xref: /openbmc/linux/net/sctp/socket.c (revision a2cce7a9)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108 
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 	sctp_memory_pressure = 1;
112 }
113 
114 
115 /* Get the sndbuf space available at the time on the association.  */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 	int amt;
119 
120 	if (asoc->ep->sndbuf_policy)
121 		amt = asoc->sndbuf_used;
122 	else
123 		amt = sk_wmem_alloc_get(asoc->base.sk);
124 
125 	if (amt >= asoc->base.sk->sk_sndbuf) {
126 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 			amt = 0;
128 		else {
129 			amt = sk_stream_wspace(asoc->base.sk);
130 			if (amt < 0)
131 				amt = 0;
132 		}
133 	} else {
134 		amt = asoc->base.sk->sk_sndbuf - amt;
135 	}
136 	return amt;
137 }
138 
139 /* Increment the used sndbuf space count of the corresponding association by
140  * the size of the outgoing data chunk.
141  * Also, set the skb destructor for sndbuf accounting later.
142  *
143  * Since it is always 1-1 between chunk and skb, and also a new skb is always
144  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145  * destructor in the data chunk skb for the purpose of the sndbuf space
146  * tracking.
147  */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 	struct sctp_association *asoc = chunk->asoc;
151 	struct sock *sk = asoc->base.sk;
152 
153 	/* The sndbuf space is tracked per association.  */
154 	sctp_association_hold(asoc);
155 
156 	skb_set_owner_w(chunk->skb, sk);
157 
158 	chunk->skb->destructor = sctp_wfree;
159 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
160 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
161 
162 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 				sizeof(struct sk_buff) +
164 				sizeof(struct sctp_chunk);
165 
166 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 	sk->sk_wmem_queued += chunk->skb->truesize;
168 	sk_mem_charge(sk, chunk->skb->truesize);
169 }
170 
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 				   int len)
174 {
175 	struct sctp_af *af;
176 
177 	/* Verify basic sockaddr. */
178 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 	if (!af)
180 		return -EINVAL;
181 
182 	/* Is this a valid SCTP address?  */
183 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 		return -EINVAL;
185 
186 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* Look up the association by its id.  If this is not a UDP-style
193  * socket, the ID field is always ignored.
194  */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 	struct sctp_association *asoc = NULL;
198 
199 	/* If this is not a UDP-style socket, assoc id should be ignored. */
200 	if (!sctp_style(sk, UDP)) {
201 		/* Return NULL if the socket state is not ESTABLISHED. It
202 		 * could be a TCP-style listening socket or a socket which
203 		 * hasn't yet called connect() to establish an association.
204 		 */
205 		if (!sctp_sstate(sk, ESTABLISHED))
206 			return NULL;
207 
208 		/* Get the first and the only association from the list. */
209 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 					  struct sctp_association, asocs);
212 		return asoc;
213 	}
214 
215 	/* Otherwise this is a UDP-style socket. */
216 	if (!id || (id == (sctp_assoc_t)-1))
217 		return NULL;
218 
219 	spin_lock_bh(&sctp_assocs_id_lock);
220 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 	spin_unlock_bh(&sctp_assocs_id_lock);
222 
223 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 		return NULL;
225 
226 	return asoc;
227 }
228 
229 /* Look up the transport from an address and an assoc id. If both address and
230  * id are specified, the associations matching the address and the id should be
231  * the same.
232  */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 					      struct sockaddr_storage *addr,
235 					      sctp_assoc_t id)
236 {
237 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 	struct sctp_transport *transport;
239 	union sctp_addr *laddr = (union sctp_addr *)addr;
240 
241 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 					       laddr,
243 					       &transport);
244 
245 	if (!addr_asoc)
246 		return NULL;
247 
248 	id_asoc = sctp_id2assoc(sk, id);
249 	if (id_asoc && (id_asoc != addr_asoc))
250 		return NULL;
251 
252 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 						(union sctp_addr *)addr);
254 
255 	return transport;
256 }
257 
258 /* API 3.1.2 bind() - UDP Style Syntax
259  * The syntax of bind() is,
260  *
261  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
262  *
263  *   sd      - the socket descriptor returned by socket().
264  *   addr    - the address structure (struct sockaddr_in or struct
265  *             sockaddr_in6 [RFC 2553]),
266  *   addr_len - the size of the address structure.
267  */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 	int retval = 0;
271 
272 	lock_sock(sk);
273 
274 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 		 addr, addr_len);
276 
277 	/* Disallow binding twice. */
278 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 				      addr_len);
281 	else
282 		retval = -EINVAL;
283 
284 	release_sock(sk);
285 
286 	return retval;
287 }
288 
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290 
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 					union sctp_addr *addr, int len)
294 {
295 	struct sctp_af *af;
296 
297 	/* Check minimum size.  */
298 	if (len < sizeof (struct sockaddr))
299 		return NULL;
300 
301 	/* V4 mapped address are really of AF_INET family */
302 	if (addr->sa.sa_family == AF_INET6 &&
303 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 		if (!opt->pf->af_supported(AF_INET, opt))
305 			return NULL;
306 	} else {
307 		/* Does this PF support this AF? */
308 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 			return NULL;
310 	}
311 
312 	/* If we get this far, af is valid. */
313 	af = sctp_get_af_specific(addr->sa.sa_family);
314 
315 	if (len < af->sockaddr_len)
316 		return NULL;
317 
318 	return af;
319 }
320 
321 /* Bind a local address either to an endpoint or to an association.  */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 	struct net *net = sock_net(sk);
325 	struct sctp_sock *sp = sctp_sk(sk);
326 	struct sctp_endpoint *ep = sp->ep;
327 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 	struct sctp_af *af;
329 	unsigned short snum;
330 	int ret = 0;
331 
332 	/* Common sockaddr verification. */
333 	af = sctp_sockaddr_af(sp, addr, len);
334 	if (!af) {
335 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 			 __func__, sk, addr, len);
337 		return -EINVAL;
338 	}
339 
340 	snum = ntohs(addr->v4.sin_port);
341 
342 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 		 __func__, sk, &addr->sa, bp->port, snum, len);
344 
345 	/* PF specific bind() address verification. */
346 	if (!sp->pf->bind_verify(sp, addr))
347 		return -EADDRNOTAVAIL;
348 
349 	/* We must either be unbound, or bind to the same port.
350 	 * It's OK to allow 0 ports if we are already bound.
351 	 * We'll just inhert an already bound port in this case
352 	 */
353 	if (bp->port) {
354 		if (!snum)
355 			snum = bp->port;
356 		else if (snum != bp->port) {
357 			pr_debug("%s: new port %d doesn't match existing port "
358 				 "%d\n", __func__, snum, bp->port);
359 			return -EINVAL;
360 		}
361 	}
362 
363 	if (snum && snum < PROT_SOCK &&
364 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 		return -EACCES;
366 
367 	/* See if the address matches any of the addresses we may have
368 	 * already bound before checking against other endpoints.
369 	 */
370 	if (sctp_bind_addr_match(bp, addr, sp))
371 		return -EINVAL;
372 
373 	/* Make sure we are allowed to bind here.
374 	 * The function sctp_get_port_local() does duplicate address
375 	 * detection.
376 	 */
377 	addr->v4.sin_port = htons(snum);
378 	if ((ret = sctp_get_port_local(sk, addr))) {
379 		return -EADDRINUSE;
380 	}
381 
382 	/* Refresh ephemeral port.  */
383 	if (!bp->port)
384 		bp->port = inet_sk(sk)->inet_num;
385 
386 	/* Add the address to the bind address list.
387 	 * Use GFP_ATOMIC since BHs will be disabled.
388 	 */
389 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
390 
391 	/* Copy back into socket for getsockname() use. */
392 	if (!ret) {
393 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
394 		sp->pf->to_sk_saddr(addr, sk);
395 	}
396 
397 	return ret;
398 }
399 
400  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
401  *
402  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
403  * at any one time.  If a sender, after sending an ASCONF chunk, decides
404  * it needs to transfer another ASCONF Chunk, it MUST wait until the
405  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
406  * subsequent ASCONF. Note this restriction binds each side, so at any
407  * time two ASCONF may be in-transit on any given association (one sent
408  * from each endpoint).
409  */
410 static int sctp_send_asconf(struct sctp_association *asoc,
411 			    struct sctp_chunk *chunk)
412 {
413 	struct net 	*net = sock_net(asoc->base.sk);
414 	int		retval = 0;
415 
416 	/* If there is an outstanding ASCONF chunk, queue it for later
417 	 * transmission.
418 	 */
419 	if (asoc->addip_last_asconf) {
420 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
421 		goto out;
422 	}
423 
424 	/* Hold the chunk until an ASCONF_ACK is received. */
425 	sctp_chunk_hold(chunk);
426 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
427 	if (retval)
428 		sctp_chunk_free(chunk);
429 	else
430 		asoc->addip_last_asconf = chunk;
431 
432 out:
433 	return retval;
434 }
435 
436 /* Add a list of addresses as bind addresses to local endpoint or
437  * association.
438  *
439  * Basically run through each address specified in the addrs/addrcnt
440  * array/length pair, determine if it is IPv6 or IPv4 and call
441  * sctp_do_bind() on it.
442  *
443  * If any of them fails, then the operation will be reversed and the
444  * ones that were added will be removed.
445  *
446  * Only sctp_setsockopt_bindx() is supposed to call this function.
447  */
448 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
449 {
450 	int cnt;
451 	int retval = 0;
452 	void *addr_buf;
453 	struct sockaddr *sa_addr;
454 	struct sctp_af *af;
455 
456 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
457 		 addrs, addrcnt);
458 
459 	addr_buf = addrs;
460 	for (cnt = 0; cnt < addrcnt; cnt++) {
461 		/* The list may contain either IPv4 or IPv6 address;
462 		 * determine the address length for walking thru the list.
463 		 */
464 		sa_addr = addr_buf;
465 		af = sctp_get_af_specific(sa_addr->sa_family);
466 		if (!af) {
467 			retval = -EINVAL;
468 			goto err_bindx_add;
469 		}
470 
471 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
472 				      af->sockaddr_len);
473 
474 		addr_buf += af->sockaddr_len;
475 
476 err_bindx_add:
477 		if (retval < 0) {
478 			/* Failed. Cleanup the ones that have been added */
479 			if (cnt > 0)
480 				sctp_bindx_rem(sk, addrs, cnt);
481 			return retval;
482 		}
483 	}
484 
485 	return retval;
486 }
487 
488 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
489  * associations that are part of the endpoint indicating that a list of local
490  * addresses are added to the endpoint.
491  *
492  * If any of the addresses is already in the bind address list of the
493  * association, we do not send the chunk for that association.  But it will not
494  * affect other associations.
495  *
496  * Only sctp_setsockopt_bindx() is supposed to call this function.
497  */
498 static int sctp_send_asconf_add_ip(struct sock		*sk,
499 				   struct sockaddr	*addrs,
500 				   int 			addrcnt)
501 {
502 	struct net *net = sock_net(sk);
503 	struct sctp_sock		*sp;
504 	struct sctp_endpoint		*ep;
505 	struct sctp_association		*asoc;
506 	struct sctp_bind_addr		*bp;
507 	struct sctp_chunk		*chunk;
508 	struct sctp_sockaddr_entry	*laddr;
509 	union sctp_addr			*addr;
510 	union sctp_addr			saveaddr;
511 	void				*addr_buf;
512 	struct sctp_af			*af;
513 	struct list_head		*p;
514 	int 				i;
515 	int 				retval = 0;
516 
517 	if (!net->sctp.addip_enable)
518 		return retval;
519 
520 	sp = sctp_sk(sk);
521 	ep = sp->ep;
522 
523 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
524 		 __func__, sk, addrs, addrcnt);
525 
526 	list_for_each_entry(asoc, &ep->asocs, asocs) {
527 		if (!asoc->peer.asconf_capable)
528 			continue;
529 
530 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
531 			continue;
532 
533 		if (!sctp_state(asoc, ESTABLISHED))
534 			continue;
535 
536 		/* Check if any address in the packed array of addresses is
537 		 * in the bind address list of the association. If so,
538 		 * do not send the asconf chunk to its peer, but continue with
539 		 * other associations.
540 		 */
541 		addr_buf = addrs;
542 		for (i = 0; i < addrcnt; i++) {
543 			addr = addr_buf;
544 			af = sctp_get_af_specific(addr->v4.sin_family);
545 			if (!af) {
546 				retval = -EINVAL;
547 				goto out;
548 			}
549 
550 			if (sctp_assoc_lookup_laddr(asoc, addr))
551 				break;
552 
553 			addr_buf += af->sockaddr_len;
554 		}
555 		if (i < addrcnt)
556 			continue;
557 
558 		/* Use the first valid address in bind addr list of
559 		 * association as Address Parameter of ASCONF CHUNK.
560 		 */
561 		bp = &asoc->base.bind_addr;
562 		p = bp->address_list.next;
563 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
564 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
565 						   addrcnt, SCTP_PARAM_ADD_IP);
566 		if (!chunk) {
567 			retval = -ENOMEM;
568 			goto out;
569 		}
570 
571 		/* Add the new addresses to the bind address list with
572 		 * use_as_src set to 0.
573 		 */
574 		addr_buf = addrs;
575 		for (i = 0; i < addrcnt; i++) {
576 			addr = addr_buf;
577 			af = sctp_get_af_specific(addr->v4.sin_family);
578 			memcpy(&saveaddr, addr, af->sockaddr_len);
579 			retval = sctp_add_bind_addr(bp, &saveaddr,
580 						    SCTP_ADDR_NEW, GFP_ATOMIC);
581 			addr_buf += af->sockaddr_len;
582 		}
583 		if (asoc->src_out_of_asoc_ok) {
584 			struct sctp_transport *trans;
585 
586 			list_for_each_entry(trans,
587 			    &asoc->peer.transport_addr_list, transports) {
588 				/* Clear the source and route cache */
589 				dst_release(trans->dst);
590 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
591 				    2*asoc->pathmtu, 4380));
592 				trans->ssthresh = asoc->peer.i.a_rwnd;
593 				trans->rto = asoc->rto_initial;
594 				sctp_max_rto(asoc, trans);
595 				trans->rtt = trans->srtt = trans->rttvar = 0;
596 				sctp_transport_route(trans, NULL,
597 				    sctp_sk(asoc->base.sk));
598 			}
599 		}
600 		retval = sctp_send_asconf(asoc, chunk);
601 	}
602 
603 out:
604 	return retval;
605 }
606 
607 /* Remove a list of addresses from bind addresses list.  Do not remove the
608  * last address.
609  *
610  * Basically run through each address specified in the addrs/addrcnt
611  * array/length pair, determine if it is IPv6 or IPv4 and call
612  * sctp_del_bind() on it.
613  *
614  * If any of them fails, then the operation will be reversed and the
615  * ones that were removed will be added back.
616  *
617  * At least one address has to be left; if only one address is
618  * available, the operation will return -EBUSY.
619  *
620  * Only sctp_setsockopt_bindx() is supposed to call this function.
621  */
622 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
623 {
624 	struct sctp_sock *sp = sctp_sk(sk);
625 	struct sctp_endpoint *ep = sp->ep;
626 	int cnt;
627 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
628 	int retval = 0;
629 	void *addr_buf;
630 	union sctp_addr *sa_addr;
631 	struct sctp_af *af;
632 
633 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
634 		 __func__, sk, addrs, addrcnt);
635 
636 	addr_buf = addrs;
637 	for (cnt = 0; cnt < addrcnt; cnt++) {
638 		/* If the bind address list is empty or if there is only one
639 		 * bind address, there is nothing more to be removed (we need
640 		 * at least one address here).
641 		 */
642 		if (list_empty(&bp->address_list) ||
643 		    (sctp_list_single_entry(&bp->address_list))) {
644 			retval = -EBUSY;
645 			goto err_bindx_rem;
646 		}
647 
648 		sa_addr = addr_buf;
649 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
650 		if (!af) {
651 			retval = -EINVAL;
652 			goto err_bindx_rem;
653 		}
654 
655 		if (!af->addr_valid(sa_addr, sp, NULL)) {
656 			retval = -EADDRNOTAVAIL;
657 			goto err_bindx_rem;
658 		}
659 
660 		if (sa_addr->v4.sin_port &&
661 		    sa_addr->v4.sin_port != htons(bp->port)) {
662 			retval = -EINVAL;
663 			goto err_bindx_rem;
664 		}
665 
666 		if (!sa_addr->v4.sin_port)
667 			sa_addr->v4.sin_port = htons(bp->port);
668 
669 		/* FIXME - There is probably a need to check if sk->sk_saddr and
670 		 * sk->sk_rcv_addr are currently set to one of the addresses to
671 		 * be removed. This is something which needs to be looked into
672 		 * when we are fixing the outstanding issues with multi-homing
673 		 * socket routing and failover schemes. Refer to comments in
674 		 * sctp_do_bind(). -daisy
675 		 */
676 		retval = sctp_del_bind_addr(bp, sa_addr);
677 
678 		addr_buf += af->sockaddr_len;
679 err_bindx_rem:
680 		if (retval < 0) {
681 			/* Failed. Add the ones that has been removed back */
682 			if (cnt > 0)
683 				sctp_bindx_add(sk, addrs, cnt);
684 			return retval;
685 		}
686 	}
687 
688 	return retval;
689 }
690 
691 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
692  * the associations that are part of the endpoint indicating that a list of
693  * local addresses are removed from the endpoint.
694  *
695  * If any of the addresses is already in the bind address list of the
696  * association, we do not send the chunk for that association.  But it will not
697  * affect other associations.
698  *
699  * Only sctp_setsockopt_bindx() is supposed to call this function.
700  */
701 static int sctp_send_asconf_del_ip(struct sock		*sk,
702 				   struct sockaddr	*addrs,
703 				   int			addrcnt)
704 {
705 	struct net *net = sock_net(sk);
706 	struct sctp_sock	*sp;
707 	struct sctp_endpoint	*ep;
708 	struct sctp_association	*asoc;
709 	struct sctp_transport	*transport;
710 	struct sctp_bind_addr	*bp;
711 	struct sctp_chunk	*chunk;
712 	union sctp_addr		*laddr;
713 	void			*addr_buf;
714 	struct sctp_af		*af;
715 	struct sctp_sockaddr_entry *saddr;
716 	int 			i;
717 	int 			retval = 0;
718 	int			stored = 0;
719 
720 	chunk = NULL;
721 	if (!net->sctp.addip_enable)
722 		return retval;
723 
724 	sp = sctp_sk(sk);
725 	ep = sp->ep;
726 
727 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
728 		 __func__, sk, addrs, addrcnt);
729 
730 	list_for_each_entry(asoc, &ep->asocs, asocs) {
731 
732 		if (!asoc->peer.asconf_capable)
733 			continue;
734 
735 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
736 			continue;
737 
738 		if (!sctp_state(asoc, ESTABLISHED))
739 			continue;
740 
741 		/* Check if any address in the packed array of addresses is
742 		 * not present in the bind address list of the association.
743 		 * If so, do not send the asconf chunk to its peer, but
744 		 * continue with other associations.
745 		 */
746 		addr_buf = addrs;
747 		for (i = 0; i < addrcnt; i++) {
748 			laddr = addr_buf;
749 			af = sctp_get_af_specific(laddr->v4.sin_family);
750 			if (!af) {
751 				retval = -EINVAL;
752 				goto out;
753 			}
754 
755 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
756 				break;
757 
758 			addr_buf += af->sockaddr_len;
759 		}
760 		if (i < addrcnt)
761 			continue;
762 
763 		/* Find one address in the association's bind address list
764 		 * that is not in the packed array of addresses. This is to
765 		 * make sure that we do not delete all the addresses in the
766 		 * association.
767 		 */
768 		bp = &asoc->base.bind_addr;
769 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
770 					       addrcnt, sp);
771 		if ((laddr == NULL) && (addrcnt == 1)) {
772 			if (asoc->asconf_addr_del_pending)
773 				continue;
774 			asoc->asconf_addr_del_pending =
775 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
776 			if (asoc->asconf_addr_del_pending == NULL) {
777 				retval = -ENOMEM;
778 				goto out;
779 			}
780 			asoc->asconf_addr_del_pending->sa.sa_family =
781 				    addrs->sa_family;
782 			asoc->asconf_addr_del_pending->v4.sin_port =
783 				    htons(bp->port);
784 			if (addrs->sa_family == AF_INET) {
785 				struct sockaddr_in *sin;
786 
787 				sin = (struct sockaddr_in *)addrs;
788 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
789 			} else if (addrs->sa_family == AF_INET6) {
790 				struct sockaddr_in6 *sin6;
791 
792 				sin6 = (struct sockaddr_in6 *)addrs;
793 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
794 			}
795 
796 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
797 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
798 				 asoc->asconf_addr_del_pending);
799 
800 			asoc->src_out_of_asoc_ok = 1;
801 			stored = 1;
802 			goto skip_mkasconf;
803 		}
804 
805 		if (laddr == NULL)
806 			return -EINVAL;
807 
808 		/* We do not need RCU protection throughout this loop
809 		 * because this is done under a socket lock from the
810 		 * setsockopt call.
811 		 */
812 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
813 						   SCTP_PARAM_DEL_IP);
814 		if (!chunk) {
815 			retval = -ENOMEM;
816 			goto out;
817 		}
818 
819 skip_mkasconf:
820 		/* Reset use_as_src flag for the addresses in the bind address
821 		 * list that are to be deleted.
822 		 */
823 		addr_buf = addrs;
824 		for (i = 0; i < addrcnt; i++) {
825 			laddr = addr_buf;
826 			af = sctp_get_af_specific(laddr->v4.sin_family);
827 			list_for_each_entry(saddr, &bp->address_list, list) {
828 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
829 					saddr->state = SCTP_ADDR_DEL;
830 			}
831 			addr_buf += af->sockaddr_len;
832 		}
833 
834 		/* Update the route and saddr entries for all the transports
835 		 * as some of the addresses in the bind address list are
836 		 * about to be deleted and cannot be used as source addresses.
837 		 */
838 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
839 					transports) {
840 			dst_release(transport->dst);
841 			sctp_transport_route(transport, NULL,
842 					     sctp_sk(asoc->base.sk));
843 		}
844 
845 		if (stored)
846 			/* We don't need to transmit ASCONF */
847 			continue;
848 		retval = sctp_send_asconf(asoc, chunk);
849 	}
850 out:
851 	return retval;
852 }
853 
854 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
855 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
856 {
857 	struct sock *sk = sctp_opt2sk(sp);
858 	union sctp_addr *addr;
859 	struct sctp_af *af;
860 
861 	/* It is safe to write port space in caller. */
862 	addr = &addrw->a;
863 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
864 	af = sctp_get_af_specific(addr->sa.sa_family);
865 	if (!af)
866 		return -EINVAL;
867 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
868 		return -EINVAL;
869 
870 	if (addrw->state == SCTP_ADDR_NEW)
871 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
872 	else
873 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
874 }
875 
876 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
877  *
878  * API 8.1
879  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
880  *                int flags);
881  *
882  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
883  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
884  * or IPv6 addresses.
885  *
886  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
887  * Section 3.1.2 for this usage.
888  *
889  * addrs is a pointer to an array of one or more socket addresses. Each
890  * address is contained in its appropriate structure (i.e. struct
891  * sockaddr_in or struct sockaddr_in6) the family of the address type
892  * must be used to distinguish the address length (note that this
893  * representation is termed a "packed array" of addresses). The caller
894  * specifies the number of addresses in the array with addrcnt.
895  *
896  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
897  * -1, and sets errno to the appropriate error code.
898  *
899  * For SCTP, the port given in each socket address must be the same, or
900  * sctp_bindx() will fail, setting errno to EINVAL.
901  *
902  * The flags parameter is formed from the bitwise OR of zero or more of
903  * the following currently defined flags:
904  *
905  * SCTP_BINDX_ADD_ADDR
906  *
907  * SCTP_BINDX_REM_ADDR
908  *
909  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
910  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
911  * addresses from the association. The two flags are mutually exclusive;
912  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
913  * not remove all addresses from an association; sctp_bindx() will
914  * reject such an attempt with EINVAL.
915  *
916  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
917  * additional addresses with an endpoint after calling bind().  Or use
918  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
919  * socket is associated with so that no new association accepted will be
920  * associated with those addresses. If the endpoint supports dynamic
921  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
922  * endpoint to send the appropriate message to the peer to change the
923  * peers address lists.
924  *
925  * Adding and removing addresses from a connected association is
926  * optional functionality. Implementations that do not support this
927  * functionality should return EOPNOTSUPP.
928  *
929  * Basically do nothing but copying the addresses from user to kernel
930  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
931  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
932  * from userspace.
933  *
934  * We don't use copy_from_user() for optimization: we first do the
935  * sanity checks (buffer size -fast- and access check-healthy
936  * pointer); if all of those succeed, then we can alloc the memory
937  * (expensive operation) needed to copy the data to kernel. Then we do
938  * the copying without checking the user space area
939  * (__copy_from_user()).
940  *
941  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
942  * it.
943  *
944  * sk        The sk of the socket
945  * addrs     The pointer to the addresses in user land
946  * addrssize Size of the addrs buffer
947  * op        Operation to perform (add or remove, see the flags of
948  *           sctp_bindx)
949  *
950  * Returns 0 if ok, <0 errno code on error.
951  */
952 static int sctp_setsockopt_bindx(struct sock *sk,
953 				 struct sockaddr __user *addrs,
954 				 int addrs_size, int op)
955 {
956 	struct sockaddr *kaddrs;
957 	int err;
958 	int addrcnt = 0;
959 	int walk_size = 0;
960 	struct sockaddr *sa_addr;
961 	void *addr_buf;
962 	struct sctp_af *af;
963 
964 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
965 		 __func__, sk, addrs, addrs_size, op);
966 
967 	if (unlikely(addrs_size <= 0))
968 		return -EINVAL;
969 
970 	/* Check the user passed a healthy pointer.  */
971 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
972 		return -EFAULT;
973 
974 	/* Alloc space for the address array in kernel memory.  */
975 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
976 	if (unlikely(!kaddrs))
977 		return -ENOMEM;
978 
979 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
980 		kfree(kaddrs);
981 		return -EFAULT;
982 	}
983 
984 	/* Walk through the addrs buffer and count the number of addresses. */
985 	addr_buf = kaddrs;
986 	while (walk_size < addrs_size) {
987 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
988 			kfree(kaddrs);
989 			return -EINVAL;
990 		}
991 
992 		sa_addr = addr_buf;
993 		af = sctp_get_af_specific(sa_addr->sa_family);
994 
995 		/* If the address family is not supported or if this address
996 		 * causes the address buffer to overflow return EINVAL.
997 		 */
998 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
999 			kfree(kaddrs);
1000 			return -EINVAL;
1001 		}
1002 		addrcnt++;
1003 		addr_buf += af->sockaddr_len;
1004 		walk_size += af->sockaddr_len;
1005 	}
1006 
1007 	/* Do the work. */
1008 	switch (op) {
1009 	case SCTP_BINDX_ADD_ADDR:
1010 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1011 		if (err)
1012 			goto out;
1013 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1014 		break;
1015 
1016 	case SCTP_BINDX_REM_ADDR:
1017 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1018 		if (err)
1019 			goto out;
1020 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1021 		break;
1022 
1023 	default:
1024 		err = -EINVAL;
1025 		break;
1026 	}
1027 
1028 out:
1029 	kfree(kaddrs);
1030 
1031 	return err;
1032 }
1033 
1034 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1035  *
1036  * Common routine for handling connect() and sctp_connectx().
1037  * Connect will come in with just a single address.
1038  */
1039 static int __sctp_connect(struct sock *sk,
1040 			  struct sockaddr *kaddrs,
1041 			  int addrs_size,
1042 			  sctp_assoc_t *assoc_id)
1043 {
1044 	struct net *net = sock_net(sk);
1045 	struct sctp_sock *sp;
1046 	struct sctp_endpoint *ep;
1047 	struct sctp_association *asoc = NULL;
1048 	struct sctp_association *asoc2;
1049 	struct sctp_transport *transport;
1050 	union sctp_addr to;
1051 	sctp_scope_t scope;
1052 	long timeo;
1053 	int err = 0;
1054 	int addrcnt = 0;
1055 	int walk_size = 0;
1056 	union sctp_addr *sa_addr = NULL;
1057 	void *addr_buf;
1058 	unsigned short port;
1059 	unsigned int f_flags = 0;
1060 
1061 	sp = sctp_sk(sk);
1062 	ep = sp->ep;
1063 
1064 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1065 	 * state - UDP-style peeled off socket or a TCP-style socket that
1066 	 * is already connected.
