctp_write_space() call. 9095 * 9096 * Note that we reach sctp_wake_up_waiters() only when 9097 * associations free up queued chunks, thus we are under 9098 * lock and the list of associations on a socket is 9099 * guaranteed not to change. 9100 */ 9101 for (tmp = list_next_entry(tmp, asocs); 1; 9102 tmp = list_next_entry(tmp, asocs)) { 9103 /* Manually skip the head element. */ 9104 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9105 continue; 9106 /* Wake up association. */ 9107 __sctp_write_space(tmp); 9108 /* We've reached the end. */ 9109 if (tmp == asoc) 9110 break; 9111 } 9112 } 9113 9114 /* Do accounting for the sndbuf space. 9115 * Decrement the used sndbuf space of the corresponding association by the 9116 * data size which was just transmitted(freed). 9117 */ 9118 static void sctp_wfree(struct sk_buff *skb) 9119 { 9120 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9121 struct sctp_association *asoc = chunk->asoc; 9122 struct sock *sk = asoc->base.sk; 9123 9124 sk_mem_uncharge(sk, skb->truesize); 9125 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9126 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9127 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9128 &sk->sk_wmem_alloc)); 9129 9130 if (chunk->shkey) { 9131 struct sctp_shared_key *shkey = chunk->shkey; 9132 9133 /* refcnt == 2 and !list_empty mean after this release, it's 9134 * not being used anywhere, and it's time to notify userland 9135 * that this shkey can be freed if it's been deactivated. 9136 */ 9137 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9138 refcount_read(&shkey->refcnt) == 2) { 9139 struct sctp_ulpevent *ev; 9140 9141 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9142 SCTP_AUTH_FREE_KEY, 9143 GFP_KERNEL); 9144 if (ev) 9145 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9146 } 9147 sctp_auth_shkey_release(chunk->shkey); 9148 } 9149 9150 sock_wfree(skb); 9151 sctp_wake_up_waiters(sk, asoc); 9152 9153 sctp_association_put(asoc); 9154 } 9155 9156 /* Do accounting for the receive space on the socket. 9157 * Accounting for the association is done in ulpevent.c 9158 * We set this as a destructor for the cloned data skbs so that 9159 * accounting is done at the correct time. 9160 */ 9161 void sctp_sock_rfree(struct sk_buff *skb) 9162 { 9163 struct sock *sk = skb->sk; 9164 struct sctp_ulpevent *event = sctp_skb2event(skb); 9165 9166 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9167 9168 /* 9169 * Mimic the behavior of sock_rfree 9170 */ 9171 sk_mem_uncharge(sk, event->rmem_len); 9172 } 9173 9174 9175 /* Helper function to wait for space in the sndbuf. */ 9176 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9177 size_t msg_len) 9178 { 9179 struct sock *sk = asoc->base.sk; 9180 long current_timeo = *timeo_p; 9181 DEFINE_WAIT(wait); 9182 int err = 0; 9183 9184 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9185 *timeo_p, msg_len); 9186 9187 /* Increment the association's refcnt. */ 9188 sctp_association_hold(asoc); 9189 9190 /* Wait on the association specific sndbuf space. */ 9191 for (;;) { 9192 prepare_to_wait_exclusive(&asoc->wait, &wait, 9193 TASK_INTERRUPTIBLE); 9194 if (asoc->base.dead) 9195 goto do_dead; 9196 if (!*timeo_p) 9197 goto do_nonblock; 9198 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9199 goto do_error; 9200 if (signal_pending(current)) 9201 goto do_interrupted; 9202 if ((int)msg_len <= sctp_wspace(asoc) && 9203 sk_wmem_schedule(sk, msg_len)) 9204 break; 9205 9206 /* Let another process have a go. Since we are going 9207 * to sleep anyway. 