1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 #include <linux/file.h> 74 75 #include <net/ip.h> 76 #include <net/icmp.h> 77 #include <net/route.h> 78 #include <net/ipv6.h> 79 #include <net/inet_common.h> 80 81 #include <linux/socket.h> /* for sa_family_t */ 82 #include <linux/export.h> 83 #include <net/sock.h> 84 #include <net/sctp/sctp.h> 85 #include <net/sctp/sm.h> 86 87 /* WARNING: Please do not remove the SCTP_STATIC attribute to 88 * any of the functions below as they are used to export functions 89 * used by a project regression testsuite. 90 */ 91 92 /* Forward declarations for internal helper functions. */ 93 static int sctp_writeable(struct sock *sk); 94 static void sctp_wfree(struct sk_buff *skb); 95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 96 size_t msg_len); 97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 99 static int sctp_wait_for_accept(struct sock *sk, long timeo); 100 static void sctp_wait_for_close(struct sock *sk, long timeo); 101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 102 union sctp_addr *addr, int len); 103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 107 static int sctp_send_asconf(struct sctp_association *asoc, 108 struct sctp_chunk *chunk); 109 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 110 static int sctp_autobind(struct sock *sk); 111 static void sctp_sock_migrate(struct sock *, struct sock *, 112 struct sctp_association *, sctp_socket_type_t); 113 114 extern struct kmem_cache *sctp_bucket_cachep; 115 extern long sysctl_sctp_mem[3]; 116 extern int sysctl_sctp_rmem[3]; 117 extern int sysctl_sctp_wmem[3]; 118 119 static int sctp_memory_pressure; 120 static atomic_long_t sctp_memory_allocated; 121 struct percpu_counter sctp_sockets_allocated; 122 123 static void sctp_enter_memory_pressure(struct sock *sk) 124 { 125 sctp_memory_pressure = 1; 126 } 127 128 129 /* Get the sndbuf space available at the time on the association. */ 130 static inline int sctp_wspace(struct sctp_association *asoc) 131 { 132 int amt; 133 134 if (asoc->ep->sndbuf_policy) 135 amt = asoc->sndbuf_used; 136 else 137 amt = sk_wmem_alloc_get(asoc->base.sk); 138 139 if (amt >= asoc->base.sk->sk_sndbuf) { 140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 141 amt = 0; 142 else { 143 amt = sk_stream_wspace(asoc->base.sk); 144 if (amt < 0) 145 amt = 0; 146 } 147 } else { 148 amt = asoc->base.sk->sk_sndbuf - amt; 149 } 150 return amt; 151 } 152 153 /* Increment the used sndbuf space count of the corresponding association by 154 * the size of the outgoing data chunk. 155 * Also, set the skb destructor for sndbuf accounting later. 156 * 157 * Since it is always 1-1 between chunk and skb, and also a new skb is always 158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 159 * destructor in the data chunk skb for the purpose of the sndbuf space 160 * tracking. 161 */ 162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 163 { 164 struct sctp_association *asoc = chunk->asoc; 165 struct sock *sk = asoc->base.sk; 166 167 /* The sndbuf space is tracked per association. */ 168 sctp_association_hold(asoc); 169 170 skb_set_owner_w(chunk->skb, sk); 171 172 chunk->skb->destructor = sctp_wfree; 173 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 175 176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 177 sizeof(struct sk_buff) + 178 sizeof(struct sctp_chunk); 179 180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 181 sk->sk_wmem_queued += chunk->skb->truesize; 182 sk_mem_charge(sk, chunk->skb->truesize); 183 } 184 185 /* Verify that this is a valid address. */ 186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 187 int len) 188 { 189 struct sctp_af *af; 190 191 /* Verify basic sockaddr. */ 192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 193 if (!af) 194 return -EINVAL; 195 196 /* Is this a valid SCTP address? */ 197 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 198 return -EINVAL; 199 200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 201 return -EINVAL; 202 203 return 0; 204 } 205 206 /* Look up the association by its id. If this is not a UDP-style 207 * socket, the ID field is always ignored. 208 */ 209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 210 { 211 struct sctp_association *asoc = NULL; 212 213 /* If this is not a UDP-style socket, assoc id should be ignored. */ 214 if (!sctp_style(sk, UDP)) { 215 /* Return NULL if the socket state is not ESTABLISHED. It 216 * could be a TCP-style listening socket or a socket which 217 * hasn't yet called connect() to establish an association. 218 */ 219 if (!sctp_sstate(sk, ESTABLISHED)) 220 return NULL; 221 222 /* Get the first and the only association from the list. */ 223 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 225 struct sctp_association, asocs); 226 return asoc; 227 } 228 229 /* Otherwise this is a UDP-style socket. */ 230 if (!id || (id == (sctp_assoc_t)-1)) 231 return NULL; 232 233 spin_lock_bh(&sctp_assocs_id_lock); 234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 235 spin_unlock_bh(&sctp_assocs_id_lock); 236 237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 238 return NULL; 239 240 return asoc; 241 } 242 243 /* Look up the transport from an address and an assoc id. If both address and 244 * id are specified, the associations matching the address and the id should be 245 * the same. 246 */ 247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 248 struct sockaddr_storage *addr, 249 sctp_assoc_t id) 250 { 251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 252 struct sctp_transport *transport; 253 union sctp_addr *laddr = (union sctp_addr *)addr; 254 255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 256 laddr, 257 &transport); 258 259 if (!addr_asoc) 260 return NULL; 261 262 id_asoc = sctp_id2assoc(sk, id); 263 if (id_asoc && (id_asoc != addr_asoc)) 264 return NULL; 265 266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 267 (union sctp_addr *)addr); 268 269 return transport; 270 } 271 272 /* API 3.1.2 bind() - UDP Style Syntax 273 * The syntax of bind() is, 274 * 275 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 276 * 277 * sd - the socket descriptor returned by socket(). 278 * addr - the address structure (struct sockaddr_in or struct 279 * sockaddr_in6 [RFC 2553]), 280 * addr_len - the size of the address structure. 281 */ 282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 283 { 284 int retval = 0; 285 286 sctp_lock_sock(sk); 287 288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 289 sk, addr, addr_len); 290 291 /* Disallow binding twice. */ 292 if (!sctp_sk(sk)->ep->base.bind_addr.port) 293 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 294 addr_len); 295 else 296 retval = -EINVAL; 297 298 sctp_release_sock(sk); 299 300 return retval; 301 } 302 303 static long sctp_get_port_local(struct sock *, union sctp_addr *); 304 305 /* Verify this is a valid sockaddr. */ 306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 307 union sctp_addr *addr, int len) 308 { 309 struct sctp_af *af; 310 311 /* Check minimum size. */ 312 if (len < sizeof (struct sockaddr)) 313 return NULL; 314 315 /* V4 mapped address are really of AF_INET family */ 316 if (addr->sa.sa_family == AF_INET6 && 317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 318 if (!opt->pf->af_supported(AF_INET, opt)) 319 return NULL; 320 } else { 321 /* Does this PF support this AF? */ 322 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 323 return NULL; 324 } 325 326 /* If we get this far, af is valid. */ 327 af = sctp_get_af_specific(addr->sa.sa_family); 328 329 if (len < af->sockaddr_len) 330 return NULL; 331 332 return af; 333 } 334 335 /* Bind a local address either to an endpoint or to an association. */ 336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 337 { 338 struct net *net = sock_net(sk); 339 struct sctp_sock *sp = sctp_sk(sk); 340 struct sctp_endpoint *ep = sp->ep; 341 struct sctp_bind_addr *bp = &ep->base.bind_addr; 342 struct sctp_af *af; 343 unsigned short snum; 344 int ret = 0; 345 346 /* Common sockaddr verification. */ 347 af = sctp_sockaddr_af(sp, addr, len); 348 if (!af) { 349 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 350 sk, addr, len); 351 return -EINVAL; 352 } 353 354 snum = ntohs(addr->v4.sin_port); 355 356 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 357 ", port: %d, new port: %d, len: %d)\n", 358 sk, 359 addr, 360 bp->port, snum, 361 len); 362 363 /* PF specific bind() address verification. */ 364 if (!sp->pf->bind_verify(sp, addr)) 365 return -EADDRNOTAVAIL; 366 367 /* We must either be unbound, or bind to the same port. 368 * It's OK to allow 0 ports if we are already bound. 369 * We'll just inhert an already bound port in this case 370 */ 371 if (bp->port) { 372 if (!snum) 373 snum = bp->port; 374 else if (snum != bp->port) { 375 SCTP_DEBUG_PRINTK("sctp_do_bind:" 376 " New port %d does not match existing port " 377 "%d.\n", snum, bp->port); 378 return -EINVAL; 379 } 380 } 381 382 if (snum && snum < PROT_SOCK && 383 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 384 return -EACCES; 385 386 /* See if the address matches any of the addresses we may have 387 * already bound before checking against other endpoints. 388 */ 389 if (sctp_bind_addr_match(bp, addr, sp)) 390 return -EINVAL; 391 392 /* Make sure we are allowed to bind here. 393 * The function sctp_get_port_local() does duplicate address 394 * detection. 395 */ 396 addr->v4.sin_port = htons(snum); 397 if ((ret = sctp_get_port_local(sk, addr))) { 398 return -EADDRINUSE; 399 } 400 401 /* Refresh ephemeral port. */ 402 if (!bp->port) 403 bp->port = inet_sk(sk)->inet_num; 404 405 /* Add the address to the bind address list. 406 * Use GFP_ATOMIC since BHs will be disabled. 407 */ 408 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 409 410 /* Copy back into socket for getsockname() use. */ 411 if (!ret) { 412 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 413 af->to_sk_saddr(addr, sk); 414 } 415 416 return ret; 417 } 418 419 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 420 * 421 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 422 * at any one time. If a sender, after sending an ASCONF chunk, decides 423 * it needs to transfer another ASCONF Chunk, it MUST wait until the 424 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 425 * subsequent ASCONF. Note this restriction binds each side, so at any 426 * time two ASCONF may be in-transit on any given association (one sent 427 * from each endpoint). 428 */ 429 static int sctp_send_asconf(struct sctp_association *asoc, 430 struct sctp_chunk *chunk) 431 { 432 struct net *net = sock_net(asoc->base.sk); 433 int retval = 0; 434 435 /* If there is an outstanding ASCONF chunk, queue it for later 436 * transmission. 437 */ 438 if (asoc->addip_last_asconf) { 439 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 440 goto out; 441 } 442 443 /* Hold the chunk until an ASCONF_ACK is received. */ 444 sctp_chunk_hold(chunk); 445 retval = sctp_primitive_ASCONF(net, asoc, chunk); 446 if (retval) 447 sctp_chunk_free(chunk); 448 else 449 asoc->addip_last_asconf = chunk; 450 451 out: 452 return retval; 453 } 454 455 /* Add a list of addresses as bind addresses to local endpoint or 456 * association. 457 * 458 * Basically run through each address specified in the addrs/addrcnt 459 * array/length pair, determine if it is IPv6 or IPv4 and call 460 * sctp_do_bind() on it. 461 * 462 * If any of them fails, then the operation will be reversed and the 463 * ones that were added will be removed. 464 * 465 * Only sctp_setsockopt_bindx() is supposed to call this function. 466 */ 467 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 468 { 469 int cnt; 470 int retval = 0; 471 void *addr_buf; 472 struct sockaddr *sa_addr; 473 struct sctp_af *af; 474 475 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 476 sk, addrs, addrcnt); 477 478 addr_buf = addrs; 479 for (cnt = 0; cnt < addrcnt; cnt++) { 480 /* The list may contain either IPv4 or IPv6 address; 481 * determine the address length for walking thru the list. 482 */ 483 sa_addr = addr_buf; 484 af = sctp_get_af_specific(sa_addr->sa_family); 485 if (!af) { 486 retval = -EINVAL; 487 goto err_bindx_add; 488 } 489 490 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 491 af->sockaddr_len); 492 493 addr_buf += af->sockaddr_len; 494 495 err_bindx_add: 496 if (retval < 0) { 497 /* Failed. Cleanup the ones that have been added */ 498 if (cnt > 0) 499 sctp_bindx_rem(sk, addrs, cnt); 500 return retval; 501 } 502 } 503 504 return retval; 505 } 506 507 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 508 * associations that are part of the endpoint indicating that a list of local 509 * addresses are added to the endpoint. 510 * 511 * If any of the addresses is already in the bind address list of the 512 * association, we do not send the chunk for that association. But it will not 513 * affect other associations. 514 * 515 * Only sctp_setsockopt_bindx() is supposed to call this function. 516 */ 517 static int sctp_send_asconf_add_ip(struct sock *sk, 518 struct sockaddr *addrs, 519 int addrcnt) 520 { 521 struct net *net = sock_net(sk); 522 struct sctp_sock *sp; 523 struct sctp_endpoint *ep; 524 struct sctp_association *asoc; 525 struct sctp_bind_addr *bp; 526 struct sctp_chunk *chunk; 527 struct sctp_sockaddr_entry *laddr; 528 union sctp_addr *addr; 529 union sctp_addr saveaddr; 530 void *addr_buf; 531 struct sctp_af *af; 532 struct list_head *p; 533 int i; 534 int retval = 0; 535 536 if (!net->sctp.addip_enable) 537 return retval; 538 539 sp = sctp_sk(sk); 540 ep = sp->ep; 541 542 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 543 __func__, sk, addrs, addrcnt); 544 545 list_for_each_entry(asoc, &ep->asocs, asocs) { 546 547 if (!asoc->peer.asconf_capable) 548 continue; 549 550 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 551 continue; 552 553 if (!sctp_state(asoc, ESTABLISHED)) 554 continue; 555 556 /* Check if any address in the packed array of addresses is 557 * in the bind address list of the association. If so, 558 * do not send the asconf chunk to its peer, but continue with 559 * other associations. 560 */ 561 addr_buf = addrs; 562 for (i = 0; i < addrcnt; i++) { 563 addr = addr_buf; 564 af = sctp_get_af_specific(addr->v4.sin_family); 565 if (!af) { 566 retval = -EINVAL; 567 goto out; 568 } 569 570 if (sctp_assoc_lookup_laddr(asoc, addr)) 571 break; 572 573 addr_buf += af->sockaddr_len; 574 } 575 if (i < addrcnt) 576 continue; 577 578 /* Use the first valid address in bind addr list of 579 * association as Address Parameter of ASCONF CHUNK. 580 */ 581 bp = &asoc->base.bind_addr; 582 p = bp->address_list.next; 583 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 584 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 585 addrcnt, SCTP_PARAM_ADD_IP); 586 if (!chunk) { 587 retval = -ENOMEM; 588 goto out; 589 } 590 591 /* Add the new addresses to the bind address list with 592 * use_as_src set to 0. 593 */ 594 addr_buf = addrs; 595 for (i = 0; i < addrcnt; i++) { 596 addr = addr_buf; 597 af = sctp_get_af_specific(addr->v4.sin_family); 598 memcpy(&saveaddr, addr, af->sockaddr_len); 599 retval = sctp_add_bind_addr(bp, &saveaddr, 600 SCTP_ADDR_NEW, GFP_ATOMIC); 601 addr_buf += af->sockaddr_len; 602 } 603 if (asoc->src_out_of_asoc_ok) { 604 struct sctp_transport *trans; 605 606 list_for_each_entry(trans, 607 &asoc->peer.transport_addr_list, transports) { 608 /* Clear the source and route cache */ 609 dst_release(trans->dst); 610 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 611 2*asoc->pathmtu, 4380)); 612 trans->ssthresh = asoc->peer.i.a_rwnd; 613 trans->rto = asoc->rto_initial; 614 sctp_max_rto(asoc, trans); 615 trans->rtt = trans->srtt = trans->rttvar = 0; 616 sctp_transport_route(trans, NULL, 617 sctp_sk(asoc->base.sk)); 618 } 619 } 620 retval = sctp_send_asconf(asoc, chunk); 621 } 622 623 out: 624 return retval; 625 } 626 627 /* Remove a list of addresses from bind addresses list. Do not remove the 628 * last address. 629 * 630 * Basically run through each address specified in the addrs/addrcnt 631 * array/length pair, determine if it is IPv6 or IPv4 and call 632 * sctp_del_bind() on it. 633 * 634 * If any of them fails, then the operation will be reversed and the 635 * ones that were removed will be added back. 636 * 637 * At least one address has to be left; if only one address is 638 * available, the operation will return -EBUSY. 639 * 640 * Only sctp_setsockopt_bindx() is supposed to call this function. 641 */ 642 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 643 { 644 struct sctp_sock *sp = sctp_sk(sk); 645 struct sctp_endpoint *ep = sp->ep; 646 int cnt; 647 struct sctp_bind_addr *bp = &ep->base.bind_addr; 648 int retval = 0; 649 void *addr_buf; 650 union sctp_addr *sa_addr; 651 struct sctp_af *af; 652 653 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 654 sk, addrs, addrcnt); 655 656 addr_buf = addrs; 657 for (cnt = 0; cnt < addrcnt; cnt++) { 658 /* If the bind address list is empty or if there is only one 659 * bind address, there is nothing more to be removed (we need 660 * at least one address here). 661 */ 662 if (list_empty(&bp->address_list) || 663 (sctp_list_single_entry(&bp->address_list))) { 664 retval = -EBUSY; 665 goto err_bindx_rem; 666 } 667 668 sa_addr = addr_buf; 669 af = sctp_get_af_specific(sa_addr->sa.sa_family); 670 if (!af) { 671 retval = -EINVAL; 672 goto err_bindx_rem; 673 } 674 675 if (!af->addr_valid(sa_addr, sp, NULL)) { 676 retval = -EADDRNOTAVAIL; 677 goto err_bindx_rem; 678 } 679 680 if (sa_addr->v4.sin_port && 681 sa_addr->v4.sin_port != htons(bp->port)) { 682 retval = -EINVAL; 683 goto err_bindx_rem; 684 } 685 686 if (!sa_addr->v4.sin_port) 687 sa_addr->v4.sin_port = htons(bp->port); 688 689 /* FIXME - There is probably a need to check if sk->sk_saddr and 690 * sk->sk_rcv_addr are currently set to one of the addresses to 691 * be removed. This is something which needs to be looked into 692 * when we are fixing the outstanding issues with multi-homing 693 * socket routing and failover schemes. Refer to comments in 694 * sctp_do_bind(). -daisy 695 */ 696 retval = sctp_del_bind_addr(bp, sa_addr); 697 698 addr_buf += af->sockaddr_len; 699 err_bindx_rem: 700 if (retval < 0) { 701 /* Failed. Add the ones that has been removed back */ 702 if (cnt > 0) 703 sctp_bindx_add(sk, addrs, cnt); 704 return retval; 705 } 706 } 707 708 return retval; 709 } 710 711 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 712 * the associations that are part of the endpoint indicating that a list of 713 * local addresses are removed from the endpoint. 714 * 715 * If any of the addresses is already in the bind address list of the 716 * association, we do not send the chunk for that association. But it will not 717 * affect other associations. 718 * 719 * Only sctp_setsockopt_bindx() is supposed to call this function. 720 */ 721 static int sctp_send_asconf_del_ip(struct sock *sk, 722 struct sockaddr *addrs, 723 int addrcnt) 724 { 725 struct net *net = sock_net(sk); 726 struct sctp_sock *sp; 727 struct sctp_endpoint *ep; 728 struct sctp_association *asoc; 729 struct sctp_transport *transport; 730 struct sctp_bind_addr *bp; 731 struct sctp_chunk *chunk; 732 union sctp_addr *laddr; 733 void *addr_buf; 734 struct sctp_af *af; 735 struct sctp_sockaddr_entry *saddr; 736 int i; 737 int retval = 0; 738 int stored = 0; 739 740 chunk = NULL; 741 if (!net->sctp.addip_enable) 742 return retval; 743 744 sp = sctp_sk(sk); 745 ep = sp->ep; 746 747 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 748 __func__, sk, addrs, addrcnt); 749 750 list_for_each_entry(asoc, &ep->asocs, asocs) { 751 752 if (!asoc->peer.asconf_capable) 753 continue; 754 755 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 756 continue; 757 758 if (!sctp_state(asoc, ESTABLISHED)) 759 continue; 760 761 /* Check if any address in the packed array of addresses is 762 * not present in the bind address list of the association. 763 * If so, do not send the asconf chunk to its peer, but 764 * continue with other associations. 765 */ 766 addr_buf = addrs; 767 for (i = 0; i < addrcnt; i++) { 768 laddr = addr_buf; 769 af = sctp_get_af_specific(laddr->v4.sin_family); 770 if (!af) { 771 retval = -EINVAL; 772 goto out; 773 } 774 775 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 776 break; 777 778 addr_buf += af->sockaddr_len; 779 } 780 if (i < addrcnt) 781 continue; 782 783 /* Find one address in the association's bind address list 784 * that is not in the packed array of addresses. This is to 785 * make sure that we do not delete all the addresses in the 786 * association. 787 */ 788 bp = &asoc->base.bind_addr; 789 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 790 addrcnt, sp); 791 if ((laddr == NULL) && (addrcnt == 1)) { 792 if (asoc->asconf_addr_del_pending) 793 continue; 794 asoc->asconf_addr_del_pending = 795 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 796 if (asoc->asconf_addr_del_pending == NULL) { 797 retval = -ENOMEM; 798 goto out; 799 } 800 asoc->asconf_addr_del_pending->sa.sa_family = 801 addrs->sa_family; 802 asoc->asconf_addr_del_pending->v4.sin_port = 803 htons(bp->port); 804 if (addrs->sa_family == AF_INET) { 805 struct sockaddr_in *sin; 806 807 sin = (struct sockaddr_in *)addrs; 808 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 809 } else if (addrs->sa_family == AF_INET6) { 810 struct sockaddr_in6 *sin6; 811 812 sin6 = (struct sockaddr_in6 *)addrs; 813 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 814 } 815 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ", 816 " at %p\n", asoc, asoc->asconf_addr_del_pending, 817 asoc->asconf_addr_del_pending); 818 asoc->src_out_of_asoc_ok = 1; 819 stored = 1; 820 goto skip_mkasconf; 821 } 822 823 /* We do not need RCU protection throughout this loop 824 * because this is done under a socket lock from the 825 * setsockopt call. 826 */ 827 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 828 SCTP_PARAM_DEL_IP); 829 if (!chunk) { 830 retval = -ENOMEM; 831 goto out; 832 } 833 834 skip_mkasconf: 835 /* Reset use_as_src flag for the addresses in the bind address 836 * list that are to be deleted. 837 */ 838 addr_buf = addrs; 839 for (i = 0; i < addrcnt; i++) { 840 laddr = addr_buf; 841 af = sctp_get_af_specific(laddr->v4.sin_family); 842 list_for_each_entry(saddr, &bp->address_list, list) { 843 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 844 saddr->state = SCTP_ADDR_DEL; 845 } 846 addr_buf += af->sockaddr_len; 847 } 848 849 /* Update the route and saddr entries for all the transports 850 * as some of the addresses in the bind address list are 851 * about to be deleted and cannot be used as source addresses. 852 */ 853 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 854 transports) { 855 dst_release(transport->dst); 856 sctp_transport_route(transport, NULL, 857 sctp_sk(asoc->base.sk)); 858 } 859 860 if (stored) 861 /* We don't need to transmit ASCONF */ 862 continue; 863 retval = sctp_send_asconf(asoc, chunk); 864 } 865 out: 866 return retval; 867 } 868 869 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 870 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 871 { 872 struct sock *sk = sctp_opt2sk(sp); 873 union sctp_addr *addr; 874 struct sctp_af *af; 875 876 /* It is safe to write port space in caller. */ 877 addr = &addrw->a; 878 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 879 af = sctp_get_af_specific(addr->sa.sa_family); 880 if (!af) 881 return -EINVAL; 882 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 883 return -EINVAL; 884 885 if (addrw->state == SCTP_ADDR_NEW) 886 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 887 else 888 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 889 } 890 891 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 892 * 893 * API 8.1 894 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 895 * int flags); 896 * 897 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 898 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 899 * or IPv6 addresses. 900 * 901 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 902 * Section 3.1.2 for this usage. 903 * 904 * addrs is a pointer to an array of one or more socket addresses. Each 905 * address is contained in its appropriate structure (i.e. struct 906 * sockaddr_in or struct sockaddr_in6) the family of the address type 907 * must be used to distinguish the address length (note that this 908 * representation is termed a "packed array" of addresses). The caller 909 * specifies the number of addresses in the array with addrcnt. 910 * 911 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 912 * -1, and sets errno to the appropriate error code. 913 * 914 * For SCTP, the port given in each socket address must be the same, or 915 * sctp_bindx() will fail, setting errno to EINVAL. 916 * 917 * The flags parameter is formed from the bitwise OR of zero or more of 918 * the following currently defined flags: 919 * 920 * SCTP_BINDX_ADD_ADDR 921 * 922 * SCTP_BINDX_REM_ADDR 923 * 924 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 925 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 926 * addresses from the association. The two flags are mutually exclusive; 927 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 928 * not remove all addresses from an association; sctp_bindx() will 929 * reject such an attempt with EINVAL. 930 * 931 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 932 * additional addresses with an endpoint after calling bind(). Or use 933 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 934 * socket is associated with so that no new association accepted will be 935 * associated with those addresses. If the endpoint supports dynamic 936 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 937 * endpoint to send the appropriate message to the peer to change the 938 * peers address lists. 939 * 940 * Adding and removing addresses from a connected association is 941 * optional functionality. Implementations that do not support this 942 * functionality should return EOPNOTSUPP. 943 * 944 * Basically do nothing but copying the addresses from user to kernel 945 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 946 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 947 * from userspace. 948 * 949 * We don't use copy_from_user() for optimization: we first do the 950 * sanity checks (buffer size -fast- and access check-healthy 951 * pointer); if all of those succeed, then we can alloc the memory 952 * (expensive operation) needed to copy the data to kernel. Then we do 953 * the copying without checking the user space area 954 * (__copy_from_user()). 955 * 956 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 957 * it. 958 * 959 * sk The sk of the socket 960 * addrs The pointer to the addresses in user land 961 * addrssize Size of the addrs buffer 962 * op Operation to perform (add or remove, see the flags of 963 * sctp_bindx) 964 * 965 * Returns 0 if ok, <0 errno code on error. 