xref: /openbmc/linux/net/sctp/socket.c (revision 9b358af7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 #define traverse_and_process()	\
151 do {				\
152 	msg = chunk->msg;	\
153 	if (msg == prev_msg)	\
154 		continue;	\
155 	list_for_each_entry(c, &msg->chunks, frag_list) {	\
156 		if ((clear && asoc->base.sk == c->skb->sk) ||	\
157 		    (!clear && asoc->base.sk != c->skb->sk))	\
158 			cb(c);	\
159 	}			\
160 	prev_msg = msg;		\
161 } while (0)
162 
163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 				       bool clear,
165 				       void (*cb)(struct sctp_chunk *))
166 
167 {
168 	struct sctp_datamsg *msg, *prev_msg = NULL;
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_chunk *chunk, *c;
171 	struct sctp_transport *t;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			traverse_and_process();
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		traverse_and_process();
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		traverse_and_process();
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		traverse_and_process();
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		traverse_and_process();
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 static void sctp_auto_asconf_init(struct sctp_sock *sp)
361 {
362 	struct net *net = sock_net(&sp->inet.sk);
363 
364 	if (net->sctp.default_auto_asconf) {
365 		spin_lock(&net->sctp.addr_wq_lock);
366 		list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
367 		spin_unlock(&net->sctp.addr_wq_lock);
368 		sp->do_auto_asconf = 1;
369 	}
370 }
371 
372 /* Bind a local address either to an endpoint or to an association.  */
373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
374 {
375 	struct net *net = sock_net(sk);
376 	struct sctp_sock *sp = sctp_sk(sk);
377 	struct sctp_endpoint *ep = sp->ep;
378 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
379 	struct sctp_af *af;
380 	unsigned short snum;
381 	int ret = 0;
382 
383 	/* Common sockaddr verification. */
384 	af = sctp_sockaddr_af(sp, addr, len);
385 	if (!af) {
386 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
387 			 __func__, sk, addr, len);
388 		return -EINVAL;
389 	}
390 
391 	snum = ntohs(addr->v4.sin_port);
392 
393 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
394 		 __func__, sk, &addr->sa, bp->port, snum, len);
395 
396 	/* PF specific bind() address verification. */
397 	if (!sp->pf->bind_verify(sp, addr))
398 		return -EADDRNOTAVAIL;
399 
400 	/* We must either be unbound, or bind to the same port.
401 	 * It's OK to allow 0 ports if we are already bound.
402 	 * We'll just inhert an already bound port in this case
403 	 */
404 	if (bp->port) {
405 		if (!snum)
406 			snum = bp->port;
407 		else if (snum != bp->port) {
408 			pr_debug("%s: new port %d doesn't match existing port "
409 				 "%d\n", __func__, snum, bp->port);
410 			return -EINVAL;
411 		}
412 	}
413 
414 	if (snum && inet_port_requires_bind_service(net, snum) &&
415 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
416 		return -EACCES;
417 
418 	/* See if the address matches any of the addresses we may have
419 	 * already bound before checking against other endpoints.
420 	 */
421 	if (sctp_bind_addr_match(bp, addr, sp))
422 		return -EINVAL;
423 
424 	/* Make sure we are allowed to bind here.
425 	 * The function sctp_get_port_local() does duplicate address
426 	 * detection.
427 	 */
428 	addr->v4.sin_port = htons(snum);
429 	if (sctp_get_port_local(sk, addr))
430 		return -EADDRINUSE;
431 
432 	/* Refresh ephemeral port.  */
433 	if (!bp->port) {
434 		bp->port = inet_sk(sk)->inet_num;
435 		sctp_auto_asconf_init(sp);
436 	}
437 
438 	/* Add the address to the bind address list.
439 	 * Use GFP_ATOMIC since BHs will be disabled.
440 	 */
441 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
442 				 SCTP_ADDR_SRC, GFP_ATOMIC);
443 
444 	if (ret) {
445 		sctp_put_port(sk);
446 		return ret;
447 	}
448 	/* Copy back into socket for getsockname() use. */
449 	inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
450 	sp->pf->to_sk_saddr(addr, sk);
451 
452 	return ret;
453 }
454 
455  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
456  *
457  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
458  * at any one time.  If a sender, after sending an ASCONF chunk, decides
459  * it needs to transfer another ASCONF Chunk, it MUST wait until the
460  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
461  * subsequent ASCONF. Note this restriction binds each side, so at any
462  * time two ASCONF may be in-transit on any given association (one sent
463  * from each endpoint).
464  */
465 static int sctp_send_asconf(struct sctp_association *asoc,
466 			    struct sctp_chunk *chunk)
467 {
468 	int retval = 0;
469 
470 	/* If there is an outstanding ASCONF chunk, queue it for later
471 	 * transmission.
472 	 */
473 	if (asoc->addip_last_asconf) {
474 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
475 		goto out;
476 	}
477 
478 	/* Hold the chunk until an ASCONF_ACK is received. */
479 	sctp_chunk_hold(chunk);
480 	retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
481 	if (retval)
482 		sctp_chunk_free(chunk);
483 	else
484 		asoc->addip_last_asconf = chunk;
485 
486 out:
487 	return retval;
488 }
489 
490 /* Add a list of addresses as bind addresses to local endpoint or
491  * association.
492  *
493  * Basically run through each address specified in the addrs/addrcnt
494  * array/length pair, determine if it is IPv6 or IPv4 and call
495  * sctp_do_bind() on it.
496  *
497  * If any of them fails, then the operation will be reversed and the
498  * ones that were added will be removed.
499  *
500  * Only sctp_setsockopt_bindx() is supposed to call this function.
501  */
502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
503 {
504 	int cnt;
505 	int retval = 0;
506 	void *addr_buf;
507 	struct sockaddr *sa_addr;
508 	struct sctp_af *af;
509 
510 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
511 		 addrs, addrcnt);
512 
513 	addr_buf = addrs;
514 	for (cnt = 0; cnt < addrcnt; cnt++) {
515 		/* The list may contain either IPv4 or IPv6 address;
516 		 * determine the address length for walking thru the list.
517 		 */
518 		sa_addr = addr_buf;
519 		af = sctp_get_af_specific(sa_addr->sa_family);
520 		if (!af) {
521 			retval = -EINVAL;
522 			goto err_bindx_add;
523 		}
524 
525 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
526 				      af->sockaddr_len);
527 
528 		addr_buf += af->sockaddr_len;
529 
530 err_bindx_add:
531 		if (retval < 0) {
532 			/* Failed. Cleanup the ones that have been added */
533 			if (cnt > 0)
534 				sctp_bindx_rem(sk, addrs, cnt);
535 			return retval;
536 		}
537 	}
538 
539 	return retval;
540 }
541 
542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
543  * associations that are part of the endpoint indicating that a list of local
544  * addresses are added to the endpoint.
545  *
546  * If any of the addresses is already in the bind address list of the
547  * association, we do not send the chunk for that association.  But it will not
548  * affect other associations.
549  *
550  * Only sctp_setsockopt_bindx() is supposed to call this function.
551  */
552 static int sctp_send_asconf_add_ip(struct sock		*sk,
553 				   struct sockaddr	*addrs,
554 				   int 			addrcnt)
555 {
556 	struct sctp_sock		*sp;
557 	struct sctp_endpoint		*ep;
558 	struct sctp_association		*asoc;
559 	struct sctp_bind_addr		*bp;
560 	struct sctp_chunk		*chunk;
561 	struct sctp_sockaddr_entry	*laddr;
562 	union sctp_addr			*addr;
563 	union sctp_addr			saveaddr;
564 	void				*addr_buf;
565 	struct sctp_af			*af;
566 	struct list_head		*p;
567 	int 				i;
568 	int 				retval = 0;
569 
570 	sp = sctp_sk(sk);
571 	ep = sp->ep;
572 
573 	if (!ep->asconf_enable)
574 		return retval;
575 
576 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
577 		 __func__, sk, addrs, addrcnt);
578 
579 	list_for_each_entry(asoc, &ep->asocs, asocs) {
580 		if (!asoc->peer.asconf_capable)
581 			continue;
582 
583 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
584 			continue;
585 
586 		if (!sctp_state(asoc, ESTABLISHED))
587 			continue;
588 
589 		/* Check if any address in the packed array of addresses is
590 		 * in the bind address list of the association. If so,
591 		 * do not send the asconf chunk to its peer, but continue with
592 		 * other associations.
593 		 */
594 		addr_buf = addrs;
595 		for (i = 0; i < addrcnt; i++) {
596 			addr = addr_buf;
597 			af = sctp_get_af_specific(addr->v4.sin_family);
598 			if (!af) {
599 				retval = -EINVAL;
600 				goto out;
601 			}
602 
603 			if (sctp_assoc_lookup_laddr(asoc, addr))
604 				break;
605 
606 			addr_buf += af->sockaddr_len;
607 		}
608 		if (i < addrcnt)
609 			continue;
610 
611 		/* Use the first valid address in bind addr list of
612 		 * association as Address Parameter of ASCONF CHUNK.
613 		 */
614 		bp = &asoc->base.bind_addr;
615 		p = bp->address_list.next;
616 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
617 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
618 						   addrcnt, SCTP_PARAM_ADD_IP);
619 		if (!chunk) {
620 			retval = -ENOMEM;
621 			goto out;
622 		}
623 
624 		/* Add the new addresses to the bind address list with
625 		 * use_as_src set to 0.
626 		 */
627 		addr_buf = addrs;
628 		for (i = 0; i < addrcnt; i++) {
629 			addr = addr_buf;
630 			af = sctp_get_af_specific(addr->v4.sin_family);
631 			memcpy(&saveaddr, addr, af->sockaddr_len);
632 			retval = sctp_add_bind_addr(bp, &saveaddr,
633 						    sizeof(saveaddr),
634 						    SCTP_ADDR_NEW, GFP_ATOMIC);
635 			addr_buf += af->sockaddr_len;
636 		}
637 		if (asoc->src_out_of_asoc_ok) {
638 			struct sctp_transport *trans;
639 
640 			list_for_each_entry(trans,
641 			    &asoc->peer.transport_addr_list, transports) {
642 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
643 				    2*asoc->pathmtu, 4380));
644 				trans->ssthresh = asoc->peer.i.a_rwnd;
645 				trans->rto = asoc->rto_initial;
646 				sctp_max_rto(asoc, trans);
647 				trans->rtt = trans->srtt = trans->rttvar = 0;
648 				/* Clear the source and route cache */
649 				sctp_transport_route(trans, NULL,
650 						     sctp_sk(asoc->base.sk));
651 			}
652 		}
653 		retval = sctp_send_asconf(asoc, chunk);
654 	}
655 
656 out:
657 	return retval;
658 }
659 
660 /* Remove a list of addresses from bind addresses list.  Do not remove the
661  * last address.
662  *
663  * Basically run through each address specified in the addrs/addrcnt
664  * array/length pair, determine if it is IPv6 or IPv4 and call
665  * sctp_del_bind() on it.
666  *
667  * If any of them fails, then the operation will be reversed and the
668  * ones that were removed will be added back.
669  *
670  * At least one address has to be left; if only one address is
671  * available, the operation will return -EBUSY.
672  *
673  * Only sctp_setsockopt_bindx() is supposed to call this function.
674  */
675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
676 {
677 	struct sctp_sock *sp = sctp_sk(sk);
678 	struct sctp_endpoint *ep = sp->ep;
679 	int cnt;
680 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
681 	int retval = 0;
682 	void *addr_buf;
683 	union sctp_addr *sa_addr;
684 	struct sctp_af *af;
685 
686 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
687 		 __func__, sk, addrs, addrcnt);
688 
689 	addr_buf = addrs;
690 	for (cnt = 0; cnt < addrcnt; cnt++) {
691 		/* If the bind address list is empty or if there is only one
692 		 * bind address, there is nothing more to be removed (we need
693 		 * at least one address here).
694 		 */
695 		if (list_empty(&bp->address_list) ||
696 		    (sctp_list_single_entry(&bp->address_list))) {
697 			retval = -EBUSY;
698 			goto err_bindx_rem;
699 		}
700 
701 		sa_addr = addr_buf;
702 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
703 		if (!af) {
704 			retval = -EINVAL;
705 			goto err_bindx_rem;
706 		}
707 
708 		if (!af->addr_valid(sa_addr, sp, NULL)) {
709 			retval = -EADDRNOTAVAIL;
710 			goto err_bindx_rem;
711 		}
712 
713 		if (sa_addr->v4.sin_port &&
714 		    sa_addr->v4.sin_port != htons(bp->port)) {
715 			retval = -EINVAL;
716 			goto err_bindx_rem;
717 		}
718 
719 		if (!sa_addr->v4.sin_port)
720 			sa_addr->v4.sin_port = htons(bp->port);
721 
722 		/* FIXME - There is probably a need to check if sk->sk_saddr and
723 		 * sk->sk_rcv_addr are currently set to one of the addresses to
724 		 * be removed. This is something which needs to be looked into
725 		 * when we are fixing the outstanding issues with multi-homing
726 		 * socket routing and failover schemes. Refer to comments in
727 		 * sctp_do_bind(). -daisy
728 		 */
729 		retval = sctp_del_bind_addr(bp, sa_addr);
730 
731 		addr_buf += af->sockaddr_len;
732 err_bindx_rem:
733 		if (retval < 0) {
734 			/* Failed. Add the ones that has been removed back */
735 			if (cnt > 0)
736 				sctp_bindx_add(sk, addrs, cnt);
737 			return retval;
738 		}
739 	}
740 
741 	return retval;
742 }
743 
744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
745  * the associations that are part of the endpoint indicating that a list of
746  * local addresses are removed from the endpoint.
747  *
748  * If any of the addresses is already in the bind address list of the
749  * association, we do not send the chunk for that association.  But it will not
750  * affect other associations.
751  *
752  * Only sctp_setsockopt_bindx() is supposed to call this function.
753  */
754 static int sctp_send_asconf_del_ip(struct sock		*sk,
755 				   struct sockaddr	*addrs,
756 				   int			addrcnt)
757 {
758 	struct sctp_sock	*sp;
759 	struct sctp_endpoint	*ep;
760 	struct sctp_association	*asoc;
761 	struct sctp_transport	*transport;
762 	struct sctp_bind_addr	*bp;
763 	struct sctp_chunk	*chunk;
764 	union sctp_addr		*laddr;
765 	void			*addr_buf;
766 	struct sctp_af		*af;
767 	struct sctp_sockaddr_entry *saddr;
768 	int 			i;
769 	int 			retval = 0;
770 	int			stored = 0;
771 
772 	chunk = NULL;
773 	sp = sctp_sk(sk);
774 	ep = sp->ep;
775 
776 	if (!ep->asconf_enable)
777 		return retval;
778 
779 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
780 		 __func__, sk, addrs, addrcnt);
781 
782 	list_for_each_entry(asoc, &ep->asocs, asocs) {
783 
784 		if (!asoc->peer.asconf_capable)
785 			continue;
786 
787 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
788 			continue;
789 
790 		if (!sctp_state(asoc, ESTABLISHED))
791 			continue;
792 
793 		/* Check if any address in the packed array of addresses is
794 		 * not present in the bind address list of the association.
795 		 * If so, do not send the asconf chunk to its peer, but
796 		 * continue with other associations.
797 		 */
798 		addr_buf = addrs;
799 		for (i = 0; i < addrcnt; i++) {
800 			laddr = addr_buf;
801 			af = sctp_get_af_specific(laddr->v4.sin_family);
802 			if (!af) {
803 				retval = -EINVAL;
804 				goto out;
805 			}
806 
807 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
808 				break;
809 
810 			addr_buf += af->sockaddr_len;
811 		}
812 		if (i < addrcnt)
813 			continue;
814 
815 		/* Find one address in the association's bind address list
816 		 * that is not in the packed array of addresses. This is to
817 		 * make sure that we do not delete all the addresses in the
818 		 * association.
819 		 */
820 		bp = &asoc->base.bind_addr;
821 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
822 					       addrcnt, sp);
823 		if ((laddr == NULL) && (addrcnt == 1)) {
824 			if (asoc->asconf_addr_del_pending)
825 				continue;
826 			asoc->asconf_addr_del_pending =
827 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
828 			if (asoc->asconf_addr_del_pending == NULL) {
829 				retval = -ENOMEM;
830 				goto out;
831 			}
832 			asoc->asconf_addr_del_pending->sa.sa_family =
833 				    addrs->sa_family;
834 			asoc->asconf_addr_del_pending->v4.sin_port =
835 				    htons(bp->port);
836 			if (addrs->sa_family == AF_INET) {
837 				struct sockaddr_in *sin;
838 
839 				sin = (struct sockaddr_in *)addrs;
840 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
841 			} else if (addrs->sa_family == AF_INET6) {
842 				struct sockaddr_in6 *sin6;
843 
844 				sin6 = (struct sockaddr_in6 *)addrs;
845 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
846 			}
847 
848 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
849 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
850 				 asoc->asconf_addr_del_pending);
851 
852 			asoc->src_out_of_asoc_ok = 1;
853 			stored = 1;
854 			goto skip_mkasconf;
855 		}
856 
857 		if (laddr == NULL)
858 			return -EINVAL;
859 
860 		/* We do not need RCU protection throughout this loop
861 		 * because this is done under a socket lock from the
862 		 * setsockopt call.
863 		 */
864 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
865 						   SCTP_PARAM_DEL_IP);
866 		if (!chunk) {
867 			retval = -ENOMEM;
868 			goto out;
869 		}
870 
871 skip_mkasconf:
872 		/* Reset use_as_src flag for the addresses in the bind address
873 		 * list that are to be deleted.
874 		 */
875 		addr_buf = addrs;
876 		for (i = 0; i < addrcnt; i++) {
877 			laddr = addr_buf;
878 			af = sctp_get_af_specific(laddr->v4.sin_family);
879 			list_for_each_entry(saddr, &bp->address_list, list) {
880 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
881 					saddr->state = SCTP_ADDR_DEL;
882 			}
883 			addr_buf += af->sockaddr_len;
884 		}
885 
886 		/* Update the route and saddr entries for all the transports
887 		 * as some of the addresses in the bind address list are
888 		 * about to be deleted and cannot be used as source addresses.
889 		 */
890 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
891 					transports) {
892 			sctp_transport_route(transport, NULL,
893 					     sctp_sk(asoc->base.sk));
894 		}
895 
896 		if (stored)
897 			/* We don't need to transmit ASCONF */
898 			continue;
899 		retval = sctp_send_asconf(asoc, chunk);
900 	}
901 out:
902 	return retval;
903 }
904 
905 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
907 {
908 	struct sock *sk = sctp_opt2sk(sp);
909 	union sctp_addr *addr;
910 	struct sctp_af *af;
911 
912 	/* It is safe to write port space in caller. */
913 	addr = &addrw->a;
914 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
915 	af = sctp_get_af_specific(addr->sa.sa_family);
916 	if (!af)
917 		return -EINVAL;
918 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
919 		return -EINVAL;
920 
921 	if (addrw->state == SCTP_ADDR_NEW)
922 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
923 	else
924 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
925 }
926 
927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
928  *
929  * API 8.1
930  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
931  *                int flags);
932  *
933  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
934  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
935  * or IPv6 addresses.
936  *
937  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
938  * Section 3.1.2 for this usage.
939  *
940  * addrs is a pointer to an array of one or more socket addresses. Each
941  * address is contained in its appropriate structure (i.e. struct
942  * sockaddr_in or struct sockaddr_in6) the family of the address type
943  * must be used to distinguish the address length (note that this
944  * representation is termed a "packed array" of addresses). The caller
945  * specifies the number of addresses in the array with addrcnt.
946  *
947  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
948  * -1, and sets errno to the appropriate error code.
949  *
950  * For SCTP, the port given in each socket address must be the same, or
951  * sctp_bindx() will fail, setting errno to EINVAL.
952  *
953  * The flags parameter is formed from the bitwise OR of zero or more of
954  * the following currently defined flags:
955  *
956  * SCTP_BINDX_ADD_ADDR
957  *
958  * SCTP_BINDX_REM_ADDR
959  *
960  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
961  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
962  * addresses from the association. The two flags are mutually exclusive;
963  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
964  * not remove all addresses from an association; sctp_bindx() will
965  * reject such an attempt with EINVAL.
966  *
967  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
968  * additional addresses with an endpoint after calling bind().  Or use
969  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
970  * socket is associated with so that no new association accepted will be
971  * associated with those addresses. If the endpoint supports dynamic
972  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
973  * endpoint to send the appropriate message to the peer to change the
974  * peers address lists.
975  *
976  * Adding and removing addresses from a connected association is
977  * optional functionality. Implementations that do not support this
978  * functionality should return EOPNOTSUPP.
979  *
980  * Basically do nothing but copying the addresses from user to kernel
981  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
982  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
983  * from userspace.
984  *
985  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
986  * it.
987  *
988  * sk        The sk of the socket
989  * addrs     The pointer to the addresses
990  * addrssize Size of the addrs buffer
991  * op        Operation to perform (add or remove, see the flags of
992  *           sctp_bindx)
993  *
994  * Returns 0 if ok, <0 errno code on error.
995  */
996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
997 				 int addrs_size, int op)
998 {
999 	int err;
1000 	int addrcnt = 0;
1001 	int walk_size = 0;
1002 	struct sockaddr *sa_addr;
1003 	void *addr_buf = addrs;
1004 	struct sctp_af *af;
1005 
1006 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1007 		 __func__, sk, addr_buf, addrs_size, op);
1008 
1009 	if (unlikely(addrs_size <= 0))
1010 		return -EINVAL;
1011 
1012 	/* Walk through the addrs buffer and count the number of addresses. */
1013 	while (walk_size < addrs_size) {
1014 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1015 			return -EINVAL;
1016 
1017 		sa_addr = addr_buf;
1018 		af = sctp_get_af_specific(sa_addr->sa_family);
1019 
1020 		/* If the address family is not supported or if this address
1021 		 * causes the address buffer to overflow return EINVAL.
1022 		 */
1023 		if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1024 			return -EINVAL;
1025 		addrcnt++;
1026 		addr_buf += af->sockaddr_len;
1027 		walk_size += af->sockaddr_len;
1028 	}
1029 
1030 	/* Do the work. */
1031 	switch (op) {
1032 	case SCTP_BINDX_ADD_ADDR:
1033 		/* Allow security module to validate bindx addresses. */
1034 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1035 						 addrs, addrs_size);
1036 		if (err)
1037 			return err;
1038 		err = sctp_bindx_add(sk, addrs, addrcnt);
1039 		if (err)
1040 			return err;
1041 		return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1042 	case SCTP_BINDX_REM_ADDR:
1043 		err = sctp_bindx_rem(sk, addrs, addrcnt);
1044 		if (err)
1045 			return err;
1046 		return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1047 
1048 	default:
1049 		return -EINVAL;
1050 	}
1051 }
1052 
1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1054 		int addrlen)
1055 {
1056 	int err;
1057 
1058 	lock_sock(sk);
1059 	err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1060 	release_sock(sk);
1061 	return err;
1062 }
1063 
1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1065 				 const union sctp_addr *daddr,
1066 				 const struct sctp_initmsg *init,
1067 				 struct sctp_transport **tp)
1068 {
1069 	struct sctp_association *asoc;
1070 	struct sock *sk = ep->base.sk;
1071 	struct net *net = sock_net(sk);
1072 	enum sctp_scope scope;
1073 	int err;
1074 
1075 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1076 		return -EADDRNOTAVAIL;
1077 
1078 	if (!ep->base.bind_addr.port) {
1079 		if (sctp_autobind(sk))
1080 			return -EAGAIN;
1081 	} else {
1082 		if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1083 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1084 			return -EACCES;
1085 	}
1086 
1087 	scope = sctp_scope(daddr);
1088 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1089 	if (!asoc)
1090 		return -ENOMEM;
1091 
1092 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1093 	if (err < 0)
1094 		goto free;
1095 
1096 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1097 	if (!*tp) {
1098 		err = -ENOMEM;
1099 		goto free;
1100 	}
1101 
1102 	if (!init)
1103 		return 0;
1104 
1105 	if (init->sinit_num_ostreams) {
1106 		__u16 outcnt = init->sinit_num_ostreams;
1107 
1108 		asoc->c.sinit_num_ostreams = outcnt;
1109 		/* outcnt has been changed, need to re-init stream */
1110 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1111 		if (err)
1112 			goto free;
1113 	}
1114 
1115 	if (init->sinit_max_instreams)
1116 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1117 
1118 	if (init->sinit_max_attempts)
1119 		asoc->max_init_attempts = init->sinit_max_attempts;
1120 
1121 	if (init->sinit_max_init_timeo)
1122 		asoc->max_init_timeo =
1123 			msecs_to_jiffies(init->sinit_max_init_timeo);
1124 
1125 	return 0;
1126 free:
1127 	sctp_association_free(asoc);
1128 	return err;
1129 }
1130 
1131 static int sctp_connect_add_peer(struct sctp_association *asoc,
1132 				 union sctp_addr *daddr, int addr_len)
1133 {
1134 	struct sctp_endpoint *ep = asoc->ep;
1135 	struct sctp_association *old;
1136 	struct sctp_transport *t;
1137 	int err;
1138 
1139 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1140 	if (err)
1141 		return err;
1142 
1143 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1144 	if (old && old != asoc)
1145 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1146 							    : -EALREADY;
1147 
1148 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1149 		return -EADDRNOTAVAIL;
1150 
1151 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1152 	if (!t)
1153 		return -ENOMEM;
1154 
1155 	return 0;
1156 }
1157 
1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1159  *
1160  * Common routine for handling connect() and sctp_connectx().
1161  * Connect will come in with just a single address.
1162  */
1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1164 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1165 {
1166 	struct sctp_sock *sp = sctp_sk(sk);
1167 	struct sctp_endpoint *ep = sp->ep;
1168 	struct sctp_transport *transport;
1169 	struct sctp_association *asoc;
1170 	void *addr_buf = kaddrs;
1171 	union sctp_addr *daddr;
1172 	struct sctp_af *af;
1173 	int walk_size, err;
1174 	long timeo;
1175 
1176 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1177 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1178 		return -EISCONN;
1179 
1180 	daddr = addr_buf;
1181 	af = sctp_get_af_specific(daddr->sa.sa_family);
1182 	if (!af || af->sockaddr_len > addrs_size)
1183 		return -EINVAL;
1184 
1185 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1186 	if (err)
1187 		return err;
1188 
1189 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1190 	if (asoc)
1191 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1192 							     : -EALREADY;
1193 
1194 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1195 	if (err)
1196 		return err;
1197 	asoc = transport->asoc;
1198 
1199 	addr_buf += af->sockaddr_len;
1200 	walk_size = af->sockaddr_len;
1201 	while (walk_size < addrs_size) {
1202 		err = -EINVAL;
1203 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1204 			goto out_free;
1205 
1206 		daddr = addr_buf;
1207 		af = sctp_get_af_specific(daddr->sa.sa_family);
1208 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1209 			goto out_free;
1210 
1211 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1212 			goto out_free;
1213 
1214 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1215 		if (err)
1216 			goto out_free;
1217 
1218 		addr_buf  += af->sockaddr_len;
1219 		walk_size += af->sockaddr_len;
1220 	}
1221 
1222 	/* In case the user of sctp_connectx() wants an association
1223 	 * id back, assign one now.
1224 	 */
1225 	if (assoc_id) {
1226 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1227 		if (err < 0)
1228 			goto out_free;
1229 	}
1230 
1231 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1232 	if (err < 0)
1233 		goto out_free;
1234 
1235 	/* Initialize sk's dport and daddr for getpeername() */
1236 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 	sp->pf->to_sk_daddr(daddr, sk);
1238 	sk->sk_err = 0;
1239 
1240 	if (assoc_id)
1241 		*assoc_id = asoc->assoc_id;
1242 
1243 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1244 	return sctp_wait_for_connect(asoc, &timeo);
1245 
1246 out_free:
1247 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1248 		 __func__, asoc, kaddrs, err);
1249 	sctp_association_free(asoc);
1250 	return err;
1251 }
1252 
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254  *
1255  * API 8.9
1256  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257  * 			sctp_assoc_t *asoc);
1258  *
1259  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261  * or IPv6 addresses.
1262  *
1263  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264  * Section 3.1.2 for this usage.
1265  *
1266  * addrs is a pointer to an array of one or more socket addresses. Each
1267  * address is contained in its appropriate structure (i.e. struct
1268  * sockaddr_in or struct sockaddr_in6) the family of the address type
1269  * must be used to distengish the address length (note that this
1270  * representation is termed a "packed array" of addresses). The caller
1271  * specifies the number of addresses in the array with addrcnt.
1272  *
1273  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274  * the association id of the new association.  On failure, sctp_connectx()
1275  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1276  * is not touched by the kernel.
1277  *
1278  * For SCTP, the port given in each socket address must be the same, or
1279  * sctp_connectx() will fail, setting errno to EINVAL.
1280  *
1281  * An application can use sctp_connectx to initiate an association with
1282  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1283  * allows a caller to specify multiple addresses at which a peer can be
1284  * reached.  The way the SCTP stack uses the list of addresses to set up
1285  * the association is implementation dependent.  This function only
1286  * specifies that the stack will try to make use of all the addresses in
1287  * the list when needed.
1288  *
1289  * Note that the list of addresses passed in is only used for setting up
1290  * the association.  It does not necessarily equal the set of addresses
1291  * the peer uses for the resulting association.  If the caller wants to
1292  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293  * retrieve them after the association has been set up.
1294  *
1295  * Basically do nothing but copying the addresses from user to kernel
1296  * land and invoking either sctp_connectx(). This is used for tunneling
1297  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298  *
1299  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1300  * it.
1301  *
1302  * sk        The sk of the socket
1303  * addrs     The pointer to the addresses
1304  * addrssize Size of the addrs buffer
1305  *
1306  * Returns >=0 if ok, <0 errno code on error.
1307  */
1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1309 				      int addrs_size, sctp_assoc_t *assoc_id)
1310 {
1311 	int err = 0, flags = 0;
1312 
1313 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1314 		 __func__, sk, kaddrs, addrs_size);
1315 
1316 	/* make sure the 1st addr's sa_family is accessible later */
1317 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1318 		return -EINVAL;
1319 
1320 	/* Allow security module to validate connectx addresses. */
1321 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1322 					 (struct sockaddr *)kaddrs,
1323 					  addrs_size);
1324 	if (err)
1325 		return err;
1326 
1327 	/* in-kernel sockets don't generally have a file allocated to them
1328 	 * if all they do is call sock_create_kern().
1329 	 */
1330 	if (sk->sk_socket->file)
1331 		flags = sk->sk_socket->file->f_flags;
1332 
1333 	return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1334 }
1335 
1336 /*
1337  * This is an older interface.  It's kept for backward compatibility
1338  * to the option that doesn't provide association id.
1339  */
1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 					struct sockaddr *kaddrs,
1342 					int addrs_size)
1343 {
1344 	return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1345 }
1346 
1347 /*
1348  * New interface for the API.  The since the API is done with a socket
1349  * option, to make it simple we feed back the association id is as a return
1350  * indication to the call.  Error is always negative and association id is
1351  * always positive.
1352  */
1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 				    struct sockaddr *kaddrs,
1355 				    int addrs_size)
1356 {
1357 	sctp_assoc_t assoc_id = 0;
1358 	int err = 0;
1359 
1360 	err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1361 
1362 	if (err)
1363 		return err;
1364 	else
1365 		return assoc_id;
1366 }
1367 
1368 /*
1369  * New (hopefully final) interface for the API.
1370  * We use the sctp_getaddrs_old structure so that use-space library
1371  * can avoid any unnecessary allocations. The only different part
1372  * is that we store the actual length of the address buffer into the
1373  * addrs_num structure member. That way we can re-use the existing
1374  * code.
1375  */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 	sctp_assoc_t	assoc_id;
1379 	s32		addr_num;
1380 	compat_uptr_t	addrs;		/* struct sockaddr * */
1381 };
1382 #endif
1383 
1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 				     char __user *optval,
1386 				     int __user *optlen)
1387 {
1388 	struct sctp_getaddrs_old param;
1389 	sctp_assoc_t assoc_id = 0;
1390 	struct sockaddr *kaddrs;
1391 	int err = 0;
1392 
1393 #ifdef CONFIG_COMPAT
1394 	if (in_compat_syscall()) {
1395 		struct compat_sctp_getaddrs_old param32;
1396 
1397 		if (len < sizeof(param32))
1398 			return -EINVAL;
1399 		if (copy_from_user(&param32, optval, sizeof(param32)))
1400 			return -EFAULT;
1401 
1402 		param.assoc_id = param32.assoc_id;
1403 		param.addr_num = param32.addr_num;
1404 		param.addrs = compat_ptr(param32.addrs);
1405 	} else
1406 #endif
1407 	{
1408 		if (len < sizeof(param))
1409 			return -EINVAL;
1410 		if (copy_from_user(&param, optval, sizeof(param)))
1411 			return -EFAULT;
1412 	}
1413 
1414 	kaddrs = memdup_user(param.addrs, param.addr_num);
1415 	if (IS_ERR(kaddrs))
1416 		return PTR_ERR(kaddrs);
1417 
1418 	err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1419 	kfree(kaddrs);
1420 	if (err == 0 || err == -EINPROGRESS) {
1421 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 			return -EFAULT;
1423 		if (put_user(sizeof(assoc_id), optlen))
1424 			return -EFAULT;
1425 	}
1426 
1427 	return err;
1428 }
1429 
1430 /* API 3.1.4 close() - UDP Style Syntax
1431  * Applications use close() to perform graceful shutdown (as described in
1432  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433  * by a UDP-style socket.
1434  *
1435  * The syntax is
1436  *
1437  *   ret = close(int sd);
1438  *
1439  *   sd      - the socket descriptor of the associations to be closed.
1440  *
1441  * To gracefully shutdown a specific association represented by the
1442  * UDP-style socket, an application should use the sendmsg() call,
1443  * passing no user data, but including the appropriate flag in the
1444  * ancillary data (see Section xxxx).
1445  *
1446  * If sd in the close() call is a branched-off socket representing only
1447  * one association, the shutdown is performed on that association only.
1448  *
1449  * 4.1.6 close() - TCP Style Syntax
1450  *
1451  * Applications use close() to gracefully close down an association.
1452  *
1453  * The syntax is:
1454  *
1455  *    int close(int sd);
1456  *
1457  *      sd      - the socket descriptor of the association to be closed.
1458  *
1459  * After an application calls close() on a socket descriptor, no further
1460  * socket operations will succeed on that descriptor.
1461  *
1462  * API 7.1.4 SO_LINGER
1463  *
1464  * An application using the TCP-style socket can use this option to
1465  * perform the SCTP ABORT primitive.  The linger option structure is:
1466  *
1467  *  struct  linger {
1468  *     int     l_onoff;                // option on/off
1469  *     int     l_linger;               // linger time
1470  * };
1471  *
1472  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1473  * to 0, calling close() is the same as the ABORT primitive.  If the
1474  * value is set to a negative value, the setsockopt() call will return
1475  * an error.  If the value is set to a positive value linger_time, the
1476  * close() can be blocked for at most linger_time ms.  If the graceful
1477  * shutdown phase does not finish during this period, close() will
1478  * return but the graceful shutdown phase continues in the system.
