xref: /openbmc/linux/net/sctp/socket.c (revision 9a8f3203)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			     struct sctp_association *assoc,
107 			     enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = memdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = memdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 		iov_iter_revert(&msg->msg_iter, msg_len);
1870 
1871 		return 0;
1872 	}
1873 
1874 	return 1;
1875 }
1876 
1877 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1878 				struct msghdr *msg, size_t msg_len,
1879 				struct sctp_transport *transport,
1880 				struct sctp_sndrcvinfo *sinfo)
1881 {
1882 	struct sock *sk = asoc->base.sk;
1883 	struct sctp_sock *sp = sctp_sk(sk);
1884 	struct net *net = sock_net(sk);
1885 	struct sctp_datamsg *datamsg;
1886 	bool wait_connect = false;
1887 	struct sctp_chunk *chunk;
1888 	long timeo;
1889 	int err;
1890 
1891 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1892 		err = -EINVAL;
1893 		goto err;
1894 	}
1895 
1896 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1897 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1898 		if (err)
1899 			goto err;
1900 	}
1901 
1902 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1903 		err = -EMSGSIZE;
1904 		goto err;
1905 	}
1906 
1907 	if (asoc->pmtu_pending) {
1908 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1909 			sctp_assoc_sync_pmtu(asoc);
1910 		asoc->pmtu_pending = 0;
1911 	}
1912 
1913 	if (sctp_wspace(asoc) < (int)msg_len)
1914 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1915 
1916 	if (sctp_wspace(asoc) <= 0) {
1917 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1918 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1919 		if (err)
1920 			goto err;
1921 	}
1922 
1923 	if (sctp_state(asoc, CLOSED)) {
1924 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1925 		if (err)
1926 			goto err;
1927 
1928 		if (sp->strm_interleave) {
1929 			timeo = sock_sndtimeo(sk, 0);
1930 			err = sctp_wait_for_connect(asoc, &timeo);
1931 			if (err) {
1932 				err = -ESRCH;
1933 				goto err;
1934 			}
1935 		} else {
1936 			wait_connect = true;
1937 		}
1938 
1939 		pr_debug("%s: we associated primitively\n", __func__);
1940 	}
1941 
1942 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1943 	if (IS_ERR(datamsg)) {
1944 		err = PTR_ERR(datamsg);
1945 		goto err;
1946 	}
1947 
1948 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1949 
1950 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1951 		sctp_chunk_hold(chunk);
1952 		sctp_set_owner_w(chunk);
1953 		chunk->transport = transport;
1954 	}
1955 
1956 	err = sctp_primitive_SEND(net, asoc, datamsg);
1957 	if (err) {
1958 		sctp_datamsg_free(datamsg);
1959 		goto err;
1960 	}
1961 
1962 	pr_debug("%s: we sent primitively\n", __func__);
1963 
1964 	sctp_datamsg_put(datamsg);
1965 
1966 	if (unlikely(wait_connect)) {
1967 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1968 		sctp_wait_for_connect(asoc, &timeo);
1969 	}
1970 
1971 	err = msg_len;
1972 
1973 err:
1974 	return err;
1975 }
1976 
1977 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1978 					       const struct msghdr *msg,
1979 					       struct sctp_cmsgs *cmsgs)
1980 {
1981 	union sctp_addr *daddr = NULL;
1982 	int err;
1983 
1984 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1985 		int len = msg->msg_namelen;
1986 
1987 		if (len > sizeof(*daddr))
1988 			len = sizeof(*daddr);
1989 
1990 		daddr = (union sctp_addr *)msg->msg_name;
1991 
1992 		err = sctp_verify_addr(sk, daddr, len);
1993 		if (err)
1994 			return ERR_PTR(err);
1995 	}
1996 
1997 	return daddr;
1998 }
1999 
2000 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2001 				      struct sctp_sndrcvinfo *sinfo,
2002 				      struct sctp_cmsgs *cmsgs)
2003 {
2004 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2005 		sinfo->sinfo_stream = asoc->default_stream;
2006 		sinfo->sinfo_ppid = asoc->default_ppid;
2007 		sinfo->sinfo_context = asoc->default_context;
2008 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2009 
2010 		if (!cmsgs->prinfo)
2011 			sinfo->sinfo_flags = asoc->default_flags;
2012 	}
2013 
2014 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2015 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2016 
2017 	if (cmsgs->authinfo) {
2018 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2019 		 * sinfo_ssn to save the keyid on tx path.
2020 		 */
2021 		sinfo->sinfo_tsn = 1;
2022 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2023 	}
2024 }
2025 
2026 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2027 {
2028 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2029 	struct sctp_transport *transport = NULL;
2030 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2031 	struct sctp_association *asoc, *tmp;
2032 	struct sctp_cmsgs cmsgs;
2033 	union sctp_addr *daddr;
2034 	bool new = false;
2035 	__u16 sflags;
2036 	int err;
2037 
2038 	/* Parse and get snd_info */
2039 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2040 	if (err)
2041 		goto out;
2042 
2043 	sinfo  = &_sinfo;
2044 	sflags = sinfo->sinfo_flags;
2045 
2046 	/* Get daddr from msg */
2047 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2048 	if (IS_ERR(daddr)) {
2049 		err = PTR_ERR(daddr);
2050 		goto out;
2051 	}
2052 
2053 	lock_sock(sk);
2054 
2055 	/* SCTP_SENDALL process */
2056 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2057 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
2058 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2059 							msg_len);
2060 			if (err == 0)
2061 				continue;
2062 			if (err < 0)
2063 				goto out_unlock;
2064 
2065 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2066 
2067 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2068 						   NULL, sinfo);
2069 			if (err < 0)
2070 				goto out_unlock;
2071 
2072 			iov_iter_revert(&msg->msg_iter, err);
2073 		}
2074 
2075 		goto out_unlock;
2076 	}
2077 
2078 	/* Get and check or create asoc */
2079 	if (daddr) {
2080 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2081 		if (asoc) {
2082 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2083 							msg_len);
2084 			if (err <= 0)
2085 				goto out_unlock;
2086 		} else {
2087 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2088 						    &transport);
2089 			if (err)
2090 				goto out_unlock;
2091 
2092 			asoc = transport->asoc;
2093 			new = true;
2094 		}
2095 
2096 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2097 			transport = NULL;
2098 	} else {
2099 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2100 		if (!asoc) {
2101 			err = -EPIPE;
2102 			goto out_unlock;
2103 		}
2104 
2105 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2106 		if (err <= 0)
2107 			goto out_unlock;
2108 	}
2109 
2110 	/* Update snd_info with the asoc */
2111 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2112 
2113 	/* Send msg to the asoc */
2114 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2115 	if (err < 0 && err != -ESRCH && new)
2116 		sctp_association_free(asoc);
2117 
2118 out_unlock:
2119 	release_sock(sk);
2120 out:
2121 	return sctp_error(sk, msg->msg_flags, err);
2122 }
2123 
2124 /* This is an extended version of skb_pull() that removes the data from the
2125  * start of a skb even when data is spread across the list of skb's in the
2126  * frag_list. len specifies the total amount of data that needs to be removed.
2127  * when 'len' bytes could be removed from the skb, it returns 0.
2128  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2129  * could not be removed.
2130  */
2131 static int sctp_skb_pull(struct sk_buff *skb, int len)
2132 {
2133 	struct sk_buff *list;
2134 	int skb_len = skb_headlen(skb);
2135 	int rlen;
2136 
2137 	if (len <= skb_len) {
2138 		__skb_pull(skb, len);
2139 		return 0;
2140 	}
2141 	len -= skb_len;
2142 	__skb_pull(skb, skb_len);
2143 
2144 	skb_walk_frags(skb, list) {
2145 		rlen = sctp_skb_pull(list, len);
2146 		skb->len -= (len-rlen);
2147 		skb->data_len -= (len-rlen);
2148 
2149 		if (!rlen)
2150 			return 0;
2151 
2152 		len = rlen;
2153 	}
2154 
2155 	return len;
2156 }
2157 
2158 /* API 3.1.3  recvmsg() - UDP Style Syntax
2159  *
2160  *  ssize_t recvmsg(int socket, struct msghdr *message,
2161  *                    int flags);
2162  *
2163  *  socket  - the socket descriptor of the endpoint.
2164  *  message - pointer to the msghdr structure which contains a single
2165  *            user message and possibly some ancillary data.
2166  *
2167  *            See Section 5 for complete description of the data
2168  *            structures.
2169  *
2170  *  flags   - flags sent or received with the user message, see Section
2171  *            5 for complete description of the flags.
2172  */
2173 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2174 			int noblock, int flags, int *addr_len)
2175 {
2176 	struct sctp_ulpevent *event = NULL;
2177 	struct sctp_sock *sp = sctp_sk(sk);
2178 	struct sk_buff *skb, *head_skb;
2179 	int copied;
2180 	int err = 0;
2181 	int skb_len;
2182 
2183 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2184 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2185 		 addr_len);
2186 
2187 	lock_sock(sk);
2188 
2189 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2190 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2191 		err = -ENOTCONN;
2192 		goto out;
2193 	}
2194 
2195 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2196 	if (!skb)
2197 		goto out;
2198 
2199 	/* Get the total length of the skb including any skb's in the
2200 	 * frag_list.
2201 	 */
2202 	skb_len = skb->len;
2203 
2204 	copied = skb_len;
2205 	if (copied > len)
2206 		copied = len;
2207 
2208 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2209 
2210 	event = sctp_skb2event(skb);
2211 
2212 	if (err)
2213 		goto out_free;
2214 
2215 	if (event->chunk && event->chunk->head_skb)
2216 		head_skb = event->chunk->head_skb;
2217 	else
2218 		head_skb = skb;
2219 	sock_recv_ts_and_drops(msg, sk, head_skb);
2220 	if (sctp_ulpevent_is_notification(event)) {
2221 		msg->msg_flags |= MSG_NOTIFICATION;
2222 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2223 	} else {
2224 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2225 	}
2226 
2227 	/* Check if we allow SCTP_NXTINFO. */
2228 	if (sp->recvnxtinfo)
2229 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2230 	/* Check if we allow SCTP_RCVINFO. */
2231 	if (sp->recvrcvinfo)
2232 		sctp_ulpevent_read_rcvinfo(event, msg);
2233 	/* Check if we allow SCTP_SNDRCVINFO. */
2234 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2235 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2236 
2237 	err = copied;
2238 
2239 	/* If skb's length exceeds the user's buffer, update the skb and
2240 	 * push it back to the receive_queue so that the next call to
2241 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2242 	 */
2243 	if (skb_len > copied) {
2244 		msg->msg_flags &= ~MSG_EOR;
2245 		if (flags & MSG_PEEK)
2246 			goto out_free;
2247 		sctp_skb_pull(skb, copied);
2248 		skb_queue_head(&sk->sk_receive_queue, skb);
2249 
2250 		/* When only partial message is copied to the user, increase
2251 		 * rwnd by that amount. If all the data in the skb is read,
2252 		 * rwnd is updated when the event is freed.
2253 		 */
2254 		if (!sctp_ulpevent_is_notification(event))
2255 			sctp_assoc_rwnd_increase(event->asoc, copied);
2256 		goto out;
2257 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2258 		   (event->msg_flags & MSG_EOR))
2259 		msg->msg_flags |= MSG_EOR;
2260 	else
2261 		msg->msg_flags &= ~MSG_EOR;
2262 
2263 out_free:
2264 	if (flags & MSG_PEEK) {
2265 		/* Release the skb reference acquired after peeking the skb in
2266 		 * sctp_skb_recv_datagram().
2267 		 */
2268 		kfree_skb(skb);
2269 	} else {
2270 		/* Free the event which includes releasing the reference to
2271 		 * the owner of the skb, freeing the skb and updating the
2272 		 * rwnd.
2273 		 */
2274 		sctp_ulpevent_free(event);
2275 	}
2276 out:
2277 	release_sock(sk);
2278 	return err;
2279 }
2280 
2281 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2282  *
2283  * This option is a on/off flag.  If enabled no SCTP message
2284  * fragmentation will be performed.  Instead if a message being sent
2285  * exceeds the current PMTU size, the message will NOT be sent and
2286  * instead a error will be indicated to the user.
2287  */
2288 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2289 					     char __user *optval,
2290 					     unsigned int optlen)
2291 {
2292 	int val;
2293 
2294 	if (optlen < sizeof(int))
2295 		return -EINVAL;
2296 
2297 	if (get_user(val, (int __user *)optval))
2298 		return -EFAULT;
2299 
2300 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2301 
2302 	return 0;
2303 }
2304 
2305 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2306 				  unsigned int optlen)
2307 {
2308 	struct sctp_event_subscribe subscribe;
2309 	__u8 *sn_type = (__u8 *)&subscribe;
2310 	struct sctp_sock *sp = sctp_sk(sk);
2311 	struct sctp_association *asoc;
2312 	int i;
2313 
2314 	if (optlen > sizeof(struct sctp_event_subscribe))
2315 		return -EINVAL;
2316 
2317 	if (copy_from_user(&subscribe, optval, optlen))
2318 		return -EFAULT;
2319 
2320 	for (i = 0; i < optlen; i++)
2321 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2322 				       sn_type[i]);
2323 
2324 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2325 		asoc->subscribe = sctp_sk(sk)->subscribe;
2326 
2327 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2328 	 * if there is no data to be sent or retransmit, the stack will
2329 	 * immediately send up this notification.
2330 	 */
2331 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2332 		struct sctp_ulpevent *event;
2333 
2334 		asoc = sctp_id2assoc(sk, 0);
2335 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2336 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2337 					GFP_USER | __GFP_NOWARN);
2338 			if (!event)
2339 				return -ENOMEM;
2340 
2341 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2342 		}
2343 	}
2344 
2345 	return 0;
2346 }
2347 
2348 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2349  *
2350  * This socket option is applicable to the UDP-style socket only.  When
2351  * set it will cause associations that are idle for more than the
2352  * specified number of seconds to automatically close.  An association
2353  * being idle is defined an association that has NOT sent or received
2354  * user data.  The special value of '0' indicates that no automatic
2355  * close of any associations should be performed.  The option expects an
2356  * integer defining the number of seconds of idle time before an
2357  * association is closed.
2358  */
2359 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2360 				     unsigned int optlen)
2361 {
2362 	struct sctp_sock *sp = sctp_sk(sk);
2363 	struct net *net = sock_net(sk);
2364 
2365 	/* Applicable to UDP-style socket only */
2366 	if (sctp_style(sk, TCP))
2367 		return -EOPNOTSUPP;
2368 	if (optlen != sizeof(int))
2369 		return -EINVAL;
2370 	if (copy_from_user(&sp->autoclose, optval, optlen))
2371 		return -EFAULT;
2372 
2373 	if (sp->autoclose > net->sctp.max_autoclose)
2374 		sp->autoclose = net->sctp.max_autoclose;
2375 
2376 	return 0;
2377 }
2378 
2379 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2380  *
2381  * Applications can enable or disable heartbeats for any peer address of
2382  * an association, modify an address's heartbeat interval, force a
2383  * heartbeat to be sent immediately, and adjust the address's maximum
2384  * number of retransmissions sent before an address is considered
2385  * unreachable.  The following structure is used to access and modify an
2386  * address's parameters:
2387  *
2388  *  struct sctp_paddrparams {
2389  *     sctp_assoc_t            spp_assoc_id;
2390  *     struct sockaddr_storage spp_address;
2391  *     uint32_t                spp_hbinterval;
2392  *     uint16_t                spp_pathmaxrxt;
2393  *     uint32_t                spp_pathmtu;
2394  *     uint32_t                spp_sackdelay;
2395  *     uint32_t                spp_flags;
2396  *     uint32_t                spp_ipv6_flowlabel;
2397  *     uint8_t                 spp_dscp;
2398  * };
2399  *
2400  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2401  *                     application, and identifies the association for
2402  *                     this query.
2403  *   spp_address     - This specifies which address is of interest.
2404  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2405  *                     in milliseconds.  If a  value of zero
2406  *                     is present in this field then no changes are to
2407  *                     be made to this parameter.
2408  *   spp_pathmaxrxt  - This contains the maximum number of
2409  *                     retransmissions before this address shall be
2410  *                     considered unreachable. If a  value of zero
2411  *                     is present in this field then no changes are to
2412  *                     be made to this parameter.
2413  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2414  *                     specified here will be the "fixed" path mtu.
2415  *                     Note that if the spp_address field is empty
2416  *                     then all associations on this address will
2417  *                     have this fixed path mtu set upon them.
2418  *
2419  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2420  *                     the number of milliseconds that sacks will be delayed
2421  *                     for. This value will apply to all addresses of an
2422  *                     association if the spp_address field is empty. Note
2423  *                     also, that if delayed sack is enabled and this
2424  *                     value is set to 0, no change is made to the last
2425  *                     recorded delayed sack timer value.
2426  *
2427  *   spp_flags       - These flags are used to control various features
2428  *                     on an association. The flag field may contain
2429  *                     zero or more of the following options.
2430  *
2431  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2432  *                     specified address. Note that if the address
2433  *                     field is empty all addresses for the association
2434  *                     have heartbeats enabled upon them.
2435  *
2436  *                     SPP_HB_DISABLE - Disable heartbeats on the
2437  *                     speicifed address. Note that if the address
2438  *                     field is empty all addresses for the association
2439  *                     will have their heartbeats disabled. Note also
2440  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2441  *                     mutually exclusive, only one of these two should
2442  *                     be specified. Enabling both fields will have
2443  *                     undetermined results.
2444  *
2445  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2446  *                     to be made immediately.
2447  *
2448  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2449  *                     heartbeat delayis to be set to the value of 0
2450  *                     milliseconds.
2451  *
2452  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2453  *                     discovery upon the specified address. Note that
2454  *                     if the address feild is empty then all addresses
2455  *                     on the association are effected.
2456  *
2457  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2458  *                     discovery upon the specified address. Note that
2459  *                     if the address feild is empty then all addresses
2460  *                     on the association are effected. Not also that
2461  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2462  *                     exclusive. Enabling both will have undetermined
2463  *                     results.
2464  *
2465  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2466  *                     on delayed sack. The time specified in spp_sackdelay
2467  *                     is used to specify the sack delay for this address. Note
2468  *                     that if spp_address is empty then all addresses will
2469  *                     enable delayed sack and take on the sack delay
2470  *                     value specified in spp_sackdelay.
2471  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2472  *                     off delayed sack. If the spp_address field is blank then
2473  *                     delayed sack is disabled for the entire association. Note
2474  *                     also that this field is mutually exclusive to
2475  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2476  *                     results.
2477  *
2478  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2479  *                     setting of the IPV6 flow label value.  The value is
2480  *                     contained in the spp_ipv6_flowlabel field.
2481  *                     Upon retrieval, this flag will be set to indicate that
2482  *                     the spp_ipv6_flowlabel field has a valid value returned.
2483  *                     If a specific destination address is set (in the
2484  *                     spp_address field), then the value returned is that of
2485  *                     the address.  If just an association is specified (and
2486  *                     no address), then the association's default flow label
2487  *                     is returned.  If neither an association nor a destination
2488  *                     is specified, then the socket's default flow label is
2489  *                     returned.  For non-IPv6 sockets, this flag will be left
2490  *                     cleared.
2491  *
2492  *                     SPP_DSCP:  Setting this flag enables the setting of the
2493  *                     Differentiated Services Code Point (DSCP) value
2494  *                     associated with either the association or a specific
2495  *                     address.  The value is obtained in the spp_dscp field.
2496  *                     Upon retrieval, this flag will be set to indicate that
2497  *                     the spp_dscp field has a valid value returned.  If a
2498  *                     specific destination address is set when called (in the
2499  *                     spp_address field), then that specific destination
2500  *                     address's DSCP value is returned.  If just an association
2501  *                     is specified, then the association's default DSCP is
2502  *                     returned.  If neither an association nor a destination is
2503  *                     specified, then the socket's default DSCP is returned.
2504  *
2505  *   spp_ipv6_flowlabel
2506  *                   - This field is used in conjunction with the
2507  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2508  *                     The 20 least significant bits are used for the flow
2509  *                     label.  This setting has precedence over any IPv6-layer
2510  *                     setting.
2511  *
2512  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2513  *                     and contains the DSCP.  The 6 most significant bits are
2514  *                     used for the DSCP.  This setting has precedence over any
2515  *                     IPv4- or IPv6- layer setting.
2516  */
2517 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2518 				       struct sctp_transport   *trans,
2519 				       struct sctp_association *asoc,
2520 				       struct sctp_sock        *sp,
2521 				       int                      hb_change,
2522 				       int                      pmtud_change,
2523 				       int                      sackdelay_change)
2524 {
2525 	int error;
2526 
2527 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2528 		struct net *net = sock_net(trans->asoc->base.sk);
2529 
2530 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2531 		if (error)
2532 			return error;
2533 	}
2534 
2535 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2536 	 * this field is ignored.  Note also that a value of zero indicates
2537 	 * the current setting should be left unchanged.
2538 	 */
2539 	if (params->spp_flags & SPP_HB_ENABLE) {
2540 
2541 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2542 		 * set.  This lets us use 0 value when this flag
2543 		 * is set.
2544 		 */
2545 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2546 			params->spp_hbinterval = 0;
2547 
2548 		if (params->spp_hbinterval ||
2549 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2550 			if (trans) {
2551 				trans->hbinterval =
2552 				    msecs_to_jiffies(params->spp_hbinterval);
2553 			} else if (asoc) {
2554 				asoc->hbinterval =
2555 				    msecs_to_jiffies(params->spp_hbinterval);
2556 			} else {
2557 				sp->hbinterval = params->spp_hbinterval;
2558 			}
2559 		}
2560 	}
2561 
2562 	if (hb_change) {
2563 		if (trans) {
2564 			trans->param_flags =
2565 				(trans->param_flags & ~SPP_HB) | hb_change;
2566 		} else if (asoc) {
2567 			asoc->param_flags =
2568 				(asoc->param_flags & ~SPP_HB) | hb_change;
2569 		} else {
2570 			sp->param_flags =
2571 				(sp->param_flags & ~SPP_HB) | hb_change;
2572 		}
2573 	}
2574 
2575 	/* When Path MTU discovery is disabled the value specified here will
2576 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2577 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2578 	 * effect).
