1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static int sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 int amt; 123 124 if (asoc->ep->sndbuf_policy) 125 amt = asoc->sndbuf_used; 126 else 127 amt = sk_wmem_alloc_get(asoc->base.sk); 128 129 if (amt >= asoc->base.sk->sk_sndbuf) { 130 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 131 amt = 0; 132 else { 133 amt = sk_stream_wspace(asoc->base.sk); 134 if (amt < 0) 135 amt = 0; 136 } 137 } else { 138 amt = asoc->base.sk->sk_sndbuf - amt; 139 } 140 return amt; 141 } 142 143 /* Increment the used sndbuf space count of the corresponding association by 144 * the size of the outgoing data chunk. 145 * Also, set the skb destructor for sndbuf accounting later. 146 * 147 * Since it is always 1-1 between chunk and skb, and also a new skb is always 148 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 149 * destructor in the data chunk skb for the purpose of the sndbuf space 150 * tracking. 151 */ 152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 153 { 154 struct sctp_association *asoc = chunk->asoc; 155 struct sock *sk = asoc->base.sk; 156 157 /* The sndbuf space is tracked per association. */ 158 sctp_association_hold(asoc); 159 160 if (chunk->shkey) 161 sctp_auth_shkey_hold(chunk->shkey); 162 163 skb_set_owner_w(chunk->skb, sk); 164 165 chunk->skb->destructor = sctp_wfree; 166 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 167 skb_shinfo(chunk->skb)->destructor_arg = chunk; 168 169 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 170 sizeof(struct sk_buff) + 171 sizeof(struct sctp_chunk); 172 173 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 174 sk->sk_wmem_queued += chunk->skb->truesize; 175 sk_mem_charge(sk, chunk->skb->truesize); 176 } 177 178 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 179 { 180 skb_orphan(chunk->skb); 181 } 182 183 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 184 void (*cb)(struct sctp_chunk *)) 185 186 { 187 struct sctp_outq *q = &asoc->outqueue; 188 struct sctp_transport *t; 189 struct sctp_chunk *chunk; 190 191 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 192 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 193 cb(chunk); 194 195 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 196 cb(chunk); 197 198 list_for_each_entry(chunk, &q->sacked, transmitted_list) 199 cb(chunk); 200 201 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 202 cb(chunk); 203 204 list_for_each_entry(chunk, &q->out_chunk_list, list) 205 cb(chunk); 206 } 207 208 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 209 void (*cb)(struct sk_buff *, struct sock *)) 210 211 { 212 struct sk_buff *skb, *tmp; 213 214 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 215 cb(skb, sk); 216 217 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 218 cb(skb, sk); 219 220 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 221 cb(skb, sk); 222 } 223 224 /* Verify that this is a valid address. */ 225 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 226 int len) 227 { 228 struct sctp_af *af; 229 230 /* Verify basic sockaddr. */ 231 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 232 if (!af) 233 return -EINVAL; 234 235 /* Is this a valid SCTP address? */ 236 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 237 return -EINVAL; 238 239 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /* Look up the association by its id. If this is not a UDP-style 246 * socket, the ID field is always ignored. 247 */ 248 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 249 { 250 struct sctp_association *asoc = NULL; 251 252 /* If this is not a UDP-style socket, assoc id should be ignored. */ 253 if (!sctp_style(sk, UDP)) { 254 /* Return NULL if the socket state is not ESTABLISHED. It 255 * could be a TCP-style listening socket or a socket which 256 * hasn't yet called connect() to establish an association. 257 */ 258 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 259 return NULL; 260 261 /* Get the first and the only association from the list. */ 262 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 263 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 264 struct sctp_association, asocs); 265 return asoc; 266 } 267 268 /* Otherwise this is a UDP-style socket. */ 269 if (!id || (id == (sctp_assoc_t)-1)) 270 return NULL; 271 272 spin_lock_bh(&sctp_assocs_id_lock); 273 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 274 spin_unlock_bh(&sctp_assocs_id_lock); 275 276 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 277 return NULL; 278 279 return asoc; 280 } 281 282 /* Look up the transport from an address and an assoc id. If both address and 283 * id are specified, the associations matching the address and the id should be 284 * the same. 285 */ 286 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 287 struct sockaddr_storage *addr, 288 sctp_assoc_t id) 289 { 290 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 291 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 292 union sctp_addr *laddr = (union sctp_addr *)addr; 293 struct sctp_transport *transport; 294 295 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 296 return NULL; 297 298 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 299 laddr, 300 &transport); 301 302 if (!addr_asoc) 303 return NULL; 304 305 id_asoc = sctp_id2assoc(sk, id); 306 if (id_asoc && (id_asoc != addr_asoc)) 307 return NULL; 308 309 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 310 (union sctp_addr *)addr); 311 312 return transport; 313 } 314 315 /* API 3.1.2 bind() - UDP Style Syntax 316 * The syntax of bind() is, 317 * 318 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 319 * 320 * sd - the socket descriptor returned by socket(). 321 * addr - the address structure (struct sockaddr_in or struct 322 * sockaddr_in6 [RFC 2553]), 323 * addr_len - the size of the address structure. 324 */ 325 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 326 { 327 int retval = 0; 328 329 lock_sock(sk); 330 331 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 332 addr, addr_len); 333 334 /* Disallow binding twice. */ 335 if (!sctp_sk(sk)->ep->base.bind_addr.port) 336 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 337 addr_len); 338 else 339 retval = -EINVAL; 340 341 release_sock(sk); 342 343 return retval; 344 } 345 346 static long sctp_get_port_local(struct sock *, union sctp_addr *); 347 348 /* Verify this is a valid sockaddr. */ 349 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 350 union sctp_addr *addr, int len) 351 { 352 struct sctp_af *af; 353 354 /* Check minimum size. */ 355 if (len < sizeof (struct sockaddr)) 356 return NULL; 357 358 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 359 return NULL; 360 361 if (addr->sa.sa_family == AF_INET6) { 362 if (len < SIN6_LEN_RFC2133) 363 return NULL; 364 /* V4 mapped address are really of AF_INET family */ 365 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 366 !opt->pf->af_supported(AF_INET, opt)) 367 return NULL; 368 } 369 370 /* If we get this far, af is valid. */ 371 af = sctp_get_af_specific(addr->sa.sa_family); 372 373 if (len < af->sockaddr_len) 374 return NULL; 375 376 return af; 377 } 378 379 /* Bind a local address either to an endpoint or to an association. */ 380 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 381 { 382 struct net *net = sock_net(sk); 383 struct sctp_sock *sp = sctp_sk(sk); 384 struct sctp_endpoint *ep = sp->ep; 385 struct sctp_bind_addr *bp = &ep->base.bind_addr; 386 struct sctp_af *af; 387 unsigned short snum; 388 int ret = 0; 389 390 /* Common sockaddr verification. */ 391 af = sctp_sockaddr_af(sp, addr, len); 392 if (!af) { 393 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 394 __func__, sk, addr, len); 395 return -EINVAL; 396 } 397 398 snum = ntohs(addr->v4.sin_port); 399 400 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 401 __func__, sk, &addr->sa, bp->port, snum, len); 402 403 /* PF specific bind() address verification. */ 404 if (!sp->pf->bind_verify(sp, addr)) 405 return -EADDRNOTAVAIL; 406 407 /* We must either be unbound, or bind to the same port. 408 * It's OK to allow 0 ports if we are already bound. 409 * We'll just inhert an already bound port in this case 410 */ 411 if (bp->port) { 412 if (!snum) 413 snum = bp->port; 414 else if (snum != bp->port) { 415 pr_debug("%s: new port %d doesn't match existing port " 416 "%d\n", __func__, snum, bp->port); 417 return -EINVAL; 418 } 419 } 420 421 if (snum && snum < inet_prot_sock(net) && 422 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 423 return -EACCES; 424 425 /* See if the address matches any of the addresses we may have 426 * already bound before checking against other endpoints. 427 */ 428 if (sctp_bind_addr_match(bp, addr, sp)) 429 return -EINVAL; 430 431 /* Make sure we are allowed to bind here. 432 * The function sctp_get_port_local() does duplicate address 433 * detection. 434 */ 435 addr->v4.sin_port = htons(snum); 436 if ((ret = sctp_get_port_local(sk, addr))) { 437 return -EADDRINUSE; 438 } 439 440 /* Refresh ephemeral port. */ 441 if (!bp->port) 442 bp->port = inet_sk(sk)->inet_num; 443 444 /* Add the address to the bind address list. 445 * Use GFP_ATOMIC since BHs will be disabled. 446 */ 447 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 448 SCTP_ADDR_SRC, GFP_ATOMIC); 449 450 /* Copy back into socket for getsockname() use. */ 451 if (!ret) { 452 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 453 sp->pf->to_sk_saddr(addr, sk); 454 } 455 456 return ret; 457 } 458 459 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 460 * 461 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 462 * at any one time. If a sender, after sending an ASCONF chunk, decides 463 * it needs to transfer another ASCONF Chunk, it MUST wait until the 464 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 465 * subsequent ASCONF. Note this restriction binds each side, so at any 466 * time two ASCONF may be in-transit on any given association (one sent 467 * from each endpoint). 468 */ 469 static int sctp_send_asconf(struct sctp_association *asoc, 470 struct sctp_chunk *chunk) 471 { 472 struct net *net = sock_net(asoc->base.sk); 473 int retval = 0; 474 475 /* If there is an outstanding ASCONF chunk, queue it for later 476 * transmission. 477 */ 478 if (asoc->addip_last_asconf) { 479 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 480 goto out; 481 } 482 483 /* Hold the chunk until an ASCONF_ACK is received. */ 484 sctp_chunk_hold(chunk); 485 retval = sctp_primitive_ASCONF(net, asoc, chunk); 486 if (retval) 487 sctp_chunk_free(chunk); 488 else 489 asoc->addip_last_asconf = chunk; 490 491 out: 492 return retval; 493 } 494 495 /* Add a list of addresses as bind addresses to local endpoint or 496 * association. 497 * 498 * Basically run through each address specified in the addrs/addrcnt 499 * array/length pair, determine if it is IPv6 or IPv4 and call 500 * sctp_do_bind() on it. 501 * 502 * If any of them fails, then the operation will be reversed and the 503 * ones that were added will be removed. 504 * 505 * Only sctp_setsockopt_bindx() is supposed to call this function. 506 */ 507 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 508 { 509 int cnt; 510 int retval = 0; 511 void *addr_buf; 512 struct sockaddr *sa_addr; 513 struct sctp_af *af; 514 515 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 516 addrs, addrcnt); 517 518 addr_buf = addrs; 519 for (cnt = 0; cnt < addrcnt; cnt++) { 520 /* The list may contain either IPv4 or IPv6 address; 521 * determine the address length for walking thru the list. 522 */ 523 sa_addr = addr_buf; 524 af = sctp_get_af_specific(sa_addr->sa_family); 525 if (!af) { 526 retval = -EINVAL; 527 goto err_bindx_add; 528 } 529 530 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 531 af->sockaddr_len); 532 533 addr_buf += af->sockaddr_len; 534 535 err_bindx_add: 536 if (retval < 0) { 537 /* Failed. Cleanup the ones that have been added */ 538 if (cnt > 0) 539 sctp_bindx_rem(sk, addrs, cnt); 540 return retval; 541 } 542 } 543 544 return retval; 545 } 546 547 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 548 * associations that are part of the endpoint indicating that a list of local 549 * addresses are added to the endpoint. 550 * 551 * If any of the addresses is already in the bind address list of the 552 * association, we do not send the chunk for that association. But it will not 553 * affect other associations. 554 * 555 * Only sctp_setsockopt_bindx() is supposed to call this function. 556 */ 557 static int sctp_send_asconf_add_ip(struct sock *sk, 558 struct sockaddr *addrs, 559 int addrcnt) 560 { 561 struct net *net = sock_net(sk); 562 struct sctp_sock *sp; 563 struct sctp_endpoint *ep; 564 struct sctp_association *asoc; 565 struct sctp_bind_addr *bp; 566 struct sctp_chunk *chunk; 567 struct sctp_sockaddr_entry *laddr; 568 union sctp_addr *addr; 569 union sctp_addr saveaddr; 570 void *addr_buf; 571 struct sctp_af *af; 572 struct list_head *p; 573 int i; 574 int retval = 0; 575 576 if (!net->sctp.addip_enable) 577 return retval; 578 579 sp = sctp_sk(sk); 580 ep = sp->ep; 581 582 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 583 __func__, sk, addrs, addrcnt); 584 585 list_for_each_entry(asoc, &ep->asocs, asocs) { 586 if (!asoc->peer.asconf_capable) 587 continue; 588 589 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 590 continue; 591 592 if (!sctp_state(asoc, ESTABLISHED)) 593 continue; 594 595 /* Check if any address in the packed array of addresses is 596 * in the bind address list of the association. If so, 597 * do not send the asconf chunk to its peer, but continue with 598 * other associations. 599 */ 600 addr_buf = addrs; 601 for (i = 0; i < addrcnt; i++) { 602 addr = addr_buf; 603 af = sctp_get_af_specific(addr->v4.sin_family); 604 if (!af) { 605 retval = -EINVAL; 606 goto out; 607 } 608 609 if (sctp_assoc_lookup_laddr(asoc, addr)) 610 break; 611 612 addr_buf += af->sockaddr_len; 613 } 614 if (i < addrcnt) 615 continue; 616 617 /* Use the first valid address in bind addr list of 618 * association as Address Parameter of ASCONF CHUNK. 619 */ 620 bp = &asoc->base.bind_addr; 621 p = bp->address_list.next; 622 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 623 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 624 addrcnt, SCTP_PARAM_ADD_IP); 625 if (!chunk) { 626 retval = -ENOMEM; 627 goto out; 628 } 629 630 /* Add the new addresses to the bind address list with 631 * use_as_src set to 0. 632 */ 633 addr_buf = addrs; 634 for (i = 0; i < addrcnt; i++) { 635 addr = addr_buf; 636 af = sctp_get_af_specific(addr->v4.sin_family); 637 memcpy(&saveaddr, addr, af->sockaddr_len); 638 retval = sctp_add_bind_addr(bp, &saveaddr, 639 sizeof(saveaddr), 640 SCTP_ADDR_NEW, GFP_ATOMIC); 641 addr_buf += af->sockaddr_len; 642 } 643 if (asoc->src_out_of_asoc_ok) { 644 struct sctp_transport *trans; 645 646 list_for_each_entry(trans, 647 &asoc->peer.transport_addr_list, transports) { 648 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 649 2*asoc->pathmtu, 4380)); 650 trans->ssthresh = asoc->peer.i.a_rwnd; 651 trans->rto = asoc->rto_initial; 652 sctp_max_rto(asoc, trans); 653 trans->rtt = trans->srtt = trans->rttvar = 0; 654 /* Clear the source and route cache */ 655 sctp_transport_route(trans, NULL, 656 sctp_sk(asoc->base.sk)); 657 } 658 } 659 retval = sctp_send_asconf(asoc, chunk); 660 } 661 662 out: 663 return retval; 664 } 665 666 /* Remove a list of addresses from bind addresses list. Do not remove the 667 * last address. 668 * 669 * Basically run through each address specified in the addrs/addrcnt 670 * array/length pair, determine if it is IPv6 or IPv4 and call 671 * sctp_del_bind() on it. 672 * 673 * If any of them fails, then the operation will be reversed and the 674 * ones that were removed will be added back. 675 * 676 * At least one address has to be left; if only one address is 677 * available, the operation will return -EBUSY. 678 * 679 * Only sctp_setsockopt_bindx() is supposed to call this function. 680 */ 681 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 682 { 683 struct sctp_sock *sp = sctp_sk(sk); 684 struct sctp_endpoint *ep = sp->ep; 685 int cnt; 686 struct sctp_bind_addr *bp = &ep->base.bind_addr; 687 int retval = 0; 688 void *addr_buf; 689 union sctp_addr *sa_addr; 690 struct sctp_af *af; 691 692 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 693 __func__, sk, addrs, addrcnt); 694 695 addr_buf = addrs; 696 for (cnt = 0; cnt < addrcnt; cnt++) { 697 /* If the bind address list is empty or if there is only one 698 * bind address, there is nothing more to be removed (we need 699 * at least one address here). 700 */ 701 if (list_empty(&bp->address_list) || 702 (sctp_list_single_entry(&bp->address_list))) { 703 retval = -EBUSY; 704 goto err_bindx_rem; 705 } 706 707 sa_addr = addr_buf; 708 af = sctp_get_af_specific(sa_addr->sa.sa_family); 709 if (!af) { 710 retval = -EINVAL; 711 goto err_bindx_rem; 712 } 713 714 if (!af->addr_valid(sa_addr, sp, NULL)) { 715 retval = -EADDRNOTAVAIL; 716 goto err_bindx_rem; 717 } 718 719 if (sa_addr->v4.sin_port && 720 sa_addr->v4.sin_port != htons(bp->port)) { 721 retval = -EINVAL; 722 goto err_bindx_rem; 723 } 724 725 if (!sa_addr->v4.sin_port) 726 sa_addr->v4.sin_port = htons(bp->port); 727 728 /* FIXME - There is probably a need to check if sk->sk_saddr and 729 * sk->sk_rcv_addr are currently set to one of the addresses to 730 * be removed. This is something which needs to be looked into 731 * when we are fixing the outstanding issues with multi-homing 732 * socket routing and failover schemes. Refer to comments in 733 * sctp_do_bind(). -daisy 734 */ 735 retval = sctp_del_bind_addr(bp, sa_addr); 736 737 addr_buf += af->sockaddr_len; 738 err_bindx_rem: 739 if (retval < 0) { 740 /* Failed. Add the ones that has been removed back */ 741 if (cnt > 0) 742 sctp_bindx_add(sk, addrs, cnt); 743 return retval; 744 } 745 } 746 747 return retval; 748 } 749 750 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 751 * the associations that are part of the endpoint indicating that a list of 752 * local addresses are removed from the endpoint. 753 * 754 * If any of the addresses is already in the bind address list of the 755 * association, we do not send the chunk for that association. But it will not 756 * affect other associations. 757 * 758 * Only sctp_setsockopt_bindx() is supposed to call this function. 759 */ 760 static int sctp_send_asconf_del_ip(struct sock *sk, 761 struct sockaddr *addrs, 762 int addrcnt) 763 { 764 struct net *net = sock_net(sk); 765 struct sctp_sock *sp; 766 struct sctp_endpoint *ep; 767 struct sctp_association *asoc; 768 struct sctp_transport *transport; 769 struct sctp_bind_addr *bp; 770 struct sctp_chunk *chunk; 771 union sctp_addr *laddr; 772 void *addr_buf; 773 struct sctp_af *af; 774 struct sctp_sockaddr_entry *saddr; 775 int i; 776 int retval = 0; 777 int stored = 0; 778 779 chunk = NULL; 780 if (!net->sctp.addip_enable) 781 return retval; 782 783 sp = sctp_sk(sk); 784 ep = sp->ep; 785 786 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 787 __func__, sk, addrs, addrcnt); 788 789 list_for_each_entry(asoc, &ep->asocs, asocs) { 790 791 if (!asoc->peer.asconf_capable) 792 continue; 793 794 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 795 continue; 796 797 if (!sctp_state(asoc, ESTABLISHED)) 798 continue; 799 800 /* Check if any address in the packed array of addresses is 801 * not present in the bind address list of the association. 802 * If so, do not send the asconf chunk to its peer, but 803 * continue with other associations. 804 */ 805 addr_buf = addrs; 806 for (i = 0; i < addrcnt; i++) { 807 laddr = addr_buf; 808 af = sctp_get_af_specific(laddr->v4.sin_family); 809 if (!af) { 810 retval = -EINVAL; 811 goto out; 812 } 813 814 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 815 break; 816 817 addr_buf += af->sockaddr_len; 818 } 819 if (i < addrcnt) 820 continue; 821 822 /* Find one address in the association's bind address list 823 * that is not in the packed array of addresses. This is to 824 * make sure that we do not delete all the addresses in the 825 * association. 826 */ 827 bp = &asoc->base.bind_addr; 828 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 829 addrcnt, sp); 830 if ((laddr == NULL) && (addrcnt == 1)) { 831 if (asoc->asconf_addr_del_pending) 832 continue; 833 asoc->asconf_addr_del_pending = 834 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 835 if (asoc->asconf_addr_del_pending == NULL) { 836 retval = -ENOMEM; 837 goto out; 838 } 839 asoc->asconf_addr_del_pending->sa.sa_family = 840 addrs->sa_family; 841 asoc->asconf_addr_del_pending->v4.sin_port = 842 htons(bp->port); 843 if (addrs->sa_family == AF_INET) { 844 struct sockaddr_in *sin; 845 846 sin = (struct sockaddr_in *)addrs; 847 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 848 } else if (addrs->sa_family == AF_INET6) { 849 struct sockaddr_in6 *sin6; 850 851 sin6 = (struct sockaddr_in6 *)addrs; 852 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 853 } 854 855 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 856 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 857 asoc->asconf_addr_del_pending); 858 859 asoc->src_out_of_asoc_ok = 1; 860 stored = 1; 861 goto skip_mkasconf; 862 } 863 864 if (laddr == NULL) 865 return -EINVAL; 866 867 /* We do not need RCU protection throughout this loop 868 * because this is done under a socket lock from the 869 * setsockopt call. 870 */ 871 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 872 SCTP_PARAM_DEL_IP); 873 if (!chunk) { 874 retval = -ENOMEM; 875 goto out; 876 } 877 878 skip_mkasconf: 879 /* Reset use_as_src flag for the addresses in the bind address 880 * list that are to be deleted. 881 */ 882 addr_buf = addrs; 883 for (i = 0; i < addrcnt; i++) { 884 laddr = addr_buf; 885 af = sctp_get_af_specific(laddr->v4.sin_family); 886 list_for_each_entry(saddr, &bp->address_list, list) { 887 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 888 saddr->state = SCTP_ADDR_DEL; 889 } 890 addr_buf += af->sockaddr_len; 891 } 892 893 /* Update the route and saddr entries for all the transports 894 * as some of the addresses in the bind address list are 895 * about to be deleted and cannot be used as source addresses. 896 */ 897 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 898 transports) { 899 sctp_transport_route(transport, NULL, 900 sctp_sk(asoc->base.sk)); 901 } 902 903 if (stored) 904 /* We don't need to transmit ASCONF */ 905 continue; 906 retval = sctp_send_asconf(asoc, chunk); 907 } 908 out: 909 return retval; 910 } 911 912 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 913 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 914 { 915 struct sock *sk = sctp_opt2sk(sp); 916 union sctp_addr *addr; 917 struct sctp_af *af; 918 919 /* It is safe to write port space in caller. */ 920 addr = &addrw->a; 921 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 922 af = sctp_get_af_specific(addr->sa.sa_family); 923 if (!af) 924 return -EINVAL; 925 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 926 return -EINVAL; 927 928 if (addrw->state == SCTP_ADDR_NEW) 929 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 930 else 931 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 932 } 933 934 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 935 * 936 * API 8.1 937 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 938 * int flags); 939 * 940 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 941 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 942 * or IPv6 addresses. 943 * 944 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 945 * Section 3.1.2 for this usage. 946 * 947 * addrs is a pointer to an array of one or more socket addresses. Each 948 * address is contained in its appropriate structure (i.e. struct 949 * sockaddr_in or struct sockaddr_in6) the family of the address type 950 * must be used to distinguish the address length (note that this 951 * representation is termed a "packed array" of addresses). The caller 952 * specifies the number of addresses in the array with addrcnt. 953 * 954 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 955 * -1, and sets errno to the appropriate error code. 956 * 957 * For SCTP, the port given in each socket address must be the same, or 958 * sctp_bindx() will fail, setting errno to EINVAL. 959 * 960 * The flags parameter is formed from the bitwise OR of zero or more of 961 * the following currently defined flags: 962 * 963 * SCTP_BINDX_ADD_ADDR 964 * 965 * SCTP_BINDX_REM_ADDR 966 * 967 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 968 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 969 * addresses from the association. The two flags are mutually exclusive; 970 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 971 * not remove all addresses from an association; sctp_bindx() will 972 * reject such an attempt with EINVAL. 973 * 974 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 975 * additional addresses with an endpoint after calling bind(). Or use 976 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 977 * socket is associated with so that no new association accepted will be 978 * associated with those addresses. If the endpoint supports dynamic 979 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 980 * endpoint to send the appropriate message to the peer to change the 981 * peers address lists. 982 * 983 * Adding and removing addresses from a connected association is 984 * optional functionality. Implementations that do not support this 985 * functionality should return EOPNOTSUPP. 986 * 987 * Basically do nothing but copying the addresses from user to kernel 988 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 989 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 990 * from userspace. 991 * 992 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 993 * it. 994 * 995 * sk The sk of the socket 996 * addrs The pointer to the addresses in user land 997 * addrssize Size of the addrs buffer 998 * op Operation to perform (add or remove, see the flags of 999 * sctp_bindx) 1000 * 1001 * Returns 0 if ok, <0 errno code on error. 1002 */ 1003 static int sctp_setsockopt_bindx(struct sock *sk, 1004 struct sockaddr __user *addrs, 1005 int addrs_size, int op) 1006 { 1007 struct sockaddr *kaddrs; 1008 int err; 1009 int addrcnt = 0; 1010 int walk_size = 0; 1011 struct sockaddr *sa_addr; 1012 void *addr_buf; 1013 struct sctp_af *af; 1014 1015 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1016 __func__, sk, addrs, addrs_size, op); 1017 1018 if (unlikely(addrs_size <= 0)) 1019 return -EINVAL; 1020 1021 kaddrs = vmemdup_user(addrs, addrs_size); 1022 if (unlikely(IS_ERR(kaddrs))) 1023 return PTR_ERR(kaddrs); 1024 1025 /* Walk through the addrs buffer and count the number of addresses. */ 1026 addr_buf = kaddrs; 1027 while (walk_size < addrs_size) { 1028 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1029 kvfree(kaddrs); 1030 return -EINVAL; 1031 } 1032 1033 sa_addr = addr_buf; 1034 af = sctp_get_af_specific(sa_addr->sa_family); 1035 1036 /* If the address family is not supported or if this address 1037 * causes the address buffer to overflow return EINVAL. 1038 */ 1039 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1040 kvfree(kaddrs); 1041 return -EINVAL; 1042 } 1043 addrcnt++; 1044 addr_buf += af->sockaddr_len; 1045 walk_size += af->sockaddr_len; 1046 } 1047 1048 /* Do the work. */ 1049 switch (op) { 1050 case SCTP_BINDX_ADD_ADDR: 1051 /* Allow security module to validate bindx addresses. */ 1052 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1053 (struct sockaddr *)kaddrs, 1054 addrs_size); 1055 if (err) 1056 goto out; 1057 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1058 if (err) 1059 goto out; 1060 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1061 break; 1062 1063 case SCTP_BINDX_REM_ADDR: 1064 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1065 if (err) 1066 goto out; 1067 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1068 break; 1069 1070 default: 1071 err = -EINVAL; 1072 break; 1073 } 1074 1075 out: 1076 kvfree(kaddrs); 1077 1078 return err; 1079 } 1080 1081 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1082 * 1083 * Common routine for handling connect() and sctp_connectx(). 1084 * Connect will come in with just a single address. 1085 */ 1086 static int __sctp_connect(struct sock *sk, 1087 struct sockaddr *kaddrs, 1088 int addrs_size, int flags, 1089 sctp_assoc_t *assoc_id) 1090 { 1091 struct net *net = sock_net(sk); 1092 struct sctp_sock *sp; 1093 struct sctp_endpoint *ep; 1094 struct sctp_association *asoc = NULL; 1095 struct sctp_association *asoc2; 1096 struct sctp_transport *transport; 1097 union sctp_addr to; 1098 enum sctp_scope scope; 1099 long timeo; 1100 int err = 0; 1101 int addrcnt = 0; 1102 int walk_size = 0; 1103 union sctp_addr *sa_addr = NULL; 1104 void *addr_buf; 1105 unsigned short port; 1106 1107 sp = sctp_sk(sk); 1108 ep = sp->ep; 1109 1110 /* connect() cannot be done on a socket that is already in ESTABLISHED 1111 * state - UDP-style peeled off socket or a TCP-style socket that 1112 * is already connected. 1113 * It cannot be done even on a TCP-style listening socket. 1114 */ 1115 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1116 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1117 err = -EISCONN; 1118 goto out_free; 1119 } 1120 1121 /* Walk through the addrs buffer and count the number of addresses. */ 1122 addr_buf = kaddrs; 1123 while (walk_size < addrs_size) { 1124 struct sctp_af *af; 1125 1126 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1127 err = -EINVAL; 1128 goto out_free; 1129 } 1130 1131 sa_addr = addr_buf; 1132 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1133 1134 /* If the address family is not supported or if this address 1135 * causes the address buffer to overflow return EINVAL. 1136 */ 1137 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1138 err = -EINVAL; 1139 goto out_free; 1140 } 1141 1142 port = ntohs(sa_addr->v4.sin_port); 1143 1144 /* Save current address so we can work with it */ 1145 memcpy(&to, sa_addr, af->sockaddr_len); 1146 1147 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1148 if (err) 1149 goto out_free; 1150 1151 /* Make sure the destination port is correctly set 1152 * in all addresses. 1153 */ 1154 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1155 err = -EINVAL; 1156 goto out_free; 1157 } 1158 1159 /* Check if there already is a matching association on the 1160 * endpoint (other than the one created here). 1161 */ 1162 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1163 if (asoc2 && asoc2 != asoc) { 1164 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1165 err = -EISCONN; 1166 else 1167 err = -EALREADY; 1168 goto out_free; 1169 } 1170 1171 /* If we could not find a matching association on the endpoint, 1172 * make sure that there is no peeled-off association matching 1173 * the peer address even on another socket. 1174 */ 1175 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1176 err = -EADDRNOTAVAIL; 1177 goto out_free; 1178 } 1179 1180 if (!asoc) { 1181 /* If a bind() or sctp_bindx() is not called prior to 1182 * an sctp_connectx() call, the system picks an 1183 * ephemeral port and will choose an address set 1184 * equivalent to binding with a wildcard address. 1185 */ 1186 if (!ep->base.bind_addr.port) { 1187 if (sctp_autobind(sk)) { 1188 err = -EAGAIN; 1189 goto out_free; 1190 } 1191 } else { 1192 /* 1193 * If an unprivileged user inherits a 1-many 1194 * style socket with open associations on a 1195 * privileged port, it MAY be permitted to 1196 * accept new associations, but it SHOULD NOT 1197 * be permitted to open new associations. 1198 */ 1199 if (ep->base.bind_addr.port < 1200 inet_prot_sock(net) && 1201 !ns_capable(net->user_ns, 1202 CAP_NET_BIND_SERVICE)) { 1203 err = -EACCES; 1204 goto out_free; 1205 } 1206 } 1207 1208 scope = sctp_scope(&to); 1209 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1210 if (!asoc) { 1211 err = -ENOMEM; 1212 goto out_free; 1213 } 1214 1215 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1216 GFP_KERNEL); 1217 if (err < 0) { 1218 goto out_free; 1219 } 1220 1221 } 1222 1223 /* Prime the peer's transport structures. */ 1224 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1225 SCTP_UNKNOWN); 1226 if (!transport) { 1227 err = -ENOMEM; 1228 goto out_free; 1229 } 1230 1231 addrcnt++; 1232 addr_buf += af->sockaddr_len; 1233 walk_size += af->sockaddr_len; 1234 } 1235 1236 /* In case the user of sctp_connectx() wants an association 1237 * id back, assign one now. 1238 */ 1239 if (assoc_id) { 1240 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1241 if (err < 0) 1242 goto out_free; 1243 } 1244 1245 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1246 if (err < 0) { 1247 goto out_free; 1248 } 1249 1250 /* Initialize sk's dport and daddr for getpeername() */ 1251 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1252 sp->pf->to_sk_daddr(sa_addr, sk); 1253 sk->sk_err = 0; 1254 1255 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1256 1257 if (assoc_id) 1258 *assoc_id = asoc->assoc_id; 1259 1260 err = sctp_wait_for_connect(asoc, &timeo); 1261 /* Note: the asoc may be freed after the return of 1262 * sctp_wait_for_connect. 