1479  */
1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 	struct net *net = sock_net(sk);
1483 	struct sctp_endpoint *ep;
1484 	struct sctp_association *asoc;
1485 	struct list_head *pos, *temp;
1486 	unsigned int data_was_unread;
1487 
1488 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489 
1490 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1491 	sk->sk_shutdown = SHUTDOWN_MASK;
1492 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1493 
1494 	ep = sctp_sk(sk)->ep;
1495 
1496 	/* Clean up any skbs sitting on the receive queue.  */
1497 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499 
1500 	/* Walk all associations on an endpoint.  */
1501 	list_for_each_safe(pos, temp, &ep->asocs) {
1502 		asoc = list_entry(pos, struct sctp_association, asocs);
1503 
1504 		if (sctp_style(sk, TCP)) {
1505 			/* A closed association can still be in the list if
1506 			 * it belongs to a TCP-style listening socket that is
1507 			 * not yet accepted. If so, free it. If not, send an
1508 			 * ABORT or SHUTDOWN based on the linger options.
1509 			 */
1510 			if (sctp_state(asoc, CLOSED)) {
1511 				sctp_association_free(asoc);
1512 				continue;
1513 			}
1514 		}
1515 
1516 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1519 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1520 			struct sctp_chunk *chunk;
1521 
1522 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1523 			sctp_primitive_ABORT(net, asoc, chunk);
1524 		} else
1525 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1526 	}
1527 
1528 	/* On a TCP-style socket, block for at most linger_time if set. */
1529 	if (sctp_style(sk, TCP) && timeout)
1530 		sctp_wait_for_close(sk, timeout);
1531 
1532 	/* This will run the backlog queue.  */
1533 	release_sock(sk);
1534 
1535 	/* Supposedly, no process has access to the socket, but
1536 	 * the net layers still may.
1537 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1538 	 * held and that should be grabbed before socket lock.
1539 	 */
1540 	spin_lock_bh(&net->sctp.addr_wq_lock);
1541 	bh_lock_sock_nested(sk);
1542 
1543 	/* Hold the sock, since sk_common_release() will put sock_put()
1544 	 * and we have just a little more cleanup.
1545 	 */
1546 	sock_hold(sk);
1547 	sk_common_release(sk);
1548 
1549 	bh_unlock_sock(sk);
1550 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1551 
1552 	sock_put(sk);
1553 
1554 	SCTP_DBG_OBJCNT_DEC(sock);
1555 }
1556 
1557 /* Handle EPIPE error. */
1558 static int sctp_error(struct sock *sk, int flags, int err)
1559 {
1560 	if (err == -EPIPE)
1561 		err = sock_error(sk) ? : -EPIPE;
1562 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1563 		send_sig(SIGPIPE, current, 0);
1564 	return err;
1565 }
1566 
1567 /* API 3.1.3 sendmsg() - UDP Style Syntax
1568  *
1569  * An application uses sendmsg() and recvmsg() calls to transmit data to
1570  * and receive data from its peer.
1571  *
1572  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1573  *                  int flags);
1574  *
1575  *  socket  - the socket descriptor of the endpoint.
1576  *  message - pointer to the msghdr structure which contains a single
1577  *            user message and possibly some ancillary data.
1578  *
1579  *            See Section 5 for complete description of the data
1580  *            structures.
1581  *
1582  *  flags   - flags sent or received with the user message, see Section
1583  *            5 for complete description of the flags.
1584  *
1585  * Note:  This function could use a rewrite especially when explicit
1586  * connect support comes in.
1587  */
1588 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1589 
1590 static int sctp_msghdr_parse(const struct msghdr *msg,
1591 			     struct sctp_cmsgs *cmsgs);
1592 
1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1594 			      struct sctp_sndrcvinfo *srinfo,
1595 			      const struct msghdr *msg, size_t msg_len)
1596 {
1597 	__u16 sflags;
1598 	int err;
1599 
1600 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1601 		return -EPIPE;
1602 
1603 	if (msg_len > sk->sk_sndbuf)
1604 		return -EMSGSIZE;
1605 
1606 	memset(cmsgs, 0, sizeof(*cmsgs));
1607 	err = sctp_msghdr_parse(msg, cmsgs);
1608 	if (err) {
1609 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1610 		return err;
1611 	}
1612 
1613 	memset(srinfo, 0, sizeof(*srinfo));
1614 	if (cmsgs->srinfo) {
1615 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1616 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1617 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1618 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1619 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1620 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1621 	}
1622 
1623 	if (cmsgs->sinfo) {
1624 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1625 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1626 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1627 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1628 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1629 	}
1630 
1631 	if (cmsgs->prinfo) {
1632 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1633 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1634 				   cmsgs->prinfo->pr_policy);
1635 	}
1636 
1637 	sflags = srinfo->sinfo_flags;
1638 	if (!sflags && msg_len)
1639 		return 0;
1640 
1641 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1642 		return -EINVAL;
1643 
1644 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1645 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1646 		return -EINVAL;
1647 
1648 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1649 		return -EINVAL;
1650 
1651 	return 0;
1652 }
1653 
1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1655 				 struct sctp_cmsgs *cmsgs,
1656 				 union sctp_addr *daddr,
1657 				 struct sctp_transport **tp)
1658 {
1659 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1660 	struct sctp_association *asoc;
1661 	struct cmsghdr *cmsg;
1662 	__be32 flowinfo = 0;
1663 	struct sctp_af *af;
1664 	int err;
1665 
1666 	*tp = NULL;
1667 
1668 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1669 		return -EINVAL;
1670 
1671 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1672 				    sctp_sstate(sk, CLOSING)))
1673 		return -EADDRNOTAVAIL;
1674 
1675 	/* Label connection socket for first association 1-to-many
1676 	 * style for client sequence socket()->sendmsg(). This
1677 	 * needs to be done before sctp_assoc_add_peer() as that will
1678 	 * set up the initial packet that needs to account for any
1679 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1680 	 */
1681 	af = sctp_get_af_specific(daddr->sa.sa_family);
1682 	if (!af)
1683 		return -EINVAL;
1684 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1685 					 (struct sockaddr *)daddr,
1686 					 af->sockaddr_len);
1687 	if (err < 0)
1688 		return err;
1689 
1690 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1691 	if (err)
1692 		return err;
1693 	asoc = (*tp)->asoc;
1694 
1695 	if (!cmsgs->addrs_msg)
1696 		return 0;
1697 
1698 	if (daddr->sa.sa_family == AF_INET6)
1699 		flowinfo = daddr->v6.sin6_flowinfo;
1700 
1701 	/* sendv addr list parse */
1702 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1703 		union sctp_addr _daddr;
1704 		int dlen;
1705 
1706 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1707 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1708 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1709 			continue;
1710 
1711 		daddr = &_daddr;
1712 		memset(daddr, 0, sizeof(*daddr));
1713 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1714 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1715 			if (dlen < sizeof(struct in_addr)) {
1716 				err = -EINVAL;
1717 				goto free;
1718 			}
1719 
1720 			dlen = sizeof(struct in_addr);
1721 			daddr->v4.sin_family = AF_INET;
1722 			daddr->v4.sin_port = htons(asoc->peer.port);
1723 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1724 		} else {
1725 			if (dlen < sizeof(struct in6_addr)) {
1726 				err = -EINVAL;
1727 				goto free;
1728 			}
1729 
1730 			dlen = sizeof(struct in6_addr);
1731 			daddr->v6.sin6_flowinfo = flowinfo;
1732 			daddr->v6.sin6_family = AF_INET6;
1733 			daddr->v6.sin6_port = htons(asoc->peer.port);
1734 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1735 		}
1736 
1737 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1738 		if (err)
1739 			goto free;
1740 	}
1741 
1742 	return 0;
1743 
1744 free:
1745 	sctp_association_free(asoc);
1746 	return err;
1747 }
1748 
1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1750 				     __u16 sflags, struct msghdr *msg,
1751 				     size_t msg_len)
1752 {
1753 	struct sock *sk = asoc->base.sk;
1754 	struct net *net = sock_net(sk);
1755 
1756 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1757 		return -EPIPE;
1758 
1759 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1760 	    !sctp_state(asoc, ESTABLISHED))
1761 		return 0;
1762 
1763 	if (sflags & SCTP_EOF) {
1764 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1765 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1766 
1767 		return 0;
1768 	}
1769 
1770 	if (sflags & SCTP_ABORT) {
1771 		struct sctp_chunk *chunk;
1772 
1773 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1774 		if (!chunk)
1775 			return -ENOMEM;
1776 
1777 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1778 		sctp_primitive_ABORT(net, asoc, chunk);
1779 		iov_iter_revert(&msg->msg_iter, msg_len);
1780 
1781 		return 0;
1782 	}
1783 
1784 	return 1;
1785 }
1786 
1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1788 				struct msghdr *msg, size_t msg_len,
1789 				struct sctp_transport *transport,
1790 				struct sctp_sndrcvinfo *sinfo)
1791 {
1792 	struct sock *sk = asoc->base.sk;
1793 	struct sctp_sock *sp = sctp_sk(sk);
1794 	struct net *net = sock_net(sk);
1795 	struct sctp_datamsg *datamsg;
1796 	bool wait_connect = false;
1797 	struct sctp_chunk *chunk;
1798 	long timeo;
1799 	int err;
1800 
1801 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1802 		err = -EINVAL;
1803 		goto err;
1804 	}
1805 
1806 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1807 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1808 		if (err)
1809 			goto err;
1810 	}
1811 
1812 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1813 		err = -EMSGSIZE;
1814 		goto err;
1815 	}
1816 
1817 	if (asoc->pmtu_pending) {
1818 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1819 			sctp_assoc_sync_pmtu(asoc);
1820 		asoc->pmtu_pending = 0;
1821 	}
1822 
1823 	if (sctp_wspace(asoc) < (int)msg_len)
1824 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1825 
1826 	if (sk_under_memory_pressure(sk))
1827 		sk_mem_reclaim(sk);
1828 
1829 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 		if (err)
1833 			goto err;
1834 	}
1835 
1836 	if (sctp_state(asoc, CLOSED)) {
1837 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1838 		if (err)
1839 			goto err;
1840 
1841 		if (asoc->ep->intl_enable) {
1842 			timeo = sock_sndtimeo(sk, 0);
1843 			err = sctp_wait_for_connect(asoc, &timeo);
1844 			if (err) {
1845 				err = -ESRCH;
1846 				goto err;
1847 			}
1848 		} else {
1849 			wait_connect = true;
1850 		}
1851 
1852 		pr_debug("%s: we associated primitively\n", __func__);
1853 	}
1854 
1855 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1856 	if (IS_ERR(datamsg)) {
1857 		err = PTR_ERR(datamsg);
1858 		goto err;
1859 	}
1860 
1861 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1862 
1863 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1864 		sctp_chunk_hold(chunk);
1865 		sctp_set_owner_w(chunk);
1866 		chunk->transport = transport;
1867 	}
1868 
1869 	err = sctp_primitive_SEND(net, asoc, datamsg);
1870 	if (err) {
1871 		sctp_datamsg_free(datamsg);
1872 		goto err;
1873 	}
1874 
1875 	pr_debug("%s: we sent primitively\n", __func__);
1876 
1877 	sctp_datamsg_put(datamsg);
1878 
1879 	if (unlikely(wait_connect)) {
1880 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 		sctp_wait_for_connect(asoc, &timeo);
1882 	}
1883 
1884 	err = msg_len;
1885 
1886 err:
1887 	return err;
1888 }
1889 
1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1891 					       const struct msghdr *msg,
1892 					       struct sctp_cmsgs *cmsgs)
1893 {
1894 	union sctp_addr *daddr = NULL;
1895 	int err;
1896 
1897 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1898 		int len = msg->msg_namelen;
1899 
1900 		if (len > sizeof(*daddr))
1901 			len = sizeof(*daddr);
1902 
1903 		daddr = (union sctp_addr *)msg->msg_name;
1904 
1905 		err = sctp_verify_addr(sk, daddr, len);
1906 		if (err)
1907 			return ERR_PTR(err);
1908 	}
1909 
1910 	return daddr;
1911 }
1912 
1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1914 				      struct sctp_sndrcvinfo *sinfo,
1915 				      struct sctp_cmsgs *cmsgs)
1916 {
1917 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1918 		sinfo->sinfo_stream = asoc->default_stream;
1919 		sinfo->sinfo_ppid = asoc->default_ppid;
1920 		sinfo->sinfo_context = asoc->default_context;
1921 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1922 
1923 		if (!cmsgs->prinfo)
1924 			sinfo->sinfo_flags = asoc->default_flags;
1925 	}
1926 
1927 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1928 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1929 
1930 	if (cmsgs->authinfo) {
1931 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1932 		 * sinfo_ssn to save the keyid on tx path.
1933 		 */
1934 		sinfo->sinfo_tsn = 1;
1935 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1936 	}
1937 }
1938 
1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1940 {
1941 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1942 	struct sctp_transport *transport = NULL;
1943 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1944 	struct sctp_association *asoc, *tmp;
1945 	struct sctp_cmsgs cmsgs;
1946 	union sctp_addr *daddr;
1947 	bool new = false;
1948 	__u16 sflags;
1949 	int err;
1950 
1951 	/* Parse and get snd_info */
1952 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1953 	if (err)
1954 		goto out;
1955 
1956 	sinfo  = &_sinfo;
1957 	sflags = sinfo->sinfo_flags;
1958 
1959 	/* Get daddr from msg */
1960 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1961 	if (IS_ERR(daddr)) {
1962 		err = PTR_ERR(daddr);
1963 		goto out;
1964 	}
1965 
1966 	lock_sock(sk);
1967 
1968 	/* SCTP_SENDALL process */
1969 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1970 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1971 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1972 							msg_len);
1973 			if (err == 0)
1974 				continue;
1975 			if (err < 0)
1976 				goto out_unlock;
1977 
1978 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1979 
1980 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1981 						   NULL, sinfo);
1982 			if (err < 0)
1983 				goto out_unlock;
1984 
1985 			iov_iter_revert(&msg->msg_iter, err);
1986 		}
1987 
1988 		goto out_unlock;
1989 	}
1990 
1991 	/* Get and check or create asoc */
1992 	if (daddr) {
1993 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1994 		if (asoc) {
1995 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1996 							msg_len);
1997 			if (err <= 0)
1998 				goto out_unlock;
1999 		} else {
2000 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2001 						    &transport);
2002 			if (err)
2003 				goto out_unlock;
2004 
2005 			asoc = transport->asoc;
2006 			new = true;
2007 		}
2008 
2009 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2010 			transport = NULL;
2011 	} else {
2012 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2013 		if (!asoc) {
2014 			err = -EPIPE;
2015 			goto out_unlock;
2016 		}
2017 
2018 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2019 		if (err <= 0)
2020 			goto out_unlock;
2021 	}
2022 
2023 	/* Update snd_info with the asoc */
2024 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2025 
2026 	/* Send msg to the asoc */
2027 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2028 	if (err < 0 && err != -ESRCH && new)
2029 		sctp_association_free(asoc);
2030 
2031 out_unlock:
2032 	release_sock(sk);
2033 out:
2034 	return sctp_error(sk, msg->msg_flags, err);
2035 }
2036 
2037 /* This is an extended version of skb_pull() that removes the data from the
2038  * start of a skb even when data is spread across the list of skb's in the
2039  * frag_list. len specifies the total amount of data that needs to be removed.
2040  * when 'len' bytes could be removed from the skb, it returns 0.
2041  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2042  * could not be removed.
2043  */
2044 static int sctp_skb_pull(struct sk_buff *skb, int len)
2045 {
2046 	struct sk_buff *list;
2047 	int skb_len = skb_headlen(skb);
2048 	int rlen;
2049 
2050 	if (len <= skb_len) {
2051 		__skb_pull(skb, len);
2052 		return 0;
2053 	}
2054 	len -= skb_len;
2055 	__skb_pull(skb, skb_len);
2056 
2057 	skb_walk_frags(skb, list) {
2058 		rlen = sctp_skb_pull(list, len);
2059 		skb->len -= (len-rlen);
2060 		skb->data_len -= (len-rlen);
2061 
2062 		if (!rlen)
2063 			return 0;
2064 
2065 		len = rlen;
2066 	}
2067 
2068 	return len;
2069 }
2070 
2071 /* API 3.1.3  recvmsg() - UDP Style Syntax
2072  *
2073  *  ssize_t recvmsg(int socket, struct msghdr *message,
2074  *                    int flags);
2075  *
2076  *  socket  - the socket descriptor of the endpoint.
2077  *  message - pointer to the msghdr structure which contains a single
2078  *            user message and possibly some ancillary data.
2079  *
2080  *            See Section 5 for complete description of the data
2081  *            structures.
2082  *
2083  *  flags   - flags sent or received with the user message, see Section
2084  *            5 for complete description of the flags.
2085  */
2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 			int noblock, int flags, int *addr_len)
2088 {
2089 	struct sctp_ulpevent *event = NULL;
2090 	struct sctp_sock *sp = sctp_sk(sk);
2091 	struct sk_buff *skb, *head_skb;
2092 	int copied;
2093 	int err = 0;
2094 	int skb_len;
2095 
2096 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2097 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2098 		 addr_len);
2099 
2100 	lock_sock(sk);
2101 
2102 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2103 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2104 		err = -ENOTCONN;
2105 		goto out;
2106 	}
2107 
2108 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2109 	if (!skb)
2110 		goto out;
2111 
2112 	/* Get the total length of the skb including any skb's in the
2113 	 * frag_list.
2114 	 */
2115 	skb_len = skb->len;
2116 
2117 	copied = skb_len;
2118 	if (copied > len)
2119 		copied = len;
2120 
2121 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2122 
2123 	event = sctp_skb2event(skb);
2124 
2125 	if (err)
2126 		goto out_free;
2127 
2128 	if (event->chunk && event->chunk->head_skb)
2129 		head_skb = event->chunk->head_skb;
2130 	else
2131 		head_skb = skb;
2132 	sock_recv_ts_and_drops(msg, sk, head_skb);
2133 	if (sctp_ulpevent_is_notification(event)) {
2134 		msg->msg_flags |= MSG_NOTIFICATION;
2135 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2136 	} else {
2137 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2138 	}
2139 
2140 	/* Check if we allow SCTP_NXTINFO. */
2141 	if (sp->recvnxtinfo)
2142 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2143 	/* Check if we allow SCTP_RCVINFO. */
2144 	if (sp->recvrcvinfo)
2145 		sctp_ulpevent_read_rcvinfo(event, msg);
2146 	/* Check if we allow SCTP_SNDRCVINFO. */
2147 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2148 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2149 
2150 	err = copied;
2151 
2152 	/* If skb's length exceeds the user's buffer, update the skb and
2153 	 * push it back to the receive_queue so that the next call to
2154 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2155 	 */
2156 	if (skb_len > copied) {
2157 		msg->msg_flags &= ~MSG_EOR;
2158 		if (flags & MSG_PEEK)
2159 			goto out_free;
2160 		sctp_skb_pull(skb, copied);
2161 		skb_queue_head(&sk->sk_receive_queue, skb);
2162 
2163 		/* When only partial message is copied to the user, increase
2164 		 * rwnd by that amount. If all the data in the skb is read,
2165 		 * rwnd is updated when the event is freed.
2166 		 */
2167 		if (!sctp_ulpevent_is_notification(event))
2168 			sctp_assoc_rwnd_increase(event->asoc, copied);
2169 		goto out;
2170 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2171 		   (event->msg_flags & MSG_EOR))
2172 		msg->msg_flags |= MSG_EOR;
2173 	else
2174 		msg->msg_flags &= ~MSG_EOR;
2175 
2176 out_free:
2177 	if (flags & MSG_PEEK) {
2178 		/* Release the skb reference acquired after peeking the skb in
2179 		 * sctp_skb_recv_datagram().
2180 		 */
2181 		kfree_skb(skb);
2182 	} else {
2183 		/* Free the event which includes releasing the reference to
2184 		 * the owner of the skb, freeing the skb and updating the
2185 		 * rwnd.
2186 		 */
2187 		sctp_ulpevent_free(event);
2188 	}
2189 out:
2190 	release_sock(sk);
2191 	return err;
2192 }
2193 
2194 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2195  *
2196  * This option is a on/off flag.  If enabled no SCTP message
2197  * fragmentation will be performed.  Instead if a message being sent
2198  * exceeds the current PMTU size, the message will NOT be sent and
2199  * instead a error will be indicated to the user.
2200  */
2201 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2202 					     unsigned int optlen)
2203 {
2204 	if (optlen < sizeof(int))
2205 		return -EINVAL;
2206 	sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2207 	return 0;
2208 }
2209 
2210 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2211 				  unsigned int optlen)
2212 {
2213 	struct sctp_sock *sp = sctp_sk(sk);
2214 	struct sctp_association *asoc;
2215 	int i;
2216 
2217 	if (optlen > sizeof(struct sctp_event_subscribe))
2218 		return -EINVAL;
2219 
2220 	for (i = 0; i < optlen; i++)
2221 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2222 				       sn_type[i]);
2223 
2224 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2225 		asoc->subscribe = sctp_sk(sk)->subscribe;
2226 
2227 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2228 	 * if there is no data to be sent or retransmit, the stack will
2229 	 * immediately send up this notification.
2230 	 */
2231 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2232 		struct sctp_ulpevent *event;
2233 
2234 		asoc = sctp_id2assoc(sk, 0);
2235 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2236 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2237 					GFP_USER | __GFP_NOWARN);
2238 			if (!event)
2239 				return -ENOMEM;
2240 
2241 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2242 		}
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2249  *
2250  * This socket option is applicable to the UDP-style socket only.  When
2251  * set it will cause associations that are idle for more than the
2252  * specified number of seconds to automatically close.  An association
2253  * being idle is defined an association that has NOT sent or received
2254  * user data.  The special value of '0' indicates that no automatic
2255  * close of any associations should be performed.  The option expects an
2256  * integer defining the number of seconds of idle time before an
2257  * association is closed.
2258  */
2259 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2260 				     unsigned int optlen)
2261 {
2262 	struct sctp_sock *sp = sctp_sk(sk);
2263 	struct net *net = sock_net(sk);
2264 
2265 	/* Applicable to UDP-style socket only */
2266 	if (sctp_style(sk, TCP))
2267 		return -EOPNOTSUPP;
2268 	if (optlen != sizeof(int))
2269 		return -EINVAL;
2270 
2271 	sp->autoclose = *optval;
2272 	if (sp->autoclose > net->sctp.max_autoclose)
2273 		sp->autoclose = net->sctp.max_autoclose;
2274 
2275 	return 0;
2276 }
2277 
2278 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2279  *
2280  * Applications can enable or disable heartbeats for any peer address of
2281  * an association, modify an address's heartbeat interval, force a
2282  * heartbeat to be sent immediately, and adjust the address's maximum
2283  * number of retransmissions sent before an address is considered
2284  * unreachable.  The following structure is used to access and modify an
2285  * address's parameters:
2286  *
2287  *  struct sctp_paddrparams {
2288  *     sctp_assoc_t            spp_assoc_id;
2289  *     struct sockaddr_storage spp_address;
2290  *     uint32_t                spp_hbinterval;
2291  *     uint16_t                spp_pathmaxrxt;
2292  *     uint32_t                spp_pathmtu;
2293  *     uint32_t                spp_sackdelay;
2294  *     uint32_t                spp_flags;
2295  *     uint32_t                spp_ipv6_flowlabel;
2296  *     uint8_t                 spp_dscp;
2297  * };
2298  *
2299  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2300  *                     application, and identifies the association for
2301  *                     this query.
2302  *   spp_address     - This specifies which address is of interest.
2303  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2304  *                     in milliseconds.  If a  value of zero
2305  *                     is present in this field then no changes are to
2306  *                     be made to this parameter.
2307  *   spp_pathmaxrxt  - This contains the maximum number of
2308  *                     retransmissions before this address shall be
2309  *                     considered unreachable. If a  value of zero
2310  *                     is present in this field then no changes are to
2311  *                     be made to this parameter.
2312  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2313  *                     specified here will be the "fixed" path mtu.
2314  *                     Note that if the spp_address field is empty
2315  *                     then all associations on this address will
2316  *                     have this fixed path mtu set upon them.
2317  *
2318  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2319  *                     the number of milliseconds that sacks will be delayed
2320  *                     for. This value will apply to all addresses of an
2321  *                     association if the spp_address field is empty. Note
2322  *                     also, that if delayed sack is enabled and this
2323  *                     value is set to 0, no change is made to the last
2324  *                     recorded delayed sack timer value.
2325  *
2326  *   spp_flags       - These flags are used to control various features
2327  *                     on an association. The flag field may contain
2328  *                     zero or more of the following options.
2329  *
2330  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2331  *                     specified address. Note that if the address
2332  *                     field is empty all addresses for the association
2333  *                     have heartbeats enabled upon them.
2334  *
2335  *                     SPP_HB_DISABLE - Disable heartbeats on the
2336  *                     speicifed address. Note that if the address
2337  *                     field is empty all addresses for the association
2338  *                     will have their heartbeats disabled. Note also
2339  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2340  *                     mutually exclusive, only one of these two should
2341  *                     be specified. Enabling both fields will have
2342  *                     undetermined results.
2343  *
2344  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2345  *                     to be made immediately.
2346  *
2347  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2348  *                     heartbeat delayis to be set to the value of 0
2349  *                     milliseconds.
2350  *
2351  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2352  *                     discovery upon the specified address. Note that
2353  *                     if the address feild is empty then all addresses
2354  *                     on the association are effected.
2355  *
2356  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2357  *                     discovery upon the specified address. Note that
2358  *                     if the address feild is empty then all addresses
2359  *                     on the association are effected. Not also that
2360  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2361  *                     exclusive. Enabling both will have undetermined
2362  *                     results.
2363  *
2364  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2365  *                     on delayed sack. The time specified in spp_sackdelay
2366  *                     is used to specify the sack delay for this address. Note
2367  *                     that if spp_address is empty then all addresses will
2368  *                     enable delayed sack and take on the sack delay
2369  *                     value specified in spp_sackdelay.
2370  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2371  *                     off delayed sack. If the spp_address field is blank then
2372  *                     delayed sack is disabled for the entire association. Note
2373  *                     also that this field is mutually exclusive to
2374  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2375  *                     results.
2376  *
2377  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2378  *                     setting of the IPV6 flow label value.  The value is
2379  *                     contained in the spp_ipv6_flowlabel field.
2380  *                     Upon retrieval, this flag will be set to indicate that
2381  *                     the spp_ipv6_flowlabel field has a valid value returned.
2382  *                     If a specific destination address is set (in the
2383  *                     spp_address field), then the value returned is that of
2384  *                     the address.  If just an association is specified (and
2385  *                     no address), then the association's default flow label
2386  *                     is returned.  If neither an association nor a destination
2387  *                     is specified, then the socket's default flow label is
2388  *                     returned.  For non-IPv6 sockets, this flag will be left
2389  *                     cleared.
2390  *
2391  *                     SPP_DSCP:  Setting this flag enables the setting of the
2392  *                     Differentiated Services Code Point (DSCP) value
2393  *                     associated with either the association or a specific
2394  *                     address.  The value is obtained in the spp_dscp field.
2395  *                     Upon retrieval, this flag will be set to indicate that
2396  *                     the spp_dscp field has a valid value returned.  If a
2397  *                     specific destination address is set when called (in the
2398  *                     spp_address field), then that specific destination
2399  *                     address's DSCP value is returned.  If just an association
2400  *                     is specified, then the association's default DSCP is
2401  *                     returned.  If neither an association nor a destination is
2402  *                     specified, then the socket's default DSCP is returned.
2403  *
2404  *   spp_ipv6_flowlabel
2405  *                   - This field is used in conjunction with the
2406  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2407  *                     The 20 least significant bits are used for the flow
2408  *                     label.  This setting has precedence over any IPv6-layer
2409  *                     setting.
2410  *
2411  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2412  *                     and contains the DSCP.  The 6 most significant bits are
2413  *                     used for the DSCP.  This setting has precedence over any
2414  *                     IPv4- or IPv6- layer setting.
2415  */
2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2417 				       struct sctp_transport   *trans,
2418 				       struct sctp_association *asoc,
2419 				       struct sctp_sock        *sp,
2420 				       int                      hb_change,
2421 				       int                      pmtud_change,
2422 				       int                      sackdelay_change)
2423 {
2424 	int error;
2425 
2426 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2427 		error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2428 							trans->asoc, trans);
2429 		if (error)
2430 			return error;
2431 	}
2432 
2433 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2434 	 * this field is ignored.  Note also that a value of zero indicates
2435 	 * the current setting should be left unchanged.
2436 	 */
2437 	if (params->spp_flags & SPP_HB_ENABLE) {
2438 
2439 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2440 		 * set.  This lets us use 0 value when this flag
2441 		 * is set.
2442 		 */
2443 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2444 			params->spp_hbinterval = 0;
2445 
2446 		if (params->spp_hbinterval ||
2447 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2448 			if (trans) {
2449 				trans->hbinterval =
2450 				    msecs_to_jiffies(params->spp_hbinterval);
2451 			} else if (asoc) {
2452 				asoc->hbinterval =
2453 				    msecs_to_jiffies(params->spp_hbinterval);
2454 			} else {
2455 				sp->hbinterval = params->spp_hbinterval;
2456 			}
2457 		}
2458 	}
2459 
2460 	if (hb_change) {
2461 		if (trans) {
2462 			trans->param_flags =
2463 				(trans->param_flags & ~SPP_HB) | hb_change;
2464 		} else if (asoc) {
2465 			asoc->param_flags =
2466 				(asoc->param_flags & ~SPP_HB) | hb_change;
2467 		} else {
2468 			sp->param_flags =
2469 				(sp->param_flags & ~SPP_HB) | hb_change;
2470 		}
2471 	}
2472 
2473 	/* When Path MTU discovery is disabled the value specified here will
2474 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2475 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2476 	 * effect).
2477 	 */
2478 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2479 		if (trans) {
2480 			trans->pathmtu = params->spp_pathmtu;
2481 			sctp_assoc_sync_pmtu(asoc);
2482 		} else if (asoc) {
2483 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2484 		} else {
2485 			sp->pathmtu = params->spp_pathmtu;
2486 		}
2487 	}
2488 
2489 	if (pmtud_change) {
2490 		if (trans) {
2491 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2492 				(params->spp_flags & SPP_PMTUD_ENABLE);
2493 			trans->param_flags =
2494 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2495 			if (update) {
2496 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2497 				sctp_assoc_sync_pmtu(asoc);
2498 			}
2499 		} else if (asoc) {
2500 			asoc->param_flags =
2501 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2502 		} else {
2503 			sp->param_flags =
2504 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2505 		}
2506 	}
2507 
2508 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2509 	 * value of this field is ignored.  Note also that a value of zero
2510 	 * indicates the current setting should be left unchanged.
2511 	 */
2512 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2513 		if (trans) {
2514 			trans->sackdelay =
2515 				msecs_to_jiffies(params->spp_sackdelay);
2516 		} else if (asoc) {
2517 			asoc->sackdelay =
2518 				msecs_to_jiffies(params->spp_sackdelay);
2519 		} else {
2520 			sp->sackdelay = params->spp_sackdelay;
2521 		}
2522 	}
2523 
2524 	if (sackdelay_change) {
2525 		if (trans) {
2526 			trans->param_flags =
2527 				(trans->param_flags & ~SPP_SACKDELAY) |
2528 				sackdelay_change;
2529 		} else if (asoc) {
2530 			asoc->param_flags =
2531 				(asoc->param_flags & ~SPP_SACKDELAY) |
2532 				sackdelay_change;
2533 		} else {
2534 			sp->param_flags =
2535 				(sp->param_flags & ~SPP_SACKDELAY) |
2536 				sackdelay_change;
2537 		}
2538 	}
2539 
2540 	/* Note that a value of zero indicates the current setting should be
2541 	   left unchanged.
2542 	 */
2543 	if (params->spp_pathmaxrxt) {
2544 		if (trans) {
2545 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2546 		} else if (asoc) {
2547 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2548 		} else {
2549 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2550 		}
2551 	}
2552 
2553 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2554 		if (trans) {
2555 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2556 				trans->flowlabel = params->spp_ipv6_flowlabel &
2557 						   SCTP_FLOWLABEL_VAL_MASK;
2558 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2559 			}
2560 		} else if (asoc) {
2561 			struct sctp_transport *t;
2562 
2563 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2564 					    transports) {
2565 				if (t->ipaddr.sa.sa_family != AF_INET6)
2566 					continue;
2567 				t->flowlabel = params->spp_ipv6_flowlabel &
2568 					       SCTP_FLOWLABEL_VAL_MASK;
2569 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2570 			}
2571 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2572 					  SCTP_FLOWLABEL_VAL_MASK;
2573 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2574 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2575 			sp->flowlabel = params->spp_ipv6_flowlabel &
2576 					SCTP_FLOWLABEL_VAL_MASK;
2577 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2578 		}
2579 	}
2580 
2581 	if (params->spp_flags & SPP_DSCP) {
2582 		if (trans) {
2583 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 			trans->dscp |= SCTP_DSCP_SET_MASK;
2585 		} else if (asoc) {
2586 			struct sctp_transport *t;
2587 
2588 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2589 					    transports) {
2590 				t->dscp = params->spp_dscp &
2591 					  SCTP_DSCP_VAL_MASK;
2592 				t->dscp |= SCTP_DSCP_SET_MASK;
2593 			}
2594 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2595 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2596 		} else {
2597 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2598 			sp->dscp |= SCTP_DSCP_SET_MASK;
2599 		}
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2606 					    struct sctp_paddrparams *params,
2607 					    unsigned int optlen)
2608 {
2609 	struct sctp_transport   *trans = NULL;
2610 	struct sctp_association *asoc = NULL;
2611 	struct sctp_sock        *sp = sctp_sk(sk);
2612 	int error;
2613 	int hb_change, pmtud_change, sackdelay_change;
2614 
2615 	if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2616 					    spp_ipv6_flowlabel), 4)) {
2617 		if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2618 			return -EINVAL;
2619 	} else if (optlen != sizeof(*params)) {
2620 		return -EINVAL;
2621 	}
2622 
2623 	/* Validate flags and value parameters. */
2624 	hb_change        = params->spp_flags & SPP_HB;
2625 	pmtud_change     = params->spp_flags & SPP_PMTUD;
2626 	sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2627 
2628 	if (hb_change        == SPP_HB ||
2629 	    pmtud_change     == SPP_PMTUD ||
2630 	    sackdelay_change == SPP_SACKDELAY ||
2631 	    params->spp_sackdelay > 500 ||
2632 	    (params->spp_pathmtu &&
2633 	     params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2634 		return -EINVAL;
2635 
2636 	/* If an address other than INADDR_ANY is specified, and
2637 	 * no transport is found, then the request is invalid.