1067 	 * It cannot be done even on a TCP-style listening socket.
1068 	 */
1069 	if (sctp_sstate(sk, ESTABLISHED) ||
1070 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1071 		err = -EISCONN;
1072 		goto out_free;
1073 	}
1074 
1075 	/* Walk through the addrs buffer and count the number of addresses. */
1076 	addr_buf = kaddrs;
1077 	while (walk_size < addrs_size) {
1078 		struct sctp_af *af;
1079 
1080 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1081 			err = -EINVAL;
1082 			goto out_free;
1083 		}
1084 
1085 		sa_addr = addr_buf;
1086 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1087 
1088 		/* If the address family is not supported or if this address
1089 		 * causes the address buffer to overflow return EINVAL.
1090 		 */
1091 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 
1096 		port = ntohs(sa_addr->v4.sin_port);
1097 
1098 		/* Save current address so we can work with it */
1099 		memcpy(&to, sa_addr, af->sockaddr_len);
1100 
1101 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1102 		if (err)
1103 			goto out_free;
1104 
1105 		/* Make sure the destination port is correctly set
1106 		 * in all addresses.
1107 		 */
1108 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1109 			err = -EINVAL;
1110 			goto out_free;
1111 		}
1112 
1113 		/* Check if there already is a matching association on the
1114 		 * endpoint (other than the one created here).
1115 		 */
1116 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1117 		if (asoc2 && asoc2 != asoc) {
1118 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1119 				err = -EISCONN;
1120 			else
1121 				err = -EALREADY;
1122 			goto out_free;
1123 		}
1124 
1125 		/* If we could not find a matching association on the endpoint,
1126 		 * make sure that there is no peeled-off association matching
1127 		 * the peer address even on another socket.
1128 		 */
1129 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1130 			err = -EADDRNOTAVAIL;
1131 			goto out_free;
1132 		}
1133 
1134 		if (!asoc) {
1135 			/* If a bind() or sctp_bindx() is not called prior to
1136 			 * an sctp_connectx() call, the system picks an
1137 			 * ephemeral port and will choose an address set
1138 			 * equivalent to binding with a wildcard address.
1139 			 */
1140 			if (!ep->base.bind_addr.port) {
1141 				if (sctp_autobind(sk)) {
1142 					err = -EAGAIN;
1143 					goto out_free;
1144 				}
1145 			} else {
1146 				/*
1147 				 * If an unprivileged user inherits a 1-many
1148 				 * style socket with open associations on a
1149 				 * privileged port, it MAY be permitted to
1150 				 * accept new associations, but it SHOULD NOT
1151 				 * be permitted to open new associations.
1152 				 */
1153 				if (ep->base.bind_addr.port < PROT_SOCK &&
1154 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1155 					err = -EACCES;
1156 					goto out_free;
1157 				}
1158 			}
1159 
1160 			scope = sctp_scope(&to);
1161 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1162 			if (!asoc) {
1163 				err = -ENOMEM;
1164 				goto out_free;
1165 			}
1166 
1167 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1168 							      GFP_KERNEL);
1169 			if (err < 0) {
1170 				goto out_free;
1171 			}
1172 
1173 		}
1174 
1175 		/* Prime the peer's transport structures.  */
1176 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1177 						SCTP_UNKNOWN);
1178 		if (!transport) {
1179 			err = -ENOMEM;
1180 			goto out_free;
1181 		}
1182 
1183 		addrcnt++;
1184 		addr_buf += af->sockaddr_len;
1185 		walk_size += af->sockaddr_len;
1186 	}
1187 
1188 	/* In case the user of sctp_connectx() wants an association
1189 	 * id back, assign one now.
1190 	 */
1191 	if (assoc_id) {
1192 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1193 		if (err < 0)
1194 			goto out_free;
1195 	}
1196 
1197 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1198 	if (err < 0) {
1199 		goto out_free;
1200 	}
1201 
1202 	/* Initialize sk's dport and daddr for getpeername() */
1203 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1204 	sp->pf->to_sk_daddr(sa_addr, sk);
1205 	sk->sk_err = 0;
1206 
1207 	/* in-kernel sockets don't generally have a file allocated to them
1208 	 * if all they do is call sock_create_kern().
1209 	 */
1210 	if (sk->sk_socket->file)
1211 		f_flags = sk->sk_socket->file->f_flags;
1212 
1213 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1214 
1215 	err = sctp_wait_for_connect(asoc, &timeo);
1216 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1217 		*assoc_id = asoc->assoc_id;
1218 
1219 	/* Don't free association on exit. */
1220 	asoc = NULL;
1221 
1222 out_free:
1223 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1224 		 __func__, asoc, kaddrs, err);
1225 
1226 	if (asoc) {
1227 		/* sctp_primitive_ASSOCIATE may have added this association
1228 		 * To the hash table, try to unhash it, just in case, its a noop
1229 		 * if it wasn't hashed so we're safe
1230 		 */
1231 		sctp_unhash_established(asoc);
1232 		sctp_association_free(asoc);
1233 	}
1234 	return err;
1235 }
1236 
1237 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1238  *
1239  * API 8.9
1240  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1241  * 			sctp_assoc_t *asoc);
1242  *
1243  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1244  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1245  * or IPv6 addresses.
1246  *
1247  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1248  * Section 3.1.2 for this usage.
1249  *
1250  * addrs is a pointer to an array of one or more socket addresses. Each
1251  * address is contained in its appropriate structure (i.e. struct
1252  * sockaddr_in or struct sockaddr_in6) the family of the address type
1253  * must be used to distengish the address length (note that this
1254  * representation is termed a "packed array" of addresses). The caller
1255  * specifies the number of addresses in the array with addrcnt.
1256  *
1257  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1258  * the association id of the new association.  On failure, sctp_connectx()
1259  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1260  * is not touched by the kernel.
1261  *
1262  * For SCTP, the port given in each socket address must be the same, or
1263  * sctp_connectx() will fail, setting errno to EINVAL.
1264  *
1265  * An application can use sctp_connectx to initiate an association with
1266  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1267  * allows a caller to specify multiple addresses at which a peer can be
1268  * reached.  The way the SCTP stack uses the list of addresses to set up
1269  * the association is implementation dependent.  This function only
1270  * specifies that the stack will try to make use of all the addresses in
1271  * the list when needed.
1272  *
1273  * Note that the list of addresses passed in is only used for setting up
1274  * the association.  It does not necessarily equal the set of addresses
1275  * the peer uses for the resulting association.  If the caller wants to
1276  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1277  * retrieve them after the association has been set up.
1278  *
1279  * Basically do nothing but copying the addresses from user to kernel
1280  * land and invoking either sctp_connectx(). This is used for tunneling
1281  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1282  *
1283  * We don't use copy_from_user() for optimization: we first do the
1284  * sanity checks (buffer size -fast- and access check-healthy
1285  * pointer); if all of those succeed, then we can alloc the memory
1286  * (expensive operation) needed to copy the data to kernel. Then we do
1287  * the copying without checking the user space area
1288  * (__copy_from_user()).
1289  *
1290  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1291  * it.
1292  *
1293  * sk        The sk of the socket
1294  * addrs     The pointer to the addresses in user land
1295  * addrssize Size of the addrs buffer
1296  *
1297  * Returns >=0 if ok, <0 errno code on error.
1298  */
1299 static int __sctp_setsockopt_connectx(struct sock *sk,
1300 				      struct sockaddr __user *addrs,
1301 				      int addrs_size,
1302 				      sctp_assoc_t *assoc_id)
1303 {
1304 	int err = 0;
1305 	struct sockaddr *kaddrs;
1306 
1307 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1308 		 __func__, sk, addrs, addrs_size);
1309 
1310 	if (unlikely(addrs_size <= 0))
1311 		return -EINVAL;
1312 
1313 	/* Check the user passed a healthy pointer.  */
1314 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1315 		return -EFAULT;
1316 
1317 	/* Alloc space for the address array in kernel memory.  */
1318 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1319 	if (unlikely(!kaddrs))
1320 		return -ENOMEM;
1321 
1322 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1323 		err = -EFAULT;
1324 	} else {
1325 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1326 	}
1327 
1328 	kfree(kaddrs);
1329 
1330 	return err;
1331 }
1332 
1333 /*
1334  * This is an older interface.  It's kept for backward compatibility
1335  * to the option that doesn't provide association id.
1336  */
1337 static int sctp_setsockopt_connectx_old(struct sock *sk,
1338 					struct sockaddr __user *addrs,
1339 					int addrs_size)
1340 {
1341 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1342 }
1343 
1344 /*
1345  * New interface for the API.  The since the API is done with a socket
1346  * option, to make it simple we feed back the association id is as a return
1347  * indication to the call.  Error is always negative and association id is
1348  * always positive.
1349  */
1350 static int sctp_setsockopt_connectx(struct sock *sk,
1351 				    struct sockaddr __user *addrs,
1352 				    int addrs_size)
1353 {
1354 	sctp_assoc_t assoc_id = 0;
1355 	int err = 0;
1356 
1357 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1358 
1359 	if (err)
1360 		return err;
1361 	else
1362 		return assoc_id;
1363 }
1364 
1365 /*
1366  * New (hopefully final) interface for the API.
1367  * We use the sctp_getaddrs_old structure so that use-space library
1368  * can avoid any unnecessary allocations. The only different part
1369  * is that we store the actual length of the address buffer into the
1370  * addrs_num structure member. That way we can re-use the existing
1371  * code.
1372  */
1373 #ifdef CONFIG_COMPAT
1374 struct compat_sctp_getaddrs_old {
1375 	sctp_assoc_t	assoc_id;
1376 	s32		addr_num;
1377 	compat_uptr_t	addrs;		/* struct sockaddr * */
1378 };
1379 #endif
1380 
1381 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1382 				     char __user *optval,
1383 				     int __user *optlen)
1384 {
1385 	struct sctp_getaddrs_old param;
1386 	sctp_assoc_t assoc_id = 0;
1387 	int err = 0;
1388 
1389 #ifdef CONFIG_COMPAT
1390 	if (is_compat_task()) {
1391 		struct compat_sctp_getaddrs_old param32;
1392 
1393 		if (len < sizeof(param32))
1394 			return -EINVAL;
1395 		if (copy_from_user(&param32, optval, sizeof(param32)))
1396 			return -EFAULT;
1397 
1398 		param.assoc_id = param32.assoc_id;
1399 		param.addr_num = param32.addr_num;
1400 		param.addrs = compat_ptr(param32.addrs);
1401 	} else
1402 #endif
1403 	{
1404 		if (len < sizeof(param))
1405 			return -EINVAL;
1406 		if (copy_from_user(&param, optval, sizeof(param)))
1407 			return -EFAULT;
1408 	}
1409 
1410 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1411 					 param.addrs, param.addr_num,
1412 					 &assoc_id);
1413 	if (err == 0 || err == -EINPROGRESS) {
1414 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1415 			return -EFAULT;
1416 		if (put_user(sizeof(assoc_id), optlen))
1417 			return -EFAULT;
1418 	}
1419 
1420 	return err;
1421 }
1422 
1423 /* API 3.1.4 close() - UDP Style Syntax
1424  * Applications use close() to perform graceful shutdown (as described in
1425  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1426  * by a UDP-style socket.
1427  *
1428  * The syntax is
1429  *
1430  *   ret = close(int sd);
1431  *
1432  *   sd      - the socket descriptor of the associations to be closed.
1433  *
1434  * To gracefully shutdown a specific association represented by the
1435  * UDP-style socket, an application should use the sendmsg() call,
1436  * passing no user data, but including the appropriate flag in the
1437  * ancillary data (see Section xxxx).
1438  *
1439  * If sd in the close() call is a branched-off socket representing only
1440  * one association, the shutdown is performed on that association only.
1441  *
1442  * 4.1.6 close() - TCP Style Syntax
1443  *
1444  * Applications use close() to gracefully close down an association.
1445  *
1446  * The syntax is:
1447  *
1448  *    int close(int sd);
1449  *
1450  *      sd      - the socket descriptor of the association to be closed.
1451  *
1452  * After an application calls close() on a socket descriptor, no further
1453  * socket operations will succeed on that descriptor.
1454  *
1455  * API 7.1.4 SO_LINGER
1456  *
1457  * An application using the TCP-style socket can use this option to
1458  * perform the SCTP ABORT primitive.  The linger option structure is:
1459  *
1460  *  struct  linger {
1461  *     int     l_onoff;                // option on/off
1462  *     int     l_linger;               // linger time
1463  * };
1464  *
1465  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1466  * to 0, calling close() is the same as the ABORT primitive.  If the
1467  * value is set to a negative value, the setsockopt() call will return
1468  * an error.  If the value is set to a positive value linger_time, the
1469  * close() can be blocked for at most linger_time ms.  If the graceful
1470  * shutdown phase does not finish during this period, close() will
1471  * return but the graceful shutdown phase continues in the system.
1472  */
1473 static void sctp_close(struct sock *sk, long timeout)
1474 {
1475 	struct net *net = sock_net(sk);
1476 	struct sctp_endpoint *ep;
1477 	struct sctp_association *asoc;
1478 	struct list_head *pos, *temp;
1479 	unsigned int data_was_unread;
1480 
1481 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1482 
1483 	lock_sock(sk);
1484 	sk->sk_shutdown = SHUTDOWN_MASK;
1485 	sk->sk_state = SCTP_SS_CLOSING;
1486 
1487 	ep = sctp_sk(sk)->ep;
1488 
1489 	/* Clean up any skbs sitting on the receive queue.  */
1490 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1491 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1492 
1493 	/* Walk all associations on an endpoint.  */
1494 	list_for_each_safe(pos, temp, &ep->asocs) {
1495 		asoc = list_entry(pos, struct sctp_association, asocs);
1496 
1497 		if (sctp_style(sk, TCP)) {
1498 			/* A closed association can still be in the list if
1499 			 * it belongs to a TCP-style listening socket that is
1500 			 * not yet accepted. If so, free it. If not, send an
1501 			 * ABORT or SHUTDOWN based on the linger options.
1502 			 */
1503 			if (sctp_state(asoc, CLOSED)) {
1504 				sctp_unhash_established(asoc);
1505 				sctp_association_free(asoc);
1506 				continue;
1507 			}
1508 		}
1509 
1510 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1511 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1512 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1513 			struct sctp_chunk *chunk;
1514 
1515 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1516 			if (chunk)
1517 				sctp_primitive_ABORT(net, asoc, chunk);
1518 		} else
1519 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1520 	}
1521 
1522 	/* On a TCP-style socket, block for at most linger_time if set. */
1523 	if (sctp_style(sk, TCP) && timeout)
1524 		sctp_wait_for_close(sk, timeout);
1525 
1526 	/* This will run the backlog queue.  */
1527 	release_sock(sk);
1528 
1529 	/* Supposedly, no process has access to the socket, but
1530 	 * the net layers still may.
1531 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1532 	 * held and that should be grabbed before socket lock.
1533 	 */
1534 	spin_lock_bh(&net->sctp.addr_wq_lock);
1535 	bh_lock_sock(sk);
1536 
1537 	/* Hold the sock, since sk_common_release() will put sock_put()
1538 	 * and we have just a little more cleanup.
1539 	 */
1540 	sock_hold(sk);
1541 	sk_common_release(sk);
1542 
1543 	bh_unlock_sock(sk);
1544 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1545 
1546 	sock_put(sk);
1547 
1548 	SCTP_DBG_OBJCNT_DEC(sock);
1549 }
1550 
1551 /* Handle EPIPE error. */
1552 static int sctp_error(struct sock *sk, int flags, int err)
1553 {
1554 	if (err == -EPIPE)
1555 		err = sock_error(sk) ? : -EPIPE;
1556 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1557 		send_sig(SIGPIPE, current, 0);
1558 	return err;
1559 }
1560 
1561 /* API 3.1.3 sendmsg() - UDP Style Syntax
1562  *
1563  * An application uses sendmsg() and recvmsg() calls to transmit data to
1564  * and receive data from its peer.
1565  *
1566  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1567  *                  int flags);
1568  *
1569  *  socket  - the socket descriptor of the endpoint.
1570  *  message - pointer to the msghdr structure which contains a single
1571  *            user message and possibly some ancillary data.
1572  *
1573  *            See Section 5 for complete description of the data
1574  *            structures.
1575  *
1576  *  flags   - flags sent or received with the user message, see Section
1577  *            5 for complete description of the flags.
1578  *
1579  * Note:  This function could use a rewrite especially when explicit
1580  * connect support comes in.
1581  */
1582 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1583 
1584 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1585 
1586 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1587 {
1588 	struct net *net = sock_net(sk);
1589 	struct sctp_sock *sp;
1590 	struct sctp_endpoint *ep;
1591 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1592 	struct sctp_transport *transport, *chunk_tp;
1593 	struct sctp_chunk *chunk;
1594 	union sctp_addr to;
1595 	struct sockaddr *msg_name = NULL;
1596 	struct sctp_sndrcvinfo default_sinfo;
1597 	struct sctp_sndrcvinfo *sinfo;
1598 	struct sctp_initmsg *sinit;
1599 	sctp_assoc_t associd = 0;
1600 	sctp_cmsgs_t cmsgs = { NULL };
1601 	sctp_scope_t scope;
1602 	bool fill_sinfo_ttl = false, wait_connect = false;
1603 	struct sctp_datamsg *datamsg;
1604 	int msg_flags = msg->msg_flags;
1605 	__u16 sinfo_flags = 0;
1606 	long timeo;
1607 	int err;
1608 
1609 	err = 0;
1610 	sp = sctp_sk(sk);
1611 	ep = sp->ep;
1612 
1613 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1614 		 msg, msg_len, ep);
1615 
1616 	/* We cannot send a message over a TCP-style listening socket. */
1617 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1618 		err = -EPIPE;
1619 		goto out_nounlock;
1620 	}
1621 
1622 	/* Parse out the SCTP CMSGs.  */
1623 	err = sctp_msghdr_parse(msg, &cmsgs);
1624 	if (err) {
1625 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1626 		goto out_nounlock;
1627 	}
1628 
1629 	/* Fetch the destination address for this packet.  This
1630 	 * address only selects the association--it is not necessarily
1631 	 * the address we will send to.
1632 	 * For a peeled-off socket, msg_name is ignored.
1633 	 */
1634 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1635 		int msg_namelen = msg->msg_namelen;
1636 
1637 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1638 				       msg_namelen);
1639 		if (err)
1640 			return err;
1641 
1642 		if (msg_namelen > sizeof(to))
1643 			msg_namelen = sizeof(to);
1644 		memcpy(&to, msg->msg_name, msg_namelen);
1645 		msg_name = msg->msg_name;
1646 	}
1647 
1648 	sinit = cmsgs.init;
1649 	if (cmsgs.sinfo != NULL) {
1650 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1651 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1652 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1653 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1654 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1655 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1656 
1657 		sinfo = &default_sinfo;
1658 		fill_sinfo_ttl = true;
1659 	} else {
1660 		sinfo = cmsgs.srinfo;
1661 	}
1662 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1663 	if (sinfo) {
1664 		sinfo_flags = sinfo->sinfo_flags;
1665 		associd = sinfo->sinfo_assoc_id;
1666 	}
1667 
1668 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1669 		 msg_len, sinfo_flags);
1670 
1671 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1672 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1673 		err = -EINVAL;
1674 		goto out_nounlock;
1675 	}
1676 
1677 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1678 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1679 	 * If SCTP_ABORT is set, the message length could be non zero with
1680 	 * the msg_iov set to the user abort reason.
1681 	 */
1682 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1683 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1684 		err = -EINVAL;
1685 		goto out_nounlock;
1686 	}
1687 
1688 	/* If SCTP_ADDR_OVER is set, there must be an address
1689 	 * specified in msg_name.
1690 	 */
1691 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1692 		err = -EINVAL;
1693 		goto out_nounlock;
1694 	}
1695 
1696 	transport = NULL;
1697 
1698 	pr_debug("%s: about to look up association\n", __func__);
1699 
1700 	lock_sock(sk);
1701 
1702 	/* If a msg_name has been specified, assume this is to be used.  */
1703 	if (msg_name) {
1704 		/* Look for a matching association on the endpoint. */
1705 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1706 		if (!asoc) {
1707 			/* If we could not find a matching association on the
1708 			 * endpoint, make sure that it is not a TCP-style
1709 			 * socket that already has an association or there is
1710 			 * no peeled-off association on another socket.
1711 			 */
1712 			if ((sctp_style(sk, TCP) &&
1713 			     sctp_sstate(sk, ESTABLISHED)) ||
1714 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1715 				err = -EADDRNOTAVAIL;
1716 				goto out_unlock;
1717 			}
1718 		}
1719 	} else {
1720 		asoc = sctp_id2assoc(sk, associd);
1721 		if (!asoc) {
1722 			err = -EPIPE;
1723 			goto out_unlock;
1724 		}
1725 	}
1726 
1727 	if (asoc) {
1728 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1729 
1730 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1731 		 * socket that has an association in CLOSED state. This can
1732 		 * happen when an accepted socket has an association that is
1733 		 * already CLOSED.
1734 		 */
1735 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1736 			err = -EPIPE;
1737 			goto out_unlock;
1738 		}
1739 
1740 		if (sinfo_flags & SCTP_EOF) {
1741 			pr_debug("%s: shutting down association:%p\n",
1742 				 __func__, asoc);
1743 
1744 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1745 			err = 0;
1746 			goto out_unlock;
1747 		}
1748 		if (sinfo_flags & SCTP_ABORT) {
1749 
1750 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1751 			if (!chunk) {
1752 				err = -ENOMEM;
1753 				goto out_unlock;
1754 			}
1755 
1756 			pr_debug("%s: aborting association:%p\n",
1757 				 __func__, asoc);
1758 
1759 			sctp_primitive_ABORT(net, asoc, chunk);
1760 			err = 0;
1761 			goto out_unlock;
1762 		}
1763 	}
1764 
1765 	/* Do we need to create the association?  */
1766 	if (!asoc) {
1767 		pr_debug("%s: there is no association yet\n", __func__);
1768 
1769 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1770 			err = -EINVAL;
1771 			goto out_unlock;
1772 		}
1773 
1774 		/* Check for invalid stream against the stream counts,
1775 		 * either the default or the user specified stream counts.
1776 		 */
1777 		if (sinfo) {
1778 			if (!sinit || !sinit->sinit_num_ostreams) {
1779 				/* Check against the defaults. */
1780 				if (sinfo->sinfo_stream >=
1781 				    sp->initmsg.sinit_num_ostreams) {
1782 					err = -EINVAL;
1783 					goto out_unlock;
1784 				}
1785 			} else {
1786 				/* Check against the requested.  */
1787 				if (sinfo->sinfo_stream >=
1788 				    sinit->sinit_num_ostreams) {
1789 					err = -EINVAL;
1790 					goto out_unlock;
1791 				}
1792 			}
1793 		}
1794 
1795 		/*
1796 		 * API 3.1.2 bind() - UDP Style Syntax
1797 		 * If a bind() or sctp_bindx() is not called prior to a
1798 		 * sendmsg() call that initiates a new association, the
1799 		 * system picks an ephemeral port and will choose an address
1800 		 * set equivalent to binding with a wildcard address.
1801 		 */
1802 		if (!ep->base.bind_addr.port) {
1803 			if (sctp_autobind(sk)) {
1804 				err = -EAGAIN;
1805 				goto out_unlock;
1806 			}
1807 		} else {
1808 			/*
1809 			 * If an unprivileged user inherits a one-to-many
1810 			 * style socket with open associations on a privileged
1811 			 * port, it MAY be permitted to accept new associations,
1812 			 * but it SHOULD NOT be permitted to open new
1813 			 * associations.
1814 			 */
1815 			if (ep->base.bind_addr.port < PROT_SOCK &&
1816 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1817 				err = -EACCES;
1818 				goto out_unlock;
1819 			}
1820 		}
1821 
1822 		scope = sctp_scope(&to);
1823 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1824 		if (!new_asoc) {
1825 			err = -ENOMEM;
1826 			goto out_unlock;
1827 		}
1828 		asoc = new_asoc;
1829 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1830 		if (err < 0) {
1831 			err = -ENOMEM;
1832 			goto out_free;
1833 		}
1834 
1835 		/* If the SCTP_INIT ancillary data is specified, set all
1836 		 * the association init values accordingly.
1837 		 */
1838 		if (sinit) {
1839 			if (sinit->sinit_num_ostreams) {
1840 				asoc->c.sinit_num_ostreams =
1841 					sinit->sinit_num_ostreams;
1842 			}
1843 			if (sinit->sinit_max_instreams) {
1844 				asoc->c.sinit_max_instreams =
1845 					sinit->sinit_max_instreams;
1846 			}
1847 			if (sinit->sinit_max_attempts) {
1848 				asoc->max_init_attempts
1849 					= sinit->sinit_max_attempts;
1850 			}
1851 			if (sinit->sinit_max_init_timeo) {
1852 				asoc->max_init_timeo =
1853 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1854 			}
1855 		}
1856 
1857 		/* Prime the peer's transport structures.  */
1858 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1859 		if (!transport) {
1860 			err = -ENOMEM;
1861 			goto out_free;
1862 		}
1863 	}
1864 
1865 	/* ASSERT: we have a valid association at this point.  */
1866 	pr_debug("%s: we have a valid association\n", __func__);
1867 
1868 	if (!sinfo) {
1869 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1870 		 * one with some defaults.
1871 		 */
1872 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1873 		default_sinfo.sinfo_stream = asoc->default_stream;
1874 		default_sinfo.sinfo_flags = asoc->default_flags;
1875 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1876 		default_sinfo.sinfo_context = asoc->default_context;
1877 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1878 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1879 
1880 		sinfo = &default_sinfo;
1881 	} else if (fill_sinfo_ttl) {
1882 		/* In case SNDINFO was specified, we still need to fill
1883 		 * it with a default ttl from the assoc here.
1884 		 */
1885 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1886 	}
1887 
1888 	/* API 7.1.7, the sndbuf size per association bounds the
1889 	 * maximum size of data that can be sent in a single send call.
1890 	 */
1891 	if (msg_len > sk->sk_sndbuf) {
1892 		err = -EMSGSIZE;
1893 		goto out_free;
1894 	}
1895 
1896 	if (asoc->pmtu_pending)
1897 		sctp_assoc_pending_pmtu(sk, asoc);
1898 
1899 	/* If fragmentation is disabled and the message length exceeds the
1900 	 * association fragmentation point, return EMSGSIZE.  The I-D
1901 	 * does not specify what this error is, but this looks like
1902 	 * a great fit.
1903 	 */
1904 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1905 		err = -EMSGSIZE;
1906 		goto out_free;
1907 	}
1908 
1909 	/* Check for invalid stream. */
1910 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1911 		err = -EINVAL;
1912 		goto out_free;
1913 	}
1914 
1915 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1916 	if (!sctp_wspace(asoc)) {
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto out_free;
1920 	}
1921 
1922 	/* If an address is passed with the sendto/sendmsg call, it is used
1923 	 * to override the primary destination address in the TCP model, or
1924 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1925 	 */
1926 	if ((sctp_style(sk, TCP) && msg_name) ||
1927 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1928 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1929 		if (!chunk_tp) {
1930 			err = -EINVAL;
1931 			goto out_free;
1932 		}
1933 	} else
1934 		chunk_tp = NULL;
1935 
1936 	/* Auto-connect, if we aren't connected already. */
1937 	if (sctp_state(asoc, CLOSED)) {
1938 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1939 		if (err < 0)
1940 			goto out_free;
1941 
1942 		wait_connect = true;
1943 		pr_debug("%s: we associated primitively\n", __func__);
1944 	}
1945 
1946 	/* Break the message into multiple chunks of maximum size. */
1947 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1948 	if (IS_ERR(datamsg)) {
1949 		err = PTR_ERR(datamsg);
1950 		goto out_free;
1951 	}
1952 
1953 	/* Now send the (possibly) fragmented message. */
1954 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1955 		sctp_chunk_hold(chunk);
1956 
1957 		/* Do accounting for the write space.  */
1958 		sctp_set_owner_w(chunk);
1959 
1960 		chunk->transport = chunk_tp;
1961 	}
1962 
1963 	/* Send it to the lower layers.  Note:  all chunks
1964 	 * must either fail or succeed.   The lower layer
1965 	 * works that way today.  Keep it that way or this
1966 	 * breaks.
