xref: /openbmc/linux/net/sctp/socket.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
151 				       void (*cb)(struct sctp_chunk *))
152 
153 {
154 	struct sctp_outq *q = &asoc->outqueue;
155 	struct sctp_transport *t;
156 	struct sctp_chunk *chunk;
157 
158 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
159 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
160 			cb(chunk);
161 
162 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
163 		cb(chunk);
164 
165 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
166 		cb(chunk);
167 
168 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
169 		cb(chunk);
170 
171 	list_for_each_entry(chunk, &q->out_chunk_list, list)
172 		cb(chunk);
173 }
174 
175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
176 				 void (*cb)(struct sk_buff *, struct sock *))
177 
178 {
179 	struct sk_buff *skb, *tmp;
180 
181 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
182 		cb(skb, sk);
183 
184 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
185 		cb(skb, sk);
186 
187 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
188 		cb(skb, sk);
189 }
190 
191 /* Verify that this is a valid address. */
192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
193 				   int len)
194 {
195 	struct sctp_af *af;
196 
197 	/* Verify basic sockaddr. */
198 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
199 	if (!af)
200 		return -EINVAL;
201 
202 	/* Is this a valid SCTP address?  */
203 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
204 		return -EINVAL;
205 
206 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
207 		return -EINVAL;
208 
209 	return 0;
210 }
211 
212 /* Look up the association by its id.  If this is not a UDP-style
213  * socket, the ID field is always ignored.
214  */
215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
216 {
217 	struct sctp_association *asoc = NULL;
218 
219 	/* If this is not a UDP-style socket, assoc id should be ignored. */
220 	if (!sctp_style(sk, UDP)) {
221 		/* Return NULL if the socket state is not ESTABLISHED. It
222 		 * could be a TCP-style listening socket or a socket which
223 		 * hasn't yet called connect() to establish an association.
224 		 */
225 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
226 			return NULL;
227 
228 		/* Get the first and the only association from the list. */
229 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
230 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
231 					  struct sctp_association, asocs);
232 		return asoc;
233 	}
234 
235 	/* Otherwise this is a UDP-style socket. */
236 	if (id <= SCTP_ALL_ASSOC)
237 		return NULL;
238 
239 	spin_lock_bh(&sctp_assocs_id_lock);
240 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
241 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
242 		asoc = NULL;
243 	spin_unlock_bh(&sctp_assocs_id_lock);
244 
245 	return asoc;
246 }
247 
248 /* Look up the transport from an address and an assoc id. If both address and
249  * id are specified, the associations matching the address and the id should be
250  * the same.
251  */
252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
253 					      struct sockaddr_storage *addr,
254 					      sctp_assoc_t id)
255 {
256 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
257 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
258 	union sctp_addr *laddr = (union sctp_addr *)addr;
259 	struct sctp_transport *transport;
260 
261 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
262 		return NULL;
263 
264 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
265 					       laddr,
266 					       &transport);
267 
268 	if (!addr_asoc)
269 		return NULL;
270 
271 	id_asoc = sctp_id2assoc(sk, id);
272 	if (id_asoc && (id_asoc != addr_asoc))
273 		return NULL;
274 
275 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
276 						(union sctp_addr *)addr);
277 
278 	return transport;
279 }
280 
281 /* API 3.1.2 bind() - UDP Style Syntax
282  * The syntax of bind() is,
283  *
284  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
285  *
286  *   sd      - the socket descriptor returned by socket().
287  *   addr    - the address structure (struct sockaddr_in or struct
288  *             sockaddr_in6 [RFC 2553]),
289  *   addr_len - the size of the address structure.
290  */
291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
292 {
293 	int retval = 0;
294 
295 	lock_sock(sk);
296 
297 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
298 		 addr, addr_len);
299 
300 	/* Disallow binding twice. */
301 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
302 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
303 				      addr_len);
304 	else
305 		retval = -EINVAL;
306 
307 	release_sock(sk);
308 
309 	return retval;
310 }
311 
312 static long sctp_get_port_local(struct sock *, union sctp_addr *);
313 
314 /* Verify this is a valid sockaddr. */
315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
316 					union sctp_addr *addr, int len)
317 {
318 	struct sctp_af *af;
319 
320 	/* Check minimum size.  */
321 	if (len < sizeof (struct sockaddr))
322 		return NULL;
323 
324 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
325 		return NULL;
326 
327 	if (addr->sa.sa_family == AF_INET6) {
328 		if (len < SIN6_LEN_RFC2133)
329 			return NULL;
330 		/* V4 mapped address are really of AF_INET family */
331 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
332 		    !opt->pf->af_supported(AF_INET, opt))
333 			return NULL;
334 	}
335 
336 	/* If we get this far, af is valid. */
337 	af = sctp_get_af_specific(addr->sa.sa_family);
338 
339 	if (len < af->sockaddr_len)
340 		return NULL;
341 
342 	return af;
343 }
344 
345 /* Bind a local address either to an endpoint or to an association.  */
346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
347 {
348 	struct net *net = sock_net(sk);
349 	struct sctp_sock *sp = sctp_sk(sk);
350 	struct sctp_endpoint *ep = sp->ep;
351 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
352 	struct sctp_af *af;
353 	unsigned short snum;
354 	int ret = 0;
355 
356 	/* Common sockaddr verification. */
357 	af = sctp_sockaddr_af(sp, addr, len);
358 	if (!af) {
359 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
360 			 __func__, sk, addr, len);
361 		return -EINVAL;
362 	}
363 
364 	snum = ntohs(addr->v4.sin_port);
365 
366 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
367 		 __func__, sk, &addr->sa, bp->port, snum, len);
368 
369 	/* PF specific bind() address verification. */
370 	if (!sp->pf->bind_verify(sp, addr))
371 		return -EADDRNOTAVAIL;
372 
373 	/* We must either be unbound, or bind to the same port.
374 	 * It's OK to allow 0 ports if we are already bound.
375 	 * We'll just inhert an already bound port in this case
376 	 */
377 	if (bp->port) {
378 		if (!snum)
379 			snum = bp->port;
380 		else if (snum != bp->port) {
381 			pr_debug("%s: new port %d doesn't match existing port "
382 				 "%d\n", __func__, snum, bp->port);
383 			return -EINVAL;
384 		}
385 	}
386 
387 	if (snum && snum < inet_prot_sock(net) &&
388 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
389 		return -EACCES;
390 
391 	/* See if the address matches any of the addresses we may have
392 	 * already bound before checking against other endpoints.
393 	 */
394 	if (sctp_bind_addr_match(bp, addr, sp))
395 		return -EINVAL;
396 
397 	/* Make sure we are allowed to bind here.
398 	 * The function sctp_get_port_local() does duplicate address
399 	 * detection.
400 	 */
401 	addr->v4.sin_port = htons(snum);
402 	if ((ret = sctp_get_port_local(sk, addr))) {
403 		return -EADDRINUSE;
404 	}
405 
406 	/* Refresh ephemeral port.  */
407 	if (!bp->port)
408 		bp->port = inet_sk(sk)->inet_num;
409 
410 	/* Add the address to the bind address list.
411 	 * Use GFP_ATOMIC since BHs will be disabled.
412 	 */
413 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
414 				 SCTP_ADDR_SRC, GFP_ATOMIC);
415 
416 	/* Copy back into socket for getsockname() use. */
417 	if (!ret) {
418 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
419 		sp->pf->to_sk_saddr(addr, sk);
420 	}
421 
422 	return ret;
423 }
424 
425  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
426  *
427  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
428  * at any one time.  If a sender, after sending an ASCONF chunk, decides
429  * it needs to transfer another ASCONF Chunk, it MUST wait until the
430  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
431  * subsequent ASCONF. Note this restriction binds each side, so at any
432  * time two ASCONF may be in-transit on any given association (one sent
433  * from each endpoint).
434  */
435 static int sctp_send_asconf(struct sctp_association *asoc,
436 			    struct sctp_chunk *chunk)
437 {
438 	struct net 	*net = sock_net(asoc->base.sk);
439 	int		retval = 0;
440 
441 	/* If there is an outstanding ASCONF chunk, queue it for later
442 	 * transmission.
443 	 */
444 	if (asoc->addip_last_asconf) {
445 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
446 		goto out;
447 	}
448 
449 	/* Hold the chunk until an ASCONF_ACK is received. */
450 	sctp_chunk_hold(chunk);
451 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
452 	if (retval)
453 		sctp_chunk_free(chunk);
454 	else
455 		asoc->addip_last_asconf = chunk;
456 
457 out:
458 	return retval;
459 }
460 
461 /* Add a list of addresses as bind addresses to local endpoint or
462  * association.
463  *
464  * Basically run through each address specified in the addrs/addrcnt
465  * array/length pair, determine if it is IPv6 or IPv4 and call
466  * sctp_do_bind() on it.
467  *
468  * If any of them fails, then the operation will be reversed and the
469  * ones that were added will be removed.
470  *
471  * Only sctp_setsockopt_bindx() is supposed to call this function.
472  */
473 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
474 {
475 	int cnt;
476 	int retval = 0;
477 	void *addr_buf;
478 	struct sockaddr *sa_addr;
479 	struct sctp_af *af;
480 
481 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
482 		 addrs, addrcnt);
483 
484 	addr_buf = addrs;
485 	for (cnt = 0; cnt < addrcnt; cnt++) {
486 		/* The list may contain either IPv4 or IPv6 address;
487 		 * determine the address length for walking thru the list.
488 		 */
489 		sa_addr = addr_buf;
490 		af = sctp_get_af_specific(sa_addr->sa_family);
491 		if (!af) {
492 			retval = -EINVAL;
493 			goto err_bindx_add;
494 		}
495 
496 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
497 				      af->sockaddr_len);
498 
499 		addr_buf += af->sockaddr_len;
500 
501 err_bindx_add:
502 		if (retval < 0) {
503 			/* Failed. Cleanup the ones that have been added */
504 			if (cnt > 0)
505 				sctp_bindx_rem(sk, addrs, cnt);
506 			return retval;
507 		}
508 	}
509 
510 	return retval;
511 }
512 
513 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
514  * associations that are part of the endpoint indicating that a list of local
515  * addresses are added to the endpoint.
516  *
517  * If any of the addresses is already in the bind address list of the
518  * association, we do not send the chunk for that association.  But it will not
519  * affect other associations.
520  *
521  * Only sctp_setsockopt_bindx() is supposed to call this function.
522  */
523 static int sctp_send_asconf_add_ip(struct sock		*sk,
524 				   struct sockaddr	*addrs,
525 				   int 			addrcnt)
526 {
527 	struct net *net = sock_net(sk);
528 	struct sctp_sock		*sp;
529 	struct sctp_endpoint		*ep;
530 	struct sctp_association		*asoc;
531 	struct sctp_bind_addr		*bp;
532 	struct sctp_chunk		*chunk;
533 	struct sctp_sockaddr_entry	*laddr;
534 	union sctp_addr			*addr;
535 	union sctp_addr			saveaddr;
536 	void				*addr_buf;
537 	struct sctp_af			*af;
538 	struct list_head		*p;
539 	int 				i;
540 	int 				retval = 0;
541 
542 	if (!net->sctp.addip_enable)
543 		return retval;
544 
545 	sp = sctp_sk(sk);
546 	ep = sp->ep;
547 
548 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
549 		 __func__, sk, addrs, addrcnt);
550 
551 	list_for_each_entry(asoc, &ep->asocs, asocs) {
552 		if (!asoc->peer.asconf_capable)
553 			continue;
554 
555 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
556 			continue;
557 
558 		if (!sctp_state(asoc, ESTABLISHED))
559 			continue;
560 
561 		/* Check if any address in the packed array of addresses is
562 		 * in the bind address list of the association. If so,
563 		 * do not send the asconf chunk to its peer, but continue with
564 		 * other associations.
565 		 */
566 		addr_buf = addrs;
567 		for (i = 0; i < addrcnt; i++) {
568 			addr = addr_buf;
569 			af = sctp_get_af_specific(addr->v4.sin_family);
570 			if (!af) {
571 				retval = -EINVAL;
572 				goto out;
573 			}
574 
575 			if (sctp_assoc_lookup_laddr(asoc, addr))
576 				break;
577 
578 			addr_buf += af->sockaddr_len;
579 		}
580 		if (i < addrcnt)
581 			continue;
582 
583 		/* Use the first valid address in bind addr list of
584 		 * association as Address Parameter of ASCONF CHUNK.
585 		 */
586 		bp = &asoc->base.bind_addr;
587 		p = bp->address_list.next;
588 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
589 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
590 						   addrcnt, SCTP_PARAM_ADD_IP);
591 		if (!chunk) {
592 			retval = -ENOMEM;
593 			goto out;
594 		}
595 
596 		/* Add the new addresses to the bind address list with
597 		 * use_as_src set to 0.
598 		 */
599 		addr_buf = addrs;
600 		for (i = 0; i < addrcnt; i++) {
601 			addr = addr_buf;
602 			af = sctp_get_af_specific(addr->v4.sin_family);
603 			memcpy(&saveaddr, addr, af->sockaddr_len);
604 			retval = sctp_add_bind_addr(bp, &saveaddr,
605 						    sizeof(saveaddr),
606 						    SCTP_ADDR_NEW, GFP_ATOMIC);
607 			addr_buf += af->sockaddr_len;
608 		}
609 		if (asoc->src_out_of_asoc_ok) {
610 			struct sctp_transport *trans;
611 
612 			list_for_each_entry(trans,
613 			    &asoc->peer.transport_addr_list, transports) {
614 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
615 				    2*asoc->pathmtu, 4380));
616 				trans->ssthresh = asoc->peer.i.a_rwnd;
617 				trans->rto = asoc->rto_initial;
618 				sctp_max_rto(asoc, trans);
619 				trans->rtt = trans->srtt = trans->rttvar = 0;
620 				/* Clear the source and route cache */
621 				sctp_transport_route(trans, NULL,
622 						     sctp_sk(asoc->base.sk));
623 			}
624 		}
625 		retval = sctp_send_asconf(asoc, chunk);
626 	}
627 
628 out:
629 	return retval;
630 }
631 
632 /* Remove a list of addresses from bind addresses list.  Do not remove the
633  * last address.
634  *
635  * Basically run through each address specified in the addrs/addrcnt
636  * array/length pair, determine if it is IPv6 or IPv4 and call
637  * sctp_del_bind() on it.
638  *
639  * If any of them fails, then the operation will be reversed and the
640  * ones that were removed will be added back.
641  *
642  * At least one address has to be left; if only one address is
643  * available, the operation will return -EBUSY.
644  *
645  * Only sctp_setsockopt_bindx() is supposed to call this function.
646  */
647 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
648 {
649 	struct sctp_sock *sp = sctp_sk(sk);
650 	struct sctp_endpoint *ep = sp->ep;
651 	int cnt;
652 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
653 	int retval = 0;
654 	void *addr_buf;
655 	union sctp_addr *sa_addr;
656 	struct sctp_af *af;
657 
658 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
659 		 __func__, sk, addrs, addrcnt);
660 
661 	addr_buf = addrs;
662 	for (cnt = 0; cnt < addrcnt; cnt++) {
663 		/* If the bind address list is empty or if there is only one
664 		 * bind address, there is nothing more to be removed (we need
665 		 * at least one address here).
666 		 */
667 		if (list_empty(&bp->address_list) ||
668 		    (sctp_list_single_entry(&bp->address_list))) {
669 			retval = -EBUSY;
670 			goto err_bindx_rem;
671 		}
672 
673 		sa_addr = addr_buf;
674 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
675 		if (!af) {
676 			retval = -EINVAL;
677 			goto err_bindx_rem;
678 		}
679 
680 		if (!af->addr_valid(sa_addr, sp, NULL)) {
681 			retval = -EADDRNOTAVAIL;
682 			goto err_bindx_rem;
683 		}
684 
685 		if (sa_addr->v4.sin_port &&
686 		    sa_addr->v4.sin_port != htons(bp->port)) {
687 			retval = -EINVAL;
688 			goto err_bindx_rem;
689 		}
690 
691 		if (!sa_addr->v4.sin_port)
692 			sa_addr->v4.sin_port = htons(bp->port);
693 
694 		/* FIXME - There is probably a need to check if sk->sk_saddr and
695 		 * sk->sk_rcv_addr are currently set to one of the addresses to
696 		 * be removed. This is something which needs to be looked into
697 		 * when we are fixing the outstanding issues with multi-homing
698 		 * socket routing and failover schemes. Refer to comments in
699 		 * sctp_do_bind(). -daisy
700 		 */
701 		retval = sctp_del_bind_addr(bp, sa_addr);
702 
703 		addr_buf += af->sockaddr_len;
704 err_bindx_rem:
705 		if (retval < 0) {
706 			/* Failed. Add the ones that has been removed back */
707 			if (cnt > 0)
708 				sctp_bindx_add(sk, addrs, cnt);
709 			return retval;
710 		}
711 	}
712 
713 	return retval;
714 }
715 
716 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
717  * the associations that are part of the endpoint indicating that a list of
718  * local addresses are removed from the endpoint.
719  *
720  * If any of the addresses is already in the bind address list of the
721  * association, we do not send the chunk for that association.  But it will not
722  * affect other associations.
723  *
724  * Only sctp_setsockopt_bindx() is supposed to call this function.
725  */
726 static int sctp_send_asconf_del_ip(struct sock		*sk,
727 				   struct sockaddr	*addrs,
728 				   int			addrcnt)
729 {
730 	struct net *net = sock_net(sk);
731 	struct sctp_sock	*sp;
732 	struct sctp_endpoint	*ep;
733 	struct sctp_association	*asoc;
734 	struct sctp_transport	*transport;
735 	struct sctp_bind_addr	*bp;
736 	struct sctp_chunk	*chunk;
737 	union sctp_addr		*laddr;
738 	void			*addr_buf;
739 	struct sctp_af		*af;
740 	struct sctp_sockaddr_entry *saddr;
741 	int 			i;
742 	int 			retval = 0;
743 	int			stored = 0;
744 
745 	chunk = NULL;
746 	if (!net->sctp.addip_enable)
747 		return retval;
748 
749 	sp = sctp_sk(sk);
750 	ep = sp->ep;
751 
752 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
753 		 __func__, sk, addrs, addrcnt);
754 
755 	list_for_each_entry(asoc, &ep->asocs, asocs) {
756 
757 		if (!asoc->peer.asconf_capable)
758 			continue;
759 
760 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
761 			continue;
762 
763 		if (!sctp_state(asoc, ESTABLISHED))
764 			continue;
765 
766 		/* Check if any address in the packed array of addresses is
767 		 * not present in the bind address list of the association.
768 		 * If so, do not send the asconf chunk to its peer, but
769 		 * continue with other associations.
770 		 */
771 		addr_buf = addrs;
772 		for (i = 0; i < addrcnt; i++) {
773 			laddr = addr_buf;
774 			af = sctp_get_af_specific(laddr->v4.sin_family);
775 			if (!af) {
776 				retval = -EINVAL;
777 				goto out;
778 			}
779 
780 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
781 				break;
782 
783 			addr_buf += af->sockaddr_len;
784 		}
785 		if (i < addrcnt)
786 			continue;
787 
788 		/* Find one address in the association's bind address list
789 		 * that is not in the packed array of addresses. This is to
790 		 * make sure that we do not delete all the addresses in the
791 		 * association.
792 		 */
793 		bp = &asoc->base.bind_addr;
794 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
795 					       addrcnt, sp);
796 		if ((laddr == NULL) && (addrcnt == 1)) {
797 			if (asoc->asconf_addr_del_pending)
798 				continue;
799 			asoc->asconf_addr_del_pending =
800 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
801 			if (asoc->asconf_addr_del_pending == NULL) {
802 				retval = -ENOMEM;
803 				goto out;
804 			}
805 			asoc->asconf_addr_del_pending->sa.sa_family =
806 				    addrs->sa_family;
807 			asoc->asconf_addr_del_pending->v4.sin_port =
808 				    htons(bp->port);
809 			if (addrs->sa_family == AF_INET) {
810 				struct sockaddr_in *sin;
811 
812 				sin = (struct sockaddr_in *)addrs;
813 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
814 			} else if (addrs->sa_family == AF_INET6) {
815 				struct sockaddr_in6 *sin6;
816 
817 				sin6 = (struct sockaddr_in6 *)addrs;
818 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
819 			}
820 
821 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
822 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
823 				 asoc->asconf_addr_del_pending);
824 
825 			asoc->src_out_of_asoc_ok = 1;
826 			stored = 1;
827 			goto skip_mkasconf;
828 		}
829 
830 		if (laddr == NULL)
831 			return -EINVAL;
832 
833 		/* We do not need RCU protection throughout this loop
834 		 * because this is done under a socket lock from the
835 		 * setsockopt call.
836 		 */
837 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
838 						   SCTP_PARAM_DEL_IP);
839 		if (!chunk) {
840 			retval = -ENOMEM;
841 			goto out;
842 		}
843 
844 skip_mkasconf:
845 		/* Reset use_as_src flag for the addresses in the bind address
846 		 * list that are to be deleted.
847 		 */
848 		addr_buf = addrs;
849 		for (i = 0; i < addrcnt; i++) {
850 			laddr = addr_buf;
851 			af = sctp_get_af_specific(laddr->v4.sin_family);
852 			list_for_each_entry(saddr, &bp->address_list, list) {
853 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
854 					saddr->state = SCTP_ADDR_DEL;
855 			}
856 			addr_buf += af->sockaddr_len;
857 		}
858 
859 		/* Update the route and saddr entries for all the transports
860 		 * as some of the addresses in the bind address list are
861 		 * about to be deleted and cannot be used as source addresses.
862 		 */
863 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
864 					transports) {
865 			sctp_transport_route(transport, NULL,
866 					     sctp_sk(asoc->base.sk));
867 		}
868 
869 		if (stored)
870 			/* We don't need to transmit ASCONF */
871 			continue;
872 		retval = sctp_send_asconf(asoc, chunk);
873 	}
874 out:
875 	return retval;
876 }
877 
878 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
879 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
880 {
881 	struct sock *sk = sctp_opt2sk(sp);
882 	union sctp_addr *addr;
883 	struct sctp_af *af;
884 
885 	/* It is safe to write port space in caller. */
886 	addr = &addrw->a;
887 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
888 	af = sctp_get_af_specific(addr->sa.sa_family);
889 	if (!af)
890 		return -EINVAL;
891 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
892 		return -EINVAL;
893 
894 	if (addrw->state == SCTP_ADDR_NEW)
895 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
896 	else
897 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
898 }
899 
900 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
901  *
902  * API 8.1
903  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
904  *                int flags);
905  *
906  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
907  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
908  * or IPv6 addresses.
909  *
910  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
911  * Section 3.1.2 for this usage.
912  *
913  * addrs is a pointer to an array of one or more socket addresses. Each
914  * address is contained in its appropriate structure (i.e. struct
915  * sockaddr_in or struct sockaddr_in6) the family of the address type
916  * must be used to distinguish the address length (note that this
917  * representation is termed a "packed array" of addresses). The caller
918  * specifies the number of addresses in the array with addrcnt.
919  *
920  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
921  * -1, and sets errno to the appropriate error code.
922  *
923  * For SCTP, the port given in each socket address must be the same, or
924  * sctp_bindx() will fail, setting errno to EINVAL.
925  *
926  * The flags parameter is formed from the bitwise OR of zero or more of
927  * the following currently defined flags:
928  *
929  * SCTP_BINDX_ADD_ADDR
930  *
931  * SCTP_BINDX_REM_ADDR
932  *
933  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
934  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
935  * addresses from the association. The two flags are mutually exclusive;
936  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
937  * not remove all addresses from an association; sctp_bindx() will
938  * reject such an attempt with EINVAL.
939  *
940  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
941  * additional addresses with an endpoint after calling bind().  Or use
942  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
943  * socket is associated with so that no new association accepted will be
944  * associated with those addresses. If the endpoint supports dynamic
945  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
946  * endpoint to send the appropriate message to the peer to change the
947  * peers address lists.
948  *
949  * Adding and removing addresses from a connected association is
950  * optional functionality. Implementations that do not support this
951  * functionality should return EOPNOTSUPP.
952  *
953  * Basically do nothing but copying the addresses from user to kernel
954  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
955  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
956  * from userspace.
957  *
958  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
959  * it.
960  *
961  * sk        The sk of the socket
962  * addrs     The pointer to the addresses in user land
963  * addrssize Size of the addrs buffer
964  * op        Operation to perform (add or remove, see the flags of
965  *           sctp_bindx)
966  *
967  * Returns 0 if ok, <0 errno code on error.
968  */
969 static int sctp_setsockopt_bindx(struct sock *sk,
970 				 struct sockaddr __user *addrs,
971 				 int addrs_size, int op)
972 {
973 	struct sockaddr *kaddrs;
974 	int err;
975 	int addrcnt = 0;
976 	int walk_size = 0;
977 	struct sockaddr *sa_addr;
978 	void *addr_buf;
979 	struct sctp_af *af;
980 
981 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
982 		 __func__, sk, addrs, addrs_size, op);
983 
984 	if (unlikely(addrs_size <= 0))
985 		return -EINVAL;
986 
987 	kaddrs = memdup_user(addrs, addrs_size);
988 	if (unlikely(IS_ERR(kaddrs)))
989 		return PTR_ERR(kaddrs);
990 
991 	/* Walk through the addrs buffer and count the number of addresses. */
992 	addr_buf = kaddrs;
993 	while (walk_size < addrs_size) {
994 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
995 			kfree(kaddrs);
996 			return -EINVAL;
997 		}
998 
999 		sa_addr = addr_buf;
1000 		af = sctp_get_af_specific(sa_addr->sa_family);
1001 
1002 		/* If the address family is not supported or if this address
1003 		 * causes the address buffer to overflow return EINVAL.
1004 		 */
1005 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1006 			kfree(kaddrs);
1007 			return -EINVAL;
1008 		}
1009 		addrcnt++;
1010 		addr_buf += af->sockaddr_len;
1011 		walk_size += af->sockaddr_len;
1012 	}
1013 
1014 	/* Do the work. */
1015 	switch (op) {
1016 	case SCTP_BINDX_ADD_ADDR:
1017 		/* Allow security module to validate bindx addresses. */
1018 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1019 						 (struct sockaddr *)kaddrs,
1020 						 addrs_size);
1021 		if (err)
1022 			goto out;
1023 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1024 		if (err)
1025 			goto out;
1026 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1027 		break;
1028 
1029 	case SCTP_BINDX_REM_ADDR:
1030 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1031 		if (err)
1032 			goto out;
1033 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1034 		break;
1035 
1036 	default:
1037 		err = -EINVAL;
1038 		break;
1039 	}
1040 
1041 out:
1042 	kfree(kaddrs);
1043 
1044 	return err;
1045 }
1046 
1047 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1048 				 const union sctp_addr *daddr,
1049 				 const struct sctp_initmsg *init,
1050 				 struct sctp_transport **tp)
1051 {
1052 	struct sctp_association *asoc;
1053 	struct sock *sk = ep->base.sk;
1054 	struct net *net = sock_net(sk);
1055 	enum sctp_scope scope;
1056 	int err;
1057 
1058 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1059 		return -EADDRNOTAVAIL;
1060 
1061 	if (!ep->base.bind_addr.port) {
1062 		if (sctp_autobind(sk))
1063 			return -EAGAIN;
1064 	} else {
1065 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1066 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1067 			return -EACCES;
1068 	}
1069 
1070 	scope = sctp_scope(daddr);
1071 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1072 	if (!asoc)
1073 		return -ENOMEM;
1074 
1075 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1076 	if (err < 0)
1077 		goto free;
1078 
1079 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1080 	if (!*tp) {
1081 		err = -ENOMEM;
1082 		goto free;
1083 	}
1084 
1085 	if (!init)
1086 		return 0;
1087 
1088 	if (init->sinit_num_ostreams) {
1089 		__u16 outcnt = init->sinit_num_ostreams;
1090 
1091 		asoc->c.sinit_num_ostreams = outcnt;
1092 		/* outcnt has been changed, need to re-init stream */
1093 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1094 		if (err)
1095 			goto free;
1096 	}
1097 
1098 	if (init->sinit_max_instreams)
1099 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1100 
1101 	if (init->sinit_max_attempts)
1102 		asoc->max_init_attempts = init->sinit_max_attempts;
1103 
1104 	if (init->sinit_max_init_timeo)
1105 		asoc->max_init_timeo =
1106 			msecs_to_jiffies(init->sinit_max_init_timeo);
1107 
1108 	return 0;
1109 free:
1110 	sctp_association_free(asoc);
1111 	return err;
1112 }
1113 
1114 static int sctp_connect_add_peer(struct sctp_association *asoc,
1115 				 union sctp_addr *daddr, int addr_len)
1116 {
1117 	struct sctp_endpoint *ep = asoc->ep;
1118 	struct sctp_association *old;
1119 	struct sctp_transport *t;
1120 	int err;
1121 
1122 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1123 	if (err)
1124 		return err;
1125 
1126 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1127 	if (old && old != asoc)
1128 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1129 							    : -EALREADY;
1130 
1131 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1132 		return -EADDRNOTAVAIL;
1133 
1134 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1135 	if (!t)
1136 		return -ENOMEM;
1137 
1138 	return 0;
1139 }
1140 
1141 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1142  *
1143  * Common routine for handling connect() and sctp_connectx().
1144  * Connect will come in with just a single address.
1145  */
1146 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1147 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1148 {
1149 	struct sctp_sock *sp = sctp_sk(sk);
1150 	struct sctp_endpoint *ep = sp->ep;
1151 	struct sctp_transport *transport;
1152 	struct sctp_association *asoc;
1153 	void *addr_buf = kaddrs;
1154 	union sctp_addr *daddr;
1155 	struct sctp_af *af;
1156 	int walk_size, err;
1157 	long timeo;
1158 
1159 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1160 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1161 		return -EISCONN;
1162 
1163 	daddr = addr_buf;
1164 	af = sctp_get_af_specific(daddr->sa.sa_family);
1165 	if (!af || af->sockaddr_len > addrs_size)
1166 		return -EINVAL;
1167 
1168 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1169 	if (err)
1170 		return err;
1171 
1172 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1173 	if (asoc)
1174 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1175 							     : -EALREADY;
1176 
1177 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1178 	if (err)
1179 		return err;
1180 	asoc = transport->asoc;
1181 
1182 	addr_buf += af->sockaddr_len;
1183 	walk_size = af->sockaddr_len;
1184 	while (walk_size < addrs_size) {
1185 		err = -EINVAL;
1186 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1187 			goto out_free;
1188 
1189 		daddr = addr_buf;
1190 		af = sctp_get_af_specific(daddr->sa.sa_family);
1191 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1192 			goto out_free;
1193 
1194 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1195 			goto out_free;
1196 
1197 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1198 		if (err)
1199 			goto out_free;
1200 
1201 		addr_buf  += af->sockaddr_len;
1202 		walk_size += af->sockaddr_len;
1203 	}
1204 
1205 	/* In case the user of sctp_connectx() wants an association
1206 	 * id back, assign one now.
1207 	 */
1208 	if (assoc_id) {
1209 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1210 		if (err < 0)
1211 			goto out_free;
1212 	}
1213 
1214 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1215 	if (err < 0)
1216 		goto out_free;
1217 
1218 	/* Initialize sk's dport and daddr for getpeername() */
1219 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1220 	sp->pf->to_sk_daddr(daddr, sk);
1221 	sk->sk_err = 0;
1222 
1223 	if (assoc_id)
1224 		*assoc_id = asoc->assoc_id;
1225 
1226 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1227 	return sctp_wait_for_connect(asoc, &timeo);
1228 
1229 out_free:
1230 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1231 		 __func__, asoc, kaddrs, err);
1232 	sctp_association_free(asoc);
1233 	return err;
1234 }
1235 
1236 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1237  *
1238  * API 8.9
1239  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1240  * 			sctp_assoc_t *asoc);
1241  *
1242  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1243  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1244  * or IPv6 addresses.
1245  *
1246  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1247  * Section 3.1.2 for this usage.
1248  *
1249  * addrs is a pointer to an array of one or more socket addresses. Each
1250  * address is contained in its appropriate structure (i.e. struct
1251  * sockaddr_in or struct sockaddr_in6) the family of the address type
1252  * must be used to distengish the address length (note that this
1253  * representation is termed a "packed array" of addresses). The caller
1254  * specifies the number of addresses in the array with addrcnt.
1255  *
1256  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1257  * the association id of the new association.  On failure, sctp_connectx()
1258  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1259  * is not touched by the kernel.
1260  *
1261  * For SCTP, the port given in each socket address must be the same, or
1262  * sctp_connectx() will fail, setting errno to EINVAL.
1263  *
1264  * An application can use sctp_connectx to initiate an association with
1265  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1266  * allows a caller to specify multiple addresses at which a peer can be
1267  * reached.  The way the SCTP stack uses the list of addresses to set up
1268  * the association is implementation dependent.  This function only
1269  * specifies that the stack will try to make use of all the addresses in
1270  * the list when needed.
1271  *
1272  * Note that the list of addresses passed in is only used for setting up
1273  * the association.  It does not necessarily equal the set of addresses
1274  * the peer uses for the resulting association.  If the caller wants to
1275  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1276  * retrieve them after the association has been set up.
1277  *
1278  * Basically do nothing but copying the addresses from user to kernel
1279  * land and invoking either sctp_connectx(). This is used for tunneling
1280  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1281  *
1282  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1283  * it.
1284  *
1285  * sk        The sk of the socket
1286  * addrs     The pointer to the addresses in user land
1287  * addrssize Size of the addrs buffer
1288  *
1289  * Returns >=0 if ok, <0 errno code on error.
1290  */
1291 static int __sctp_setsockopt_connectx(struct sock *sk,
1292 				      struct sockaddr __user *addrs,
1293 				      int addrs_size,
1294 				      sctp_assoc_t *assoc_id)
1295 {
1296 	struct sockaddr *kaddrs;
1297 	int err = 0, flags = 0;
1298 
1299 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1300 		 __func__, sk, addrs, addrs_size);
1301 
1302 	/* make sure the 1st addr's sa_family is accessible later */
1303 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1304 		return -EINVAL;
1305 
1306 	kaddrs = memdup_user(addrs, addrs_size);
1307 	if (unlikely(IS_ERR(kaddrs)))
1308 		return PTR_ERR(kaddrs);
1309 
1310 	/* Allow security module to validate connectx addresses. */
1311 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1312 					 (struct sockaddr *)kaddrs,
1313 					  addrs_size);
1314 	if (err)
1315 		goto out_free;
1316 
1317 	/* in-kernel sockets don't generally have a file allocated to them
1318 	 * if all they do is call sock_create_kern().