2579 	 */
2580 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2581 		if (trans) {
2582 			trans->pathmtu = params->spp_pathmtu;
2583 			sctp_assoc_sync_pmtu(asoc);
2584 		} else if (asoc) {
2585 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2586 		} else {
2587 			sp->pathmtu = params->spp_pathmtu;
2588 		}
2589 	}
2590 
2591 	if (pmtud_change) {
2592 		if (trans) {
2593 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2594 				(params->spp_flags & SPP_PMTUD_ENABLE);
2595 			trans->param_flags =
2596 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2597 			if (update) {
2598 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2599 				sctp_assoc_sync_pmtu(asoc);
2600 			}
2601 		} else if (asoc) {
2602 			asoc->param_flags =
2603 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2604 		} else {
2605 			sp->param_flags =
2606 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2607 		}
2608 	}
2609 
2610 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2611 	 * value of this field is ignored.  Note also that a value of zero
2612 	 * indicates the current setting should be left unchanged.
2613 	 */
2614 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2615 		if (trans) {
2616 			trans->sackdelay =
2617 				msecs_to_jiffies(params->spp_sackdelay);
2618 		} else if (asoc) {
2619 			asoc->sackdelay =
2620 				msecs_to_jiffies(params->spp_sackdelay);
2621 		} else {
2622 			sp->sackdelay = params->spp_sackdelay;
2623 		}
2624 	}
2625 
2626 	if (sackdelay_change) {
2627 		if (trans) {
2628 			trans->param_flags =
2629 				(trans->param_flags & ~SPP_SACKDELAY) |
2630 				sackdelay_change;
2631 		} else if (asoc) {
2632 			asoc->param_flags =
2633 				(asoc->param_flags & ~SPP_SACKDELAY) |
2634 				sackdelay_change;
2635 		} else {
2636 			sp->param_flags =
2637 				(sp->param_flags & ~SPP_SACKDELAY) |
2638 				sackdelay_change;
2639 		}
2640 	}
2641 
2642 	/* Note that a value of zero indicates the current setting should be
2643 	   left unchanged.
2644 	 */
2645 	if (params->spp_pathmaxrxt) {
2646 		if (trans) {
2647 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2648 		} else if (asoc) {
2649 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2650 		} else {
2651 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2652 		}
2653 	}
2654 
2655 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2656 		if (trans) {
2657 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2658 				trans->flowlabel = params->spp_ipv6_flowlabel &
2659 						   SCTP_FLOWLABEL_VAL_MASK;
2660 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2661 			}
2662 		} else if (asoc) {
2663 			struct sctp_transport *t;
2664 
2665 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2666 					    transports) {
2667 				if (t->ipaddr.sa.sa_family != AF_INET6)
2668 					continue;
2669 				t->flowlabel = params->spp_ipv6_flowlabel &
2670 					       SCTP_FLOWLABEL_VAL_MASK;
2671 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2672 			}
2673 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2674 					  SCTP_FLOWLABEL_VAL_MASK;
2675 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2676 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2677 			sp->flowlabel = params->spp_ipv6_flowlabel &
2678 					SCTP_FLOWLABEL_VAL_MASK;
2679 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2680 		}
2681 	}
2682 
2683 	if (params->spp_flags & SPP_DSCP) {
2684 		if (trans) {
2685 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2686 			trans->dscp |= SCTP_DSCP_SET_MASK;
2687 		} else if (asoc) {
2688 			struct sctp_transport *t;
2689 
2690 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2691 					    transports) {
2692 				t->dscp = params->spp_dscp &
2693 					  SCTP_DSCP_VAL_MASK;
2694 				t->dscp |= SCTP_DSCP_SET_MASK;
2695 			}
2696 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2697 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2698 		} else {
2699 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2700 			sp->dscp |= SCTP_DSCP_SET_MASK;
2701 		}
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2708 					    char __user *optval,
2709 					    unsigned int optlen)
2710 {
2711 	struct sctp_paddrparams  params;
2712 	struct sctp_transport   *trans = NULL;
2713 	struct sctp_association *asoc = NULL;
2714 	struct sctp_sock        *sp = sctp_sk(sk);
2715 	int error;
2716 	int hb_change, pmtud_change, sackdelay_change;
2717 
2718 	if (optlen == sizeof(params)) {
2719 		if (copy_from_user(&params, optval, optlen))
2720 			return -EFAULT;
2721 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2722 					    spp_ipv6_flowlabel), 4)) {
2723 		if (copy_from_user(&params, optval, optlen))
2724 			return -EFAULT;
2725 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2726 			return -EINVAL;
2727 	} else {
2728 		return -EINVAL;
2729 	}
2730 
2731 	/* Validate flags and value parameters. */
2732 	hb_change        = params.spp_flags & SPP_HB;
2733 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2734 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2735 
2736 	if (hb_change        == SPP_HB ||
2737 	    pmtud_change     == SPP_PMTUD ||
2738 	    sackdelay_change == SPP_SACKDELAY ||
2739 	    params.spp_sackdelay > 500 ||
2740 	    (params.spp_pathmtu &&
2741 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2742 		return -EINVAL;
2743 
2744 	/* If an address other than INADDR_ANY is specified, and
2745 	 * no transport is found, then the request is invalid.
2746 	 */
2747 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2748 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2749 					       params.spp_assoc_id);
2750 		if (!trans)
2751 			return -EINVAL;
2752 	}
2753 
2754 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2755 	 * socket is a one to many style socket, and an association
2756 	 * was not found, then the id was invalid.
2757 	 */
2758 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2759 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
2760 	    sctp_style(sk, UDP))
2761 		return -EINVAL;
2762 
2763 	/* Heartbeat demand can only be sent on a transport or
2764 	 * association, but not a socket.
2765 	 */
2766 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2767 		return -EINVAL;
2768 
2769 	/* Process parameters. */
2770 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2771 					    hb_change, pmtud_change,
2772 					    sackdelay_change);
2773 
2774 	if (error)
2775 		return error;
2776 
2777 	/* If changes are for association, also apply parameters to each
2778 	 * transport.
2779 	 */
2780 	if (!trans && asoc) {
2781 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2782 				transports) {
2783 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2784 						    hb_change, pmtud_change,
2785 						    sackdelay_change);
2786 		}
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2793 {
2794 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2795 }
2796 
2797 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2798 {
2799 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2800 }
2801 
2802 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2803 					struct sctp_association *asoc)
2804 {
2805 	struct sctp_transport *trans;
2806 
2807 	if (params->sack_delay) {
2808 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2809 		asoc->param_flags =
2810 			sctp_spp_sackdelay_enable(asoc->param_flags);
2811 	}
2812 	if (params->sack_freq == 1) {
2813 		asoc->param_flags =
2814 			sctp_spp_sackdelay_disable(asoc->param_flags);
2815 	} else if (params->sack_freq > 1) {
2816 		asoc->sackfreq = params->sack_freq;
2817 		asoc->param_flags =
2818 			sctp_spp_sackdelay_enable(asoc->param_flags);
2819 	}
2820 
2821 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2822 			    transports) {
2823 		if (params->sack_delay) {
2824 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2825 			trans->param_flags =
2826 				sctp_spp_sackdelay_enable(trans->param_flags);
2827 		}
2828 		if (params->sack_freq == 1) {
2829 			trans->param_flags =
2830 				sctp_spp_sackdelay_disable(trans->param_flags);
2831 		} else if (params->sack_freq > 1) {
2832 			trans->sackfreq = params->sack_freq;
2833 			trans->param_flags =
2834 				sctp_spp_sackdelay_enable(trans->param_flags);
2835 		}
2836 	}
2837 }
2838 
2839 /*
2840  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2841  *
2842  * This option will effect the way delayed acks are performed.  This
2843  * option allows you to get or set the delayed ack time, in
2844  * milliseconds.  It also allows changing the delayed ack frequency.
2845  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2846  * the assoc_id is 0, then this sets or gets the endpoints default
2847  * values.  If the assoc_id field is non-zero, then the set or get
2848  * effects the specified association for the one to many model (the
2849  * assoc_id field is ignored by the one to one model).  Note that if
2850  * sack_delay or sack_freq are 0 when setting this option, then the
2851  * current values will remain unchanged.
2852  *
2853  * struct sctp_sack_info {
2854  *     sctp_assoc_t            sack_assoc_id;
2855  *     uint32_t                sack_delay;
2856  *     uint32_t                sack_freq;
2857  * };
2858  *
2859  * sack_assoc_id -  This parameter, indicates which association the user
2860  *    is performing an action upon.  Note that if this field's value is
2861  *    zero then the endpoints default value is changed (effecting future
2862  *    associations only).
2863  *
2864  * sack_delay -  This parameter contains the number of milliseconds that
2865  *    the user is requesting the delayed ACK timer be set to.  Note that
2866  *    this value is defined in the standard to be between 200 and 500
2867  *    milliseconds.
2868  *
2869  * sack_freq -  This parameter contains the number of packets that must
2870  *    be received before a sack is sent without waiting for the delay
2871  *    timer to expire.  The default value for this is 2, setting this
2872  *    value to 1 will disable the delayed sack algorithm.
2873  */
2874 
2875 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2876 				       char __user *optval, unsigned int optlen)
2877 {
2878 	struct sctp_sock *sp = sctp_sk(sk);
2879 	struct sctp_association *asoc;
2880 	struct sctp_sack_info params;
2881 
2882 	if (optlen == sizeof(struct sctp_sack_info)) {
2883 		if (copy_from_user(&params, optval, optlen))
2884 			return -EFAULT;
2885 
2886 		if (params.sack_delay == 0 && params.sack_freq == 0)
2887 			return 0;
2888 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2889 		pr_warn_ratelimited(DEPRECATED
2890 				    "%s (pid %d) "
2891 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2892 				    "Use struct sctp_sack_info instead\n",
2893 				    current->comm, task_pid_nr(current));
2894 		if (copy_from_user(&params, optval, optlen))
2895 			return -EFAULT;
2896 
2897 		if (params.sack_delay == 0)
2898 			params.sack_freq = 1;
2899 		else
2900 			params.sack_freq = 0;
2901 	} else
2902 		return -EINVAL;
2903 
2904 	/* Validate value parameter. */
2905 	if (params.sack_delay > 500)
2906 		return -EINVAL;
2907 
2908 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2909 	 * socket is a one to many style socket, and an association
2910 	 * was not found, then the id was invalid.
2911 	 */
2912 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2913 	if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
2914 	    sctp_style(sk, UDP))
2915 		return -EINVAL;
2916 
2917 	if (asoc) {
2918 		sctp_apply_asoc_delayed_ack(&params, asoc);
2919 
2920 		return 0;
2921 	}
2922 
2923 	if (sctp_style(sk, TCP))
2924 		params.sack_assoc_id = SCTP_FUTURE_ASSOC;
2925 
2926 	if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
2927 	    params.sack_assoc_id == SCTP_ALL_ASSOC) {
2928 		if (params.sack_delay) {
2929 			sp->sackdelay = params.sack_delay;
2930 			sp->param_flags =
2931 				sctp_spp_sackdelay_enable(sp->param_flags);
2932 		}
2933 		if (params.sack_freq == 1) {
2934 			sp->param_flags =
2935 				sctp_spp_sackdelay_disable(sp->param_flags);
2936 		} else if (params.sack_freq > 1) {
2937 			sp->sackfreq = params.sack_freq;
2938 			sp->param_flags =
2939 				sctp_spp_sackdelay_enable(sp->param_flags);
2940 		}
2941 	}
2942 
2943 	if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
2944 	    params.sack_assoc_id == SCTP_ALL_ASSOC)
2945 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2946 			sctp_apply_asoc_delayed_ack(&params, asoc);
2947 
2948 	return 0;
2949 }
2950 
2951 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2952  *
2953  * Applications can specify protocol parameters for the default association
2954  * initialization.  The option name argument to setsockopt() and getsockopt()
2955  * is SCTP_INITMSG.
2956  *
2957  * Setting initialization parameters is effective only on an unconnected
2958  * socket (for UDP-style sockets only future associations are effected
2959  * by the change).  With TCP-style sockets, this option is inherited by
2960  * sockets derived from a listener socket.
2961  */
2962 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2963 {
2964 	struct sctp_initmsg sinit;
2965 	struct sctp_sock *sp = sctp_sk(sk);
2966 
2967 	if (optlen != sizeof(struct sctp_initmsg))
2968 		return -EINVAL;
2969 	if (copy_from_user(&sinit, optval, optlen))
2970 		return -EFAULT;
2971 
2972 	if (sinit.sinit_num_ostreams)
2973 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2974 	if (sinit.sinit_max_instreams)
2975 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2976 	if (sinit.sinit_max_attempts)
2977 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2978 	if (sinit.sinit_max_init_timeo)
2979 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2980 
2981 	return 0;
2982 }
2983 
2984 /*
2985  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2986  *
2987  *   Applications that wish to use the sendto() system call may wish to
2988  *   specify a default set of parameters that would normally be supplied
2989  *   through the inclusion of ancillary data.  This socket option allows
2990  *   such an application to set the default sctp_sndrcvinfo structure.
2991  *   The application that wishes to use this socket option simply passes
2992  *   in to this call the sctp_sndrcvinfo structure defined in Section
2993  *   5.2.2) The input parameters accepted by this call include
2994  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2995  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2996  *   to this call if the caller is using the UDP model.
2997  */
2998 static int sctp_setsockopt_default_send_param(struct sock *sk,
2999 					      char __user *optval,
3000 					      unsigned int optlen)
3001 {
3002 	struct sctp_sock *sp = sctp_sk(sk);
3003 	struct sctp_association *asoc;
3004 	struct sctp_sndrcvinfo info;
3005 
3006 	if (optlen != sizeof(info))
3007 		return -EINVAL;
3008 	if (copy_from_user(&info, optval, optlen))
3009 		return -EFAULT;
3010 	if (info.sinfo_flags &
3011 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3012 	      SCTP_ABORT | SCTP_EOF))
3013 		return -EINVAL;
3014 
3015 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3016 	if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
3017 	    sctp_style(sk, UDP))
3018 		return -EINVAL;
3019 
3020 	if (asoc) {
3021 		asoc->default_stream = info.sinfo_stream;
3022 		asoc->default_flags = info.sinfo_flags;
3023 		asoc->default_ppid = info.sinfo_ppid;
3024 		asoc->default_context = info.sinfo_context;
3025 		asoc->default_timetolive = info.sinfo_timetolive;
3026 
3027 		return 0;
3028 	}
3029 
3030 	if (sctp_style(sk, TCP))
3031 		info.sinfo_assoc_id = SCTP_FUTURE_ASSOC;
3032 
3033 	if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
3034 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3035 		sp->default_stream = info.sinfo_stream;
3036 		sp->default_flags = info.sinfo_flags;
3037 		sp->default_ppid = info.sinfo_ppid;
3038 		sp->default_context = info.sinfo_context;
3039 		sp->default_timetolive = info.sinfo_timetolive;
3040 	}
3041 
3042 	if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
3043 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3044 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3045 			asoc->default_stream = info.sinfo_stream;
3046 			asoc->default_flags = info.sinfo_flags;
3047 			asoc->default_ppid = info.sinfo_ppid;
3048 			asoc->default_context = info.sinfo_context;
3049 			asoc->default_timetolive = info.sinfo_timetolive;
3050 		}
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3057  * (SCTP_DEFAULT_SNDINFO)
3058  */
3059 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3060 					   char __user *optval,
3061 					   unsigned int optlen)
3062 {
3063 	struct sctp_sock *sp = sctp_sk(sk);
3064 	struct sctp_association *asoc;
3065 	struct sctp_sndinfo info;
3066 
3067 	if (optlen != sizeof(info))
3068 		return -EINVAL;
3069 	if (copy_from_user(&info, optval, optlen))
3070 		return -EFAULT;
3071 	if (info.snd_flags &
3072 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3073 	      SCTP_ABORT | SCTP_EOF))
3074 		return -EINVAL;
3075 
3076 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3077 	if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
3078 	    sctp_style(sk, UDP))
3079 		return -EINVAL;
3080 
3081 	if (asoc) {
3082 		asoc->default_stream = info.snd_sid;
3083 		asoc->default_flags = info.snd_flags;
3084 		asoc->default_ppid = info.snd_ppid;
3085 		asoc->default_context = info.snd_context;
3086 
3087 		return 0;
3088 	}
3089 
3090 	if (sctp_style(sk, TCP))
3091 		info.snd_assoc_id = SCTP_FUTURE_ASSOC;
3092 
3093 	if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
3094 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3095 		sp->default_stream = info.snd_sid;
3096 		sp->default_flags = info.snd_flags;
3097 		sp->default_ppid = info.snd_ppid;
3098 		sp->default_context = info.snd_context;
3099 	}
3100 
3101 	if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
3102 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3103 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3104 			asoc->default_stream = info.snd_sid;
3105 			asoc->default_flags = info.snd_flags;
3106 			asoc->default_ppid = info.snd_ppid;
3107 			asoc->default_context = info.snd_context;
3108 		}
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3115  *
3116  * Requests that the local SCTP stack use the enclosed peer address as
3117  * the association primary.  The enclosed address must be one of the
3118  * association peer's addresses.
3119  */
3120 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3121 					unsigned int optlen)
3122 {
3123 	struct sctp_prim prim;
3124 	struct sctp_transport *trans;
3125 	struct sctp_af *af;
3126 	int err;
3127 
3128 	if (optlen != sizeof(struct sctp_prim))
3129 		return -EINVAL;
3130 
3131 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3132 		return -EFAULT;
3133 
3134 	/* Allow security module to validate address but need address len. */
3135 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3136 	if (!af)
3137 		return -EINVAL;
3138 
3139 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3140 					 (struct sockaddr *)&prim.ssp_addr,
3141 					 af->sockaddr_len);
3142 	if (err)
3143 		return err;
3144 
3145 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3146 	if (!trans)
3147 		return -EINVAL;
3148 
3149 	sctp_assoc_set_primary(trans->asoc, trans);
3150 
3151 	return 0;
3152 }
3153 
3154 /*
3155  * 7.1.5 SCTP_NODELAY
3156  *
3157  * Turn on/off any Nagle-like algorithm.  This means that packets are
3158  * generally sent as soon as possible and no unnecessary delays are
3159  * introduced, at the cost of more packets in the network.  Expects an
3160  *  integer boolean flag.
3161  */
3162 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3163 				   unsigned int optlen)
3164 {
3165 	int val;
3166 
3167 	if (optlen < sizeof(int))
3168 		return -EINVAL;
3169 	if (get_user(val, (int __user *)optval))
3170 		return -EFAULT;
3171 
3172 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3173 	return 0;
3174 }
3175 
3176 /*
3177  *
3178  * 7.1.1 SCTP_RTOINFO
3179  *
3180  * The protocol parameters used to initialize and bound retransmission
3181  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3182  * and modify these parameters.
3183  * All parameters are time values, in milliseconds.  A value of 0, when
3184  * modifying the parameters, indicates that the current value should not
3185  * be changed.
3186  *
3187  */
3188 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3189 {
3190 	struct sctp_rtoinfo rtoinfo;
3191 	struct sctp_association *asoc;
3192 	unsigned long rto_min, rto_max;
3193 	struct sctp_sock *sp = sctp_sk(sk);
3194 
3195 	if (optlen != sizeof (struct sctp_rtoinfo))
3196 		return -EINVAL;
3197 
3198 	if (copy_from_user(&rtoinfo, optval, optlen))
3199 		return -EFAULT;
3200 
3201 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3202 
3203 	/* Set the values to the specific association */
3204 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
3205 	    sctp_style(sk, UDP))
3206 		return -EINVAL;
3207 
3208 	rto_max = rtoinfo.srto_max;
3209 	rto_min = rtoinfo.srto_min;
3210 
3211 	if (rto_max)
3212 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3213 	else
3214 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3215 
3216 	if (rto_min)
3217 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3218 	else
3219 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3220 
3221 	if (rto_min > rto_max)
3222 		return -EINVAL;
3223 
3224 	if (asoc) {
3225 		if (rtoinfo.srto_initial != 0)
3226 			asoc->rto_initial =
3227 				msecs_to_jiffies(rtoinfo.srto_initial);
3228 		asoc->rto_max = rto_max;
3229 		asoc->rto_min = rto_min;
3230 	} else {
3231 		/* If there is no association or the association-id = 0
3232 		 * set the values to the endpoint.
3233 		 */
3234 		if (rtoinfo.srto_initial != 0)
3235 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3236 		sp->rtoinfo.srto_max = rto_max;
3237 		sp->rtoinfo.srto_min = rto_min;
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 /*
3244  *
3245  * 7.1.2 SCTP_ASSOCINFO
3246  *
3247  * This option is used to tune the maximum retransmission attempts
3248  * of the association.
3249  * Returns an error if the new association retransmission value is
3250  * greater than the sum of the retransmission value  of the peer.
3251  * See [SCTP] for more information.
3252  *
3253  */
3254 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3255 {
3256 
3257 	struct sctp_assocparams assocparams;
3258 	struct sctp_association *asoc;
3259 
3260 	if (optlen != sizeof(struct sctp_assocparams))
3261 		return -EINVAL;
3262 	if (copy_from_user(&assocparams, optval, optlen))
3263 		return -EFAULT;
3264 
3265 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3266 
3267 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3268 	    sctp_style(sk, UDP))
3269 		return -EINVAL;
3270 
3271 	/* Set the values to the specific association */
3272 	if (asoc) {
3273 		if (assocparams.sasoc_asocmaxrxt != 0) {
3274 			__u32 path_sum = 0;
3275 			int   paths = 0;
3276 			struct sctp_transport *peer_addr;
3277 
3278 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3279 					transports) {
3280 				path_sum += peer_addr->pathmaxrxt;
3281 				paths++;
3282 			}
3283 
3284 			/* Only validate asocmaxrxt if we have more than
3285 			 * one path/transport.  We do this because path
3286 			 * retransmissions are only counted when we have more
3287 			 * then one path.