1967 	 */
1968 	err = sctp_primitive_SEND(net, asoc, datamsg);
1969 	/* Did the lower layer accept the chunk? */
1970 	if (err) {
1971 		sctp_datamsg_free(datamsg);
1972 		goto out_free;
1973 	}
1974 
1975 	pr_debug("%s: we sent primitively\n", __func__);
1976 
1977 	sctp_datamsg_put(datamsg);
1978 	err = msg_len;
1979 
1980 	if (unlikely(wait_connect)) {
1981 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1982 		sctp_wait_for_connect(asoc, &timeo);
1983 	}
1984 
1985 	/* If we are already past ASSOCIATE, the lower
1986 	 * layers are responsible for association cleanup.
1987 	 */
1988 	goto out_unlock;
1989 
1990 out_free:
1991 	if (new_asoc) {
1992 		sctp_unhash_established(asoc);
1993 		sctp_association_free(asoc);
1994 	}
1995 out_unlock:
1996 	release_sock(sk);
1997 
1998 out_nounlock:
1999 	return sctp_error(sk, msg_flags, err);
2000 
2001 #if 0
2002 do_sock_err:
2003 	if (msg_len)
2004 		err = msg_len;
2005 	else
2006 		err = sock_error(sk);
2007 	goto out;
2008 
2009 do_interrupted:
2010 	if (msg_len)
2011 		err = msg_len;
2012 	goto out;
2013 #endif /* 0 */
2014 }
2015 
2016 /* This is an extended version of skb_pull() that removes the data from the
2017  * start of a skb even when data is spread across the list of skb's in the
2018  * frag_list. len specifies the total amount of data that needs to be removed.
2019  * when 'len' bytes could be removed from the skb, it returns 0.
2020  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2021  * could not be removed.
2022  */
2023 static int sctp_skb_pull(struct sk_buff *skb, int len)
2024 {
2025 	struct sk_buff *list;
2026 	int skb_len = skb_headlen(skb);
2027 	int rlen;
2028 
2029 	if (len <= skb_len) {
2030 		__skb_pull(skb, len);
2031 		return 0;
2032 	}
2033 	len -= skb_len;
2034 	__skb_pull(skb, skb_len);
2035 
2036 	skb_walk_frags(skb, list) {
2037 		rlen = sctp_skb_pull(list, len);
2038 		skb->len -= (len-rlen);
2039 		skb->data_len -= (len-rlen);
2040 
2041 		if (!rlen)
2042 			return 0;
2043 
2044 		len = rlen;
2045 	}
2046 
2047 	return len;
2048 }
2049 
2050 /* API 3.1.3  recvmsg() - UDP Style Syntax
2051  *
2052  *  ssize_t recvmsg(int socket, struct msghdr *message,
2053  *                    int flags);
2054  *
2055  *  socket  - the socket descriptor of the endpoint.
2056  *  message - pointer to the msghdr structure which contains a single
2057  *            user message and possibly some ancillary data.
2058  *
2059  *            See Section 5 for complete description of the data
2060  *            structures.
2061  *
2062  *  flags   - flags sent or received with the user message, see Section
2063  *            5 for complete description of the flags.
2064  */
2065 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2066 			int noblock, int flags, int *addr_len)
2067 {
2068 	struct sctp_ulpevent *event = NULL;
2069 	struct sctp_sock *sp = sctp_sk(sk);
2070 	struct sk_buff *skb;
2071 	int copied;
2072 	int err = 0;
2073 	int skb_len;
2074 
2075 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2076 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2077 		 addr_len);
2078 
2079 	lock_sock(sk);
2080 
2081 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2082 		err = -ENOTCONN;
2083 		goto out;
2084 	}
2085 
2086 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2087 	if (!skb)
2088 		goto out;
2089 
2090 	/* Get the total length of the skb including any skb's in the
2091 	 * frag_list.
2092 	 */
2093 	skb_len = skb->len;
2094 
2095 	copied = skb_len;
2096 	if (copied > len)
2097 		copied = len;
2098 
2099 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2100 
2101 	event = sctp_skb2event(skb);
2102 
2103 	if (err)
2104 		goto out_free;
2105 
2106 	sock_recv_ts_and_drops(msg, sk, skb);
2107 	if (sctp_ulpevent_is_notification(event)) {
2108 		msg->msg_flags |= MSG_NOTIFICATION;
2109 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2110 	} else {
2111 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2112 	}
2113 
2114 	/* Check if we allow SCTP_NXTINFO. */
2115 	if (sp->recvnxtinfo)
2116 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2117 	/* Check if we allow SCTP_RCVINFO. */
2118 	if (sp->recvrcvinfo)
2119 		sctp_ulpevent_read_rcvinfo(event, msg);
2120 	/* Check if we allow SCTP_SNDRCVINFO. */
2121 	if (sp->subscribe.sctp_data_io_event)
2122 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2123 
2124 	err = copied;
2125 
2126 	/* If skb's length exceeds the user's buffer, update the skb and
2127 	 * push it back to the receive_queue so that the next call to
2128 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2129 	 */
2130 	if (skb_len > copied) {
2131 		msg->msg_flags &= ~MSG_EOR;
2132 		if (flags & MSG_PEEK)
2133 			goto out_free;
2134 		sctp_skb_pull(skb, copied);
2135 		skb_queue_head(&sk->sk_receive_queue, skb);
2136 
2137 		/* When only partial message is copied to the user, increase
2138 		 * rwnd by that amount. If all the data in the skb is read,
2139 		 * rwnd is updated when the event is freed.
2140 		 */
2141 		if (!sctp_ulpevent_is_notification(event))
2142 			sctp_assoc_rwnd_increase(event->asoc, copied);
2143 		goto out;
2144 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2145 		   (event->msg_flags & MSG_EOR))
2146 		msg->msg_flags |= MSG_EOR;
2147 	else
2148 		msg->msg_flags &= ~MSG_EOR;
2149 
2150 out_free:
2151 	if (flags & MSG_PEEK) {
2152 		/* Release the skb reference acquired after peeking the skb in
2153 		 * sctp_skb_recv_datagram().
2154 		 */
2155 		kfree_skb(skb);
2156 	} else {
2157 		/* Free the event which includes releasing the reference to
2158 		 * the owner of the skb, freeing the skb and updating the
2159 		 * rwnd.
2160 		 */
2161 		sctp_ulpevent_free(event);
2162 	}
2163 out:
2164 	release_sock(sk);
2165 	return err;
2166 }
2167 
2168 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2169  *
2170  * This option is a on/off flag.  If enabled no SCTP message
2171  * fragmentation will be performed.  Instead if a message being sent
2172  * exceeds the current PMTU size, the message will NOT be sent and
2173  * instead a error will be indicated to the user.
2174  */
2175 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2176 					     char __user *optval,
2177 					     unsigned int optlen)
2178 {
2179 	int val;
2180 
2181 	if (optlen < sizeof(int))
2182 		return -EINVAL;
2183 
2184 	if (get_user(val, (int __user *)optval))
2185 		return -EFAULT;
2186 
2187 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2188 
2189 	return 0;
2190 }
2191 
2192 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2193 				  unsigned int optlen)
2194 {
2195 	struct sctp_association *asoc;
2196 	struct sctp_ulpevent *event;
2197 
2198 	if (optlen > sizeof(struct sctp_event_subscribe))
2199 		return -EINVAL;
2200 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2201 		return -EFAULT;
2202 
2203 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2204 	 * if there is no data to be sent or retransmit, the stack will
2205 	 * immediately send up this notification.
2206 	 */
2207 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2208 				       &sctp_sk(sk)->subscribe)) {
2209 		asoc = sctp_id2assoc(sk, 0);
2210 
2211 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2212 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2213 					GFP_ATOMIC);
2214 			if (!event)
2215 				return -ENOMEM;
2216 
2217 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2218 		}
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2225  *
2226  * This socket option is applicable to the UDP-style socket only.  When
2227  * set it will cause associations that are idle for more than the
2228  * specified number of seconds to automatically close.  An association
2229  * being idle is defined an association that has NOT sent or received
2230  * user data.  The special value of '0' indicates that no automatic
2231  * close of any associations should be performed.  The option expects an
2232  * integer defining the number of seconds of idle time before an
2233  * association is closed.
2234  */
2235 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2236 				     unsigned int optlen)
2237 {
2238 	struct sctp_sock *sp = sctp_sk(sk);
2239 	struct net *net = sock_net(sk);
2240 
2241 	/* Applicable to UDP-style socket only */
2242 	if (sctp_style(sk, TCP))
2243 		return -EOPNOTSUPP;
2244 	if (optlen != sizeof(int))
2245 		return -EINVAL;
2246 	if (copy_from_user(&sp->autoclose, optval, optlen))
2247 		return -EFAULT;
2248 
2249 	if (sp->autoclose > net->sctp.max_autoclose)
2250 		sp->autoclose = net->sctp.max_autoclose;
2251 
2252 	return 0;
2253 }
2254 
2255 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2256  *
2257  * Applications can enable or disable heartbeats for any peer address of
2258  * an association, modify an address's heartbeat interval, force a
2259  * heartbeat to be sent immediately, and adjust the address's maximum
2260  * number of retransmissions sent before an address is considered
2261  * unreachable.  The following structure is used to access and modify an
2262  * address's parameters:
2263  *
2264  *  struct sctp_paddrparams {
2265  *     sctp_assoc_t            spp_assoc_id;
2266  *     struct sockaddr_storage spp_address;
2267  *     uint32_t                spp_hbinterval;
2268  *     uint16_t                spp_pathmaxrxt;
2269  *     uint32_t                spp_pathmtu;
2270  *     uint32_t                spp_sackdelay;
2271  *     uint32_t                spp_flags;
2272  * };
2273  *
2274  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2275  *                     application, and identifies the association for
2276  *                     this query.
2277  *   spp_address     - This specifies which address is of interest.
2278  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2279  *                     in milliseconds.  If a  value of zero
2280  *                     is present in this field then no changes are to
2281  *                     be made to this parameter.
2282  *   spp_pathmaxrxt  - This contains the maximum number of
2283  *                     retransmissions before this address shall be
2284  *                     considered unreachable. If a  value of zero
2285  *                     is present in this field then no changes are to
2286  *                     be made to this parameter.
2287  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2288  *                     specified here will be the "fixed" path mtu.
2289  *                     Note that if the spp_address field is empty
2290  *                     then all associations on this address will
2291  *                     have this fixed path mtu set upon them.
2292  *
2293  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2294  *                     the number of milliseconds that sacks will be delayed
2295  *                     for. This value will apply to all addresses of an
2296  *                     association if the spp_address field is empty. Note
2297  *                     also, that if delayed sack is enabled and this
2298  *                     value is set to 0, no change is made to the last
2299  *                     recorded delayed sack timer value.
2300  *
2301  *   spp_flags       - These flags are used to control various features
2302  *                     on an association. The flag field may contain
2303  *                     zero or more of the following options.
2304  *
2305  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2306  *                     specified address. Note that if the address
2307  *                     field is empty all addresses for the association
2308  *                     have heartbeats enabled upon them.
2309  *
2310  *                     SPP_HB_DISABLE - Disable heartbeats on the
2311  *                     speicifed address. Note that if the address
2312  *                     field is empty all addresses for the association
2313  *                     will have their heartbeats disabled. Note also
2314  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2315  *                     mutually exclusive, only one of these two should
2316  *                     be specified. Enabling both fields will have
2317  *                     undetermined results.
2318  *
2319  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2320  *                     to be made immediately.
2321  *
2322  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2323  *                     heartbeat delayis to be set to the value of 0
2324  *                     milliseconds.
2325  *
2326  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2327  *                     discovery upon the specified address. Note that
2328  *                     if the address feild is empty then all addresses
2329  *                     on the association are effected.
2330  *
2331  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2332  *                     discovery upon the specified address. Note that
2333  *                     if the address feild is empty then all addresses
2334  *                     on the association are effected. Not also that
2335  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2336  *                     exclusive. Enabling both will have undetermined
2337  *                     results.
2338  *
2339  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2340  *                     on delayed sack. The time specified in spp_sackdelay
2341  *                     is used to specify the sack delay for this address. Note
2342  *                     that if spp_address is empty then all addresses will
2343  *                     enable delayed sack and take on the sack delay
2344  *                     value specified in spp_sackdelay.
2345  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2346  *                     off delayed sack. If the spp_address field is blank then
2347  *                     delayed sack is disabled for the entire association. Note
2348  *                     also that this field is mutually exclusive to
2349  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2350  *                     results.
2351  */
2352 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2353 				       struct sctp_transport   *trans,
2354 				       struct sctp_association *asoc,
2355 				       struct sctp_sock        *sp,
2356 				       int                      hb_change,
2357 				       int                      pmtud_change,
2358 				       int                      sackdelay_change)
2359 {
2360 	int error;
2361 
2362 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2363 		struct net *net = sock_net(trans->asoc->base.sk);
2364 
2365 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2366 		if (error)
2367 			return error;
2368 	}
2369 
2370 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2371 	 * this field is ignored.  Note also that a value of zero indicates
2372 	 * the current setting should be left unchanged.
2373 	 */
2374 	if (params->spp_flags & SPP_HB_ENABLE) {
2375 
2376 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2377 		 * set.  This lets us use 0 value when this flag
2378 		 * is set.
2379 		 */
2380 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2381 			params->spp_hbinterval = 0;
2382 
2383 		if (params->spp_hbinterval ||
2384 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2385 			if (trans) {
2386 				trans->hbinterval =
2387 				    msecs_to_jiffies(params->spp_hbinterval);
2388 			} else if (asoc) {
2389 				asoc->hbinterval =
2390 				    msecs_to_jiffies(params->spp_hbinterval);
2391 			} else {
2392 				sp->hbinterval = params->spp_hbinterval;
2393 			}
2394 		}
2395 	}
2396 
2397 	if (hb_change) {
2398 		if (trans) {
2399 			trans->param_flags =
2400 				(trans->param_flags & ~SPP_HB) | hb_change;
2401 		} else if (asoc) {
2402 			asoc->param_flags =
2403 				(asoc->param_flags & ~SPP_HB) | hb_change;
2404 		} else {
2405 			sp->param_flags =
2406 				(sp->param_flags & ~SPP_HB) | hb_change;
2407 		}
2408 	}
2409 
2410 	/* When Path MTU discovery is disabled the value specified here will
2411 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2412 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2413 	 * effect).
2414 	 */
2415 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2416 		if (trans) {
2417 			trans->pathmtu = params->spp_pathmtu;
2418 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2419 		} else if (asoc) {
2420 			asoc->pathmtu = params->spp_pathmtu;
2421 			sctp_frag_point(asoc, params->spp_pathmtu);
2422 		} else {
2423 			sp->pathmtu = params->spp_pathmtu;
2424 		}
2425 	}
2426 
2427 	if (pmtud_change) {
2428 		if (trans) {
2429 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2430 				(params->spp_flags & SPP_PMTUD_ENABLE);
2431 			trans->param_flags =
2432 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2433 			if (update) {
2434 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2435 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2436 			}
2437 		} else if (asoc) {
2438 			asoc->param_flags =
2439 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2440 		} else {
2441 			sp->param_flags =
2442 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2443 		}
2444 	}
2445 
2446 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2447 	 * value of this field is ignored.  Note also that a value of zero
2448 	 * indicates the current setting should be left unchanged.
2449 	 */
2450 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2451 		if (trans) {
2452 			trans->sackdelay =
2453 				msecs_to_jiffies(params->spp_sackdelay);
2454 		} else if (asoc) {
2455 			asoc->sackdelay =
2456 				msecs_to_jiffies(params->spp_sackdelay);
2457 		} else {
2458 			sp->sackdelay = params->spp_sackdelay;
2459 		}
2460 	}
2461 
2462 	if (sackdelay_change) {
2463 		if (trans) {
2464 			trans->param_flags =
2465 				(trans->param_flags & ~SPP_SACKDELAY) |
2466 				sackdelay_change;
2467 		} else if (asoc) {
2468 			asoc->param_flags =
2469 				(asoc->param_flags & ~SPP_SACKDELAY) |
2470 				sackdelay_change;
2471 		} else {
2472 			sp->param_flags =
2473 				(sp->param_flags & ~SPP_SACKDELAY) |
2474 				sackdelay_change;
2475 		}
2476 	}
2477 
2478 	/* Note that a value of zero indicates the current setting should be
2479 	   left unchanged.
2480 	 */
2481 	if (params->spp_pathmaxrxt) {
2482 		if (trans) {
2483 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2484 		} else if (asoc) {
2485 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2486 		} else {
2487 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2488 		}
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2495 					    char __user *optval,
2496 					    unsigned int optlen)
2497 {
2498 	struct sctp_paddrparams  params;
2499 	struct sctp_transport   *trans = NULL;
2500 	struct sctp_association *asoc = NULL;
2501 	struct sctp_sock        *sp = sctp_sk(sk);
2502 	int error;
2503 	int hb_change, pmtud_change, sackdelay_change;
2504 
2505 	if (optlen != sizeof(struct sctp_paddrparams))
2506 		return -EINVAL;
2507 
2508 	if (copy_from_user(&params, optval, optlen))
2509 		return -EFAULT;
2510 
2511 	/* Validate flags and value parameters. */
2512 	hb_change        = params.spp_flags & SPP_HB;
2513 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2514 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2515 
2516 	if (hb_change        == SPP_HB ||
2517 	    pmtud_change     == SPP_PMTUD ||
2518 	    sackdelay_change == SPP_SACKDELAY ||
2519 	    params.spp_sackdelay > 500 ||
2520 	    (params.spp_pathmtu &&
2521 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2522 		return -EINVAL;
2523 
2524 	/* If an address other than INADDR_ANY is specified, and
2525 	 * no transport is found, then the request is invalid.
2526 	 */
2527 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2528 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2529 					       params.spp_assoc_id);
2530 		if (!trans)
2531 			return -EINVAL;
2532 	}
2533 
2534 	/* Get association, if assoc_id != 0 and the socket is a one
2535 	 * to many style socket, and an association was not found, then
2536 	 * the id was invalid.
2537 	 */
2538 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2539 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2540 		return -EINVAL;
2541 
2542 	/* Heartbeat demand can only be sent on a transport or
2543 	 * association, but not a socket.
2544 	 */
2545 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2546 		return -EINVAL;
2547 
2548 	/* Process parameters. */
2549 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2550 					    hb_change, pmtud_change,
2551 					    sackdelay_change);
2552 
2553 	if (error)
2554 		return error;
2555 
2556 	/* If changes are for association, also apply parameters to each
2557 	 * transport.
2558 	 */
2559 	if (!trans && asoc) {
2560 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2561 				transports) {
2562 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2563 						    hb_change, pmtud_change,
2564 						    sackdelay_change);
2565 		}
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2572 {
2573 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2574 }
2575 
2576 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2577 {
2578 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2579 }
2580 
2581 /*
2582  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2583  *
2584  * This option will effect the way delayed acks are performed.  This
2585  * option allows you to get or set the delayed ack time, in
2586  * milliseconds.  It also allows changing the delayed ack frequency.
2587  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2588  * the assoc_id is 0, then this sets or gets the endpoints default
2589  * values.  If the assoc_id field is non-zero, then the set or get
2590  * effects the specified association for the one to many model (the
2591  * assoc_id field is ignored by the one to one model).  Note that if
2592  * sack_delay or sack_freq are 0 when setting this option, then the
2593  * current values will remain unchanged.
2594  *
2595  * struct sctp_sack_info {
2596  *     sctp_assoc_t            sack_assoc_id;
2597  *     uint32_t                sack_delay;
2598  *     uint32_t                sack_freq;
2599  * };
2600  *
2601  * sack_assoc_id -  This parameter, indicates which association the user
2602  *    is performing an action upon.  Note that if this field's value is
2603  *    zero then the endpoints default value is changed (effecting future
2604  *    associations only).
2605  *
2606  * sack_delay -  This parameter contains the number of milliseconds that
2607  *    the user is requesting the delayed ACK timer be set to.  Note that
2608  *    this value is defined in the standard to be between 200 and 500
2609  *    milliseconds.
2610  *
2611  * sack_freq -  This parameter contains the number of packets that must
2612  *    be received before a sack is sent without waiting for the delay
2613  *    timer to expire.  The default value for this is 2, setting this
2614  *    value to 1 will disable the delayed sack algorithm.
2615  */
2616 
2617 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2618 				       char __user *optval, unsigned int optlen)
2619 {
2620 	struct sctp_sack_info    params;
2621 	struct sctp_transport   *trans = NULL;
2622 	struct sctp_association *asoc = NULL;
2623 	struct sctp_sock        *sp = sctp_sk(sk);
2624 
2625 	if (optlen == sizeof(struct sctp_sack_info)) {
2626 		if (copy_from_user(&params, optval, optlen))
2627 			return -EFAULT;
2628 
2629 		if (params.sack_delay == 0 && params.sack_freq == 0)
2630 			return 0;
2631 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2632 		pr_warn_ratelimited(DEPRECATED
2633 				    "%s (pid %d) "
2634 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2635 				    "Use struct sctp_sack_info instead\n",
2636 				    current->comm, task_pid_nr(current));
2637 		if (copy_from_user(&params, optval, optlen))
2638 			return -EFAULT;
2639 
2640 		if (params.sack_delay == 0)
2641 			params.sack_freq = 1;
2642 		else
2643 			params.sack_freq = 0;
2644 	} else
2645 		return -EINVAL;
2646 
2647 	/* Validate value parameter. */
2648 	if (params.sack_delay > 500)
2649 		return -EINVAL;
2650 
2651 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2652 	 * to many style socket, and an association was not found, then
2653 	 * the id was invalid.
2654 	 */
2655 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2656 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2657 		return -EINVAL;
2658 
2659 	if (params.sack_delay) {
2660 		if (asoc) {
2661 			asoc->sackdelay =
2662 				msecs_to_jiffies(params.sack_delay);
2663 			asoc->param_flags =
2664 				sctp_spp_sackdelay_enable(asoc->param_flags);
2665 		} else {
2666 			sp->sackdelay = params.sack_delay;
2667 			sp->param_flags =
2668 				sctp_spp_sackdelay_enable(sp->param_flags);
2669 		}
2670 	}
2671 
2672 	if (params.sack_freq == 1) {
2673 		if (asoc) {
2674 			asoc->param_flags =
2675 				sctp_spp_sackdelay_disable(asoc->param_flags);
2676 		} else {
2677 			sp->param_flags =
2678 				sctp_spp_sackdelay_disable(sp->param_flags);
2679 		}
2680 	} else if (params.sack_freq > 1) {
2681 		if (asoc) {
2682 			asoc->sackfreq = params.sack_freq;
2683 			asoc->param_flags =
2684 				sctp_spp_sackdelay_enable(asoc->param_flags);
2685 		} else {
2686 			sp->sackfreq = params.sack_freq;
2687 			sp->param_flags =
2688 				sctp_spp_sackdelay_enable(sp->param_flags);
2689 		}
2690 	}
2691 
2692 	/* If change is for association, also apply to each transport. */
2693 	if (asoc) {
2694 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2695 				transports) {
2696 			if (params.sack_delay) {
2697 				trans->sackdelay =
2698 					msecs_to_jiffies(params.sack_delay);
2699 				trans->param_flags =
2700 					sctp_spp_sackdelay_enable(trans->param_flags);
2701 			}
2702 			if (params.sack_freq == 1) {
2703 				trans->param_flags =
2704 					sctp_spp_sackdelay_disable(trans->param_flags);
2705 			} else if (params.sack_freq > 1) {
2706 				trans->sackfreq = params.sack_freq;
2707 				trans->param_flags =
2708 					sctp_spp_sackdelay_enable(trans->param_flags);
2709 			}
2710 		}
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2717  *
2718  * Applications can specify protocol parameters for the default association
2719  * initialization.  The option name argument to setsockopt() and getsockopt()
2720  * is SCTP_INITMSG.
2721  *
2722  * Setting initialization parameters is effective only on an unconnected
2723  * socket (for UDP-style sockets only future associations are effected
2724  * by the change).  With TCP-style sockets, this option is inherited by
2725  * sockets derived from a listener socket.
2726  */
2727 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2728 {
2729 	struct sctp_initmsg sinit;
2730 	struct sctp_sock *sp = sctp_sk(sk);
2731 
2732 	if (optlen != sizeof(struct sctp_initmsg))
2733 		return -EINVAL;
2734 	if (copy_from_user(&sinit, optval, optlen))
2735 		return -EFAULT;
2736 
2737 	if (sinit.sinit_num_ostreams)
2738 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2739 	if (sinit.sinit_max_instreams)
2740 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2741 	if (sinit.sinit_max_attempts)
2742 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2743 	if (sinit.sinit_max_init_timeo)
2744 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2745 
2746 	return 0;
2747 }
2748 
2749 /*
2750  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2751  *
2752  *   Applications that wish to use the sendto() system call may wish to
2753  *   specify a default set of parameters that would normally be supplied
2754  *   through the inclusion of ancillary data.  This socket option allows
2755  *   such an application to set the default sctp_sndrcvinfo structure.
2756  *   The application that wishes to use this socket option simply passes
2757  *   in to this call the sctp_sndrcvinfo structure defined in Section
2758  *   5.2.2) The input parameters accepted by this call include
2759  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2760  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2761  *   to this call if the caller is using the UDP model.
2762  */
2763 static int sctp_setsockopt_default_send_param(struct sock *sk,
2764 					      char __user *optval,
2765 					      unsigned int optlen)
2766 {
2767 	struct sctp_sock *sp = sctp_sk(sk);
2768 	struct sctp_association *asoc;
2769 	struct sctp_sndrcvinfo info;
2770 
2771 	if (optlen != sizeof(info))
2772 		return -EINVAL;
2773 	if (copy_from_user(&info, optval, optlen))
2774 		return -EFAULT;
2775 	if (info.sinfo_flags &
2776 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2777 	      SCTP_ABORT | SCTP_EOF))
2778 		return -EINVAL;
2779 
2780 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2781 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2782 		return -EINVAL;
2783 	if (asoc) {
2784 		asoc->default_stream = info.sinfo_stream;
2785 		asoc->default_flags = info.sinfo_flags;
2786 		asoc->default_ppid = info.sinfo_ppid;
2787 		asoc->default_context = info.sinfo_context;
2788 		asoc->default_timetolive = info.sinfo_timetolive;
2789 	} else {
2790 		sp->default_stream = info.sinfo_stream;
2791 		sp->default_flags = info.sinfo_flags;
2792 		sp->default_ppid = info.sinfo_ppid;
2793 		sp->default_context = info.sinfo_context;
2794 		sp->default_timetolive = info.sinfo_timetolive;
2795 	}
2796 
2797 	return 0;
2798 }
2799 
2800 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2801  * (SCTP_DEFAULT_SNDINFO)
2802  */
2803 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2804 					   char __user *optval,
2805 					   unsigned int optlen)
2806 {
2807 	struct sctp_sock *sp = sctp_sk(sk);
2808 	struct sctp_association *asoc;
2809 	struct sctp_sndinfo info;
2810 
2811 	if (optlen != sizeof(info))
2812 		return -EINVAL;
2813 	if (copy_from_user(&info, optval, optlen))
2814 		return -EFAULT;
2815 	if (info.snd_flags &
2816 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2817 	      SCTP_ABORT | SCTP_EOF))
2818 		return -EINVAL;
2819 
2820 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2821 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2822 		return -EINVAL;
2823 	if (asoc) {
2824 		asoc->default_stream = info.snd_sid;
2825 		asoc->default_flags = info.snd_flags;
2826 		asoc->default_ppid = info.snd_ppid;
2827 		asoc->default_context = info.snd_context;
2828 	} else {
2829 		sp->default_stream = info.snd_sid;
2830 		sp->default_flags = info.snd_flags;
2831 		sp->default_ppid = info.snd_ppid;
2832 		sp->default_context = info.snd_context;
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2839  *
2840  * Requests that the local SCTP stack use the enclosed peer address as
2841  * the association primary.  The enclosed address must be one of the
2842  * association peer's addresses.