2638 	 */
2639 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
2640 		trans = sctp_addr_id2transport(sk, &params->spp_address,
2641 					       params->spp_assoc_id);
2642 		if (!trans)
2643 			return -EINVAL;
2644 	}
2645 
2646 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2647 	 * socket is a one to many style socket, and an association
2648 	 * was not found, then the id was invalid.
2649 	 */
2650 	asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2651 	if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2652 	    sctp_style(sk, UDP))
2653 		return -EINVAL;
2654 
2655 	/* Heartbeat demand can only be sent on a transport or
2656 	 * association, but not a socket.
2657 	 */
2658 	if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2659 		return -EINVAL;
2660 
2661 	/* Process parameters. */
2662 	error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2663 					    hb_change, pmtud_change,
2664 					    sackdelay_change);
2665 
2666 	if (error)
2667 		return error;
2668 
2669 	/* If changes are for association, also apply parameters to each
2670 	 * transport.
2671 	 */
2672 	if (!trans && asoc) {
2673 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2674 				transports) {
2675 			sctp_apply_peer_addr_params(params, trans, asoc, sp,
2676 						    hb_change, pmtud_change,
2677 						    sackdelay_change);
2678 		}
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2685 {
2686 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2687 }
2688 
2689 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2690 {
2691 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2692 }
2693 
2694 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2695 					struct sctp_association *asoc)
2696 {
2697 	struct sctp_transport *trans;
2698 
2699 	if (params->sack_delay) {
2700 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2701 		asoc->param_flags =
2702 			sctp_spp_sackdelay_enable(asoc->param_flags);
2703 	}
2704 	if (params->sack_freq == 1) {
2705 		asoc->param_flags =
2706 			sctp_spp_sackdelay_disable(asoc->param_flags);
2707 	} else if (params->sack_freq > 1) {
2708 		asoc->sackfreq = params->sack_freq;
2709 		asoc->param_flags =
2710 			sctp_spp_sackdelay_enable(asoc->param_flags);
2711 	}
2712 
2713 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2714 			    transports) {
2715 		if (params->sack_delay) {
2716 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2717 			trans->param_flags =
2718 				sctp_spp_sackdelay_enable(trans->param_flags);
2719 		}
2720 		if (params->sack_freq == 1) {
2721 			trans->param_flags =
2722 				sctp_spp_sackdelay_disable(trans->param_flags);
2723 		} else if (params->sack_freq > 1) {
2724 			trans->sackfreq = params->sack_freq;
2725 			trans->param_flags =
2726 				sctp_spp_sackdelay_enable(trans->param_flags);
2727 		}
2728 	}
2729 }
2730 
2731 /*
2732  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2733  *
2734  * This option will effect the way delayed acks are performed.  This
2735  * option allows you to get or set the delayed ack time, in
2736  * milliseconds.  It also allows changing the delayed ack frequency.
2737  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2738  * the assoc_id is 0, then this sets or gets the endpoints default
2739  * values.  If the assoc_id field is non-zero, then the set or get
2740  * effects the specified association for the one to many model (the
2741  * assoc_id field is ignored by the one to one model).  Note that if
2742  * sack_delay or sack_freq are 0 when setting this option, then the
2743  * current values will remain unchanged.
2744  *
2745  * struct sctp_sack_info {
2746  *     sctp_assoc_t            sack_assoc_id;
2747  *     uint32_t                sack_delay;
2748  *     uint32_t                sack_freq;
2749  * };
2750  *
2751  * sack_assoc_id -  This parameter, indicates which association the user
2752  *    is performing an action upon.  Note that if this field's value is
2753  *    zero then the endpoints default value is changed (effecting future
2754  *    associations only).
2755  *
2756  * sack_delay -  This parameter contains the number of milliseconds that
2757  *    the user is requesting the delayed ACK timer be set to.  Note that
2758  *    this value is defined in the standard to be between 200 and 500
2759  *    milliseconds.
2760  *
2761  * sack_freq -  This parameter contains the number of packets that must
2762  *    be received before a sack is sent without waiting for the delay
2763  *    timer to expire.  The default value for this is 2, setting this
2764  *    value to 1 will disable the delayed sack algorithm.
2765  */
2766 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2767 					 struct sctp_sack_info *params)
2768 {
2769 	struct sctp_sock *sp = sctp_sk(sk);
2770 	struct sctp_association *asoc;
2771 
2772 	/* Validate value parameter. */
2773 	if (params->sack_delay > 500)
2774 		return -EINVAL;
2775 
2776 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2777 	 * socket is a one to many style socket, and an association
2778 	 * was not found, then the id was invalid.
2779 	 */
2780 	asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2781 	if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2782 	    sctp_style(sk, UDP))
2783 		return -EINVAL;
2784 
2785 	if (asoc) {
2786 		sctp_apply_asoc_delayed_ack(params, asoc);
2787 
2788 		return 0;
2789 	}
2790 
2791 	if (sctp_style(sk, TCP))
2792 		params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2793 
2794 	if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2795 	    params->sack_assoc_id == SCTP_ALL_ASSOC) {
2796 		if (params->sack_delay) {
2797 			sp->sackdelay = params->sack_delay;
2798 			sp->param_flags =
2799 				sctp_spp_sackdelay_enable(sp->param_flags);
2800 		}
2801 		if (params->sack_freq == 1) {
2802 			sp->param_flags =
2803 				sctp_spp_sackdelay_disable(sp->param_flags);
2804 		} else if (params->sack_freq > 1) {
2805 			sp->sackfreq = params->sack_freq;
2806 			sp->param_flags =
2807 				sctp_spp_sackdelay_enable(sp->param_flags);
2808 		}
2809 	}
2810 
2811 	if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2812 	    params->sack_assoc_id == SCTP_ALL_ASSOC)
2813 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2814 			sctp_apply_asoc_delayed_ack(params, asoc);
2815 
2816 	return 0;
2817 }
2818 
2819 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2820 				       struct sctp_sack_info *params,
2821 				       unsigned int optlen)
2822 {
2823 	if (optlen == sizeof(struct sctp_assoc_value)) {
2824 		struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2825 		struct sctp_sack_info p;
2826 
2827 		pr_warn_ratelimited(DEPRECATED
2828 				    "%s (pid %d) "
2829 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2830 				    "Use struct sctp_sack_info instead\n",
2831 				    current->comm, task_pid_nr(current));
2832 
2833 		p.sack_assoc_id = v->assoc_id;
2834 		p.sack_delay = v->assoc_value;
2835 		p.sack_freq = v->assoc_value ? 0 : 1;
2836 		return __sctp_setsockopt_delayed_ack(sk, &p);
2837 	}
2838 
2839 	if (optlen != sizeof(struct sctp_sack_info))
2840 		return -EINVAL;
2841 	if (params->sack_delay == 0 && params->sack_freq == 0)
2842 		return 0;
2843 	return __sctp_setsockopt_delayed_ack(sk, params);
2844 }
2845 
2846 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2847  *
2848  * Applications can specify protocol parameters for the default association
2849  * initialization.  The option name argument to setsockopt() and getsockopt()
2850  * is SCTP_INITMSG.
2851  *
2852  * Setting initialization parameters is effective only on an unconnected
2853  * socket (for UDP-style sockets only future associations are effected
2854  * by the change).  With TCP-style sockets, this option is inherited by
2855  * sockets derived from a listener socket.
2856  */
2857 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2858 				   unsigned int optlen)
2859 {
2860 	struct sctp_sock *sp = sctp_sk(sk);
2861 
2862 	if (optlen != sizeof(struct sctp_initmsg))
2863 		return -EINVAL;
2864 
2865 	if (sinit->sinit_num_ostreams)
2866 		sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2867 	if (sinit->sinit_max_instreams)
2868 		sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2869 	if (sinit->sinit_max_attempts)
2870 		sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2871 	if (sinit->sinit_max_init_timeo)
2872 		sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2873 
2874 	return 0;
2875 }
2876 
2877 /*
2878  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2879  *
2880  *   Applications that wish to use the sendto() system call may wish to
2881  *   specify a default set of parameters that would normally be supplied
2882  *   through the inclusion of ancillary data.  This socket option allows
2883  *   such an application to set the default sctp_sndrcvinfo structure.
2884  *   The application that wishes to use this socket option simply passes
2885  *   in to this call the sctp_sndrcvinfo structure defined in Section
2886  *   5.2.2) The input parameters accepted by this call include
2887  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2888  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2889  *   to this call if the caller is using the UDP model.
2890  */
2891 static int sctp_setsockopt_default_send_param(struct sock *sk,
2892 					      struct sctp_sndrcvinfo *info,
2893 					      unsigned int optlen)
2894 {
2895 	struct sctp_sock *sp = sctp_sk(sk);
2896 	struct sctp_association *asoc;
2897 
2898 	if (optlen != sizeof(*info))
2899 		return -EINVAL;
2900 	if (info->sinfo_flags &
2901 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2902 	      SCTP_ABORT | SCTP_EOF))
2903 		return -EINVAL;
2904 
2905 	asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2906 	if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2907 	    sctp_style(sk, UDP))
2908 		return -EINVAL;
2909 
2910 	if (asoc) {
2911 		asoc->default_stream = info->sinfo_stream;
2912 		asoc->default_flags = info->sinfo_flags;
2913 		asoc->default_ppid = info->sinfo_ppid;
2914 		asoc->default_context = info->sinfo_context;
2915 		asoc->default_timetolive = info->sinfo_timetolive;
2916 
2917 		return 0;
2918 	}
2919 
2920 	if (sctp_style(sk, TCP))
2921 		info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2922 
2923 	if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2924 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2925 		sp->default_stream = info->sinfo_stream;
2926 		sp->default_flags = info->sinfo_flags;
2927 		sp->default_ppid = info->sinfo_ppid;
2928 		sp->default_context = info->sinfo_context;
2929 		sp->default_timetolive = info->sinfo_timetolive;
2930 	}
2931 
2932 	if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2933 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2934 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2935 			asoc->default_stream = info->sinfo_stream;
2936 			asoc->default_flags = info->sinfo_flags;
2937 			asoc->default_ppid = info->sinfo_ppid;
2938 			asoc->default_context = info->sinfo_context;
2939 			asoc->default_timetolive = info->sinfo_timetolive;
2940 		}
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2947  * (SCTP_DEFAULT_SNDINFO)
2948  */
2949 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2950 					   struct sctp_sndinfo *info,
2951 					   unsigned int optlen)
2952 {
2953 	struct sctp_sock *sp = sctp_sk(sk);
2954 	struct sctp_association *asoc;
2955 
2956 	if (optlen != sizeof(*info))
2957 		return -EINVAL;
2958 	if (info->snd_flags &
2959 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2960 	      SCTP_ABORT | SCTP_EOF))
2961 		return -EINVAL;
2962 
2963 	asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2964 	if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2965 	    sctp_style(sk, UDP))
2966 		return -EINVAL;
2967 
2968 	if (asoc) {
2969 		asoc->default_stream = info->snd_sid;
2970 		asoc->default_flags = info->snd_flags;
2971 		asoc->default_ppid = info->snd_ppid;
2972 		asoc->default_context = info->snd_context;
2973 
2974 		return 0;
2975 	}
2976 
2977 	if (sctp_style(sk, TCP))
2978 		info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2979 
2980 	if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2981 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2982 		sp->default_stream = info->snd_sid;
2983 		sp->default_flags = info->snd_flags;
2984 		sp->default_ppid = info->snd_ppid;
2985 		sp->default_context = info->snd_context;
2986 	}
2987 
2988 	if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2989 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2990 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2991 			asoc->default_stream = info->snd_sid;
2992 			asoc->default_flags = info->snd_flags;
2993 			asoc->default_ppid = info->snd_ppid;
2994 			asoc->default_context = info->snd_context;
2995 		}
2996 	}
2997 
2998 	return 0;
2999 }
3000 
3001 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3002  *
3003  * Requests that the local SCTP stack use the enclosed peer address as
3004  * the association primary.  The enclosed address must be one of the
3005  * association peer's addresses.
3006  */
3007 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3008 					unsigned int optlen)
3009 {
3010 	struct sctp_transport *trans;
3011 	struct sctp_af *af;
3012 	int err;
3013 
3014 	if (optlen != sizeof(struct sctp_prim))
3015 		return -EINVAL;
3016 
3017 	/* Allow security module to validate address but need address len. */
3018 	af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3019 	if (!af)
3020 		return -EINVAL;
3021 
3022 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3023 					 (struct sockaddr *)&prim->ssp_addr,
3024 					 af->sockaddr_len);
3025 	if (err)
3026 		return err;
3027 
3028 	trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3029 	if (!trans)
3030 		return -EINVAL;
3031 
3032 	sctp_assoc_set_primary(trans->asoc, trans);
3033 
3034 	return 0;
3035 }
3036 
3037 /*
3038  * 7.1.5 SCTP_NODELAY
3039  *
3040  * Turn on/off any Nagle-like algorithm.  This means that packets are
3041  * generally sent as soon as possible and no unnecessary delays are
3042  * introduced, at the cost of more packets in the network.  Expects an
3043  *  integer boolean flag.
3044  */
3045 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3046 				   unsigned int optlen)
3047 {
3048 	if (optlen < sizeof(int))
3049 		return -EINVAL;
3050 	sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3051 	return 0;
3052 }
3053 
3054 /*
3055  *
3056  * 7.1.1 SCTP_RTOINFO
3057  *
3058  * The protocol parameters used to initialize and bound retransmission
3059  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3060  * and modify these parameters.
3061  * All parameters are time values, in milliseconds.  A value of 0, when
3062  * modifying the parameters, indicates that the current value should not
3063  * be changed.
3064  *
3065  */
3066 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3067 				   struct sctp_rtoinfo *rtoinfo,
3068 				   unsigned int optlen)
3069 {
3070 	struct sctp_association *asoc;
3071 	unsigned long rto_min, rto_max;
3072 	struct sctp_sock *sp = sctp_sk(sk);
3073 
3074 	if (optlen != sizeof (struct sctp_rtoinfo))
3075 		return -EINVAL;
3076 
3077 	asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3078 
3079 	/* Set the values to the specific association */
3080 	if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3081 	    sctp_style(sk, UDP))
3082 		return -EINVAL;
3083 
3084 	rto_max = rtoinfo->srto_max;
3085 	rto_min = rtoinfo->srto_min;
3086 
3087 	if (rto_max)
3088 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3089 	else
3090 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3091 
3092 	if (rto_min)
3093 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3094 	else
3095 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3096 
3097 	if (rto_min > rto_max)
3098 		return -EINVAL;
3099 
3100 	if (asoc) {
3101 		if (rtoinfo->srto_initial != 0)
3102 			asoc->rto_initial =
3103 				msecs_to_jiffies(rtoinfo->srto_initial);
3104 		asoc->rto_max = rto_max;
3105 		asoc->rto_min = rto_min;
3106 	} else {
3107 		/* If there is no association or the association-id = 0
3108 		 * set the values to the endpoint.
3109 		 */
3110 		if (rtoinfo->srto_initial != 0)
3111 			sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3112 		sp->rtoinfo.srto_max = rto_max;
3113 		sp->rtoinfo.srto_min = rto_min;
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 /*
3120  *
3121  * 7.1.2 SCTP_ASSOCINFO
3122  *
3123  * This option is used to tune the maximum retransmission attempts
3124  * of the association.
3125  * Returns an error if the new association retransmission value is
3126  * greater than the sum of the retransmission value  of the peer.
3127  * See [SCTP] for more information.
3128  *
3129  */
3130 static int sctp_setsockopt_associnfo(struct sock *sk,
3131 				     struct sctp_assocparams *assocparams,
3132 				     unsigned int optlen)
3133 {
3134 
3135 	struct sctp_association *asoc;
3136 
3137 	if (optlen != sizeof(struct sctp_assocparams))
3138 		return -EINVAL;
3139 
3140 	asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3141 
3142 	if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3143 	    sctp_style(sk, UDP))
3144 		return -EINVAL;
3145 
3146 	/* Set the values to the specific association */
3147 	if (asoc) {
3148 		if (assocparams->sasoc_asocmaxrxt != 0) {
3149 			__u32 path_sum = 0;
3150 			int   paths = 0;
3151 			struct sctp_transport *peer_addr;
3152 
3153 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3154 					transports) {
3155 				path_sum += peer_addr->pathmaxrxt;
3156 				paths++;
3157 			}
3158 
3159 			/* Only validate asocmaxrxt if we have more than
3160 			 * one path/transport.  We do this because path
3161 			 * retransmissions are only counted when we have more
3162 			 * then one path.
3163 			 */
3164 			if (paths > 1 &&
3165 			    assocparams->sasoc_asocmaxrxt > path_sum)
3166 				return -EINVAL;
3167 
3168 			asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3169 		}
3170 
3171 		if (assocparams->sasoc_cookie_life != 0)
3172 			asoc->cookie_life =
3173 				ms_to_ktime(assocparams->sasoc_cookie_life);
3174 	} else {
3175 		/* Set the values to the endpoint */
3176 		struct sctp_sock *sp = sctp_sk(sk);
3177 
3178 		if (assocparams->sasoc_asocmaxrxt != 0)
3179 			sp->assocparams.sasoc_asocmaxrxt =
3180 						assocparams->sasoc_asocmaxrxt;
3181 		if (assocparams->sasoc_cookie_life != 0)
3182 			sp->assocparams.sasoc_cookie_life =
3183 						assocparams->sasoc_cookie_life;
3184 	}
3185 	return 0;
3186 }
3187 
3188 /*
3189  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3190  *
3191  * This socket option is a boolean flag which turns on or off mapped V4
3192  * addresses.  If this option is turned on and the socket is type
3193  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3194  * If this option is turned off, then no mapping will be done of V4
3195  * addresses and a user will receive both PF_INET6 and PF_INET type
3196  * addresses on the socket.
3197  */
3198 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3199 				    unsigned int optlen)
3200 {
3201 	struct sctp_sock *sp = sctp_sk(sk);
3202 
3203 	if (optlen < sizeof(int))
3204 		return -EINVAL;
3205 	if (*val)
3206 		sp->v4mapped = 1;
3207 	else
3208 		sp->v4mapped = 0;
3209 
3210 	return 0;
3211 }
3212 
3213 /*
3214  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3215  * This option will get or set the maximum size to put in any outgoing
3216  * SCTP DATA chunk.  If a message is larger than this size it will be
3217  * fragmented by SCTP into the specified size.  Note that the underlying
3218  * SCTP implementation may fragment into smaller sized chunks when the
3219  * PMTU of the underlying association is smaller than the value set by
3220  * the user.  The default value for this option is '0' which indicates
3221  * the user is NOT limiting fragmentation and only the PMTU will effect
3222  * SCTP's choice of DATA chunk size.  Note also that values set larger
3223  * than the maximum size of an IP datagram will effectively let SCTP
3224  * control fragmentation (i.e. the same as setting this option to 0).
3225  *
3226  * The following structure is used to access and modify this parameter:
3227  *
3228  * struct sctp_assoc_value {
3229  *   sctp_assoc_t assoc_id;
3230  *   uint32_t assoc_value;
3231  * };
3232  *
3233  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3234  *    For one-to-many style sockets this parameter indicates which
3235  *    association the user is performing an action upon.  Note that if
3236  *    this field's value is zero then the endpoints default value is
3237  *    changed (effecting future associations only).
3238  * assoc_value:  This parameter specifies the maximum size in bytes.
3239  */
3240 static int sctp_setsockopt_maxseg(struct sock *sk,
3241 				  struct sctp_assoc_value *params,
3242 				  unsigned int optlen)
3243 {
3244 	struct sctp_sock *sp = sctp_sk(sk);
3245 	struct sctp_association *asoc;
3246 	sctp_assoc_t assoc_id;
3247 	int val;
3248 
3249 	if (optlen == sizeof(int)) {
3250 		pr_warn_ratelimited(DEPRECATED
3251 				    "%s (pid %d) "
3252 				    "Use of int in maxseg socket option.\n"
3253 				    "Use struct sctp_assoc_value instead\n",
3254 				    current->comm, task_pid_nr(current));
3255 		assoc_id = SCTP_FUTURE_ASSOC;
3256 		val = *(int *)params;
3257 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3258 		assoc_id = params->assoc_id;
3259 		val = params->assoc_value;
3260 	} else {
3261 		return -EINVAL;
3262 	}
3263 
3264 	asoc = sctp_id2assoc(sk, assoc_id);
3265 	if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3266 	    sctp_style(sk, UDP))
3267 		return -EINVAL;
3268 
3269 	if (val) {
3270 		int min_len, max_len;
3271 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3272 				 sizeof(struct sctp_data_chunk);
3273 
3274 		min_len = sctp_min_frag_point(sp, datasize);
3275 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3276 
3277 		if (val < min_len || val > max_len)
3278 			return -EINVAL;
3279 	}
3280 
3281 	if (asoc) {
3282 		asoc->user_frag = val;
3283 		sctp_assoc_update_frag_point(asoc);
3284 	} else {
3285 		sp->user_frag = val;
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 
3292 /*
3293  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3294  *
3295  *   Requests that the peer mark the enclosed address as the association
3296  *   primary. The enclosed address must be one of the association's
3297  *   locally bound addresses. The following structure is used to make a
3298  *   set primary request:
3299  */
3300 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3301 					     struct sctp_setpeerprim *prim,
3302 					     unsigned int optlen)
3303 {
3304 	struct sctp_sock	*sp;
3305 	struct sctp_association	*asoc = NULL;
3306 	struct sctp_chunk	*chunk;
3307 	struct sctp_af		*af;
3308 	int 			err;
3309 
3310 	sp = sctp_sk(sk);
3311 
3312 	if (!sp->ep->asconf_enable)
3313 		return -EPERM;
3314 
3315 	if (optlen != sizeof(struct sctp_setpeerprim))
3316 		return -EINVAL;
3317 
3318 	asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3319 	if (!asoc)
3320 		return -EINVAL;
3321 
3322 	if (!asoc->peer.asconf_capable)
3323 		return -EPERM;
3324 
3325 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3326 		return -EPERM;
3327 
3328 	if (!sctp_state(asoc, ESTABLISHED))
3329 		return -ENOTCONN;
3330 
3331 	af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3332 	if (!af)
3333 		return -EINVAL;
3334 
3335 	if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3336 		return -EADDRNOTAVAIL;
3337 
3338 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3339 		return -EADDRNOTAVAIL;
3340 
3341 	/* Allow security module to validate address. */
3342 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3343 					 (struct sockaddr *)&prim->sspp_addr,
3344 					 af->sockaddr_len);
3345 	if (err)
3346 		return err;
3347 
3348 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3349 	chunk = sctp_make_asconf_set_prim(asoc,
3350 					  (union sctp_addr *)&prim->sspp_addr);
3351 	if (!chunk)
3352 		return -ENOMEM;
3353 
3354 	err = sctp_send_asconf(asoc, chunk);
3355 
3356 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3357 
3358 	return err;
3359 }
3360 
3361 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3362 					    struct sctp_setadaptation *adapt,
3363 					    unsigned int optlen)
3364 {
3365 	if (optlen != sizeof(struct sctp_setadaptation))
3366 		return -EINVAL;
3367 
3368 	sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3369 
3370 	return 0;
3371 }
3372 
3373 /*
3374  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3375  *
3376  * The context field in the sctp_sndrcvinfo structure is normally only
3377  * used when a failed message is retrieved holding the value that was
3378  * sent down on the actual send call.  This option allows the setting of
3379  * a default context on an association basis that will be received on
3380  * reading messages from the peer.  This is especially helpful in the
3381  * one-2-many model for an application to keep some reference to an
3382  * internal state machine that is processing messages on the
3383  * association.  Note that the setting of this value only effects
3384  * received messages from the peer and does not effect the value that is
3385  * saved with outbound messages.
3386  */
3387 static int sctp_setsockopt_context(struct sock *sk,
3388 				   struct sctp_assoc_value *params,
3389 				   unsigned int optlen)
3390 {
3391 	struct sctp_sock *sp = sctp_sk(sk);
3392 	struct sctp_association *asoc;
3393 
3394 	if (optlen != sizeof(struct sctp_assoc_value))
3395 		return -EINVAL;
3396 
3397 	asoc = sctp_id2assoc(sk, params->assoc_id);
3398 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3399 	    sctp_style(sk, UDP))
3400 		return -EINVAL;
3401 
3402 	if (asoc) {
3403 		asoc->default_rcv_context = params->assoc_value;
3404 
3405 		return 0;
3406 	}
3407 
3408 	if (sctp_style(sk, TCP))
3409 		params->assoc_id = SCTP_FUTURE_ASSOC;
3410 
3411 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3412 	    params->assoc_id == SCTP_ALL_ASSOC)
3413 		sp->default_rcv_context = params->assoc_value;
3414 
3415 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3416 	    params->assoc_id == SCTP_ALL_ASSOC)
3417 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3418 			asoc->default_rcv_context = params->assoc_value;
3419 
3420 	return 0;
3421 }
3422 
3423 /*
3424  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3425  *
3426  * This options will at a minimum specify if the implementation is doing
3427  * fragmented interleave.  Fragmented interleave, for a one to many
3428  * socket, is when subsequent calls to receive a message may return
3429  * parts of messages from different associations.  Some implementations
3430  * may allow you to turn this value on or off.  If so, when turned off,
3431  * no fragment interleave will occur (which will cause a head of line
3432  * blocking amongst multiple associations sharing the same one to many
3433  * socket).  When this option is turned on, then each receive call may
3434  * come from a different association (thus the user must receive data
3435  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3436  * association each receive belongs to.
3437  *
3438  * This option takes a boolean value.  A non-zero value indicates that
3439  * fragmented interleave is on.  A value of zero indicates that
3440  * fragmented interleave is off.
3441  *
3442  * Note that it is important that an implementation that allows this
3443  * option to be turned on, have it off by default.  Otherwise an unaware
3444  * application using the one to many model may become confused and act
3445  * incorrectly.
3446  */
3447 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3448 					       unsigned int optlen)
3449 {
3450 	if (optlen != sizeof(int))
3451 		return -EINVAL;
3452 
3453 	sctp_sk(sk)->frag_interleave = !!*val;
3454 
3455 	if (!sctp_sk(sk)->frag_interleave)
3456 		sctp_sk(sk)->ep->intl_enable = 0;
3457 
3458 	return 0;
3459 }
3460 
3461 /*
3462  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3463  *       (SCTP_PARTIAL_DELIVERY_POINT)
3464  *
3465  * This option will set or get the SCTP partial delivery point.  This
3466  * point is the size of a message where the partial delivery API will be
3467  * invoked to help free up rwnd space for the peer.  Setting this to a
3468  * lower value will cause partial deliveries to happen more often.  The
3469  * calls argument is an integer that sets or gets the partial delivery
3470  * point.  Note also that the call will fail if the user attempts to set
3471  * this value larger than the socket receive buffer size.
3472  *
3473  * Note that any single message having a length smaller than or equal to
3474  * the SCTP partial delivery point will be delivered in one single read
3475  * call as long as the user provided buffer is large enough to hold the
3476  * message.
3477  */
3478 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3479 						  unsigned int optlen)
3480 {
3481 	if (optlen != sizeof(u32))
3482 		return -EINVAL;
3483 
3484 	/* Note: We double the receive buffer from what the user sets
3485 	 * it to be, also initial rwnd is based on rcvbuf/2.
3486 	 */
3487 	if (*val > (sk->sk_rcvbuf >> 1))
3488 		return -EINVAL;
3489 
3490 	sctp_sk(sk)->pd_point = *val;
3491 
3492 	return 0; /* is this the right error code? */
3493 }
3494 
3495 /*
3496  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3497  *
3498  * This option will allow a user to change the maximum burst of packets
3499  * that can be emitted by this association.  Note that the default value
3500  * is 4, and some implementations may restrict this setting so that it
3501  * can only be lowered.
3502  *
3503  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3504  * future associations inheriting the socket value.
3505  */
3506 static int sctp_setsockopt_maxburst(struct sock *sk,
3507 				    struct sctp_assoc_value *params,
3508 				    unsigned int optlen)
3509 {
3510 	struct sctp_sock *sp = sctp_sk(sk);
3511 	struct sctp_association *asoc;
3512 	sctp_assoc_t assoc_id;
3513 	u32 assoc_value;
3514 
3515 	if (optlen == sizeof(int)) {
3516 		pr_warn_ratelimited(DEPRECATED
3517 				    "%s (pid %d) "
3518 				    "Use of int in max_burst socket option deprecated.\n"
3519 				    "Use struct sctp_assoc_value instead\n",
3520 				    current->comm, task_pid_nr(current));
3521 		assoc_id = SCTP_FUTURE_ASSOC;
3522 		assoc_value = *((int *)params);
3523 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3524 		assoc_id = params->assoc_id;
3525 		assoc_value = params->assoc_value;
3526 	} else
3527 		return -EINVAL;
3528 
3529 	asoc = sctp_id2assoc(sk, assoc_id);
3530 	if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3531 		return -EINVAL;
3532 
3533 	if (asoc) {
3534 		asoc->max_burst = assoc_value;
3535 
3536 		return 0;
3537 	}
3538 
3539 	if (sctp_style(sk, TCP))
3540 		assoc_id = SCTP_FUTURE_ASSOC;
3541 
3542 	if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3543 		sp->max_burst = assoc_value;
3544 
3545 	if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3546 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3547 			asoc->max_burst = assoc_value;
3548 
3549 	return 0;
3550 }
3551 
3552 /*
3553  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3554  *
3555  * This set option adds a chunk type that the user is requesting to be
3556  * received only in an authenticated way.  Changes to the list of chunks
3557  * will only effect future associations on the socket.
3558  */
3559 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3560 				      struct sctp_authchunk *val,
3561 				      unsigned int optlen)
3562 {
3563 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3564 
3565 	if (!ep->auth_enable)
3566 		return -EACCES;
3567 
3568 	if (optlen != sizeof(struct sctp_authchunk))
3569 		return -EINVAL;
3570 
3571 	switch (val->sauth_chunk) {
3572 	case SCTP_CID_INIT:
3573 	case SCTP_CID_INIT_ACK:
3574 	case SCTP_CID_SHUTDOWN_COMPLETE:
3575 	case SCTP_CID_AUTH:
3576 		return -EINVAL;
3577 	}
3578 
3579 	/* add this chunk id to the endpoint */
3580 	return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3581 }
3582 
3583 /*
3584  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3585  *
3586  * This option gets or sets the list of HMAC algorithms that the local
3587  * endpoint requires the peer to use.
3588  */
3589 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3590 				      struct sctp_hmacalgo *hmacs,
3591 				      unsigned int optlen)
3592 {
3593 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3594 	u32 idents;
3595 
3596 	if (!ep->auth_enable)
3597 		return -EACCES;
3598 
3599 	if (optlen < sizeof(struct sctp_hmacalgo))
3600 		return -EINVAL;
3601 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3602 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3603 
3604 	idents = hmacs->shmac_num_idents;
3605 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3606 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3607 		return -EINVAL;
3608 
3609 	return sctp_auth_ep_set_hmacs(ep, hmacs);
3610 }
3611 
3612 /*
3613  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3614  *
3615  * This option will set a shared secret key which is used to build an
3616  * association shared key.
3617  */
3618 static int sctp_setsockopt_auth_key(struct sock *sk,
3619 				    struct sctp_authkey *authkey,
3620 				    unsigned int optlen)
3621 {
3622 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3623 	struct sctp_association *asoc;
3624 	int ret = -EINVAL;
3625 
3626 	if (optlen <= sizeof(struct sctp_authkey))
3627 		return -EINVAL;
3628 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3629 	 * this.
3630 	 */
3631 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3632 
3633 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3634 		goto out;
3635 
3636 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3637 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3638 	    sctp_style(sk, UDP))
3639 		goto out;
3640 
3641 	if (asoc) {
3642 		ret = sctp_auth_set_key(ep, asoc, authkey);
3643 		goto out;
3644 	}
3645 
3646 	if (sctp_style(sk, TCP))
3647 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3648 
3649 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3650 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3651 		ret = sctp_auth_set_key(ep, asoc, authkey);
3652 		if (ret)
3653 			goto out;
3654 	}
3655 
3656 	ret = 0;
3657 
3658 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3659 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3660 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3661 			int res = sctp_auth_set_key(ep, asoc, authkey);
3662 
3663 			if (res && !ret)
3664 				ret = res;
3665 		}
3666 	}
3667 
3668 out:
3669 	memzero_explicit(authkey, optlen);
3670 	return ret;
3671 }
3672 
3673 /*
3674  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3675  *
3676  * This option will get or set the active shared key to be used to build
3677  * the association shared key.
3678  */
3679 static int sctp_setsockopt_active_key(struct sock *sk,
3680 				      struct sctp_authkeyid *val,
3681 				      unsigned int optlen)
3682 {
3683 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3684 	struct sctp_association *asoc;
3685 	int ret = 0;
3686 
3687 	if (optlen != sizeof(struct sctp_authkeyid))
3688 		return -EINVAL;
3689 
3690 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3691 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3692 	    sctp_style(sk, UDP))
3693 		return -EINVAL;
3694 
3695 	if (asoc)
3696 		return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3697 
3698 	if (sctp_style(sk, TCP))
3699 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3700 
3701 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3702 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3703 		ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3704 		if (ret)
3705 			return ret;
3706 	}
3707 
3708 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3709 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3710 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3711 			int res = sctp_auth_set_active_key(ep, asoc,
3712 							   val->scact_keynumber);
3713 
3714 			if (res && !ret)
3715 				ret = res;
3716 		}
3717 	}
3718 
3719 	return ret;
3720 }
3721 
3722 /*
3723  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3724  *
3725  * This set option will delete a shared secret key from use.
3726  */
3727 static int sctp_setsockopt_del_key(struct sock *sk,
3728 				   struct sctp_authkeyid *val,
3729 				   unsigned int optlen)
3730 {
3731 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3732 	struct sctp_association *asoc;
3733 	int ret = 0;
3734 
3735 	if (optlen != sizeof(struct sctp_authkeyid))
3736 		return -EINVAL;
3737 
3738 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3739 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3740 	    sctp_style(sk, UDP))
3741 		return -EINVAL;
3742 
3743 	if (asoc)
3744 		return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3745 
3746 	if (sctp_style(sk, TCP))
3747 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3748 
3749 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3750 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3751 		ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3752 		if (ret)
3753 			return ret;
3754 	}
3755 
3756 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3757 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3758 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3759 			int res = sctp_auth_del_key_id(ep, asoc,
3760 						       val->scact_keynumber);
3761 
3762 			if (res && !ret)
3763 				ret = res;
3764 		}
3765 	}
3766 
3767 	return ret;
3768 }
3769 
3770 /*
3771  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3772  *
3773  * This set option will deactivate a shared secret key.