9208 */ 9209 release_sock(sk); 9210 current_timeo = schedule_timeout(current_timeo); 9211 lock_sock(sk); 9212 if (sk != asoc->base.sk) 9213 goto do_error; 9214 9215 *timeo_p = current_timeo; 9216 } 9217 9218 out: 9219 finish_wait(&asoc->wait, &wait); 9220 9221 /* Release the association's refcnt. */ 9222 sctp_association_put(asoc); 9223 9224 return err; 9225 9226 do_dead: 9227 err = -ESRCH; 9228 goto out; 9229 9230 do_error: 9231 err = -EPIPE; 9232 goto out; 9233 9234 do_interrupted: 9235 err = sock_intr_errno(*timeo_p); 9236 goto out; 9237 9238 do_nonblock: 9239 err = -EAGAIN; 9240 goto out; 9241 } 9242 9243 void sctp_data_ready(struct sock *sk) 9244 { 9245 struct socket_wq *wq; 9246 9247 rcu_read_lock(); 9248 wq = rcu_dereference(sk->sk_wq); 9249 if (skwq_has_sleeper(wq)) 9250 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9251 EPOLLRDNORM | EPOLLRDBAND); 9252 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9253 rcu_read_unlock(); 9254 } 9255 9256 /* If socket sndbuf has changed, wake up all per association waiters. */ 9257 void sctp_write_space(struct sock *sk) 9258 { 9259 struct sctp_association *asoc; 9260 9261 /* Wake up the tasks in each wait queue. */ 9262 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9263 __sctp_write_space(asoc); 9264 } 9265 } 9266 9267 /* Is there any sndbuf space available on the socket? 9268 * 9269 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9270 * associations on the same socket. For a UDP-style socket with 9271 * multiple associations, it is possible for it to be "unwriteable" 9272 * prematurely. I assume that this is acceptable because 9273 * a premature "unwriteable" is better than an accidental "writeable" which 9274 * would cause an unwanted block under certain circumstances. For the 1-1 9275 * UDP-style sockets or TCP-style sockets, this code should work. 9276 * - Daisy 9277 */ 9278 static bool sctp_writeable(struct sock *sk) 9279 { 9280 return sk->sk_sndbuf > sk->sk_wmem_queued; 9281 } 9282 9283 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9284 * returns immediately with EINPROGRESS. 9285 */ 9286 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9287 { 9288 struct sock *sk = asoc->base.sk; 9289 int err = 0; 9290 long current_timeo = *timeo_p; 9291 DEFINE_WAIT(wait); 9292 9293 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9294 9295 /* Increment the association's refcnt. */ 9296 sctp_association_hold(asoc); 9297 9298 for (;;) { 9299 prepare_to_wait_exclusive(&asoc->wait, &wait, 9300 TASK_INTERRUPTIBLE); 9301 if (!*timeo_p) 9302 goto do_nonblock; 9303 if (sk->sk_shutdown & RCV_SHUTDOWN) 9304 break; 9305 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9306 asoc->base.dead) 9307 goto do_error; 9308 if (signal_pending(current)) 9309 goto do_interrupted; 9310 9311 if (sctp_state(asoc, ESTABLISHED)) 9312 break; 9313 9314 /* Let another process have a go. Since we are going 9315 * to sleep anyway. 9316 */ 9317 release_sock(sk); 9318 current_timeo = schedule_timeout(current_timeo); 9319 lock_sock(sk); 9320 9321 *timeo_p = current_timeo; 9322 } 9323 9324 out: 9325 finish_wait(&asoc->wait, &wait); 9326 9327 /* Release the association's refcnt. */ 9328 sctp_association_put(asoc); 9329 9330 return err; 9331 9332 do_error: 9333 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9334 err = -ETIMEDOUT; 9335 else 9336 err = -ECONNREFUSED; 9337 goto out; 9338 9339 do_interrupted: 9340 err = sock_intr_errno(*timeo_p); 9341 goto out; 9342 9343 do_nonblock: 9344 err = -EINPROGRESS; 9345 goto out; 9346 } 9347 9348 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9349 { 9350 struct sctp_endpoint *ep; 9351 int err = 0; 9352 DEFINE_WAIT(wait); 9353 9354 ep = sctp_sk(sk)->ep; 9355 9356 9357 for (;;) { 9358 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9359 TASK_INTERRUPTIBLE); 9360 9361 if (list_empty(&ep->asocs)) { 9362 release_sock(sk); 9363 timeo = schedule_timeout(timeo); 9364 lock_sock(sk); 9365 } 9366 9367 err = -EINVAL; 9368 if (!sctp_sstate(sk, LISTENING)) 