2843  */
2844 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2845 					unsigned int optlen)
2846 {
2847 	struct sctp_prim prim;
2848 	struct sctp_transport *trans;
2849 
2850 	if (optlen != sizeof(struct sctp_prim))
2851 		return -EINVAL;
2852 
2853 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2854 		return -EFAULT;
2855 
2856 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2857 	if (!trans)
2858 		return -EINVAL;
2859 
2860 	sctp_assoc_set_primary(trans->asoc, trans);
2861 
2862 	return 0;
2863 }
2864 
2865 /*
2866  * 7.1.5 SCTP_NODELAY
2867  *
2868  * Turn on/off any Nagle-like algorithm.  This means that packets are
2869  * generally sent as soon as possible and no unnecessary delays are
2870  * introduced, at the cost of more packets in the network.  Expects an
2871  *  integer boolean flag.
2872  */
2873 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2874 				   unsigned int optlen)
2875 {
2876 	int val;
2877 
2878 	if (optlen < sizeof(int))
2879 		return -EINVAL;
2880 	if (get_user(val, (int __user *)optval))
2881 		return -EFAULT;
2882 
2883 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2884 	return 0;
2885 }
2886 
2887 /*
2888  *
2889  * 7.1.1 SCTP_RTOINFO
2890  *
2891  * The protocol parameters used to initialize and bound retransmission
2892  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2893  * and modify these parameters.
2894  * All parameters are time values, in milliseconds.  A value of 0, when
2895  * modifying the parameters, indicates that the current value should not
2896  * be changed.
2897  *
2898  */
2899 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2900 {
2901 	struct sctp_rtoinfo rtoinfo;
2902 	struct sctp_association *asoc;
2903 	unsigned long rto_min, rto_max;
2904 	struct sctp_sock *sp = sctp_sk(sk);
2905 
2906 	if (optlen != sizeof (struct sctp_rtoinfo))
2907 		return -EINVAL;
2908 
2909 	if (copy_from_user(&rtoinfo, optval, optlen))
2910 		return -EFAULT;
2911 
2912 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2913 
2914 	/* Set the values to the specific association */
2915 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2916 		return -EINVAL;
2917 
2918 	rto_max = rtoinfo.srto_max;
2919 	rto_min = rtoinfo.srto_min;
2920 
2921 	if (rto_max)
2922 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2923 	else
2924 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2925 
2926 	if (rto_min)
2927 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2928 	else
2929 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2930 
2931 	if (rto_min > rto_max)
2932 		return -EINVAL;
2933 
2934 	if (asoc) {
2935 		if (rtoinfo.srto_initial != 0)
2936 			asoc->rto_initial =
2937 				msecs_to_jiffies(rtoinfo.srto_initial);
2938 		asoc->rto_max = rto_max;
2939 		asoc->rto_min = rto_min;
2940 	} else {
2941 		/* If there is no association or the association-id = 0
2942 		 * set the values to the endpoint.
2943 		 */
2944 		if (rtoinfo.srto_initial != 0)
2945 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2946 		sp->rtoinfo.srto_max = rto_max;
2947 		sp->rtoinfo.srto_min = rto_min;
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 /*
2954  *
2955  * 7.1.2 SCTP_ASSOCINFO
2956  *
2957  * This option is used to tune the maximum retransmission attempts
2958  * of the association.
2959  * Returns an error if the new association retransmission value is
2960  * greater than the sum of the retransmission value  of the peer.
2961  * See [SCTP] for more information.
2962  *
2963  */
2964 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2965 {
2966 
2967 	struct sctp_assocparams assocparams;
2968 	struct sctp_association *asoc;
2969 
2970 	if (optlen != sizeof(struct sctp_assocparams))
2971 		return -EINVAL;
2972 	if (copy_from_user(&assocparams, optval, optlen))
2973 		return -EFAULT;
2974 
2975 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2976 
2977 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2978 		return -EINVAL;
2979 
2980 	/* Set the values to the specific association */
2981 	if (asoc) {
2982 		if (assocparams.sasoc_asocmaxrxt != 0) {
2983 			__u32 path_sum = 0;
2984 			int   paths = 0;
2985 			struct sctp_transport *peer_addr;
2986 
2987 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2988 					transports) {
2989 				path_sum += peer_addr->pathmaxrxt;
2990 				paths++;
2991 			}
2992 
2993 			/* Only validate asocmaxrxt if we have more than
2994 			 * one path/transport.  We do this because path
2995 			 * retransmissions are only counted when we have more
2996 			 * then one path.
2997 			 */
2998 			if (paths > 1 &&
2999 			    assocparams.sasoc_asocmaxrxt > path_sum)
3000 				return -EINVAL;
3001 
3002 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3003 		}
3004 
3005 		if (assocparams.sasoc_cookie_life != 0)
3006 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3007 	} else {
3008 		/* Set the values to the endpoint */
3009 		struct sctp_sock *sp = sctp_sk(sk);
3010 
3011 		if (assocparams.sasoc_asocmaxrxt != 0)
3012 			sp->assocparams.sasoc_asocmaxrxt =
3013 						assocparams.sasoc_asocmaxrxt;
3014 		if (assocparams.sasoc_cookie_life != 0)
3015 			sp->assocparams.sasoc_cookie_life =
3016 						assocparams.sasoc_cookie_life;
3017 	}
3018 	return 0;
3019 }
3020 
3021 /*
3022  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3023  *
3024  * This socket option is a boolean flag which turns on or off mapped V4
3025  * addresses.  If this option is turned on and the socket is type
3026  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3027  * If this option is turned off, then no mapping will be done of V4
3028  * addresses and a user will receive both PF_INET6 and PF_INET type
3029  * addresses on the socket.
3030  */
3031 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3032 {
3033 	int val;
3034 	struct sctp_sock *sp = sctp_sk(sk);
3035 
3036 	if (optlen < sizeof(int))
3037 		return -EINVAL;
3038 	if (get_user(val, (int __user *)optval))
3039 		return -EFAULT;
3040 	if (val)
3041 		sp->v4mapped = 1;
3042 	else
3043 		sp->v4mapped = 0;
3044 
3045 	return 0;
3046 }
3047 
3048 /*
3049  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3050  * This option will get or set the maximum size to put in any outgoing
3051  * SCTP DATA chunk.  If a message is larger than this size it will be
3052  * fragmented by SCTP into the specified size.  Note that the underlying
3053  * SCTP implementation may fragment into smaller sized chunks when the
3054  * PMTU of the underlying association is smaller than the value set by
3055  * the user.  The default value for this option is '0' which indicates
3056  * the user is NOT limiting fragmentation and only the PMTU will effect
3057  * SCTP's choice of DATA chunk size.  Note also that values set larger
3058  * than the maximum size of an IP datagram will effectively let SCTP
3059  * control fragmentation (i.e. the same as setting this option to 0).
3060  *
3061  * The following structure is used to access and modify this parameter:
3062  *
3063  * struct sctp_assoc_value {
3064  *   sctp_assoc_t assoc_id;
3065  *   uint32_t assoc_value;
3066  * };
3067  *
3068  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3069  *    For one-to-many style sockets this parameter indicates which
3070  *    association the user is performing an action upon.  Note that if
3071  *    this field's value is zero then the endpoints default value is
3072  *    changed (effecting future associations only).
3073  * assoc_value:  This parameter specifies the maximum size in bytes.
3074  */
3075 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3076 {
3077 	struct sctp_assoc_value params;
3078 	struct sctp_association *asoc;
3079 	struct sctp_sock *sp = sctp_sk(sk);
3080 	int val;
3081 
3082 	if (optlen == sizeof(int)) {
3083 		pr_warn_ratelimited(DEPRECATED
3084 				    "%s (pid %d) "
3085 				    "Use of int in maxseg socket option.\n"
3086 				    "Use struct sctp_assoc_value instead\n",
3087 				    current->comm, task_pid_nr(current));
3088 		if (copy_from_user(&val, optval, optlen))
3089 			return -EFAULT;
3090 		params.assoc_id = 0;
3091 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3092 		if (copy_from_user(&params, optval, optlen))
3093 			return -EFAULT;
3094 		val = params.assoc_value;
3095 	} else
3096 		return -EINVAL;
3097 
3098 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3099 		return -EINVAL;
3100 
3101 	asoc = sctp_id2assoc(sk, params.assoc_id);
3102 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3103 		return -EINVAL;
3104 
3105 	if (asoc) {
3106 		if (val == 0) {
3107 			val = asoc->pathmtu;
3108 			val -= sp->pf->af->net_header_len;
3109 			val -= sizeof(struct sctphdr) +
3110 					sizeof(struct sctp_data_chunk);
3111 		}
3112 		asoc->user_frag = val;
3113 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3114 	} else {
3115 		sp->user_frag = val;
3116 	}
3117 
3118 	return 0;
3119 }
3120 
3121 
3122 /*
3123  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3124  *
3125  *   Requests that the peer mark the enclosed address as the association
3126  *   primary. The enclosed address must be one of the association's
3127  *   locally bound addresses. The following structure is used to make a
3128  *   set primary request:
3129  */
3130 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3131 					     unsigned int optlen)
3132 {
3133 	struct net *net = sock_net(sk);
3134 	struct sctp_sock	*sp;
3135 	struct sctp_association	*asoc = NULL;
3136 	struct sctp_setpeerprim	prim;
3137 	struct sctp_chunk	*chunk;
3138 	struct sctp_af		*af;
3139 	int 			err;
3140 
3141 	sp = sctp_sk(sk);
3142 
3143 	if (!net->sctp.addip_enable)
3144 		return -EPERM;
3145 
3146 	if (optlen != sizeof(struct sctp_setpeerprim))
3147 		return -EINVAL;
3148 
3149 	if (copy_from_user(&prim, optval, optlen))
3150 		return -EFAULT;
3151 
3152 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3153 	if (!asoc)
3154 		return -EINVAL;
3155 
3156 	if (!asoc->peer.asconf_capable)
3157 		return -EPERM;
3158 
3159 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3160 		return -EPERM;
3161 
3162 	if (!sctp_state(asoc, ESTABLISHED))
3163 		return -ENOTCONN;
3164 
3165 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3166 	if (!af)
3167 		return -EINVAL;
3168 
3169 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3170 		return -EADDRNOTAVAIL;
3171 
3172 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3173 		return -EADDRNOTAVAIL;
3174 
3175 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3176 	chunk = sctp_make_asconf_set_prim(asoc,
3177 					  (union sctp_addr *)&prim.sspp_addr);
3178 	if (!chunk)
3179 		return -ENOMEM;
3180 
3181 	err = sctp_send_asconf(asoc, chunk);
3182 
3183 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3184 
3185 	return err;
3186 }
3187 
3188 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3189 					    unsigned int optlen)
3190 {
3191 	struct sctp_setadaptation adaptation;
3192 
3193 	if (optlen != sizeof(struct sctp_setadaptation))
3194 		return -EINVAL;
3195 	if (copy_from_user(&adaptation, optval, optlen))
3196 		return -EFAULT;
3197 
3198 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3199 
3200 	return 0;
3201 }
3202 
3203 /*
3204  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3205  *
3206  * The context field in the sctp_sndrcvinfo structure is normally only
3207  * used when a failed message is retrieved holding the value that was
3208  * sent down on the actual send call.  This option allows the setting of
3209  * a default context on an association basis that will be received on
3210  * reading messages from the peer.  This is especially helpful in the
3211  * one-2-many model for an application to keep some reference to an
3212  * internal state machine that is processing messages on the
3213  * association.  Note that the setting of this value only effects
3214  * received messages from the peer and does not effect the value that is
3215  * saved with outbound messages.
3216  */
3217 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3218 				   unsigned int optlen)
3219 {
3220 	struct sctp_assoc_value params;
3221 	struct sctp_sock *sp;
3222 	struct sctp_association *asoc;
3223 
3224 	if (optlen != sizeof(struct sctp_assoc_value))
3225 		return -EINVAL;
3226 	if (copy_from_user(&params, optval, optlen))
3227 		return -EFAULT;
3228 
3229 	sp = sctp_sk(sk);
3230 
3231 	if (params.assoc_id != 0) {
3232 		asoc = sctp_id2assoc(sk, params.assoc_id);
3233 		if (!asoc)
3234 			return -EINVAL;
3235 		asoc->default_rcv_context = params.assoc_value;
3236 	} else {
3237 		sp->default_rcv_context = params.assoc_value;
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 /*
3244  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3245  *
3246  * This options will at a minimum specify if the implementation is doing
3247  * fragmented interleave.  Fragmented interleave, for a one to many
3248  * socket, is when subsequent calls to receive a message may return
3249  * parts of messages from different associations.  Some implementations
3250  * may allow you to turn this value on or off.  If so, when turned off,
3251  * no fragment interleave will occur (which will cause a head of line
3252  * blocking amongst multiple associations sharing the same one to many
3253  * socket).  When this option is turned on, then each receive call may
3254  * come from a different association (thus the user must receive data
3255  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3256  * association each receive belongs to.
3257  *
3258  * This option takes a boolean value.  A non-zero value indicates that
3259  * fragmented interleave is on.  A value of zero indicates that
3260  * fragmented interleave is off.
3261  *
3262  * Note that it is important that an implementation that allows this
3263  * option to be turned on, have it off by default.  Otherwise an unaware
3264  * application using the one to many model may become confused and act
3265  * incorrectly.
3266  */
3267 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3268 					       char __user *optval,
3269 					       unsigned int optlen)
3270 {
3271 	int val;
3272 
3273 	if (optlen != sizeof(int))
3274 		return -EINVAL;
3275 	if (get_user(val, (int __user *)optval))
3276 		return -EFAULT;
3277 
3278 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3279 
3280 	return 0;
3281 }
3282 
3283 /*
3284  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3285  *       (SCTP_PARTIAL_DELIVERY_POINT)
3286  *
3287  * This option will set or get the SCTP partial delivery point.  This
3288  * point is the size of a message where the partial delivery API will be
3289  * invoked to help free up rwnd space for the peer.  Setting this to a
3290  * lower value will cause partial deliveries to happen more often.  The
3291  * calls argument is an integer that sets or gets the partial delivery
3292  * point.  Note also that the call will fail if the user attempts to set
3293  * this value larger than the socket receive buffer size.
3294  *
3295  * Note that any single message having a length smaller than or equal to
3296  * the SCTP partial delivery point will be delivered in one single read
3297  * call as long as the user provided buffer is large enough to hold the
3298  * message.
3299  */
3300 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3301 						  char __user *optval,
3302 						  unsigned int optlen)
3303 {
3304 	u32 val;
3305 
3306 	if (optlen != sizeof(u32))
3307 		return -EINVAL;
3308 	if (get_user(val, (int __user *)optval))
3309 		return -EFAULT;
3310 
3311 	/* Note: We double the receive buffer from what the user sets
3312 	 * it to be, also initial rwnd is based on rcvbuf/2.
3313 	 */
3314 	if (val > (sk->sk_rcvbuf >> 1))
3315 		return -EINVAL;
3316 
3317 	sctp_sk(sk)->pd_point = val;
3318 
3319 	return 0; /* is this the right error code? */
3320 }
3321 
3322 /*
3323  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3324  *
3325  * This option will allow a user to change the maximum burst of packets
3326  * that can be emitted by this association.  Note that the default value
3327  * is 4, and some implementations may restrict this setting so that it
3328  * can only be lowered.
3329  *
3330  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3331  * future associations inheriting the socket value.
3332  */
3333 static int sctp_setsockopt_maxburst(struct sock *sk,
3334 				    char __user *optval,
3335 				    unsigned int optlen)
3336 {
3337 	struct sctp_assoc_value params;
3338 	struct sctp_sock *sp;
3339 	struct sctp_association *asoc;
3340 	int val;
3341 	int assoc_id = 0;
3342 
3343 	if (optlen == sizeof(int)) {
3344 		pr_warn_ratelimited(DEPRECATED
3345 				    "%s (pid %d) "
3346 				    "Use of int in max_burst socket option deprecated.\n"
3347 				    "Use struct sctp_assoc_value instead\n",
3348 				    current->comm, task_pid_nr(current));
3349 		if (copy_from_user(&val, optval, optlen))
3350 			return -EFAULT;
3351 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3352 		if (copy_from_user(&params, optval, optlen))
3353 			return -EFAULT;
3354 		val = params.assoc_value;
3355 		assoc_id = params.assoc_id;
3356 	} else
3357 		return -EINVAL;
3358 
3359 	sp = sctp_sk(sk);
3360 
3361 	if (assoc_id != 0) {
3362 		asoc = sctp_id2assoc(sk, assoc_id);
3363 		if (!asoc)
3364 			return -EINVAL;
3365 		asoc->max_burst = val;
3366 	} else
3367 		sp->max_burst = val;
3368 
3369 	return 0;
3370 }
3371 
3372 /*
3373  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3374  *
3375  * This set option adds a chunk type that the user is requesting to be
3376  * received only in an authenticated way.  Changes to the list of chunks
3377  * will only effect future associations on the socket.
3378  */
3379 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3380 				      char __user *optval,
3381 				      unsigned int optlen)
3382 {
3383 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3384 	struct sctp_authchunk val;
3385 
3386 	if (!ep->auth_enable)
3387 		return -EACCES;
3388 
3389 	if (optlen != sizeof(struct sctp_authchunk))
3390 		return -EINVAL;
3391 	if (copy_from_user(&val, optval, optlen))
3392 		return -EFAULT;
3393 
3394 	switch (val.sauth_chunk) {
3395 	case SCTP_CID_INIT:
3396 	case SCTP_CID_INIT_ACK:
3397 	case SCTP_CID_SHUTDOWN_COMPLETE:
3398 	case SCTP_CID_AUTH:
3399 		return -EINVAL;
3400 	}
3401 
3402 	/* add this chunk id to the endpoint */
3403 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3404 }
3405 
3406 /*
3407  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3408  *
3409  * This option gets or sets the list of HMAC algorithms that the local
3410  * endpoint requires the peer to use.
3411  */
3412 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3413 				      char __user *optval,
3414 				      unsigned int optlen)
3415 {
3416 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3417 	struct sctp_hmacalgo *hmacs;
3418 	u32 idents;
3419 	int err;
3420 
3421 	if (!ep->auth_enable)
3422 		return -EACCES;
3423 
3424 	if (optlen < sizeof(struct sctp_hmacalgo))
3425 		return -EINVAL;
3426 
3427 	hmacs = memdup_user(optval, optlen);
3428 	if (IS_ERR(hmacs))
3429 		return PTR_ERR(hmacs);
3430 
3431 	idents = hmacs->shmac_num_idents;
3432 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3433 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3434 		err = -EINVAL;
3435 		goto out;
3436 	}
3437 
3438 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3439 out:
3440 	kfree(hmacs);
3441 	return err;
3442 }
3443 
3444 /*
3445  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3446  *
3447  * This option will set a shared secret key which is used to build an
3448  * association shared key.
3449  */
3450 static int sctp_setsockopt_auth_key(struct sock *sk,
3451 				    char __user *optval,
3452 				    unsigned int optlen)
3453 {
3454 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3455 	struct sctp_authkey *authkey;
3456 	struct sctp_association *asoc;
3457 	int ret;
3458 
3459 	if (!ep->auth_enable)
3460 		return -EACCES;
3461 
3462 	if (optlen <= sizeof(struct sctp_authkey))
3463 		return -EINVAL;
3464 
3465 	authkey = memdup_user(optval, optlen);
3466 	if (IS_ERR(authkey))
3467 		return PTR_ERR(authkey);
3468 
3469 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3470 		ret = -EINVAL;
3471 		goto out;
3472 	}
3473 
3474 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3475 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3476 		ret = -EINVAL;
3477 		goto out;
3478 	}
3479 
3480 	ret = sctp_auth_set_key(ep, asoc, authkey);
3481 out:
3482 	kzfree(authkey);
3483 	return ret;
3484 }
3485 
3486 /*
3487  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3488  *
3489  * This option will get or set the active shared key to be used to build
3490  * the association shared key.
3491  */
3492 static int sctp_setsockopt_active_key(struct sock *sk,
3493 				      char __user *optval,
3494 				      unsigned int optlen)
3495 {
3496 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3497 	struct sctp_authkeyid val;
3498 	struct sctp_association *asoc;
3499 
3500 	if (!ep->auth_enable)
3501 		return -EACCES;
3502 
3503 	if (optlen != sizeof(struct sctp_authkeyid))
3504 		return -EINVAL;
3505 	if (copy_from_user(&val, optval, optlen))
3506 		return -EFAULT;
3507 
3508 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3509 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3510 		return -EINVAL;
3511 
3512 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3513 }
3514 
3515 /*
3516  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3517  *
3518  * This set option will delete a shared secret key from use.
3519  */
3520 static int sctp_setsockopt_del_key(struct sock *sk,
3521 				   char __user *optval,
3522 				   unsigned int optlen)
3523 {
3524 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3525 	struct sctp_authkeyid val;
3526 	struct sctp_association *asoc;
3527 
3528 	if (!ep->auth_enable)
3529 		return -EACCES;
3530 
3531 	if (optlen != sizeof(struct sctp_authkeyid))
3532 		return -EINVAL;
3533 	if (copy_from_user(&val, optval, optlen))
3534 		return -EFAULT;
3535 
3536 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3537 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3538 		return -EINVAL;
3539 
3540 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3541 
3542 }
3543 
3544 /*
3545  * 8.1.23 SCTP_AUTO_ASCONF
3546  *
3547  * This option will enable or disable the use of the automatic generation of
3548  * ASCONF chunks to add and delete addresses to an existing association.  Note
3549  * that this option has two caveats namely: a) it only affects sockets that
3550  * are bound to all addresses available to the SCTP stack, and b) the system
3551  * administrator may have an overriding control that turns the ASCONF feature
3552  * off no matter what setting the socket option may have.
3553  * This option expects an integer boolean flag, where a non-zero value turns on
3554  * the option, and a zero value turns off the option.
3555  * Note. In this implementation, socket operation overrides default parameter
3556  * being set by sysctl as well as FreeBSD implementation
3557  */
3558 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3559 					unsigned int optlen)
3560 {
3561 	int val;
3562 	struct sctp_sock *sp = sctp_sk(sk);
3563 
3564 	if (optlen < sizeof(int))
3565 		return -EINVAL;
3566 	if (get_user(val, (int __user *)optval))
3567 		return -EFAULT;
3568 	if (!sctp_is_ep_boundall(sk) && val)
3569 		return -EINVAL;
3570 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3571 		return 0;
3572 
3573 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3574 	if (val == 0 && sp->do_auto_asconf) {
3575 		list_del(&sp->auto_asconf_list);
3576 		sp->do_auto_asconf = 0;
3577 	} else if (val && !sp->do_auto_asconf) {
3578 		list_add_tail(&sp->auto_asconf_list,
3579 		    &sock_net(sk)->sctp.auto_asconf_splist);
3580 		sp->do_auto_asconf = 1;
3581 	}
3582 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3583 	return 0;
3584 }
3585 
3586 /*
3587  * SCTP_PEER_ADDR_THLDS
3588  *
3589  * This option allows us to alter the partially failed threshold for one or all
3590  * transports in an association.  See Section 6.1 of:
3591  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3592  */
3593 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3594 					    char __user *optval,
3595 					    unsigned int optlen)
3596 {
3597 	struct sctp_paddrthlds val;
3598 	struct sctp_transport *trans;
3599 	struct sctp_association *asoc;
3600 
3601 	if (optlen < sizeof(struct sctp_paddrthlds))
3602 		return -EINVAL;
3603 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3604 			   sizeof(struct sctp_paddrthlds)))
3605 		return -EFAULT;
3606 
3607 
3608 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3609 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3610 		if (!asoc)
3611 			return -ENOENT;
3612 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3613 				    transports) {
3614 			if (val.spt_pathmaxrxt)
3615 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3616 			trans->pf_retrans = val.spt_pathpfthld;
3617 		}
3618 
3619 		if (val.spt_pathmaxrxt)
3620 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3621 		asoc->pf_retrans = val.spt_pathpfthld;
3622 	} else {
3623 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3624 					       val.spt_assoc_id);
3625 		if (!trans)
3626 			return -ENOENT;
3627 
3628 		if (val.spt_pathmaxrxt)
3629 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3630 		trans->pf_retrans = val.spt_pathpfthld;
3631 	}
3632 
3633 	return 0;
3634 }
3635 
3636 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3637 				       char __user *optval,
3638 				       unsigned int optlen)
3639 {
3640 	int val;
3641 
3642 	if (optlen < sizeof(int))
3643 		return -EINVAL;
3644 	if (get_user(val, (int __user *) optval))
3645 		return -EFAULT;
3646 
3647 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3648 
3649 	return 0;
3650 }
3651 
3652 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3653 				       char __user *optval,
3654 				       unsigned int optlen)
3655 {
3656 	int val;
3657 
3658 	if (optlen < sizeof(int))
3659 		return -EINVAL;
3660 	if (get_user(val, (int __user *) optval))
3661 		return -EFAULT;
3662 
3663 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3664 
3665 	return 0;
3666 }
3667 
3668 /* API 6.2 setsockopt(), getsockopt()
3669  *
3670  * Applications use setsockopt() and getsockopt() to set or retrieve
3671  * socket options.  Socket options are used to change the default
3672  * behavior of sockets calls.  They are described in Section 7.
3673  *
3674  * The syntax is:
3675  *
3676  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3677  *                    int __user *optlen);
3678  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3679  *                    int optlen);
3680  *
3681  *   sd      - the socket descript.
3682  *   level   - set to IPPROTO_SCTP for all SCTP options.
3683  *   optname - the option name.
3684  *   optval  - the buffer to store the value of the option.
3685  *   optlen  - the size of the buffer.
3686  */
3687 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3688 			   char __user *optval, unsigned int optlen)
3689 {
3690 	int retval = 0;
3691 
3692 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3693 
3694 	/* I can hardly begin to describe how wrong this is.  This is
3695 	 * so broken as to be worse than useless.  The API draft
3696 	 * REALLY is NOT helpful here...  I am not convinced that the
3697 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3698 	 * are at all well-founded.
3699 	 */
3700 	if (level != SOL_SCTP) {
3701 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3702 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3703 		goto out_nounlock;
3704 	}
3705 
3706 	lock_sock(sk);
3707 
3708 	switch (optname) {
3709 	case SCTP_SOCKOPT_BINDX_ADD:
3710 		/* 'optlen' is the size of the addresses buffer. */
3711 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3712 					       optlen, SCTP_BINDX_ADD_ADDR);
3713 		break;
3714 
3715 	case SCTP_SOCKOPT_BINDX_REM:
3716 		/* 'optlen' is the size of the addresses buffer. */
3717 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3718 					       optlen, SCTP_BINDX_REM_ADDR);
3719 		break;
3720 
3721 	case SCTP_SOCKOPT_CONNECTX_OLD:
3722 		/* 'optlen' is the size of the addresses buffer. */
3723 		retval = sctp_setsockopt_connectx_old(sk,
3724 					    (struct sockaddr __user *)optval,
3725 					    optlen);
3726 		break;
3727 
3728 	case SCTP_SOCKOPT_CONNECTX:
3729 		/* 'optlen' is the size of the addresses buffer. */
3730 		retval = sctp_setsockopt_connectx(sk,
3731 					    (struct sockaddr __user *)optval,
3732 					    optlen);
3733 		break;
3734 
3735 	case SCTP_DISABLE_FRAGMENTS:
3736 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3737 		break;
3738 
3739 	case SCTP_EVENTS:
3740 		retval = sctp_setsockopt_events(sk, optval, optlen);
3741 		break;
3742 
3743 	case SCTP_AUTOCLOSE:
3744 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3745 		break;
3746 
3747 	case SCTP_PEER_ADDR_PARAMS:
3748 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3749 		break;
3750 
3751 	case SCTP_DELAYED_SACK:
3752 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3753 		break;
3754 	case SCTP_PARTIAL_DELIVERY_POINT:
3755 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3756 		break;
3757 
3758 	case SCTP_INITMSG:
3759 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3760 		break;
3761 	case SCTP_DEFAULT_SEND_PARAM:
3762 		retval = sctp_setsockopt_default_send_param(sk, optval,
3763 							    optlen);
3764 		break;
3765 	case SCTP_DEFAULT_SNDINFO:
3766 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3767 		break;
3768 	case SCTP_PRIMARY_ADDR:
3769 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3770 		break;
3771 	case SCTP_SET_PEER_PRIMARY_ADDR:
3772 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3773 		break;
3774 	case SCTP_NODELAY:
3775 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3776 		break;
3777 	case SCTP_RTOINFO:
3778 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3779 		break;
3780 	case SCTP_ASSOCINFO:
3781 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3782 		break;
3783 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3784 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3785 		break;
3786 	case SCTP_MAXSEG:
3787 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3788 		break;
3789 	case SCTP_ADAPTATION_LAYER:
3790 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3791 		break;
3792 	case SCTP_CONTEXT:
3793 		retval = sctp_setsockopt_context(sk, optval, optlen);
3794 		break;
3795 	case SCTP_FRAGMENT_INTERLEAVE:
3796 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3797 		break;
3798 	case SCTP_MAX_BURST:
3799 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3800 		break;
3801 	case SCTP_AUTH_CHUNK:
3802 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3803 		break;
3804 	case SCTP_HMAC_IDENT:
3805 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3806 		break;
3807 	case SCTP_AUTH_KEY:
3808 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3809 		break;
3810 	case SCTP_AUTH_ACTIVE_KEY:
3811 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3812 		break;
3813 	case SCTP_AUTH_DELETE_KEY:
3814 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3815 		break;
3816 	case SCTP_AUTO_ASCONF:
3817 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3818 		break;
3819 	case SCTP_PEER_ADDR_THLDS:
3820 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3821 		break;
3822 	case SCTP_RECVRCVINFO:
3823 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3824 		break;
3825 	case SCTP_RECVNXTINFO:
3826 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3827 		break;
3828 	default:
3829 		retval = -ENOPROTOOPT;
3830 		break;
3831 	}
3832 
3833 	release_sock(sk);
3834 
3835 out_nounlock:
3836 	return retval;
3837 }
3838 
3839 /* API 3.1.6 connect() - UDP Style Syntax
3840  *
3841  * An application may use the connect() call in the UDP model to initiate an
3842  * association without sending data.