3288 			 */
3289 			if (paths > 1 &&
3290 			    assocparams.sasoc_asocmaxrxt > path_sum)
3291 				return -EINVAL;
3292 
3293 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3294 		}
3295 
3296 		if (assocparams.sasoc_cookie_life != 0)
3297 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3298 	} else {
3299 		/* Set the values to the endpoint */
3300 		struct sctp_sock *sp = sctp_sk(sk);
3301 
3302 		if (assocparams.sasoc_asocmaxrxt != 0)
3303 			sp->assocparams.sasoc_asocmaxrxt =
3304 						assocparams.sasoc_asocmaxrxt;
3305 		if (assocparams.sasoc_cookie_life != 0)
3306 			sp->assocparams.sasoc_cookie_life =
3307 						assocparams.sasoc_cookie_life;
3308 	}
3309 	return 0;
3310 }
3311 
3312 /*
3313  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3314  *
3315  * This socket option is a boolean flag which turns on or off mapped V4
3316  * addresses.  If this option is turned on and the socket is type
3317  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3318  * If this option is turned off, then no mapping will be done of V4
3319  * addresses and a user will receive both PF_INET6 and PF_INET type
3320  * addresses on the socket.
3321  */
3322 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3323 {
3324 	int val;
3325 	struct sctp_sock *sp = sctp_sk(sk);
3326 
3327 	if (optlen < sizeof(int))
3328 		return -EINVAL;
3329 	if (get_user(val, (int __user *)optval))
3330 		return -EFAULT;
3331 	if (val)
3332 		sp->v4mapped = 1;
3333 	else
3334 		sp->v4mapped = 0;
3335 
3336 	return 0;
3337 }
3338 
3339 /*
3340  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3341  * This option will get or set the maximum size to put in any outgoing
3342  * SCTP DATA chunk.  If a message is larger than this size it will be
3343  * fragmented by SCTP into the specified size.  Note that the underlying
3344  * SCTP implementation may fragment into smaller sized chunks when the
3345  * PMTU of the underlying association is smaller than the value set by
3346  * the user.  The default value for this option is '0' which indicates
3347  * the user is NOT limiting fragmentation and only the PMTU will effect
3348  * SCTP's choice of DATA chunk size.  Note also that values set larger
3349  * than the maximum size of an IP datagram will effectively let SCTP
3350  * control fragmentation (i.e. the same as setting this option to 0).
3351  *
3352  * The following structure is used to access and modify this parameter:
3353  *
3354  * struct sctp_assoc_value {
3355  *   sctp_assoc_t assoc_id;
3356  *   uint32_t assoc_value;
3357  * };
3358  *
3359  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3360  *    For one-to-many style sockets this parameter indicates which
3361  *    association the user is performing an action upon.  Note that if
3362  *    this field's value is zero then the endpoints default value is
3363  *    changed (effecting future associations only).
3364  * assoc_value:  This parameter specifies the maximum size in bytes.
3365  */
3366 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3367 {
3368 	struct sctp_sock *sp = sctp_sk(sk);
3369 	struct sctp_assoc_value params;
3370 	struct sctp_association *asoc;
3371 	int val;
3372 
3373 	if (optlen == sizeof(int)) {
3374 		pr_warn_ratelimited(DEPRECATED
3375 				    "%s (pid %d) "
3376 				    "Use of int in maxseg socket option.\n"
3377 				    "Use struct sctp_assoc_value instead\n",
3378 				    current->comm, task_pid_nr(current));
3379 		if (copy_from_user(&val, optval, optlen))
3380 			return -EFAULT;
3381 		params.assoc_id = SCTP_FUTURE_ASSOC;
3382 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3383 		if (copy_from_user(&params, optval, optlen))
3384 			return -EFAULT;
3385 		val = params.assoc_value;
3386 	} else {
3387 		return -EINVAL;
3388 	}
3389 
3390 	asoc = sctp_id2assoc(sk, params.assoc_id);
3391 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
3392 	    sctp_style(sk, UDP))
3393 		return -EINVAL;
3394 
3395 	if (val) {
3396 		int min_len, max_len;
3397 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3398 				 sizeof(struct sctp_data_chunk);
3399 
3400 		min_len = sctp_min_frag_point(sp, datasize);
3401 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3402 
3403 		if (val < min_len || val > max_len)
3404 			return -EINVAL;
3405 	}
3406 
3407 	if (asoc) {
3408 		asoc->user_frag = val;
3409 		sctp_assoc_update_frag_point(asoc);
3410 	} else {
3411 		sp->user_frag = val;
3412 	}
3413 
3414 	return 0;
3415 }
3416 
3417 
3418 /*
3419  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3420  *
3421  *   Requests that the peer mark the enclosed address as the association
3422  *   primary. The enclosed address must be one of the association's
3423  *   locally bound addresses. The following structure is used to make a
3424  *   set primary request:
3425  */
3426 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3427 					     unsigned int optlen)
3428 {
3429 	struct net *net = sock_net(sk);
3430 	struct sctp_sock	*sp;
3431 	struct sctp_association	*asoc = NULL;
3432 	struct sctp_setpeerprim	prim;
3433 	struct sctp_chunk	*chunk;
3434 	struct sctp_af		*af;
3435 	int 			err;
3436 
3437 	sp = sctp_sk(sk);
3438 
3439 	if (!net->sctp.addip_enable)
3440 		return -EPERM;
3441 
3442 	if (optlen != sizeof(struct sctp_setpeerprim))
3443 		return -EINVAL;
3444 
3445 	if (copy_from_user(&prim, optval, optlen))
3446 		return -EFAULT;
3447 
3448 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3449 	if (!asoc)
3450 		return -EINVAL;
3451 
3452 	if (!asoc->peer.asconf_capable)
3453 		return -EPERM;
3454 
3455 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3456 		return -EPERM;
3457 
3458 	if (!sctp_state(asoc, ESTABLISHED))
3459 		return -ENOTCONN;
3460 
3461 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3462 	if (!af)
3463 		return -EINVAL;
3464 
3465 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3466 		return -EADDRNOTAVAIL;
3467 
3468 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3469 		return -EADDRNOTAVAIL;
3470 
3471 	/* Allow security module to validate address. */
3472 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3473 					 (struct sockaddr *)&prim.sspp_addr,
3474 					 af->sockaddr_len);
3475 	if (err)
3476 		return err;
3477 
3478 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3479 	chunk = sctp_make_asconf_set_prim(asoc,
3480 					  (union sctp_addr *)&prim.sspp_addr);
3481 	if (!chunk)
3482 		return -ENOMEM;
3483 
3484 	err = sctp_send_asconf(asoc, chunk);
3485 
3486 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3487 
3488 	return err;
3489 }
3490 
3491 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3492 					    unsigned int optlen)
3493 {
3494 	struct sctp_setadaptation adaptation;
3495 
3496 	if (optlen != sizeof(struct sctp_setadaptation))
3497 		return -EINVAL;
3498 	if (copy_from_user(&adaptation, optval, optlen))
3499 		return -EFAULT;
3500 
3501 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3502 
3503 	return 0;
3504 }
3505 
3506 /*
3507  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3508  *
3509  * The context field in the sctp_sndrcvinfo structure is normally only
3510  * used when a failed message is retrieved holding the value that was
3511  * sent down on the actual send call.  This option allows the setting of
3512  * a default context on an association basis that will be received on
3513  * reading messages from the peer.  This is especially helpful in the
3514  * one-2-many model for an application to keep some reference to an
3515  * internal state machine that is processing messages on the
3516  * association.  Note that the setting of this value only effects
3517  * received messages from the peer and does not effect the value that is
3518  * saved with outbound messages.
3519  */
3520 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3521 				   unsigned int optlen)
3522 {
3523 	struct sctp_sock *sp = sctp_sk(sk);
3524 	struct sctp_assoc_value params;
3525 	struct sctp_association *asoc;
3526 
3527 	if (optlen != sizeof(struct sctp_assoc_value))
3528 		return -EINVAL;
3529 	if (copy_from_user(&params, optval, optlen))
3530 		return -EFAULT;
3531 
3532 	asoc = sctp_id2assoc(sk, params.assoc_id);
3533 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3534 	    sctp_style(sk, UDP))
3535 		return -EINVAL;
3536 
3537 	if (asoc) {
3538 		asoc->default_rcv_context = params.assoc_value;
3539 
3540 		return 0;
3541 	}
3542 
3543 	if (sctp_style(sk, TCP))
3544 		params.assoc_id = SCTP_FUTURE_ASSOC;
3545 
3546 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3547 	    params.assoc_id == SCTP_ALL_ASSOC)
3548 		sp->default_rcv_context = params.assoc_value;
3549 
3550 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3551 	    params.assoc_id == SCTP_ALL_ASSOC)
3552 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3553 			asoc->default_rcv_context = params.assoc_value;
3554 
3555 	return 0;
3556 }
3557 
3558 /*
3559  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3560  *
3561  * This options will at a minimum specify if the implementation is doing
3562  * fragmented interleave.  Fragmented interleave, for a one to many
3563  * socket, is when subsequent calls to receive a message may return
3564  * parts of messages from different associations.  Some implementations
3565  * may allow you to turn this value on or off.  If so, when turned off,
3566  * no fragment interleave will occur (which will cause a head of line
3567  * blocking amongst multiple associations sharing the same one to many
3568  * socket).  When this option is turned on, then each receive call may
3569  * come from a different association (thus the user must receive data
3570  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3571  * association each receive belongs to.
3572  *
3573  * This option takes a boolean value.  A non-zero value indicates that
3574  * fragmented interleave is on.  A value of zero indicates that
3575  * fragmented interleave is off.
3576  *
3577  * Note that it is important that an implementation that allows this
3578  * option to be turned on, have it off by default.  Otherwise an unaware
3579  * application using the one to many model may become confused and act
3580  * incorrectly.
3581  */
3582 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3583 					       char __user *optval,
3584 					       unsigned int optlen)
3585 {
3586 	int val;
3587 
3588 	if (optlen != sizeof(int))
3589 		return -EINVAL;
3590 	if (get_user(val, (int __user *)optval))
3591 		return -EFAULT;
3592 
3593 	sctp_sk(sk)->frag_interleave = !!val;
3594 
3595 	if (!sctp_sk(sk)->frag_interleave)
3596 		sctp_sk(sk)->strm_interleave = 0;
3597 
3598 	return 0;
3599 }
3600 
3601 /*
3602  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3603  *       (SCTP_PARTIAL_DELIVERY_POINT)
3604  *
3605  * This option will set or get the SCTP partial delivery point.  This
3606  * point is the size of a message where the partial delivery API will be
3607  * invoked to help free up rwnd space for the peer.  Setting this to a
3608  * lower value will cause partial deliveries to happen more often.  The
3609  * calls argument is an integer that sets or gets the partial delivery
3610  * point.  Note also that the call will fail if the user attempts to set
3611  * this value larger than the socket receive buffer size.
3612  *
3613  * Note that any single message having a length smaller than or equal to
3614  * the SCTP partial delivery point will be delivered in one single read
3615  * call as long as the user provided buffer is large enough to hold the
3616  * message.
3617  */
3618 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3619 						  char __user *optval,
3620 						  unsigned int optlen)
3621 {
3622 	u32 val;
3623 
3624 	if (optlen != sizeof(u32))
3625 		return -EINVAL;
3626 	if (get_user(val, (int __user *)optval))
3627 		return -EFAULT;
3628 
3629 	/* Note: We double the receive buffer from what the user sets
3630 	 * it to be, also initial rwnd is based on rcvbuf/2.
3631 	 */
3632 	if (val > (sk->sk_rcvbuf >> 1))
3633 		return -EINVAL;
3634 
3635 	sctp_sk(sk)->pd_point = val;
3636 
3637 	return 0; /* is this the right error code? */
3638 }
3639 
3640 /*
3641  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3642  *
3643  * This option will allow a user to change the maximum burst of packets
3644  * that can be emitted by this association.  Note that the default value
3645  * is 4, and some implementations may restrict this setting so that it
3646  * can only be lowered.
3647  *
3648  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3649  * future associations inheriting the socket value.
3650  */
3651 static int sctp_setsockopt_maxburst(struct sock *sk,
3652 				    char __user *optval,
3653 				    unsigned int optlen)
3654 {
3655 	struct sctp_sock *sp = sctp_sk(sk);
3656 	struct sctp_assoc_value params;
3657 	struct sctp_association *asoc;
3658 
3659 	if (optlen == sizeof(int)) {
3660 		pr_warn_ratelimited(DEPRECATED
3661 				    "%s (pid %d) "
3662 				    "Use of int in max_burst socket option deprecated.\n"
3663 				    "Use struct sctp_assoc_value instead\n",
3664 				    current->comm, task_pid_nr(current));
3665 		if (copy_from_user(&params.assoc_value, optval, optlen))
3666 			return -EFAULT;
3667 		params.assoc_id = SCTP_FUTURE_ASSOC;
3668 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3669 		if (copy_from_user(&params, optval, optlen))
3670 			return -EFAULT;
3671 	} else
3672 		return -EINVAL;
3673 
3674 	asoc = sctp_id2assoc(sk, params.assoc_id);
3675 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3676 	    sctp_style(sk, UDP))
3677 		return -EINVAL;
3678 
3679 	if (asoc) {
3680 		asoc->max_burst = params.assoc_value;
3681 
3682 		return 0;
3683 	}
3684 
3685 	if (sctp_style(sk, TCP))
3686 		params.assoc_id = SCTP_FUTURE_ASSOC;
3687 
3688 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3689 	    params.assoc_id == SCTP_ALL_ASSOC)
3690 		sp->max_burst = params.assoc_value;
3691 
3692 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3693 	    params.assoc_id == SCTP_ALL_ASSOC)
3694 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3695 			asoc->max_burst = params.assoc_value;
3696 
3697 	return 0;
3698 }
3699 
3700 /*
3701  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3702  *
3703  * This set option adds a chunk type that the user is requesting to be
3704  * received only in an authenticated way.  Changes to the list of chunks
3705  * will only effect future associations on the socket.
3706  */
3707 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3708 				      char __user *optval,
3709 				      unsigned int optlen)
3710 {
3711 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3712 	struct sctp_authchunk val;
3713 
3714 	if (!ep->auth_enable)
3715 		return -EACCES;
3716 
3717 	if (optlen != sizeof(struct sctp_authchunk))
3718 		return -EINVAL;
3719 	if (copy_from_user(&val, optval, optlen))
3720 		return -EFAULT;
3721 
3722 	switch (val.sauth_chunk) {
3723 	case SCTP_CID_INIT:
3724 	case SCTP_CID_INIT_ACK:
3725 	case SCTP_CID_SHUTDOWN_COMPLETE:
3726 	case SCTP_CID_AUTH:
3727 		return -EINVAL;
3728 	}
3729 
3730 	/* add this chunk id to the endpoint */
3731 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3732 }
3733 
3734 /*
3735  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3736  *
3737  * This option gets or sets the list of HMAC algorithms that the local
3738  * endpoint requires the peer to use.
3739  */
3740 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3741 				      char __user *optval,
3742 				      unsigned int optlen)
3743 {
3744 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3745 	struct sctp_hmacalgo *hmacs;
3746 	u32 idents;
3747 	int err;
3748 
3749 	if (!ep->auth_enable)
3750 		return -EACCES;
3751 
3752 	if (optlen < sizeof(struct sctp_hmacalgo))
3753 		return -EINVAL;
3754 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3755 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3756 
3757 	hmacs = memdup_user(optval, optlen);
3758 	if (IS_ERR(hmacs))
3759 		return PTR_ERR(hmacs);
3760 
3761 	idents = hmacs->shmac_num_idents;
3762 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3763 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3764 		err = -EINVAL;
3765 		goto out;
3766 	}
3767 
3768 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3769 out:
3770 	kfree(hmacs);
3771 	return err;
3772 }
3773 
3774 /*
3775  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3776  *
3777  * This option will set a shared secret key which is used to build an
3778  * association shared key.
3779  */
3780 static int sctp_setsockopt_auth_key(struct sock *sk,
3781 				    char __user *optval,
3782 				    unsigned int optlen)
3783 {
3784 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3785 	struct sctp_authkey *authkey;
3786 	struct sctp_association *asoc;
3787 	int ret = -EINVAL;
3788 
3789 	if (!ep->auth_enable)
3790 		return -EACCES;
3791 
3792 	if (optlen <= sizeof(struct sctp_authkey))
3793 		return -EINVAL;
3794 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3795 	 * this.
3796 	 */
3797 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3798 
3799 	authkey = memdup_user(optval, optlen);
3800 	if (IS_ERR(authkey))
3801 		return PTR_ERR(authkey);
3802 
3803 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3804 		goto out;
3805 
3806 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3807 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3808 	    sctp_style(sk, UDP))
3809 		goto out;
3810 
3811 	if (asoc) {
3812 		ret = sctp_auth_set_key(ep, asoc, authkey);
3813 		goto out;
3814 	}
3815 
3816 	if (sctp_style(sk, TCP))
3817 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3818 
3819 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3820 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3821 		ret = sctp_auth_set_key(ep, asoc, authkey);
3822 		if (ret)
3823 			goto out;
3824 	}
3825 
3826 	ret = 0;
3827 
3828 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3829 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3830 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3831 			int res = sctp_auth_set_key(ep, asoc, authkey);
3832 
3833 			if (res && !ret)
3834 				ret = res;
3835 		}
3836 	}
3837 
3838 out:
3839 	kzfree(authkey);
3840 	return ret;
3841 }
3842 
3843 /*
3844  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3845  *
3846  * This option will get or set the active shared key to be used to build
3847  * the association shared key.
3848  */
3849 static int sctp_setsockopt_active_key(struct sock *sk,
3850 				      char __user *optval,
3851 				      unsigned int optlen)
3852 {
3853 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3854 	struct sctp_association *asoc;
3855 	struct sctp_authkeyid val;
3856 	int ret = 0;
3857 
3858 	if (!ep->auth_enable)
3859 		return -EACCES;
3860 
3861 	if (optlen != sizeof(struct sctp_authkeyid))
3862 		return -EINVAL;
3863 	if (copy_from_user(&val, optval, optlen))
3864 		return -EFAULT;
3865 
3866 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3867 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3868 	    sctp_style(sk, UDP))
3869 		return -EINVAL;
3870 
3871 	if (asoc)
3872 		return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3873 
3874 	if (sctp_style(sk, TCP))
3875 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3876 
3877 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3878 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3879 		ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3880 		if (ret)
3881 			return ret;
3882 	}
3883 
3884 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3885 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3886 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3887 			int res = sctp_auth_set_active_key(ep, asoc,
3888 							   val.scact_keynumber);
3889 
3890 			if (res && !ret)
3891 				ret = res;
3892 		}
3893 	}
3894 
3895 	return ret;
3896 }
3897 
3898 /*
3899  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3900  *
3901  * This set option will delete a shared secret key from use.
3902  */
3903 static int sctp_setsockopt_del_key(struct sock *sk,
3904 				   char __user *optval,
3905 				   unsigned int optlen)
3906 {
3907 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3908 	struct sctp_association *asoc;
3909 	struct sctp_authkeyid val;
3910 	int ret = 0;
3911 
3912 	if (!ep->auth_enable)
3913 		return -EACCES;
3914 
3915 	if (optlen != sizeof(struct sctp_authkeyid))
3916 		return -EINVAL;
3917 	if (copy_from_user(&val, optval, optlen))
3918 		return -EFAULT;
3919 
3920 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3921 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3922 	    sctp_style(sk, UDP))
3923 		return -EINVAL;
3924 
3925 	if (asoc)
3926 		return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3927 
3928 	if (sctp_style(sk, TCP))
3929 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3930 
3931 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3932 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3933 		ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3934 		if (ret)
3935 			return ret;
3936 	}
3937 
3938 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3939 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3940 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3941 			int res = sctp_auth_del_key_id(ep, asoc,
3942 						       val.scact_keynumber);
3943 
3944 			if (res && !ret)
3945 				ret = res;
3946 		}
3947 	}
3948 
3949 	return ret;
3950 }
3951 
3952 /*
3953  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3954  *
3955  * This set option will deactivate a shared secret key.
3956  */
3957 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3958 					  unsigned int optlen)
3959 {
3960 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3961 	struct sctp_association *asoc;
3962 	struct sctp_authkeyid val;
3963 	int ret = 0;
3964 
3965 	if (!ep->auth_enable)
3966 		return -EACCES;
3967 
3968 	if (optlen != sizeof(struct sctp_authkeyid))
3969 		return -EINVAL;
3970 	if (copy_from_user(&val, optval, optlen))
3971 		return -EFAULT;
3972 
3973 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3974 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3975 	    sctp_style(sk, UDP))
3976 		return -EINVAL;
3977 
3978 	if (asoc)
3979 		return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3980 
3981 	if (sctp_style(sk, TCP))
3982 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3983 
3984 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3985 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3986 		ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3987 		if (ret)
3988 			return ret;
3989 	}
3990 
3991 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3992 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3993 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3994 			int res = sctp_auth_deact_key_id(ep, asoc,
3995 							 val.scact_keynumber);
3996 
3997 			if (res && !ret)
3998 				ret = res;
3999 		}
4000 	}
4001 
4002 	return ret;
4003 }
4004 
4005 /*
4006  * 8.1.23 SCTP_AUTO_ASCONF
4007  *
4008  * This option will enable or disable the use of the automatic generation of
4009  * ASCONF chunks to add and delete addresses to an existing association.  Note
4010  * that this option has two caveats namely: a) it only affects sockets that
4011  * are bound to all addresses available to the SCTP stack, and b) the system
4012  * administrator may have an overriding control that turns the ASCONF feature
4013  * off no matter what setting the socket option may have.
4014  * This option expects an integer boolean flag, where a non-zero value turns on
4015  * the option, and a zero value turns off the option.