3774  */
3775 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3776 					  struct sctp_authkeyid *val,
3777 					  unsigned int optlen)
3778 {
3779 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3780 	struct sctp_association *asoc;
3781 	int ret = 0;
3782 
3783 	if (optlen != sizeof(struct sctp_authkeyid))
3784 		return -EINVAL;
3785 
3786 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3787 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3788 	    sctp_style(sk, UDP))
3789 		return -EINVAL;
3790 
3791 	if (asoc)
3792 		return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3793 
3794 	if (sctp_style(sk, TCP))
3795 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3796 
3797 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3798 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3799 		ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3800 		if (ret)
3801 			return ret;
3802 	}
3803 
3804 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3805 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3806 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3807 			int res = sctp_auth_deact_key_id(ep, asoc,
3808 							 val->scact_keynumber);
3809 
3810 			if (res && !ret)
3811 				ret = res;
3812 		}
3813 	}
3814 
3815 	return ret;
3816 }
3817 
3818 /*
3819  * 8.1.23 SCTP_AUTO_ASCONF
3820  *
3821  * This option will enable or disable the use of the automatic generation of
3822  * ASCONF chunks to add and delete addresses to an existing association.  Note
3823  * that this option has two caveats namely: a) it only affects sockets that
3824  * are bound to all addresses available to the SCTP stack, and b) the system
3825  * administrator may have an overriding control that turns the ASCONF feature
3826  * off no matter what setting the socket option may have.
3827  * This option expects an integer boolean flag, where a non-zero value turns on
3828  * the option, and a zero value turns off the option.
3829  * Note. In this implementation, socket operation overrides default parameter
3830  * being set by sysctl as well as FreeBSD implementation
3831  */
3832 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3833 					unsigned int optlen)
3834 {
3835 	struct sctp_sock *sp = sctp_sk(sk);
3836 
3837 	if (optlen < sizeof(int))
3838 		return -EINVAL;
3839 	if (!sctp_is_ep_boundall(sk) && *val)
3840 		return -EINVAL;
3841 	if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3842 		return 0;
3843 
3844 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3845 	if (*val == 0 && sp->do_auto_asconf) {
3846 		list_del(&sp->auto_asconf_list);
3847 		sp->do_auto_asconf = 0;
3848 	} else if (*val && !sp->do_auto_asconf) {
3849 		list_add_tail(&sp->auto_asconf_list,
3850 		    &sock_net(sk)->sctp.auto_asconf_splist);
3851 		sp->do_auto_asconf = 1;
3852 	}
3853 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3854 	return 0;
3855 }
3856 
3857 /*
3858  * SCTP_PEER_ADDR_THLDS
3859  *
3860  * This option allows us to alter the partially failed threshold for one or all
3861  * transports in an association.  See Section 6.1 of:
3862  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3863  */
3864 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3865 					    struct sctp_paddrthlds_v2 *val,
3866 					    unsigned int optlen, bool v2)
3867 {
3868 	struct sctp_transport *trans;
3869 	struct sctp_association *asoc;
3870 	int len;
3871 
3872 	len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3873 	if (optlen < len)
3874 		return -EINVAL;
3875 
3876 	if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3877 		return -EINVAL;
3878 
3879 	if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3880 		trans = sctp_addr_id2transport(sk, &val->spt_address,
3881 					       val->spt_assoc_id);
3882 		if (!trans)
3883 			return -ENOENT;
3884 
3885 		if (val->spt_pathmaxrxt)
3886 			trans->pathmaxrxt = val->spt_pathmaxrxt;
3887 		if (v2)
3888 			trans->ps_retrans = val->spt_pathcpthld;
3889 		trans->pf_retrans = val->spt_pathpfthld;
3890 
3891 		return 0;
3892 	}
3893 
3894 	asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3895 	if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3896 	    sctp_style(sk, UDP))
3897 		return -EINVAL;
3898 
3899 	if (asoc) {
3900 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3901 				    transports) {
3902 			if (val->spt_pathmaxrxt)
3903 				trans->pathmaxrxt = val->spt_pathmaxrxt;
3904 			if (v2)
3905 				trans->ps_retrans = val->spt_pathcpthld;
3906 			trans->pf_retrans = val->spt_pathpfthld;
3907 		}
3908 
3909 		if (val->spt_pathmaxrxt)
3910 			asoc->pathmaxrxt = val->spt_pathmaxrxt;
3911 		if (v2)
3912 			asoc->ps_retrans = val->spt_pathcpthld;
3913 		asoc->pf_retrans = val->spt_pathpfthld;
3914 	} else {
3915 		struct sctp_sock *sp = sctp_sk(sk);
3916 
3917 		if (val->spt_pathmaxrxt)
3918 			sp->pathmaxrxt = val->spt_pathmaxrxt;
3919 		if (v2)
3920 			sp->ps_retrans = val->spt_pathcpthld;
3921 		sp->pf_retrans = val->spt_pathpfthld;
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3928 				       unsigned int optlen)
3929 {
3930 	if (optlen < sizeof(int))
3931 		return -EINVAL;
3932 
3933 	sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3934 
3935 	return 0;
3936 }
3937 
3938 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3939 				       unsigned int optlen)
3940 {
3941 	if (optlen < sizeof(int))
3942 		return -EINVAL;
3943 
3944 	sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3945 
3946 	return 0;
3947 }
3948 
3949 static int sctp_setsockopt_pr_supported(struct sock *sk,
3950 					struct sctp_assoc_value *params,
3951 					unsigned int optlen)
3952 {
3953 	struct sctp_association *asoc;
3954 
3955 	if (optlen != sizeof(*params))
3956 		return -EINVAL;
3957 
3958 	asoc = sctp_id2assoc(sk, params->assoc_id);
3959 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3960 	    sctp_style(sk, UDP))
3961 		return -EINVAL;
3962 
3963 	sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3964 
3965 	return 0;
3966 }
3967 
3968 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3969 					  struct sctp_default_prinfo *info,
3970 					  unsigned int optlen)
3971 {
3972 	struct sctp_sock *sp = sctp_sk(sk);
3973 	struct sctp_association *asoc;
3974 	int retval = -EINVAL;
3975 
3976 	if (optlen != sizeof(*info))
3977 		goto out;
3978 
3979 	if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3980 		goto out;
3981 
3982 	if (info->pr_policy == SCTP_PR_SCTP_NONE)
3983 		info->pr_value = 0;
3984 
3985 	asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3986 	if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3987 	    sctp_style(sk, UDP))
3988 		goto out;
3989 
3990 	retval = 0;
3991 
3992 	if (asoc) {
3993 		SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3994 		asoc->default_timetolive = info->pr_value;
3995 		goto out;
3996 	}
3997 
3998 	if (sctp_style(sk, TCP))
3999 		info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4000 
4001 	if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4002 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
4003 		SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4004 		sp->default_timetolive = info->pr_value;
4005 	}
4006 
4007 	if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4008 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
4009 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4010 			SCTP_PR_SET_POLICY(asoc->default_flags,
4011 					   info->pr_policy);
4012 			asoc->default_timetolive = info->pr_value;
4013 		}
4014 	}
4015 
4016 out:
4017 	return retval;
4018 }
4019 
4020 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4021 					      struct sctp_assoc_value *params,
4022 					      unsigned int optlen)
4023 {
4024 	struct sctp_association *asoc;
4025 	int retval = -EINVAL;
4026 
4027 	if (optlen != sizeof(*params))
4028 		goto out;
4029 
4030 	asoc = sctp_id2assoc(sk, params->assoc_id);
4031 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4032 	    sctp_style(sk, UDP))
4033 		goto out;
4034 
4035 	sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4036 
4037 	retval = 0;
4038 
4039 out:
4040 	return retval;
4041 }
4042 
4043 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4044 					   struct sctp_assoc_value *params,
4045 					   unsigned int optlen)
4046 {
4047 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4048 	struct sctp_association *asoc;
4049 	int retval = -EINVAL;
4050 
4051 	if (optlen != sizeof(*params))
4052 		goto out;
4053 
4054 	if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4055 		goto out;
4056 
4057 	asoc = sctp_id2assoc(sk, params->assoc_id);
4058 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4059 	    sctp_style(sk, UDP))
4060 		goto out;
4061 
4062 	retval = 0;
4063 
4064 	if (asoc) {
4065 		asoc->strreset_enable = params->assoc_value;
4066 		goto out;
4067 	}
4068 
4069 	if (sctp_style(sk, TCP))
4070 		params->assoc_id = SCTP_FUTURE_ASSOC;
4071 
4072 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4073 	    params->assoc_id == SCTP_ALL_ASSOC)
4074 		ep->strreset_enable = params->assoc_value;
4075 
4076 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4077 	    params->assoc_id == SCTP_ALL_ASSOC)
4078 		list_for_each_entry(asoc, &ep->asocs, asocs)
4079 			asoc->strreset_enable = params->assoc_value;
4080 
4081 out:
4082 	return retval;
4083 }
4084 
4085 static int sctp_setsockopt_reset_streams(struct sock *sk,
4086 					 struct sctp_reset_streams *params,
4087 					 unsigned int optlen)
4088 {
4089 	struct sctp_association *asoc;
4090 
4091 	if (optlen < sizeof(*params))
4092 		return -EINVAL;
4093 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4094 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4095 					     sizeof(__u16) * sizeof(*params));
4096 
4097 	if (params->srs_number_streams * sizeof(__u16) >
4098 	    optlen - sizeof(*params))
4099 		return -EINVAL;
4100 
4101 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4102 	if (!asoc)
4103 		return -EINVAL;
4104 
4105 	return sctp_send_reset_streams(asoc, params);
4106 }
4107 
4108 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4109 				       unsigned int optlen)
4110 {
4111 	struct sctp_association *asoc;
4112 
4113 	if (optlen != sizeof(*associd))
4114 		return -EINVAL;
4115 
4116 	asoc = sctp_id2assoc(sk, *associd);
4117 	if (!asoc)
4118 		return -EINVAL;
4119 
4120 	return sctp_send_reset_assoc(asoc);
4121 }
4122 
4123 static int sctp_setsockopt_add_streams(struct sock *sk,
4124 				       struct sctp_add_streams *params,
4125 				       unsigned int optlen)
4126 {
4127 	struct sctp_association *asoc;
4128 
4129 	if (optlen != sizeof(*params))
4130 		return -EINVAL;
4131 
4132 	asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4133 	if (!asoc)
4134 		return -EINVAL;
4135 
4136 	return sctp_send_add_streams(asoc, params);
4137 }
4138 
4139 static int sctp_setsockopt_scheduler(struct sock *sk,
4140 				     struct sctp_assoc_value *params,
4141 				     unsigned int optlen)
4142 {
4143 	struct sctp_sock *sp = sctp_sk(sk);
4144 	struct sctp_association *asoc;
4145 	int retval = 0;
4146 
4147 	if (optlen < sizeof(*params))
4148 		return -EINVAL;
4149 
4150 	if (params->assoc_value > SCTP_SS_MAX)
4151 		return -EINVAL;
4152 
4153 	asoc = sctp_id2assoc(sk, params->assoc_id);
4154 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4155 	    sctp_style(sk, UDP))
4156 		return -EINVAL;
4157 
4158 	if (asoc)
4159 		return sctp_sched_set_sched(asoc, params->assoc_value);
4160 
4161 	if (sctp_style(sk, TCP))
4162 		params->assoc_id = SCTP_FUTURE_ASSOC;
4163 
4164 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4165 	    params->assoc_id == SCTP_ALL_ASSOC)
4166 		sp->default_ss = params->assoc_value;
4167 
4168 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4169 	    params->assoc_id == SCTP_ALL_ASSOC) {
4170 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4171 			int ret = sctp_sched_set_sched(asoc,
4172 						       params->assoc_value);
4173 
4174 			if (ret && !retval)
4175 				retval = ret;
4176 		}
4177 	}
4178 
4179 	return retval;
4180 }
4181 
4182 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4183 					   struct sctp_stream_value *params,
4184 					   unsigned int optlen)
4185 {
4186 	struct sctp_association *asoc;
4187 	int retval = -EINVAL;
4188 
4189 	if (optlen < sizeof(*params))
4190 		goto out;
4191 
4192 	asoc = sctp_id2assoc(sk, params->assoc_id);
4193 	if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4194 	    sctp_style(sk, UDP))
4195 		goto out;
4196 
4197 	if (asoc) {
4198 		retval = sctp_sched_set_value(asoc, params->stream_id,
4199 					      params->stream_value, GFP_KERNEL);
4200 		goto out;
4201 	}
4202 
4203 	retval = 0;
4204 
4205 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4206 		int ret = sctp_sched_set_value(asoc, params->stream_id,
4207 					       params->stream_value,
4208 					       GFP_KERNEL);
4209 		if (ret && !retval) /* try to return the 1st error. */
4210 			retval = ret;
4211 	}
4212 
4213 out:
4214 	return retval;
4215 }
4216 
4217 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4218 						  struct sctp_assoc_value *p,
4219 						  unsigned int optlen)
4220 {
4221 	struct sctp_sock *sp = sctp_sk(sk);
4222 	struct sctp_association *asoc;
4223 
4224 	if (optlen < sizeof(*p))
4225 		return -EINVAL;
4226 
4227 	asoc = sctp_id2assoc(sk, p->assoc_id);
4228 	if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4229 		return -EINVAL;
4230 
4231 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4232 		return -EPERM;
4233 	}
4234 
4235 	sp->ep->intl_enable = !!p->assoc_value;
4236 	return 0;
4237 }
4238 
4239 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4240 				      unsigned int optlen)
4241 {
4242 	if (!sctp_style(sk, TCP))
4243 		return -EOPNOTSUPP;
4244 
4245 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4246 		return -EFAULT;
4247 
4248 	if (optlen < sizeof(int))
4249 		return -EINVAL;
4250 
4251 	sctp_sk(sk)->reuse = !!*val;
4252 
4253 	return 0;
4254 }
4255 
4256 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4257 					struct sctp_association *asoc)
4258 {
4259 	struct sctp_ulpevent *event;
4260 
4261 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4262 
4263 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4264 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4265 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4266 					GFP_USER | __GFP_NOWARN);
4267 			if (!event)
4268 				return -ENOMEM;
4269 
4270 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4271 		}
4272 	}
4273 
4274 	return 0;
4275 }
4276 
4277 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4278 				 unsigned int optlen)
4279 {
4280 	struct sctp_sock *sp = sctp_sk(sk);
4281 	struct sctp_association *asoc;
4282 	int retval = 0;
4283 
4284 	if (optlen < sizeof(*param))
4285 		return -EINVAL;
4286 
4287 	if (param->se_type < SCTP_SN_TYPE_BASE ||
4288 	    param->se_type > SCTP_SN_TYPE_MAX)
4289 		return -EINVAL;
4290 
4291 	asoc = sctp_id2assoc(sk, param->se_assoc_id);
4292 	if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4293 	    sctp_style(sk, UDP))
4294 		return -EINVAL;
4295 
4296 	if (asoc)
4297 		return sctp_assoc_ulpevent_type_set(param, asoc);
4298 
4299 	if (sctp_style(sk, TCP))
4300 		param->se_assoc_id = SCTP_FUTURE_ASSOC;
4301 
4302 	if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4303 	    param->se_assoc_id == SCTP_ALL_ASSOC)
4304 		sctp_ulpevent_type_set(&sp->subscribe,
4305 				       param->se_type, param->se_on);
4306 
4307 	if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4308 	    param->se_assoc_id == SCTP_ALL_ASSOC) {
4309 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4310 			int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4311 
4312 			if (ret && !retval)
4313 				retval = ret;
4314 		}
4315 	}
4316 
4317 	return retval;
4318 }
4319 
4320 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4321 					    struct sctp_assoc_value *params,
4322 					    unsigned int optlen)
4323 {
4324 	struct sctp_association *asoc;
4325 	struct sctp_endpoint *ep;
4326 	int retval = -EINVAL;
4327 
4328 	if (optlen != sizeof(*params))
4329 		goto out;
4330 
4331 	asoc = sctp_id2assoc(sk, params->assoc_id);
4332 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4333 	    sctp_style(sk, UDP))
4334 		goto out;
4335 
4336 	ep = sctp_sk(sk)->ep;
4337 	ep->asconf_enable = !!params->assoc_value;
4338 
4339 	if (ep->asconf_enable && ep->auth_enable) {
4340 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4341 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4342 	}
4343 
4344 	retval = 0;
4345 
4346 out:
4347 	return retval;
4348 }
4349 
4350 static int sctp_setsockopt_auth_supported(struct sock *sk,
4351 					  struct sctp_assoc_value *params,
4352 					  unsigned int optlen)
4353 {
4354 	struct sctp_association *asoc;
4355 	struct sctp_endpoint *ep;
4356 	int retval = -EINVAL;
4357 
4358 	if (optlen != sizeof(*params))
4359 		goto out;
4360 
4361 	asoc = sctp_id2assoc(sk, params->assoc_id);
4362 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4363 	    sctp_style(sk, UDP))
4364 		goto out;
4365 
4366 	ep = sctp_sk(sk)->ep;
4367 	if (params->assoc_value) {
4368 		retval = sctp_auth_init(ep, GFP_KERNEL);
4369 		if (retval)
4370 			goto out;
4371 		if (ep->asconf_enable) {
4372 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4373 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4374 		}
4375 	}
4376 
4377 	ep->auth_enable = !!params->assoc_value;
4378 	retval = 0;
4379 
4380 out:
4381 	return retval;
4382 }
4383 
4384 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4385 					 struct sctp_assoc_value *params,
4386 					 unsigned int optlen)
4387 {
4388 	struct sctp_association *asoc;
4389 	int retval = -EINVAL;
4390 
4391 	if (optlen != sizeof(*params))
4392 		goto out;
4393 
4394 	asoc = sctp_id2assoc(sk, params->assoc_id);
4395 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4396 	    sctp_style(sk, UDP))
4397 		goto out;
4398 
4399 	sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4400 	retval = 0;
4401 
4402 out:
4403 	return retval;
4404 }
4405 
4406 static int sctp_setsockopt_pf_expose(struct sock *sk,
4407 				     struct sctp_assoc_value *params,
4408 				     unsigned int optlen)
4409 {
4410 	struct sctp_association *asoc;
4411 	int retval = -EINVAL;
4412 
4413 	if (optlen != sizeof(*params))
4414 		goto out;
4415 
4416 	if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4417 		goto out;
4418 
4419 	asoc = sctp_id2assoc(sk, params->assoc_id);
4420 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4421 	    sctp_style(sk, UDP))
4422 		goto out;
4423 
4424 	if (asoc)
4425 		asoc->pf_expose = params->assoc_value;
4426 	else
4427 		sctp_sk(sk)->pf_expose = params->assoc_value;
4428 	retval = 0;
4429 
4430 out:
4431 	return retval;
4432 }
4433 
4434 static int sctp_setsockopt_encap_port(struct sock *sk,
4435 				      struct sctp_udpencaps *encap,
4436 				      unsigned int optlen)
4437 {
4438 	struct sctp_association *asoc;
4439 	struct sctp_transport *t;
4440 	__be16 encap_port;
4441 
4442 	if (optlen != sizeof(*encap))
4443 		return -EINVAL;
4444 
4445 	/* If an address other than INADDR_ANY is specified, and
4446 	 * no transport is found, then the request is invalid.
4447 	 */
4448 	encap_port = (__force __be16)encap->sue_port;
4449 	if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4450 		t = sctp_addr_id2transport(sk, &encap->sue_address,
4451 					   encap->sue_assoc_id);
4452 		if (!t)
4453 			return -EINVAL;
4454 
4455 		t->encap_port = encap_port;
4456 		return 0;
4457 	}
4458 
4459 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4460 	 * socket is a one to many style socket, and an association
4461 	 * was not found, then the id was invalid.
4462 	 */
4463 	asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4464 	if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4465 	    sctp_style(sk, UDP))
4466 		return -EINVAL;
4467 
4468 	/* If changes are for association, also apply encap_port to
4469 	 * each transport.
4470 	 */
4471 	if (asoc) {
4472 		list_for_each_entry(t, &asoc->peer.transport_addr_list,
4473 				    transports)
4474 			t->encap_port = encap_port;
4475 
4476 		return 0;
4477 	}
4478 
4479 	sctp_sk(sk)->encap_port = encap_port;
4480 	return 0;
4481 }
4482 
4483 /* API 6.2 setsockopt(), getsockopt()
4484  *
4485  * Applications use setsockopt() and getsockopt() to set or retrieve
4486  * socket options.  Socket options are used to change the default
4487  * behavior of sockets calls.  They are described in Section 7.
4488  *
4489  * The syntax is:
4490  *
4491  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4492  *                    int __user *optlen);
4493  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4494  *                    int optlen);
4495  *
4496  *   sd      - the socket descript.
4497  *   level   - set to IPPROTO_SCTP for all SCTP options.
4498  *   optname - the option name.
4499  *   optval  - the buffer to store the value of the option.
4500  *   optlen  - the size of the buffer.
4501  */
4502 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4503 			   sockptr_t optval, unsigned int optlen)
4504 {
4505 	void *kopt = NULL;
4506 	int retval = 0;
4507 
4508 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4509 
4510 	/* I can hardly begin to describe how wrong this is.  This is
4511 	 * so broken as to be worse than useless.  The API draft
4512 	 * REALLY is NOT helpful here...  I am not convinced that the
4513 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4514 	 * are at all well-founded.
4515 	 */
4516 	if (level != SOL_SCTP) {
4517 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4518 
4519 		return af->setsockopt(sk, level, optname, optval, optlen);
4520 	}
4521 
4522 	if (optlen > 0) {
4523 		kopt = memdup_sockptr(optval, optlen);
4524 		if (IS_ERR(kopt))
4525 			return PTR_ERR(kopt);
4526 	}
4527 
4528 	lock_sock(sk);
4529 
4530 	switch (optname) {
4531 	case SCTP_SOCKOPT_BINDX_ADD:
4532 		/* 'optlen' is the size of the addresses buffer. */
4533 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4534 					       SCTP_BINDX_ADD_ADDR);
4535 		break;
4536 
4537 	case SCTP_SOCKOPT_BINDX_REM:
4538 		/* 'optlen' is the size of the addresses buffer. */
4539 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4540 					       SCTP_BINDX_REM_ADDR);
4541 		break;
4542 
4543 	case SCTP_SOCKOPT_CONNECTX_OLD:
4544 		/* 'optlen' is the size of the addresses buffer. */
4545 		retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4546 		break;
4547 
4548 	case SCTP_SOCKOPT_CONNECTX:
4549 		/* 'optlen' is the size of the addresses buffer. */
4550 		retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4551 		break;
4552 
4553 	case SCTP_DISABLE_FRAGMENTS:
4554 		retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4555 		break;
4556 
4557 	case SCTP_EVENTS:
4558 		retval = sctp_setsockopt_events(sk, kopt, optlen);
4559 		break;
4560 
4561 	case SCTP_AUTOCLOSE:
4562 		retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4563 		break;
4564 
4565 	case SCTP_PEER_ADDR_PARAMS:
4566 		retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4567 		break;
4568 
4569 	case SCTP_DELAYED_SACK:
4570 		retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4571 		break;
4572 	case SCTP_PARTIAL_DELIVERY_POINT:
4573 		retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4574 		break;
4575 
4576 	case SCTP_INITMSG:
4577 		retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4578 		break;
4579 	case SCTP_DEFAULT_SEND_PARAM:
4580 		retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4581 		break;
4582 	case SCTP_DEFAULT_SNDINFO:
4583 		retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4584 		break;
4585 	case SCTP_PRIMARY_ADDR:
4586 		retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4587 		break;
4588 	case SCTP_SET_PEER_PRIMARY_ADDR:
4589 		retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4590 		break;
4591 	case SCTP_NODELAY:
4592 		retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4593 		break;
4594 	case SCTP_RTOINFO:
4595 		retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4596 		break;
4597 	case SCTP_ASSOCINFO:
4598 		retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4599 		break;
4600 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4601 		retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4602 		break;
4603 	case SCTP_MAXSEG:
4604 		retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4605 		break;
4606 	case SCTP_ADAPTATION_LAYER:
4607 		retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4608 		break;
4609 	case SCTP_CONTEXT:
4610 		retval = sctp_setsockopt_context(sk, kopt, optlen);
4611 		break;
4612 	case SCTP_FRAGMENT_INTERLEAVE:
4613 		retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4614 		break;
4615 	case SCTP_MAX_BURST:
4616 		retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4617 		break;
4618 	case SCTP_AUTH_CHUNK:
4619 		retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4620 		break;
4621 	case SCTP_HMAC_IDENT:
4622 		retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4623 		break;
4624 	case SCTP_AUTH_KEY:
4625 		retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4626 		break;
4627 	case SCTP_AUTH_ACTIVE_KEY:
4628 		retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4629 		break;
4630 	case SCTP_AUTH_DELETE_KEY:
4631 		retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4632 		break;
4633 	case SCTP_AUTH_DEACTIVATE_KEY:
4634 		retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4635 		break;
4636 	case SCTP_AUTO_ASCONF:
4637 		retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4638 		break;
4639 	case SCTP_PEER_ADDR_THLDS:
4640 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4641 							  false);
4642 		break;
4643 	case SCTP_PEER_ADDR_THLDS_V2:
4644 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4645 							  true);
4646 		break;
4647 	case SCTP_RECVRCVINFO:
4648 		retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4649 		break;
4650 	case SCTP_RECVNXTINFO:
4651 		retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4652 		break;
4653 	case SCTP_PR_SUPPORTED:
4654 		retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4655 		break;
4656 	case SCTP_DEFAULT_PRINFO:
4657 		retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4658 		break;
4659 	case SCTP_RECONFIG_SUPPORTED:
4660 		retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4661 		break;
4662 	case SCTP_ENABLE_STREAM_RESET:
4663 		retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4664 		break;
4665 	case SCTP_RESET_STREAMS:
4666 		retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4667 		break;
4668 	case SCTP_RESET_ASSOC:
4669 		retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4670 		break;
4671 	case SCTP_ADD_STREAMS:
4672 		retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4673 		break;
4674 	case SCTP_STREAM_SCHEDULER:
4675 		retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4676 		break;
4677 	case SCTP_STREAM_SCHEDULER_VALUE:
4678 		retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4679 		break;
4680 	case SCTP_INTERLEAVING_SUPPORTED:
4681 		retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4682 								optlen);
4683 		break;
4684 	case SCTP_REUSE_PORT:
4685 		retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4686 		break;
4687 	case SCTP_EVENT:
4688 		retval = sctp_setsockopt_event(sk, kopt, optlen);
4689 		break;
4690 	case SCTP_ASCONF_SUPPORTED:
4691 		retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4692 		break;
4693 	case SCTP_AUTH_SUPPORTED:
4694 		retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4695 		break;
4696 	case SCTP_ECN_SUPPORTED:
4697 		retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4698 		break;
4699 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4700 		retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4701 		break;
4702 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
4703 		retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4704 		break;
4705 	default:
4706 		retval = -ENOPROTOOPT;
4707 		break;
4708 	}
4709 
4710 	release_sock(sk);
4711 	kfree(kopt);
4712 	return retval;
4713 }
4714 
4715 /* API 3.1.6 connect() - UDP Style Syntax
4716  *
4717  * An application may use the connect() call in the UDP model to initiate an
4718  * association without sending data.
4719  *
4720  * The syntax is:
4721  *
4722  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4723  *
4724  * sd: the socket descriptor to have a new association added to.
4725  *
4726  * nam: the address structure (either struct sockaddr_in or struct
4727  *    sockaddr_in6 defined in RFC2553 [7]).
4728  *
4729  * len: the size of the address.
4730  */
4731 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4732 			int addr_len, int flags)
4733 {
4734 	struct sctp_af *af;
4735 	int err = -EINVAL;
4736 
4737 	lock_sock(sk);
4738 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4739 		 addr, addr_len);
4740 
4741 	/* Validate addr_len before calling common connect/connectx routine. */
4742 	af = sctp_get_af_specific(addr->sa_family);
4743 	if (af && addr_len >= af->sockaddr_len)
4744 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4745 
4746 	release_sock(sk);
4747 	return err;
4748 }
4749 
4750 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4751 		      int addr_len, int flags)
4752 {
4753 	if (addr_len < sizeof(uaddr->sa_family))
4754 		return -EINVAL;
4755 
4756 	if (uaddr->sa_family == AF_UNSPEC)
4757 		return -EOPNOTSUPP;
4758 
4759 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4760 }
4761 
4762 /* FIXME: Write comments. */
4763 static int sctp_disconnect(struct sock *sk, int flags)
4764 {
4765 	return -EOPNOTSUPP; /* STUB */
4766 }
4767 
4768 /* 4.1.4 accept() - TCP Style Syntax
4769  *
4770  * Applications use accept() call to remove an established SCTP
4771  * association from the accept queue of the endpoint.  A new socket
4772  * descriptor will be returned from accept() to represent the newly
4773  * formed association.
4774  */
4775 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4776 {
4777 	struct sctp_sock *sp;
4778 	struct sctp_endpoint *ep;
4779 	struct sock *newsk = NULL;
4780 	struct sctp_association *asoc;
4781 	long timeo;
4782 	int error = 0;
4783 
4784 	lock_sock(sk);
4785 
4786 	sp = sctp_sk(sk);
4787 	ep = sp->ep;
4788 
4789 	if (!sctp_style(sk, TCP)) {
4790 		error = -EOPNOTSUPP;
4791 		goto out;
4792 	}
4793 
4794 	if (!sctp_sstate(sk, LISTENING)) {
4795 		error = -EINVAL;
4796 		goto out;
4797 	}
4798 
4799 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4800 
4801 	error = sctp_wait_for_accept(sk, timeo);
4802 	if (error)
4803 		goto out;
4804 
4805 	/* We treat the list of associations on the endpoint as the accept
4806 	 * queue and pick the first association on the list.
4807 	 */
4808 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4809 
4810 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4811 	if (!newsk) {
4812 		error = -ENOMEM;
4813 		goto out;
4814 	}
4815 
4816 	/* Populate the fields of the newsk from the oldsk and migrate the
4817 	 * asoc to the newsk.
4818 	 */
4819 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4820 	if (error) {
4821 		sk_common_release(newsk);
4822 		newsk = NULL;
4823 	}
4824 
4825 out:
4826 	release_sock(sk);
4827 	*err = error;
4828 	return newsk;
4829 }
4830 
4831 /* The SCTP ioctl handler. */
4832 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4833 {
4834 	int rc = -ENOTCONN;
4835 
4836 	lock_sock(sk);
4837 
4838 	/*
4839 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4840 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4841 	 */
4842 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4843 		goto out;
4844 
4845 	switch (cmd) {
4846 	case SIOCINQ: {
4847 		struct sk_buff *skb;
4848 		unsigned int amount = 0;
4849 
4850 		skb = skb_peek(&sk->sk_receive_queue);
4851 		if (skb != NULL) {
4852 			/*
4853 			 * We will only return the amount of this packet since
4854 			 * that is all that will be read.
4855 			 */
4856 			amount = skb->len;
4857 		}
4858 		rc = put_user(amount, (int __user *)arg);
4859 		break;
4860 	}
4861 	default:
4862 		rc = -ENOIOCTLCMD;
4863 		break;
4864 	}
4865 out:
4866 	release_sock(sk);
4867 	return rc;
4868 }
4869 
4870 /* This is the function which gets called during socket creation to
4871  * initialized the SCTP-specific portion of the sock.
4872  * The sock structure should already be zero-filled memory.
4873  */
4874 static int sctp_init_sock(struct sock *sk)
4875 {
4876 	struct net *net = sock_net(sk);
4877 	struct sctp_sock *sp;
4878 
4879 	pr_debug("%s: sk:%p\n", __func__, sk);
4880 
4881 	sp = sctp_sk(sk);
4882 
4883 	/* Initialize the SCTP per socket area.  */
4884 	switch (sk->sk_type) {
4885 	case SOCK_SEQPACKET:
4886 		sp->type = SCTP_SOCKET_UDP;
4887 		break;
4888 	case SOCK_STREAM:
4889 		sp->type = SCTP_SOCKET_TCP;
4890 		break;
4891 	default:
4892 		return -ESOCKTNOSUPPORT;
4893 	}
4894 
4895 	sk->sk_gso_type = SKB_GSO_SCTP;
4896 
4897 	/* Initialize default send parameters. These parameters can be
4898 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4899 	 */
4900 	sp->default_stream = 0;
4901 	sp->default_ppid = 0;
4902 	sp->default_flags = 0;
4903 	sp->default_context = 0;
4904 	sp->default_timetolive = 0;
4905 
4906 	sp->default_rcv_context = 0;
4907 	sp->max_burst = net->sctp.max_burst;
4908 
4909 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4910 
4911 	/* Initialize default setup parameters. These parameters
4912 	 * can be modified with the SCTP_INITMSG socket option or
4913 	 * overridden by the SCTP_INIT CMSG.
4914 	 */
4915 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4916 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4917 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4918 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4919 
4920 	/* Initialize default RTO related parameters.  These parameters can
4921 	 * be modified for with the SCTP_RTOINFO socket option.
4922 	 */
4923 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4924 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4925 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4926 
4927 	/* Initialize default association related parameters. These parameters
4928 	 * can be modified with the SCTP_ASSOCINFO socket option.
4929 	 */
4930 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4931 	sp->assocparams.sasoc_number_peer_destinations = 0;
4932 	sp->assocparams.sasoc_peer_rwnd = 0;
4933 	sp->assocparams.sasoc_local_rwnd = 0;
4934 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4935 
4936 	/* Initialize default event subscriptions. By default, all the
4937 	 * options are off.
4938 	 */
4939 	sp->subscribe = 0;
4940 
4941 	/* Default Peer Address Parameters.  These defaults can
4942 	 * be modified via SCTP_PEER_ADDR_PARAMS
4943 	 */
4944 	sp->hbinterval  = net->sctp.hb_interval;
4945 	sp->udp_port    = htons(net->sctp.udp_port);
4946 	sp->encap_port  = htons(net->sctp.encap_port);
4947 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4948 	sp->pf_retrans  = net->sctp.pf_retrans;
4949 	sp->ps_retrans  = net->sctp.ps_retrans;
4950 	sp->pf_expose   = net->sctp.pf_expose;
4951 	sp->pathmtu     = 0; /* allow default discovery */
4952 	sp->sackdelay   = net->sctp.sack_timeout;
4953 	sp->sackfreq	= 2;
4954 	sp->param_flags = SPP_HB_ENABLE |
4955 			  SPP_PMTUD_ENABLE |
4956 			  SPP_SACKDELAY_ENABLE;
4957 	sp->default_ss = SCTP_SS_DEFAULT;
4958 
4959 	/* If enabled no SCTP message fragmentation will be performed.
4960 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4961 	 */
4962 	sp->disable_fragments = 0;
4963 
4964 	/* Enable Nagle algorithm by default.  */
4965 	sp->nodelay           = 0;
4966 
4967 	sp->recvrcvinfo = 0;
4968 	sp->recvnxtinfo = 0;
4969 
4970 	/* Enable by default. */
4971 	sp->v4mapped          = 1;
4972 
4973 	/* Auto-close idle associations after the configured
4974 	 * number of seconds.  A value of 0 disables this
4975 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4976 	 * for UDP-style sockets only.