3843  *
3844  * The syntax is:
3845  *
3846  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3847  *
3848  * sd: the socket descriptor to have a new association added to.
3849  *
3850  * nam: the address structure (either struct sockaddr_in or struct
3851  *    sockaddr_in6 defined in RFC2553 [7]).
3852  *
3853  * len: the size of the address.
3854  */
3855 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3856 			int addr_len)
3857 {
3858 	int err = 0;
3859 	struct sctp_af *af;
3860 
3861 	lock_sock(sk);
3862 
3863 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3864 		 addr, addr_len);
3865 
3866 	/* Validate addr_len before calling common connect/connectx routine. */
3867 	af = sctp_get_af_specific(addr->sa_family);
3868 	if (!af || addr_len < af->sockaddr_len) {
3869 		err = -EINVAL;
3870 	} else {
3871 		/* Pass correct addr len to common routine (so it knows there
3872 		 * is only one address being passed.
3873 		 */
3874 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3875 	}
3876 
3877 	release_sock(sk);
3878 	return err;
3879 }
3880 
3881 /* FIXME: Write comments. */
3882 static int sctp_disconnect(struct sock *sk, int flags)
3883 {
3884 	return -EOPNOTSUPP; /* STUB */
3885 }
3886 
3887 /* 4.1.4 accept() - TCP Style Syntax
3888  *
3889  * Applications use accept() call to remove an established SCTP
3890  * association from the accept queue of the endpoint.  A new socket
3891  * descriptor will be returned from accept() to represent the newly
3892  * formed association.
3893  */
3894 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3895 {
3896 	struct sctp_sock *sp;
3897 	struct sctp_endpoint *ep;
3898 	struct sock *newsk = NULL;
3899 	struct sctp_association *asoc;
3900 	long timeo;
3901 	int error = 0;
3902 
3903 	lock_sock(sk);
3904 
3905 	sp = sctp_sk(sk);
3906 	ep = sp->ep;
3907 
3908 	if (!sctp_style(sk, TCP)) {
3909 		error = -EOPNOTSUPP;
3910 		goto out;
3911 	}
3912 
3913 	if (!sctp_sstate(sk, LISTENING)) {
3914 		error = -EINVAL;
3915 		goto out;
3916 	}
3917 
3918 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3919 
3920 	error = sctp_wait_for_accept(sk, timeo);
3921 	if (error)
3922 		goto out;
3923 
3924 	/* We treat the list of associations on the endpoint as the accept
3925 	 * queue and pick the first association on the list.
3926 	 */
3927 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3928 
3929 	newsk = sp->pf->create_accept_sk(sk, asoc);
3930 	if (!newsk) {
3931 		error = -ENOMEM;
3932 		goto out;
3933 	}
3934 
3935 	/* Populate the fields of the newsk from the oldsk and migrate the
3936 	 * asoc to the newsk.
3937 	 */
3938 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3939 
3940 out:
3941 	release_sock(sk);
3942 	*err = error;
3943 	return newsk;
3944 }
3945 
3946 /* The SCTP ioctl handler. */
3947 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3948 {
3949 	int rc = -ENOTCONN;
3950 
3951 	lock_sock(sk);
3952 
3953 	/*
3954 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3955 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3956 	 */
3957 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3958 		goto out;
3959 
3960 	switch (cmd) {
3961 	case SIOCINQ: {
3962 		struct sk_buff *skb;
3963 		unsigned int amount = 0;
3964 
3965 		skb = skb_peek(&sk->sk_receive_queue);
3966 		if (skb != NULL) {
3967 			/*
3968 			 * We will only return the amount of this packet since
3969 			 * that is all that will be read.
3970 			 */
3971 			amount = skb->len;
3972 		}
3973 		rc = put_user(amount, (int __user *)arg);
3974 		break;
3975 	}
3976 	default:
3977 		rc = -ENOIOCTLCMD;
3978 		break;
3979 	}
3980 out:
3981 	release_sock(sk);
3982 	return rc;
3983 }
3984 
3985 /* This is the function which gets called during socket creation to
3986  * initialized the SCTP-specific portion of the sock.
3987  * The sock structure should already be zero-filled memory.
3988  */
3989 static int sctp_init_sock(struct sock *sk)
3990 {
3991 	struct net *net = sock_net(sk);
3992 	struct sctp_sock *sp;
3993 
3994 	pr_debug("%s: sk:%p\n", __func__, sk);
3995 
3996 	sp = sctp_sk(sk);
3997 
3998 	/* Initialize the SCTP per socket area.  */
3999 	switch (sk->sk_type) {
4000 	case SOCK_SEQPACKET:
4001 		sp->type = SCTP_SOCKET_UDP;
4002 		break;
4003 	case SOCK_STREAM:
4004 		sp->type = SCTP_SOCKET_TCP;
4005 		break;
4006 	default:
4007 		return -ESOCKTNOSUPPORT;
4008 	}
4009 
4010 	/* Initialize default send parameters. These parameters can be
4011 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4012 	 */
4013 	sp->default_stream = 0;
4014 	sp->default_ppid = 0;
4015 	sp->default_flags = 0;
4016 	sp->default_context = 0;
4017 	sp->default_timetolive = 0;
4018 
4019 	sp->default_rcv_context = 0;
4020 	sp->max_burst = net->sctp.max_burst;
4021 
4022 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4023 
4024 	/* Initialize default setup parameters. These parameters
4025 	 * can be modified with the SCTP_INITMSG socket option or
4026 	 * overridden by the SCTP_INIT CMSG.
4027 	 */
4028 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4029 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4030 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4031 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4032 
4033 	/* Initialize default RTO related parameters.  These parameters can
4034 	 * be modified for with the SCTP_RTOINFO socket option.
4035 	 */
4036 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4037 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4038 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4039 
4040 	/* Initialize default association related parameters. These parameters
4041 	 * can be modified with the SCTP_ASSOCINFO socket option.
4042 	 */
4043 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4044 	sp->assocparams.sasoc_number_peer_destinations = 0;
4045 	sp->assocparams.sasoc_peer_rwnd = 0;
4046 	sp->assocparams.sasoc_local_rwnd = 0;
4047 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4048 
4049 	/* Initialize default event subscriptions. By default, all the
4050 	 * options are off.
4051 	 */
4052 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4053 
4054 	/* Default Peer Address Parameters.  These defaults can
4055 	 * be modified via SCTP_PEER_ADDR_PARAMS
4056 	 */
4057 	sp->hbinterval  = net->sctp.hb_interval;
4058 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4059 	sp->pathmtu     = 0; /* allow default discovery */
4060 	sp->sackdelay   = net->sctp.sack_timeout;
4061 	sp->sackfreq	= 2;
4062 	sp->param_flags = SPP_HB_ENABLE |
4063 			  SPP_PMTUD_ENABLE |
4064 			  SPP_SACKDELAY_ENABLE;
4065 
4066 	/* If enabled no SCTP message fragmentation will be performed.
4067 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4068 	 */
4069 	sp->disable_fragments = 0;
4070 
4071 	/* Enable Nagle algorithm by default.  */
4072 	sp->nodelay           = 0;
4073 
4074 	sp->recvrcvinfo = 0;
4075 	sp->recvnxtinfo = 0;
4076 
4077 	/* Enable by default. */
4078 	sp->v4mapped          = 1;
4079 
4080 	/* Auto-close idle associations after the configured
4081 	 * number of seconds.  A value of 0 disables this
4082 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4083 	 * for UDP-style sockets only.
4084 	 */
4085 	sp->autoclose         = 0;
4086 
4087 	/* User specified fragmentation limit. */
4088 	sp->user_frag         = 0;
4089 
4090 	sp->adaptation_ind = 0;
4091 
4092 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4093 
4094 	/* Control variables for partial data delivery. */
4095 	atomic_set(&sp->pd_mode, 0);
4096 	skb_queue_head_init(&sp->pd_lobby);
4097 	sp->frag_interleave = 0;
4098 
4099 	/* Create a per socket endpoint structure.  Even if we
4100 	 * change the data structure relationships, this may still
4101 	 * be useful for storing pre-connect address information.
4102 	 */
4103 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4104 	if (!sp->ep)
4105 		return -ENOMEM;
4106 
4107 	sp->hmac = NULL;
4108 
4109 	sk->sk_destruct = sctp_destruct_sock;
4110 
4111 	SCTP_DBG_OBJCNT_INC(sock);
4112 
4113 	local_bh_disable();
4114 	percpu_counter_inc(&sctp_sockets_allocated);
4115 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4116 
4117 	/* Nothing can fail after this block, otherwise
4118 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4119 	 */
4120 	if (net->sctp.default_auto_asconf) {
4121 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4122 		list_add_tail(&sp->auto_asconf_list,
4123 		    &net->sctp.auto_asconf_splist);
4124 		sp->do_auto_asconf = 1;
4125 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4126 	} else {
4127 		sp->do_auto_asconf = 0;
4128 	}
4129 
4130 	local_bh_enable();
4131 
4132 	return 0;
4133 }
4134 
4135 /* Cleanup any SCTP per socket resources. Must be called with
4136  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4137  */
4138 static void sctp_destroy_sock(struct sock *sk)
4139 {
4140 	struct sctp_sock *sp;
4141 
4142 	pr_debug("%s: sk:%p\n", __func__, sk);
4143 
4144 	/* Release our hold on the endpoint. */
4145 	sp = sctp_sk(sk);
4146 	/* This could happen during socket init, thus we bail out
4147 	 * early, since the rest of the below is not setup either.
4148 	 */
4149 	if (sp->ep == NULL)
4150 		return;
4151 
4152 	if (sp->do_auto_asconf) {
4153 		sp->do_auto_asconf = 0;
4154 		list_del(&sp->auto_asconf_list);
4155 	}
4156 	sctp_endpoint_free(sp->ep);
4157 	local_bh_disable();
4158 	percpu_counter_dec(&sctp_sockets_allocated);
4159 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4160 	local_bh_enable();
4161 }
4162 
4163 /* Triggered when there are no references on the socket anymore */
4164 static void sctp_destruct_sock(struct sock *sk)
4165 {
4166 	struct sctp_sock *sp = sctp_sk(sk);
4167 
4168 	/* Free up the HMAC transform. */
4169 	crypto_free_hash(sp->hmac);
4170 
4171 	inet_sock_destruct(sk);
4172 }
4173 
4174 /* API 4.1.7 shutdown() - TCP Style Syntax
4175  *     int shutdown(int socket, int how);
4176  *
4177  *     sd      - the socket descriptor of the association to be closed.
4178  *     how     - Specifies the type of shutdown.  The  values  are
4179  *               as follows:
4180  *               SHUT_RD
4181  *                     Disables further receive operations. No SCTP
4182  *                     protocol action is taken.
4183  *               SHUT_WR
4184  *                     Disables further send operations, and initiates
4185  *                     the SCTP shutdown sequence.
4186  *               SHUT_RDWR
4187  *                     Disables further send  and  receive  operations
4188  *                     and initiates the SCTP shutdown sequence.
4189  */
4190 static void sctp_shutdown(struct sock *sk, int how)
4191 {
4192 	struct net *net = sock_net(sk);
4193 	struct sctp_endpoint *ep;
4194 	struct sctp_association *asoc;
4195 
4196 	if (!sctp_style(sk, TCP))
4197 		return;
4198 
4199 	if (how & SEND_SHUTDOWN) {
4200 		ep = sctp_sk(sk)->ep;
4201 		if (!list_empty(&ep->asocs)) {
4202 			asoc = list_entry(ep->asocs.next,
4203 					  struct sctp_association, asocs);
4204 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4205 		}
4206 	}
4207 }
4208 
4209 /* 7.2.1 Association Status (SCTP_STATUS)
4210 
4211  * Applications can retrieve current status information about an
4212  * association, including association state, peer receiver window size,
4213  * number of unacked data chunks, and number of data chunks pending
4214  * receipt.  This information is read-only.
4215  */
4216 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4217 				       char __user *optval,
4218 				       int __user *optlen)
4219 {
4220 	struct sctp_status status;
4221 	struct sctp_association *asoc = NULL;
4222 	struct sctp_transport *transport;
4223 	sctp_assoc_t associd;
4224 	int retval = 0;
4225 
4226 	if (len < sizeof(status)) {
4227 		retval = -EINVAL;
4228 		goto out;
4229 	}
4230 
4231 	len = sizeof(status);
4232 	if (copy_from_user(&status, optval, len)) {
4233 		retval = -EFAULT;
4234 		goto out;
4235 	}
4236 
4237 	associd = status.sstat_assoc_id;
4238 	asoc = sctp_id2assoc(sk, associd);
4239 	if (!asoc) {
4240 		retval = -EINVAL;
4241 		goto out;
4242 	}
4243 
4244 	transport = asoc->peer.primary_path;
4245 
4246 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4247 	status.sstat_state = sctp_assoc_to_state(asoc);
4248 	status.sstat_rwnd =  asoc->peer.rwnd;
4249 	status.sstat_unackdata = asoc->unack_data;
4250 
4251 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4252 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4253 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4254 	status.sstat_fragmentation_point = asoc->frag_point;
4255 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4256 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4257 			transport->af_specific->sockaddr_len);
4258 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4259 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4260 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4261 	status.sstat_primary.spinfo_state = transport->state;
4262 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4263 	status.sstat_primary.spinfo_srtt = transport->srtt;
4264 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4265 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4266 
4267 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4268 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4269 
4270 	if (put_user(len, optlen)) {
4271 		retval = -EFAULT;
4272 		goto out;
4273 	}
4274 
4275 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4276 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4277 		 status.sstat_assoc_id);
4278 
4279 	if (copy_to_user(optval, &status, len)) {
4280 		retval = -EFAULT;
4281 		goto out;
4282 	}
4283 
4284 out:
4285 	return retval;
4286 }
4287 
4288 
4289 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4290  *
4291  * Applications can retrieve information about a specific peer address
4292  * of an association, including its reachability state, congestion
4293  * window, and retransmission timer values.  This information is
4294  * read-only.
4295  */
4296 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4297 					  char __user *optval,
4298 					  int __user *optlen)
4299 {
4300 	struct sctp_paddrinfo pinfo;
4301 	struct sctp_transport *transport;
4302 	int retval = 0;
4303 
4304 	if (len < sizeof(pinfo)) {
4305 		retval = -EINVAL;
4306 		goto out;
4307 	}
4308 
4309 	len = sizeof(pinfo);
4310 	if (copy_from_user(&pinfo, optval, len)) {
4311 		retval = -EFAULT;
4312 		goto out;
4313 	}
4314 
4315 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4316 					   pinfo.spinfo_assoc_id);
4317 	if (!transport)
4318 		return -EINVAL;
4319 
4320 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4321 	pinfo.spinfo_state = transport->state;
4322 	pinfo.spinfo_cwnd = transport->cwnd;
4323 	pinfo.spinfo_srtt = transport->srtt;
4324 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4325 	pinfo.spinfo_mtu = transport->pathmtu;
4326 
4327 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4328 		pinfo.spinfo_state = SCTP_ACTIVE;
4329 
4330 	if (put_user(len, optlen)) {
4331 		retval = -EFAULT;
4332 		goto out;
4333 	}
4334 
4335 	if (copy_to_user(optval, &pinfo, len)) {
4336 		retval = -EFAULT;
4337 		goto out;
4338 	}
4339 
4340 out:
4341 	return retval;
4342 }
4343 
4344 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4345  *
4346  * This option is a on/off flag.  If enabled no SCTP message
4347  * fragmentation will be performed.  Instead if a message being sent
4348  * exceeds the current PMTU size, the message will NOT be sent and
4349  * instead a error will be indicated to the user.
4350  */
4351 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4352 					char __user *optval, int __user *optlen)
4353 {
4354 	int val;
4355 
4356 	if (len < sizeof(int))
4357 		return -EINVAL;
4358 
4359 	len = sizeof(int);
4360 	val = (sctp_sk(sk)->disable_fragments == 1);
4361 	if (put_user(len, optlen))
4362 		return -EFAULT;
4363 	if (copy_to_user(optval, &val, len))
4364 		return -EFAULT;
4365 	return 0;
4366 }
4367 
4368 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4369  *
4370  * This socket option is used to specify various notifications and
4371  * ancillary data the user wishes to receive.
4372  */
4373 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4374 				  int __user *optlen)
4375 {
4376 	if (len <= 0)
4377 		return -EINVAL;
4378 	if (len > sizeof(struct sctp_event_subscribe))
4379 		len = sizeof(struct sctp_event_subscribe);
4380 	if (put_user(len, optlen))
4381 		return -EFAULT;
4382 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4383 		return -EFAULT;
4384 	return 0;
4385 }
4386 
4387 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4388  *
4389  * This socket option is applicable to the UDP-style socket only.  When
4390  * set it will cause associations that are idle for more than the
4391  * specified number of seconds to automatically close.  An association
4392  * being idle is defined an association that has NOT sent or received
4393  * user data.  The special value of '0' indicates that no automatic
4394  * close of any associations should be performed.  The option expects an
4395  * integer defining the number of seconds of idle time before an
4396  * association is closed.
4397  */
4398 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4399 {
4400 	/* Applicable to UDP-style socket only */
4401 	if (sctp_style(sk, TCP))
4402 		return -EOPNOTSUPP;
4403 	if (len < sizeof(int))
4404 		return -EINVAL;
4405 	len = sizeof(int);
4406 	if (put_user(len, optlen))
4407 		return -EFAULT;
4408 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4409 		return -EFAULT;
4410 	return 0;
4411 }
4412 
4413 /* Helper routine to branch off an association to a new socket.  */
4414 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4415 {
4416 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4417 	struct sctp_sock *sp = sctp_sk(sk);
4418 	struct socket *sock;
4419 	int err = 0;
4420 
4421 	if (!asoc)
4422 		return -EINVAL;
4423 
4424 	/* An association cannot be branched off from an already peeled-off
4425 	 * socket, nor is this supported for tcp style sockets.
4426 	 */
4427 	if (!sctp_style(sk, UDP))
4428 		return -EINVAL;
4429 
4430 	/* Create a new socket.  */
4431 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4432 	if (err < 0)
4433 		return err;
4434 
4435 	sctp_copy_sock(sock->sk, sk, asoc);
4436 
4437 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4438 	 * Set the daddr and initialize id to something more random
4439 	 */
4440 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4441 
4442 	/* Populate the fields of the newsk from the oldsk and migrate the
4443 	 * asoc to the newsk.
4444 	 */
4445 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4446 
4447 	*sockp = sock;
4448 
4449 	return err;
4450 }
4451 EXPORT_SYMBOL(sctp_do_peeloff);
4452 
4453 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4454 {
4455 	sctp_peeloff_arg_t peeloff;
4456 	struct socket *newsock;
4457 	struct file *newfile;
4458 	int retval = 0;
4459 
4460 	if (len < sizeof(sctp_peeloff_arg_t))
4461 		return -EINVAL;
4462 	len = sizeof(sctp_peeloff_arg_t);
4463 	if (copy_from_user(&peeloff, optval, len))
4464 		return -EFAULT;
4465 
4466 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4467 	if (retval < 0)
4468 		goto out;
4469 
4470 	/* Map the socket to an unused fd that can be returned to the user.  */
4471 	retval = get_unused_fd_flags(0);
4472 	if (retval < 0) {
4473 		sock_release(newsock);
4474 		goto out;
4475 	}
4476 
4477 	newfile = sock_alloc_file(newsock, 0, NULL);
4478 	if (unlikely(IS_ERR(newfile))) {
4479 		put_unused_fd(retval);
4480 		sock_release(newsock);
4481 		return PTR_ERR(newfile);
4482 	}
4483 
4484 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4485 		 retval);
4486 
4487 	/* Return the fd mapped to the new socket.  */
4488 	if (put_user(len, optlen)) {
4489 		fput(newfile);
4490 		put_unused_fd(retval);
4491 		return -EFAULT;
4492 	}
4493 	peeloff.sd = retval;
4494 	if (copy_to_user(optval, &peeloff, len)) {
4495 		fput(newfile);
4496 		put_unused_fd(retval);
4497 		return -EFAULT;
4498 	}
4499 	fd_install(retval, newfile);
4500 out:
4501 	return retval;
4502 }
4503 
4504 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4505  *
4506  * Applications can enable or disable heartbeats for any peer address of
4507  * an association, modify an address's heartbeat interval, force a
4508  * heartbeat to be sent immediately, and adjust the address's maximum
4509  * number of retransmissions sent before an address is considered
4510  * unreachable.  The following structure is used to access and modify an
4511  * address's parameters:
4512  *
4513  *  struct sctp_paddrparams {
4514  *     sctp_assoc_t            spp_assoc_id;
4515  *     struct sockaddr_storage spp_address;
4516  *     uint32_t                spp_hbinterval;
4517  *     uint16_t                spp_pathmaxrxt;
4518  *     uint32_t                spp_pathmtu;
4519  *     uint32_t                spp_sackdelay;
4520  *     uint32_t                spp_flags;
4521  * };
4522  *
4523  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4524  *                     application, and identifies the association for
4525  *                     this query.
4526  *   spp_address     - This specifies which address is of interest.
4527  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4528  *                     in milliseconds.  If a  value of zero
4529  *                     is present in this field then no changes are to
4530  *                     be made to this parameter.
4531  *   spp_pathmaxrxt  - This contains the maximum number of
4532  *                     retransmissions before this address shall be
4533  *                     considered unreachable. If a  value of zero
4534  *                     is present in this field then no changes are to
4535  *                     be made to this parameter.
4536  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4537  *                     specified here will be the "fixed" path mtu.
4538  *                     Note that if the spp_address field is empty
4539  *                     then all associations on this address will
4540  *                     have this fixed path mtu set upon them.
4541  *
4542  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4543  *                     the number of milliseconds that sacks will be delayed
4544  *                     for. This value will apply to all addresses of an
4545  *                     association if the spp_address field is empty. Note
4546  *                     also, that if delayed sack is enabled and this
4547  *                     value is set to 0, no change is made to the last
4548  *                     recorded delayed sack timer value.
4549  *
4550  *   spp_flags       - These flags are used to control various features
4551  *                     on an association. The flag field may contain
4552  *                     zero or more of the following options.
4553  *
4554  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4555  *                     specified address. Note that if the address
4556  *                     field is empty all addresses for the association
4557  *                     have heartbeats enabled upon them.
4558  *
4559  *                     SPP_HB_DISABLE - Disable heartbeats on the
4560  *                     speicifed address. Note that if the address
4561  *                     field is empty all addresses for the association
4562  *                     will have their heartbeats disabled. Note also
4563  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4564  *                     mutually exclusive, only one of these two should
4565  *                     be specified. Enabling both fields will have
4566  *                     undetermined results.
4567  *
4568  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4569  *                     to be made immediately.
4570  *
4571  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4572  *                     discovery upon the specified address. Note that
4573  *                     if the address feild is empty then all addresses
4574  *                     on the association are effected.
4575  *
4576  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4577  *                     discovery upon the specified address. Note that
4578  *                     if the address feild is empty then all addresses
4579  *                     on the association are effected. Not also that
4580  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4581  *                     exclusive. Enabling both will have undetermined
4582  *                     results.
4583  *
4584  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4585  *                     on delayed sack. The time specified in spp_sackdelay
4586  *                     is used to specify the sack delay for this address. Note
4587  *                     that if spp_address is empty then all addresses will
4588  *                     enable delayed sack and take on the sack delay
4589  *                     value specified in spp_sackdelay.
4590  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4591  *                     off delayed sack. If the spp_address field is blank then
4592  *                     delayed sack is disabled for the entire association. Note
4593  *                     also that this field is mutually exclusive to
4594  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4595  *                     results.
4596  */
4597 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4598 					    char __user *optval, int __user *optlen)
4599 {
4600 	struct sctp_paddrparams  params;
4601 	struct sctp_transport   *trans = NULL;
4602 	struct sctp_association *asoc = NULL;
4603 	struct sctp_sock        *sp = sctp_sk(sk);
4604 
4605 	if (len < sizeof(struct sctp_paddrparams))
4606 		return -EINVAL;
4607 	len = sizeof(struct sctp_paddrparams);
4608 	if (copy_from_user(&params, optval, len))
4609 		return -EFAULT;
4610 
4611 	/* If an address other than INADDR_ANY is specified, and
4612 	 * no transport is found, then the request is invalid.
4613 	 */
4614 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4615 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4616 					       params.spp_assoc_id);
4617 		if (!trans) {
4618 			pr_debug("%s: failed no transport\n", __func__);
4619 			return -EINVAL;
4620 		}
4621 	}
4622 
4623 	/* Get association, if assoc_id != 0 and the socket is a one
4624 	 * to many style socket, and an association was not found, then
4625 	 * the id was invalid.
4626 	 */
4627 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4628 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4629 		pr_debug("%s: failed no association\n", __func__);
4630 		return -EINVAL;
4631 	}
4632 
4633 	if (trans) {
4634 		/* Fetch transport values. */
4635 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4636 		params.spp_pathmtu    = trans->pathmtu;
4637 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4638 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4639 
4640 		/*draft-11 doesn't say what to return in spp_flags*/
4641 		params.spp_flags      = trans->param_flags;
4642 	} else if (asoc) {
4643 		/* Fetch association values. */
4644 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4645 		params.spp_pathmtu    = asoc->pathmtu;
4646 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4647 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4648 
4649 		/*draft-11 doesn't say what to return in spp_flags*/
4650 		params.spp_flags      = asoc->param_flags;
4651 	} else {
4652 		/* Fetch socket values. */
4653 		params.spp_hbinterval = sp->hbinterval;
4654 		params.spp_pathmtu    = sp->pathmtu;
4655 		params.spp_sackdelay  = sp->sackdelay;
4656 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4657 
4658 		/*draft-11 doesn't say what to return in spp_flags*/
4659 		params.spp_flags      = sp->param_flags;
4660 	}
4661 
4662 	if (copy_to_user(optval, &params, len))
4663 		return -EFAULT;
4664 
4665 	if (put_user(len, optlen))
4666 		return -EFAULT;
4667 
4668 	return 0;
4669 }
4670 
4671 /*
4672  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4673  *
4674  * This option will effect the way delayed acks are performed.  This
4675  * option allows you to get or set the delayed ack time, in
4676  * milliseconds.  It also allows changing the delayed ack frequency.
4677  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4678  * the assoc_id is 0, then this sets or gets the endpoints default
4679  * values.  If the assoc_id field is non-zero, then the set or get
4680  * effects the specified association for the one to many model (the
4681  * assoc_id field is ignored by the one to one model).  Note that if
4682  * sack_delay or sack_freq are 0 when setting this option, then the
4683  * current values will remain unchanged.