966 */ 967 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 968 struct sockaddr __user *addrs, 969 int addrs_size, int op) 970 { 971 struct sockaddr *kaddrs; 972 int err; 973 int addrcnt = 0; 974 int walk_size = 0; 975 struct sockaddr *sa_addr; 976 void *addr_buf; 977 struct sctp_af *af; 978 979 SCTP_DEBUG_PRINTK("sctp_setsockopt_bindx: sk %p addrs %p" 980 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 981 982 if (unlikely(addrs_size <= 0)) 983 return -EINVAL; 984 985 /* Check the user passed a healthy pointer. */ 986 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 987 return -EFAULT; 988 989 /* Alloc space for the address array in kernel memory. */ 990 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 991 if (unlikely(!kaddrs)) 992 return -ENOMEM; 993 994 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 995 kfree(kaddrs); 996 return -EFAULT; 997 } 998 999 /* Walk through the addrs buffer and count the number of addresses. */ 1000 addr_buf = kaddrs; 1001 while (walk_size < addrs_size) { 1002 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1003 kfree(kaddrs); 1004 return -EINVAL; 1005 } 1006 1007 sa_addr = addr_buf; 1008 af = sctp_get_af_specific(sa_addr->sa_family); 1009 1010 /* If the address family is not supported or if this address 1011 * causes the address buffer to overflow return EINVAL. 1012 */ 1013 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1014 kfree(kaddrs); 1015 return -EINVAL; 1016 } 1017 addrcnt++; 1018 addr_buf += af->sockaddr_len; 1019 walk_size += af->sockaddr_len; 1020 } 1021 1022 /* Do the work. */ 1023 switch (op) { 1024 case SCTP_BINDX_ADD_ADDR: 1025 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1026 if (err) 1027 goto out; 1028 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1029 break; 1030 1031 case SCTP_BINDX_REM_ADDR: 1032 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1033 if (err) 1034 goto out; 1035 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1036 break; 1037 1038 default: 1039 err = -EINVAL; 1040 break; 1041 } 1042 1043 out: 1044 kfree(kaddrs); 1045 1046 return err; 1047 } 1048 1049 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1050 * 1051 * Common routine for handling connect() and sctp_connectx(). 1052 * Connect will come in with just a single address. 1053 */ 1054 static int __sctp_connect(struct sock* sk, 1055 struct sockaddr *kaddrs, 1056 int addrs_size, 1057 sctp_assoc_t *assoc_id) 1058 { 1059 struct net *net = sock_net(sk); 1060 struct sctp_sock *sp; 1061 struct sctp_endpoint *ep; 1062 struct sctp_association *asoc = NULL; 1063 struct sctp_association *asoc2; 1064 struct sctp_transport *transport; 1065 union sctp_addr to; 1066 struct sctp_af *af; 1067 sctp_scope_t scope; 1068 long timeo; 1069 int err = 0; 1070 int addrcnt = 0; 1071 int walk_size = 0; 1072 union sctp_addr *sa_addr = NULL; 1073 void *addr_buf; 1074 unsigned short port; 1075 unsigned int f_flags = 0; 1076 1077 sp = sctp_sk(sk); 1078 ep = sp->ep; 1079 1080 /* connect() cannot be done on a socket that is already in ESTABLISHED 1081 * state - UDP-style peeled off socket or a TCP-style socket that 1082 * is already connected. 1083 * It cannot be done even on a TCP-style listening socket. 1084 */ 1085 if (sctp_sstate(sk, ESTABLISHED) || 1086 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1087 err = -EISCONN; 1088 goto out_free; 1089 } 1090 1091 /* Walk through the addrs buffer and count the number of addresses. */ 1092 addr_buf = kaddrs; 1093 while (walk_size < addrs_size) { 1094 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1095 err = -EINVAL; 1096 goto out_free; 1097 } 1098 1099 sa_addr = addr_buf; 1100 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1101 1102 /* If the address family is not supported or if this address 1103 * causes the address buffer to overflow return EINVAL. 1104 */ 1105 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1106 err = -EINVAL; 1107 goto out_free; 1108 } 1109 1110 port = ntohs(sa_addr->v4.sin_port); 1111 1112 /* Save current address so we can work with it */ 1113 memcpy(&to, sa_addr, af->sockaddr_len); 1114 1115 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1116 if (err) 1117 goto out_free; 1118 1119 /* Make sure the destination port is correctly set 1120 * in all addresses. 1121 */ 1122 if (asoc && asoc->peer.port && asoc->peer.port != port) 1123 goto out_free; 1124 1125 1126 /* Check if there already is a matching association on the 1127 * endpoint (other than the one created here). 1128 */ 1129 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1130 if (asoc2 && asoc2 != asoc) { 1131 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1132 err = -EISCONN; 1133 else 1134 err = -EALREADY; 1135 goto out_free; 1136 } 1137 1138 /* If we could not find a matching association on the endpoint, 1139 * make sure that there is no peeled-off association matching 1140 * the peer address even on another socket. 1141 */ 1142 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1143 err = -EADDRNOTAVAIL; 1144 goto out_free; 1145 } 1146 1147 if (!asoc) { 1148 /* If a bind() or sctp_bindx() is not called prior to 1149 * an sctp_connectx() call, the system picks an 1150 * ephemeral port and will choose an address set 1151 * equivalent to binding with a wildcard address. 1152 */ 1153 if (!ep->base.bind_addr.port) { 1154 if (sctp_autobind(sk)) { 1155 err = -EAGAIN; 1156 goto out_free; 1157 } 1158 } else { 1159 /* 1160 * If an unprivileged user inherits a 1-many 1161 * style socket with open associations on a 1162 * privileged port, it MAY be permitted to 1163 * accept new associations, but it SHOULD NOT 1164 * be permitted to open new associations. 1165 */ 1166 if (ep->base.bind_addr.port < PROT_SOCK && 1167 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1168 err = -EACCES; 1169 goto out_free; 1170 } 1171 } 1172 1173 scope = sctp_scope(&to); 1174 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1175 if (!asoc) { 1176 err = -ENOMEM; 1177 goto out_free; 1178 } 1179 1180 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1181 GFP_KERNEL); 1182 if (err < 0) { 1183 goto out_free; 1184 } 1185 1186 } 1187 1188 /* Prime the peer's transport structures. */ 1189 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1190 SCTP_UNKNOWN); 1191 if (!transport) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 addrcnt++; 1197 addr_buf += af->sockaddr_len; 1198 walk_size += af->sockaddr_len; 1199 } 1200 1201 /* In case the user of sctp_connectx() wants an association 1202 * id back, assign one now. 1203 */ 1204 if (assoc_id) { 1205 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1206 if (err < 0) 1207 goto out_free; 1208 } 1209 1210 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1211 if (err < 0) { 1212 goto out_free; 1213 } 1214 1215 /* Initialize sk's dport and daddr for getpeername() */ 1216 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1217 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1218 af->to_sk_daddr(sa_addr, sk); 1219 sk->sk_err = 0; 1220 1221 /* in-kernel sockets don't generally have a file allocated to them 1222 * if all they do is call sock_create_kern(). 1223 */ 1224 if (sk->sk_socket->file) 1225 f_flags = sk->sk_socket->file->f_flags; 1226 1227 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1228 1229 err = sctp_wait_for_connect(asoc, &timeo); 1230 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1231 *assoc_id = asoc->assoc_id; 1232 1233 /* Don't free association on exit. */ 1234 asoc = NULL; 1235 1236 out_free: 1237 1238 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1239 " kaddrs: %p err: %d\n", 1240 asoc, kaddrs, err); 1241 if (asoc) { 1242 /* sctp_primitive_ASSOCIATE may have added this association 1243 * To the hash table, try to unhash it, just in case, its a noop 1244 * if it wasn't hashed so we're safe 1245 */ 1246 sctp_unhash_established(asoc); 1247 sctp_association_free(asoc); 1248 } 1249 return err; 1250 } 1251 1252 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1253 * 1254 * API 8.9 1255 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1256 * sctp_assoc_t *asoc); 1257 * 1258 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1259 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1260 * or IPv6 addresses. 1261 * 1262 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1263 * Section 3.1.2 for this usage. 1264 * 1265 * addrs is a pointer to an array of one or more socket addresses. Each 1266 * address is contained in its appropriate structure (i.e. struct 1267 * sockaddr_in or struct sockaddr_in6) the family of the address type 1268 * must be used to distengish the address length (note that this 1269 * representation is termed a "packed array" of addresses). The caller 1270 * specifies the number of addresses in the array with addrcnt. 1271 * 1272 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1273 * the association id of the new association. On failure, sctp_connectx() 1274 * returns -1, and sets errno to the appropriate error code. The assoc_id 1275 * is not touched by the kernel. 1276 * 1277 * For SCTP, the port given in each socket address must be the same, or 1278 * sctp_connectx() will fail, setting errno to EINVAL. 1279 * 1280 * An application can use sctp_connectx to initiate an association with 1281 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1282 * allows a caller to specify multiple addresses at which a peer can be 1283 * reached. The way the SCTP stack uses the list of addresses to set up 1284 * the association is implementation dependent. This function only 1285 * specifies that the stack will try to make use of all the addresses in 1286 * the list when needed. 1287 * 1288 * Note that the list of addresses passed in is only used for setting up 1289 * the association. It does not necessarily equal the set of addresses 1290 * the peer uses for the resulting association. If the caller wants to 1291 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1292 * retrieve them after the association has been set up. 1293 * 1294 * Basically do nothing but copying the addresses from user to kernel 1295 * land and invoking either sctp_connectx(). This is used for tunneling 1296 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1297 * 1298 * We don't use copy_from_user() for optimization: we first do the 1299 * sanity checks (buffer size -fast- and access check-healthy 1300 * pointer); if all of those succeed, then we can alloc the memory 1301 * (expensive operation) needed to copy the data to kernel. Then we do 1302 * the copying without checking the user space area 1303 * (__copy_from_user()). 1304 * 1305 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1306 * it. 1307 * 1308 * sk The sk of the socket 1309 * addrs The pointer to the addresses in user land 1310 * addrssize Size of the addrs buffer 1311 * 1312 * Returns >=0 if ok, <0 errno code on error. 1313 */ 1314 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1315 struct sockaddr __user *addrs, 1316 int addrs_size, 1317 sctp_assoc_t *assoc_id) 1318 { 1319 int err = 0; 1320 struct sockaddr *kaddrs; 1321 1322 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1323 __func__, sk, addrs, addrs_size); 1324 1325 if (unlikely(addrs_size <= 0)) 1326 return -EINVAL; 1327 1328 /* Check the user passed a healthy pointer. */ 1329 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1330 return -EFAULT; 1331 1332 /* Alloc space for the address array in kernel memory. */ 1333 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1334 if (unlikely(!kaddrs)) 1335 return -ENOMEM; 1336 1337 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1338 err = -EFAULT; 1339 } else { 1340 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1341 } 1342 1343 kfree(kaddrs); 1344 1345 return err; 1346 } 1347 1348 /* 1349 * This is an older interface. It's kept for backward compatibility 1350 * to the option that doesn't provide association id. 1351 */ 1352 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1353 struct sockaddr __user *addrs, 1354 int addrs_size) 1355 { 1356 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1357 } 1358 1359 /* 1360 * New interface for the API. The since the API is done with a socket 1361 * option, to make it simple we feed back the association id is as a return 1362 * indication to the call. Error is always negative and association id is 1363 * always positive. 1364 */ 1365 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1366 struct sockaddr __user *addrs, 1367 int addrs_size) 1368 { 1369 sctp_assoc_t assoc_id = 0; 1370 int err = 0; 1371 1372 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1373 1374 if (err) 1375 return err; 1376 else 1377 return assoc_id; 1378 } 1379 1380 /* 1381 * New (hopefully final) interface for the API. 1382 * We use the sctp_getaddrs_old structure so that use-space library 1383 * can avoid any unnecessary allocations. The only defferent part 1384 * is that we store the actual length of the address buffer into the 1385 * addrs_num structure member. That way we can re-use the existing 1386 * code. 1387 */ 1388 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1389 char __user *optval, 1390 int __user *optlen) 1391 { 1392 struct sctp_getaddrs_old param; 1393 sctp_assoc_t assoc_id = 0; 1394 int err = 0; 1395 1396 if (len < sizeof(param)) 1397 return -EINVAL; 1398 1399 if (copy_from_user(¶m, optval, sizeof(param))) 1400 return -EFAULT; 1401 1402 err = __sctp_setsockopt_connectx(sk, 1403 (struct sockaddr __user *)param.addrs, 1404 param.addr_num, &assoc_id); 1405 1406 if (err == 0 || err == -EINPROGRESS) { 1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1408 return -EFAULT; 1409 if (put_user(sizeof(assoc_id), optlen)) 1410 return -EFAULT; 1411 } 1412 1413 return err; 1414 } 1415 1416 /* API 3.1.4 close() - UDP Style Syntax 1417 * Applications use close() to perform graceful shutdown (as described in 1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1419 * by a UDP-style socket. 1420 * 1421 * The syntax is 1422 * 1423 * ret = close(int sd); 1424 * 1425 * sd - the socket descriptor of the associations to be closed. 1426 * 1427 * To gracefully shutdown a specific association represented by the 1428 * UDP-style socket, an application should use the sendmsg() call, 1429 * passing no user data, but including the appropriate flag in the 1430 * ancillary data (see Section xxxx). 1431 * 1432 * If sd in the close() call is a branched-off socket representing only 1433 * one association, the shutdown is performed on that association only. 1434 * 1435 * 4.1.6 close() - TCP Style Syntax 1436 * 1437 * Applications use close() to gracefully close down an association. 1438 * 1439 * The syntax is: 1440 * 1441 * int close(int sd); 1442 * 1443 * sd - the socket descriptor of the association to be closed. 1444 * 1445 * After an application calls close() on a socket descriptor, no further 1446 * socket operations will succeed on that descriptor. 1447 * 1448 * API 7.1.4 SO_LINGER 1449 * 1450 * An application using the TCP-style socket can use this option to 1451 * perform the SCTP ABORT primitive. The linger option structure is: 1452 * 1453 * struct linger { 1454 * int l_onoff; // option on/off 1455 * int l_linger; // linger time 1456 * }; 1457 * 1458 * To enable the option, set l_onoff to 1. If the l_linger value is set 1459 * to 0, calling close() is the same as the ABORT primitive. If the 1460 * value is set to a negative value, the setsockopt() call will return 1461 * an error. If the value is set to a positive value linger_time, the 1462 * close() can be blocked for at most linger_time ms. If the graceful 1463 * shutdown phase does not finish during this period, close() will 1464 * return but the graceful shutdown phase continues in the system. 1465 */ 1466 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1467 { 1468 struct net *net = sock_net(sk); 1469 struct sctp_endpoint *ep; 1470 struct sctp_association *asoc; 1471 struct list_head *pos, *temp; 1472 unsigned int data_was_unread; 1473 1474 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1475 1476 sctp_lock_sock(sk); 1477 sk->sk_shutdown = SHUTDOWN_MASK; 1478 sk->sk_state = SCTP_SS_CLOSING; 1479 1480 ep = sctp_sk(sk)->ep; 1481 1482 /* Clean up any skbs sitting on the receive queue. */ 1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1485 1486 /* Walk all associations on an endpoint. */ 1487 list_for_each_safe(pos, temp, &ep->asocs) { 1488 asoc = list_entry(pos, struct sctp_association, asocs); 1489 1490 if (sctp_style(sk, TCP)) { 1491 /* A closed association can still be in the list if 1492 * it belongs to a TCP-style listening socket that is 1493 * not yet accepted. If so, free it. If not, send an 1494 * ABORT or SHUTDOWN based on the linger options. 1495 */ 1496 if (sctp_state(asoc, CLOSED)) { 1497 sctp_unhash_established(asoc); 1498 sctp_association_free(asoc); 1499 continue; 1500 } 1501 } 1502 1503 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1504 !skb_queue_empty(&asoc->ulpq.reasm) || 1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1506 struct sctp_chunk *chunk; 1507 1508 chunk = sctp_make_abort_user(asoc, NULL, 0); 1509 if (chunk) 1510 sctp_primitive_ABORT(net, asoc, chunk); 1511 } else 1512 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1513 } 1514 1515 /* On a TCP-style socket, block for at most linger_time if set. */ 1516 if (sctp_style(sk, TCP) && timeout) 1517 sctp_wait_for_close(sk, timeout); 1518 1519 /* This will run the backlog queue. */ 1520 sctp_release_sock(sk); 1521 1522 /* Supposedly, no process has access to the socket, but 1523 * the net layers still may. 1524 */ 1525 sctp_local_bh_disable(); 1526 sctp_bh_lock_sock(sk); 1527 1528 /* Hold the sock, since sk_common_release() will put sock_put() 1529 * and we have just a little more cleanup. 1530 */ 1531 sock_hold(sk); 1532 sk_common_release(sk); 1533 1534 sctp_bh_unlock_sock(sk); 1535 sctp_local_bh_enable(); 1536 1537 sock_put(sk); 1538 1539 SCTP_DBG_OBJCNT_DEC(sock); 1540 } 1541 1542 /* Handle EPIPE error. */ 1543 static int sctp_error(struct sock *sk, int flags, int err) 1544 { 1545 if (err == -EPIPE) 1546 err = sock_error(sk) ? : -EPIPE; 1547 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1548 send_sig(SIGPIPE, current, 0); 1549 return err; 1550 } 1551 1552 /* API 3.1.3 sendmsg() - UDP Style Syntax 1553 * 1554 * An application uses sendmsg() and recvmsg() calls to transmit data to 1555 * and receive data from its peer. 1556 * 1557 * ssize_t sendmsg(int socket, const struct msghdr *message, 1558 * int flags); 1559 * 1560 * socket - the socket descriptor of the endpoint. 1561 * message - pointer to the msghdr structure which contains a single 1562 * user message and possibly some ancillary data. 1563 * 1564 * See Section 5 for complete description of the data 1565 * structures. 1566 * 1567 * flags - flags sent or received with the user message, see Section 1568 * 5 for complete description of the flags. 1569 * 1570 * Note: This function could use a rewrite especially when explicit 1571 * connect support comes in. 1572 */ 1573 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1574 1575 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1576 1577 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1578 struct msghdr *msg, size_t msg_len) 1579 { 1580 struct net *net = sock_net(sk); 1581 struct sctp_sock *sp; 1582 struct sctp_endpoint *ep; 1583 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1584 struct sctp_transport *transport, *chunk_tp; 1585 struct sctp_chunk *chunk; 1586 union sctp_addr to; 1587 struct sockaddr *msg_name = NULL; 1588 struct sctp_sndrcvinfo default_sinfo; 1589 struct sctp_sndrcvinfo *sinfo; 1590 struct sctp_initmsg *sinit; 1591 sctp_assoc_t associd = 0; 1592 sctp_cmsgs_t cmsgs = { NULL }; 1593 int err; 1594 sctp_scope_t scope; 1595 long timeo; 1596 __u16 sinfo_flags = 0; 1597 struct sctp_datamsg *datamsg; 1598 int msg_flags = msg->msg_flags; 1599 1600 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1601 sk, msg, msg_len); 1602 1603 err = 0; 1604 sp = sctp_sk(sk); 1605 ep = sp->ep; 1606 1607 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1608 1609 /* We cannot send a message over a TCP-style listening socket. */ 1610 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1611 err = -EPIPE; 1612 goto out_nounlock; 1613 } 1614 1615 /* Parse out the SCTP CMSGs. */ 1616 err = sctp_msghdr_parse(msg, &cmsgs); 1617 1618 if (err) { 1619 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1620 goto out_nounlock; 1621 } 1622 1623 /* Fetch the destination address for this packet. This 1624 * address only selects the association--it is not necessarily 1625 * the address we will send to. 1626 * For a peeled-off socket, msg_name is ignored. 1627 */ 1628 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1629 int msg_namelen = msg->msg_namelen; 1630 1631 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1632 msg_namelen); 1633 if (err) 1634 return err; 1635 1636 if (msg_namelen > sizeof(to)) 1637 msg_namelen = sizeof(to); 1638 memcpy(&to, msg->msg_name, msg_namelen); 1639 msg_name = msg->msg_name; 1640 } 1641 1642 sinfo = cmsgs.info; 1643 sinit = cmsgs.init; 1644 1645 /* Did the user specify SNDRCVINFO? */ 1646 if (sinfo) { 1647 sinfo_flags = sinfo->sinfo_flags; 1648 associd = sinfo->sinfo_assoc_id; 1649 } 1650 1651 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1652 msg_len, sinfo_flags); 1653 1654 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1655 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1656 err = -EINVAL; 1657 goto out_nounlock; 1658 } 1659 1660 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1661 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1662 * If SCTP_ABORT is set, the message length could be non zero with 1663 * the msg_iov set to the user abort reason. 1664 */ 1665 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1666 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1667 err = -EINVAL; 1668 goto out_nounlock; 1669 } 1670 1671 /* If SCTP_ADDR_OVER is set, there must be an address 1672 * specified in msg_name. 1673 */ 1674 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1675 err = -EINVAL; 1676 goto out_nounlock; 1677 } 1678 1679 transport = NULL; 1680 1681 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1682 1683 sctp_lock_sock(sk); 1684 1685 /* If a msg_name has been specified, assume this is to be used. */ 1686 if (msg_name) { 1687 /* Look for a matching association on the endpoint. */ 1688 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1689 if (!asoc) { 1690 /* If we could not find a matching association on the 1691 * endpoint, make sure that it is not a TCP-style 1692 * socket that already has an association or there is 1693 * no peeled-off association on another socket. 1694 */ 1695 if ((sctp_style(sk, TCP) && 1696 sctp_sstate(sk, ESTABLISHED)) || 1697 sctp_endpoint_is_peeled_off(ep, &to)) { 1698 err = -EADDRNOTAVAIL; 1699 goto out_unlock; 1700 } 1701 } 1702 } else { 1703 asoc = sctp_id2assoc(sk, associd); 1704 if (!asoc) { 1705 err = -EPIPE; 1706 goto out_unlock; 1707 } 1708 } 1709 1710 if (asoc) { 1711 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1712 1713 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1714 * socket that has an association in CLOSED state. This can 1715 * happen when an accepted socket has an association that is 1716 * already CLOSED. 1717 */ 1718 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1719 err = -EPIPE; 1720 goto out_unlock; 1721 } 1722 1723 if (sinfo_flags & SCTP_EOF) { 1724 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1725 asoc); 1726 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1727 err = 0; 1728 goto out_unlock; 1729 } 1730 if (sinfo_flags & SCTP_ABORT) { 1731 1732 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1733 if (!chunk) { 1734 err = -ENOMEM; 1735 goto out_unlock; 1736 } 1737 1738 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1739 sctp_primitive_ABORT(net, asoc, chunk); 1740 err = 0; 1741 goto out_unlock; 1742 } 1743 } 1744 1745 /* Do we need to create the association? */ 1746 if (!asoc) { 1747 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1748 1749 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1750 err = -EINVAL; 1751 goto out_unlock; 1752 } 1753 1754 /* Check for invalid stream against the stream counts, 1755 * either the default or the user specified stream counts. 1756 */ 1757 if (sinfo) { 1758 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1759 /* Check against the defaults. */ 1760 if (sinfo->sinfo_stream >= 1761 sp->initmsg.sinit_num_ostreams) { 1762 err = -EINVAL; 1763 goto out_unlock; 1764 } 1765 } else { 1766 /* Check against the requested. */ 1767 if (sinfo->sinfo_stream >= 1768 sinit->sinit_num_ostreams) { 1769 err = -EINVAL; 1770 goto out_unlock; 1771 } 1772 } 1773 } 1774 1775 /* 1776 * API 3.1.2 bind() - UDP Style Syntax 1777 * If a bind() or sctp_bindx() is not called prior to a 1778 * sendmsg() call that initiates a new association, the 1779 * system picks an ephemeral port and will choose an address 1780 * set equivalent to binding with a wildcard address. 1781 */ 1782 if (!ep->base.bind_addr.port) { 1783 if (sctp_autobind(sk)) { 1784 err = -EAGAIN; 1785 goto out_unlock; 1786 } 1787 } else { 1788 /* 1789 * If an unprivileged user inherits a one-to-many 1790 * style socket with open associations on a privileged 1791 * port, it MAY be permitted to accept new associations, 1792 * but it SHOULD NOT be permitted to open new 1793 * associations. 1794 */ 1795 if (ep->base.bind_addr.port < PROT_SOCK && 1796 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1797 err = -EACCES; 1798 goto out_unlock; 1799 } 1800 } 1801 1802 scope = sctp_scope(&to); 1803 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1804 if (!new_asoc) { 1805 err = -ENOMEM; 1806 goto out_unlock; 1807 } 1808 asoc = new_asoc; 1809 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1810 if (err < 0) { 1811 err = -ENOMEM; 1812 goto out_free; 1813 } 1814 1815 /* If the SCTP_INIT ancillary data is specified, set all 1816 * the association init values accordingly. 1817 */ 1818 if (sinit) { 1819 if (sinit->sinit_num_ostreams) { 1820 asoc->c.sinit_num_ostreams = 1821 sinit->sinit_num_ostreams; 1822 } 1823 if (sinit->sinit_max_instreams) { 1824 asoc->c.sinit_max_instreams = 1825 sinit->sinit_max_instreams; 1826 } 1827 if (sinit->sinit_max_attempts) { 1828 asoc->max_init_attempts 1829 = sinit->sinit_max_attempts; 1830 } 1831 if (sinit->sinit_max_init_timeo) { 1832 asoc->max_init_timeo = 1833 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1834 } 1835 } 1836 1837 /* Prime the peer's transport structures. */ 1838 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1839 if (!transport) { 1840 err = -ENOMEM; 1841 goto out_free; 1842 } 1843 } 1844 1845 /* ASSERT: we have a valid association at this point. */ 1846 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1847 1848 if (!sinfo) { 1849 /* If the user didn't specify SNDRCVINFO, make up one with 1850 * some defaults. 