1263 */ 1264 1265 /* Don't free association on exit. */ 1266 asoc = NULL; 1267 1268 out_free: 1269 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1270 __func__, asoc, kaddrs, err); 1271 1272 if (asoc) { 1273 /* sctp_primitive_ASSOCIATE may have added this association 1274 * To the hash table, try to unhash it, just in case, its a noop 1275 * if it wasn't hashed so we're safe 1276 */ 1277 sctp_association_free(asoc); 1278 } 1279 return err; 1280 } 1281 1282 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1283 * 1284 * API 8.9 1285 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1286 * sctp_assoc_t *asoc); 1287 * 1288 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1289 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1290 * or IPv6 addresses. 1291 * 1292 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1293 * Section 3.1.2 for this usage. 1294 * 1295 * addrs is a pointer to an array of one or more socket addresses. Each 1296 * address is contained in its appropriate structure (i.e. struct 1297 * sockaddr_in or struct sockaddr_in6) the family of the address type 1298 * must be used to distengish the address length (note that this 1299 * representation is termed a "packed array" of addresses). The caller 1300 * specifies the number of addresses in the array with addrcnt. 1301 * 1302 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1303 * the association id of the new association. On failure, sctp_connectx() 1304 * returns -1, and sets errno to the appropriate error code. The assoc_id 1305 * is not touched by the kernel. 1306 * 1307 * For SCTP, the port given in each socket address must be the same, or 1308 * sctp_connectx() will fail, setting errno to EINVAL. 1309 * 1310 * An application can use sctp_connectx to initiate an association with 1311 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1312 * allows a caller to specify multiple addresses at which a peer can be 1313 * reached. The way the SCTP stack uses the list of addresses to set up 1314 * the association is implementation dependent. This function only 1315 * specifies that the stack will try to make use of all the addresses in 1316 * the list when needed. 1317 * 1318 * Note that the list of addresses passed in is only used for setting up 1319 * the association. It does not necessarily equal the set of addresses 1320 * the peer uses for the resulting association. If the caller wants to 1321 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1322 * retrieve them after the association has been set up. 1323 * 1324 * Basically do nothing but copying the addresses from user to kernel 1325 * land and invoking either sctp_connectx(). This is used for tunneling 1326 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1327 * 1328 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1329 * it. 1330 * 1331 * sk The sk of the socket 1332 * addrs The pointer to the addresses in user land 1333 * addrssize Size of the addrs buffer 1334 * 1335 * Returns >=0 if ok, <0 errno code on error. 1336 */ 1337 static int __sctp_setsockopt_connectx(struct sock *sk, 1338 struct sockaddr __user *addrs, 1339 int addrs_size, 1340 sctp_assoc_t *assoc_id) 1341 { 1342 struct sockaddr *kaddrs; 1343 int err = 0, flags = 0; 1344 1345 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1346 __func__, sk, addrs, addrs_size); 1347 1348 if (unlikely(addrs_size <= 0)) 1349 return -EINVAL; 1350 1351 kaddrs = vmemdup_user(addrs, addrs_size); 1352 if (unlikely(IS_ERR(kaddrs))) 1353 return PTR_ERR(kaddrs); 1354 1355 /* Allow security module to validate connectx addresses. */ 1356 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1357 (struct sockaddr *)kaddrs, 1358 addrs_size); 1359 if (err) 1360 goto out_free; 1361 1362 /* in-kernel sockets don't generally have a file allocated to them 1363 * if all they do is call sock_create_kern(). 1364 */ 1365 if (sk->sk_socket->file) 1366 flags = sk->sk_socket->file->f_flags; 1367 1368 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1369 1370 out_free: 1371 kvfree(kaddrs); 1372 1373 return err; 1374 } 1375 1376 /* 1377 * This is an older interface. It's kept for backward compatibility 1378 * to the option that doesn't provide association id. 1379 */ 1380 static int sctp_setsockopt_connectx_old(struct sock *sk, 1381 struct sockaddr __user *addrs, 1382 int addrs_size) 1383 { 1384 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1385 } 1386 1387 /* 1388 * New interface for the API. The since the API is done with a socket 1389 * option, to make it simple we feed back the association id is as a return 1390 * indication to the call. Error is always negative and association id is 1391 * always positive. 1392 */ 1393 static int sctp_setsockopt_connectx(struct sock *sk, 1394 struct sockaddr __user *addrs, 1395 int addrs_size) 1396 { 1397 sctp_assoc_t assoc_id = 0; 1398 int err = 0; 1399 1400 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1401 1402 if (err) 1403 return err; 1404 else 1405 return assoc_id; 1406 } 1407 1408 /* 1409 * New (hopefully final) interface for the API. 1410 * We use the sctp_getaddrs_old structure so that use-space library 1411 * can avoid any unnecessary allocations. The only different part 1412 * is that we store the actual length of the address buffer into the 1413 * addrs_num structure member. That way we can re-use the existing 1414 * code. 1415 */ 1416 #ifdef CONFIG_COMPAT 1417 struct compat_sctp_getaddrs_old { 1418 sctp_assoc_t assoc_id; 1419 s32 addr_num; 1420 compat_uptr_t addrs; /* struct sockaddr * */ 1421 }; 1422 #endif 1423 1424 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1425 char __user *optval, 1426 int __user *optlen) 1427 { 1428 struct sctp_getaddrs_old param; 1429 sctp_assoc_t assoc_id = 0; 1430 int err = 0; 1431 1432 #ifdef CONFIG_COMPAT 1433 if (in_compat_syscall()) { 1434 struct compat_sctp_getaddrs_old param32; 1435 1436 if (len < sizeof(param32)) 1437 return -EINVAL; 1438 if (copy_from_user(¶m32, optval, sizeof(param32))) 1439 return -EFAULT; 1440 1441 param.assoc_id = param32.assoc_id; 1442 param.addr_num = param32.addr_num; 1443 param.addrs = compat_ptr(param32.addrs); 1444 } else 1445 #endif 1446 { 1447 if (len < sizeof(param)) 1448 return -EINVAL; 1449 if (copy_from_user(¶m, optval, sizeof(param))) 1450 return -EFAULT; 1451 } 1452 1453 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1454 param.addrs, param.addr_num, 1455 &assoc_id); 1456 if (err == 0 || err == -EINPROGRESS) { 1457 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1458 return -EFAULT; 1459 if (put_user(sizeof(assoc_id), optlen)) 1460 return -EFAULT; 1461 } 1462 1463 return err; 1464 } 1465 1466 /* API 3.1.4 close() - UDP Style Syntax 1467 * Applications use close() to perform graceful shutdown (as described in 1468 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1469 * by a UDP-style socket. 1470 * 1471 * The syntax is 1472 * 1473 * ret = close(int sd); 1474 * 1475 * sd - the socket descriptor of the associations to be closed. 1476 * 1477 * To gracefully shutdown a specific association represented by the 1478 * UDP-style socket, an application should use the sendmsg() call, 1479 * passing no user data, but including the appropriate flag in the 1480 * ancillary data (see Section xxxx). 1481 * 1482 * If sd in the close() call is a branched-off socket representing only 1483 * one association, the shutdown is performed on that association only. 1484 * 1485 * 4.1.6 close() - TCP Style Syntax 1486 * 1487 * Applications use close() to gracefully close down an association. 1488 * 1489 * The syntax is: 1490 * 1491 * int close(int sd); 1492 * 1493 * sd - the socket descriptor of the association to be closed. 1494 * 1495 * After an application calls close() on a socket descriptor, no further 1496 * socket operations will succeed on that descriptor. 1497 * 1498 * API 7.1.4 SO_LINGER 1499 * 1500 * An application using the TCP-style socket can use this option to 1501 * perform the SCTP ABORT primitive. The linger option structure is: 1502 * 1503 * struct linger { 1504 * int l_onoff; // option on/off 1505 * int l_linger; // linger time 1506 * }; 1507 * 1508 * To enable the option, set l_onoff to 1. If the l_linger value is set 1509 * to 0, calling close() is the same as the ABORT primitive. If the 1510 * value is set to a negative value, the setsockopt() call will return 1511 * an error. If the value is set to a positive value linger_time, the 1512 * close() can be blocked for at most linger_time ms. If the graceful 1513 * shutdown phase does not finish during this period, close() will 1514 * return but the graceful shutdown phase continues in the system. 1515 */ 1516 static void sctp_close(struct sock *sk, long timeout) 1517 { 1518 struct net *net = sock_net(sk); 1519 struct sctp_endpoint *ep; 1520 struct sctp_association *asoc; 1521 struct list_head *pos, *temp; 1522 unsigned int data_was_unread; 1523 1524 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1525 1526 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1527 sk->sk_shutdown = SHUTDOWN_MASK; 1528 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1529 1530 ep = sctp_sk(sk)->ep; 1531 1532 /* Clean up any skbs sitting on the receive queue. */ 1533 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1534 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1535 1536 /* Walk all associations on an endpoint. */ 1537 list_for_each_safe(pos, temp, &ep->asocs) { 1538 asoc = list_entry(pos, struct sctp_association, asocs); 1539 1540 if (sctp_style(sk, TCP)) { 1541 /* A closed association can still be in the list if 1542 * it belongs to a TCP-style listening socket that is 1543 * not yet accepted. If so, free it. If not, send an 1544 * ABORT or SHUTDOWN based on the linger options. 1545 */ 1546 if (sctp_state(asoc, CLOSED)) { 1547 sctp_association_free(asoc); 1548 continue; 1549 } 1550 } 1551 1552 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1553 !skb_queue_empty(&asoc->ulpq.reasm) || 1554 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1555 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1556 struct sctp_chunk *chunk; 1557 1558 chunk = sctp_make_abort_user(asoc, NULL, 0); 1559 sctp_primitive_ABORT(net, asoc, chunk); 1560 } else 1561 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1562 } 1563 1564 /* On a TCP-style socket, block for at most linger_time if set. */ 1565 if (sctp_style(sk, TCP) && timeout) 1566 sctp_wait_for_close(sk, timeout); 1567 1568 /* This will run the backlog queue. */ 1569 release_sock(sk); 1570 1571 /* Supposedly, no process has access to the socket, but 1572 * the net layers still may. 1573 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1574 * held and that should be grabbed before socket lock. 1575 */ 1576 spin_lock_bh(&net->sctp.addr_wq_lock); 1577 bh_lock_sock_nested(sk); 1578 1579 /* Hold the sock, since sk_common_release() will put sock_put() 1580 * and we have just a little more cleanup. 1581 */ 1582 sock_hold(sk); 1583 sk_common_release(sk); 1584 1585 bh_unlock_sock(sk); 1586 spin_unlock_bh(&net->sctp.addr_wq_lock); 1587 1588 sock_put(sk); 1589 1590 SCTP_DBG_OBJCNT_DEC(sock); 1591 } 1592 1593 /* Handle EPIPE error. */ 1594 static int sctp_error(struct sock *sk, int flags, int err) 1595 { 1596 if (err == -EPIPE) 1597 err = sock_error(sk) ? : -EPIPE; 1598 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1599 send_sig(SIGPIPE, current, 0); 1600 return err; 1601 } 1602 1603 /* API 3.1.3 sendmsg() - UDP Style Syntax 1604 * 1605 * An application uses sendmsg() and recvmsg() calls to transmit data to 1606 * and receive data from its peer. 1607 * 1608 * ssize_t sendmsg(int socket, const struct msghdr *message, 1609 * int flags); 1610 * 1611 * socket - the socket descriptor of the endpoint. 1612 * message - pointer to the msghdr structure which contains a single 1613 * user message and possibly some ancillary data. 1614 * 1615 * See Section 5 for complete description of the data 1616 * structures. 1617 * 1618 * flags - flags sent or received with the user message, see Section 1619 * 5 for complete description of the flags. 1620 * 1621 * Note: This function could use a rewrite especially when explicit 1622 * connect support comes in. 1623 */ 1624 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1625 1626 static int sctp_msghdr_parse(const struct msghdr *msg, 1627 struct sctp_cmsgs *cmsgs); 1628 1629 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1630 struct sctp_sndrcvinfo *srinfo, 1631 const struct msghdr *msg, size_t msg_len) 1632 { 1633 __u16 sflags; 1634 int err; 1635 1636 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1637 return -EPIPE; 1638 1639 if (msg_len > sk->sk_sndbuf) 1640 return -EMSGSIZE; 1641 1642 memset(cmsgs, 0, sizeof(*cmsgs)); 1643 err = sctp_msghdr_parse(msg, cmsgs); 1644 if (err) { 1645 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1646 return err; 1647 } 1648 1649 memset(srinfo, 0, sizeof(*srinfo)); 1650 if (cmsgs->srinfo) { 1651 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1652 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1653 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1654 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1655 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1656 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1657 } 1658 1659 if (cmsgs->sinfo) { 1660 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1661 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1662 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1663 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1664 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1665 } 1666 1667 if (cmsgs->prinfo) { 1668 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1669 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1670 cmsgs->prinfo->pr_policy); 1671 } 1672 1673 sflags = srinfo->sinfo_flags; 1674 if (!sflags && msg_len) 1675 return 0; 1676 1677 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1678 return -EINVAL; 1679 1680 if (((sflags & SCTP_EOF) && msg_len > 0) || 1681 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1682 return -EINVAL; 1683 1684 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1685 return -EINVAL; 1686 1687 return 0; 1688 } 1689 1690 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1691 struct sctp_cmsgs *cmsgs, 1692 union sctp_addr *daddr, 1693 struct sctp_transport **tp) 1694 { 1695 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1696 struct net *net = sock_net(sk); 1697 struct sctp_association *asoc; 1698 enum sctp_scope scope; 1699 struct cmsghdr *cmsg; 1700 __be32 flowinfo = 0; 1701 struct sctp_af *af; 1702 int err; 1703 1704 *tp = NULL; 1705 1706 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1707 return -EINVAL; 1708 1709 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1710 sctp_sstate(sk, CLOSING))) 1711 return -EADDRNOTAVAIL; 1712 1713 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1714 return -EADDRNOTAVAIL; 1715 1716 if (!ep->base.bind_addr.port) { 1717 if (sctp_autobind(sk)) 1718 return -EAGAIN; 1719 } else { 1720 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1721 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1722 return -EACCES; 1723 } 1724 1725 scope = sctp_scope(daddr); 1726 1727 /* Label connection socket for first association 1-to-many 1728 * style for client sequence socket()->sendmsg(). This 1729 * needs to be done before sctp_assoc_add_peer() as that will 1730 * set up the initial packet that needs to account for any 1731 * security ip options (CIPSO/CALIPSO) added to the packet. 1732 */ 1733 af = sctp_get_af_specific(daddr->sa.sa_family); 1734 if (!af) 1735 return -EINVAL; 1736 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1737 (struct sockaddr *)daddr, 1738 af->sockaddr_len); 1739 if (err < 0) 1740 return err; 1741 1742 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1743 if (!asoc) 1744 return -ENOMEM; 1745 1746 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1747 err = -ENOMEM; 1748 goto free; 1749 } 1750 1751 if (cmsgs->init) { 1752 struct sctp_initmsg *init = cmsgs->init; 1753 1754 if (init->sinit_num_ostreams) { 1755 __u16 outcnt = init->sinit_num_ostreams; 1756 1757 asoc->c.sinit_num_ostreams = outcnt; 1758 /* outcnt has been changed, need to re-init stream */ 1759 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1760 GFP_KERNEL); 1761 if (err) 1762 goto free; 1763 } 1764 1765 if (init->sinit_max_instreams) 1766 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1767 1768 if (init->sinit_max_attempts) 1769 asoc->max_init_attempts = init->sinit_max_attempts; 1770 1771 if (init->sinit_max_init_timeo) 1772 asoc->max_init_timeo = 1773 msecs_to_jiffies(init->sinit_max_init_timeo); 1774 } 1775 1776 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1777 if (!*tp) { 1778 err = -ENOMEM; 1779 goto free; 1780 } 1781 1782 if (!cmsgs->addrs_msg) 1783 return 0; 1784 1785 if (daddr->sa.sa_family == AF_INET6) 1786 flowinfo = daddr->v6.sin6_flowinfo; 1787 1788 /* sendv addr list parse */ 1789 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1790 struct sctp_transport *transport; 1791 struct sctp_association *old; 1792 union sctp_addr _daddr; 1793 int dlen; 1794 1795 if (cmsg->cmsg_level != IPPROTO_SCTP || 1796 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1797 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1798 continue; 1799 1800 daddr = &_daddr; 1801 memset(daddr, 0, sizeof(*daddr)); 1802 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1803 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1804 if (dlen < sizeof(struct in_addr)) { 1805 err = -EINVAL; 1806 goto free; 1807 } 1808 1809 dlen = sizeof(struct in_addr); 1810 daddr->v4.sin_family = AF_INET; 1811 daddr->v4.sin_port = htons(asoc->peer.port); 1812 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1813 } else { 1814 if (dlen < sizeof(struct in6_addr)) { 1815 err = -EINVAL; 1816 goto free; 1817 } 1818 1819 dlen = sizeof(struct in6_addr); 1820 daddr->v6.sin6_flowinfo = flowinfo; 1821 daddr->v6.sin6_family = AF_INET6; 1822 daddr->v6.sin6_port = htons(asoc->peer.port); 1823 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1824 } 1825 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1826 if (err) 1827 goto free; 1828 1829 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1830 if (old && old != asoc) { 1831 if (old->state >= SCTP_STATE_ESTABLISHED) 1832 err = -EISCONN; 1833 else 1834 err = -EALREADY; 1835 goto free; 1836 } 1837 1838 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1839 err = -EADDRNOTAVAIL; 1840 goto free; 1841 } 1842 1843 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1844 SCTP_UNKNOWN); 1845 if (!transport) { 1846 err = -ENOMEM; 1847 goto free; 1848 } 1849 } 1850 1851 return 0; 1852 1853 free: 1854 sctp_association_free(asoc); 1855 return err; 1856 } 1857 1858 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1859 __u16 sflags, struct msghdr *msg, 1860 size_t msg_len) 1861 { 1862 struct sock *sk = asoc->base.sk; 1863 struct net *net = sock_net(sk); 1864 1865 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1866 return -EPIPE; 1867 1868 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1869 !sctp_state(asoc, ESTABLISHED)) 1870 return 0; 1871 1872 if (sflags & SCTP_EOF) { 1873 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1874 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1875 1876 return 0; 1877 } 1878 1879 if (sflags & SCTP_ABORT) { 1880 struct sctp_chunk *chunk; 1881 1882 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1883 if (!chunk) 1884 return -ENOMEM; 1885 1886 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1887 sctp_primitive_ABORT(net, asoc, chunk); 1888 1889 return 0; 1890 } 1891 1892 return 1; 1893 } 1894 1895 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1896 struct msghdr *msg, size_t msg_len, 1897 struct sctp_transport *transport, 1898 struct sctp_sndrcvinfo *sinfo) 1899 { 1900 struct sock *sk = asoc->base.sk; 1901 struct sctp_sock *sp = sctp_sk(sk); 1902 struct net *net = sock_net(sk); 1903 struct sctp_datamsg *datamsg; 1904 bool wait_connect = false; 1905 struct sctp_chunk *chunk; 1906 long timeo; 1907 int err; 1908 1909 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1910 err = -EINVAL; 1911 goto err; 1912 } 1913 1914 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1915 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1916 if (err) 1917 goto err; 1918 } 1919 1920 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1921 err = -EMSGSIZE; 1922 goto err; 1923 } 1924 1925 if (asoc->pmtu_pending) { 1926 if (sp->param_flags & SPP_PMTUD_ENABLE) 1927 sctp_assoc_sync_pmtu(asoc); 1928 asoc->pmtu_pending = 0; 1929 } 1930 1931 if (sctp_wspace(asoc) < msg_len) 1932 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1933 1934 if (!sctp_wspace(asoc)) { 1935 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1936 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1937 if (err) 1938 goto err; 1939 } 1940 1941 if (sctp_state(asoc, CLOSED)) { 1942 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1943 if (err) 1944 goto err; 1945 1946 if (sp->strm_interleave) { 1947 timeo = sock_sndtimeo(sk, 0); 1948 err = sctp_wait_for_connect(asoc, &timeo); 1949 if (err) 1950 goto err; 1951 } else { 1952 wait_connect = true; 1953 } 1954 1955 pr_debug("%s: we associated primitively\n", __func__); 1956 } 1957 1958 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1959 if (IS_ERR(datamsg)) { 1960 err = PTR_ERR(datamsg); 1961 goto err; 1962 } 1963 1964 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1965 1966 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1967 sctp_chunk_hold(chunk); 1968 sctp_set_owner_w(chunk); 1969 chunk->transport = transport; 1970 } 1971 1972 err = sctp_primitive_SEND(net, asoc, datamsg); 1973 if (err) { 1974 sctp_datamsg_free(datamsg); 1975 goto err; 1976 } 1977 1978 pr_debug("%s: we sent primitively\n", __func__); 1979 1980 sctp_datamsg_put(datamsg); 1981 1982 if (unlikely(wait_connect)) { 1983 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1984 sctp_wait_for_connect(asoc, &timeo); 1985 } 1986 1987 err = msg_len; 1988 1989 err: 1990 return err; 1991 } 1992 1993 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1994 const struct msghdr *msg, 1995 struct sctp_cmsgs *cmsgs) 1996 { 1997 union sctp_addr *daddr = NULL; 1998 int err; 1999 2000 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 2001 int len = msg->msg_namelen; 2002 2003 if (len > sizeof(*daddr)) 2004 len = sizeof(*daddr); 2005 2006 daddr = (union sctp_addr *)msg->msg_name; 2007 2008 err = sctp_verify_addr(sk, daddr, len); 2009 if (err) 2010 return ERR_PTR(err); 2011 } 2012 2013 return daddr; 2014 } 2015 2016 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2017 struct sctp_sndrcvinfo *sinfo, 2018 struct sctp_cmsgs *cmsgs) 2019 { 2020 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2021 sinfo->sinfo_stream = asoc->default_stream; 2022 sinfo->sinfo_ppid = asoc->default_ppid; 2023 sinfo->sinfo_context = asoc->default_context; 2024 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2025 2026 if (!cmsgs->prinfo) 2027 sinfo->sinfo_flags = asoc->default_flags; 2028 } 2029 2030 if (!cmsgs->srinfo && !cmsgs->prinfo) 2031 sinfo->sinfo_timetolive = asoc->default_timetolive; 2032 2033 if (cmsgs->authinfo) { 2034 /* Reuse sinfo_tsn to indicate that authinfo was set and 2035 * sinfo_ssn to save the keyid on tx path. 2036 */ 2037 sinfo->sinfo_tsn = 1; 2038 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2039 } 2040 } 2041 2042 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2043 { 2044 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2045 struct sctp_transport *transport = NULL; 2046 struct sctp_sndrcvinfo _sinfo, *sinfo; 2047 struct sctp_association *asoc; 2048 struct sctp_cmsgs cmsgs; 2049 union sctp_addr *daddr; 2050 bool new = false; 2051 __u16 sflags; 2052 int err; 2053 2054 /* Parse and get snd_info */ 2055 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2056 if (err) 2057 goto out; 2058 2059 sinfo = &_sinfo; 2060 sflags = sinfo->sinfo_flags; 2061 2062 /* Get daddr from msg */ 2063 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2064 if (IS_ERR(daddr)) { 2065 err = PTR_ERR(daddr); 2066 goto out; 2067 } 2068 2069 lock_sock(sk); 2070 2071 /* SCTP_SENDALL process */ 2072 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2073 list_for_each_entry(asoc, &ep->asocs, asocs) { 2074 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2075 msg_len); 2076 if (err == 0) 2077 continue; 2078 if (err < 0) 2079 goto out_unlock; 2080 2081 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2082 2083 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2084 NULL, sinfo); 2085 if (err < 0) 2086 goto out_unlock; 2087 2088 iov_iter_revert(&msg->msg_iter, err); 2089 } 2090 2091 goto out_unlock; 2092 } 2093 2094 /* Get and check or create asoc */ 2095 if (daddr) { 2096 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2097 if (asoc) { 2098 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2099 msg_len); 2100 if (err <= 0) 2101 goto out_unlock; 2102 } else { 2103 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2104 &transport); 2105 if (err) 2106 goto out_unlock; 2107 2108 asoc = transport->asoc; 2109 new = true; 2110 } 2111 2112 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2113 transport = NULL; 2114 } else { 2115 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2116 if (!asoc) { 2117 err = -EPIPE; 2118 goto out_unlock; 2119 } 2120 2121 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2122 if (err <= 0) 2123 goto out_unlock; 2124 } 2125 2126 /* Update snd_info with the asoc */ 2127 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2128 2129 /* Send msg to the asoc */ 2130 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2131 if (err < 0 && err != -ESRCH && new) 2132 sctp_association_free(asoc); 2133 2134 out_unlock: 2135 release_sock(sk); 2136 out: 2137 return sctp_error(sk, msg->msg_flags, err); 2138 } 2139 2140 /* This is an extended version of skb_pull() that removes the data from the 2141 * start of a skb even when data is spread across the list of skb's in the 2142 * frag_list. len specifies the total amount of data that needs to be removed. 2143 * when 'len' bytes could be removed from the skb, it returns 0. 2144 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2145 * could not be removed. 2146 */ 2147 static int sctp_skb_pull(struct sk_buff *skb, int len) 2148 { 2149 struct sk_buff *list; 2150 int skb_len = skb_headlen(skb); 2151 int rlen; 2152 2153 if (len <= skb_len) { 2154 __skb_pull(skb, len); 2155 return 0; 2156 } 2157 len -= skb_len; 2158 __skb_pull(skb, skb_len); 2159 2160 skb_walk_frags(skb, list) { 2161 rlen = sctp_skb_pull(list, len); 2162 skb->len -= (len-rlen); 2163 skb->data_len -= (len-rlen); 2164 2165 if (!rlen) 2166 return 0; 2167 2168 len = rlen; 2169 } 2170 2171 return len; 2172 } 2173 2174 /* API 3.1.3 recvmsg() - UDP Style Syntax 2175 * 2176 * ssize_t recvmsg(int socket, struct msghdr *message, 2177 * int flags); 2178 * 2179 * socket - the socket descriptor of the endpoint. 2180 * message - pointer to the msghdr structure which contains a single 2181 * user message and possibly some ancillary data. 2182 * 2183 * See Section 5 for complete description of the data 2184 * structures. 2185 * 2186 * flags - flags sent or received with the user message, see Section 2187 * 5 for complete description of the flags. 2188 */ 2189 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2190 int noblock, int flags, int *addr_len) 2191 { 2192 struct sctp_ulpevent *event = NULL; 2193 struct sctp_sock *sp = sctp_sk(sk); 2194 struct sk_buff *skb, *head_skb; 2195 int copied; 2196 int err = 0; 2197 int skb_len; 2198 2199 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2200 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2201 addr_len); 2202 2203 lock_sock(sk); 2204 2205 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2206 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2207 err = -ENOTCONN; 2208 goto out; 2209 } 2210 2211 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2212 if (!skb) 2213 goto out; 2214 2215 /* Get the total length of the skb including any skb's in the 2216 * frag_list. 2217 */ 2218 skb_len = skb->len; 2219 2220 copied = skb_len; 2221 if (copied > len) 2222 copied = len; 2223 2224 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2225 2226 event = sctp_skb2event(skb); 2227 2228 if (err) 2229 goto out_free; 2230 2231 if (event->chunk && event->chunk->head_skb) 2232 head_skb = event->chunk->head_skb; 2233 else 2234 head_skb = skb; 2235 sock_recv_ts_and_drops(msg, sk, head_skb); 2236 if (sctp_ulpevent_is_notification(event)) { 2237 msg->msg_flags |= MSG_NOTIFICATION; 2238 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2239 } else { 2240 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2241 } 2242 2243 /* Check if we allow SCTP_NXTINFO. */ 2244 if (sp->recvnxtinfo) 2245 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2246 /* Check if we allow SCTP_RCVINFO. */ 2247 if (sp->recvrcvinfo) 2248 sctp_ulpevent_read_rcvinfo(event, msg); 2249 /* Check if we allow SCTP_SNDRCVINFO. */ 2250 if (sp->subscribe.sctp_data_io_event) 2251 sctp_ulpevent_read_sndrcvinfo(event, msg); 2252 2253 err = copied; 2254 2255 /* If skb's length exceeds the user's buffer, update the skb and 2256 * push it back to the receive_queue so that the next call to 2257 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2258 */ 2259 if (skb_len > copied) { 2260 msg->msg_flags &= ~MSG_EOR; 2261 if (flags & MSG_PEEK) 2262 goto out_free; 2263 sctp_skb_pull(skb, copied); 2264 skb_queue_head(&sk->sk_receive_queue, skb); 2265 2266 /* When only partial message is copied to the user, increase 2267 * rwnd by that amount. If all the data in the skb is read, 2268 * rwnd is updated when the event is freed. 2269 */ 2270 if (!sctp_ulpevent_is_notification(event)) 2271 sctp_assoc_rwnd_increase(event->asoc, copied); 2272 goto out; 2273 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2274 (event->msg_flags & MSG_EOR)) 2275 msg->msg_flags |= MSG_EOR; 2276 else 2277 msg->msg_flags &= ~MSG_EOR; 2278 2279 out_free: 2280 if (flags & MSG_PEEK) { 2281 /* Release the skb reference acquired after peeking the skb in 2282 * sctp_skb_recv_datagram(). 2283 */ 2284 kfree_skb(skb); 2285 } else { 2286 /* Free the event which includes releasing the reference to 2287 * the owner of the skb, freeing the skb and updating the 2288 * rwnd. 2289 */ 2290 sctp_ulpevent_free(event); 2291 } 2292 out: 2293 release_sock(sk); 2294 return err; 2295 } 2296 2297 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2298 * 2299 * This option is a on/off flag. If enabled no SCTP message 2300 * fragmentation will be performed. Instead if a message being sent 2301 * exceeds the current PMTU size, the message will NOT be sent and 2302 * instead a error will be indicated to the user. 2303 */ 2304 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2305 char __user *optval, 2306 unsigned int optlen) 2307 { 2308 int val; 2309 2310 if (optlen < sizeof(int)) 2311 return -EINVAL; 2312 2313 if (get_user(val, (int __user *)optval)) 2314 return -EFAULT; 2315 2316 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2317 2318 return 0; 2319 } 2320 2321 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2322 unsigned int optlen) 2323 { 2324 struct sctp_association *asoc; 2325 struct sctp_ulpevent *event; 2326 2327 if (optlen > sizeof(struct sctp_event_subscribe)) 2328 return -EINVAL; 2329 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2330 return -EFAULT; 2331 2332 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2333 * if there is no data to be sent or retransmit, the stack will 2334 * immediately send up this notification. 2335 */ 2336 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2337 &sctp_sk(sk)->subscribe)) { 2338 asoc = sctp_id2assoc(sk, 0); 2339 2340 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2341 event = sctp_ulpevent_make_sender_dry_event(asoc, 2342 GFP_USER | __GFP_NOWARN); 2343 if (!event) 2344 return -ENOMEM; 2345 2346 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2347 } 2348 } 2349 2350 return 0; 2351 } 2352 2353 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2354 * 2355 * This socket option is applicable to the UDP-style socket only. When 2356 * set it will cause associations that are idle for more than the 2357 * specified number of seconds to automatically close. An association 2358 * being idle is defined an association that has NOT sent or received 2359 * user data. The special value of '0' indicates that no automatic 2360 * close of any associations should be performed. The option expects an 2361 * integer defining the number of seconds of idle time before an 2362 * association is closed. 