4684  *
4685  * struct sctp_sack_info {
4686  *     sctp_assoc_t            sack_assoc_id;
4687  *     uint32_t                sack_delay;
4688  *     uint32_t                sack_freq;
4689  * };
4690  *
4691  * sack_assoc_id -  This parameter, indicates which association the user
4692  *    is performing an action upon.  Note that if this field's value is
4693  *    zero then the endpoints default value is changed (effecting future
4694  *    associations only).
4695  *
4696  * sack_delay -  This parameter contains the number of milliseconds that
4697  *    the user is requesting the delayed ACK timer be set to.  Note that
4698  *    this value is defined in the standard to be between 200 and 500
4699  *    milliseconds.
4700  *
4701  * sack_freq -  This parameter contains the number of packets that must
4702  *    be received before a sack is sent without waiting for the delay
4703  *    timer to expire.  The default value for this is 2, setting this
4704  *    value to 1 will disable the delayed sack algorithm.
4705  */
4706 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4707 					    char __user *optval,
4708 					    int __user *optlen)
4709 {
4710 	struct sctp_sack_info    params;
4711 	struct sctp_association *asoc = NULL;
4712 	struct sctp_sock        *sp = sctp_sk(sk);
4713 
4714 	if (len >= sizeof(struct sctp_sack_info)) {
4715 		len = sizeof(struct sctp_sack_info);
4716 
4717 		if (copy_from_user(&params, optval, len))
4718 			return -EFAULT;
4719 	} else if (len == sizeof(struct sctp_assoc_value)) {
4720 		pr_warn_ratelimited(DEPRECATED
4721 				    "%s (pid %d) "
4722 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4723 				    "Use struct sctp_sack_info instead\n",
4724 				    current->comm, task_pid_nr(current));
4725 		if (copy_from_user(&params, optval, len))
4726 			return -EFAULT;
4727 	} else
4728 		return -EINVAL;
4729 
4730 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4731 	 * to many style socket, and an association was not found, then
4732 	 * the id was invalid.
4733 	 */
4734 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4735 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4736 		return -EINVAL;
4737 
4738 	if (asoc) {
4739 		/* Fetch association values. */
4740 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4741 			params.sack_delay = jiffies_to_msecs(
4742 				asoc->sackdelay);
4743 			params.sack_freq = asoc->sackfreq;
4744 
4745 		} else {
4746 			params.sack_delay = 0;
4747 			params.sack_freq = 1;
4748 		}
4749 	} else {
4750 		/* Fetch socket values. */
4751 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4752 			params.sack_delay  = sp->sackdelay;
4753 			params.sack_freq = sp->sackfreq;
4754 		} else {
4755 			params.sack_delay  = 0;
4756 			params.sack_freq = 1;
4757 		}
4758 	}
4759 
4760 	if (copy_to_user(optval, &params, len))
4761 		return -EFAULT;
4762 
4763 	if (put_user(len, optlen))
4764 		return -EFAULT;
4765 
4766 	return 0;
4767 }
4768 
4769 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4770  *
4771  * Applications can specify protocol parameters for the default association
4772  * initialization.  The option name argument to setsockopt() and getsockopt()
4773  * is SCTP_INITMSG.
4774  *
4775  * Setting initialization parameters is effective only on an unconnected
4776  * socket (for UDP-style sockets only future associations are effected
4777  * by the change).  With TCP-style sockets, this option is inherited by
4778  * sockets derived from a listener socket.
4779  */
4780 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4781 {
4782 	if (len < sizeof(struct sctp_initmsg))
4783 		return -EINVAL;
4784 	len = sizeof(struct sctp_initmsg);
4785 	if (put_user(len, optlen))
4786 		return -EFAULT;
4787 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4788 		return -EFAULT;
4789 	return 0;
4790 }
4791 
4792 
4793 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4794 				      char __user *optval, int __user *optlen)
4795 {
4796 	struct sctp_association *asoc;
4797 	int cnt = 0;
4798 	struct sctp_getaddrs getaddrs;
4799 	struct sctp_transport *from;
4800 	void __user *to;
4801 	union sctp_addr temp;
4802 	struct sctp_sock *sp = sctp_sk(sk);
4803 	int addrlen;
4804 	size_t space_left;
4805 	int bytes_copied;
4806 
4807 	if (len < sizeof(struct sctp_getaddrs))
4808 		return -EINVAL;
4809 
4810 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4811 		return -EFAULT;
4812 
4813 	/* For UDP-style sockets, id specifies the association to query.  */
4814 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4815 	if (!asoc)
4816 		return -EINVAL;
4817 
4818 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4819 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4820 
4821 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4822 				transports) {
4823 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4824 		addrlen = sctp_get_pf_specific(sk->sk_family)
4825 			      ->addr_to_user(sp, &temp);
4826 		if (space_left < addrlen)
4827 			return -ENOMEM;
4828 		if (copy_to_user(to, &temp, addrlen))
4829 			return -EFAULT;
4830 		to += addrlen;
4831 		cnt++;
4832 		space_left -= addrlen;
4833 	}
4834 
4835 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4836 		return -EFAULT;
4837 	bytes_copied = ((char __user *)to) - optval;
4838 	if (put_user(bytes_copied, optlen))
4839 		return -EFAULT;
4840 
4841 	return 0;
4842 }
4843 
4844 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4845 			    size_t space_left, int *bytes_copied)
4846 {
4847 	struct sctp_sockaddr_entry *addr;
4848 	union sctp_addr temp;
4849 	int cnt = 0;
4850 	int addrlen;
4851 	struct net *net = sock_net(sk);
4852 
4853 	rcu_read_lock();
4854 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4855 		if (!addr->valid)
4856 			continue;
4857 
4858 		if ((PF_INET == sk->sk_family) &&
4859 		    (AF_INET6 == addr->a.sa.sa_family))
4860 			continue;
4861 		if ((PF_INET6 == sk->sk_family) &&
4862 		    inet_v6_ipv6only(sk) &&
4863 		    (AF_INET == addr->a.sa.sa_family))
4864 			continue;
4865 		memcpy(&temp, &addr->a, sizeof(temp));
4866 		if (!temp.v4.sin_port)
4867 			temp.v4.sin_port = htons(port);
4868 
4869 		addrlen = sctp_get_pf_specific(sk->sk_family)
4870 			      ->addr_to_user(sctp_sk(sk), &temp);
4871 
4872 		if (space_left < addrlen) {
4873 			cnt =  -ENOMEM;
4874 			break;
4875 		}
4876 		memcpy(to, &temp, addrlen);
4877 
4878 		to += addrlen;
4879 		cnt++;
4880 		space_left -= addrlen;
4881 		*bytes_copied += addrlen;
4882 	}
4883 	rcu_read_unlock();
4884 
4885 	return cnt;
4886 }
4887 
4888 
4889 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4890 				       char __user *optval, int __user *optlen)
4891 {
4892 	struct sctp_bind_addr *bp;
4893 	struct sctp_association *asoc;
4894 	int cnt = 0;
4895 	struct sctp_getaddrs getaddrs;
4896 	struct sctp_sockaddr_entry *addr;
4897 	void __user *to;
4898 	union sctp_addr temp;
4899 	struct sctp_sock *sp = sctp_sk(sk);
4900 	int addrlen;
4901 	int err = 0;
4902 	size_t space_left;
4903 	int bytes_copied = 0;
4904 	void *addrs;
4905 	void *buf;
4906 
4907 	if (len < sizeof(struct sctp_getaddrs))
4908 		return -EINVAL;
4909 
4910 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4911 		return -EFAULT;
4912 
4913 	/*
4914 	 *  For UDP-style sockets, id specifies the association to query.
4915 	 *  If the id field is set to the value '0' then the locally bound
4916 	 *  addresses are returned without regard to any particular
4917 	 *  association.
4918 	 */
4919 	if (0 == getaddrs.assoc_id) {
4920 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4921 	} else {
4922 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4923 		if (!asoc)
4924 			return -EINVAL;
4925 		bp = &asoc->base.bind_addr;
4926 	}
4927 
4928 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4929 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4930 
4931 	addrs = kmalloc(space_left, GFP_KERNEL);
4932 	if (!addrs)
4933 		return -ENOMEM;
4934 
4935 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4936 	 * addresses from the global local address list.
4937 	 */
4938 	if (sctp_list_single_entry(&bp->address_list)) {
4939 		addr = list_entry(bp->address_list.next,
4940 				  struct sctp_sockaddr_entry, list);
4941 		if (sctp_is_any(sk, &addr->a)) {
4942 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4943 						space_left, &bytes_copied);
4944 			if (cnt < 0) {
4945 				err = cnt;
4946 				goto out;
4947 			}
4948 			goto copy_getaddrs;
4949 		}
4950 	}
4951 
4952 	buf = addrs;
4953 	/* Protection on the bound address list is not needed since
4954 	 * in the socket option context we hold a socket lock and
4955 	 * thus the bound address list can't change.
4956 	 */
4957 	list_for_each_entry(addr, &bp->address_list, list) {
4958 		memcpy(&temp, &addr->a, sizeof(temp));
4959 		addrlen = sctp_get_pf_specific(sk->sk_family)
4960 			      ->addr_to_user(sp, &temp);
4961 		if (space_left < addrlen) {
4962 			err =  -ENOMEM; /*fixme: right error?*/
4963 			goto out;
4964 		}
4965 		memcpy(buf, &temp, addrlen);
4966 		buf += addrlen;
4967 		bytes_copied += addrlen;
4968 		cnt++;
4969 		space_left -= addrlen;
4970 	}
4971 
4972 copy_getaddrs:
4973 	if (copy_to_user(to, addrs, bytes_copied)) {
4974 		err = -EFAULT;
4975 		goto out;
4976 	}
4977 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4978 		err = -EFAULT;
4979 		goto out;
4980 	}
4981 	if (put_user(bytes_copied, optlen))
4982 		err = -EFAULT;
4983 out:
4984 	kfree(addrs);
4985 	return err;
4986 }
4987 
4988 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4989  *
4990  * Requests that the local SCTP stack use the enclosed peer address as
4991  * the association primary.  The enclosed address must be one of the
4992  * association peer's addresses.
4993  */
4994 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4995 					char __user *optval, int __user *optlen)
4996 {
4997 	struct sctp_prim prim;
4998 	struct sctp_association *asoc;
4999 	struct sctp_sock *sp = sctp_sk(sk);
5000 
5001 	if (len < sizeof(struct sctp_prim))
5002 		return -EINVAL;
5003 
5004 	len = sizeof(struct sctp_prim);
5005 
5006 	if (copy_from_user(&prim, optval, len))
5007 		return -EFAULT;
5008 
5009 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5010 	if (!asoc)
5011 		return -EINVAL;
5012 
5013 	if (!asoc->peer.primary_path)
5014 		return -ENOTCONN;
5015 
5016 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5017 		asoc->peer.primary_path->af_specific->sockaddr_len);
5018 
5019 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5020 			(union sctp_addr *)&prim.ssp_addr);
5021 
5022 	if (put_user(len, optlen))
5023 		return -EFAULT;
5024 	if (copy_to_user(optval, &prim, len))
5025 		return -EFAULT;
5026 
5027 	return 0;
5028 }
5029 
5030 /*
5031  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5032  *
5033  * Requests that the local endpoint set the specified Adaptation Layer
5034  * Indication parameter for all future INIT and INIT-ACK exchanges.
5035  */
5036 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5037 				  char __user *optval, int __user *optlen)
5038 {
5039 	struct sctp_setadaptation adaptation;
5040 
5041 	if (len < sizeof(struct sctp_setadaptation))
5042 		return -EINVAL;
5043 
5044 	len = sizeof(struct sctp_setadaptation);
5045 
5046 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5047 
5048 	if (put_user(len, optlen))
5049 		return -EFAULT;
5050 	if (copy_to_user(optval, &adaptation, len))
5051 		return -EFAULT;
5052 
5053 	return 0;
5054 }
5055 
5056 /*
5057  *
5058  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5059  *
5060  *   Applications that wish to use the sendto() system call may wish to
5061  *   specify a default set of parameters that would normally be supplied
5062  *   through the inclusion of ancillary data.  This socket option allows
5063  *   such an application to set the default sctp_sndrcvinfo structure.
5064 
5065 
5066  *   The application that wishes to use this socket option simply passes
5067  *   in to this call the sctp_sndrcvinfo structure defined in Section
5068  *   5.2.2) The input parameters accepted by this call include
5069  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5070  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5071  *   to this call if the caller is using the UDP model.
5072  *
5073  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5074  */
5075 static int sctp_getsockopt_default_send_param(struct sock *sk,
5076 					int len, char __user *optval,
5077 					int __user *optlen)
5078 {
5079 	struct sctp_sock *sp = sctp_sk(sk);
5080 	struct sctp_association *asoc;
5081 	struct sctp_sndrcvinfo info;
5082 
5083 	if (len < sizeof(info))
5084 		return -EINVAL;
5085 
5086 	len = sizeof(info);
5087 
5088 	if (copy_from_user(&info, optval, len))
5089 		return -EFAULT;
5090 
5091 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5092 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5093 		return -EINVAL;
5094 	if (asoc) {
5095 		info.sinfo_stream = asoc->default_stream;
5096 		info.sinfo_flags = asoc->default_flags;
5097 		info.sinfo_ppid = asoc->default_ppid;
5098 		info.sinfo_context = asoc->default_context;
5099 		info.sinfo_timetolive = asoc->default_timetolive;
5100 	} else {
5101 		info.sinfo_stream = sp->default_stream;
5102 		info.sinfo_flags = sp->default_flags;
5103 		info.sinfo_ppid = sp->default_ppid;
5104 		info.sinfo_context = sp->default_context;
5105 		info.sinfo_timetolive = sp->default_timetolive;
5106 	}
5107 
5108 	if (put_user(len, optlen))
5109 		return -EFAULT;
5110 	if (copy_to_user(optval, &info, len))
5111 		return -EFAULT;
5112 
5113 	return 0;
5114 }
5115 
5116 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5117  * (SCTP_DEFAULT_SNDINFO)
5118  */
5119 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5120 					   char __user *optval,
5121 					   int __user *optlen)
5122 {
5123 	struct sctp_sock *sp = sctp_sk(sk);
5124 	struct sctp_association *asoc;
5125 	struct sctp_sndinfo info;
5126 
5127 	if (len < sizeof(info))
5128 		return -EINVAL;
5129 
5130 	len = sizeof(info);
5131 
5132 	if (copy_from_user(&info, optval, len))
5133 		return -EFAULT;
5134 
5135 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5136 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5137 		return -EINVAL;
5138 	if (asoc) {
5139 		info.snd_sid = asoc->default_stream;
5140 		info.snd_flags = asoc->default_flags;
5141 		info.snd_ppid = asoc->default_ppid;
5142 		info.snd_context = asoc->default_context;
5143 	} else {
5144 		info.snd_sid = sp->default_stream;
5145 		info.snd_flags = sp->default_flags;
5146 		info.snd_ppid = sp->default_ppid;
5147 		info.snd_context = sp->default_context;
5148 	}
5149 
5150 	if (put_user(len, optlen))
5151 		return -EFAULT;
5152 	if (copy_to_user(optval, &info, len))
5153 		return -EFAULT;
5154 
5155 	return 0;
5156 }
5157 
5158 /*
5159  *
5160  * 7.1.5 SCTP_NODELAY
5161  *
5162  * Turn on/off any Nagle-like algorithm.  This means that packets are
5163  * generally sent as soon as possible and no unnecessary delays are
5164  * introduced, at the cost of more packets in the network.  Expects an
5165  * integer boolean flag.
5166  */
5167 
5168 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5169 				   char __user *optval, int __user *optlen)
5170 {
5171 	int val;
5172 
5173 	if (len < sizeof(int))
5174 		return -EINVAL;
5175 
5176 	len = sizeof(int);
5177 	val = (sctp_sk(sk)->nodelay == 1);
5178 	if (put_user(len, optlen))
5179 		return -EFAULT;
5180 	if (copy_to_user(optval, &val, len))
5181 		return -EFAULT;
5182 	return 0;
5183 }
5184 
5185 /*
5186  *
5187  * 7.1.1 SCTP_RTOINFO
5188  *
5189  * The protocol parameters used to initialize and bound retransmission
5190  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5191  * and modify these parameters.
5192  * All parameters are time values, in milliseconds.  A value of 0, when
5193  * modifying the parameters, indicates that the current value should not
5194  * be changed.
5195  *
5196  */
5197 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5198 				char __user *optval,
5199 				int __user *optlen) {
5200 	struct sctp_rtoinfo rtoinfo;
5201 	struct sctp_association *asoc;
5202 
5203 	if (len < sizeof (struct sctp_rtoinfo))
5204 		return -EINVAL;
5205 
5206 	len = sizeof(struct sctp_rtoinfo);
5207 
5208 	if (copy_from_user(&rtoinfo, optval, len))
5209 		return -EFAULT;
5210 
5211 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5212 
5213 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5214 		return -EINVAL;
5215 
5216 	/* Values corresponding to the specific association. */
5217 	if (asoc) {
5218 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5219 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5220 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5221 	} else {
5222 		/* Values corresponding to the endpoint. */
5223 		struct sctp_sock *sp = sctp_sk(sk);
5224 
5225 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5226 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5227 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5228 	}
5229 
5230 	if (put_user(len, optlen))
5231 		return -EFAULT;
5232 
5233 	if (copy_to_user(optval, &rtoinfo, len))
5234 		return -EFAULT;
5235 
5236 	return 0;
5237 }
5238 
5239 /*
5240  *
5241  * 7.1.2 SCTP_ASSOCINFO
5242  *
5243  * This option is used to tune the maximum retransmission attempts
5244  * of the association.
5245  * Returns an error if the new association retransmission value is
5246  * greater than the sum of the retransmission value  of the peer.
5247  * See [SCTP] for more information.
5248  *
5249  */
5250 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5251 				     char __user *optval,
5252 				     int __user *optlen)
5253 {
5254 
5255 	struct sctp_assocparams assocparams;
5256 	struct sctp_association *asoc;
5257 	struct list_head *pos;
5258 	int cnt = 0;
5259 
5260 	if (len < sizeof (struct sctp_assocparams))
5261 		return -EINVAL;
5262 
5263 	len = sizeof(struct sctp_assocparams);
5264 
5265 	if (copy_from_user(&assocparams, optval, len))
5266 		return -EFAULT;
5267 
5268 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5269 
5270 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5271 		return -EINVAL;
5272 
5273 	/* Values correspoinding to the specific association */
5274 	if (asoc) {
5275 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5276 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5277 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5278 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5279 
5280 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5281 			cnt++;
5282 		}
5283 
5284 		assocparams.sasoc_number_peer_destinations = cnt;
5285 	} else {
5286 		/* Values corresponding to the endpoint */
5287 		struct sctp_sock *sp = sctp_sk(sk);
5288 
5289 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5290 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5291 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5292 		assocparams.sasoc_cookie_life =
5293 					sp->assocparams.sasoc_cookie_life;
5294 		assocparams.sasoc_number_peer_destinations =
5295 					sp->assocparams.
5296 					sasoc_number_peer_destinations;
5297 	}
5298 
5299 	if (put_user(len, optlen))
5300 		return -EFAULT;
5301 
5302 	if (copy_to_user(optval, &assocparams, len))
5303 		return -EFAULT;
5304 
5305 	return 0;
5306 }
5307 
5308 /*
5309  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5310  *
5311  * This socket option is a boolean flag which turns on or off mapped V4
5312  * addresses.  If this option is turned on and the socket is type
5313  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5314  * If this option is turned off, then no mapping will be done of V4
5315  * addresses and a user will receive both PF_INET6 and PF_INET type
5316  * addresses on the socket.
5317  */
5318 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5319 				    char __user *optval, int __user *optlen)
5320 {
5321 	int val;
5322 	struct sctp_sock *sp = sctp_sk(sk);
5323 
5324 	if (len < sizeof(int))
5325 		return -EINVAL;
5326 
5327 	len = sizeof(int);
5328 	val = sp->v4mapped;
5329 	if (put_user(len, optlen))
5330 		return -EFAULT;
5331 	if (copy_to_user(optval, &val, len))
5332 		return -EFAULT;
5333 
5334 	return 0;
5335 }
5336 
5337 /*
5338  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5339  * (chapter and verse is quoted at sctp_setsockopt_context())
5340  */
5341 static int sctp_getsockopt_context(struct sock *sk, int len,
5342 				   char __user *optval, int __user *optlen)
5343 {
5344 	struct sctp_assoc_value params;
5345 	struct sctp_sock *sp;
5346 	struct sctp_association *asoc;
5347 
5348 	if (len < sizeof(struct sctp_assoc_value))
5349 		return -EINVAL;
5350 
5351 	len = sizeof(struct sctp_assoc_value);
5352 
5353 	if (copy_from_user(&params, optval, len))
5354 		return -EFAULT;
5355 
5356 	sp = sctp_sk(sk);
5357 
5358 	if (params.assoc_id != 0) {
5359 		asoc = sctp_id2assoc(sk, params.assoc_id);
5360 		if (!asoc)
5361 			return -EINVAL;
5362 		params.assoc_value = asoc->default_rcv_context;
5363 	} else {
5364 		params.assoc_value = sp->default_rcv_context;
5365 	}
5366 
5367 	if (put_user(len, optlen))
5368 		return -EFAULT;
5369 	if (copy_to_user(optval, &params, len))
5370 		return -EFAULT;
5371 
5372 	return 0;
5373 }
5374 
5375 /*
5376  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5377  * This option will get or set the maximum size to put in any outgoing
5378  * SCTP DATA chunk.  If a message is larger than this size it will be
5379  * fragmented by SCTP into the specified size.  Note that the underlying
5380  * SCTP implementation may fragment into smaller sized chunks when the
5381  * PMTU of the underlying association is smaller than the value set by
5382  * the user.  The default value for this option is '0' which indicates
5383  * the user is NOT limiting fragmentation and only the PMTU will effect
5384  * SCTP's choice of DATA chunk size.  Note also that values set larger
5385  * than the maximum size of an IP datagram will effectively let SCTP
5386  * control fragmentation (i.e. the same as setting this option to 0).
5387  *
5388  * The following structure is used to access and modify this parameter:
5389  *
5390  * struct sctp_assoc_value {
5391  *   sctp_assoc_t assoc_id;
5392  *   uint32_t assoc_value;
5393  * };
5394  *
5395  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5396  *    For one-to-many style sockets this parameter indicates which
5397  *    association the user is performing an action upon.  Note that if
5398  *    this field's value is zero then the endpoints default value is
5399  *    changed (effecting future associations only).
5400  * assoc_value:  This parameter specifies the maximum size in bytes.
5401  */
5402 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5403 				  char __user *optval, int __user *optlen)
5404 {
5405 	struct sctp_assoc_value params;
5406 	struct sctp_association *asoc;
5407 
5408 	if (len == sizeof(int)) {
5409 		pr_warn_ratelimited(DEPRECATED
5410 				    "%s (pid %d) "
5411 				    "Use of int in maxseg socket option.\n"
5412 				    "Use struct sctp_assoc_value instead\n",
5413 				    current->comm, task_pid_nr(current));
5414 		params.assoc_id = 0;
5415 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5416 		len = sizeof(struct sctp_assoc_value);
5417 		if (copy_from_user(&params, optval, sizeof(params)))
5418 			return -EFAULT;
5419 	} else
5420 		return -EINVAL;
5421 
5422 	asoc = sctp_id2assoc(sk, params.assoc_id);
5423 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5424 		return -EINVAL;
5425 
5426 	if (asoc)
5427 		params.assoc_value = asoc->frag_point;
5428 	else
5429 		params.assoc_value = sctp_sk(sk)->user_frag;
5430 
5431 	if (put_user(len, optlen))
5432 		return -EFAULT;
5433 	if (len == sizeof(int)) {
5434 		if (copy_to_user(optval, &params.assoc_value, len))
5435 			return -EFAULT;
5436 	} else {
5437 		if (copy_to_user(optval, &params, len))
5438 			return -EFAULT;
5439 	}
5440 
5441 	return 0;
5442 }
5443 
5444 /*
5445  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5446  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5447  */
5448 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5449 					       char __user *optval, int __user *optlen)
5450 {
5451 	int val;
5452 
5453 	if (len < sizeof(int))
5454 		return -EINVAL;
5455 
5456 	len = sizeof(int);
5457 
5458 	val = sctp_sk(sk)->frag_interleave;
5459 	if (put_user(len, optlen))
5460 		return -EFAULT;
5461 	if (copy_to_user(optval, &val, len))
5462 		return -EFAULT;
5463 
5464 	return 0;
5465 }
5466 
5467 /*
5468  * 7.1.25.  Set or Get the sctp partial delivery point
5469  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5470  */
5471 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5472 						  char __user *optval,
5473 						  int __user *optlen)
5474 {
5475 	u32 val;
5476 
5477 	if (len < sizeof(u32))
5478 		return -EINVAL;
5479 
5480 	len = sizeof(u32);
5481 
5482 	val = sctp_sk(sk)->pd_point;
5483 	if (put_user(len, optlen))
5484 		return -EFAULT;
5485 	if (copy_to_user(optval, &val, len))
5486 		return -EFAULT;
5487 
5488 	return 0;
5489 }
5490 
5491 /*
5492  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5493  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5494  */
5495 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5496 				    char __user *optval,
5497 				    int __user *optlen)
5498 {
5499 	struct sctp_assoc_value params;
5500 	struct sctp_sock *sp;
5501 	struct sctp_association *asoc;
5502 
5503 	if (len == sizeof(int)) {
5504 		pr_warn_ratelimited(DEPRECATED
5505 				    "%s (pid %d) "
5506 				    "Use of int in max_burst socket option.\n"
5507 				    "Use struct sctp_assoc_value instead\n",
5508 				    current->comm, task_pid_nr(current));
5509 		params.assoc_id = 0;
5510 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5511 		len = sizeof(struct sctp_assoc_value);
5512 		if (copy_from_user(&params, optval, len))
5513 			return -EFAULT;
5514 	} else
5515 		return -EINVAL;
5516 
5517 	sp = sctp_sk(sk);
5518 
5519 	if (params.assoc_id != 0) {
5520 		asoc = sctp_id2assoc(sk, params.assoc_id);
5521 		if (!asoc)
5522 			return -EINVAL;
5523 		params.assoc_value = asoc->max_burst;
5524 	} else
5525 		params.assoc_value = sp->max_burst;
5526 
5527 	if (len == sizeof(int)) {
5528 		if (copy_to_user(optval, &params.assoc_value, len))
5529 			return -EFAULT;
5530 	} else {
5531 		if (copy_to_user(optval, &params, len))
5532 			return -EFAULT;
5533 	}
5534 
5535 	return 0;
5536 
5537 }
5538 
5539 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5540 				    char __user *optval, int __user *optlen)
5541 {
5542 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5543 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5544 	struct sctp_hmac_algo_param *hmacs;
5545 	__u16 data_len = 0;
5546 	u32 num_idents;
5547 
5548 	if (!ep->auth_enable)
5549 		return -EACCES;
5550 
5551 	hmacs = ep->auth_hmacs_list;
5552 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5553 
5554 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5555 		return -EINVAL;
5556 
5557 	len = sizeof(struct sctp_hmacalgo) + data_len;
5558 	num_idents = data_len / sizeof(u16);
5559 
5560 	if (put_user(len, optlen))
5561 		return -EFAULT;
5562 	if (put_user(num_idents, &p->shmac_num_idents))
5563 		return -EFAULT;
5564 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5565 		return -EFAULT;
5566 	return 0;
5567 }
5568 
5569 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5570 				    char __user *optval, int __user *optlen)
5571 {
5572 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5573 	struct sctp_authkeyid val;
5574 	struct sctp_association *asoc;
5575 
5576 	if (!ep->auth_enable)
5577 		return -EACCES;
5578 
5579 	if (len < sizeof(struct sctp_authkeyid))
5580 		return -EINVAL;
5581 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5582 		return -EFAULT;
5583 
5584 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5585 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5586 		return -EINVAL;
5587 
5588 	if (asoc)
5589 		val.scact_keynumber = asoc->active_key_id;
5590 	else
5591 		val.scact_keynumber = ep->active_key_id;
5592 
5593 	len = sizeof(struct sctp_authkeyid);
5594 	if (put_user(len, optlen))
5595 		return -EFAULT;
5596 	if (copy_to_user(optval, &val, len))
5597 		return -EFAULT;
5598 
5599 	return 0;
5600 }
5601 
5602 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5603 				    char __user *optval, int __user *optlen)
5604 {
5605 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5606 	struct sctp_authchunks __user *p = (void __user *)optval;
5607 	struct sctp_authchunks val;
5608 	struct sctp_association *asoc;
5609 	struct sctp_chunks_param *ch;
5610 	u32    num_chunks = 0;
5611 	char __user *to;
5612 
5613 	if (!ep->auth_enable)
5614 		return -EACCES;
5615 
5616 	if (len < sizeof(struct sctp_authchunks))
5617 		return -EINVAL;
5618 
5619 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5620 		return -EFAULT;
5621 
5622 	to = p->gauth_chunks;
5623 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5624 	if (!asoc)
5625 		return -EINVAL;
5626 
5627 	ch = asoc->peer.peer_chunks;
5628 	if (!ch)
5629 		goto num;
5630 
5631 	/* See if the user provided enough room for all the data */
5632 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5633 	if (len < num_chunks)
5634 		return -EINVAL;
5635 
5636 	if (copy_to_user(to, ch->chunks, num_chunks))
5637 		return -EFAULT;
5638 num:
5639 	len = sizeof(struct sctp_authchunks) + num_chunks;
5640 	if (put_user(len, optlen))
5641 		return -EFAULT;
5642 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5643 		return -EFAULT;
5644 	return 0;
5645 }
5646 
5647 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5648 				    char __user *optval, int __user *optlen)
5649 {
5650 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5651 	struct sctp_authchunks __user *p = (void __user *)optval;
5652 	struct sctp_authchunks val;
5653 	struct sctp_association *asoc;
5654 	struct sctp_chunks_param *ch;
5655 	u32    num_chunks = 0;
5656 	char __user *to;
5657 
5658 	if (!ep->auth_enable)
5659 		return -EACCES;
5660 
5661 	if (len < sizeof(struct sctp_authchunks))
5662 		return -EINVAL;
5663 
5664 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5665 		return -EFAULT;
5666 
5667 	to = p->gauth_chunks;
5668 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5669 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5670 		return -EINVAL;
5671 
5672 	if (asoc)
5673 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5674 	else
5675 		ch = ep->auth_chunk_list;
5676 
5677 	if (!ch)
5678 		goto num;
5679 
5680 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5681 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5682 		return -EINVAL;
5683 
5684 	if (copy_to_user(to, ch->chunks, num_chunks))
5685 		return -EFAULT;
5686 num:
5687 	len = sizeof(struct sctp_authchunks) + num_chunks;
5688 	if (put_user(len, optlen))
5689 		return -EFAULT;
5690 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5691 		return -EFAULT;
5692 
5693 	return 0;
5694 }
5695 
5696 /*
5697  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5698  * This option gets the current number of associations that are attached
5699  * to a one-to-many style socket.  The option value is an uint32_t.