1851 */ 1852 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1853 default_sinfo.sinfo_stream = asoc->default_stream; 1854 default_sinfo.sinfo_flags = asoc->default_flags; 1855 default_sinfo.sinfo_ppid = asoc->default_ppid; 1856 default_sinfo.sinfo_context = asoc->default_context; 1857 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1858 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1859 sinfo = &default_sinfo; 1860 } 1861 1862 /* API 7.1.7, the sndbuf size per association bounds the 1863 * maximum size of data that can be sent in a single send call. 1864 */ 1865 if (msg_len > sk->sk_sndbuf) { 1866 err = -EMSGSIZE; 1867 goto out_free; 1868 } 1869 1870 if (asoc->pmtu_pending) 1871 sctp_assoc_pending_pmtu(sk, asoc); 1872 1873 /* If fragmentation is disabled and the message length exceeds the 1874 * association fragmentation point, return EMSGSIZE. The I-D 1875 * does not specify what this error is, but this looks like 1876 * a great fit. 1877 */ 1878 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1879 err = -EMSGSIZE; 1880 goto out_free; 1881 } 1882 1883 /* Check for invalid stream. */ 1884 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1885 err = -EINVAL; 1886 goto out_free; 1887 } 1888 1889 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1890 if (!sctp_wspace(asoc)) { 1891 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1892 if (err) 1893 goto out_free; 1894 } 1895 1896 /* If an address is passed with the sendto/sendmsg call, it is used 1897 * to override the primary destination address in the TCP model, or 1898 * when SCTP_ADDR_OVER flag is set in the UDP model. 1899 */ 1900 if ((sctp_style(sk, TCP) && msg_name) || 1901 (sinfo_flags & SCTP_ADDR_OVER)) { 1902 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1903 if (!chunk_tp) { 1904 err = -EINVAL; 1905 goto out_free; 1906 } 1907 } else 1908 chunk_tp = NULL; 1909 1910 /* Auto-connect, if we aren't connected already. */ 1911 if (sctp_state(asoc, CLOSED)) { 1912 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1913 if (err < 0) 1914 goto out_free; 1915 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1916 } 1917 1918 /* Break the message into multiple chunks of maximum size. */ 1919 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1920 if (IS_ERR(datamsg)) { 1921 err = PTR_ERR(datamsg); 1922 goto out_free; 1923 } 1924 1925 /* Now send the (possibly) fragmented message. */ 1926 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1927 sctp_chunk_hold(chunk); 1928 1929 /* Do accounting for the write space. */ 1930 sctp_set_owner_w(chunk); 1931 1932 chunk->transport = chunk_tp; 1933 } 1934 1935 /* Send it to the lower layers. Note: all chunks 1936 * must either fail or succeed. The lower layer 1937 * works that way today. Keep it that way or this 1938 * breaks. 1939 */ 1940 err = sctp_primitive_SEND(net, asoc, datamsg); 1941 /* Did the lower layer accept the chunk? */ 1942 if (err) 1943 sctp_datamsg_free(datamsg); 1944 else 1945 sctp_datamsg_put(datamsg); 1946 1947 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1948 1949 if (err) 1950 goto out_free; 1951 else 1952 err = msg_len; 1953 1954 /* If we are already past ASSOCIATE, the lower 1955 * layers are responsible for association cleanup. 1956 */ 1957 goto out_unlock; 1958 1959 out_free: 1960 if (new_asoc) { 1961 sctp_unhash_established(asoc); 1962 sctp_association_free(asoc); 1963 } 1964 out_unlock: 1965 sctp_release_sock(sk); 1966 1967 out_nounlock: 1968 return sctp_error(sk, msg_flags, err); 1969 1970 #if 0 1971 do_sock_err: 1972 if (msg_len) 1973 err = msg_len; 1974 else 1975 err = sock_error(sk); 1976 goto out; 1977 1978 do_interrupted: 1979 if (msg_len) 1980 err = msg_len; 1981 goto out; 1982 #endif /* 0 */ 1983 } 1984 1985 /* This is an extended version of skb_pull() that removes the data from the 1986 * start of a skb even when data is spread across the list of skb's in the 1987 * frag_list. len specifies the total amount of data that needs to be removed. 1988 * when 'len' bytes could be removed from the skb, it returns 0. 1989 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1990 * could not be removed. 1991 */ 1992 static int sctp_skb_pull(struct sk_buff *skb, int len) 1993 { 1994 struct sk_buff *list; 1995 int skb_len = skb_headlen(skb); 1996 int rlen; 1997 1998 if (len <= skb_len) { 1999 __skb_pull(skb, len); 2000 return 0; 2001 } 2002 len -= skb_len; 2003 __skb_pull(skb, skb_len); 2004 2005 skb_walk_frags(skb, list) { 2006 rlen = sctp_skb_pull(list, len); 2007 skb->len -= (len-rlen); 2008 skb->data_len -= (len-rlen); 2009 2010 if (!rlen) 2011 return 0; 2012 2013 len = rlen; 2014 } 2015 2016 return len; 2017 } 2018 2019 /* API 3.1.3 recvmsg() - UDP Style Syntax 2020 * 2021 * ssize_t recvmsg(int socket, struct msghdr *message, 2022 * int flags); 2023 * 2024 * socket - the socket descriptor of the endpoint. 2025 * message - pointer to the msghdr structure which contains a single 2026 * user message and possibly some ancillary data. 2027 * 2028 * See Section 5 for complete description of the data 2029 * structures. 2030 * 2031 * flags - flags sent or received with the user message, see Section 2032 * 5 for complete description of the flags. 2033 */ 2034 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2035 2036 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2037 struct msghdr *msg, size_t len, int noblock, 2038 int flags, int *addr_len) 2039 { 2040 struct sctp_ulpevent *event = NULL; 2041 struct sctp_sock *sp = sctp_sk(sk); 2042 struct sk_buff *skb; 2043 int copied; 2044 int err = 0; 2045 int skb_len; 2046 2047 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 2048 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 2049 "len", len, "knoblauch", noblock, 2050 "flags", flags, "addr_len", addr_len); 2051 2052 sctp_lock_sock(sk); 2053 2054 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2055 err = -ENOTCONN; 2056 goto out; 2057 } 2058 2059 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2060 if (!skb) 2061 goto out; 2062 2063 /* Get the total length of the skb including any skb's in the 2064 * frag_list. 2065 */ 2066 skb_len = skb->len; 2067 2068 copied = skb_len; 2069 if (copied > len) 2070 copied = len; 2071 2072 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2073 2074 event = sctp_skb2event(skb); 2075 2076 if (err) 2077 goto out_free; 2078 2079 sock_recv_ts_and_drops(msg, sk, skb); 2080 if (sctp_ulpevent_is_notification(event)) { 2081 msg->msg_flags |= MSG_NOTIFICATION; 2082 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2083 } else { 2084 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2085 } 2086 2087 /* Check if we allow SCTP_SNDRCVINFO. */ 2088 if (sp->subscribe.sctp_data_io_event) 2089 sctp_ulpevent_read_sndrcvinfo(event, msg); 2090 #if 0 2091 /* FIXME: we should be calling IP/IPv6 layers. */ 2092 if (sk->sk_protinfo.af_inet.cmsg_flags) 2093 ip_cmsg_recv(msg, skb); 2094 #endif 2095 2096 err = copied; 2097 2098 /* If skb's length exceeds the user's buffer, update the skb and 2099 * push it back to the receive_queue so that the next call to 2100 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2101 */ 2102 if (skb_len > copied) { 2103 msg->msg_flags &= ~MSG_EOR; 2104 if (flags & MSG_PEEK) 2105 goto out_free; 2106 sctp_skb_pull(skb, copied); 2107 skb_queue_head(&sk->sk_receive_queue, skb); 2108 2109 /* When only partial message is copied to the user, increase 2110 * rwnd by that amount. If all the data in the skb is read, 2111 * rwnd is updated when the event is freed. 2112 */ 2113 if (!sctp_ulpevent_is_notification(event)) 2114 sctp_assoc_rwnd_increase(event->asoc, copied); 2115 goto out; 2116 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2117 (event->msg_flags & MSG_EOR)) 2118 msg->msg_flags |= MSG_EOR; 2119 else 2120 msg->msg_flags &= ~MSG_EOR; 2121 2122 out_free: 2123 if (flags & MSG_PEEK) { 2124 /* Release the skb reference acquired after peeking the skb in 2125 * sctp_skb_recv_datagram(). 2126 */ 2127 kfree_skb(skb); 2128 } else { 2129 /* Free the event which includes releasing the reference to 2130 * the owner of the skb, freeing the skb and updating the 2131 * rwnd. 2132 */ 2133 sctp_ulpevent_free(event); 2134 } 2135 out: 2136 sctp_release_sock(sk); 2137 return err; 2138 } 2139 2140 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2141 * 2142 * This option is a on/off flag. If enabled no SCTP message 2143 * fragmentation will be performed. Instead if a message being sent 2144 * exceeds the current PMTU size, the message will NOT be sent and 2145 * instead a error will be indicated to the user. 2146 */ 2147 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2148 char __user *optval, 2149 unsigned int optlen) 2150 { 2151 int val; 2152 2153 if (optlen < sizeof(int)) 2154 return -EINVAL; 2155 2156 if (get_user(val, (int __user *)optval)) 2157 return -EFAULT; 2158 2159 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2160 2161 return 0; 2162 } 2163 2164 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2165 unsigned int optlen) 2166 { 2167 struct sctp_association *asoc; 2168 struct sctp_ulpevent *event; 2169 2170 if (optlen > sizeof(struct sctp_event_subscribe)) 2171 return -EINVAL; 2172 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2173 return -EFAULT; 2174 2175 /* 2176 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2177 * if there is no data to be sent or retransmit, the stack will 2178 * immediately send up this notification. 2179 */ 2180 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2181 &sctp_sk(sk)->subscribe)) { 2182 asoc = sctp_id2assoc(sk, 0); 2183 2184 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2185 event = sctp_ulpevent_make_sender_dry_event(asoc, 2186 GFP_ATOMIC); 2187 if (!event) 2188 return -ENOMEM; 2189 2190 sctp_ulpq_tail_event(&asoc->ulpq, event); 2191 } 2192 } 2193 2194 return 0; 2195 } 2196 2197 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2198 * 2199 * This socket option is applicable to the UDP-style socket only. When 2200 * set it will cause associations that are idle for more than the 2201 * specified number of seconds to automatically close. An association 2202 * being idle is defined an association that has NOT sent or received 2203 * user data. The special value of '0' indicates that no automatic 2204 * close of any associations should be performed. The option expects an 2205 * integer defining the number of seconds of idle time before an 2206 * association is closed. 2207 */ 2208 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2209 unsigned int optlen) 2210 { 2211 struct sctp_sock *sp = sctp_sk(sk); 2212 2213 /* Applicable to UDP-style socket only */ 2214 if (sctp_style(sk, TCP)) 2215 return -EOPNOTSUPP; 2216 if (optlen != sizeof(int)) 2217 return -EINVAL; 2218 if (copy_from_user(&sp->autoclose, optval, optlen)) 2219 return -EFAULT; 2220 2221 return 0; 2222 } 2223 2224 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2225 * 2226 * Applications can enable or disable heartbeats for any peer address of 2227 * an association, modify an address's heartbeat interval, force a 2228 * heartbeat to be sent immediately, and adjust the address's maximum 2229 * number of retransmissions sent before an address is considered 2230 * unreachable. The following structure is used to access and modify an 2231 * address's parameters: 2232 * 2233 * struct sctp_paddrparams { 2234 * sctp_assoc_t spp_assoc_id; 2235 * struct sockaddr_storage spp_address; 2236 * uint32_t spp_hbinterval; 2237 * uint16_t spp_pathmaxrxt; 2238 * uint32_t spp_pathmtu; 2239 * uint32_t spp_sackdelay; 2240 * uint32_t spp_flags; 2241 * }; 2242 * 2243 * spp_assoc_id - (one-to-many style socket) This is filled in the 2244 * application, and identifies the association for 2245 * this query. 2246 * spp_address - This specifies which address is of interest. 2247 * spp_hbinterval - This contains the value of the heartbeat interval, 2248 * in milliseconds. If a value of zero 2249 * is present in this field then no changes are to 2250 * be made to this parameter. 2251 * spp_pathmaxrxt - This contains the maximum number of 2252 * retransmissions before this address shall be 2253 * considered unreachable. If a value of zero 2254 * is present in this field then no changes are to 2255 * be made to this parameter. 2256 * spp_pathmtu - When Path MTU discovery is disabled the value 2257 * specified here will be the "fixed" path mtu. 2258 * Note that if the spp_address field is empty 2259 * then all associations on this address will 2260 * have this fixed path mtu set upon them. 2261 * 2262 * spp_sackdelay - When delayed sack is enabled, this value specifies 2263 * the number of milliseconds that sacks will be delayed 2264 * for. This value will apply to all addresses of an 2265 * association if the spp_address field is empty. Note 2266 * also, that if delayed sack is enabled and this 2267 * value is set to 0, no change is made to the last 2268 * recorded delayed sack timer value. 2269 * 2270 * spp_flags - These flags are used to control various features 2271 * on an association. The flag field may contain 2272 * zero or more of the following options. 2273 * 2274 * SPP_HB_ENABLE - Enable heartbeats on the 2275 * specified address. Note that if the address 2276 * field is empty all addresses for the association 2277 * have heartbeats enabled upon them. 2278 * 2279 * SPP_HB_DISABLE - Disable heartbeats on the 2280 * speicifed address. Note that if the address 2281 * field is empty all addresses for the association 2282 * will have their heartbeats disabled. Note also 2283 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2284 * mutually exclusive, only one of these two should 2285 * be specified. Enabling both fields will have 2286 * undetermined results. 2287 * 2288 * SPP_HB_DEMAND - Request a user initiated heartbeat 2289 * to be made immediately. 2290 * 2291 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2292 * heartbeat delayis to be set to the value of 0 2293 * milliseconds. 2294 * 2295 * SPP_PMTUD_ENABLE - This field will enable PMTU 2296 * discovery upon the specified address. Note that 2297 * if the address feild is empty then all addresses 2298 * on the association are effected. 2299 * 2300 * SPP_PMTUD_DISABLE - This field will disable PMTU 2301 * discovery upon the specified address. Note that 2302 * if the address feild is empty then all addresses 2303 * on the association are effected. Not also that 2304 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2305 * exclusive. Enabling both will have undetermined 2306 * results. 2307 * 2308 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2309 * on delayed sack. The time specified in spp_sackdelay 2310 * is used to specify the sack delay for this address. Note 2311 * that if spp_address is empty then all addresses will 2312 * enable delayed sack and take on the sack delay 2313 * value specified in spp_sackdelay. 2314 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2315 * off delayed sack. If the spp_address field is blank then 2316 * delayed sack is disabled for the entire association. Note 2317 * also that this field is mutually exclusive to 2318 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2319 * results. 2320 */ 2321 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2322 struct sctp_transport *trans, 2323 struct sctp_association *asoc, 2324 struct sctp_sock *sp, 2325 int hb_change, 2326 int pmtud_change, 2327 int sackdelay_change) 2328 { 2329 int error; 2330 2331 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2332 struct net *net = sock_net(trans->asoc->base.sk); 2333 2334 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2335 if (error) 2336 return error; 2337 } 2338 2339 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2340 * this field is ignored. Note also that a value of zero indicates 2341 * the current setting should be left unchanged. 2342 */ 2343 if (params->spp_flags & SPP_HB_ENABLE) { 2344 2345 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2346 * set. This lets us use 0 value when this flag 2347 * is set. 2348 */ 2349 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2350 params->spp_hbinterval = 0; 2351 2352 if (params->spp_hbinterval || 2353 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2354 if (trans) { 2355 trans->hbinterval = 2356 msecs_to_jiffies(params->spp_hbinterval); 2357 } else if (asoc) { 2358 asoc->hbinterval = 2359 msecs_to_jiffies(params->spp_hbinterval); 2360 } else { 2361 sp->hbinterval = params->spp_hbinterval; 2362 } 2363 } 2364 } 2365 2366 if (hb_change) { 2367 if (trans) { 2368 trans->param_flags = 2369 (trans->param_flags & ~SPP_HB) | hb_change; 2370 } else if (asoc) { 2371 asoc->param_flags = 2372 (asoc->param_flags & ~SPP_HB) | hb_change; 2373 } else { 2374 sp->param_flags = 2375 (sp->param_flags & ~SPP_HB) | hb_change; 2376 } 2377 } 2378 2379 /* When Path MTU discovery is disabled the value specified here will 2380 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2381 * include the flag SPP_PMTUD_DISABLE for this field to have any 2382 * effect). 2383 */ 2384 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2385 if (trans) { 2386 trans->pathmtu = params->spp_pathmtu; 2387 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2388 } else if (asoc) { 2389 asoc->pathmtu = params->spp_pathmtu; 2390 sctp_frag_point(asoc, params->spp_pathmtu); 2391 } else { 2392 sp->pathmtu = params->spp_pathmtu; 2393 } 2394 } 2395 2396 if (pmtud_change) { 2397 if (trans) { 2398 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2399 (params->spp_flags & SPP_PMTUD_ENABLE); 2400 trans->param_flags = 2401 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2402 if (update) { 2403 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2404 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2405 } 2406 } else if (asoc) { 2407 asoc->param_flags = 2408 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2409 } else { 2410 sp->param_flags = 2411 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2412 } 2413 } 2414 2415 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2416 * value of this field is ignored. Note also that a value of zero 2417 * indicates the current setting should be left unchanged. 2418 */ 2419 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2420 if (trans) { 2421 trans->sackdelay = 2422 msecs_to_jiffies(params->spp_sackdelay); 2423 } else if (asoc) { 2424 asoc->sackdelay = 2425 msecs_to_jiffies(params->spp_sackdelay); 2426 } else { 2427 sp->sackdelay = params->spp_sackdelay; 2428 } 2429 } 2430 2431 if (sackdelay_change) { 2432 if (trans) { 2433 trans->param_flags = 2434 (trans->param_flags & ~SPP_SACKDELAY) | 2435 sackdelay_change; 2436 } else if (asoc) { 2437 asoc->param_flags = 2438 (asoc->param_flags & ~SPP_SACKDELAY) | 2439 sackdelay_change; 2440 } else { 2441 sp->param_flags = 2442 (sp->param_flags & ~SPP_SACKDELAY) | 2443 sackdelay_change; 2444 } 2445 } 2446 2447 /* Note that a value of zero indicates the current setting should be 2448 left unchanged. 2449 */ 2450 if (params->spp_pathmaxrxt) { 2451 if (trans) { 2452 trans->pathmaxrxt = params->spp_pathmaxrxt; 2453 } else if (asoc) { 2454 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2455 } else { 2456 sp->pathmaxrxt = params->spp_pathmaxrxt; 2457 } 2458 } 2459 2460 return 0; 2461 } 2462 2463 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2464 char __user *optval, 2465 unsigned int optlen) 2466 { 2467 struct sctp_paddrparams params; 2468 struct sctp_transport *trans = NULL; 2469 struct sctp_association *asoc = NULL; 2470 struct sctp_sock *sp = sctp_sk(sk); 2471 int error; 2472 int hb_change, pmtud_change, sackdelay_change; 2473 2474 if (optlen != sizeof(struct sctp_paddrparams)) 2475 return - EINVAL; 2476 2477 if (copy_from_user(¶ms, optval, optlen)) 2478 return -EFAULT; 2479 2480 /* Validate flags and value parameters. */ 2481 hb_change = params.spp_flags & SPP_HB; 2482 pmtud_change = params.spp_flags & SPP_PMTUD; 2483 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2484 2485 if (hb_change == SPP_HB || 2486 pmtud_change == SPP_PMTUD || 2487 sackdelay_change == SPP_SACKDELAY || 2488 params.spp_sackdelay > 500 || 2489 (params.spp_pathmtu && 2490 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2491 return -EINVAL; 2492 2493 /* If an address other than INADDR_ANY is specified, and 2494 * no transport is found, then the request is invalid. 2495 */ 2496 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2497 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2498 params.spp_assoc_id); 2499 if (!trans) 2500 return -EINVAL; 2501 } 2502 2503 /* Get association, if assoc_id != 0 and the socket is a one 2504 * to many style socket, and an association was not found, then 2505 * the id was invalid. 2506 */ 2507 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2508 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2509 return -EINVAL; 2510 2511 /* Heartbeat demand can only be sent on a transport or 2512 * association, but not a socket. 2513 */ 2514 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2515 return -EINVAL; 2516 2517 /* Process parameters. */ 2518 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2519 hb_change, pmtud_change, 2520 sackdelay_change); 2521 2522 if (error) 2523 return error; 2524 2525 /* If changes are for association, also apply parameters to each 2526 * transport. 2527 */ 2528 if (!trans && asoc) { 2529 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2530 transports) { 2531 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2532 hb_change, pmtud_change, 2533 sackdelay_change); 2534 } 2535 } 2536 2537 return 0; 2538 } 2539 2540 /* 2541 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2542 * 2543 * This option will effect the way delayed acks are performed. This 2544 * option allows you to get or set the delayed ack time, in 2545 * milliseconds. It also allows changing the delayed ack frequency. 2546 * Changing the frequency to 1 disables the delayed sack algorithm. If 2547 * the assoc_id is 0, then this sets or gets the endpoints default 2548 * values. If the assoc_id field is non-zero, then the set or get 2549 * effects the specified association for the one to many model (the 2550 * assoc_id field is ignored by the one to one model). Note that if 2551 * sack_delay or sack_freq are 0 when setting this option, then the 2552 * current values will remain unchanged. 2553 * 2554 * struct sctp_sack_info { 2555 * sctp_assoc_t sack_assoc_id; 2556 * uint32_t sack_delay; 2557 * uint32_t sack_freq; 2558 * }; 2559 * 2560 * sack_assoc_id - This parameter, indicates which association the user 2561 * is performing an action upon. Note that if this field's value is 2562 * zero then the endpoints default value is changed (effecting future 2563 * associations only). 2564 * 2565 * sack_delay - This parameter contains the number of milliseconds that 2566 * the user is requesting the delayed ACK timer be set to. Note that 2567 * this value is defined in the standard to be between 200 and 500 2568 * milliseconds. 2569 * 2570 * sack_freq - This parameter contains the number of packets that must 2571 * be received before a sack is sent without waiting for the delay 2572 * timer to expire. The default value for this is 2, setting this 2573 * value to 1 will disable the delayed sack algorithm. 2574 */ 2575 2576 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2577 char __user *optval, unsigned int optlen) 2578 { 2579 struct sctp_sack_info params; 2580 struct sctp_transport *trans = NULL; 2581 struct sctp_association *asoc = NULL; 2582 struct sctp_sock *sp = sctp_sk(sk); 2583 2584 if (optlen == sizeof(struct sctp_sack_info)) { 2585 if (copy_from_user(¶ms, optval, optlen)) 2586 return -EFAULT; 2587 2588 if (params.sack_delay == 0 && params.sack_freq == 0) 2589 return 0; 2590 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2591 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2592 pr_warn("Use struct sctp_sack_info instead\n"); 2593 if (copy_from_user(¶ms, optval, optlen)) 2594 return -EFAULT; 2595 2596 if (params.sack_delay == 0) 2597 params.sack_freq = 1; 2598 else 2599 params.sack_freq = 0; 2600 } else 2601 return - EINVAL; 2602 2603 /* Validate value parameter. */ 2604 if (params.sack_delay > 500) 2605 return -EINVAL; 2606 2607 /* Get association, if sack_assoc_id != 0 and the socket is a one 2608 * to many style socket, and an association was not found, then 2609 * the id was invalid. 2610 */ 2611 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2612 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2613 return -EINVAL; 2614 2615 if (params.sack_delay) { 2616 if (asoc) { 2617 asoc->sackdelay = 2618 msecs_to_jiffies(params.sack_delay); 2619 asoc->param_flags = 2620 (asoc->param_flags & ~SPP_SACKDELAY) | 2621 SPP_SACKDELAY_ENABLE; 2622 } else { 2623 sp->sackdelay = params.sack_delay; 2624 sp->param_flags = 2625 (sp->param_flags & ~SPP_SACKDELAY) | 2626 SPP_SACKDELAY_ENABLE; 2627 } 2628 } 2629 2630 if (params.sack_freq == 1) { 2631 if (asoc) { 2632 asoc->param_flags = 2633 (asoc->param_flags & ~SPP_SACKDELAY) | 2634 SPP_SACKDELAY_DISABLE; 2635 } else { 2636 sp->param_flags = 2637 (sp->param_flags & ~SPP_SACKDELAY) | 2638 SPP_SACKDELAY_DISABLE; 2639 } 2640 } else if (params.sack_freq > 1) { 2641 if (asoc) { 2642 asoc->sackfreq = params.sack_freq; 2643 asoc->param_flags = 2644 (asoc->param_flags & ~SPP_SACKDELAY) | 2645 SPP_SACKDELAY_ENABLE; 2646 } else { 2647 sp->sackfreq = params.sack_freq; 2648 sp->param_flags = 2649 (sp->param_flags & ~SPP_SACKDELAY) | 2650 SPP_SACKDELAY_ENABLE; 2651 } 2652 } 2653 2654 /* If change is for association, also apply to each transport. */ 2655 if (asoc) { 2656 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2657 transports) { 2658 if (params.sack_delay) { 2659 trans->sackdelay = 2660 msecs_to_jiffies(params.sack_delay); 2661 trans->param_flags = 2662 (trans->param_flags & ~SPP_SACKDELAY) | 2663 SPP_SACKDELAY_ENABLE; 2664 } 2665 if (params.sack_freq == 1) { 2666 trans->param_flags = 2667 (trans->param_flags & ~SPP_SACKDELAY) | 2668 SPP_SACKDELAY_DISABLE; 2669 } else if (params.sack_freq > 1) { 2670 trans->sackfreq = params.sack_freq; 2671 trans->param_flags = 2672 (trans->param_flags & ~SPP_SACKDELAY) | 2673 SPP_SACKDELAY_ENABLE; 2674 } 2675 } 2676 } 2677 2678 return 0; 2679 } 2680 2681 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2682 * 2683 * Applications can specify protocol parameters for the default association 2684 * initialization. The option name argument to setsockopt() and getsockopt() 2685 * is SCTP_INITMSG. 