1319 	 */
1320 	if (sk->sk_socket->file)
1321 		flags = sk->sk_socket->file->f_flags;
1322 
1323 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1324 
1325 out_free:
1326 	kfree(kaddrs);
1327 
1328 	return err;
1329 }
1330 
1331 /*
1332  * This is an older interface.  It's kept for backward compatibility
1333  * to the option that doesn't provide association id.
1334  */
1335 static int sctp_setsockopt_connectx_old(struct sock *sk,
1336 					struct sockaddr __user *addrs,
1337 					int addrs_size)
1338 {
1339 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1340 }
1341 
1342 /*
1343  * New interface for the API.  The since the API is done with a socket
1344  * option, to make it simple we feed back the association id is as a return
1345  * indication to the call.  Error is always negative and association id is
1346  * always positive.
1347  */
1348 static int sctp_setsockopt_connectx(struct sock *sk,
1349 				    struct sockaddr __user *addrs,
1350 				    int addrs_size)
1351 {
1352 	sctp_assoc_t assoc_id = 0;
1353 	int err = 0;
1354 
1355 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1356 
1357 	if (err)
1358 		return err;
1359 	else
1360 		return assoc_id;
1361 }
1362 
1363 /*
1364  * New (hopefully final) interface for the API.
1365  * We use the sctp_getaddrs_old structure so that use-space library
1366  * can avoid any unnecessary allocations. The only different part
1367  * is that we store the actual length of the address buffer into the
1368  * addrs_num structure member. That way we can re-use the existing
1369  * code.
1370  */
1371 #ifdef CONFIG_COMPAT
1372 struct compat_sctp_getaddrs_old {
1373 	sctp_assoc_t	assoc_id;
1374 	s32		addr_num;
1375 	compat_uptr_t	addrs;		/* struct sockaddr * */
1376 };
1377 #endif
1378 
1379 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1380 				     char __user *optval,
1381 				     int __user *optlen)
1382 {
1383 	struct sctp_getaddrs_old param;
1384 	sctp_assoc_t assoc_id = 0;
1385 	int err = 0;
1386 
1387 #ifdef CONFIG_COMPAT
1388 	if (in_compat_syscall()) {
1389 		struct compat_sctp_getaddrs_old param32;
1390 
1391 		if (len < sizeof(param32))
1392 			return -EINVAL;
1393 		if (copy_from_user(&param32, optval, sizeof(param32)))
1394 			return -EFAULT;
1395 
1396 		param.assoc_id = param32.assoc_id;
1397 		param.addr_num = param32.addr_num;
1398 		param.addrs = compat_ptr(param32.addrs);
1399 	} else
1400 #endif
1401 	{
1402 		if (len < sizeof(param))
1403 			return -EINVAL;
1404 		if (copy_from_user(&param, optval, sizeof(param)))
1405 			return -EFAULT;
1406 	}
1407 
1408 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1409 					 param.addrs, param.addr_num,
1410 					 &assoc_id);
1411 	if (err == 0 || err == -EINPROGRESS) {
1412 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1413 			return -EFAULT;
1414 		if (put_user(sizeof(assoc_id), optlen))
1415 			return -EFAULT;
1416 	}
1417 
1418 	return err;
1419 }
1420 
1421 /* API 3.1.4 close() - UDP Style Syntax
1422  * Applications use close() to perform graceful shutdown (as described in
1423  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1424  * by a UDP-style socket.
1425  *
1426  * The syntax is
1427  *
1428  *   ret = close(int sd);
1429  *
1430  *   sd      - the socket descriptor of the associations to be closed.
1431  *
1432  * To gracefully shutdown a specific association represented by the
1433  * UDP-style socket, an application should use the sendmsg() call,
1434  * passing no user data, but including the appropriate flag in the
1435  * ancillary data (see Section xxxx).
1436  *
1437  * If sd in the close() call is a branched-off socket representing only
1438  * one association, the shutdown is performed on that association only.
1439  *
1440  * 4.1.6 close() - TCP Style Syntax
1441  *
1442  * Applications use close() to gracefully close down an association.
1443  *
1444  * The syntax is:
1445  *
1446  *    int close(int sd);
1447  *
1448  *      sd      - the socket descriptor of the association to be closed.
1449  *
1450  * After an application calls close() on a socket descriptor, no further
1451  * socket operations will succeed on that descriptor.
1452  *
1453  * API 7.1.4 SO_LINGER
1454  *
1455  * An application using the TCP-style socket can use this option to
1456  * perform the SCTP ABORT primitive.  The linger option structure is:
1457  *
1458  *  struct  linger {
1459  *     int     l_onoff;                // option on/off
1460  *     int     l_linger;               // linger time
1461  * };
1462  *
1463  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1464  * to 0, calling close() is the same as the ABORT primitive.  If the
1465  * value is set to a negative value, the setsockopt() call will return
1466  * an error.  If the value is set to a positive value linger_time, the
1467  * close() can be blocked for at most linger_time ms.  If the graceful
1468  * shutdown phase does not finish during this period, close() will
1469  * return but the graceful shutdown phase continues in the system.
1470  */
1471 static void sctp_close(struct sock *sk, long timeout)
1472 {
1473 	struct net *net = sock_net(sk);
1474 	struct sctp_endpoint *ep;
1475 	struct sctp_association *asoc;
1476 	struct list_head *pos, *temp;
1477 	unsigned int data_was_unread;
1478 
1479 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1480 
1481 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1482 	sk->sk_shutdown = SHUTDOWN_MASK;
1483 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1484 
1485 	ep = sctp_sk(sk)->ep;
1486 
1487 	/* Clean up any skbs sitting on the receive queue.  */
1488 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1489 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1490 
1491 	/* Walk all associations on an endpoint.  */
1492 	list_for_each_safe(pos, temp, &ep->asocs) {
1493 		asoc = list_entry(pos, struct sctp_association, asocs);
1494 
1495 		if (sctp_style(sk, TCP)) {
1496 			/* A closed association can still be in the list if
1497 			 * it belongs to a TCP-style listening socket that is
1498 			 * not yet accepted. If so, free it. If not, send an
1499 			 * ABORT or SHUTDOWN based on the linger options.
1500 			 */
1501 			if (sctp_state(asoc, CLOSED)) {
1502 				sctp_association_free(asoc);
1503 				continue;
1504 			}
1505 		}
1506 
1507 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1508 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1509 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1510 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1511 			struct sctp_chunk *chunk;
1512 
1513 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1514 			sctp_primitive_ABORT(net, asoc, chunk);
1515 		} else
1516 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1517 	}
1518 
1519 	/* On a TCP-style socket, block for at most linger_time if set. */
1520 	if (sctp_style(sk, TCP) && timeout)
1521 		sctp_wait_for_close(sk, timeout);
1522 
1523 	/* This will run the backlog queue.  */
1524 	release_sock(sk);
1525 
1526 	/* Supposedly, no process has access to the socket, but
1527 	 * the net layers still may.
1528 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1529 	 * held and that should be grabbed before socket lock.
1530 	 */
1531 	spin_lock_bh(&net->sctp.addr_wq_lock);
1532 	bh_lock_sock_nested(sk);
1533 
1534 	/* Hold the sock, since sk_common_release() will put sock_put()
1535 	 * and we have just a little more cleanup.
1536 	 */
1537 	sock_hold(sk);
1538 	sk_common_release(sk);
1539 
1540 	bh_unlock_sock(sk);
1541 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1542 
1543 	sock_put(sk);
1544 
1545 	SCTP_DBG_OBJCNT_DEC(sock);
1546 }
1547 
1548 /* Handle EPIPE error. */
1549 static int sctp_error(struct sock *sk, int flags, int err)
1550 {
1551 	if (err == -EPIPE)
1552 		err = sock_error(sk) ? : -EPIPE;
1553 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1554 		send_sig(SIGPIPE, current, 0);
1555 	return err;
1556 }
1557 
1558 /* API 3.1.3 sendmsg() - UDP Style Syntax
1559  *
1560  * An application uses sendmsg() and recvmsg() calls to transmit data to
1561  * and receive data from its peer.
1562  *
1563  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1564  *                  int flags);
1565  *
1566  *  socket  - the socket descriptor of the endpoint.
1567  *  message - pointer to the msghdr structure which contains a single
1568  *            user message and possibly some ancillary data.
1569  *
1570  *            See Section 5 for complete description of the data
1571  *            structures.
1572  *
1573  *  flags   - flags sent or received with the user message, see Section
1574  *            5 for complete description of the flags.
1575  *
1576  * Note:  This function could use a rewrite especially when explicit
1577  * connect support comes in.
1578  */
1579 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1580 
1581 static int sctp_msghdr_parse(const struct msghdr *msg,
1582 			     struct sctp_cmsgs *cmsgs);
1583 
1584 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1585 			      struct sctp_sndrcvinfo *srinfo,
1586 			      const struct msghdr *msg, size_t msg_len)
1587 {
1588 	__u16 sflags;
1589 	int err;
1590 
1591 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1592 		return -EPIPE;
1593 
1594 	if (msg_len > sk->sk_sndbuf)
1595 		return -EMSGSIZE;
1596 
1597 	memset(cmsgs, 0, sizeof(*cmsgs));
1598 	err = sctp_msghdr_parse(msg, cmsgs);
1599 	if (err) {
1600 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1601 		return err;
1602 	}
1603 
1604 	memset(srinfo, 0, sizeof(*srinfo));
1605 	if (cmsgs->srinfo) {
1606 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1607 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1608 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1609 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1610 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1611 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1612 	}
1613 
1614 	if (cmsgs->sinfo) {
1615 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1616 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1617 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1618 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1619 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1620 	}
1621 
1622 	if (cmsgs->prinfo) {
1623 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1624 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1625 				   cmsgs->prinfo->pr_policy);
1626 	}
1627 
1628 	sflags = srinfo->sinfo_flags;
1629 	if (!sflags && msg_len)
1630 		return 0;
1631 
1632 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1633 		return -EINVAL;
1634 
1635 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1636 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1637 		return -EINVAL;
1638 
1639 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1640 		return -EINVAL;
1641 
1642 	return 0;
1643 }
1644 
1645 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1646 				 struct sctp_cmsgs *cmsgs,
1647 				 union sctp_addr *daddr,
1648 				 struct sctp_transport **tp)
1649 {
1650 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1651 	struct sctp_association *asoc;
1652 	struct cmsghdr *cmsg;
1653 	__be32 flowinfo = 0;
1654 	struct sctp_af *af;
1655 	int err;
1656 
1657 	*tp = NULL;
1658 
1659 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1660 		return -EINVAL;
1661 
1662 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1663 				    sctp_sstate(sk, CLOSING)))
1664 		return -EADDRNOTAVAIL;
1665 
1666 	/* Label connection socket for first association 1-to-many
1667 	 * style for client sequence socket()->sendmsg(). This
1668 	 * needs to be done before sctp_assoc_add_peer() as that will
1669 	 * set up the initial packet that needs to account for any
1670 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1671 	 */
1672 	af = sctp_get_af_specific(daddr->sa.sa_family);
1673 	if (!af)
1674 		return -EINVAL;
1675 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1676 					 (struct sockaddr *)daddr,
1677 					 af->sockaddr_len);
1678 	if (err < 0)
1679 		return err;
1680 
1681 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1682 	if (err)
1683 		return err;
1684 	asoc = (*tp)->asoc;
1685 
1686 	if (!cmsgs->addrs_msg)
1687 		return 0;
1688 
1689 	if (daddr->sa.sa_family == AF_INET6)
1690 		flowinfo = daddr->v6.sin6_flowinfo;
1691 
1692 	/* sendv addr list parse */
1693 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1694 		union sctp_addr _daddr;
1695 		int dlen;
1696 
1697 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1698 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1699 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1700 			continue;
1701 
1702 		daddr = &_daddr;
1703 		memset(daddr, 0, sizeof(*daddr));
1704 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1705 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1706 			if (dlen < sizeof(struct in_addr)) {
1707 				err = -EINVAL;
1708 				goto free;
1709 			}
1710 
1711 			dlen = sizeof(struct in_addr);
1712 			daddr->v4.sin_family = AF_INET;
1713 			daddr->v4.sin_port = htons(asoc->peer.port);
1714 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1715 		} else {
1716 			if (dlen < sizeof(struct in6_addr)) {
1717 				err = -EINVAL;
1718 				goto free;
1719 			}
1720 
1721 			dlen = sizeof(struct in6_addr);
1722 			daddr->v6.sin6_flowinfo = flowinfo;
1723 			daddr->v6.sin6_family = AF_INET6;
1724 			daddr->v6.sin6_port = htons(asoc->peer.port);
1725 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1726 		}
1727 
1728 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1729 		if (err)
1730 			goto free;
1731 	}
1732 
1733 	return 0;
1734 
1735 free:
1736 	sctp_association_free(asoc);
1737 	return err;
1738 }
1739 
1740 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1741 				     __u16 sflags, struct msghdr *msg,
1742 				     size_t msg_len)
1743 {
1744 	struct sock *sk = asoc->base.sk;
1745 	struct net *net = sock_net(sk);
1746 
1747 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1748 		return -EPIPE;
1749 
1750 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1751 	    !sctp_state(asoc, ESTABLISHED))
1752 		return 0;
1753 
1754 	if (sflags & SCTP_EOF) {
1755 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1756 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1757 
1758 		return 0;
1759 	}
1760 
1761 	if (sflags & SCTP_ABORT) {
1762 		struct sctp_chunk *chunk;
1763 
1764 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1765 		if (!chunk)
1766 			return -ENOMEM;
1767 
1768 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1769 		sctp_primitive_ABORT(net, asoc, chunk);
1770 		iov_iter_revert(&msg->msg_iter, msg_len);
1771 
1772 		return 0;
1773 	}
1774 
1775 	return 1;
1776 }
1777 
1778 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1779 				struct msghdr *msg, size_t msg_len,
1780 				struct sctp_transport *transport,
1781 				struct sctp_sndrcvinfo *sinfo)
1782 {
1783 	struct sock *sk = asoc->base.sk;
1784 	struct sctp_sock *sp = sctp_sk(sk);
1785 	struct net *net = sock_net(sk);
1786 	struct sctp_datamsg *datamsg;
1787 	bool wait_connect = false;
1788 	struct sctp_chunk *chunk;
1789 	long timeo;
1790 	int err;
1791 
1792 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1793 		err = -EINVAL;
1794 		goto err;
1795 	}
1796 
1797 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1798 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1799 		if (err)
1800 			goto err;
1801 	}
1802 
1803 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1804 		err = -EMSGSIZE;
1805 		goto err;
1806 	}
1807 
1808 	if (asoc->pmtu_pending) {
1809 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1810 			sctp_assoc_sync_pmtu(asoc);
1811 		asoc->pmtu_pending = 0;
1812 	}
1813 
1814 	if (sctp_wspace(asoc) < (int)msg_len)
1815 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1816 
1817 	if (sk_under_memory_pressure(sk))
1818 		sk_mem_reclaim(sk);
1819 
1820 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1821 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1822 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1823 		if (err)
1824 			goto err;
1825 	}
1826 
1827 	if (sctp_state(asoc, CLOSED)) {
1828 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1829 		if (err)
1830 			goto err;
1831 
1832 		if (asoc->ep->intl_enable) {
1833 			timeo = sock_sndtimeo(sk, 0);
1834 			err = sctp_wait_for_connect(asoc, &timeo);
1835 			if (err) {
1836 				err = -ESRCH;
1837 				goto err;
1838 			}
1839 		} else {
1840 			wait_connect = true;
1841 		}
1842 
1843 		pr_debug("%s: we associated primitively\n", __func__);
1844 	}
1845 
1846 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1847 	if (IS_ERR(datamsg)) {
1848 		err = PTR_ERR(datamsg);
1849 		goto err;
1850 	}
1851 
1852 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1853 
1854 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1855 		sctp_chunk_hold(chunk);
1856 		sctp_set_owner_w(chunk);
1857 		chunk->transport = transport;
1858 	}
1859 
1860 	err = sctp_primitive_SEND(net, asoc, datamsg);
1861 	if (err) {
1862 		sctp_datamsg_free(datamsg);
1863 		goto err;
1864 	}
1865 
1866 	pr_debug("%s: we sent primitively\n", __func__);
1867 
1868 	sctp_datamsg_put(datamsg);
1869 
1870 	if (unlikely(wait_connect)) {
1871 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1872 		sctp_wait_for_connect(asoc, &timeo);
1873 	}
1874 
1875 	err = msg_len;
1876 
1877 err:
1878 	return err;
1879 }
1880 
1881 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1882 					       const struct msghdr *msg,
1883 					       struct sctp_cmsgs *cmsgs)
1884 {
1885 	union sctp_addr *daddr = NULL;
1886 	int err;
1887 
1888 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1889 		int len = msg->msg_namelen;
1890 
1891 		if (len > sizeof(*daddr))
1892 			len = sizeof(*daddr);
1893 
1894 		daddr = (union sctp_addr *)msg->msg_name;
1895 
1896 		err = sctp_verify_addr(sk, daddr, len);
1897 		if (err)
1898 			return ERR_PTR(err);
1899 	}
1900 
1901 	return daddr;
1902 }
1903 
1904 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1905 				      struct sctp_sndrcvinfo *sinfo,
1906 				      struct sctp_cmsgs *cmsgs)
1907 {
1908 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1909 		sinfo->sinfo_stream = asoc->default_stream;
1910 		sinfo->sinfo_ppid = asoc->default_ppid;
1911 		sinfo->sinfo_context = asoc->default_context;
1912 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1913 
1914 		if (!cmsgs->prinfo)
1915 			sinfo->sinfo_flags = asoc->default_flags;
1916 	}
1917 
1918 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1919 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1920 
1921 	if (cmsgs->authinfo) {
1922 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1923 		 * sinfo_ssn to save the keyid on tx path.
1924 		 */
1925 		sinfo->sinfo_tsn = 1;
1926 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1927 	}
1928 }
1929 
1930 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1931 {
1932 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1933 	struct sctp_transport *transport = NULL;
1934 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1935 	struct sctp_association *asoc, *tmp;
1936 	struct sctp_cmsgs cmsgs;
1937 	union sctp_addr *daddr;
1938 	bool new = false;
1939 	__u16 sflags;
1940 	int err;
1941 
1942 	/* Parse and get snd_info */
1943 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1944 	if (err)
1945 		goto out;
1946 
1947 	sinfo  = &_sinfo;
1948 	sflags = sinfo->sinfo_flags;
1949 
1950 	/* Get daddr from msg */
1951 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1952 	if (IS_ERR(daddr)) {
1953 		err = PTR_ERR(daddr);
1954 		goto out;
1955 	}
1956 
1957 	lock_sock(sk);
1958 
1959 	/* SCTP_SENDALL process */
1960 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1961 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1962 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1963 							msg_len);
1964 			if (err == 0)
1965 				continue;
1966 			if (err < 0)
1967 				goto out_unlock;
1968 
1969 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1970 
1971 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1972 						   NULL, sinfo);
1973 			if (err < 0)
1974 				goto out_unlock;
1975 
1976 			iov_iter_revert(&msg->msg_iter, err);
1977 		}
1978 
1979 		goto out_unlock;
1980 	}
1981 
1982 	/* Get and check or create asoc */
1983 	if (daddr) {
1984 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1985 		if (asoc) {
1986 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1987 							msg_len);
1988 			if (err <= 0)
1989 				goto out_unlock;
1990 		} else {
1991 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1992 						    &transport);
1993 			if (err)
1994 				goto out_unlock;
1995 
1996 			asoc = transport->asoc;
1997 			new = true;
1998 		}
1999 
2000 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2001 			transport = NULL;
2002 	} else {
2003 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2004 		if (!asoc) {
2005 			err = -EPIPE;
2006 			goto out_unlock;
2007 		}
2008 
2009 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2010 		if (err <= 0)
2011 			goto out_unlock;
2012 	}
2013 
2014 	/* Update snd_info with the asoc */
2015 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2016 
2017 	/* Send msg to the asoc */
2018 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2019 	if (err < 0 && err != -ESRCH && new)
2020 		sctp_association_free(asoc);
2021 
2022 out_unlock:
2023 	release_sock(sk);
2024 out:
2025 	return sctp_error(sk, msg->msg_flags, err);
2026 }
2027 
2028 /* This is an extended version of skb_pull() that removes the data from the
2029  * start of a skb even when data is spread across the list of skb's in the
2030  * frag_list. len specifies the total amount of data that needs to be removed.
2031  * when 'len' bytes could be removed from the skb, it returns 0.
2032  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2033  * could not be removed.
2034  */
2035 static int sctp_skb_pull(struct sk_buff *skb, int len)
2036 {
2037 	struct sk_buff *list;
2038 	int skb_len = skb_headlen(skb);
2039 	int rlen;
2040 
2041 	if (len <= skb_len) {
2042 		__skb_pull(skb, len);
2043 		return 0;
2044 	}
2045 	len -= skb_len;
2046 	__skb_pull(skb, skb_len);
2047 
2048 	skb_walk_frags(skb, list) {
2049 		rlen = sctp_skb_pull(list, len);
2050 		skb->len -= (len-rlen);
2051 		skb->data_len -= (len-rlen);
2052 
2053 		if (!rlen)
2054 			return 0;
2055 
2056 		len = rlen;
2057 	}
2058 
2059 	return len;
2060 }
2061 
2062 /* API 3.1.3  recvmsg() - UDP Style Syntax
2063  *
2064  *  ssize_t recvmsg(int socket, struct msghdr *message,
2065  *                    int flags);
2066  *
2067  *  socket  - the socket descriptor of the endpoint.
2068  *  message - pointer to the msghdr structure which contains a single
2069  *            user message and possibly some ancillary data.
2070  *
2071  *            See Section 5 for complete description of the data
2072  *            structures.
2073  *
2074  *  flags   - flags sent or received with the user message, see Section
2075  *            5 for complete description of the flags.
2076  */
2077 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2078 			int noblock, int flags, int *addr_len)
2079 {
2080 	struct sctp_ulpevent *event = NULL;
2081 	struct sctp_sock *sp = sctp_sk(sk);
2082 	struct sk_buff *skb, *head_skb;
2083 	int copied;
2084 	int err = 0;
2085 	int skb_len;
2086 
2087 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2088 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2089 		 addr_len);
2090 
2091 	lock_sock(sk);
2092 
2093 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2094 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2095 		err = -ENOTCONN;
2096 		goto out;
2097 	}
2098 
2099 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2100 	if (!skb)
2101 		goto out;
2102 
2103 	/* Get the total length of the skb including any skb's in the
2104 	 * frag_list.
2105 	 */
2106 	skb_len = skb->len;
2107 
2108 	copied = skb_len;
2109 	if (copied > len)
2110 		copied = len;
2111 
2112 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2113 
2114 	event = sctp_skb2event(skb);
2115 
2116 	if (err)
2117 		goto out_free;
2118 
2119 	if (event->chunk && event->chunk->head_skb)
2120 		head_skb = event->chunk->head_skb;
2121 	else
2122 		head_skb = skb;
2123 	sock_recv_ts_and_drops(msg, sk, head_skb);
2124 	if (sctp_ulpevent_is_notification(event)) {
2125 		msg->msg_flags |= MSG_NOTIFICATION;
2126 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2127 	} else {
2128 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2129 	}
2130 
2131 	/* Check if we allow SCTP_NXTINFO. */
2132 	if (sp->recvnxtinfo)
2133 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2134 	/* Check if we allow SCTP_RCVINFO. */
2135 	if (sp->recvrcvinfo)
2136 		sctp_ulpevent_read_rcvinfo(event, msg);
2137 	/* Check if we allow SCTP_SNDRCVINFO. */
2138 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2139 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2140 
2141 	err = copied;
2142 
2143 	/* If skb's length exceeds the user's buffer, update the skb and
2144 	 * push it back to the receive_queue so that the next call to
2145 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2146 	 */
2147 	if (skb_len > copied) {
2148 		msg->msg_flags &= ~MSG_EOR;
2149 		if (flags & MSG_PEEK)
2150 			goto out_free;
2151 		sctp_skb_pull(skb, copied);
2152 		skb_queue_head(&sk->sk_receive_queue, skb);
2153 
2154 		/* When only partial message is copied to the user, increase
2155 		 * rwnd by that amount. If all the data in the skb is read,
2156 		 * rwnd is updated when the event is freed.
2157 		 */
2158 		if (!sctp_ulpevent_is_notification(event))
2159 			sctp_assoc_rwnd_increase(event->asoc, copied);
2160 		goto out;
2161 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2162 		   (event->msg_flags & MSG_EOR))
2163 		msg->msg_flags |= MSG_EOR;
2164 	else
2165 		msg->msg_flags &= ~MSG_EOR;
2166 
2167 out_free:
2168 	if (flags & MSG_PEEK) {
2169 		/* Release the skb reference acquired after peeking the skb in
2170 		 * sctp_skb_recv_datagram().
2171 		 */
2172 		kfree_skb(skb);
2173 	} else {
2174 		/* Free the event which includes releasing the reference to
2175 		 * the owner of the skb, freeing the skb and updating the
2176 		 * rwnd.
2177 		 */
2178 		sctp_ulpevent_free(event);
2179 	}
2180 out:
2181 	release_sock(sk);
2182 	return err;
2183 }
2184 
2185 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2186  *
2187  * This option is a on/off flag.  If enabled no SCTP message
2188  * fragmentation will be performed.  Instead if a message being sent
2189  * exceeds the current PMTU size, the message will NOT be sent and
2190  * instead a error will be indicated to the user.
2191  */
2192 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2193 					     char __user *optval,
2194 					     unsigned int optlen)
2195 {
2196 	int val;
2197 
2198 	if (optlen < sizeof(int))
2199 		return -EINVAL;
2200 
2201 	if (get_user(val, (int __user *)optval))
2202 		return -EFAULT;
2203 
2204 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2205 
2206 	return 0;
2207 }
2208 
2209 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2210 				  unsigned int optlen)
2211 {
2212 	struct sctp_event_subscribe subscribe;
2213 	__u8 *sn_type = (__u8 *)&subscribe;
2214 	struct sctp_sock *sp = sctp_sk(sk);
2215 	struct sctp_association *asoc;
2216 	int i;
2217 
2218 	if (optlen > sizeof(struct sctp_event_subscribe))
2219 		return -EINVAL;
2220 
2221 	if (copy_from_user(&subscribe, optval, optlen))
2222 		return -EFAULT;
2223 
2224 	for (i = 0; i < optlen; i++)
2225 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2226 				       sn_type[i]);
2227 
2228 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2229 		asoc->subscribe = sctp_sk(sk)->subscribe;
2230 
2231 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2232 	 * if there is no data to be sent or retransmit, the stack will
2233 	 * immediately send up this notification.
2234 	 */
2235 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2236 		struct sctp_ulpevent *event;
2237 
2238 		asoc = sctp_id2assoc(sk, 0);
2239 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2240 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2241 					GFP_USER | __GFP_NOWARN);
2242 			if (!event)
2243 				return -ENOMEM;
2244 
2245 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2246 		}
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2253  *
2254  * This socket option is applicable to the UDP-style socket only.  When
2255  * set it will cause associations that are idle for more than the
2256  * specified number of seconds to automatically close.  An association
2257  * being idle is defined an association that has NOT sent or received
2258  * user data.  The special value of '0' indicates that no automatic
2259  * close of any associations should be performed.  The option expects an
2260  * integer defining the number of seconds of idle time before an
2261  * association is closed.
2262  */
2263 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2264 				     unsigned int optlen)
2265 {
2266 	struct sctp_sock *sp = sctp_sk(sk);
2267 	struct net *net = sock_net(sk);
2268 
2269 	/* Applicable to UDP-style socket only */
2270 	if (sctp_style(sk, TCP))
2271 		return -EOPNOTSUPP;
2272 	if (optlen != sizeof(int))
2273 		return -EINVAL;
2274 	if (copy_from_user(&sp->autoclose, optval, optlen))
2275 		return -EFAULT;
2276 
2277 	if (sp->autoclose > net->sctp.max_autoclose)
2278 		sp->autoclose = net->sctp.max_autoclose;
2279 
2280 	return 0;
2281 }
2282 
2283 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2284  *
2285  * Applications can enable or disable heartbeats for any peer address of
2286  * an association, modify an address's heartbeat interval, force a
2287  * heartbeat to be sent immediately, and adjust the address's maximum
2288  * number of retransmissions sent before an address is considered
2289  * unreachable.  The following structure is used to access and modify an
2290  * address's parameters:
2291  *
2292  *  struct sctp_paddrparams {
2293  *     sctp_assoc_t            spp_assoc_id;
2294  *     struct sockaddr_storage spp_address;
2295  *     uint32_t                spp_hbinterval;
2296  *     uint16_t                spp_pathmaxrxt;
2297  *     uint32_t                spp_pathmtu;
2298  *     uint32_t                spp_sackdelay;
2299  *     uint32_t                spp_flags;
2300  *     uint32_t                spp_ipv6_flowlabel;
2301  *     uint8_t                 spp_dscp;
2302  * };
2303  *
2304  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2305  *                     application, and identifies the association for
2306  *                     this query.
2307  *   spp_address     - This specifies which address is of interest.
2308  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2309  *                     in milliseconds.  If a  value of zero
2310  *                     is present in this field then no changes are to
2311  *                     be made to this parameter.
2312  *   spp_pathmaxrxt  - This contains the maximum number of
2313  *                     retransmissions before this address shall be
2314  *                     considered unreachable. If a  value of zero
2315  *                     is present in this field then no changes are to
2316  *                     be made to this parameter.
2317  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2318  *                     specified here will be the "fixed" path mtu.
2319  *                     Note that if the spp_address field is empty
2320  *                     then all associations on this address will
2321  *                     have this fixed path mtu set upon them.
2322  *
2323  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2324  *                     the number of milliseconds that sacks will be delayed
2325  *                     for. This value will apply to all addresses of an
2326  *                     association if the spp_address field is empty. Note
2327  *                     also, that if delayed sack is enabled and this
2328  *                     value is set to 0, no change is made to the last
2329  *                     recorded delayed sack timer value.
2330  *
2331  *   spp_flags       - These flags are used to control various features
2332  *                     on an association. The flag field may contain
2333  *                     zero or more of the following options.
2334  *
2335  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2336  *                     specified address. Note that if the address
2337  *                     field is empty all addresses for the association
2338  *                     have heartbeats enabled upon them.
2339  *
2340  *                     SPP_HB_DISABLE - Disable heartbeats on the
2341  *                     speicifed address. Note that if the address
2342  *                     field is empty all addresses for the association
2343  *                     will have their heartbeats disabled. Note also
2344  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2345  *                     mutually exclusive, only one of these two should
2346  *                     be specified. Enabling both fields will have
2347  *                     undetermined results.
2348  *
2349  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2350  *                     to be made immediately.
2351  *
2352  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2353  *                     heartbeat delayis to be set to the value of 0
2354  *                     milliseconds.
2355  *
2356  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2357  *                     discovery upon the specified address. Note that
2358  *                     if the address feild is empty then all addresses
2359  *                     on the association are effected.
2360  *
2361  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2362  *                     discovery upon the specified address. Note that
2363  *                     if the address feild is empty then all addresses
2364  *                     on the association are effected. Not also that
2365  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2366  *                     exclusive. Enabling both will have undetermined
2367  *                     results.
2368  *
2369  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2370  *                     on delayed sack. The time specified in spp_sackdelay
2371  *                     is used to specify the sack delay for this address. Note
2372  *                     that if spp_address is empty then all addresses will
2373  *                     enable delayed sack and take on the sack delay
2374  *                     value specified in spp_sackdelay.
2375  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2376  *                     off delayed sack. If the spp_address field is blank then
2377  *                     delayed sack is disabled for the entire association. Note
2378  *                     also that this field is mutually exclusive to
2379  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2380  *                     results.
2381  *
2382  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2383  *                     setting of the IPV6 flow label value.  The value is
2384  *                     contained in the spp_ipv6_flowlabel field.
2385  *                     Upon retrieval, this flag will be set to indicate that
2386  *                     the spp_ipv6_flowlabel field has a valid value returned.
2387  *                     If a specific destination address is set (in the
2388  *                     spp_address field), then the value returned is that of
2389  *                     the address.  If just an association is specified (and
2390  *                     no address), then the association's default flow label
2391  *                     is returned.  If neither an association nor a destination
2392  *                     is specified, then the socket's default flow label is
2393  *                     returned.  For non-IPv6 sockets, this flag will be left
2394  *                     cleared.
2395  *
2396  *                     SPP_DSCP:  Setting this flag enables the setting of the
2397  *                     Differentiated Services Code Point (DSCP) value
2398  *                     associated with either the association or a specific
2399  *                     address.  The value is obtained in the spp_dscp field.
2400  *                     Upon retrieval, this flag will be set to indicate that
2401  *                     the spp_dscp field has a valid value returned.  If a
2402  *                     specific destination address is set when called (in the
2403  *                     spp_address field), then that specific destination
2404  *                     address's DSCP value is returned.  If just an association
2405  *                     is specified, then the association's default DSCP is
2406  *                     returned.  If neither an association nor a destination is
2407  *                     specified, then the socket's default DSCP is returned.
2408  *
2409  *   spp_ipv6_flowlabel
2410  *                   - This field is used in conjunction with the
2411  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2412  *                     The 20 least significant bits are used for the flow
2413  *                     label.  This setting has precedence over any IPv6-layer
2414  *                     setting.
2415  *
2416  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2417  *                     and contains the DSCP.  The 6 most significant bits are
2418  *                     used for the DSCP.  This setting has precedence over any
2419  *                     IPv4- or IPv6- layer setting.
2420  */
2421 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2422 				       struct sctp_transport   *trans,
2423 				       struct sctp_association *asoc,
2424 				       struct sctp_sock        *sp,
2425 				       int                      hb_change,
2426 				       int                      pmtud_change,
2427 				       int                      sackdelay_change)
2428 {
2429 	int error;
2430 
2431 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2432 		struct net *net = sock_net(trans->asoc->base.sk);
2433 
2434 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2435 		if (error)
2436 			return error;
2437 	}
2438 
2439 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2440 	 * this field is ignored.  Note also that a value of zero indicates
2441 	 * the current setting should be left unchanged.
2442 	 */
2443 	if (params->spp_flags & SPP_HB_ENABLE) {
2444 
2445 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2446 		 * set.  This lets us use 0 value when this flag
2447 		 * is set.