2363 */ 2364 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2365 unsigned int optlen) 2366 { 2367 struct sctp_sock *sp = sctp_sk(sk); 2368 struct net *net = sock_net(sk); 2369 2370 /* Applicable to UDP-style socket only */ 2371 if (sctp_style(sk, TCP)) 2372 return -EOPNOTSUPP; 2373 if (optlen != sizeof(int)) 2374 return -EINVAL; 2375 if (copy_from_user(&sp->autoclose, optval, optlen)) 2376 return -EFAULT; 2377 2378 if (sp->autoclose > net->sctp.max_autoclose) 2379 sp->autoclose = net->sctp.max_autoclose; 2380 2381 return 0; 2382 } 2383 2384 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2385 * 2386 * Applications can enable or disable heartbeats for any peer address of 2387 * an association, modify an address's heartbeat interval, force a 2388 * heartbeat to be sent immediately, and adjust the address's maximum 2389 * number of retransmissions sent before an address is considered 2390 * unreachable. The following structure is used to access and modify an 2391 * address's parameters: 2392 * 2393 * struct sctp_paddrparams { 2394 * sctp_assoc_t spp_assoc_id; 2395 * struct sockaddr_storage spp_address; 2396 * uint32_t spp_hbinterval; 2397 * uint16_t spp_pathmaxrxt; 2398 * uint32_t spp_pathmtu; 2399 * uint32_t spp_sackdelay; 2400 * uint32_t spp_flags; 2401 * uint32_t spp_ipv6_flowlabel; 2402 * uint8_t spp_dscp; 2403 * }; 2404 * 2405 * spp_assoc_id - (one-to-many style socket) This is filled in the 2406 * application, and identifies the association for 2407 * this query. 2408 * spp_address - This specifies which address is of interest. 2409 * spp_hbinterval - This contains the value of the heartbeat interval, 2410 * in milliseconds. If a value of zero 2411 * is present in this field then no changes are to 2412 * be made to this parameter. 2413 * spp_pathmaxrxt - This contains the maximum number of 2414 * retransmissions before this address shall be 2415 * considered unreachable. If a value of zero 2416 * is present in this field then no changes are to 2417 * be made to this parameter. 2418 * spp_pathmtu - When Path MTU discovery is disabled the value 2419 * specified here will be the "fixed" path mtu. 2420 * Note that if the spp_address field is empty 2421 * then all associations on this address will 2422 * have this fixed path mtu set upon them. 2423 * 2424 * spp_sackdelay - When delayed sack is enabled, this value specifies 2425 * the number of milliseconds that sacks will be delayed 2426 * for. This value will apply to all addresses of an 2427 * association if the spp_address field is empty. Note 2428 * also, that if delayed sack is enabled and this 2429 * value is set to 0, no change is made to the last 2430 * recorded delayed sack timer value. 2431 * 2432 * spp_flags - These flags are used to control various features 2433 * on an association. The flag field may contain 2434 * zero or more of the following options. 2435 * 2436 * SPP_HB_ENABLE - Enable heartbeats on the 2437 * specified address. Note that if the address 2438 * field is empty all addresses for the association 2439 * have heartbeats enabled upon them. 2440 * 2441 * SPP_HB_DISABLE - Disable heartbeats on the 2442 * speicifed address. Note that if the address 2443 * field is empty all addresses for the association 2444 * will have their heartbeats disabled. Note also 2445 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2446 * mutually exclusive, only one of these two should 2447 * be specified. Enabling both fields will have 2448 * undetermined results. 2449 * 2450 * SPP_HB_DEMAND - Request a user initiated heartbeat 2451 * to be made immediately. 2452 * 2453 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2454 * heartbeat delayis to be set to the value of 0 2455 * milliseconds. 2456 * 2457 * SPP_PMTUD_ENABLE - This field will enable PMTU 2458 * discovery upon the specified address. Note that 2459 * if the address feild is empty then all addresses 2460 * on the association are effected. 2461 * 2462 * SPP_PMTUD_DISABLE - This field will disable PMTU 2463 * discovery upon the specified address. Note that 2464 * if the address feild is empty then all addresses 2465 * on the association are effected. Not also that 2466 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2467 * exclusive. Enabling both will have undetermined 2468 * results. 2469 * 2470 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2471 * on delayed sack. The time specified in spp_sackdelay 2472 * is used to specify the sack delay for this address. Note 2473 * that if spp_address is empty then all addresses will 2474 * enable delayed sack and take on the sack delay 2475 * value specified in spp_sackdelay. 2476 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2477 * off delayed sack. If the spp_address field is blank then 2478 * delayed sack is disabled for the entire association. Note 2479 * also that this field is mutually exclusive to 2480 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2481 * results. 2482 * 2483 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2484 * setting of the IPV6 flow label value. The value is 2485 * contained in the spp_ipv6_flowlabel field. 2486 * Upon retrieval, this flag will be set to indicate that 2487 * the spp_ipv6_flowlabel field has a valid value returned. 2488 * If a specific destination address is set (in the 2489 * spp_address field), then the value returned is that of 2490 * the address. If just an association is specified (and 2491 * no address), then the association's default flow label 2492 * is returned. If neither an association nor a destination 2493 * is specified, then the socket's default flow label is 2494 * returned. For non-IPv6 sockets, this flag will be left 2495 * cleared. 2496 * 2497 * SPP_DSCP: Setting this flag enables the setting of the 2498 * Differentiated Services Code Point (DSCP) value 2499 * associated with either the association or a specific 2500 * address. The value is obtained in the spp_dscp field. 2501 * Upon retrieval, this flag will be set to indicate that 2502 * the spp_dscp field has a valid value returned. If a 2503 * specific destination address is set when called (in the 2504 * spp_address field), then that specific destination 2505 * address's DSCP value is returned. If just an association 2506 * is specified, then the association's default DSCP is 2507 * returned. If neither an association nor a destination is 2508 * specified, then the socket's default DSCP is returned. 2509 * 2510 * spp_ipv6_flowlabel 2511 * - This field is used in conjunction with the 2512 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2513 * The 20 least significant bits are used for the flow 2514 * label. This setting has precedence over any IPv6-layer 2515 * setting. 2516 * 2517 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2518 * and contains the DSCP. The 6 most significant bits are 2519 * used for the DSCP. This setting has precedence over any 2520 * IPv4- or IPv6- layer setting. 2521 */ 2522 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2523 struct sctp_transport *trans, 2524 struct sctp_association *asoc, 2525 struct sctp_sock *sp, 2526 int hb_change, 2527 int pmtud_change, 2528 int sackdelay_change) 2529 { 2530 int error; 2531 2532 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2533 struct net *net = sock_net(trans->asoc->base.sk); 2534 2535 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2536 if (error) 2537 return error; 2538 } 2539 2540 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2541 * this field is ignored. Note also that a value of zero indicates 2542 * the current setting should be left unchanged. 2543 */ 2544 if (params->spp_flags & SPP_HB_ENABLE) { 2545 2546 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2547 * set. This lets us use 0 value when this flag 2548 * is set. 2549 */ 2550 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2551 params->spp_hbinterval = 0; 2552 2553 if (params->spp_hbinterval || 2554 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2555 if (trans) { 2556 trans->hbinterval = 2557 msecs_to_jiffies(params->spp_hbinterval); 2558 } else if (asoc) { 2559 asoc->hbinterval = 2560 msecs_to_jiffies(params->spp_hbinterval); 2561 } else { 2562 sp->hbinterval = params->spp_hbinterval; 2563 } 2564 } 2565 } 2566 2567 if (hb_change) { 2568 if (trans) { 2569 trans->param_flags = 2570 (trans->param_flags & ~SPP_HB) | hb_change; 2571 } else if (asoc) { 2572 asoc->param_flags = 2573 (asoc->param_flags & ~SPP_HB) | hb_change; 2574 } else { 2575 sp->param_flags = 2576 (sp->param_flags & ~SPP_HB) | hb_change; 2577 } 2578 } 2579 2580 /* When Path MTU discovery is disabled the value specified here will 2581 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2582 * include the flag SPP_PMTUD_DISABLE for this field to have any 2583 * effect). 2584 */ 2585 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2586 if (trans) { 2587 trans->pathmtu = params->spp_pathmtu; 2588 sctp_assoc_sync_pmtu(asoc); 2589 } else if (asoc) { 2590 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2591 } else { 2592 sp->pathmtu = params->spp_pathmtu; 2593 } 2594 } 2595 2596 if (pmtud_change) { 2597 if (trans) { 2598 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2599 (params->spp_flags & SPP_PMTUD_ENABLE); 2600 trans->param_flags = 2601 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2602 if (update) { 2603 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2604 sctp_assoc_sync_pmtu(asoc); 2605 } 2606 } else if (asoc) { 2607 asoc->param_flags = 2608 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2609 } else { 2610 sp->param_flags = 2611 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2612 } 2613 } 2614 2615 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2616 * value of this field is ignored. Note also that a value of zero 2617 * indicates the current setting should be left unchanged. 2618 */ 2619 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2620 if (trans) { 2621 trans->sackdelay = 2622 msecs_to_jiffies(params->spp_sackdelay); 2623 } else if (asoc) { 2624 asoc->sackdelay = 2625 msecs_to_jiffies(params->spp_sackdelay); 2626 } else { 2627 sp->sackdelay = params->spp_sackdelay; 2628 } 2629 } 2630 2631 if (sackdelay_change) { 2632 if (trans) { 2633 trans->param_flags = 2634 (trans->param_flags & ~SPP_SACKDELAY) | 2635 sackdelay_change; 2636 } else if (asoc) { 2637 asoc->param_flags = 2638 (asoc->param_flags & ~SPP_SACKDELAY) | 2639 sackdelay_change; 2640 } else { 2641 sp->param_flags = 2642 (sp->param_flags & ~SPP_SACKDELAY) | 2643 sackdelay_change; 2644 } 2645 } 2646 2647 /* Note that a value of zero indicates the current setting should be 2648 left unchanged. 2649 */ 2650 if (params->spp_pathmaxrxt) { 2651 if (trans) { 2652 trans->pathmaxrxt = params->spp_pathmaxrxt; 2653 } else if (asoc) { 2654 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2655 } else { 2656 sp->pathmaxrxt = params->spp_pathmaxrxt; 2657 } 2658 } 2659 2660 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2661 if (trans && trans->ipaddr.sa.sa_family == AF_INET6) { 2662 trans->flowlabel = params->spp_ipv6_flowlabel & 2663 SCTP_FLOWLABEL_VAL_MASK; 2664 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2665 } else if (asoc) { 2666 list_for_each_entry(trans, 2667 &asoc->peer.transport_addr_list, 2668 transports) { 2669 if (trans->ipaddr.sa.sa_family != AF_INET6) 2670 continue; 2671 trans->flowlabel = params->spp_ipv6_flowlabel & 2672 SCTP_FLOWLABEL_VAL_MASK; 2673 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2674 } 2675 asoc->flowlabel = params->spp_ipv6_flowlabel & 2676 SCTP_FLOWLABEL_VAL_MASK; 2677 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2678 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2679 sp->flowlabel = params->spp_ipv6_flowlabel & 2680 SCTP_FLOWLABEL_VAL_MASK; 2681 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2682 } 2683 } 2684 2685 if (params->spp_flags & SPP_DSCP) { 2686 if (trans) { 2687 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2688 trans->dscp |= SCTP_DSCP_SET_MASK; 2689 } else if (asoc) { 2690 list_for_each_entry(trans, 2691 &asoc->peer.transport_addr_list, 2692 transports) { 2693 trans->dscp = params->spp_dscp & 2694 SCTP_DSCP_VAL_MASK; 2695 trans->dscp |= SCTP_DSCP_SET_MASK; 2696 } 2697 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2698 asoc->dscp |= SCTP_DSCP_SET_MASK; 2699 } else { 2700 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2701 sp->dscp |= SCTP_DSCP_SET_MASK; 2702 } 2703 } 2704 2705 return 0; 2706 } 2707 2708 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2709 char __user *optval, 2710 unsigned int optlen) 2711 { 2712 struct sctp_paddrparams params; 2713 struct sctp_transport *trans = NULL; 2714 struct sctp_association *asoc = NULL; 2715 struct sctp_sock *sp = sctp_sk(sk); 2716 int error; 2717 int hb_change, pmtud_change, sackdelay_change; 2718 2719 if (optlen == sizeof(params)) { 2720 if (copy_from_user(¶ms, optval, optlen)) 2721 return -EFAULT; 2722 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2723 spp_ipv6_flowlabel), 4)) { 2724 if (copy_from_user(¶ms, optval, optlen)) 2725 return -EFAULT; 2726 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2727 return -EINVAL; 2728 } else { 2729 return -EINVAL; 2730 } 2731 2732 /* Validate flags and value parameters. */ 2733 hb_change = params.spp_flags & SPP_HB; 2734 pmtud_change = params.spp_flags & SPP_PMTUD; 2735 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2736 2737 if (hb_change == SPP_HB || 2738 pmtud_change == SPP_PMTUD || 2739 sackdelay_change == SPP_SACKDELAY || 2740 params.spp_sackdelay > 500 || 2741 (params.spp_pathmtu && 2742 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2743 return -EINVAL; 2744 2745 /* If an address other than INADDR_ANY is specified, and 2746 * no transport is found, then the request is invalid. 2747 */ 2748 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2749 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2750 params.spp_assoc_id); 2751 if (!trans) 2752 return -EINVAL; 2753 } 2754 2755 /* Get association, if assoc_id != 0 and the socket is a one 2756 * to many style socket, and an association was not found, then 2757 * the id was invalid. 2758 */ 2759 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2760 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2761 return -EINVAL; 2762 2763 /* Heartbeat demand can only be sent on a transport or 2764 * association, but not a socket. 2765 */ 2766 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2767 return -EINVAL; 2768 2769 /* Process parameters. */ 2770 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2771 hb_change, pmtud_change, 2772 sackdelay_change); 2773 2774 if (error) 2775 return error; 2776 2777 /* If changes are for association, also apply parameters to each 2778 * transport. 2779 */ 2780 if (!trans && asoc) { 2781 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2782 transports) { 2783 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2784 hb_change, pmtud_change, 2785 sackdelay_change); 2786 } 2787 } 2788 2789 return 0; 2790 } 2791 2792 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2793 { 2794 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2795 } 2796 2797 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2798 { 2799 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2800 } 2801 2802 /* 2803 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2804 * 2805 * This option will effect the way delayed acks are performed. This 2806 * option allows you to get or set the delayed ack time, in 2807 * milliseconds. It also allows changing the delayed ack frequency. 2808 * Changing the frequency to 1 disables the delayed sack algorithm. If 2809 * the assoc_id is 0, then this sets or gets the endpoints default 2810 * values. If the assoc_id field is non-zero, then the set or get 2811 * effects the specified association for the one to many model (the 2812 * assoc_id field is ignored by the one to one model). Note that if 2813 * sack_delay or sack_freq are 0 when setting this option, then the 2814 * current values will remain unchanged. 2815 * 2816 * struct sctp_sack_info { 2817 * sctp_assoc_t sack_assoc_id; 2818 * uint32_t sack_delay; 2819 * uint32_t sack_freq; 2820 * }; 2821 * 2822 * sack_assoc_id - This parameter, indicates which association the user 2823 * is performing an action upon. Note that if this field's value is 2824 * zero then the endpoints default value is changed (effecting future 2825 * associations only). 2826 * 2827 * sack_delay - This parameter contains the number of milliseconds that 2828 * the user is requesting the delayed ACK timer be set to. Note that 2829 * this value is defined in the standard to be between 200 and 500 2830 * milliseconds. 2831 * 2832 * sack_freq - This parameter contains the number of packets that must 2833 * be received before a sack is sent without waiting for the delay 2834 * timer to expire. The default value for this is 2, setting this 2835 * value to 1 will disable the delayed sack algorithm. 2836 */ 2837 2838 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2839 char __user *optval, unsigned int optlen) 2840 { 2841 struct sctp_sack_info params; 2842 struct sctp_transport *trans = NULL; 2843 struct sctp_association *asoc = NULL; 2844 struct sctp_sock *sp = sctp_sk(sk); 2845 2846 if (optlen == sizeof(struct sctp_sack_info)) { 2847 if (copy_from_user(¶ms, optval, optlen)) 2848 return -EFAULT; 2849 2850 if (params.sack_delay == 0 && params.sack_freq == 0) 2851 return 0; 2852 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2853 pr_warn_ratelimited(DEPRECATED 2854 "%s (pid %d) " 2855 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2856 "Use struct sctp_sack_info instead\n", 2857 current->comm, task_pid_nr(current)); 2858 if (copy_from_user(¶ms, optval, optlen)) 2859 return -EFAULT; 2860 2861 if (params.sack_delay == 0) 2862 params.sack_freq = 1; 2863 else 2864 params.sack_freq = 0; 2865 } else 2866 return -EINVAL; 2867 2868 /* Validate value parameter. */ 2869 if (params.sack_delay > 500) 2870 return -EINVAL; 2871 2872 /* Get association, if sack_assoc_id != 0 and the socket is a one 2873 * to many style socket, and an association was not found, then 2874 * the id was invalid. 2875 */ 2876 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2877 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2878 return -EINVAL; 2879 2880 if (params.sack_delay) { 2881 if (asoc) { 2882 asoc->sackdelay = 2883 msecs_to_jiffies(params.sack_delay); 2884 asoc->param_flags = 2885 sctp_spp_sackdelay_enable(asoc->param_flags); 2886 } else { 2887 sp->sackdelay = params.sack_delay; 2888 sp->param_flags = 2889 sctp_spp_sackdelay_enable(sp->param_flags); 2890 } 2891 } 2892 2893 if (params.sack_freq == 1) { 2894 if (asoc) { 2895 asoc->param_flags = 2896 sctp_spp_sackdelay_disable(asoc->param_flags); 2897 } else { 2898 sp->param_flags = 2899 sctp_spp_sackdelay_disable(sp->param_flags); 2900 } 2901 } else if (params.sack_freq > 1) { 2902 if (asoc) { 2903 asoc->sackfreq = params.sack_freq; 2904 asoc->param_flags = 2905 sctp_spp_sackdelay_enable(asoc->param_flags); 2906 } else { 2907 sp->sackfreq = params.sack_freq; 2908 sp->param_flags = 2909 sctp_spp_sackdelay_enable(sp->param_flags); 2910 } 2911 } 2912 2913 /* If change is for association, also apply to each transport. */ 2914 if (asoc) { 2915 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2916 transports) { 2917 if (params.sack_delay) { 2918 trans->sackdelay = 2919 msecs_to_jiffies(params.sack_delay); 2920 trans->param_flags = 2921 sctp_spp_sackdelay_enable(trans->param_flags); 2922 } 2923 if (params.sack_freq == 1) { 2924 trans->param_flags = 2925 sctp_spp_sackdelay_disable(trans->param_flags); 2926 } else if (params.sack_freq > 1) { 2927 trans->sackfreq = params.sack_freq; 2928 trans->param_flags = 2929 sctp_spp_sackdelay_enable(trans->param_flags); 2930 } 2931 } 2932 } 2933 2934 return 0; 2935 } 2936 2937 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2938 * 2939 * Applications can specify protocol parameters for the default association 2940 * initialization. The option name argument to setsockopt() and getsockopt() 2941 * is SCTP_INITMSG. 2942 * 2943 * Setting initialization parameters is effective only on an unconnected 2944 * socket (for UDP-style sockets only future associations are effected 2945 * by the change). With TCP-style sockets, this option is inherited by 2946 * sockets derived from a listener socket. 2947 */ 2948 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2949 { 2950 struct sctp_initmsg sinit; 2951 struct sctp_sock *sp = sctp_sk(sk); 2952 2953 if (optlen != sizeof(struct sctp_initmsg)) 2954 return -EINVAL; 2955 if (copy_from_user(&sinit, optval, optlen)) 2956 return -EFAULT; 2957 2958 if (sinit.sinit_num_ostreams) 2959 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2960 if (sinit.sinit_max_instreams) 2961 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2962 if (sinit.sinit_max_attempts) 2963 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2964 if (sinit.sinit_max_init_timeo) 2965 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2966 2967 return 0; 2968 } 2969 2970 /* 2971 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2972 * 2973 * Applications that wish to use the sendto() system call may wish to 2974 * specify a default set of parameters that would normally be supplied 2975 * through the inclusion of ancillary data. This socket option allows 2976 * such an application to set the default sctp_sndrcvinfo structure. 2977 * The application that wishes to use this socket option simply passes 2978 * in to this call the sctp_sndrcvinfo structure defined in Section 2979 * 5.2.2) The input parameters accepted by this call include 2980 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2981 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2982 * to this call if the caller is using the UDP model. 2983 */ 2984 static int sctp_setsockopt_default_send_param(struct sock *sk, 2985 char __user *optval, 2986 unsigned int optlen) 2987 { 2988 struct sctp_sock *sp = sctp_sk(sk); 2989 struct sctp_association *asoc; 2990 struct sctp_sndrcvinfo info; 2991 2992 if (optlen != sizeof(info)) 2993 return -EINVAL; 2994 if (copy_from_user(&info, optval, optlen)) 2995 return -EFAULT; 2996 if (info.sinfo_flags & 2997 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2998 SCTP_ABORT | SCTP_EOF)) 2999 return -EINVAL; 3000 3001 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3002 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 3003 return -EINVAL; 3004 if (asoc) { 3005 asoc->default_stream = info.sinfo_stream; 3006 asoc->default_flags = info.sinfo_flags; 3007 asoc->default_ppid = info.sinfo_ppid; 3008 asoc->default_context = info.sinfo_context; 3009 asoc->default_timetolive = info.sinfo_timetolive; 3010 } else { 3011 sp->default_stream = info.sinfo_stream; 3012 sp->default_flags = info.sinfo_flags; 3013 sp->default_ppid = info.sinfo_ppid; 3014 sp->default_context = info.sinfo_context; 3015 sp->default_timetolive = info.sinfo_timetolive; 3016 } 3017 3018 return 0; 3019 } 3020 3021 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3022 * (SCTP_DEFAULT_SNDINFO) 3023 */ 3024 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3025 char __user *optval, 3026 unsigned int optlen) 3027 { 3028 struct sctp_sock *sp = sctp_sk(sk); 3029 struct sctp_association *asoc; 3030 struct sctp_sndinfo info; 3031 3032 if (optlen != sizeof(info)) 3033 return -EINVAL; 3034 if (copy_from_user(&info, optval, optlen)) 3035 return -EFAULT; 3036 if (info.snd_flags & 3037 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3038 SCTP_ABORT | SCTP_EOF)) 3039 return -EINVAL; 3040 3041 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3042 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 3043 return -EINVAL; 3044 if (asoc) { 3045 asoc->default_stream = info.snd_sid; 3046 asoc->default_flags = info.snd_flags; 3047 asoc->default_ppid = info.snd_ppid; 3048 asoc->default_context = info.snd_context; 3049 } else { 3050 sp->default_stream = info.snd_sid; 3051 sp->default_flags = info.snd_flags; 3052 sp->default_ppid = info.snd_ppid; 3053 sp->default_context = info.snd_context; 3054 } 3055 3056 return 0; 3057 } 3058 3059 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3060 * 3061 * Requests that the local SCTP stack use the enclosed peer address as 3062 * the association primary. The enclosed address must be one of the 3063 * association peer's addresses. 3064 */ 3065 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3066 unsigned int optlen) 3067 { 3068 struct sctp_prim prim; 3069 struct sctp_transport *trans; 3070 struct sctp_af *af; 3071 int err; 3072 3073 if (optlen != sizeof(struct sctp_prim)) 3074 return -EINVAL; 3075 3076 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3077 return -EFAULT; 3078 3079 /* Allow security module to validate address but need address len. */ 3080 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3081 if (!af) 3082 return -EINVAL; 3083 3084 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3085 (struct sockaddr *)&prim.ssp_addr, 3086 af->sockaddr_len); 3087 if (err) 3088 return err; 3089 3090 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3091 if (!trans) 3092 return -EINVAL; 3093 3094 sctp_assoc_set_primary(trans->asoc, trans); 3095 3096 return 0; 3097 } 3098 3099 /* 3100 * 7.1.5 SCTP_NODELAY 3101 * 3102 * Turn on/off any Nagle-like algorithm. This means that packets are 3103 * generally sent as soon as possible and no unnecessary delays are 3104 * introduced, at the cost of more packets in the network. Expects an 3105 * integer boolean flag. 3106 */ 3107 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3108 unsigned int optlen) 3109 { 3110 int val; 3111 3112 if (optlen < sizeof(int)) 3113 return -EINVAL; 3114 if (get_user(val, (int __user *)optval)) 3115 return -EFAULT; 3116 3117 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3118 return 0; 3119 } 3120 3121 /* 3122 * 3123 * 7.1.1 SCTP_RTOINFO 3124 * 3125 * The protocol parameters used to initialize and bound retransmission 3126 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3127 * and modify these parameters. 3128 * All parameters are time values, in milliseconds. A value of 0, when 3129 * modifying the parameters, indicates that the current value should not 3130 * be changed. 3131 * 3132 */ 3133 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3134 { 3135 struct sctp_rtoinfo rtoinfo; 3136 struct sctp_association *asoc; 3137 unsigned long rto_min, rto_max; 3138 struct sctp_sock *sp = sctp_sk(sk); 3139 3140 if (optlen != sizeof (struct sctp_rtoinfo)) 3141 return -EINVAL; 3142 3143 if (copy_from_user(&rtoinfo, optval, optlen)) 3144 return -EFAULT; 3145 3146 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3147 3148 /* Set the values to the specific association */ 3149 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3150 return -EINVAL; 3151 3152 rto_max = rtoinfo.srto_max; 3153 rto_min = rtoinfo.srto_min; 3154 3155 if (rto_max) 3156 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3157 else 3158 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3159 3160 if (rto_min) 3161 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3162 else 3163 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3164 3165 if (rto_min > rto_max) 3166 return -EINVAL; 3167 3168 if (asoc) { 3169 if (rtoinfo.srto_initial != 0) 3170 asoc->rto_initial = 3171 msecs_to_jiffies(rtoinfo.srto_initial); 3172 asoc->rto_max = rto_max; 3173 asoc->rto_min = rto_min; 3174 } else { 3175 /* If there is no association or the association-id = 0 3176 * set the values to the endpoint. 3177 */ 3178 if (rtoinfo.srto_initial != 0) 3179 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3180 sp->rtoinfo.srto_max = rto_max; 3181 sp->rtoinfo.srto_min = rto_min; 3182 } 3183 3184 return 0; 3185 } 3186 3187 /* 3188 * 3189 * 7.1.2 SCTP_ASSOCINFO 3190 * 3191 * This option is used to tune the maximum retransmission attempts 3192 * of the association. 3193 * Returns an error if the new association retransmission value is 3194 * greater than the sum of the retransmission value of the peer. 3195 * See [SCTP] for more information. 3196 * 3197 */ 3198 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3199 { 3200 3201 struct sctp_assocparams assocparams; 3202 struct sctp_association *asoc; 3203 3204 if (optlen != sizeof(struct sctp_assocparams)) 3205 return -EINVAL; 3206 if (copy_from_user(&assocparams, optval, optlen)) 3207 return -EFAULT; 3208 3209 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3210 3211 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3212 return -EINVAL; 3213 3214 /* Set the values to the specific association */ 3215 if (asoc) { 3216 if (assocparams.sasoc_asocmaxrxt != 0) { 3217 __u32 path_sum = 0; 3218 int paths = 0; 3219 struct sctp_transport *peer_addr; 3220 3221 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3222 transports) { 3223 path_sum += peer_addr->pathmaxrxt; 3224 paths++; 3225 } 3226 3227 /* Only validate asocmaxrxt if we have more than 3228 * one path/transport. We do this because path 3229 * retransmissions are only counted when we have more 3230 * then one path. 3231 */ 3232 if (paths > 1 && 3233 assocparams.sasoc_asocmaxrxt > path_sum) 3234 return -EINVAL; 3235 3236 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3237 } 3238 3239 if (assocparams.sasoc_cookie_life != 0) 3240 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3241 } else { 3242 /* Set the values to the endpoint */ 3243 struct sctp_sock *sp = sctp_sk(sk); 3244 3245 if (assocparams.sasoc_asocmaxrxt != 0) 3246 sp->assocparams.sasoc_asocmaxrxt = 3247 assocparams.sasoc_asocmaxrxt; 3248 if (assocparams.sasoc_cookie_life != 0) 3249 sp->assocparams.sasoc_cookie_life = 3250 assocparams.sasoc_cookie_life; 3251 } 3252 return 0; 3253 } 3254 3255 /* 3256 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3257 * 3258 * This socket option is a boolean flag which turns on or off mapped V4 3259 * addresses. If this option is turned on and the socket is type 3260 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3261 * If this option is turned off, then no mapping will be done of V4 3262 * addresses and a user will receive both PF_INET6 and PF_INET type 3263 * addresses on the socket. 3264 */ 3265 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3266 { 3267 int val; 3268 struct sctp_sock *sp = sctp_sk(sk); 3269 3270 if (optlen < sizeof(int)) 3271 return -EINVAL; 3272 if (get_user(val, (int __user *)optval)) 3273 return -EFAULT; 3274 if (val) 3275 sp->v4mapped = 1; 3276 else 3277 sp->v4mapped = 0; 3278 3279 return 0; 3280 } 3281 3282 /* 3283 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3284 * This option will get or set the maximum size to put in any outgoing 3285 * SCTP DATA chunk. If a message is larger than this size it will be 3286 * fragmented by SCTP into the specified size. Note that the underlying 3287 * SCTP implementation may fragment into smaller sized chunks when the 3288 * PMTU of the underlying association is smaller than the value set by 3289 * the user. The default value for this option is '0' which indicates 3290 * the user is NOT limiting fragmentation and only the PMTU will effect 3291 * SCTP's choice of DATA chunk size. Note also that values set larger 3292 * than the maximum size of an IP datagram will effectively let SCTP 3293 * control fragmentation (i.e. the same as setting this option to 0). 3294 * 3295 * The following structure is used to access and modify this parameter: 3296 * 3297 * struct sctp_assoc_value { 3298 * sctp_assoc_t assoc_id; 3299 * uint32_t assoc_value; 3300 * }; 3301 * 3302 * assoc_id: This parameter is ignored for one-to-one style sockets. 3303 * For one-to-many style sockets this parameter indicates which 3304 * association the user is performing an action upon. Note that if 3305 * this field's value is zero then the endpoints default value is 3306 * changed (effecting future associations only). 3307 * assoc_value: This parameter specifies the maximum size in bytes. 3308 */ 3309 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3310 { 3311 struct sctp_sock *sp = sctp_sk(sk); 3312 struct sctp_assoc_value params; 3313 struct sctp_association *asoc; 3314 int val; 3315 3316 if (optlen == sizeof(int)) { 3317 pr_warn_ratelimited(DEPRECATED 3318 "%s (pid %d) " 3319 "Use of int in maxseg socket option.