2686 * 2687 * Setting initialization parameters is effective only on an unconnected 2688 * socket (for UDP-style sockets only future associations are effected 2689 * by the change). With TCP-style sockets, this option is inherited by 2690 * sockets derived from a listener socket. 2691 */ 2692 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2693 { 2694 struct sctp_initmsg sinit; 2695 struct sctp_sock *sp = sctp_sk(sk); 2696 2697 if (optlen != sizeof(struct sctp_initmsg)) 2698 return -EINVAL; 2699 if (copy_from_user(&sinit, optval, optlen)) 2700 return -EFAULT; 2701 2702 if (sinit.sinit_num_ostreams) 2703 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2704 if (sinit.sinit_max_instreams) 2705 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2706 if (sinit.sinit_max_attempts) 2707 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2708 if (sinit.sinit_max_init_timeo) 2709 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2710 2711 return 0; 2712 } 2713 2714 /* 2715 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2716 * 2717 * Applications that wish to use the sendto() system call may wish to 2718 * specify a default set of parameters that would normally be supplied 2719 * through the inclusion of ancillary data. This socket option allows 2720 * such an application to set the default sctp_sndrcvinfo structure. 2721 * The application that wishes to use this socket option simply passes 2722 * in to this call the sctp_sndrcvinfo structure defined in Section 2723 * 5.2.2) The input parameters accepted by this call include 2724 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2725 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2726 * to this call if the caller is using the UDP model. 2727 */ 2728 static int sctp_setsockopt_default_send_param(struct sock *sk, 2729 char __user *optval, 2730 unsigned int optlen) 2731 { 2732 struct sctp_sndrcvinfo info; 2733 struct sctp_association *asoc; 2734 struct sctp_sock *sp = sctp_sk(sk); 2735 2736 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2737 return -EINVAL; 2738 if (copy_from_user(&info, optval, optlen)) 2739 return -EFAULT; 2740 2741 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2742 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2743 return -EINVAL; 2744 2745 if (asoc) { 2746 asoc->default_stream = info.sinfo_stream; 2747 asoc->default_flags = info.sinfo_flags; 2748 asoc->default_ppid = info.sinfo_ppid; 2749 asoc->default_context = info.sinfo_context; 2750 asoc->default_timetolive = info.sinfo_timetolive; 2751 } else { 2752 sp->default_stream = info.sinfo_stream; 2753 sp->default_flags = info.sinfo_flags; 2754 sp->default_ppid = info.sinfo_ppid; 2755 sp->default_context = info.sinfo_context; 2756 sp->default_timetolive = info.sinfo_timetolive; 2757 } 2758 2759 return 0; 2760 } 2761 2762 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2763 * 2764 * Requests that the local SCTP stack use the enclosed peer address as 2765 * the association primary. The enclosed address must be one of the 2766 * association peer's addresses. 2767 */ 2768 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2769 unsigned int optlen) 2770 { 2771 struct sctp_prim prim; 2772 struct sctp_transport *trans; 2773 2774 if (optlen != sizeof(struct sctp_prim)) 2775 return -EINVAL; 2776 2777 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2778 return -EFAULT; 2779 2780 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2781 if (!trans) 2782 return -EINVAL; 2783 2784 sctp_assoc_set_primary(trans->asoc, trans); 2785 2786 return 0; 2787 } 2788 2789 /* 2790 * 7.1.5 SCTP_NODELAY 2791 * 2792 * Turn on/off any Nagle-like algorithm. This means that packets are 2793 * generally sent as soon as possible and no unnecessary delays are 2794 * introduced, at the cost of more packets in the network. Expects an 2795 * integer boolean flag. 2796 */ 2797 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2798 unsigned int optlen) 2799 { 2800 int val; 2801 2802 if (optlen < sizeof(int)) 2803 return -EINVAL; 2804 if (get_user(val, (int __user *)optval)) 2805 return -EFAULT; 2806 2807 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2808 return 0; 2809 } 2810 2811 /* 2812 * 2813 * 7.1.1 SCTP_RTOINFO 2814 * 2815 * The protocol parameters used to initialize and bound retransmission 2816 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2817 * and modify these parameters. 2818 * All parameters are time values, in milliseconds. A value of 0, when 2819 * modifying the parameters, indicates that the current value should not 2820 * be changed. 2821 * 2822 */ 2823 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2824 { 2825 struct sctp_rtoinfo rtoinfo; 2826 struct sctp_association *asoc; 2827 2828 if (optlen != sizeof (struct sctp_rtoinfo)) 2829 return -EINVAL; 2830 2831 if (copy_from_user(&rtoinfo, optval, optlen)) 2832 return -EFAULT; 2833 2834 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2835 2836 /* Set the values to the specific association */ 2837 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2838 return -EINVAL; 2839 2840 if (asoc) { 2841 if (rtoinfo.srto_initial != 0) 2842 asoc->rto_initial = 2843 msecs_to_jiffies(rtoinfo.srto_initial); 2844 if (rtoinfo.srto_max != 0) 2845 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2846 if (rtoinfo.srto_min != 0) 2847 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2848 } else { 2849 /* If there is no association or the association-id = 0 2850 * set the values to the endpoint. 2851 */ 2852 struct sctp_sock *sp = sctp_sk(sk); 2853 2854 if (rtoinfo.srto_initial != 0) 2855 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2856 if (rtoinfo.srto_max != 0) 2857 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2858 if (rtoinfo.srto_min != 0) 2859 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2860 } 2861 2862 return 0; 2863 } 2864 2865 /* 2866 * 2867 * 7.1.2 SCTP_ASSOCINFO 2868 * 2869 * This option is used to tune the maximum retransmission attempts 2870 * of the association. 2871 * Returns an error if the new association retransmission value is 2872 * greater than the sum of the retransmission value of the peer. 2873 * See [SCTP] for more information. 2874 * 2875 */ 2876 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2877 { 2878 2879 struct sctp_assocparams assocparams; 2880 struct sctp_association *asoc; 2881 2882 if (optlen != sizeof(struct sctp_assocparams)) 2883 return -EINVAL; 2884 if (copy_from_user(&assocparams, optval, optlen)) 2885 return -EFAULT; 2886 2887 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2888 2889 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2890 return -EINVAL; 2891 2892 /* Set the values to the specific association */ 2893 if (asoc) { 2894 if (assocparams.sasoc_asocmaxrxt != 0) { 2895 __u32 path_sum = 0; 2896 int paths = 0; 2897 struct sctp_transport *peer_addr; 2898 2899 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2900 transports) { 2901 path_sum += peer_addr->pathmaxrxt; 2902 paths++; 2903 } 2904 2905 /* Only validate asocmaxrxt if we have more than 2906 * one path/transport. We do this because path 2907 * retransmissions are only counted when we have more 2908 * then one path. 2909 */ 2910 if (paths > 1 && 2911 assocparams.sasoc_asocmaxrxt > path_sum) 2912 return -EINVAL; 2913 2914 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2915 } 2916 2917 if (assocparams.sasoc_cookie_life != 0) { 2918 asoc->cookie_life.tv_sec = 2919 assocparams.sasoc_cookie_life / 1000; 2920 asoc->cookie_life.tv_usec = 2921 (assocparams.sasoc_cookie_life % 1000) 2922 * 1000; 2923 } 2924 } else { 2925 /* Set the values to the endpoint */ 2926 struct sctp_sock *sp = sctp_sk(sk); 2927 2928 if (assocparams.sasoc_asocmaxrxt != 0) 2929 sp->assocparams.sasoc_asocmaxrxt = 2930 assocparams.sasoc_asocmaxrxt; 2931 if (assocparams.sasoc_cookie_life != 0) 2932 sp->assocparams.sasoc_cookie_life = 2933 assocparams.sasoc_cookie_life; 2934 } 2935 return 0; 2936 } 2937 2938 /* 2939 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2940 * 2941 * This socket option is a boolean flag which turns on or off mapped V4 2942 * addresses. If this option is turned on and the socket is type 2943 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2944 * If this option is turned off, then no mapping will be done of V4 2945 * addresses and a user will receive both PF_INET6 and PF_INET type 2946 * addresses on the socket. 2947 */ 2948 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2949 { 2950 int val; 2951 struct sctp_sock *sp = sctp_sk(sk); 2952 2953 if (optlen < sizeof(int)) 2954 return -EINVAL; 2955 if (get_user(val, (int __user *)optval)) 2956 return -EFAULT; 2957 if (val) 2958 sp->v4mapped = 1; 2959 else 2960 sp->v4mapped = 0; 2961 2962 return 0; 2963 } 2964 2965 /* 2966 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2967 * This option will get or set the maximum size to put in any outgoing 2968 * SCTP DATA chunk. If a message is larger than this size it will be 2969 * fragmented by SCTP into the specified size. Note that the underlying 2970 * SCTP implementation may fragment into smaller sized chunks when the 2971 * PMTU of the underlying association is smaller than the value set by 2972 * the user. The default value for this option is '0' which indicates 2973 * the user is NOT limiting fragmentation and only the PMTU will effect 2974 * SCTP's choice of DATA chunk size. Note also that values set larger 2975 * than the maximum size of an IP datagram will effectively let SCTP 2976 * control fragmentation (i.e. the same as setting this option to 0). 2977 * 2978 * The following structure is used to access and modify this parameter: 2979 * 2980 * struct sctp_assoc_value { 2981 * sctp_assoc_t assoc_id; 2982 * uint32_t assoc_value; 2983 * }; 2984 * 2985 * assoc_id: This parameter is ignored for one-to-one style sockets. 2986 * For one-to-many style sockets this parameter indicates which 2987 * association the user is performing an action upon. Note that if 2988 * this field's value is zero then the endpoints default value is 2989 * changed (effecting future associations only). 2990 * assoc_value: This parameter specifies the maximum size in bytes. 2991 */ 2992 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2993 { 2994 struct sctp_assoc_value params; 2995 struct sctp_association *asoc; 2996 struct sctp_sock *sp = sctp_sk(sk); 2997 int val; 2998 2999 if (optlen == sizeof(int)) { 3000 pr_warn("Use of int in maxseg socket option deprecated\n"); 3001 pr_warn("Use struct sctp_assoc_value instead\n"); 3002 if (copy_from_user(&val, optval, optlen)) 3003 return -EFAULT; 3004 params.assoc_id = 0; 3005 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3006 if (copy_from_user(¶ms, optval, optlen)) 3007 return -EFAULT; 3008 val = params.assoc_value; 3009 } else 3010 return -EINVAL; 3011 3012 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3013 return -EINVAL; 3014 3015 asoc = sctp_id2assoc(sk, params.assoc_id); 3016 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3017 return -EINVAL; 3018 3019 if (asoc) { 3020 if (val == 0) { 3021 val = asoc->pathmtu; 3022 val -= sp->pf->af->net_header_len; 3023 val -= sizeof(struct sctphdr) + 3024 sizeof(struct sctp_data_chunk); 3025 } 3026 asoc->user_frag = val; 3027 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3028 } else { 3029 sp->user_frag = val; 3030 } 3031 3032 return 0; 3033 } 3034 3035 3036 /* 3037 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3038 * 3039 * Requests that the peer mark the enclosed address as the association 3040 * primary. The enclosed address must be one of the association's 3041 * locally bound addresses. The following structure is used to make a 3042 * set primary request: 3043 */ 3044 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3045 unsigned int optlen) 3046 { 3047 struct net *net = sock_net(sk); 3048 struct sctp_sock *sp; 3049 struct sctp_association *asoc = NULL; 3050 struct sctp_setpeerprim prim; 3051 struct sctp_chunk *chunk; 3052 struct sctp_af *af; 3053 int err; 3054 3055 sp = sctp_sk(sk); 3056 3057 if (!net->sctp.addip_enable) 3058 return -EPERM; 3059 3060 if (optlen != sizeof(struct sctp_setpeerprim)) 3061 return -EINVAL; 3062 3063 if (copy_from_user(&prim, optval, optlen)) 3064 return -EFAULT; 3065 3066 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3067 if (!asoc) 3068 return -EINVAL; 3069 3070 if (!asoc->peer.asconf_capable) 3071 return -EPERM; 3072 3073 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3074 return -EPERM; 3075 3076 if (!sctp_state(asoc, ESTABLISHED)) 3077 return -ENOTCONN; 3078 3079 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3080 if (!af) 3081 return -EINVAL; 3082 3083 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3084 return -EADDRNOTAVAIL; 3085 3086 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3087 return -EADDRNOTAVAIL; 3088 3089 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3090 chunk = sctp_make_asconf_set_prim(asoc, 3091 (union sctp_addr *)&prim.sspp_addr); 3092 if (!chunk) 3093 return -ENOMEM; 3094 3095 err = sctp_send_asconf(asoc, chunk); 3096 3097 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3098 3099 return err; 3100 } 3101 3102 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3103 unsigned int optlen) 3104 { 3105 struct sctp_setadaptation adaptation; 3106 3107 if (optlen != sizeof(struct sctp_setadaptation)) 3108 return -EINVAL; 3109 if (copy_from_user(&adaptation, optval, optlen)) 3110 return -EFAULT; 3111 3112 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3113 3114 return 0; 3115 } 3116 3117 /* 3118 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3119 * 3120 * The context field in the sctp_sndrcvinfo structure is normally only 3121 * used when a failed message is retrieved holding the value that was 3122 * sent down on the actual send call. This option allows the setting of 3123 * a default context on an association basis that will be received on 3124 * reading messages from the peer. This is especially helpful in the 3125 * one-2-many model for an application to keep some reference to an 3126 * internal state machine that is processing messages on the 3127 * association. Note that the setting of this value only effects 3128 * received messages from the peer and does not effect the value that is 3129 * saved with outbound messages. 3130 */ 3131 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3132 unsigned int optlen) 3133 { 3134 struct sctp_assoc_value params; 3135 struct sctp_sock *sp; 3136 struct sctp_association *asoc; 3137 3138 if (optlen != sizeof(struct sctp_assoc_value)) 3139 return -EINVAL; 3140 if (copy_from_user(¶ms, optval, optlen)) 3141 return -EFAULT; 3142 3143 sp = sctp_sk(sk); 3144 3145 if (params.assoc_id != 0) { 3146 asoc = sctp_id2assoc(sk, params.assoc_id); 3147 if (!asoc) 3148 return -EINVAL; 3149 asoc->default_rcv_context = params.assoc_value; 3150 } else { 3151 sp->default_rcv_context = params.assoc_value; 3152 } 3153 3154 return 0; 3155 } 3156 3157 /* 3158 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3159 * 3160 * This options will at a minimum specify if the implementation is doing 3161 * fragmented interleave. Fragmented interleave, for a one to many 3162 * socket, is when subsequent calls to receive a message may return 3163 * parts of messages from different associations. Some implementations 3164 * may allow you to turn this value on or off. If so, when turned off, 3165 * no fragment interleave will occur (which will cause a head of line 3166 * blocking amongst multiple associations sharing the same one to many 3167 * socket). When this option is turned on, then each receive call may 3168 * come from a different association (thus the user must receive data 3169 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3170 * association each receive belongs to. 3171 * 3172 * This option takes a boolean value. A non-zero value indicates that 3173 * fragmented interleave is on. A value of zero indicates that 3174 * fragmented interleave is off. 3175 * 3176 * Note that it is important that an implementation that allows this 3177 * option to be turned on, have it off by default. Otherwise an unaware 3178 * application using the one to many model may become confused and act 3179 * incorrectly. 3180 */ 3181 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3182 char __user *optval, 3183 unsigned int optlen) 3184 { 3185 int val; 3186 3187 if (optlen != sizeof(int)) 3188 return -EINVAL; 3189 if (get_user(val, (int __user *)optval)) 3190 return -EFAULT; 3191 3192 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3193 3194 return 0; 3195 } 3196 3197 /* 3198 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3199 * (SCTP_PARTIAL_DELIVERY_POINT) 3200 * 3201 * This option will set or get the SCTP partial delivery point. This 3202 * point is the size of a message where the partial delivery API will be 3203 * invoked to help free up rwnd space for the peer. Setting this to a 3204 * lower value will cause partial deliveries to happen more often. The 3205 * calls argument is an integer that sets or gets the partial delivery 3206 * point. Note also that the call will fail if the user attempts to set 3207 * this value larger than the socket receive buffer size. 3208 * 3209 * Note that any single message having a length smaller than or equal to 3210 * the SCTP partial delivery point will be delivered in one single read 3211 * call as long as the user provided buffer is large enough to hold the 3212 * message. 3213 */ 3214 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3215 char __user *optval, 3216 unsigned int optlen) 3217 { 3218 u32 val; 3219 3220 if (optlen != sizeof(u32)) 3221 return -EINVAL; 3222 if (get_user(val, (int __user *)optval)) 3223 return -EFAULT; 3224 3225 /* Note: We double the receive buffer from what the user sets 3226 * it to be, also initial rwnd is based on rcvbuf/2. 3227 */ 3228 if (val > (sk->sk_rcvbuf >> 1)) 3229 return -EINVAL; 3230 3231 sctp_sk(sk)->pd_point = val; 3232 3233 return 0; /* is this the right error code? */ 3234 } 3235 3236 /* 3237 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3238 * 3239 * This option will allow a user to change the maximum burst of packets 3240 * that can be emitted by this association. Note that the default value 3241 * is 4, and some implementations may restrict this setting so that it 3242 * can only be lowered. 3243 * 3244 * NOTE: This text doesn't seem right. Do this on a socket basis with 3245 * future associations inheriting the socket value. 3246 */ 3247 static int sctp_setsockopt_maxburst(struct sock *sk, 3248 char __user *optval, 3249 unsigned int optlen) 3250 { 3251 struct sctp_assoc_value params; 3252 struct sctp_sock *sp; 3253 struct sctp_association *asoc; 3254 int val; 3255 int assoc_id = 0; 3256 3257 if (optlen == sizeof(int)) { 3258 pr_warn("Use of int in max_burst socket option deprecated\n"); 3259 pr_warn("Use struct sctp_assoc_value instead\n"); 3260 if (copy_from_user(&val, optval, optlen)) 3261 return -EFAULT; 3262 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3263 if (copy_from_user(¶ms, optval, optlen)) 3264 return -EFAULT; 3265 val = params.assoc_value; 3266 assoc_id = params.assoc_id; 3267 } else 3268 return -EINVAL; 3269 3270 sp = sctp_sk(sk); 3271 3272 if (assoc_id != 0) { 3273 asoc = sctp_id2assoc(sk, assoc_id); 3274 if (!asoc) 3275 return -EINVAL; 3276 asoc->max_burst = val; 3277 } else 3278 sp->max_burst = val; 3279 3280 return 0; 3281 } 3282 3283 /* 3284 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3285 * 3286 * This set option adds a chunk type that the user is requesting to be 3287 * received only in an authenticated way. Changes to the list of chunks 3288 * will only effect future associations on the socket. 3289 */ 3290 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3291 char __user *optval, 3292 unsigned int optlen) 3293 { 3294 struct net *net = sock_net(sk); 3295 struct sctp_authchunk val; 3296 3297 if (!net->sctp.auth_enable) 3298 return -EACCES; 3299 3300 if (optlen != sizeof(struct sctp_authchunk)) 3301 return -EINVAL; 3302 if (copy_from_user(&val, optval, optlen)) 3303 return -EFAULT; 3304 3305 switch (val.sauth_chunk) { 3306 case SCTP_CID_INIT: 3307 case SCTP_CID_INIT_ACK: 3308 case SCTP_CID_SHUTDOWN_COMPLETE: 3309 case SCTP_CID_AUTH: 3310 return -EINVAL; 3311 } 3312 3313 /* add this chunk id to the endpoint */ 3314 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3315 } 3316 3317 /* 3318 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3319 * 3320 * This option gets or sets the list of HMAC algorithms that the local 3321 * endpoint requires the peer to use. 3322 */ 3323 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3324 char __user *optval, 3325 unsigned int optlen) 3326 { 3327 struct net *net = sock_net(sk); 3328 struct sctp_hmacalgo *hmacs; 3329 u32 idents; 3330 int err; 3331 3332 if (!net->sctp.auth_enable) 3333 return -EACCES; 3334 3335 if (optlen < sizeof(struct sctp_hmacalgo)) 3336 return -EINVAL; 3337 3338 hmacs= memdup_user(optval, optlen); 3339 if (IS_ERR(hmacs)) 3340 return PTR_ERR(hmacs); 3341 3342 idents = hmacs->shmac_num_idents; 3343 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3344 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3345 err = -EINVAL; 3346 goto out; 3347 } 3348 3349 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3350 out: 3351 kfree(hmacs); 3352 return err; 3353 } 3354 3355 /* 3356 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3357 * 3358 * This option will set a shared secret key which is used to build an 3359 * association shared key. 3360 */ 3361 static int sctp_setsockopt_auth_key(struct sock *sk, 3362 char __user *optval, 3363 unsigned int optlen) 3364 { 3365 struct net *net = sock_net(sk); 3366 struct sctp_authkey *authkey; 3367 struct sctp_association *asoc; 3368 int ret; 3369 3370 if (!net->sctp.auth_enable) 3371 return -EACCES; 3372 3373 if (optlen <= sizeof(struct sctp_authkey)) 3374 return -EINVAL; 3375 3376 authkey= memdup_user(optval, optlen); 3377 if (IS_ERR(authkey)) 3378 return PTR_ERR(authkey); 3379 3380 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3381 ret = -EINVAL; 3382 goto out; 3383 } 3384 3385 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3386 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3387 ret = -EINVAL; 3388 goto out; 3389 } 3390 3391 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3392 out: 3393 kzfree(authkey); 3394 return ret; 3395 } 3396 3397 /* 3398 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3399 * 3400 * This option will get or set the active shared key to be used to build 3401 * the association shared key. 3402 */ 3403 static int sctp_setsockopt_active_key(struct sock *sk, 3404 char __user *optval, 3405 unsigned int optlen) 3406 { 3407 struct net *net = sock_net(sk); 3408 struct sctp_authkeyid val; 3409 struct sctp_association *asoc; 3410 3411 if (!net->sctp.auth_enable) 3412 return -EACCES; 3413 3414 if (optlen != sizeof(struct sctp_authkeyid)) 3415 return -EINVAL; 3416 if (copy_from_user(&val, optval, optlen)) 3417 return -EFAULT; 3418 3419 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3420 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3421 return -EINVAL; 3422 3423 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3424 val.scact_keynumber); 3425 } 3426 3427 /* 3428 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3429 * 3430 * This set option will delete a shared secret key from use. 3431 */ 3432 static int sctp_setsockopt_del_key(struct sock *sk, 3433 char __user *optval, 3434 unsigned int optlen) 3435 { 3436 struct net *net = sock_net(sk); 3437 struct sctp_authkeyid val; 3438 struct sctp_association *asoc; 3439 3440 if (!net->sctp.auth_enable) 3441 return -EACCES; 3442 3443 if (optlen != sizeof(struct sctp_authkeyid)) 3444 return -EINVAL; 3445 if (copy_from_user(&val, optval, optlen)) 3446 return -EFAULT; 3447 3448 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3449 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3450 return -EINVAL; 3451 3452 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3453 val.scact_keynumber); 3454 3455 } 3456 3457 /* 3458 * 8.1.23 SCTP_AUTO_ASCONF 3459 * 3460 * This option will enable or disable the use of the automatic generation of 3461 * ASCONF chunks to add and delete addresses to an existing association. Note 3462 * that this option has two caveats namely: a) it only affects sockets that 3463 * are bound to all addresses available to the SCTP stack, and b) the system 3464 * administrator may have an overriding control that turns the ASCONF feature 3465 * off no matter what setting the socket option may have. 3466 * This option expects an integer boolean flag, where a non-zero value turns on 3467 * the option, and a zero value turns off the option. 3468 * Note. In this implementation, socket operation overrides default parameter 3469 * being set by sysctl as well as FreeBSD implementation 3470 */ 3471 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3472 unsigned int optlen) 3473 { 3474 int val; 3475 struct sctp_sock *sp = sctp_sk(sk); 3476 3477 if (optlen < sizeof(int)) 3478 return -EINVAL; 3479 if (get_user(val, (int __user *)optval)) 3480 return -EFAULT; 3481 if (!sctp_is_ep_boundall(sk) && val) 3482 return -EINVAL; 3483 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3484 return 0; 3485 3486 if (val == 0 && sp->do_auto_asconf) { 3487 list_del(&sp->auto_asconf_list); 3488 sp->do_auto_asconf = 0; 3489 } else if (val && !sp->do_auto_asconf) { 3490 list_add_tail(&sp->auto_asconf_list, 3491 &sock_net(sk)->sctp.auto_asconf_splist); 3492 sp->do_auto_asconf = 1; 3493 } 3494 return 0; 3495 } 3496 3497 3498 /* 3499 * SCTP_PEER_ADDR_THLDS 3500 * 3501 * This option allows us to alter the partially failed threshold for one or all 3502 * transports in an association. See Section 6.1 of: 3503 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3504 */ 3505 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3506 char __user *optval, 3507 unsigned int optlen) 3508 { 3509 struct sctp_paddrthlds val; 3510 struct sctp_transport *trans; 3511 struct sctp_association *asoc; 3512 3513 if (optlen < sizeof(struct sctp_paddrthlds)) 3514 return -EINVAL; 3515 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3516 sizeof(struct sctp_paddrthlds))) 3517 return -EFAULT; 3518 3519 3520 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3521 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3522 if (!asoc) 3523 return -ENOENT; 3524 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3525 transports) { 3526 if (val.spt_pathmaxrxt) 3527 trans->pathmaxrxt = val.spt_pathmaxrxt; 3528 trans->pf_retrans = val.spt_pathpfthld; 3529 } 3530 3531 if (val.spt_pathmaxrxt) 3532 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3533 asoc->pf_retrans = val.spt_pathpfthld; 3534 } else { 3535 trans = sctp_addr_id2transport(sk, &val.spt_address, 3536 val.spt_assoc_id); 3537 if (!trans) 3538 return -ENOENT; 3539 3540 if (val.spt_pathmaxrxt) 3541 trans->pathmaxrxt = val.spt_pathmaxrxt; 3542 trans->pf_retrans = val.spt_pathpfthld; 3543 } 3544 3545 return 0; 3546 } 3547 3548 /* API 6.2 setsockopt(), getsockopt() 3549 * 3550 * Applications use setsockopt() and getsockopt() to set or retrieve 3551 * socket options. Socket options are used to change the default 3552 * behavior of sockets calls. They are described in Section 7. 