2448 		 */
2449 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2450 			params->spp_hbinterval = 0;
2451 
2452 		if (params->spp_hbinterval ||
2453 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2454 			if (trans) {
2455 				trans->hbinterval =
2456 				    msecs_to_jiffies(params->spp_hbinterval);
2457 			} else if (asoc) {
2458 				asoc->hbinterval =
2459 				    msecs_to_jiffies(params->spp_hbinterval);
2460 			} else {
2461 				sp->hbinterval = params->spp_hbinterval;
2462 			}
2463 		}
2464 	}
2465 
2466 	if (hb_change) {
2467 		if (trans) {
2468 			trans->param_flags =
2469 				(trans->param_flags & ~SPP_HB) | hb_change;
2470 		} else if (asoc) {
2471 			asoc->param_flags =
2472 				(asoc->param_flags & ~SPP_HB) | hb_change;
2473 		} else {
2474 			sp->param_flags =
2475 				(sp->param_flags & ~SPP_HB) | hb_change;
2476 		}
2477 	}
2478 
2479 	/* When Path MTU discovery is disabled the value specified here will
2480 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2481 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2482 	 * effect).
2483 	 */
2484 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2485 		if (trans) {
2486 			trans->pathmtu = params->spp_pathmtu;
2487 			sctp_assoc_sync_pmtu(asoc);
2488 		} else if (asoc) {
2489 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2490 		} else {
2491 			sp->pathmtu = params->spp_pathmtu;
2492 		}
2493 	}
2494 
2495 	if (pmtud_change) {
2496 		if (trans) {
2497 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2498 				(params->spp_flags & SPP_PMTUD_ENABLE);
2499 			trans->param_flags =
2500 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2501 			if (update) {
2502 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2503 				sctp_assoc_sync_pmtu(asoc);
2504 			}
2505 		} else if (asoc) {
2506 			asoc->param_flags =
2507 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2508 		} else {
2509 			sp->param_flags =
2510 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2511 		}
2512 	}
2513 
2514 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2515 	 * value of this field is ignored.  Note also that a value of zero
2516 	 * indicates the current setting should be left unchanged.
2517 	 */
2518 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2519 		if (trans) {
2520 			trans->sackdelay =
2521 				msecs_to_jiffies(params->spp_sackdelay);
2522 		} else if (asoc) {
2523 			asoc->sackdelay =
2524 				msecs_to_jiffies(params->spp_sackdelay);
2525 		} else {
2526 			sp->sackdelay = params->spp_sackdelay;
2527 		}
2528 	}
2529 
2530 	if (sackdelay_change) {
2531 		if (trans) {
2532 			trans->param_flags =
2533 				(trans->param_flags & ~SPP_SACKDELAY) |
2534 				sackdelay_change;
2535 		} else if (asoc) {
2536 			asoc->param_flags =
2537 				(asoc->param_flags & ~SPP_SACKDELAY) |
2538 				sackdelay_change;
2539 		} else {
2540 			sp->param_flags =
2541 				(sp->param_flags & ~SPP_SACKDELAY) |
2542 				sackdelay_change;
2543 		}
2544 	}
2545 
2546 	/* Note that a value of zero indicates the current setting should be
2547 	   left unchanged.
2548 	 */
2549 	if (params->spp_pathmaxrxt) {
2550 		if (trans) {
2551 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2552 		} else if (asoc) {
2553 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2554 		} else {
2555 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2556 		}
2557 	}
2558 
2559 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2560 		if (trans) {
2561 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2562 				trans->flowlabel = params->spp_ipv6_flowlabel &
2563 						   SCTP_FLOWLABEL_VAL_MASK;
2564 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2565 			}
2566 		} else if (asoc) {
2567 			struct sctp_transport *t;
2568 
2569 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2570 					    transports) {
2571 				if (t->ipaddr.sa.sa_family != AF_INET6)
2572 					continue;
2573 				t->flowlabel = params->spp_ipv6_flowlabel &
2574 					       SCTP_FLOWLABEL_VAL_MASK;
2575 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2576 			}
2577 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2578 					  SCTP_FLOWLABEL_VAL_MASK;
2579 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2580 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2581 			sp->flowlabel = params->spp_ipv6_flowlabel &
2582 					SCTP_FLOWLABEL_VAL_MASK;
2583 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2584 		}
2585 	}
2586 
2587 	if (params->spp_flags & SPP_DSCP) {
2588 		if (trans) {
2589 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2590 			trans->dscp |= SCTP_DSCP_SET_MASK;
2591 		} else if (asoc) {
2592 			struct sctp_transport *t;
2593 
2594 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2595 					    transports) {
2596 				t->dscp = params->spp_dscp &
2597 					  SCTP_DSCP_VAL_MASK;
2598 				t->dscp |= SCTP_DSCP_SET_MASK;
2599 			}
2600 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2601 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2602 		} else {
2603 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2604 			sp->dscp |= SCTP_DSCP_SET_MASK;
2605 		}
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2612 					    char __user *optval,
2613 					    unsigned int optlen)
2614 {
2615 	struct sctp_paddrparams  params;
2616 	struct sctp_transport   *trans = NULL;
2617 	struct sctp_association *asoc = NULL;
2618 	struct sctp_sock        *sp = sctp_sk(sk);
2619 	int error;
2620 	int hb_change, pmtud_change, sackdelay_change;
2621 
2622 	if (optlen == sizeof(params)) {
2623 		if (copy_from_user(&params, optval, optlen))
2624 			return -EFAULT;
2625 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2626 					    spp_ipv6_flowlabel), 4)) {
2627 		if (copy_from_user(&params, optval, optlen))
2628 			return -EFAULT;
2629 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2630 			return -EINVAL;
2631 	} else {
2632 		return -EINVAL;
2633 	}
2634 
2635 	/* Validate flags and value parameters. */
2636 	hb_change        = params.spp_flags & SPP_HB;
2637 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2638 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2639 
2640 	if (hb_change        == SPP_HB ||
2641 	    pmtud_change     == SPP_PMTUD ||
2642 	    sackdelay_change == SPP_SACKDELAY ||
2643 	    params.spp_sackdelay > 500 ||
2644 	    (params.spp_pathmtu &&
2645 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2646 		return -EINVAL;
2647 
2648 	/* If an address other than INADDR_ANY is specified, and
2649 	 * no transport is found, then the request is invalid.
2650 	 */
2651 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2652 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2653 					       params.spp_assoc_id);
2654 		if (!trans)
2655 			return -EINVAL;
2656 	}
2657 
2658 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2659 	 * socket is a one to many style socket, and an association
2660 	 * was not found, then the id was invalid.
2661 	 */
2662 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2663 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
2664 	    sctp_style(sk, UDP))
2665 		return -EINVAL;
2666 
2667 	/* Heartbeat demand can only be sent on a transport or
2668 	 * association, but not a socket.
2669 	 */
2670 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2671 		return -EINVAL;
2672 
2673 	/* Process parameters. */
2674 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2675 					    hb_change, pmtud_change,
2676 					    sackdelay_change);
2677 
2678 	if (error)
2679 		return error;
2680 
2681 	/* If changes are for association, also apply parameters to each
2682 	 * transport.
2683 	 */
2684 	if (!trans && asoc) {
2685 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2686 				transports) {
2687 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2688 						    hb_change, pmtud_change,
2689 						    sackdelay_change);
2690 		}
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2697 {
2698 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2699 }
2700 
2701 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2702 {
2703 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2704 }
2705 
2706 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2707 					struct sctp_association *asoc)
2708 {
2709 	struct sctp_transport *trans;
2710 
2711 	if (params->sack_delay) {
2712 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2713 		asoc->param_flags =
2714 			sctp_spp_sackdelay_enable(asoc->param_flags);
2715 	}
2716 	if (params->sack_freq == 1) {
2717 		asoc->param_flags =
2718 			sctp_spp_sackdelay_disable(asoc->param_flags);
2719 	} else if (params->sack_freq > 1) {
2720 		asoc->sackfreq = params->sack_freq;
2721 		asoc->param_flags =
2722 			sctp_spp_sackdelay_enable(asoc->param_flags);
2723 	}
2724 
2725 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2726 			    transports) {
2727 		if (params->sack_delay) {
2728 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2729 			trans->param_flags =
2730 				sctp_spp_sackdelay_enable(trans->param_flags);
2731 		}
2732 		if (params->sack_freq == 1) {
2733 			trans->param_flags =
2734 				sctp_spp_sackdelay_disable(trans->param_flags);
2735 		} else if (params->sack_freq > 1) {
2736 			trans->sackfreq = params->sack_freq;
2737 			trans->param_flags =
2738 				sctp_spp_sackdelay_enable(trans->param_flags);
2739 		}
2740 	}
2741 }
2742 
2743 /*
2744  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2745  *
2746  * This option will effect the way delayed acks are performed.  This
2747  * option allows you to get or set the delayed ack time, in
2748  * milliseconds.  It also allows changing the delayed ack frequency.
2749  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2750  * the assoc_id is 0, then this sets or gets the endpoints default
2751  * values.  If the assoc_id field is non-zero, then the set or get
2752  * effects the specified association for the one to many model (the
2753  * assoc_id field is ignored by the one to one model).  Note that if
2754  * sack_delay or sack_freq are 0 when setting this option, then the
2755  * current values will remain unchanged.
2756  *
2757  * struct sctp_sack_info {
2758  *     sctp_assoc_t            sack_assoc_id;
2759  *     uint32_t                sack_delay;
2760  *     uint32_t                sack_freq;
2761  * };
2762  *
2763  * sack_assoc_id -  This parameter, indicates which association the user
2764  *    is performing an action upon.  Note that if this field's value is
2765  *    zero then the endpoints default value is changed (effecting future
2766  *    associations only).
2767  *
2768  * sack_delay -  This parameter contains the number of milliseconds that
2769  *    the user is requesting the delayed ACK timer be set to.  Note that
2770  *    this value is defined in the standard to be between 200 and 500
2771  *    milliseconds.
2772  *
2773  * sack_freq -  This parameter contains the number of packets that must
2774  *    be received before a sack is sent without waiting for the delay
2775  *    timer to expire.  The default value for this is 2, setting this
2776  *    value to 1 will disable the delayed sack algorithm.
2777  */
2778 
2779 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2780 				       char __user *optval, unsigned int optlen)
2781 {
2782 	struct sctp_sock *sp = sctp_sk(sk);
2783 	struct sctp_association *asoc;
2784 	struct sctp_sack_info params;
2785 
2786 	if (optlen == sizeof(struct sctp_sack_info)) {
2787 		if (copy_from_user(&params, optval, optlen))
2788 			return -EFAULT;
2789 
2790 		if (params.sack_delay == 0 && params.sack_freq == 0)
2791 			return 0;
2792 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2793 		pr_warn_ratelimited(DEPRECATED
2794 				    "%s (pid %d) "
2795 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2796 				    "Use struct sctp_sack_info instead\n",
2797 				    current->comm, task_pid_nr(current));
2798 		if (copy_from_user(&params, optval, optlen))
2799 			return -EFAULT;
2800 
2801 		if (params.sack_delay == 0)
2802 			params.sack_freq = 1;
2803 		else
2804 			params.sack_freq = 0;
2805 	} else
2806 		return -EINVAL;
2807 
2808 	/* Validate value parameter. */
2809 	if (params.sack_delay > 500)
2810 		return -EINVAL;
2811 
2812 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2813 	 * socket is a one to many style socket, and an association
2814 	 * was not found, then the id was invalid.
2815 	 */
2816 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2817 	if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
2818 	    sctp_style(sk, UDP))
2819 		return -EINVAL;
2820 
2821 	if (asoc) {
2822 		sctp_apply_asoc_delayed_ack(&params, asoc);
2823 
2824 		return 0;
2825 	}
2826 
2827 	if (sctp_style(sk, TCP))
2828 		params.sack_assoc_id = SCTP_FUTURE_ASSOC;
2829 
2830 	if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
2831 	    params.sack_assoc_id == SCTP_ALL_ASSOC) {
2832 		if (params.sack_delay) {
2833 			sp->sackdelay = params.sack_delay;
2834 			sp->param_flags =
2835 				sctp_spp_sackdelay_enable(sp->param_flags);
2836 		}
2837 		if (params.sack_freq == 1) {
2838 			sp->param_flags =
2839 				sctp_spp_sackdelay_disable(sp->param_flags);
2840 		} else if (params.sack_freq > 1) {
2841 			sp->sackfreq = params.sack_freq;
2842 			sp->param_flags =
2843 				sctp_spp_sackdelay_enable(sp->param_flags);
2844 		}
2845 	}
2846 
2847 	if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
2848 	    params.sack_assoc_id == SCTP_ALL_ASSOC)
2849 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2850 			sctp_apply_asoc_delayed_ack(&params, asoc);
2851 
2852 	return 0;
2853 }
2854 
2855 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2856  *
2857  * Applications can specify protocol parameters for the default association
2858  * initialization.  The option name argument to setsockopt() and getsockopt()
2859  * is SCTP_INITMSG.
2860  *
2861  * Setting initialization parameters is effective only on an unconnected
2862  * socket (for UDP-style sockets only future associations are effected
2863  * by the change).  With TCP-style sockets, this option is inherited by
2864  * sockets derived from a listener socket.
2865  */
2866 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2867 {
2868 	struct sctp_initmsg sinit;
2869 	struct sctp_sock *sp = sctp_sk(sk);
2870 
2871 	if (optlen != sizeof(struct sctp_initmsg))
2872 		return -EINVAL;
2873 	if (copy_from_user(&sinit, optval, optlen))
2874 		return -EFAULT;
2875 
2876 	if (sinit.sinit_num_ostreams)
2877 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2878 	if (sinit.sinit_max_instreams)
2879 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2880 	if (sinit.sinit_max_attempts)
2881 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2882 	if (sinit.sinit_max_init_timeo)
2883 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2884 
2885 	return 0;
2886 }
2887 
2888 /*
2889  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2890  *
2891  *   Applications that wish to use the sendto() system call may wish to
2892  *   specify a default set of parameters that would normally be supplied
2893  *   through the inclusion of ancillary data.  This socket option allows
2894  *   such an application to set the default sctp_sndrcvinfo structure.
2895  *   The application that wishes to use this socket option simply passes
2896  *   in to this call the sctp_sndrcvinfo structure defined in Section
2897  *   5.2.2) The input parameters accepted by this call include
2898  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2899  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2900  *   to this call if the caller is using the UDP model.
2901  */
2902 static int sctp_setsockopt_default_send_param(struct sock *sk,
2903 					      char __user *optval,
2904 					      unsigned int optlen)
2905 {
2906 	struct sctp_sock *sp = sctp_sk(sk);
2907 	struct sctp_association *asoc;
2908 	struct sctp_sndrcvinfo info;
2909 
2910 	if (optlen != sizeof(info))
2911 		return -EINVAL;
2912 	if (copy_from_user(&info, optval, optlen))
2913 		return -EFAULT;
2914 	if (info.sinfo_flags &
2915 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2916 	      SCTP_ABORT | SCTP_EOF))
2917 		return -EINVAL;
2918 
2919 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2920 	if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
2921 	    sctp_style(sk, UDP))
2922 		return -EINVAL;
2923 
2924 	if (asoc) {
2925 		asoc->default_stream = info.sinfo_stream;
2926 		asoc->default_flags = info.sinfo_flags;
2927 		asoc->default_ppid = info.sinfo_ppid;
2928 		asoc->default_context = info.sinfo_context;
2929 		asoc->default_timetolive = info.sinfo_timetolive;
2930 
2931 		return 0;
2932 	}
2933 
2934 	if (sctp_style(sk, TCP))
2935 		info.sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2936 
2937 	if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2938 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
2939 		sp->default_stream = info.sinfo_stream;
2940 		sp->default_flags = info.sinfo_flags;
2941 		sp->default_ppid = info.sinfo_ppid;
2942 		sp->default_context = info.sinfo_context;
2943 		sp->default_timetolive = info.sinfo_timetolive;
2944 	}
2945 
2946 	if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2947 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
2948 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2949 			asoc->default_stream = info.sinfo_stream;
2950 			asoc->default_flags = info.sinfo_flags;
2951 			asoc->default_ppid = info.sinfo_ppid;
2952 			asoc->default_context = info.sinfo_context;
2953 			asoc->default_timetolive = info.sinfo_timetolive;
2954 		}
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2961  * (SCTP_DEFAULT_SNDINFO)
2962  */
2963 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2964 					   char __user *optval,
2965 					   unsigned int optlen)
2966 {
2967 	struct sctp_sock *sp = sctp_sk(sk);
2968 	struct sctp_association *asoc;
2969 	struct sctp_sndinfo info;
2970 
2971 	if (optlen != sizeof(info))
2972 		return -EINVAL;
2973 	if (copy_from_user(&info, optval, optlen))
2974 		return -EFAULT;
2975 	if (info.snd_flags &
2976 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2977 	      SCTP_ABORT | SCTP_EOF))
2978 		return -EINVAL;
2979 
2980 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2981 	if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
2982 	    sctp_style(sk, UDP))
2983 		return -EINVAL;
2984 
2985 	if (asoc) {
2986 		asoc->default_stream = info.snd_sid;
2987 		asoc->default_flags = info.snd_flags;
2988 		asoc->default_ppid = info.snd_ppid;
2989 		asoc->default_context = info.snd_context;
2990 
2991 		return 0;
2992 	}
2993 
2994 	if (sctp_style(sk, TCP))
2995 		info.snd_assoc_id = SCTP_FUTURE_ASSOC;
2996 
2997 	if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
2998 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
2999 		sp->default_stream = info.snd_sid;
3000 		sp->default_flags = info.snd_flags;
3001 		sp->default_ppid = info.snd_ppid;
3002 		sp->default_context = info.snd_context;
3003 	}
3004 
3005 	if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
3006 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3007 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3008 			asoc->default_stream = info.snd_sid;
3009 			asoc->default_flags = info.snd_flags;
3010 			asoc->default_ppid = info.snd_ppid;
3011 			asoc->default_context = info.snd_context;
3012 		}
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3019  *
3020  * Requests that the local SCTP stack use the enclosed peer address as
3021  * the association primary.  The enclosed address must be one of the
3022  * association peer's addresses.
3023  */
3024 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3025 					unsigned int optlen)
3026 {
3027 	struct sctp_prim prim;
3028 	struct sctp_transport *trans;
3029 	struct sctp_af *af;
3030 	int err;
3031 
3032 	if (optlen != sizeof(struct sctp_prim))
3033 		return -EINVAL;
3034 
3035 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3036 		return -EFAULT;
3037 
3038 	/* Allow security module to validate address but need address len. */
3039 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3040 	if (!af)
3041 		return -EINVAL;
3042 
3043 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3044 					 (struct sockaddr *)&prim.ssp_addr,
3045 					 af->sockaddr_len);
3046 	if (err)
3047 		return err;
3048 
3049 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3050 	if (!trans)
3051 		return -EINVAL;
3052 
3053 	sctp_assoc_set_primary(trans->asoc, trans);
3054 
3055 	return 0;
3056 }
3057 
3058 /*
3059  * 7.1.5 SCTP_NODELAY
3060  *
3061  * Turn on/off any Nagle-like algorithm.  This means that packets are
3062  * generally sent as soon as possible and no unnecessary delays are
3063  * introduced, at the cost of more packets in the network.  Expects an
3064  *  integer boolean flag.
3065  */
3066 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3067 				   unsigned int optlen)
3068 {
3069 	int val;
3070 
3071 	if (optlen < sizeof(int))
3072 		return -EINVAL;
3073 	if (get_user(val, (int __user *)optval))
3074 		return -EFAULT;
3075 
3076 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3077 	return 0;
3078 }
3079 
3080 /*
3081  *
3082  * 7.1.1 SCTP_RTOINFO
3083  *
3084  * The protocol parameters used to initialize and bound retransmission
3085  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3086  * and modify these parameters.
3087  * All parameters are time values, in milliseconds.  A value of 0, when
3088  * modifying the parameters, indicates that the current value should not
3089  * be changed.
3090  *
3091  */
3092 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3093 {
3094 	struct sctp_rtoinfo rtoinfo;
3095 	struct sctp_association *asoc;
3096 	unsigned long rto_min, rto_max;
3097 	struct sctp_sock *sp = sctp_sk(sk);
3098 
3099 	if (optlen != sizeof (struct sctp_rtoinfo))
3100 		return -EINVAL;
3101 
3102 	if (copy_from_user(&rtoinfo, optval, optlen))
3103 		return -EFAULT;
3104 
3105 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3106 
3107 	/* Set the values to the specific association */
3108 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
3109 	    sctp_style(sk, UDP))
3110 		return -EINVAL;
3111 
3112 	rto_max = rtoinfo.srto_max;
3113 	rto_min = rtoinfo.srto_min;
3114 
3115 	if (rto_max)
3116 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3117 	else
3118 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3119 
3120 	if (rto_min)
3121 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3122 	else
3123 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3124 
3125 	if (rto_min > rto_max)
3126 		return -EINVAL;
3127 
3128 	if (asoc) {
3129 		if (rtoinfo.srto_initial != 0)
3130 			asoc->rto_initial =
3131 				msecs_to_jiffies(rtoinfo.srto_initial);
3132 		asoc->rto_max = rto_max;
3133 		asoc->rto_min = rto_min;
3134 	} else {
3135 		/* If there is no association or the association-id = 0
3136 		 * set the values to the endpoint.
3137 		 */
3138 		if (rtoinfo.srto_initial != 0)
3139 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3140 		sp->rtoinfo.srto_max = rto_max;
3141 		sp->rtoinfo.srto_min = rto_min;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 /*
3148  *
3149  * 7.1.2 SCTP_ASSOCINFO
3150  *
3151  * This option is used to tune the maximum retransmission attempts
3152  * of the association.
3153  * Returns an error if the new association retransmission value is
3154  * greater than the sum of the retransmission value  of the peer.
3155  * See [SCTP] for more information.
3156  *
3157  */
3158 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3159 {
3160 
3161 	struct sctp_assocparams assocparams;
3162 	struct sctp_association *asoc;
3163 
3164 	if (optlen != sizeof(struct sctp_assocparams))
3165 		return -EINVAL;
3166 	if (copy_from_user(&assocparams, optval, optlen))
3167 		return -EFAULT;
3168 
3169 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3170 
3171 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3172 	    sctp_style(sk, UDP))
3173 		return -EINVAL;
3174 
3175 	/* Set the values to the specific association */
3176 	if (asoc) {
3177 		if (assocparams.sasoc_asocmaxrxt != 0) {
3178 			__u32 path_sum = 0;
3179 			int   paths = 0;
3180 			struct sctp_transport *peer_addr;
3181 
3182 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3183 					transports) {
3184 				path_sum += peer_addr->pathmaxrxt;
3185 				paths++;
3186 			}
3187 
3188 			/* Only validate asocmaxrxt if we have more than
3189 			 * one path/transport.  We do this because path
3190 			 * retransmissions are only counted when we have more
3191 			 * then one path.
3192 			 */
3193 			if (paths > 1 &&
3194 			    assocparams.sasoc_asocmaxrxt > path_sum)
3195 				return -EINVAL;
3196 
3197 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3198 		}
3199 
3200 		if (assocparams.sasoc_cookie_life != 0)
3201 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3202 	} else {
3203 		/* Set the values to the endpoint */
3204 		struct sctp_sock *sp = sctp_sk(sk);
3205 
3206 		if (assocparams.sasoc_asocmaxrxt != 0)
3207 			sp->assocparams.sasoc_asocmaxrxt =
3208 						assocparams.sasoc_asocmaxrxt;
3209 		if (assocparams.sasoc_cookie_life != 0)
3210 			sp->assocparams.sasoc_cookie_life =
3211 						assocparams.sasoc_cookie_life;
3212 	}
3213 	return 0;
3214 }
3215 
3216 /*
3217  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3218  *
3219  * This socket option is a boolean flag which turns on or off mapped V4
3220  * addresses.  If this option is turned on and the socket is type
3221  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3222  * If this option is turned off, then no mapping will be done of V4
3223  * addresses and a user will receive both PF_INET6 and PF_INET type
3224  * addresses on the socket.
3225  */
3226 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3227 {
3228 	int val;
3229 	struct sctp_sock *sp = sctp_sk(sk);
3230 
3231 	if (optlen < sizeof(int))
3232 		return -EINVAL;
3233 	if (get_user(val, (int __user *)optval))
3234 		return -EFAULT;
3235 	if (val)
3236 		sp->v4mapped = 1;
3237 	else
3238 		sp->v4mapped = 0;
3239 
3240 	return 0;
3241 }
3242 
3243 /*
3244  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3245  * This option will get or set the maximum size to put in any outgoing
3246  * SCTP DATA chunk.  If a message is larger than this size it will be
3247  * fragmented by SCTP into the specified size.  Note that the underlying
3248  * SCTP implementation may fragment into smaller sized chunks when the
3249  * PMTU of the underlying association is smaller than the value set by
3250  * the user.  The default value for this option is '0' which indicates
3251  * the user is NOT limiting fragmentation and only the PMTU will effect
3252  * SCTP's choice of DATA chunk size.  Note also that values set larger
3253  * than the maximum size of an IP datagram will effectively let SCTP
3254  * control fragmentation (i.e. the same as setting this option to 0).
3255  *
3256  * The following structure is used to access and modify this parameter:
3257  *
3258  * struct sctp_assoc_value {
3259  *   sctp_assoc_t assoc_id;
3260  *   uint32_t assoc_value;
3261  * };
3262  *
3263  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3264  *    For one-to-many style sockets this parameter indicates which
3265  *    association the user is performing an action upon.  Note that if
3266  *    this field's value is zero then the endpoints default value is
3267  *    changed (effecting future associations only).
3268  * assoc_value:  This parameter specifies the maximum size in bytes.
3269  */
3270 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3271 {
3272 	struct sctp_sock *sp = sctp_sk(sk);
3273 	struct sctp_assoc_value params;
3274 	struct sctp_association *asoc;
3275 	int val;
3276 
3277 	if (optlen == sizeof(int)) {
3278 		pr_warn_ratelimited(DEPRECATED
3279 				    "%s (pid %d) "
3280 				    "Use of int in maxseg socket option.\n"
3281 				    "Use struct sctp_assoc_value instead\n",
3282 				    current->comm, task_pid_nr(current));
3283 		if (copy_from_user(&val, optval, optlen))
3284 			return -EFAULT;
3285 		params.assoc_id = SCTP_FUTURE_ASSOC;
3286 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3287 		if (copy_from_user(&params, optval, optlen))
3288 			return -EFAULT;
3289 		val = params.assoc_value;
3290 	} else {
3291 		return -EINVAL;
3292 	}
3293 
3294 	asoc = sctp_id2assoc(sk, params.assoc_id);
3295 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
3296 	    sctp_style(sk, UDP))
3297 		return -EINVAL;
3298 
3299 	if (val) {
3300 		int min_len, max_len;
3301 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3302 				 sizeof(struct sctp_data_chunk);
3303 
3304 		min_len = sctp_min_frag_point(sp, datasize);
3305 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3306 
3307 		if (val < min_len || val > max_len)
3308 			return -EINVAL;
3309 	}
3310 
3311 	if (asoc) {
3312 		asoc->user_frag = val;
3313 		sctp_assoc_update_frag_point(asoc);
3314 	} else {
3315 		sp->user_frag = val;
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 
3322 /*
3323  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3324  *
3325  *   Requests that the peer mark the enclosed address as the association
3326  *   primary. The enclosed address must be one of the association's
3327  *   locally bound addresses. The following structure is used to make a
3328  *   set primary request:
3329  */
3330 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3331 					     unsigned int optlen)
3332 {
3333 	struct net *net = sock_net(sk);
3334 	struct sctp_sock	*sp;
3335 	struct sctp_association	*asoc = NULL;
3336 	struct sctp_setpeerprim	prim;
3337 	struct sctp_chunk	*chunk;
3338 	struct sctp_af		*af;
3339 	int 			err;
3340 
3341 	sp = sctp_sk(sk);
3342 
3343 	if (!net->sctp.addip_enable)
3344 		return -EPERM;
3345 
3346 	if (optlen != sizeof(struct sctp_setpeerprim))
3347 		return -EINVAL;
3348 
3349 	if (copy_from_user(&prim, optval, optlen))
3350 		return -EFAULT;
3351 
3352 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3353 	if (!asoc)
3354 		return -EINVAL;
3355 
3356 	if (!asoc->peer.asconf_capable)
3357 		return -EPERM;
3358 
3359 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3360 		return -EPERM;
3361 
3362 	if (!sctp_state(asoc, ESTABLISHED))
3363 		return -ENOTCONN;
3364 
3365 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3366 	if (!af)
3367 		return -EINVAL;
3368 
3369 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3370 		return -EADDRNOTAVAIL;
3371 
3372 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3373 		return -EADDRNOTAVAIL;
3374 
3375 	/* Allow security module to validate address. */
3376 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3377 					 (struct sockaddr *)&prim.sspp_addr,
3378 					 af->sockaddr_len);
3379 	if (err)
3380 		return err;
3381 
3382 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3383 	chunk = sctp_make_asconf_set_prim(asoc,
3384 					  (union sctp_addr *)&prim.sspp_addr);
3385 	if (!chunk)
3386 		return -ENOMEM;
3387 
3388 	err = sctp_send_asconf(asoc, chunk);
3389 
3390 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3391 
3392 	return err;
3393 }
3394 
3395 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3396 					    unsigned int optlen)
3397 {
3398 	struct sctp_setadaptation adaptation;
3399 
3400 	if (optlen != sizeof(struct sctp_setadaptation))
3401 		return -EINVAL;
3402 	if (copy_from_user(&adaptation, optval, optlen))
3403 		return -EFAULT;
3404 
3405 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3406 
3407 	return 0;
3408 }
3409 
3410 /*
3411  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3412  *
3413  * The context field in the sctp_sndrcvinfo structure is normally only
3414  * used when a failed message is retrieved holding the value that was
3415  * sent down on the actual send call.  This option allows the setting of
3416  * a default context on an association basis that will be received on
3417  * reading messages from the peer.  This is especially helpful in the
3418  * one-2-many model for an application to keep some reference to an
3419  * internal state machine that is processing messages on the
3420  * association.  Note that the setting of this value only effects
3421  * received messages from the peer and does not effect the value that is
3422  * saved with outbound messages.
3423  */
3424 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3425 				   unsigned int optlen)
3426 {
3427 	struct sctp_sock *sp = sctp_sk(sk);
3428 	struct sctp_assoc_value params;
3429 	struct sctp_association *asoc;
3430 
3431 	if (optlen != sizeof(struct sctp_assoc_value))
3432 		return -EINVAL;
3433 	if (copy_from_user(&params, optval, optlen))
3434 		return -EFAULT;
3435 
3436 	asoc = sctp_id2assoc(sk, params.assoc_id);
3437 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3438 	    sctp_style(sk, UDP))
3439 		return -EINVAL;
3440 
3441 	if (asoc) {
3442 		asoc->default_rcv_context = params.assoc_value;
3443 
3444 		return 0;
3445 	}
3446 
3447 	if (sctp_style(sk, TCP))
3448 		params.assoc_id = SCTP_FUTURE_ASSOC;
3449 
3450 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3451 	    params.assoc_id == SCTP_ALL_ASSOC)
3452 		sp->default_rcv_context = params.assoc_value;
3453 
3454 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3455 	    params.assoc_id == SCTP_ALL_ASSOC)
3456 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3457 			asoc->default_rcv_context = params.assoc_value;
3458 
3459 	return 0;
3460 }
3461 
3462 /*
3463  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3464  *
3465  * This options will at a minimum specify if the implementation is doing
3466  * fragmented interleave.  Fragmented interleave, for a one to many
3467  * socket, is when subsequent calls to receive a message may return
3468  * parts of messages from different associations.  Some implementations
3469  * may allow you to turn this value on or off.  If so, when turned off,
3470  * no fragment interleave will occur (which will cause a head of line
3471  * blocking amongst multiple associations sharing the same one to many
3472  * socket).  When this option is turned on, then each receive call may
3473  * come from a different association (thus the user must receive data
3474  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3475  * association each receive belongs to.
3476  *
3477  * This option takes a boolean value.  A non-zero value indicates that
3478  * fragmented interleave is on.  A value of zero indicates that
3479  * fragmented interleave is off.
3480  *
3481  * Note that it is important that an implementation that allows this
3482  * option to be turned on, have it off by default.  Otherwise an unaware
3483  * application using the one to many model may become confused and act
3484  * incorrectly.
3485  */
3486 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3487 					       char __user *optval,
3488 					       unsigned int optlen)
3489 {
3490 	int val;
3491 
3492 	if (optlen != sizeof(int))
3493 		return -EINVAL;
3494 	if (get_user(val, (int __user *)optval))
3495 		return -EFAULT;
3496 
3497 	sctp_sk(sk)->frag_interleave = !!val;
3498 
3499 	if (!sctp_sk(sk)->frag_interleave)
3500 		sctp_sk(sk)->ep->intl_enable = 0;
3501 
3502 	return 0;
3503 }
3504 
3505 /*
3506  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3507  *       (SCTP_PARTIAL_DELIVERY_POINT)
3508  *
3509  * This option will set or get the SCTP partial delivery point.  This
3510  * point is the size of a message where the partial delivery API will be
3511  * invoked to help free up rwnd space for the peer.  Setting this to a
3512  * lower value will cause partial deliveries to happen more often.  The
3513  * calls argument is an integer that sets or gets the partial delivery
3514  * point.  Note also that the call will fail if the user attempts to set
3515  * this value larger than the socket receive buffer size.
3516  *
3517  * Note that any single message having a length smaller than or equal to
3518  * the SCTP partial delivery point will be delivered in one single read
3519  * call as long as the user provided buffer is large enough to hold the
3520  * message.
3521  */
3522 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3523 						  char __user *optval,
3524 						  unsigned int optlen)
3525 {
3526 	u32 val;
3527 
3528 	if (optlen != sizeof(u32))
3529 		return -EINVAL;
3530 	if (get_user(val, (int __user *)optval))
3531 		return -EFAULT;
3532 
3533 	/* Note: We double the receive buffer from what the user sets
3534 	 * it to be, also initial rwnd is based on rcvbuf/2.
3535 	 */
3536 	if (val > (sk->sk_rcvbuf >> 1))
3537 		return -EINVAL;
3538 
3539 	sctp_sk(sk)->pd_point = val;
3540 
3541 	return 0; /* is this the right error code? */
3542 }
3543 
3544 /*
3545  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3546  *
3547  * This option will allow a user to change the maximum burst of packets
3548  * that can be emitted by this association.  Note that the default value
3549  * is 4, and some implementations may restrict this setting so that it
3550  * can only be lowered.
3551  *
3552  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3553  * future associations inheriting the socket value.