\n" 3320 "Use struct sctp_assoc_value instead\n", 3321 current->comm, task_pid_nr(current)); 3322 if (copy_from_user(&val, optval, optlen)) 3323 return -EFAULT; 3324 params.assoc_id = 0; 3325 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3326 if (copy_from_user(¶ms, optval, optlen)) 3327 return -EFAULT; 3328 val = params.assoc_value; 3329 } else { 3330 return -EINVAL; 3331 } 3332 3333 asoc = sctp_id2assoc(sk, params.assoc_id); 3334 3335 if (val) { 3336 int min_len, max_len; 3337 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3338 sizeof(struct sctp_data_chunk); 3339 3340 min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT, 3341 datasize); 3342 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3343 3344 if (val < min_len || val > max_len) 3345 return -EINVAL; 3346 } 3347 3348 if (asoc) { 3349 asoc->user_frag = val; 3350 sctp_assoc_update_frag_point(asoc); 3351 } else { 3352 if (params.assoc_id && sctp_style(sk, UDP)) 3353 return -EINVAL; 3354 sp->user_frag = val; 3355 } 3356 3357 return 0; 3358 } 3359 3360 3361 /* 3362 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3363 * 3364 * Requests that the peer mark the enclosed address as the association 3365 * primary. The enclosed address must be one of the association's 3366 * locally bound addresses. The following structure is used to make a 3367 * set primary request: 3368 */ 3369 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3370 unsigned int optlen) 3371 { 3372 struct net *net = sock_net(sk); 3373 struct sctp_sock *sp; 3374 struct sctp_association *asoc = NULL; 3375 struct sctp_setpeerprim prim; 3376 struct sctp_chunk *chunk; 3377 struct sctp_af *af; 3378 int err; 3379 3380 sp = sctp_sk(sk); 3381 3382 if (!net->sctp.addip_enable) 3383 return -EPERM; 3384 3385 if (optlen != sizeof(struct sctp_setpeerprim)) 3386 return -EINVAL; 3387 3388 if (copy_from_user(&prim, optval, optlen)) 3389 return -EFAULT; 3390 3391 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3392 if (!asoc) 3393 return -EINVAL; 3394 3395 if (!asoc->peer.asconf_capable) 3396 return -EPERM; 3397 3398 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3399 return -EPERM; 3400 3401 if (!sctp_state(asoc, ESTABLISHED)) 3402 return -ENOTCONN; 3403 3404 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3405 if (!af) 3406 return -EINVAL; 3407 3408 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3409 return -EADDRNOTAVAIL; 3410 3411 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3412 return -EADDRNOTAVAIL; 3413 3414 /* Allow security module to validate address. */ 3415 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3416 (struct sockaddr *)&prim.sspp_addr, 3417 af->sockaddr_len); 3418 if (err) 3419 return err; 3420 3421 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3422 chunk = sctp_make_asconf_set_prim(asoc, 3423 (union sctp_addr *)&prim.sspp_addr); 3424 if (!chunk) 3425 return -ENOMEM; 3426 3427 err = sctp_send_asconf(asoc, chunk); 3428 3429 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3430 3431 return err; 3432 } 3433 3434 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3435 unsigned int optlen) 3436 { 3437 struct sctp_setadaptation adaptation; 3438 3439 if (optlen != sizeof(struct sctp_setadaptation)) 3440 return -EINVAL; 3441 if (copy_from_user(&adaptation, optval, optlen)) 3442 return -EFAULT; 3443 3444 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3445 3446 return 0; 3447 } 3448 3449 /* 3450 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3451 * 3452 * The context field in the sctp_sndrcvinfo structure is normally only 3453 * used when a failed message is retrieved holding the value that was 3454 * sent down on the actual send call. This option allows the setting of 3455 * a default context on an association basis that will be received on 3456 * reading messages from the peer. This is especially helpful in the 3457 * one-2-many model for an application to keep some reference to an 3458 * internal state machine that is processing messages on the 3459 * association. Note that the setting of this value only effects 3460 * received messages from the peer and does not effect the value that is 3461 * saved with outbound messages. 3462 */ 3463 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3464 unsigned int optlen) 3465 { 3466 struct sctp_assoc_value params; 3467 struct sctp_sock *sp; 3468 struct sctp_association *asoc; 3469 3470 if (optlen != sizeof(struct sctp_assoc_value)) 3471 return -EINVAL; 3472 if (copy_from_user(¶ms, optval, optlen)) 3473 return -EFAULT; 3474 3475 sp = sctp_sk(sk); 3476 3477 if (params.assoc_id != 0) { 3478 asoc = sctp_id2assoc(sk, params.assoc_id); 3479 if (!asoc) 3480 return -EINVAL; 3481 asoc->default_rcv_context = params.assoc_value; 3482 } else { 3483 sp->default_rcv_context = params.assoc_value; 3484 } 3485 3486 return 0; 3487 } 3488 3489 /* 3490 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3491 * 3492 * This options will at a minimum specify if the implementation is doing 3493 * fragmented interleave. Fragmented interleave, for a one to many 3494 * socket, is when subsequent calls to receive a message may return 3495 * parts of messages from different associations. Some implementations 3496 * may allow you to turn this value on or off. If so, when turned off, 3497 * no fragment interleave will occur (which will cause a head of line 3498 * blocking amongst multiple associations sharing the same one to many 3499 * socket). When this option is turned on, then each receive call may 3500 * come from a different association (thus the user must receive data 3501 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3502 * association each receive belongs to. 3503 * 3504 * This option takes a boolean value. A non-zero value indicates that 3505 * fragmented interleave is on. A value of zero indicates that 3506 * fragmented interleave is off. 3507 * 3508 * Note that it is important that an implementation that allows this 3509 * option to be turned on, have it off by default. Otherwise an unaware 3510 * application using the one to many model may become confused and act 3511 * incorrectly. 3512 */ 3513 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3514 char __user *optval, 3515 unsigned int optlen) 3516 { 3517 int val; 3518 3519 if (optlen != sizeof(int)) 3520 return -EINVAL; 3521 if (get_user(val, (int __user *)optval)) 3522 return -EFAULT; 3523 3524 sctp_sk(sk)->frag_interleave = !!val; 3525 3526 if (!sctp_sk(sk)->frag_interleave) 3527 sctp_sk(sk)->strm_interleave = 0; 3528 3529 return 0; 3530 } 3531 3532 /* 3533 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3534 * (SCTP_PARTIAL_DELIVERY_POINT) 3535 * 3536 * This option will set or get the SCTP partial delivery point. This 3537 * point is the size of a message where the partial delivery API will be 3538 * invoked to help free up rwnd space for the peer. Setting this to a 3539 * lower value will cause partial deliveries to happen more often. The 3540 * calls argument is an integer that sets or gets the partial delivery 3541 * point. Note also that the call will fail if the user attempts to set 3542 * this value larger than the socket receive buffer size. 3543 * 3544 * Note that any single message having a length smaller than or equal to 3545 * the SCTP partial delivery point will be delivered in one single read 3546 * call as long as the user provided buffer is large enough to hold the 3547 * message. 3548 */ 3549 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3550 char __user *optval, 3551 unsigned int optlen) 3552 { 3553 u32 val; 3554 3555 if (optlen != sizeof(u32)) 3556 return -EINVAL; 3557 if (get_user(val, (int __user *)optval)) 3558 return -EFAULT; 3559 3560 /* Note: We double the receive buffer from what the user sets 3561 * it to be, also initial rwnd is based on rcvbuf/2. 3562 */ 3563 if (val > (sk->sk_rcvbuf >> 1)) 3564 return -EINVAL; 3565 3566 sctp_sk(sk)->pd_point = val; 3567 3568 return 0; /* is this the right error code? */ 3569 } 3570 3571 /* 3572 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3573 * 3574 * This option will allow a user to change the maximum burst of packets 3575 * that can be emitted by this association. Note that the default value 3576 * is 4, and some implementations may restrict this setting so that it 3577 * can only be lowered. 3578 * 3579 * NOTE: This text doesn't seem right. Do this on a socket basis with 3580 * future associations inheriting the socket value. 3581 */ 3582 static int sctp_setsockopt_maxburst(struct sock *sk, 3583 char __user *optval, 3584 unsigned int optlen) 3585 { 3586 struct sctp_assoc_value params; 3587 struct sctp_sock *sp; 3588 struct sctp_association *asoc; 3589 int val; 3590 int assoc_id = 0; 3591 3592 if (optlen == sizeof(int)) { 3593 pr_warn_ratelimited(DEPRECATED 3594 "%s (pid %d) " 3595 "Use of int in max_burst socket option deprecated.\n" 3596 "Use struct sctp_assoc_value instead\n", 3597 current->comm, task_pid_nr(current)); 3598 if (copy_from_user(&val, optval, optlen)) 3599 return -EFAULT; 3600 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3601 if (copy_from_user(¶ms, optval, optlen)) 3602 return -EFAULT; 3603 val = params.assoc_value; 3604 assoc_id = params.assoc_id; 3605 } else 3606 return -EINVAL; 3607 3608 sp = sctp_sk(sk); 3609 3610 if (assoc_id != 0) { 3611 asoc = sctp_id2assoc(sk, assoc_id); 3612 if (!asoc) 3613 return -EINVAL; 3614 asoc->max_burst = val; 3615 } else 3616 sp->max_burst = val; 3617 3618 return 0; 3619 } 3620 3621 /* 3622 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3623 * 3624 * This set option adds a chunk type that the user is requesting to be 3625 * received only in an authenticated way. Changes to the list of chunks 3626 * will only effect future associations on the socket. 3627 */ 3628 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3629 char __user *optval, 3630 unsigned int optlen) 3631 { 3632 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3633 struct sctp_authchunk val; 3634 3635 if (!ep->auth_enable) 3636 return -EACCES; 3637 3638 if (optlen != sizeof(struct sctp_authchunk)) 3639 return -EINVAL; 3640 if (copy_from_user(&val, optval, optlen)) 3641 return -EFAULT; 3642 3643 switch (val.sauth_chunk) { 3644 case SCTP_CID_INIT: 3645 case SCTP_CID_INIT_ACK: 3646 case SCTP_CID_SHUTDOWN_COMPLETE: 3647 case SCTP_CID_AUTH: 3648 return -EINVAL; 3649 } 3650 3651 /* add this chunk id to the endpoint */ 3652 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3653 } 3654 3655 /* 3656 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3657 * 3658 * This option gets or sets the list of HMAC algorithms that the local 3659 * endpoint requires the peer to use. 3660 */ 3661 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3662 char __user *optval, 3663 unsigned int optlen) 3664 { 3665 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3666 struct sctp_hmacalgo *hmacs; 3667 u32 idents; 3668 int err; 3669 3670 if (!ep->auth_enable) 3671 return -EACCES; 3672 3673 if (optlen < sizeof(struct sctp_hmacalgo)) 3674 return -EINVAL; 3675 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3676 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3677 3678 hmacs = memdup_user(optval, optlen); 3679 if (IS_ERR(hmacs)) 3680 return PTR_ERR(hmacs); 3681 3682 idents = hmacs->shmac_num_idents; 3683 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3684 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3685 err = -EINVAL; 3686 goto out; 3687 } 3688 3689 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3690 out: 3691 kfree(hmacs); 3692 return err; 3693 } 3694 3695 /* 3696 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3697 * 3698 * This option will set a shared secret key which is used to build an 3699 * association shared key. 3700 */ 3701 static int sctp_setsockopt_auth_key(struct sock *sk, 3702 char __user *optval, 3703 unsigned int optlen) 3704 { 3705 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3706 struct sctp_authkey *authkey; 3707 struct sctp_association *asoc; 3708 int ret; 3709 3710 if (!ep->auth_enable) 3711 return -EACCES; 3712 3713 if (optlen <= sizeof(struct sctp_authkey)) 3714 return -EINVAL; 3715 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3716 * this. 3717 */ 3718 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3719 sizeof(struct sctp_authkey)); 3720 3721 authkey = memdup_user(optval, optlen); 3722 if (IS_ERR(authkey)) 3723 return PTR_ERR(authkey); 3724 3725 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3726 ret = -EINVAL; 3727 goto out; 3728 } 3729 3730 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3731 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3732 ret = -EINVAL; 3733 goto out; 3734 } 3735 3736 ret = sctp_auth_set_key(ep, asoc, authkey); 3737 out: 3738 kzfree(authkey); 3739 return ret; 3740 } 3741 3742 /* 3743 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3744 * 3745 * This option will get or set the active shared key to be used to build 3746 * the association shared key. 3747 */ 3748 static int sctp_setsockopt_active_key(struct sock *sk, 3749 char __user *optval, 3750 unsigned int optlen) 3751 { 3752 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3753 struct sctp_authkeyid val; 3754 struct sctp_association *asoc; 3755 3756 if (!ep->auth_enable) 3757 return -EACCES; 3758 3759 if (optlen != sizeof(struct sctp_authkeyid)) 3760 return -EINVAL; 3761 if (copy_from_user(&val, optval, optlen)) 3762 return -EFAULT; 3763 3764 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3765 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3766 return -EINVAL; 3767 3768 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3769 } 3770 3771 /* 3772 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3773 * 3774 * This set option will delete a shared secret key from use. 3775 */ 3776 static int sctp_setsockopt_del_key(struct sock *sk, 3777 char __user *optval, 3778 unsigned int optlen) 3779 { 3780 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3781 struct sctp_authkeyid val; 3782 struct sctp_association *asoc; 3783 3784 if (!ep->auth_enable) 3785 return -EACCES; 3786 3787 if (optlen != sizeof(struct sctp_authkeyid)) 3788 return -EINVAL; 3789 if (copy_from_user(&val, optval, optlen)) 3790 return -EFAULT; 3791 3792 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3793 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3794 return -EINVAL; 3795 3796 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3797 3798 } 3799 3800 /* 3801 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3802 * 3803 * This set option will deactivate a shared secret key. 3804 */ 3805 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3806 unsigned int optlen) 3807 { 3808 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3809 struct sctp_authkeyid val; 3810 struct sctp_association *asoc; 3811 3812 if (!ep->auth_enable) 3813 return -EACCES; 3814 3815 if (optlen != sizeof(struct sctp_authkeyid)) 3816 return -EINVAL; 3817 if (copy_from_user(&val, optval, optlen)) 3818 return -EFAULT; 3819 3820 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3821 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3822 return -EINVAL; 3823 3824 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3825 } 3826 3827 /* 3828 * 8.1.23 SCTP_AUTO_ASCONF 3829 * 3830 * This option will enable or disable the use of the automatic generation of 3831 * ASCONF chunks to add and delete addresses to an existing association. Note 3832 * that this option has two caveats namely: a) it only affects sockets that 3833 * are bound to all addresses available to the SCTP stack, and b) the system 3834 * administrator may have an overriding control that turns the ASCONF feature 3835 * off no matter what setting the socket option may have. 3836 * This option expects an integer boolean flag, where a non-zero value turns on 3837 * the option, and a zero value turns off the option. 3838 * Note. In this implementation, socket operation overrides default parameter 3839 * being set by sysctl as well as FreeBSD implementation 3840 */ 3841 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3842 unsigned int optlen) 3843 { 3844 int val; 3845 struct sctp_sock *sp = sctp_sk(sk); 3846 3847 if (optlen < sizeof(int)) 3848 return -EINVAL; 3849 if (get_user(val, (int __user *)optval)) 3850 return -EFAULT; 3851 if (!sctp_is_ep_boundall(sk) && val) 3852 return -EINVAL; 3853 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3854 return 0; 3855 3856 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3857 if (val == 0 && sp->do_auto_asconf) { 3858 list_del(&sp->auto_asconf_list); 3859 sp->do_auto_asconf = 0; 3860 } else if (val && !sp->do_auto_asconf) { 3861 list_add_tail(&sp->auto_asconf_list, 3862 &sock_net(sk)->sctp.auto_asconf_splist); 3863 sp->do_auto_asconf = 1; 3864 } 3865 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3866 return 0; 3867 } 3868 3869 /* 3870 * SCTP_PEER_ADDR_THLDS 3871 * 3872 * This option allows us to alter the partially failed threshold for one or all 3873 * transports in an association. See Section 6.1 of: 3874 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3875 */ 3876 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3877 char __user *optval, 3878 unsigned int optlen) 3879 { 3880 struct sctp_paddrthlds val; 3881 struct sctp_transport *trans; 3882 struct sctp_association *asoc; 3883 3884 if (optlen < sizeof(struct sctp_paddrthlds)) 3885 return -EINVAL; 3886 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3887 sizeof(struct sctp_paddrthlds))) 3888 return -EFAULT; 3889 3890 3891 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3892 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3893 if (!asoc) 3894 return -ENOENT; 3895 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3896 transports) { 3897 if (val.spt_pathmaxrxt) 3898 trans->pathmaxrxt = val.spt_pathmaxrxt; 3899 trans->pf_retrans = val.spt_pathpfthld; 3900 } 3901 3902 if (val.spt_pathmaxrxt) 3903 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3904 asoc->pf_retrans = val.spt_pathpfthld; 3905 } else { 3906 trans = sctp_addr_id2transport(sk, &val.spt_address, 3907 val.spt_assoc_id); 3908 if (!trans) 3909 return -ENOENT; 3910 3911 if (val.spt_pathmaxrxt) 3912 trans->pathmaxrxt = val.spt_pathmaxrxt; 3913 trans->pf_retrans = val.spt_pathpfthld; 3914 } 3915 3916 return 0; 3917 } 3918 3919 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3920 char __user *optval, 3921 unsigned int optlen) 3922 { 3923 int val; 3924 3925 if (optlen < sizeof(int)) 3926 return -EINVAL; 3927 if (get_user(val, (int __user *) optval)) 3928 return -EFAULT; 3929 3930 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3931 3932 return 0; 3933 } 3934 3935 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3936 char __user *optval, 3937 unsigned int optlen) 3938 { 3939 int val; 3940 3941 if (optlen < sizeof(int)) 3942 return -EINVAL; 3943 if (get_user(val, (int __user *) optval)) 3944 return -EFAULT; 3945 3946 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3947 3948 return 0; 3949 } 3950 3951 static int sctp_setsockopt_pr_supported(struct sock *sk, 3952 char __user *optval, 3953 unsigned int optlen) 3954 { 3955 struct sctp_assoc_value params; 3956 struct sctp_association *asoc; 3957 int retval = -EINVAL; 3958 3959 if (optlen != sizeof(params)) 3960 goto out; 3961 3962 if (copy_from_user(¶ms, optval, optlen)) { 3963 retval = -EFAULT; 3964 goto out; 3965 } 3966 3967 asoc = sctp_id2assoc(sk, params.assoc_id); 3968 if (asoc) { 3969 asoc->prsctp_enable = !!params.assoc_value; 3970 } else if (!params.assoc_id) { 3971 struct sctp_sock *sp = sctp_sk(sk); 3972 3973 sp->ep->prsctp_enable = !!params.assoc_value; 3974 } else { 3975 goto out; 3976 } 3977 3978 retval = 0; 3979 3980 out: 3981 return retval; 3982 } 3983 3984 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3985 char __user *optval, 3986 unsigned int optlen) 3987 { 3988 struct sctp_default_prinfo info; 3989 struct sctp_association *asoc; 3990 int retval = -EINVAL; 3991 3992 if (optlen != sizeof(info)) 3993 goto out; 3994 3995 if (copy_from_user(&info, optval, sizeof(info))) { 3996 retval = -EFAULT; 3997 goto out; 3998 } 3999 4000 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4001 goto out; 4002 4003 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4004 info.pr_value = 0; 4005 4006 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4007 if (asoc) { 4008 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4009 asoc->default_timetolive = info.pr_value; 4010 } else if (!info.pr_assoc_id) { 4011 struct sctp_sock *sp = sctp_sk(sk); 4012 4013 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4014 sp->default_timetolive = info.pr_value; 4015 } else { 4016 goto out; 4017 } 4018 4019 retval = 0; 4020 4021 out: 4022 return retval; 4023 } 4024 4025 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4026 char __user *optval, 4027 unsigned int optlen) 4028 { 4029 struct sctp_assoc_value params; 4030 struct sctp_association *asoc; 4031 int retval = -EINVAL; 4032 4033 if (optlen != sizeof(params)) 4034 goto out; 4035 4036 if (copy_from_user(¶ms, optval, optlen)) { 4037 retval = -EFAULT; 4038 goto out; 4039 } 4040 4041 asoc = sctp_id2assoc(sk, params.assoc_id); 4042 if (asoc) { 4043 asoc->reconf_enable = !!params.assoc_value; 4044 } else if (!params.assoc_id) { 4045 struct sctp_sock *sp = sctp_sk(sk); 4046 4047 sp->ep->reconf_enable = !!params.assoc_value; 4048 } else { 4049 goto out; 4050 } 4051 4052 retval = 0; 4053 4054 out: 4055 return retval; 4056 } 4057 4058 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4059 char __user *optval, 4060 unsigned int optlen) 4061 { 4062 struct sctp_assoc_value params; 4063 struct sctp_association *asoc; 4064 int retval = -EINVAL; 4065 4066 if (optlen != sizeof(params)) 4067 goto out; 4068 4069 if (copy_from_user(¶ms, optval, optlen)) { 4070 retval = -EFAULT; 4071 goto out; 4072 } 4073 4074 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4075 goto out; 4076 4077 asoc = sctp_id2assoc(sk, params.assoc_id); 4078 if (asoc) { 4079 asoc->strreset_enable = params.assoc_value; 4080 } else if (!params.assoc_id) { 4081 struct sctp_sock *sp = sctp_sk(sk); 4082 4083 sp->ep->strreset_enable = params.assoc_value; 4084 } else { 4085 goto out; 4086 } 4087 4088 retval = 0; 4089 4090 out: 4091 return retval; 4092 } 4093 4094 static int sctp_setsockopt_reset_streams(struct sock *sk, 4095 char __user *optval, 4096 unsigned int optlen) 4097 { 4098 struct sctp_reset_streams *params; 4099 struct sctp_association *asoc; 4100 int retval = -EINVAL; 4101 4102 if (optlen < sizeof(*params)) 4103 return -EINVAL; 4104 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4105 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4106 sizeof(__u16) * sizeof(*params)); 4107 4108 params = memdup_user(optval, optlen); 4109 if (IS_ERR(params)) 4110 return PTR_ERR(params); 4111 4112 if (params->srs_number_streams * sizeof(__u16) > 4113 optlen - sizeof(*params)) 4114 goto out; 4115 4116 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4117 if (!asoc) 4118 goto out; 4119 4120 retval = sctp_send_reset_streams(asoc, params); 4121 4122 out: 4123 kfree(params); 4124 return retval; 4125 } 4126 4127 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4128 char __user *optval, 4129 unsigned int optlen) 4130 { 4131 struct sctp_association *asoc; 4132 sctp_assoc_t associd; 4133 int retval = -EINVAL; 4134 4135 if (optlen != sizeof(associd)) 4136 goto out; 4137 4138 if (copy_from_user(&associd, optval, optlen)) { 4139 retval = -EFAULT; 4140 goto out; 4141 } 4142 4143 asoc = sctp_id2assoc(sk, associd); 4144 if (!asoc) 4145 goto out; 4146 4147 retval = sctp_send_reset_assoc(asoc); 4148 4149 out: 4150 return retval; 4151 } 4152 4153 static int sctp_setsockopt_add_streams(struct sock *sk, 4154 char __user *optval, 4155 unsigned int optlen) 4156 { 4157 struct sctp_association *asoc; 4158 struct sctp_add_streams params; 4159 int retval = -EINVAL; 4160 4161 if (optlen != sizeof(params)) 4162 goto out; 4163 4164 if (copy_from_user(¶ms, optval, optlen)) { 4165 retval = -EFAULT; 4166 goto out; 4167 } 4168 4169 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4170 if (!asoc) 4171 goto out; 4172 4173 retval = sctp_send_add_streams(asoc, ¶ms); 4174 4175 out: 4176 return retval; 4177 } 4178 4179 static int sctp_setsockopt_scheduler(struct sock *sk, 4180 char __user *optval, 4181 unsigned int optlen) 4182 { 4183 struct sctp_association *asoc; 4184 struct sctp_assoc_value params; 4185 int retval = -EINVAL; 4186 4187 if (optlen < sizeof(params)) 4188 goto out; 4189 4190 optlen = sizeof(params); 4191 if (copy_from_user(¶ms, optval, optlen)) { 4192 retval = -EFAULT; 4193 goto out; 4194 } 4195 4196 if (params.assoc_value > SCTP_SS_MAX) 4197 goto out; 4198 4199 asoc = sctp_id2assoc(sk, params.assoc_id); 4200 if (!asoc) 4201 goto out; 4202 4203 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4204 4205 out: 4206 return retval; 4207 } 4208 4209 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4210 char __user *optval, 4211 unsigned int optlen) 4212 { 4213 struct sctp_association *asoc; 4214 struct sctp_stream_value params; 4215 int retval = -EINVAL; 4216 4217 if (optlen < sizeof(params)) 4218 goto out; 4219 4220 optlen = sizeof(params); 4221 if (copy_from_user(¶ms, optval, optlen)) { 4222 retval = -EFAULT; 4223 goto out; 4224 } 4225 4226 asoc = sctp_id2assoc(sk, params.assoc_id); 4227 if (!asoc) 4228 goto out; 4229 4230 retval = sctp_sched_set_value(asoc, params.stream_id, 4231 params.stream_value, GFP_KERNEL); 4232 4233 out: 4234 return retval; 4235 } 4236 4237 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4238 char __user *optval, 4239 unsigned int optlen) 4240 { 4241 struct sctp_sock *sp = sctp_sk(sk); 4242 struct net *net = sock_net(sk); 4243 struct sctp_assoc_value params; 4244 int retval = -EINVAL; 4245 4246 if (optlen < sizeof(params)) 4247 goto out; 4248 4249 optlen = sizeof(params); 4250 if (copy_from_user(¶ms, optval, optlen)) { 4251 retval = -EFAULT; 4252 goto out; 4253 } 4254 4255 if (params.assoc_id) 4256 goto out; 4257 4258 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4259 retval = -EPERM; 4260 goto out; 4261 } 4262 4263 sp->strm_interleave = !!params.assoc_value; 4264 4265 retval = 0; 4266 4267 out: 4268 return retval; 4269 } 4270 4271 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4272 unsigned int optlen) 4273 { 4274 int val; 4275 4276 if (!sctp_style(sk, TCP)) 4277 return -EOPNOTSUPP; 4278 4279 if (sctp_sk(sk)->ep->base.bind_addr.port) 4280 return -EFAULT; 4281 4282 if (optlen < sizeof(int)) 4283 return -EINVAL; 4284 4285 if (get_user(val, (int __user *)optval)) 4286 return -EFAULT; 4287 4288 sctp_sk(sk)->reuse = !!val; 4289 4290 return 0; 4291 } 4292 4293 /* API 6.2 setsockopt(), getsockopt() 4294 * 4295 * Applications use setsockopt() and getsockopt() to set or retrieve 4296 * socket options. Socket options are used to change the default 4297 * behavior of sockets calls. They are described in Section 7. 4298 * 4299 * The syntax is: 4300 * 4301 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4302 * int __user *optlen); 4303 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4304 * int optlen); 4305 * 4306 * sd - the socket descript. 4307 * level - set to IPPROTO_SCTP for all SCTP options. 4308 * optname - the option name. 4309 * optval - the buffer to store the value of the option. 4310 * optlen - the size of the buffer. 4311 */ 4312 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4313 char __user *optval, unsigned int optlen) 4314 { 4315 int retval = 0; 4316 4317 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4318 4319 /* I can hardly begin to describe how wrong this is. This is 4320 * so broken as to be worse than useless. The API draft 4321 * REALLY is NOT helpful here... I am not convinced that the 4322 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4323 * are at all well-founded. 4324 */ 4325 if (level != SOL_SCTP) { 4326 struct sctp_af *af = sctp_sk(sk)->pf->af; 4327 retval = af->setsockopt(sk, level, optname, optval, optlen); 4328 goto out_nounlock; 4329 } 4330 4331 lock_sock(sk); 4332 4333 switch (optname) { 4334 case SCTP_SOCKOPT_BINDX_ADD: 4335 /* 'optlen' is the size of the addresses buffer. */ 4336 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4337 optlen, SCTP_BINDX_ADD_ADDR); 4338 break; 4339 4340 case SCTP_SOCKOPT_BINDX_REM: 4341 /* 'optlen' is the size of the addresses buffer. */ 4342 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4343 optlen, SCTP_BINDX_REM_ADDR); 4344 break; 4345 4346 case SCTP_SOCKOPT_CONNECTX_OLD: 4347 /* 'optlen' is the size of the addresses buffer. */ 4348 retval = sctp_setsockopt_connectx_old(sk, 4349 (struct sockaddr __user *)optval, 4350 optlen); 4351 break; 4352 4353 case SCTP_SOCKOPT_CONNECTX: 4354 /* 'optlen' is the size of the addresses buffer. */ 4355 retval = sctp_setsockopt_connectx(sk, 4356 (struct sockaddr __user *)optval, 4357 optlen); 4358 break; 4359 4360 case SCTP_DISABLE_FRAGMENTS: 4361 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4362 break; 4363 4364 case SCTP_EVENTS: 4365 retval = sctp_setsockopt_events(sk, optval, optlen); 4366 break; 4367 4368 case SCTP_AUTOCLOSE: 4369 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4370 break; 4371 4372 case SCTP_PEER_ADDR_PARAMS: 4373 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4374 break; 4375 4376 case SCTP_DELAYED_SACK: 4377 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4378 break; 4379 case SCTP_PARTIAL_DELIVERY_POINT: 4380 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4381 break; 4382 4383 case SCTP_INITMSG: 4384 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4385 break; 4386 case SCTP_DEFAULT_SEND_PARAM: 4387 retval = sctp_setsockopt_default_send_param(sk, optval, 4388 optlen); 4389 break; 4390 case SCTP_DEFAULT_SNDINFO: 4391 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4392 break; 4393 case SCTP_PRIMARY_ADDR: 4394 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4395 break; 4396 case SCTP_SET_PEER_PRIMARY_ADDR: 4397 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4398 break; 4399 case SCTP_NODELAY: 4400 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4401 break; 4402 case SCTP_RTOINFO: 4403 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4404 break; 4405 case SCTP_ASSOCINFO: 4406 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4407 break; 4408 case SCTP_I_WANT_MAPPED_V4_ADDR: 4409 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4410 break; 4411 case SCTP_MAXSEG: 4412 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4413 break; 4414 case SCTP_ADAPTATION_LAYER: 4415 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4416 break; 4417 case SCTP_CONTEXT: 4418 retval = sctp_setsockopt_context(sk, optval, optlen); 4419 break; 4420 case SCTP_FRAGMENT_INTERLEAVE: 4421 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4422 break; 4423 case SCTP_MAX_BURST: 4424 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4425 break; 4426 case SCTP_AUTH_CHUNK: 4427 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4428 break; 4429 case SCTP_HMAC_IDENT: 4430 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4431 break; 4432 case SCTP_AUTH_KEY: 4433 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4434 break; 4435 case SCTP_AUTH_ACTIVE_KEY: 4436 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4437 break; 4438 case SCTP_AUTH_DELETE_KEY: 4439 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4440 break; 4441 case SCTP_AUTH_DEACTIVATE_KEY: 4442 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4443 break; 4444 case SCTP_AUTO_ASCONF: 4445 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4446 break; 4447 case SCTP_PEER_ADDR_THLDS: 4448 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4449 break; 4450 case SCTP_RECVRCVINFO: 4451 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4452 break; 4453 case SCTP_RECVNXTINFO: 4454 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4455 break; 4456 case SCTP_PR_SUPPORTED: 4457 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4458 break; 4459 case SCTP_DEFAULT_PRINFO: 4460 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4461 break; 4462 case SCTP_RECONFIG_SUPPORTED: 4463 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4464 break; 4465 case SCTP_ENABLE_STREAM_RESET: 4466 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4467 break; 4468 case SCTP_RESET_STREAMS: 4469 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4470 break; 4471 case SCTP_RESET_ASSOC: 4472 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4473 break; 4474 case SCTP_ADD_STREAMS: 4475 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4476 break; 4477 case SCTP_STREAM_SCHEDULER: 4478 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4479 break; 4480 case SCTP_STREAM_SCHEDULER_VALUE: 4481 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4482 break; 4483 case SCTP_INTERLEAVING_SUPPORTED: 4484 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4485 optlen); 4486 break; 4487 case SCTP_REUSE_PORT: 4488 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4489 break; 4490 default: 4491 retval = -ENOPROTOOPT; 4492 break; 4493 } 4494 4495 release_sock(sk); 4496 4497 out_nounlock: 4498 return retval; 4499 } 4500 4501 /* API 3.1.6 connect() - UDP Style Syntax 4502 * 4503 * An application may use the connect() call in the UDP model to initiate an 4504 * association without sending data. 4505 * 4506 * The syntax is: 4507 * 4508 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4509 * 4510 * sd: the socket descriptor to have a new association added to. 4511 * 4512 * nam: the address structure (either struct sockaddr_in or struct 4513 * sockaddr_in6 defined in RFC2553 [7]). 4514 * 4515 * len: the size of the address. 4516 */ 4517 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4518 int addr_len, int flags) 4519 { 4520 struct inet_sock *inet = inet_sk(sk); 4521 struct sctp_af *af; 4522 int err = 0; 4523 4524 lock_sock(sk); 4525 4526 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4527 addr, addr_len); 4528 4529 /* We may need to bind the socket. */ 4530 if (!inet->inet_num) { 4531 if (sk->sk_prot->get_port(sk, 0)) { 4532 release_sock(sk); 4533 return -EAGAIN; 4534 } 4535 inet->inet_sport = htons(inet->inet_num); 4536 } 4537 4538 /* Validate addr_len before calling common connect/connectx routine. */ 4539 af = sctp_get_af_specific(addr->sa_family); 4540 if (!af || addr_len < af->sockaddr_len) { 4541 err = -EINVAL; 4542 } else { 4543 /* Pass correct addr len to common routine (so it knows there 4544 * is only one address being passed. 