4977 	 */
4978 	sp->autoclose         = 0;
4979 
4980 	/* User specified fragmentation limit. */
4981 	sp->user_frag         = 0;
4982 
4983 	sp->adaptation_ind = 0;
4984 
4985 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4986 
4987 	/* Control variables for partial data delivery. */
4988 	atomic_set(&sp->pd_mode, 0);
4989 	skb_queue_head_init(&sp->pd_lobby);
4990 	sp->frag_interleave = 0;
4991 
4992 	/* Create a per socket endpoint structure.  Even if we
4993 	 * change the data structure relationships, this may still
4994 	 * be useful for storing pre-connect address information.
4995 	 */
4996 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4997 	if (!sp->ep)
4998 		return -ENOMEM;
4999 
5000 	sp->hmac = NULL;
5001 
5002 	sk->sk_destruct = sctp_destruct_sock;
5003 
5004 	SCTP_DBG_OBJCNT_INC(sock);
5005 
5006 	local_bh_disable();
5007 	sk_sockets_allocated_inc(sk);
5008 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5009 
5010 	local_bh_enable();
5011 
5012 	return 0;
5013 }
5014 
5015 /* Cleanup any SCTP per socket resources. Must be called with
5016  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5017  */
5018 static void sctp_destroy_sock(struct sock *sk)
5019 {
5020 	struct sctp_sock *sp;
5021 
5022 	pr_debug("%s: sk:%p\n", __func__, sk);
5023 
5024 	/* Release our hold on the endpoint. */
5025 	sp = sctp_sk(sk);
5026 	/* This could happen during socket init, thus we bail out
5027 	 * early, since the rest of the below is not setup either.
5028 	 */
5029 	if (sp->ep == NULL)
5030 		return;
5031 
5032 	if (sp->do_auto_asconf) {
5033 		sp->do_auto_asconf = 0;
5034 		list_del(&sp->auto_asconf_list);
5035 	}
5036 	sctp_endpoint_free(sp->ep);
5037 	local_bh_disable();
5038 	sk_sockets_allocated_dec(sk);
5039 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5040 	local_bh_enable();
5041 }
5042 
5043 /* Triggered when there are no references on the socket anymore */
5044 static void sctp_destruct_sock(struct sock *sk)
5045 {
5046 	struct sctp_sock *sp = sctp_sk(sk);
5047 
5048 	/* Free up the HMAC transform. */
5049 	crypto_free_shash(sp->hmac);
5050 
5051 	inet_sock_destruct(sk);
5052 }
5053 
5054 /* API 4.1.7 shutdown() - TCP Style Syntax
5055  *     int shutdown(int socket, int how);
5056  *
5057  *     sd      - the socket descriptor of the association to be closed.
5058  *     how     - Specifies the type of shutdown.  The  values  are
5059  *               as follows:
5060  *               SHUT_RD
5061  *                     Disables further receive operations. No SCTP
5062  *                     protocol action is taken.
5063  *               SHUT_WR
5064  *                     Disables further send operations, and initiates
5065  *                     the SCTP shutdown sequence.
5066  *               SHUT_RDWR
5067  *                     Disables further send  and  receive  operations
5068  *                     and initiates the SCTP shutdown sequence.
5069  */
5070 static void sctp_shutdown(struct sock *sk, int how)
5071 {
5072 	struct net *net = sock_net(sk);
5073 	struct sctp_endpoint *ep;
5074 
5075 	if (!sctp_style(sk, TCP))
5076 		return;
5077 
5078 	ep = sctp_sk(sk)->ep;
5079 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5080 		struct sctp_association *asoc;
5081 
5082 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5083 		asoc = list_entry(ep->asocs.next,
5084 				  struct sctp_association, asocs);
5085 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5086 	}
5087 }
5088 
5089 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5090 		       struct sctp_info *info)
5091 {
5092 	struct sctp_transport *prim;
5093 	struct list_head *pos;
5094 	int mask;
5095 
5096 	memset(info, 0, sizeof(*info));
5097 	if (!asoc) {
5098 		struct sctp_sock *sp = sctp_sk(sk);
5099 
5100 		info->sctpi_s_autoclose = sp->autoclose;
5101 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5102 		info->sctpi_s_pd_point = sp->pd_point;
5103 		info->sctpi_s_nodelay = sp->nodelay;
5104 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5105 		info->sctpi_s_v4mapped = sp->v4mapped;
5106 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5107 		info->sctpi_s_type = sp->type;
5108 
5109 		return 0;
5110 	}
5111 
5112 	info->sctpi_tag = asoc->c.my_vtag;
5113 	info->sctpi_state = asoc->state;
5114 	info->sctpi_rwnd = asoc->a_rwnd;
5115 	info->sctpi_unackdata = asoc->unack_data;
5116 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5117 	info->sctpi_instrms = asoc->stream.incnt;
5118 	info->sctpi_outstrms = asoc->stream.outcnt;
5119 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5120 		info->sctpi_inqueue++;
5121 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5122 		info->sctpi_outqueue++;
5123 	info->sctpi_overall_error = asoc->overall_error_count;
5124 	info->sctpi_max_burst = asoc->max_burst;
5125 	info->sctpi_maxseg = asoc->frag_point;
5126 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5127 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5128 
5129 	mask = asoc->peer.ecn_capable << 1;
5130 	mask = (mask | asoc->peer.ipv4_address) << 1;
5131 	mask = (mask | asoc->peer.ipv6_address) << 1;
5132 	mask = (mask | asoc->peer.hostname_address) << 1;
5133 	mask = (mask | asoc->peer.asconf_capable) << 1;
5134 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5135 	mask = (mask | asoc->peer.auth_capable);
5136 	info->sctpi_peer_capable = mask;
5137 	mask = asoc->peer.sack_needed << 1;
5138 	mask = (mask | asoc->peer.sack_generation) << 1;
5139 	mask = (mask | asoc->peer.zero_window_announced);
5140 	info->sctpi_peer_sack = mask;
5141 
5142 	info->sctpi_isacks = asoc->stats.isacks;
5143 	info->sctpi_osacks = asoc->stats.osacks;
5144 	info->sctpi_opackets = asoc->stats.opackets;
5145 	info->sctpi_ipackets = asoc->stats.ipackets;
5146 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5147 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5148 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5149 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5150 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5151 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5152 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5153 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5154 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5155 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5156 
5157 	prim = asoc->peer.primary_path;
5158 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5159 	info->sctpi_p_state = prim->state;
5160 	info->sctpi_p_cwnd = prim->cwnd;
5161 	info->sctpi_p_srtt = prim->srtt;
5162 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5163 	info->sctpi_p_hbinterval = prim->hbinterval;
5164 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5165 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5166 	info->sctpi_p_ssthresh = prim->ssthresh;
5167 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5168 	info->sctpi_p_flight_size = prim->flight_size;
5169 	info->sctpi_p_error = prim->error_count;
5170 
5171 	return 0;
5172 }
5173 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5174 
5175 /* use callback to avoid exporting the core structure */
5176 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5177 {
5178 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5179 
5180 	rhashtable_walk_start(iter);
5181 }
5182 
5183 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5184 {
5185 	rhashtable_walk_stop(iter);
5186 	rhashtable_walk_exit(iter);
5187 }
5188 
5189 struct sctp_transport *sctp_transport_get_next(struct net *net,
5190 					       struct rhashtable_iter *iter)
5191 {
5192 	struct sctp_transport *t;
5193 
5194 	t = rhashtable_walk_next(iter);
5195 	for (; t; t = rhashtable_walk_next(iter)) {
5196 		if (IS_ERR(t)) {
5197 			if (PTR_ERR(t) == -EAGAIN)
5198 				continue;
5199 			break;
5200 		}
5201 
5202 		if (!sctp_transport_hold(t))
5203 			continue;
5204 
5205 		if (net_eq(t->asoc->base.net, net) &&
5206 		    t->asoc->peer.primary_path == t)
5207 			break;
5208 
5209 		sctp_transport_put(t);
5210 	}
5211 
5212 	return t;
5213 }
5214 
5215 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5216 					      struct rhashtable_iter *iter,
5217 					      int pos)
5218 {
5219 	struct sctp_transport *t;
5220 
5221 	if (!pos)
5222 		return SEQ_START_TOKEN;
5223 
5224 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5225 		if (!--pos)
5226 			break;
5227 		sctp_transport_put(t);
5228 	}
5229 
5230 	return t;
5231 }
5232 
5233 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5234 			   void *p) {
5235 	int err = 0;
5236 	int hash = 0;
5237 	struct sctp_ep_common *epb;
5238 	struct sctp_hashbucket *head;
5239 
5240 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5241 	     hash++, head++) {
5242 		read_lock_bh(&head->lock);
5243 		sctp_for_each_hentry(epb, &head->chain) {
5244 			err = cb(sctp_ep(epb), p);
5245 			if (err)
5246 				break;
5247 		}
5248 		read_unlock_bh(&head->lock);
5249 	}
5250 
5251 	return err;
5252 }
5253 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5254 
5255 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5256 				  struct net *net,
5257 				  const union sctp_addr *laddr,
5258 				  const union sctp_addr *paddr, void *p)
5259 {
5260 	struct sctp_transport *transport;
5261 	int err;
5262 
5263 	rcu_read_lock();
5264 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5265 	rcu_read_unlock();
5266 	if (!transport)
5267 		return -ENOENT;
5268 
5269 	err = cb(transport, p);
5270 	sctp_transport_put(transport);
5271 
5272 	return err;
5273 }
5274 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5275 
5276 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5277 			    int (*cb_done)(struct sctp_transport *, void *),
5278 			    struct net *net, int *pos, void *p) {
5279 	struct rhashtable_iter hti;
5280 	struct sctp_transport *tsp;
5281 	int ret;
5282 
5283 again:
5284 	ret = 0;
5285 	sctp_transport_walk_start(&hti);
5286 
5287 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5288 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5289 		ret = cb(tsp, p);
5290 		if (ret)
5291 			break;
5292 		(*pos)++;
5293 		sctp_transport_put(tsp);
5294 	}
5295 	sctp_transport_walk_stop(&hti);
5296 
5297 	if (ret) {
5298 		if (cb_done && !cb_done(tsp, p)) {
5299 			(*pos)++;
5300 			sctp_transport_put(tsp);
5301 			goto again;
5302 		}
5303 		sctp_transport_put(tsp);
5304 	}
5305 
5306 	return ret;
5307 }
5308 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5309 
5310 /* 7.2.1 Association Status (SCTP_STATUS)
5311 
5312  * Applications can retrieve current status information about an
5313  * association, including association state, peer receiver window size,
5314  * number of unacked data chunks, and number of data chunks pending
5315  * receipt.  This information is read-only.
5316  */
5317 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5318 				       char __user *optval,
5319 				       int __user *optlen)
5320 {
5321 	struct sctp_status status;
5322 	struct sctp_association *asoc = NULL;
5323 	struct sctp_transport *transport;
5324 	sctp_assoc_t associd;
5325 	int retval = 0;
5326 
5327 	if (len < sizeof(status)) {
5328 		retval = -EINVAL;
5329 		goto out;
5330 	}
5331 
5332 	len = sizeof(status);
5333 	if (copy_from_user(&status, optval, len)) {
5334 		retval = -EFAULT;
5335 		goto out;
5336 	}
5337 
5338 	associd = status.sstat_assoc_id;
5339 	asoc = sctp_id2assoc(sk, associd);
5340 	if (!asoc) {
5341 		retval = -EINVAL;
5342 		goto out;
5343 	}
5344 
5345 	transport = asoc->peer.primary_path;
5346 
5347 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5348 	status.sstat_state = sctp_assoc_to_state(asoc);
5349 	status.sstat_rwnd =  asoc->peer.rwnd;
5350 	status.sstat_unackdata = asoc->unack_data;
5351 
5352 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5353 	status.sstat_instrms = asoc->stream.incnt;
5354 	status.sstat_outstrms = asoc->stream.outcnt;
5355 	status.sstat_fragmentation_point = asoc->frag_point;
5356 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5357 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5358 			transport->af_specific->sockaddr_len);
5359 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5360 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5361 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5362 	status.sstat_primary.spinfo_state = transport->state;
5363 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5364 	status.sstat_primary.spinfo_srtt = transport->srtt;
5365 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5366 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5367 
5368 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5369 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5370 
5371 	if (put_user(len, optlen)) {
5372 		retval = -EFAULT;
5373 		goto out;
5374 	}
5375 
5376 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5377 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5378 		 status.sstat_assoc_id);
5379 
5380 	if (copy_to_user(optval, &status, len)) {
5381 		retval = -EFAULT;
5382 		goto out;
5383 	}
5384 
5385 out:
5386 	return retval;
5387 }
5388 
5389 
5390 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5391  *
5392  * Applications can retrieve information about a specific peer address
5393  * of an association, including its reachability state, congestion
5394  * window, and retransmission timer values.  This information is
5395  * read-only.
5396  */
5397 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5398 					  char __user *optval,
5399 					  int __user *optlen)
5400 {
5401 	struct sctp_paddrinfo pinfo;
5402 	struct sctp_transport *transport;
5403 	int retval = 0;
5404 
5405 	if (len < sizeof(pinfo)) {
5406 		retval = -EINVAL;
5407 		goto out;
5408 	}
5409 
5410 	len = sizeof(pinfo);
5411 	if (copy_from_user(&pinfo, optval, len)) {
5412 		retval = -EFAULT;
5413 		goto out;
5414 	}
5415 
5416 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5417 					   pinfo.spinfo_assoc_id);
5418 	if (!transport) {
5419 		retval = -EINVAL;
5420 		goto out;
5421 	}
5422 
5423 	if (transport->state == SCTP_PF &&
5424 	    transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5425 		retval = -EACCES;
5426 		goto out;
5427 	}
5428 
5429 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5430 	pinfo.spinfo_state = transport->state;
5431 	pinfo.spinfo_cwnd = transport->cwnd;
5432 	pinfo.spinfo_srtt = transport->srtt;
5433 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5434 	pinfo.spinfo_mtu = transport->pathmtu;
5435 
5436 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5437 		pinfo.spinfo_state = SCTP_ACTIVE;
5438 
5439 	if (put_user(len, optlen)) {
5440 		retval = -EFAULT;
5441 		goto out;
5442 	}
5443 
5444 	if (copy_to_user(optval, &pinfo, len)) {
5445 		retval = -EFAULT;
5446 		goto out;
5447 	}
5448 
5449 out:
5450 	return retval;
5451 }
5452 
5453 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5454  *
5455  * This option is a on/off flag.  If enabled no SCTP message
5456  * fragmentation will be performed.  Instead if a message being sent
5457  * exceeds the current PMTU size, the message will NOT be sent and
5458  * instead a error will be indicated to the user.
5459  */
5460 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5461 					char __user *optval, int __user *optlen)
5462 {
5463 	int val;
5464 
5465 	if (len < sizeof(int))
5466 		return -EINVAL;
5467 
5468 	len = sizeof(int);
5469 	val = (sctp_sk(sk)->disable_fragments == 1);
5470 	if (put_user(len, optlen))
5471 		return -EFAULT;
5472 	if (copy_to_user(optval, &val, len))
5473 		return -EFAULT;
5474 	return 0;
5475 }
5476 
5477 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5478  *
5479  * This socket option is used to specify various notifications and
5480  * ancillary data the user wishes to receive.
5481  */
5482 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5483 				  int __user *optlen)
5484 {
5485 	struct sctp_event_subscribe subscribe;
5486 	__u8 *sn_type = (__u8 *)&subscribe;
5487 	int i;
5488 
5489 	if (len == 0)
5490 		return -EINVAL;
5491 	if (len > sizeof(struct sctp_event_subscribe))
5492 		len = sizeof(struct sctp_event_subscribe);
5493 	if (put_user(len, optlen))
5494 		return -EFAULT;
5495 
5496 	for (i = 0; i < len; i++)
5497 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5498 							SCTP_SN_TYPE_BASE + i);
5499 
5500 	if (copy_to_user(optval, &subscribe, len))
5501 		return -EFAULT;
5502 
5503 	return 0;
5504 }
5505 
5506 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5507  *
5508  * This socket option is applicable to the UDP-style socket only.  When
5509  * set it will cause associations that are idle for more than the
5510  * specified number of seconds to automatically close.  An association
5511  * being idle is defined an association that has NOT sent or received
5512  * user data.  The special value of '0' indicates that no automatic
5513  * close of any associations should be performed.  The option expects an
5514  * integer defining the number of seconds of idle time before an
5515  * association is closed.
5516  */
5517 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5518 {
5519 	/* Applicable to UDP-style socket only */
5520 	if (sctp_style(sk, TCP))
5521 		return -EOPNOTSUPP;
5522 	if (len < sizeof(int))
5523 		return -EINVAL;
5524 	len = sizeof(int);
5525 	if (put_user(len, optlen))
5526 		return -EFAULT;
5527 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5528 		return -EFAULT;
5529 	return 0;
5530 }
5531 
5532 /* Helper routine to branch off an association to a new socket.  */
5533 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5534 {
5535 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5536 	struct sctp_sock *sp = sctp_sk(sk);
5537 	struct socket *sock;
5538 	int err = 0;
5539 
5540 	/* Do not peel off from one netns to another one. */
5541 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5542 		return -EINVAL;
5543 
5544 	if (!asoc)
5545 		return -EINVAL;
5546 
5547 	/* An association cannot be branched off from an already peeled-off
5548 	 * socket, nor is this supported for tcp style sockets.
5549 	 */
5550 	if (!sctp_style(sk, UDP))
5551 		return -EINVAL;
5552 
5553 	/* Create a new socket.  */
5554 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5555 	if (err < 0)
5556 		return err;
5557 
5558 	sctp_copy_sock(sock->sk, sk, asoc);
5559 
5560 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5561 	 * Set the daddr and initialize id to something more random and also
5562 	 * copy over any ip options.
5563 	 */
5564 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5565 	sp->pf->copy_ip_options(sk, sock->sk);
5566 
5567 	/* Populate the fields of the newsk from the oldsk and migrate the
5568 	 * asoc to the newsk.
5569 	 */
5570 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5571 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5572 	if (err) {
5573 		sock_release(sock);
5574 		sock = NULL;
5575 	}
5576 
5577 	*sockp = sock;
5578 
5579 	return err;
5580 }
5581 EXPORT_SYMBOL(sctp_do_peeloff);
5582 
5583 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5584 					  struct file **newfile, unsigned flags)
5585 {
5586 	struct socket *newsock;
5587 	int retval;
5588 
5589 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5590 	if (retval < 0)
5591 		goto out;
5592 
5593 	/* Map the socket to an unused fd that can be returned to the user.  */
5594 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5595 	if (retval < 0) {
5596 		sock_release(newsock);
5597 		goto out;
5598 	}
5599 
5600 	*newfile = sock_alloc_file(newsock, 0, NULL);
5601 	if (IS_ERR(*newfile)) {
5602 		put_unused_fd(retval);
5603 		retval = PTR_ERR(*newfile);
5604 		*newfile = NULL;
5605 		return retval;
5606 	}
5607 
5608 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5609 		 retval);
5610 
5611 	peeloff->sd = retval;
5612 
5613 	if (flags & SOCK_NONBLOCK)
5614 		(*newfile)->f_flags |= O_NONBLOCK;
5615 out:
5616 	return retval;
5617 }
5618 
5619 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5620 {
5621 	sctp_peeloff_arg_t peeloff;
5622 	struct file *newfile = NULL;
5623 	int retval = 0;
5624 
5625 	if (len < sizeof(sctp_peeloff_arg_t))
5626 		return -EINVAL;
5627 	len = sizeof(sctp_peeloff_arg_t);
5628 	if (copy_from_user(&peeloff, optval, len))
5629 		return -EFAULT;
5630 
5631 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5632 	if (retval < 0)
5633 		goto out;
5634 
5635 	/* Return the fd mapped to the new socket.  */
5636 	if (put_user(len, optlen)) {
5637 		fput(newfile);
5638 		put_unused_fd(retval);
5639 		return -EFAULT;
5640 	}
5641 
5642 	if (copy_to_user(optval, &peeloff, len)) {
5643 		fput(newfile);
5644 		put_unused_fd(retval);
5645 		return -EFAULT;
5646 	}
5647 	fd_install(retval, newfile);
5648 out:
5649 	return retval;
5650 }
5651 
5652 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5653 					 char __user *optval, int __user *optlen)
5654 {
5655 	sctp_peeloff_flags_arg_t peeloff;
5656 	struct file *newfile = NULL;
5657 	int retval = 0;
5658 
5659 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5660 		return -EINVAL;
5661 	len = sizeof(sctp_peeloff_flags_arg_t);
5662 	if (copy_from_user(&peeloff, optval, len))
5663 		return -EFAULT;
5664 
5665 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5666 						&newfile, peeloff.flags);
5667 	if (retval < 0)
5668 		goto out;
5669 
5670 	/* Return the fd mapped to the new socket.  */
5671 	if (put_user(len, optlen)) {
5672 		fput(newfile);
5673 		put_unused_fd(retval);
5674 		return -EFAULT;
5675 	}
5676 
5677 	if (copy_to_user(optval, &peeloff, len)) {
5678 		fput(newfile);
5679 		put_unused_fd(retval);
5680 		return -EFAULT;
5681 	}
5682 	fd_install(retval, newfile);
5683 out:
5684 	return retval;
5685 }
5686 
5687 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5688  *
5689  * Applications can enable or disable heartbeats for any peer address of
5690  * an association, modify an address's heartbeat interval, force a
5691  * heartbeat to be sent immediately, and adjust the address's maximum
5692  * number of retransmissions sent before an address is considered
5693  * unreachable.  The following structure is used to access and modify an
5694  * address's parameters:
5695  *
5696  *  struct sctp_paddrparams {
5697  *     sctp_assoc_t            spp_assoc_id;
5698  *     struct sockaddr_storage spp_address;
5699  *     uint32_t                spp_hbinterval;
5700  *     uint16_t                spp_pathmaxrxt;
5701  *     uint32_t                spp_pathmtu;
5702  *     uint32_t                spp_sackdelay;
5703  *     uint32_t                spp_flags;
5704  * };
5705  *
5706  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5707  *                     application, and identifies the association for
5708  *                     this query.
5709  *   spp_address     - This specifies which address is of interest.
5710  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5711  *                     in milliseconds.  If a  value of zero
5712  *                     is present in this field then no changes are to
5713  *                     be made to this parameter.
5714  *   spp_pathmaxrxt  - This contains the maximum number of
5715  *                     retransmissions before this address shall be
5716  *                     considered unreachable. If a  value of zero
5717  *                     is present in this field then no changes are to
5718  *                     be made to this parameter.
5719  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5720  *                     specified here will be the "fixed" path mtu.
5721  *                     Note that if the spp_address field is empty
5722  *                     then all associations on this address will
5723  *                     have this fixed path mtu set upon them.
5724  *
5725  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5726  *                     the number of milliseconds that sacks will be delayed
5727  *                     for. This value will apply to all addresses of an
5728  *                     association if the spp_address field is empty. Note
5729  *                     also, that if delayed sack is enabled and this
5730  *                     value is set to 0, no change is made to the last
5731  *                     recorded delayed sack timer value.
5732  *
5733  *   spp_flags       - These flags are used to control various features
5734  *                     on an association. The flag field may contain
5735  *                     zero or more of the following options.
5736  *
5737  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5738  *                     specified address. Note that if the address
5739  *                     field is empty all addresses for the association
5740  *                     have heartbeats enabled upon them.
5741  *
5742  *                     SPP_HB_DISABLE - Disable heartbeats on the
5743  *                     speicifed address. Note that if the address
5744  *                     field is empty all addresses for the association
5745  *                     will have their heartbeats disabled. Note also
5746  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5747  *                     mutually exclusive, only one of these two should
5748  *                     be specified. Enabling both fields will have
5749  *                     undetermined results.
5750  *
5751  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5752  *                     to be made immediately.
5753  *
5754  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5755  *                     discovery upon the specified address. Note that
5756  *                     if the address feild is empty then all addresses
5757  *                     on the association are effected.
5758  *
5759  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5760  *                     discovery upon the specified address. Note that
5761  *                     if the address feild is empty then all addresses
5762  *                     on the association are effected. Not also that
5763  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5764  *                     exclusive. Enabling both will have undetermined
5765  *                     results.
5766  *
5767  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5768  *                     on delayed sack. The time specified in spp_sackdelay
5769  *                     is used to specify the sack delay for this address. Note
5770  *                     that if spp_address is empty then all addresses will
5771  *                     enable delayed sack and take on the sack delay
5772  *                     value specified in spp_sackdelay.
5773  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5774  *                     off delayed sack. If the spp_address field is blank then
5775  *                     delayed sack is disabled for the entire association. Note
5776  *                     also that this field is mutually exclusive to
5777  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5778  *                     results.
5779  *
5780  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5781  *                     setting of the IPV6 flow label value.  The value is
5782  *                     contained in the spp_ipv6_flowlabel field.
5783  *                     Upon retrieval, this flag will be set to indicate that
5784  *                     the spp_ipv6_flowlabel field has a valid value returned.
5785  *                     If a specific destination address is set (in the
5786  *                     spp_address field), then the value returned is that of
5787  *                     the address.  If just an association is specified (and
5788  *                     no address), then the association's default flow label
5789  *                     is returned.  If neither an association nor a destination
5790  *                     is specified, then the socket's default flow label is
5791  *                     returned.  For non-IPv6 sockets, this flag will be left
5792  *                     cleared.
5793  *
5794  *                     SPP_DSCP:  Setting this flag enables the setting of the
5795  *                     Differentiated Services Code Point (DSCP) value
5796  *                     associated with either the association or a specific
5797  *                     address.  The value is obtained in the spp_dscp field.
5798  *                     Upon retrieval, this flag will be set to indicate that
5799  *                     the spp_dscp field has a valid value returned.  If a
5800  *                     specific destination address is set when called (in the
5801  *                     spp_address field), then that specific destination
5802  *                     address's DSCP value is returned.  If just an association
5803  *                     is specified, then the association's default DSCP is
5804  *                     returned.  If neither an association nor a destination is
5805  *                     specified, then the socket's default DSCP is returned.
5806  *
5807  *   spp_ipv6_flowlabel
5808  *                   - This field is used in conjunction with the
5809  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5810  *                     The 20 least significant bits are used for the flow
5811  *                     label.  This setting has precedence over any IPv6-layer
5812  *                     setting.
5813  *
5814  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5815  *                     and contains the DSCP.  The 6 most significant bits are
5816  *                     used for the DSCP.  This setting has precedence over any
5817  *                     IPv4- or IPv6- layer setting.
5818  */
5819 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5820 					    char __user *optval, int __user *optlen)
5821 {
5822 	struct sctp_paddrparams  params;
5823 	struct sctp_transport   *trans = NULL;
5824 	struct sctp_association *asoc = NULL;
5825 	struct sctp_sock        *sp = sctp_sk(sk);
5826 
5827 	if (len >= sizeof(params))
5828 		len = sizeof(params);
5829 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5830 				       spp_ipv6_flowlabel), 4))
5831 		len = ALIGN(offsetof(struct sctp_paddrparams,
5832 				     spp_ipv6_flowlabel), 4);
5833 	else
5834 		return -EINVAL;
5835 
5836 	if (copy_from_user(&params, optval, len))
5837 		return -EFAULT;
5838 
5839 	/* If an address other than INADDR_ANY is specified, and
5840 	 * no transport is found, then the request is invalid.
5841 	 */
5842 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5843 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5844 					       params.spp_assoc_id);
5845 		if (!trans) {
5846 			pr_debug("%s: failed no transport\n", __func__);
5847 			return -EINVAL;
5848 		}
5849 	}
5850 
5851 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5852 	 * socket is a one to many style socket, and an association
5853 	 * was not found, then the id was invalid.
5854 	 */
5855 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5856 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5857 	    sctp_style(sk, UDP)) {
5858 		pr_debug("%s: failed no association\n", __func__);
5859 		return -EINVAL;
5860 	}
5861 
5862 	if (trans) {
5863 		/* Fetch transport values. */
5864 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5865 		params.spp_pathmtu    = trans->pathmtu;
5866 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5867 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5868 
5869 		/*draft-11 doesn't say what to return in spp_flags*/
5870 		params.spp_flags      = trans->param_flags;
5871 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5872 			params.spp_ipv6_flowlabel = trans->flowlabel &
5873 						    SCTP_FLOWLABEL_VAL_MASK;
5874 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5875 		}
5876 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5877 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5878 			params.spp_flags |= SPP_DSCP;
5879 		}
5880 	} else if (asoc) {
5881 		/* Fetch association values. */
5882 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5883 		params.spp_pathmtu    = asoc->pathmtu;
5884 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5885 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5886 
5887 		/*draft-11 doesn't say what to return in spp_flags*/
5888 		params.spp_flags      = asoc->param_flags;
5889 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5890 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5891 						    SCTP_FLOWLABEL_VAL_MASK;
5892 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5893 		}
5894 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5895 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5896 			params.spp_flags |= SPP_DSCP;
5897 		}
5898 	} else {
5899 		/* Fetch socket values. */
5900 		params.spp_hbinterval = sp->hbinterval;
5901 		params.spp_pathmtu    = sp->pathmtu;
5902 		params.spp_sackdelay  = sp->sackdelay;
5903 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5904 
5905 		/*draft-11 doesn't say what to return in spp_flags*/
5906 		params.spp_flags      = sp->param_flags;
5907 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5908 			params.spp_ipv6_flowlabel = sp->flowlabel &
5909 						    SCTP_FLOWLABEL_VAL_MASK;
5910 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5911 		}
5912 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5913 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5914 			params.spp_flags |= SPP_DSCP;
5915 		}
5916 	}
5917 
5918 	if (copy_to_user(optval, &params, len))
5919 		return -EFAULT;
5920 
5921 	if (put_user(len, optlen))
5922 		return -EFAULT;
5923 
5924 	return 0;
5925 }
5926 
5927 /*
5928  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5929  *
5930  * This option will effect the way delayed acks are performed.  This
5931  * option allows you to get or set the delayed ack time, in
5932  * milliseconds.  It also allows changing the delayed ack frequency.
5933  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5934  * the assoc_id is 0, then this sets or gets the endpoints default
5935  * values.  If the assoc_id field is non-zero, then the set or get
5936  * effects the specified association for the one to many model (the
5937  * assoc_id field is ignored by the one to one model).  Note that if
5938  * sack_delay or sack_freq are 0 when setting this option, then the
5939  * current values will remain unchanged.
5940  *
5941  * struct sctp_sack_info {
5942  *     sctp_assoc_t            sack_assoc_id;
5943  *     uint32_t                sack_delay;
5944  *     uint32_t                sack_freq;
5945  * };
5946  *
5947  * sack_assoc_id -  This parameter, indicates which association the user
5948  *    is performing an action upon.  Note that if this field's value is
5949  *    zero then the endpoints default value is changed (effecting future
5950  *    associations only).
5951  *
5952  * sack_delay -  This parameter contains the number of milliseconds that
5953  *    the user is requesting the delayed ACK timer be set to.  Note that
5954  *    this value is defined in the standard to be between 200 and 500
5955  *    milliseconds.
5956  *
5957  * sack_freq -  This parameter contains the number of packets that must
5958  *    be received before a sack is sent without waiting for the delay
5959  *    timer to expire.  The default value for this is 2, setting this
5960  *    value to 1 will disable the delayed sack algorithm.
5961  */
5962 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5963 					    char __user *optval,
5964 					    int __user *optlen)
5965 {
5966 	struct sctp_sack_info    params;
5967 	struct sctp_association *asoc = NULL;
5968 	struct sctp_sock        *sp = sctp_sk(sk);
5969 
5970 	if (len >= sizeof(struct sctp_sack_info)) {
5971 		len = sizeof(struct sctp_sack_info);
5972 
5973 		if (copy_from_user(&params, optval, len))
5974 			return -EFAULT;
5975 	} else if (len == sizeof(struct sctp_assoc_value)) {
5976 		pr_warn_ratelimited(DEPRECATED
5977 				    "%s (pid %d) "
5978 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5979 				    "Use struct sctp_sack_info instead\n",
5980 				    current->comm, task_pid_nr(current));
5981 		if (copy_from_user(&params, optval, len))
5982 			return -EFAULT;
5983 	} else
5984 		return -EINVAL;
5985 
5986 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5987 	 * socket is a one to many style socket, and an association
5988 	 * was not found, then the id was invalid.
5989 	 */
5990 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5991 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5992 	    sctp_style(sk, UDP))
5993 		return -EINVAL;
5994 
5995 	if (asoc) {
5996 		/* Fetch association values. */
5997 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5998 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5999 			params.sack_freq = asoc->sackfreq;
6000 
6001 		} else {
6002 			params.sack_delay = 0;
6003 			params.sack_freq = 1;
6004 		}
6005 	} else {
6006 		/* Fetch socket values. */
6007 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6008 			params.sack_delay  = sp->sackdelay;
6009 			params.sack_freq = sp->sackfreq;
6010 		} else {
6011 			params.sack_delay  = 0;
6012 			params.sack_freq = 1;
6013 		}
6014 	}
6015 
6016 	if (copy_to_user(optval, &params, len))
6017 		return -EFAULT;
6018 
6019 	if (put_user(len, optlen))
6020 		return -EFAULT;
6021 
6022 	return 0;
6023 }
6024 
6025 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6026  *
6027  * Applications can specify protocol parameters for the default association
6028  * initialization.  The option name argument to setsockopt() and getsockopt()
6029  * is SCTP_INITMSG.
6030  *
6031  * Setting initialization parameters is effective only on an unconnected
6032  * socket (for UDP-style sockets only future associations are effected
6033  * by the change).  With TCP-style sockets, this option is inherited by
6034  * sockets derived from a listener socket.