3554  */
3555 static int sctp_setsockopt_maxburst(struct sock *sk,
3556 				    char __user *optval,
3557 				    unsigned int optlen)
3558 {
3559 	struct sctp_sock *sp = sctp_sk(sk);
3560 	struct sctp_assoc_value params;
3561 	struct sctp_association *asoc;
3562 
3563 	if (optlen == sizeof(int)) {
3564 		pr_warn_ratelimited(DEPRECATED
3565 				    "%s (pid %d) "
3566 				    "Use of int in max_burst socket option deprecated.\n"
3567 				    "Use struct sctp_assoc_value instead\n",
3568 				    current->comm, task_pid_nr(current));
3569 		if (copy_from_user(&params.assoc_value, optval, optlen))
3570 			return -EFAULT;
3571 		params.assoc_id = SCTP_FUTURE_ASSOC;
3572 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3573 		if (copy_from_user(&params, optval, optlen))
3574 			return -EFAULT;
3575 	} else
3576 		return -EINVAL;
3577 
3578 	asoc = sctp_id2assoc(sk, params.assoc_id);
3579 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3580 	    sctp_style(sk, UDP))
3581 		return -EINVAL;
3582 
3583 	if (asoc) {
3584 		asoc->max_burst = params.assoc_value;
3585 
3586 		return 0;
3587 	}
3588 
3589 	if (sctp_style(sk, TCP))
3590 		params.assoc_id = SCTP_FUTURE_ASSOC;
3591 
3592 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3593 	    params.assoc_id == SCTP_ALL_ASSOC)
3594 		sp->max_burst = params.assoc_value;
3595 
3596 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3597 	    params.assoc_id == SCTP_ALL_ASSOC)
3598 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3599 			asoc->max_burst = params.assoc_value;
3600 
3601 	return 0;
3602 }
3603 
3604 /*
3605  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3606  *
3607  * This set option adds a chunk type that the user is requesting to be
3608  * received only in an authenticated way.  Changes to the list of chunks
3609  * will only effect future associations on the socket.
3610  */
3611 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3612 				      char __user *optval,
3613 				      unsigned int optlen)
3614 {
3615 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3616 	struct sctp_authchunk val;
3617 
3618 	if (!ep->auth_enable)
3619 		return -EACCES;
3620 
3621 	if (optlen != sizeof(struct sctp_authchunk))
3622 		return -EINVAL;
3623 	if (copy_from_user(&val, optval, optlen))
3624 		return -EFAULT;
3625 
3626 	switch (val.sauth_chunk) {
3627 	case SCTP_CID_INIT:
3628 	case SCTP_CID_INIT_ACK:
3629 	case SCTP_CID_SHUTDOWN_COMPLETE:
3630 	case SCTP_CID_AUTH:
3631 		return -EINVAL;
3632 	}
3633 
3634 	/* add this chunk id to the endpoint */
3635 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3636 }
3637 
3638 /*
3639  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3640  *
3641  * This option gets or sets the list of HMAC algorithms that the local
3642  * endpoint requires the peer to use.
3643  */
3644 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3645 				      char __user *optval,
3646 				      unsigned int optlen)
3647 {
3648 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3649 	struct sctp_hmacalgo *hmacs;
3650 	u32 idents;
3651 	int err;
3652 
3653 	if (!ep->auth_enable)
3654 		return -EACCES;
3655 
3656 	if (optlen < sizeof(struct sctp_hmacalgo))
3657 		return -EINVAL;
3658 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3659 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3660 
3661 	hmacs = memdup_user(optval, optlen);
3662 	if (IS_ERR(hmacs))
3663 		return PTR_ERR(hmacs);
3664 
3665 	idents = hmacs->shmac_num_idents;
3666 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3667 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3668 		err = -EINVAL;
3669 		goto out;
3670 	}
3671 
3672 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3673 out:
3674 	kfree(hmacs);
3675 	return err;
3676 }
3677 
3678 /*
3679  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3680  *
3681  * This option will set a shared secret key which is used to build an
3682  * association shared key.
3683  */
3684 static int sctp_setsockopt_auth_key(struct sock *sk,
3685 				    char __user *optval,
3686 				    unsigned int optlen)
3687 {
3688 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3689 	struct sctp_authkey *authkey;
3690 	struct sctp_association *asoc;
3691 	int ret = -EINVAL;
3692 
3693 	if (!ep->auth_enable)
3694 		return -EACCES;
3695 
3696 	if (optlen <= sizeof(struct sctp_authkey))
3697 		return -EINVAL;
3698 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3699 	 * this.
3700 	 */
3701 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3702 
3703 	authkey = memdup_user(optval, optlen);
3704 	if (IS_ERR(authkey))
3705 		return PTR_ERR(authkey);
3706 
3707 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3708 		goto out;
3709 
3710 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3711 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3712 	    sctp_style(sk, UDP))
3713 		goto out;
3714 
3715 	if (asoc) {
3716 		ret = sctp_auth_set_key(ep, asoc, authkey);
3717 		goto out;
3718 	}
3719 
3720 	if (sctp_style(sk, TCP))
3721 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3722 
3723 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3724 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3725 		ret = sctp_auth_set_key(ep, asoc, authkey);
3726 		if (ret)
3727 			goto out;
3728 	}
3729 
3730 	ret = 0;
3731 
3732 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3733 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3734 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3735 			int res = sctp_auth_set_key(ep, asoc, authkey);
3736 
3737 			if (res && !ret)
3738 				ret = res;
3739 		}
3740 	}
3741 
3742 out:
3743 	kzfree(authkey);
3744 	return ret;
3745 }
3746 
3747 /*
3748  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3749  *
3750  * This option will get or set the active shared key to be used to build
3751  * the association shared key.
3752  */
3753 static int sctp_setsockopt_active_key(struct sock *sk,
3754 				      char __user *optval,
3755 				      unsigned int optlen)
3756 {
3757 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3758 	struct sctp_association *asoc;
3759 	struct sctp_authkeyid val;
3760 	int ret = 0;
3761 
3762 	if (!ep->auth_enable)
3763 		return -EACCES;
3764 
3765 	if (optlen != sizeof(struct sctp_authkeyid))
3766 		return -EINVAL;
3767 	if (copy_from_user(&val, optval, optlen))
3768 		return -EFAULT;
3769 
3770 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3771 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3772 	    sctp_style(sk, UDP))
3773 		return -EINVAL;
3774 
3775 	if (asoc)
3776 		return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3777 
3778 	if (sctp_style(sk, TCP))
3779 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3780 
3781 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3782 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3783 		ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3784 		if (ret)
3785 			return ret;
3786 	}
3787 
3788 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3789 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3790 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3791 			int res = sctp_auth_set_active_key(ep, asoc,
3792 							   val.scact_keynumber);
3793 
3794 			if (res && !ret)
3795 				ret = res;
3796 		}
3797 	}
3798 
3799 	return ret;
3800 }
3801 
3802 /*
3803  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3804  *
3805  * This set option will delete a shared secret key from use.
3806  */
3807 static int sctp_setsockopt_del_key(struct sock *sk,
3808 				   char __user *optval,
3809 				   unsigned int optlen)
3810 {
3811 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3812 	struct sctp_association *asoc;
3813 	struct sctp_authkeyid val;
3814 	int ret = 0;
3815 
3816 	if (!ep->auth_enable)
3817 		return -EACCES;
3818 
3819 	if (optlen != sizeof(struct sctp_authkeyid))
3820 		return -EINVAL;
3821 	if (copy_from_user(&val, optval, optlen))
3822 		return -EFAULT;
3823 
3824 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3825 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3826 	    sctp_style(sk, UDP))
3827 		return -EINVAL;
3828 
3829 	if (asoc)
3830 		return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3831 
3832 	if (sctp_style(sk, TCP))
3833 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3834 
3835 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3836 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3837 		ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3838 		if (ret)
3839 			return ret;
3840 	}
3841 
3842 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3843 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3844 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3845 			int res = sctp_auth_del_key_id(ep, asoc,
3846 						       val.scact_keynumber);
3847 
3848 			if (res && !ret)
3849 				ret = res;
3850 		}
3851 	}
3852 
3853 	return ret;
3854 }
3855 
3856 /*
3857  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3858  *
3859  * This set option will deactivate a shared secret key.
3860  */
3861 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3862 					  unsigned int optlen)
3863 {
3864 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3865 	struct sctp_association *asoc;
3866 	struct sctp_authkeyid val;
3867 	int ret = 0;
3868 
3869 	if (!ep->auth_enable)
3870 		return -EACCES;
3871 
3872 	if (optlen != sizeof(struct sctp_authkeyid))
3873 		return -EINVAL;
3874 	if (copy_from_user(&val, optval, optlen))
3875 		return -EFAULT;
3876 
3877 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3878 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3879 	    sctp_style(sk, UDP))
3880 		return -EINVAL;
3881 
3882 	if (asoc)
3883 		return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3884 
3885 	if (sctp_style(sk, TCP))
3886 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3887 
3888 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3889 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3890 		ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3891 		if (ret)
3892 			return ret;
3893 	}
3894 
3895 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3896 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3897 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3898 			int res = sctp_auth_deact_key_id(ep, asoc,
3899 							 val.scact_keynumber);
3900 
3901 			if (res && !ret)
3902 				ret = res;
3903 		}
3904 	}
3905 
3906 	return ret;
3907 }
3908 
3909 /*
3910  * 8.1.23 SCTP_AUTO_ASCONF
3911  *
3912  * This option will enable or disable the use of the automatic generation of
3913  * ASCONF chunks to add and delete addresses to an existing association.  Note
3914  * that this option has two caveats namely: a) it only affects sockets that
3915  * are bound to all addresses available to the SCTP stack, and b) the system
3916  * administrator may have an overriding control that turns the ASCONF feature
3917  * off no matter what setting the socket option may have.
3918  * This option expects an integer boolean flag, where a non-zero value turns on
3919  * the option, and a zero value turns off the option.
3920  * Note. In this implementation, socket operation overrides default parameter
3921  * being set by sysctl as well as FreeBSD implementation
3922  */
3923 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3924 					unsigned int optlen)
3925 {
3926 	int val;
3927 	struct sctp_sock *sp = sctp_sk(sk);
3928 
3929 	if (optlen < sizeof(int))
3930 		return -EINVAL;
3931 	if (get_user(val, (int __user *)optval))
3932 		return -EFAULT;
3933 	if (!sctp_is_ep_boundall(sk) && val)
3934 		return -EINVAL;
3935 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3936 		return 0;
3937 
3938 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3939 	if (val == 0 && sp->do_auto_asconf) {
3940 		list_del(&sp->auto_asconf_list);
3941 		sp->do_auto_asconf = 0;
3942 	} else if (val && !sp->do_auto_asconf) {
3943 		list_add_tail(&sp->auto_asconf_list,
3944 		    &sock_net(sk)->sctp.auto_asconf_splist);
3945 		sp->do_auto_asconf = 1;
3946 	}
3947 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3948 	return 0;
3949 }
3950 
3951 /*
3952  * SCTP_PEER_ADDR_THLDS
3953  *
3954  * This option allows us to alter the partially failed threshold for one or all
3955  * transports in an association.  See Section 6.1 of:
3956  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3957  */
3958 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3959 					    char __user *optval,
3960 					    unsigned int optlen)
3961 {
3962 	struct sctp_paddrthlds val;
3963 	struct sctp_transport *trans;
3964 	struct sctp_association *asoc;
3965 
3966 	if (optlen < sizeof(struct sctp_paddrthlds))
3967 		return -EINVAL;
3968 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3969 			   sizeof(struct sctp_paddrthlds)))
3970 		return -EFAULT;
3971 
3972 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3973 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3974 					       val.spt_assoc_id);
3975 		if (!trans)
3976 			return -ENOENT;
3977 
3978 		if (val.spt_pathmaxrxt)
3979 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3980 		trans->pf_retrans = val.spt_pathpfthld;
3981 
3982 		return 0;
3983 	}
3984 
3985 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3986 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
3987 	    sctp_style(sk, UDP))
3988 		return -EINVAL;
3989 
3990 	if (asoc) {
3991 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3992 				    transports) {
3993 			if (val.spt_pathmaxrxt)
3994 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3995 			trans->pf_retrans = val.spt_pathpfthld;
3996 		}
3997 
3998 		if (val.spt_pathmaxrxt)
3999 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
4000 		asoc->pf_retrans = val.spt_pathpfthld;
4001 	} else {
4002 		struct sctp_sock *sp = sctp_sk(sk);
4003 
4004 		if (val.spt_pathmaxrxt)
4005 			sp->pathmaxrxt = val.spt_pathmaxrxt;
4006 		sp->pf_retrans = val.spt_pathpfthld;
4007 	}
4008 
4009 	return 0;
4010 }
4011 
4012 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
4013 				       char __user *optval,
4014 				       unsigned int optlen)
4015 {
4016 	int val;
4017 
4018 	if (optlen < sizeof(int))
4019 		return -EINVAL;
4020 	if (get_user(val, (int __user *) optval))
4021 		return -EFAULT;
4022 
4023 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
4024 
4025 	return 0;
4026 }
4027 
4028 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
4029 				       char __user *optval,
4030 				       unsigned int optlen)
4031 {
4032 	int val;
4033 
4034 	if (optlen < sizeof(int))
4035 		return -EINVAL;
4036 	if (get_user(val, (int __user *) optval))
4037 		return -EFAULT;
4038 
4039 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
4040 
4041 	return 0;
4042 }
4043 
4044 static int sctp_setsockopt_pr_supported(struct sock *sk,
4045 					char __user *optval,
4046 					unsigned int optlen)
4047 {
4048 	struct sctp_assoc_value params;
4049 	struct sctp_association *asoc;
4050 
4051 	if (optlen != sizeof(params))
4052 		return -EINVAL;
4053 
4054 	if (copy_from_user(&params, optval, optlen))
4055 		return -EFAULT;
4056 
4057 	asoc = sctp_id2assoc(sk, params.assoc_id);
4058 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4059 	    sctp_style(sk, UDP))
4060 		return -EINVAL;
4061 
4062 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
4063 
4064 	return 0;
4065 }
4066 
4067 static int sctp_setsockopt_default_prinfo(struct sock *sk,
4068 					  char __user *optval,
4069 					  unsigned int optlen)
4070 {
4071 	struct sctp_sock *sp = sctp_sk(sk);
4072 	struct sctp_default_prinfo info;
4073 	struct sctp_association *asoc;
4074 	int retval = -EINVAL;
4075 
4076 	if (optlen != sizeof(info))
4077 		goto out;
4078 
4079 	if (copy_from_user(&info, optval, sizeof(info))) {
4080 		retval = -EFAULT;
4081 		goto out;
4082 	}
4083 
4084 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
4085 		goto out;
4086 
4087 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
4088 		info.pr_value = 0;
4089 
4090 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
4091 	if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC &&
4092 	    sctp_style(sk, UDP))
4093 		goto out;
4094 
4095 	retval = 0;
4096 
4097 	if (asoc) {
4098 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4099 		asoc->default_timetolive = info.pr_value;
4100 		goto out;
4101 	}
4102 
4103 	if (sctp_style(sk, TCP))
4104 		info.pr_assoc_id = SCTP_FUTURE_ASSOC;
4105 
4106 	if (info.pr_assoc_id == SCTP_FUTURE_ASSOC ||
4107 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4108 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4109 		sp->default_timetolive = info.pr_value;
4110 	}
4111 
4112 	if (info.pr_assoc_id == SCTP_CURRENT_ASSOC ||
4113 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4114 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4115 			SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4116 			asoc->default_timetolive = info.pr_value;
4117 		}
4118 	}
4119 
4120 out:
4121 	return retval;
4122 }
4123 
4124 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4125 					      char __user *optval,
4126 					      unsigned int optlen)
4127 {
4128 	struct sctp_assoc_value params;
4129 	struct sctp_association *asoc;
4130 	int retval = -EINVAL;
4131 
4132 	if (optlen != sizeof(params))
4133 		goto out;
4134 
4135 	if (copy_from_user(&params, optval, optlen)) {
4136 		retval = -EFAULT;
4137 		goto out;
4138 	}
4139 
4140 	asoc = sctp_id2assoc(sk, params.assoc_id);
4141 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4142 	    sctp_style(sk, UDP))
4143 		goto out;
4144 
4145 	sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value;
4146 
4147 	retval = 0;
4148 
4149 out:
4150 	return retval;
4151 }
4152 
4153 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4154 					   char __user *optval,
4155 					   unsigned int optlen)
4156 {
4157 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4158 	struct sctp_assoc_value params;
4159 	struct sctp_association *asoc;
4160 	int retval = -EINVAL;
4161 
4162 	if (optlen != sizeof(params))
4163 		goto out;
4164 
4165 	if (copy_from_user(&params, optval, optlen)) {
4166 		retval = -EFAULT;
4167 		goto out;
4168 	}
4169 
4170 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4171 		goto out;
4172 
4173 	asoc = sctp_id2assoc(sk, params.assoc_id);
4174 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4175 	    sctp_style(sk, UDP))
4176 		goto out;
4177 
4178 	retval = 0;
4179 
4180 	if (asoc) {
4181 		asoc->strreset_enable = params.assoc_value;
4182 		goto out;
4183 	}
4184 
4185 	if (sctp_style(sk, TCP))
4186 		params.assoc_id = SCTP_FUTURE_ASSOC;
4187 
4188 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4189 	    params.assoc_id == SCTP_ALL_ASSOC)
4190 		ep->strreset_enable = params.assoc_value;
4191 
4192 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4193 	    params.assoc_id == SCTP_ALL_ASSOC)
4194 		list_for_each_entry(asoc, &ep->asocs, asocs)
4195 			asoc->strreset_enable = params.assoc_value;
4196 
4197 out:
4198 	return retval;
4199 }
4200 
4201 static int sctp_setsockopt_reset_streams(struct sock *sk,
4202 					 char __user *optval,
4203 					 unsigned int optlen)
4204 {
4205 	struct sctp_reset_streams *params;
4206 	struct sctp_association *asoc;
4207 	int retval = -EINVAL;
4208 
4209 	if (optlen < sizeof(*params))
4210 		return -EINVAL;
4211 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4212 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4213 					     sizeof(__u16) * sizeof(*params));
4214 
4215 	params = memdup_user(optval, optlen);
4216 	if (IS_ERR(params))
4217 		return PTR_ERR(params);
4218 
4219 	if (params->srs_number_streams * sizeof(__u16) >
4220 	    optlen - sizeof(*params))
4221 		goto out;
4222 
4223 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4224 	if (!asoc)
4225 		goto out;
4226 
4227 	retval = sctp_send_reset_streams(asoc, params);
4228 
4229 out:
4230 	kfree(params);
4231 	return retval;
4232 }
4233 
4234 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4235 				       char __user *optval,
4236 				       unsigned int optlen)
4237 {
4238 	struct sctp_association *asoc;
4239 	sctp_assoc_t associd;
4240 	int retval = -EINVAL;
4241 
4242 	if (optlen != sizeof(associd))
4243 		goto out;
4244 
4245 	if (copy_from_user(&associd, optval, optlen)) {
4246 		retval = -EFAULT;
4247 		goto out;
4248 	}
4249 
4250 	asoc = sctp_id2assoc(sk, associd);
4251 	if (!asoc)
4252 		goto out;
4253 
4254 	retval = sctp_send_reset_assoc(asoc);
4255 
4256 out:
4257 	return retval;
4258 }
4259 
4260 static int sctp_setsockopt_add_streams(struct sock *sk,
4261 				       char __user *optval,
4262 				       unsigned int optlen)
4263 {
4264 	struct sctp_association *asoc;
4265 	struct sctp_add_streams params;
4266 	int retval = -EINVAL;
4267 
4268 	if (optlen != sizeof(params))
4269 		goto out;
4270 
4271 	if (copy_from_user(&params, optval, optlen)) {
4272 		retval = -EFAULT;
4273 		goto out;
4274 	}
4275 
4276 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4277 	if (!asoc)
4278 		goto out;
4279 
4280 	retval = sctp_send_add_streams(asoc, &params);
4281 
4282 out:
4283 	return retval;
4284 }
4285 
4286 static int sctp_setsockopt_scheduler(struct sock *sk,
4287 				     char __user *optval,
4288 				     unsigned int optlen)
4289 {
4290 	struct sctp_sock *sp = sctp_sk(sk);
4291 	struct sctp_association *asoc;
4292 	struct sctp_assoc_value params;
4293 	int retval = 0;
4294 
4295 	if (optlen < sizeof(params))
4296 		return -EINVAL;
4297 
4298 	optlen = sizeof(params);
4299 	if (copy_from_user(&params, optval, optlen))
4300 		return -EFAULT;
4301 
4302 	if (params.assoc_value > SCTP_SS_MAX)
4303 		return -EINVAL;
4304 
4305 	asoc = sctp_id2assoc(sk, params.assoc_id);
4306 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4307 	    sctp_style(sk, UDP))
4308 		return -EINVAL;
4309 
4310 	if (asoc)
4311 		return sctp_sched_set_sched(asoc, params.assoc_value);
4312 
4313 	if (sctp_style(sk, TCP))
4314 		params.assoc_id = SCTP_FUTURE_ASSOC;
4315 
4316 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4317 	    params.assoc_id == SCTP_ALL_ASSOC)
4318 		sp->default_ss = params.assoc_value;
4319 
4320 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4321 	    params.assoc_id == SCTP_ALL_ASSOC) {
4322 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4323 			int ret = sctp_sched_set_sched(asoc,
4324 						       params.assoc_value);
4325 
4326 			if (ret && !retval)
4327 				retval = ret;
4328 		}
4329 	}
4330 
4331 	return retval;
4332 }
4333 
4334 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4335 					   char __user *optval,
4336 					   unsigned int optlen)
4337 {
4338 	struct sctp_stream_value params;
4339 	struct sctp_association *asoc;
4340 	int retval = -EINVAL;
4341 
4342 	if (optlen < sizeof(params))
4343 		goto out;
4344 
4345 	optlen = sizeof(params);
4346 	if (copy_from_user(&params, optval, optlen)) {
4347 		retval = -EFAULT;
4348 		goto out;
4349 	}
4350 
4351 	asoc = sctp_id2assoc(sk, params.assoc_id);
4352 	if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC &&
4353 	    sctp_style(sk, UDP))
4354 		goto out;
4355 
4356 	if (asoc) {
4357 		retval = sctp_sched_set_value(asoc, params.stream_id,
4358 					      params.stream_value, GFP_KERNEL);
4359 		goto out;
4360 	}
4361 
4362 	retval = 0;
4363 
4364 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4365 		int ret = sctp_sched_set_value(asoc, params.stream_id,
4366 					       params.stream_value, GFP_KERNEL);
4367 		if (ret && !retval) /* try to return the 1st error. */
4368 			retval = ret;
4369 	}
4370 
4371 out:
4372 	return retval;
4373 }
4374 
4375 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4376 						  char __user *optval,
4377 						  unsigned int optlen)
4378 {
4379 	struct sctp_sock *sp = sctp_sk(sk);
4380 	struct sctp_assoc_value params;
4381 	struct sctp_association *asoc;
4382 	int retval = -EINVAL;
4383 
4384 	if (optlen < sizeof(params))
4385 		goto out;
4386 
4387 	optlen = sizeof(params);
4388 	if (copy_from_user(&params, optval, optlen)) {
4389 		retval = -EFAULT;
4390 		goto out;
4391 	}
4392 
4393 	asoc = sctp_id2assoc(sk, params.assoc_id);
4394 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4395 	    sctp_style(sk, UDP))
4396 		goto out;
4397 
4398 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4399 		retval = -EPERM;
4400 		goto out;
4401 	}
4402 
4403 	sp->ep->intl_enable = !!params.assoc_value;
4404 
4405 	retval = 0;
4406 
4407 out:
4408 	return retval;
4409 }
4410 
4411 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4412 				      unsigned int optlen)
4413 {
4414 	int val;
4415 
4416 	if (!sctp_style(sk, TCP))
4417 		return -EOPNOTSUPP;
4418 
4419 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4420 		return -EFAULT;
4421 
4422 	if (optlen < sizeof(int))
4423 		return -EINVAL;
4424 
4425 	if (get_user(val, (int __user *)optval))
4426 		return -EFAULT;
4427 
4428 	sctp_sk(sk)->reuse = !!val;
4429 
4430 	return 0;
4431 }
4432 
4433 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4434 					struct sctp_association *asoc)
4435 {
4436 	struct sctp_ulpevent *event;
4437 
4438 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4439 
4440 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4441 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4442 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4443 					GFP_USER | __GFP_NOWARN);
4444 			if (!event)
4445 				return -ENOMEM;
4446 
4447 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4448 		}
4449 	}
4450 
4451 	return 0;
4452 }
4453 
4454 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4455 				 unsigned int optlen)
4456 {
4457 	struct sctp_sock *sp = sctp_sk(sk);
4458 	struct sctp_association *asoc;
4459 	struct sctp_event param;
4460 	int retval = 0;
4461 
4462 	if (optlen < sizeof(param))
4463 		return -EINVAL;
4464 
4465 	optlen = sizeof(param);
4466 	if (copy_from_user(&param, optval, optlen))
4467 		return -EFAULT;
4468 
4469 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4470 	    param.se_type > SCTP_SN_TYPE_MAX)
4471 		return -EINVAL;
4472 
4473 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4474 	if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC &&
4475 	    sctp_style(sk, UDP))
4476 		return -EINVAL;
4477 
4478 	if (asoc)
4479 		return sctp_assoc_ulpevent_type_set(&param, asoc);
4480 
4481 	if (sctp_style(sk, TCP))
4482 		param.se_assoc_id = SCTP_FUTURE_ASSOC;
4483 
4484 	if (param.se_assoc_id == SCTP_FUTURE_ASSOC ||
4485 	    param.se_assoc_id == SCTP_ALL_ASSOC)
4486 		sctp_ulpevent_type_set(&sp->subscribe,
4487 				       param.se_type, param.se_on);
4488 
4489 	if (param.se_assoc_id == SCTP_CURRENT_ASSOC ||
4490 	    param.se_assoc_id == SCTP_ALL_ASSOC) {
4491 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4492 			int ret = sctp_assoc_ulpevent_type_set(&param, asoc);
4493 
4494 			if (ret && !retval)
4495 				retval = ret;
4496 		}
4497 	}
4498 
4499 	return retval;
4500 }
4501 
4502 /* API 6.2 setsockopt(), getsockopt()
4503  *
4504  * Applications use setsockopt() and getsockopt() to set or retrieve
4505  * socket options.  Socket options are used to change the default
4506  * behavior of sockets calls.  They are described in Section 7.
4507  *
4508  * The syntax is:
4509  *
4510  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4511  *                    int __user *optlen);
4512  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4513  *                    int optlen);
4514  *
4515  *   sd      - the socket descript.
4516  *   level   - set to IPPROTO_SCTP for all SCTP options.
4517  *   optname - the option name.
4518  *   optval  - the buffer to store the value of the option.
4519  *   optlen  - the size of the buffer.
4520  */
4521 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4522 			   char __user *optval, unsigned int optlen)
4523 {
4524 	int retval = 0;
4525 
4526 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4527 
4528 	/* I can hardly begin to describe how wrong this is.  This is
4529 	 * so broken as to be worse than useless.  The API draft
4530 	 * REALLY is NOT helpful here...  I am not convinced that the
4531 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4532 	 * are at all well-founded.
4533 	 */
4534 	if (level != SOL_SCTP) {
4535 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4536 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4537 		goto out_nounlock;
4538 	}
4539 
4540 	lock_sock(sk);
4541 
4542 	switch (optname) {
4543 	case SCTP_SOCKOPT_BINDX_ADD:
4544 		/* 'optlen' is the size of the addresses buffer. */
4545 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4546 					       optlen, SCTP_BINDX_ADD_ADDR);
4547 		break;
4548 
4549 	case SCTP_SOCKOPT_BINDX_REM:
4550 		/* 'optlen' is the size of the addresses buffer. */
4551 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4552 					       optlen, SCTP_BINDX_REM_ADDR);
4553 		break;
4554 
4555 	case SCTP_SOCKOPT_CONNECTX_OLD:
4556 		/* 'optlen' is the size of the addresses buffer. */
4557 		retval = sctp_setsockopt_connectx_old(sk,
4558 					    (struct sockaddr __user *)optval,
4559 					    optlen);
4560 		break;
4561 
4562 	case SCTP_SOCKOPT_CONNECTX:
4563 		/* 'optlen' is the size of the addresses buffer. */
4564 		retval = sctp_setsockopt_connectx(sk,
4565 					    (struct sockaddr __user *)optval,
4566 					    optlen);
4567 		break;
4568 
4569 	case SCTP_DISABLE_FRAGMENTS:
4570 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4571 		break;
4572 
4573 	case SCTP_EVENTS:
4574 		retval = sctp_setsockopt_events(sk, optval, optlen);
4575 		break;
4576 
4577 	case SCTP_AUTOCLOSE:
4578 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4579 		break;
4580 
4581 	case SCTP_PEER_ADDR_PARAMS:
4582 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4583 		break;
4584 
4585 	case SCTP_DELAYED_SACK:
4586 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4587 		break;
4588 	case SCTP_PARTIAL_DELIVERY_POINT:
4589 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4590 		break;
4591 
4592 	case SCTP_INITMSG:
4593 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4594 		break;
4595 	case SCTP_DEFAULT_SEND_PARAM:
4596 		retval = sctp_setsockopt_default_send_param(sk, optval,
4597 							    optlen);
4598 		break;
4599 	case SCTP_DEFAULT_SNDINFO:
4600 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4601 		break;
4602 	case SCTP_PRIMARY_ADDR:
4603 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4604 		break;
4605 	case SCTP_SET_PEER_PRIMARY_ADDR:
4606 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4607 		break;
4608 	case SCTP_NODELAY:
4609 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4610 		break;
4611 	case SCTP_RTOINFO:
4612 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4613 		break;
4614 	case SCTP_ASSOCINFO:
4615 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4616 		break;
4617 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4618 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4619 		break;
4620 	case SCTP_MAXSEG:
4621 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4622 		break;
4623 	case SCTP_ADAPTATION_LAYER:
4624 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4625 		break;
4626 	case SCTP_CONTEXT:
4627 		retval = sctp_setsockopt_context(sk, optval, optlen);
4628 		break;
4629 	case SCTP_FRAGMENT_INTERLEAVE:
4630 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4631 		break;
4632 	case SCTP_MAX_BURST:
4633 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4634 		break;
4635 	case SCTP_AUTH_CHUNK:
4636 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4637 		break;
4638 	case SCTP_HMAC_IDENT:
4639 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4640 		break;
4641 	case SCTP_AUTH_KEY:
4642 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4643 		break;
4644 	case SCTP_AUTH_ACTIVE_KEY:
4645 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4646 		break;
4647 	case SCTP_AUTH_DELETE_KEY:
4648 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4649 		break;
4650 	case SCTP_AUTH_DEACTIVATE_KEY:
4651 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4652 		break;
4653 	case SCTP_AUTO_ASCONF:
4654 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4655 		break;
4656 	case SCTP_PEER_ADDR_THLDS:
4657 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4658 		break;
4659 	case SCTP_RECVRCVINFO:
4660 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4661 		break;
4662 	case SCTP_RECVNXTINFO:
4663 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4664 		break;
4665 	case SCTP_PR_SUPPORTED:
4666 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4667 		break;
4668 	case SCTP_DEFAULT_PRINFO:
4669 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4670 		break;
4671 	case SCTP_RECONFIG_SUPPORTED:
4672 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4673 		break;
4674 	case SCTP_ENABLE_STREAM_RESET:
4675 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4676 		break;
4677 	case SCTP_RESET_STREAMS:
4678 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4679 		break;
4680 	case SCTP_RESET_ASSOC:
4681 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4682 		break;
4683 	case SCTP_ADD_STREAMS:
4684 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4685 		break;
4686 	case SCTP_STREAM_SCHEDULER:
4687 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4688 		break;
4689 	case SCTP_STREAM_SCHEDULER_VALUE:
4690 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4691 		break;
4692 	case SCTP_INTERLEAVING_SUPPORTED:
4693 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4694 								optlen);
4695 		break;
4696 	case SCTP_REUSE_PORT:
4697 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4698 		break;
4699 	case SCTP_EVENT:
4700 		retval = sctp_setsockopt_event(sk, optval, optlen);
4701 		break;
4702 	default:
4703 		retval = -ENOPROTOOPT;
4704 		break;
4705 	}
4706 
4707 	release_sock(sk);
4708 
4709 out_nounlock:
4710 	return retval;
4711 }
4712 
4713 /* API 3.1.6 connect() - UDP Style Syntax
4714  *
4715  * An application may use the connect() call in the UDP model to initiate an
4716  * association without sending data.
4717  *
4718  * The syntax is:
4719  *
4720  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4721  *
4722  * sd: the socket descriptor to have a new association added to.
4723  *
4724  * nam: the address structure (either struct sockaddr_in or struct
4725  *    sockaddr_in6 defined in RFC2553 [7]).
4726  *
4727  * len: the size of the address.
4728  */
4729 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4730 			int addr_len, int flags)
4731 {
4732 	struct sctp_af *af;
4733 	int err = -EINVAL;
4734 
4735 	lock_sock(sk);
4736 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4737 		 addr, addr_len);
4738 
4739 	/* Validate addr_len before calling common connect/connectx routine. */
4740 	af = sctp_get_af_specific(addr->sa_family);
4741 	if (af && addr_len >= af->sockaddr_len)
4742 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4743 
4744 	release_sock(sk);
4745 	return err;
4746 }
4747 
4748 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4749 		      int addr_len, int flags)
4750 {
4751 	if (addr_len < sizeof(uaddr->sa_family))
4752 		return -EINVAL;
4753 
4754 	if (uaddr->sa_family == AF_UNSPEC)
4755 		return -EOPNOTSUPP;
4756 
4757 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4758 }
4759 
4760 /* FIXME: Write comments. */
4761 static int sctp_disconnect(struct sock *sk, int flags)
4762 {
4763 	return -EOPNOTSUPP; /* STUB */
4764 }
4765 
4766 /* 4.1.4 accept() - TCP Style Syntax
4767  *
4768  * Applications use accept() call to remove an established SCTP
4769  * association from the accept queue of the endpoint.  A new socket
4770  * descriptor will be returned from accept() to represent the newly
4771  * formed association.
4772  */
4773 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4774 {
4775 	struct sctp_sock *sp;
4776 	struct sctp_endpoint *ep;
4777 	struct sock *newsk = NULL;
4778 	struct sctp_association *asoc;
4779 	long timeo;
4780 	int error = 0;
4781 
4782 	lock_sock(sk);
4783 
4784 	sp = sctp_sk(sk);
4785 	ep = sp->ep;
4786 
4787 	if (!sctp_style(sk, TCP)) {
4788 		error = -EOPNOTSUPP;
4789 		goto out;
4790 	}
4791 
4792 	if (!sctp_sstate(sk, LISTENING)) {
4793 		error = -EINVAL;
4794 		goto out;
4795 	}
4796 
4797 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4798 
4799 	error = sctp_wait_for_accept(sk, timeo);
4800 	if (error)
4801 		goto out;
4802 
4803 	/* We treat the list of associations on the endpoint as the accept
4804 	 * queue and pick the first association on the list.