4545 */ 4546 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4547 } 4548 4549 release_sock(sk); 4550 return err; 4551 } 4552 4553 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4554 int addr_len, int flags) 4555 { 4556 if (addr_len < sizeof(uaddr->sa_family)) 4557 return -EINVAL; 4558 4559 if (uaddr->sa_family == AF_UNSPEC) 4560 return -EOPNOTSUPP; 4561 4562 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4563 } 4564 4565 /* FIXME: Write comments. */ 4566 static int sctp_disconnect(struct sock *sk, int flags) 4567 { 4568 return -EOPNOTSUPP; /* STUB */ 4569 } 4570 4571 /* 4.1.4 accept() - TCP Style Syntax 4572 * 4573 * Applications use accept() call to remove an established SCTP 4574 * association from the accept queue of the endpoint. A new socket 4575 * descriptor will be returned from accept() to represent the newly 4576 * formed association. 4577 */ 4578 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4579 { 4580 struct sctp_sock *sp; 4581 struct sctp_endpoint *ep; 4582 struct sock *newsk = NULL; 4583 struct sctp_association *asoc; 4584 long timeo; 4585 int error = 0; 4586 4587 lock_sock(sk); 4588 4589 sp = sctp_sk(sk); 4590 ep = sp->ep; 4591 4592 if (!sctp_style(sk, TCP)) { 4593 error = -EOPNOTSUPP; 4594 goto out; 4595 } 4596 4597 if (!sctp_sstate(sk, LISTENING)) { 4598 error = -EINVAL; 4599 goto out; 4600 } 4601 4602 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4603 4604 error = sctp_wait_for_accept(sk, timeo); 4605 if (error) 4606 goto out; 4607 4608 /* We treat the list of associations on the endpoint as the accept 4609 * queue and pick the first association on the list. 4610 */ 4611 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4612 4613 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4614 if (!newsk) { 4615 error = -ENOMEM; 4616 goto out; 4617 } 4618 4619 /* Populate the fields of the newsk from the oldsk and migrate the 4620 * asoc to the newsk. 4621 */ 4622 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4623 4624 out: 4625 release_sock(sk); 4626 *err = error; 4627 return newsk; 4628 } 4629 4630 /* The SCTP ioctl handler. */ 4631 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4632 { 4633 int rc = -ENOTCONN; 4634 4635 lock_sock(sk); 4636 4637 /* 4638 * SEQPACKET-style sockets in LISTENING state are valid, for 4639 * SCTP, so only discard TCP-style sockets in LISTENING state. 4640 */ 4641 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4642 goto out; 4643 4644 switch (cmd) { 4645 case SIOCINQ: { 4646 struct sk_buff *skb; 4647 unsigned int amount = 0; 4648 4649 skb = skb_peek(&sk->sk_receive_queue); 4650 if (skb != NULL) { 4651 /* 4652 * We will only return the amount of this packet since 4653 * that is all that will be read. 4654 */ 4655 amount = skb->len; 4656 } 4657 rc = put_user(amount, (int __user *)arg); 4658 break; 4659 } 4660 default: 4661 rc = -ENOIOCTLCMD; 4662 break; 4663 } 4664 out: 4665 release_sock(sk); 4666 return rc; 4667 } 4668 4669 /* This is the function which gets called during socket creation to 4670 * initialized the SCTP-specific portion of the sock. 4671 * The sock structure should already be zero-filled memory. 4672 */ 4673 static int sctp_init_sock(struct sock *sk) 4674 { 4675 struct net *net = sock_net(sk); 4676 struct sctp_sock *sp; 4677 4678 pr_debug("%s: sk:%p\n", __func__, sk); 4679 4680 sp = sctp_sk(sk); 4681 4682 /* Initialize the SCTP per socket area. */ 4683 switch (sk->sk_type) { 4684 case SOCK_SEQPACKET: 4685 sp->type = SCTP_SOCKET_UDP; 4686 break; 4687 case SOCK_STREAM: 4688 sp->type = SCTP_SOCKET_TCP; 4689 break; 4690 default: 4691 return -ESOCKTNOSUPPORT; 4692 } 4693 4694 sk->sk_gso_type = SKB_GSO_SCTP; 4695 4696 /* Initialize default send parameters. These parameters can be 4697 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4698 */ 4699 sp->default_stream = 0; 4700 sp->default_ppid = 0; 4701 sp->default_flags = 0; 4702 sp->default_context = 0; 4703 sp->default_timetolive = 0; 4704 4705 sp->default_rcv_context = 0; 4706 sp->max_burst = net->sctp.max_burst; 4707 4708 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4709 4710 /* Initialize default setup parameters. These parameters 4711 * can be modified with the SCTP_INITMSG socket option or 4712 * overridden by the SCTP_INIT CMSG. 4713 */ 4714 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4715 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4716 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4717 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4718 4719 /* Initialize default RTO related parameters. These parameters can 4720 * be modified for with the SCTP_RTOINFO socket option. 4721 */ 4722 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4723 sp->rtoinfo.srto_max = net->sctp.rto_max; 4724 sp->rtoinfo.srto_min = net->sctp.rto_min; 4725 4726 /* Initialize default association related parameters. These parameters 4727 * can be modified with the SCTP_ASSOCINFO socket option. 4728 */ 4729 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4730 sp->assocparams.sasoc_number_peer_destinations = 0; 4731 sp->assocparams.sasoc_peer_rwnd = 0; 4732 sp->assocparams.sasoc_local_rwnd = 0; 4733 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4734 4735 /* Initialize default event subscriptions. By default, all the 4736 * options are off. 4737 */ 4738 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4739 4740 /* Default Peer Address Parameters. These defaults can 4741 * be modified via SCTP_PEER_ADDR_PARAMS 4742 */ 4743 sp->hbinterval = net->sctp.hb_interval; 4744 sp->pathmaxrxt = net->sctp.max_retrans_path; 4745 sp->pathmtu = 0; /* allow default discovery */ 4746 sp->sackdelay = net->sctp.sack_timeout; 4747 sp->sackfreq = 2; 4748 sp->param_flags = SPP_HB_ENABLE | 4749 SPP_PMTUD_ENABLE | 4750 SPP_SACKDELAY_ENABLE; 4751 4752 /* If enabled no SCTP message fragmentation will be performed. 4753 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4754 */ 4755 sp->disable_fragments = 0; 4756 4757 /* Enable Nagle algorithm by default. */ 4758 sp->nodelay = 0; 4759 4760 sp->recvrcvinfo = 0; 4761 sp->recvnxtinfo = 0; 4762 4763 /* Enable by default. */ 4764 sp->v4mapped = 1; 4765 4766 /* Auto-close idle associations after the configured 4767 * number of seconds. A value of 0 disables this 4768 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4769 * for UDP-style sockets only. 4770 */ 4771 sp->autoclose = 0; 4772 4773 /* User specified fragmentation limit. */ 4774 sp->user_frag = 0; 4775 4776 sp->adaptation_ind = 0; 4777 4778 sp->pf = sctp_get_pf_specific(sk->sk_family); 4779 4780 /* Control variables for partial data delivery. */ 4781 atomic_set(&sp->pd_mode, 0); 4782 skb_queue_head_init(&sp->pd_lobby); 4783 sp->frag_interleave = 0; 4784 4785 /* Create a per socket endpoint structure. Even if we 4786 * change the data structure relationships, this may still 4787 * be useful for storing pre-connect address information. 4788 */ 4789 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4790 if (!sp->ep) 4791 return -ENOMEM; 4792 4793 sp->hmac = NULL; 4794 4795 sk->sk_destruct = sctp_destruct_sock; 4796 4797 SCTP_DBG_OBJCNT_INC(sock); 4798 4799 local_bh_disable(); 4800 sk_sockets_allocated_inc(sk); 4801 sock_prot_inuse_add(net, sk->sk_prot, 1); 4802 4803 /* Nothing can fail after this block, otherwise 4804 * sctp_destroy_sock() will be called without addr_wq_lock held 4805 */ 4806 if (net->sctp.default_auto_asconf) { 4807 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4808 list_add_tail(&sp->auto_asconf_list, 4809 &net->sctp.auto_asconf_splist); 4810 sp->do_auto_asconf = 1; 4811 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4812 } else { 4813 sp->do_auto_asconf = 0; 4814 } 4815 4816 local_bh_enable(); 4817 4818 return 0; 4819 } 4820 4821 /* Cleanup any SCTP per socket resources. Must be called with 4822 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4823 */ 4824 static void sctp_destroy_sock(struct sock *sk) 4825 { 4826 struct sctp_sock *sp; 4827 4828 pr_debug("%s: sk:%p\n", __func__, sk); 4829 4830 /* Release our hold on the endpoint. */ 4831 sp = sctp_sk(sk); 4832 /* This could happen during socket init, thus we bail out 4833 * early, since the rest of the below is not setup either. 4834 */ 4835 if (sp->ep == NULL) 4836 return; 4837 4838 if (sp->do_auto_asconf) { 4839 sp->do_auto_asconf = 0; 4840 list_del(&sp->auto_asconf_list); 4841 } 4842 sctp_endpoint_free(sp->ep); 4843 local_bh_disable(); 4844 sk_sockets_allocated_dec(sk); 4845 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4846 local_bh_enable(); 4847 } 4848 4849 /* Triggered when there are no references on the socket anymore */ 4850 static void sctp_destruct_sock(struct sock *sk) 4851 { 4852 struct sctp_sock *sp = sctp_sk(sk); 4853 4854 /* Free up the HMAC transform. */ 4855 crypto_free_shash(sp->hmac); 4856 4857 inet_sock_destruct(sk); 4858 } 4859 4860 /* API 4.1.7 shutdown() - TCP Style Syntax 4861 * int shutdown(int socket, int how); 4862 * 4863 * sd - the socket descriptor of the association to be closed. 4864 * how - Specifies the type of shutdown. The values are 4865 * as follows: 4866 * SHUT_RD 4867 * Disables further receive operations. No SCTP 4868 * protocol action is taken. 4869 * SHUT_WR 4870 * Disables further send operations, and initiates 4871 * the SCTP shutdown sequence. 4872 * SHUT_RDWR 4873 * Disables further send and receive operations 4874 * and initiates the SCTP shutdown sequence. 4875 */ 4876 static void sctp_shutdown(struct sock *sk, int how) 4877 { 4878 struct net *net = sock_net(sk); 4879 struct sctp_endpoint *ep; 4880 4881 if (!sctp_style(sk, TCP)) 4882 return; 4883 4884 ep = sctp_sk(sk)->ep; 4885 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4886 struct sctp_association *asoc; 4887 4888 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4889 asoc = list_entry(ep->asocs.next, 4890 struct sctp_association, asocs); 4891 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4892 } 4893 } 4894 4895 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4896 struct sctp_info *info) 4897 { 4898 struct sctp_transport *prim; 4899 struct list_head *pos; 4900 int mask; 4901 4902 memset(info, 0, sizeof(*info)); 4903 if (!asoc) { 4904 struct sctp_sock *sp = sctp_sk(sk); 4905 4906 info->sctpi_s_autoclose = sp->autoclose; 4907 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4908 info->sctpi_s_pd_point = sp->pd_point; 4909 info->sctpi_s_nodelay = sp->nodelay; 4910 info->sctpi_s_disable_fragments = sp->disable_fragments; 4911 info->sctpi_s_v4mapped = sp->v4mapped; 4912 info->sctpi_s_frag_interleave = sp->frag_interleave; 4913 info->sctpi_s_type = sp->type; 4914 4915 return 0; 4916 } 4917 4918 info->sctpi_tag = asoc->c.my_vtag; 4919 info->sctpi_state = asoc->state; 4920 info->sctpi_rwnd = asoc->a_rwnd; 4921 info->sctpi_unackdata = asoc->unack_data; 4922 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4923 info->sctpi_instrms = asoc->stream.incnt; 4924 info->sctpi_outstrms = asoc->stream.outcnt; 4925 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4926 info->sctpi_inqueue++; 4927 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4928 info->sctpi_outqueue++; 4929 info->sctpi_overall_error = asoc->overall_error_count; 4930 info->sctpi_max_burst = asoc->max_burst; 4931 info->sctpi_maxseg = asoc->frag_point; 4932 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4933 info->sctpi_peer_tag = asoc->c.peer_vtag; 4934 4935 mask = asoc->peer.ecn_capable << 1; 4936 mask = (mask | asoc->peer.ipv4_address) << 1; 4937 mask = (mask | asoc->peer.ipv6_address) << 1; 4938 mask = (mask | asoc->peer.hostname_address) << 1; 4939 mask = (mask | asoc->peer.asconf_capable) << 1; 4940 mask = (mask | asoc->peer.prsctp_capable) << 1; 4941 mask = (mask | asoc->peer.auth_capable); 4942 info->sctpi_peer_capable = mask; 4943 mask = asoc->peer.sack_needed << 1; 4944 mask = (mask | asoc->peer.sack_generation) << 1; 4945 mask = (mask | asoc->peer.zero_window_announced); 4946 info->sctpi_peer_sack = mask; 4947 4948 info->sctpi_isacks = asoc->stats.isacks; 4949 info->sctpi_osacks = asoc->stats.osacks; 4950 info->sctpi_opackets = asoc->stats.opackets; 4951 info->sctpi_ipackets = asoc->stats.ipackets; 4952 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4953 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4954 info->sctpi_idupchunks = asoc->stats.idupchunks; 4955 info->sctpi_gapcnt = asoc->stats.gapcnt; 4956 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4957 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4958 info->sctpi_oodchunks = asoc->stats.oodchunks; 4959 info->sctpi_iodchunks = asoc->stats.iodchunks; 4960 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4961 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4962 4963 prim = asoc->peer.primary_path; 4964 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4965 info->sctpi_p_state = prim->state; 4966 info->sctpi_p_cwnd = prim->cwnd; 4967 info->sctpi_p_srtt = prim->srtt; 4968 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4969 info->sctpi_p_hbinterval = prim->hbinterval; 4970 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4971 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4972 info->sctpi_p_ssthresh = prim->ssthresh; 4973 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4974 info->sctpi_p_flight_size = prim->flight_size; 4975 info->sctpi_p_error = prim->error_count; 4976 4977 return 0; 4978 } 4979 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4980 4981 /* use callback to avoid exporting the core structure */ 4982 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4983 { 4984 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4985 4986 rhashtable_walk_start(iter); 4987 } 4988 4989 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4990 { 4991 rhashtable_walk_stop(iter); 4992 rhashtable_walk_exit(iter); 4993 } 4994 4995 struct sctp_transport *sctp_transport_get_next(struct net *net, 4996 struct rhashtable_iter *iter) 4997 { 4998 struct sctp_transport *t; 4999 5000 t = rhashtable_walk_next(iter); 5001 for (; t; t = rhashtable_walk_next(iter)) { 5002 if (IS_ERR(t)) { 5003 if (PTR_ERR(t) == -EAGAIN) 5004 continue; 5005 break; 5006 } 5007 5008 if (net_eq(sock_net(t->asoc->base.sk), net) && 5009 t->asoc->peer.primary_path == t) 5010 break; 5011 } 5012 5013 return t; 5014 } 5015 5016 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5017 struct rhashtable_iter *iter, 5018 int pos) 5019 { 5020 void *obj = SEQ_START_TOKEN; 5021 5022 while (pos && (obj = sctp_transport_get_next(net, iter)) && 5023 !IS_ERR(obj)) 5024 pos--; 5025 5026 return obj; 5027 } 5028 5029 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5030 void *p) { 5031 int err = 0; 5032 int hash = 0; 5033 struct sctp_ep_common *epb; 5034 struct sctp_hashbucket *head; 5035 5036 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5037 hash++, head++) { 5038 read_lock_bh(&head->lock); 5039 sctp_for_each_hentry(epb, &head->chain) { 5040 err = cb(sctp_ep(epb), p); 5041 if (err) 5042 break; 5043 } 5044 read_unlock_bh(&head->lock); 5045 } 5046 5047 return err; 5048 } 5049 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5050 5051 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5052 struct net *net, 5053 const union sctp_addr *laddr, 5054 const union sctp_addr *paddr, void *p) 5055 { 5056 struct sctp_transport *transport; 5057 int err; 5058 5059 rcu_read_lock(); 5060 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5061 rcu_read_unlock(); 5062 if (!transport) 5063 return -ENOENT; 5064 5065 err = cb(transport, p); 5066 sctp_transport_put(transport); 5067 5068 return err; 5069 } 5070 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5071 5072 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5073 int (*cb_done)(struct sctp_transport *, void *), 5074 struct net *net, int *pos, void *p) { 5075 struct rhashtable_iter hti; 5076 struct sctp_transport *tsp; 5077 int ret; 5078 5079 again: 5080 ret = 0; 5081 sctp_transport_walk_start(&hti); 5082 5083 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5084 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5085 if (!sctp_transport_hold(tsp)) 5086 continue; 5087 ret = cb(tsp, p); 5088 if (ret) 5089 break; 5090 (*pos)++; 5091 sctp_transport_put(tsp); 5092 } 5093 sctp_transport_walk_stop(&hti); 5094 5095 if (ret) { 5096 if (cb_done && !cb_done(tsp, p)) { 5097 (*pos)++; 5098 sctp_transport_put(tsp); 5099 goto again; 5100 } 5101 sctp_transport_put(tsp); 5102 } 5103 5104 return ret; 5105 } 5106 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5107 5108 /* 7.2.1 Association Status (SCTP_STATUS) 5109 5110 * Applications can retrieve current status information about an 5111 * association, including association state, peer receiver window size, 5112 * number of unacked data chunks, and number of data chunks pending 5113 * receipt. This information is read-only. 5114 */ 5115 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5116 char __user *optval, 5117 int __user *optlen) 5118 { 5119 struct sctp_status status; 5120 struct sctp_association *asoc = NULL; 5121 struct sctp_transport *transport; 5122 sctp_assoc_t associd; 5123 int retval = 0; 5124 5125 if (len < sizeof(status)) { 5126 retval = -EINVAL; 5127 goto out; 5128 } 5129 5130 len = sizeof(status); 5131 if (copy_from_user(&status, optval, len)) { 5132 retval = -EFAULT; 5133 goto out; 5134 } 5135 5136 associd = status.sstat_assoc_id; 5137 asoc = sctp_id2assoc(sk, associd); 5138 if (!asoc) { 5139 retval = -EINVAL; 5140 goto out; 5141 } 5142 5143 transport = asoc->peer.primary_path; 5144 5145 status.sstat_assoc_id = sctp_assoc2id(asoc); 5146 status.sstat_state = sctp_assoc_to_state(asoc); 5147 status.sstat_rwnd = asoc->peer.rwnd; 5148 status.sstat_unackdata = asoc->unack_data; 5149 5150 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5151 status.sstat_instrms = asoc->stream.incnt; 5152 status.sstat_outstrms = asoc->stream.outcnt; 5153 status.sstat_fragmentation_point = asoc->frag_point; 5154 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5155 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5156 transport->af_specific->sockaddr_len); 5157 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5158 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5159 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5160 status.sstat_primary.spinfo_state = transport->state; 5161 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5162 status.sstat_primary.spinfo_srtt = transport->srtt; 5163 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5164 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5165 5166 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5167 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5168 5169 if (put_user(len, optlen)) { 5170 retval = -EFAULT; 5171 goto out; 5172 } 5173 5174 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5175 __func__, len, status.sstat_state, status.sstat_rwnd, 5176 status.sstat_assoc_id); 5177 5178 if (copy_to_user(optval, &status, len)) { 5179 retval = -EFAULT; 5180 goto out; 5181 } 5182 5183 out: 5184 return retval; 5185 } 5186 5187 5188 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5189 * 5190 * Applications can retrieve information about a specific peer address 5191 * of an association, including its reachability state, congestion 5192 * window, and retransmission timer values. This information is 5193 * read-only. 5194 */ 5195 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5196 char __user *optval, 5197 int __user *optlen) 5198 { 5199 struct sctp_paddrinfo pinfo; 5200 struct sctp_transport *transport; 5201 int retval = 0; 5202 5203 if (len < sizeof(pinfo)) { 5204 retval = -EINVAL; 5205 goto out; 5206 } 5207 5208 len = sizeof(pinfo); 5209 if (copy_from_user(&pinfo, optval, len)) { 5210 retval = -EFAULT; 5211 goto out; 5212 } 5213 5214 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5215 pinfo.spinfo_assoc_id); 5216 if (!transport) 5217 return -EINVAL; 5218 5219 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5220 pinfo.spinfo_state = transport->state; 5221 pinfo.spinfo_cwnd = transport->cwnd; 5222 pinfo.spinfo_srtt = transport->srtt; 5223 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5224 pinfo.spinfo_mtu = transport->pathmtu; 5225 5226 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5227 pinfo.spinfo_state = SCTP_ACTIVE; 5228 5229 if (put_user(len, optlen)) { 5230 retval = -EFAULT; 5231 goto out; 5232 } 5233 5234 if (copy_to_user(optval, &pinfo, len)) { 5235 retval = -EFAULT; 5236 goto out; 5237 } 5238 5239 out: 5240 return retval; 5241 } 5242 5243 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5244 * 5245 * This option is a on/off flag. If enabled no SCTP message 5246 * fragmentation will be performed. Instead if a message being sent 5247 * exceeds the current PMTU size, the message will NOT be sent and 5248 * instead a error will be indicated to the user. 5249 */ 5250 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5251 char __user *optval, int __user *optlen) 5252 { 5253 int val; 5254 5255 if (len < sizeof(int)) 5256 return -EINVAL; 5257 5258 len = sizeof(int); 5259 val = (sctp_sk(sk)->disable_fragments == 1); 5260 if (put_user(len, optlen)) 5261 return -EFAULT; 5262 if (copy_to_user(optval, &val, len)) 5263 return -EFAULT; 5264 return 0; 5265 } 5266 5267 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5268 * 5269 * This socket option is used to specify various notifications and 5270 * ancillary data the user wishes to receive. 5271 */ 5272 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5273 int __user *optlen) 5274 { 5275 if (len == 0) 5276 return -EINVAL; 5277 if (len > sizeof(struct sctp_event_subscribe)) 5278 len = sizeof(struct sctp_event_subscribe); 5279 if (put_user(len, optlen)) 5280 return -EFAULT; 5281 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5282 return -EFAULT; 5283 return 0; 5284 } 5285 5286 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5287 * 5288 * This socket option is applicable to the UDP-style socket only. When 5289 * set it will cause associations that are idle for more than the 5290 * specified number of seconds to automatically close. An association 5291 * being idle is defined an association that has NOT sent or received 5292 * user data. The special value of '0' indicates that no automatic 5293 * close of any associations should be performed. The option expects an 5294 * integer defining the number of seconds of idle time before an 5295 * association is closed. 5296 */ 5297 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5298 { 5299 /* Applicable to UDP-style socket only */ 5300 if (sctp_style(sk, TCP)) 5301 return -EOPNOTSUPP; 5302 if (len < sizeof(int)) 5303 return -EINVAL; 5304 len = sizeof(int); 5305 if (put_user(len, optlen)) 5306 return -EFAULT; 5307 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5308 return -EFAULT; 5309 return 0; 5310 } 5311 5312 /* Helper routine to branch off an association to a new socket. */ 5313 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5314 { 5315 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5316 struct sctp_sock *sp = sctp_sk(sk); 5317 struct socket *sock; 5318 int err = 0; 5319 5320 /* Do not peel off from one netns to another one. */ 5321 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5322 return -EINVAL; 5323 5324 if (!asoc) 5325 return -EINVAL; 5326 5327 /* An association cannot be branched off from an already peeled-off 5328 * socket, nor is this supported for tcp style sockets. 5329 */ 5330 if (!sctp_style(sk, UDP)) 5331 return -EINVAL; 5332 5333 /* Create a new socket. */ 5334 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5335 if (err < 0) 5336 return err; 5337 5338 sctp_copy_sock(sock->sk, sk, asoc); 5339 5340 /* Make peeled-off sockets more like 1-1 accepted sockets. 5341 * Set the daddr and initialize id to something more random and also 5342 * copy over any ip options. 5343 */ 5344 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5345 sp->pf->copy_ip_options(sk, sock->sk); 5346 5347 /* Populate the fields of the newsk from the oldsk and migrate the 5348 * asoc to the newsk. 5349 */ 5350 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5351 5352 *sockp = sock; 5353 5354 return err; 5355 } 5356 EXPORT_SYMBOL(sctp_do_peeloff); 5357 5358 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5359 struct file **newfile, unsigned flags) 5360 { 5361 struct socket *newsock; 5362 int retval; 5363 5364 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5365 if (retval < 0) 5366 goto out; 5367 5368 /* Map the socket to an unused fd that can be returned to the user. */ 5369 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5370 if (retval < 0) { 5371 sock_release(newsock); 5372 goto out; 5373 } 5374 5375 *newfile = sock_alloc_file(newsock, 0, NULL); 5376 if (IS_ERR(*newfile)) { 5377 put_unused_fd(retval); 5378 retval = PTR_ERR(*newfile); 5379 *newfile = NULL; 5380 return retval; 5381 } 5382 5383 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5384 retval); 5385 5386 peeloff->sd = retval; 5387 5388 if (flags & SOCK_NONBLOCK) 5389 (*newfile)->f_flags |= O_NONBLOCK; 5390 out: 5391 return retval; 5392 } 5393 5394 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5395 { 5396 sctp_peeloff_arg_t peeloff; 5397 struct file *newfile = NULL; 5398 int retval = 0; 5399 5400 if (len < sizeof(sctp_peeloff_arg_t)) 5401 return -EINVAL; 5402 len = sizeof(sctp_peeloff_arg_t); 5403 if (copy_from_user(&peeloff, optval, len)) 5404 return -EFAULT; 5405 5406 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5407 if (retval < 0) 5408 goto out; 5409 5410 /* Return the fd mapped to the new socket. */ 5411 if (put_user(len, optlen)) { 5412 fput(newfile); 5413 put_unused_fd(retval); 5414 return -EFAULT; 5415 } 5416 5417 if (copy_to_user(optval, &peeloff, len)) { 5418 fput(newfile); 5419 put_unused_fd(retval); 5420 return -EFAULT; 5421 } 5422 fd_install(retval, newfile); 5423 out: 5424 return retval; 5425 } 5426 5427 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5428 char __user *optval, int __user *optlen) 5429 { 5430 sctp_peeloff_flags_arg_t peeloff; 5431 struct file *newfile = NULL; 5432 int retval = 0; 5433 5434 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5435 return -EINVAL; 5436 len = sizeof(sctp_peeloff_flags_arg_t); 5437 if (copy_from_user(&peeloff, optval, len)) 5438 return -EFAULT; 5439 5440 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5441 &newfile, peeloff.flags); 5442 if (retval < 0) 5443 goto out; 5444 5445 /* Return the fd mapped to the new socket. */ 5446 if (put_user(len, optlen)) { 5447 fput(newfile); 5448 put_unused_fd(retval); 5449 return -EFAULT; 5450 } 5451 5452 if (copy_to_user(optval, &peeloff, len)) { 5453 fput(newfile); 5454 put_unused_fd(retval); 5455 return -EFAULT; 5456 } 5457 fd_install(retval, newfile); 5458 out: 5459 return retval; 5460 } 5461 5462 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5463 * 5464 * Applications can enable or disable heartbeats for any peer address of 5465 * an association, modify an address's heartbeat interval, force a 5466 * heartbeat to be sent immediately, and adjust the address's maximum 5467 * number of retransmissions sent before an address is considered 5468 * unreachable. The following structure is used to access and modify an 5469 * address's parameters: 5470 * 5471 * struct sctp_paddrparams { 5472 * sctp_assoc_t spp_assoc_id; 5473 * struct sockaddr_storage spp_address; 5474 * uint32_t spp_hbinterval; 5475 * uint16_t spp_pathmaxrxt; 5476 * uint32_t spp_pathmtu; 5477 * uint32_t spp_sackdelay; 5478 * uint32_t spp_flags; 5479 * }; 5480 * 5481 * spp_assoc_id - (one-to-many style socket) This is filled in the 5482 * application, and identifies the association for 5483 * this query. 5484 * spp_address - This specifies which address is of interest. 5485 * spp_hbinterval - This contains the value of the heartbeat interval, 5486 * in milliseconds. If a value of zero 5487 * is present in this field then no changes are to 5488 * be made to this parameter. 5489 * spp_pathmaxrxt - This contains the maximum number of 5490 * retransmissions before this address shall be 5491 * considered unreachable. If a value of zero 5492 * is present in this field then no changes are to 5493 * be made to this parameter. 5494 * spp_pathmtu - When Path MTU discovery is disabled the value 5495 * specified here will be the "fixed" path mtu. 5496 * Note that if the spp_address field is empty 5497 * then all associations on this address will 5498 * have this fixed path mtu set upon them. 5499 * 5500 * spp_sackdelay - When delayed sack is enabled, this value specifies 5501 * the number of milliseconds that sacks will be delayed 5502 * for. This value will apply to all addresses of an 5503 * association if the spp_address field is empty. Note 5504 * also, that if delayed sack is enabled and this 5505 * value is set to 0, no change is made to the last 5506 * recorded delayed sack timer value. 5507 * 5508 * spp_flags - These flags are used to control various features 5509 * on an association. The flag field may contain 5510 * zero or more of the following options. 5511 * 5512 * SPP_HB_ENABLE - Enable heartbeats on the 5513 * specified address. Note that if the address 5514 * field is empty all addresses for the association 5515 * have heartbeats enabled upon them. 5516 * 5517 * SPP_HB_DISABLE - Disable heartbeats on the 5518 * speicifed address. Note that if the address 5519 * field is empty all addresses for the association 5520 * will have their heartbeats disabled. Note also 5521 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5522 * mutually exclusive, only one of these two should 5523 * be specified. Enabling both fields will have 5524 * undetermined results. 5525 * 5526 * SPP_HB_DEMAND - Request a user initiated heartbeat 5527 * to be made immediately. 5528 * 5529 * SPP_PMTUD_ENABLE - This field will enable PMTU 5530 * discovery upon the specified address. Note that 5531 * if the address feild is empty then all addresses 5532 * on the association are effected. 5533 * 5534 * SPP_PMTUD_DISABLE - This field will disable PMTU 5535 * discovery upon the specified address. Note that 5536 * if the address feild is empty then all addresses 5537 * on the association are effected. Not also that 5538 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5539 * exclusive. Enabling both will have undetermined 5540 * results. 5541 * 5542 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5543 * on delayed sack. The time specified in spp_sackdelay 5544 * is used to specify the sack delay for this address. Note 5545 * that if spp_address is empty then all addresses will 5546 * enable delayed sack and take on the sack delay 5547 * value specified in spp_sackdelay. 5548 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5549 * off delayed sack. If the spp_address field is blank then 5550 * delayed sack is disabled for the entire association. Note 5551 * also that this field is mutually exclusive to 5552 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5553 * results. 5554 * 5555 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5556 * setting of the IPV6 flow label value. The value is 5557 * contained in the spp_ipv6_flowlabel field. 5558 * Upon retrieval, this flag will be set to indicate that 5559 * the spp_ipv6_flowlabel field has a valid value returned. 5560 * If a specific destination address is set (in the 5561 * spp_address field), then the value returned is that of 5562 * the address. If just an association is specified (and 5563 * no address), then the association's default flow label 5564 * is returned. If neither an association nor a destination 5565 * is specified, then the socket's default flow label is 5566 * returned. For non-IPv6 sockets, this flag will be left 5567 * cleared. 5568 * 5569 * SPP_DSCP: Setting this flag enables the setting of the 5570 * Differentiated Services Code Point (DSCP) value 5571 * associated with either the association or a specific 5572 * address. The value is obtained in the spp_dscp field. 5573 * Upon retrieval, this flag will be set to indicate that 5574 * the spp_dscp field has a valid value returned. If a 5575 * specific destination address is set when called (in the 5576 * spp_address field), then that specific destination 5577 * address's DSCP value is returned. If just an association 5578 * is specified, then the association's default DSCP is 5579 * returned. If neither an association nor a destination is 5580 * specified, then the socket's default DSCP is returned. 5581 * 5582 * spp_ipv6_flowlabel 5583 * - This field is used in conjunction with the 5584 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5585 * The 20 least significant bits are used for the flow 5586 * label. This setting has precedence over any IPv6-layer 5587 * setting. 5588 * 5589 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5590 * and contains the DSCP. The 6 most significant bits are 5591 * used for the DSCP. This setting has precedence over any 5592 * IPv4- or IPv6- layer setting. 