3553 * 3554 * The syntax is: 3555 * 3556 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3557 * int __user *optlen); 3558 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3559 * int optlen); 3560 * 3561 * sd - the socket descript. 3562 * level - set to IPPROTO_SCTP for all SCTP options. 3563 * optname - the option name. 3564 * optval - the buffer to store the value of the option. 3565 * optlen - the size of the buffer. 3566 */ 3567 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3568 char __user *optval, unsigned int optlen) 3569 { 3570 int retval = 0; 3571 3572 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3573 sk, optname); 3574 3575 /* I can hardly begin to describe how wrong this is. This is 3576 * so broken as to be worse than useless. The API draft 3577 * REALLY is NOT helpful here... I am not convinced that the 3578 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3579 * are at all well-founded. 3580 */ 3581 if (level != SOL_SCTP) { 3582 struct sctp_af *af = sctp_sk(sk)->pf->af; 3583 retval = af->setsockopt(sk, level, optname, optval, optlen); 3584 goto out_nounlock; 3585 } 3586 3587 sctp_lock_sock(sk); 3588 3589 switch (optname) { 3590 case SCTP_SOCKOPT_BINDX_ADD: 3591 /* 'optlen' is the size of the addresses buffer. */ 3592 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3593 optlen, SCTP_BINDX_ADD_ADDR); 3594 break; 3595 3596 case SCTP_SOCKOPT_BINDX_REM: 3597 /* 'optlen' is the size of the addresses buffer. */ 3598 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3599 optlen, SCTP_BINDX_REM_ADDR); 3600 break; 3601 3602 case SCTP_SOCKOPT_CONNECTX_OLD: 3603 /* 'optlen' is the size of the addresses buffer. */ 3604 retval = sctp_setsockopt_connectx_old(sk, 3605 (struct sockaddr __user *)optval, 3606 optlen); 3607 break; 3608 3609 case SCTP_SOCKOPT_CONNECTX: 3610 /* 'optlen' is the size of the addresses buffer. */ 3611 retval = sctp_setsockopt_connectx(sk, 3612 (struct sockaddr __user *)optval, 3613 optlen); 3614 break; 3615 3616 case SCTP_DISABLE_FRAGMENTS: 3617 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3618 break; 3619 3620 case SCTP_EVENTS: 3621 retval = sctp_setsockopt_events(sk, optval, optlen); 3622 break; 3623 3624 case SCTP_AUTOCLOSE: 3625 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3626 break; 3627 3628 case SCTP_PEER_ADDR_PARAMS: 3629 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3630 break; 3631 3632 case SCTP_DELAYED_SACK: 3633 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3634 break; 3635 case SCTP_PARTIAL_DELIVERY_POINT: 3636 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3637 break; 3638 3639 case SCTP_INITMSG: 3640 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3641 break; 3642 case SCTP_DEFAULT_SEND_PARAM: 3643 retval = sctp_setsockopt_default_send_param(sk, optval, 3644 optlen); 3645 break; 3646 case SCTP_PRIMARY_ADDR: 3647 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3648 break; 3649 case SCTP_SET_PEER_PRIMARY_ADDR: 3650 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3651 break; 3652 case SCTP_NODELAY: 3653 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3654 break; 3655 case SCTP_RTOINFO: 3656 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3657 break; 3658 case SCTP_ASSOCINFO: 3659 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3660 break; 3661 case SCTP_I_WANT_MAPPED_V4_ADDR: 3662 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3663 break; 3664 case SCTP_MAXSEG: 3665 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3666 break; 3667 case SCTP_ADAPTATION_LAYER: 3668 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3669 break; 3670 case SCTP_CONTEXT: 3671 retval = sctp_setsockopt_context(sk, optval, optlen); 3672 break; 3673 case SCTP_FRAGMENT_INTERLEAVE: 3674 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3675 break; 3676 case SCTP_MAX_BURST: 3677 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3678 break; 3679 case SCTP_AUTH_CHUNK: 3680 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3681 break; 3682 case SCTP_HMAC_IDENT: 3683 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3684 break; 3685 case SCTP_AUTH_KEY: 3686 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3687 break; 3688 case SCTP_AUTH_ACTIVE_KEY: 3689 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3690 break; 3691 case SCTP_AUTH_DELETE_KEY: 3692 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3693 break; 3694 case SCTP_AUTO_ASCONF: 3695 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3696 break; 3697 case SCTP_PEER_ADDR_THLDS: 3698 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3699 break; 3700 default: 3701 retval = -ENOPROTOOPT; 3702 break; 3703 } 3704 3705 sctp_release_sock(sk); 3706 3707 out_nounlock: 3708 return retval; 3709 } 3710 3711 /* API 3.1.6 connect() - UDP Style Syntax 3712 * 3713 * An application may use the connect() call in the UDP model to initiate an 3714 * association without sending data. 3715 * 3716 * The syntax is: 3717 * 3718 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3719 * 3720 * sd: the socket descriptor to have a new association added to. 3721 * 3722 * nam: the address structure (either struct sockaddr_in or struct 3723 * sockaddr_in6 defined in RFC2553 [7]). 3724 * 3725 * len: the size of the address. 3726 */ 3727 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3728 int addr_len) 3729 { 3730 int err = 0; 3731 struct sctp_af *af; 3732 3733 sctp_lock_sock(sk); 3734 3735 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3736 __func__, sk, addr, addr_len); 3737 3738 /* Validate addr_len before calling common connect/connectx routine. */ 3739 af = sctp_get_af_specific(addr->sa_family); 3740 if (!af || addr_len < af->sockaddr_len) { 3741 err = -EINVAL; 3742 } else { 3743 /* Pass correct addr len to common routine (so it knows there 3744 * is only one address being passed. 3745 */ 3746 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3747 } 3748 3749 sctp_release_sock(sk); 3750 return err; 3751 } 3752 3753 /* FIXME: Write comments. */ 3754 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3755 { 3756 return -EOPNOTSUPP; /* STUB */ 3757 } 3758 3759 /* 4.1.4 accept() - TCP Style Syntax 3760 * 3761 * Applications use accept() call to remove an established SCTP 3762 * association from the accept queue of the endpoint. A new socket 3763 * descriptor will be returned from accept() to represent the newly 3764 * formed association. 3765 */ 3766 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3767 { 3768 struct sctp_sock *sp; 3769 struct sctp_endpoint *ep; 3770 struct sock *newsk = NULL; 3771 struct sctp_association *asoc; 3772 long timeo; 3773 int error = 0; 3774 3775 sctp_lock_sock(sk); 3776 3777 sp = sctp_sk(sk); 3778 ep = sp->ep; 3779 3780 if (!sctp_style(sk, TCP)) { 3781 error = -EOPNOTSUPP; 3782 goto out; 3783 } 3784 3785 if (!sctp_sstate(sk, LISTENING)) { 3786 error = -EINVAL; 3787 goto out; 3788 } 3789 3790 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3791 3792 error = sctp_wait_for_accept(sk, timeo); 3793 if (error) 3794 goto out; 3795 3796 /* We treat the list of associations on the endpoint as the accept 3797 * queue and pick the first association on the list. 3798 */ 3799 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3800 3801 newsk = sp->pf->create_accept_sk(sk, asoc); 3802 if (!newsk) { 3803 error = -ENOMEM; 3804 goto out; 3805 } 3806 3807 /* Populate the fields of the newsk from the oldsk and migrate the 3808 * asoc to the newsk. 3809 */ 3810 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3811 3812 out: 3813 sctp_release_sock(sk); 3814 *err = error; 3815 return newsk; 3816 } 3817 3818 /* The SCTP ioctl handler. */ 3819 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3820 { 3821 int rc = -ENOTCONN; 3822 3823 sctp_lock_sock(sk); 3824 3825 /* 3826 * SEQPACKET-style sockets in LISTENING state are valid, for 3827 * SCTP, so only discard TCP-style sockets in LISTENING state. 3828 */ 3829 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3830 goto out; 3831 3832 switch (cmd) { 3833 case SIOCINQ: { 3834 struct sk_buff *skb; 3835 unsigned int amount = 0; 3836 3837 skb = skb_peek(&sk->sk_receive_queue); 3838 if (skb != NULL) { 3839 /* 3840 * We will only return the amount of this packet since 3841 * that is all that will be read. 3842 */ 3843 amount = skb->len; 3844 } 3845 rc = put_user(amount, (int __user *)arg); 3846 break; 3847 } 3848 default: 3849 rc = -ENOIOCTLCMD; 3850 break; 3851 } 3852 out: 3853 sctp_release_sock(sk); 3854 return rc; 3855 } 3856 3857 /* This is the function which gets called during socket creation to 3858 * initialized the SCTP-specific portion of the sock. 3859 * The sock structure should already be zero-filled memory. 3860 */ 3861 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3862 { 3863 struct net *net = sock_net(sk); 3864 struct sctp_endpoint *ep; 3865 struct sctp_sock *sp; 3866 3867 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3868 3869 sp = sctp_sk(sk); 3870 3871 /* Initialize the SCTP per socket area. */ 3872 switch (sk->sk_type) { 3873 case SOCK_SEQPACKET: 3874 sp->type = SCTP_SOCKET_UDP; 3875 break; 3876 case SOCK_STREAM: 3877 sp->type = SCTP_SOCKET_TCP; 3878 break; 3879 default: 3880 return -ESOCKTNOSUPPORT; 3881 } 3882 3883 /* Initialize default send parameters. These parameters can be 3884 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3885 */ 3886 sp->default_stream = 0; 3887 sp->default_ppid = 0; 3888 sp->default_flags = 0; 3889 sp->default_context = 0; 3890 sp->default_timetolive = 0; 3891 3892 sp->default_rcv_context = 0; 3893 sp->max_burst = net->sctp.max_burst; 3894 3895 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 3896 3897 /* Initialize default setup parameters. These parameters 3898 * can be modified with the SCTP_INITMSG socket option or 3899 * overridden by the SCTP_INIT CMSG. 3900 */ 3901 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3902 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3903 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 3904 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 3905 3906 /* Initialize default RTO related parameters. These parameters can 3907 * be modified for with the SCTP_RTOINFO socket option. 3908 */ 3909 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 3910 sp->rtoinfo.srto_max = net->sctp.rto_max; 3911 sp->rtoinfo.srto_min = net->sctp.rto_min; 3912 3913 /* Initialize default association related parameters. These parameters 3914 * can be modified with the SCTP_ASSOCINFO socket option. 3915 */ 3916 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 3917 sp->assocparams.sasoc_number_peer_destinations = 0; 3918 sp->assocparams.sasoc_peer_rwnd = 0; 3919 sp->assocparams.sasoc_local_rwnd = 0; 3920 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 3921 3922 /* Initialize default event subscriptions. By default, all the 3923 * options are off. 3924 */ 3925 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3926 3927 /* Default Peer Address Parameters. These defaults can 3928 * be modified via SCTP_PEER_ADDR_PARAMS 3929 */ 3930 sp->hbinterval = net->sctp.hb_interval; 3931 sp->pathmaxrxt = net->sctp.max_retrans_path; 3932 sp->pathmtu = 0; // allow default discovery 3933 sp->sackdelay = net->sctp.sack_timeout; 3934 sp->sackfreq = 2; 3935 sp->param_flags = SPP_HB_ENABLE | 3936 SPP_PMTUD_ENABLE | 3937 SPP_SACKDELAY_ENABLE; 3938 3939 /* If enabled no SCTP message fragmentation will be performed. 3940 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3941 */ 3942 sp->disable_fragments = 0; 3943 3944 /* Enable Nagle algorithm by default. */ 3945 sp->nodelay = 0; 3946 3947 /* Enable by default. */ 3948 sp->v4mapped = 1; 3949 3950 /* Auto-close idle associations after the configured 3951 * number of seconds. A value of 0 disables this 3952 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3953 * for UDP-style sockets only. 3954 */ 3955 sp->autoclose = 0; 3956 3957 /* User specified fragmentation limit. */ 3958 sp->user_frag = 0; 3959 3960 sp->adaptation_ind = 0; 3961 3962 sp->pf = sctp_get_pf_specific(sk->sk_family); 3963 3964 /* Control variables for partial data delivery. */ 3965 atomic_set(&sp->pd_mode, 0); 3966 skb_queue_head_init(&sp->pd_lobby); 3967 sp->frag_interleave = 0; 3968 3969 /* Create a per socket endpoint structure. Even if we 3970 * change the data structure relationships, this may still 3971 * be useful for storing pre-connect address information. 3972 */ 3973 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3974 if (!ep) 3975 return -ENOMEM; 3976 3977 sp->ep = ep; 3978 sp->hmac = NULL; 3979 3980 SCTP_DBG_OBJCNT_INC(sock); 3981 3982 local_bh_disable(); 3983 percpu_counter_inc(&sctp_sockets_allocated); 3984 sock_prot_inuse_add(net, sk->sk_prot, 1); 3985 if (net->sctp.default_auto_asconf) { 3986 list_add_tail(&sp->auto_asconf_list, 3987 &net->sctp.auto_asconf_splist); 3988 sp->do_auto_asconf = 1; 3989 } else 3990 sp->do_auto_asconf = 0; 3991 local_bh_enable(); 3992 3993 return 0; 3994 } 3995 3996 /* Cleanup any SCTP per socket resources. */ 3997 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3998 { 3999 struct sctp_sock *sp; 4000 4001 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 4002 4003 /* Release our hold on the endpoint. */ 4004 sp = sctp_sk(sk); 4005 if (sp->do_auto_asconf) { 4006 sp->do_auto_asconf = 0; 4007 list_del(&sp->auto_asconf_list); 4008 } 4009 sctp_endpoint_free(sp->ep); 4010 local_bh_disable(); 4011 percpu_counter_dec(&sctp_sockets_allocated); 4012 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4013 local_bh_enable(); 4014 } 4015 4016 /* API 4.1.7 shutdown() - TCP Style Syntax 4017 * int shutdown(int socket, int how); 4018 * 4019 * sd - the socket descriptor of the association to be closed. 4020 * how - Specifies the type of shutdown. The values are 4021 * as follows: 4022 * SHUT_RD 4023 * Disables further receive operations. No SCTP 4024 * protocol action is taken. 4025 * SHUT_WR 4026 * Disables further send operations, and initiates 4027 * the SCTP shutdown sequence. 4028 * SHUT_RDWR 4029 * Disables further send and receive operations 4030 * and initiates the SCTP shutdown sequence. 4031 */ 4032 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 4033 { 4034 struct net *net = sock_net(sk); 4035 struct sctp_endpoint *ep; 4036 struct sctp_association *asoc; 4037 4038 if (!sctp_style(sk, TCP)) 4039 return; 4040 4041 if (how & SEND_SHUTDOWN) { 4042 ep = sctp_sk(sk)->ep; 4043 if (!list_empty(&ep->asocs)) { 4044 asoc = list_entry(ep->asocs.next, 4045 struct sctp_association, asocs); 4046 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4047 } 4048 } 4049 } 4050 4051 /* 7.2.1 Association Status (SCTP_STATUS) 4052 4053 * Applications can retrieve current status information about an 4054 * association, including association state, peer receiver window size, 4055 * number of unacked data chunks, and number of data chunks pending 4056 * receipt. This information is read-only. 4057 */ 4058 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4059 char __user *optval, 4060 int __user *optlen) 4061 { 4062 struct sctp_status status; 4063 struct sctp_association *asoc = NULL; 4064 struct sctp_transport *transport; 4065 sctp_assoc_t associd; 4066 int retval = 0; 4067 4068 if (len < sizeof(status)) { 4069 retval = -EINVAL; 4070 goto out; 4071 } 4072 4073 len = sizeof(status); 4074 if (copy_from_user(&status, optval, len)) { 4075 retval = -EFAULT; 4076 goto out; 4077 } 4078 4079 associd = status.sstat_assoc_id; 4080 asoc = sctp_id2assoc(sk, associd); 4081 if (!asoc) { 4082 retval = -EINVAL; 4083 goto out; 4084 } 4085 4086 transport = asoc->peer.primary_path; 4087 4088 status.sstat_assoc_id = sctp_assoc2id(asoc); 4089 status.sstat_state = asoc->state; 4090 status.sstat_rwnd = asoc->peer.rwnd; 4091 status.sstat_unackdata = asoc->unack_data; 4092 4093 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4094 status.sstat_instrms = asoc->c.sinit_max_instreams; 4095 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4096 status.sstat_fragmentation_point = asoc->frag_point; 4097 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4098 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4099 transport->af_specific->sockaddr_len); 4100 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4101 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4102 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4103 status.sstat_primary.spinfo_state = transport->state; 4104 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4105 status.sstat_primary.spinfo_srtt = transport->srtt; 4106 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4107 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4108 4109 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4110 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4111 4112 if (put_user(len, optlen)) { 4113 retval = -EFAULT; 4114 goto out; 4115 } 4116 4117 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 4118 len, status.sstat_state, status.sstat_rwnd, 4119 status.sstat_assoc_id); 4120 4121 if (copy_to_user(optval, &status, len)) { 4122 retval = -EFAULT; 4123 goto out; 4124 } 4125 4126 out: 4127 return retval; 4128 } 4129 4130 4131 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4132 * 4133 * Applications can retrieve information about a specific peer address 4134 * of an association, including its reachability state, congestion 4135 * window, and retransmission timer values. This information is 4136 * read-only. 4137 */ 4138 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4139 char __user *optval, 4140 int __user *optlen) 4141 { 4142 struct sctp_paddrinfo pinfo; 4143 struct sctp_transport *transport; 4144 int retval = 0; 4145 4146 if (len < sizeof(pinfo)) { 4147 retval = -EINVAL; 4148 goto out; 4149 } 4150 4151 len = sizeof(pinfo); 4152 if (copy_from_user(&pinfo, optval, len)) { 4153 retval = -EFAULT; 4154 goto out; 4155 } 4156 4157 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4158 pinfo.spinfo_assoc_id); 4159 if (!transport) 4160 return -EINVAL; 4161 4162 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4163 pinfo.spinfo_state = transport->state; 4164 pinfo.spinfo_cwnd = transport->cwnd; 4165 pinfo.spinfo_srtt = transport->srtt; 4166 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4167 pinfo.spinfo_mtu = transport->pathmtu; 4168 4169 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4170 pinfo.spinfo_state = SCTP_ACTIVE; 4171 4172 if (put_user(len, optlen)) { 4173 retval = -EFAULT; 4174 goto out; 4175 } 4176 4177 if (copy_to_user(optval, &pinfo, len)) { 4178 retval = -EFAULT; 4179 goto out; 4180 } 4181 4182 out: 4183 return retval; 4184 } 4185 4186 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4187 * 4188 * This option is a on/off flag. If enabled no SCTP message 4189 * fragmentation will be performed. Instead if a message being sent 4190 * exceeds the current PMTU size, the message will NOT be sent and 4191 * instead a error will be indicated to the user. 4192 */ 4193 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4194 char __user *optval, int __user *optlen) 4195 { 4196 int val; 4197 4198 if (len < sizeof(int)) 4199 return -EINVAL; 4200 4201 len = sizeof(int); 4202 val = (sctp_sk(sk)->disable_fragments == 1); 4203 if (put_user(len, optlen)) 4204 return -EFAULT; 4205 if (copy_to_user(optval, &val, len)) 4206 return -EFAULT; 4207 return 0; 4208 } 4209 4210 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4211 * 4212 * This socket option is used to specify various notifications and 4213 * ancillary data the user wishes to receive. 4214 */ 4215 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4216 int __user *optlen) 4217 { 4218 if (len <= 0) 4219 return -EINVAL; 4220 if (len > sizeof(struct sctp_event_subscribe)) 4221 len = sizeof(struct sctp_event_subscribe); 4222 if (put_user(len, optlen)) 4223 return -EFAULT; 4224 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4225 return -EFAULT; 4226 return 0; 4227 } 4228 4229 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4230 * 4231 * This socket option is applicable to the UDP-style socket only. When 4232 * set it will cause associations that are idle for more than the 4233 * specified number of seconds to automatically close. An association 4234 * being idle is defined an association that has NOT sent or received 4235 * user data. The special value of '0' indicates that no automatic 4236 * close of any associations should be performed. The option expects an 4237 * integer defining the number of seconds of idle time before an 4238 * association is closed. 4239 */ 4240 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4241 { 4242 /* Applicable to UDP-style socket only */ 4243 if (sctp_style(sk, TCP)) 4244 return -EOPNOTSUPP; 4245 if (len < sizeof(int)) 4246 return -EINVAL; 4247 len = sizeof(int); 4248 if (put_user(len, optlen)) 4249 return -EFAULT; 4250 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4251 return -EFAULT; 4252 return 0; 4253 } 4254 4255 /* Helper routine to branch off an association to a new socket. */ 4256 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4257 { 4258 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4259 struct socket *sock; 4260 struct sctp_af *af; 4261 int err = 0; 4262 4263 if (!asoc) 4264 return -EINVAL; 4265 4266 /* An association cannot be branched off from an already peeled-off 4267 * socket, nor is this supported for tcp style sockets. 4268 */ 4269 if (!sctp_style(sk, UDP)) 4270 return -EINVAL; 4271 4272 /* Create a new socket. */ 4273 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4274 if (err < 0) 4275 return err; 4276 4277 sctp_copy_sock(sock->sk, sk, asoc); 4278 4279 /* Make peeled-off sockets more like 1-1 accepted sockets. 4280 * Set the daddr and initialize id to something more random 4281 */ 4282 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4283 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4284 4285 /* Populate the fields of the newsk from the oldsk and migrate the 4286 * asoc to the newsk. 4287 */ 4288 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4289 4290 *sockp = sock; 4291 4292 return err; 4293 } 4294 EXPORT_SYMBOL(sctp_do_peeloff); 4295 4296 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4297 { 4298 sctp_peeloff_arg_t peeloff; 4299 struct socket *newsock; 4300 struct file *newfile; 4301 int retval = 0; 4302 4303 if (len < sizeof(sctp_peeloff_arg_t)) 4304 return -EINVAL; 4305 len = sizeof(sctp_peeloff_arg_t); 4306 if (copy_from_user(&peeloff, optval, len)) 4307 return -EFAULT; 4308 4309 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4310 if (retval < 0) 4311 goto out; 4312 4313 /* Map the socket to an unused fd that can be returned to the user. */ 4314 retval = get_unused_fd(); 4315 if (retval < 0) { 4316 sock_release(newsock); 4317 goto out; 4318 } 4319 4320 newfile = sock_alloc_file(newsock, 0, NULL); 4321 if (unlikely(IS_ERR(newfile))) { 4322 put_unused_fd(retval); 4323 sock_release(newsock); 4324 return PTR_ERR(newfile); 4325 } 4326 4327 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n", 4328 __func__, sk, newsock->sk, retval); 4329 4330 /* Return the fd mapped to the new socket. */ 4331 if (put_user(len, optlen)) { 4332 fput(newfile); 4333 put_unused_fd(retval); 4334 return -EFAULT; 4335 } 4336 peeloff.sd = retval; 4337 if (copy_to_user(optval, &peeloff, len)) { 4338 fput(newfile); 4339 put_unused_fd(retval); 4340 return -EFAULT; 4341 } 4342 fd_install(retval, newfile); 4343 out: 4344 return retval; 4345 } 4346 4347 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4348 * 4349 * Applications can enable or disable heartbeats for any peer address of 4350 * an association, modify an address's heartbeat interval, force a 4351 * heartbeat to be sent immediately, and adjust the address's maximum 4352 * number of retransmissions sent before an address is considered 4353 * unreachable. The following structure is used to access and modify an 4354 * address's parameters: 4355 * 4356 * struct sctp_paddrparams { 4357 * sctp_assoc_t spp_assoc_id; 4358 * struct sockaddr_storage spp_address; 4359 * uint32_t spp_hbinterval; 4360 * uint16_t spp_pathmaxrxt; 4361 * uint32_t spp_pathmtu; 4362 * uint32_t spp_sackdelay; 4363 * uint32_t spp_flags; 4364 * }; 4365 * 4366 * spp_assoc_id - (one-to-many style socket) This is filled in the 4367 * application, and identifies the association for 4368 * this query. 4369 * spp_address - This specifies which address is of interest. 4370 * spp_hbinterval - This contains the value of the heartbeat interval, 4371 * in milliseconds. If a value of zero 4372 * is present in this field then no changes are to 4373 * be made to this parameter. 4374 * spp_pathmaxrxt - This contains the maximum number of 4375 * retransmissions before this address shall be 4376 * considered unreachable. If a value of zero 4377 * is present in this field then no changes are to 4378 * be made to this parameter. 4379 * spp_pathmtu - When Path MTU discovery is disabled the value 4380 * specified here will be the "fixed" path mtu. 4381 * Note that if the spp_address field is empty 4382 * then all associations on this address will 4383 * have this fixed path mtu set upon them. 4384 * 4385 * spp_sackdelay - When delayed sack is enabled, this value specifies 4386 * the number of milliseconds that sacks will be delayed 4387 * for. This value will apply to all addresses of an 4388 * association if the spp_address field is empty. Note 4389 * also, that if delayed sack is enabled and this 4390 * value is set to 0, no change is made to the last 4391 * recorded delayed sack timer value. 4392 * 4393 * spp_flags - These flags are used to control various features 4394 * on an association. The flag field may contain 4395 * zero or more of the following options. 4396 * 4397 * SPP_HB_ENABLE - Enable heartbeats on the 4398 * specified address. Note that if the address 4399 * field is empty all addresses for the association 4400 * have heartbeats enabled upon them. 4401 * 4402 * SPP_HB_DISABLE - Disable heartbeats on the 4403 * speicifed address. Note that if the address 4404 * field is empty all addresses for the association 4405 * will have their heartbeats disabled. Note also 4406 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4407 * mutually exclusive, only one of these two should 4408 * be specified. Enabling both fields will have 4409 * undetermined results. 