4016  * Note. In this implementation, socket operation overrides default parameter
4017  * being set by sysctl as well as FreeBSD implementation
4018  */
4019 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
4020 					unsigned int optlen)
4021 {
4022 	int val;
4023 	struct sctp_sock *sp = sctp_sk(sk);
4024 
4025 	if (optlen < sizeof(int))
4026 		return -EINVAL;
4027 	if (get_user(val, (int __user *)optval))
4028 		return -EFAULT;
4029 	if (!sctp_is_ep_boundall(sk) && val)
4030 		return -EINVAL;
4031 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
4032 		return 0;
4033 
4034 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4035 	if (val == 0 && sp->do_auto_asconf) {
4036 		list_del(&sp->auto_asconf_list);
4037 		sp->do_auto_asconf = 0;
4038 	} else if (val && !sp->do_auto_asconf) {
4039 		list_add_tail(&sp->auto_asconf_list,
4040 		    &sock_net(sk)->sctp.auto_asconf_splist);
4041 		sp->do_auto_asconf = 1;
4042 	}
4043 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4044 	return 0;
4045 }
4046 
4047 /*
4048  * SCTP_PEER_ADDR_THLDS
4049  *
4050  * This option allows us to alter the partially failed threshold for one or all
4051  * transports in an association.  See Section 6.1 of:
4052  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
4053  */
4054 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
4055 					    char __user *optval,
4056 					    unsigned int optlen)
4057 {
4058 	struct sctp_paddrthlds val;
4059 	struct sctp_transport *trans;
4060 	struct sctp_association *asoc;
4061 
4062 	if (optlen < sizeof(struct sctp_paddrthlds))
4063 		return -EINVAL;
4064 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
4065 			   sizeof(struct sctp_paddrthlds)))
4066 		return -EFAULT;
4067 
4068 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
4069 		trans = sctp_addr_id2transport(sk, &val.spt_address,
4070 					       val.spt_assoc_id);
4071 		if (!trans)
4072 			return -ENOENT;
4073 
4074 		if (val.spt_pathmaxrxt)
4075 			trans->pathmaxrxt = val.spt_pathmaxrxt;
4076 		trans->pf_retrans = val.spt_pathpfthld;
4077 
4078 		return 0;
4079 	}
4080 
4081 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
4082 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
4083 	    sctp_style(sk, UDP))
4084 		return -EINVAL;
4085 
4086 	if (asoc) {
4087 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
4088 				    transports) {
4089 			if (val.spt_pathmaxrxt)
4090 				trans->pathmaxrxt = val.spt_pathmaxrxt;
4091 			trans->pf_retrans = val.spt_pathpfthld;
4092 		}
4093 
4094 		if (val.spt_pathmaxrxt)
4095 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
4096 		asoc->pf_retrans = val.spt_pathpfthld;
4097 	} else {
4098 		struct sctp_sock *sp = sctp_sk(sk);
4099 
4100 		if (val.spt_pathmaxrxt)
4101 			sp->pathmaxrxt = val.spt_pathmaxrxt;
4102 		sp->pf_retrans = val.spt_pathpfthld;
4103 	}
4104 
4105 	return 0;
4106 }
4107 
4108 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
4109 				       char __user *optval,
4110 				       unsigned int optlen)
4111 {
4112 	int val;
4113 
4114 	if (optlen < sizeof(int))
4115 		return -EINVAL;
4116 	if (get_user(val, (int __user *) optval))
4117 		return -EFAULT;
4118 
4119 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
4120 
4121 	return 0;
4122 }
4123 
4124 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
4125 				       char __user *optval,
4126 				       unsigned int optlen)
4127 {
4128 	int val;
4129 
4130 	if (optlen < sizeof(int))
4131 		return -EINVAL;
4132 	if (get_user(val, (int __user *) optval))
4133 		return -EFAULT;
4134 
4135 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
4136 
4137 	return 0;
4138 }
4139 
4140 static int sctp_setsockopt_pr_supported(struct sock *sk,
4141 					char __user *optval,
4142 					unsigned int optlen)
4143 {
4144 	struct sctp_assoc_value params;
4145 	struct sctp_association *asoc;
4146 
4147 	if (optlen != sizeof(params))
4148 		return -EINVAL;
4149 
4150 	if (copy_from_user(&params, optval, optlen))
4151 		return -EFAULT;
4152 
4153 	asoc = sctp_id2assoc(sk, params.assoc_id);
4154 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4155 	    sctp_style(sk, UDP))
4156 		return -EINVAL;
4157 
4158 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
4159 
4160 	return 0;
4161 }
4162 
4163 static int sctp_setsockopt_default_prinfo(struct sock *sk,
4164 					  char __user *optval,
4165 					  unsigned int optlen)
4166 {
4167 	struct sctp_sock *sp = sctp_sk(sk);
4168 	struct sctp_default_prinfo info;
4169 	struct sctp_association *asoc;
4170 	int retval = -EINVAL;
4171 
4172 	if (optlen != sizeof(info))
4173 		goto out;
4174 
4175 	if (copy_from_user(&info, optval, sizeof(info))) {
4176 		retval = -EFAULT;
4177 		goto out;
4178 	}
4179 
4180 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
4181 		goto out;
4182 
4183 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
4184 		info.pr_value = 0;
4185 
4186 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
4187 	if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC &&
4188 	    sctp_style(sk, UDP))
4189 		goto out;
4190 
4191 	retval = 0;
4192 
4193 	if (asoc) {
4194 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4195 		asoc->default_timetolive = info.pr_value;
4196 		goto out;
4197 	}
4198 
4199 	if (sctp_style(sk, TCP))
4200 		info.pr_assoc_id = SCTP_FUTURE_ASSOC;
4201 
4202 	if (info.pr_assoc_id == SCTP_FUTURE_ASSOC ||
4203 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4204 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4205 		sp->default_timetolive = info.pr_value;
4206 	}
4207 
4208 	if (info.pr_assoc_id == SCTP_CURRENT_ASSOC ||
4209 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4210 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4211 			SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4212 			asoc->default_timetolive = info.pr_value;
4213 		}
4214 	}
4215 
4216 out:
4217 	return retval;
4218 }
4219 
4220 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4221 					      char __user *optval,
4222 					      unsigned int optlen)
4223 {
4224 	struct sctp_assoc_value params;
4225 	struct sctp_association *asoc;
4226 	int retval = -EINVAL;
4227 
4228 	if (optlen != sizeof(params))
4229 		goto out;
4230 
4231 	if (copy_from_user(&params, optval, optlen)) {
4232 		retval = -EFAULT;
4233 		goto out;
4234 	}
4235 
4236 	asoc = sctp_id2assoc(sk, params.assoc_id);
4237 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4238 	    sctp_style(sk, UDP))
4239 		goto out;
4240 
4241 	if (asoc)
4242 		asoc->reconf_enable = !!params.assoc_value;
4243 	else
4244 		sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value;
4245 
4246 	retval = 0;
4247 
4248 out:
4249 	return retval;
4250 }
4251 
4252 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4253 					   char __user *optval,
4254 					   unsigned int optlen)
4255 {
4256 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4257 	struct sctp_assoc_value params;
4258 	struct sctp_association *asoc;
4259 	int retval = -EINVAL;
4260 
4261 	if (optlen != sizeof(params))
4262 		goto out;
4263 
4264 	if (copy_from_user(&params, optval, optlen)) {
4265 		retval = -EFAULT;
4266 		goto out;
4267 	}
4268 
4269 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4270 		goto out;
4271 
4272 	asoc = sctp_id2assoc(sk, params.assoc_id);
4273 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4274 	    sctp_style(sk, UDP))
4275 		goto out;
4276 
4277 	retval = 0;
4278 
4279 	if (asoc) {
4280 		asoc->strreset_enable = params.assoc_value;
4281 		goto out;
4282 	}
4283 
4284 	if (sctp_style(sk, TCP))
4285 		params.assoc_id = SCTP_FUTURE_ASSOC;
4286 
4287 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4288 	    params.assoc_id == SCTP_ALL_ASSOC)
4289 		ep->strreset_enable = params.assoc_value;
4290 
4291 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4292 	    params.assoc_id == SCTP_ALL_ASSOC)
4293 		list_for_each_entry(asoc, &ep->asocs, asocs)
4294 			asoc->strreset_enable = params.assoc_value;
4295 
4296 out:
4297 	return retval;
4298 }
4299 
4300 static int sctp_setsockopt_reset_streams(struct sock *sk,
4301 					 char __user *optval,
4302 					 unsigned int optlen)
4303 {
4304 	struct sctp_reset_streams *params;
4305 	struct sctp_association *asoc;
4306 	int retval = -EINVAL;
4307 
4308 	if (optlen < sizeof(*params))
4309 		return -EINVAL;
4310 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4311 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4312 					     sizeof(__u16) * sizeof(*params));
4313 
4314 	params = memdup_user(optval, optlen);
4315 	if (IS_ERR(params))
4316 		return PTR_ERR(params);
4317 
4318 	if (params->srs_number_streams * sizeof(__u16) >
4319 	    optlen - sizeof(*params))
4320 		goto out;
4321 
4322 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4323 	if (!asoc)
4324 		goto out;
4325 
4326 	retval = sctp_send_reset_streams(asoc, params);
4327 
4328 out:
4329 	kfree(params);
4330 	return retval;
4331 }
4332 
4333 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4334 				       char __user *optval,
4335 				       unsigned int optlen)
4336 {
4337 	struct sctp_association *asoc;
4338 	sctp_assoc_t associd;
4339 	int retval = -EINVAL;
4340 
4341 	if (optlen != sizeof(associd))
4342 		goto out;
4343 
4344 	if (copy_from_user(&associd, optval, optlen)) {
4345 		retval = -EFAULT;
4346 		goto out;
4347 	}
4348 
4349 	asoc = sctp_id2assoc(sk, associd);
4350 	if (!asoc)
4351 		goto out;
4352 
4353 	retval = sctp_send_reset_assoc(asoc);
4354 
4355 out:
4356 	return retval;
4357 }
4358 
4359 static int sctp_setsockopt_add_streams(struct sock *sk,
4360 				       char __user *optval,
4361 				       unsigned int optlen)
4362 {
4363 	struct sctp_association *asoc;
4364 	struct sctp_add_streams params;
4365 	int retval = -EINVAL;
4366 
4367 	if (optlen != sizeof(params))
4368 		goto out;
4369 
4370 	if (copy_from_user(&params, optval, optlen)) {
4371 		retval = -EFAULT;
4372 		goto out;
4373 	}
4374 
4375 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4376 	if (!asoc)
4377 		goto out;
4378 
4379 	retval = sctp_send_add_streams(asoc, &params);
4380 
4381 out:
4382 	return retval;
4383 }
4384 
4385 static int sctp_setsockopt_scheduler(struct sock *sk,
4386 				     char __user *optval,
4387 				     unsigned int optlen)
4388 {
4389 	struct sctp_sock *sp = sctp_sk(sk);
4390 	struct sctp_association *asoc;
4391 	struct sctp_assoc_value params;
4392 	int retval = 0;
4393 
4394 	if (optlen < sizeof(params))
4395 		return -EINVAL;
4396 
4397 	optlen = sizeof(params);
4398 	if (copy_from_user(&params, optval, optlen))
4399 		return -EFAULT;
4400 
4401 	if (params.assoc_value > SCTP_SS_MAX)
4402 		return -EINVAL;
4403 
4404 	asoc = sctp_id2assoc(sk, params.assoc_id);
4405 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4406 	    sctp_style(sk, UDP))
4407 		return -EINVAL;
4408 
4409 	if (asoc)
4410 		return sctp_sched_set_sched(asoc, params.assoc_value);
4411 
4412 	if (sctp_style(sk, TCP))
4413 		params.assoc_id = SCTP_FUTURE_ASSOC;
4414 
4415 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4416 	    params.assoc_id == SCTP_ALL_ASSOC)
4417 		sp->default_ss = params.assoc_value;
4418 
4419 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4420 	    params.assoc_id == SCTP_ALL_ASSOC) {
4421 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4422 			int ret = sctp_sched_set_sched(asoc,
4423 						       params.assoc_value);
4424 
4425 			if (ret && !retval)
4426 				retval = ret;
4427 		}
4428 	}
4429 
4430 	return retval;
4431 }
4432 
4433 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4434 					   char __user *optval,
4435 					   unsigned int optlen)
4436 {
4437 	struct sctp_stream_value params;
4438 	struct sctp_association *asoc;
4439 	int retval = -EINVAL;
4440 
4441 	if (optlen < sizeof(params))
4442 		goto out;
4443 
4444 	optlen = sizeof(params);
4445 	if (copy_from_user(&params, optval, optlen)) {
4446 		retval = -EFAULT;
4447 		goto out;
4448 	}
4449 
4450 	asoc = sctp_id2assoc(sk, params.assoc_id);
4451 	if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC &&
4452 	    sctp_style(sk, UDP))
4453 		goto out;
4454 
4455 	if (asoc) {
4456 		retval = sctp_sched_set_value(asoc, params.stream_id,
4457 					      params.stream_value, GFP_KERNEL);
4458 		goto out;
4459 	}
4460 
4461 	retval = 0;
4462 
4463 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4464 		int ret = sctp_sched_set_value(asoc, params.stream_id,
4465 					       params.stream_value, GFP_KERNEL);
4466 		if (ret && !retval) /* try to return the 1st error. */
4467 			retval = ret;
4468 	}
4469 
4470 out:
4471 	return retval;
4472 }
4473 
4474 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4475 						  char __user *optval,
4476 						  unsigned int optlen)
4477 {
4478 	struct sctp_sock *sp = sctp_sk(sk);
4479 	struct sctp_assoc_value params;
4480 	struct sctp_association *asoc;
4481 	int retval = -EINVAL;
4482 
4483 	if (optlen < sizeof(params))
4484 		goto out;
4485 
4486 	optlen = sizeof(params);
4487 	if (copy_from_user(&params, optval, optlen)) {
4488 		retval = -EFAULT;
4489 		goto out;
4490 	}
4491 
4492 	asoc = sctp_id2assoc(sk, params.assoc_id);
4493 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4494 	    sctp_style(sk, UDP))
4495 		goto out;
4496 
4497 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4498 		retval = -EPERM;
4499 		goto out;
4500 	}
4501 
4502 	sp->strm_interleave = !!params.assoc_value;
4503 
4504 	retval = 0;
4505 
4506 out:
4507 	return retval;
4508 }
4509 
4510 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4511 				      unsigned int optlen)
4512 {
4513 	int val;
4514 
4515 	if (!sctp_style(sk, TCP))
4516 		return -EOPNOTSUPP;
4517 
4518 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4519 		return -EFAULT;
4520 
4521 	if (optlen < sizeof(int))
4522 		return -EINVAL;
4523 
4524 	if (get_user(val, (int __user *)optval))
4525 		return -EFAULT;
4526 
4527 	sctp_sk(sk)->reuse = !!val;
4528 
4529 	return 0;
4530 }
4531 
4532 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4533 					struct sctp_association *asoc)
4534 {
4535 	struct sctp_ulpevent *event;
4536 
4537 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4538 
4539 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4540 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4541 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4542 					GFP_USER | __GFP_NOWARN);
4543 			if (!event)
4544 				return -ENOMEM;
4545 
4546 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4547 		}
4548 	}
4549 
4550 	return 0;
4551 }
4552 
4553 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4554 				 unsigned int optlen)
4555 {
4556 	struct sctp_sock *sp = sctp_sk(sk);
4557 	struct sctp_association *asoc;
4558 	struct sctp_event param;
4559 	int retval = 0;
4560 
4561 	if (optlen < sizeof(param))
4562 		return -EINVAL;
4563 
4564 	optlen = sizeof(param);
4565 	if (copy_from_user(&param, optval, optlen))
4566 		return -EFAULT;
4567 
4568 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4569 	    param.se_type > SCTP_SN_TYPE_MAX)
4570 		return -EINVAL;
4571 
4572 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4573 	if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC &&
4574 	    sctp_style(sk, UDP))
4575 		return -EINVAL;
4576 
4577 	if (asoc)
4578 		return sctp_assoc_ulpevent_type_set(&param, asoc);
4579 
4580 	if (sctp_style(sk, TCP))
4581 		param.se_assoc_id = SCTP_FUTURE_ASSOC;
4582 
4583 	if (param.se_assoc_id == SCTP_FUTURE_ASSOC ||
4584 	    param.se_assoc_id == SCTP_ALL_ASSOC)
4585 		sctp_ulpevent_type_set(&sp->subscribe,
4586 				       param.se_type, param.se_on);
4587 
4588 	if (param.se_assoc_id == SCTP_CURRENT_ASSOC ||
4589 	    param.se_assoc_id == SCTP_ALL_ASSOC) {
4590 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4591 			int ret = sctp_assoc_ulpevent_type_set(&param, asoc);
4592 
4593 			if (ret && !retval)
4594 				retval = ret;
4595 		}
4596 	}
4597 
4598 	return retval;
4599 }
4600 
4601 /* API 6.2 setsockopt(), getsockopt()
4602  *
4603  * Applications use setsockopt() and getsockopt() to set or retrieve
4604  * socket options.  Socket options are used to change the default
4605  * behavior of sockets calls.  They are described in Section 7.
4606  *
4607  * The syntax is:
4608  *
4609  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4610  *                    int __user *optlen);
4611  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4612  *                    int optlen);
4613  *
4614  *   sd      - the socket descript.
4615  *   level   - set to IPPROTO_SCTP for all SCTP options.
4616  *   optname - the option name.
4617  *   optval  - the buffer to store the value of the option.
4618  *   optlen  - the size of the buffer.
4619  */
4620 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4621 			   char __user *optval, unsigned int optlen)
4622 {
4623 	int retval = 0;
4624 
4625 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4626 
4627 	/* I can hardly begin to describe how wrong this is.  This is
4628 	 * so broken as to be worse than useless.  The API draft
4629 	 * REALLY is NOT helpful here...  I am not convinced that the
4630 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4631 	 * are at all well-founded.
4632 	 */
4633 	if (level != SOL_SCTP) {
4634 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4635 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4636 		goto out_nounlock;
4637 	}
4638 
4639 	lock_sock(sk);
4640 
4641 	switch (optname) {
4642 	case SCTP_SOCKOPT_BINDX_ADD:
4643 		/* 'optlen' is the size of the addresses buffer. */
4644 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4645 					       optlen, SCTP_BINDX_ADD_ADDR);
4646 		break;
4647 
4648 	case SCTP_SOCKOPT_BINDX_REM:
4649 		/* 'optlen' is the size of the addresses buffer. */
4650 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4651 					       optlen, SCTP_BINDX_REM_ADDR);
4652 		break;
4653 
4654 	case SCTP_SOCKOPT_CONNECTX_OLD:
4655 		/* 'optlen' is the size of the addresses buffer. */
4656 		retval = sctp_setsockopt_connectx_old(sk,
4657 					    (struct sockaddr __user *)optval,
4658 					    optlen);
4659 		break;
4660 
4661 	case SCTP_SOCKOPT_CONNECTX:
4662 		/* 'optlen' is the size of the addresses buffer. */
4663 		retval = sctp_setsockopt_connectx(sk,
4664 					    (struct sockaddr __user *)optval,
4665 					    optlen);
4666 		break;
4667 
4668 	case SCTP_DISABLE_FRAGMENTS:
4669 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4670 		break;
4671 
4672 	case SCTP_EVENTS:
4673 		retval = sctp_setsockopt_events(sk, optval, optlen);
4674 		break;
4675 
4676 	case SCTP_AUTOCLOSE:
4677 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4678 		break;
4679 
4680 	case SCTP_PEER_ADDR_PARAMS:
4681 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4682 		break;
4683 
4684 	case SCTP_DELAYED_SACK:
4685 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4686 		break;
4687 	case SCTP_PARTIAL_DELIVERY_POINT:
4688 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4689 		break;
4690 
4691 	case SCTP_INITMSG:
4692 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4693 		break;
4694 	case SCTP_DEFAULT_SEND_PARAM:
4695 		retval = sctp_setsockopt_default_send_param(sk, optval,
4696 							    optlen);
4697 		break;
4698 	case SCTP_DEFAULT_SNDINFO:
4699 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4700 		break;
4701 	case SCTP_PRIMARY_ADDR:
4702 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4703 		break;
4704 	case SCTP_SET_PEER_PRIMARY_ADDR:
4705 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4706 		break;
4707 	case SCTP_NODELAY:
4708 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4709 		break;
4710 	case SCTP_RTOINFO:
4711 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4712 		break;
4713 	case SCTP_ASSOCINFO:
4714 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4715 		break;
4716 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4717 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4718 		break;
4719 	case SCTP_MAXSEG:
4720 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4721 		break;
4722 	case SCTP_ADAPTATION_LAYER:
4723 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4724 		break;
4725 	case SCTP_CONTEXT:
4726 		retval = sctp_setsockopt_context(sk, optval, optlen);
4727 		break;
4728 	case SCTP_FRAGMENT_INTERLEAVE:
4729 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4730 		break;
4731 	case SCTP_MAX_BURST:
4732 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4733 		break;
4734 	case SCTP_AUTH_CHUNK:
4735 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4736 		break;
4737 	case SCTP_HMAC_IDENT:
4738 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4739 		break;
4740 	case SCTP_AUTH_KEY:
4741 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4742 		break;
4743 	case SCTP_AUTH_ACTIVE_KEY:
4744 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4745 		break;
4746 	case SCTP_AUTH_DELETE_KEY:
4747 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4748 		break;
4749 	case SCTP_AUTH_DEACTIVATE_KEY:
4750 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4751 		break;
4752 	case SCTP_AUTO_ASCONF:
4753 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4754 		break;
4755 	case SCTP_PEER_ADDR_THLDS:
4756 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4757 		break;
4758 	case SCTP_RECVRCVINFO:
4759 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4760 		break;
4761 	case SCTP_RECVNXTINFO:
4762 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4763 		break;
4764 	case SCTP_PR_SUPPORTED:
4765 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4766 		break;
4767 	case SCTP_DEFAULT_PRINFO:
4768 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4769 		break;
4770 	case SCTP_RECONFIG_SUPPORTED:
4771 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4772 		break;
4773 	case SCTP_ENABLE_STREAM_RESET:
4774 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4775 		break;
4776 	case SCTP_RESET_STREAMS:
4777 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4778 		break;
4779 	case SCTP_RESET_ASSOC:
4780 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4781 		break;
4782 	case SCTP_ADD_STREAMS:
4783 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4784 		break;
4785 	case SCTP_STREAM_SCHEDULER:
4786 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4787 		break;
4788 	case SCTP_STREAM_SCHEDULER_VALUE:
4789 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4790 		break;
4791 	case SCTP_INTERLEAVING_SUPPORTED:
4792 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4793 								optlen);
4794 		break;
4795 	case SCTP_REUSE_PORT:
4796 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4797 		break;
4798 	case SCTP_EVENT:
4799 		retval = sctp_setsockopt_event(sk, optval, optlen);
4800 		break;
4801 	default:
4802 		retval = -ENOPROTOOPT;
4803 		break;
4804 	}
4805 
4806 	release_sock(sk);
4807 
4808 out_nounlock:
4809 	return retval;
4810 }
4811 
4812 /* API 3.1.6 connect() - UDP Style Syntax
4813  *
4814  * An application may use the connect() call in the UDP model to initiate an
4815  * association without sending data.