5593 */ 5594 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5595 char __user *optval, int __user *optlen) 5596 { 5597 struct sctp_paddrparams params; 5598 struct sctp_transport *trans = NULL; 5599 struct sctp_association *asoc = NULL; 5600 struct sctp_sock *sp = sctp_sk(sk); 5601 5602 if (len >= sizeof(params)) 5603 len = sizeof(params); 5604 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5605 spp_ipv6_flowlabel), 4)) 5606 len = ALIGN(offsetof(struct sctp_paddrparams, 5607 spp_ipv6_flowlabel), 4); 5608 else 5609 return -EINVAL; 5610 5611 if (copy_from_user(¶ms, optval, len)) 5612 return -EFAULT; 5613 5614 /* If an address other than INADDR_ANY is specified, and 5615 * no transport is found, then the request is invalid. 5616 */ 5617 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5618 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5619 params.spp_assoc_id); 5620 if (!trans) { 5621 pr_debug("%s: failed no transport\n", __func__); 5622 return -EINVAL; 5623 } 5624 } 5625 5626 /* Get association, if assoc_id != 0 and the socket is a one 5627 * to many style socket, and an association was not found, then 5628 * the id was invalid. 5629 */ 5630 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5631 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5632 pr_debug("%s: failed no association\n", __func__); 5633 return -EINVAL; 5634 } 5635 5636 if (trans) { 5637 /* Fetch transport values. */ 5638 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5639 params.spp_pathmtu = trans->pathmtu; 5640 params.spp_pathmaxrxt = trans->pathmaxrxt; 5641 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5642 5643 /*draft-11 doesn't say what to return in spp_flags*/ 5644 params.spp_flags = trans->param_flags; 5645 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5646 params.spp_ipv6_flowlabel = trans->flowlabel & 5647 SCTP_FLOWLABEL_VAL_MASK; 5648 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5649 } 5650 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5651 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5652 params.spp_flags |= SPP_DSCP; 5653 } 5654 } else if (asoc) { 5655 /* Fetch association values. */ 5656 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5657 params.spp_pathmtu = asoc->pathmtu; 5658 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5659 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5660 5661 /*draft-11 doesn't say what to return in spp_flags*/ 5662 params.spp_flags = asoc->param_flags; 5663 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5664 params.spp_ipv6_flowlabel = asoc->flowlabel & 5665 SCTP_FLOWLABEL_VAL_MASK; 5666 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5667 } 5668 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5669 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5670 params.spp_flags |= SPP_DSCP; 5671 } 5672 } else { 5673 /* Fetch socket values. */ 5674 params.spp_hbinterval = sp->hbinterval; 5675 params.spp_pathmtu = sp->pathmtu; 5676 params.spp_sackdelay = sp->sackdelay; 5677 params.spp_pathmaxrxt = sp->pathmaxrxt; 5678 5679 /*draft-11 doesn't say what to return in spp_flags*/ 5680 params.spp_flags = sp->param_flags; 5681 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5682 params.spp_ipv6_flowlabel = sp->flowlabel & 5683 SCTP_FLOWLABEL_VAL_MASK; 5684 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5685 } 5686 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5687 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5688 params.spp_flags |= SPP_DSCP; 5689 } 5690 } 5691 5692 if (copy_to_user(optval, ¶ms, len)) 5693 return -EFAULT; 5694 5695 if (put_user(len, optlen)) 5696 return -EFAULT; 5697 5698 return 0; 5699 } 5700 5701 /* 5702 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5703 * 5704 * This option will effect the way delayed acks are performed. This 5705 * option allows you to get or set the delayed ack time, in 5706 * milliseconds. It also allows changing the delayed ack frequency. 5707 * Changing the frequency to 1 disables the delayed sack algorithm. If 5708 * the assoc_id is 0, then this sets or gets the endpoints default 5709 * values. If the assoc_id field is non-zero, then the set or get 5710 * effects the specified association for the one to many model (the 5711 * assoc_id field is ignored by the one to one model). Note that if 5712 * sack_delay or sack_freq are 0 when setting this option, then the 5713 * current values will remain unchanged. 5714 * 5715 * struct sctp_sack_info { 5716 * sctp_assoc_t sack_assoc_id; 5717 * uint32_t sack_delay; 5718 * uint32_t sack_freq; 5719 * }; 5720 * 5721 * sack_assoc_id - This parameter, indicates which association the user 5722 * is performing an action upon. Note that if this field's value is 5723 * zero then the endpoints default value is changed (effecting future 5724 * associations only). 5725 * 5726 * sack_delay - This parameter contains the number of milliseconds that 5727 * the user is requesting the delayed ACK timer be set to. Note that 5728 * this value is defined in the standard to be between 200 and 500 5729 * milliseconds. 5730 * 5731 * sack_freq - This parameter contains the number of packets that must 5732 * be received before a sack is sent without waiting for the delay 5733 * timer to expire. The default value for this is 2, setting this 5734 * value to 1 will disable the delayed sack algorithm. 5735 */ 5736 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5737 char __user *optval, 5738 int __user *optlen) 5739 { 5740 struct sctp_sack_info params; 5741 struct sctp_association *asoc = NULL; 5742 struct sctp_sock *sp = sctp_sk(sk); 5743 5744 if (len >= sizeof(struct sctp_sack_info)) { 5745 len = sizeof(struct sctp_sack_info); 5746 5747 if (copy_from_user(¶ms, optval, len)) 5748 return -EFAULT; 5749 } else if (len == sizeof(struct sctp_assoc_value)) { 5750 pr_warn_ratelimited(DEPRECATED 5751 "%s (pid %d) " 5752 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5753 "Use struct sctp_sack_info instead\n", 5754 current->comm, task_pid_nr(current)); 5755 if (copy_from_user(¶ms, optval, len)) 5756 return -EFAULT; 5757 } else 5758 return -EINVAL; 5759 5760 /* Get association, if sack_assoc_id != 0 and the socket is a one 5761 * to many style socket, and an association was not found, then 5762 * the id was invalid. 5763 */ 5764 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5765 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5766 return -EINVAL; 5767 5768 if (asoc) { 5769 /* Fetch association values. */ 5770 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5771 params.sack_delay = jiffies_to_msecs( 5772 asoc->sackdelay); 5773 params.sack_freq = asoc->sackfreq; 5774 5775 } else { 5776 params.sack_delay = 0; 5777 params.sack_freq = 1; 5778 } 5779 } else { 5780 /* Fetch socket values. */ 5781 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5782 params.sack_delay = sp->sackdelay; 5783 params.sack_freq = sp->sackfreq; 5784 } else { 5785 params.sack_delay = 0; 5786 params.sack_freq = 1; 5787 } 5788 } 5789 5790 if (copy_to_user(optval, ¶ms, len)) 5791 return -EFAULT; 5792 5793 if (put_user(len, optlen)) 5794 return -EFAULT; 5795 5796 return 0; 5797 } 5798 5799 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5800 * 5801 * Applications can specify protocol parameters for the default association 5802 * initialization. The option name argument to setsockopt() and getsockopt() 5803 * is SCTP_INITMSG. 5804 * 5805 * Setting initialization parameters is effective only on an unconnected 5806 * socket (for UDP-style sockets only future associations are effected 5807 * by the change). With TCP-style sockets, this option is inherited by 5808 * sockets derived from a listener socket. 5809 */ 5810 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5811 { 5812 if (len < sizeof(struct sctp_initmsg)) 5813 return -EINVAL; 5814 len = sizeof(struct sctp_initmsg); 5815 if (put_user(len, optlen)) 5816 return -EFAULT; 5817 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5818 return -EFAULT; 5819 return 0; 5820 } 5821 5822 5823 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5824 char __user *optval, int __user *optlen) 5825 { 5826 struct sctp_association *asoc; 5827 int cnt = 0; 5828 struct sctp_getaddrs getaddrs; 5829 struct sctp_transport *from; 5830 void __user *to; 5831 union sctp_addr temp; 5832 struct sctp_sock *sp = sctp_sk(sk); 5833 int addrlen; 5834 size_t space_left; 5835 int bytes_copied; 5836 5837 if (len < sizeof(struct sctp_getaddrs)) 5838 return -EINVAL; 5839 5840 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5841 return -EFAULT; 5842 5843 /* For UDP-style sockets, id specifies the association to query. */ 5844 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5845 if (!asoc) 5846 return -EINVAL; 5847 5848 to = optval + offsetof(struct sctp_getaddrs, addrs); 5849 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5850 5851 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5852 transports) { 5853 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5854 addrlen = sctp_get_pf_specific(sk->sk_family) 5855 ->addr_to_user(sp, &temp); 5856 if (space_left < addrlen) 5857 return -ENOMEM; 5858 if (copy_to_user(to, &temp, addrlen)) 5859 return -EFAULT; 5860 to += addrlen; 5861 cnt++; 5862 space_left -= addrlen; 5863 } 5864 5865 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5866 return -EFAULT; 5867 bytes_copied = ((char __user *)to) - optval; 5868 if (put_user(bytes_copied, optlen)) 5869 return -EFAULT; 5870 5871 return 0; 5872 } 5873 5874 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5875 size_t space_left, int *bytes_copied) 5876 { 5877 struct sctp_sockaddr_entry *addr; 5878 union sctp_addr temp; 5879 int cnt = 0; 5880 int addrlen; 5881 struct net *net = sock_net(sk); 5882 5883 rcu_read_lock(); 5884 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5885 if (!addr->valid) 5886 continue; 5887 5888 if ((PF_INET == sk->sk_family) && 5889 (AF_INET6 == addr->a.sa.sa_family)) 5890 continue; 5891 if ((PF_INET6 == sk->sk_family) && 5892 inet_v6_ipv6only(sk) && 5893 (AF_INET == addr->a.sa.sa_family)) 5894 continue; 5895 memcpy(&temp, &addr->a, sizeof(temp)); 5896 if (!temp.v4.sin_port) 5897 temp.v4.sin_port = htons(port); 5898 5899 addrlen = sctp_get_pf_specific(sk->sk_family) 5900 ->addr_to_user(sctp_sk(sk), &temp); 5901 5902 if (space_left < addrlen) { 5903 cnt = -ENOMEM; 5904 break; 5905 } 5906 memcpy(to, &temp, addrlen); 5907 5908 to += addrlen; 5909 cnt++; 5910 space_left -= addrlen; 5911 *bytes_copied += addrlen; 5912 } 5913 rcu_read_unlock(); 5914 5915 return cnt; 5916 } 5917 5918 5919 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5920 char __user *optval, int __user *optlen) 5921 { 5922 struct sctp_bind_addr *bp; 5923 struct sctp_association *asoc; 5924 int cnt = 0; 5925 struct sctp_getaddrs getaddrs; 5926 struct sctp_sockaddr_entry *addr; 5927 void __user *to; 5928 union sctp_addr temp; 5929 struct sctp_sock *sp = sctp_sk(sk); 5930 int addrlen; 5931 int err = 0; 5932 size_t space_left; 5933 int bytes_copied = 0; 5934 void *addrs; 5935 void *buf; 5936 5937 if (len < sizeof(struct sctp_getaddrs)) 5938 return -EINVAL; 5939 5940 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5941 return -EFAULT; 5942 5943 /* 5944 * For UDP-style sockets, id specifies the association to query. 5945 * If the id field is set to the value '0' then the locally bound 5946 * addresses are returned without regard to any particular 5947 * association. 5948 */ 5949 if (0 == getaddrs.assoc_id) { 5950 bp = &sctp_sk(sk)->ep->base.bind_addr; 5951 } else { 5952 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5953 if (!asoc) 5954 return -EINVAL; 5955 bp = &asoc->base.bind_addr; 5956 } 5957 5958 to = optval + offsetof(struct sctp_getaddrs, addrs); 5959 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5960 5961 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5962 if (!addrs) 5963 return -ENOMEM; 5964 5965 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5966 * addresses from the global local address list. 5967 */ 5968 if (sctp_list_single_entry(&bp->address_list)) { 5969 addr = list_entry(bp->address_list.next, 5970 struct sctp_sockaddr_entry, list); 5971 if (sctp_is_any(sk, &addr->a)) { 5972 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5973 space_left, &bytes_copied); 5974 if (cnt < 0) { 5975 err = cnt; 5976 goto out; 5977 } 5978 goto copy_getaddrs; 5979 } 5980 } 5981 5982 buf = addrs; 5983 /* Protection on the bound address list is not needed since 5984 * in the socket option context we hold a socket lock and 5985 * thus the bound address list can't change. 5986 */ 5987 list_for_each_entry(addr, &bp->address_list, list) { 5988 memcpy(&temp, &addr->a, sizeof(temp)); 5989 addrlen = sctp_get_pf_specific(sk->sk_family) 5990 ->addr_to_user(sp, &temp); 5991 if (space_left < addrlen) { 5992 err = -ENOMEM; /*fixme: right error?*/ 5993 goto out; 5994 } 5995 memcpy(buf, &temp, addrlen); 5996 buf += addrlen; 5997 bytes_copied += addrlen; 5998 cnt++; 5999 space_left -= addrlen; 6000 } 6001 6002 copy_getaddrs: 6003 if (copy_to_user(to, addrs, bytes_copied)) { 6004 err = -EFAULT; 6005 goto out; 6006 } 6007 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6008 err = -EFAULT; 6009 goto out; 6010 } 6011 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6012 * but we can't change it anymore. 6013 */ 6014 if (put_user(bytes_copied, optlen)) 6015 err = -EFAULT; 6016 out: 6017 kfree(addrs); 6018 return err; 6019 } 6020 6021 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6022 * 6023 * Requests that the local SCTP stack use the enclosed peer address as 6024 * the association primary. The enclosed address must be one of the 6025 * association peer's addresses. 6026 */ 6027 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6028 char __user *optval, int __user *optlen) 6029 { 6030 struct sctp_prim prim; 6031 struct sctp_association *asoc; 6032 struct sctp_sock *sp = sctp_sk(sk); 6033 6034 if (len < sizeof(struct sctp_prim)) 6035 return -EINVAL; 6036 6037 len = sizeof(struct sctp_prim); 6038 6039 if (copy_from_user(&prim, optval, len)) 6040 return -EFAULT; 6041 6042 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6043 if (!asoc) 6044 return -EINVAL; 6045 6046 if (!asoc->peer.primary_path) 6047 return -ENOTCONN; 6048 6049 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6050 asoc->peer.primary_path->af_specific->sockaddr_len); 6051 6052 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6053 (union sctp_addr *)&prim.ssp_addr); 6054 6055 if (put_user(len, optlen)) 6056 return -EFAULT; 6057 if (copy_to_user(optval, &prim, len)) 6058 return -EFAULT; 6059 6060 return 0; 6061 } 6062 6063 /* 6064 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6065 * 6066 * Requests that the local endpoint set the specified Adaptation Layer 6067 * Indication parameter for all future INIT and INIT-ACK exchanges. 6068 */ 6069 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6070 char __user *optval, int __user *optlen) 6071 { 6072 struct sctp_setadaptation adaptation; 6073 6074 if (len < sizeof(struct sctp_setadaptation)) 6075 return -EINVAL; 6076 6077 len = sizeof(struct sctp_setadaptation); 6078 6079 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6080 6081 if (put_user(len, optlen)) 6082 return -EFAULT; 6083 if (copy_to_user(optval, &adaptation, len)) 6084 return -EFAULT; 6085 6086 return 0; 6087 } 6088 6089 /* 6090 * 6091 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6092 * 6093 * Applications that wish to use the sendto() system call may wish to 6094 * specify a default set of parameters that would normally be supplied 6095 * through the inclusion of ancillary data. This socket option allows 6096 * such an application to set the default sctp_sndrcvinfo structure. 6097 6098 6099 * The application that wishes to use this socket option simply passes 6100 * in to this call the sctp_sndrcvinfo structure defined in Section 6101 * 5.2.2) The input parameters accepted by this call include 6102 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6103 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6104 * to this call if the caller is using the UDP model. 6105 * 6106 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6107 */ 6108 static int sctp_getsockopt_default_send_param(struct sock *sk, 6109 int len, char __user *optval, 6110 int __user *optlen) 6111 { 6112 struct sctp_sock *sp = sctp_sk(sk); 6113 struct sctp_association *asoc; 6114 struct sctp_sndrcvinfo info; 6115 6116 if (len < sizeof(info)) 6117 return -EINVAL; 6118 6119 len = sizeof(info); 6120 6121 if (copy_from_user(&info, optval, len)) 6122 return -EFAULT; 6123 6124 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6125 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 6126 return -EINVAL; 6127 if (asoc) { 6128 info.sinfo_stream = asoc->default_stream; 6129 info.sinfo_flags = asoc->default_flags; 6130 info.sinfo_ppid = asoc->default_ppid; 6131 info.sinfo_context = asoc->default_context; 6132 info.sinfo_timetolive = asoc->default_timetolive; 6133 } else { 6134 info.sinfo_stream = sp->default_stream; 6135 info.sinfo_flags = sp->default_flags; 6136 info.sinfo_ppid = sp->default_ppid; 6137 info.sinfo_context = sp->default_context; 6138 info.sinfo_timetolive = sp->default_timetolive; 6139 } 6140 6141 if (put_user(len, optlen)) 6142 return -EFAULT; 6143 if (copy_to_user(optval, &info, len)) 6144 return -EFAULT; 6145 6146 return 0; 6147 } 6148 6149 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6150 * (SCTP_DEFAULT_SNDINFO) 6151 */ 6152 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6153 char __user *optval, 6154 int __user *optlen) 6155 { 6156 struct sctp_sock *sp = sctp_sk(sk); 6157 struct sctp_association *asoc; 6158 struct sctp_sndinfo info; 6159 6160 if (len < sizeof(info)) 6161 return -EINVAL; 6162 6163 len = sizeof(info); 6164 6165 if (copy_from_user(&info, optval, len)) 6166 return -EFAULT; 6167 6168 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6169 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 6170 return -EINVAL; 6171 if (asoc) { 6172 info.snd_sid = asoc->default_stream; 6173 info.snd_flags = asoc->default_flags; 6174 info.snd_ppid = asoc->default_ppid; 6175 info.snd_context = asoc->default_context; 6176 } else { 6177 info.snd_sid = sp->default_stream; 6178 info.snd_flags = sp->default_flags; 6179 info.snd_ppid = sp->default_ppid; 6180 info.snd_context = sp->default_context; 6181 } 6182 6183 if (put_user(len, optlen)) 6184 return -EFAULT; 6185 if (copy_to_user(optval, &info, len)) 6186 return -EFAULT; 6187 6188 return 0; 6189 } 6190 6191 /* 6192 * 6193 * 7.1.5 SCTP_NODELAY 6194 * 6195 * Turn on/off any Nagle-like algorithm. This means that packets are 6196 * generally sent as soon as possible and no unnecessary delays are 6197 * introduced, at the cost of more packets in the network. Expects an 6198 * integer boolean flag. 6199 */ 6200 6201 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6202 char __user *optval, int __user *optlen) 6203 { 6204 int val; 6205 6206 if (len < sizeof(int)) 6207 return -EINVAL; 6208 6209 len = sizeof(int); 6210 val = (sctp_sk(sk)->nodelay == 1); 6211 if (put_user(len, optlen)) 6212 return -EFAULT; 6213 if (copy_to_user(optval, &val, len)) 6214 return -EFAULT; 6215 return 0; 6216 } 6217 6218 /* 6219 * 6220 * 7.1.1 SCTP_RTOINFO 6221 * 6222 * The protocol parameters used to initialize and bound retransmission 6223 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6224 * and modify these parameters. 6225 * All parameters are time values, in milliseconds. A value of 0, when 6226 * modifying the parameters, indicates that the current value should not 6227 * be changed. 6228 * 6229 */ 6230 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6231 char __user *optval, 6232 int __user *optlen) { 6233 struct sctp_rtoinfo rtoinfo; 6234 struct sctp_association *asoc; 6235 6236 if (len < sizeof (struct sctp_rtoinfo)) 6237 return -EINVAL; 6238 6239 len = sizeof(struct sctp_rtoinfo); 6240 6241 if (copy_from_user(&rtoinfo, optval, len)) 6242 return -EFAULT; 6243 6244 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6245 6246 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6247 return -EINVAL; 6248 6249 /* Values corresponding to the specific association. */ 6250 if (asoc) { 6251 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6252 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6253 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6254 } else { 6255 /* Values corresponding to the endpoint. */ 6256 struct sctp_sock *sp = sctp_sk(sk); 6257 6258 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6259 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6260 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6261 } 6262 6263 if (put_user(len, optlen)) 6264 return -EFAULT; 6265 6266 if (copy_to_user(optval, &rtoinfo, len)) 6267 return -EFAULT; 6268 6269 return 0; 6270 } 6271 6272 /* 6273 * 6274 * 7.1.2 SCTP_ASSOCINFO 6275 * 6276 * This option is used to tune the maximum retransmission attempts 6277 * of the association. 6278 * Returns an error if the new association retransmission value is 6279 * greater than the sum of the retransmission value of the peer. 6280 * See [SCTP] for more information. 6281 * 6282 */ 6283 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6284 char __user *optval, 6285 int __user *optlen) 6286 { 6287 6288 struct sctp_assocparams assocparams; 6289 struct sctp_association *asoc; 6290 struct list_head *pos; 6291 int cnt = 0; 6292 6293 if (len < sizeof (struct sctp_assocparams)) 6294 return -EINVAL; 6295 6296 len = sizeof(struct sctp_assocparams); 6297 6298 if (copy_from_user(&assocparams, optval, len)) 6299 return -EFAULT; 6300 6301 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6302 6303 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6304 return -EINVAL; 6305 6306 /* Values correspoinding to the specific association */ 6307 if (asoc) { 6308 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6309 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6310 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6311 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6312 6313 list_for_each(pos, &asoc->peer.transport_addr_list) { 6314 cnt++; 6315 } 6316 6317 assocparams.sasoc_number_peer_destinations = cnt; 6318 } else { 6319 /* Values corresponding to the endpoint */ 6320 struct sctp_sock *sp = sctp_sk(sk); 6321 6322 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6323 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6324 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6325 assocparams.sasoc_cookie_life = 6326 sp->assocparams.sasoc_cookie_life; 6327 assocparams.sasoc_number_peer_destinations = 6328 sp->assocparams. 6329 sasoc_number_peer_destinations; 6330 } 6331 6332 if (put_user(len, optlen)) 6333 return -EFAULT; 6334 6335 if (copy_to_user(optval, &assocparams, len)) 6336 return -EFAULT; 6337 6338 return 0; 6339 } 6340 6341 /* 6342 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6343 * 6344 * This socket option is a boolean flag which turns on or off mapped V4 6345 * addresses. If this option is turned on and the socket is type 6346 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6347 * If this option is turned off, then no mapping will be done of V4 6348 * addresses and a user will receive both PF_INET6 and PF_INET type 6349 * addresses on the socket. 6350 */ 6351 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6352 char __user *optval, int __user *optlen) 6353 { 6354 int val; 6355 struct sctp_sock *sp = sctp_sk(sk); 6356 6357 if (len < sizeof(int)) 6358 return -EINVAL; 6359 6360 len = sizeof(int); 6361 val = sp->v4mapped; 6362 if (put_user(len, optlen)) 6363 return -EFAULT; 6364 if (copy_to_user(optval, &val, len)) 6365 return -EFAULT; 6366 6367 return 0; 6368 } 6369 6370 /* 6371 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6372 * (chapter and verse is quoted at sctp_setsockopt_context()) 6373 */ 6374 static int sctp_getsockopt_context(struct sock *sk, int len, 6375 char __user *optval, int __user *optlen) 6376 { 6377 struct sctp_assoc_value params; 6378 struct sctp_sock *sp; 6379 struct sctp_association *asoc; 6380 6381 if (len < sizeof(struct sctp_assoc_value)) 6382 return -EINVAL; 6383 6384 len = sizeof(struct sctp_assoc_value); 6385 6386 if (copy_from_user(¶ms, optval, len)) 6387 return -EFAULT; 6388 6389 sp = sctp_sk(sk); 6390 6391 if (params.assoc_id != 0) { 6392 asoc = sctp_id2assoc(sk, params.assoc_id); 6393 if (!asoc) 6394 return -EINVAL; 6395 params.assoc_value = asoc->default_rcv_context; 6396 } else { 6397 params.assoc_value = sp->default_rcv_context; 6398 } 6399 6400 if (put_user(len, optlen)) 6401 return -EFAULT; 6402 if (copy_to_user(optval, ¶ms, len)) 6403 return -EFAULT; 6404 6405 return 0; 6406 } 6407 6408 /* 6409 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6410 * This option will get or set the maximum size to put in any outgoing 6411 * SCTP DATA chunk. If a message is larger than this size it will be 6412 * fragmented by SCTP into the specified size. Note that the underlying 6413 * SCTP implementation may fragment into smaller sized chunks when the 6414 * PMTU of the underlying association is smaller than the value set by 6415 * the user. The default value for this option is '0' which indicates 6416 * the user is NOT limiting fragmentation and only the PMTU will effect 6417 * SCTP's choice of DATA chunk size. Note also that values set larger 6418 * than the maximum size of an IP datagram will effectively let SCTP 6419 * control fragmentation (i.e. the same as setting this option to 0). 6420 * 6421 * The following structure is used to access and modify this parameter: 6422 * 6423 * struct sctp_assoc_value { 6424 * sctp_assoc_t assoc_id; 6425 * uint32_t assoc_value; 6426 * }; 6427 * 6428 * assoc_id: This parameter is ignored for one-to-one style sockets. 6429 * For one-to-many style sockets this parameter indicates which 6430 * association the user is performing an action upon. Note that if 6431 * this field's value is zero then the endpoints default value is 6432 * changed (effecting future associations only). 6433 * assoc_value: This parameter specifies the maximum size in bytes. 6434 */ 6435 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6436 char __user *optval, int __user *optlen) 6437 { 6438 struct sctp_assoc_value params; 6439 struct sctp_association *asoc; 6440 6441 if (len == sizeof(int)) { 6442 pr_warn_ratelimited(DEPRECATED 6443 "%s (pid %d) " 6444 "Use of int in maxseg socket option.\n" 6445 "Use struct sctp_assoc_value instead\n", 6446 current->comm, task_pid_nr(current)); 6447 params.assoc_id = 0; 6448 } else if (len >= sizeof(struct sctp_assoc_value)) { 6449 len = sizeof(struct sctp_assoc_value); 6450 if (copy_from_user(¶ms, optval, len)) 6451 return -EFAULT; 6452 } else 6453 return -EINVAL; 6454 6455 asoc = sctp_id2assoc(sk, params.assoc_id); 6456 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6457 return -EINVAL; 6458 6459 if (asoc) 6460 params.assoc_value = asoc->frag_point; 6461 else 6462 params.assoc_value = sctp_sk(sk)->user_frag; 6463 6464 if (put_user(len, optlen)) 6465 return -EFAULT; 6466 if (len == sizeof(int)) { 6467 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6468 return -EFAULT; 6469 } else { 6470 if (copy_to_user(optval, ¶ms, len)) 6471 return -EFAULT; 6472 } 6473 6474 return 0; 6475 } 6476 6477 /* 6478 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6479 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6480 */ 6481 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6482 char __user *optval, int __user *optlen) 6483 { 6484 int val; 6485 6486 if (len < sizeof(int)) 6487 return -EINVAL; 6488 6489 len = sizeof(int); 6490 6491 val = sctp_sk(sk)->frag_interleave; 6492 if (put_user(len, optlen)) 6493 return -EFAULT; 6494 if (copy_to_user(optval, &val, len)) 6495 return -EFAULT; 6496 6497 return 0; 6498 } 6499 6500 /* 6501 * 7.1.25. Set or Get the sctp partial delivery point 6502 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6503 */ 6504 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6505 char __user *optval, 6506 int __user *optlen) 6507 { 6508 u32 val; 6509 6510 if (len < sizeof(u32)) 6511 return -EINVAL; 6512 6513 len = sizeof(u32); 6514 6515 val = sctp_sk(sk)->pd_point; 6516 if (put_user(len, optlen)) 6517 return -EFAULT; 6518 if (copy_to_user(optval, &val, len)) 6519 return -EFAULT; 6520 6521 return 0; 6522 } 6523 6524 /* 6525 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6526 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6527 */ 6528 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6529 char __user *optval, 6530 int __user *optlen) 6531 { 6532 struct sctp_assoc_value params; 6533 struct sctp_sock *sp; 6534 struct sctp_association *asoc; 6535 6536 if (len == sizeof(int)) { 6537 pr_warn_ratelimited(DEPRECATED 6538 "%s (pid %d) " 6539 "Use of int in max_burst socket option.\n" 6540 "Use struct sctp_assoc_value instead\n", 6541 current->comm, task_pid_nr(current)); 6542 params.assoc_id = 0; 6543 } else if (len >= sizeof(struct sctp_assoc_value)) { 6544 len = sizeof(struct sctp_assoc_value); 6545 if (copy_from_user(¶ms, optval, len)) 6546 return -EFAULT; 6547 } else 6548 return -EINVAL; 6549 6550 sp = sctp_sk(sk); 6551 6552 if (params.assoc_id != 0) { 6553 asoc = sctp_id2assoc(sk, params.assoc_id); 6554 if (!asoc) 6555 return -EINVAL; 6556 params.assoc_value = asoc->max_burst; 6557 } else 6558 params.assoc_value = sp->max_burst; 6559 6560 if (len == sizeof(int)) { 6561 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6562 return -EFAULT; 6563 } else { 6564 if (copy_to_user(optval, ¶ms, len)) 6565 return -EFAULT; 6566 } 6567 6568 return 0; 6569 6570 } 6571 6572 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6573 char __user *optval, int __user *optlen) 6574 { 6575 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6576 struct sctp_hmacalgo __user *p = (void __user *)optval; 6577 struct sctp_hmac_algo_param *hmacs; 6578 __u16 data_len = 0; 6579 u32 num_idents; 6580 int i; 6581 6582 if (!ep->auth_enable) 6583 return -EACCES; 6584 6585 hmacs = ep->auth_hmacs_list; 6586 data_len = ntohs(hmacs->param_hdr.length) - 6587 sizeof(struct sctp_paramhdr); 6588 6589 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6590 return -EINVAL; 6591 6592 len = sizeof(struct sctp_hmacalgo) + data_len; 6593 num_idents = data_len / sizeof(u16); 6594 6595 if (put_user(len, optlen)) 6596 return -EFAULT; 6597 if (put_user(num_idents, &p->shmac_num_idents)) 6598 return -EFAULT; 6599 for (i = 0; i < num_idents; i++) { 6600 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6601 6602 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6603 return -EFAULT; 6604 } 6605 return 0; 6606 } 6607 6608 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6609 char __user *optval, int __user *optlen) 6610 { 6611 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6612 struct sctp_authkeyid val; 6613 struct sctp_association *asoc; 6614 6615 if (!ep->auth_enable) 6616 return -EACCES; 6617 6618 if (len < sizeof(struct sctp_authkeyid)) 6619 return -EINVAL; 6620 6621 len = sizeof(struct sctp_authkeyid); 6622 if (copy_from_user(&val, optval, len)) 6623 return -EFAULT; 6624 6625 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6626 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6627 return -EINVAL; 6628 6629 if (asoc) 6630 val.scact_keynumber = asoc->active_key_id; 6631 else 6632 val.scact_keynumber = ep->active_key_id; 6633 6634 if (put_user(len, optlen)) 6635 return -EFAULT; 6636 if (copy_to_user(optval, &val, len)) 6637 return -EFAULT; 6638 6639 return 0; 6640 } 6641 6642 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6643 char __user *optval, int __user *optlen) 6644 { 6645 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6646 struct sctp_authchunks __user *p = (void __user *)optval; 6647 struct sctp_authchunks val; 6648 struct sctp_association *asoc; 6649 struct sctp_chunks_param *ch; 6650 u32 num_chunks = 0; 6651 char __user *to; 6652 6653 if (!ep->auth_enable) 6654 return -EACCES; 6655 6656 if (len < sizeof(struct sctp_authchunks)) 6657 return -EINVAL; 6658 6659 if (copy_from_user(&val, optval, sizeof(val))) 6660 return -EFAULT; 6661 6662 to = p->gauth_chunks; 6663 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6664 if (!asoc) 6665 return -EINVAL; 6666 6667 ch = asoc->peer.peer_chunks; 6668 if (!ch) 6669 goto num; 6670 6671 /* See if the user provided enough room for all the data */ 6672 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6673 if (len < num_chunks) 6674 return -EINVAL; 6675 6676 if (copy_to_user(to, ch->chunks, num_chunks)) 6677 return -EFAULT; 6678 num: 6679 len = sizeof(struct sctp_authchunks) + num_chunks; 6680 if (put_user(len, optlen)) 6681 return -EFAULT; 6682 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6683 return -EFAULT; 6684 return 0; 6685 } 6686 6687 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6688 char __user *optval, int __user *optlen) 6689 { 6690 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6691 struct sctp_authchunks __user *p = (void __user *)optval; 6692 struct sctp_authchunks val; 6693 struct sctp_association *asoc; 6694 struct sctp_chunks_param *ch; 6695 u32 num_chunks = 0; 6696 char __user *to; 6697 6698 if (!ep->auth_enable) 6699 return -EACCES; 6700 6701 if (len < sizeof(struct sctp_authchunks)) 6702 return -EINVAL; 6703 6704 if (copy_from_user(&val, optval, sizeof(val))) 6705 return -EFAULT; 6706 6707 to = p->gauth_chunks; 6708 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6709 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6710 return -EINVAL; 6711 6712 if (asoc) 6713 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6714 else 6715 ch = ep->auth_chunk_list; 6716 6717 if (!ch) 6718 goto num; 6719 6720 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6721 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6722 return -EINVAL; 6723 6724 if (copy_to_user(to, ch->chunks, num_chunks)) 6725 return -EFAULT; 6726 num: 6727 len = sizeof(struct sctp_authchunks) + num_chunks; 6728 if (put_user(len, optlen)) 6729 return -EFAULT; 6730 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6731 return -EFAULT; 6732 6733 return 0; 6734 } 6735 6736 /* 6737 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6738 * This option gets the current number of associations that are attached 6739 * to a one-to-many style socket. The option value is an uint32_t. 6740 */ 6741 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6742 char __user *optval, int __user *optlen) 6743 { 6744 struct sctp_sock *sp = sctp_sk(sk); 6745 struct sctp_association *asoc; 6746 u32 val = 0; 6747 6748 if (sctp_style(sk, TCP)) 6749 return -EOPNOTSUPP; 6750 6751 if (len < sizeof(u32)) 6752 return -EINVAL; 6753 6754 len = sizeof(u32); 6755 6756 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6757 val++; 6758 } 6759 6760 if (put_user(len, optlen)) 6761 return -EFAULT; 6762 if (copy_to_user(optval, &val, len)) 6763 return -EFAULT; 6764 6765 return 0; 6766 } 6767 6768 /* 6769 * 8.1.23 SCTP_AUTO_ASCONF 6770 * See the corresponding setsockopt entry as description 6771 */ 6772 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6773 char __user *optval, int __user *optlen) 6774 { 6775 int val = 0; 6776 6777 if (len < sizeof(int)) 6778 return -EINVAL; 6779 6780 len = sizeof(int); 6781 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6782 val = 1; 6783 if (put_user(len, optlen)) 6784 return -EFAULT; 6785 if (copy_to_user(optval, &val, len)) 6786 return -EFAULT; 6787 return 0; 6788 } 6789 6790 /* 6791 * 8.2.6. Get the Current Identifiers of Associations 6792 * (SCTP_GET_ASSOC_ID_LIST) 6793 * 6794 * This option gets the current list of SCTP association identifiers of 6795 * the SCTP associations handled by a one-to-many style socket. 