5700  */
5701 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5702 				    char __user *optval, int __user *optlen)
5703 {
5704 	struct sctp_sock *sp = sctp_sk(sk);
5705 	struct sctp_association *asoc;
5706 	u32 val = 0;
5707 
5708 	if (sctp_style(sk, TCP))
5709 		return -EOPNOTSUPP;
5710 
5711 	if (len < sizeof(u32))
5712 		return -EINVAL;
5713 
5714 	len = sizeof(u32);
5715 
5716 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5717 		val++;
5718 	}
5719 
5720 	if (put_user(len, optlen))
5721 		return -EFAULT;
5722 	if (copy_to_user(optval, &val, len))
5723 		return -EFAULT;
5724 
5725 	return 0;
5726 }
5727 
5728 /*
5729  * 8.1.23 SCTP_AUTO_ASCONF
5730  * See the corresponding setsockopt entry as description
5731  */
5732 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5733 				   char __user *optval, int __user *optlen)
5734 {
5735 	int val = 0;
5736 
5737 	if (len < sizeof(int))
5738 		return -EINVAL;
5739 
5740 	len = sizeof(int);
5741 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5742 		val = 1;
5743 	if (put_user(len, optlen))
5744 		return -EFAULT;
5745 	if (copy_to_user(optval, &val, len))
5746 		return -EFAULT;
5747 	return 0;
5748 }
5749 
5750 /*
5751  * 8.2.6. Get the Current Identifiers of Associations
5752  *        (SCTP_GET_ASSOC_ID_LIST)
5753  *
5754  * This option gets the current list of SCTP association identifiers of
5755  * the SCTP associations handled by a one-to-many style socket.
5756  */
5757 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5758 				    char __user *optval, int __user *optlen)
5759 {
5760 	struct sctp_sock *sp = sctp_sk(sk);
5761 	struct sctp_association *asoc;
5762 	struct sctp_assoc_ids *ids;
5763 	u32 num = 0;
5764 
5765 	if (sctp_style(sk, TCP))
5766 		return -EOPNOTSUPP;
5767 
5768 	if (len < sizeof(struct sctp_assoc_ids))
5769 		return -EINVAL;
5770 
5771 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5772 		num++;
5773 	}
5774 
5775 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5776 		return -EINVAL;
5777 
5778 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5779 
5780 	ids = kmalloc(len, GFP_KERNEL);
5781 	if (unlikely(!ids))
5782 		return -ENOMEM;
5783 
5784 	ids->gaids_number_of_ids = num;
5785 	num = 0;
5786 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5787 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5788 	}
5789 
5790 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5791 		kfree(ids);
5792 		return -EFAULT;
5793 	}
5794 
5795 	kfree(ids);
5796 	return 0;
5797 }
5798 
5799 /*
5800  * SCTP_PEER_ADDR_THLDS
5801  *
5802  * This option allows us to fetch the partially failed threshold for one or all
5803  * transports in an association.  See Section 6.1 of:
5804  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5805  */
5806 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5807 					    char __user *optval,
5808 					    int len,
5809 					    int __user *optlen)
5810 {
5811 	struct sctp_paddrthlds val;
5812 	struct sctp_transport *trans;
5813 	struct sctp_association *asoc;
5814 
5815 	if (len < sizeof(struct sctp_paddrthlds))
5816 		return -EINVAL;
5817 	len = sizeof(struct sctp_paddrthlds);
5818 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5819 		return -EFAULT;
5820 
5821 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5822 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5823 		if (!asoc)
5824 			return -ENOENT;
5825 
5826 		val.spt_pathpfthld = asoc->pf_retrans;
5827 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5828 	} else {
5829 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5830 					       val.spt_assoc_id);
5831 		if (!trans)
5832 			return -ENOENT;
5833 
5834 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5835 		val.spt_pathpfthld = trans->pf_retrans;
5836 	}
5837 
5838 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5839 		return -EFAULT;
5840 
5841 	return 0;
5842 }
5843 
5844 /*
5845  * SCTP_GET_ASSOC_STATS
5846  *
5847  * This option retrieves local per endpoint statistics. It is modeled
5848  * after OpenSolaris' implementation
5849  */
5850 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5851 				       char __user *optval,
5852 				       int __user *optlen)
5853 {
5854 	struct sctp_assoc_stats sas;
5855 	struct sctp_association *asoc = NULL;
5856 
5857 	/* User must provide at least the assoc id */
5858 	if (len < sizeof(sctp_assoc_t))
5859 		return -EINVAL;
5860 
5861 	/* Allow the struct to grow and fill in as much as possible */
5862 	len = min_t(size_t, len, sizeof(sas));
5863 
5864 	if (copy_from_user(&sas, optval, len))
5865 		return -EFAULT;
5866 
5867 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5868 	if (!asoc)
5869 		return -EINVAL;
5870 
5871 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5872 	sas.sas_gapcnt = asoc->stats.gapcnt;
5873 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5874 	sas.sas_osacks = asoc->stats.osacks;
5875 	sas.sas_isacks = asoc->stats.isacks;
5876 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5877 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5878 	sas.sas_oodchunks = asoc->stats.oodchunks;
5879 	sas.sas_iodchunks = asoc->stats.iodchunks;
5880 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5881 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5882 	sas.sas_idupchunks = asoc->stats.idupchunks;
5883 	sas.sas_opackets = asoc->stats.opackets;
5884 	sas.sas_ipackets = asoc->stats.ipackets;
5885 
5886 	/* New high max rto observed, will return 0 if not a single
5887 	 * RTO update took place. obs_rto_ipaddr will be bogus
5888 	 * in such a case
5889 	 */
5890 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5891 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5892 		sizeof(struct sockaddr_storage));
5893 
5894 	/* Mark beginning of a new observation period */
5895 	asoc->stats.max_obs_rto = asoc->rto_min;
5896 
5897 	if (put_user(len, optlen))
5898 		return -EFAULT;
5899 
5900 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5901 
5902 	if (copy_to_user(optval, &sas, len))
5903 		return -EFAULT;
5904 
5905 	return 0;
5906 }
5907 
5908 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5909 				       char __user *optval,
5910 				       int __user *optlen)
5911 {
5912 	int val = 0;
5913 
5914 	if (len < sizeof(int))
5915 		return -EINVAL;
5916 
5917 	len = sizeof(int);
5918 	if (sctp_sk(sk)->recvrcvinfo)
5919 		val = 1;
5920 	if (put_user(len, optlen))
5921 		return -EFAULT;
5922 	if (copy_to_user(optval, &val, len))
5923 		return -EFAULT;
5924 
5925 	return 0;
5926 }
5927 
5928 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5929 				       char __user *optval,
5930 				       int __user *optlen)
5931 {
5932 	int val = 0;
5933 
5934 	if (len < sizeof(int))
5935 		return -EINVAL;
5936 
5937 	len = sizeof(int);
5938 	if (sctp_sk(sk)->recvnxtinfo)
5939 		val = 1;
5940 	if (put_user(len, optlen))
5941 		return -EFAULT;
5942 	if (copy_to_user(optval, &val, len))
5943 		return -EFAULT;
5944 
5945 	return 0;
5946 }
5947 
5948 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5949 			   char __user *optval, int __user *optlen)
5950 {
5951 	int retval = 0;
5952 	int len;
5953 
5954 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5955 
5956 	/* I can hardly begin to describe how wrong this is.  This is
5957 	 * so broken as to be worse than useless.  The API draft
5958 	 * REALLY is NOT helpful here...  I am not convinced that the
5959 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5960 	 * are at all well-founded.
5961 	 */
5962 	if (level != SOL_SCTP) {
5963 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5964 
5965 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5966 		return retval;
5967 	}
5968 
5969 	if (get_user(len, optlen))
5970 		return -EFAULT;
5971 
5972 	lock_sock(sk);
5973 
5974 	switch (optname) {
5975 	case SCTP_STATUS:
5976 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5977 		break;
5978 	case SCTP_DISABLE_FRAGMENTS:
5979 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5980 							   optlen);
5981 		break;
5982 	case SCTP_EVENTS:
5983 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5984 		break;
5985 	case SCTP_AUTOCLOSE:
5986 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5987 		break;
5988 	case SCTP_SOCKOPT_PEELOFF:
5989 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5990 		break;
5991 	case SCTP_PEER_ADDR_PARAMS:
5992 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5993 							  optlen);
5994 		break;
5995 	case SCTP_DELAYED_SACK:
5996 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5997 							  optlen);
5998 		break;
5999 	case SCTP_INITMSG:
6000 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6001 		break;
6002 	case SCTP_GET_PEER_ADDRS:
6003 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6004 						    optlen);
6005 		break;
6006 	case SCTP_GET_LOCAL_ADDRS:
6007 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6008 						     optlen);
6009 		break;
6010 	case SCTP_SOCKOPT_CONNECTX3:
6011 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6012 		break;
6013 	case SCTP_DEFAULT_SEND_PARAM:
6014 		retval = sctp_getsockopt_default_send_param(sk, len,
6015 							    optval, optlen);
6016 		break;
6017 	case SCTP_DEFAULT_SNDINFO:
6018 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6019 							 optval, optlen);
6020 		break;
6021 	case SCTP_PRIMARY_ADDR:
6022 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6023 		break;
6024 	case SCTP_NODELAY:
6025 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6026 		break;
6027 	case SCTP_RTOINFO:
6028 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6029 		break;
6030 	case SCTP_ASSOCINFO:
6031 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6032 		break;
6033 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6034 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6035 		break;
6036 	case SCTP_MAXSEG:
6037 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6038 		break;
6039 	case SCTP_GET_PEER_ADDR_INFO:
6040 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6041 							optlen);
6042 		break;
6043 	case SCTP_ADAPTATION_LAYER:
6044 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6045 							optlen);
6046 		break;
6047 	case SCTP_CONTEXT:
6048 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6049 		break;
6050 	case SCTP_FRAGMENT_INTERLEAVE:
6051 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6052 							     optlen);
6053 		break;
6054 	case SCTP_PARTIAL_DELIVERY_POINT:
6055 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6056 								optlen);
6057 		break;
6058 	case SCTP_MAX_BURST:
6059 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6060 		break;
6061 	case SCTP_AUTH_KEY:
6062 	case SCTP_AUTH_CHUNK:
6063 	case SCTP_AUTH_DELETE_KEY:
6064 		retval = -EOPNOTSUPP;
6065 		break;
6066 	case SCTP_HMAC_IDENT:
6067 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6068 		break;
6069 	case SCTP_AUTH_ACTIVE_KEY:
6070 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6071 		break;
6072 	case SCTP_PEER_AUTH_CHUNKS:
6073 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6074 							optlen);
6075 		break;
6076 	case SCTP_LOCAL_AUTH_CHUNKS:
6077 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6078 							optlen);
6079 		break;
6080 	case SCTP_GET_ASSOC_NUMBER:
6081 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6082 		break;
6083 	case SCTP_GET_ASSOC_ID_LIST:
6084 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6085 		break;
6086 	case SCTP_AUTO_ASCONF:
6087 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6088 		break;
6089 	case SCTP_PEER_ADDR_THLDS:
6090 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6091 		break;
6092 	case SCTP_GET_ASSOC_STATS:
6093 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6094 		break;
6095 	case SCTP_RECVRCVINFO:
6096 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6097 		break;
6098 	case SCTP_RECVNXTINFO:
6099 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6100 		break;
6101 	default:
6102 		retval = -ENOPROTOOPT;
6103 		break;
6104 	}
6105 
6106 	release_sock(sk);
6107 	return retval;
6108 }
6109 
6110 static void sctp_hash(struct sock *sk)
6111 {
6112 	/* STUB */
6113 }
6114 
6115 static void sctp_unhash(struct sock *sk)
6116 {
6117 	/* STUB */
6118 }
6119 
6120 /* Check if port is acceptable.  Possibly find first available port.
6121  *
6122  * The port hash table (contained in the 'global' SCTP protocol storage
6123  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6124  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6125  * list (the list number is the port number hashed out, so as you
6126  * would expect from a hash function, all the ports in a given list have
6127  * such a number that hashes out to the same list number; you were
6128  * expecting that, right?); so each list has a set of ports, with a
6129  * link to the socket (struct sock) that uses it, the port number and
6130  * a fastreuse flag (FIXME: NPI ipg).
6131  */
6132 static struct sctp_bind_bucket *sctp_bucket_create(
6133 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6134 
6135 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6136 {
6137 	struct sctp_bind_hashbucket *head; /* hash list */
6138 	struct sctp_bind_bucket *pp;
6139 	unsigned short snum;
6140 	int ret;
6141 
6142 	snum = ntohs(addr->v4.sin_port);
6143 
6144 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6145 
6146 	local_bh_disable();
6147 
6148 	if (snum == 0) {
6149 		/* Search for an available port. */
6150 		int low, high, remaining, index;
6151 		unsigned int rover;
6152 		struct net *net = sock_net(sk);
6153 
6154 		inet_get_local_port_range(net, &low, &high);
6155 		remaining = (high - low) + 1;
6156 		rover = prandom_u32() % remaining + low;
6157 
6158 		do {
6159 			rover++;
6160 			if ((rover < low) || (rover > high))
6161 				rover = low;
6162 			if (inet_is_local_reserved_port(net, rover))
6163 				continue;
6164 			index = sctp_phashfn(sock_net(sk), rover);
6165 			head = &sctp_port_hashtable[index];
6166 			spin_lock(&head->lock);
6167 			sctp_for_each_hentry(pp, &head->chain)
6168 				if ((pp->port == rover) &&
6169 				    net_eq(sock_net(sk), pp->net))
6170 					goto next;
6171 			break;
6172 		next:
6173 			spin_unlock(&head->lock);
6174 		} while (--remaining > 0);
6175 
6176 		/* Exhausted local port range during search? */
6177 		ret = 1;
6178 		if (remaining <= 0)
6179 			goto fail;
6180 
6181 		/* OK, here is the one we will use.  HEAD (the port
6182 		 * hash table list entry) is non-NULL and we hold it's
6183 		 * mutex.
6184 		 */
6185 		snum = rover;
6186 	} else {
6187 		/* We are given an specific port number; we verify
6188 		 * that it is not being used. If it is used, we will
6189 		 * exahust the search in the hash list corresponding
6190 		 * to the port number (snum) - we detect that with the
6191 		 * port iterator, pp being NULL.
6192 		 */
6193 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6194 		spin_lock(&head->lock);
6195 		sctp_for_each_hentry(pp, &head->chain) {
6196 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6197 				goto pp_found;
6198 		}
6199 	}
6200 	pp = NULL;
6201 	goto pp_not_found;
6202 pp_found:
6203 	if (!hlist_empty(&pp->owner)) {
6204 		/* We had a port hash table hit - there is an
6205 		 * available port (pp != NULL) and it is being
6206 		 * used by other socket (pp->owner not empty); that other
6207 		 * socket is going to be sk2.
6208 		 */
6209 		int reuse = sk->sk_reuse;
6210 		struct sock *sk2;
6211 
6212 		pr_debug("%s: found a possible match\n", __func__);
6213 
6214 		if (pp->fastreuse && sk->sk_reuse &&
6215 			sk->sk_state != SCTP_SS_LISTENING)
6216 			goto success;
6217 
6218 		/* Run through the list of sockets bound to the port
6219 		 * (pp->port) [via the pointers bind_next and
6220 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6221 		 * we get the endpoint they describe and run through
6222 		 * the endpoint's list of IP (v4 or v6) addresses,
6223 		 * comparing each of the addresses with the address of
6224 		 * the socket sk. If we find a match, then that means
6225 		 * that this port/socket (sk) combination are already
6226 		 * in an endpoint.
6227 		 */
6228 		sk_for_each_bound(sk2, &pp->owner) {
6229 			struct sctp_endpoint *ep2;
6230 			ep2 = sctp_sk(sk2)->ep;
6231 
6232 			if (sk == sk2 ||
6233 			    (reuse && sk2->sk_reuse &&
6234 			     sk2->sk_state != SCTP_SS_LISTENING))
6235 				continue;
6236 
6237 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6238 						 sctp_sk(sk2), sctp_sk(sk))) {
6239 				ret = (long)sk2;
6240 				goto fail_unlock;
6241 			}
6242 		}
6243 
6244 		pr_debug("%s: found a match\n", __func__);
6245 	}
6246 pp_not_found:
6247 	/* If there was a hash table miss, create a new port.  */
6248 	ret = 1;
6249 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6250 		goto fail_unlock;
6251 
6252 	/* In either case (hit or miss), make sure fastreuse is 1 only
6253 	 * if sk->sk_reuse is too (that is, if the caller requested
6254 	 * SO_REUSEADDR on this socket -sk-).
6255 	 */
6256 	if (hlist_empty(&pp->owner)) {
6257 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6258 			pp->fastreuse = 1;
6259 		else
6260 			pp->fastreuse = 0;
6261 	} else if (pp->fastreuse &&
6262 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6263 		pp->fastreuse = 0;
6264 
6265 	/* We are set, so fill up all the data in the hash table
6266 	 * entry, tie the socket list information with the rest of the
6267 	 * sockets FIXME: Blurry, NPI (ipg).
6268 	 */
6269 success:
6270 	if (!sctp_sk(sk)->bind_hash) {
6271 		inet_sk(sk)->inet_num = snum;
6272 		sk_add_bind_node(sk, &pp->owner);
6273 		sctp_sk(sk)->bind_hash = pp;
6274 	}
6275 	ret = 0;
6276 
6277 fail_unlock:
6278 	spin_unlock(&head->lock);
6279 
6280 fail:
6281 	local_bh_enable();
6282 	return ret;
6283 }
6284 
6285 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6286  * port is requested.
6287  */
6288 static int sctp_get_port(struct sock *sk, unsigned short snum)
6289 {
6290 	union sctp_addr addr;
6291 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6292 
6293 	/* Set up a dummy address struct from the sk. */
6294 	af->from_sk(&addr, sk);
6295 	addr.v4.sin_port = htons(snum);
6296 
6297 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6298 	return !!sctp_get_port_local(sk, &addr);
6299 }
6300 
6301 /*
6302  *  Move a socket to LISTENING state.
6303  */
6304 static int sctp_listen_start(struct sock *sk, int backlog)
6305 {
6306 	struct sctp_sock *sp = sctp_sk(sk);
6307 	struct sctp_endpoint *ep = sp->ep;
6308 	struct crypto_hash *tfm = NULL;
6309 	char alg[32];
6310 
6311 	/* Allocate HMAC for generating cookie. */
6312 	if (!sp->hmac && sp->sctp_hmac_alg) {
6313 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6314 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6315 		if (IS_ERR(tfm)) {
6316 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6317 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6318 			return -ENOSYS;
6319 		}
6320 		sctp_sk(sk)->hmac = tfm;
6321 	}
6322 
6323 	/*
6324 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6325 	 * call that allows new associations to be accepted, the system
6326 	 * picks an ephemeral port and will choose an address set equivalent
6327 	 * to binding with a wildcard address.
6328 	 *
6329 	 * This is not currently spelled out in the SCTP sockets
6330 	 * extensions draft, but follows the practice as seen in TCP
6331 	 * sockets.
6332 	 *
6333 	 */
6334 	sk->sk_state = SCTP_SS_LISTENING;
6335 	if (!ep->base.bind_addr.port) {
6336 		if (sctp_autobind(sk))
6337 			return -EAGAIN;
6338 	} else {
6339 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6340 			sk->sk_state = SCTP_SS_CLOSED;
6341 			return -EADDRINUSE;
6342 		}
6343 	}
6344 
6345 	sk->sk_max_ack_backlog = backlog;
6346 	sctp_hash_endpoint(ep);
6347 	return 0;
6348 }
6349 
6350 /*
6351  * 4.1.3 / 5.1.3 listen()
6352  *
6353  *   By default, new associations are not accepted for UDP style sockets.
6354  *   An application uses listen() to mark a socket as being able to
6355  *   accept new associations.
6356  *
6357  *   On TCP style sockets, applications use listen() to ready the SCTP
6358  *   endpoint for accepting inbound associations.
6359  *
6360  *   On both types of endpoints a backlog of '0' disables listening.
6361  *
6362  *  Move a socket to LISTENING state.
6363  */
6364 int sctp_inet_listen(struct socket *sock, int backlog)
6365 {
6366 	struct sock *sk = sock->sk;
6367 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6368 	int err = -EINVAL;
6369 
6370 	if (unlikely(backlog < 0))
6371 		return err;
6372 
6373 	lock_sock(sk);
6374 
6375 	/* Peeled-off sockets are not allowed to listen().  */
6376 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6377 		goto out;
6378 
6379 	if (sock->state != SS_UNCONNECTED)
6380 		goto out;
6381 
6382 	/* If backlog is zero, disable listening. */
6383 	if (!backlog) {
6384 		if (sctp_sstate(sk, CLOSED))
6385 			goto out;
6386 
6387 		err = 0;
6388 		sctp_unhash_endpoint(ep);
6389 		sk->sk_state = SCTP_SS_CLOSED;
6390 		if (sk->sk_reuse)
6391 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6392 		goto out;
6393 	}
6394 
6395 	/* If we are already listening, just update the backlog */
6396 	if (sctp_sstate(sk, LISTENING))
6397 		sk->sk_max_ack_backlog = backlog;
6398 	else {
6399 		err = sctp_listen_start(sk, backlog);
6400 		if (err)
6401 			goto out;
6402 	}
6403 
6404 	err = 0;
6405 out:
6406 	release_sock(sk);
6407 	return err;
6408 }
6409 
6410 /*
6411  * This function is done by modeling the current datagram_poll() and the
6412  * tcp_poll().  Note that, based on these implementations, we don't
6413  * lock the socket in this function, even though it seems that,
6414  * ideally, locking or some other mechanisms can be used to ensure
6415  * the integrity of the counters (sndbuf and wmem_alloc) used
6416  * in this place.  We assume that we don't need locks either until proven
6417  * otherwise.
6418  *
6419  * Another thing to note is that we include the Async I/O support
6420  * here, again, by modeling the current TCP/UDP code.  We don't have
6421  * a good way to test with it yet.
6422  */
6423 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6424 {
6425 	struct sock *sk = sock->sk;
6426 	struct sctp_sock *sp = sctp_sk(sk);
6427 	unsigned int mask;
6428 
6429 	poll_wait(file, sk_sleep(sk), wait);
6430 
6431 	/* A TCP-style listening socket becomes readable when the accept queue
6432 	 * is not empty.
6433 	 */
6434 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6435 		return (!list_empty(&sp->ep->asocs)) ?
6436 			(POLLIN | POLLRDNORM) : 0;
6437 
6438 	mask = 0;
6439 
6440 	/* Is there any exceptional events?  */
6441 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6442 		mask |= POLLERR |
6443 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6444 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6445 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6446 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6447 		mask |= POLLHUP;
6448 
6449 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6450 	if (!skb_queue_empty(&sk->sk_receive_queue))
6451 		mask |= POLLIN | POLLRDNORM;
6452 
6453 	/* The association is either gone or not ready.  */
6454 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6455 		return mask;
6456 
6457 	/* Is it writable?  */
6458 	if (sctp_writeable(sk)) {
6459 		mask |= POLLOUT | POLLWRNORM;
6460 	} else {
6461 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6462 		/*
6463 		 * Since the socket is not locked, the buffer
6464 		 * might be made available after the writeable check and
6465 		 * before the bit is set.  This could cause a lost I/O
6466 		 * signal.  tcp_poll() has a race breaker for this race
6467 		 * condition.  Based on their implementation, we put
6468 		 * in the following code to cover it as well.
6469 		 */
6470 		if (sctp_writeable(sk))
6471 			mask |= POLLOUT | POLLWRNORM;
6472 	}
6473 	return mask;
6474 }
6475 
6476 /********************************************************************
6477  * 2nd Level Abstractions
6478  ********************************************************************/
6479 
6480 static struct sctp_bind_bucket *sctp_bucket_create(
6481 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6482 {
6483 	struct sctp_bind_bucket *pp;
6484 
6485 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6486 	if (pp) {
6487 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6488 		pp->port = snum;
6489 		pp->fastreuse = 0;
6490 		INIT_HLIST_HEAD(&pp->owner);
6491 		pp->net = net;
6492 		hlist_add_head(&pp->node, &head->chain);
6493 	}
6494 	return pp;
6495 }
6496 
6497 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6498 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6499 {
6500 	if (pp && hlist_empty(&pp->owner)) {
6501 		__hlist_del(&pp->node);
6502 		kmem_cache_free(sctp_bucket_cachep, pp);
6503 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6504 	}
6505 }
6506 
6507 /* Release this socket's reference to a local port.  */
6508 static inline void __sctp_put_port(struct sock *sk)
6509 {
6510 	struct sctp_bind_hashbucket *head =
6511 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6512 						  inet_sk(sk)->inet_num)];
6513 	struct sctp_bind_bucket *pp;
6514 
6515 	spin_lock(&head->lock);
6516 	pp = sctp_sk(sk)->bind_hash;
6517 	__sk_del_bind_node(sk);
6518 	sctp_sk(sk)->bind_hash = NULL;
6519 	inet_sk(sk)->inet_num = 0;
6520 	sctp_bucket_destroy(pp);
6521 	spin_unlock(&head->lock);
6522 }
6523 
6524 void sctp_put_port(struct sock *sk)
6525 {
6526 	local_bh_disable();
6527 	__sctp_put_port(sk);
6528 	local_bh_enable();
6529 }
6530 
6531 /*
6532  * The system picks an ephemeral port and choose an address set equivalent
6533  * to binding with a wildcard address.