4816  *
4817  * The syntax is:
4818  *
4819  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4820  *
4821  * sd: the socket descriptor to have a new association added to.
4822  *
4823  * nam: the address structure (either struct sockaddr_in or struct
4824  *    sockaddr_in6 defined in RFC2553 [7]).
4825  *
4826  * len: the size of the address.
4827  */
4828 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4829 			int addr_len, int flags)
4830 {
4831 	struct inet_sock *inet = inet_sk(sk);
4832 	struct sctp_af *af;
4833 	int err = 0;
4834 
4835 	lock_sock(sk);
4836 
4837 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4838 		 addr, addr_len);
4839 
4840 	/* We may need to bind the socket. */
4841 	if (!inet->inet_num) {
4842 		if (sk->sk_prot->get_port(sk, 0)) {
4843 			release_sock(sk);
4844 			return -EAGAIN;
4845 		}
4846 		inet->inet_sport = htons(inet->inet_num);
4847 	}
4848 
4849 	/* Validate addr_len before calling common connect/connectx routine. */
4850 	af = sctp_get_af_specific(addr->sa_family);
4851 	if (!af || addr_len < af->sockaddr_len) {
4852 		err = -EINVAL;
4853 	} else {
4854 		/* Pass correct addr len to common routine (so it knows there
4855 		 * is only one address being passed.
4856 		 */
4857 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4858 	}
4859 
4860 	release_sock(sk);
4861 	return err;
4862 }
4863 
4864 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4865 		      int addr_len, int flags)
4866 {
4867 	if (addr_len < sizeof(uaddr->sa_family))
4868 		return -EINVAL;
4869 
4870 	if (uaddr->sa_family == AF_UNSPEC)
4871 		return -EOPNOTSUPP;
4872 
4873 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4874 }
4875 
4876 /* FIXME: Write comments. */
4877 static int sctp_disconnect(struct sock *sk, int flags)
4878 {
4879 	return -EOPNOTSUPP; /* STUB */
4880 }
4881 
4882 /* 4.1.4 accept() - TCP Style Syntax
4883  *
4884  * Applications use accept() call to remove an established SCTP
4885  * association from the accept queue of the endpoint.  A new socket
4886  * descriptor will be returned from accept() to represent the newly
4887  * formed association.
4888  */
4889 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4890 {
4891 	struct sctp_sock *sp;
4892 	struct sctp_endpoint *ep;
4893 	struct sock *newsk = NULL;
4894 	struct sctp_association *asoc;
4895 	long timeo;
4896 	int error = 0;
4897 
4898 	lock_sock(sk);
4899 
4900 	sp = sctp_sk(sk);
4901 	ep = sp->ep;
4902 
4903 	if (!sctp_style(sk, TCP)) {
4904 		error = -EOPNOTSUPP;
4905 		goto out;
4906 	}
4907 
4908 	if (!sctp_sstate(sk, LISTENING)) {
4909 		error = -EINVAL;
4910 		goto out;
4911 	}
4912 
4913 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4914 
4915 	error = sctp_wait_for_accept(sk, timeo);
4916 	if (error)
4917 		goto out;
4918 
4919 	/* We treat the list of associations on the endpoint as the accept
4920 	 * queue and pick the first association on the list.
4921 	 */
4922 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4923 
4924 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4925 	if (!newsk) {
4926 		error = -ENOMEM;
4927 		goto out;
4928 	}
4929 
4930 	/* Populate the fields of the newsk from the oldsk and migrate the
4931 	 * asoc to the newsk.
4932 	 */
4933 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4934 	if (error) {
4935 		sk_common_release(newsk);
4936 		newsk = NULL;
4937 	}
4938 
4939 out:
4940 	release_sock(sk);
4941 	*err = error;
4942 	return newsk;
4943 }
4944 
4945 /* The SCTP ioctl handler. */
4946 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4947 {
4948 	int rc = -ENOTCONN;
4949 
4950 	lock_sock(sk);
4951 
4952 	/*
4953 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4954 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4955 	 */
4956 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4957 		goto out;
4958 
4959 	switch (cmd) {
4960 	case SIOCINQ: {
4961 		struct sk_buff *skb;
4962 		unsigned int amount = 0;
4963 
4964 		skb = skb_peek(&sk->sk_receive_queue);
4965 		if (skb != NULL) {
4966 			/*
4967 			 * We will only return the amount of this packet since
4968 			 * that is all that will be read.
4969 			 */
4970 			amount = skb->len;
4971 		}
4972 		rc = put_user(amount, (int __user *)arg);
4973 		break;
4974 	}
4975 	default:
4976 		rc = -ENOIOCTLCMD;
4977 		break;
4978 	}
4979 out:
4980 	release_sock(sk);
4981 	return rc;
4982 }
4983 
4984 /* This is the function which gets called during socket creation to
4985  * initialized the SCTP-specific portion of the sock.
4986  * The sock structure should already be zero-filled memory.
4987  */
4988 static int sctp_init_sock(struct sock *sk)
4989 {
4990 	struct net *net = sock_net(sk);
4991 	struct sctp_sock *sp;
4992 
4993 	pr_debug("%s: sk:%p\n", __func__, sk);
4994 
4995 	sp = sctp_sk(sk);
4996 
4997 	/* Initialize the SCTP per socket area.  */
4998 	switch (sk->sk_type) {
4999 	case SOCK_SEQPACKET:
5000 		sp->type = SCTP_SOCKET_UDP;
5001 		break;
5002 	case SOCK_STREAM:
5003 		sp->type = SCTP_SOCKET_TCP;
5004 		break;
5005 	default:
5006 		return -ESOCKTNOSUPPORT;
5007 	}
5008 
5009 	sk->sk_gso_type = SKB_GSO_SCTP;
5010 
5011 	/* Initialize default send parameters. These parameters can be
5012 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
5013 	 */
5014 	sp->default_stream = 0;
5015 	sp->default_ppid = 0;
5016 	sp->default_flags = 0;
5017 	sp->default_context = 0;
5018 	sp->default_timetolive = 0;
5019 
5020 	sp->default_rcv_context = 0;
5021 	sp->max_burst = net->sctp.max_burst;
5022 
5023 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
5024 
5025 	/* Initialize default setup parameters. These parameters
5026 	 * can be modified with the SCTP_INITMSG socket option or
5027 	 * overridden by the SCTP_INIT CMSG.
5028 	 */
5029 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
5030 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
5031 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
5032 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
5033 
5034 	/* Initialize default RTO related parameters.  These parameters can
5035 	 * be modified for with the SCTP_RTOINFO socket option.
5036 	 */
5037 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
5038 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
5039 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
5040 
5041 	/* Initialize default association related parameters. These parameters
5042 	 * can be modified with the SCTP_ASSOCINFO socket option.
5043 	 */
5044 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5045 	sp->assocparams.sasoc_number_peer_destinations = 0;
5046 	sp->assocparams.sasoc_peer_rwnd = 0;
5047 	sp->assocparams.sasoc_local_rwnd = 0;
5048 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5049 
5050 	/* Initialize default event subscriptions. By default, all the
5051 	 * options are off.
5052 	 */
5053 	sp->subscribe = 0;
5054 
5055 	/* Default Peer Address Parameters.  These defaults can
5056 	 * be modified via SCTP_PEER_ADDR_PARAMS
5057 	 */
5058 	sp->hbinterval  = net->sctp.hb_interval;
5059 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5060 	sp->pf_retrans  = net->sctp.pf_retrans;
5061 	sp->pathmtu     = 0; /* allow default discovery */
5062 	sp->sackdelay   = net->sctp.sack_timeout;
5063 	sp->sackfreq	= 2;
5064 	sp->param_flags = SPP_HB_ENABLE |
5065 			  SPP_PMTUD_ENABLE |
5066 			  SPP_SACKDELAY_ENABLE;
5067 	sp->default_ss = SCTP_SS_DEFAULT;
5068 
5069 	/* If enabled no SCTP message fragmentation will be performed.
5070 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5071 	 */
5072 	sp->disable_fragments = 0;
5073 
5074 	/* Enable Nagle algorithm by default.  */
5075 	sp->nodelay           = 0;
5076 
5077 	sp->recvrcvinfo = 0;
5078 	sp->recvnxtinfo = 0;
5079 
5080 	/* Enable by default. */
5081 	sp->v4mapped          = 1;
5082 
5083 	/* Auto-close idle associations after the configured
5084 	 * number of seconds.  A value of 0 disables this
5085 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5086 	 * for UDP-style sockets only.
5087 	 */
5088 	sp->autoclose         = 0;
5089 
5090 	/* User specified fragmentation limit. */
5091 	sp->user_frag         = 0;
5092 
5093 	sp->adaptation_ind = 0;
5094 
5095 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5096 
5097 	/* Control variables for partial data delivery. */
5098 	atomic_set(&sp->pd_mode, 0);
5099 	skb_queue_head_init(&sp->pd_lobby);
5100 	sp->frag_interleave = 0;
5101 
5102 	/* Create a per socket endpoint structure.  Even if we
5103 	 * change the data structure relationships, this may still
5104 	 * be useful for storing pre-connect address information.
5105 	 */
5106 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5107 	if (!sp->ep)
5108 		return -ENOMEM;
5109 
5110 	sp->hmac = NULL;
5111 
5112 	sk->sk_destruct = sctp_destruct_sock;
5113 
5114 	SCTP_DBG_OBJCNT_INC(sock);
5115 
5116 	local_bh_disable();
5117 	sk_sockets_allocated_inc(sk);
5118 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5119 
5120 	/* Nothing can fail after this block, otherwise
5121 	 * sctp_destroy_sock() will be called without addr_wq_lock held
5122 	 */
5123 	if (net->sctp.default_auto_asconf) {
5124 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5125 		list_add_tail(&sp->auto_asconf_list,
5126 		    &net->sctp.auto_asconf_splist);
5127 		sp->do_auto_asconf = 1;
5128 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5129 	} else {
5130 		sp->do_auto_asconf = 0;
5131 	}
5132 
5133 	local_bh_enable();
5134 
5135 	return 0;
5136 }
5137 
5138 /* Cleanup any SCTP per socket resources. Must be called with
5139  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5140  */
5141 static void sctp_destroy_sock(struct sock *sk)
5142 {
5143 	struct sctp_sock *sp;
5144 
5145 	pr_debug("%s: sk:%p\n", __func__, sk);
5146 
5147 	/* Release our hold on the endpoint. */
5148 	sp = sctp_sk(sk);
5149 	/* This could happen during socket init, thus we bail out
5150 	 * early, since the rest of the below is not setup either.
5151 	 */
5152 	if (sp->ep == NULL)
5153 		return;
5154 
5155 	if (sp->do_auto_asconf) {
5156 		sp->do_auto_asconf = 0;
5157 		list_del(&sp->auto_asconf_list);
5158 	}
5159 	sctp_endpoint_free(sp->ep);
5160 	local_bh_disable();
5161 	sk_sockets_allocated_dec(sk);
5162 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5163 	local_bh_enable();
5164 }
5165 
5166 /* Triggered when there are no references on the socket anymore */
5167 static void sctp_destruct_sock(struct sock *sk)
5168 {
5169 	struct sctp_sock *sp = sctp_sk(sk);
5170 
5171 	/* Free up the HMAC transform. */
5172 	crypto_free_shash(sp->hmac);
5173 
5174 	inet_sock_destruct(sk);
5175 }
5176 
5177 /* API 4.1.7 shutdown() - TCP Style Syntax
5178  *     int shutdown(int socket, int how);
5179  *
5180  *     sd      - the socket descriptor of the association to be closed.
5181  *     how     - Specifies the type of shutdown.  The  values  are
5182  *               as follows:
5183  *               SHUT_RD
5184  *                     Disables further receive operations. No SCTP
5185  *                     protocol action is taken.
5186  *               SHUT_WR
5187  *                     Disables further send operations, and initiates
5188  *                     the SCTP shutdown sequence.
5189  *               SHUT_RDWR
5190  *                     Disables further send  and  receive  operations
5191  *                     and initiates the SCTP shutdown sequence.
5192  */
5193 static void sctp_shutdown(struct sock *sk, int how)
5194 {
5195 	struct net *net = sock_net(sk);
5196 	struct sctp_endpoint *ep;
5197 
5198 	if (!sctp_style(sk, TCP))
5199 		return;
5200 
5201 	ep = sctp_sk(sk)->ep;
5202 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5203 		struct sctp_association *asoc;
5204 
5205 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5206 		asoc = list_entry(ep->asocs.next,
5207 				  struct sctp_association, asocs);
5208 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5209 	}
5210 }
5211 
5212 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5213 		       struct sctp_info *info)
5214 {
5215 	struct sctp_transport *prim;
5216 	struct list_head *pos;
5217 	int mask;
5218 
5219 	memset(info, 0, sizeof(*info));
5220 	if (!asoc) {
5221 		struct sctp_sock *sp = sctp_sk(sk);
5222 
5223 		info->sctpi_s_autoclose = sp->autoclose;
5224 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5225 		info->sctpi_s_pd_point = sp->pd_point;
5226 		info->sctpi_s_nodelay = sp->nodelay;
5227 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5228 		info->sctpi_s_v4mapped = sp->v4mapped;
5229 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5230 		info->sctpi_s_type = sp->type;
5231 
5232 		return 0;
5233 	}
5234 
5235 	info->sctpi_tag = asoc->c.my_vtag;
5236 	info->sctpi_state = asoc->state;
5237 	info->sctpi_rwnd = asoc->a_rwnd;
5238 	info->sctpi_unackdata = asoc->unack_data;
5239 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5240 	info->sctpi_instrms = asoc->stream.incnt;
5241 	info->sctpi_outstrms = asoc->stream.outcnt;
5242 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5243 		info->sctpi_inqueue++;
5244 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5245 		info->sctpi_outqueue++;
5246 	info->sctpi_overall_error = asoc->overall_error_count;
5247 	info->sctpi_max_burst = asoc->max_burst;
5248 	info->sctpi_maxseg = asoc->frag_point;
5249 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5250 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5251 
5252 	mask = asoc->peer.ecn_capable << 1;
5253 	mask = (mask | asoc->peer.ipv4_address) << 1;
5254 	mask = (mask | asoc->peer.ipv6_address) << 1;
5255 	mask = (mask | asoc->peer.hostname_address) << 1;
5256 	mask = (mask | asoc->peer.asconf_capable) << 1;
5257 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5258 	mask = (mask | asoc->peer.auth_capable);
5259 	info->sctpi_peer_capable = mask;
5260 	mask = asoc->peer.sack_needed << 1;
5261 	mask = (mask | asoc->peer.sack_generation) << 1;
5262 	mask = (mask | asoc->peer.zero_window_announced);
5263 	info->sctpi_peer_sack = mask;
5264 
5265 	info->sctpi_isacks = asoc->stats.isacks;
5266 	info->sctpi_osacks = asoc->stats.osacks;
5267 	info->sctpi_opackets = asoc->stats.opackets;
5268 	info->sctpi_ipackets = asoc->stats.ipackets;
5269 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5270 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5271 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5272 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5273 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5274 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5275 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5276 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5277 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5278 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5279 
5280 	prim = asoc->peer.primary_path;
5281 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5282 	info->sctpi_p_state = prim->state;
5283 	info->sctpi_p_cwnd = prim->cwnd;
5284 	info->sctpi_p_srtt = prim->srtt;
5285 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5286 	info->sctpi_p_hbinterval = prim->hbinterval;
5287 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5288 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5289 	info->sctpi_p_ssthresh = prim->ssthresh;
5290 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5291 	info->sctpi_p_flight_size = prim->flight_size;
5292 	info->sctpi_p_error = prim->error_count;
5293 
5294 	return 0;
5295 }
5296 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5297 
5298 /* use callback to avoid exporting the core structure */
5299 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5300 {
5301 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5302 
5303 	rhashtable_walk_start(iter);
5304 }
5305 
5306 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5307 {
5308 	rhashtable_walk_stop(iter);
5309 	rhashtable_walk_exit(iter);
5310 }
5311 
5312 struct sctp_transport *sctp_transport_get_next(struct net *net,
5313 					       struct rhashtable_iter *iter)
5314 {
5315 	struct sctp_transport *t;
5316 
5317 	t = rhashtable_walk_next(iter);
5318 	for (; t; t = rhashtable_walk_next(iter)) {
5319 		if (IS_ERR(t)) {
5320 			if (PTR_ERR(t) == -EAGAIN)
5321 				continue;
5322 			break;
5323 		}
5324 
5325 		if (!sctp_transport_hold(t))
5326 			continue;
5327 
5328 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
5329 		    t->asoc->peer.primary_path == t)
5330 			break;
5331 
5332 		sctp_transport_put(t);
5333 	}
5334 
5335 	return t;
5336 }
5337 
5338 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5339 					      struct rhashtable_iter *iter,
5340 					      int pos)
5341 {
5342 	struct sctp_transport *t;
5343 
5344 	if (!pos)
5345 		return SEQ_START_TOKEN;
5346 
5347 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5348 		if (!--pos)
5349 			break;
5350 		sctp_transport_put(t);
5351 	}
5352 
5353 	return t;
5354 }
5355 
5356 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5357 			   void *p) {
5358 	int err = 0;
5359 	int hash = 0;
5360 	struct sctp_ep_common *epb;
5361 	struct sctp_hashbucket *head;
5362 
5363 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5364 	     hash++, head++) {
5365 		read_lock_bh(&head->lock);
5366 		sctp_for_each_hentry(epb, &head->chain) {
5367 			err = cb(sctp_ep(epb), p);
5368 			if (err)
5369 				break;
5370 		}
5371 		read_unlock_bh(&head->lock);
5372 	}
5373 
5374 	return err;
5375 }
5376 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5377 
5378 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5379 				  struct net *net,
5380 				  const union sctp_addr *laddr,
5381 				  const union sctp_addr *paddr, void *p)
5382 {
5383 	struct sctp_transport *transport;
5384 	int err;
5385 
5386 	rcu_read_lock();
5387 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5388 	rcu_read_unlock();
5389 	if (!transport)
5390 		return -ENOENT;
5391 
5392 	err = cb(transport, p);
5393 	sctp_transport_put(transport);
5394 
5395 	return err;
5396 }
5397 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5398 
5399 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5400 			    int (*cb_done)(struct sctp_transport *, void *),
5401 			    struct net *net, int *pos, void *p) {
5402 	struct rhashtable_iter hti;
5403 	struct sctp_transport *tsp;
5404 	int ret;
5405 
5406 again:
5407 	ret = 0;
5408 	sctp_transport_walk_start(&hti);
5409 
5410 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5411 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5412 		ret = cb(tsp, p);
5413 		if (ret)
5414 			break;
5415 		(*pos)++;
5416 		sctp_transport_put(tsp);
5417 	}
5418 	sctp_transport_walk_stop(&hti);
5419 
5420 	if (ret) {
5421 		if (cb_done && !cb_done(tsp, p)) {
5422 			(*pos)++;
5423 			sctp_transport_put(tsp);
5424 			goto again;
5425 		}
5426 		sctp_transport_put(tsp);
5427 	}
5428 
5429 	return ret;
5430 }
5431 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5432 
5433 /* 7.2.1 Association Status (SCTP_STATUS)
5434 
5435  * Applications can retrieve current status information about an
5436  * association, including association state, peer receiver window size,
5437  * number of unacked data chunks, and number of data chunks pending
5438  * receipt.  This information is read-only.
5439  */
5440 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5441 				       char __user *optval,
5442 				       int __user *optlen)
5443 {
5444 	struct sctp_status status;
5445 	struct sctp_association *asoc = NULL;
5446 	struct sctp_transport *transport;
5447 	sctp_assoc_t associd;
5448 	int retval = 0;
5449 
5450 	if (len < sizeof(status)) {
5451 		retval = -EINVAL;
5452 		goto out;
5453 	}
5454 
5455 	len = sizeof(status);
5456 	if (copy_from_user(&status, optval, len)) {
5457 		retval = -EFAULT;
5458 		goto out;
5459 	}
5460 
5461 	associd = status.sstat_assoc_id;
5462 	asoc = sctp_id2assoc(sk, associd);
5463 	if (!asoc) {
5464 		retval = -EINVAL;
5465 		goto out;
5466 	}
5467 
5468 	transport = asoc->peer.primary_path;
5469 
5470 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5471 	status.sstat_state = sctp_assoc_to_state(asoc);
5472 	status.sstat_rwnd =  asoc->peer.rwnd;
5473 	status.sstat_unackdata = asoc->unack_data;
5474 
5475 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5476 	status.sstat_instrms = asoc->stream.incnt;
5477 	status.sstat_outstrms = asoc->stream.outcnt;
5478 	status.sstat_fragmentation_point = asoc->frag_point;
5479 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5480 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5481 			transport->af_specific->sockaddr_len);
5482 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5483 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5484 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5485 	status.sstat_primary.spinfo_state = transport->state;
5486 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5487 	status.sstat_primary.spinfo_srtt = transport->srtt;
5488 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5489 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5490 
5491 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5492 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5493 
5494 	if (put_user(len, optlen)) {
5495 		retval = -EFAULT;
5496 		goto out;
5497 	}
5498 
5499 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5500 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5501 		 status.sstat_assoc_id);
5502 
5503 	if (copy_to_user(optval, &status, len)) {
5504 		retval = -EFAULT;
5505 		goto out;
5506 	}
5507 
5508 out:
5509 	return retval;
5510 }
5511 
5512 
5513 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5514  *
5515  * Applications can retrieve information about a specific peer address
5516  * of an association, including its reachability state, congestion
5517  * window, and retransmission timer values.  This information is
5518  * read-only.