6796 */ 6797 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6798 char __user *optval, int __user *optlen) 6799 { 6800 struct sctp_sock *sp = sctp_sk(sk); 6801 struct sctp_association *asoc; 6802 struct sctp_assoc_ids *ids; 6803 u32 num = 0; 6804 6805 if (sctp_style(sk, TCP)) 6806 return -EOPNOTSUPP; 6807 6808 if (len < sizeof(struct sctp_assoc_ids)) 6809 return -EINVAL; 6810 6811 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6812 num++; 6813 } 6814 6815 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6816 return -EINVAL; 6817 6818 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6819 6820 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6821 if (unlikely(!ids)) 6822 return -ENOMEM; 6823 6824 ids->gaids_number_of_ids = num; 6825 num = 0; 6826 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6827 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6828 } 6829 6830 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6831 kfree(ids); 6832 return -EFAULT; 6833 } 6834 6835 kfree(ids); 6836 return 0; 6837 } 6838 6839 /* 6840 * SCTP_PEER_ADDR_THLDS 6841 * 6842 * This option allows us to fetch the partially failed threshold for one or all 6843 * transports in an association. See Section 6.1 of: 6844 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6845 */ 6846 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6847 char __user *optval, 6848 int len, 6849 int __user *optlen) 6850 { 6851 struct sctp_paddrthlds val; 6852 struct sctp_transport *trans; 6853 struct sctp_association *asoc; 6854 6855 if (len < sizeof(struct sctp_paddrthlds)) 6856 return -EINVAL; 6857 len = sizeof(struct sctp_paddrthlds); 6858 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6859 return -EFAULT; 6860 6861 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6862 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6863 if (!asoc) 6864 return -ENOENT; 6865 6866 val.spt_pathpfthld = asoc->pf_retrans; 6867 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6868 } else { 6869 trans = sctp_addr_id2transport(sk, &val.spt_address, 6870 val.spt_assoc_id); 6871 if (!trans) 6872 return -ENOENT; 6873 6874 val.spt_pathmaxrxt = trans->pathmaxrxt; 6875 val.spt_pathpfthld = trans->pf_retrans; 6876 } 6877 6878 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6879 return -EFAULT; 6880 6881 return 0; 6882 } 6883 6884 /* 6885 * SCTP_GET_ASSOC_STATS 6886 * 6887 * This option retrieves local per endpoint statistics. It is modeled 6888 * after OpenSolaris' implementation 6889 */ 6890 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6891 char __user *optval, 6892 int __user *optlen) 6893 { 6894 struct sctp_assoc_stats sas; 6895 struct sctp_association *asoc = NULL; 6896 6897 /* User must provide at least the assoc id */ 6898 if (len < sizeof(sctp_assoc_t)) 6899 return -EINVAL; 6900 6901 /* Allow the struct to grow and fill in as much as possible */ 6902 len = min_t(size_t, len, sizeof(sas)); 6903 6904 if (copy_from_user(&sas, optval, len)) 6905 return -EFAULT; 6906 6907 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6908 if (!asoc) 6909 return -EINVAL; 6910 6911 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6912 sas.sas_gapcnt = asoc->stats.gapcnt; 6913 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6914 sas.sas_osacks = asoc->stats.osacks; 6915 sas.sas_isacks = asoc->stats.isacks; 6916 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6917 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6918 sas.sas_oodchunks = asoc->stats.oodchunks; 6919 sas.sas_iodchunks = asoc->stats.iodchunks; 6920 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6921 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6922 sas.sas_idupchunks = asoc->stats.idupchunks; 6923 sas.sas_opackets = asoc->stats.opackets; 6924 sas.sas_ipackets = asoc->stats.ipackets; 6925 6926 /* New high max rto observed, will return 0 if not a single 6927 * RTO update took place. obs_rto_ipaddr will be bogus 6928 * in such a case 6929 */ 6930 sas.sas_maxrto = asoc->stats.max_obs_rto; 6931 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6932 sizeof(struct sockaddr_storage)); 6933 6934 /* Mark beginning of a new observation period */ 6935 asoc->stats.max_obs_rto = asoc->rto_min; 6936 6937 if (put_user(len, optlen)) 6938 return -EFAULT; 6939 6940 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6941 6942 if (copy_to_user(optval, &sas, len)) 6943 return -EFAULT; 6944 6945 return 0; 6946 } 6947 6948 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6949 char __user *optval, 6950 int __user *optlen) 6951 { 6952 int val = 0; 6953 6954 if (len < sizeof(int)) 6955 return -EINVAL; 6956 6957 len = sizeof(int); 6958 if (sctp_sk(sk)->recvrcvinfo) 6959 val = 1; 6960 if (put_user(len, optlen)) 6961 return -EFAULT; 6962 if (copy_to_user(optval, &val, len)) 6963 return -EFAULT; 6964 6965 return 0; 6966 } 6967 6968 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6969 char __user *optval, 6970 int __user *optlen) 6971 { 6972 int val = 0; 6973 6974 if (len < sizeof(int)) 6975 return -EINVAL; 6976 6977 len = sizeof(int); 6978 if (sctp_sk(sk)->recvnxtinfo) 6979 val = 1; 6980 if (put_user(len, optlen)) 6981 return -EFAULT; 6982 if (copy_to_user(optval, &val, len)) 6983 return -EFAULT; 6984 6985 return 0; 6986 } 6987 6988 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6989 char __user *optval, 6990 int __user *optlen) 6991 { 6992 struct sctp_assoc_value params; 6993 struct sctp_association *asoc; 6994 int retval = -EFAULT; 6995 6996 if (len < sizeof(params)) { 6997 retval = -EINVAL; 6998 goto out; 6999 } 7000 7001 len = sizeof(params); 7002 if (copy_from_user(¶ms, optval, len)) 7003 goto out; 7004 7005 asoc = sctp_id2assoc(sk, params.assoc_id); 7006 if (asoc) { 7007 params.assoc_value = asoc->prsctp_enable; 7008 } else if (!params.assoc_id) { 7009 struct sctp_sock *sp = sctp_sk(sk); 7010 7011 params.assoc_value = sp->ep->prsctp_enable; 7012 } else { 7013 retval = -EINVAL; 7014 goto out; 7015 } 7016 7017 if (put_user(len, optlen)) 7018 goto out; 7019 7020 if (copy_to_user(optval, ¶ms, len)) 7021 goto out; 7022 7023 retval = 0; 7024 7025 out: 7026 return retval; 7027 } 7028 7029 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7030 char __user *optval, 7031 int __user *optlen) 7032 { 7033 struct sctp_default_prinfo info; 7034 struct sctp_association *asoc; 7035 int retval = -EFAULT; 7036 7037 if (len < sizeof(info)) { 7038 retval = -EINVAL; 7039 goto out; 7040 } 7041 7042 len = sizeof(info); 7043 if (copy_from_user(&info, optval, len)) 7044 goto out; 7045 7046 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7047 if (asoc) { 7048 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7049 info.pr_value = asoc->default_timetolive; 7050 } else if (!info.pr_assoc_id) { 7051 struct sctp_sock *sp = sctp_sk(sk); 7052 7053 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7054 info.pr_value = sp->default_timetolive; 7055 } else { 7056 retval = -EINVAL; 7057 goto out; 7058 } 7059 7060 if (put_user(len, optlen)) 7061 goto out; 7062 7063 if (copy_to_user(optval, &info, len)) 7064 goto out; 7065 7066 retval = 0; 7067 7068 out: 7069 return retval; 7070 } 7071 7072 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7073 char __user *optval, 7074 int __user *optlen) 7075 { 7076 struct sctp_prstatus params; 7077 struct sctp_association *asoc; 7078 int policy; 7079 int retval = -EINVAL; 7080 7081 if (len < sizeof(params)) 7082 goto out; 7083 7084 len = sizeof(params); 7085 if (copy_from_user(¶ms, optval, len)) { 7086 retval = -EFAULT; 7087 goto out; 7088 } 7089 7090 policy = params.sprstat_policy; 7091 if (policy & ~SCTP_PR_SCTP_MASK) 7092 goto out; 7093 7094 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7095 if (!asoc) 7096 goto out; 7097 7098 if (policy == SCTP_PR_SCTP_NONE) { 7099 params.sprstat_abandoned_unsent = 0; 7100 params.sprstat_abandoned_sent = 0; 7101 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7102 params.sprstat_abandoned_unsent += 7103 asoc->abandoned_unsent[policy]; 7104 params.sprstat_abandoned_sent += 7105 asoc->abandoned_sent[policy]; 7106 } 7107 } else { 7108 params.sprstat_abandoned_unsent = 7109 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7110 params.sprstat_abandoned_sent = 7111 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7112 } 7113 7114 if (put_user(len, optlen)) { 7115 retval = -EFAULT; 7116 goto out; 7117 } 7118 7119 if (copy_to_user(optval, ¶ms, len)) { 7120 retval = -EFAULT; 7121 goto out; 7122 } 7123 7124 retval = 0; 7125 7126 out: 7127 return retval; 7128 } 7129 7130 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7131 char __user *optval, 7132 int __user *optlen) 7133 { 7134 struct sctp_stream_out_ext *streamoute; 7135 struct sctp_association *asoc; 7136 struct sctp_prstatus params; 7137 int retval = -EINVAL; 7138 int policy; 7139 7140 if (len < sizeof(params)) 7141 goto out; 7142 7143 len = sizeof(params); 7144 if (copy_from_user(¶ms, optval, len)) { 7145 retval = -EFAULT; 7146 goto out; 7147 } 7148 7149 policy = params.sprstat_policy; 7150 if (policy & ~SCTP_PR_SCTP_MASK) 7151 goto out; 7152 7153 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7154 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7155 goto out; 7156 7157 streamoute = asoc->stream.out[params.sprstat_sid].ext; 7158 if (!streamoute) { 7159 /* Not allocated yet, means all stats are 0 */ 7160 params.sprstat_abandoned_unsent = 0; 7161 params.sprstat_abandoned_sent = 0; 7162 retval = 0; 7163 goto out; 7164 } 7165 7166 if (policy == SCTP_PR_SCTP_NONE) { 7167 params.sprstat_abandoned_unsent = 0; 7168 params.sprstat_abandoned_sent = 0; 7169 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7170 params.sprstat_abandoned_unsent += 7171 streamoute->abandoned_unsent[policy]; 7172 params.sprstat_abandoned_sent += 7173 streamoute->abandoned_sent[policy]; 7174 } 7175 } else { 7176 params.sprstat_abandoned_unsent = 7177 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7178 params.sprstat_abandoned_sent = 7179 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7180 } 7181 7182 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7183 retval = -EFAULT; 7184 goto out; 7185 } 7186 7187 retval = 0; 7188 7189 out: 7190 return retval; 7191 } 7192 7193 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7194 char __user *optval, 7195 int __user *optlen) 7196 { 7197 struct sctp_assoc_value params; 7198 struct sctp_association *asoc; 7199 int retval = -EFAULT; 7200 7201 if (len < sizeof(params)) { 7202 retval = -EINVAL; 7203 goto out; 7204 } 7205 7206 len = sizeof(params); 7207 if (copy_from_user(¶ms, optval, len)) 7208 goto out; 7209 7210 asoc = sctp_id2assoc(sk, params.assoc_id); 7211 if (asoc) { 7212 params.assoc_value = asoc->reconf_enable; 7213 } else if (!params.assoc_id) { 7214 struct sctp_sock *sp = sctp_sk(sk); 7215 7216 params.assoc_value = sp->ep->reconf_enable; 7217 } else { 7218 retval = -EINVAL; 7219 goto out; 7220 } 7221 7222 if (put_user(len, optlen)) 7223 goto out; 7224 7225 if (copy_to_user(optval, ¶ms, len)) 7226 goto out; 7227 7228 retval = 0; 7229 7230 out: 7231 return retval; 7232 } 7233 7234 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7235 char __user *optval, 7236 int __user *optlen) 7237 { 7238 struct sctp_assoc_value params; 7239 struct sctp_association *asoc; 7240 int retval = -EFAULT; 7241 7242 if (len < sizeof(params)) { 7243 retval = -EINVAL; 7244 goto out; 7245 } 7246 7247 len = sizeof(params); 7248 if (copy_from_user(¶ms, optval, len)) 7249 goto out; 7250 7251 asoc = sctp_id2assoc(sk, params.assoc_id); 7252 if (asoc) { 7253 params.assoc_value = asoc->strreset_enable; 7254 } else if (!params.assoc_id) { 7255 struct sctp_sock *sp = sctp_sk(sk); 7256 7257 params.assoc_value = sp->ep->strreset_enable; 7258 } else { 7259 retval = -EINVAL; 7260 goto out; 7261 } 7262 7263 if (put_user(len, optlen)) 7264 goto out; 7265 7266 if (copy_to_user(optval, ¶ms, len)) 7267 goto out; 7268 7269 retval = 0; 7270 7271 out: 7272 return retval; 7273 } 7274 7275 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7276 char __user *optval, 7277 int __user *optlen) 7278 { 7279 struct sctp_assoc_value params; 7280 struct sctp_association *asoc; 7281 int retval = -EFAULT; 7282 7283 if (len < sizeof(params)) { 7284 retval = -EINVAL; 7285 goto out; 7286 } 7287 7288 len = sizeof(params); 7289 if (copy_from_user(¶ms, optval, len)) 7290 goto out; 7291 7292 asoc = sctp_id2assoc(sk, params.assoc_id); 7293 if (!asoc) { 7294 retval = -EINVAL; 7295 goto out; 7296 } 7297 7298 params.assoc_value = sctp_sched_get_sched(asoc); 7299 7300 if (put_user(len, optlen)) 7301 goto out; 7302 7303 if (copy_to_user(optval, ¶ms, len)) 7304 goto out; 7305 7306 retval = 0; 7307 7308 out: 7309 return retval; 7310 } 7311 7312 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7313 char __user *optval, 7314 int __user *optlen) 7315 { 7316 struct sctp_stream_value params; 7317 struct sctp_association *asoc; 7318 int retval = -EFAULT; 7319 7320 if (len < sizeof(params)) { 7321 retval = -EINVAL; 7322 goto out; 7323 } 7324 7325 len = sizeof(params); 7326 if (copy_from_user(¶ms, optval, len)) 7327 goto out; 7328 7329 asoc = sctp_id2assoc(sk, params.assoc_id); 7330 if (!asoc) { 7331 retval = -EINVAL; 7332 goto out; 7333 } 7334 7335 retval = sctp_sched_get_value(asoc, params.stream_id, 7336 ¶ms.stream_value); 7337 if (retval) 7338 goto out; 7339 7340 if (put_user(len, optlen)) { 7341 retval = -EFAULT; 7342 goto out; 7343 } 7344 7345 if (copy_to_user(optval, ¶ms, len)) { 7346 retval = -EFAULT; 7347 goto out; 7348 } 7349 7350 out: 7351 return retval; 7352 } 7353 7354 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7355 char __user *optval, 7356 int __user *optlen) 7357 { 7358 struct sctp_assoc_value params; 7359 struct sctp_association *asoc; 7360 int retval = -EFAULT; 7361 7362 if (len < sizeof(params)) { 7363 retval = -EINVAL; 7364 goto out; 7365 } 7366 7367 len = sizeof(params); 7368 if (copy_from_user(¶ms, optval, len)) 7369 goto out; 7370 7371 asoc = sctp_id2assoc(sk, params.assoc_id); 7372 if (asoc) { 7373 params.assoc_value = asoc->intl_enable; 7374 } else if (!params.assoc_id) { 7375 struct sctp_sock *sp = sctp_sk(sk); 7376 7377 params.assoc_value = sp->strm_interleave; 7378 } else { 7379 retval = -EINVAL; 7380 goto out; 7381 } 7382 7383 if (put_user(len, optlen)) 7384 goto out; 7385 7386 if (copy_to_user(optval, ¶ms, len)) 7387 goto out; 7388 7389 retval = 0; 7390 7391 out: 7392 return retval; 7393 } 7394 7395 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7396 char __user *optval, 7397 int __user *optlen) 7398 { 7399 int val; 7400 7401 if (len < sizeof(int)) 7402 return -EINVAL; 7403 7404 len = sizeof(int); 7405 val = sctp_sk(sk)->reuse; 7406 if (put_user(len, optlen)) 7407 return -EFAULT; 7408 7409 if (copy_to_user(optval, &val, len)) 7410 return -EFAULT; 7411 7412 return 0; 7413 } 7414 7415 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7416 char __user *optval, int __user *optlen) 7417 { 7418 int retval = 0; 7419 int len; 7420 7421 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7422 7423 /* I can hardly begin to describe how wrong this is. This is 7424 * so broken as to be worse than useless. The API draft 7425 * REALLY is NOT helpful here... I am not convinced that the 7426 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7427 * are at all well-founded. 7428 */ 7429 if (level != SOL_SCTP) { 7430 struct sctp_af *af = sctp_sk(sk)->pf->af; 7431 7432 retval = af->getsockopt(sk, level, optname, optval, optlen); 7433 return retval; 7434 } 7435 7436 if (get_user(len, optlen)) 7437 return -EFAULT; 7438 7439 if (len < 0) 7440 return -EINVAL; 7441 7442 lock_sock(sk); 7443 7444 switch (optname) { 7445 case SCTP_STATUS: 7446 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7447 break; 7448 case SCTP_DISABLE_FRAGMENTS: 7449 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7450 optlen); 7451 break; 7452 case SCTP_EVENTS: 7453 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7454 break; 7455 case SCTP_AUTOCLOSE: 7456 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7457 break; 7458 case SCTP_SOCKOPT_PEELOFF: 7459 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7460 break; 7461 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7462 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7463 break; 7464 case SCTP_PEER_ADDR_PARAMS: 7465 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7466 optlen); 7467 break; 7468 case SCTP_DELAYED_SACK: 7469 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7470 optlen); 7471 break; 7472 case SCTP_INITMSG: 7473 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7474 break; 7475 case SCTP_GET_PEER_ADDRS: 7476 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7477 optlen); 7478 break; 7479 case SCTP_GET_LOCAL_ADDRS: 7480 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7481 optlen); 7482 break; 7483 case SCTP_SOCKOPT_CONNECTX3: 7484 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7485 break; 7486 case SCTP_DEFAULT_SEND_PARAM: 7487 retval = sctp_getsockopt_default_send_param(sk, len, 7488 optval, optlen); 7489 break; 7490 case SCTP_DEFAULT_SNDINFO: 7491 retval = sctp_getsockopt_default_sndinfo(sk, len, 7492 optval, optlen); 7493 break; 7494 case SCTP_PRIMARY_ADDR: 7495 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7496 break; 7497 case SCTP_NODELAY: 7498 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7499 break; 7500 case SCTP_RTOINFO: 7501 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7502 break; 7503 case SCTP_ASSOCINFO: 7504 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7505 break; 7506 case SCTP_I_WANT_MAPPED_V4_ADDR: 7507 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7508 break; 7509 case SCTP_MAXSEG: 7510 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7511 break; 7512 case SCTP_GET_PEER_ADDR_INFO: 7513 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7514 optlen); 7515 break; 7516 case SCTP_ADAPTATION_LAYER: 7517 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7518 optlen); 7519 break; 7520 case SCTP_CONTEXT: 7521 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7522 break; 7523 case SCTP_FRAGMENT_INTERLEAVE: 7524 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7525 optlen); 7526 break; 7527 case SCTP_PARTIAL_DELIVERY_POINT: 7528 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7529 optlen); 7530 break; 7531 case SCTP_MAX_BURST: 7532 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7533 break; 7534 case SCTP_AUTH_KEY: 7535 case SCTP_AUTH_CHUNK: 7536 case SCTP_AUTH_DELETE_KEY: 7537 case SCTP_AUTH_DEACTIVATE_KEY: 7538 retval = -EOPNOTSUPP; 7539 break; 7540 case SCTP_HMAC_IDENT: 7541 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7542 break; 7543 case SCTP_AUTH_ACTIVE_KEY: 7544 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7545 break; 7546 case SCTP_PEER_AUTH_CHUNKS: 7547 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7548 optlen); 7549 break; 7550 case SCTP_LOCAL_AUTH_CHUNKS: 7551 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7552 optlen); 7553 break; 7554 case SCTP_GET_ASSOC_NUMBER: 7555 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7556 break; 7557 case SCTP_GET_ASSOC_ID_LIST: 7558 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7559 break; 7560 case SCTP_AUTO_ASCONF: 7561 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7562 break; 7563 case SCTP_PEER_ADDR_THLDS: 7564 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7565 break; 7566 case SCTP_GET_ASSOC_STATS: 7567 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7568 break; 7569 case SCTP_RECVRCVINFO: 7570 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7571 break; 7572 case SCTP_RECVNXTINFO: 7573 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7574 break; 7575 case SCTP_PR_SUPPORTED: 7576 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7577 break; 7578 case SCTP_DEFAULT_PRINFO: 7579 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7580 optlen); 7581 break; 7582 case SCTP_PR_ASSOC_STATUS: 7583 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7584 optlen); 7585 break; 7586 case SCTP_PR_STREAM_STATUS: 7587 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7588 optlen); 7589 break; 7590 case SCTP_RECONFIG_SUPPORTED: 7591 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7592 optlen); 7593 break; 7594 case SCTP_ENABLE_STREAM_RESET: 7595 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7596 optlen); 7597 break; 7598 case SCTP_STREAM_SCHEDULER: 7599 retval = sctp_getsockopt_scheduler(sk, len, optval, 7600 optlen); 7601 break; 7602 case SCTP_STREAM_SCHEDULER_VALUE: 7603 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7604 optlen); 7605 break; 7606 case SCTP_INTERLEAVING_SUPPORTED: 7607 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7608 optlen); 7609 break; 7610 case SCTP_REUSE_PORT: 7611 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7612 break; 7613 default: 7614 retval = -ENOPROTOOPT; 7615 break; 7616 } 7617 7618 release_sock(sk); 7619 return retval; 7620 } 7621 7622 static int sctp_hash(struct sock *sk) 7623 { 7624 /* STUB */ 7625 return 0; 7626 } 7627 7628 static void sctp_unhash(struct sock *sk) 7629 { 7630 /* STUB */ 7631 } 7632 7633 /* Check if port is acceptable. Possibly find first available port. 7634 * 7635 * The port hash table (contained in the 'global' SCTP protocol storage 7636 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7637 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7638 * list (the list number is the port number hashed out, so as you 7639 * would expect from a hash function, all the ports in a given list have 7640 * such a number that hashes out to the same list number; you were 7641 * expecting that, right?); so each list has a set of ports, with a 7642 * link to the socket (struct sock) that uses it, the port number and 7643 * a fastreuse flag (FIXME: NPI ipg). 7644 */ 7645 static struct sctp_bind_bucket *sctp_bucket_create( 7646 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7647 7648 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7649 { 7650 bool reuse = (sk->sk_reuse || sctp_sk(sk)->reuse); 7651 struct sctp_bind_hashbucket *head; /* hash list */ 7652 struct sctp_bind_bucket *pp; 7653 unsigned short snum; 7654 int ret; 7655 7656 snum = ntohs(addr->v4.sin_port); 7657 7658 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7659 7660 local_bh_disable(); 7661 7662 if (snum == 0) { 7663 /* Search for an available port. */ 7664 int low, high, remaining, index; 7665 unsigned int rover; 7666 struct net *net = sock_net(sk); 7667 7668 inet_get_local_port_range(net, &low, &high); 7669 remaining = (high - low) + 1; 7670 rover = prandom_u32() % remaining + low; 7671 7672 do { 7673 rover++; 7674 if ((rover < low) || (rover > high)) 7675 rover = low; 7676 if (inet_is_local_reserved_port(net, rover)) 7677 continue; 7678 index = sctp_phashfn(sock_net(sk), rover); 7679 head = &sctp_port_hashtable[index]; 7680 spin_lock(&head->lock); 7681 sctp_for_each_hentry(pp, &head->chain) 7682 if ((pp->port == rover) && 7683 net_eq(sock_net(sk), pp->net)) 7684 goto next; 7685 break; 7686 next: 7687 spin_unlock(&head->lock); 7688 } while (--remaining > 0); 7689 7690 /* Exhausted local port range during search? */ 7691 ret = 1; 7692 if (remaining <= 0) 7693 goto fail; 7694 7695 /* OK, here is the one we will use. HEAD (the port 7696 * hash table list entry) is non-NULL and we hold it's 7697 * mutex. 7698 */ 7699 snum = rover; 7700 } else { 7701 /* We are given an specific port number; we verify 7702 * that it is not being used. If it is used, we will 7703 * exahust the search in the hash list corresponding 7704 * to the port number (snum) - we detect that with the 7705 * port iterator, pp being NULL. 7706 */ 7707 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7708 spin_lock(&head->lock); 7709 sctp_for_each_hentry(pp, &head->chain) { 7710 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7711 goto pp_found; 7712 } 7713 } 7714 pp = NULL; 7715 goto pp_not_found; 7716 pp_found: 7717 if (!hlist_empty(&pp->owner)) { 7718 /* We had a port hash table hit - there is an 7719 * available port (pp != NULL) and it is being 7720 * used by other socket (pp->owner not empty); that other 7721 * socket is going to be sk2. 7722 */ 7723 struct sock *sk2; 7724 7725 pr_debug("%s: found a possible match\n", __func__); 7726 7727 if (pp->fastreuse && reuse && sk->sk_state != SCTP_SS_LISTENING) 7728 goto success; 7729 7730 /* Run through the list of sockets bound to the port 7731 * (pp->port) [via the pointers bind_next and 7732 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7733 * we get the endpoint they describe and run through 7734 * the endpoint's list of IP (v4 or v6) addresses, 7735 * comparing each of the addresses with the address of 7736 * the socket sk. If we find a match, then that means 7737 * that this port/socket (sk) combination are already 7738 * in an endpoint. 7739 */ 7740 sk_for_each_bound(sk2, &pp->owner) { 7741 struct sctp_endpoint *ep2; 7742 ep2 = sctp_sk(sk2)->ep; 7743 7744 if (sk == sk2 || 7745 (reuse && (sk2->sk_reuse || sctp_sk(sk2)->reuse) && 7746 sk2->sk_state != SCTP_SS_LISTENING)) 7747 continue; 7748 7749 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7750 sctp_sk(sk2), sctp_sk(sk))) { 7751 ret = (long)sk2; 7752 goto fail_unlock; 7753 } 7754 } 7755 7756 pr_debug("%s: found a match\n", __func__); 7757 } 7758 pp_not_found: 7759 /* If there was a hash table miss, create a new port. */ 7760 ret = 1; 7761 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7762 goto fail_unlock; 7763 7764 /* In either case (hit or miss), make sure fastreuse is 1 only 7765 * if sk->sk_reuse is too (that is, if the caller requested 7766 * SO_REUSEADDR on this socket -sk-). 7767 */ 7768 if (hlist_empty(&pp->owner)) { 7769 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 7770 pp->fastreuse = 1; 7771 else 7772 pp->fastreuse = 0; 7773 } else if (pp->fastreuse && 7774 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 7775 pp->fastreuse = 0; 7776 7777 /* We are set, so fill up all the data in the hash table 7778 * entry, tie the socket list information with the rest of the 7779 * sockets FIXME: Blurry, NPI (ipg). 7780 */ 7781 success: 7782 if (!sctp_sk(sk)->bind_hash) { 7783 inet_sk(sk)->inet_num = snum; 7784 sk_add_bind_node(sk, &pp->owner); 7785 sctp_sk(sk)->bind_hash = pp; 7786 } 7787 ret = 0; 7788 7789 fail_unlock: 7790 spin_unlock(&head->lock); 7791 7792 fail: 7793 local_bh_enable(); 7794 return ret; 7795 } 7796 7797 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7798 * port is requested. 7799 */ 7800 static int sctp_get_port(struct sock *sk, unsigned short snum) 7801 { 7802 union sctp_addr addr; 7803 struct sctp_af *af = sctp_sk(sk)->pf->af; 7804 7805 /* Set up a dummy address struct from the sk. */ 7806 af->from_sk(&addr, sk); 7807 addr.v4.sin_port = htons(snum); 7808 7809 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7810 return !!sctp_get_port_local(sk, &addr); 7811 } 7812 7813 /* 7814 * Move a socket to LISTENING state. 7815 */ 7816 static int sctp_listen_start(struct sock *sk, int backlog) 7817 { 7818 struct sctp_sock *sp = sctp_sk(sk); 7819 struct sctp_endpoint *ep = sp->ep; 7820 struct crypto_shash *tfm = NULL; 7821 char alg[32]; 7822 7823 /* Allocate HMAC for generating cookie. */ 7824 if (!sp->hmac && sp->sctp_hmac_alg) { 7825 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7826 tfm = crypto_alloc_shash(alg, 0, 0); 7827 if (IS_ERR(tfm)) { 7828 net_info_ratelimited("failed to load transform for %s: %ld\n", 7829 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7830 return -ENOSYS; 7831 } 7832 sctp_sk(sk)->hmac = tfm; 7833 } 7834 7835 /* 7836 * If a bind() or sctp_bindx() is not called prior to a listen() 7837 * call that allows new associations to be accepted, the system 7838 * picks an ephemeral port and will choose an address set equivalent 7839 * to binding with a wildcard address. 7840 * 7841 * This is not currently spelled out in the SCTP sockets 7842 * extensions draft, but follows the practice as seen in TCP 7843 * sockets. 7844 * 7845 */ 7846 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7847 if (!ep->base.bind_addr.port) { 7848 if (sctp_autobind(sk)) 7849 return -EAGAIN; 7850 } else { 7851 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7852 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7853 return -EADDRINUSE; 7854 } 7855 } 7856 7857 sk->sk_max_ack_backlog = backlog; 7858 sctp_hash_endpoint(ep); 7859 return 0; 7860 } 7861 7862 /* 7863 * 4.1.3 / 5.1.3 listen() 7864 * 7865 * By default, new associations are not accepted for UDP style sockets. 7866 * An application uses listen() to mark a socket as being able to 7867 * accept new associations. 7868 * 7869 * On TCP style sockets, applications use listen() to ready the SCTP 7870 * endpoint for accepting inbound associations. 7871 * 7872 * On both types of endpoints a backlog of '0' disables listening. 7873 * 7874 * Move a socket to LISTENING state. 7875 */ 7876 int sctp_inet_listen(struct socket *sock, int backlog) 7877 { 7878 struct sock *sk = sock->sk; 7879 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7880 int err = -EINVAL; 7881 7882 if (unlikely(backlog < 0)) 7883 return err; 7884 7885 lock_sock(sk); 7886 7887 /* Peeled-off sockets are not allowed to listen(). */ 7888 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7889 goto out; 7890 7891 if (sock->state != SS_UNCONNECTED) 7892 goto out; 7893 7894 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7895 goto out; 7896 7897 /* If backlog is zero, disable listening. */ 7898 if (!backlog) { 7899 if (sctp_sstate(sk, CLOSED)) 7900 goto out; 7901 7902 err = 0; 7903 sctp_unhash_endpoint(ep); 7904 sk->sk_state = SCTP_SS_CLOSED; 7905 if (sk->sk_reuse || sctp_sk(sk)->reuse) 7906 sctp_sk(sk)->bind_hash->fastreuse = 1; 7907 goto out; 7908 } 7909 7910 /* If we are already listening, just update the backlog */ 7911 if (sctp_sstate(sk, LISTENING)) 7912 sk->sk_max_ack_backlog = backlog; 7913 else { 7914 err = sctp_listen_start(sk, backlog); 7915 if (err) 7916 goto out; 7917 } 7918 7919 err = 0; 7920 out: 7921 release_sock(sk); 7922 return err; 7923 } 7924 7925 /* 7926 * This function is done by modeling the current datagram_poll() and the 7927 * tcp_poll(). Note that, based on these implementations, we don't 7928 * lock the socket in this function, even though it seems that, 7929 * ideally, locking or some other mechanisms can be used to ensure 7930 * the integrity of the counters (sndbuf and wmem_alloc) used 7931 * in this place. We assume that we don't need locks either until proven 7932 * otherwise. 