6035  */
6036 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6037 {
6038 	if (len < sizeof(struct sctp_initmsg))
6039 		return -EINVAL;
6040 	len = sizeof(struct sctp_initmsg);
6041 	if (put_user(len, optlen))
6042 		return -EFAULT;
6043 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6044 		return -EFAULT;
6045 	return 0;
6046 }
6047 
6048 
6049 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6050 				      char __user *optval, int __user *optlen)
6051 {
6052 	struct sctp_association *asoc;
6053 	int cnt = 0;
6054 	struct sctp_getaddrs getaddrs;
6055 	struct sctp_transport *from;
6056 	void __user *to;
6057 	union sctp_addr temp;
6058 	struct sctp_sock *sp = sctp_sk(sk);
6059 	int addrlen;
6060 	size_t space_left;
6061 	int bytes_copied;
6062 
6063 	if (len < sizeof(struct sctp_getaddrs))
6064 		return -EINVAL;
6065 
6066 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6067 		return -EFAULT;
6068 
6069 	/* For UDP-style sockets, id specifies the association to query.  */
6070 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6071 	if (!asoc)
6072 		return -EINVAL;
6073 
6074 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6075 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6076 
6077 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6078 				transports) {
6079 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6080 		addrlen = sctp_get_pf_specific(sk->sk_family)
6081 			      ->addr_to_user(sp, &temp);
6082 		if (space_left < addrlen)
6083 			return -ENOMEM;
6084 		if (copy_to_user(to, &temp, addrlen))
6085 			return -EFAULT;
6086 		to += addrlen;
6087 		cnt++;
6088 		space_left -= addrlen;
6089 	}
6090 
6091 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6092 		return -EFAULT;
6093 	bytes_copied = ((char __user *)to) - optval;
6094 	if (put_user(bytes_copied, optlen))
6095 		return -EFAULT;
6096 
6097 	return 0;
6098 }
6099 
6100 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6101 			    size_t space_left, int *bytes_copied)
6102 {
6103 	struct sctp_sockaddr_entry *addr;
6104 	union sctp_addr temp;
6105 	int cnt = 0;
6106 	int addrlen;
6107 	struct net *net = sock_net(sk);
6108 
6109 	rcu_read_lock();
6110 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6111 		if (!addr->valid)
6112 			continue;
6113 
6114 		if ((PF_INET == sk->sk_family) &&
6115 		    (AF_INET6 == addr->a.sa.sa_family))
6116 			continue;
6117 		if ((PF_INET6 == sk->sk_family) &&
6118 		    inet_v6_ipv6only(sk) &&
6119 		    (AF_INET == addr->a.sa.sa_family))
6120 			continue;
6121 		memcpy(&temp, &addr->a, sizeof(temp));
6122 		if (!temp.v4.sin_port)
6123 			temp.v4.sin_port = htons(port);
6124 
6125 		addrlen = sctp_get_pf_specific(sk->sk_family)
6126 			      ->addr_to_user(sctp_sk(sk), &temp);
6127 
6128 		if (space_left < addrlen) {
6129 			cnt =  -ENOMEM;
6130 			break;
6131 		}
6132 		memcpy(to, &temp, addrlen);
6133 
6134 		to += addrlen;
6135 		cnt++;
6136 		space_left -= addrlen;
6137 		*bytes_copied += addrlen;
6138 	}
6139 	rcu_read_unlock();
6140 
6141 	return cnt;
6142 }
6143 
6144 
6145 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6146 				       char __user *optval, int __user *optlen)
6147 {
6148 	struct sctp_bind_addr *bp;
6149 	struct sctp_association *asoc;
6150 	int cnt = 0;
6151 	struct sctp_getaddrs getaddrs;
6152 	struct sctp_sockaddr_entry *addr;
6153 	void __user *to;
6154 	union sctp_addr temp;
6155 	struct sctp_sock *sp = sctp_sk(sk);
6156 	int addrlen;
6157 	int err = 0;
6158 	size_t space_left;
6159 	int bytes_copied = 0;
6160 	void *addrs;
6161 	void *buf;
6162 
6163 	if (len < sizeof(struct sctp_getaddrs))
6164 		return -EINVAL;
6165 
6166 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6167 		return -EFAULT;
6168 
6169 	/*
6170 	 *  For UDP-style sockets, id specifies the association to query.
6171 	 *  If the id field is set to the value '0' then the locally bound
6172 	 *  addresses are returned without regard to any particular
6173 	 *  association.
6174 	 */
6175 	if (0 == getaddrs.assoc_id) {
6176 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6177 	} else {
6178 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6179 		if (!asoc)
6180 			return -EINVAL;
6181 		bp = &asoc->base.bind_addr;
6182 	}
6183 
6184 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6185 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6186 
6187 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6188 	if (!addrs)
6189 		return -ENOMEM;
6190 
6191 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6192 	 * addresses from the global local address list.
6193 	 */
6194 	if (sctp_list_single_entry(&bp->address_list)) {
6195 		addr = list_entry(bp->address_list.next,
6196 				  struct sctp_sockaddr_entry, list);
6197 		if (sctp_is_any(sk, &addr->a)) {
6198 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6199 						space_left, &bytes_copied);
6200 			if (cnt < 0) {
6201 				err = cnt;
6202 				goto out;
6203 			}
6204 			goto copy_getaddrs;
6205 		}
6206 	}
6207 
6208 	buf = addrs;
6209 	/* Protection on the bound address list is not needed since
6210 	 * in the socket option context we hold a socket lock and
6211 	 * thus the bound address list can't change.
6212 	 */
6213 	list_for_each_entry(addr, &bp->address_list, list) {
6214 		memcpy(&temp, &addr->a, sizeof(temp));
6215 		addrlen = sctp_get_pf_specific(sk->sk_family)
6216 			      ->addr_to_user(sp, &temp);
6217 		if (space_left < addrlen) {
6218 			err =  -ENOMEM; /*fixme: right error?*/
6219 			goto out;
6220 		}
6221 		memcpy(buf, &temp, addrlen);
6222 		buf += addrlen;
6223 		bytes_copied += addrlen;
6224 		cnt++;
6225 		space_left -= addrlen;
6226 	}
6227 
6228 copy_getaddrs:
6229 	if (copy_to_user(to, addrs, bytes_copied)) {
6230 		err = -EFAULT;
6231 		goto out;
6232 	}
6233 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6234 		err = -EFAULT;
6235 		goto out;
6236 	}
6237 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6238 	 * but we can't change it anymore.
6239 	 */
6240 	if (put_user(bytes_copied, optlen))
6241 		err = -EFAULT;
6242 out:
6243 	kfree(addrs);
6244 	return err;
6245 }
6246 
6247 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6248  *
6249  * Requests that the local SCTP stack use the enclosed peer address as
6250  * the association primary.  The enclosed address must be one of the
6251  * association peer's addresses.
6252  */
6253 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6254 					char __user *optval, int __user *optlen)
6255 {
6256 	struct sctp_prim prim;
6257 	struct sctp_association *asoc;
6258 	struct sctp_sock *sp = sctp_sk(sk);
6259 
6260 	if (len < sizeof(struct sctp_prim))
6261 		return -EINVAL;
6262 
6263 	len = sizeof(struct sctp_prim);
6264 
6265 	if (copy_from_user(&prim, optval, len))
6266 		return -EFAULT;
6267 
6268 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6269 	if (!asoc)
6270 		return -EINVAL;
6271 
6272 	if (!asoc->peer.primary_path)
6273 		return -ENOTCONN;
6274 
6275 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6276 		asoc->peer.primary_path->af_specific->sockaddr_len);
6277 
6278 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6279 			(union sctp_addr *)&prim.ssp_addr);
6280 
6281 	if (put_user(len, optlen))
6282 		return -EFAULT;
6283 	if (copy_to_user(optval, &prim, len))
6284 		return -EFAULT;
6285 
6286 	return 0;
6287 }
6288 
6289 /*
6290  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6291  *
6292  * Requests that the local endpoint set the specified Adaptation Layer
6293  * Indication parameter for all future INIT and INIT-ACK exchanges.
6294  */
6295 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6296 				  char __user *optval, int __user *optlen)
6297 {
6298 	struct sctp_setadaptation adaptation;
6299 
6300 	if (len < sizeof(struct sctp_setadaptation))
6301 		return -EINVAL;
6302 
6303 	len = sizeof(struct sctp_setadaptation);
6304 
6305 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6306 
6307 	if (put_user(len, optlen))
6308 		return -EFAULT;
6309 	if (copy_to_user(optval, &adaptation, len))
6310 		return -EFAULT;
6311 
6312 	return 0;
6313 }
6314 
6315 /*
6316  *
6317  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6318  *
6319  *   Applications that wish to use the sendto() system call may wish to
6320  *   specify a default set of parameters that would normally be supplied
6321  *   through the inclusion of ancillary data.  This socket option allows
6322  *   such an application to set the default sctp_sndrcvinfo structure.
6323 
6324 
6325  *   The application that wishes to use this socket option simply passes
6326  *   in to this call the sctp_sndrcvinfo structure defined in Section
6327  *   5.2.2) The input parameters accepted by this call include
6328  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6329  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6330  *   to this call if the caller is using the UDP model.
6331  *
6332  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6333  */
6334 static int sctp_getsockopt_default_send_param(struct sock *sk,
6335 					int len, char __user *optval,
6336 					int __user *optlen)
6337 {
6338 	struct sctp_sock *sp = sctp_sk(sk);
6339 	struct sctp_association *asoc;
6340 	struct sctp_sndrcvinfo info;
6341 
6342 	if (len < sizeof(info))
6343 		return -EINVAL;
6344 
6345 	len = sizeof(info);
6346 
6347 	if (copy_from_user(&info, optval, len))
6348 		return -EFAULT;
6349 
6350 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6351 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6352 	    sctp_style(sk, UDP))
6353 		return -EINVAL;
6354 
6355 	if (asoc) {
6356 		info.sinfo_stream = asoc->default_stream;
6357 		info.sinfo_flags = asoc->default_flags;
6358 		info.sinfo_ppid = asoc->default_ppid;
6359 		info.sinfo_context = asoc->default_context;
6360 		info.sinfo_timetolive = asoc->default_timetolive;
6361 	} else {
6362 		info.sinfo_stream = sp->default_stream;
6363 		info.sinfo_flags = sp->default_flags;
6364 		info.sinfo_ppid = sp->default_ppid;
6365 		info.sinfo_context = sp->default_context;
6366 		info.sinfo_timetolive = sp->default_timetolive;
6367 	}
6368 
6369 	if (put_user(len, optlen))
6370 		return -EFAULT;
6371 	if (copy_to_user(optval, &info, len))
6372 		return -EFAULT;
6373 
6374 	return 0;
6375 }
6376 
6377 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6378  * (SCTP_DEFAULT_SNDINFO)
6379  */
6380 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6381 					   char __user *optval,
6382 					   int __user *optlen)
6383 {
6384 	struct sctp_sock *sp = sctp_sk(sk);
6385 	struct sctp_association *asoc;
6386 	struct sctp_sndinfo info;
6387 
6388 	if (len < sizeof(info))
6389 		return -EINVAL;
6390 
6391 	len = sizeof(info);
6392 
6393 	if (copy_from_user(&info, optval, len))
6394 		return -EFAULT;
6395 
6396 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6397 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6398 	    sctp_style(sk, UDP))
6399 		return -EINVAL;
6400 
6401 	if (asoc) {
6402 		info.snd_sid = asoc->default_stream;
6403 		info.snd_flags = asoc->default_flags;
6404 		info.snd_ppid = asoc->default_ppid;
6405 		info.snd_context = asoc->default_context;
6406 	} else {
6407 		info.snd_sid = sp->default_stream;
6408 		info.snd_flags = sp->default_flags;
6409 		info.snd_ppid = sp->default_ppid;
6410 		info.snd_context = sp->default_context;
6411 	}
6412 
6413 	if (put_user(len, optlen))
6414 		return -EFAULT;
6415 	if (copy_to_user(optval, &info, len))
6416 		return -EFAULT;
6417 
6418 	return 0;
6419 }
6420 
6421 /*
6422  *
6423  * 7.1.5 SCTP_NODELAY
6424  *
6425  * Turn on/off any Nagle-like algorithm.  This means that packets are
6426  * generally sent as soon as possible and no unnecessary delays are
6427  * introduced, at the cost of more packets in the network.  Expects an
6428  * integer boolean flag.
6429  */
6430 
6431 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6432 				   char __user *optval, int __user *optlen)
6433 {
6434 	int val;
6435 
6436 	if (len < sizeof(int))
6437 		return -EINVAL;
6438 
6439 	len = sizeof(int);
6440 	val = (sctp_sk(sk)->nodelay == 1);
6441 	if (put_user(len, optlen))
6442 		return -EFAULT;
6443 	if (copy_to_user(optval, &val, len))
6444 		return -EFAULT;
6445 	return 0;
6446 }
6447 
6448 /*
6449  *
6450  * 7.1.1 SCTP_RTOINFO
6451  *
6452  * The protocol parameters used to initialize and bound retransmission
6453  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6454  * and modify these parameters.
6455  * All parameters are time values, in milliseconds.  A value of 0, when
6456  * modifying the parameters, indicates that the current value should not
6457  * be changed.
6458  *
6459  */
6460 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6461 				char __user *optval,
6462 				int __user *optlen) {
6463 	struct sctp_rtoinfo rtoinfo;
6464 	struct sctp_association *asoc;
6465 
6466 	if (len < sizeof (struct sctp_rtoinfo))
6467 		return -EINVAL;
6468 
6469 	len = sizeof(struct sctp_rtoinfo);
6470 
6471 	if (copy_from_user(&rtoinfo, optval, len))
6472 		return -EFAULT;
6473 
6474 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6475 
6476 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6477 	    sctp_style(sk, UDP))
6478 		return -EINVAL;
6479 
6480 	/* Values corresponding to the specific association. */
6481 	if (asoc) {
6482 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6483 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6484 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6485 	} else {
6486 		/* Values corresponding to the endpoint. */
6487 		struct sctp_sock *sp = sctp_sk(sk);
6488 
6489 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6490 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6491 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6492 	}
6493 
6494 	if (put_user(len, optlen))
6495 		return -EFAULT;
6496 
6497 	if (copy_to_user(optval, &rtoinfo, len))
6498 		return -EFAULT;
6499 
6500 	return 0;
6501 }
6502 
6503 /*
6504  *
6505  * 7.1.2 SCTP_ASSOCINFO
6506  *
6507  * This option is used to tune the maximum retransmission attempts
6508  * of the association.
6509  * Returns an error if the new association retransmission value is
6510  * greater than the sum of the retransmission value  of the peer.
6511  * See [SCTP] for more information.
6512  *
6513  */
6514 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6515 				     char __user *optval,
6516 				     int __user *optlen)
6517 {
6518 
6519 	struct sctp_assocparams assocparams;
6520 	struct sctp_association *asoc;
6521 	struct list_head *pos;
6522 	int cnt = 0;
6523 
6524 	if (len < sizeof (struct sctp_assocparams))
6525 		return -EINVAL;
6526 
6527 	len = sizeof(struct sctp_assocparams);
6528 
6529 	if (copy_from_user(&assocparams, optval, len))
6530 		return -EFAULT;
6531 
6532 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6533 
6534 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6535 	    sctp_style(sk, UDP))
6536 		return -EINVAL;
6537 
6538 	/* Values correspoinding to the specific association */
6539 	if (asoc) {
6540 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6541 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6542 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6543 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6544 
6545 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6546 			cnt++;
6547 		}
6548 
6549 		assocparams.sasoc_number_peer_destinations = cnt;
6550 	} else {
6551 		/* Values corresponding to the endpoint */
6552 		struct sctp_sock *sp = sctp_sk(sk);
6553 
6554 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6555 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6556 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6557 		assocparams.sasoc_cookie_life =
6558 					sp->assocparams.sasoc_cookie_life;
6559 		assocparams.sasoc_number_peer_destinations =
6560 					sp->assocparams.
6561 					sasoc_number_peer_destinations;
6562 	}
6563 
6564 	if (put_user(len, optlen))
6565 		return -EFAULT;
6566 
6567 	if (copy_to_user(optval, &assocparams, len))
6568 		return -EFAULT;
6569 
6570 	return 0;
6571 }
6572 
6573 /*
6574  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6575  *
6576  * This socket option is a boolean flag which turns on or off mapped V4
6577  * addresses.  If this option is turned on and the socket is type
6578  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6579  * If this option is turned off, then no mapping will be done of V4
6580  * addresses and a user will receive both PF_INET6 and PF_INET type
6581  * addresses on the socket.
6582  */
6583 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6584 				    char __user *optval, int __user *optlen)
6585 {
6586 	int val;
6587 	struct sctp_sock *sp = sctp_sk(sk);
6588 
6589 	if (len < sizeof(int))
6590 		return -EINVAL;
6591 
6592 	len = sizeof(int);
6593 	val = sp->v4mapped;
6594 	if (put_user(len, optlen))
6595 		return -EFAULT;
6596 	if (copy_to_user(optval, &val, len))
6597 		return -EFAULT;
6598 
6599 	return 0;
6600 }
6601 
6602 /*
6603  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6604  * (chapter and verse is quoted at sctp_setsockopt_context())
6605  */
6606 static int sctp_getsockopt_context(struct sock *sk, int len,
6607 				   char __user *optval, int __user *optlen)
6608 {
6609 	struct sctp_assoc_value params;
6610 	struct sctp_association *asoc;
6611 
6612 	if (len < sizeof(struct sctp_assoc_value))
6613 		return -EINVAL;
6614 
6615 	len = sizeof(struct sctp_assoc_value);
6616 
6617 	if (copy_from_user(&params, optval, len))
6618 		return -EFAULT;
6619 
6620 	asoc = sctp_id2assoc(sk, params.assoc_id);
6621 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6622 	    sctp_style(sk, UDP))
6623 		return -EINVAL;
6624 
6625 	params.assoc_value = asoc ? asoc->default_rcv_context
6626 				  : sctp_sk(sk)->default_rcv_context;
6627 
6628 	if (put_user(len, optlen))
6629 		return -EFAULT;
6630 	if (copy_to_user(optval, &params, len))
6631 		return -EFAULT;
6632 
6633 	return 0;
6634 }
6635 
6636 /*
6637  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6638  * This option will get or set the maximum size to put in any outgoing
6639  * SCTP DATA chunk.  If a message is larger than this size it will be
6640  * fragmented by SCTP into the specified size.  Note that the underlying
6641  * SCTP implementation may fragment into smaller sized chunks when the
6642  * PMTU of the underlying association is smaller than the value set by
6643  * the user.  The default value for this option is '0' which indicates
6644  * the user is NOT limiting fragmentation and only the PMTU will effect
6645  * SCTP's choice of DATA chunk size.  Note also that values set larger
6646  * than the maximum size of an IP datagram will effectively let SCTP
6647  * control fragmentation (i.e. the same as setting this option to 0).
6648  *
6649  * The following structure is used to access and modify this parameter:
6650  *
6651  * struct sctp_assoc_value {
6652  *   sctp_assoc_t assoc_id;
6653  *   uint32_t assoc_value;
6654  * };
6655  *
6656  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6657  *    For one-to-many style sockets this parameter indicates which
6658  *    association the user is performing an action upon.  Note that if
6659  *    this field's value is zero then the endpoints default value is
6660  *    changed (effecting future associations only).
6661  * assoc_value:  This parameter specifies the maximum size in bytes.
6662  */
6663 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6664 				  char __user *optval, int __user *optlen)
6665 {
6666 	struct sctp_assoc_value params;
6667 	struct sctp_association *asoc;
6668 
6669 	if (len == sizeof(int)) {
6670 		pr_warn_ratelimited(DEPRECATED
6671 				    "%s (pid %d) "
6672 				    "Use of int in maxseg socket option.\n"
6673 				    "Use struct sctp_assoc_value instead\n",
6674 				    current->comm, task_pid_nr(current));
6675 		params.assoc_id = SCTP_FUTURE_ASSOC;
6676 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6677 		len = sizeof(struct sctp_assoc_value);
6678 		if (copy_from_user(&params, optval, len))
6679 			return -EFAULT;
6680 	} else
6681 		return -EINVAL;
6682 
6683 	asoc = sctp_id2assoc(sk, params.assoc_id);
6684 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6685 	    sctp_style(sk, UDP))
6686 		return -EINVAL;
6687 
6688 	if (asoc)
6689 		params.assoc_value = asoc->frag_point;
6690 	else
6691 		params.assoc_value = sctp_sk(sk)->user_frag;
6692 
6693 	if (put_user(len, optlen))
6694 		return -EFAULT;
6695 	if (len == sizeof(int)) {
6696 		if (copy_to_user(optval, &params.assoc_value, len))
6697 			return -EFAULT;
6698 	} else {
6699 		if (copy_to_user(optval, &params, len))
6700 			return -EFAULT;
6701 	}
6702 
6703 	return 0;
6704 }
6705 
6706 /*
6707  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6708  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6709  */
6710 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6711 					       char __user *optval, int __user *optlen)
6712 {
6713 	int val;
6714 
6715 	if (len < sizeof(int))
6716 		return -EINVAL;
6717 
6718 	len = sizeof(int);
6719 
6720 	val = sctp_sk(sk)->frag_interleave;
6721 	if (put_user(len, optlen))
6722 		return -EFAULT;
6723 	if (copy_to_user(optval, &val, len))
6724 		return -EFAULT;
6725 
6726 	return 0;
6727 }
6728 
6729 /*
6730  * 7.1.25.  Set or Get the sctp partial delivery point
6731  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6732  */
6733 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6734 						  char __user *optval,
6735 						  int __user *optlen)
6736 {
6737 	u32 val;
6738 
6739 	if (len < sizeof(u32))
6740 		return -EINVAL;
6741 
6742 	len = sizeof(u32);
6743 
6744 	val = sctp_sk(sk)->pd_point;
6745 	if (put_user(len, optlen))
6746 		return -EFAULT;
6747 	if (copy_to_user(optval, &val, len))
6748 		return -EFAULT;
6749 
6750 	return 0;
6751 }
6752 
6753 /*
6754  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6755  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6756  */
6757 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6758 				    char __user *optval,
6759 				    int __user *optlen)
6760 {
6761 	struct sctp_assoc_value params;
6762 	struct sctp_association *asoc;
6763 
6764 	if (len == sizeof(int)) {
6765 		pr_warn_ratelimited(DEPRECATED
6766 				    "%s (pid %d) "
6767 				    "Use of int in max_burst socket option.\n"
6768 				    "Use struct sctp_assoc_value instead\n",
6769 				    current->comm, task_pid_nr(current));
6770 		params.assoc_id = SCTP_FUTURE_ASSOC;
6771 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6772 		len = sizeof(struct sctp_assoc_value);
6773 		if (copy_from_user(&params, optval, len))
6774 			return -EFAULT;
6775 	} else
6776 		return -EINVAL;
6777 
6778 	asoc = sctp_id2assoc(sk, params.assoc_id);
6779 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6780 	    sctp_style(sk, UDP))
6781 		return -EINVAL;
6782 
6783 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6784 
6785 	if (len == sizeof(int)) {
6786 		if (copy_to_user(optval, &params.assoc_value, len))
6787 			return -EFAULT;
6788 	} else {
6789 		if (copy_to_user(optval, &params, len))
6790 			return -EFAULT;
6791 	}
6792 
6793 	return 0;
6794 
6795 }
6796 
6797 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6798 				    char __user *optval, int __user *optlen)
6799 {
6800 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6801 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6802 	struct sctp_hmac_algo_param *hmacs;
6803 	__u16 data_len = 0;
6804 	u32 num_idents;
6805 	int i;
6806 
6807 	if (!ep->auth_enable)
6808 		return -EACCES;
6809 
6810 	hmacs = ep->auth_hmacs_list;
6811 	data_len = ntohs(hmacs->param_hdr.length) -
6812 		   sizeof(struct sctp_paramhdr);
6813 
6814 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6815 		return -EINVAL;
6816 
6817 	len = sizeof(struct sctp_hmacalgo) + data_len;
6818 	num_idents = data_len / sizeof(u16);
6819 
6820 	if (put_user(len, optlen))
6821 		return -EFAULT;
6822 	if (put_user(num_idents, &p->shmac_num_idents))
6823 		return -EFAULT;
6824 	for (i = 0; i < num_idents; i++) {
6825 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6826 
6827 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6828 			return -EFAULT;
6829 	}
6830 	return 0;
6831 }
6832 
6833 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6834 				    char __user *optval, int __user *optlen)
6835 {
6836 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6837 	struct sctp_authkeyid val;
6838 	struct sctp_association *asoc;
6839 
6840 	if (len < sizeof(struct sctp_authkeyid))
6841 		return -EINVAL;
6842 
6843 	len = sizeof(struct sctp_authkeyid);
6844 	if (copy_from_user(&val, optval, len))
6845 		return -EFAULT;
6846 
6847 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6848 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6849 		return -EINVAL;
6850 
6851 	if (asoc) {
6852 		if (!asoc->peer.auth_capable)
6853 			return -EACCES;
6854 		val.scact_keynumber = asoc->active_key_id;
6855 	} else {
6856 		if (!ep->auth_enable)
6857 			return -EACCES;
6858 		val.scact_keynumber = ep->active_key_id;
6859 	}
6860 
6861 	if (put_user(len, optlen))
6862 		return -EFAULT;
6863 	if (copy_to_user(optval, &val, len))
6864 		return -EFAULT;
6865 
6866 	return 0;
6867 }
6868 
6869 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6870 				    char __user *optval, int __user *optlen)
6871 {
6872 	struct sctp_authchunks __user *p = (void __user *)optval;
6873 	struct sctp_authchunks val;
6874 	struct sctp_association *asoc;
6875 	struct sctp_chunks_param *ch;
6876 	u32    num_chunks = 0;
6877 	char __user *to;
6878 
6879 	if (len < sizeof(struct sctp_authchunks))
6880 		return -EINVAL;
6881 
6882 	if (copy_from_user(&val, optval, sizeof(val)))
6883 		return -EFAULT;
6884 
6885 	to = p->gauth_chunks;
6886 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6887 	if (!asoc)
6888 		return -EINVAL;
6889 
6890 	if (!asoc->peer.auth_capable)
6891 		return -EACCES;
6892 
6893 	ch = asoc->peer.peer_chunks;
6894 	if (!ch)
6895 		goto num;
6896 
6897 	/* See if the user provided enough room for all the data */
6898 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6899 	if (len < num_chunks)
6900 		return -EINVAL;
6901 
6902 	if (copy_to_user(to, ch->chunks, num_chunks))
6903 		return -EFAULT;
6904 num:
6905 	len = sizeof(struct sctp_authchunks) + num_chunks;
6906 	if (put_user(len, optlen))
6907 		return -EFAULT;
6908 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6909 		return -EFAULT;
6910 	return 0;
6911 }
6912 
6913 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6914 				    char __user *optval, int __user *optlen)
6915 {
6916 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6917 	struct sctp_authchunks __user *p = (void __user *)optval;
6918 	struct sctp_authchunks val;
6919 	struct sctp_association *asoc;
6920 	struct sctp_chunks_param *ch;
6921 	u32    num_chunks = 0;
6922 	char __user *to;
6923 
6924 	if (len < sizeof(struct sctp_authchunks))
6925 		return -EINVAL;
6926 
6927 	if (copy_from_user(&val, optval, sizeof(val)))
6928 		return -EFAULT;
6929 
6930 	to = p->gauth_chunks;
6931 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6932 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6933 	    sctp_style(sk, UDP))
6934 		return -EINVAL;
6935 
6936 	if (asoc) {
6937 		if (!asoc->peer.auth_capable)
6938 			return -EACCES;
6939 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6940 	} else {
6941 		if (!ep->auth_enable)
6942 			return -EACCES;
6943 		ch = ep->auth_chunk_list;
6944 	}
6945 	if (!ch)
6946 		goto num;
6947 
6948 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6949 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6950 		return -EINVAL;
6951 
6952 	if (copy_to_user(to, ch->chunks, num_chunks))
6953 		return -EFAULT;
6954 num:
6955 	len = sizeof(struct sctp_authchunks) + num_chunks;
6956 	if (put_user(len, optlen))
6957 		return -EFAULT;
6958 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6959 		return -EFAULT;
6960 
6961 	return 0;
6962 }
6963 
6964 /*
6965  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6966  * This option gets the current number of associations that are attached
6967  * to a one-to-many style socket.  The option value is an uint32_t.
6968  */
6969 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6970 				    char __user *optval, int __user *optlen)
6971 {
6972 	struct sctp_sock *sp = sctp_sk(sk);
6973 	struct sctp_association *asoc;
6974 	u32 val = 0;
6975 
6976 	if (sctp_style(sk, TCP))
6977 		return -EOPNOTSUPP;
6978 
6979 	if (len < sizeof(u32))
6980 		return -EINVAL;
6981 
6982 	len = sizeof(u32);
6983 
6984 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6985 		val++;
6986 	}
6987 
6988 	if (put_user(len, optlen))
6989 		return -EFAULT;
6990 	if (copy_to_user(optval, &val, len))
6991 		return -EFAULT;
6992 
6993 	return 0;
6994 }
6995 
6996 /*
6997  * 8.1.23 SCTP_AUTO_ASCONF
6998  * See the corresponding setsockopt entry as description
6999  */
7000 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7001 				   char __user *optval, int __user *optlen)
7002 {
7003 	int val = 0;
7004 
7005 	if (len < sizeof(int))
7006 		return -EINVAL;
7007 
7008 	len = sizeof(int);
7009 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7010 		val = 1;
7011 	if (put_user(len, optlen))
7012 		return -EFAULT;
7013 	if (copy_to_user(optval, &val, len))
7014 		return -EFAULT;
7015 	return 0;
7016 }
7017 
7018 /*
7019  * 8.2.6. Get the Current Identifiers of Associations
7020  *        (SCTP_GET_ASSOC_ID_LIST)
7021  *
7022  * This option gets the current list of SCTP association identifiers of
7023  * the SCTP associations handled by a one-to-many style socket.