4805 	 */
4806 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4807 
4808 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4809 	if (!newsk) {
4810 		error = -ENOMEM;
4811 		goto out;
4812 	}
4813 
4814 	/* Populate the fields of the newsk from the oldsk and migrate the
4815 	 * asoc to the newsk.
4816 	 */
4817 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4818 	if (error) {
4819 		sk_common_release(newsk);
4820 		newsk = NULL;
4821 	}
4822 
4823 out:
4824 	release_sock(sk);
4825 	*err = error;
4826 	return newsk;
4827 }
4828 
4829 /* The SCTP ioctl handler. */
4830 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4831 {
4832 	int rc = -ENOTCONN;
4833 
4834 	lock_sock(sk);
4835 
4836 	/*
4837 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4838 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4839 	 */
4840 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4841 		goto out;
4842 
4843 	switch (cmd) {
4844 	case SIOCINQ: {
4845 		struct sk_buff *skb;
4846 		unsigned int amount = 0;
4847 
4848 		skb = skb_peek(&sk->sk_receive_queue);
4849 		if (skb != NULL) {
4850 			/*
4851 			 * We will only return the amount of this packet since
4852 			 * that is all that will be read.
4853 			 */
4854 			amount = skb->len;
4855 		}
4856 		rc = put_user(amount, (int __user *)arg);
4857 		break;
4858 	}
4859 	default:
4860 		rc = -ENOIOCTLCMD;
4861 		break;
4862 	}
4863 out:
4864 	release_sock(sk);
4865 	return rc;
4866 }
4867 
4868 /* This is the function which gets called during socket creation to
4869  * initialized the SCTP-specific portion of the sock.
4870  * The sock structure should already be zero-filled memory.
4871  */
4872 static int sctp_init_sock(struct sock *sk)
4873 {
4874 	struct net *net = sock_net(sk);
4875 	struct sctp_sock *sp;
4876 
4877 	pr_debug("%s: sk:%p\n", __func__, sk);
4878 
4879 	sp = sctp_sk(sk);
4880 
4881 	/* Initialize the SCTP per socket area.  */
4882 	switch (sk->sk_type) {
4883 	case SOCK_SEQPACKET:
4884 		sp->type = SCTP_SOCKET_UDP;
4885 		break;
4886 	case SOCK_STREAM:
4887 		sp->type = SCTP_SOCKET_TCP;
4888 		break;
4889 	default:
4890 		return -ESOCKTNOSUPPORT;
4891 	}
4892 
4893 	sk->sk_gso_type = SKB_GSO_SCTP;
4894 
4895 	/* Initialize default send parameters. These parameters can be
4896 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4897 	 */
4898 	sp->default_stream = 0;
4899 	sp->default_ppid = 0;
4900 	sp->default_flags = 0;
4901 	sp->default_context = 0;
4902 	sp->default_timetolive = 0;
4903 
4904 	sp->default_rcv_context = 0;
4905 	sp->max_burst = net->sctp.max_burst;
4906 
4907 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4908 
4909 	/* Initialize default setup parameters. These parameters
4910 	 * can be modified with the SCTP_INITMSG socket option or
4911 	 * overridden by the SCTP_INIT CMSG.
4912 	 */
4913 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4914 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4915 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4916 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4917 
4918 	/* Initialize default RTO related parameters.  These parameters can
4919 	 * be modified for with the SCTP_RTOINFO socket option.
4920 	 */
4921 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4922 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4923 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4924 
4925 	/* Initialize default association related parameters. These parameters
4926 	 * can be modified with the SCTP_ASSOCINFO socket option.
4927 	 */
4928 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4929 	sp->assocparams.sasoc_number_peer_destinations = 0;
4930 	sp->assocparams.sasoc_peer_rwnd = 0;
4931 	sp->assocparams.sasoc_local_rwnd = 0;
4932 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4933 
4934 	/* Initialize default event subscriptions. By default, all the
4935 	 * options are off.
4936 	 */
4937 	sp->subscribe = 0;
4938 
4939 	/* Default Peer Address Parameters.  These defaults can
4940 	 * be modified via SCTP_PEER_ADDR_PARAMS
4941 	 */
4942 	sp->hbinterval  = net->sctp.hb_interval;
4943 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4944 	sp->pf_retrans  = net->sctp.pf_retrans;
4945 	sp->pathmtu     = 0; /* allow default discovery */
4946 	sp->sackdelay   = net->sctp.sack_timeout;
4947 	sp->sackfreq	= 2;
4948 	sp->param_flags = SPP_HB_ENABLE |
4949 			  SPP_PMTUD_ENABLE |
4950 			  SPP_SACKDELAY_ENABLE;
4951 	sp->default_ss = SCTP_SS_DEFAULT;
4952 
4953 	/* If enabled no SCTP message fragmentation will be performed.
4954 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4955 	 */
4956 	sp->disable_fragments = 0;
4957 
4958 	/* Enable Nagle algorithm by default.  */
4959 	sp->nodelay           = 0;
4960 
4961 	sp->recvrcvinfo = 0;
4962 	sp->recvnxtinfo = 0;
4963 
4964 	/* Enable by default. */
4965 	sp->v4mapped          = 1;
4966 
4967 	/* Auto-close idle associations after the configured
4968 	 * number of seconds.  A value of 0 disables this
4969 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4970 	 * for UDP-style sockets only.
4971 	 */
4972 	sp->autoclose         = 0;
4973 
4974 	/* User specified fragmentation limit. */
4975 	sp->user_frag         = 0;
4976 
4977 	sp->adaptation_ind = 0;
4978 
4979 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4980 
4981 	/* Control variables for partial data delivery. */
4982 	atomic_set(&sp->pd_mode, 0);
4983 	skb_queue_head_init(&sp->pd_lobby);
4984 	sp->frag_interleave = 0;
4985 
4986 	/* Create a per socket endpoint structure.  Even if we
4987 	 * change the data structure relationships, this may still
4988 	 * be useful for storing pre-connect address information.
4989 	 */
4990 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4991 	if (!sp->ep)
4992 		return -ENOMEM;
4993 
4994 	sp->hmac = NULL;
4995 
4996 	sk->sk_destruct = sctp_destruct_sock;
4997 
4998 	SCTP_DBG_OBJCNT_INC(sock);
4999 
5000 	local_bh_disable();
5001 	sk_sockets_allocated_inc(sk);
5002 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5003 
5004 	/* Nothing can fail after this block, otherwise
5005 	 * sctp_destroy_sock() will be called without addr_wq_lock held
5006 	 */
5007 	if (net->sctp.default_auto_asconf) {
5008 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5009 		list_add_tail(&sp->auto_asconf_list,
5010 		    &net->sctp.auto_asconf_splist);
5011 		sp->do_auto_asconf = 1;
5012 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5013 	} else {
5014 		sp->do_auto_asconf = 0;
5015 	}
5016 
5017 	local_bh_enable();
5018 
5019 	return 0;
5020 }
5021 
5022 /* Cleanup any SCTP per socket resources. Must be called with
5023  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5024  */
5025 static void sctp_destroy_sock(struct sock *sk)
5026 {
5027 	struct sctp_sock *sp;
5028 
5029 	pr_debug("%s: sk:%p\n", __func__, sk);
5030 
5031 	/* Release our hold on the endpoint. */
5032 	sp = sctp_sk(sk);
5033 	/* This could happen during socket init, thus we bail out
5034 	 * early, since the rest of the below is not setup either.
5035 	 */
5036 	if (sp->ep == NULL)
5037 		return;
5038 
5039 	if (sp->do_auto_asconf) {
5040 		sp->do_auto_asconf = 0;
5041 		list_del(&sp->auto_asconf_list);
5042 	}
5043 	sctp_endpoint_free(sp->ep);
5044 	local_bh_disable();
5045 	sk_sockets_allocated_dec(sk);
5046 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5047 	local_bh_enable();
5048 }
5049 
5050 /* Triggered when there are no references on the socket anymore */
5051 static void sctp_destruct_sock(struct sock *sk)
5052 {
5053 	struct sctp_sock *sp = sctp_sk(sk);
5054 
5055 	/* Free up the HMAC transform. */
5056 	crypto_free_shash(sp->hmac);
5057 
5058 	inet_sock_destruct(sk);
5059 }
5060 
5061 /* API 4.1.7 shutdown() - TCP Style Syntax
5062  *     int shutdown(int socket, int how);
5063  *
5064  *     sd      - the socket descriptor of the association to be closed.
5065  *     how     - Specifies the type of shutdown.  The  values  are
5066  *               as follows:
5067  *               SHUT_RD
5068  *                     Disables further receive operations. No SCTP
5069  *                     protocol action is taken.
5070  *               SHUT_WR
5071  *                     Disables further send operations, and initiates
5072  *                     the SCTP shutdown sequence.
5073  *               SHUT_RDWR
5074  *                     Disables further send  and  receive  operations
5075  *                     and initiates the SCTP shutdown sequence.
5076  */
5077 static void sctp_shutdown(struct sock *sk, int how)
5078 {
5079 	struct net *net = sock_net(sk);
5080 	struct sctp_endpoint *ep;
5081 
5082 	if (!sctp_style(sk, TCP))
5083 		return;
5084 
5085 	ep = sctp_sk(sk)->ep;
5086 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5087 		struct sctp_association *asoc;
5088 
5089 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5090 		asoc = list_entry(ep->asocs.next,
5091 				  struct sctp_association, asocs);
5092 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5093 	}
5094 }
5095 
5096 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5097 		       struct sctp_info *info)
5098 {
5099 	struct sctp_transport *prim;
5100 	struct list_head *pos;
5101 	int mask;
5102 
5103 	memset(info, 0, sizeof(*info));
5104 	if (!asoc) {
5105 		struct sctp_sock *sp = sctp_sk(sk);
5106 
5107 		info->sctpi_s_autoclose = sp->autoclose;
5108 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5109 		info->sctpi_s_pd_point = sp->pd_point;
5110 		info->sctpi_s_nodelay = sp->nodelay;
5111 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5112 		info->sctpi_s_v4mapped = sp->v4mapped;
5113 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5114 		info->sctpi_s_type = sp->type;
5115 
5116 		return 0;
5117 	}
5118 
5119 	info->sctpi_tag = asoc->c.my_vtag;
5120 	info->sctpi_state = asoc->state;
5121 	info->sctpi_rwnd = asoc->a_rwnd;
5122 	info->sctpi_unackdata = asoc->unack_data;
5123 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5124 	info->sctpi_instrms = asoc->stream.incnt;
5125 	info->sctpi_outstrms = asoc->stream.outcnt;
5126 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5127 		info->sctpi_inqueue++;
5128 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5129 		info->sctpi_outqueue++;
5130 	info->sctpi_overall_error = asoc->overall_error_count;
5131 	info->sctpi_max_burst = asoc->max_burst;
5132 	info->sctpi_maxseg = asoc->frag_point;
5133 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5134 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5135 
5136 	mask = asoc->peer.ecn_capable << 1;
5137 	mask = (mask | asoc->peer.ipv4_address) << 1;
5138 	mask = (mask | asoc->peer.ipv6_address) << 1;
5139 	mask = (mask | asoc->peer.hostname_address) << 1;
5140 	mask = (mask | asoc->peer.asconf_capable) << 1;
5141 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5142 	mask = (mask | asoc->peer.auth_capable);
5143 	info->sctpi_peer_capable = mask;
5144 	mask = asoc->peer.sack_needed << 1;
5145 	mask = (mask | asoc->peer.sack_generation) << 1;
5146 	mask = (mask | asoc->peer.zero_window_announced);
5147 	info->sctpi_peer_sack = mask;
5148 
5149 	info->sctpi_isacks = asoc->stats.isacks;
5150 	info->sctpi_osacks = asoc->stats.osacks;
5151 	info->sctpi_opackets = asoc->stats.opackets;
5152 	info->sctpi_ipackets = asoc->stats.ipackets;
5153 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5154 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5155 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5156 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5157 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5158 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5159 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5160 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5161 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5162 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5163 
5164 	prim = asoc->peer.primary_path;
5165 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5166 	info->sctpi_p_state = prim->state;
5167 	info->sctpi_p_cwnd = prim->cwnd;
5168 	info->sctpi_p_srtt = prim->srtt;
5169 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5170 	info->sctpi_p_hbinterval = prim->hbinterval;
5171 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5172 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5173 	info->sctpi_p_ssthresh = prim->ssthresh;
5174 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5175 	info->sctpi_p_flight_size = prim->flight_size;
5176 	info->sctpi_p_error = prim->error_count;
5177 
5178 	return 0;
5179 }
5180 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5181 
5182 /* use callback to avoid exporting the core structure */
5183 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5184 {
5185 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5186 
5187 	rhashtable_walk_start(iter);
5188 }
5189 
5190 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5191 {
5192 	rhashtable_walk_stop(iter);
5193 	rhashtable_walk_exit(iter);
5194 }
5195 
5196 struct sctp_transport *sctp_transport_get_next(struct net *net,
5197 					       struct rhashtable_iter *iter)
5198 {
5199 	struct sctp_transport *t;
5200 
5201 	t = rhashtable_walk_next(iter);
5202 	for (; t; t = rhashtable_walk_next(iter)) {
5203 		if (IS_ERR(t)) {
5204 			if (PTR_ERR(t) == -EAGAIN)
5205 				continue;
5206 			break;
5207 		}
5208 
5209 		if (!sctp_transport_hold(t))
5210 			continue;
5211 
5212 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
5213 		    t->asoc->peer.primary_path == t)
5214 			break;
5215 
5216 		sctp_transport_put(t);
5217 	}
5218 
5219 	return t;
5220 }
5221 
5222 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5223 					      struct rhashtable_iter *iter,
5224 					      int pos)
5225 {
5226 	struct sctp_transport *t;
5227 
5228 	if (!pos)
5229 		return SEQ_START_TOKEN;
5230 
5231 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5232 		if (!--pos)
5233 			break;
5234 		sctp_transport_put(t);
5235 	}
5236 
5237 	return t;
5238 }
5239 
5240 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5241 			   void *p) {
5242 	int err = 0;
5243 	int hash = 0;
5244 	struct sctp_ep_common *epb;
5245 	struct sctp_hashbucket *head;
5246 
5247 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5248 	     hash++, head++) {
5249 		read_lock_bh(&head->lock);
5250 		sctp_for_each_hentry(epb, &head->chain) {
5251 			err = cb(sctp_ep(epb), p);
5252 			if (err)
5253 				break;
5254 		}
5255 		read_unlock_bh(&head->lock);
5256 	}
5257 
5258 	return err;
5259 }
5260 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5261 
5262 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5263 				  struct net *net,
5264 				  const union sctp_addr *laddr,
5265 				  const union sctp_addr *paddr, void *p)
5266 {
5267 	struct sctp_transport *transport;
5268 	int err;
5269 
5270 	rcu_read_lock();
5271 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5272 	rcu_read_unlock();
5273 	if (!transport)
5274 		return -ENOENT;
5275 
5276 	err = cb(transport, p);
5277 	sctp_transport_put(transport);
5278 
5279 	return err;
5280 }
5281 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5282 
5283 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5284 			    int (*cb_done)(struct sctp_transport *, void *),
5285 			    struct net *net, int *pos, void *p) {
5286 	struct rhashtable_iter hti;
5287 	struct sctp_transport *tsp;
5288 	int ret;
5289 
5290 again:
5291 	ret = 0;
5292 	sctp_transport_walk_start(&hti);
5293 
5294 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5295 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5296 		ret = cb(tsp, p);
5297 		if (ret)
5298 			break;
5299 		(*pos)++;
5300 		sctp_transport_put(tsp);
5301 	}
5302 	sctp_transport_walk_stop(&hti);
5303 
5304 	if (ret) {
5305 		if (cb_done && !cb_done(tsp, p)) {
5306 			(*pos)++;
5307 			sctp_transport_put(tsp);
5308 			goto again;
5309 		}
5310 		sctp_transport_put(tsp);
5311 	}
5312 
5313 	return ret;
5314 }
5315 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5316 
5317 /* 7.2.1 Association Status (SCTP_STATUS)
5318 
5319  * Applications can retrieve current status information about an
5320  * association, including association state, peer receiver window size,
5321  * number of unacked data chunks, and number of data chunks pending
5322  * receipt.  This information is read-only.
5323  */
5324 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5325 				       char __user *optval,
5326 				       int __user *optlen)
5327 {
5328 	struct sctp_status status;
5329 	struct sctp_association *asoc = NULL;
5330 	struct sctp_transport *transport;
5331 	sctp_assoc_t associd;
5332 	int retval = 0;
5333 
5334 	if (len < sizeof(status)) {
5335 		retval = -EINVAL;
5336 		goto out;
5337 	}
5338 
5339 	len = sizeof(status);
5340 	if (copy_from_user(&status, optval, len)) {
5341 		retval = -EFAULT;
5342 		goto out;
5343 	}
5344 
5345 	associd = status.sstat_assoc_id;
5346 	asoc = sctp_id2assoc(sk, associd);
5347 	if (!asoc) {
5348 		retval = -EINVAL;
5349 		goto out;
5350 	}
5351 
5352 	transport = asoc->peer.primary_path;
5353 
5354 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5355 	status.sstat_state = sctp_assoc_to_state(asoc);
5356 	status.sstat_rwnd =  asoc->peer.rwnd;
5357 	status.sstat_unackdata = asoc->unack_data;
5358 
5359 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5360 	status.sstat_instrms = asoc->stream.incnt;
5361 	status.sstat_outstrms = asoc->stream.outcnt;
5362 	status.sstat_fragmentation_point = asoc->frag_point;
5363 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5364 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5365 			transport->af_specific->sockaddr_len);
5366 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5367 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5368 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5369 	status.sstat_primary.spinfo_state = transport->state;
5370 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5371 	status.sstat_primary.spinfo_srtt = transport->srtt;
5372 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5373 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5374 
5375 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5376 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5377 
5378 	if (put_user(len, optlen)) {
5379 		retval = -EFAULT;
5380 		goto out;
5381 	}
5382 
5383 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5384 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5385 		 status.sstat_assoc_id);
5386 
5387 	if (copy_to_user(optval, &status, len)) {
5388 		retval = -EFAULT;
5389 		goto out;
5390 	}
5391 
5392 out:
5393 	return retval;
5394 }
5395 
5396 
5397 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5398  *
5399  * Applications can retrieve information about a specific peer address
5400  * of an association, including its reachability state, congestion
5401  * window, and retransmission timer values.  This information is
5402  * read-only.
5403  */
5404 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5405 					  char __user *optval,
5406 					  int __user *optlen)
5407 {
5408 	struct sctp_paddrinfo pinfo;
5409 	struct sctp_transport *transport;
5410 	int retval = 0;
5411 
5412 	if (len < sizeof(pinfo)) {
5413 		retval = -EINVAL;
5414 		goto out;
5415 	}
5416 
5417 	len = sizeof(pinfo);
5418 	if (copy_from_user(&pinfo, optval, len)) {
5419 		retval = -EFAULT;
5420 		goto out;
5421 	}
5422 
5423 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5424 					   pinfo.spinfo_assoc_id);
5425 	if (!transport)
5426 		return -EINVAL;
5427 
5428 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5429 	pinfo.spinfo_state = transport->state;
5430 	pinfo.spinfo_cwnd = transport->cwnd;
5431 	pinfo.spinfo_srtt = transport->srtt;
5432 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5433 	pinfo.spinfo_mtu = transport->pathmtu;
5434 
5435 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5436 		pinfo.spinfo_state = SCTP_ACTIVE;
5437 
5438 	if (put_user(len, optlen)) {
5439 		retval = -EFAULT;
5440 		goto out;
5441 	}
5442 
5443 	if (copy_to_user(optval, &pinfo, len)) {
5444 		retval = -EFAULT;
5445 		goto out;
5446 	}
5447 
5448 out:
5449 	return retval;
5450 }
5451 
5452 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5453  *
5454  * This option is a on/off flag.  If enabled no SCTP message
5455  * fragmentation will be performed.  Instead if a message being sent
5456  * exceeds the current PMTU size, the message will NOT be sent and
5457  * instead a error will be indicated to the user.
5458  */
5459 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5460 					char __user *optval, int __user *optlen)
5461 {
5462 	int val;
5463 
5464 	if (len < sizeof(int))
5465 		return -EINVAL;
5466 
5467 	len = sizeof(int);
5468 	val = (sctp_sk(sk)->disable_fragments == 1);
5469 	if (put_user(len, optlen))
5470 		return -EFAULT;
5471 	if (copy_to_user(optval, &val, len))
5472 		return -EFAULT;
5473 	return 0;
5474 }
5475 
5476 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5477  *
5478  * This socket option is used to specify various notifications and
5479  * ancillary data the user wishes to receive.
5480  */
5481 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5482 				  int __user *optlen)
5483 {
5484 	struct sctp_event_subscribe subscribe;
5485 	__u8 *sn_type = (__u8 *)&subscribe;
5486 	int i;
5487 
5488 	if (len == 0)
5489 		return -EINVAL;
5490 	if (len > sizeof(struct sctp_event_subscribe))
5491 		len = sizeof(struct sctp_event_subscribe);
5492 	if (put_user(len, optlen))
5493 		return -EFAULT;
5494 
5495 	for (i = 0; i < len; i++)
5496 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5497 							SCTP_SN_TYPE_BASE + i);
5498 
5499 	if (copy_to_user(optval, &subscribe, len))
5500 		return -EFAULT;
5501 
5502 	return 0;
5503 }
5504 
5505 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5506  *
5507  * This socket option is applicable to the UDP-style socket only.  When
5508  * set it will cause associations that are idle for more than the
5509  * specified number of seconds to automatically close.  An association
5510  * being idle is defined an association that has NOT sent or received
5511  * user data.  The special value of '0' indicates that no automatic
5512  * close of any associations should be performed.  The option expects an
5513  * integer defining the number of seconds of idle time before an
5514  * association is closed.
5515  */
5516 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5517 {
5518 	/* Applicable to UDP-style socket only */
5519 	if (sctp_style(sk, TCP))
5520 		return -EOPNOTSUPP;
5521 	if (len < sizeof(int))
5522 		return -EINVAL;
5523 	len = sizeof(int);
5524 	if (put_user(len, optlen))
5525 		return -EFAULT;
5526 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5527 		return -EFAULT;
5528 	return 0;
5529 }
5530 
5531 /* Helper routine to branch off an association to a new socket.  */
5532 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5533 {
5534 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5535 	struct sctp_sock *sp = sctp_sk(sk);
5536 	struct socket *sock;
5537 	int err = 0;
5538 
5539 	/* Do not peel off from one netns to another one. */
5540 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5541 		return -EINVAL;
5542 
5543 	if (!asoc)
5544 		return -EINVAL;
5545 
5546 	/* An association cannot be branched off from an already peeled-off
5547 	 * socket, nor is this supported for tcp style sockets.
5548 	 */
5549 	if (!sctp_style(sk, UDP))
5550 		return -EINVAL;
5551 
5552 	/* Create a new socket.  */
5553 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5554 	if (err < 0)
5555 		return err;
5556 
5557 	sctp_copy_sock(sock->sk, sk, asoc);
5558 
5559 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5560 	 * Set the daddr and initialize id to something more random and also
5561 	 * copy over any ip options.
5562 	 */
5563 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5564 	sp->pf->copy_ip_options(sk, sock->sk);
5565 
5566 	/* Populate the fields of the newsk from the oldsk and migrate the
5567 	 * asoc to the newsk.
5568 	 */
5569 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5570 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5571 	if (err) {
5572 		sock_release(sock);
5573 		sock = NULL;
5574 	}
5575 
5576 	*sockp = sock;
5577 
5578 	return err;
5579 }
5580 EXPORT_SYMBOL(sctp_do_peeloff);
5581 
5582 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5583 					  struct file **newfile, unsigned flags)
5584 {
5585 	struct socket *newsock;
5586 	int retval;
5587 
5588 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5589 	if (retval < 0)
5590 		goto out;
5591 
5592 	/* Map the socket to an unused fd that can be returned to the user.  */
5593 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5594 	if (retval < 0) {
5595 		sock_release(newsock);
5596 		goto out;
5597 	}
5598 
5599 	*newfile = sock_alloc_file(newsock, 0, NULL);
5600 	if (IS_ERR(*newfile)) {
5601 		put_unused_fd(retval);
5602 		retval = PTR_ERR(*newfile);
5603 		*newfile = NULL;
5604 		return retval;
5605 	}
5606 
5607 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5608 		 retval);
5609 
5610 	peeloff->sd = retval;
5611 
5612 	if (flags & SOCK_NONBLOCK)
5613 		(*newfile)->f_flags |= O_NONBLOCK;
5614 out:
5615 	return retval;
5616 }
5617 
5618 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5619 {
5620 	sctp_peeloff_arg_t peeloff;
5621 	struct file *newfile = NULL;
5622 	int retval = 0;
5623 
5624 	if (len < sizeof(sctp_peeloff_arg_t))
5625 		return -EINVAL;
5626 	len = sizeof(sctp_peeloff_arg_t);
5627 	if (copy_from_user(&peeloff, optval, len))
5628 		return -EFAULT;
5629 
5630 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5631 	if (retval < 0)
5632 		goto out;
5633 
5634 	/* Return the fd mapped to the new socket.  */
5635 	if (put_user(len, optlen)) {
5636 		fput(newfile);
5637 		put_unused_fd(retval);
5638 		return -EFAULT;
5639 	}
5640 
5641 	if (copy_to_user(optval, &peeloff, len)) {
5642 		fput(newfile);
5643 		put_unused_fd(retval);
5644 		return -EFAULT;
5645 	}
5646 	fd_install(retval, newfile);
5647 out:
5648 	return retval;
5649 }
5650 
5651 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5652 					 char __user *optval, int __user *optlen)
5653 {
5654 	sctp_peeloff_flags_arg_t peeloff;
5655 	struct file *newfile = NULL;
5656 	int retval = 0;
5657 
5658 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5659 		return -EINVAL;
5660 	len = sizeof(sctp_peeloff_flags_arg_t);
5661 	if (copy_from_user(&peeloff, optval, len))
5662 		return -EFAULT;
5663 
5664 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5665 						&newfile, peeloff.flags);
5666 	if (retval < 0)
5667 		goto out;
5668 
5669 	/* Return the fd mapped to the new socket.  */
5670 	if (put_user(len, optlen)) {
5671 		fput(newfile);
5672 		put_unused_fd(retval);
5673 		return -EFAULT;
5674 	}
5675 
5676 	if (copy_to_user(optval, &peeloff, len)) {
5677 		fput(newfile);
5678 		put_unused_fd(retval);
5679 		return -EFAULT;
5680 	}
5681 	fd_install(retval, newfile);
5682 out:
5683 	return retval;
5684 }
5685 
5686 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5687  *
5688  * Applications can enable or disable heartbeats for any peer address of
5689  * an association, modify an address's heartbeat interval, force a
5690  * heartbeat to be sent immediately, and adjust the address's maximum
5691  * number of retransmissions sent before an address is considered
5692  * unreachable.  The following structure is used to access and modify an
5693  * address's parameters:
5694  *
5695  *  struct sctp_paddrparams {
5696  *     sctp_assoc_t            spp_assoc_id;
5697  *     struct sockaddr_storage spp_address;
5698  *     uint32_t                spp_hbinterval;
5699  *     uint16_t                spp_pathmaxrxt;
5700  *     uint32_t                spp_pathmtu;
5701  *     uint32_t                spp_sackdelay;
5702  *     uint32_t                spp_flags;
5703  * };
5704  *
5705  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5706  *                     application, and identifies the association for
5707  *                     this query.
5708  *   spp_address     - This specifies which address is of interest.
5709  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5710  *                     in milliseconds.  If a  value of zero
5711  *                     is present in this field then no changes are to
5712  *                     be made to this parameter.
5713  *   spp_pathmaxrxt  - This contains the maximum number of
5714  *                     retransmissions before this address shall be
5715  *                     considered unreachable. If a  value of zero
5716  *                     is present in this field then no changes are to
5717  *                     be made to this parameter.
5718  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5719  *                     specified here will be the "fixed" path mtu.
5720  *                     Note that if the spp_address field is empty
5721  *                     then all associations on this address will
5722  *                     have this fixed path mtu set upon them.
5723  *
5724  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5725  *                     the number of milliseconds that sacks will be delayed
5726  *                     for. This value will apply to all addresses of an
5727  *                     association if the spp_address field is empty. Note
5728  *                     also, that if delayed sack is enabled and this
5729  *                     value is set to 0, no change is made to the last
5730  *                     recorded delayed sack timer value.
5731  *
5732  *   spp_flags       - These flags are used to control various features
5733  *                     on an association. The flag field may contain
5734  *                     zero or more of the following options.
5735  *
5736  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5737  *                     specified address. Note that if the address
5738  *                     field is empty all addresses for the association
5739  *                     have heartbeats enabled upon them.
5740  *
5741  *                     SPP_HB_DISABLE - Disable heartbeats on the
5742  *                     speicifed address. Note that if the address
5743  *                     field is empty all addresses for the association
5744  *                     will have their heartbeats disabled. Note also
5745  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5746  *                     mutually exclusive, only one of these two should
5747  *                     be specified. Enabling both fields will have
5748  *                     undetermined results.
5749  *
5750  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5751  *                     to be made immediately.
5752  *
5753  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5754  *                     discovery upon the specified address. Note that
5755  *                     if the address feild is empty then all addresses
5756  *                     on the association are effected.
5757  *
5758  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5759  *                     discovery upon the specified address. Note that
5760  *                     if the address feild is empty then all addresses
5761  *                     on the association are effected. Not also that
5762  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5763  *                     exclusive. Enabling both will have undetermined
5764  *                     results.
5765  *
5766  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5767  *                     on delayed sack. The time specified in spp_sackdelay
5768  *                     is used to specify the sack delay for this address. Note
5769  *                     that if spp_address is empty then all addresses will
5770  *                     enable delayed sack and take on the sack delay
5771  *                     value specified in spp_sackdelay.
5772  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5773  *                     off delayed sack. If the spp_address field is blank then
5774  *                     delayed sack is disabled for the entire association. Note
5775  *                     also that this field is mutually exclusive to
5776  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5777  *                     results.
5778  *
5779  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5780  *                     setting of the IPV6 flow label value.  The value is
5781  *                     contained in the spp_ipv6_flowlabel field.
5782  *                     Upon retrieval, this flag will be set to indicate that
5783  *                     the spp_ipv6_flowlabel field has a valid value returned.
5784  *                     If a specific destination address is set (in the
5785  *                     spp_address field), then the value returned is that of
5786  *                     the address.  If just an association is specified (and
5787  *                     no address), then the association's default flow label
5788  *                     is returned.  If neither an association nor a destination
5789  *                     is specified, then the socket's default flow label is
5790  *                     returned.  For non-IPv6 sockets, this flag will be left
5791  *                     cleared.
5792  *
5793  *                     SPP_DSCP:  Setting this flag enables the setting of the
5794  *                     Differentiated Services Code Point (DSCP) value
5795  *                     associated with either the association or a specific
5796  *                     address.  The value is obtained in the spp_dscp field.
5797  *                     Upon retrieval, this flag will be set to indicate that
5798  *                     the spp_dscp field has a valid value returned.  If a
5799  *                     specific destination address is set when called (in the
5800  *                     spp_address field), then that specific destination
5801  *                     address's DSCP value is returned.  If just an association
5802  *                     is specified, then the association's default DSCP is
5803  *                     returned.  If neither an association nor a destination is
5804  *                     specified, then the socket's default DSCP is returned.
5805  *
5806  *   spp_ipv6_flowlabel
5807  *                   - This field is used in conjunction with the
5808  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5809  *                     The 20 least significant bits are used for the flow
5810  *                     label.  This setting has precedence over any IPv6-layer
5811  *                     setting.
5812  *
5813  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5814  *                     and contains the DSCP.  The 6 most significant bits are
5815  *                     used for the DSCP.  This setting has precedence over any
5816  *                     IPv4- or IPv6- layer setting.
5817  */
5818 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5819 					    char __user *optval, int __user *optlen)
5820 {
5821 	struct sctp_paddrparams  params;
5822 	struct sctp_transport   *trans = NULL;
5823 	struct sctp_association *asoc = NULL;
5824 	struct sctp_sock        *sp = sctp_sk(sk);
5825 
5826 	if (len >= sizeof(params))
5827 		len = sizeof(params);
5828 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5829 				       spp_ipv6_flowlabel), 4))
5830 		len = ALIGN(offsetof(struct sctp_paddrparams,
5831 				     spp_ipv6_flowlabel), 4);
5832 	else
5833 		return -EINVAL;
5834 
5835 	if (copy_from_user(&params, optval, len))
5836 		return -EFAULT;
5837 
5838 	/* If an address other than INADDR_ANY is specified, and
5839 	 * no transport is found, then the request is invalid.
5840 	 */
5841 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5842 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5843 					       params.spp_assoc_id);
5844 		if (!trans) {
5845 			pr_debug("%s: failed no transport\n", __func__);
5846 			return -EINVAL;
5847 		}
5848 	}
5849 
5850 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5851 	 * socket is a one to many style socket, and an association
5852 	 * was not found, then the id was invalid.
5853 	 */
5854 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5855 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5856 	    sctp_style(sk, UDP)) {
5857 		pr_debug("%s: failed no association\n", __func__);
5858 		return -EINVAL;
5859 	}
5860 
5861 	if (trans) {
5862 		/* Fetch transport values. */
5863 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5864 		params.spp_pathmtu    = trans->pathmtu;
5865 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5866 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5867 
5868 		/*draft-11 doesn't say what to return in spp_flags*/
5869 		params.spp_flags      = trans->param_flags;
5870 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5871 			params.spp_ipv6_flowlabel = trans->flowlabel &
5872 						    SCTP_FLOWLABEL_VAL_MASK;
5873 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5874 		}
5875 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5876 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5877 			params.spp_flags |= SPP_DSCP;
5878 		}
5879 	} else if (asoc) {
5880 		/* Fetch association values. */
5881 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5882 		params.spp_pathmtu    = asoc->pathmtu;
5883 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5884 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5885 
5886 		/*draft-11 doesn't say what to return in spp_flags*/
5887 		params.spp_flags      = asoc->param_flags;
5888 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5889 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5890 						    SCTP_FLOWLABEL_VAL_MASK;
5891 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5892 		}
5893 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5894 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5895 			params.spp_flags |= SPP_DSCP;
5896 		}
5897 	} else {
5898 		/* Fetch socket values. */
5899 		params.spp_hbinterval = sp->hbinterval;
5900 		params.spp_pathmtu    = sp->pathmtu;
5901 		params.spp_sackdelay  = sp->sackdelay;
5902 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5903 
5904 		/*draft-11 doesn't say what to return in spp_flags*/
5905 		params.spp_flags      = sp->param_flags;
5906 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5907 			params.spp_ipv6_flowlabel = sp->flowlabel &
5908 						    SCTP_FLOWLABEL_VAL_MASK;
5909 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5910 		}
5911 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5912 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5913 			params.spp_flags |= SPP_DSCP;
5914 		}
5915 	}
5916 
5917 	if (copy_to_user(optval, &params, len))
5918 		return -EFAULT;
5919 
5920 	if (put_user(len, optlen))
5921 		return -EFAULT;
5922 
5923 	return 0;
5924 }
5925 
5926 /*
5927  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5928  *
5929  * This option will effect the way delayed acks are performed.  This
5930  * option allows you to get or set the delayed ack time, in
5931  * milliseconds.  It also allows changing the delayed ack frequency.