7933 * 7934 * Another thing to note is that we include the Async I/O support 7935 * here, again, by modeling the current TCP/UDP code. We don't have 7936 * a good way to test with it yet. 7937 */ 7938 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7939 { 7940 struct sock *sk = sock->sk; 7941 struct sctp_sock *sp = sctp_sk(sk); 7942 __poll_t mask; 7943 7944 poll_wait(file, sk_sleep(sk), wait); 7945 7946 sock_rps_record_flow(sk); 7947 7948 /* A TCP-style listening socket becomes readable when the accept queue 7949 * is not empty. 7950 */ 7951 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7952 return (!list_empty(&sp->ep->asocs)) ? 7953 (EPOLLIN | EPOLLRDNORM) : 0; 7954 7955 mask = 0; 7956 7957 /* Is there any exceptional events? */ 7958 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7959 mask |= EPOLLERR | 7960 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7961 if (sk->sk_shutdown & RCV_SHUTDOWN) 7962 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7963 if (sk->sk_shutdown == SHUTDOWN_MASK) 7964 mask |= EPOLLHUP; 7965 7966 /* Is it readable? Reconsider this code with TCP-style support. */ 7967 if (!skb_queue_empty(&sk->sk_receive_queue)) 7968 mask |= EPOLLIN | EPOLLRDNORM; 7969 7970 /* The association is either gone or not ready. */ 7971 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7972 return mask; 7973 7974 /* Is it writable? */ 7975 if (sctp_writeable(sk)) { 7976 mask |= EPOLLOUT | EPOLLWRNORM; 7977 } else { 7978 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7979 /* 7980 * Since the socket is not locked, the buffer 7981 * might be made available after the writeable check and 7982 * before the bit is set. This could cause a lost I/O 7983 * signal. tcp_poll() has a race breaker for this race 7984 * condition. Based on their implementation, we put 7985 * in the following code to cover it as well. 7986 */ 7987 if (sctp_writeable(sk)) 7988 mask |= EPOLLOUT | EPOLLWRNORM; 7989 } 7990 return mask; 7991 } 7992 7993 /******************************************************************** 7994 * 2nd Level Abstractions 7995 ********************************************************************/ 7996 7997 static struct sctp_bind_bucket *sctp_bucket_create( 7998 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7999 { 8000 struct sctp_bind_bucket *pp; 8001 8002 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8003 if (pp) { 8004 SCTP_DBG_OBJCNT_INC(bind_bucket); 8005 pp->port = snum; 8006 pp->fastreuse = 0; 8007 INIT_HLIST_HEAD(&pp->owner); 8008 pp->net = net; 8009 hlist_add_head(&pp->node, &head->chain); 8010 } 8011 return pp; 8012 } 8013 8014 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8015 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8016 { 8017 if (pp && hlist_empty(&pp->owner)) { 8018 __hlist_del(&pp->node); 8019 kmem_cache_free(sctp_bucket_cachep, pp); 8020 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8021 } 8022 } 8023 8024 /* Release this socket's reference to a local port. */ 8025 static inline void __sctp_put_port(struct sock *sk) 8026 { 8027 struct sctp_bind_hashbucket *head = 8028 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8029 inet_sk(sk)->inet_num)]; 8030 struct sctp_bind_bucket *pp; 8031 8032 spin_lock(&head->lock); 8033 pp = sctp_sk(sk)->bind_hash; 8034 __sk_del_bind_node(sk); 8035 sctp_sk(sk)->bind_hash = NULL; 8036 inet_sk(sk)->inet_num = 0; 8037 sctp_bucket_destroy(pp); 8038 spin_unlock(&head->lock); 8039 } 8040 8041 void sctp_put_port(struct sock *sk) 8042 { 8043 local_bh_disable(); 8044 __sctp_put_port(sk); 8045 local_bh_enable(); 8046 } 8047 8048 /* 8049 * The system picks an ephemeral port and choose an address set equivalent 8050 * to binding with a wildcard address. 8051 * One of those addresses will be the primary address for the association. 8052 * This automatically enables the multihoming capability of SCTP. 8053 */ 8054 static int sctp_autobind(struct sock *sk) 8055 { 8056 union sctp_addr autoaddr; 8057 struct sctp_af *af; 8058 __be16 port; 8059 8060 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8061 af = sctp_sk(sk)->pf->af; 8062 8063 port = htons(inet_sk(sk)->inet_num); 8064 af->inaddr_any(&autoaddr, port); 8065 8066 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8067 } 8068 8069 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8070 * 8071 * From RFC 2292 8072 * 4.2 The cmsghdr Structure * 8073 * 8074 * When ancillary data is sent or received, any number of ancillary data 8075 * objects can be specified by the msg_control and msg_controllen members of 8076 * the msghdr structure, because each object is preceded by 8077 * a cmsghdr structure defining the object's length (the cmsg_len member). 8078 * Historically Berkeley-derived implementations have passed only one object 8079 * at a time, but this API allows multiple objects to be 8080 * passed in a single call to sendmsg() or recvmsg(). The following example 8081 * shows two ancillary data objects in a control buffer. 8082 * 8083 * |<--------------------------- msg_controllen -------------------------->| 8084 * | | 8085 * 8086 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8087 * 8088 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8089 * | | | 8090 * 8091 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8092 * 8093 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8094 * | | | | | 8095 * 8096 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8097 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8098 * 8099 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8100 * 8101 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8102 * ^ 8103 * | 8104 * 8105 * msg_control 8106 * points here 8107 */ 8108 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8109 { 8110 struct msghdr *my_msg = (struct msghdr *)msg; 8111 struct cmsghdr *cmsg; 8112 8113 for_each_cmsghdr(cmsg, my_msg) { 8114 if (!CMSG_OK(my_msg, cmsg)) 8115 return -EINVAL; 8116 8117 /* Should we parse this header or ignore? */ 8118 if (cmsg->cmsg_level != IPPROTO_SCTP) 8119 continue; 8120 8121 /* Strictly check lengths following example in SCM code. */ 8122 switch (cmsg->cmsg_type) { 8123 case SCTP_INIT: 8124 /* SCTP Socket API Extension 8125 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8126 * 8127 * This cmsghdr structure provides information for 8128 * initializing new SCTP associations with sendmsg(). 8129 * The SCTP_INITMSG socket option uses this same data 8130 * structure. This structure is not used for 8131 * recvmsg(). 8132 * 8133 * cmsg_level cmsg_type cmsg_data[] 8134 * ------------ ------------ ---------------------- 8135 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8136 */ 8137 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8138 return -EINVAL; 8139 8140 cmsgs->init = CMSG_DATA(cmsg); 8141 break; 8142 8143 case SCTP_SNDRCV: 8144 /* SCTP Socket API Extension 8145 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8146 * 8147 * This cmsghdr structure specifies SCTP options for 8148 * sendmsg() and describes SCTP header information 8149 * about a received message through recvmsg(). 8150 * 8151 * cmsg_level cmsg_type cmsg_data[] 8152 * ------------ ------------ ---------------------- 8153 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8154 */ 8155 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8156 return -EINVAL; 8157 8158 cmsgs->srinfo = CMSG_DATA(cmsg); 8159 8160 if (cmsgs->srinfo->sinfo_flags & 8161 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8162 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8163 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8164 return -EINVAL; 8165 break; 8166 8167 case SCTP_SNDINFO: 8168 /* SCTP Socket API Extension 8169 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8170 * 8171 * This cmsghdr structure specifies SCTP options for 8172 * sendmsg(). This structure and SCTP_RCVINFO replaces 8173 * SCTP_SNDRCV which has been deprecated. 8174 * 8175 * cmsg_level cmsg_type cmsg_data[] 8176 * ------------ ------------ --------------------- 8177 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8178 */ 8179 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8180 return -EINVAL; 8181 8182 cmsgs->sinfo = CMSG_DATA(cmsg); 8183 8184 if (cmsgs->sinfo->snd_flags & 8185 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8186 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8187 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8188 return -EINVAL; 8189 break; 8190 case SCTP_PRINFO: 8191 /* SCTP Socket API Extension 8192 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8193 * 8194 * This cmsghdr structure specifies SCTP options for sendmsg(). 8195 * 8196 * cmsg_level cmsg_type cmsg_data[] 8197 * ------------ ------------ --------------------- 8198 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8199 */ 8200 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8201 return -EINVAL; 8202 8203 cmsgs->prinfo = CMSG_DATA(cmsg); 8204 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8205 return -EINVAL; 8206 8207 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8208 cmsgs->prinfo->pr_value = 0; 8209 break; 8210 case SCTP_AUTHINFO: 8211 /* SCTP Socket API Extension 8212 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8213 * 8214 * This cmsghdr structure specifies SCTP options for sendmsg(). 8215 * 8216 * cmsg_level cmsg_type cmsg_data[] 8217 * ------------ ------------ --------------------- 8218 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8219 */ 8220 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8221 return -EINVAL; 8222 8223 cmsgs->authinfo = CMSG_DATA(cmsg); 8224 break; 8225 case SCTP_DSTADDRV4: 8226 case SCTP_DSTADDRV6: 8227 /* SCTP Socket API Extension 8228 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8229 * 8230 * This cmsghdr structure specifies SCTP options for sendmsg(). 8231 * 8232 * cmsg_level cmsg_type cmsg_data[] 8233 * ------------ ------------ --------------------- 8234 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8235 * ------------ ------------ --------------------- 8236 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8237 */ 8238 cmsgs->addrs_msg = my_msg; 8239 break; 8240 default: 8241 return -EINVAL; 8242 } 8243 } 8244 8245 return 0; 8246 } 8247 8248 /* 8249 * Wait for a packet.. 8250 * Note: This function is the same function as in core/datagram.c 8251 * with a few modifications to make lksctp work. 8252 */ 8253 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8254 { 8255 int error; 8256 DEFINE_WAIT(wait); 8257 8258 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8259 8260 /* Socket errors? */ 8261 error = sock_error(sk); 8262 if (error) 8263 goto out; 8264 8265 if (!skb_queue_empty(&sk->sk_receive_queue)) 8266 goto ready; 8267 8268 /* Socket shut down? */ 8269 if (sk->sk_shutdown & RCV_SHUTDOWN) 8270 goto out; 8271 8272 /* Sequenced packets can come disconnected. If so we report the 8273 * problem. 8274 */ 8275 error = -ENOTCONN; 8276 8277 /* Is there a good reason to think that we may receive some data? */ 8278 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8279 goto out; 8280 8281 /* Handle signals. */ 8282 if (signal_pending(current)) 8283 goto interrupted; 8284 8285 /* Let another process have a go. Since we are going to sleep 8286 * anyway. Note: This may cause odd behaviors if the message 8287 * does not fit in the user's buffer, but this seems to be the 8288 * only way to honor MSG_DONTWAIT realistically. 8289 */ 8290 release_sock(sk); 8291 *timeo_p = schedule_timeout(*timeo_p); 8292 lock_sock(sk); 8293 8294 ready: 8295 finish_wait(sk_sleep(sk), &wait); 8296 return 0; 8297 8298 interrupted: 8299 error = sock_intr_errno(*timeo_p); 8300 8301 out: 8302 finish_wait(sk_sleep(sk), &wait); 8303 *err = error; 8304 return error; 8305 } 8306 8307 /* Receive a datagram. 8308 * Note: This is pretty much the same routine as in core/datagram.c 8309 * with a few changes to make lksctp work. 8310 */ 8311 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8312 int noblock, int *err) 8313 { 8314 int error; 8315 struct sk_buff *skb; 8316 long timeo; 8317 8318 timeo = sock_rcvtimeo(sk, noblock); 8319 8320 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8321 MAX_SCHEDULE_TIMEOUT); 8322 8323 do { 8324 /* Again only user level code calls this function, 8325 * so nothing interrupt level 8326 * will suddenly eat the receive_queue. 8327 * 8328 * Look at current nfs client by the way... 8329 * However, this function was correct in any case. 8) 8330 */ 8331 if (flags & MSG_PEEK) { 8332 skb = skb_peek(&sk->sk_receive_queue); 8333 if (skb) 8334 refcount_inc(&skb->users); 8335 } else { 8336 skb = __skb_dequeue(&sk->sk_receive_queue); 8337 } 8338 8339 if (skb) 8340 return skb; 8341 8342 /* Caller is allowed not to check sk->sk_err before calling. */ 8343 error = sock_error(sk); 8344 if (error) 8345 goto no_packet; 8346 8347 if (sk->sk_shutdown & RCV_SHUTDOWN) 8348 break; 8349 8350 if (sk_can_busy_loop(sk)) { 8351 sk_busy_loop(sk, noblock); 8352 8353 if (!skb_queue_empty(&sk->sk_receive_queue)) 8354 continue; 8355 } 8356 8357 /* User doesn't want to wait. */ 8358 error = -EAGAIN; 8359 if (!timeo) 8360 goto no_packet; 8361 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8362 8363 return NULL; 8364 8365 no_packet: 8366 *err = error; 8367 return NULL; 8368 } 8369 8370 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8371 static void __sctp_write_space(struct sctp_association *asoc) 8372 { 8373 struct sock *sk = asoc->base.sk; 8374 8375 if (sctp_wspace(asoc) <= 0) 8376 return; 8377 8378 if (waitqueue_active(&asoc->wait)) 8379 wake_up_interruptible(&asoc->wait); 8380 8381 if (sctp_writeable(sk)) { 8382 struct socket_wq *wq; 8383 8384 rcu_read_lock(); 8385 wq = rcu_dereference(sk->sk_wq); 8386 if (wq) { 8387 if (waitqueue_active(&wq->wait)) 8388 wake_up_interruptible(&wq->wait); 8389 8390 /* Note that we try to include the Async I/O support 8391 * here by modeling from the current TCP/UDP code. 8392 * We have not tested with it yet. 8393 */ 8394 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8395 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8396 } 8397 rcu_read_unlock(); 8398 } 8399 } 8400 8401 static void sctp_wake_up_waiters(struct sock *sk, 8402 struct sctp_association *asoc) 8403 { 8404 struct sctp_association *tmp = asoc; 8405 8406 /* We do accounting for the sndbuf space per association, 8407 * so we only need to wake our own association. 8408 */ 8409 if (asoc->ep->sndbuf_policy) 8410 return __sctp_write_space(asoc); 8411 8412 /* If association goes down and is just flushing its 8413 * outq, then just normally notify others. 8414 */ 8415 if (asoc->base.dead) 8416 return sctp_write_space(sk); 8417 8418 /* Accounting for the sndbuf space is per socket, so we 8419 * need to wake up others, try to be fair and in case of 8420 * other associations, let them have a go first instead 8421 * of just doing a sctp_write_space() call. 8422 * 8423 * Note that we reach sctp_wake_up_waiters() only when 8424 * associations free up queued chunks, thus we are under 8425 * lock and the list of associations on a socket is 8426 * guaranteed not to change. 8427 */ 8428 for (tmp = list_next_entry(tmp, asocs); 1; 8429 tmp = list_next_entry(tmp, asocs)) { 8430 /* Manually skip the head element. */ 8431 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8432 continue; 8433 /* Wake up association. */ 8434 __sctp_write_space(tmp); 8435 /* We've reached the end. */ 8436 if (tmp == asoc) 8437 break; 8438 } 8439 } 8440 8441 /* Do accounting for the sndbuf space. 8442 * Decrement the used sndbuf space of the corresponding association by the 8443 * data size which was just transmitted(freed). 8444 */ 8445 static void sctp_wfree(struct sk_buff *skb) 8446 { 8447 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8448 struct sctp_association *asoc = chunk->asoc; 8449 struct sock *sk = asoc->base.sk; 8450 8451 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 8452 sizeof(struct sk_buff) + 8453 sizeof(struct sctp_chunk); 8454 8455 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 8456 8457 /* 8458 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 8459 */ 8460 sk->sk_wmem_queued -= skb->truesize; 8461 sk_mem_uncharge(sk, skb->truesize); 8462 8463 if (chunk->shkey) { 8464 struct sctp_shared_key *shkey = chunk->shkey; 8465 8466 /* refcnt == 2 and !list_empty mean after this release, it's 8467 * not being used anywhere, and it's time to notify userland 8468 * that this shkey can be freed if it's been deactivated. 8469 */ 8470 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8471 refcount_read(&shkey->refcnt) == 2) { 8472 struct sctp_ulpevent *ev; 8473 8474 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8475 SCTP_AUTH_FREE_KEY, 8476 GFP_KERNEL); 8477 if (ev) 8478 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8479 } 8480 sctp_auth_shkey_release(chunk->shkey); 8481 } 8482 8483 sock_wfree(skb); 8484 sctp_wake_up_waiters(sk, asoc); 8485 8486 sctp_association_put(asoc); 8487 } 8488 8489 /* Do accounting for the receive space on the socket. 8490 * Accounting for the association is done in ulpevent.c 8491 * We set this as a destructor for the cloned data skbs so that 8492 * accounting is done at the correct time. 8493 */ 8494 void sctp_sock_rfree(struct sk_buff *skb) 8495 { 8496 struct sock *sk = skb->sk; 8497 struct sctp_ulpevent *event = sctp_skb2event(skb); 8498 8499 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8500 8501 /* 8502 * Mimic the behavior of sock_rfree 8503 */ 8504 sk_mem_uncharge(sk, event->rmem_len); 8505 } 8506 8507 8508 /* Helper function to wait for space in the sndbuf. */ 8509 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8510 size_t msg_len) 8511 { 8512 struct sock *sk = asoc->base.sk; 8513 long current_timeo = *timeo_p; 8514 DEFINE_WAIT(wait); 8515 int err = 0; 8516 8517 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8518 *timeo_p, msg_len); 8519 8520 /* Increment the association's refcnt. */ 8521 sctp_association_hold(asoc); 8522 8523 /* Wait on the association specific sndbuf space. */ 8524 for (;;) { 8525 prepare_to_wait_exclusive(&asoc->wait, &wait, 8526 TASK_INTERRUPTIBLE); 8527 if (asoc->base.dead) 8528 goto do_dead; 8529 if (!*timeo_p) 8530 goto do_nonblock; 8531 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8532 goto do_error; 8533 if (signal_pending(current)) 8534 goto do_interrupted; 8535 if (msg_len <= sctp_wspace(asoc)) 8536 break; 8537 8538 /* Let another process have a go. Since we are going 8539 * to sleep anyway. 8540 */ 8541 release_sock(sk); 8542 current_timeo = schedule_timeout(current_timeo); 8543 lock_sock(sk); 8544 if (sk != asoc->base.sk) 8545 goto do_error; 8546 8547 *timeo_p = current_timeo; 8548 } 8549 8550 out: 8551 finish_wait(&asoc->wait, &wait); 8552 8553 /* Release the association's refcnt. */ 8554 sctp_association_put(asoc); 8555 8556 return err; 8557 8558 do_dead: 8559 err = -ESRCH; 8560 goto out; 8561 8562 do_error: 8563 err = -EPIPE; 8564 goto out; 8565 8566 do_interrupted: 8567 err = sock_intr_errno(*timeo_p); 8568 goto out; 8569 8570 do_nonblock: 8571 err = -EAGAIN; 8572 goto out; 8573 } 8574 8575 void sctp_data_ready(struct sock *sk) 8576 { 8577 struct socket_wq *wq; 8578 8579 rcu_read_lock(); 8580 wq = rcu_dereference(sk->sk_wq); 8581 if (skwq_has_sleeper(wq)) 8582 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8583 EPOLLRDNORM | EPOLLRDBAND); 8584 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8585 rcu_read_unlock(); 8586 } 8587 8588 /* If socket sndbuf has changed, wake up all per association waiters. */ 8589 void sctp_write_space(struct sock *sk) 8590 { 8591 struct sctp_association *asoc; 8592 8593 /* Wake up the tasks in each wait queue. */ 8594 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8595 __sctp_write_space(asoc); 8596 } 8597 } 8598 8599 /* Is there any sndbuf space available on the socket? 8600 * 8601 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8602 * associations on the same socket. For a UDP-style socket with 8603 * multiple associations, it is possible for it to be "unwriteable" 8604 * prematurely. I assume that this is acceptable because 8605 * a premature "unwriteable" is better than an accidental "writeable" which 8606 * would cause an unwanted block under certain circumstances. For the 1-1 8607 * UDP-style sockets or TCP-style sockets, this code should work. 8608 * - Daisy 8609 */ 8610 static int sctp_writeable(struct sock *sk) 8611 { 8612 int amt = 0; 8613 8614 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8615 if (amt < 0) 8616 amt = 0; 8617 return amt; 8618 } 8619 8620 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8621 * returns immediately with EINPROGRESS. 8622 */ 8623 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8624 { 8625 struct sock *sk = asoc->base.sk; 8626 int err = 0; 8627 long current_timeo = *timeo_p; 8628 DEFINE_WAIT(wait); 8629 8630 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8631 8632 /* Increment the association's refcnt. */ 8633 sctp_association_hold(asoc); 8634 8635 for (;;) { 8636 prepare_to_wait_exclusive(&asoc->wait, &wait, 8637 TASK_INTERRUPTIBLE); 8638 if (!*timeo_p) 8639 goto do_nonblock; 8640 if (sk->sk_shutdown & RCV_SHUTDOWN) 8641 break; 8642 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8643 asoc->base.dead) 8644 goto do_error; 8645 if (signal_pending(current)) 8646 goto do_interrupted; 8647 8648 if (sctp_state(asoc, ESTABLISHED)) 8649 break; 8650 8651 /* Let another process have a go. Since we are going 8652 * to sleep anyway. 8653 */ 8654 release_sock(sk); 8655 current_timeo = schedule_timeout(current_timeo); 8656 lock_sock(sk); 8657 8658 *timeo_p = current_timeo; 8659 } 8660 8661 out: 8662 finish_wait(&asoc->wait, &wait); 8663 8664 /* Release the association's refcnt. */ 8665 sctp_association_put(asoc); 8666 8667 return err; 8668 8669 do_error: 8670 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8671 err = -ETIMEDOUT; 8672 else 8673 err = -ECONNREFUSED; 8674 goto out; 8675 8676 do_interrupted: 8677 err = sock_intr_errno(*timeo_p); 8678 goto out; 8679 8680 do_nonblock: 8681 err = -EINPROGRESS; 8682 goto out; 8683 } 8684 8685 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8686 { 8687 struct sctp_endpoint *ep; 8688 int err = 0; 8689 DEFINE_WAIT(wait); 8690 8691 ep = sctp_sk(sk)->ep; 8692 8693 8694 for (;;) { 8695 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8696 TASK_INTERRUPTIBLE); 8697 8698 if (list_empty(&ep->asocs)) { 8699 release_sock(sk); 8700 timeo = schedule_timeout(timeo); 8701 lock_sock(sk); 8702 } 8703 8704 err = -EINVAL; 8705 if (!sctp_sstate(sk, LISTENING)) 8706 break; 8707 8708 err = 0; 8709 if (!list_empty(&ep->asocs)) 8710 break; 8711 8712 err = sock_intr_errno(timeo); 8713 if (signal_pending(current)) 8714 break; 8715 8716 err = -EAGAIN; 8717 if (!timeo) 8718 break; 8719 } 8720 8721 finish_wait(sk_sleep(sk), &wait); 8722 8723 return err; 8724 } 8725 8726 static void sctp_wait_for_close(struct sock *sk, long timeout) 8727 { 8728 DEFINE_WAIT(wait); 8729 8730 do { 8731 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8732 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8733 break; 8734 release_sock(sk); 8735 timeout = schedule_timeout(timeout); 8736 lock_sock(sk); 8737 } while (!signal_pending(current) && timeout); 8738 8739 finish_wait(sk_sleep(sk), &wait); 8740 } 8741 8742 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8743 { 8744 struct sk_buff *frag; 8745 8746 if (!skb->data_len) 8747 goto done; 8748 8749 /* Don't forget the fragments. */ 8750 skb_walk_frags(skb, frag) 8751 sctp_skb_set_owner_r_frag(frag, sk); 8752 8753 done: 8754 sctp_skb_set_owner_r(skb, sk); 8755 } 8756 8757 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8758 struct sctp_association *asoc) 8759 { 8760 struct inet_sock *inet = inet_sk(sk); 8761 struct inet_sock *newinet; 8762 struct sctp_sock *sp = sctp_sk(sk); 8763 struct sctp_endpoint *ep = sp->ep; 8764 8765 newsk->sk_type = sk->sk_type; 8766 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8767 newsk->sk_flags = sk->sk_flags; 8768 newsk->sk_tsflags = sk->sk_tsflags; 8769 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8770 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8771 newsk->sk_reuse = sk->sk_reuse; 8772 sctp_sk(newsk)->reuse = sp->reuse; 8773 8774 newsk->sk_shutdown = sk->sk_shutdown; 8775 newsk->sk_destruct = sctp_destruct_sock; 8776 newsk->sk_family = sk->sk_family; 8777 newsk->sk_protocol = IPPROTO_SCTP; 8778 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8779 newsk->sk_sndbuf = sk->sk_sndbuf; 8780 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8781 newsk->sk_lingertime = sk->sk_lingertime; 8782 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8783 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8784 newsk->sk_rxhash = sk->sk_rxhash; 8785 8786 newinet = inet_sk(newsk); 8787 8788 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8789 * getsockname() and getpeername() 8790 */ 8791 newinet->inet_sport = inet->inet_sport; 8792 newinet->inet_saddr = inet->inet_saddr; 8793 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8794 newinet->inet_dport = htons(asoc->peer.port); 8795 newinet->pmtudisc = inet->pmtudisc; 8796 newinet->inet_id = asoc->next_tsn ^ jiffies; 8797 8798 newinet->uc_ttl = inet->uc_ttl; 8799 newinet->mc_loop = 1; 8800 newinet->mc_ttl = 1; 8801 newinet->mc_index = 0; 8802 newinet->mc_list = NULL; 8803 8804 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8805 net_enable_timestamp(); 8806 8807 /* Set newsk security attributes from orginal sk and connection 8808 * security attribute from ep. 8809 */ 8810 security_sctp_sk_clone(ep, sk, newsk); 8811 } 8812 8813 static inline void sctp_copy_descendant(struct sock *sk_to, 8814 const struct sock *sk_from) 8815 { 8816 int ancestor_size = sizeof(struct inet_sock) + 8817 sizeof(struct sctp_sock) - 8818 offsetof(struct sctp_sock, auto_asconf_list); 8819 8820 if (sk_from->sk_family == PF_INET6) 8821 ancestor_size += sizeof(struct ipv6_pinfo); 8822 8823 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8824 } 8825 8826 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8827 * and its messages to the newsk. 8828 */ 8829 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8830 struct sctp_association *assoc, 8831 enum sctp_socket_type type) 8832 { 8833 struct sctp_sock *oldsp = sctp_sk(oldsk); 8834 struct sctp_sock *newsp = sctp_sk(newsk); 8835 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8836 struct sctp_endpoint *newep = newsp->ep; 8837 struct sk_buff *skb, *tmp; 8838 struct sctp_ulpevent *event; 8839 struct sctp_bind_hashbucket *head; 8840 8841 /* Migrate socket buffer sizes and all the socket level options to the 8842 * new socket. 8843 */ 8844 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8845 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8846 /* Brute force copy old sctp opt. */ 8847 sctp_copy_descendant(newsk, oldsk); 8848 8849 /* Restore the ep value that was overwritten with the above structure 8850 * copy. 8851 */ 8852 newsp->ep = newep; 8853 newsp->hmac = NULL; 8854 8855 /* Hook this new socket in to the bind_hash list. */ 8856 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8857 inet_sk(oldsk)->inet_num)]; 8858 spin_lock_bh(&head->lock); 8859 pp = sctp_sk(oldsk)->bind_hash; 8860 sk_add_bind_node(newsk, &pp->owner); 8861 sctp_sk(newsk)->bind_hash = pp; 8862 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8863 spin_unlock_bh(&head->lock); 8864 8865 /* Copy the bind_addr list from the original endpoint to the new 8866 * endpoint so that we can handle restarts properly 8867 */ 8868 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8869 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8870 8871 /* Move any messages in the old socket's receive queue that are for the 8872 * peeled off association to the new socket's receive queue. 8873 */ 8874 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8875 event = sctp_skb2event(skb); 8876 if (event->asoc == assoc) { 8877 __skb_unlink(skb, &oldsk->sk_receive_queue); 8878 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8879 sctp_skb_set_owner_r_frag(skb, newsk); 8880 } 8881 } 8882 8883 /* Clean up any messages pending delivery due to partial 8884 * delivery. Three cases: 8885 * 1) No partial deliver; no work. 8886 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8887 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8888 */ 8889 skb_queue_head_init(&newsp->pd_lobby); 8890 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8891 8892 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8893 struct sk_buff_head *queue; 8894 8895 /* Decide which queue to move pd_lobby skbs to. */ 8896 if (assoc->ulpq.pd_mode) { 8897 queue = &newsp->pd_lobby; 8898 } else 8899 queue = &newsk->sk_receive_queue; 8900 8901 /* Walk through the pd_lobby, looking for skbs that 8902 * need moved to the new socket. 8903 */ 8904 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8905 event = sctp_skb2event(skb); 8906 if (event->asoc == assoc) { 8907 __skb_unlink(skb, &oldsp->pd_lobby); 8908 __skb_queue_tail(queue, skb); 8909 sctp_skb_set_owner_r_frag(skb, newsk); 8910 } 8911 } 8912 8913 /* Clear up any skbs waiting for the partial 8914 * delivery to finish. 8915 */ 8916 if (assoc->ulpq.pd_mode) 8917 sctp_clear_pd(oldsk, NULL); 8918 8919 } 8920 8921 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8922 8923 /* Set the type of socket to indicate that it is peeled off from the 8924 * original UDP-style socket or created with the accept() call on a 8925 * TCP-style socket.. 8926 */ 8927 newsp->type = type; 8928 8929 /* Mark the new socket "in-use" by the user so that any packets 8930 * that may arrive on the association after we've moved it are 8931 * queued to the backlog. This prevents a potential race between 8932 * backlog processing on the old socket and new-packet processing 8933 * on the new socket. 8934 * 8935 * The caller has just allocated newsk so we can guarantee that other 8936 * paths won't try to lock it and then oldsk. 8937 */ 8938 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8939 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8940 sctp_assoc_migrate(assoc, newsk); 8941 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8942 8943 /* If the association on the newsk is already closed before accept() 8944 * is called, set RCV_SHUTDOWN flag. 8945 */ 8946 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8947 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8948 newsk->sk_shutdown |= RCV_SHUTDOWN; 8949 } else { 8950 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8951 } 8952 8953 release_sock(newsk); 8954 } 8955 8956 8957 /* This proto struct describes the ULP interface for SCTP. */ 8958 struct proto sctp_prot = { 8959 .name = "SCTP", 8960 .owner = THIS_MODULE, 8961 .close = sctp_close, 8962 .disconnect = sctp_disconnect, 8963 .accept = sctp_accept, 8964 .ioctl = sctp_ioctl, 8965 .init = sctp_init_sock, 8966 .destroy = sctp_destroy_sock, 8967 .shutdown = sctp_shutdown, 8968 .setsockopt = sctp_setsockopt, 8969 .getsockopt = sctp_getsockopt, 8970 .sendmsg = sctp_sendmsg, 8971 .recvmsg = sctp_recvmsg, 8972 .bind = sctp_bind, 8973 .backlog_rcv = sctp_backlog_rcv, 8974 .hash = sctp_hash, 8975 .unhash = sctp_unhash, 8976 .get_port = sctp_get_port, 8977 .obj_size = sizeof(struct sctp_sock), 8978 .useroffset = offsetof(struct sctp_sock, subscribe), 8979 .usersize = offsetof(struct sctp_sock, initmsg) - 8980 offsetof(struct sctp_sock, subscribe) + 8981 sizeof_field(struct sctp_sock, initmsg), 8982 .sysctl_mem = sysctl_sctp_mem, 8983 .sysctl_rmem = sysctl_sctp_rmem, 8984 .sysctl_wmem = sysctl_sctp_wmem, 8985 .memory_pressure = &sctp_memory_pressure, 8986 .enter_memory_pressure = sctp_enter_memory_pressure, 8987 .memory_allocated = &sctp_memory_allocated, 8988 .sockets_allocated = &sctp_sockets_allocated, 8989 }; 8990 8991 #if IS_ENABLED(CONFIG_IPV6) 8992 8993 #include <net/transp_v6.h> 8994 static void sctp_v6_destroy_sock(struct sock *sk) 8995 { 8996 sctp_destroy_sock(sk); 8997 inet6_destroy_sock(sk); 8998 } 8999 9000 struct proto sctpv6_prot = { 9001 .name = "SCTPv6", 9002 .owner = THIS_MODULE, 9003 .close = sctp_close, 9004 .disconnect = sctp_disconnect, 9005 .accept = sctp_accept, 9006 .ioctl = sctp_ioctl, 9007 .init = sctp_init_sock, 9008 .destroy = sctp_v6_destroy_sock, 9009 .shutdown = sctp_shutdown, 9010 .setsockopt = sctp_setsockopt, 9011 .getsockopt = sctp_getsockopt, 9012 .sendmsg = sctp_sendmsg, 9013 .recvmsg = sctp_recvmsg, 9014 .bind = sctp_bind, 9015 .backlog_rcv = sctp_backlog_rcv, 9016 .hash = sctp_hash, 9017 .unhash = sctp_unhash, 9018 .get_port = sctp_get_port, 9019 .obj_size = sizeof(struct sctp6_sock), 9020 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9021 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9022 offsetof(struct sctp6_sock, sctp.subscribe) + 9023 sizeof_field(struct sctp6_sock, sctp.initmsg), 9024 .sysctl_mem = sysctl_sctp_mem, 9025 .sysctl_rmem = sysctl_sctp_rmem, 9026 .sysctl_wmem = sysctl_sctp_wmem, 9027 .memory_pressure = &sctp_memory_pressure, 9028 .enter_memory_pressure = sctp_enter_memory_pressure, 9029 .memory_allocated = &sctp_memory_allocated, 9030 .sockets_allocated = &sctp_sockets_allocated, 9031 }; 9032 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9033