7024  */
7025 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7026 				    char __user *optval, int __user *optlen)
7027 {
7028 	struct sctp_sock *sp = sctp_sk(sk);
7029 	struct sctp_association *asoc;
7030 	struct sctp_assoc_ids *ids;
7031 	u32 num = 0;
7032 
7033 	if (sctp_style(sk, TCP))
7034 		return -EOPNOTSUPP;
7035 
7036 	if (len < sizeof(struct sctp_assoc_ids))
7037 		return -EINVAL;
7038 
7039 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7040 		num++;
7041 	}
7042 
7043 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7044 		return -EINVAL;
7045 
7046 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7047 
7048 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7049 	if (unlikely(!ids))
7050 		return -ENOMEM;
7051 
7052 	ids->gaids_number_of_ids = num;
7053 	num = 0;
7054 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7055 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7056 	}
7057 
7058 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7059 		kfree(ids);
7060 		return -EFAULT;
7061 	}
7062 
7063 	kfree(ids);
7064 	return 0;
7065 }
7066 
7067 /*
7068  * SCTP_PEER_ADDR_THLDS
7069  *
7070  * This option allows us to fetch the partially failed threshold for one or all
7071  * transports in an association.  See Section 6.1 of:
7072  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7073  */
7074 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7075 					    char __user *optval, int len,
7076 					    int __user *optlen, bool v2)
7077 {
7078 	struct sctp_paddrthlds_v2 val;
7079 	struct sctp_transport *trans;
7080 	struct sctp_association *asoc;
7081 	int min;
7082 
7083 	min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7084 	if (len < min)
7085 		return -EINVAL;
7086 	len = min;
7087 	if (copy_from_user(&val, optval, len))
7088 		return -EFAULT;
7089 
7090 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7091 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7092 					       val.spt_assoc_id);
7093 		if (!trans)
7094 			return -ENOENT;
7095 
7096 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7097 		val.spt_pathpfthld = trans->pf_retrans;
7098 		val.spt_pathcpthld = trans->ps_retrans;
7099 
7100 		goto out;
7101 	}
7102 
7103 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7104 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7105 	    sctp_style(sk, UDP))
7106 		return -EINVAL;
7107 
7108 	if (asoc) {
7109 		val.spt_pathpfthld = asoc->pf_retrans;
7110 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7111 		val.spt_pathcpthld = asoc->ps_retrans;
7112 	} else {
7113 		struct sctp_sock *sp = sctp_sk(sk);
7114 
7115 		val.spt_pathpfthld = sp->pf_retrans;
7116 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7117 		val.spt_pathcpthld = sp->ps_retrans;
7118 	}
7119 
7120 out:
7121 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7122 		return -EFAULT;
7123 
7124 	return 0;
7125 }
7126 
7127 /*
7128  * SCTP_GET_ASSOC_STATS
7129  *
7130  * This option retrieves local per endpoint statistics. It is modeled
7131  * after OpenSolaris' implementation
7132  */
7133 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7134 				       char __user *optval,
7135 				       int __user *optlen)
7136 {
7137 	struct sctp_assoc_stats sas;
7138 	struct sctp_association *asoc = NULL;
7139 
7140 	/* User must provide at least the assoc id */
7141 	if (len < sizeof(sctp_assoc_t))
7142 		return -EINVAL;
7143 
7144 	/* Allow the struct to grow and fill in as much as possible */
7145 	len = min_t(size_t, len, sizeof(sas));
7146 
7147 	if (copy_from_user(&sas, optval, len))
7148 		return -EFAULT;
7149 
7150 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7151 	if (!asoc)
7152 		return -EINVAL;
7153 
7154 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7155 	sas.sas_gapcnt = asoc->stats.gapcnt;
7156 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7157 	sas.sas_osacks = asoc->stats.osacks;
7158 	sas.sas_isacks = asoc->stats.isacks;
7159 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7160 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7161 	sas.sas_oodchunks = asoc->stats.oodchunks;
7162 	sas.sas_iodchunks = asoc->stats.iodchunks;
7163 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7164 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7165 	sas.sas_idupchunks = asoc->stats.idupchunks;
7166 	sas.sas_opackets = asoc->stats.opackets;
7167 	sas.sas_ipackets = asoc->stats.ipackets;
7168 
7169 	/* New high max rto observed, will return 0 if not a single
7170 	 * RTO update took place. obs_rto_ipaddr will be bogus
7171 	 * in such a case
7172 	 */
7173 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7174 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7175 		sizeof(struct sockaddr_storage));
7176 
7177 	/* Mark beginning of a new observation period */
7178 	asoc->stats.max_obs_rto = asoc->rto_min;
7179 
7180 	if (put_user(len, optlen))
7181 		return -EFAULT;
7182 
7183 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7184 
7185 	if (copy_to_user(optval, &sas, len))
7186 		return -EFAULT;
7187 
7188 	return 0;
7189 }
7190 
7191 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7192 				       char __user *optval,
7193 				       int __user *optlen)
7194 {
7195 	int val = 0;
7196 
7197 	if (len < sizeof(int))
7198 		return -EINVAL;
7199 
7200 	len = sizeof(int);
7201 	if (sctp_sk(sk)->recvrcvinfo)
7202 		val = 1;
7203 	if (put_user(len, optlen))
7204 		return -EFAULT;
7205 	if (copy_to_user(optval, &val, len))
7206 		return -EFAULT;
7207 
7208 	return 0;
7209 }
7210 
7211 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7212 				       char __user *optval,
7213 				       int __user *optlen)
7214 {
7215 	int val = 0;
7216 
7217 	if (len < sizeof(int))
7218 		return -EINVAL;
7219 
7220 	len = sizeof(int);
7221 	if (sctp_sk(sk)->recvnxtinfo)
7222 		val = 1;
7223 	if (put_user(len, optlen))
7224 		return -EFAULT;
7225 	if (copy_to_user(optval, &val, len))
7226 		return -EFAULT;
7227 
7228 	return 0;
7229 }
7230 
7231 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7232 					char __user *optval,
7233 					int __user *optlen)
7234 {
7235 	struct sctp_assoc_value params;
7236 	struct sctp_association *asoc;
7237 	int retval = -EFAULT;
7238 
7239 	if (len < sizeof(params)) {
7240 		retval = -EINVAL;
7241 		goto out;
7242 	}
7243 
7244 	len = sizeof(params);
7245 	if (copy_from_user(&params, optval, len))
7246 		goto out;
7247 
7248 	asoc = sctp_id2assoc(sk, params.assoc_id);
7249 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7250 	    sctp_style(sk, UDP)) {
7251 		retval = -EINVAL;
7252 		goto out;
7253 	}
7254 
7255 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7256 				  : sctp_sk(sk)->ep->prsctp_enable;
7257 
7258 	if (put_user(len, optlen))
7259 		goto out;
7260 
7261 	if (copy_to_user(optval, &params, len))
7262 		goto out;
7263 
7264 	retval = 0;
7265 
7266 out:
7267 	return retval;
7268 }
7269 
7270 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7271 					  char __user *optval,
7272 					  int __user *optlen)
7273 {
7274 	struct sctp_default_prinfo info;
7275 	struct sctp_association *asoc;
7276 	int retval = -EFAULT;
7277 
7278 	if (len < sizeof(info)) {
7279 		retval = -EINVAL;
7280 		goto out;
7281 	}
7282 
7283 	len = sizeof(info);
7284 	if (copy_from_user(&info, optval, len))
7285 		goto out;
7286 
7287 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7288 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7289 	    sctp_style(sk, UDP)) {
7290 		retval = -EINVAL;
7291 		goto out;
7292 	}
7293 
7294 	if (asoc) {
7295 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7296 		info.pr_value = asoc->default_timetolive;
7297 	} else {
7298 		struct sctp_sock *sp = sctp_sk(sk);
7299 
7300 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7301 		info.pr_value = sp->default_timetolive;
7302 	}
7303 
7304 	if (put_user(len, optlen))
7305 		goto out;
7306 
7307 	if (copy_to_user(optval, &info, len))
7308 		goto out;
7309 
7310 	retval = 0;
7311 
7312 out:
7313 	return retval;
7314 }
7315 
7316 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7317 					  char __user *optval,
7318 					  int __user *optlen)
7319 {
7320 	struct sctp_prstatus params;
7321 	struct sctp_association *asoc;
7322 	int policy;
7323 	int retval = -EINVAL;
7324 
7325 	if (len < sizeof(params))
7326 		goto out;
7327 
7328 	len = sizeof(params);
7329 	if (copy_from_user(&params, optval, len)) {
7330 		retval = -EFAULT;
7331 		goto out;
7332 	}
7333 
7334 	policy = params.sprstat_policy;
7335 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7336 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7337 		goto out;
7338 
7339 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7340 	if (!asoc)
7341 		goto out;
7342 
7343 	if (policy == SCTP_PR_SCTP_ALL) {
7344 		params.sprstat_abandoned_unsent = 0;
7345 		params.sprstat_abandoned_sent = 0;
7346 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7347 			params.sprstat_abandoned_unsent +=
7348 				asoc->abandoned_unsent[policy];
7349 			params.sprstat_abandoned_sent +=
7350 				asoc->abandoned_sent[policy];
7351 		}
7352 	} else {
7353 		params.sprstat_abandoned_unsent =
7354 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7355 		params.sprstat_abandoned_sent =
7356 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7357 	}
7358 
7359 	if (put_user(len, optlen)) {
7360 		retval = -EFAULT;
7361 		goto out;
7362 	}
7363 
7364 	if (copy_to_user(optval, &params, len)) {
7365 		retval = -EFAULT;
7366 		goto out;
7367 	}
7368 
7369 	retval = 0;
7370 
7371 out:
7372 	return retval;
7373 }
7374 
7375 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7376 					   char __user *optval,
7377 					   int __user *optlen)
7378 {
7379 	struct sctp_stream_out_ext *streamoute;
7380 	struct sctp_association *asoc;
7381 	struct sctp_prstatus params;
7382 	int retval = -EINVAL;
7383 	int policy;
7384 
7385 	if (len < sizeof(params))
7386 		goto out;
7387 
7388 	len = sizeof(params);
7389 	if (copy_from_user(&params, optval, len)) {
7390 		retval = -EFAULT;
7391 		goto out;
7392 	}
7393 
7394 	policy = params.sprstat_policy;
7395 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7396 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7397 		goto out;
7398 
7399 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7400 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7401 		goto out;
7402 
7403 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7404 	if (!streamoute) {
7405 		/* Not allocated yet, means all stats are 0 */
7406 		params.sprstat_abandoned_unsent = 0;
7407 		params.sprstat_abandoned_sent = 0;
7408 		retval = 0;
7409 		goto out;
7410 	}
7411 
7412 	if (policy == SCTP_PR_SCTP_ALL) {
7413 		params.sprstat_abandoned_unsent = 0;
7414 		params.sprstat_abandoned_sent = 0;
7415 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7416 			params.sprstat_abandoned_unsent +=
7417 				streamoute->abandoned_unsent[policy];
7418 			params.sprstat_abandoned_sent +=
7419 				streamoute->abandoned_sent[policy];
7420 		}
7421 	} else {
7422 		params.sprstat_abandoned_unsent =
7423 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7424 		params.sprstat_abandoned_sent =
7425 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7426 	}
7427 
7428 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7429 		retval = -EFAULT;
7430 		goto out;
7431 	}
7432 
7433 	retval = 0;
7434 
7435 out:
7436 	return retval;
7437 }
7438 
7439 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7440 					      char __user *optval,
7441 					      int __user *optlen)
7442 {
7443 	struct sctp_assoc_value params;
7444 	struct sctp_association *asoc;
7445 	int retval = -EFAULT;
7446 
7447 	if (len < sizeof(params)) {
7448 		retval = -EINVAL;
7449 		goto out;
7450 	}
7451 
7452 	len = sizeof(params);
7453 	if (copy_from_user(&params, optval, len))
7454 		goto out;
7455 
7456 	asoc = sctp_id2assoc(sk, params.assoc_id);
7457 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7458 	    sctp_style(sk, UDP)) {
7459 		retval = -EINVAL;
7460 		goto out;
7461 	}
7462 
7463 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7464 				  : sctp_sk(sk)->ep->reconf_enable;
7465 
7466 	if (put_user(len, optlen))
7467 		goto out;
7468 
7469 	if (copy_to_user(optval, &params, len))
7470 		goto out;
7471 
7472 	retval = 0;
7473 
7474 out:
7475 	return retval;
7476 }
7477 
7478 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7479 					   char __user *optval,
7480 					   int __user *optlen)
7481 {
7482 	struct sctp_assoc_value params;
7483 	struct sctp_association *asoc;
7484 	int retval = -EFAULT;
7485 
7486 	if (len < sizeof(params)) {
7487 		retval = -EINVAL;
7488 		goto out;
7489 	}
7490 
7491 	len = sizeof(params);
7492 	if (copy_from_user(&params, optval, len))
7493 		goto out;
7494 
7495 	asoc = sctp_id2assoc(sk, params.assoc_id);
7496 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7497 	    sctp_style(sk, UDP)) {
7498 		retval = -EINVAL;
7499 		goto out;
7500 	}
7501 
7502 	params.assoc_value = asoc ? asoc->strreset_enable
7503 				  : sctp_sk(sk)->ep->strreset_enable;
7504 
7505 	if (put_user(len, optlen))
7506 		goto out;
7507 
7508 	if (copy_to_user(optval, &params, len))
7509 		goto out;
7510 
7511 	retval = 0;
7512 
7513 out:
7514 	return retval;
7515 }
7516 
7517 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7518 				     char __user *optval,
7519 				     int __user *optlen)
7520 {
7521 	struct sctp_assoc_value params;
7522 	struct sctp_association *asoc;
7523 	int retval = -EFAULT;
7524 
7525 	if (len < sizeof(params)) {
7526 		retval = -EINVAL;
7527 		goto out;
7528 	}
7529 
7530 	len = sizeof(params);
7531 	if (copy_from_user(&params, optval, len))
7532 		goto out;
7533 
7534 	asoc = sctp_id2assoc(sk, params.assoc_id);
7535 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7536 	    sctp_style(sk, UDP)) {
7537 		retval = -EINVAL;
7538 		goto out;
7539 	}
7540 
7541 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7542 				  : sctp_sk(sk)->default_ss;
7543 
7544 	if (put_user(len, optlen))
7545 		goto out;
7546 
7547 	if (copy_to_user(optval, &params, len))
7548 		goto out;
7549 
7550 	retval = 0;
7551 
7552 out:
7553 	return retval;
7554 }
7555 
7556 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7557 					   char __user *optval,
7558 					   int __user *optlen)
7559 {
7560 	struct sctp_stream_value params;
7561 	struct sctp_association *asoc;
7562 	int retval = -EFAULT;
7563 
7564 	if (len < sizeof(params)) {
7565 		retval = -EINVAL;
7566 		goto out;
7567 	}
7568 
7569 	len = sizeof(params);
7570 	if (copy_from_user(&params, optval, len))
7571 		goto out;
7572 
7573 	asoc = sctp_id2assoc(sk, params.assoc_id);
7574 	if (!asoc) {
7575 		retval = -EINVAL;
7576 		goto out;
7577 	}
7578 
7579 	retval = sctp_sched_get_value(asoc, params.stream_id,
7580 				      &params.stream_value);
7581 	if (retval)
7582 		goto out;
7583 
7584 	if (put_user(len, optlen)) {
7585 		retval = -EFAULT;
7586 		goto out;
7587 	}
7588 
7589 	if (copy_to_user(optval, &params, len)) {
7590 		retval = -EFAULT;
7591 		goto out;
7592 	}
7593 
7594 out:
7595 	return retval;
7596 }
7597 
7598 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7599 						  char __user *optval,
7600 						  int __user *optlen)
7601 {
7602 	struct sctp_assoc_value params;
7603 	struct sctp_association *asoc;
7604 	int retval = -EFAULT;
7605 
7606 	if (len < sizeof(params)) {
7607 		retval = -EINVAL;
7608 		goto out;
7609 	}
7610 
7611 	len = sizeof(params);
7612 	if (copy_from_user(&params, optval, len))
7613 		goto out;
7614 
7615 	asoc = sctp_id2assoc(sk, params.assoc_id);
7616 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7617 	    sctp_style(sk, UDP)) {
7618 		retval = -EINVAL;
7619 		goto out;
7620 	}
7621 
7622 	params.assoc_value = asoc ? asoc->peer.intl_capable
7623 				  : sctp_sk(sk)->ep->intl_enable;
7624 
7625 	if (put_user(len, optlen))
7626 		goto out;
7627 
7628 	if (copy_to_user(optval, &params, len))
7629 		goto out;
7630 
7631 	retval = 0;
7632 
7633 out:
7634 	return retval;
7635 }
7636 
7637 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7638 				      char __user *optval,
7639 				      int __user *optlen)
7640 {
7641 	int val;
7642 
7643 	if (len < sizeof(int))
7644 		return -EINVAL;
7645 
7646 	len = sizeof(int);
7647 	val = sctp_sk(sk)->reuse;
7648 	if (put_user(len, optlen))
7649 		return -EFAULT;
7650 
7651 	if (copy_to_user(optval, &val, len))
7652 		return -EFAULT;
7653 
7654 	return 0;
7655 }
7656 
7657 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7658 				 int __user *optlen)
7659 {
7660 	struct sctp_association *asoc;
7661 	struct sctp_event param;
7662 	__u16 subscribe;
7663 
7664 	if (len < sizeof(param))
7665 		return -EINVAL;
7666 
7667 	len = sizeof(param);
7668 	if (copy_from_user(&param, optval, len))
7669 		return -EFAULT;
7670 
7671 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7672 	    param.se_type > SCTP_SN_TYPE_MAX)
7673 		return -EINVAL;
7674 
7675 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7676 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7677 	    sctp_style(sk, UDP))
7678 		return -EINVAL;
7679 
7680 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7681 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7682 
7683 	if (put_user(len, optlen))
7684 		return -EFAULT;
7685 
7686 	if (copy_to_user(optval, &param, len))
7687 		return -EFAULT;
7688 
7689 	return 0;
7690 }
7691 
7692 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7693 					    char __user *optval,
7694 					    int __user *optlen)
7695 {
7696 	struct sctp_assoc_value params;
7697 	struct sctp_association *asoc;
7698 	int retval = -EFAULT;
7699 
7700 	if (len < sizeof(params)) {
7701 		retval = -EINVAL;
7702 		goto out;
7703 	}
7704 
7705 	len = sizeof(params);
7706 	if (copy_from_user(&params, optval, len))
7707 		goto out;
7708 
7709 	asoc = sctp_id2assoc(sk, params.assoc_id);
7710 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7711 	    sctp_style(sk, UDP)) {
7712 		retval = -EINVAL;
7713 		goto out;
7714 	}
7715 
7716 	params.assoc_value = asoc ? asoc->peer.asconf_capable
7717 				  : sctp_sk(sk)->ep->asconf_enable;
7718 
7719 	if (put_user(len, optlen))
7720 		goto out;
7721 
7722 	if (copy_to_user(optval, &params, len))
7723 		goto out;
7724 
7725 	retval = 0;
7726 
7727 out:
7728 	return retval;
7729 }
7730 
7731 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7732 					  char __user *optval,
7733 					  int __user *optlen)
7734 {
7735 	struct sctp_assoc_value params;
7736 	struct sctp_association *asoc;
7737 	int retval = -EFAULT;
7738 
7739 	if (len < sizeof(params)) {
7740 		retval = -EINVAL;
7741 		goto out;
7742 	}
7743 
7744 	len = sizeof(params);
7745 	if (copy_from_user(&params, optval, len))
7746 		goto out;
7747 
7748 	asoc = sctp_id2assoc(sk, params.assoc_id);
7749 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7750 	    sctp_style(sk, UDP)) {
7751 		retval = -EINVAL;
7752 		goto out;
7753 	}
7754 
7755 	params.assoc_value = asoc ? asoc->peer.auth_capable
7756 				  : sctp_sk(sk)->ep->auth_enable;
7757 
7758 	if (put_user(len, optlen))
7759 		goto out;
7760 
7761 	if (copy_to_user(optval, &params, len))
7762 		goto out;
7763 
7764 	retval = 0;
7765 
7766 out:
7767 	return retval;
7768 }
7769 
7770 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7771 					 char __user *optval,
7772 					 int __user *optlen)
7773 {
7774 	struct sctp_assoc_value params;
7775 	struct sctp_association *asoc;
7776 	int retval = -EFAULT;
7777 
7778 	if (len < sizeof(params)) {
7779 		retval = -EINVAL;
7780 		goto out;
7781 	}
7782 
7783 	len = sizeof(params);
7784 	if (copy_from_user(&params, optval, len))
7785 		goto out;
7786 
7787 	asoc = sctp_id2assoc(sk, params.assoc_id);
7788 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7789 	    sctp_style(sk, UDP)) {
7790 		retval = -EINVAL;
7791 		goto out;
7792 	}
7793 
7794 	params.assoc_value = asoc ? asoc->peer.ecn_capable
7795 				  : sctp_sk(sk)->ep->ecn_enable;
7796 
7797 	if (put_user(len, optlen))
7798 		goto out;
7799 
7800 	if (copy_to_user(optval, &params, len))
7801 		goto out;
7802 
7803 	retval = 0;
7804 
7805 out:
7806 	return retval;
7807 }
7808 
7809 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7810 				     char __user *optval,
7811 				     int __user *optlen)
7812 {
7813 	struct sctp_assoc_value params;
7814 	struct sctp_association *asoc;
7815 	int retval = -EFAULT;
7816 
7817 	if (len < sizeof(params)) {
7818 		retval = -EINVAL;
7819 		goto out;
7820 	}
7821 
7822 	len = sizeof(params);
7823 	if (copy_from_user(&params, optval, len))
7824 		goto out;
7825 
7826 	asoc = sctp_id2assoc(sk, params.assoc_id);
7827 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7828 	    sctp_style(sk, UDP)) {
7829 		retval = -EINVAL;
7830 		goto out;
7831 	}
7832 
7833 	params.assoc_value = asoc ? asoc->pf_expose
7834 				  : sctp_sk(sk)->pf_expose;
7835 
7836 	if (put_user(len, optlen))
7837 		goto out;
7838 
7839 	if (copy_to_user(optval, &params, len))
7840 		goto out;
7841 
7842 	retval = 0;
7843 
7844 out:
7845 	return retval;
7846 }
7847 
7848 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7849 				      char __user *optval, int __user *optlen)
7850 {
7851 	struct sctp_association *asoc;
7852 	struct sctp_udpencaps encap;
7853 	struct sctp_transport *t;
7854 	__be16 encap_port;
7855 
7856 	if (len < sizeof(encap))
7857 		return -EINVAL;
7858 
7859 	len = sizeof(encap);
7860 	if (copy_from_user(&encap, optval, len))
7861 		return -EFAULT;
7862 
7863 	/* If an address other than INADDR_ANY is specified, and
7864 	 * no transport is found, then the request is invalid.
7865 	 */
7866 	if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7867 		t = sctp_addr_id2transport(sk, &encap.sue_address,
7868 					   encap.sue_assoc_id);
7869 		if (!t) {
7870 			pr_debug("%s: failed no transport\n", __func__);
7871 			return -EINVAL;
7872 		}
7873 
7874 		encap_port = t->encap_port;
7875 		goto out;
7876 	}
7877 
7878 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7879 	 * socket is a one to many style socket, and an association
7880 	 * was not found, then the id was invalid.
7881 	 */
7882 	asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7883 	if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7884 	    sctp_style(sk, UDP)) {
7885 		pr_debug("%s: failed no association\n", __func__);
7886 		return -EINVAL;
7887 	}
7888 
7889 	if (asoc) {
7890 		encap_port = asoc->encap_port;
7891 		goto out;
7892 	}
7893 
7894 	encap_port = sctp_sk(sk)->encap_port;
7895 
7896 out:
7897 	encap.sue_port = (__force uint16_t)encap_port;
7898 	if (copy_to_user(optval, &encap, len))
7899 		return -EFAULT;
7900 
7901 	if (put_user(len, optlen))
7902 		return -EFAULT;
7903 
7904 	return 0;
7905 }
7906 
7907 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7908 			   char __user *optval, int __user *optlen)
7909 {
7910 	int retval = 0;
7911 	int len;
7912 
7913 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7914 
7915 	/* I can hardly begin to describe how wrong this is.  This is
7916 	 * so broken as to be worse than useless.  The API draft
7917 	 * REALLY is NOT helpful here...  I am not convinced that the
7918 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7919 	 * are at all well-founded.
7920 	 */
7921 	if (level != SOL_SCTP) {
7922 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7923 
7924 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7925 		return retval;
7926 	}
7927 
7928 	if (get_user(len, optlen))
7929 		return -EFAULT;
7930 
7931 	if (len < 0)
7932 		return -EINVAL;
7933 
7934 	lock_sock(sk);
7935 
7936 	switch (optname) {
7937 	case SCTP_STATUS:
7938 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7939 		break;
7940 	case SCTP_DISABLE_FRAGMENTS:
7941 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7942 							   optlen);
7943 		break;
7944 	case SCTP_EVENTS:
7945 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7946 		break;
7947 	case SCTP_AUTOCLOSE:
7948 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7949 		break;
7950 	case SCTP_SOCKOPT_PEELOFF:
7951 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7952 		break;
7953 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7954 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7955 		break;
7956 	case SCTP_PEER_ADDR_PARAMS:
7957 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7958 							  optlen);
7959 		break;
7960 	case SCTP_DELAYED_SACK:
7961 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7962 							  optlen);
7963 		break;
7964 	case SCTP_INITMSG:
7965 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7966 		break;
7967 	case SCTP_GET_PEER_ADDRS:
7968 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7969 						    optlen);
7970 		break;
7971 	case SCTP_GET_LOCAL_ADDRS:
7972 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7973 						     optlen);
7974 		break;
7975 	case SCTP_SOCKOPT_CONNECTX3:
7976 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7977 		break;
7978 	case SCTP_DEFAULT_SEND_PARAM:
7979 		retval = sctp_getsockopt_default_send_param(sk, len,
7980 							    optval, optlen);
7981 		break;
7982 	case SCTP_DEFAULT_SNDINFO:
7983 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7984 							 optval, optlen);
7985 		break;
7986 	case SCTP_PRIMARY_ADDR:
7987 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7988 		break;
7989 	case SCTP_NODELAY:
7990 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7991 		break;
7992 	case SCTP_RTOINFO:
7993 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7994 		break;
7995 	case SCTP_ASSOCINFO:
7996 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7997 		break;
7998 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7999 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8000 		break;
8001 	case SCTP_MAXSEG:
8002 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8003 		break;
8004 	case SCTP_GET_PEER_ADDR_INFO:
8005 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8006 							optlen);
8007 		break;
8008 	case SCTP_ADAPTATION_LAYER:
8009 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8010 							optlen);
8011 		break;
8012 	case SCTP_CONTEXT:
8013 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
8014 		break;
8015 	case SCTP_FRAGMENT_INTERLEAVE:
8016 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8017 							     optlen);
8018 		break;
8019 	case SCTP_PARTIAL_DELIVERY_POINT:
8020 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8021 								optlen);
8022 		break;
8023 	case SCTP_MAX_BURST:
8024 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8025 		break;
8026 	case SCTP_AUTH_KEY:
8027 	case SCTP_AUTH_CHUNK:
8028 	case SCTP_AUTH_DELETE_KEY:
8029 	case SCTP_AUTH_DEACTIVATE_KEY:
8030 		retval = -EOPNOTSUPP;
8031 		break;
8032 	case SCTP_HMAC_IDENT:
8033 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8034 		break;
8035 	case SCTP_AUTH_ACTIVE_KEY:
8036 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8037 		break;
8038 	case SCTP_PEER_AUTH_CHUNKS:
8039 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8040 							optlen);
8041 		break;
8042 	case SCTP_LOCAL_AUTH_CHUNKS:
8043 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8044 							optlen);
8045 		break;
8046 	case SCTP_GET_ASSOC_NUMBER:
8047 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8048 		break;
8049 	case SCTP_GET_ASSOC_ID_LIST:
8050 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8051 		break;
8052 	case SCTP_AUTO_ASCONF:
8053 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8054 		break;
8055 	case SCTP_PEER_ADDR_THLDS:
8056 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8057 							  optlen, false);
8058 		break;
8059 	case SCTP_PEER_ADDR_THLDS_V2:
8060 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8061 							  optlen, true);
8062 		break;
8063 	case SCTP_GET_ASSOC_STATS:
8064 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8065 		break;
8066 	case SCTP_RECVRCVINFO:
8067 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8068 		break;
8069 	case SCTP_RECVNXTINFO:
8070 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8071 		break;
8072 	case SCTP_PR_SUPPORTED:
8073 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8074 		break;
8075 	case SCTP_DEFAULT_PRINFO:
8076 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8077 							optlen);
8078 		break;
8079 	case SCTP_PR_ASSOC_STATUS:
8080 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8081 							optlen);
8082 		break;
8083 	case SCTP_PR_STREAM_STATUS:
8084 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8085 							 optlen);
8086 		break;
8087 	case SCTP_RECONFIG_SUPPORTED:
8088 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8089 							    optlen);
8090 		break;
8091 	case SCTP_ENABLE_STREAM_RESET:
8092 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8093 							 optlen);
8094 		break;
8095 	case SCTP_STREAM_SCHEDULER:
8096 		retval = sctp_getsockopt_scheduler(sk, len, optval,
8097 						   optlen);
8098 		break;
8099 	case SCTP_STREAM_SCHEDULER_VALUE:
8100 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8101 							 optlen);
8102 		break;
8103 	case SCTP_INTERLEAVING_SUPPORTED:
8104 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8105 								optlen);
8106 		break;
8107 	case SCTP_REUSE_PORT:
8108 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8109 		break;
8110 	case SCTP_EVENT:
8111 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
8112 		break;
8113 	case SCTP_ASCONF_SUPPORTED:
8114 		retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8115 							  optlen);
8116 		break;
8117 	case SCTP_AUTH_SUPPORTED:
8118 		retval = sctp_getsockopt_auth_supported(sk, len, optval,
8119 							optlen);
8120 		break;
8121 	case SCTP_ECN_SUPPORTED:
8122 		retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8123 		break;
8124 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8125 		retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8126 		break;
8127 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
8128 		retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8129 		break;
8130 	default:
8131 		retval = -ENOPROTOOPT;
8132 		break;
8133 	}
8134 
8135 	release_sock(sk);
8136 	return retval;
8137 }
8138 
8139 static int sctp_hash(struct sock *sk)
8140 {
8141 	/* STUB */
8142 	return 0;
8143 }
8144 
8145 static void sctp_unhash(struct sock *sk)
8146 {
8147 	/* STUB */
8148 }
8149 
8150 /* Check if port is acceptable.  Possibly find first available port.
8151  *
8152  * The port hash table (contained in the 'global' SCTP protocol storage
8153  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8154  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8155  * list (the list number is the port number hashed out, so as you
8156  * would expect from a hash function, all the ports in a given list have
8157  * such a number that hashes out to the same list number; you were
8158  * expecting that, right?); so each list has a set of ports, with a
8159  * link to the socket (struct sock) that uses it, the port number and
8160  * a fastreuse flag (FIXME: NPI ipg).
8161  */
8162 static struct sctp_bind_bucket *sctp_bucket_create(
8163 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8164 
8165 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8166 {
8167 	struct sctp_sock *sp = sctp_sk(sk);
8168 	bool reuse = (sk->sk_reuse || sp->reuse);
8169 	struct sctp_bind_hashbucket *head; /* hash list */
8170 	struct net *net = sock_net(sk);
8171 	kuid_t uid = sock_i_uid(sk);
8172 	struct sctp_bind_bucket *pp;
8173 	unsigned short snum;
8174 	int ret;
8175 
8176 	snum = ntohs(addr->v4.sin_port);
8177 
8178 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8179 
8180 	if (snum == 0) {
8181 		/* Search for an available port. */
8182 		int low, high, remaining, index;
8183 		unsigned int rover;
8184 
8185 		inet_get_local_port_range(net, &low, &high);
8186 		remaining = (high - low) + 1;
8187 		rover = prandom_u32() % remaining + low;
8188 
8189 		do {
8190 			rover++;
8191 			if ((rover < low) || (rover > high))
8192 				rover = low;
8193 			if (inet_is_local_reserved_port(net, rover))
8194 				continue;
8195 			index = sctp_phashfn(net, rover);
8196 			head = &sctp_port_hashtable[index];
8197 			spin_lock_bh(&head->lock);
8198 			sctp_for_each_hentry(pp, &head->chain)
8199 				if ((pp->port == rover) &&
8200 				    net_eq(net, pp->net))
8201 					goto next;
8202 			break;
8203 		next:
8204 			spin_unlock_bh(&head->lock);
8205 			cond_resched();
8206 		} while (--remaining > 0);
8207 
8208 		/* Exhausted local port range during search? */
8209 		ret = 1;
8210 		if (remaining <= 0)
8211 			return ret;
8212 
8213 		/* OK, here is the one we will use.  HEAD (the port
8214 		 * hash table list entry) is non-NULL and we hold it's
8215 		 * mutex.
8216 		 */
8217 		snum = rover;
8218 	} else {
8219 		/* We are given an specific port number; we verify
8220 		 * that it is not being used. If it is used, we will
8221 		 * exahust the search in the hash list corresponding
8222 		 * to the port number (snum) - we detect that with the
8223 		 * port iterator, pp being NULL.
8224 		 */
8225 		head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8226 		spin_lock_bh(&head->lock);
8227 		sctp_for_each_hentry(pp, &head->chain) {
8228 			if ((pp->port == snum) && net_eq(pp->net, net))
8229 				goto pp_found;
8230 		}
8231 	}
8232 	pp = NULL;
8233 	goto pp_not_found;
8234 pp_found:
8235 	if (!hlist_empty(&pp->owner)) {
8236 		/* We had a port hash table hit - there is an
8237 		 * available port (pp != NULL) and it is being
8238 		 * used by other socket (pp->owner not empty); that other
8239 		 * socket is going to be sk2.
8240 		 */
8241 		struct sock *sk2;
8242 
8243 		pr_debug("%s: found a possible match\n", __func__);
8244 
8245 		if ((pp->fastreuse && reuse &&
8246 		     sk->sk_state != SCTP_SS_LISTENING) ||
8247 		    (pp->fastreuseport && sk->sk_reuseport &&
8248 		     uid_eq(pp->fastuid, uid)))
8249 			goto success;
8250 
8251 		/* Run through the list of sockets bound to the port
8252 		 * (pp->port) [via the pointers bind_next and
8253 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8254 		 * we get the endpoint they describe and run through
8255 		 * the endpoint's list of IP (v4 or v6) addresses,
8256 		 * comparing each of the addresses with the address of
8257 		 * the socket sk. If we find a match, then that means
8258 		 * that this port/socket (sk) combination are already
8259 		 * in an endpoint.
8260 		 */
8261 		sk_for_each_bound(sk2, &pp->owner) {
8262 			struct sctp_sock *sp2 = sctp_sk(sk2);
8263 			struct sctp_endpoint *ep2 = sp2->ep;
8264 
8265 			if (sk == sk2 ||
8266 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8267 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8268 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8269 			     uid_eq(uid, sock_i_uid(sk2))))
8270 				continue;
8271 
8272 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8273 						    addr, sp2, sp)) {
8274 				ret = 1;
8275 				goto fail_unlock;
8276 			}
8277 		}
8278 
8279 		pr_debug("%s: found a match\n", __func__);
8280 	}
8281 pp_not_found:
8282 	/* If there was a hash table miss, create a new port.  */
8283 	ret = 1;
8284 	if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8285 		goto fail_unlock;
8286 
8287 	/* In either case (hit or miss), make sure fastreuse is 1 only
8288 	 * if sk->sk_reuse is too (that is, if the caller requested
8289 	 * SO_REUSEADDR on this socket -sk-).
8290 	 */
8291 	if (hlist_empty(&pp->owner)) {
8292 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8293 			pp->fastreuse = 1;
8294 		else
8295 			pp->fastreuse = 0;
8296 
8297 		if (sk->sk_reuseport) {
8298 			pp->fastreuseport = 1;
8299 			pp->fastuid = uid;
8300 		} else {
8301 			pp->fastreuseport = 0;
8302 		}
8303 	} else {
8304 		if (pp->fastreuse &&
8305 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8306 			pp->fastreuse = 0;
8307 
8308 		if (pp->fastreuseport &&
8309 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8310 			pp->fastreuseport = 0;
8311 	}
8312 
8313 	/* We are set, so fill up all the data in the hash table
8314 	 * entry, tie the socket list information with the rest of the
8315 	 * sockets FIXME: Blurry, NPI (ipg).
8316 	 */
8317 success:
8318 	if (!sp->bind_hash) {
8319 		inet_sk(sk)->inet_num = snum;
8320 		sk_add_bind_node(sk, &pp->owner);
8321 		sp->bind_hash = pp;
8322 	}
8323 	ret = 0;
8324 
8325 fail_unlock:
8326 	spin_unlock_bh(&head->lock);
8327 	return ret;
8328 }
8329 
8330 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8331  * port is requested.
8332  */
8333 static int sctp_get_port(struct sock *sk, unsigned short snum)
8334 {
8335 	union sctp_addr addr;
8336 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8337 
8338 	/* Set up a dummy address struct from the sk. */
8339 	af->from_sk(&addr, sk);
8340 	addr.v4.sin_port = htons(snum);
8341 
8342 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8343 	return sctp_get_port_local(sk, &addr);
8344 }
8345 
8346 /*
8347  *  Move a socket to LISTENING state.
8348  */
8349 static int sctp_listen_start(struct sock *sk, int backlog)
8350 {
8351 	struct sctp_sock *sp = sctp_sk(sk);
8352 	struct sctp_endpoint *ep = sp->ep;
8353 	struct crypto_shash *tfm = NULL;
8354 	char alg[32];
8355 
8356 	/* Allocate HMAC for generating cookie. */
8357 	if (!sp->hmac && sp->sctp_hmac_alg) {
8358 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8359 		tfm = crypto_alloc_shash(alg, 0, 0);
8360 		if (IS_ERR(tfm)) {
8361 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8362 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8363 			return -ENOSYS;
8364 		}
8365 		sctp_sk(sk)->hmac = tfm;
8366 	}
8367 
8368 	/*
8369 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8370 	 * call that allows new associations to be accepted, the system
8371 	 * picks an ephemeral port and will choose an address set equivalent
8372 	 * to binding with a wildcard address.
8373 	 *
8374 	 * This is not currently spelled out in the SCTP sockets
8375 	 * extensions draft, but follows the practice as seen in TCP
8376 	 * sockets.
8377 	 *
8378 	 */
8379 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8380 	if (!ep->base.bind_addr.port) {
8381 		if (sctp_autobind(sk))
8382 			return -EAGAIN;
8383 	} else {
8384 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8385 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8386 			return -EADDRINUSE;
8387 		}
8388 	}
8389 
8390 	WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8391 	return sctp_hash_endpoint(ep);
8392 }
8393 
8394 /*
8395  * 4.1.3 / 5.1.3 listen()
8396  *
8397  *   By default, new associations are not accepted for UDP style sockets.
8398  *   An application uses listen() to mark a socket as being able to
8399  *   accept new associations.
8400  *
8401  *   On TCP style sockets, applications use listen() to ready the SCTP
8402  *   endpoint for accepting inbound associations.
8403  *
8404  *   On both types of endpoints a backlog of '0' disables listening.
8405  *
8406  *  Move a socket to LISTENING state.
8407  */
8408 int sctp_inet_listen(struct socket *sock, int backlog)
8409 {
8410 	struct sock *sk = sock->sk;
8411 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8412 	int err = -EINVAL;
8413 
8414 	if (unlikely(backlog < 0))
8415 		return err;
8416 
8417 	lock_sock(sk);
8418 
8419 	/* Peeled-off sockets are not allowed to listen().  */
8420 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8421 		goto out;
8422 
8423 	if (sock->state != SS_UNCONNECTED)
8424 		goto out;
8425 
8426 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8427 		goto out;
8428 
8429 	/* If backlog is zero, disable listening. */
8430 	if (!backlog) {
8431 		if (sctp_sstate(sk, CLOSED))
8432 			goto out;
8433 
8434 		err = 0;
8435 		sctp_unhash_endpoint(ep);
8436 		sk->sk_state = SCTP_SS_CLOSED;
8437 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8438 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8439 		goto out;
8440 	}
8441 
8442 	/* If we are already listening, just update the backlog */
8443 	if (sctp_sstate(sk, LISTENING))
8444 		WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8445 	else {
8446 		err = sctp_listen_start(sk, backlog);
8447 		if (err)
8448 			goto out;
8449 	}
8450 
8451 	err = 0;
8452 out:
8453 	release_sock(sk);
8454 	return err;
8455 }
8456 
8457 /*
8458  * This function is done by modeling the current datagram_poll() and the
8459  * tcp_poll().  Note that, based on these implementations, we don't
8460  * lock the socket in this function, even though it seems that,
8461  * ideally, locking or some other mechanisms can be used to ensure
8462  * the integrity of the counters (sndbuf and wmem_alloc) used
8463  * in this place.  We assume that we don't need locks either until proven
8464  * otherwise.
8465  *
8466  * Another thing to note is that we include the Async I/O support
8467  * here, again, by modeling the current TCP/UDP code.  We don't have
8468  * a good way to test with it yet.