6534  * One of those addresses will be the primary address for the association.
6535  * This automatically enables the multihoming capability of SCTP.
6536  */
6537 static int sctp_autobind(struct sock *sk)
6538 {
6539 	union sctp_addr autoaddr;
6540 	struct sctp_af *af;
6541 	__be16 port;
6542 
6543 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6544 	af = sctp_sk(sk)->pf->af;
6545 
6546 	port = htons(inet_sk(sk)->inet_num);
6547 	af->inaddr_any(&autoaddr, port);
6548 
6549 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6550 }
6551 
6552 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6553  *
6554  * From RFC 2292
6555  * 4.2 The cmsghdr Structure *
6556  *
6557  * When ancillary data is sent or received, any number of ancillary data
6558  * objects can be specified by the msg_control and msg_controllen members of
6559  * the msghdr structure, because each object is preceded by
6560  * a cmsghdr structure defining the object's length (the cmsg_len member).
6561  * Historically Berkeley-derived implementations have passed only one object
6562  * at a time, but this API allows multiple objects to be
6563  * passed in a single call to sendmsg() or recvmsg(). The following example
6564  * shows two ancillary data objects in a control buffer.
6565  *
6566  *   |<--------------------------- msg_controllen -------------------------->|
6567  *   |                                                                       |
6568  *
6569  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6570  *
6571  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6572  *   |                                   |                                   |
6573  *
6574  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6575  *
6576  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6577  *   |                                |  |                                |  |
6578  *
6579  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6580  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6581  *
6582  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6583  *
6584  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6585  *    ^
6586  *    |
6587  *
6588  * msg_control
6589  * points here
6590  */
6591 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6592 {
6593 	struct cmsghdr *cmsg;
6594 	struct msghdr *my_msg = (struct msghdr *)msg;
6595 
6596 	for_each_cmsghdr(cmsg, my_msg) {
6597 		if (!CMSG_OK(my_msg, cmsg))
6598 			return -EINVAL;
6599 
6600 		/* Should we parse this header or ignore?  */
6601 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6602 			continue;
6603 
6604 		/* Strictly check lengths following example in SCM code.  */
6605 		switch (cmsg->cmsg_type) {
6606 		case SCTP_INIT:
6607 			/* SCTP Socket API Extension
6608 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6609 			 *
6610 			 * This cmsghdr structure provides information for
6611 			 * initializing new SCTP associations with sendmsg().
6612 			 * The SCTP_INITMSG socket option uses this same data
6613 			 * structure.  This structure is not used for
6614 			 * recvmsg().
6615 			 *
6616 			 * cmsg_level    cmsg_type      cmsg_data[]
6617 			 * ------------  ------------   ----------------------
6618 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6619 			 */
6620 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6621 				return -EINVAL;
6622 
6623 			cmsgs->init = CMSG_DATA(cmsg);
6624 			break;
6625 
6626 		case SCTP_SNDRCV:
6627 			/* SCTP Socket API Extension
6628 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6629 			 *
6630 			 * This cmsghdr structure specifies SCTP options for
6631 			 * sendmsg() and describes SCTP header information
6632 			 * about a received message through recvmsg().
6633 			 *
6634 			 * cmsg_level    cmsg_type      cmsg_data[]
6635 			 * ------------  ------------   ----------------------
6636 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6637 			 */
6638 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6639 				return -EINVAL;
6640 
6641 			cmsgs->srinfo = CMSG_DATA(cmsg);
6642 
6643 			if (cmsgs->srinfo->sinfo_flags &
6644 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6645 			      SCTP_ABORT | SCTP_EOF))
6646 				return -EINVAL;
6647 			break;
6648 
6649 		case SCTP_SNDINFO:
6650 			/* SCTP Socket API Extension
6651 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6652 			 *
6653 			 * This cmsghdr structure specifies SCTP options for
6654 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6655 			 * SCTP_SNDRCV which has been deprecated.
6656 			 *
6657 			 * cmsg_level    cmsg_type      cmsg_data[]
6658 			 * ------------  ------------   ---------------------
6659 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6660 			 */
6661 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6662 				return -EINVAL;
6663 
6664 			cmsgs->sinfo = CMSG_DATA(cmsg);
6665 
6666 			if (cmsgs->sinfo->snd_flags &
6667 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6668 			      SCTP_ABORT | SCTP_EOF))
6669 				return -EINVAL;
6670 			break;
6671 		default:
6672 			return -EINVAL;
6673 		}
6674 	}
6675 
6676 	return 0;
6677 }
6678 
6679 /*
6680  * Wait for a packet..
6681  * Note: This function is the same function as in core/datagram.c
6682  * with a few modifications to make lksctp work.
6683  */
6684 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6685 {
6686 	int error;
6687 	DEFINE_WAIT(wait);
6688 
6689 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6690 
6691 	/* Socket errors? */
6692 	error = sock_error(sk);
6693 	if (error)
6694 		goto out;
6695 
6696 	if (!skb_queue_empty(&sk->sk_receive_queue))
6697 		goto ready;
6698 
6699 	/* Socket shut down?  */
6700 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6701 		goto out;
6702 
6703 	/* Sequenced packets can come disconnected.  If so we report the
6704 	 * problem.
6705 	 */
6706 	error = -ENOTCONN;
6707 
6708 	/* Is there a good reason to think that we may receive some data?  */
6709 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6710 		goto out;
6711 
6712 	/* Handle signals.  */
6713 	if (signal_pending(current))
6714 		goto interrupted;
6715 
6716 	/* Let another process have a go.  Since we are going to sleep
6717 	 * anyway.  Note: This may cause odd behaviors if the message
6718 	 * does not fit in the user's buffer, but this seems to be the
6719 	 * only way to honor MSG_DONTWAIT realistically.
6720 	 */
6721 	release_sock(sk);
6722 	*timeo_p = schedule_timeout(*timeo_p);
6723 	lock_sock(sk);
6724 
6725 ready:
6726 	finish_wait(sk_sleep(sk), &wait);
6727 	return 0;
6728 
6729 interrupted:
6730 	error = sock_intr_errno(*timeo_p);
6731 
6732 out:
6733 	finish_wait(sk_sleep(sk), &wait);
6734 	*err = error;
6735 	return error;
6736 }
6737 
6738 /* Receive a datagram.
6739  * Note: This is pretty much the same routine as in core/datagram.c
6740  * with a few changes to make lksctp work.
6741  */
6742 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6743 				       int noblock, int *err)
6744 {
6745 	int error;
6746 	struct sk_buff *skb;
6747 	long timeo;
6748 
6749 	timeo = sock_rcvtimeo(sk, noblock);
6750 
6751 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6752 		 MAX_SCHEDULE_TIMEOUT);
6753 
6754 	do {
6755 		/* Again only user level code calls this function,
6756 		 * so nothing interrupt level
6757 		 * will suddenly eat the receive_queue.
6758 		 *
6759 		 *  Look at current nfs client by the way...
6760 		 *  However, this function was correct in any case. 8)
6761 		 */
6762 		if (flags & MSG_PEEK) {
6763 			spin_lock_bh(&sk->sk_receive_queue.lock);
6764 			skb = skb_peek(&sk->sk_receive_queue);
6765 			if (skb)
6766 				atomic_inc(&skb->users);
6767 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6768 		} else {
6769 			skb = skb_dequeue(&sk->sk_receive_queue);
6770 		}
6771 
6772 		if (skb)
6773 			return skb;
6774 
6775 		/* Caller is allowed not to check sk->sk_err before calling. */
6776 		error = sock_error(sk);
6777 		if (error)
6778 			goto no_packet;
6779 
6780 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6781 			break;
6782 
6783 		if (sk_can_busy_loop(sk) &&
6784 		    sk_busy_loop(sk, noblock))
6785 			continue;
6786 
6787 		/* User doesn't want to wait.  */
6788 		error = -EAGAIN;
6789 		if (!timeo)
6790 			goto no_packet;
6791 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6792 
6793 	return NULL;
6794 
6795 no_packet:
6796 	*err = error;
6797 	return NULL;
6798 }
6799 
6800 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6801 static void __sctp_write_space(struct sctp_association *asoc)
6802 {
6803 	struct sock *sk = asoc->base.sk;
6804 	struct socket *sock = sk->sk_socket;
6805 
6806 	if ((sctp_wspace(asoc) > 0) && sock) {
6807 		if (waitqueue_active(&asoc->wait))
6808 			wake_up_interruptible(&asoc->wait);
6809 
6810 		if (sctp_writeable(sk)) {
6811 			wait_queue_head_t *wq = sk_sleep(sk);
6812 
6813 			if (wq && waitqueue_active(wq))
6814 				wake_up_interruptible(wq);
6815 
6816 			/* Note that we try to include the Async I/O support
6817 			 * here by modeling from the current TCP/UDP code.
6818 			 * We have not tested with it yet.
6819 			 */
6820 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6821 				sock_wake_async(sock,
6822 						SOCK_WAKE_SPACE, POLL_OUT);
6823 		}
6824 	}
6825 }
6826 
6827 static void sctp_wake_up_waiters(struct sock *sk,
6828 				 struct sctp_association *asoc)
6829 {
6830 	struct sctp_association *tmp = asoc;
6831 
6832 	/* We do accounting for the sndbuf space per association,
6833 	 * so we only need to wake our own association.
6834 	 */
6835 	if (asoc->ep->sndbuf_policy)
6836 		return __sctp_write_space(asoc);
6837 
6838 	/* If association goes down and is just flushing its
6839 	 * outq, then just normally notify others.
6840 	 */
6841 	if (asoc->base.dead)
6842 		return sctp_write_space(sk);
6843 
6844 	/* Accounting for the sndbuf space is per socket, so we
6845 	 * need to wake up others, try to be fair and in case of
6846 	 * other associations, let them have a go first instead
6847 	 * of just doing a sctp_write_space() call.
6848 	 *
6849 	 * Note that we reach sctp_wake_up_waiters() only when
6850 	 * associations free up queued chunks, thus we are under
6851 	 * lock and the list of associations on a socket is
6852 	 * guaranteed not to change.
6853 	 */
6854 	for (tmp = list_next_entry(tmp, asocs); 1;
6855 	     tmp = list_next_entry(tmp, asocs)) {
6856 		/* Manually skip the head element. */
6857 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6858 			continue;
6859 		/* Wake up association. */
6860 		__sctp_write_space(tmp);
6861 		/* We've reached the end. */
6862 		if (tmp == asoc)
6863 			break;
6864 	}
6865 }
6866 
6867 /* Do accounting for the sndbuf space.
6868  * Decrement the used sndbuf space of the corresponding association by the
6869  * data size which was just transmitted(freed).
6870  */
6871 static void sctp_wfree(struct sk_buff *skb)
6872 {
6873 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6874 	struct sctp_association *asoc = chunk->asoc;
6875 	struct sock *sk = asoc->base.sk;
6876 
6877 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6878 				sizeof(struct sk_buff) +
6879 				sizeof(struct sctp_chunk);
6880 
6881 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6882 
6883 	/*
6884 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6885 	 */
6886 	sk->sk_wmem_queued   -= skb->truesize;
6887 	sk_mem_uncharge(sk, skb->truesize);
6888 
6889 	sock_wfree(skb);
6890 	sctp_wake_up_waiters(sk, asoc);
6891 
6892 	sctp_association_put(asoc);
6893 }
6894 
6895 /* Do accounting for the receive space on the socket.
6896  * Accounting for the association is done in ulpevent.c
6897  * We set this as a destructor for the cloned data skbs so that
6898  * accounting is done at the correct time.
6899  */
6900 void sctp_sock_rfree(struct sk_buff *skb)
6901 {
6902 	struct sock *sk = skb->sk;
6903 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6904 
6905 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6906 
6907 	/*
6908 	 * Mimic the behavior of sock_rfree
6909 	 */
6910 	sk_mem_uncharge(sk, event->rmem_len);
6911 }
6912 
6913 
6914 /* Helper function to wait for space in the sndbuf.  */
6915 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6916 				size_t msg_len)
6917 {
6918 	struct sock *sk = asoc->base.sk;
6919 	int err = 0;
6920 	long current_timeo = *timeo_p;
6921 	DEFINE_WAIT(wait);
6922 
6923 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6924 		 *timeo_p, msg_len);
6925 
6926 	/* Increment the association's refcnt.  */
6927 	sctp_association_hold(asoc);
6928 
6929 	/* Wait on the association specific sndbuf space. */
6930 	for (;;) {
6931 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6932 					  TASK_INTERRUPTIBLE);
6933 		if (!*timeo_p)
6934 			goto do_nonblock;
6935 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6936 		    asoc->base.dead)
6937 			goto do_error;
6938 		if (signal_pending(current))
6939 			goto do_interrupted;
6940 		if (msg_len <= sctp_wspace(asoc))
6941 			break;
6942 
6943 		/* Let another process have a go.  Since we are going
6944 		 * to sleep anyway.
6945 		 */
6946 		release_sock(sk);
6947 		current_timeo = schedule_timeout(current_timeo);
6948 		BUG_ON(sk != asoc->base.sk);
6949 		lock_sock(sk);
6950 
6951 		*timeo_p = current_timeo;
6952 	}
6953 
6954 out:
6955 	finish_wait(&asoc->wait, &wait);
6956 
6957 	/* Release the association's refcnt.  */
6958 	sctp_association_put(asoc);
6959 
6960 	return err;
6961 
6962 do_error:
6963 	err = -EPIPE;
6964 	goto out;
6965 
6966 do_interrupted:
6967 	err = sock_intr_errno(*timeo_p);
6968 	goto out;
6969 
6970 do_nonblock:
6971 	err = -EAGAIN;
6972 	goto out;
6973 }
6974 
6975 void sctp_data_ready(struct sock *sk)
6976 {
6977 	struct socket_wq *wq;
6978 
6979 	rcu_read_lock();
6980 	wq = rcu_dereference(sk->sk_wq);
6981 	if (wq_has_sleeper(wq))
6982 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6983 						POLLRDNORM | POLLRDBAND);
6984 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6985 	rcu_read_unlock();
6986 }
6987 
6988 /* If socket sndbuf has changed, wake up all per association waiters.  */
6989 void sctp_write_space(struct sock *sk)
6990 {
6991 	struct sctp_association *asoc;
6992 
6993 	/* Wake up the tasks in each wait queue.  */
6994 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6995 		__sctp_write_space(asoc);
6996 	}
6997 }
6998 
6999 /* Is there any sndbuf space available on the socket?
7000  *
7001  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7002  * associations on the same socket.  For a UDP-style socket with
7003  * multiple associations, it is possible for it to be "unwriteable"
7004  * prematurely.  I assume that this is acceptable because
7005  * a premature "unwriteable" is better than an accidental "writeable" which
7006  * would cause an unwanted block under certain circumstances.  For the 1-1
7007  * UDP-style sockets or TCP-style sockets, this code should work.
7008  *  - Daisy
7009  */
7010 static int sctp_writeable(struct sock *sk)
7011 {
7012 	int amt = 0;
7013 
7014 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7015 	if (amt < 0)
7016 		amt = 0;
7017 	return amt;
7018 }
7019 
7020 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7021  * returns immediately with EINPROGRESS.
7022  */
7023 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7024 {
7025 	struct sock *sk = asoc->base.sk;
7026 	int err = 0;
7027 	long current_timeo = *timeo_p;
7028 	DEFINE_WAIT(wait);
7029 
7030 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7031 
7032 	/* Increment the association's refcnt.  */
7033 	sctp_association_hold(asoc);
7034 
7035 	for (;;) {
7036 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7037 					  TASK_INTERRUPTIBLE);
7038 		if (!*timeo_p)
7039 			goto do_nonblock;
7040 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7041 			break;
7042 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7043 		    asoc->base.dead)
7044 			goto do_error;
7045 		if (signal_pending(current))
7046 			goto do_interrupted;
7047 
7048 		if (sctp_state(asoc, ESTABLISHED))
7049 			break;
7050 
7051 		/* Let another process have a go.  Since we are going
7052 		 * to sleep anyway.
7053 		 */
7054 		release_sock(sk);
7055 		current_timeo = schedule_timeout(current_timeo);
7056 		lock_sock(sk);
7057 
7058 		*timeo_p = current_timeo;
7059 	}
7060 
7061 out:
7062 	finish_wait(&asoc->wait, &wait);
7063 
7064 	/* Release the association's refcnt.  */
7065 	sctp_association_put(asoc);
7066 
7067 	return err;
7068 
7069 do_error:
7070 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7071 		err = -ETIMEDOUT;
7072 	else
7073 		err = -ECONNREFUSED;
7074 	goto out;
7075 
7076 do_interrupted:
7077 	err = sock_intr_errno(*timeo_p);
7078 	goto out;
7079 
7080 do_nonblock:
7081 	err = -EINPROGRESS;
7082 	goto out;
7083 }
7084 
7085 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7086 {
7087 	struct sctp_endpoint *ep;
7088 	int err = 0;
7089 	DEFINE_WAIT(wait);
7090 
7091 	ep = sctp_sk(sk)->ep;
7092 
7093 
7094 	for (;;) {
7095 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7096 					  TASK_INTERRUPTIBLE);
7097 
7098 		if (list_empty(&ep->asocs)) {
7099 			release_sock(sk);
7100 			timeo = schedule_timeout(timeo);
7101 			lock_sock(sk);
7102 		}
7103 
7104 		err = -EINVAL;
7105 		if (!sctp_sstate(sk, LISTENING))
7106 			break;
7107 
7108 		err = 0;
7109 		if (!list_empty(&ep->asocs))
7110 			break;
7111 
7112 		err = sock_intr_errno(timeo);
7113 		if (signal_pending(current))
7114 			break;
7115 
7116 		err = -EAGAIN;
7117 		if (!timeo)
7118 			break;
7119 	}
7120 
7121 	finish_wait(sk_sleep(sk), &wait);
7122 
7123 	return err;
7124 }
7125 
7126 static void sctp_wait_for_close(struct sock *sk, long timeout)
7127 {
7128 	DEFINE_WAIT(wait);
7129 
7130 	do {
7131 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7132 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7133 			break;
7134 		release_sock(sk);
7135 		timeout = schedule_timeout(timeout);
7136 		lock_sock(sk);
7137 	} while (!signal_pending(current) && timeout);
7138 
7139 	finish_wait(sk_sleep(sk), &wait);
7140 }
7141 
7142 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7143 {
7144 	struct sk_buff *frag;
7145 
7146 	if (!skb->data_len)
7147 		goto done;
7148 
7149 	/* Don't forget the fragments. */
7150 	skb_walk_frags(skb, frag)
7151 		sctp_skb_set_owner_r_frag(frag, sk);
7152 
7153 done:
7154 	sctp_skb_set_owner_r(skb, sk);
7155 }
7156 
7157 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7158 		    struct sctp_association *asoc)
7159 {
7160 	struct inet_sock *inet = inet_sk(sk);
7161 	struct inet_sock *newinet;
7162 
7163 	newsk->sk_type = sk->sk_type;
7164 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7165 	newsk->sk_flags = sk->sk_flags;
7166 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7167 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7168 	newsk->sk_reuse = sk->sk_reuse;
7169 
7170 	newsk->sk_shutdown = sk->sk_shutdown;
7171 	newsk->sk_destruct = sctp_destruct_sock;
7172 	newsk->sk_family = sk->sk_family;
7173 	newsk->sk_protocol = IPPROTO_SCTP;
7174 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7175 	newsk->sk_sndbuf = sk->sk_sndbuf;
7176 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7177 	newsk->sk_lingertime = sk->sk_lingertime;
7178 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7179 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7180 
7181 	newinet = inet_sk(newsk);
7182 
7183 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7184 	 * getsockname() and getpeername()
7185 	 */
7186 	newinet->inet_sport = inet->inet_sport;
7187 	newinet->inet_saddr = inet->inet_saddr;
7188 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7189 	newinet->inet_dport = htons(asoc->peer.port);
7190 	newinet->pmtudisc = inet->pmtudisc;
7191 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7192 
7193 	newinet->uc_ttl = inet->uc_ttl;
7194 	newinet->mc_loop = 1;
7195 	newinet->mc_ttl = 1;
7196 	newinet->mc_index = 0;
7197 	newinet->mc_list = NULL;
7198 }
7199 
7200 static inline void sctp_copy_descendant(struct sock *sk_to,
7201 					const struct sock *sk_from)
7202 {
7203 	int ancestor_size = sizeof(struct inet_sock) +
7204 			    sizeof(struct sctp_sock) -
7205 			    offsetof(struct sctp_sock, auto_asconf_list);
7206 
7207 	if (sk_from->sk_family == PF_INET6)
7208 		ancestor_size += sizeof(struct ipv6_pinfo);
7209 
7210 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7211 }
7212 
7213 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7214  * and its messages to the newsk.
7215  */
7216 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7217 			      struct sctp_association *assoc,
7218 			      sctp_socket_type_t type)
7219 {
7220 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7221 	struct sctp_sock *newsp = sctp_sk(newsk);
7222 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7223 	struct sctp_endpoint *newep = newsp->ep;
7224 	struct sk_buff *skb, *tmp;
7225 	struct sctp_ulpevent *event;
7226 	struct sctp_bind_hashbucket *head;
7227 
7228 	/* Migrate socket buffer sizes and all the socket level options to the
7229 	 * new socket.
7230 	 */
7231 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7232 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7233 	/* Brute force copy old sctp opt. */
7234 	sctp_copy_descendant(newsk, oldsk);
7235 
7236 	/* Restore the ep value that was overwritten with the above structure
7237 	 * copy.
7238 	 */
7239 	newsp->ep = newep;
7240 	newsp->hmac = NULL;
7241 
7242 	/* Hook this new socket in to the bind_hash list. */
7243 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7244 						 inet_sk(oldsk)->inet_num)];
7245 	local_bh_disable();
7246 	spin_lock(&head->lock);
7247 	pp = sctp_sk(oldsk)->bind_hash;
7248 	sk_add_bind_node(newsk, &pp->owner);
7249 	sctp_sk(newsk)->bind_hash = pp;
7250 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7251 	spin_unlock(&head->lock);
7252 	local_bh_enable();
7253 
7254 	/* Copy the bind_addr list from the original endpoint to the new
7255 	 * endpoint so that we can handle restarts properly
7256 	 */
7257 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7258 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7259 
7260 	/* Move any messages in the old socket's receive queue that are for the
7261 	 * peeled off association to the new socket's receive queue.
7262 	 */
7263 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7264 		event = sctp_skb2event(skb);
7265 		if (event->asoc == assoc) {
7266 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7267 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7268 			sctp_skb_set_owner_r_frag(skb, newsk);
7269 		}
7270 	}
7271 
7272 	/* Clean up any messages pending delivery due to partial
7273 	 * delivery.   Three cases:
7274 	 * 1) No partial deliver;  no work.
7275 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7276 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7277 	 */
7278 	skb_queue_head_init(&newsp->pd_lobby);
7279 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7280 
7281 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7282 		struct sk_buff_head *queue;
7283 
7284 		/* Decide which queue to move pd_lobby skbs to. */
7285 		if (assoc->ulpq.pd_mode) {
7286 			queue = &newsp->pd_lobby;
7287 		} else
7288 			queue = &newsk->sk_receive_queue;
7289 
7290 		/* Walk through the pd_lobby, looking for skbs that
7291 		 * need moved to the new socket.
7292 		 */
7293 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7294 			event = sctp_skb2event(skb);
7295 			if (event->asoc == assoc) {
7296 				__skb_unlink(skb, &oldsp->pd_lobby);
7297 				__skb_queue_tail(queue, skb);
7298 				sctp_skb_set_owner_r_frag(skb, newsk);
7299 			}
7300 		}
7301 
7302 		/* Clear up any skbs waiting for the partial
7303 		 * delivery to finish.
7304 		 */
7305 		if (assoc->ulpq.pd_mode)
7306 			sctp_clear_pd(oldsk, NULL);
7307 
7308 	}
7309 
7310 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7311 		sctp_skb_set_owner_r_frag(skb, newsk);
7312 
7313 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7314 		sctp_skb_set_owner_r_frag(skb, newsk);
7315 
7316 	/* Set the type of socket to indicate that it is peeled off from the
7317 	 * original UDP-style socket or created with the accept() call on a
7318 	 * TCP-style socket..
7319 	 */
7320 	newsp->type = type;
7321 
7322 	/* Mark the new socket "in-use" by the user so that any packets
7323 	 * that may arrive on the association after we've moved it are
7324 	 * queued to the backlog.  This prevents a potential race between
7325 	 * backlog processing on the old socket and new-packet processing
7326 	 * on the new socket.
7327 	 *
7328 	 * The caller has just allocated newsk so we can guarantee that other
7329 	 * paths won't try to lock it and then oldsk.
7330 	 */
7331 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7332 	sctp_assoc_migrate(assoc, newsk);
7333 
7334 	/* If the association on the newsk is already closed before accept()
7335 	 * is called, set RCV_SHUTDOWN flag.
7336 	 */
7337 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7338 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7339 
7340 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7341 	release_sock(newsk);
7342 }
7343 
7344 
7345 /* This proto struct describes the ULP interface for SCTP.  */
7346 struct proto sctp_prot = {
7347 	.name        =	"SCTP",
7348 	.owner       =	THIS_MODULE,
7349 	.close       =	sctp_close,
7350 	.connect     =	sctp_connect,
7351 	.disconnect  =	sctp_disconnect,
7352 	.accept      =	sctp_accept,
7353 	.ioctl       =	sctp_ioctl,
7354 	.init        =	sctp_init_sock,
7355 	.destroy     =	sctp_destroy_sock,
7356 	.shutdown    =	sctp_shutdown,
7357 	.setsockopt  =	sctp_setsockopt,
7358 	.getsockopt  =	sctp_getsockopt,
7359 	.sendmsg     =	sctp_sendmsg,
7360 	.recvmsg     =	sctp_recvmsg,
7361 	.bind        =	sctp_bind,
7362 	.backlog_rcv =	sctp_backlog_rcv,
7363 	.hash        =	sctp_hash,
7364 	.unhash      =	sctp_unhash,
7365 	.get_port    =	sctp_get_port,
7366 	.obj_size    =  sizeof(struct sctp_sock),
7367 	.sysctl_mem  =  sysctl_sctp_mem,
7368 	.sysctl_rmem =  sysctl_sctp_rmem,
7369 	.sysctl_wmem =  sysctl_sctp_wmem,
7370 	.memory_pressure = &sctp_memory_pressure,
7371 	.enter_memory_pressure = sctp_enter_memory_pressure,
7372 	.memory_allocated = &sctp_memory_allocated,
7373 	.sockets_allocated = &sctp_sockets_allocated,
7374 };
7375 
7376 #if IS_ENABLED(CONFIG_IPV6)
7377 
7378 struct proto sctpv6_prot = {
7379 	.name		= "SCTPv6",
7380 	.owner		= THIS_MODULE,
7381 	.close		= sctp_close,
7382 	.connect	= sctp_connect,
7383 	.disconnect	= sctp_disconnect,
7384 	.accept		= sctp_accept,
7385 	.ioctl		= sctp_ioctl,
7386 	.init		= sctp_init_sock,
7387 	.destroy	= sctp_destroy_sock,
7388 	.shutdown	= sctp_shutdown,
7389 	.setsockopt	= sctp_setsockopt,
7390 	.getsockopt	= sctp_getsockopt,
7391 	.sendmsg	= sctp_sendmsg,
7392 	.recvmsg	= sctp_recvmsg,
7393 	.bind		= sctp_bind,
7394 	.backlog_rcv	= sctp_backlog_rcv,
7395 	.hash		= sctp_hash,
7396 	.unhash		= sctp_unhash,
7397 	.get_port	= sctp_get_port,
7398 	.obj_size	= sizeof(struct sctp6_sock),
7399 	.sysctl_mem	= sysctl_sctp_mem,
7400 	.sysctl_rmem	= sysctl_sctp_rmem,
7401 	.sysctl_wmem	= sysctl_sctp_wmem,
7402 	.memory_pressure = &sctp_memory_pressure,
7403 	.enter_memory_pressure = sctp_enter_memory_pressure,
7404 	.memory_allocated = &sctp_memory_allocated,
7405 	.sockets_allocated = &sctp_sockets_allocated,
7406 };
7407 #endif /* IS_ENABLED(CONFIG_IPV6) */
7408