4410 * 4411 * SPP_HB_DEMAND - Request a user initiated heartbeat 4412 * to be made immediately. 4413 * 4414 * SPP_PMTUD_ENABLE - This field will enable PMTU 4415 * discovery upon the specified address. Note that 4416 * if the address feild is empty then all addresses 4417 * on the association are effected. 4418 * 4419 * SPP_PMTUD_DISABLE - This field will disable PMTU 4420 * discovery upon the specified address. Note that 4421 * if the address feild is empty then all addresses 4422 * on the association are effected. Not also that 4423 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4424 * exclusive. Enabling both will have undetermined 4425 * results. 4426 * 4427 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4428 * on delayed sack. The time specified in spp_sackdelay 4429 * is used to specify the sack delay for this address. Note 4430 * that if spp_address is empty then all addresses will 4431 * enable delayed sack and take on the sack delay 4432 * value specified in spp_sackdelay. 4433 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4434 * off delayed sack. If the spp_address field is blank then 4435 * delayed sack is disabled for the entire association. Note 4436 * also that this field is mutually exclusive to 4437 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4438 * results. 4439 */ 4440 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4441 char __user *optval, int __user *optlen) 4442 { 4443 struct sctp_paddrparams params; 4444 struct sctp_transport *trans = NULL; 4445 struct sctp_association *asoc = NULL; 4446 struct sctp_sock *sp = sctp_sk(sk); 4447 4448 if (len < sizeof(struct sctp_paddrparams)) 4449 return -EINVAL; 4450 len = sizeof(struct sctp_paddrparams); 4451 if (copy_from_user(¶ms, optval, len)) 4452 return -EFAULT; 4453 4454 /* If an address other than INADDR_ANY is specified, and 4455 * no transport is found, then the request is invalid. 4456 */ 4457 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4458 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4459 params.spp_assoc_id); 4460 if (!trans) { 4461 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4462 return -EINVAL; 4463 } 4464 } 4465 4466 /* Get association, if assoc_id != 0 and the socket is a one 4467 * to many style socket, and an association was not found, then 4468 * the id was invalid. 4469 */ 4470 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4471 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4472 SCTP_DEBUG_PRINTK("Failed no association\n"); 4473 return -EINVAL; 4474 } 4475 4476 if (trans) { 4477 /* Fetch transport values. */ 4478 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4479 params.spp_pathmtu = trans->pathmtu; 4480 params.spp_pathmaxrxt = trans->pathmaxrxt; 4481 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4482 4483 /*draft-11 doesn't say what to return in spp_flags*/ 4484 params.spp_flags = trans->param_flags; 4485 } else if (asoc) { 4486 /* Fetch association values. */ 4487 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4488 params.spp_pathmtu = asoc->pathmtu; 4489 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4490 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4491 4492 /*draft-11 doesn't say what to return in spp_flags*/ 4493 params.spp_flags = asoc->param_flags; 4494 } else { 4495 /* Fetch socket values. */ 4496 params.spp_hbinterval = sp->hbinterval; 4497 params.spp_pathmtu = sp->pathmtu; 4498 params.spp_sackdelay = sp->sackdelay; 4499 params.spp_pathmaxrxt = sp->pathmaxrxt; 4500 4501 /*draft-11 doesn't say what to return in spp_flags*/ 4502 params.spp_flags = sp->param_flags; 4503 } 4504 4505 if (copy_to_user(optval, ¶ms, len)) 4506 return -EFAULT; 4507 4508 if (put_user(len, optlen)) 4509 return -EFAULT; 4510 4511 return 0; 4512 } 4513 4514 /* 4515 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4516 * 4517 * This option will effect the way delayed acks are performed. This 4518 * option allows you to get or set the delayed ack time, in 4519 * milliseconds. It also allows changing the delayed ack frequency. 4520 * Changing the frequency to 1 disables the delayed sack algorithm. If 4521 * the assoc_id is 0, then this sets or gets the endpoints default 4522 * values. If the assoc_id field is non-zero, then the set or get 4523 * effects the specified association for the one to many model (the 4524 * assoc_id field is ignored by the one to one model). Note that if 4525 * sack_delay or sack_freq are 0 when setting this option, then the 4526 * current values will remain unchanged. 4527 * 4528 * struct sctp_sack_info { 4529 * sctp_assoc_t sack_assoc_id; 4530 * uint32_t sack_delay; 4531 * uint32_t sack_freq; 4532 * }; 4533 * 4534 * sack_assoc_id - This parameter, indicates which association the user 4535 * is performing an action upon. Note that if this field's value is 4536 * zero then the endpoints default value is changed (effecting future 4537 * associations only). 4538 * 4539 * sack_delay - This parameter contains the number of milliseconds that 4540 * the user is requesting the delayed ACK timer be set to. Note that 4541 * this value is defined in the standard to be between 200 and 500 4542 * milliseconds. 4543 * 4544 * sack_freq - This parameter contains the number of packets that must 4545 * be received before a sack is sent without waiting for the delay 4546 * timer to expire. The default value for this is 2, setting this 4547 * value to 1 will disable the delayed sack algorithm. 4548 */ 4549 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4550 char __user *optval, 4551 int __user *optlen) 4552 { 4553 struct sctp_sack_info params; 4554 struct sctp_association *asoc = NULL; 4555 struct sctp_sock *sp = sctp_sk(sk); 4556 4557 if (len >= sizeof(struct sctp_sack_info)) { 4558 len = sizeof(struct sctp_sack_info); 4559 4560 if (copy_from_user(¶ms, optval, len)) 4561 return -EFAULT; 4562 } else if (len == sizeof(struct sctp_assoc_value)) { 4563 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4564 pr_warn("Use struct sctp_sack_info instead\n"); 4565 if (copy_from_user(¶ms, optval, len)) 4566 return -EFAULT; 4567 } else 4568 return - EINVAL; 4569 4570 /* Get association, if sack_assoc_id != 0 and the socket is a one 4571 * to many style socket, and an association was not found, then 4572 * the id was invalid. 4573 */ 4574 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4575 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4576 return -EINVAL; 4577 4578 if (asoc) { 4579 /* Fetch association values. */ 4580 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4581 params.sack_delay = jiffies_to_msecs( 4582 asoc->sackdelay); 4583 params.sack_freq = asoc->sackfreq; 4584 4585 } else { 4586 params.sack_delay = 0; 4587 params.sack_freq = 1; 4588 } 4589 } else { 4590 /* Fetch socket values. */ 4591 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4592 params.sack_delay = sp->sackdelay; 4593 params.sack_freq = sp->sackfreq; 4594 } else { 4595 params.sack_delay = 0; 4596 params.sack_freq = 1; 4597 } 4598 } 4599 4600 if (copy_to_user(optval, ¶ms, len)) 4601 return -EFAULT; 4602 4603 if (put_user(len, optlen)) 4604 return -EFAULT; 4605 4606 return 0; 4607 } 4608 4609 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4610 * 4611 * Applications can specify protocol parameters for the default association 4612 * initialization. The option name argument to setsockopt() and getsockopt() 4613 * is SCTP_INITMSG. 4614 * 4615 * Setting initialization parameters is effective only on an unconnected 4616 * socket (for UDP-style sockets only future associations are effected 4617 * by the change). With TCP-style sockets, this option is inherited by 4618 * sockets derived from a listener socket. 4619 */ 4620 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4621 { 4622 if (len < sizeof(struct sctp_initmsg)) 4623 return -EINVAL; 4624 len = sizeof(struct sctp_initmsg); 4625 if (put_user(len, optlen)) 4626 return -EFAULT; 4627 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4628 return -EFAULT; 4629 return 0; 4630 } 4631 4632 4633 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4634 char __user *optval, int __user *optlen) 4635 { 4636 struct sctp_association *asoc; 4637 int cnt = 0; 4638 struct sctp_getaddrs getaddrs; 4639 struct sctp_transport *from; 4640 void __user *to; 4641 union sctp_addr temp; 4642 struct sctp_sock *sp = sctp_sk(sk); 4643 int addrlen; 4644 size_t space_left; 4645 int bytes_copied; 4646 4647 if (len < sizeof(struct sctp_getaddrs)) 4648 return -EINVAL; 4649 4650 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4651 return -EFAULT; 4652 4653 /* For UDP-style sockets, id specifies the association to query. */ 4654 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4655 if (!asoc) 4656 return -EINVAL; 4657 4658 to = optval + offsetof(struct sctp_getaddrs,addrs); 4659 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4660 4661 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4662 transports) { 4663 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4664 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4665 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4666 if (space_left < addrlen) 4667 return -ENOMEM; 4668 if (copy_to_user(to, &temp, addrlen)) 4669 return -EFAULT; 4670 to += addrlen; 4671 cnt++; 4672 space_left -= addrlen; 4673 } 4674 4675 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4676 return -EFAULT; 4677 bytes_copied = ((char __user *)to) - optval; 4678 if (put_user(bytes_copied, optlen)) 4679 return -EFAULT; 4680 4681 return 0; 4682 } 4683 4684 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4685 size_t space_left, int *bytes_copied) 4686 { 4687 struct sctp_sockaddr_entry *addr; 4688 union sctp_addr temp; 4689 int cnt = 0; 4690 int addrlen; 4691 struct net *net = sock_net(sk); 4692 4693 rcu_read_lock(); 4694 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4695 if (!addr->valid) 4696 continue; 4697 4698 if ((PF_INET == sk->sk_family) && 4699 (AF_INET6 == addr->a.sa.sa_family)) 4700 continue; 4701 if ((PF_INET6 == sk->sk_family) && 4702 inet_v6_ipv6only(sk) && 4703 (AF_INET == addr->a.sa.sa_family)) 4704 continue; 4705 memcpy(&temp, &addr->a, sizeof(temp)); 4706 if (!temp.v4.sin_port) 4707 temp.v4.sin_port = htons(port); 4708 4709 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4710 &temp); 4711 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4712 if (space_left < addrlen) { 4713 cnt = -ENOMEM; 4714 break; 4715 } 4716 memcpy(to, &temp, addrlen); 4717 4718 to += addrlen; 4719 cnt ++; 4720 space_left -= addrlen; 4721 *bytes_copied += addrlen; 4722 } 4723 rcu_read_unlock(); 4724 4725 return cnt; 4726 } 4727 4728 4729 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4730 char __user *optval, int __user *optlen) 4731 { 4732 struct sctp_bind_addr *bp; 4733 struct sctp_association *asoc; 4734 int cnt = 0; 4735 struct sctp_getaddrs getaddrs; 4736 struct sctp_sockaddr_entry *addr; 4737 void __user *to; 4738 union sctp_addr temp; 4739 struct sctp_sock *sp = sctp_sk(sk); 4740 int addrlen; 4741 int err = 0; 4742 size_t space_left; 4743 int bytes_copied = 0; 4744 void *addrs; 4745 void *buf; 4746 4747 if (len < sizeof(struct sctp_getaddrs)) 4748 return -EINVAL; 4749 4750 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4751 return -EFAULT; 4752 4753 /* 4754 * For UDP-style sockets, id specifies the association to query. 4755 * If the id field is set to the value '0' then the locally bound 4756 * addresses are returned without regard to any particular 4757 * association. 4758 */ 4759 if (0 == getaddrs.assoc_id) { 4760 bp = &sctp_sk(sk)->ep->base.bind_addr; 4761 } else { 4762 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4763 if (!asoc) 4764 return -EINVAL; 4765 bp = &asoc->base.bind_addr; 4766 } 4767 4768 to = optval + offsetof(struct sctp_getaddrs,addrs); 4769 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4770 4771 addrs = kmalloc(space_left, GFP_KERNEL); 4772 if (!addrs) 4773 return -ENOMEM; 4774 4775 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4776 * addresses from the global local address list. 4777 */ 4778 if (sctp_list_single_entry(&bp->address_list)) { 4779 addr = list_entry(bp->address_list.next, 4780 struct sctp_sockaddr_entry, list); 4781 if (sctp_is_any(sk, &addr->a)) { 4782 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4783 space_left, &bytes_copied); 4784 if (cnt < 0) { 4785 err = cnt; 4786 goto out; 4787 } 4788 goto copy_getaddrs; 4789 } 4790 } 4791 4792 buf = addrs; 4793 /* Protection on the bound address list is not needed since 4794 * in the socket option context we hold a socket lock and 4795 * thus the bound address list can't change. 4796 */ 4797 list_for_each_entry(addr, &bp->address_list, list) { 4798 memcpy(&temp, &addr->a, sizeof(temp)); 4799 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4800 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4801 if (space_left < addrlen) { 4802 err = -ENOMEM; /*fixme: right error?*/ 4803 goto out; 4804 } 4805 memcpy(buf, &temp, addrlen); 4806 buf += addrlen; 4807 bytes_copied += addrlen; 4808 cnt ++; 4809 space_left -= addrlen; 4810 } 4811 4812 copy_getaddrs: 4813 if (copy_to_user(to, addrs, bytes_copied)) { 4814 err = -EFAULT; 4815 goto out; 4816 } 4817 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4818 err = -EFAULT; 4819 goto out; 4820 } 4821 if (put_user(bytes_copied, optlen)) 4822 err = -EFAULT; 4823 out: 4824 kfree(addrs); 4825 return err; 4826 } 4827 4828 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4829 * 4830 * Requests that the local SCTP stack use the enclosed peer address as 4831 * the association primary. The enclosed address must be one of the 4832 * association peer's addresses. 4833 */ 4834 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4835 char __user *optval, int __user *optlen) 4836 { 4837 struct sctp_prim prim; 4838 struct sctp_association *asoc; 4839 struct sctp_sock *sp = sctp_sk(sk); 4840 4841 if (len < sizeof(struct sctp_prim)) 4842 return -EINVAL; 4843 4844 len = sizeof(struct sctp_prim); 4845 4846 if (copy_from_user(&prim, optval, len)) 4847 return -EFAULT; 4848 4849 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4850 if (!asoc) 4851 return -EINVAL; 4852 4853 if (!asoc->peer.primary_path) 4854 return -ENOTCONN; 4855 4856 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4857 asoc->peer.primary_path->af_specific->sockaddr_len); 4858 4859 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4860 (union sctp_addr *)&prim.ssp_addr); 4861 4862 if (put_user(len, optlen)) 4863 return -EFAULT; 4864 if (copy_to_user(optval, &prim, len)) 4865 return -EFAULT; 4866 4867 return 0; 4868 } 4869 4870 /* 4871 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4872 * 4873 * Requests that the local endpoint set the specified Adaptation Layer 4874 * Indication parameter for all future INIT and INIT-ACK exchanges. 4875 */ 4876 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4877 char __user *optval, int __user *optlen) 4878 { 4879 struct sctp_setadaptation adaptation; 4880 4881 if (len < sizeof(struct sctp_setadaptation)) 4882 return -EINVAL; 4883 4884 len = sizeof(struct sctp_setadaptation); 4885 4886 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4887 4888 if (put_user(len, optlen)) 4889 return -EFAULT; 4890 if (copy_to_user(optval, &adaptation, len)) 4891 return -EFAULT; 4892 4893 return 0; 4894 } 4895 4896 /* 4897 * 4898 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4899 * 4900 * Applications that wish to use the sendto() system call may wish to 4901 * specify a default set of parameters that would normally be supplied 4902 * through the inclusion of ancillary data. This socket option allows 4903 * such an application to set the default sctp_sndrcvinfo structure. 4904 4905 4906 * The application that wishes to use this socket option simply passes 4907 * in to this call the sctp_sndrcvinfo structure defined in Section 4908 * 5.2.2) The input parameters accepted by this call include 4909 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4910 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4911 * to this call if the caller is using the UDP model. 4912 * 4913 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4914 */ 4915 static int sctp_getsockopt_default_send_param(struct sock *sk, 4916 int len, char __user *optval, 4917 int __user *optlen) 4918 { 4919 struct sctp_sndrcvinfo info; 4920 struct sctp_association *asoc; 4921 struct sctp_sock *sp = sctp_sk(sk); 4922 4923 if (len < sizeof(struct sctp_sndrcvinfo)) 4924 return -EINVAL; 4925 4926 len = sizeof(struct sctp_sndrcvinfo); 4927 4928 if (copy_from_user(&info, optval, len)) 4929 return -EFAULT; 4930 4931 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4932 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4933 return -EINVAL; 4934 4935 if (asoc) { 4936 info.sinfo_stream = asoc->default_stream; 4937 info.sinfo_flags = asoc->default_flags; 4938 info.sinfo_ppid = asoc->default_ppid; 4939 info.sinfo_context = asoc->default_context; 4940 info.sinfo_timetolive = asoc->default_timetolive; 4941 } else { 4942 info.sinfo_stream = sp->default_stream; 4943 info.sinfo_flags = sp->default_flags; 4944 info.sinfo_ppid = sp->default_ppid; 4945 info.sinfo_context = sp->default_context; 4946 info.sinfo_timetolive = sp->default_timetolive; 4947 } 4948 4949 if (put_user(len, optlen)) 4950 return -EFAULT; 4951 if (copy_to_user(optval, &info, len)) 4952 return -EFAULT; 4953 4954 return 0; 4955 } 4956 4957 /* 4958 * 4959 * 7.1.5 SCTP_NODELAY 4960 * 4961 * Turn on/off any Nagle-like algorithm. This means that packets are 4962 * generally sent as soon as possible and no unnecessary delays are 4963 * introduced, at the cost of more packets in the network. Expects an 4964 * integer boolean flag. 4965 */ 4966 4967 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4968 char __user *optval, int __user *optlen) 4969 { 4970 int val; 4971 4972 if (len < sizeof(int)) 4973 return -EINVAL; 4974 4975 len = sizeof(int); 4976 val = (sctp_sk(sk)->nodelay == 1); 4977 if (put_user(len, optlen)) 4978 return -EFAULT; 4979 if (copy_to_user(optval, &val, len)) 4980 return -EFAULT; 4981 return 0; 4982 } 4983 4984 /* 4985 * 4986 * 7.1.1 SCTP_RTOINFO 4987 * 4988 * The protocol parameters used to initialize and bound retransmission 4989 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4990 * and modify these parameters. 4991 * All parameters are time values, in milliseconds. A value of 0, when 4992 * modifying the parameters, indicates that the current value should not 4993 * be changed. 4994 * 4995 */ 4996 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4997 char __user *optval, 4998 int __user *optlen) { 4999 struct sctp_rtoinfo rtoinfo; 5000 struct sctp_association *asoc; 5001 5002 if (len < sizeof (struct sctp_rtoinfo)) 5003 return -EINVAL; 5004 5005 len = sizeof(struct sctp_rtoinfo); 5006 5007 if (copy_from_user(&rtoinfo, optval, len)) 5008 return -EFAULT; 5009 5010 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5011 5012 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5013 return -EINVAL; 5014 5015 /* Values corresponding to the specific association. */ 5016 if (asoc) { 5017 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5018 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5019 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5020 } else { 5021 /* Values corresponding to the endpoint. */ 5022 struct sctp_sock *sp = sctp_sk(sk); 5023 5024 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5025 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5026 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5027 } 5028 5029 if (put_user(len, optlen)) 5030 return -EFAULT; 5031 5032 if (copy_to_user(optval, &rtoinfo, len)) 5033 return -EFAULT; 5034 5035 return 0; 5036 } 5037 5038 /* 5039 * 5040 * 7.1.2 SCTP_ASSOCINFO 5041 * 5042 * This option is used to tune the maximum retransmission attempts 5043 * of the association. 5044 * Returns an error if the new association retransmission value is 5045 * greater than the sum of the retransmission value of the peer. 5046 * See [SCTP] for more information. 5047 * 5048 */ 5049 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5050 char __user *optval, 5051 int __user *optlen) 5052 { 5053 5054 struct sctp_assocparams assocparams; 5055 struct sctp_association *asoc; 5056 struct list_head *pos; 5057 int cnt = 0; 5058 5059 if (len < sizeof (struct sctp_assocparams)) 5060 return -EINVAL; 5061 5062 len = sizeof(struct sctp_assocparams); 5063 5064 if (copy_from_user(&assocparams, optval, len)) 5065 return -EFAULT; 5066 5067 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5068 5069 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5070 return -EINVAL; 5071 5072 /* Values correspoinding to the specific association */ 5073 if (asoc) { 5074 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5075 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5076 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5077 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5078 * 1000) + 5079 (asoc->cookie_life.tv_usec 5080 / 1000); 5081 5082 list_for_each(pos, &asoc->peer.transport_addr_list) { 5083 cnt ++; 5084 } 5085 5086 assocparams.sasoc_number_peer_destinations = cnt; 5087 } else { 5088 /* Values corresponding to the endpoint */ 5089 struct sctp_sock *sp = sctp_sk(sk); 5090 5091 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5092 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5093 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5094 assocparams.sasoc_cookie_life = 5095 sp->assocparams.sasoc_cookie_life; 5096 assocparams.sasoc_number_peer_destinations = 5097 sp->assocparams. 5098 sasoc_number_peer_destinations; 5099 } 5100 5101 if (put_user(len, optlen)) 5102 return -EFAULT; 5103 5104 if (copy_to_user(optval, &assocparams, len)) 5105 return -EFAULT; 5106 5107 return 0; 5108 } 5109 5110 /* 5111 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5112 * 5113 * This socket option is a boolean flag which turns on or off mapped V4 5114 * addresses. If this option is turned on and the socket is type 5115 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5116 * If this option is turned off, then no mapping will be done of V4 5117 * addresses and a user will receive both PF_INET6 and PF_INET type 5118 * addresses on the socket. 5119 */ 5120 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5121 char __user *optval, int __user *optlen) 5122 { 5123 int val; 5124 struct sctp_sock *sp = sctp_sk(sk); 5125 5126 if (len < sizeof(int)) 5127 return -EINVAL; 5128 5129 len = sizeof(int); 5130 val = sp->v4mapped; 5131 if (put_user(len, optlen)) 5132 return -EFAULT; 5133 if (copy_to_user(optval, &val, len)) 5134 return -EFAULT; 5135 5136 return 0; 5137 } 5138 5139 /* 5140 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5141 * (chapter and verse is quoted at sctp_setsockopt_context()) 5142 */ 5143 static int sctp_getsockopt_context(struct sock *sk, int len, 5144 char __user *optval, int __user *optlen) 5145 { 5146 struct sctp_assoc_value params; 5147 struct sctp_sock *sp; 5148 struct sctp_association *asoc; 5149 5150 if (len < sizeof(struct sctp_assoc_value)) 5151 return -EINVAL; 5152 5153 len = sizeof(struct sctp_assoc_value); 5154 5155 if (copy_from_user(¶ms, optval, len)) 5156 return -EFAULT; 5157 5158 sp = sctp_sk(sk); 5159 5160 if (params.assoc_id != 0) { 5161 asoc = sctp_id2assoc(sk, params.assoc_id); 5162 if (!asoc) 5163 return -EINVAL; 5164 params.assoc_value = asoc->default_rcv_context; 5165 } else { 5166 params.assoc_value = sp->default_rcv_context; 5167 } 5168 5169 if (put_user(len, optlen)) 5170 return -EFAULT; 5171 if (copy_to_user(optval, ¶ms, len)) 5172 return -EFAULT; 5173 5174 return 0; 5175 } 5176 5177 /* 5178 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5179 * This option will get or set the maximum size to put in any outgoing 5180 * SCTP DATA chunk. If a message is larger than this size it will be 5181 * fragmented by SCTP into the specified size. Note that the underlying 5182 * SCTP implementation may fragment into smaller sized chunks when the 5183 * PMTU of the underlying association is smaller than the value set by 5184 * the user. The default value for this option is '0' which indicates 5185 * the user is NOT limiting fragmentation and only the PMTU will effect 5186 * SCTP's choice of DATA chunk size. Note also that values set larger 5187 * than the maximum size of an IP datagram will effectively let SCTP 5188 * control fragmentation (i.e. the same as setting this option to 0). 5189 * 5190 * The following structure is used to access and modify this parameter: 5191 * 5192 * struct sctp_assoc_value { 5193 * sctp_assoc_t assoc_id; 5194 * uint32_t assoc_value; 5195 * }; 5196 * 5197 * assoc_id: This parameter is ignored for one-to-one style sockets. 5198 * For one-to-many style sockets this parameter indicates which 5199 * association the user is performing an action upon. Note that if 5200 * this field's value is zero then the endpoints default value is 5201 * changed (effecting future associations only). 5202 * assoc_value: This parameter specifies the maximum size in bytes. 