5932  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5933  * the assoc_id is 0, then this sets or gets the endpoints default
5934  * values.  If the assoc_id field is non-zero, then the set or get
5935  * effects the specified association for the one to many model (the
5936  * assoc_id field is ignored by the one to one model).  Note that if
5937  * sack_delay or sack_freq are 0 when setting this option, then the
5938  * current values will remain unchanged.
5939  *
5940  * struct sctp_sack_info {
5941  *     sctp_assoc_t            sack_assoc_id;
5942  *     uint32_t                sack_delay;
5943  *     uint32_t                sack_freq;
5944  * };
5945  *
5946  * sack_assoc_id -  This parameter, indicates which association the user
5947  *    is performing an action upon.  Note that if this field's value is
5948  *    zero then the endpoints default value is changed (effecting future
5949  *    associations only).
5950  *
5951  * sack_delay -  This parameter contains the number of milliseconds that
5952  *    the user is requesting the delayed ACK timer be set to.  Note that
5953  *    this value is defined in the standard to be between 200 and 500
5954  *    milliseconds.
5955  *
5956  * sack_freq -  This parameter contains the number of packets that must
5957  *    be received before a sack is sent without waiting for the delay
5958  *    timer to expire.  The default value for this is 2, setting this
5959  *    value to 1 will disable the delayed sack algorithm.
5960  */
5961 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5962 					    char __user *optval,
5963 					    int __user *optlen)
5964 {
5965 	struct sctp_sack_info    params;
5966 	struct sctp_association *asoc = NULL;
5967 	struct sctp_sock        *sp = sctp_sk(sk);
5968 
5969 	if (len >= sizeof(struct sctp_sack_info)) {
5970 		len = sizeof(struct sctp_sack_info);
5971 
5972 		if (copy_from_user(&params, optval, len))
5973 			return -EFAULT;
5974 	} else if (len == sizeof(struct sctp_assoc_value)) {
5975 		pr_warn_ratelimited(DEPRECATED
5976 				    "%s (pid %d) "
5977 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5978 				    "Use struct sctp_sack_info instead\n",
5979 				    current->comm, task_pid_nr(current));
5980 		if (copy_from_user(&params, optval, len))
5981 			return -EFAULT;
5982 	} else
5983 		return -EINVAL;
5984 
5985 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5986 	 * socket is a one to many style socket, and an association
5987 	 * was not found, then the id was invalid.
5988 	 */
5989 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5990 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5991 	    sctp_style(sk, UDP))
5992 		return -EINVAL;
5993 
5994 	if (asoc) {
5995 		/* Fetch association values. */
5996 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5997 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5998 			params.sack_freq = asoc->sackfreq;
5999 
6000 		} else {
6001 			params.sack_delay = 0;
6002 			params.sack_freq = 1;
6003 		}
6004 	} else {
6005 		/* Fetch socket values. */
6006 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6007 			params.sack_delay  = sp->sackdelay;
6008 			params.sack_freq = sp->sackfreq;
6009 		} else {
6010 			params.sack_delay  = 0;
6011 			params.sack_freq = 1;
6012 		}
6013 	}
6014 
6015 	if (copy_to_user(optval, &params, len))
6016 		return -EFAULT;
6017 
6018 	if (put_user(len, optlen))
6019 		return -EFAULT;
6020 
6021 	return 0;
6022 }
6023 
6024 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6025  *
6026  * Applications can specify protocol parameters for the default association
6027  * initialization.  The option name argument to setsockopt() and getsockopt()
6028  * is SCTP_INITMSG.
6029  *
6030  * Setting initialization parameters is effective only on an unconnected
6031  * socket (for UDP-style sockets only future associations are effected
6032  * by the change).  With TCP-style sockets, this option is inherited by
6033  * sockets derived from a listener socket.
6034  */
6035 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6036 {
6037 	if (len < sizeof(struct sctp_initmsg))
6038 		return -EINVAL;
6039 	len = sizeof(struct sctp_initmsg);
6040 	if (put_user(len, optlen))
6041 		return -EFAULT;
6042 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6043 		return -EFAULT;
6044 	return 0;
6045 }
6046 
6047 
6048 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6049 				      char __user *optval, int __user *optlen)
6050 {
6051 	struct sctp_association *asoc;
6052 	int cnt = 0;
6053 	struct sctp_getaddrs getaddrs;
6054 	struct sctp_transport *from;
6055 	void __user *to;
6056 	union sctp_addr temp;
6057 	struct sctp_sock *sp = sctp_sk(sk);
6058 	int addrlen;
6059 	size_t space_left;
6060 	int bytes_copied;
6061 
6062 	if (len < sizeof(struct sctp_getaddrs))
6063 		return -EINVAL;
6064 
6065 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6066 		return -EFAULT;
6067 
6068 	/* For UDP-style sockets, id specifies the association to query.  */
6069 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6070 	if (!asoc)
6071 		return -EINVAL;
6072 
6073 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6074 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6075 
6076 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6077 				transports) {
6078 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6079 		addrlen = sctp_get_pf_specific(sk->sk_family)
6080 			      ->addr_to_user(sp, &temp);
6081 		if (space_left < addrlen)
6082 			return -ENOMEM;
6083 		if (copy_to_user(to, &temp, addrlen))
6084 			return -EFAULT;
6085 		to += addrlen;
6086 		cnt++;
6087 		space_left -= addrlen;
6088 	}
6089 
6090 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6091 		return -EFAULT;
6092 	bytes_copied = ((char __user *)to) - optval;
6093 	if (put_user(bytes_copied, optlen))
6094 		return -EFAULT;
6095 
6096 	return 0;
6097 }
6098 
6099 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6100 			    size_t space_left, int *bytes_copied)
6101 {
6102 	struct sctp_sockaddr_entry *addr;
6103 	union sctp_addr temp;
6104 	int cnt = 0;
6105 	int addrlen;
6106 	struct net *net = sock_net(sk);
6107 
6108 	rcu_read_lock();
6109 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6110 		if (!addr->valid)
6111 			continue;
6112 
6113 		if ((PF_INET == sk->sk_family) &&
6114 		    (AF_INET6 == addr->a.sa.sa_family))
6115 			continue;
6116 		if ((PF_INET6 == sk->sk_family) &&
6117 		    inet_v6_ipv6only(sk) &&
6118 		    (AF_INET == addr->a.sa.sa_family))
6119 			continue;
6120 		memcpy(&temp, &addr->a, sizeof(temp));
6121 		if (!temp.v4.sin_port)
6122 			temp.v4.sin_port = htons(port);
6123 
6124 		addrlen = sctp_get_pf_specific(sk->sk_family)
6125 			      ->addr_to_user(sctp_sk(sk), &temp);
6126 
6127 		if (space_left < addrlen) {
6128 			cnt =  -ENOMEM;
6129 			break;
6130 		}
6131 		memcpy(to, &temp, addrlen);
6132 
6133 		to += addrlen;
6134 		cnt++;
6135 		space_left -= addrlen;
6136 		*bytes_copied += addrlen;
6137 	}
6138 	rcu_read_unlock();
6139 
6140 	return cnt;
6141 }
6142 
6143 
6144 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6145 				       char __user *optval, int __user *optlen)
6146 {
6147 	struct sctp_bind_addr *bp;
6148 	struct sctp_association *asoc;
6149 	int cnt = 0;
6150 	struct sctp_getaddrs getaddrs;
6151 	struct sctp_sockaddr_entry *addr;
6152 	void __user *to;
6153 	union sctp_addr temp;
6154 	struct sctp_sock *sp = sctp_sk(sk);
6155 	int addrlen;
6156 	int err = 0;
6157 	size_t space_left;
6158 	int bytes_copied = 0;
6159 	void *addrs;
6160 	void *buf;
6161 
6162 	if (len < sizeof(struct sctp_getaddrs))
6163 		return -EINVAL;
6164 
6165 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6166 		return -EFAULT;
6167 
6168 	/*
6169 	 *  For UDP-style sockets, id specifies the association to query.
6170 	 *  If the id field is set to the value '0' then the locally bound
6171 	 *  addresses are returned without regard to any particular
6172 	 *  association.
6173 	 */
6174 	if (0 == getaddrs.assoc_id) {
6175 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6176 	} else {
6177 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6178 		if (!asoc)
6179 			return -EINVAL;
6180 		bp = &asoc->base.bind_addr;
6181 	}
6182 
6183 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6184 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6185 
6186 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6187 	if (!addrs)
6188 		return -ENOMEM;
6189 
6190 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6191 	 * addresses from the global local address list.
6192 	 */
6193 	if (sctp_list_single_entry(&bp->address_list)) {
6194 		addr = list_entry(bp->address_list.next,
6195 				  struct sctp_sockaddr_entry, list);
6196 		if (sctp_is_any(sk, &addr->a)) {
6197 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6198 						space_left, &bytes_copied);
6199 			if (cnt < 0) {
6200 				err = cnt;
6201 				goto out;
6202 			}
6203 			goto copy_getaddrs;
6204 		}
6205 	}
6206 
6207 	buf = addrs;
6208 	/* Protection on the bound address list is not needed since
6209 	 * in the socket option context we hold a socket lock and
6210 	 * thus the bound address list can't change.
6211 	 */
6212 	list_for_each_entry(addr, &bp->address_list, list) {
6213 		memcpy(&temp, &addr->a, sizeof(temp));
6214 		addrlen = sctp_get_pf_specific(sk->sk_family)
6215 			      ->addr_to_user(sp, &temp);
6216 		if (space_left < addrlen) {
6217 			err =  -ENOMEM; /*fixme: right error?*/
6218 			goto out;
6219 		}
6220 		memcpy(buf, &temp, addrlen);
6221 		buf += addrlen;
6222 		bytes_copied += addrlen;
6223 		cnt++;
6224 		space_left -= addrlen;
6225 	}
6226 
6227 copy_getaddrs:
6228 	if (copy_to_user(to, addrs, bytes_copied)) {
6229 		err = -EFAULT;
6230 		goto out;
6231 	}
6232 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6233 		err = -EFAULT;
6234 		goto out;
6235 	}
6236 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6237 	 * but we can't change it anymore.
6238 	 */
6239 	if (put_user(bytes_copied, optlen))
6240 		err = -EFAULT;
6241 out:
6242 	kfree(addrs);
6243 	return err;
6244 }
6245 
6246 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6247  *
6248  * Requests that the local SCTP stack use the enclosed peer address as
6249  * the association primary.  The enclosed address must be one of the
6250  * association peer's addresses.
6251  */
6252 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6253 					char __user *optval, int __user *optlen)
6254 {
6255 	struct sctp_prim prim;
6256 	struct sctp_association *asoc;
6257 	struct sctp_sock *sp = sctp_sk(sk);
6258 
6259 	if (len < sizeof(struct sctp_prim))
6260 		return -EINVAL;
6261 
6262 	len = sizeof(struct sctp_prim);
6263 
6264 	if (copy_from_user(&prim, optval, len))
6265 		return -EFAULT;
6266 
6267 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6268 	if (!asoc)
6269 		return -EINVAL;
6270 
6271 	if (!asoc->peer.primary_path)
6272 		return -ENOTCONN;
6273 
6274 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6275 		asoc->peer.primary_path->af_specific->sockaddr_len);
6276 
6277 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6278 			(union sctp_addr *)&prim.ssp_addr);
6279 
6280 	if (put_user(len, optlen))
6281 		return -EFAULT;
6282 	if (copy_to_user(optval, &prim, len))
6283 		return -EFAULT;
6284 
6285 	return 0;
6286 }
6287 
6288 /*
6289  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6290  *
6291  * Requests that the local endpoint set the specified Adaptation Layer
6292  * Indication parameter for all future INIT and INIT-ACK exchanges.
6293  */
6294 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6295 				  char __user *optval, int __user *optlen)
6296 {
6297 	struct sctp_setadaptation adaptation;
6298 
6299 	if (len < sizeof(struct sctp_setadaptation))
6300 		return -EINVAL;
6301 
6302 	len = sizeof(struct sctp_setadaptation);
6303 
6304 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6305 
6306 	if (put_user(len, optlen))
6307 		return -EFAULT;
6308 	if (copy_to_user(optval, &adaptation, len))
6309 		return -EFAULT;
6310 
6311 	return 0;
6312 }
6313 
6314 /*
6315  *
6316  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6317  *
6318  *   Applications that wish to use the sendto() system call may wish to
6319  *   specify a default set of parameters that would normally be supplied
6320  *   through the inclusion of ancillary data.  This socket option allows
6321  *   such an application to set the default sctp_sndrcvinfo structure.
6322 
6323 
6324  *   The application that wishes to use this socket option simply passes
6325  *   in to this call the sctp_sndrcvinfo structure defined in Section
6326  *   5.2.2) The input parameters accepted by this call include
6327  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6328  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6329  *   to this call if the caller is using the UDP model.
6330  *
6331  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6332  */
6333 static int sctp_getsockopt_default_send_param(struct sock *sk,
6334 					int len, char __user *optval,
6335 					int __user *optlen)
6336 {
6337 	struct sctp_sock *sp = sctp_sk(sk);
6338 	struct sctp_association *asoc;
6339 	struct sctp_sndrcvinfo info;
6340 
6341 	if (len < sizeof(info))
6342 		return -EINVAL;
6343 
6344 	len = sizeof(info);
6345 
6346 	if (copy_from_user(&info, optval, len))
6347 		return -EFAULT;
6348 
6349 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6350 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6351 	    sctp_style(sk, UDP))
6352 		return -EINVAL;
6353 
6354 	if (asoc) {
6355 		info.sinfo_stream = asoc->default_stream;
6356 		info.sinfo_flags = asoc->default_flags;
6357 		info.sinfo_ppid = asoc->default_ppid;
6358 		info.sinfo_context = asoc->default_context;
6359 		info.sinfo_timetolive = asoc->default_timetolive;
6360 	} else {
6361 		info.sinfo_stream = sp->default_stream;
6362 		info.sinfo_flags = sp->default_flags;
6363 		info.sinfo_ppid = sp->default_ppid;
6364 		info.sinfo_context = sp->default_context;
6365 		info.sinfo_timetolive = sp->default_timetolive;
6366 	}
6367 
6368 	if (put_user(len, optlen))
6369 		return -EFAULT;
6370 	if (copy_to_user(optval, &info, len))
6371 		return -EFAULT;
6372 
6373 	return 0;
6374 }
6375 
6376 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6377  * (SCTP_DEFAULT_SNDINFO)
6378  */
6379 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6380 					   char __user *optval,
6381 					   int __user *optlen)
6382 {
6383 	struct sctp_sock *sp = sctp_sk(sk);
6384 	struct sctp_association *asoc;
6385 	struct sctp_sndinfo info;
6386 
6387 	if (len < sizeof(info))
6388 		return -EINVAL;
6389 
6390 	len = sizeof(info);
6391 
6392 	if (copy_from_user(&info, optval, len))
6393 		return -EFAULT;
6394 
6395 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6396 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6397 	    sctp_style(sk, UDP))
6398 		return -EINVAL;
6399 
6400 	if (asoc) {
6401 		info.snd_sid = asoc->default_stream;
6402 		info.snd_flags = asoc->default_flags;
6403 		info.snd_ppid = asoc->default_ppid;
6404 		info.snd_context = asoc->default_context;
6405 	} else {
6406 		info.snd_sid = sp->default_stream;
6407 		info.snd_flags = sp->default_flags;
6408 		info.snd_ppid = sp->default_ppid;
6409 		info.snd_context = sp->default_context;
6410 	}
6411 
6412 	if (put_user(len, optlen))
6413 		return -EFAULT;
6414 	if (copy_to_user(optval, &info, len))
6415 		return -EFAULT;
6416 
6417 	return 0;
6418 }
6419 
6420 /*
6421  *
6422  * 7.1.5 SCTP_NODELAY
6423  *
6424  * Turn on/off any Nagle-like algorithm.  This means that packets are
6425  * generally sent as soon as possible and no unnecessary delays are
6426  * introduced, at the cost of more packets in the network.  Expects an
6427  * integer boolean flag.
6428  */
6429 
6430 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6431 				   char __user *optval, int __user *optlen)
6432 {
6433 	int val;
6434 
6435 	if (len < sizeof(int))
6436 		return -EINVAL;
6437 
6438 	len = sizeof(int);
6439 	val = (sctp_sk(sk)->nodelay == 1);
6440 	if (put_user(len, optlen))
6441 		return -EFAULT;
6442 	if (copy_to_user(optval, &val, len))
6443 		return -EFAULT;
6444 	return 0;
6445 }
6446 
6447 /*
6448  *
6449  * 7.1.1 SCTP_RTOINFO
6450  *
6451  * The protocol parameters used to initialize and bound retransmission
6452  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6453  * and modify these parameters.
6454  * All parameters are time values, in milliseconds.  A value of 0, when
6455  * modifying the parameters, indicates that the current value should not
6456  * be changed.
6457  *
6458  */
6459 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6460 				char __user *optval,
6461 				int __user *optlen) {
6462 	struct sctp_rtoinfo rtoinfo;
6463 	struct sctp_association *asoc;
6464 
6465 	if (len < sizeof (struct sctp_rtoinfo))
6466 		return -EINVAL;
6467 
6468 	len = sizeof(struct sctp_rtoinfo);
6469 
6470 	if (copy_from_user(&rtoinfo, optval, len))
6471 		return -EFAULT;
6472 
6473 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6474 
6475 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6476 	    sctp_style(sk, UDP))
6477 		return -EINVAL;
6478 
6479 	/* Values corresponding to the specific association. */
6480 	if (asoc) {
6481 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6482 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6483 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6484 	} else {
6485 		/* Values corresponding to the endpoint. */
6486 		struct sctp_sock *sp = sctp_sk(sk);
6487 
6488 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6489 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6490 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6491 	}
6492 
6493 	if (put_user(len, optlen))
6494 		return -EFAULT;
6495 
6496 	if (copy_to_user(optval, &rtoinfo, len))
6497 		return -EFAULT;
6498 
6499 	return 0;
6500 }
6501 
6502 /*
6503  *
6504  * 7.1.2 SCTP_ASSOCINFO
6505  *
6506  * This option is used to tune the maximum retransmission attempts
6507  * of the association.
6508  * Returns an error if the new association retransmission value is
6509  * greater than the sum of the retransmission value  of the peer.
6510  * See [SCTP] for more information.
6511  *
6512  */
6513 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6514 				     char __user *optval,
6515 				     int __user *optlen)
6516 {
6517 
6518 	struct sctp_assocparams assocparams;
6519 	struct sctp_association *asoc;
6520 	struct list_head *pos;
6521 	int cnt = 0;
6522 
6523 	if (len < sizeof (struct sctp_assocparams))
6524 		return -EINVAL;
6525 
6526 	len = sizeof(struct sctp_assocparams);
6527 
6528 	if (copy_from_user(&assocparams, optval, len))
6529 		return -EFAULT;
6530 
6531 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6532 
6533 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6534 	    sctp_style(sk, UDP))
6535 		return -EINVAL;
6536 
6537 	/* Values correspoinding to the specific association */
6538 	if (asoc) {
6539 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6540 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6541 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6542 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6543 
6544 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6545 			cnt++;
6546 		}
6547 
6548 		assocparams.sasoc_number_peer_destinations = cnt;
6549 	} else {
6550 		/* Values corresponding to the endpoint */
6551 		struct sctp_sock *sp = sctp_sk(sk);
6552 
6553 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6554 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6555 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6556 		assocparams.sasoc_cookie_life =
6557 					sp->assocparams.sasoc_cookie_life;
6558 		assocparams.sasoc_number_peer_destinations =
6559 					sp->assocparams.
6560 					sasoc_number_peer_destinations;
6561 	}
6562 
6563 	if (put_user(len, optlen))
6564 		return -EFAULT;
6565 
6566 	if (copy_to_user(optval, &assocparams, len))
6567 		return -EFAULT;
6568 
6569 	return 0;
6570 }
6571 
6572 /*
6573  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6574  *
6575  * This socket option is a boolean flag which turns on or off mapped V4
6576  * addresses.  If this option is turned on and the socket is type
6577  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6578  * If this option is turned off, then no mapping will be done of V4
6579  * addresses and a user will receive both PF_INET6 and PF_INET type
6580  * addresses on the socket.
6581  */
6582 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6583 				    char __user *optval, int __user *optlen)
6584 {
6585 	int val;
6586 	struct sctp_sock *sp = sctp_sk(sk);
6587 
6588 	if (len < sizeof(int))
6589 		return -EINVAL;
6590 
6591 	len = sizeof(int);
6592 	val = sp->v4mapped;
6593 	if (put_user(len, optlen))
6594 		return -EFAULT;
6595 	if (copy_to_user(optval, &val, len))
6596 		return -EFAULT;
6597 
6598 	return 0;
6599 }
6600 
6601 /*
6602  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6603  * (chapter and verse is quoted at sctp_setsockopt_context())
6604  */
6605 static int sctp_getsockopt_context(struct sock *sk, int len,
6606 				   char __user *optval, int __user *optlen)
6607 {
6608 	struct sctp_assoc_value params;
6609 	struct sctp_association *asoc;
6610 
6611 	if (len < sizeof(struct sctp_assoc_value))
6612 		return -EINVAL;
6613 
6614 	len = sizeof(struct sctp_assoc_value);
6615 
6616 	if (copy_from_user(&params, optval, len))
6617 		return -EFAULT;
6618 
6619 	asoc = sctp_id2assoc(sk, params.assoc_id);
6620 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6621 	    sctp_style(sk, UDP))
6622 		return -EINVAL;
6623 
6624 	params.assoc_value = asoc ? asoc->default_rcv_context
6625 				  : sctp_sk(sk)->default_rcv_context;
6626 
6627 	if (put_user(len, optlen))
6628 		return -EFAULT;
6629 	if (copy_to_user(optval, &params, len))
6630 		return -EFAULT;
6631 
6632 	return 0;
6633 }
6634 
6635 /*
6636  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6637  * This option will get or set the maximum size to put in any outgoing
6638  * SCTP DATA chunk.  If a message is larger than this size it will be
6639  * fragmented by SCTP into the specified size.  Note that the underlying
6640  * SCTP implementation may fragment into smaller sized chunks when the
6641  * PMTU of the underlying association is smaller than the value set by
6642  * the user.  The default value for this option is '0' which indicates
6643  * the user is NOT limiting fragmentation and only the PMTU will effect
6644  * SCTP's choice of DATA chunk size.  Note also that values set larger
6645  * than the maximum size of an IP datagram will effectively let SCTP
6646  * control fragmentation (i.e. the same as setting this option to 0).
6647  *
6648  * The following structure is used to access and modify this parameter:
6649  *
6650  * struct sctp_assoc_value {
6651  *   sctp_assoc_t assoc_id;
6652  *   uint32_t assoc_value;
6653  * };
6654  *
6655  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6656  *    For one-to-many style sockets this parameter indicates which
6657  *    association the user is performing an action upon.  Note that if
6658  *    this field's value is zero then the endpoints default value is
6659  *    changed (effecting future associations only).
6660  * assoc_value:  This parameter specifies the maximum size in bytes.
6661  */
6662 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6663 				  char __user *optval, int __user *optlen)
6664 {
6665 	struct sctp_assoc_value params;
6666 	struct sctp_association *asoc;
6667 
6668 	if (len == sizeof(int)) {
6669 		pr_warn_ratelimited(DEPRECATED
6670 				    "%s (pid %d) "
6671 				    "Use of int in maxseg socket option.\n"
6672 				    "Use struct sctp_assoc_value instead\n",
6673 				    current->comm, task_pid_nr(current));
6674 		params.assoc_id = SCTP_FUTURE_ASSOC;
6675 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6676 		len = sizeof(struct sctp_assoc_value);
6677 		if (copy_from_user(&params, optval, len))
6678 			return -EFAULT;
6679 	} else
6680 		return -EINVAL;
6681 
6682 	asoc = sctp_id2assoc(sk, params.assoc_id);
6683 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6684 	    sctp_style(sk, UDP))
6685 		return -EINVAL;
6686 
6687 	if (asoc)
6688 		params.assoc_value = asoc->frag_point;
6689 	else
6690 		params.assoc_value = sctp_sk(sk)->user_frag;
6691 
6692 	if (put_user(len, optlen))
6693 		return -EFAULT;
6694 	if (len == sizeof(int)) {
6695 		if (copy_to_user(optval, &params.assoc_value, len))
6696 			return -EFAULT;
6697 	} else {
6698 		if (copy_to_user(optval, &params, len))
6699 			return -EFAULT;
6700 	}
6701 
6702 	return 0;
6703 }
6704 
6705 /*
6706  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6707  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6708  */
6709 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6710 					       char __user *optval, int __user *optlen)
6711 {
6712 	int val;
6713 
6714 	if (len < sizeof(int))
6715 		return -EINVAL;
6716 
6717 	len = sizeof(int);
6718 
6719 	val = sctp_sk(sk)->frag_interleave;
6720 	if (put_user(len, optlen))
6721 		return -EFAULT;
6722 	if (copy_to_user(optval, &val, len))
6723 		return -EFAULT;
6724 
6725 	return 0;
6726 }
6727 
6728 /*
6729  * 7.1.25.  Set or Get the sctp partial delivery point
6730  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6731  */
6732 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6733 						  char __user *optval,
6734 						  int __user *optlen)
6735 {
6736 	u32 val;
6737 
6738 	if (len < sizeof(u32))
6739 		return -EINVAL;
6740 
6741 	len = sizeof(u32);
6742 
6743 	val = sctp_sk(sk)->pd_point;
6744 	if (put_user(len, optlen))
6745 		return -EFAULT;
6746 	if (copy_to_user(optval, &val, len))
6747 		return -EFAULT;
6748 
6749 	return 0;
6750 }
6751 
6752 /*
6753  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6754  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6755  */
6756 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6757 				    char __user *optval,
6758 				    int __user *optlen)
6759 {
6760 	struct sctp_assoc_value params;
6761 	struct sctp_association *asoc;
6762 
6763 	if (len == sizeof(int)) {
6764 		pr_warn_ratelimited(DEPRECATED
6765 				    "%s (pid %d) "
6766 				    "Use of int in max_burst socket option.\n"
6767 				    "Use struct sctp_assoc_value instead\n",
6768 				    current->comm, task_pid_nr(current));
6769 		params.assoc_id = SCTP_FUTURE_ASSOC;
6770 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6771 		len = sizeof(struct sctp_assoc_value);
6772 		if (copy_from_user(&params, optval, len))
6773 			return -EFAULT;
6774 	} else
6775 		return -EINVAL;
6776 
6777 	asoc = sctp_id2assoc(sk, params.assoc_id);
6778 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6779 	    sctp_style(sk, UDP))
6780 		return -EINVAL;
6781 
6782 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6783 
6784 	if (len == sizeof(int)) {
6785 		if (copy_to_user(optval, &params.assoc_value, len))
6786 			return -EFAULT;
6787 	} else {
6788 		if (copy_to_user(optval, &params, len))
6789 			return -EFAULT;
6790 	}
6791 
6792 	return 0;
6793 
6794 }
6795 
6796 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6797 				    char __user *optval, int __user *optlen)
6798 {
6799 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6800 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6801 	struct sctp_hmac_algo_param *hmacs;
6802 	__u16 data_len = 0;
6803 	u32 num_idents;
6804 	int i;
6805 
6806 	if (!ep->auth_enable)
6807 		return -EACCES;
6808 
6809 	hmacs = ep->auth_hmacs_list;
6810 	data_len = ntohs(hmacs->param_hdr.length) -
6811 		   sizeof(struct sctp_paramhdr);
6812 
6813 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6814 		return -EINVAL;
6815 
6816 	len = sizeof(struct sctp_hmacalgo) + data_len;
6817 	num_idents = data_len / sizeof(u16);
6818 
6819 	if (put_user(len, optlen))
6820 		return -EFAULT;
6821 	if (put_user(num_idents, &p->shmac_num_idents))
6822 		return -EFAULT;
6823 	for (i = 0; i < num_idents; i++) {
6824 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6825 
6826 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6827 			return -EFAULT;
6828 	}
6829 	return 0;
6830 }
6831 
6832 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6833 				    char __user *optval, int __user *optlen)
6834 {
6835 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6836 	struct sctp_authkeyid val;
6837 	struct sctp_association *asoc;
6838 
6839 	if (!ep->auth_enable)
6840 		return -EACCES;
6841 
6842 	if (len < sizeof(struct sctp_authkeyid))
6843 		return -EINVAL;
6844 
6845 	len = sizeof(struct sctp_authkeyid);
6846 	if (copy_from_user(&val, optval, len))
6847 		return -EFAULT;
6848 
6849 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6850 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6851 		return -EINVAL;
6852 
6853 	if (asoc)
6854 		val.scact_keynumber = asoc->active_key_id;
6855 	else
6856 		val.scact_keynumber = ep->active_key_id;
6857 
6858 	if (put_user(len, optlen))
6859 		return -EFAULT;
6860 	if (copy_to_user(optval, &val, len))
6861 		return -EFAULT;
6862 
6863 	return 0;
6864 }
6865 
6866 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6867 				    char __user *optval, int __user *optlen)
6868 {
6869 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6870 	struct sctp_authchunks __user *p = (void __user *)optval;
6871 	struct sctp_authchunks val;
6872 	struct sctp_association *asoc;
6873 	struct sctp_chunks_param *ch;
6874 	u32    num_chunks = 0;
6875 	char __user *to;
6876 
6877 	if (!ep->auth_enable)
6878 		return -EACCES;
6879 
6880 	if (len < sizeof(struct sctp_authchunks))
6881 		return -EINVAL;
6882 
6883 	if (copy_from_user(&val, optval, sizeof(val)))
6884 		return -EFAULT;
6885 
6886 	to = p->gauth_chunks;
6887 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6888 	if (!asoc)
6889 		return -EINVAL;
6890 
6891 	ch = asoc->peer.peer_chunks;
6892 	if (!ch)
6893 		goto num;
6894 
6895 	/* See if the user provided enough room for all the data */
6896 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6897 	if (len < num_chunks)
6898 		return -EINVAL;
6899 
6900 	if (copy_to_user(to, ch->chunks, num_chunks))
6901 		return -EFAULT;
6902 num:
6903 	len = sizeof(struct sctp_authchunks) + num_chunks;
6904 	if (put_user(len, optlen))
6905 		return -EFAULT;
6906 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6907 		return -EFAULT;
6908 	return 0;
6909 }
6910 
6911 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6912 				    char __user *optval, int __user *optlen)
6913 {
6914 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6915 	struct sctp_authchunks __user *p = (void __user *)optval;
6916 	struct sctp_authchunks val;
6917 	struct sctp_association *asoc;
6918 	struct sctp_chunks_param *ch;
6919 	u32    num_chunks = 0;
6920 	char __user *to;
6921 
6922 	if (!ep->auth_enable)
6923 		return -EACCES;
6924 
6925 	if (len < sizeof(struct sctp_authchunks))
6926 		return -EINVAL;
6927 
6928 	if (copy_from_user(&val, optval, sizeof(val)))
6929 		return -EFAULT;
6930 
6931 	to = p->gauth_chunks;
6932 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6933 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6934 	    sctp_style(sk, UDP))
6935 		return -EINVAL;
6936 
6937 	ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks
6938 		  : ep->auth_chunk_list;
6939 	if (!ch)
6940 		goto num;
6941 
6942 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6943 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6944 		return -EINVAL;
6945 
6946 	if (copy_to_user(to, ch->chunks, num_chunks))
6947 		return -EFAULT;
6948 num:
6949 	len = sizeof(struct sctp_authchunks) + num_chunks;
6950 	if (put_user(len, optlen))
6951 		return -EFAULT;
6952 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6953 		return -EFAULT;
6954 
6955 	return 0;
6956 }
6957 
6958 /*
6959  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6960  * This option gets the current number of associations that are attached
6961  * to a one-to-many style socket.  The option value is an uint32_t.
6962  */
6963 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6964 				    char __user *optval, int __user *optlen)
6965 {
6966 	struct sctp_sock *sp = sctp_sk(sk);
6967 	struct sctp_association *asoc;
6968 	u32 val = 0;
6969 
6970 	if (sctp_style(sk, TCP))
6971 		return -EOPNOTSUPP;
6972 
6973 	if (len < sizeof(u32))
6974 		return -EINVAL;
6975 
6976 	len = sizeof(u32);
6977 
6978 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6979 		val++;
6980 	}
6981 
6982 	if (put_user(len, optlen))
6983 		return -EFAULT;
6984 	if (copy_to_user(optval, &val, len))
6985 		return -EFAULT;
6986 
6987 	return 0;
6988 }
6989 
6990 /*
6991  * 8.1.23 SCTP_AUTO_ASCONF
6992  * See the corresponding setsockopt entry as description
6993  */
6994 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6995 				   char __user *optval, int __user *optlen)
6996 {
6997 	int val = 0;
6998 
6999 	if (len < sizeof(int))
7000 		return -EINVAL;
7001 
7002 	len = sizeof(int);
7003 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7004 		val = 1;
7005 	if (put_user(len, optlen))
7006 		return -EFAULT;
7007 	if (copy_to_user(optval, &val, len))
7008 		return -EFAULT;
7009 	return 0;
7010 }
7011 
7012 /*
7013  * 8.2.6. Get the Current Identifiers of Associations
7014  *        (SCTP_GET_ASSOC_ID_LIST)
7015  *
7016  * This option gets the current list of SCTP association identifiers of
7017  * the SCTP associations handled by a one-to-many style socket.