9369 break; 9370 9371 err = 0; 9372 if (!list_empty(&ep->asocs)) 9373 break; 9374 9375 err = sock_intr_errno(timeo); 9376 if (signal_pending(current)) 9377 break; 9378 9379 err = -EAGAIN; 9380 if (!timeo) 9381 break; 9382 } 9383 9384 finish_wait(sk_sleep(sk), &wait); 9385 9386 return err; 9387 } 9388 9389 static void sctp_wait_for_close(struct sock *sk, long timeout) 9390 { 9391 DEFINE_WAIT(wait); 9392 9393 do { 9394 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9395 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9396 break; 9397 release_sock(sk); 9398 timeout = schedule_timeout(timeout); 9399 lock_sock(sk); 9400 } while (!signal_pending(current) && timeout); 9401 9402 finish_wait(sk_sleep(sk), &wait); 9403 } 9404 9405 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9406 { 9407 struct sk_buff *frag; 9408 9409 if (!skb->data_len) 9410 goto done; 9411 9412 /* Don't forget the fragments. */ 9413 skb_walk_frags(skb, frag) 9414 sctp_skb_set_owner_r_frag(frag, sk); 9415 9416 done: 9417 sctp_skb_set_owner_r(skb, sk); 9418 } 9419 9420 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9421 struct sctp_association *asoc) 9422 { 9423 struct inet_sock *inet = inet_sk(sk); 9424 struct inet_sock *newinet; 9425 struct sctp_sock *sp = sctp_sk(sk); 9426 9427 newsk->sk_type = sk->sk_type; 9428 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9429 newsk->sk_flags = sk->sk_flags; 9430 newsk->sk_tsflags = sk->sk_tsflags; 9431 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9432 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9433 newsk->sk_reuse = sk->sk_reuse; 9434 sctp_sk(newsk)->reuse = sp->reuse; 9435 9436 newsk->sk_shutdown = sk->sk_shutdown; 9437 newsk->sk_destruct = sk->sk_destruct; 9438 newsk->sk_family = sk->sk_family; 9439 newsk->sk_protocol = IPPROTO_SCTP; 9440 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9441 newsk->sk_sndbuf = sk->sk_sndbuf; 9442 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9443 newsk->sk_lingertime = sk->sk_lingertime; 9444 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9445 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9446 newsk->sk_rxhash = sk->sk_rxhash; 9447 9448 newinet = inet_sk(newsk); 9449 9450 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9451 * getsockname() and getpeername() 9452 */ 9453 newinet->inet_sport = inet->inet_sport; 9454 newinet->inet_saddr = inet->inet_saddr; 9455 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9456 newinet->inet_dport = htons(asoc->peer.port); 9457 newinet->pmtudisc = inet->pmtudisc; 9458 newinet->inet_id = get_random_u16(); 9459 9460 newinet->uc_ttl = inet->uc_ttl; 9461 newinet->mc_loop = 1; 9462 newinet->mc_ttl = 1; 9463 newinet->mc_index = 0; 9464 newinet->mc_list = NULL; 9465 9466 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9467 net_enable_timestamp(); 9468 9469 /* Set newsk security attributes from original sk and connection 9470 * security attribute from asoc. 9471 */ 9472 security_sctp_sk_clone(asoc, sk, newsk); 9473 } 9474 9475 static inline void sctp_copy_descendant(struct sock *sk_to, 9476 const struct sock *sk_from) 9477 { 9478 size_t ancestor_size = sizeof(struct inet_sock); 9479 9480 ancestor_size += sk_from->sk_prot->obj_size; 9481 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9482 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9483 } 9484 9485 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9486 * and its messages to the newsk. 9487 */ 9488 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9489 struct sctp_association *assoc, 9490 enum sctp_socket_type type) 9491 { 9492 struct sctp_sock *oldsp = sctp_sk(oldsk); 9493 struct sctp_sock *newsp = sctp_sk(newsk); 9494 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9495 struct sctp_endpoint *newep = newsp->ep; 9496 struct sk_buff *skb, *tmp; 9497 struct sctp_ulpevent *event; 9498 struct sctp_bind_hashbucket *head; 9499 int err; 9500 9501 /* Migrate socket buffer sizes and all the socket level options to the 9502 * new socket. 