5203 */ 5204 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5205 char __user *optval, int __user *optlen) 5206 { 5207 struct sctp_assoc_value params; 5208 struct sctp_association *asoc; 5209 5210 if (len == sizeof(int)) { 5211 pr_warn("Use of int in maxseg socket option deprecated\n"); 5212 pr_warn("Use struct sctp_assoc_value instead\n"); 5213 params.assoc_id = 0; 5214 } else if (len >= sizeof(struct sctp_assoc_value)) { 5215 len = sizeof(struct sctp_assoc_value); 5216 if (copy_from_user(¶ms, optval, sizeof(params))) 5217 return -EFAULT; 5218 } else 5219 return -EINVAL; 5220 5221 asoc = sctp_id2assoc(sk, params.assoc_id); 5222 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5223 return -EINVAL; 5224 5225 if (asoc) 5226 params.assoc_value = asoc->frag_point; 5227 else 5228 params.assoc_value = sctp_sk(sk)->user_frag; 5229 5230 if (put_user(len, optlen)) 5231 return -EFAULT; 5232 if (len == sizeof(int)) { 5233 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5234 return -EFAULT; 5235 } else { 5236 if (copy_to_user(optval, ¶ms, len)) 5237 return -EFAULT; 5238 } 5239 5240 return 0; 5241 } 5242 5243 /* 5244 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5245 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5246 */ 5247 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5248 char __user *optval, int __user *optlen) 5249 { 5250 int val; 5251 5252 if (len < sizeof(int)) 5253 return -EINVAL; 5254 5255 len = sizeof(int); 5256 5257 val = sctp_sk(sk)->frag_interleave; 5258 if (put_user(len, optlen)) 5259 return -EFAULT; 5260 if (copy_to_user(optval, &val, len)) 5261 return -EFAULT; 5262 5263 return 0; 5264 } 5265 5266 /* 5267 * 7.1.25. Set or Get the sctp partial delivery point 5268 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5269 */ 5270 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5271 char __user *optval, 5272 int __user *optlen) 5273 { 5274 u32 val; 5275 5276 if (len < sizeof(u32)) 5277 return -EINVAL; 5278 5279 len = sizeof(u32); 5280 5281 val = sctp_sk(sk)->pd_point; 5282 if (put_user(len, optlen)) 5283 return -EFAULT; 5284 if (copy_to_user(optval, &val, len)) 5285 return -EFAULT; 5286 5287 return 0; 5288 } 5289 5290 /* 5291 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5292 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5293 */ 5294 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5295 char __user *optval, 5296 int __user *optlen) 5297 { 5298 struct sctp_assoc_value params; 5299 struct sctp_sock *sp; 5300 struct sctp_association *asoc; 5301 5302 if (len == sizeof(int)) { 5303 pr_warn("Use of int in max_burst socket option deprecated\n"); 5304 pr_warn("Use struct sctp_assoc_value instead\n"); 5305 params.assoc_id = 0; 5306 } else if (len >= sizeof(struct sctp_assoc_value)) { 5307 len = sizeof(struct sctp_assoc_value); 5308 if (copy_from_user(¶ms, optval, len)) 5309 return -EFAULT; 5310 } else 5311 return -EINVAL; 5312 5313 sp = sctp_sk(sk); 5314 5315 if (params.assoc_id != 0) { 5316 asoc = sctp_id2assoc(sk, params.assoc_id); 5317 if (!asoc) 5318 return -EINVAL; 5319 params.assoc_value = asoc->max_burst; 5320 } else 5321 params.assoc_value = sp->max_burst; 5322 5323 if (len == sizeof(int)) { 5324 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5325 return -EFAULT; 5326 } else { 5327 if (copy_to_user(optval, ¶ms, len)) 5328 return -EFAULT; 5329 } 5330 5331 return 0; 5332 5333 } 5334 5335 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5336 char __user *optval, int __user *optlen) 5337 { 5338 struct net *net = sock_net(sk); 5339 struct sctp_hmacalgo __user *p = (void __user *)optval; 5340 struct sctp_hmac_algo_param *hmacs; 5341 __u16 data_len = 0; 5342 u32 num_idents; 5343 5344 if (!net->sctp.auth_enable) 5345 return -EACCES; 5346 5347 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5348 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5349 5350 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5351 return -EINVAL; 5352 5353 len = sizeof(struct sctp_hmacalgo) + data_len; 5354 num_idents = data_len / sizeof(u16); 5355 5356 if (put_user(len, optlen)) 5357 return -EFAULT; 5358 if (put_user(num_idents, &p->shmac_num_idents)) 5359 return -EFAULT; 5360 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5361 return -EFAULT; 5362 return 0; 5363 } 5364 5365 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5366 char __user *optval, int __user *optlen) 5367 { 5368 struct net *net = sock_net(sk); 5369 struct sctp_authkeyid val; 5370 struct sctp_association *asoc; 5371 5372 if (!net->sctp.auth_enable) 5373 return -EACCES; 5374 5375 if (len < sizeof(struct sctp_authkeyid)) 5376 return -EINVAL; 5377 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5378 return -EFAULT; 5379 5380 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5381 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5382 return -EINVAL; 5383 5384 if (asoc) 5385 val.scact_keynumber = asoc->active_key_id; 5386 else 5387 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5388 5389 len = sizeof(struct sctp_authkeyid); 5390 if (put_user(len, optlen)) 5391 return -EFAULT; 5392 if (copy_to_user(optval, &val, len)) 5393 return -EFAULT; 5394 5395 return 0; 5396 } 5397 5398 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5399 char __user *optval, int __user *optlen) 5400 { 5401 struct net *net = sock_net(sk); 5402 struct sctp_authchunks __user *p = (void __user *)optval; 5403 struct sctp_authchunks val; 5404 struct sctp_association *asoc; 5405 struct sctp_chunks_param *ch; 5406 u32 num_chunks = 0; 5407 char __user *to; 5408 5409 if (!net->sctp.auth_enable) 5410 return -EACCES; 5411 5412 if (len < sizeof(struct sctp_authchunks)) 5413 return -EINVAL; 5414 5415 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5416 return -EFAULT; 5417 5418 to = p->gauth_chunks; 5419 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5420 if (!asoc) 5421 return -EINVAL; 5422 5423 ch = asoc->peer.peer_chunks; 5424 if (!ch) 5425 goto num; 5426 5427 /* See if the user provided enough room for all the data */ 5428 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5429 if (len < num_chunks) 5430 return -EINVAL; 5431 5432 if (copy_to_user(to, ch->chunks, num_chunks)) 5433 return -EFAULT; 5434 num: 5435 len = sizeof(struct sctp_authchunks) + num_chunks; 5436 if (put_user(len, optlen)) return -EFAULT; 5437 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5438 return -EFAULT; 5439 return 0; 5440 } 5441 5442 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5443 char __user *optval, int __user *optlen) 5444 { 5445 struct net *net = sock_net(sk); 5446 struct sctp_authchunks __user *p = (void __user *)optval; 5447 struct sctp_authchunks val; 5448 struct sctp_association *asoc; 5449 struct sctp_chunks_param *ch; 5450 u32 num_chunks = 0; 5451 char __user *to; 5452 5453 if (!net->sctp.auth_enable) 5454 return -EACCES; 5455 5456 if (len < sizeof(struct sctp_authchunks)) 5457 return -EINVAL; 5458 5459 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5460 return -EFAULT; 5461 5462 to = p->gauth_chunks; 5463 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5464 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5465 return -EINVAL; 5466 5467 if (asoc) 5468 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5469 else 5470 ch = sctp_sk(sk)->ep->auth_chunk_list; 5471 5472 if (!ch) 5473 goto num; 5474 5475 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5476 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5477 return -EINVAL; 5478 5479 if (copy_to_user(to, ch->chunks, num_chunks)) 5480 return -EFAULT; 5481 num: 5482 len = sizeof(struct sctp_authchunks) + num_chunks; 5483 if (put_user(len, optlen)) 5484 return -EFAULT; 5485 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5486 return -EFAULT; 5487 5488 return 0; 5489 } 5490 5491 /* 5492 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5493 * This option gets the current number of associations that are attached 5494 * to a one-to-many style socket. The option value is an uint32_t. 5495 */ 5496 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5497 char __user *optval, int __user *optlen) 5498 { 5499 struct sctp_sock *sp = sctp_sk(sk); 5500 struct sctp_association *asoc; 5501 u32 val = 0; 5502 5503 if (sctp_style(sk, TCP)) 5504 return -EOPNOTSUPP; 5505 5506 if (len < sizeof(u32)) 5507 return -EINVAL; 5508 5509 len = sizeof(u32); 5510 5511 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5512 val++; 5513 } 5514 5515 if (put_user(len, optlen)) 5516 return -EFAULT; 5517 if (copy_to_user(optval, &val, len)) 5518 return -EFAULT; 5519 5520 return 0; 5521 } 5522 5523 /* 5524 * 8.1.23 SCTP_AUTO_ASCONF 5525 * See the corresponding setsockopt entry as description 5526 */ 5527 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5528 char __user *optval, int __user *optlen) 5529 { 5530 int val = 0; 5531 5532 if (len < sizeof(int)) 5533 return -EINVAL; 5534 5535 len = sizeof(int); 5536 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5537 val = 1; 5538 if (put_user(len, optlen)) 5539 return -EFAULT; 5540 if (copy_to_user(optval, &val, len)) 5541 return -EFAULT; 5542 return 0; 5543 } 5544 5545 /* 5546 * 8.2.6. Get the Current Identifiers of Associations 5547 * (SCTP_GET_ASSOC_ID_LIST) 5548 * 5549 * This option gets the current list of SCTP association identifiers of 5550 * the SCTP associations handled by a one-to-many style socket. 5551 */ 5552 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5553 char __user *optval, int __user *optlen) 5554 { 5555 struct sctp_sock *sp = sctp_sk(sk); 5556 struct sctp_association *asoc; 5557 struct sctp_assoc_ids *ids; 5558 u32 num = 0; 5559 5560 if (sctp_style(sk, TCP)) 5561 return -EOPNOTSUPP; 5562 5563 if (len < sizeof(struct sctp_assoc_ids)) 5564 return -EINVAL; 5565 5566 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5567 num++; 5568 } 5569 5570 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5571 return -EINVAL; 5572 5573 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5574 5575 ids = kmalloc(len, GFP_KERNEL); 5576 if (unlikely(!ids)) 5577 return -ENOMEM; 5578 5579 ids->gaids_number_of_ids = num; 5580 num = 0; 5581 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5582 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5583 } 5584 5585 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5586 kfree(ids); 5587 return -EFAULT; 5588 } 5589 5590 kfree(ids); 5591 return 0; 5592 } 5593 5594 /* 5595 * SCTP_PEER_ADDR_THLDS 5596 * 5597 * This option allows us to fetch the partially failed threshold for one or all 5598 * transports in an association. See Section 6.1 of: 5599 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5600 */ 5601 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5602 char __user *optval, 5603 int len, 5604 int __user *optlen) 5605 { 5606 struct sctp_paddrthlds val; 5607 struct sctp_transport *trans; 5608 struct sctp_association *asoc; 5609 5610 if (len < sizeof(struct sctp_paddrthlds)) 5611 return -EINVAL; 5612 len = sizeof(struct sctp_paddrthlds); 5613 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5614 return -EFAULT; 5615 5616 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5617 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5618 if (!asoc) 5619 return -ENOENT; 5620 5621 val.spt_pathpfthld = asoc->pf_retrans; 5622 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5623 } else { 5624 trans = sctp_addr_id2transport(sk, &val.spt_address, 5625 val.spt_assoc_id); 5626 if (!trans) 5627 return -ENOENT; 5628 5629 val.spt_pathmaxrxt = trans->pathmaxrxt; 5630 val.spt_pathpfthld = trans->pf_retrans; 5631 } 5632 5633 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5634 return -EFAULT; 5635 5636 return 0; 5637 } 5638 5639 /* 5640 * SCTP_GET_ASSOC_STATS 5641 * 5642 * This option retrieves local per endpoint statistics. It is modeled 5643 * after OpenSolaris' implementation 5644 */ 5645 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5646 char __user *optval, 5647 int __user *optlen) 5648 { 5649 struct sctp_assoc_stats sas; 5650 struct sctp_association *asoc = NULL; 5651 5652 /* User must provide at least the assoc id */ 5653 if (len < sizeof(sctp_assoc_t)) 5654 return -EINVAL; 5655 5656 if (copy_from_user(&sas, optval, len)) 5657 return -EFAULT; 5658 5659 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5660 if (!asoc) 5661 return -EINVAL; 5662 5663 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5664 sas.sas_gapcnt = asoc->stats.gapcnt; 5665 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5666 sas.sas_osacks = asoc->stats.osacks; 5667 sas.sas_isacks = asoc->stats.isacks; 5668 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5669 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5670 sas.sas_oodchunks = asoc->stats.oodchunks; 5671 sas.sas_iodchunks = asoc->stats.iodchunks; 5672 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5673 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5674 sas.sas_idupchunks = asoc->stats.idupchunks; 5675 sas.sas_opackets = asoc->stats.opackets; 5676 sas.sas_ipackets = asoc->stats.ipackets; 5677 5678 /* New high max rto observed, will return 0 if not a single 5679 * RTO update took place. obs_rto_ipaddr will be bogus 5680 * in such a case 5681 */ 5682 sas.sas_maxrto = asoc->stats.max_obs_rto; 5683 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5684 sizeof(struct sockaddr_storage)); 5685 5686 /* Mark beginning of a new observation period */ 5687 asoc->stats.max_obs_rto = asoc->rto_min; 5688 5689 /* Allow the struct to grow and fill in as much as possible */ 5690 len = min_t(size_t, len, sizeof(sas)); 5691 5692 if (put_user(len, optlen)) 5693 return -EFAULT; 5694 5695 SCTP_DEBUG_PRINTK("sctp_getsockopt_assoc_stat(%d): %d\n", 5696 len, sas.sas_assoc_id); 5697 5698 if (copy_to_user(optval, &sas, len)) 5699 return -EFAULT; 5700 5701 return 0; 5702 } 5703 5704 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5705 char __user *optval, int __user *optlen) 5706 { 5707 int retval = 0; 5708 int len; 5709 5710 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5711 sk, optname); 5712 5713 /* I can hardly begin to describe how wrong this is. This is 5714 * so broken as to be worse than useless. The API draft 5715 * REALLY is NOT helpful here... I am not convinced that the 5716 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5717 * are at all well-founded. 5718 */ 5719 if (level != SOL_SCTP) { 5720 struct sctp_af *af = sctp_sk(sk)->pf->af; 5721 5722 retval = af->getsockopt(sk, level, optname, optval, optlen); 5723 return retval; 5724 } 5725 5726 if (get_user(len, optlen)) 5727 return -EFAULT; 5728 5729 sctp_lock_sock(sk); 5730 5731 switch (optname) { 5732 case SCTP_STATUS: 5733 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5734 break; 5735 case SCTP_DISABLE_FRAGMENTS: 5736 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5737 optlen); 5738 break; 5739 case SCTP_EVENTS: 5740 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5741 break; 5742 case SCTP_AUTOCLOSE: 5743 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5744 break; 5745 case SCTP_SOCKOPT_PEELOFF: 5746 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5747 break; 5748 case SCTP_PEER_ADDR_PARAMS: 5749 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5750 optlen); 5751 break; 5752 case SCTP_DELAYED_SACK: 5753 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5754 optlen); 5755 break; 5756 case SCTP_INITMSG: 5757 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5758 break; 5759 case SCTP_GET_PEER_ADDRS: 5760 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5761 optlen); 5762 break; 5763 case SCTP_GET_LOCAL_ADDRS: 5764 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5765 optlen); 5766 break; 5767 case SCTP_SOCKOPT_CONNECTX3: 5768 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5769 break; 5770 case SCTP_DEFAULT_SEND_PARAM: 5771 retval = sctp_getsockopt_default_send_param(sk, len, 5772 optval, optlen); 5773 break; 5774 case SCTP_PRIMARY_ADDR: 5775 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5776 break; 5777 case SCTP_NODELAY: 5778 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5779 break; 5780 case SCTP_RTOINFO: 5781 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5782 break; 5783 case SCTP_ASSOCINFO: 5784 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5785 break; 5786 case SCTP_I_WANT_MAPPED_V4_ADDR: 5787 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5788 break; 5789 case SCTP_MAXSEG: 5790 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5791 break; 5792 case SCTP_GET_PEER_ADDR_INFO: 5793 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5794 optlen); 5795 break; 5796 case SCTP_ADAPTATION_LAYER: 5797 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5798 optlen); 5799 break; 5800 case SCTP_CONTEXT: 5801 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5802 break; 5803 case SCTP_FRAGMENT_INTERLEAVE: 5804 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5805 optlen); 5806 break; 5807 case SCTP_PARTIAL_DELIVERY_POINT: 5808 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5809 optlen); 5810 break; 5811 case SCTP_MAX_BURST: 5812 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5813 break; 5814 case SCTP_AUTH_KEY: 5815 case SCTP_AUTH_CHUNK: 5816 case SCTP_AUTH_DELETE_KEY: 5817 retval = -EOPNOTSUPP; 5818 break; 5819 case SCTP_HMAC_IDENT: 5820 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5821 break; 5822 case SCTP_AUTH_ACTIVE_KEY: 5823 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5824 break; 5825 case SCTP_PEER_AUTH_CHUNKS: 5826 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5827 optlen); 5828 break; 5829 case SCTP_LOCAL_AUTH_CHUNKS: 5830 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5831 optlen); 5832 break; 5833 case SCTP_GET_ASSOC_NUMBER: 5834 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5835 break; 5836 case SCTP_GET_ASSOC_ID_LIST: 5837 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5838 break; 5839 case SCTP_AUTO_ASCONF: 5840 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5841 break; 5842 case SCTP_PEER_ADDR_THLDS: 5843 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 5844 break; 5845 case SCTP_GET_ASSOC_STATS: 5846 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 5847 break; 5848 default: 5849 retval = -ENOPROTOOPT; 5850 break; 5851 } 5852 5853 sctp_release_sock(sk); 5854 return retval; 5855 } 5856 5857 static void sctp_hash(struct sock *sk) 5858 { 5859 /* STUB */ 5860 } 5861 5862 static void sctp_unhash(struct sock *sk) 5863 { 5864 /* STUB */ 5865 } 5866 5867 /* Check if port is acceptable. Possibly find first available port. 5868 * 5869 * The port hash table (contained in the 'global' SCTP protocol storage 5870 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5871 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5872 * list (the list number is the port number hashed out, so as you 5873 * would expect from a hash function, all the ports in a given list have 5874 * such a number that hashes out to the same list number; you were 5875 * expecting that, right?); so each list has a set of ports, with a 5876 * link to the socket (struct sock) that uses it, the port number and 5877 * a fastreuse flag (FIXME: NPI ipg). 5878 */ 5879 static struct sctp_bind_bucket *sctp_bucket_create( 5880 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 5881 5882 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5883 { 5884 struct sctp_bind_hashbucket *head; /* hash list */ 5885 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5886 struct hlist_node *node; 5887 unsigned short snum; 5888 int ret; 5889 5890 snum = ntohs(addr->v4.sin_port); 5891 5892 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5893 sctp_local_bh_disable(); 5894 5895 if (snum == 0) { 5896 /* Search for an available port. */ 5897 int low, high, remaining, index; 5898 unsigned int rover; 5899 5900 inet_get_local_port_range(&low, &high); 5901 remaining = (high - low) + 1; 5902 rover = net_random() % remaining + low; 5903 5904 do { 5905 rover++; 5906 if ((rover < low) || (rover > high)) 5907 rover = low; 5908 if (inet_is_reserved_local_port(rover)) 5909 continue; 5910 index = sctp_phashfn(sock_net(sk), rover); 5911 head = &sctp_port_hashtable[index]; 5912 sctp_spin_lock(&head->lock); 5913 sctp_for_each_hentry(pp, node, &head->chain) 5914 if ((pp->port == rover) && 5915 net_eq(sock_net(sk), pp->net)) 5916 goto next; 5917 break; 5918 next: 5919 sctp_spin_unlock(&head->lock); 5920 } while (--remaining > 0); 5921 5922 /* Exhausted local port range during search? */ 5923 ret = 1; 5924 if (remaining <= 0) 5925 goto fail; 5926 5927 /* OK, here is the one we will use. HEAD (the port 5928 * hash table list entry) is non-NULL and we hold it's 5929 * mutex. 5930 */ 5931 snum = rover; 5932 } else { 5933 /* We are given an specific port number; we verify 5934 * that it is not being used. If it is used, we will 5935 * exahust the search in the hash list corresponding 5936 * to the port number (snum) - we detect that with the 5937 * port iterator, pp being NULL. 5938 */ 5939 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 5940 sctp_spin_lock(&head->lock); 5941 sctp_for_each_hentry(pp, node, &head->chain) { 5942 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 5943 goto pp_found; 5944 } 5945 } 5946 pp = NULL; 5947 goto pp_not_found; 5948 pp_found: 5949 if (!hlist_empty(&pp->owner)) { 5950 /* We had a port hash table hit - there is an 5951 * available port (pp != NULL) and it is being 5952 * used by other socket (pp->owner not empty); that other 5953 * socket is going to be sk2. 5954 */ 5955 int reuse = sk->sk_reuse; 5956 struct sock *sk2; 5957 5958 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5959 if (pp->fastreuse && sk->sk_reuse && 5960 sk->sk_state != SCTP_SS_LISTENING) 5961 goto success; 5962 5963 /* Run through the list of sockets bound to the port 5964 * (pp->port) [via the pointers bind_next and 5965 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5966 * we get the endpoint they describe and run through 5967 * the endpoint's list of IP (v4 or v6) addresses, 5968 * comparing each of the addresses with the address of 5969 * the socket sk. If we find a match, then that means 5970 * that this port/socket (sk) combination are already 5971 * in an endpoint. 5972 */ 5973 sk_for_each_bound(sk2, node, &pp->owner) { 5974 struct sctp_endpoint *ep2; 5975 ep2 = sctp_sk(sk2)->ep; 5976 5977 if (sk == sk2 || 5978 (reuse && sk2->sk_reuse && 5979 sk2->sk_state != SCTP_SS_LISTENING)) 5980 continue; 5981 5982 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5983 sctp_sk(sk2), sctp_sk(sk))) { 5984 ret = (long)sk2; 5985 goto fail_unlock; 5986 } 5987 } 5988 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5989 } 5990 pp_not_found: 5991 /* If there was a hash table miss, create a new port. */ 5992 ret = 1; 5993 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 5994 goto fail_unlock; 5995 5996 /* In either case (hit or miss), make sure fastreuse is 1 only 5997 * if sk->sk_reuse is too (that is, if the caller requested 5998 * SO_REUSEADDR on this socket -sk-). 5999 */ 6000 if (hlist_empty(&pp->owner)) { 6001 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6002 pp->fastreuse = 1; 6003 else 6004 pp->fastreuse = 0; 6005 } else if (pp->fastreuse && 6006 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6007 pp->fastreuse = 0; 6008 6009 /* We are set, so fill up all the data in the hash table 6010 * entry, tie the socket list information with the rest of the 6011 * sockets FIXME: Blurry, NPI (ipg). 6012 */ 6013 success: 6014 if (!sctp_sk(sk)->bind_hash) { 6015 inet_sk(sk)->inet_num = snum; 6016 sk_add_bind_node(sk, &pp->owner); 6017 sctp_sk(sk)->bind_hash = pp; 6018 } 6019 ret = 0; 6020 6021 fail_unlock: 6022 sctp_spin_unlock(&head->lock); 6023 6024 fail: 6025 sctp_local_bh_enable(); 6026 return ret; 6027 } 6028 6029 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6030 * port is requested. 6031 */ 6032 static int sctp_get_port(struct sock *sk, unsigned short snum) 6033 { 6034 long ret; 6035 union sctp_addr addr; 6036 struct sctp_af *af = sctp_sk(sk)->pf->af; 6037 6038 /* Set up a dummy address struct from the sk. */ 6039 af->from_sk(&addr, sk); 6040 addr.v4.sin_port = htons(snum); 6041 6042 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6043 ret = sctp_get_port_local(sk, &addr); 6044 6045 return ret ? 1 : 0; 6046 } 6047 6048 /* 6049 * Move a socket to LISTENING state. 6050 */ 6051 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 6052 { 6053 struct sctp_sock *sp = sctp_sk(sk); 6054 struct sctp_endpoint *ep = sp->ep; 6055 struct crypto_hash *tfm = NULL; 6056 char alg[32]; 6057 6058 /* Allocate HMAC for generating cookie. */ 6059 if (!sp->hmac && sp->sctp_hmac_alg) { 6060 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6061 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6062 if (IS_ERR(tfm)) { 6063 net_info_ratelimited("failed to load transform for %s: %ld\n", 6064 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6065 return -ENOSYS; 6066 } 6067 sctp_sk(sk)->hmac = tfm; 6068 } 6069 6070 /* 6071 * If a bind() or sctp_bindx() is not called prior to a listen() 6072 * call that allows new associations to be accepted, the system 6073 * picks an ephemeral port and will choose an address set equivalent 6074 * to binding with a wildcard address. 6075 * 6076 * This is not currently spelled out in the SCTP sockets 6077 * extensions draft, but follows the practice as seen in TCP 6078 * sockets. 6079 * 6080 */ 6081 sk->sk_state = SCTP_SS_LISTENING; 6082 if (!ep->base.bind_addr.port) { 6083 if (sctp_autobind(sk)) 6084 return -EAGAIN; 6085 } else { 6086 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6087 sk->sk_state = SCTP_SS_CLOSED; 6088 return -EADDRINUSE; 6089 } 6090 } 6091 6092 sk->sk_max_ack_backlog = backlog; 6093 sctp_hash_endpoint(ep); 6094 return 0; 6095 } 6096 6097 /* 6098 * 4.1.3 / 5.1.3 listen() 6099 * 6100 * By default, new associations are not accepted for UDP style sockets. 6101 * An application uses listen() to mark a socket as being able to 6102 * accept new associations. 6103 * 6104 * On TCP style sockets, applications use listen() to ready the SCTP 6105 * endpoint for accepting inbound associations. 6106 * 6107 * On both types of endpoints a backlog of '0' disables listening. 6108 * 6109 * Move a socket to LISTENING state. 6110 */ 6111 int sctp_inet_listen(struct socket *sock, int backlog) 6112 { 6113 struct sock *sk = sock->sk; 6114 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6115 int err = -EINVAL; 6116 6117 if (unlikely(backlog < 0)) 6118 return err; 6119 6120 sctp_lock_sock(sk); 6121 6122 /* Peeled-off sockets are not allowed to listen(). */ 6123 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6124 goto out; 6125 6126 if (sock->state != SS_UNCONNECTED) 6127 goto out; 6128 6129 /* If backlog is zero, disable listening. */ 6130 if (!backlog) { 6131 if (sctp_sstate(sk, CLOSED)) 6132 goto out; 6133 6134 err = 0; 6135 sctp_unhash_endpoint(ep); 6136 sk->sk_state = SCTP_SS_CLOSED; 6137 if (sk->sk_reuse) 6138 sctp_sk(sk)->bind_hash->fastreuse = 1; 6139 goto out; 6140 } 6141 6142 /* If we are already listening, just update the backlog */ 6143 if (sctp_sstate(sk, LISTENING)) 6144 sk->sk_max_ack_backlog = backlog; 6145 else { 6146 err = sctp_listen_start(sk, backlog); 6147 if (err) 6148 goto out; 6149 } 6150 6151 err = 0; 6152 out: 6153 sctp_release_sock(sk); 6154 return err; 6155 } 6156 6157 /* 6158 * This function is done by modeling the current datagram_poll() and the 6159 * tcp_poll(). Note that, based on these implementations, we don't 6160 * lock the socket in this function, even though it seems that, 6161 * ideally, locking or some other mechanisms can be used to ensure 6162 * the integrity of the counters (sndbuf and wmem_alloc) used 6163 * in this place. We assume that we don't need locks either until proven 6164 * otherwise. 6165 * 6166 * Another thing to note is that we include the Async I/O support 6167 * here, again, by modeling the current TCP/UDP code. We don't have 6168 * a good way to test with it yet. 6169 */ 6170 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6171 { 6172 struct sock *sk = sock->sk; 6173 struct sctp_sock *sp = sctp_sk(sk); 6174 unsigned int mask; 6175 6176 poll_wait(file, sk_sleep(sk), wait); 6177 6178 /* A TCP-style listening socket becomes readable when the accept queue 6179 * is not empty. 6180 */ 6181 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6182 return (!list_empty(&sp->ep->asocs)) ? 