5519  */
5520 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5521 					  char __user *optval,
5522 					  int __user *optlen)
5523 {
5524 	struct sctp_paddrinfo pinfo;
5525 	struct sctp_transport *transport;
5526 	int retval = 0;
5527 
5528 	if (len < sizeof(pinfo)) {
5529 		retval = -EINVAL;
5530 		goto out;
5531 	}
5532 
5533 	len = sizeof(pinfo);
5534 	if (copy_from_user(&pinfo, optval, len)) {
5535 		retval = -EFAULT;
5536 		goto out;
5537 	}
5538 
5539 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5540 					   pinfo.spinfo_assoc_id);
5541 	if (!transport)
5542 		return -EINVAL;
5543 
5544 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5545 	pinfo.spinfo_state = transport->state;
5546 	pinfo.spinfo_cwnd = transport->cwnd;
5547 	pinfo.spinfo_srtt = transport->srtt;
5548 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5549 	pinfo.spinfo_mtu = transport->pathmtu;
5550 
5551 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5552 		pinfo.spinfo_state = SCTP_ACTIVE;
5553 
5554 	if (put_user(len, optlen)) {
5555 		retval = -EFAULT;
5556 		goto out;
5557 	}
5558 
5559 	if (copy_to_user(optval, &pinfo, len)) {
5560 		retval = -EFAULT;
5561 		goto out;
5562 	}
5563 
5564 out:
5565 	return retval;
5566 }
5567 
5568 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5569  *
5570  * This option is a on/off flag.  If enabled no SCTP message
5571  * fragmentation will be performed.  Instead if a message being sent
5572  * exceeds the current PMTU size, the message will NOT be sent and
5573  * instead a error will be indicated to the user.
5574  */
5575 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5576 					char __user *optval, int __user *optlen)
5577 {
5578 	int val;
5579 
5580 	if (len < sizeof(int))
5581 		return -EINVAL;
5582 
5583 	len = sizeof(int);
5584 	val = (sctp_sk(sk)->disable_fragments == 1);
5585 	if (put_user(len, optlen))
5586 		return -EFAULT;
5587 	if (copy_to_user(optval, &val, len))
5588 		return -EFAULT;
5589 	return 0;
5590 }
5591 
5592 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5593  *
5594  * This socket option is used to specify various notifications and
5595  * ancillary data the user wishes to receive.
5596  */
5597 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5598 				  int __user *optlen)
5599 {
5600 	struct sctp_event_subscribe subscribe;
5601 	__u8 *sn_type = (__u8 *)&subscribe;
5602 	int i;
5603 
5604 	if (len == 0)
5605 		return -EINVAL;
5606 	if (len > sizeof(struct sctp_event_subscribe))
5607 		len = sizeof(struct sctp_event_subscribe);
5608 	if (put_user(len, optlen))
5609 		return -EFAULT;
5610 
5611 	for (i = 0; i < len; i++)
5612 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5613 							SCTP_SN_TYPE_BASE + i);
5614 
5615 	if (copy_to_user(optval, &subscribe, len))
5616 		return -EFAULT;
5617 
5618 	return 0;
5619 }
5620 
5621 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5622  *
5623  * This socket option is applicable to the UDP-style socket only.  When
5624  * set it will cause associations that are idle for more than the
5625  * specified number of seconds to automatically close.  An association
5626  * being idle is defined an association that has NOT sent or received
5627  * user data.  The special value of '0' indicates that no automatic
5628  * close of any associations should be performed.  The option expects an
5629  * integer defining the number of seconds of idle time before an
5630  * association is closed.
5631  */
5632 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5633 {
5634 	/* Applicable to UDP-style socket only */
5635 	if (sctp_style(sk, TCP))
5636 		return -EOPNOTSUPP;
5637 	if (len < sizeof(int))
5638 		return -EINVAL;
5639 	len = sizeof(int);
5640 	if (put_user(len, optlen))
5641 		return -EFAULT;
5642 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5643 		return -EFAULT;
5644 	return 0;
5645 }
5646 
5647 /* Helper routine to branch off an association to a new socket.  */
5648 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5649 {
5650 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5651 	struct sctp_sock *sp = sctp_sk(sk);
5652 	struct socket *sock;
5653 	int err = 0;
5654 
5655 	/* Do not peel off from one netns to another one. */
5656 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5657 		return -EINVAL;
5658 
5659 	if (!asoc)
5660 		return -EINVAL;
5661 
5662 	/* An association cannot be branched off from an already peeled-off
5663 	 * socket, nor is this supported for tcp style sockets.
5664 	 */
5665 	if (!sctp_style(sk, UDP))
5666 		return -EINVAL;
5667 
5668 	/* Create a new socket.  */
5669 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5670 	if (err < 0)
5671 		return err;
5672 
5673 	sctp_copy_sock(sock->sk, sk, asoc);
5674 
5675 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5676 	 * Set the daddr and initialize id to something more random and also
5677 	 * copy over any ip options.
5678 	 */
5679 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5680 	sp->pf->copy_ip_options(sk, sock->sk);
5681 
5682 	/* Populate the fields of the newsk from the oldsk and migrate the
5683 	 * asoc to the newsk.
5684 	 */
5685 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5686 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5687 	if (err) {
5688 		sock_release(sock);
5689 		sock = NULL;
5690 	}
5691 
5692 	*sockp = sock;
5693 
5694 	return err;
5695 }
5696 EXPORT_SYMBOL(sctp_do_peeloff);
5697 
5698 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5699 					  struct file **newfile, unsigned flags)
5700 {
5701 	struct socket *newsock;
5702 	int retval;
5703 
5704 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5705 	if (retval < 0)
5706 		goto out;
5707 
5708 	/* Map the socket to an unused fd that can be returned to the user.  */
5709 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5710 	if (retval < 0) {
5711 		sock_release(newsock);
5712 		goto out;
5713 	}
5714 
5715 	*newfile = sock_alloc_file(newsock, 0, NULL);
5716 	if (IS_ERR(*newfile)) {
5717 		put_unused_fd(retval);
5718 		retval = PTR_ERR(*newfile);
5719 		*newfile = NULL;
5720 		return retval;
5721 	}
5722 
5723 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5724 		 retval);
5725 
5726 	peeloff->sd = retval;
5727 
5728 	if (flags & SOCK_NONBLOCK)
5729 		(*newfile)->f_flags |= O_NONBLOCK;
5730 out:
5731 	return retval;
5732 }
5733 
5734 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5735 {
5736 	sctp_peeloff_arg_t peeloff;
5737 	struct file *newfile = NULL;
5738 	int retval = 0;
5739 
5740 	if (len < sizeof(sctp_peeloff_arg_t))
5741 		return -EINVAL;
5742 	len = sizeof(sctp_peeloff_arg_t);
5743 	if (copy_from_user(&peeloff, optval, len))
5744 		return -EFAULT;
5745 
5746 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5747 	if (retval < 0)
5748 		goto out;
5749 
5750 	/* Return the fd mapped to the new socket.  */
5751 	if (put_user(len, optlen)) {
5752 		fput(newfile);
5753 		put_unused_fd(retval);
5754 		return -EFAULT;
5755 	}
5756 
5757 	if (copy_to_user(optval, &peeloff, len)) {
5758 		fput(newfile);
5759 		put_unused_fd(retval);
5760 		return -EFAULT;
5761 	}
5762 	fd_install(retval, newfile);
5763 out:
5764 	return retval;
5765 }
5766 
5767 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5768 					 char __user *optval, int __user *optlen)
5769 {
5770 	sctp_peeloff_flags_arg_t peeloff;
5771 	struct file *newfile = NULL;
5772 	int retval = 0;
5773 
5774 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5775 		return -EINVAL;
5776 	len = sizeof(sctp_peeloff_flags_arg_t);
5777 	if (copy_from_user(&peeloff, optval, len))
5778 		return -EFAULT;
5779 
5780 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5781 						&newfile, peeloff.flags);
5782 	if (retval < 0)
5783 		goto out;
5784 
5785 	/* Return the fd mapped to the new socket.  */
5786 	if (put_user(len, optlen)) {
5787 		fput(newfile);
5788 		put_unused_fd(retval);
5789 		return -EFAULT;
5790 	}
5791 
5792 	if (copy_to_user(optval, &peeloff, len)) {
5793 		fput(newfile);
5794 		put_unused_fd(retval);
5795 		return -EFAULT;
5796 	}
5797 	fd_install(retval, newfile);
5798 out:
5799 	return retval;
5800 }
5801 
5802 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5803  *
5804  * Applications can enable or disable heartbeats for any peer address of
5805  * an association, modify an address's heartbeat interval, force a
5806  * heartbeat to be sent immediately, and adjust the address's maximum
5807  * number of retransmissions sent before an address is considered
5808  * unreachable.  The following structure is used to access and modify an
5809  * address's parameters:
5810  *
5811  *  struct sctp_paddrparams {
5812  *     sctp_assoc_t            spp_assoc_id;
5813  *     struct sockaddr_storage spp_address;
5814  *     uint32_t                spp_hbinterval;
5815  *     uint16_t                spp_pathmaxrxt;
5816  *     uint32_t                spp_pathmtu;
5817  *     uint32_t                spp_sackdelay;
5818  *     uint32_t                spp_flags;
5819  * };
5820  *
5821  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5822  *                     application, and identifies the association for
5823  *                     this query.
5824  *   spp_address     - This specifies which address is of interest.
5825  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5826  *                     in milliseconds.  If a  value of zero
5827  *                     is present in this field then no changes are to
5828  *                     be made to this parameter.
5829  *   spp_pathmaxrxt  - This contains the maximum number of
5830  *                     retransmissions before this address shall be
5831  *                     considered unreachable. If a  value of zero
5832  *                     is present in this field then no changes are to
5833  *                     be made to this parameter.
5834  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5835  *                     specified here will be the "fixed" path mtu.
5836  *                     Note that if the spp_address field is empty
5837  *                     then all associations on this address will
5838  *                     have this fixed path mtu set upon them.
5839  *
5840  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5841  *                     the number of milliseconds that sacks will be delayed
5842  *                     for. This value will apply to all addresses of an
5843  *                     association if the spp_address field is empty. Note
5844  *                     also, that if delayed sack is enabled and this
5845  *                     value is set to 0, no change is made to the last
5846  *                     recorded delayed sack timer value.
5847  *
5848  *   spp_flags       - These flags are used to control various features
5849  *                     on an association. The flag field may contain
5850  *                     zero or more of the following options.
5851  *
5852  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5853  *                     specified address. Note that if the address
5854  *                     field is empty all addresses for the association
5855  *                     have heartbeats enabled upon them.
5856  *
5857  *                     SPP_HB_DISABLE - Disable heartbeats on the
5858  *                     speicifed address. Note that if the address
5859  *                     field is empty all addresses for the association
5860  *                     will have their heartbeats disabled. Note also
5861  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5862  *                     mutually exclusive, only one of these two should
5863  *                     be specified. Enabling both fields will have
5864  *                     undetermined results.
5865  *
5866  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5867  *                     to be made immediately.
5868  *
5869  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5870  *                     discovery upon the specified address. Note that
5871  *                     if the address feild is empty then all addresses
5872  *                     on the association are effected.
5873  *
5874  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5875  *                     discovery upon the specified address. Note that
5876  *                     if the address feild is empty then all addresses
5877  *                     on the association are effected. Not also that
5878  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5879  *                     exclusive. Enabling both will have undetermined
5880  *                     results.
5881  *
5882  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5883  *                     on delayed sack. The time specified in spp_sackdelay
5884  *                     is used to specify the sack delay for this address. Note
5885  *                     that if spp_address is empty then all addresses will
5886  *                     enable delayed sack and take on the sack delay
5887  *                     value specified in spp_sackdelay.
5888  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5889  *                     off delayed sack. If the spp_address field is blank then
5890  *                     delayed sack is disabled for the entire association. Note
5891  *                     also that this field is mutually exclusive to
5892  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5893  *                     results.
5894  *
5895  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5896  *                     setting of the IPV6 flow label value.  The value is
5897  *                     contained in the spp_ipv6_flowlabel field.
5898  *                     Upon retrieval, this flag will be set to indicate that
5899  *                     the spp_ipv6_flowlabel field has a valid value returned.
5900  *                     If a specific destination address is set (in the
5901  *                     spp_address field), then the value returned is that of
5902  *                     the address.  If just an association is specified (and
5903  *                     no address), then the association's default flow label
5904  *                     is returned.  If neither an association nor a destination
5905  *                     is specified, then the socket's default flow label is
5906  *                     returned.  For non-IPv6 sockets, this flag will be left
5907  *                     cleared.
5908  *
5909  *                     SPP_DSCP:  Setting this flag enables the setting of the
5910  *                     Differentiated Services Code Point (DSCP) value
5911  *                     associated with either the association or a specific
5912  *                     address.  The value is obtained in the spp_dscp field.
5913  *                     Upon retrieval, this flag will be set to indicate that
5914  *                     the spp_dscp field has a valid value returned.  If a
5915  *                     specific destination address is set when called (in the
5916  *                     spp_address field), then that specific destination
5917  *                     address's DSCP value is returned.  If just an association
5918  *                     is specified, then the association's default DSCP is
5919  *                     returned.  If neither an association nor a destination is
5920  *                     specified, then the socket's default DSCP is returned.
5921  *
5922  *   spp_ipv6_flowlabel
5923  *                   - This field is used in conjunction with the
5924  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5925  *                     The 20 least significant bits are used for the flow
5926  *                     label.  This setting has precedence over any IPv6-layer
5927  *                     setting.
5928  *
5929  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5930  *                     and contains the DSCP.  The 6 most significant bits are
5931  *                     used for the DSCP.  This setting has precedence over any
5932  *                     IPv4- or IPv6- layer setting.
5933  */
5934 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5935 					    char __user *optval, int __user *optlen)
5936 {
5937 	struct sctp_paddrparams  params;
5938 	struct sctp_transport   *trans = NULL;
5939 	struct sctp_association *asoc = NULL;
5940 	struct sctp_sock        *sp = sctp_sk(sk);
5941 
5942 	if (len >= sizeof(params))
5943 		len = sizeof(params);
5944 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5945 				       spp_ipv6_flowlabel), 4))
5946 		len = ALIGN(offsetof(struct sctp_paddrparams,
5947 				     spp_ipv6_flowlabel), 4);
5948 	else
5949 		return -EINVAL;
5950 
5951 	if (copy_from_user(&params, optval, len))
5952 		return -EFAULT;
5953 
5954 	/* If an address other than INADDR_ANY is specified, and
5955 	 * no transport is found, then the request is invalid.
5956 	 */
5957 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5958 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5959 					       params.spp_assoc_id);
5960 		if (!trans) {
5961 			pr_debug("%s: failed no transport\n", __func__);
5962 			return -EINVAL;
5963 		}
5964 	}
5965 
5966 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5967 	 * socket is a one to many style socket, and an association
5968 	 * was not found, then the id was invalid.
5969 	 */
5970 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5971 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5972 	    sctp_style(sk, UDP)) {
5973 		pr_debug("%s: failed no association\n", __func__);
5974 		return -EINVAL;
5975 	}
5976 
5977 	if (trans) {
5978 		/* Fetch transport values. */
5979 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5980 		params.spp_pathmtu    = trans->pathmtu;
5981 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5982 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5983 
5984 		/*draft-11 doesn't say what to return in spp_flags*/
5985 		params.spp_flags      = trans->param_flags;
5986 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5987 			params.spp_ipv6_flowlabel = trans->flowlabel &
5988 						    SCTP_FLOWLABEL_VAL_MASK;
5989 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5990 		}
5991 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5992 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5993 			params.spp_flags |= SPP_DSCP;
5994 		}
5995 	} else if (asoc) {
5996 		/* Fetch association values. */
5997 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5998 		params.spp_pathmtu    = asoc->pathmtu;
5999 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
6000 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
6001 
6002 		/*draft-11 doesn't say what to return in spp_flags*/
6003 		params.spp_flags      = asoc->param_flags;
6004 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6005 			params.spp_ipv6_flowlabel = asoc->flowlabel &
6006 						    SCTP_FLOWLABEL_VAL_MASK;
6007 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
6008 		}
6009 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
6010 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
6011 			params.spp_flags |= SPP_DSCP;
6012 		}
6013 	} else {
6014 		/* Fetch socket values. */
6015 		params.spp_hbinterval = sp->hbinterval;
6016 		params.spp_pathmtu    = sp->pathmtu;
6017 		params.spp_sackdelay  = sp->sackdelay;
6018 		params.spp_pathmaxrxt = sp->pathmaxrxt;
6019 
6020 		/*draft-11 doesn't say what to return in spp_flags*/
6021 		params.spp_flags      = sp->param_flags;
6022 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6023 			params.spp_ipv6_flowlabel = sp->flowlabel &
6024 						    SCTP_FLOWLABEL_VAL_MASK;
6025 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
6026 		}
6027 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
6028 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
6029 			params.spp_flags |= SPP_DSCP;
6030 		}
6031 	}
6032 
6033 	if (copy_to_user(optval, &params, len))
6034 		return -EFAULT;
6035 
6036 	if (put_user(len, optlen))
6037 		return -EFAULT;
6038 
6039 	return 0;
6040 }
6041 
6042 /*
6043  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
6044  *
6045  * This option will effect the way delayed acks are performed.  This
6046  * option allows you to get or set the delayed ack time, in
6047  * milliseconds.  It also allows changing the delayed ack frequency.
6048  * Changing the frequency to 1 disables the delayed sack algorithm.  If
6049  * the assoc_id is 0, then this sets or gets the endpoints default
6050  * values.  If the assoc_id field is non-zero, then the set or get
6051  * effects the specified association for the one to many model (the
6052  * assoc_id field is ignored by the one to one model).  Note that if
6053  * sack_delay or sack_freq are 0 when setting this option, then the
6054  * current values will remain unchanged.
6055  *
6056  * struct sctp_sack_info {
6057  *     sctp_assoc_t            sack_assoc_id;
6058  *     uint32_t                sack_delay;
6059  *     uint32_t                sack_freq;
6060  * };
6061  *
6062  * sack_assoc_id -  This parameter, indicates which association the user
6063  *    is performing an action upon.  Note that if this field's value is
6064  *    zero then the endpoints default value is changed (effecting future
6065  *    associations only).
6066  *
6067  * sack_delay -  This parameter contains the number of milliseconds that
6068  *    the user is requesting the delayed ACK timer be set to.  Note that
6069  *    this value is defined in the standard to be between 200 and 500
6070  *    milliseconds.
6071  *
6072  * sack_freq -  This parameter contains the number of packets that must
6073  *    be received before a sack is sent without waiting for the delay
6074  *    timer to expire.  The default value for this is 2, setting this
6075  *    value to 1 will disable the delayed sack algorithm.
6076  */
6077 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6078 					    char __user *optval,
6079 					    int __user *optlen)
6080 {
6081 	struct sctp_sack_info    params;
6082 	struct sctp_association *asoc = NULL;
6083 	struct sctp_sock        *sp = sctp_sk(sk);
6084 
6085 	if (len >= sizeof(struct sctp_sack_info)) {
6086 		len = sizeof(struct sctp_sack_info);
6087 
6088 		if (copy_from_user(&params, optval, len))
6089 			return -EFAULT;
6090 	} else if (len == sizeof(struct sctp_assoc_value)) {
6091 		pr_warn_ratelimited(DEPRECATED
6092 				    "%s (pid %d) "
6093 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6094 				    "Use struct sctp_sack_info instead\n",
6095 				    current->comm, task_pid_nr(current));
6096 		if (copy_from_user(&params, optval, len))
6097 			return -EFAULT;
6098 	} else
6099 		return -EINVAL;
6100 
6101 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6102 	 * socket is a one to many style socket, and an association
6103 	 * was not found, then the id was invalid.
6104 	 */
6105 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6106 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6107 	    sctp_style(sk, UDP))
6108 		return -EINVAL;
6109 
6110 	if (asoc) {
6111 		/* Fetch association values. */
6112 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6113 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6114 			params.sack_freq = asoc->sackfreq;
6115 
6116 		} else {
6117 			params.sack_delay = 0;
6118 			params.sack_freq = 1;
6119 		}
6120 	} else {
6121 		/* Fetch socket values. */
6122 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6123 			params.sack_delay  = sp->sackdelay;
6124 			params.sack_freq = sp->sackfreq;
6125 		} else {
6126 			params.sack_delay  = 0;
6127 			params.sack_freq = 1;
6128 		}
6129 	}
6130 
6131 	if (copy_to_user(optval, &params, len))
6132 		return -EFAULT;
6133 
6134 	if (put_user(len, optlen))
6135 		return -EFAULT;
6136 
6137 	return 0;
6138 }
6139 
6140 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6141  *
6142  * Applications can specify protocol parameters for the default association
6143  * initialization.  The option name argument to setsockopt() and getsockopt()
6144  * is SCTP_INITMSG.
6145  *
6146  * Setting initialization parameters is effective only on an unconnected
6147  * socket (for UDP-style sockets only future associations are effected
6148  * by the change).  With TCP-style sockets, this option is inherited by
6149  * sockets derived from a listener socket.