9503 */ 9504 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9505 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9506 /* Brute force copy old sctp opt. */ 9507 sctp_copy_descendant(newsk, oldsk); 9508 9509 /* Restore the ep value that was overwritten with the above structure 9510 * copy. 9511 */ 9512 newsp->ep = newep; 9513 newsp->hmac = NULL; 9514 9515 /* Hook this new socket in to the bind_hash list. */ 9516 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9517 inet_sk(oldsk)->inet_num)]; 9518 spin_lock_bh(&head->lock); 9519 pp = sctp_sk(oldsk)->bind_hash; 9520 sk_add_bind_node(newsk, &pp->owner); 9521 sctp_sk(newsk)->bind_hash = pp; 9522 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9523 spin_unlock_bh(&head->lock); 9524 9525 /* Copy the bind_addr list from the original endpoint to the new 9526 * endpoint so that we can handle restarts properly 9527 */ 9528 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9529 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9530 if (err) 9531 return err; 9532 9533 /* New ep's auth_hmacs should be set if old ep's is set, in case 9534 * that net->sctp.auth_enable has been changed to 0 by users and 9535 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9536 */ 9537 if (oldsp->ep->auth_hmacs) { 9538 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9539 if (err) 9540 return err; 9541 } 9542 9543 sctp_auto_asconf_init(newsp); 9544 9545 /* Move any messages in the old socket's receive queue that are for the 9546 * peeled off association to the new socket's receive queue. 9547 */ 9548 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9549 event = sctp_skb2event(skb); 9550 if (event->asoc == assoc) { 9551 __skb_unlink(skb, &oldsk->sk_receive_queue); 9552 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9553 sctp_skb_set_owner_r_frag(skb, newsk); 9554 } 9555 } 9556 9557 /* Clean up any messages pending delivery due to partial 9558 * delivery. Three cases: 9559 * 1) No partial deliver; no work. 9560 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9561 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9562 */ 9563 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9564 9565 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9566 struct sk_buff_head *queue; 9567 9568 /* Decide which queue to move pd_lobby skbs to. */ 9569 if (assoc->ulpq.pd_mode) { 9570 queue = &newsp->pd_lobby; 9571 } else 9572 queue = &newsk->sk_receive_queue; 9573 9574 /* Walk through the pd_lobby, looking for skbs that 9575 * need moved to the new socket. 9576 */ 9577 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9578 event = sctp_skb2event(skb); 9579 if (event->asoc == assoc) { 9580 __skb_unlink(skb, &oldsp->pd_lobby); 9581 __skb_queue_tail(queue, skb); 9582 sctp_skb_set_owner_r_frag(skb, newsk); 9583 } 9584 } 9585 9586 /* Clear up any skbs waiting for the partial 9587 * delivery to finish. 9588 */ 9589 if (assoc->ulpq.pd_mode) 9590 sctp_clear_pd(oldsk, NULL); 9591 9592 } 9593 9594 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9595 9596 /* Set the type of socket to indicate that it is peeled off from the 9597 * original UDP-style socket or created with the accept() call on a 9598 * TCP-style socket.. 9599 */ 9600 newsp->type = type; 9601 9602 /* Mark the new socket "in-use" by the user so that any packets 9603 * that may arrive on the association after we've moved it are 9604 * queued to the backlog. This prevents a potential race between 9605 * backlog processing on the old socket and new-packet processing 9606 * on the new socket. 