6183 (POLLIN | POLLRDNORM) : 0; 6184 6185 mask = 0; 6186 6187 /* Is there any exceptional events? */ 6188 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6189 mask |= POLLERR; 6190 if (sk->sk_shutdown & RCV_SHUTDOWN) 6191 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6192 if (sk->sk_shutdown == SHUTDOWN_MASK) 6193 mask |= POLLHUP; 6194 6195 /* Is it readable? Reconsider this code with TCP-style support. */ 6196 if (!skb_queue_empty(&sk->sk_receive_queue)) 6197 mask |= POLLIN | POLLRDNORM; 6198 6199 /* The association is either gone or not ready. */ 6200 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6201 return mask; 6202 6203 /* Is it writable? */ 6204 if (sctp_writeable(sk)) { 6205 mask |= POLLOUT | POLLWRNORM; 6206 } else { 6207 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6208 /* 6209 * Since the socket is not locked, the buffer 6210 * might be made available after the writeable check and 6211 * before the bit is set. This could cause a lost I/O 6212 * signal. tcp_poll() has a race breaker for this race 6213 * condition. Based on their implementation, we put 6214 * in the following code to cover it as well. 6215 */ 6216 if (sctp_writeable(sk)) 6217 mask |= POLLOUT | POLLWRNORM; 6218 } 6219 return mask; 6220 } 6221 6222 /******************************************************************** 6223 * 2nd Level Abstractions 6224 ********************************************************************/ 6225 6226 static struct sctp_bind_bucket *sctp_bucket_create( 6227 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6228 { 6229 struct sctp_bind_bucket *pp; 6230 6231 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6232 if (pp) { 6233 SCTP_DBG_OBJCNT_INC(bind_bucket); 6234 pp->port = snum; 6235 pp->fastreuse = 0; 6236 INIT_HLIST_HEAD(&pp->owner); 6237 pp->net = net; 6238 hlist_add_head(&pp->node, &head->chain); 6239 } 6240 return pp; 6241 } 6242 6243 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6244 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6245 { 6246 if (pp && hlist_empty(&pp->owner)) { 6247 __hlist_del(&pp->node); 6248 kmem_cache_free(sctp_bucket_cachep, pp); 6249 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6250 } 6251 } 6252 6253 /* Release this socket's reference to a local port. */ 6254 static inline void __sctp_put_port(struct sock *sk) 6255 { 6256 struct sctp_bind_hashbucket *head = 6257 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6258 inet_sk(sk)->inet_num)]; 6259 struct sctp_bind_bucket *pp; 6260 6261 sctp_spin_lock(&head->lock); 6262 pp = sctp_sk(sk)->bind_hash; 6263 __sk_del_bind_node(sk); 6264 sctp_sk(sk)->bind_hash = NULL; 6265 inet_sk(sk)->inet_num = 0; 6266 sctp_bucket_destroy(pp); 6267 sctp_spin_unlock(&head->lock); 6268 } 6269 6270 void sctp_put_port(struct sock *sk) 6271 { 6272 sctp_local_bh_disable(); 6273 __sctp_put_port(sk); 6274 sctp_local_bh_enable(); 6275 } 6276 6277 /* 6278 * The system picks an ephemeral port and choose an address set equivalent 6279 * to binding with a wildcard address. 6280 * One of those addresses will be the primary address for the association. 6281 * This automatically enables the multihoming capability of SCTP. 6282 */ 6283 static int sctp_autobind(struct sock *sk) 6284 { 6285 union sctp_addr autoaddr; 6286 struct sctp_af *af; 6287 __be16 port; 6288 6289 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6290 af = sctp_sk(sk)->pf->af; 6291 6292 port = htons(inet_sk(sk)->inet_num); 6293 af->inaddr_any(&autoaddr, port); 6294 6295 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6296 } 6297 6298 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6299 * 6300 * From RFC 2292 6301 * 4.2 The cmsghdr Structure * 6302 * 6303 * When ancillary data is sent or received, any number of ancillary data 6304 * objects can be specified by the msg_control and msg_controllen members of 6305 * the msghdr structure, because each object is preceded by 6306 * a cmsghdr structure defining the object's length (the cmsg_len member). 6307 * Historically Berkeley-derived implementations have passed only one object 6308 * at a time, but this API allows multiple objects to be 6309 * passed in a single call to sendmsg() or recvmsg(). The following example 6310 * shows two ancillary data objects in a control buffer. 6311 * 6312 * |<--------------------------- msg_controllen -------------------------->| 6313 * | | 6314 * 6315 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6316 * 6317 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6318 * | | | 6319 * 6320 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6321 * 6322 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6323 * | | | | | 6324 * 6325 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6326 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6327 * 6328 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6329 * 6330 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6331 * ^ 6332 * | 6333 * 6334 * msg_control 6335 * points here 6336 */ 6337 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6338 sctp_cmsgs_t *cmsgs) 6339 { 6340 struct cmsghdr *cmsg; 6341 struct msghdr *my_msg = (struct msghdr *)msg; 6342 6343 for (cmsg = CMSG_FIRSTHDR(msg); 6344 cmsg != NULL; 6345 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6346 if (!CMSG_OK(my_msg, cmsg)) 6347 return -EINVAL; 6348 6349 /* Should we parse this header or ignore? */ 6350 if (cmsg->cmsg_level != IPPROTO_SCTP) 6351 continue; 6352 6353 /* Strictly check lengths following example in SCM code. */ 6354 switch (cmsg->cmsg_type) { 6355 case SCTP_INIT: 6356 /* SCTP Socket API Extension 6357 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6358 * 6359 * This cmsghdr structure provides information for 6360 * initializing new SCTP associations with sendmsg(). 6361 * The SCTP_INITMSG socket option uses this same data 6362 * structure. This structure is not used for 6363 * recvmsg(). 6364 * 6365 * cmsg_level cmsg_type cmsg_data[] 6366 * ------------ ------------ ---------------------- 6367 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6368 */ 6369 if (cmsg->cmsg_len != 6370 CMSG_LEN(sizeof(struct sctp_initmsg))) 6371 return -EINVAL; 6372 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6373 break; 6374 6375 case SCTP_SNDRCV: 6376 /* SCTP Socket API Extension 6377 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6378 * 6379 * This cmsghdr structure specifies SCTP options for 6380 * sendmsg() and describes SCTP header information 6381 * about a received message through recvmsg(). 6382 * 6383 * cmsg_level cmsg_type cmsg_data[] 6384 * ------------ ------------ ---------------------- 6385 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6386 */ 6387 if (cmsg->cmsg_len != 6388 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6389 return -EINVAL; 6390 6391 cmsgs->info = 6392 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6393 6394 /* Minimally, validate the sinfo_flags. */ 6395 if (cmsgs->info->sinfo_flags & 6396 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6397 SCTP_ABORT | SCTP_EOF)) 6398 return -EINVAL; 6399 break; 6400 6401 default: 6402 return -EINVAL; 6403 } 6404 } 6405 return 0; 6406 } 6407 6408 /* 6409 * Wait for a packet.. 6410 * Note: This function is the same function as in core/datagram.c 6411 * with a few modifications to make lksctp work. 6412 */ 6413 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6414 { 6415 int error; 6416 DEFINE_WAIT(wait); 6417 6418 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6419 6420 /* Socket errors? */ 6421 error = sock_error(sk); 6422 if (error) 6423 goto out; 6424 6425 if (!skb_queue_empty(&sk->sk_receive_queue)) 6426 goto ready; 6427 6428 /* Socket shut down? */ 6429 if (sk->sk_shutdown & RCV_SHUTDOWN) 6430 goto out; 6431 6432 /* Sequenced packets can come disconnected. If so we report the 6433 * problem. 6434 */ 6435 error = -ENOTCONN; 6436 6437 /* Is there a good reason to think that we may receive some data? */ 6438 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6439 goto out; 6440 6441 /* Handle signals. */ 6442 if (signal_pending(current)) 6443 goto interrupted; 6444 6445 /* Let another process have a go. Since we are going to sleep 6446 * anyway. Note: This may cause odd behaviors if the message 6447 * does not fit in the user's buffer, but this seems to be the 6448 * only way to honor MSG_DONTWAIT realistically. 6449 */ 6450 sctp_release_sock(sk); 6451 *timeo_p = schedule_timeout(*timeo_p); 6452 sctp_lock_sock(sk); 6453 6454 ready: 6455 finish_wait(sk_sleep(sk), &wait); 6456 return 0; 6457 6458 interrupted: 6459 error = sock_intr_errno(*timeo_p); 6460 6461 out: 6462 finish_wait(sk_sleep(sk), &wait); 6463 *err = error; 6464 return error; 6465 } 6466 6467 /* Receive a datagram. 6468 * Note: This is pretty much the same routine as in core/datagram.c 6469 * with a few changes to make lksctp work. 6470 */ 6471 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6472 int noblock, int *err) 6473 { 6474 int error; 6475 struct sk_buff *skb; 6476 long timeo; 6477 6478 timeo = sock_rcvtimeo(sk, noblock); 6479 6480 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6481 timeo, MAX_SCHEDULE_TIMEOUT); 6482 6483 do { 6484 /* Again only user level code calls this function, 6485 * so nothing interrupt level 6486 * will suddenly eat the receive_queue. 6487 * 6488 * Look at current nfs client by the way... 6489 * However, this function was correct in any case. 8) 6490 */ 6491 if (flags & MSG_PEEK) { 6492 spin_lock_bh(&sk->sk_receive_queue.lock); 6493 skb = skb_peek(&sk->sk_receive_queue); 6494 if (skb) 6495 atomic_inc(&skb->users); 6496 spin_unlock_bh(&sk->sk_receive_queue.lock); 6497 } else { 6498 skb = skb_dequeue(&sk->sk_receive_queue); 6499 } 6500 6501 if (skb) 6502 return skb; 6503 6504 /* Caller is allowed not to check sk->sk_err before calling. */ 6505 error = sock_error(sk); 6506 if (error) 6507 goto no_packet; 6508 6509 if (sk->sk_shutdown & RCV_SHUTDOWN) 6510 break; 6511 6512 /* User doesn't want to wait. */ 6513 error = -EAGAIN; 6514 if (!timeo) 6515 goto no_packet; 6516 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6517 6518 return NULL; 6519 6520 no_packet: 6521 *err = error; 6522 return NULL; 6523 } 6524 6525 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6526 static void __sctp_write_space(struct sctp_association *asoc) 6527 { 6528 struct sock *sk = asoc->base.sk; 6529 struct socket *sock = sk->sk_socket; 6530 6531 if ((sctp_wspace(asoc) > 0) && sock) { 6532 if (waitqueue_active(&asoc->wait)) 6533 wake_up_interruptible(&asoc->wait); 6534 6535 if (sctp_writeable(sk)) { 6536 wait_queue_head_t *wq = sk_sleep(sk); 6537 6538 if (wq && waitqueue_active(wq)) 6539 wake_up_interruptible(wq); 6540 6541 /* Note that we try to include the Async I/O support 6542 * here by modeling from the current TCP/UDP code. 6543 * We have not tested with it yet. 6544 */ 6545 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6546 sock_wake_async(sock, 6547 SOCK_WAKE_SPACE, POLL_OUT); 6548 } 6549 } 6550 } 6551 6552 /* Do accounting for the sndbuf space. 6553 * Decrement the used sndbuf space of the corresponding association by the 6554 * data size which was just transmitted(freed). 6555 */ 6556 static void sctp_wfree(struct sk_buff *skb) 6557 { 6558 struct sctp_association *asoc; 6559 struct sctp_chunk *chunk; 6560 struct sock *sk; 6561 6562 /* Get the saved chunk pointer. */ 6563 chunk = *((struct sctp_chunk **)(skb->cb)); 6564 asoc = chunk->asoc; 6565 sk = asoc->base.sk; 6566 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6567 sizeof(struct sk_buff) + 6568 sizeof(struct sctp_chunk); 6569 6570 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6571 6572 /* 6573 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6574 */ 6575 sk->sk_wmem_queued -= skb->truesize; 6576 sk_mem_uncharge(sk, skb->truesize); 6577 6578 sock_wfree(skb); 6579 __sctp_write_space(asoc); 6580 6581 sctp_association_put(asoc); 6582 } 6583 6584 /* Do accounting for the receive space on the socket. 6585 * Accounting for the association is done in ulpevent.c 6586 * We set this as a destructor for the cloned data skbs so that 6587 * accounting is done at the correct time. 6588 */ 6589 void sctp_sock_rfree(struct sk_buff *skb) 6590 { 6591 struct sock *sk = skb->sk; 6592 struct sctp_ulpevent *event = sctp_skb2event(skb); 6593 6594 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6595 6596 /* 6597 * Mimic the behavior of sock_rfree 6598 */ 6599 sk_mem_uncharge(sk, event->rmem_len); 6600 } 6601 6602 6603 /* Helper function to wait for space in the sndbuf. */ 6604 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6605 size_t msg_len) 6606 { 6607 struct sock *sk = asoc->base.sk; 6608 int err = 0; 6609 long current_timeo = *timeo_p; 6610 DEFINE_WAIT(wait); 6611 6612 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6613 asoc, (long)(*timeo_p), msg_len); 6614 6615 /* Increment the association's refcnt. */ 6616 sctp_association_hold(asoc); 6617 6618 /* Wait on the association specific sndbuf space. */ 6619 for (;;) { 6620 prepare_to_wait_exclusive(&asoc->wait, &wait, 6621 TASK_INTERRUPTIBLE); 6622 if (!*timeo_p) 6623 goto do_nonblock; 6624 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6625 asoc->base.dead) 6626 goto do_error; 6627 if (signal_pending(current)) 6628 goto do_interrupted; 6629 if (msg_len <= sctp_wspace(asoc)) 6630 break; 6631 6632 /* Let another process have a go. Since we are going 6633 * to sleep anyway. 6634 */ 6635 sctp_release_sock(sk); 6636 current_timeo = schedule_timeout(current_timeo); 6637 BUG_ON(sk != asoc->base.sk); 6638 sctp_lock_sock(sk); 6639 6640 *timeo_p = current_timeo; 6641 } 6642 6643 out: 6644 finish_wait(&asoc->wait, &wait); 6645 6646 /* Release the association's refcnt. */ 6647 sctp_association_put(asoc); 6648 6649 return err; 6650 6651 do_error: 6652 err = -EPIPE; 6653 goto out; 6654 6655 do_interrupted: 6656 err = sock_intr_errno(*timeo_p); 6657 goto out; 6658 6659 do_nonblock: 6660 err = -EAGAIN; 6661 goto out; 6662 } 6663 6664 void sctp_data_ready(struct sock *sk, int len) 6665 { 6666 struct socket_wq *wq; 6667 6668 rcu_read_lock(); 6669 wq = rcu_dereference(sk->sk_wq); 6670 if (wq_has_sleeper(wq)) 6671 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6672 POLLRDNORM | POLLRDBAND); 6673 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6674 rcu_read_unlock(); 6675 } 6676 6677 /* If socket sndbuf has changed, wake up all per association waiters. */ 6678 void sctp_write_space(struct sock *sk) 6679 { 6680 struct sctp_association *asoc; 6681 6682 /* Wake up the tasks in each wait queue. */ 6683 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6684 __sctp_write_space(asoc); 6685 } 6686 } 6687 6688 /* Is there any sndbuf space available on the socket? 6689 * 6690 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6691 * associations on the same socket. For a UDP-style socket with 6692 * multiple associations, it is possible for it to be "unwriteable" 6693 * prematurely. I assume that this is acceptable because 6694 * a premature "unwriteable" is better than an accidental "writeable" which 6695 * would cause an unwanted block under certain circumstances. For the 1-1 6696 * UDP-style sockets or TCP-style sockets, this code should work. 6697 * - Daisy 6698 */ 6699 static int sctp_writeable(struct sock *sk) 6700 { 6701 int amt = 0; 6702 6703 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6704 if (amt < 0) 6705 amt = 0; 6706 return amt; 6707 } 6708 6709 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6710 * returns immediately with EINPROGRESS. 6711 */ 6712 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6713 { 6714 struct sock *sk = asoc->base.sk; 6715 int err = 0; 6716 long current_timeo = *timeo_p; 6717 DEFINE_WAIT(wait); 6718 6719 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6720 (long)(*timeo_p)); 6721 6722 /* Increment the association's refcnt. */ 6723 sctp_association_hold(asoc); 6724 6725 for (;;) { 6726 prepare_to_wait_exclusive(&asoc->wait, &wait, 6727 TASK_INTERRUPTIBLE); 6728 if (!*timeo_p) 6729 goto do_nonblock; 6730 if (sk->sk_shutdown & RCV_SHUTDOWN) 6731 break; 6732 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6733 asoc->base.dead) 6734 goto do_error; 6735 if (signal_pending(current)) 6736 goto do_interrupted; 6737 6738 if (sctp_state(asoc, ESTABLISHED)) 6739 break; 6740 6741 /* Let another process have a go. Since we are going 6742 * to sleep anyway. 6743 */ 6744 sctp_release_sock(sk); 6745 current_timeo = schedule_timeout(current_timeo); 6746 sctp_lock_sock(sk); 6747 6748 *timeo_p = current_timeo; 6749 } 6750 6751 out: 6752 finish_wait(&asoc->wait, &wait); 6753 6754 /* Release the association's refcnt. */ 6755 sctp_association_put(asoc); 6756 6757 return err; 6758 6759 do_error: 6760 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6761 err = -ETIMEDOUT; 6762 else 6763 err = -ECONNREFUSED; 6764 goto out; 6765 6766 do_interrupted: 6767 err = sock_intr_errno(*timeo_p); 6768 goto out; 6769 6770 do_nonblock: 6771 err = -EINPROGRESS; 6772 goto out; 6773 } 6774 6775 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6776 { 6777 struct sctp_endpoint *ep; 6778 int err = 0; 6779 DEFINE_WAIT(wait); 6780 6781 ep = sctp_sk(sk)->ep; 6782 6783 6784 for (;;) { 6785 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6786 TASK_INTERRUPTIBLE); 6787 6788 if (list_empty(&ep->asocs)) { 6789 sctp_release_sock(sk); 6790 timeo = schedule_timeout(timeo); 6791 sctp_lock_sock(sk); 6792 } 6793 6794 err = -EINVAL; 6795 if (!sctp_sstate(sk, LISTENING)) 6796 break; 6797 6798 err = 0; 6799 if (!list_empty(&ep->asocs)) 6800 break; 6801 6802 err = sock_intr_errno(timeo); 6803 if (signal_pending(current)) 6804 break; 6805 6806 err = -EAGAIN; 6807 if (!timeo) 6808 break; 6809 } 6810 6811 finish_wait(sk_sleep(sk), &wait); 6812 6813 return err; 6814 } 6815 6816 static void sctp_wait_for_close(struct sock *sk, long timeout) 6817 { 6818 DEFINE_WAIT(wait); 6819 6820 do { 6821 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6822 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6823 break; 6824 sctp_release_sock(sk); 6825 timeout = schedule_timeout(timeout); 6826 sctp_lock_sock(sk); 6827 } while (!signal_pending(current) && timeout); 6828 6829 finish_wait(sk_sleep(sk), &wait); 6830 } 6831 6832 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6833 { 6834 struct sk_buff *frag; 6835 6836 if (!skb->data_len) 6837 goto done; 6838 6839 /* Don't forget the fragments. */ 6840 skb_walk_frags(skb, frag) 6841 sctp_skb_set_owner_r_frag(frag, sk); 6842 6843 done: 6844 sctp_skb_set_owner_r(skb, sk); 6845 } 6846 6847 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6848 struct sctp_association *asoc) 6849 { 6850 struct inet_sock *inet = inet_sk(sk); 6851 struct inet_sock *newinet; 6852 6853 newsk->sk_type = sk->sk_type; 6854 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6855 newsk->sk_flags = sk->sk_flags; 6856 newsk->sk_no_check = sk->sk_no_check; 6857 newsk->sk_reuse = sk->sk_reuse; 6858 6859 newsk->sk_shutdown = sk->sk_shutdown; 6860 newsk->sk_destruct = inet_sock_destruct; 6861 newsk->sk_family = sk->sk_family; 6862 newsk->sk_protocol = IPPROTO_SCTP; 6863 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6864 newsk->sk_sndbuf = sk->sk_sndbuf; 6865 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6866 newsk->sk_lingertime = sk->sk_lingertime; 6867 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6868 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6869 6870 newinet = inet_sk(newsk); 6871 6872 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6873 * getsockname() and getpeername() 6874 */ 6875 newinet->inet_sport = inet->inet_sport; 6876 newinet->inet_saddr = inet->inet_saddr; 6877 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6878 newinet->inet_dport = htons(asoc->peer.port); 6879 newinet->pmtudisc = inet->pmtudisc; 6880 newinet->inet_id = asoc->next_tsn ^ jiffies; 6881 6882 newinet->uc_ttl = inet->uc_ttl; 6883 newinet->mc_loop = 1; 6884 newinet->mc_ttl = 1; 6885 newinet->mc_index = 0; 6886 newinet->mc_list = NULL; 6887 } 6888 6889 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6890 * and its messages to the newsk. 6891 */ 6892 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6893 struct sctp_association *assoc, 6894 sctp_socket_type_t type) 6895 { 6896 struct sctp_sock *oldsp = sctp_sk(oldsk); 6897 struct sctp_sock *newsp = sctp_sk(newsk); 6898 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6899 struct sctp_endpoint *newep = newsp->ep; 6900 struct sk_buff *skb, *tmp; 6901 struct sctp_ulpevent *event; 6902 struct sctp_bind_hashbucket *head; 6903 struct list_head tmplist; 6904 6905 /* Migrate socket buffer sizes and all the socket level options to the 6906 * new socket. 6907 */ 6908 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6909 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6910 /* Brute force copy old sctp opt. */ 6911 if (oldsp->do_auto_asconf) { 6912 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6913 inet_sk_copy_descendant(newsk, oldsk); 6914 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6915 } else 6916 inet_sk_copy_descendant(newsk, oldsk); 6917 6918 /* Restore the ep value that was overwritten with the above structure 6919 * copy. 6920 */ 6921 newsp->ep = newep; 6922 newsp->hmac = NULL; 6923 6924 /* Hook this new socket in to the bind_hash list. */ 6925 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 6926 inet_sk(oldsk)->inet_num)]; 6927 sctp_local_bh_disable(); 6928 sctp_spin_lock(&head->lock); 6929 pp = sctp_sk(oldsk)->bind_hash; 6930 sk_add_bind_node(newsk, &pp->owner); 6931 sctp_sk(newsk)->bind_hash = pp; 6932 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6933 sctp_spin_unlock(&head->lock); 6934 sctp_local_bh_enable(); 6935 6936 /* Copy the bind_addr list from the original endpoint to the new 6937 * endpoint so that we can handle restarts properly 6938 */ 6939 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6940 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6941 6942 /* Move any messages in the old socket's receive queue that are for the 6943 * peeled off association to the new socket's receive queue. 6944 */ 6945 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6946 event = sctp_skb2event(skb); 6947 if (event->asoc == assoc) { 6948 __skb_unlink(skb, &oldsk->sk_receive_queue); 6949 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6950 sctp_skb_set_owner_r_frag(skb, newsk); 6951 } 6952 } 6953 6954 /* Clean up any messages pending delivery due to partial 6955 * delivery. Three cases: 6956 * 1) No partial deliver; no work. 6957 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6958 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6959 */ 6960 skb_queue_head_init(&newsp->pd_lobby); 6961 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6962 6963 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6964 struct sk_buff_head *queue; 6965 6966 /* Decide which queue to move pd_lobby skbs to. */ 6967 if (assoc->ulpq.pd_mode) { 6968 queue = &newsp->pd_lobby; 6969 } else 6970 queue = &newsk->sk_receive_queue; 6971 6972 /* Walk through the pd_lobby, looking for skbs that 6973 * need moved to the new socket. 6974 */ 6975 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6976 event = sctp_skb2event(skb); 6977 if (event->asoc == assoc) { 6978 __skb_unlink(skb, &oldsp->pd_lobby); 6979 __skb_queue_tail(queue, skb); 6980 sctp_skb_set_owner_r_frag(skb, newsk); 6981 } 6982 } 6983 6984 /* Clear up any skbs waiting for the partial 6985 * delivery to finish. 6986 */ 6987 if (assoc->ulpq.pd_mode) 6988 sctp_clear_pd(oldsk, NULL); 6989 6990 } 6991 6992 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6993 sctp_skb_set_owner_r_frag(skb, newsk); 6994 6995 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6996 sctp_skb_set_owner_r_frag(skb, newsk); 6997 6998 /* Set the type of socket to indicate that it is peeled off from the 6999 * original UDP-style socket or created with the accept() call on a 7000 * TCP-style socket.. 7001 */ 7002 newsp->type = type; 7003 7004 /* Mark the new socket "in-use" by the user so that any packets 7005 * that may arrive on the association after we've moved it are 7006 * queued to the backlog. This prevents a potential race between 7007 * backlog processing on the old socket and new-packet processing 7008 * on the new socket. 7009 * 7010 * The caller has just allocated newsk so we can guarantee that other 7011 * paths won't try to lock it and then oldsk. 7012 */ 7013 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7014 sctp_assoc_migrate(assoc, newsk); 7015 7016 /* If the association on the newsk is already closed before accept() 7017 * is called, set RCV_SHUTDOWN flag. 7018 */ 7019 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7020 newsk->sk_shutdown |= RCV_SHUTDOWN; 7021 7022 newsk->sk_state = SCTP_SS_ESTABLISHED; 7023 sctp_release_sock(newsk); 7024 } 7025 7026 7027 /* This proto struct describes the ULP interface for SCTP. */ 7028 struct proto sctp_prot = { 7029 .name = "SCTP", 7030 .owner = THIS_MODULE, 7031 .close = sctp_close, 7032 .connect = sctp_connect, 7033 .disconnect = sctp_disconnect, 7034 .accept = sctp_accept, 7035 .ioctl = sctp_ioctl, 7036 .init = sctp_init_sock, 7037 .destroy = sctp_destroy_sock, 7038 .shutdown = sctp_shutdown, 7039 .setsockopt = sctp_setsockopt, 7040 .getsockopt = sctp_getsockopt, 7041 .sendmsg = sctp_sendmsg, 7042 .recvmsg = sctp_recvmsg, 7043 .bind = sctp_bind, 7044 .backlog_rcv = sctp_backlog_rcv, 7045 .hash = sctp_hash, 7046 .unhash = sctp_unhash, 7047 .get_port = sctp_get_port, 7048 .obj_size = sizeof(struct sctp_sock), 7049 .sysctl_mem = sysctl_sctp_mem, 7050 .sysctl_rmem = sysctl_sctp_rmem, 7051 .sysctl_wmem = sysctl_sctp_wmem, 7052 .memory_pressure = &sctp_memory_pressure, 7053 .enter_memory_pressure = sctp_enter_memory_pressure, 7054 .memory_allocated = &sctp_memory_allocated, 7055 .sockets_allocated = &sctp_sockets_allocated, 7056 }; 7057 7058 #if IS_ENABLED(CONFIG_IPV6) 7059 7060 struct proto sctpv6_prot = { 7061 .name = "SCTPv6", 7062 .owner = THIS_MODULE, 7063 .close = sctp_close, 7064 .connect = sctp_connect, 7065 .disconnect = sctp_disconnect, 7066 .accept = sctp_accept, 7067 .ioctl = sctp_ioctl, 7068 .init = sctp_init_sock, 7069 .destroy = sctp_destroy_sock, 7070 .shutdown = sctp_shutdown, 7071 .setsockopt = sctp_setsockopt, 7072 .getsockopt = sctp_getsockopt, 7073 .sendmsg = sctp_sendmsg, 7074 .recvmsg = sctp_recvmsg, 7075 .bind = sctp_bind, 7076 .backlog_rcv = sctp_backlog_rcv, 7077 .hash = sctp_hash, 7078 .unhash = sctp_unhash, 7079 .get_port = sctp_get_port, 7080 .obj_size = sizeof(struct sctp6_sock), 7081 .sysctl_mem = sysctl_sctp_mem, 7082 .sysctl_rmem = sysctl_sctp_rmem, 7083 .sysctl_wmem = sysctl_sctp_wmem, 7084 .memory_pressure = &sctp_memory_pressure, 7085 .enter_memory_pressure = sctp_enter_memory_pressure, 7086 .memory_allocated = &sctp_memory_allocated, 7087 .sockets_allocated = &sctp_sockets_allocated, 7088 }; 7089 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7090