6150  */
6151 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6152 {
6153 	if (len < sizeof(struct sctp_initmsg))
6154 		return -EINVAL;
6155 	len = sizeof(struct sctp_initmsg);
6156 	if (put_user(len, optlen))
6157 		return -EFAULT;
6158 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6159 		return -EFAULT;
6160 	return 0;
6161 }
6162 
6163 
6164 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6165 				      char __user *optval, int __user *optlen)
6166 {
6167 	struct sctp_association *asoc;
6168 	int cnt = 0;
6169 	struct sctp_getaddrs getaddrs;
6170 	struct sctp_transport *from;
6171 	void __user *to;
6172 	union sctp_addr temp;
6173 	struct sctp_sock *sp = sctp_sk(sk);
6174 	int addrlen;
6175 	size_t space_left;
6176 	int bytes_copied;
6177 
6178 	if (len < sizeof(struct sctp_getaddrs))
6179 		return -EINVAL;
6180 
6181 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6182 		return -EFAULT;
6183 
6184 	/* For UDP-style sockets, id specifies the association to query.  */
6185 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6186 	if (!asoc)
6187 		return -EINVAL;
6188 
6189 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6190 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6191 
6192 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6193 				transports) {
6194 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6195 		addrlen = sctp_get_pf_specific(sk->sk_family)
6196 			      ->addr_to_user(sp, &temp);
6197 		if (space_left < addrlen)
6198 			return -ENOMEM;
6199 		if (copy_to_user(to, &temp, addrlen))
6200 			return -EFAULT;
6201 		to += addrlen;
6202 		cnt++;
6203 		space_left -= addrlen;
6204 	}
6205 
6206 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6207 		return -EFAULT;
6208 	bytes_copied = ((char __user *)to) - optval;
6209 	if (put_user(bytes_copied, optlen))
6210 		return -EFAULT;
6211 
6212 	return 0;
6213 }
6214 
6215 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6216 			    size_t space_left, int *bytes_copied)
6217 {
6218 	struct sctp_sockaddr_entry *addr;
6219 	union sctp_addr temp;
6220 	int cnt = 0;
6221 	int addrlen;
6222 	struct net *net = sock_net(sk);
6223 
6224 	rcu_read_lock();
6225 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6226 		if (!addr->valid)
6227 			continue;
6228 
6229 		if ((PF_INET == sk->sk_family) &&
6230 		    (AF_INET6 == addr->a.sa.sa_family))
6231 			continue;
6232 		if ((PF_INET6 == sk->sk_family) &&
6233 		    inet_v6_ipv6only(sk) &&
6234 		    (AF_INET == addr->a.sa.sa_family))
6235 			continue;
6236 		memcpy(&temp, &addr->a, sizeof(temp));
6237 		if (!temp.v4.sin_port)
6238 			temp.v4.sin_port = htons(port);
6239 
6240 		addrlen = sctp_get_pf_specific(sk->sk_family)
6241 			      ->addr_to_user(sctp_sk(sk), &temp);
6242 
6243 		if (space_left < addrlen) {
6244 			cnt =  -ENOMEM;
6245 			break;
6246 		}
6247 		memcpy(to, &temp, addrlen);
6248 
6249 		to += addrlen;
6250 		cnt++;
6251 		space_left -= addrlen;
6252 		*bytes_copied += addrlen;
6253 	}
6254 	rcu_read_unlock();
6255 
6256 	return cnt;
6257 }
6258 
6259 
6260 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6261 				       char __user *optval, int __user *optlen)
6262 {
6263 	struct sctp_bind_addr *bp;
6264 	struct sctp_association *asoc;
6265 	int cnt = 0;
6266 	struct sctp_getaddrs getaddrs;
6267 	struct sctp_sockaddr_entry *addr;
6268 	void __user *to;
6269 	union sctp_addr temp;
6270 	struct sctp_sock *sp = sctp_sk(sk);
6271 	int addrlen;
6272 	int err = 0;
6273 	size_t space_left;
6274 	int bytes_copied = 0;
6275 	void *addrs;
6276 	void *buf;
6277 
6278 	if (len < sizeof(struct sctp_getaddrs))
6279 		return -EINVAL;
6280 
6281 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6282 		return -EFAULT;
6283 
6284 	/*
6285 	 *  For UDP-style sockets, id specifies the association to query.
6286 	 *  If the id field is set to the value '0' then the locally bound
6287 	 *  addresses are returned without regard to any particular
6288 	 *  association.
6289 	 */
6290 	if (0 == getaddrs.assoc_id) {
6291 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6292 	} else {
6293 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6294 		if (!asoc)
6295 			return -EINVAL;
6296 		bp = &asoc->base.bind_addr;
6297 	}
6298 
6299 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6300 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6301 
6302 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6303 	if (!addrs)
6304 		return -ENOMEM;
6305 
6306 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6307 	 * addresses from the global local address list.
6308 	 */
6309 	if (sctp_list_single_entry(&bp->address_list)) {
6310 		addr = list_entry(bp->address_list.next,
6311 				  struct sctp_sockaddr_entry, list);
6312 		if (sctp_is_any(sk, &addr->a)) {
6313 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6314 						space_left, &bytes_copied);
6315 			if (cnt < 0) {
6316 				err = cnt;
6317 				goto out;
6318 			}
6319 			goto copy_getaddrs;
6320 		}
6321 	}
6322 
6323 	buf = addrs;
6324 	/* Protection on the bound address list is not needed since
6325 	 * in the socket option context we hold a socket lock and
6326 	 * thus the bound address list can't change.
6327 	 */
6328 	list_for_each_entry(addr, &bp->address_list, list) {
6329 		memcpy(&temp, &addr->a, sizeof(temp));
6330 		addrlen = sctp_get_pf_specific(sk->sk_family)
6331 			      ->addr_to_user(sp, &temp);
6332 		if (space_left < addrlen) {
6333 			err =  -ENOMEM; /*fixme: right error?*/
6334 			goto out;
6335 		}
6336 		memcpy(buf, &temp, addrlen);
6337 		buf += addrlen;
6338 		bytes_copied += addrlen;
6339 		cnt++;
6340 		space_left -= addrlen;
6341 	}
6342 
6343 copy_getaddrs:
6344 	if (copy_to_user(to, addrs, bytes_copied)) {
6345 		err = -EFAULT;
6346 		goto out;
6347 	}
6348 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6349 		err = -EFAULT;
6350 		goto out;
6351 	}
6352 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6353 	 * but we can't change it anymore.
6354 	 */
6355 	if (put_user(bytes_copied, optlen))
6356 		err = -EFAULT;
6357 out:
6358 	kfree(addrs);
6359 	return err;
6360 }
6361 
6362 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6363  *
6364  * Requests that the local SCTP stack use the enclosed peer address as
6365  * the association primary.  The enclosed address must be one of the
6366  * association peer's addresses.
6367  */
6368 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6369 					char __user *optval, int __user *optlen)
6370 {
6371 	struct sctp_prim prim;
6372 	struct sctp_association *asoc;
6373 	struct sctp_sock *sp = sctp_sk(sk);
6374 
6375 	if (len < sizeof(struct sctp_prim))
6376 		return -EINVAL;
6377 
6378 	len = sizeof(struct sctp_prim);
6379 
6380 	if (copy_from_user(&prim, optval, len))
6381 		return -EFAULT;
6382 
6383 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6384 	if (!asoc)
6385 		return -EINVAL;
6386 
6387 	if (!asoc->peer.primary_path)
6388 		return -ENOTCONN;
6389 
6390 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6391 		asoc->peer.primary_path->af_specific->sockaddr_len);
6392 
6393 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6394 			(union sctp_addr *)&prim.ssp_addr);
6395 
6396 	if (put_user(len, optlen))
6397 		return -EFAULT;
6398 	if (copy_to_user(optval, &prim, len))
6399 		return -EFAULT;
6400 
6401 	return 0;
6402 }
6403 
6404 /*
6405  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6406  *
6407  * Requests that the local endpoint set the specified Adaptation Layer
6408  * Indication parameter for all future INIT and INIT-ACK exchanges.
6409  */
6410 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6411 				  char __user *optval, int __user *optlen)
6412 {
6413 	struct sctp_setadaptation adaptation;
6414 
6415 	if (len < sizeof(struct sctp_setadaptation))
6416 		return -EINVAL;
6417 
6418 	len = sizeof(struct sctp_setadaptation);
6419 
6420 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6421 
6422 	if (put_user(len, optlen))
6423 		return -EFAULT;
6424 	if (copy_to_user(optval, &adaptation, len))
6425 		return -EFAULT;
6426 
6427 	return 0;
6428 }
6429 
6430 /*
6431  *
6432  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6433  *
6434  *   Applications that wish to use the sendto() system call may wish to
6435  *   specify a default set of parameters that would normally be supplied
6436  *   through the inclusion of ancillary data.  This socket option allows
6437  *   such an application to set the default sctp_sndrcvinfo structure.
6438 
6439 
6440  *   The application that wishes to use this socket option simply passes
6441  *   in to this call the sctp_sndrcvinfo structure defined in Section
6442  *   5.2.2) The input parameters accepted by this call include
6443  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6444  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6445  *   to this call if the caller is using the UDP model.
6446  *
6447  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6448  */
6449 static int sctp_getsockopt_default_send_param(struct sock *sk,
6450 					int len, char __user *optval,
6451 					int __user *optlen)
6452 {
6453 	struct sctp_sock *sp = sctp_sk(sk);
6454 	struct sctp_association *asoc;
6455 	struct sctp_sndrcvinfo info;
6456 
6457 	if (len < sizeof(info))
6458 		return -EINVAL;
6459 
6460 	len = sizeof(info);
6461 
6462 	if (copy_from_user(&info, optval, len))
6463 		return -EFAULT;
6464 
6465 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6466 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6467 	    sctp_style(sk, UDP))
6468 		return -EINVAL;
6469 
6470 	if (asoc) {
6471 		info.sinfo_stream = asoc->default_stream;
6472 		info.sinfo_flags = asoc->default_flags;
6473 		info.sinfo_ppid = asoc->default_ppid;
6474 		info.sinfo_context = asoc->default_context;
6475 		info.sinfo_timetolive = asoc->default_timetolive;
6476 	} else {
6477 		info.sinfo_stream = sp->default_stream;
6478 		info.sinfo_flags = sp->default_flags;
6479 		info.sinfo_ppid = sp->default_ppid;
6480 		info.sinfo_context = sp->default_context;
6481 		info.sinfo_timetolive = sp->default_timetolive;
6482 	}
6483 
6484 	if (put_user(len, optlen))
6485 		return -EFAULT;
6486 	if (copy_to_user(optval, &info, len))
6487 		return -EFAULT;
6488 
6489 	return 0;
6490 }
6491 
6492 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6493  * (SCTP_DEFAULT_SNDINFO)
6494  */
6495 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6496 					   char __user *optval,
6497 					   int __user *optlen)
6498 {
6499 	struct sctp_sock *sp = sctp_sk(sk);
6500 	struct sctp_association *asoc;
6501 	struct sctp_sndinfo info;
6502 
6503 	if (len < sizeof(info))
6504 		return -EINVAL;
6505 
6506 	len = sizeof(info);
6507 
6508 	if (copy_from_user(&info, optval, len))
6509 		return -EFAULT;
6510 
6511 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6512 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6513 	    sctp_style(sk, UDP))
6514 		return -EINVAL;
6515 
6516 	if (asoc) {
6517 		info.snd_sid = asoc->default_stream;
6518 		info.snd_flags = asoc->default_flags;
6519 		info.snd_ppid = asoc->default_ppid;
6520 		info.snd_context = asoc->default_context;
6521 	} else {
6522 		info.snd_sid = sp->default_stream;
6523 		info.snd_flags = sp->default_flags;
6524 		info.snd_ppid = sp->default_ppid;
6525 		info.snd_context = sp->default_context;
6526 	}
6527 
6528 	if (put_user(len, optlen))
6529 		return -EFAULT;
6530 	if (copy_to_user(optval, &info, len))
6531 		return -EFAULT;
6532 
6533 	return 0;
6534 }
6535 
6536 /*
6537  *
6538  * 7.1.5 SCTP_NODELAY
6539  *
6540  * Turn on/off any Nagle-like algorithm.  This means that packets are
6541  * generally sent as soon as possible and no unnecessary delays are
6542  * introduced, at the cost of more packets in the network.  Expects an
6543  * integer boolean flag.
6544  */
6545 
6546 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6547 				   char __user *optval, int __user *optlen)
6548 {
6549 	int val;
6550 
6551 	if (len < sizeof(int))
6552 		return -EINVAL;
6553 
6554 	len = sizeof(int);
6555 	val = (sctp_sk(sk)->nodelay == 1);
6556 	if (put_user(len, optlen))
6557 		return -EFAULT;
6558 	if (copy_to_user(optval, &val, len))
6559 		return -EFAULT;
6560 	return 0;
6561 }
6562 
6563 /*
6564  *
6565  * 7.1.1 SCTP_RTOINFO
6566  *
6567  * The protocol parameters used to initialize and bound retransmission
6568  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6569  * and modify these parameters.
6570  * All parameters are time values, in milliseconds.  A value of 0, when
6571  * modifying the parameters, indicates that the current value should not
6572  * be changed.
6573  *
6574  */
6575 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6576 				char __user *optval,
6577 				int __user *optlen) {
6578 	struct sctp_rtoinfo rtoinfo;
6579 	struct sctp_association *asoc;
6580 
6581 	if (len < sizeof (struct sctp_rtoinfo))
6582 		return -EINVAL;
6583 
6584 	len = sizeof(struct sctp_rtoinfo);
6585 
6586 	if (copy_from_user(&rtoinfo, optval, len))
6587 		return -EFAULT;
6588 
6589 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6590 
6591 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6592 	    sctp_style(sk, UDP))
6593 		return -EINVAL;
6594 
6595 	/* Values corresponding to the specific association. */
6596 	if (asoc) {
6597 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6598 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6599 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6600 	} else {
6601 		/* Values corresponding to the endpoint. */
6602 		struct sctp_sock *sp = sctp_sk(sk);
6603 
6604 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6605 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6606 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6607 	}
6608 
6609 	if (put_user(len, optlen))
6610 		return -EFAULT;
6611 
6612 	if (copy_to_user(optval, &rtoinfo, len))
6613 		return -EFAULT;
6614 
6615 	return 0;
6616 }
6617 
6618 /*
6619  *
6620  * 7.1.2 SCTP_ASSOCINFO
6621  *
6622  * This option is used to tune the maximum retransmission attempts
6623  * of the association.
6624  * Returns an error if the new association retransmission value is
6625  * greater than the sum of the retransmission value  of the peer.
6626  * See [SCTP] for more information.
6627  *
6628  */
6629 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6630 				     char __user *optval,
6631 				     int __user *optlen)
6632 {
6633 
6634 	struct sctp_assocparams assocparams;
6635 	struct sctp_association *asoc;
6636 	struct list_head *pos;
6637 	int cnt = 0;
6638 
6639 	if (len < sizeof (struct sctp_assocparams))
6640 		return -EINVAL;
6641 
6642 	len = sizeof(struct sctp_assocparams);
6643 
6644 	if (copy_from_user(&assocparams, optval, len))
6645 		return -EFAULT;
6646 
6647 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6648 
6649 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6650 	    sctp_style(sk, UDP))
6651 		return -EINVAL;
6652 
6653 	/* Values correspoinding to the specific association */
6654 	if (asoc) {
6655 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6656 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6657 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6658 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6659 
6660 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6661 			cnt++;
6662 		}
6663 
6664 		assocparams.sasoc_number_peer_destinations = cnt;
6665 	} else {
6666 		/* Values corresponding to the endpoint */
6667 		struct sctp_sock *sp = sctp_sk(sk);
6668 
6669 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6670 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6671 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6672 		assocparams.sasoc_cookie_life =
6673 					sp->assocparams.sasoc_cookie_life;
6674 		assocparams.sasoc_number_peer_destinations =
6675 					sp->assocparams.
6676 					sasoc_number_peer_destinations;
6677 	}
6678 
6679 	if (put_user(len, optlen))
6680 		return -EFAULT;
6681 
6682 	if (copy_to_user(optval, &assocparams, len))
6683 		return -EFAULT;
6684 
6685 	return 0;
6686 }
6687 
6688 /*
6689  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6690  *
6691  * This socket option is a boolean flag which turns on or off mapped V4
6692  * addresses.  If this option is turned on and the socket is type
6693  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6694  * If this option is turned off, then no mapping will be done of V4
6695  * addresses and a user will receive both PF_INET6 and PF_INET type
6696  * addresses on the socket.
6697  */
6698 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6699 				    char __user *optval, int __user *optlen)
6700 {
6701 	int val;
6702 	struct sctp_sock *sp = sctp_sk(sk);
6703 
6704 	if (len < sizeof(int))
6705 		return -EINVAL;
6706 
6707 	len = sizeof(int);
6708 	val = sp->v4mapped;
6709 	if (put_user(len, optlen))
6710 		return -EFAULT;
6711 	if (copy_to_user(optval, &val, len))
6712 		return -EFAULT;
6713 
6714 	return 0;
6715 }
6716 
6717 /*
6718  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6719  * (chapter and verse is quoted at sctp_setsockopt_context())
6720  */
6721 static int sctp_getsockopt_context(struct sock *sk, int len,
6722 				   char __user *optval, int __user *optlen)
6723 {
6724 	struct sctp_assoc_value params;
6725 	struct sctp_association *asoc;
6726 
6727 	if (len < sizeof(struct sctp_assoc_value))
6728 		return -EINVAL;
6729 
6730 	len = sizeof(struct sctp_assoc_value);
6731 
6732 	if (copy_from_user(&params, optval, len))
6733 		return -EFAULT;
6734 
6735 	asoc = sctp_id2assoc(sk, params.assoc_id);
6736 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6737 	    sctp_style(sk, UDP))
6738 		return -EINVAL;
6739 
6740 	params.assoc_value = asoc ? asoc->default_rcv_context
6741 				  : sctp_sk(sk)->default_rcv_context;
6742 
6743 	if (put_user(len, optlen))
6744 		return -EFAULT;
6745 	if (copy_to_user(optval, &params, len))
6746 		return -EFAULT;
6747 
6748 	return 0;
6749 }
6750 
6751 /*
6752  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6753  * This option will get or set the maximum size to put in any outgoing
6754  * SCTP DATA chunk.  If a message is larger than this size it will be
6755  * fragmented by SCTP into the specified size.  Note that the underlying
6756  * SCTP implementation may fragment into smaller sized chunks when the
6757  * PMTU of the underlying association is smaller than the value set by
6758  * the user.  The default value for this option is '0' which indicates
6759  * the user is NOT limiting fragmentation and only the PMTU will effect
6760  * SCTP's choice of DATA chunk size.  Note also that values set larger
6761  * than the maximum size of an IP datagram will effectively let SCTP
6762  * control fragmentation (i.e. the same as setting this option to 0).
6763  *
6764  * The following structure is used to access and modify this parameter:
6765  *
6766  * struct sctp_assoc_value {
6767  *   sctp_assoc_t assoc_id;
6768  *   uint32_t assoc_value;
6769  * };
6770  *
6771  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6772  *    For one-to-many style sockets this parameter indicates which
6773  *    association the user is performing an action upon.  Note that if
6774  *    this field's value is zero then the endpoints default value is
6775  *    changed (effecting future associations only).
6776  * assoc_value:  This parameter specifies the maximum size in bytes.