9607 * 9608 * The caller has just allocated newsk so we can guarantee that other 9609 * paths won't try to lock it and then oldsk. 9610 */ 9611 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9612 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9613 sctp_assoc_migrate(assoc, newsk); 9614 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9615 9616 /* If the association on the newsk is already closed before accept() 9617 * is called, set RCV_SHUTDOWN flag. 9618 */ 9619 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9620 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9621 newsk->sk_shutdown |= RCV_SHUTDOWN; 9622 } else { 9623 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9624 } 9625 9626 release_sock(newsk); 9627 9628 return 0; 9629 } 9630 9631 9632 /* This proto struct describes the ULP interface for SCTP. */ 9633 struct proto sctp_prot = { 9634 .name = "SCTP", 9635 .owner = THIS_MODULE, 9636 .close = sctp_close, 9637 .disconnect = sctp_disconnect, 9638 .accept = sctp_accept, 9639 .ioctl = sctp_ioctl, 9640 .init = sctp_init_sock, 9641 .destroy = sctp_destroy_sock, 9642 .shutdown = sctp_shutdown, 9643 .setsockopt = sctp_setsockopt, 9644 .getsockopt = sctp_getsockopt, 9645 .sendmsg = sctp_sendmsg, 9646 .recvmsg = sctp_recvmsg, 9647 .bind = sctp_bind, 9648 .bind_add = sctp_bind_add, 9649 .backlog_rcv = sctp_backlog_rcv, 9650 .hash = sctp_hash, 9651 .unhash = sctp_unhash, 9652 .no_autobind = true, 9653 .obj_size = sizeof(struct sctp_sock), 9654 .useroffset = offsetof(struct sctp_sock, subscribe), 9655 .usersize = offsetof(struct sctp_sock, initmsg) - 9656 offsetof(struct sctp_sock, subscribe) + 9657 sizeof_field(struct sctp_sock, initmsg), 9658 .sysctl_mem = sysctl_sctp_mem, 9659 .sysctl_rmem = sysctl_sctp_rmem, 9660 .sysctl_wmem = sysctl_sctp_wmem, 9661 .memory_pressure = &sctp_memory_pressure, 9662 .enter_memory_pressure = sctp_enter_memory_pressure, 9663 9664 .memory_allocated = &sctp_memory_allocated, 9665 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9666 9667 .sockets_allocated = &sctp_sockets_allocated, 9668 }; 9669 9670 #if IS_ENABLED(CONFIG_IPV6) 9671 9672 static void sctp_v6_destruct_sock(struct sock *sk) 9673 { 9674 sctp_destruct_common(sk); 9675 inet6_sock_destruct(sk); 9676 } 9677 9678 static int sctp_v6_init_sock(struct sock *sk) 9679 { 9680 int ret = sctp_init_sock(sk); 9681 9682 if (!ret) 9683 sk->sk_destruct = sctp_v6_destruct_sock; 9684 9685 return ret; 9686 } 9687 9688 struct proto sctpv6_prot = { 9689 .name = "SCTPv6", 9690 .owner = THIS_MODULE, 9691 .close = sctp_close, 9692 .disconnect = sctp_disconnect, 9693 .accept = sctp_accept, 9694 .ioctl = sctp_ioctl, 9695 .init = sctp_v6_init_sock, 9696 .destroy = sctp_destroy_sock, 9697 .shutdown = sctp_shutdown, 9698 .setsockopt = sctp_setsockopt, 9699 .getsockopt = sctp_getsockopt, 9700 .sendmsg = sctp_sendmsg, 9701 .recvmsg = sctp_recvmsg, 9702 .bind = sctp_bind, 9703 .bind_add = sctp_bind_add, 9704 .backlog_rcv = sctp_backlog_rcv, 9705 .hash = sctp_hash, 9706 .unhash = sctp_unhash, 9707 .no_autobind = true, 9708 .obj_size = sizeof(struct sctp6_sock), 9709 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9710 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9711 offsetof(struct sctp6_sock, sctp.subscribe) + 9712 sizeof_field(struct sctp6_sock, sctp.initmsg), 9713 .sysctl_mem = sysctl_sctp_mem, 9714 .sysctl_rmem = sysctl_sctp_rmem, 9715 .sysctl_wmem = sysctl_sctp_wmem, 9716 .memory_pressure = &sctp_memory_pressure, 9717 .enter_memory_pressure = sctp_enter_memory_pressure, 9718 9719 .memory_allocated = &sctp_memory_allocated, 9720 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9721 9722 .sockets_allocated = &sctp_sockets_allocated, 9723 }; 9724 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9725