7018  */
7019 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7020 				    char __user *optval, int __user *optlen)
7021 {
7022 	struct sctp_sock *sp = sctp_sk(sk);
7023 	struct sctp_association *asoc;
7024 	struct sctp_assoc_ids *ids;
7025 	u32 num = 0;
7026 
7027 	if (sctp_style(sk, TCP))
7028 		return -EOPNOTSUPP;
7029 
7030 	if (len < sizeof(struct sctp_assoc_ids))
7031 		return -EINVAL;
7032 
7033 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7034 		num++;
7035 	}
7036 
7037 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7038 		return -EINVAL;
7039 
7040 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7041 
7042 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7043 	if (unlikely(!ids))
7044 		return -ENOMEM;
7045 
7046 	ids->gaids_number_of_ids = num;
7047 	num = 0;
7048 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7049 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7050 	}
7051 
7052 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7053 		kfree(ids);
7054 		return -EFAULT;
7055 	}
7056 
7057 	kfree(ids);
7058 	return 0;
7059 }
7060 
7061 /*
7062  * SCTP_PEER_ADDR_THLDS
7063  *
7064  * This option allows us to fetch the partially failed threshold for one or all
7065  * transports in an association.  See Section 6.1 of:
7066  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7067  */
7068 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7069 					    char __user *optval,
7070 					    int len,
7071 					    int __user *optlen)
7072 {
7073 	struct sctp_paddrthlds val;
7074 	struct sctp_transport *trans;
7075 	struct sctp_association *asoc;
7076 
7077 	if (len < sizeof(struct sctp_paddrthlds))
7078 		return -EINVAL;
7079 	len = sizeof(struct sctp_paddrthlds);
7080 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
7081 		return -EFAULT;
7082 
7083 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7084 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7085 					       val.spt_assoc_id);
7086 		if (!trans)
7087 			return -ENOENT;
7088 
7089 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7090 		val.spt_pathpfthld = trans->pf_retrans;
7091 
7092 		return 0;
7093 	}
7094 
7095 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7096 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7097 	    sctp_style(sk, UDP))
7098 		return -EINVAL;
7099 
7100 	if (asoc) {
7101 		val.spt_pathpfthld = asoc->pf_retrans;
7102 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7103 	} else {
7104 		struct sctp_sock *sp = sctp_sk(sk);
7105 
7106 		val.spt_pathpfthld = sp->pf_retrans;
7107 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7108 	}
7109 
7110 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7111 		return -EFAULT;
7112 
7113 	return 0;
7114 }
7115 
7116 /*
7117  * SCTP_GET_ASSOC_STATS
7118  *
7119  * This option retrieves local per endpoint statistics. It is modeled
7120  * after OpenSolaris' implementation
7121  */
7122 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7123 				       char __user *optval,
7124 				       int __user *optlen)
7125 {
7126 	struct sctp_assoc_stats sas;
7127 	struct sctp_association *asoc = NULL;
7128 
7129 	/* User must provide at least the assoc id */
7130 	if (len < sizeof(sctp_assoc_t))
7131 		return -EINVAL;
7132 
7133 	/* Allow the struct to grow and fill in as much as possible */
7134 	len = min_t(size_t, len, sizeof(sas));
7135 
7136 	if (copy_from_user(&sas, optval, len))
7137 		return -EFAULT;
7138 
7139 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7140 	if (!asoc)
7141 		return -EINVAL;
7142 
7143 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7144 	sas.sas_gapcnt = asoc->stats.gapcnt;
7145 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7146 	sas.sas_osacks = asoc->stats.osacks;
7147 	sas.sas_isacks = asoc->stats.isacks;
7148 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7149 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7150 	sas.sas_oodchunks = asoc->stats.oodchunks;
7151 	sas.sas_iodchunks = asoc->stats.iodchunks;
7152 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7153 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7154 	sas.sas_idupchunks = asoc->stats.idupchunks;
7155 	sas.sas_opackets = asoc->stats.opackets;
7156 	sas.sas_ipackets = asoc->stats.ipackets;
7157 
7158 	/* New high max rto observed, will return 0 if not a single
7159 	 * RTO update took place. obs_rto_ipaddr will be bogus
7160 	 * in such a case
7161 	 */
7162 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7163 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7164 		sizeof(struct sockaddr_storage));
7165 
7166 	/* Mark beginning of a new observation period */
7167 	asoc->stats.max_obs_rto = asoc->rto_min;
7168 
7169 	if (put_user(len, optlen))
7170 		return -EFAULT;
7171 
7172 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7173 
7174 	if (copy_to_user(optval, &sas, len))
7175 		return -EFAULT;
7176 
7177 	return 0;
7178 }
7179 
7180 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7181 				       char __user *optval,
7182 				       int __user *optlen)
7183 {
7184 	int val = 0;
7185 
7186 	if (len < sizeof(int))
7187 		return -EINVAL;
7188 
7189 	len = sizeof(int);
7190 	if (sctp_sk(sk)->recvrcvinfo)
7191 		val = 1;
7192 	if (put_user(len, optlen))
7193 		return -EFAULT;
7194 	if (copy_to_user(optval, &val, len))
7195 		return -EFAULT;
7196 
7197 	return 0;
7198 }
7199 
7200 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7201 				       char __user *optval,
7202 				       int __user *optlen)
7203 {
7204 	int val = 0;
7205 
7206 	if (len < sizeof(int))
7207 		return -EINVAL;
7208 
7209 	len = sizeof(int);
7210 	if (sctp_sk(sk)->recvnxtinfo)
7211 		val = 1;
7212 	if (put_user(len, optlen))
7213 		return -EFAULT;
7214 	if (copy_to_user(optval, &val, len))
7215 		return -EFAULT;
7216 
7217 	return 0;
7218 }
7219 
7220 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7221 					char __user *optval,
7222 					int __user *optlen)
7223 {
7224 	struct sctp_assoc_value params;
7225 	struct sctp_association *asoc;
7226 	int retval = -EFAULT;
7227 
7228 	if (len < sizeof(params)) {
7229 		retval = -EINVAL;
7230 		goto out;
7231 	}
7232 
7233 	len = sizeof(params);
7234 	if (copy_from_user(&params, optval, len))
7235 		goto out;
7236 
7237 	asoc = sctp_id2assoc(sk, params.assoc_id);
7238 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7239 	    sctp_style(sk, UDP)) {
7240 		retval = -EINVAL;
7241 		goto out;
7242 	}
7243 
7244 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7245 				  : sctp_sk(sk)->ep->prsctp_enable;
7246 
7247 	if (put_user(len, optlen))
7248 		goto out;
7249 
7250 	if (copy_to_user(optval, &params, len))
7251 		goto out;
7252 
7253 	retval = 0;
7254 
7255 out:
7256 	return retval;
7257 }
7258 
7259 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7260 					  char __user *optval,
7261 					  int __user *optlen)
7262 {
7263 	struct sctp_default_prinfo info;
7264 	struct sctp_association *asoc;
7265 	int retval = -EFAULT;
7266 
7267 	if (len < sizeof(info)) {
7268 		retval = -EINVAL;
7269 		goto out;
7270 	}
7271 
7272 	len = sizeof(info);
7273 	if (copy_from_user(&info, optval, len))
7274 		goto out;
7275 
7276 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7277 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7278 	    sctp_style(sk, UDP)) {
7279 		retval = -EINVAL;
7280 		goto out;
7281 	}
7282 
7283 	if (asoc) {
7284 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7285 		info.pr_value = asoc->default_timetolive;
7286 	} else {
7287 		struct sctp_sock *sp = sctp_sk(sk);
7288 
7289 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7290 		info.pr_value = sp->default_timetolive;
7291 	}
7292 
7293 	if (put_user(len, optlen))
7294 		goto out;
7295 
7296 	if (copy_to_user(optval, &info, len))
7297 		goto out;
7298 
7299 	retval = 0;
7300 
7301 out:
7302 	return retval;
7303 }
7304 
7305 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7306 					  char __user *optval,
7307 					  int __user *optlen)
7308 {
7309 	struct sctp_prstatus params;
7310 	struct sctp_association *asoc;
7311 	int policy;
7312 	int retval = -EINVAL;
7313 
7314 	if (len < sizeof(params))
7315 		goto out;
7316 
7317 	len = sizeof(params);
7318 	if (copy_from_user(&params, optval, len)) {
7319 		retval = -EFAULT;
7320 		goto out;
7321 	}
7322 
7323 	policy = params.sprstat_policy;
7324 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7325 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7326 		goto out;
7327 
7328 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7329 	if (!asoc)
7330 		goto out;
7331 
7332 	if (policy == SCTP_PR_SCTP_ALL) {
7333 		params.sprstat_abandoned_unsent = 0;
7334 		params.sprstat_abandoned_sent = 0;
7335 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7336 			params.sprstat_abandoned_unsent +=
7337 				asoc->abandoned_unsent[policy];
7338 			params.sprstat_abandoned_sent +=
7339 				asoc->abandoned_sent[policy];
7340 		}
7341 	} else {
7342 		params.sprstat_abandoned_unsent =
7343 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7344 		params.sprstat_abandoned_sent =
7345 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7346 	}
7347 
7348 	if (put_user(len, optlen)) {
7349 		retval = -EFAULT;
7350 		goto out;
7351 	}
7352 
7353 	if (copy_to_user(optval, &params, len)) {
7354 		retval = -EFAULT;
7355 		goto out;
7356 	}
7357 
7358 	retval = 0;
7359 
7360 out:
7361 	return retval;
7362 }
7363 
7364 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7365 					   char __user *optval,
7366 					   int __user *optlen)
7367 {
7368 	struct sctp_stream_out_ext *streamoute;
7369 	struct sctp_association *asoc;
7370 	struct sctp_prstatus params;
7371 	int retval = -EINVAL;
7372 	int policy;
7373 
7374 	if (len < sizeof(params))
7375 		goto out;
7376 
7377 	len = sizeof(params);
7378 	if (copy_from_user(&params, optval, len)) {
7379 		retval = -EFAULT;
7380 		goto out;
7381 	}
7382 
7383 	policy = params.sprstat_policy;
7384 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7385 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7386 		goto out;
7387 
7388 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7389 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7390 		goto out;
7391 
7392 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7393 	if (!streamoute) {
7394 		/* Not allocated yet, means all stats are 0 */
7395 		params.sprstat_abandoned_unsent = 0;
7396 		params.sprstat_abandoned_sent = 0;
7397 		retval = 0;
7398 		goto out;
7399 	}
7400 
7401 	if (policy == SCTP_PR_SCTP_ALL) {
7402 		params.sprstat_abandoned_unsent = 0;
7403 		params.sprstat_abandoned_sent = 0;
7404 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7405 			params.sprstat_abandoned_unsent +=
7406 				streamoute->abandoned_unsent[policy];
7407 			params.sprstat_abandoned_sent +=
7408 				streamoute->abandoned_sent[policy];
7409 		}
7410 	} else {
7411 		params.sprstat_abandoned_unsent =
7412 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7413 		params.sprstat_abandoned_sent =
7414 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7415 	}
7416 
7417 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7418 		retval = -EFAULT;
7419 		goto out;
7420 	}
7421 
7422 	retval = 0;
7423 
7424 out:
7425 	return retval;
7426 }
7427 
7428 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7429 					      char __user *optval,
7430 					      int __user *optlen)
7431 {
7432 	struct sctp_assoc_value params;
7433 	struct sctp_association *asoc;
7434 	int retval = -EFAULT;
7435 
7436 	if (len < sizeof(params)) {
7437 		retval = -EINVAL;
7438 		goto out;
7439 	}
7440 
7441 	len = sizeof(params);
7442 	if (copy_from_user(&params, optval, len))
7443 		goto out;
7444 
7445 	asoc = sctp_id2assoc(sk, params.assoc_id);
7446 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7447 	    sctp_style(sk, UDP)) {
7448 		retval = -EINVAL;
7449 		goto out;
7450 	}
7451 
7452 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7453 				  : sctp_sk(sk)->ep->reconf_enable;
7454 
7455 	if (put_user(len, optlen))
7456 		goto out;
7457 
7458 	if (copy_to_user(optval, &params, len))
7459 		goto out;
7460 
7461 	retval = 0;
7462 
7463 out:
7464 	return retval;
7465 }
7466 
7467 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7468 					   char __user *optval,
7469 					   int __user *optlen)
7470 {
7471 	struct sctp_assoc_value params;
7472 	struct sctp_association *asoc;
7473 	int retval = -EFAULT;
7474 
7475 	if (len < sizeof(params)) {
7476 		retval = -EINVAL;
7477 		goto out;
7478 	}
7479 
7480 	len = sizeof(params);
7481 	if (copy_from_user(&params, optval, len))
7482 		goto out;
7483 
7484 	asoc = sctp_id2assoc(sk, params.assoc_id);
7485 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7486 	    sctp_style(sk, UDP)) {
7487 		retval = -EINVAL;
7488 		goto out;
7489 	}
7490 
7491 	params.assoc_value = asoc ? asoc->strreset_enable
7492 				  : sctp_sk(sk)->ep->strreset_enable;
7493 
7494 	if (put_user(len, optlen))
7495 		goto out;
7496 
7497 	if (copy_to_user(optval, &params, len))
7498 		goto out;
7499 
7500 	retval = 0;
7501 
7502 out:
7503 	return retval;
7504 }
7505 
7506 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7507 				     char __user *optval,
7508 				     int __user *optlen)
7509 {
7510 	struct sctp_assoc_value params;
7511 	struct sctp_association *asoc;
7512 	int retval = -EFAULT;
7513 
7514 	if (len < sizeof(params)) {
7515 		retval = -EINVAL;
7516 		goto out;
7517 	}
7518 
7519 	len = sizeof(params);
7520 	if (copy_from_user(&params, optval, len))
7521 		goto out;
7522 
7523 	asoc = sctp_id2assoc(sk, params.assoc_id);
7524 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7525 	    sctp_style(sk, UDP)) {
7526 		retval = -EINVAL;
7527 		goto out;
7528 	}
7529 
7530 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7531 				  : sctp_sk(sk)->default_ss;
7532 
7533 	if (put_user(len, optlen))
7534 		goto out;
7535 
7536 	if (copy_to_user(optval, &params, len))
7537 		goto out;
7538 
7539 	retval = 0;
7540 
7541 out:
7542 	return retval;
7543 }
7544 
7545 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7546 					   char __user *optval,
7547 					   int __user *optlen)
7548 {
7549 	struct sctp_stream_value params;
7550 	struct sctp_association *asoc;
7551 	int retval = -EFAULT;
7552 
7553 	if (len < sizeof(params)) {
7554 		retval = -EINVAL;
7555 		goto out;
7556 	}
7557 
7558 	len = sizeof(params);
7559 	if (copy_from_user(&params, optval, len))
7560 		goto out;
7561 
7562 	asoc = sctp_id2assoc(sk, params.assoc_id);
7563 	if (!asoc) {
7564 		retval = -EINVAL;
7565 		goto out;
7566 	}
7567 
7568 	retval = sctp_sched_get_value(asoc, params.stream_id,
7569 				      &params.stream_value);
7570 	if (retval)
7571 		goto out;
7572 
7573 	if (put_user(len, optlen)) {
7574 		retval = -EFAULT;
7575 		goto out;
7576 	}
7577 
7578 	if (copy_to_user(optval, &params, len)) {
7579 		retval = -EFAULT;
7580 		goto out;
7581 	}
7582 
7583 out:
7584 	return retval;
7585 }
7586 
7587 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7588 						  char __user *optval,
7589 						  int __user *optlen)
7590 {
7591 	struct sctp_assoc_value params;
7592 	struct sctp_association *asoc;
7593 	int retval = -EFAULT;
7594 
7595 	if (len < sizeof(params)) {
7596 		retval = -EINVAL;
7597 		goto out;
7598 	}
7599 
7600 	len = sizeof(params);
7601 	if (copy_from_user(&params, optval, len))
7602 		goto out;
7603 
7604 	asoc = sctp_id2assoc(sk, params.assoc_id);
7605 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7606 	    sctp_style(sk, UDP)) {
7607 		retval = -EINVAL;
7608 		goto out;
7609 	}
7610 
7611 	params.assoc_value = asoc ? asoc->peer.intl_capable
7612 				  : sctp_sk(sk)->ep->intl_enable;
7613 
7614 	if (put_user(len, optlen))
7615 		goto out;
7616 
7617 	if (copy_to_user(optval, &params, len))
7618 		goto out;
7619 
7620 	retval = 0;
7621 
7622 out:
7623 	return retval;
7624 }
7625 
7626 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7627 				      char __user *optval,
7628 				      int __user *optlen)
7629 {
7630 	int val;
7631 
7632 	if (len < sizeof(int))
7633 		return -EINVAL;
7634 
7635 	len = sizeof(int);
7636 	val = sctp_sk(sk)->reuse;
7637 	if (put_user(len, optlen))
7638 		return -EFAULT;
7639 
7640 	if (copy_to_user(optval, &val, len))
7641 		return -EFAULT;
7642 
7643 	return 0;
7644 }
7645 
7646 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7647 				 int __user *optlen)
7648 {
7649 	struct sctp_association *asoc;
7650 	struct sctp_event param;
7651 	__u16 subscribe;
7652 
7653 	if (len < sizeof(param))
7654 		return -EINVAL;
7655 
7656 	len = sizeof(param);
7657 	if (copy_from_user(&param, optval, len))
7658 		return -EFAULT;
7659 
7660 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7661 	    param.se_type > SCTP_SN_TYPE_MAX)
7662 		return -EINVAL;
7663 
7664 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7665 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7666 	    sctp_style(sk, UDP))
7667 		return -EINVAL;
7668 
7669 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7670 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7671 
7672 	if (put_user(len, optlen))
7673 		return -EFAULT;
7674 
7675 	if (copy_to_user(optval, &param, len))
7676 		return -EFAULT;
7677 
7678 	return 0;
7679 }
7680 
7681 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7682 			   char __user *optval, int __user *optlen)
7683 {
7684 	int retval = 0;
7685 	int len;
7686 
7687 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7688 
7689 	/* I can hardly begin to describe how wrong this is.  This is
7690 	 * so broken as to be worse than useless.  The API draft
7691 	 * REALLY is NOT helpful here...  I am not convinced that the
7692 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7693 	 * are at all well-founded.
7694 	 */
7695 	if (level != SOL_SCTP) {
7696 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7697 
7698 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7699 		return retval;
7700 	}
7701 
7702 	if (get_user(len, optlen))
7703 		return -EFAULT;
7704 
7705 	if (len < 0)
7706 		return -EINVAL;
7707 
7708 	lock_sock(sk);
7709 
7710 	switch (optname) {
7711 	case SCTP_STATUS:
7712 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7713 		break;
7714 	case SCTP_DISABLE_FRAGMENTS:
7715 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7716 							   optlen);
7717 		break;
7718 	case SCTP_EVENTS:
7719 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7720 		break;
7721 	case SCTP_AUTOCLOSE:
7722 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7723 		break;
7724 	case SCTP_SOCKOPT_PEELOFF:
7725 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7726 		break;
7727 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7728 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7729 		break;
7730 	case SCTP_PEER_ADDR_PARAMS:
7731 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7732 							  optlen);
7733 		break;
7734 	case SCTP_DELAYED_SACK:
7735 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7736 							  optlen);
7737 		break;
7738 	case SCTP_INITMSG:
7739 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7740 		break;
7741 	case SCTP_GET_PEER_ADDRS:
7742 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7743 						    optlen);
7744 		break;
7745 	case SCTP_GET_LOCAL_ADDRS:
7746 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7747 						     optlen);
7748 		break;
7749 	case SCTP_SOCKOPT_CONNECTX3:
7750 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7751 		break;
7752 	case SCTP_DEFAULT_SEND_PARAM:
7753 		retval = sctp_getsockopt_default_send_param(sk, len,
7754 							    optval, optlen);
7755 		break;
7756 	case SCTP_DEFAULT_SNDINFO:
7757 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7758 							 optval, optlen);
7759 		break;
7760 	case SCTP_PRIMARY_ADDR:
7761 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7762 		break;
7763 	case SCTP_NODELAY:
7764 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7765 		break;
7766 	case SCTP_RTOINFO:
7767 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7768 		break;
7769 	case SCTP_ASSOCINFO:
7770 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7771 		break;
7772 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7773 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7774 		break;
7775 	case SCTP_MAXSEG:
7776 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7777 		break;
7778 	case SCTP_GET_PEER_ADDR_INFO:
7779 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7780 							optlen);
7781 		break;
7782 	case SCTP_ADAPTATION_LAYER:
7783 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7784 							optlen);
7785 		break;
7786 	case SCTP_CONTEXT:
7787 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7788 		break;
7789 	case SCTP_FRAGMENT_INTERLEAVE:
7790 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7791 							     optlen);
7792 		break;
7793 	case SCTP_PARTIAL_DELIVERY_POINT:
7794 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7795 								optlen);
7796 		break;
7797 	case SCTP_MAX_BURST:
7798 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7799 		break;
7800 	case SCTP_AUTH_KEY:
7801 	case SCTP_AUTH_CHUNK:
7802 	case SCTP_AUTH_DELETE_KEY:
7803 	case SCTP_AUTH_DEACTIVATE_KEY:
7804 		retval = -EOPNOTSUPP;
7805 		break;
7806 	case SCTP_HMAC_IDENT:
7807 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7808 		break;
7809 	case SCTP_AUTH_ACTIVE_KEY:
7810 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7811 		break;
7812 	case SCTP_PEER_AUTH_CHUNKS:
7813 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7814 							optlen);
7815 		break;
7816 	case SCTP_LOCAL_AUTH_CHUNKS:
7817 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7818 							optlen);
7819 		break;
7820 	case SCTP_GET_ASSOC_NUMBER:
7821 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7822 		break;
7823 	case SCTP_GET_ASSOC_ID_LIST:
7824 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7825 		break;
7826 	case SCTP_AUTO_ASCONF:
7827 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7828 		break;
7829 	case SCTP_PEER_ADDR_THLDS:
7830 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7831 		break;
7832 	case SCTP_GET_ASSOC_STATS:
7833 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7834 		break;
7835 	case SCTP_RECVRCVINFO:
7836 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7837 		break;
7838 	case SCTP_RECVNXTINFO:
7839 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7840 		break;
7841 	case SCTP_PR_SUPPORTED:
7842 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7843 		break;
7844 	case SCTP_DEFAULT_PRINFO:
7845 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7846 							optlen);
7847 		break;
7848 	case SCTP_PR_ASSOC_STATUS:
7849 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7850 							optlen);
7851 		break;
7852 	case SCTP_PR_STREAM_STATUS:
7853 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7854 							 optlen);
7855 		break;
7856 	case SCTP_RECONFIG_SUPPORTED:
7857 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7858 							    optlen);
7859 		break;
7860 	case SCTP_ENABLE_STREAM_RESET:
7861 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7862 							 optlen);
7863 		break;
7864 	case SCTP_STREAM_SCHEDULER:
7865 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7866 						   optlen);
7867 		break;
7868 	case SCTP_STREAM_SCHEDULER_VALUE:
7869 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7870 							 optlen);
7871 		break;
7872 	case SCTP_INTERLEAVING_SUPPORTED:
7873 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7874 								optlen);
7875 		break;
7876 	case SCTP_REUSE_PORT:
7877 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7878 		break;
7879 	case SCTP_EVENT:
7880 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
7881 		break;
7882 	default:
7883 		retval = -ENOPROTOOPT;
7884 		break;
7885 	}
7886 
7887 	release_sock(sk);
7888 	return retval;
7889 }
7890 
7891 static int sctp_hash(struct sock *sk)
7892 {
7893 	/* STUB */
7894 	return 0;
7895 }
7896 
7897 static void sctp_unhash(struct sock *sk)
7898 {
7899 	/* STUB */
7900 }
7901 
7902 /* Check if port is acceptable.  Possibly find first available port.
7903  *
7904  * The port hash table (contained in the 'global' SCTP protocol storage
7905  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7906  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7907  * list (the list number is the port number hashed out, so as you
7908  * would expect from a hash function, all the ports in a given list have
7909  * such a number that hashes out to the same list number; you were
7910  * expecting that, right?); so each list has a set of ports, with a
7911  * link to the socket (struct sock) that uses it, the port number and
7912  * a fastreuse flag (FIXME: NPI ipg).
7913  */
7914 static struct sctp_bind_bucket *sctp_bucket_create(
7915 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7916 
7917 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7918 {
7919 	struct sctp_sock *sp = sctp_sk(sk);
7920 	bool reuse = (sk->sk_reuse || sp->reuse);
7921 	struct sctp_bind_hashbucket *head; /* hash list */
7922 	kuid_t uid = sock_i_uid(sk);
7923 	struct sctp_bind_bucket *pp;
7924 	unsigned short snum;
7925 	int ret;
7926 
7927 	snum = ntohs(addr->v4.sin_port);
7928 
7929 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7930 
7931 	local_bh_disable();
7932 
7933 	if (snum == 0) {
7934 		/* Search for an available port. */
7935 		int low, high, remaining, index;
7936 		unsigned int rover;
7937 		struct net *net = sock_net(sk);
7938 
7939 		inet_get_local_port_range(net, &low, &high);
7940 		remaining = (high - low) + 1;
7941 		rover = prandom_u32() % remaining + low;
7942 
7943 		do {
7944 			rover++;
7945 			if ((rover < low) || (rover > high))
7946 				rover = low;
7947 			if (inet_is_local_reserved_port(net, rover))
7948 				continue;
7949 			index = sctp_phashfn(sock_net(sk), rover);
7950 			head = &sctp_port_hashtable[index];
7951 			spin_lock(&head->lock);
7952 			sctp_for_each_hentry(pp, &head->chain)
7953 				if ((pp->port == rover) &&
7954 				    net_eq(sock_net(sk), pp->net))
7955 					goto next;
7956 			break;
7957 		next:
7958 			spin_unlock(&head->lock);
7959 		} while (--remaining > 0);
7960 
7961 		/* Exhausted local port range during search? */
7962 		ret = 1;
7963 		if (remaining <= 0)
7964 			goto fail;
7965 
7966 		/* OK, here is the one we will use.  HEAD (the port
7967 		 * hash table list entry) is non-NULL and we hold it's
7968 		 * mutex.
7969 		 */
7970 		snum = rover;
7971 	} else {
7972 		/* We are given an specific port number; we verify
7973 		 * that it is not being used. If it is used, we will
7974 		 * exahust the search in the hash list corresponding
7975 		 * to the port number (snum) - we detect that with the
7976 		 * port iterator, pp being NULL.
7977 		 */
7978 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7979 		spin_lock(&head->lock);
7980 		sctp_for_each_hentry(pp, &head->chain) {
7981 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7982 				goto pp_found;
7983 		}
7984 	}
7985 	pp = NULL;
7986 	goto pp_not_found;
7987 pp_found:
7988 	if (!hlist_empty(&pp->owner)) {
7989 		/* We had a port hash table hit - there is an
7990 		 * available port (pp != NULL) and it is being
7991 		 * used by other socket (pp->owner not empty); that other
7992 		 * socket is going to be sk2.
7993 		 */
7994 		struct sock *sk2;
7995 
7996 		pr_debug("%s: found a possible match\n", __func__);
7997 
7998 		if ((pp->fastreuse && reuse &&
7999 		     sk->sk_state != SCTP_SS_LISTENING) ||
8000 		    (pp->fastreuseport && sk->sk_reuseport &&
8001 		     uid_eq(pp->fastuid, uid)))
8002 			goto success;
8003 
8004 		/* Run through the list of sockets bound to the port
8005 		 * (pp->port) [via the pointers bind_next and
8006 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8007 		 * we get the endpoint they describe and run through
8008 		 * the endpoint's list of IP (v4 or v6) addresses,
8009 		 * comparing each of the addresses with the address of
8010 		 * the socket sk. If we find a match, then that means
8011 		 * that this port/socket (sk) combination are already
8012 		 * in an endpoint.
8013 		 */
8014 		sk_for_each_bound(sk2, &pp->owner) {
8015 			struct sctp_sock *sp2 = sctp_sk(sk2);
8016 			struct sctp_endpoint *ep2 = sp2->ep;
8017 
8018 			if (sk == sk2 ||
8019 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8020 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8021 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8022 			     uid_eq(uid, sock_i_uid(sk2))))
8023 				continue;
8024 
8025 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8026 						    addr, sp2, sp)) {
8027 				ret = (long)sk2;
8028 				goto fail_unlock;
8029 			}
8030 		}
8031 
8032 		pr_debug("%s: found a match\n", __func__);
8033 	}
8034 pp_not_found:
8035 	/* If there was a hash table miss, create a new port.  */
8036 	ret = 1;
8037 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
8038 		goto fail_unlock;
8039 
8040 	/* In either case (hit or miss), make sure fastreuse is 1 only
8041 	 * if sk->sk_reuse is too (that is, if the caller requested
8042 	 * SO_REUSEADDR on this socket -sk-).
8043 	 */
8044 	if (hlist_empty(&pp->owner)) {
8045 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8046 			pp->fastreuse = 1;
8047 		else
8048 			pp->fastreuse = 0;
8049 
8050 		if (sk->sk_reuseport) {
8051 			pp->fastreuseport = 1;
8052 			pp->fastuid = uid;
8053 		} else {
8054 			pp->fastreuseport = 0;
8055 		}
8056 	} else {
8057 		if (pp->fastreuse &&
8058 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8059 			pp->fastreuse = 0;
8060 
8061 		if (pp->fastreuseport &&
8062 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8063 			pp->fastreuseport = 0;
8064 	}
8065 
8066 	/* We are set, so fill up all the data in the hash table
8067 	 * entry, tie the socket list information with the rest of the
8068 	 * sockets FIXME: Blurry, NPI (ipg).
8069 	 */
8070 success:
8071 	if (!sp->bind_hash) {
8072 		inet_sk(sk)->inet_num = snum;
8073 		sk_add_bind_node(sk, &pp->owner);
8074 		sp->bind_hash = pp;
8075 	}
8076 	ret = 0;
8077 
8078 fail_unlock:
8079 	spin_unlock(&head->lock);
8080 
8081 fail:
8082 	local_bh_enable();
8083 	return ret;
8084 }
8085 
8086 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8087  * port is requested.
8088  */
8089 static int sctp_get_port(struct sock *sk, unsigned short snum)
8090 {
8091 	union sctp_addr addr;
8092 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8093 
8094 	/* Set up a dummy address struct from the sk. */
8095 	af->from_sk(&addr, sk);
8096 	addr.v4.sin_port = htons(snum);
8097 
8098 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8099 	return !!sctp_get_port_local(sk, &addr);
8100 }
8101 
8102 /*
8103  *  Move a socket to LISTENING state.
8104  */
8105 static int sctp_listen_start(struct sock *sk, int backlog)
8106 {
8107 	struct sctp_sock *sp = sctp_sk(sk);
8108 	struct sctp_endpoint *ep = sp->ep;
8109 	struct crypto_shash *tfm = NULL;
8110 	char alg[32];
8111 
8112 	/* Allocate HMAC for generating cookie. */
8113 	if (!sp->hmac && sp->sctp_hmac_alg) {
8114 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8115 		tfm = crypto_alloc_shash(alg, 0, 0);
8116 		if (IS_ERR(tfm)) {
8117 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8118 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8119 			return -ENOSYS;
8120 		}
8121 		sctp_sk(sk)->hmac = tfm;
8122 	}
8123 
8124 	/*
8125 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8126 	 * call that allows new associations to be accepted, the system
8127 	 * picks an ephemeral port and will choose an address set equivalent
8128 	 * to binding with a wildcard address.
8129 	 *
8130 	 * This is not currently spelled out in the SCTP sockets
8131 	 * extensions draft, but follows the practice as seen in TCP
8132 	 * sockets.
8133 	 *
8134 	 */
8135 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8136 	if (!ep->base.bind_addr.port) {
8137 		if (sctp_autobind(sk))
8138 			return -EAGAIN;
8139 	} else {
8140 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8141 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8142 			return -EADDRINUSE;
8143 		}
8144 	}
8145 
8146 	sk->sk_max_ack_backlog = backlog;
8147 	return sctp_hash_endpoint(ep);
8148 }
8149 
8150 /*
8151  * 4.1.3 / 5.1.3 listen()
8152  *
8153  *   By default, new associations are not accepted for UDP style sockets.
8154  *   An application uses listen() to mark a socket as being able to
8155  *   accept new associations.
8156  *
8157  *   On TCP style sockets, applications use listen() to ready the SCTP
8158  *   endpoint for accepting inbound associations.
8159  *
8160  *   On both types of endpoints a backlog of '0' disables listening.
8161  *
8162  *  Move a socket to LISTENING state.
8163  */
8164 int sctp_inet_listen(struct socket *sock, int backlog)
8165 {
8166 	struct sock *sk = sock->sk;
8167 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8168 	int err = -EINVAL;
8169 
8170 	if (unlikely(backlog < 0))
8171 		return err;
8172 
8173 	lock_sock(sk);
8174 
8175 	/* Peeled-off sockets are not allowed to listen().  */
8176 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8177 		goto out;
8178 
8179 	if (sock->state != SS_UNCONNECTED)
8180 		goto out;
8181 
8182 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8183 		goto out;
8184 
8185 	/* If backlog is zero, disable listening. */
8186 	if (!backlog) {
8187 		if (sctp_sstate(sk, CLOSED))
8188 			goto out;
8189 
8190 		err = 0;
8191 		sctp_unhash_endpoint(ep);
8192 		sk->sk_state = SCTP_SS_CLOSED;
8193 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8194 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8195 		goto out;
8196 	}
8197 
8198 	/* If we are already listening, just update the backlog */
8199 	if (sctp_sstate(sk, LISTENING))
8200 		sk->sk_max_ack_backlog = backlog;
8201 	else {
8202 		err = sctp_listen_start(sk, backlog);
8203 		if (err)
8204 			goto out;
8205 	}
8206 
8207 	err = 0;
8208 out:
8209 	release_sock(sk);
8210 	return err;
8211 }
8212 
8213 /*
8214  * This function is done by modeling the current datagram_poll() and the
8215  * tcp_poll().  Note that, based on these implementations, we don't
8216  * lock the socket in this function, even though it seems that,
8217  * ideally, locking or some other mechanisms can be used to ensure
8218  * the integrity of the counters (sndbuf and wmem_alloc) used
8219  * in this place.  We assume that we don't need locks either until proven
8220  * otherwise.
8221  *
8222  * Another thing to note is that we include the Async I/O support
8223  * here, again, by modeling the current TCP/UDP code.  We don't have
8224  * a good way to test with it yet.
8225  */
8226 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8227 {
8228 	struct sock *sk = sock->sk;
8229 	struct sctp_sock *sp = sctp_sk(sk);
8230 	__poll_t mask;
8231 
8232 	poll_wait(file, sk_sleep(sk), wait);
8233 
8234 	sock_rps_record_flow(sk);
8235 
8236 	/* A TCP-style listening socket becomes readable when the accept queue
8237 	 * is not empty.