8469  */
8470 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8471 {
8472 	struct sock *sk = sock->sk;
8473 	struct sctp_sock *sp = sctp_sk(sk);
8474 	__poll_t mask;
8475 
8476 	poll_wait(file, sk_sleep(sk), wait);
8477 
8478 	sock_rps_record_flow(sk);
8479 
8480 	/* A TCP-style listening socket becomes readable when the accept queue
8481 	 * is not empty.
8482 	 */
8483 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8484 		return (!list_empty(&sp->ep->asocs)) ?
8485 			(EPOLLIN | EPOLLRDNORM) : 0;
8486 
8487 	mask = 0;
8488 
8489 	/* Is there any exceptional events?  */
8490 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8491 		mask |= EPOLLERR |
8492 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8493 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8494 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8495 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8496 		mask |= EPOLLHUP;
8497 
8498 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8499 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8500 		mask |= EPOLLIN | EPOLLRDNORM;
8501 
8502 	/* The association is either gone or not ready.  */
8503 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8504 		return mask;
8505 
8506 	/* Is it writable?  */
8507 	if (sctp_writeable(sk)) {
8508 		mask |= EPOLLOUT | EPOLLWRNORM;
8509 	} else {
8510 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8511 		/*
8512 		 * Since the socket is not locked, the buffer
8513 		 * might be made available after the writeable check and
8514 		 * before the bit is set.  This could cause a lost I/O
8515 		 * signal.  tcp_poll() has a race breaker for this race
8516 		 * condition.  Based on their implementation, we put
8517 		 * in the following code to cover it as well.
8518 		 */
8519 		if (sctp_writeable(sk))
8520 			mask |= EPOLLOUT | EPOLLWRNORM;
8521 	}
8522 	return mask;
8523 }
8524 
8525 /********************************************************************
8526  * 2nd Level Abstractions
8527  ********************************************************************/
8528 
8529 static struct sctp_bind_bucket *sctp_bucket_create(
8530 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8531 {
8532 	struct sctp_bind_bucket *pp;
8533 
8534 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8535 	if (pp) {
8536 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8537 		pp->port = snum;
8538 		pp->fastreuse = 0;
8539 		INIT_HLIST_HEAD(&pp->owner);
8540 		pp->net = net;
8541 		hlist_add_head(&pp->node, &head->chain);
8542 	}
8543 	return pp;
8544 }
8545 
8546 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8547 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8548 {
8549 	if (pp && hlist_empty(&pp->owner)) {
8550 		__hlist_del(&pp->node);
8551 		kmem_cache_free(sctp_bucket_cachep, pp);
8552 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8553 	}
8554 }
8555 
8556 /* Release this socket's reference to a local port.  */
8557 static inline void __sctp_put_port(struct sock *sk)
8558 {
8559 	struct sctp_bind_hashbucket *head =
8560 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8561 						  inet_sk(sk)->inet_num)];
8562 	struct sctp_bind_bucket *pp;
8563 
8564 	spin_lock(&head->lock);
8565 	pp = sctp_sk(sk)->bind_hash;
8566 	__sk_del_bind_node(sk);
8567 	sctp_sk(sk)->bind_hash = NULL;
8568 	inet_sk(sk)->inet_num = 0;
8569 	sctp_bucket_destroy(pp);
8570 	spin_unlock(&head->lock);
8571 }
8572 
8573 void sctp_put_port(struct sock *sk)
8574 {
8575 	local_bh_disable();
8576 	__sctp_put_port(sk);
8577 	local_bh_enable();
8578 }
8579 
8580 /*
8581  * The system picks an ephemeral port and choose an address set equivalent
8582  * to binding with a wildcard address.
8583  * One of those addresses will be the primary address for the association.
8584  * This automatically enables the multihoming capability of SCTP.
8585  */
8586 static int sctp_autobind(struct sock *sk)
8587 {
8588 	union sctp_addr autoaddr;
8589 	struct sctp_af *af;
8590 	__be16 port;
8591 
8592 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8593 	af = sctp_sk(sk)->pf->af;
8594 
8595 	port = htons(inet_sk(sk)->inet_num);
8596 	af->inaddr_any(&autoaddr, port);
8597 
8598 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8599 }
8600 
8601 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8602  *
8603  * From RFC 2292
8604  * 4.2 The cmsghdr Structure *
8605  *
8606  * When ancillary data is sent or received, any number of ancillary data
8607  * objects can be specified by the msg_control and msg_controllen members of
8608  * the msghdr structure, because each object is preceded by
8609  * a cmsghdr structure defining the object's length (the cmsg_len member).
8610  * Historically Berkeley-derived implementations have passed only one object
8611  * at a time, but this API allows multiple objects to be
8612  * passed in a single call to sendmsg() or recvmsg(). The following example
8613  * shows two ancillary data objects in a control buffer.
8614  *
8615  *   |<--------------------------- msg_controllen -------------------------->|
8616  *   |                                                                       |
8617  *
8618  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8619  *
8620  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8621  *   |                                   |                                   |
8622  *
8623  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8624  *
8625  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8626  *   |                                |  |                                |  |
8627  *
8628  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8629  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8630  *
8631  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8632  *
8633  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8634  *    ^
8635  *    |
8636  *
8637  * msg_control
8638  * points here
8639  */
8640 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8641 {
8642 	struct msghdr *my_msg = (struct msghdr *)msg;
8643 	struct cmsghdr *cmsg;
8644 
8645 	for_each_cmsghdr(cmsg, my_msg) {
8646 		if (!CMSG_OK(my_msg, cmsg))
8647 			return -EINVAL;
8648 
8649 		/* Should we parse this header or ignore?  */
8650 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8651 			continue;
8652 
8653 		/* Strictly check lengths following example in SCM code.  */
8654 		switch (cmsg->cmsg_type) {
8655 		case SCTP_INIT:
8656 			/* SCTP Socket API Extension
8657 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8658 			 *
8659 			 * This cmsghdr structure provides information for
8660 			 * initializing new SCTP associations with sendmsg().
8661 			 * The SCTP_INITMSG socket option uses this same data
8662 			 * structure.  This structure is not used for
8663 			 * recvmsg().
8664 			 *
8665 			 * cmsg_level    cmsg_type      cmsg_data[]
8666 			 * ------------  ------------   ----------------------
8667 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8668 			 */
8669 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8670 				return -EINVAL;
8671 
8672 			cmsgs->init = CMSG_DATA(cmsg);
8673 			break;
8674 
8675 		case SCTP_SNDRCV:
8676 			/* SCTP Socket API Extension
8677 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8678 			 *
8679 			 * This cmsghdr structure specifies SCTP options for
8680 			 * sendmsg() and describes SCTP header information
8681 			 * about a received message through recvmsg().
8682 			 *
8683 			 * cmsg_level    cmsg_type      cmsg_data[]
8684 			 * ------------  ------------   ----------------------
8685 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8686 			 */
8687 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8688 				return -EINVAL;
8689 
8690 			cmsgs->srinfo = CMSG_DATA(cmsg);
8691 
8692 			if (cmsgs->srinfo->sinfo_flags &
8693 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8694 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8695 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8696 				return -EINVAL;
8697 			break;
8698 
8699 		case SCTP_SNDINFO:
8700 			/* SCTP Socket API Extension
8701 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8702 			 *
8703 			 * This cmsghdr structure specifies SCTP options for
8704 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8705 			 * SCTP_SNDRCV which has been deprecated.
8706 			 *
8707 			 * cmsg_level    cmsg_type      cmsg_data[]
8708 			 * ------------  ------------   ---------------------
8709 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8710 			 */
8711 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8712 				return -EINVAL;
8713 
8714 			cmsgs->sinfo = CMSG_DATA(cmsg);
8715 
8716 			if (cmsgs->sinfo->snd_flags &
8717 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8718 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8719 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8720 				return -EINVAL;
8721 			break;
8722 		case SCTP_PRINFO:
8723 			/* SCTP Socket API Extension
8724 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8725 			 *
8726 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8727 			 *
8728 			 * cmsg_level    cmsg_type      cmsg_data[]
8729 			 * ------------  ------------   ---------------------
8730 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8731 			 */
8732 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8733 				return -EINVAL;
8734 
8735 			cmsgs->prinfo = CMSG_DATA(cmsg);
8736 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8737 				return -EINVAL;
8738 
8739 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8740 				cmsgs->prinfo->pr_value = 0;
8741 			break;
8742 		case SCTP_AUTHINFO:
8743 			/* SCTP Socket API Extension
8744 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8745 			 *
8746 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8747 			 *
8748 			 * cmsg_level    cmsg_type      cmsg_data[]
8749 			 * ------------  ------------   ---------------------
8750 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8751 			 */
8752 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8753 				return -EINVAL;
8754 
8755 			cmsgs->authinfo = CMSG_DATA(cmsg);
8756 			break;
8757 		case SCTP_DSTADDRV4:
8758 		case SCTP_DSTADDRV6:
8759 			/* SCTP Socket API Extension
8760 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8761 			 *
8762 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8763 			 *
8764 			 * cmsg_level    cmsg_type         cmsg_data[]
8765 			 * ------------  ------------   ---------------------
8766 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8767 			 * ------------  ------------   ---------------------
8768 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8769 			 */
8770 			cmsgs->addrs_msg = my_msg;
8771 			break;
8772 		default:
8773 			return -EINVAL;
8774 		}
8775 	}
8776 
8777 	return 0;
8778 }
8779 
8780 /*
8781  * Wait for a packet..
8782  * Note: This function is the same function as in core/datagram.c
8783  * with a few modifications to make lksctp work.
8784  */
8785 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8786 {
8787 	int error;
8788 	DEFINE_WAIT(wait);
8789 
8790 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8791 
8792 	/* Socket errors? */
8793 	error = sock_error(sk);
8794 	if (error)
8795 		goto out;
8796 
8797 	if (!skb_queue_empty(&sk->sk_receive_queue))
8798 		goto ready;
8799 
8800 	/* Socket shut down?  */
8801 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8802 		goto out;
8803 
8804 	/* Sequenced packets can come disconnected.  If so we report the
8805 	 * problem.
8806 	 */
8807 	error = -ENOTCONN;
8808 
8809 	/* Is there a good reason to think that we may receive some data?  */
8810 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8811 		goto out;
8812 
8813 	/* Handle signals.  */
8814 	if (signal_pending(current))
8815 		goto interrupted;
8816 
8817 	/* Let another process have a go.  Since we are going to sleep
8818 	 * anyway.  Note: This may cause odd behaviors if the message
8819 	 * does not fit in the user's buffer, but this seems to be the
8820 	 * only way to honor MSG_DONTWAIT realistically.
8821 	 */
8822 	release_sock(sk);
8823 	*timeo_p = schedule_timeout(*timeo_p);
8824 	lock_sock(sk);
8825 
8826 ready:
8827 	finish_wait(sk_sleep(sk), &wait);
8828 	return 0;
8829 
8830 interrupted:
8831 	error = sock_intr_errno(*timeo_p);
8832 
8833 out:
8834 	finish_wait(sk_sleep(sk), &wait);
8835 	*err = error;
8836 	return error;
8837 }
8838 
8839 /* Receive a datagram.
8840  * Note: This is pretty much the same routine as in core/datagram.c
8841  * with a few changes to make lksctp work.
8842  */
8843 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8844 				       int noblock, int *err)
8845 {
8846 	int error;
8847 	struct sk_buff *skb;
8848 	long timeo;
8849 
8850 	timeo = sock_rcvtimeo(sk, noblock);
8851 
8852 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8853 		 MAX_SCHEDULE_TIMEOUT);
8854 
8855 	do {
8856 		/* Again only user level code calls this function,
8857 		 * so nothing interrupt level
8858 		 * will suddenly eat the receive_queue.
8859 		 *
8860 		 *  Look at current nfs client by the way...
8861 		 *  However, this function was correct in any case. 8)
8862 		 */
8863 		if (flags & MSG_PEEK) {
8864 			skb = skb_peek(&sk->sk_receive_queue);
8865 			if (skb)
8866 				refcount_inc(&skb->users);
8867 		} else {
8868 			skb = __skb_dequeue(&sk->sk_receive_queue);
8869 		}
8870 
8871 		if (skb)
8872 			return skb;
8873 
8874 		/* Caller is allowed not to check sk->sk_err before calling. */
8875 		error = sock_error(sk);
8876 		if (error)
8877 			goto no_packet;
8878 
8879 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8880 			break;
8881 
8882 		if (sk_can_busy_loop(sk)) {
8883 			sk_busy_loop(sk, noblock);
8884 
8885 			if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8886 				continue;
8887 		}
8888 
8889 		/* User doesn't want to wait.  */
8890 		error = -EAGAIN;
8891 		if (!timeo)
8892 			goto no_packet;
8893 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8894 
8895 	return NULL;
8896 
8897 no_packet:
8898 	*err = error;
8899 	return NULL;
8900 }
8901 
8902 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8903 static void __sctp_write_space(struct sctp_association *asoc)
8904 {
8905 	struct sock *sk = asoc->base.sk;
8906 
8907 	if (sctp_wspace(asoc) <= 0)
8908 		return;
8909 
8910 	if (waitqueue_active(&asoc->wait))
8911 		wake_up_interruptible(&asoc->wait);
8912 
8913 	if (sctp_writeable(sk)) {
8914 		struct socket_wq *wq;
8915 
8916 		rcu_read_lock();
8917 		wq = rcu_dereference(sk->sk_wq);
8918 		if (wq) {
8919 			if (waitqueue_active(&wq->wait))
8920 				wake_up_interruptible(&wq->wait);
8921 
8922 			/* Note that we try to include the Async I/O support
8923 			 * here by modeling from the current TCP/UDP code.
8924 			 * We have not tested with it yet.
8925 			 */
8926 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8927 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8928 		}
8929 		rcu_read_unlock();
8930 	}
8931 }
8932 
8933 static void sctp_wake_up_waiters(struct sock *sk,
8934 				 struct sctp_association *asoc)
8935 {
8936 	struct sctp_association *tmp = asoc;
8937 
8938 	/* We do accounting for the sndbuf space per association,
8939 	 * so we only need to wake our own association.
8940 	 */
8941 	if (asoc->ep->sndbuf_policy)
8942 		return __sctp_write_space(asoc);
8943 
8944 	/* If association goes down and is just flushing its
8945 	 * outq, then just normally notify others.
8946 	 */
8947 	if (asoc->base.dead)
8948 		return sctp_write_space(sk);
8949 
8950 	/* Accounting for the sndbuf space is per socket, so we
8951 	 * need to wake up others, try to be fair and in case of
8952 	 * other associations, let them have a go first instead
8953 	 * of just doing a sctp_write_space() call.
8954 	 *
8955 	 * Note that we reach sctp_wake_up_waiters() only when
8956 	 * associations free up queued chunks, thus we are under
8957 	 * lock and the list of associations on a socket is
8958 	 * guaranteed not to change.
8959 	 */
8960 	for (tmp = list_next_entry(tmp, asocs); 1;
8961 	     tmp = list_next_entry(tmp, asocs)) {
8962 		/* Manually skip the head element. */
8963 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8964 			continue;
8965 		/* Wake up association. */
8966 		__sctp_write_space(tmp);
8967 		/* We've reached the end. */
8968 		if (tmp == asoc)
8969 			break;
8970 	}
8971 }
8972 
8973 /* Do accounting for the sndbuf space.
8974  * Decrement the used sndbuf space of the corresponding association by the
8975  * data size which was just transmitted(freed).
8976  */
8977 static void sctp_wfree(struct sk_buff *skb)
8978 {
8979 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8980 	struct sctp_association *asoc = chunk->asoc;
8981 	struct sock *sk = asoc->base.sk;
8982 
8983 	sk_mem_uncharge(sk, skb->truesize);
8984 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8985 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8986 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8987 				      &sk->sk_wmem_alloc));
8988 
8989 	if (chunk->shkey) {
8990 		struct sctp_shared_key *shkey = chunk->shkey;
8991 
8992 		/* refcnt == 2 and !list_empty mean after this release, it's
8993 		 * not being used anywhere, and it's time to notify userland
8994 		 * that this shkey can be freed if it's been deactivated.
8995 		 */
8996 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8997 		    refcount_read(&shkey->refcnt) == 2) {
8998 			struct sctp_ulpevent *ev;
8999 
9000 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9001 							SCTP_AUTH_FREE_KEY,
9002 							GFP_KERNEL);
9003 			if (ev)
9004 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9005 		}
9006 		sctp_auth_shkey_release(chunk->shkey);
9007 	}
9008 
9009 	sock_wfree(skb);
9010 	sctp_wake_up_waiters(sk, asoc);
9011 
9012 	sctp_association_put(asoc);
9013 }
9014 
9015 /* Do accounting for the receive space on the socket.
9016  * Accounting for the association is done in ulpevent.c
9017  * We set this as a destructor for the cloned data skbs so that
9018  * accounting is done at the correct time.
9019  */
9020 void sctp_sock_rfree(struct sk_buff *skb)
9021 {
9022 	struct sock *sk = skb->sk;
9023 	struct sctp_ulpevent *event = sctp_skb2event(skb);
9024 
9025 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9026 
9027 	/*
9028 	 * Mimic the behavior of sock_rfree
9029 	 */
9030 	sk_mem_uncharge(sk, event->rmem_len);
9031 }
9032 
9033 
9034 /* Helper function to wait for space in the sndbuf.  */
9035 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9036 				size_t msg_len)
9037 {
9038 	struct sock *sk = asoc->base.sk;
9039 	long current_timeo = *timeo_p;
9040 	DEFINE_WAIT(wait);
9041 	int err = 0;
9042 
9043 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9044 		 *timeo_p, msg_len);
9045 
9046 	/* Increment the association's refcnt.  */
9047 	sctp_association_hold(asoc);
9048 
9049 	/* Wait on the association specific sndbuf space. */
9050 	for (;;) {
9051 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9052 					  TASK_INTERRUPTIBLE);
9053 		if (asoc->base.dead)
9054 			goto do_dead;
9055 		if (!*timeo_p)
9056 			goto do_nonblock;
9057 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9058 			goto do_error;
9059 		if (signal_pending(current))
9060 			goto do_interrupted;
9061 		if (sk_under_memory_pressure(sk))
9062 			sk_mem_reclaim(sk);
9063 		if ((int)msg_len <= sctp_wspace(asoc) &&
9064 		    sk_wmem_schedule(sk, msg_len))
9065 			break;
9066 
9067 		/* Let another process have a go.  Since we are going
9068 		 * to sleep anyway.
9069 		 */
9070 		release_sock(sk);
9071 		current_timeo = schedule_timeout(current_timeo);
9072 		lock_sock(sk);
9073 		if (sk != asoc->base.sk)
9074 			goto do_error;
9075 
9076 		*timeo_p = current_timeo;
9077 	}
9078 
9079 out:
9080 	finish_wait(&asoc->wait, &wait);
9081 
9082 	/* Release the association's refcnt.  */
9083 	sctp_association_put(asoc);
9084 
9085 	return err;
9086 
9087 do_dead:
9088 	err = -ESRCH;
9089 	goto out;
9090 
9091 do_error:
9092 	err = -EPIPE;
9093 	goto out;
9094 
9095 do_interrupted:
9096 	err = sock_intr_errno(*timeo_p);
9097 	goto out;
9098 
9099 do_nonblock:
9100 	err = -EAGAIN;
9101 	goto out;
9102 }
9103 
9104 void sctp_data_ready(struct sock *sk)
9105 {
9106 	struct socket_wq *wq;
9107 
9108 	rcu_read_lock();
9109 	wq = rcu_dereference(sk->sk_wq);
9110 	if (skwq_has_sleeper(wq))
9111 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9112 						EPOLLRDNORM | EPOLLRDBAND);
9113 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9114 	rcu_read_unlock();
9115 }
9116 
9117 /* If socket sndbuf has changed, wake up all per association waiters.  */
9118 void sctp_write_space(struct sock *sk)
9119 {
9120 	struct sctp_association *asoc;
9121 
9122 	/* Wake up the tasks in each wait queue.  */
9123 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9124 		__sctp_write_space(asoc);
9125 	}
9126 }
9127 
9128 /* Is there any sndbuf space available on the socket?
9129  *
9130  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9131  * associations on the same socket.  For a UDP-style socket with
9132  * multiple associations, it is possible for it to be "unwriteable"
9133  * prematurely.  I assume that this is acceptable because
9134  * a premature "unwriteable" is better than an accidental "writeable" which
9135  * would cause an unwanted block under certain circumstances.  For the 1-1
9136  * UDP-style sockets or TCP-style sockets, this code should work.
9137  *  - Daisy
9138  */
9139 static bool sctp_writeable(struct sock *sk)
9140 {
9141 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9142 }
9143 
9144 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9145  * returns immediately with EINPROGRESS.
9146  */
9147 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9148 {
9149 	struct sock *sk = asoc->base.sk;
9150 	int err = 0;
9151 	long current_timeo = *timeo_p;
9152 	DEFINE_WAIT(wait);
9153 
9154 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9155 
9156 	/* Increment the association's refcnt.  */
9157 	sctp_association_hold(asoc);
9158 
9159 	for (;;) {
9160 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9161 					  TASK_INTERRUPTIBLE);
9162 		if (!*timeo_p)
9163 			goto do_nonblock;
9164 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9165 			break;
9166 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9167 		    asoc->base.dead)
9168 			goto do_error;
9169 		if (signal_pending(current))
9170 			goto do_interrupted;
9171 
9172 		if (sctp_state(asoc, ESTABLISHED))
9173 			break;
9174 
9175 		/* Let another process have a go.  Since we are going
9176 		 * to sleep anyway.
9177 		 */
9178 		release_sock(sk);
9179 		current_timeo = schedule_timeout(current_timeo);
9180 		lock_sock(sk);
9181 
9182 		*timeo_p = current_timeo;
9183 	}
9184 
9185 out:
9186 	finish_wait(&asoc->wait, &wait);
9187 
9188 	/* Release the association's refcnt.  */
9189 	sctp_association_put(asoc);
9190 
9191 	return err;
9192 
9193 do_error:
9194 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9195 		err = -ETIMEDOUT;
9196 	else
9197 		err = -ECONNREFUSED;
9198 	goto out;
9199 
9200 do_interrupted:
9201 	err = sock_intr_errno(*timeo_p);
9202 	goto out;
9203 
9204 do_nonblock:
9205 	err = -EINPROGRESS;
9206 	goto out;
9207 }
9208 
9209 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9210 {
9211 	struct sctp_endpoint *ep;
9212 	int err = 0;
9213 	DEFINE_WAIT(wait);
9214 
9215 	ep = sctp_sk(sk)->ep;
9216 
9217 
9218 	for (;;) {
9219 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9220 					  TASK_INTERRUPTIBLE);
9221 
9222 		if (list_empty(&ep->asocs)) {
9223 			release_sock(sk);
9224 			timeo = schedule_timeout(timeo);
9225 			lock_sock(sk);
9226 		}
9227 
9228 		err = -EINVAL;
9229 		if (!sctp_sstate(sk, LISTENING))
9230 			break;
9231 
9232 		err = 0;
9233 		if (!list_empty(&ep->asocs))
9234 			break;
9235 
9236 		err = sock_intr_errno(timeo);
9237 		if (signal_pending(current))
9238 			break;
9239 
9240 		err = -EAGAIN;
9241 		if (!timeo)
9242 			break;
9243 	}
9244 
9245 	finish_wait(sk_sleep(sk), &wait);
9246 
9247 	return err;
9248 }
9249 
9250 static void sctp_wait_for_close(struct sock *sk, long timeout)
9251 {
9252 	DEFINE_WAIT(wait);
9253 
9254 	do {
9255 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9256 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9257 			break;
9258 		release_sock(sk);
9259 		timeout = schedule_timeout(timeout);
9260 		lock_sock(sk);
9261 	} while (!signal_pending(current) && timeout);
9262 
9263 	finish_wait(sk_sleep(sk), &wait);
9264 }
9265 
9266 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9267 {
9268 	struct sk_buff *frag;
9269 
9270 	if (!skb->data_len)
9271 		goto done;
9272 
9273 	/* Don't forget the fragments. */
9274 	skb_walk_frags(skb, frag)
9275 		sctp_skb_set_owner_r_frag(frag, sk);
9276 
9277 done:
9278 	sctp_skb_set_owner_r(skb, sk);
9279 }
9280 
9281 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9282 		    struct sctp_association *asoc)
9283 {
9284 	struct inet_sock *inet = inet_sk(sk);
9285 	struct inet_sock *newinet;
9286 	struct sctp_sock *sp = sctp_sk(sk);
9287 	struct sctp_endpoint *ep = sp->ep;
9288 
9289 	newsk->sk_type = sk->sk_type;
9290 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9291 	newsk->sk_flags = sk->sk_flags;
9292 	newsk->sk_tsflags = sk->sk_tsflags;
9293 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9294 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9295 	newsk->sk_reuse = sk->sk_reuse;
9296 	sctp_sk(newsk)->reuse = sp->reuse;
9297 
9298 	newsk->sk_shutdown = sk->sk_shutdown;
9299 	newsk->sk_destruct = sctp_destruct_sock;
9300 	newsk->sk_family = sk->sk_family;
9301 	newsk->sk_protocol = IPPROTO_SCTP;
9302 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9303 	newsk->sk_sndbuf = sk->sk_sndbuf;
9304 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9305 	newsk->sk_lingertime = sk->sk_lingertime;
9306 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9307 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9308 	newsk->sk_rxhash = sk->sk_rxhash;
9309 
9310 	newinet = inet_sk(newsk);
9311 
9312 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9313 	 * getsockname() and getpeername()
9314 	 */
9315 	newinet->inet_sport = inet->inet_sport;
9316 	newinet->inet_saddr = inet->inet_saddr;
9317 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9318 	newinet->inet_dport = htons(asoc->peer.port);
9319 	newinet->pmtudisc = inet->pmtudisc;
9320 	newinet->inet_id = prandom_u32();
9321 
9322 	newinet->uc_ttl = inet->uc_ttl;
9323 	newinet->mc_loop = 1;
9324 	newinet->mc_ttl = 1;
9325 	newinet->mc_index = 0;
9326 	newinet->mc_list = NULL;
9327 
9328 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9329 		net_enable_timestamp();
9330 
9331 	/* Set newsk security attributes from original sk and connection
9332 	 * security attribute from ep.
9333 	 */
9334 	security_sctp_sk_clone(ep, sk, newsk);
9335 }
9336 
9337 static inline void sctp_copy_descendant(struct sock *sk_to,
9338 					const struct sock *sk_from)
9339 {
9340 	size_t ancestor_size = sizeof(struct inet_sock);
9341 
9342 	ancestor_size += sk_from->sk_prot->obj_size;
9343 	ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9344 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9345 }
9346 
9347 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9348  * and its messages to the newsk.
9349  */
9350 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9351 			     struct sctp_association *assoc,
9352 			     enum sctp_socket_type type)
9353 {
9354 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9355 	struct sctp_sock *newsp = sctp_sk(newsk);
9356 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9357 	struct sctp_endpoint *newep = newsp->ep;
9358 	struct sk_buff *skb, *tmp;
9359 	struct sctp_ulpevent *event;
9360 	struct sctp_bind_hashbucket *head;
9361 	int err;
9362 
9363 	/* Migrate socket buffer sizes and all the socket level options to the
9364 	 * new socket.
9365 	 */
9366 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9367 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9368 	/* Brute force copy old sctp opt. */
9369 	sctp_copy_descendant(newsk, oldsk);
9370 
9371 	/* Restore the ep value that was overwritten with the above structure
9372 	 * copy.
9373 	 */
9374 	newsp->ep = newep;
9375 	newsp->hmac = NULL;
9376 
9377 	/* Hook this new socket in to the bind_hash list. */
9378 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9379 						 inet_sk(oldsk)->inet_num)];
9380 	spin_lock_bh(&head->lock);
9381 	pp = sctp_sk(oldsk)->bind_hash;
9382 	sk_add_bind_node(newsk, &pp->owner);
9383 	sctp_sk(newsk)->bind_hash = pp;
9384 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9385 	spin_unlock_bh(&head->lock);
9386 
9387 	/* Copy the bind_addr list from the original endpoint to the new
9388 	 * endpoint so that we can handle restarts properly
9389 	 */
9390 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9391 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9392 	if (err)
9393 		return err;
9394 
9395 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9396 	 * that net->sctp.auth_enable has been changed to 0 by users and
9397 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9398 	 */
9399 	if (oldsp->ep->auth_hmacs) {
9400 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9401 		if (err)
9402 			return err;
9403 	}
9404 
9405 	sctp_auto_asconf_init(newsp);
9406 
9407 	/* Move any messages in the old socket's receive queue that are for the
9408 	 * peeled off association to the new socket's receive queue.
9409 	 */
9410 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9411 		event = sctp_skb2event(skb);
9412 		if (event->asoc == assoc) {
9413 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9414 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9415 			sctp_skb_set_owner_r_frag(skb, newsk);
9416 		}
9417 	}
9418 
9419 	/* Clean up any messages pending delivery due to partial
9420 	 * delivery.   Three cases:
9421 	 * 1) No partial deliver;  no work.
9422 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9423 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9424 	 */
9425 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9426 
9427 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9428 		struct sk_buff_head *queue;
9429 
9430 		/* Decide which queue to move pd_lobby skbs to. */
9431 		if (assoc->ulpq.pd_mode) {
9432 			queue = &newsp->pd_lobby;
9433 		} else
9434 			queue = &newsk->sk_receive_queue;
9435 
9436 		/* Walk through the pd_lobby, looking for skbs that
9437 		 * need moved to the new socket.
9438 		 */
9439 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9440 			event = sctp_skb2event(skb);
9441 			if (event->asoc == assoc) {
9442 				__skb_unlink(skb, &oldsp->pd_lobby);
9443 				__skb_queue_tail(queue, skb);
9444 				sctp_skb_set_owner_r_frag(skb, newsk);
9445 			}
9446 		}
9447 
9448 		/* Clear up any skbs waiting for the partial
9449 		 * delivery to finish.
9450 		 */
9451 		if (assoc->ulpq.pd_mode)
9452 			sctp_clear_pd(oldsk, NULL);
9453 
9454 	}
9455 
9456 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9457 
9458 	/* Set the type of socket to indicate that it is peeled off from the
9459 	 * original UDP-style socket or created with the accept() call on a
9460 	 * TCP-style socket..
9461 	 */
9462 	newsp->type = type;
9463 
9464 	/* Mark the new socket "in-use" by the user so that any packets
9465 	 * that may arrive on the association after we've moved it are
9466 	 * queued to the backlog.  This prevents a potential race between
9467 	 * backlog processing on the old socket and new-packet processing
9468 	 * on the new socket.
9469 	 *
9470 	 * The caller has just allocated newsk so we can guarantee that other
9471 	 * paths won't try to lock it and then oldsk.
9472 	 */
9473 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9474 	sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9475 	sctp_assoc_migrate(assoc, newsk);
9476 	sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9477 
9478 	/* If the association on the newsk is already closed before accept()
9479 	 * is called, set RCV_SHUTDOWN flag.
9480 	 */
9481 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9482 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9483 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9484 	} else {
9485 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9486 	}
9487 
9488 	release_sock(newsk);
9489 
9490 	return 0;
9491 }
9492 
9493 
9494 /* This proto struct describes the ULP interface for SCTP.  */
9495 struct proto sctp_prot = {
9496 	.name        =	"SCTP",
9497 	.owner       =	THIS_MODULE,
9498 	.close       =	sctp_close,
9499 	.disconnect  =	sctp_disconnect,
9500 	.accept      =	sctp_accept,
9501 	.ioctl       =	sctp_ioctl,
9502 	.init        =	sctp_init_sock,
9503 	.destroy     =	sctp_destroy_sock,
9504 	.shutdown    =	sctp_shutdown,
9505 	.setsockopt  =	sctp_setsockopt,
9506 	.getsockopt  =	sctp_getsockopt,
9507 	.sendmsg     =	sctp_sendmsg,
9508 	.recvmsg     =	sctp_recvmsg,
9509 	.bind        =	sctp_bind,
9510 	.bind_add    =  sctp_bind_add,
9511 	.backlog_rcv =	sctp_backlog_rcv,
9512 	.hash        =	sctp_hash,
9513 	.unhash      =	sctp_unhash,
9514 	.no_autobind =	true,
9515 	.obj_size    =  sizeof(struct sctp_sock),
9516 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9517 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9518 				offsetof(struct sctp_sock, subscribe) +
9519 				sizeof_field(struct sctp_sock, initmsg),
9520 	.sysctl_mem  =  sysctl_sctp_mem,
9521 	.sysctl_rmem =  sysctl_sctp_rmem,
9522 	.sysctl_wmem =  sysctl_sctp_wmem,
9523 	.memory_pressure = &sctp_memory_pressure,
9524 	.enter_memory_pressure = sctp_enter_memory_pressure,
9525 	.memory_allocated = &sctp_memory_allocated,
9526 	.sockets_allocated = &sctp_sockets_allocated,
9527 };
9528 
9529 #if IS_ENABLED(CONFIG_IPV6)
9530 
9531 #include <net/transp_v6.h>
9532 static void sctp_v6_destroy_sock(struct sock *sk)
9533 {
9534 	sctp_destroy_sock(sk);
9535 	inet6_destroy_sock(sk);
9536 }
9537 
9538 struct proto sctpv6_prot = {
9539 	.name		= "SCTPv6",
9540 	.owner		= THIS_MODULE,
9541 	.close		= sctp_close,
9542 	.disconnect	= sctp_disconnect,
9543 	.accept		= sctp_accept,
9544 	.ioctl		= sctp_ioctl,
9545 	.init		= sctp_init_sock,
9546 	.destroy	= sctp_v6_destroy_sock,
9547 	.shutdown	= sctp_shutdown,
9548 	.setsockopt	= sctp_setsockopt,
9549 	.getsockopt	= sctp_getsockopt,
9550 	.sendmsg	= sctp_sendmsg,
9551 	.recvmsg	= sctp_recvmsg,
9552 	.bind		= sctp_bind,
9553 	.bind_add	= sctp_bind_add,
9554 	.backlog_rcv	= sctp_backlog_rcv,
9555 	.hash		= sctp_hash,
9556 	.unhash		= sctp_unhash,
9557 	.no_autobind	= true,
9558 	.obj_size	= sizeof(struct sctp6_sock),
9559 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9560 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9561 				offsetof(struct sctp6_sock, sctp.subscribe) +
9562 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9563 	.sysctl_mem	= sysctl_sctp_mem,
9564 	.sysctl_rmem	= sysctl_sctp_rmem,
9565 	.sysctl_wmem	= sysctl_sctp_wmem,
9566 	.memory_pressure = &sctp_memory_pressure,
9567 	.enter_memory_pressure = sctp_enter_memory_pressure,
9568 	.memory_allocated = &sctp_memory_allocated,
9569 	.sockets_allocated = &sctp_sockets_allocated,
9570 };
9571 #endif /* IS_ENABLED(CONFIG_IPV6) */
9572