8238 	 */
8239 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8240 		return (!list_empty(&sp->ep->asocs)) ?
8241 			(EPOLLIN | EPOLLRDNORM) : 0;
8242 
8243 	mask = 0;
8244 
8245 	/* Is there any exceptional events?  */
8246 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8247 		mask |= EPOLLERR |
8248 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8249 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8250 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8251 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8252 		mask |= EPOLLHUP;
8253 
8254 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8255 	if (!skb_queue_empty(&sk->sk_receive_queue))
8256 		mask |= EPOLLIN | EPOLLRDNORM;
8257 
8258 	/* The association is either gone or not ready.  */
8259 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8260 		return mask;
8261 
8262 	/* Is it writable?  */
8263 	if (sctp_writeable(sk)) {
8264 		mask |= EPOLLOUT | EPOLLWRNORM;
8265 	} else {
8266 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8267 		/*
8268 		 * Since the socket is not locked, the buffer
8269 		 * might be made available after the writeable check and
8270 		 * before the bit is set.  This could cause a lost I/O
8271 		 * signal.  tcp_poll() has a race breaker for this race
8272 		 * condition.  Based on their implementation, we put
8273 		 * in the following code to cover it as well.
8274 		 */
8275 		if (sctp_writeable(sk))
8276 			mask |= EPOLLOUT | EPOLLWRNORM;
8277 	}
8278 	return mask;
8279 }
8280 
8281 /********************************************************************
8282  * 2nd Level Abstractions
8283  ********************************************************************/
8284 
8285 static struct sctp_bind_bucket *sctp_bucket_create(
8286 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8287 {
8288 	struct sctp_bind_bucket *pp;
8289 
8290 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8291 	if (pp) {
8292 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8293 		pp->port = snum;
8294 		pp->fastreuse = 0;
8295 		INIT_HLIST_HEAD(&pp->owner);
8296 		pp->net = net;
8297 		hlist_add_head(&pp->node, &head->chain);
8298 	}
8299 	return pp;
8300 }
8301 
8302 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8303 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8304 {
8305 	if (pp && hlist_empty(&pp->owner)) {
8306 		__hlist_del(&pp->node);
8307 		kmem_cache_free(sctp_bucket_cachep, pp);
8308 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8309 	}
8310 }
8311 
8312 /* Release this socket's reference to a local port.  */
8313 static inline void __sctp_put_port(struct sock *sk)
8314 {
8315 	struct sctp_bind_hashbucket *head =
8316 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8317 						  inet_sk(sk)->inet_num)];
8318 	struct sctp_bind_bucket *pp;
8319 
8320 	spin_lock(&head->lock);
8321 	pp = sctp_sk(sk)->bind_hash;
8322 	__sk_del_bind_node(sk);
8323 	sctp_sk(sk)->bind_hash = NULL;
8324 	inet_sk(sk)->inet_num = 0;
8325 	sctp_bucket_destroy(pp);
8326 	spin_unlock(&head->lock);
8327 }
8328 
8329 void sctp_put_port(struct sock *sk)
8330 {
8331 	local_bh_disable();
8332 	__sctp_put_port(sk);
8333 	local_bh_enable();
8334 }
8335 
8336 /*
8337  * The system picks an ephemeral port and choose an address set equivalent
8338  * to binding with a wildcard address.
8339  * One of those addresses will be the primary address for the association.
8340  * This automatically enables the multihoming capability of SCTP.
8341  */
8342 static int sctp_autobind(struct sock *sk)
8343 {
8344 	union sctp_addr autoaddr;
8345 	struct sctp_af *af;
8346 	__be16 port;
8347 
8348 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8349 	af = sctp_sk(sk)->pf->af;
8350 
8351 	port = htons(inet_sk(sk)->inet_num);
8352 	af->inaddr_any(&autoaddr, port);
8353 
8354 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8355 }
8356 
8357 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8358  *
8359  * From RFC 2292
8360  * 4.2 The cmsghdr Structure *
8361  *
8362  * When ancillary data is sent or received, any number of ancillary data
8363  * objects can be specified by the msg_control and msg_controllen members of
8364  * the msghdr structure, because each object is preceded by
8365  * a cmsghdr structure defining the object's length (the cmsg_len member).
8366  * Historically Berkeley-derived implementations have passed only one object
8367  * at a time, but this API allows multiple objects to be
8368  * passed in a single call to sendmsg() or recvmsg(). The following example
8369  * shows two ancillary data objects in a control buffer.
8370  *
8371  *   |<--------------------------- msg_controllen -------------------------->|
8372  *   |                                                                       |
8373  *
8374  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8375  *
8376  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8377  *   |                                   |                                   |
8378  *
8379  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8380  *
8381  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8382  *   |                                |  |                                |  |
8383  *
8384  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8385  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8386  *
8387  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8388  *
8389  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8390  *    ^
8391  *    |
8392  *
8393  * msg_control
8394  * points here
8395  */
8396 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8397 {
8398 	struct msghdr *my_msg = (struct msghdr *)msg;
8399 	struct cmsghdr *cmsg;
8400 
8401 	for_each_cmsghdr(cmsg, my_msg) {
8402 		if (!CMSG_OK(my_msg, cmsg))
8403 			return -EINVAL;
8404 
8405 		/* Should we parse this header or ignore?  */
8406 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8407 			continue;
8408 
8409 		/* Strictly check lengths following example in SCM code.  */
8410 		switch (cmsg->cmsg_type) {
8411 		case SCTP_INIT:
8412 			/* SCTP Socket API Extension
8413 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8414 			 *
8415 			 * This cmsghdr structure provides information for
8416 			 * initializing new SCTP associations with sendmsg().
8417 			 * The SCTP_INITMSG socket option uses this same data
8418 			 * structure.  This structure is not used for
8419 			 * recvmsg().
8420 			 *
8421 			 * cmsg_level    cmsg_type      cmsg_data[]
8422 			 * ------------  ------------   ----------------------
8423 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8424 			 */
8425 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8426 				return -EINVAL;
8427 
8428 			cmsgs->init = CMSG_DATA(cmsg);
8429 			break;
8430 
8431 		case SCTP_SNDRCV:
8432 			/* SCTP Socket API Extension
8433 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8434 			 *
8435 			 * This cmsghdr structure specifies SCTP options for
8436 			 * sendmsg() and describes SCTP header information
8437 			 * about a received message through recvmsg().
8438 			 *
8439 			 * cmsg_level    cmsg_type      cmsg_data[]
8440 			 * ------------  ------------   ----------------------
8441 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8442 			 */
8443 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8444 				return -EINVAL;
8445 
8446 			cmsgs->srinfo = CMSG_DATA(cmsg);
8447 
8448 			if (cmsgs->srinfo->sinfo_flags &
8449 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8450 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8451 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8452 				return -EINVAL;
8453 			break;
8454 
8455 		case SCTP_SNDINFO:
8456 			/* SCTP Socket API Extension
8457 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8458 			 *
8459 			 * This cmsghdr structure specifies SCTP options for
8460 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8461 			 * SCTP_SNDRCV which has been deprecated.
8462 			 *
8463 			 * cmsg_level    cmsg_type      cmsg_data[]
8464 			 * ------------  ------------   ---------------------
8465 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8466 			 */
8467 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8468 				return -EINVAL;
8469 
8470 			cmsgs->sinfo = CMSG_DATA(cmsg);
8471 
8472 			if (cmsgs->sinfo->snd_flags &
8473 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8474 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8475 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8476 				return -EINVAL;
8477 			break;
8478 		case SCTP_PRINFO:
8479 			/* SCTP Socket API Extension
8480 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8481 			 *
8482 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8483 			 *
8484 			 * cmsg_level    cmsg_type      cmsg_data[]
8485 			 * ------------  ------------   ---------------------
8486 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8487 			 */
8488 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8489 				return -EINVAL;
8490 
8491 			cmsgs->prinfo = CMSG_DATA(cmsg);
8492 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8493 				return -EINVAL;
8494 
8495 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8496 				cmsgs->prinfo->pr_value = 0;
8497 			break;
8498 		case SCTP_AUTHINFO:
8499 			/* SCTP Socket API Extension
8500 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8501 			 *
8502 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8503 			 *
8504 			 * cmsg_level    cmsg_type      cmsg_data[]
8505 			 * ------------  ------------   ---------------------
8506 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8507 			 */
8508 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8509 				return -EINVAL;
8510 
8511 			cmsgs->authinfo = CMSG_DATA(cmsg);
8512 			break;
8513 		case SCTP_DSTADDRV4:
8514 		case SCTP_DSTADDRV6:
8515 			/* SCTP Socket API Extension
8516 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8517 			 *
8518 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8519 			 *
8520 			 * cmsg_level    cmsg_type         cmsg_data[]
8521 			 * ------------  ------------   ---------------------
8522 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8523 			 * ------------  ------------   ---------------------
8524 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8525 			 */
8526 			cmsgs->addrs_msg = my_msg;
8527 			break;
8528 		default:
8529 			return -EINVAL;
8530 		}
8531 	}
8532 
8533 	return 0;
8534 }
8535 
8536 /*
8537  * Wait for a packet..
8538  * Note: This function is the same function as in core/datagram.c
8539  * with a few modifications to make lksctp work.
8540  */
8541 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8542 {
8543 	int error;
8544 	DEFINE_WAIT(wait);
8545 
8546 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8547 
8548 	/* Socket errors? */
8549 	error = sock_error(sk);
8550 	if (error)
8551 		goto out;
8552 
8553 	if (!skb_queue_empty(&sk->sk_receive_queue))
8554 		goto ready;
8555 
8556 	/* Socket shut down?  */
8557 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8558 		goto out;
8559 
8560 	/* Sequenced packets can come disconnected.  If so we report the
8561 	 * problem.
8562 	 */
8563 	error = -ENOTCONN;
8564 
8565 	/* Is there a good reason to think that we may receive some data?  */
8566 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8567 		goto out;
8568 
8569 	/* Handle signals.  */
8570 	if (signal_pending(current))
8571 		goto interrupted;
8572 
8573 	/* Let another process have a go.  Since we are going to sleep
8574 	 * anyway.  Note: This may cause odd behaviors if the message
8575 	 * does not fit in the user's buffer, but this seems to be the
8576 	 * only way to honor MSG_DONTWAIT realistically.
8577 	 */
8578 	release_sock(sk);
8579 	*timeo_p = schedule_timeout(*timeo_p);
8580 	lock_sock(sk);
8581 
8582 ready:
8583 	finish_wait(sk_sleep(sk), &wait);
8584 	return 0;
8585 
8586 interrupted:
8587 	error = sock_intr_errno(*timeo_p);
8588 
8589 out:
8590 	finish_wait(sk_sleep(sk), &wait);
8591 	*err = error;
8592 	return error;
8593 }
8594 
8595 /* Receive a datagram.
8596  * Note: This is pretty much the same routine as in core/datagram.c
8597  * with a few changes to make lksctp work.
8598  */
8599 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8600 				       int noblock, int *err)
8601 {
8602 	int error;
8603 	struct sk_buff *skb;
8604 	long timeo;
8605 
8606 	timeo = sock_rcvtimeo(sk, noblock);
8607 
8608 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8609 		 MAX_SCHEDULE_TIMEOUT);
8610 
8611 	do {
8612 		/* Again only user level code calls this function,
8613 		 * so nothing interrupt level
8614 		 * will suddenly eat the receive_queue.
8615 		 *
8616 		 *  Look at current nfs client by the way...
8617 		 *  However, this function was correct in any case. 8)
8618 		 */
8619 		if (flags & MSG_PEEK) {
8620 			skb = skb_peek(&sk->sk_receive_queue);
8621 			if (skb)
8622 				refcount_inc(&skb->users);
8623 		} else {
8624 			skb = __skb_dequeue(&sk->sk_receive_queue);
8625 		}
8626 
8627 		if (skb)
8628 			return skb;
8629 
8630 		/* Caller is allowed not to check sk->sk_err before calling. */
8631 		error = sock_error(sk);
8632 		if (error)
8633 			goto no_packet;
8634 
8635 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8636 			break;
8637 
8638 		if (sk_can_busy_loop(sk)) {
8639 			sk_busy_loop(sk, noblock);
8640 
8641 			if (!skb_queue_empty(&sk->sk_receive_queue))
8642 				continue;
8643 		}
8644 
8645 		/* User doesn't want to wait.  */
8646 		error = -EAGAIN;
8647 		if (!timeo)
8648 			goto no_packet;
8649 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8650 
8651 	return NULL;
8652 
8653 no_packet:
8654 	*err = error;
8655 	return NULL;
8656 }
8657 
8658 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8659 static void __sctp_write_space(struct sctp_association *asoc)
8660 {
8661 	struct sock *sk = asoc->base.sk;
8662 
8663 	if (sctp_wspace(asoc) <= 0)
8664 		return;
8665 
8666 	if (waitqueue_active(&asoc->wait))
8667 		wake_up_interruptible(&asoc->wait);
8668 
8669 	if (sctp_writeable(sk)) {
8670 		struct socket_wq *wq;
8671 
8672 		rcu_read_lock();
8673 		wq = rcu_dereference(sk->sk_wq);
8674 		if (wq) {
8675 			if (waitqueue_active(&wq->wait))
8676 				wake_up_interruptible(&wq->wait);
8677 
8678 			/* Note that we try to include the Async I/O support
8679 			 * here by modeling from the current TCP/UDP code.
8680 			 * We have not tested with it yet.
8681 			 */
8682 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8683 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8684 		}
8685 		rcu_read_unlock();
8686 	}
8687 }
8688 
8689 static void sctp_wake_up_waiters(struct sock *sk,
8690 				 struct sctp_association *asoc)
8691 {
8692 	struct sctp_association *tmp = asoc;
8693 
8694 	/* We do accounting for the sndbuf space per association,
8695 	 * so we only need to wake our own association.
8696 	 */
8697 	if (asoc->ep->sndbuf_policy)
8698 		return __sctp_write_space(asoc);
8699 
8700 	/* If association goes down and is just flushing its
8701 	 * outq, then just normally notify others.
8702 	 */
8703 	if (asoc->base.dead)
8704 		return sctp_write_space(sk);
8705 
8706 	/* Accounting for the sndbuf space is per socket, so we
8707 	 * need to wake up others, try to be fair and in case of
8708 	 * other associations, let them have a go first instead
8709 	 * of just doing a sctp_write_space() call.
8710 	 *
8711 	 * Note that we reach sctp_wake_up_waiters() only when
8712 	 * associations free up queued chunks, thus we are under
8713 	 * lock and the list of associations on a socket is
8714 	 * guaranteed not to change.
8715 	 */
8716 	for (tmp = list_next_entry(tmp, asocs); 1;
8717 	     tmp = list_next_entry(tmp, asocs)) {
8718 		/* Manually skip the head element. */
8719 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8720 			continue;
8721 		/* Wake up association. */
8722 		__sctp_write_space(tmp);
8723 		/* We've reached the end. */
8724 		if (tmp == asoc)
8725 			break;
8726 	}
8727 }
8728 
8729 /* Do accounting for the sndbuf space.
8730  * Decrement the used sndbuf space of the corresponding association by the
8731  * data size which was just transmitted(freed).
8732  */
8733 static void sctp_wfree(struct sk_buff *skb)
8734 {
8735 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8736 	struct sctp_association *asoc = chunk->asoc;
8737 	struct sock *sk = asoc->base.sk;
8738 
8739 	sk_mem_uncharge(sk, skb->truesize);
8740 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8741 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8742 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8743 				      &sk->sk_wmem_alloc));
8744 
8745 	if (chunk->shkey) {
8746 		struct sctp_shared_key *shkey = chunk->shkey;
8747 
8748 		/* refcnt == 2 and !list_empty mean after this release, it's
8749 		 * not being used anywhere, and it's time to notify userland
8750 		 * that this shkey can be freed if it's been deactivated.
8751 		 */
8752 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8753 		    refcount_read(&shkey->refcnt) == 2) {
8754 			struct sctp_ulpevent *ev;
8755 
8756 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8757 							SCTP_AUTH_FREE_KEY,
8758 							GFP_KERNEL);
8759 			if (ev)
8760 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8761 		}
8762 		sctp_auth_shkey_release(chunk->shkey);
8763 	}
8764 
8765 	sock_wfree(skb);
8766 	sctp_wake_up_waiters(sk, asoc);
8767 
8768 	sctp_association_put(asoc);
8769 }
8770 
8771 /* Do accounting for the receive space on the socket.
8772  * Accounting for the association is done in ulpevent.c
8773  * We set this as a destructor for the cloned data skbs so that
8774  * accounting is done at the correct time.
8775  */
8776 void sctp_sock_rfree(struct sk_buff *skb)
8777 {
8778 	struct sock *sk = skb->sk;
8779 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8780 
8781 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8782 
8783 	/*
8784 	 * Mimic the behavior of sock_rfree
8785 	 */
8786 	sk_mem_uncharge(sk, event->rmem_len);
8787 }
8788 
8789 
8790 /* Helper function to wait for space in the sndbuf.  */
8791 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8792 				size_t msg_len)
8793 {
8794 	struct sock *sk = asoc->base.sk;
8795 	long current_timeo = *timeo_p;
8796 	DEFINE_WAIT(wait);
8797 	int err = 0;
8798 
8799 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8800 		 *timeo_p, msg_len);
8801 
8802 	/* Increment the association's refcnt.  */
8803 	sctp_association_hold(asoc);
8804 
8805 	/* Wait on the association specific sndbuf space. */
8806 	for (;;) {
8807 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8808 					  TASK_INTERRUPTIBLE);
8809 		if (asoc->base.dead)
8810 			goto do_dead;
8811 		if (!*timeo_p)
8812 			goto do_nonblock;
8813 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8814 			goto do_error;
8815 		if (signal_pending(current))
8816 			goto do_interrupted;
8817 		if (sk_under_memory_pressure(sk))
8818 			sk_mem_reclaim(sk);
8819 		if ((int)msg_len <= sctp_wspace(asoc) &&
8820 		    sk_wmem_schedule(sk, msg_len))
8821 			break;
8822 
8823 		/* Let another process have a go.  Since we are going
8824 		 * to sleep anyway.
8825 		 */
8826 		release_sock(sk);
8827 		current_timeo = schedule_timeout(current_timeo);
8828 		lock_sock(sk);
8829 		if (sk != asoc->base.sk)
8830 			goto do_error;
8831 
8832 		*timeo_p = current_timeo;
8833 	}
8834 
8835 out:
8836 	finish_wait(&asoc->wait, &wait);
8837 
8838 	/* Release the association's refcnt.  */
8839 	sctp_association_put(asoc);
8840 
8841 	return err;
8842 
8843 do_dead:
8844 	err = -ESRCH;
8845 	goto out;
8846 
8847 do_error:
8848 	err = -EPIPE;
8849 	goto out;
8850 
8851 do_interrupted:
8852 	err = sock_intr_errno(*timeo_p);
8853 	goto out;
8854 
8855 do_nonblock:
8856 	err = -EAGAIN;
8857 	goto out;
8858 }
8859 
8860 void sctp_data_ready(struct sock *sk)
8861 {
8862 	struct socket_wq *wq;
8863 
8864 	rcu_read_lock();
8865 	wq = rcu_dereference(sk->sk_wq);
8866 	if (skwq_has_sleeper(wq))
8867 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8868 						EPOLLRDNORM | EPOLLRDBAND);
8869 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8870 	rcu_read_unlock();
8871 }
8872 
8873 /* If socket sndbuf has changed, wake up all per association waiters.  */
8874 void sctp_write_space(struct sock *sk)
8875 {
8876 	struct sctp_association *asoc;
8877 
8878 	/* Wake up the tasks in each wait queue.  */
8879 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8880 		__sctp_write_space(asoc);
8881 	}
8882 }
8883 
8884 /* Is there any sndbuf space available on the socket?
8885  *
8886  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8887  * associations on the same socket.  For a UDP-style socket with
8888  * multiple associations, it is possible for it to be "unwriteable"
8889  * prematurely.  I assume that this is acceptable because
8890  * a premature "unwriteable" is better than an accidental "writeable" which
8891  * would cause an unwanted block under certain circumstances.  For the 1-1
8892  * UDP-style sockets or TCP-style sockets, this code should work.
8893  *  - Daisy
8894  */
8895 static bool sctp_writeable(struct sock *sk)
8896 {
8897 	return sk->sk_sndbuf > sk->sk_wmem_queued;
8898 }
8899 
8900 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8901  * returns immediately with EINPROGRESS.
8902  */
8903 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8904 {
8905 	struct sock *sk = asoc->base.sk;
8906 	int err = 0;
8907 	long current_timeo = *timeo_p;
8908 	DEFINE_WAIT(wait);
8909 
8910 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8911 
8912 	/* Increment the association's refcnt.  */
8913 	sctp_association_hold(asoc);
8914 
8915 	for (;;) {
8916 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8917 					  TASK_INTERRUPTIBLE);
8918 		if (!*timeo_p)
8919 			goto do_nonblock;
8920 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8921 			break;
8922 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8923 		    asoc->base.dead)
8924 			goto do_error;
8925 		if (signal_pending(current))
8926 			goto do_interrupted;
8927 
8928 		if (sctp_state(asoc, ESTABLISHED))
8929 			break;
8930 
8931 		/* Let another process have a go.  Since we are going
8932 		 * to sleep anyway.
8933 		 */
8934 		release_sock(sk);
8935 		current_timeo = schedule_timeout(current_timeo);
8936 		lock_sock(sk);
8937 
8938 		*timeo_p = current_timeo;
8939 	}
8940 
8941 out:
8942 	finish_wait(&asoc->wait, &wait);
8943 
8944 	/* Release the association's refcnt.  */
8945 	sctp_association_put(asoc);
8946 
8947 	return err;
8948 
8949 do_error:
8950 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8951 		err = -ETIMEDOUT;
8952 	else
8953 		err = -ECONNREFUSED;
8954 	goto out;
8955 
8956 do_interrupted:
8957 	err = sock_intr_errno(*timeo_p);
8958 	goto out;
8959 
8960 do_nonblock:
8961 	err = -EINPROGRESS;
8962 	goto out;
8963 }
8964 
8965 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8966 {
8967 	struct sctp_endpoint *ep;
8968 	int err = 0;
8969 	DEFINE_WAIT(wait);
8970 
8971 	ep = sctp_sk(sk)->ep;
8972 
8973 
8974 	for (;;) {
8975 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8976 					  TASK_INTERRUPTIBLE);
8977 
8978 		if (list_empty(&ep->asocs)) {
8979 			release_sock(sk);
8980 			timeo = schedule_timeout(timeo);
8981 			lock_sock(sk);
8982 		}
8983 
8984 		err = -EINVAL;
8985 		if (!sctp_sstate(sk, LISTENING))
8986 			break;
8987 
8988 		err = 0;
8989 		if (!list_empty(&ep->asocs))
8990 			break;
8991 
8992 		err = sock_intr_errno(timeo);
8993 		if (signal_pending(current))
8994 			break;
8995 
8996 		err = -EAGAIN;
8997 		if (!timeo)
8998 			break;
8999 	}
9000 
9001 	finish_wait(sk_sleep(sk), &wait);
9002 
9003 	return err;
9004 }
9005 
9006 static void sctp_wait_for_close(struct sock *sk, long timeout)
9007 {
9008 	DEFINE_WAIT(wait);
9009 
9010 	do {
9011 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9012 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9013 			break;
9014 		release_sock(sk);
9015 		timeout = schedule_timeout(timeout);
9016 		lock_sock(sk);
9017 	} while (!signal_pending(current) && timeout);
9018 
9019 	finish_wait(sk_sleep(sk), &wait);
9020 }
9021 
9022 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9023 {
9024 	struct sk_buff *frag;
9025 
9026 	if (!skb->data_len)
9027 		goto done;
9028 
9029 	/* Don't forget the fragments. */
9030 	skb_walk_frags(skb, frag)
9031 		sctp_skb_set_owner_r_frag(frag, sk);
9032 
9033 done:
9034 	sctp_skb_set_owner_r(skb, sk);
9035 }
9036 
9037 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9038 		    struct sctp_association *asoc)
9039 {
9040 	struct inet_sock *inet = inet_sk(sk);
9041 	struct inet_sock *newinet;
9042 	struct sctp_sock *sp = sctp_sk(sk);
9043 	struct sctp_endpoint *ep = sp->ep;
9044 
9045 	newsk->sk_type = sk->sk_type;
9046 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9047 	newsk->sk_flags = sk->sk_flags;
9048 	newsk->sk_tsflags = sk->sk_tsflags;
9049 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9050 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9051 	newsk->sk_reuse = sk->sk_reuse;
9052 	sctp_sk(newsk)->reuse = sp->reuse;
9053 
9054 	newsk->sk_shutdown = sk->sk_shutdown;
9055 	newsk->sk_destruct = sctp_destruct_sock;
9056 	newsk->sk_family = sk->sk_family;
9057 	newsk->sk_protocol = IPPROTO_SCTP;
9058 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9059 	newsk->sk_sndbuf = sk->sk_sndbuf;
9060 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9061 	newsk->sk_lingertime = sk->sk_lingertime;
9062 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9063 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9064 	newsk->sk_rxhash = sk->sk_rxhash;
9065 
9066 	newinet = inet_sk(newsk);
9067 
9068 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9069 	 * getsockname() and getpeername()
9070 	 */
9071 	newinet->inet_sport = inet->inet_sport;
9072 	newinet->inet_saddr = inet->inet_saddr;
9073 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9074 	newinet->inet_dport = htons(asoc->peer.port);
9075 	newinet->pmtudisc = inet->pmtudisc;
9076 	newinet->inet_id = asoc->next_tsn ^ jiffies;
9077 
9078 	newinet->uc_ttl = inet->uc_ttl;
9079 	newinet->mc_loop = 1;
9080 	newinet->mc_ttl = 1;
9081 	newinet->mc_index = 0;
9082 	newinet->mc_list = NULL;
9083 
9084 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9085 		net_enable_timestamp();
9086 
9087 	/* Set newsk security attributes from orginal sk and connection
9088 	 * security attribute from ep.
9089 	 */
9090 	security_sctp_sk_clone(ep, sk, newsk);
9091 }
9092 
9093 static inline void sctp_copy_descendant(struct sock *sk_to,
9094 					const struct sock *sk_from)
9095 {
9096 	int ancestor_size = sizeof(struct inet_sock) +
9097 			    sizeof(struct sctp_sock) -
9098 			    offsetof(struct sctp_sock, pd_lobby);
9099 
9100 	if (sk_from->sk_family == PF_INET6)
9101 		ancestor_size += sizeof(struct ipv6_pinfo);
9102 
9103 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9104 }
9105 
9106 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9107  * and its messages to the newsk.
9108  */
9109 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9110 			     struct sctp_association *assoc,
9111 			     enum sctp_socket_type type)
9112 {
9113 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9114 	struct sctp_sock *newsp = sctp_sk(newsk);
9115 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9116 	struct sctp_endpoint *newep = newsp->ep;
9117 	struct sk_buff *skb, *tmp;
9118 	struct sctp_ulpevent *event;
9119 	struct sctp_bind_hashbucket *head;
9120 	int err;
9121 
9122 	/* Migrate socket buffer sizes and all the socket level options to the
9123 	 * new socket.
9124 	 */
9125 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9126 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9127 	/* Brute force copy old sctp opt. */
9128 	sctp_copy_descendant(newsk, oldsk);
9129 
9130 	/* Restore the ep value that was overwritten with the above structure
9131 	 * copy.
9132 	 */
9133 	newsp->ep = newep;
9134 	newsp->hmac = NULL;
9135 
9136 	/* Hook this new socket in to the bind_hash list. */
9137 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9138 						 inet_sk(oldsk)->inet_num)];
9139 	spin_lock_bh(&head->lock);
9140 	pp = sctp_sk(oldsk)->bind_hash;
9141 	sk_add_bind_node(newsk, &pp->owner);
9142 	sctp_sk(newsk)->bind_hash = pp;
9143 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9144 	spin_unlock_bh(&head->lock);
9145 
9146 	/* Copy the bind_addr list from the original endpoint to the new
9147 	 * endpoint so that we can handle restarts properly
9148 	 */
9149 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9150 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9151 	if (err)
9152 		return err;
9153 
9154 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9155 	 * that net->sctp.auth_enable has been changed to 0 by users and
9156 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9157 	 */
9158 	if (oldsp->ep->auth_hmacs) {
9159 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9160 		if (err)
9161 			return err;
9162 	}
9163 
9164 	/* Move any messages in the old socket's receive queue that are for the
9165 	 * peeled off association to the new socket's receive queue.
9166 	 */
9167 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9168 		event = sctp_skb2event(skb);
9169 		if (event->asoc == assoc) {
9170 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9171 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9172 			sctp_skb_set_owner_r_frag(skb, newsk);
9173 		}
9174 	}
9175 
9176 	/* Clean up any messages pending delivery due to partial
9177 	 * delivery.   Three cases:
9178 	 * 1) No partial deliver;  no work.
9179 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9180 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9181 	 */
9182 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9183 
9184 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9185 		struct sk_buff_head *queue;
9186 
9187 		/* Decide which queue to move pd_lobby skbs to. */
9188 		if (assoc->ulpq.pd_mode) {
9189 			queue = &newsp->pd_lobby;
9190 		} else
9191 			queue = &newsk->sk_receive_queue;
9192 
9193 		/* Walk through the pd_lobby, looking for skbs that
9194 		 * need moved to the new socket.
9195 		 */
9196 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9197 			event = sctp_skb2event(skb);
9198 			if (event->asoc == assoc) {
9199 				__skb_unlink(skb, &oldsp->pd_lobby);
9200 				__skb_queue_tail(queue, skb);
9201 				sctp_skb_set_owner_r_frag(skb, newsk);
9202 			}
9203 		}
9204 
9205 		/* Clear up any skbs waiting for the partial
9206 		 * delivery to finish.
9207 		 */
9208 		if (assoc->ulpq.pd_mode)
9209 			sctp_clear_pd(oldsk, NULL);
9210 
9211 	}
9212 
9213 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9214 
9215 	/* Set the type of socket to indicate that it is peeled off from the
9216 	 * original UDP-style socket or created with the accept() call on a
9217 	 * TCP-style socket..
9218 	 */
9219 	newsp->type = type;
9220 
9221 	/* Mark the new socket "in-use" by the user so that any packets
9222 	 * that may arrive on the association after we've moved it are
9223 	 * queued to the backlog.  This prevents a potential race between
9224 	 * backlog processing on the old socket and new-packet processing
9225 	 * on the new socket.
9226 	 *
9227 	 * The caller has just allocated newsk so we can guarantee that other
9228 	 * paths won't try to lock it and then oldsk.
9229 	 */
9230 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9231 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9232 	sctp_assoc_migrate(assoc, newsk);
9233 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9234 
9235 	/* If the association on the newsk is already closed before accept()
9236 	 * is called, set RCV_SHUTDOWN flag.
9237 	 */
9238 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9239 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9240 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9241 	} else {
9242 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9243 	}
9244 
9245 	release_sock(newsk);
9246 
9247 	return 0;
9248 }
9249 
9250 
9251 /* This proto struct describes the ULP interface for SCTP.  */
9252 struct proto sctp_prot = {
9253 	.name        =	"SCTP",
9254 	.owner       =	THIS_MODULE,
9255 	.close       =	sctp_close,
9256 	.disconnect  =	sctp_disconnect,
9257 	.accept      =	sctp_accept,
9258 	.ioctl       =	sctp_ioctl,
9259 	.init        =	sctp_init_sock,
9260 	.destroy     =	sctp_destroy_sock,
9261 	.shutdown    =	sctp_shutdown,
9262 	.setsockopt  =	sctp_setsockopt,
9263 	.getsockopt  =	sctp_getsockopt,
9264 	.sendmsg     =	sctp_sendmsg,
9265 	.recvmsg     =	sctp_recvmsg,
9266 	.bind        =	sctp_bind,
9267 	.backlog_rcv =	sctp_backlog_rcv,
9268 	.hash        =	sctp_hash,
9269 	.unhash      =	sctp_unhash,
9270 	.get_port    =	sctp_get_port,
9271 	.obj_size    =  sizeof(struct sctp_sock),
9272 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9273 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9274 				offsetof(struct sctp_sock, subscribe) +
9275 				sizeof_field(struct sctp_sock, initmsg),
9276 	.sysctl_mem  =  sysctl_sctp_mem,
9277 	.sysctl_rmem =  sysctl_sctp_rmem,
9278 	.sysctl_wmem =  sysctl_sctp_wmem,
9279 	.memory_pressure = &sctp_memory_pressure,
9280 	.enter_memory_pressure = sctp_enter_memory_pressure,
9281 	.memory_allocated = &sctp_memory_allocated,
9282 	.sockets_allocated = &sctp_sockets_allocated,
9283 };
9284 
9285 #if IS_ENABLED(CONFIG_IPV6)
9286 
9287 #include <net/transp_v6.h>
9288 static void sctp_v6_destroy_sock(struct sock *sk)
9289 {
9290 	sctp_destroy_sock(sk);
9291 	inet6_destroy_sock(sk);
9292 }
9293 
9294 struct proto sctpv6_prot = {
9295 	.name		= "SCTPv6",
9296 	.owner		= THIS_MODULE,
9297 	.close		= sctp_close,
9298 	.disconnect	= sctp_disconnect,
9299 	.accept		= sctp_accept,
9300 	.ioctl		= sctp_ioctl,
9301 	.init		= sctp_init_sock,
9302 	.destroy	= sctp_v6_destroy_sock,
9303 	.shutdown	= sctp_shutdown,
9304 	.setsockopt	= sctp_setsockopt,
9305 	.getsockopt	= sctp_getsockopt,
9306 	.sendmsg	= sctp_sendmsg,
9307 	.recvmsg	= sctp_recvmsg,
9308 	.bind		= sctp_bind,
9309 	.backlog_rcv	= sctp_backlog_rcv,
9310 	.hash		= sctp_hash,
9311 	.unhash		= sctp_unhash,
9312 	.get_port	= sctp_get_port,
9313 	.obj_size	= sizeof(struct sctp6_sock),
9314 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9315 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9316 				offsetof(struct sctp6_sock, sctp.subscribe) +
9317 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9318 	.sysctl_mem	= sysctl_sctp_mem,
9319 	.sysctl_rmem	= sysctl_sctp_rmem,
9320 	.sysctl_wmem	= sysctl_sctp_wmem,
9321 	.memory_pressure = &sctp_memory_pressure,
9322 	.enter_memory_pressure = sctp_enter_memory_pressure,
9323 	.memory_allocated = &sctp_memory_allocated,
9324 	.sockets_allocated = &sctp_sockets_allocated,
9325 };
9326 #endif /* IS_ENABLED(CONFIG_IPV6) */
9327