6777  */
6778 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6779 				  char __user *optval, int __user *optlen)
6780 {
6781 	struct sctp_assoc_value params;
6782 	struct sctp_association *asoc;
6783 
6784 	if (len == sizeof(int)) {
6785 		pr_warn_ratelimited(DEPRECATED
6786 				    "%s (pid %d) "
6787 				    "Use of int in maxseg socket option.\n"
6788 				    "Use struct sctp_assoc_value instead\n",
6789 				    current->comm, task_pid_nr(current));
6790 		params.assoc_id = SCTP_FUTURE_ASSOC;
6791 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6792 		len = sizeof(struct sctp_assoc_value);
6793 		if (copy_from_user(&params, optval, len))
6794 			return -EFAULT;
6795 	} else
6796 		return -EINVAL;
6797 
6798 	asoc = sctp_id2assoc(sk, params.assoc_id);
6799 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6800 	    sctp_style(sk, UDP))
6801 		return -EINVAL;
6802 
6803 	if (asoc)
6804 		params.assoc_value = asoc->frag_point;
6805 	else
6806 		params.assoc_value = sctp_sk(sk)->user_frag;
6807 
6808 	if (put_user(len, optlen))
6809 		return -EFAULT;
6810 	if (len == sizeof(int)) {
6811 		if (copy_to_user(optval, &params.assoc_value, len))
6812 			return -EFAULT;
6813 	} else {
6814 		if (copy_to_user(optval, &params, len))
6815 			return -EFAULT;
6816 	}
6817 
6818 	return 0;
6819 }
6820 
6821 /*
6822  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6823  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6824  */
6825 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6826 					       char __user *optval, int __user *optlen)
6827 {
6828 	int val;
6829 
6830 	if (len < sizeof(int))
6831 		return -EINVAL;
6832 
6833 	len = sizeof(int);
6834 
6835 	val = sctp_sk(sk)->frag_interleave;
6836 	if (put_user(len, optlen))
6837 		return -EFAULT;
6838 	if (copy_to_user(optval, &val, len))
6839 		return -EFAULT;
6840 
6841 	return 0;
6842 }
6843 
6844 /*
6845  * 7.1.25.  Set or Get the sctp partial delivery point
6846  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6847  */
6848 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6849 						  char __user *optval,
6850 						  int __user *optlen)
6851 {
6852 	u32 val;
6853 
6854 	if (len < sizeof(u32))
6855 		return -EINVAL;
6856 
6857 	len = sizeof(u32);
6858 
6859 	val = sctp_sk(sk)->pd_point;
6860 	if (put_user(len, optlen))
6861 		return -EFAULT;
6862 	if (copy_to_user(optval, &val, len))
6863 		return -EFAULT;
6864 
6865 	return 0;
6866 }
6867 
6868 /*
6869  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6870  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6871  */
6872 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6873 				    char __user *optval,
6874 				    int __user *optlen)
6875 {
6876 	struct sctp_assoc_value params;
6877 	struct sctp_association *asoc;
6878 
6879 	if (len == sizeof(int)) {
6880 		pr_warn_ratelimited(DEPRECATED
6881 				    "%s (pid %d) "
6882 				    "Use of int in max_burst socket option.\n"
6883 				    "Use struct sctp_assoc_value instead\n",
6884 				    current->comm, task_pid_nr(current));
6885 		params.assoc_id = SCTP_FUTURE_ASSOC;
6886 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6887 		len = sizeof(struct sctp_assoc_value);
6888 		if (copy_from_user(&params, optval, len))
6889 			return -EFAULT;
6890 	} else
6891 		return -EINVAL;
6892 
6893 	asoc = sctp_id2assoc(sk, params.assoc_id);
6894 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6895 	    sctp_style(sk, UDP))
6896 		return -EINVAL;
6897 
6898 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6899 
6900 	if (len == sizeof(int)) {
6901 		if (copy_to_user(optval, &params.assoc_value, len))
6902 			return -EFAULT;
6903 	} else {
6904 		if (copy_to_user(optval, &params, len))
6905 			return -EFAULT;
6906 	}
6907 
6908 	return 0;
6909 
6910 }
6911 
6912 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6913 				    char __user *optval, int __user *optlen)
6914 {
6915 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6916 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6917 	struct sctp_hmac_algo_param *hmacs;
6918 	__u16 data_len = 0;
6919 	u32 num_idents;
6920 	int i;
6921 
6922 	if (!ep->auth_enable)
6923 		return -EACCES;
6924 
6925 	hmacs = ep->auth_hmacs_list;
6926 	data_len = ntohs(hmacs->param_hdr.length) -
6927 		   sizeof(struct sctp_paramhdr);
6928 
6929 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6930 		return -EINVAL;
6931 
6932 	len = sizeof(struct sctp_hmacalgo) + data_len;
6933 	num_idents = data_len / sizeof(u16);
6934 
6935 	if (put_user(len, optlen))
6936 		return -EFAULT;
6937 	if (put_user(num_idents, &p->shmac_num_idents))
6938 		return -EFAULT;
6939 	for (i = 0; i < num_idents; i++) {
6940 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6941 
6942 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6943 			return -EFAULT;
6944 	}
6945 	return 0;
6946 }
6947 
6948 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6949 				    char __user *optval, int __user *optlen)
6950 {
6951 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6952 	struct sctp_authkeyid val;
6953 	struct sctp_association *asoc;
6954 
6955 	if (!ep->auth_enable)
6956 		return -EACCES;
6957 
6958 	if (len < sizeof(struct sctp_authkeyid))
6959 		return -EINVAL;
6960 
6961 	len = sizeof(struct sctp_authkeyid);
6962 	if (copy_from_user(&val, optval, len))
6963 		return -EFAULT;
6964 
6965 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6966 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6967 		return -EINVAL;
6968 
6969 	if (asoc)
6970 		val.scact_keynumber = asoc->active_key_id;
6971 	else
6972 		val.scact_keynumber = ep->active_key_id;
6973 
6974 	if (put_user(len, optlen))
6975 		return -EFAULT;
6976 	if (copy_to_user(optval, &val, len))
6977 		return -EFAULT;
6978 
6979 	return 0;
6980 }
6981 
6982 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6983 				    char __user *optval, int __user *optlen)
6984 {
6985 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6986 	struct sctp_authchunks __user *p = (void __user *)optval;
6987 	struct sctp_authchunks val;
6988 	struct sctp_association *asoc;
6989 	struct sctp_chunks_param *ch;
6990 	u32    num_chunks = 0;
6991 	char __user *to;
6992 
6993 	if (!ep->auth_enable)
6994 		return -EACCES;
6995 
6996 	if (len < sizeof(struct sctp_authchunks))
6997 		return -EINVAL;
6998 
6999 	if (copy_from_user(&val, optval, sizeof(val)))
7000 		return -EFAULT;
7001 
7002 	to = p->gauth_chunks;
7003 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7004 	if (!asoc)
7005 		return -EINVAL;
7006 
7007 	ch = asoc->peer.peer_chunks;
7008 	if (!ch)
7009 		goto num;
7010 
7011 	/* See if the user provided enough room for all the data */
7012 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7013 	if (len < num_chunks)
7014 		return -EINVAL;
7015 
7016 	if (copy_to_user(to, ch->chunks, num_chunks))
7017 		return -EFAULT;
7018 num:
7019 	len = sizeof(struct sctp_authchunks) + num_chunks;
7020 	if (put_user(len, optlen))
7021 		return -EFAULT;
7022 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7023 		return -EFAULT;
7024 	return 0;
7025 }
7026 
7027 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
7028 				    char __user *optval, int __user *optlen)
7029 {
7030 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7031 	struct sctp_authchunks __user *p = (void __user *)optval;
7032 	struct sctp_authchunks val;
7033 	struct sctp_association *asoc;
7034 	struct sctp_chunks_param *ch;
7035 	u32    num_chunks = 0;
7036 	char __user *to;
7037 
7038 	if (!ep->auth_enable)
7039 		return -EACCES;
7040 
7041 	if (len < sizeof(struct sctp_authchunks))
7042 		return -EINVAL;
7043 
7044 	if (copy_from_user(&val, optval, sizeof(val)))
7045 		return -EFAULT;
7046 
7047 	to = p->gauth_chunks;
7048 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7049 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7050 	    sctp_style(sk, UDP))
7051 		return -EINVAL;
7052 
7053 	ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks
7054 		  : ep->auth_chunk_list;
7055 	if (!ch)
7056 		goto num;
7057 
7058 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7059 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7060 		return -EINVAL;
7061 
7062 	if (copy_to_user(to, ch->chunks, num_chunks))
7063 		return -EFAULT;
7064 num:
7065 	len = sizeof(struct sctp_authchunks) + num_chunks;
7066 	if (put_user(len, optlen))
7067 		return -EFAULT;
7068 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7069 		return -EFAULT;
7070 
7071 	return 0;
7072 }
7073 
7074 /*
7075  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7076  * This option gets the current number of associations that are attached
7077  * to a one-to-many style socket.  The option value is an uint32_t.
7078  */
7079 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7080 				    char __user *optval, int __user *optlen)
7081 {
7082 	struct sctp_sock *sp = sctp_sk(sk);
7083 	struct sctp_association *asoc;
7084 	u32 val = 0;
7085 
7086 	if (sctp_style(sk, TCP))
7087 		return -EOPNOTSUPP;
7088 
7089 	if (len < sizeof(u32))
7090 		return -EINVAL;
7091 
7092 	len = sizeof(u32);
7093 
7094 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7095 		val++;
7096 	}
7097 
7098 	if (put_user(len, optlen))
7099 		return -EFAULT;
7100 	if (copy_to_user(optval, &val, len))
7101 		return -EFAULT;
7102 
7103 	return 0;
7104 }
7105 
7106 /*
7107  * 8.1.23 SCTP_AUTO_ASCONF
7108  * See the corresponding setsockopt entry as description
7109  */
7110 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7111 				   char __user *optval, int __user *optlen)
7112 {
7113 	int val = 0;
7114 
7115 	if (len < sizeof(int))
7116 		return -EINVAL;
7117 
7118 	len = sizeof(int);
7119 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7120 		val = 1;
7121 	if (put_user(len, optlen))
7122 		return -EFAULT;
7123 	if (copy_to_user(optval, &val, len))
7124 		return -EFAULT;
7125 	return 0;
7126 }
7127 
7128 /*
7129  * 8.2.6. Get the Current Identifiers of Associations
7130  *        (SCTP_GET_ASSOC_ID_LIST)
7131  *
7132  * This option gets the current list of SCTP association identifiers of
7133  * the SCTP associations handled by a one-to-many style socket.
7134  */
7135 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7136 				    char __user *optval, int __user *optlen)
7137 {
7138 	struct sctp_sock *sp = sctp_sk(sk);
7139 	struct sctp_association *asoc;
7140 	struct sctp_assoc_ids *ids;
7141 	u32 num = 0;
7142 
7143 	if (sctp_style(sk, TCP))
7144 		return -EOPNOTSUPP;
7145 
7146 	if (len < sizeof(struct sctp_assoc_ids))
7147 		return -EINVAL;
7148 
7149 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7150 		num++;
7151 	}
7152 
7153 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7154 		return -EINVAL;
7155 
7156 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7157 
7158 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7159 	if (unlikely(!ids))
7160 		return -ENOMEM;
7161 
7162 	ids->gaids_number_of_ids = num;
7163 	num = 0;
7164 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7165 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7166 	}
7167 
7168 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7169 		kfree(ids);
7170 		return -EFAULT;
7171 	}
7172 
7173 	kfree(ids);
7174 	return 0;
7175 }
7176 
7177 /*
7178  * SCTP_PEER_ADDR_THLDS
7179  *
7180  * This option allows us to fetch the partially failed threshold for one or all
7181  * transports in an association.  See Section 6.1 of:
7182  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7183  */
7184 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7185 					    char __user *optval,
7186 					    int len,
7187 					    int __user *optlen)
7188 {
7189 	struct sctp_paddrthlds val;
7190 	struct sctp_transport *trans;
7191 	struct sctp_association *asoc;
7192 
7193 	if (len < sizeof(struct sctp_paddrthlds))
7194 		return -EINVAL;
7195 	len = sizeof(struct sctp_paddrthlds);
7196 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
7197 		return -EFAULT;
7198 
7199 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7200 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7201 					       val.spt_assoc_id);
7202 		if (!trans)
7203 			return -ENOENT;
7204 
7205 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7206 		val.spt_pathpfthld = trans->pf_retrans;
7207 
7208 		return 0;
7209 	}
7210 
7211 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7212 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7213 	    sctp_style(sk, UDP))
7214 		return -EINVAL;
7215 
7216 	if (asoc) {
7217 		val.spt_pathpfthld = asoc->pf_retrans;
7218 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7219 	} else {
7220 		struct sctp_sock *sp = sctp_sk(sk);
7221 
7222 		val.spt_pathpfthld = sp->pf_retrans;
7223 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7224 	}
7225 
7226 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7227 		return -EFAULT;
7228 
7229 	return 0;
7230 }
7231 
7232 /*
7233  * SCTP_GET_ASSOC_STATS
7234  *
7235  * This option retrieves local per endpoint statistics. It is modeled
7236  * after OpenSolaris' implementation
7237  */
7238 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7239 				       char __user *optval,
7240 				       int __user *optlen)
7241 {
7242 	struct sctp_assoc_stats sas;
7243 	struct sctp_association *asoc = NULL;
7244 
7245 	/* User must provide at least the assoc id */
7246 	if (len < sizeof(sctp_assoc_t))
7247 		return -EINVAL;
7248 
7249 	/* Allow the struct to grow and fill in as much as possible */
7250 	len = min_t(size_t, len, sizeof(sas));
7251 
7252 	if (copy_from_user(&sas, optval, len))
7253 		return -EFAULT;
7254 
7255 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7256 	if (!asoc)
7257 		return -EINVAL;
7258 
7259 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7260 	sas.sas_gapcnt = asoc->stats.gapcnt;
7261 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7262 	sas.sas_osacks = asoc->stats.osacks;
7263 	sas.sas_isacks = asoc->stats.isacks;
7264 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7265 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7266 	sas.sas_oodchunks = asoc->stats.oodchunks;
7267 	sas.sas_iodchunks = asoc->stats.iodchunks;
7268 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7269 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7270 	sas.sas_idupchunks = asoc->stats.idupchunks;
7271 	sas.sas_opackets = asoc->stats.opackets;
7272 	sas.sas_ipackets = asoc->stats.ipackets;
7273 
7274 	/* New high max rto observed, will return 0 if not a single
7275 	 * RTO update took place. obs_rto_ipaddr will be bogus
7276 	 * in such a case
7277 	 */
7278 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7279 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7280 		sizeof(struct sockaddr_storage));
7281 
7282 	/* Mark beginning of a new observation period */
7283 	asoc->stats.max_obs_rto = asoc->rto_min;
7284 
7285 	if (put_user(len, optlen))
7286 		return -EFAULT;
7287 
7288 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7289 
7290 	if (copy_to_user(optval, &sas, len))
7291 		return -EFAULT;
7292 
7293 	return 0;
7294 }
7295 
7296 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7297 				       char __user *optval,
7298 				       int __user *optlen)
7299 {
7300 	int val = 0;
7301 
7302 	if (len < sizeof(int))
7303 		return -EINVAL;
7304 
7305 	len = sizeof(int);
7306 	if (sctp_sk(sk)->recvrcvinfo)
7307 		val = 1;
7308 	if (put_user(len, optlen))
7309 		return -EFAULT;
7310 	if (copy_to_user(optval, &val, len))
7311 		return -EFAULT;
7312 
7313 	return 0;
7314 }
7315 
7316 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7317 				       char __user *optval,
7318 				       int __user *optlen)
7319 {
7320 	int val = 0;
7321 
7322 	if (len < sizeof(int))
7323 		return -EINVAL;
7324 
7325 	len = sizeof(int);
7326 	if (sctp_sk(sk)->recvnxtinfo)
7327 		val = 1;
7328 	if (put_user(len, optlen))
7329 		return -EFAULT;
7330 	if (copy_to_user(optval, &val, len))
7331 		return -EFAULT;
7332 
7333 	return 0;
7334 }
7335 
7336 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7337 					char __user *optval,
7338 					int __user *optlen)
7339 {
7340 	struct sctp_assoc_value params;
7341 	struct sctp_association *asoc;
7342 	int retval = -EFAULT;
7343 
7344 	if (len < sizeof(params)) {
7345 		retval = -EINVAL;
7346 		goto out;
7347 	}
7348 
7349 	len = sizeof(params);
7350 	if (copy_from_user(&params, optval, len))
7351 		goto out;
7352 
7353 	asoc = sctp_id2assoc(sk, params.assoc_id);
7354 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7355 	    sctp_style(sk, UDP)) {
7356 		retval = -EINVAL;
7357 		goto out;
7358 	}
7359 
7360 	params.assoc_value = asoc ? asoc->prsctp_enable
7361 				  : sctp_sk(sk)->ep->prsctp_enable;
7362 
7363 	if (put_user(len, optlen))
7364 		goto out;
7365 
7366 	if (copy_to_user(optval, &params, len))
7367 		goto out;
7368 
7369 	retval = 0;
7370 
7371 out:
7372 	return retval;
7373 }
7374 
7375 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7376 					  char __user *optval,
7377 					  int __user *optlen)
7378 {
7379 	struct sctp_default_prinfo info;
7380 	struct sctp_association *asoc;
7381 	int retval = -EFAULT;
7382 
7383 	if (len < sizeof(info)) {
7384 		retval = -EINVAL;
7385 		goto out;
7386 	}
7387 
7388 	len = sizeof(info);
7389 	if (copy_from_user(&info, optval, len))
7390 		goto out;
7391 
7392 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7393 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7394 	    sctp_style(sk, UDP)) {
7395 		retval = -EINVAL;
7396 		goto out;
7397 	}
7398 
7399 	if (asoc) {
7400 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7401 		info.pr_value = asoc->default_timetolive;
7402 	} else {
7403 		struct sctp_sock *sp = sctp_sk(sk);
7404 
7405 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7406 		info.pr_value = sp->default_timetolive;
7407 	}
7408 
7409 	if (put_user(len, optlen))
7410 		goto out;
7411 
7412 	if (copy_to_user(optval, &info, len))
7413 		goto out;
7414 
7415 	retval = 0;
7416 
7417 out:
7418 	return retval;
7419 }
7420 
7421 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7422 					  char __user *optval,
7423 					  int __user *optlen)
7424 {
7425 	struct sctp_prstatus params;
7426 	struct sctp_association *asoc;
7427 	int policy;
7428 	int retval = -EINVAL;
7429 
7430 	if (len < sizeof(params))
7431 		goto out;
7432 
7433 	len = sizeof(params);
7434 	if (copy_from_user(&params, optval, len)) {
7435 		retval = -EFAULT;
7436 		goto out;
7437 	}
7438 
7439 	policy = params.sprstat_policy;
7440 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7441 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7442 		goto out;
7443 
7444 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7445 	if (!asoc)
7446 		goto out;
7447 
7448 	if (policy == SCTP_PR_SCTP_ALL) {
7449 		params.sprstat_abandoned_unsent = 0;
7450 		params.sprstat_abandoned_sent = 0;
7451 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7452 			params.sprstat_abandoned_unsent +=
7453 				asoc->abandoned_unsent[policy];
7454 			params.sprstat_abandoned_sent +=
7455 				asoc->abandoned_sent[policy];
7456 		}
7457 	} else {
7458 		params.sprstat_abandoned_unsent =
7459 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7460 		params.sprstat_abandoned_sent =
7461 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7462 	}
7463 
7464 	if (put_user(len, optlen)) {
7465 		retval = -EFAULT;
7466 		goto out;
7467 	}
7468 
7469 	if (copy_to_user(optval, &params, len)) {
7470 		retval = -EFAULT;
7471 		goto out;
7472 	}
7473 
7474 	retval = 0;
7475 
7476 out:
7477 	return retval;
7478 }
7479 
7480 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7481 					   char __user *optval,
7482 					   int __user *optlen)
7483 {
7484 	struct sctp_stream_out_ext *streamoute;
7485 	struct sctp_association *asoc;
7486 	struct sctp_prstatus params;
7487 	int retval = -EINVAL;
7488 	int policy;
7489 
7490 	if (len < sizeof(params))
7491 		goto out;
7492 
7493 	len = sizeof(params);
7494 	if (copy_from_user(&params, optval, len)) {
7495 		retval = -EFAULT;
7496 		goto out;
7497 	}
7498 
7499 	policy = params.sprstat_policy;
7500 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7501 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7502 		goto out;
7503 
7504 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7505 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7506 		goto out;
7507 
7508 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7509 	if (!streamoute) {
7510 		/* Not allocated yet, means all stats are 0 */
7511 		params.sprstat_abandoned_unsent = 0;
7512 		params.sprstat_abandoned_sent = 0;
7513 		retval = 0;
7514 		goto out;
7515 	}
7516 
7517 	if (policy == SCTP_PR_SCTP_ALL) {
7518 		params.sprstat_abandoned_unsent = 0;
7519 		params.sprstat_abandoned_sent = 0;
7520 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7521 			params.sprstat_abandoned_unsent +=
7522 				streamoute->abandoned_unsent[policy];
7523 			params.sprstat_abandoned_sent +=
7524 				streamoute->abandoned_sent[policy];
7525 		}
7526 	} else {
7527 		params.sprstat_abandoned_unsent =
7528 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7529 		params.sprstat_abandoned_sent =
7530 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7531 	}
7532 
7533 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7534 		retval = -EFAULT;
7535 		goto out;
7536 	}
7537 
7538 	retval = 0;
7539 
7540 out:
7541 	return retval;
7542 }
7543 
7544 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7545 					      char __user *optval,
7546 					      int __user *optlen)
7547 {
7548 	struct sctp_assoc_value params;
7549 	struct sctp_association *asoc;
7550 	int retval = -EFAULT;
7551 
7552 	if (len < sizeof(params)) {
7553 		retval = -EINVAL;
7554 		goto out;
7555 	}
7556 
7557 	len = sizeof(params);
7558 	if (copy_from_user(&params, optval, len))
7559 		goto out;
7560 
7561 	asoc = sctp_id2assoc(sk, params.assoc_id);
7562 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7563 	    sctp_style(sk, UDP)) {
7564 		retval = -EINVAL;
7565 		goto out;
7566 	}
7567 
7568 	params.assoc_value = asoc ? asoc->reconf_enable
7569 				  : sctp_sk(sk)->ep->reconf_enable;
7570 
7571 	if (put_user(len, optlen))
7572 		goto out;
7573 
7574 	if (copy_to_user(optval, &params, len))
7575 		goto out;
7576 
7577 	retval = 0;
7578 
7579 out:
7580 	return retval;
7581 }
7582 
7583 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7584 					   char __user *optval,
7585 					   int __user *optlen)
7586 {
7587 	struct sctp_assoc_value params;
7588 	struct sctp_association *asoc;
7589 	int retval = -EFAULT;
7590 
7591 	if (len < sizeof(params)) {
7592 		retval = -EINVAL;
7593 		goto out;
7594 	}
7595 
7596 	len = sizeof(params);
7597 	if (copy_from_user(&params, optval, len))
7598 		goto out;
7599 
7600 	asoc = sctp_id2assoc(sk, params.assoc_id);
7601 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7602 	    sctp_style(sk, UDP)) {
7603 		retval = -EINVAL;
7604 		goto out;
7605 	}
7606 
7607 	params.assoc_value = asoc ? asoc->strreset_enable
7608 				  : sctp_sk(sk)->ep->strreset_enable;
7609 
7610 	if (put_user(len, optlen))
7611 		goto out;
7612 
7613 	if (copy_to_user(optval, &params, len))
7614 		goto out;
7615 
7616 	retval = 0;
7617 
7618 out:
7619 	return retval;
7620 }
7621 
7622 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7623 				     char __user *optval,
7624 				     int __user *optlen)
7625 {
7626 	struct sctp_assoc_value params;
7627 	struct sctp_association *asoc;
7628 	int retval = -EFAULT;
7629 
7630 	if (len < sizeof(params)) {
7631 		retval = -EINVAL;
7632 		goto out;
7633 	}
7634 
7635 	len = sizeof(params);
7636 	if (copy_from_user(&params, optval, len))
7637 		goto out;
7638 
7639 	asoc = sctp_id2assoc(sk, params.assoc_id);
7640 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7641 	    sctp_style(sk, UDP)) {
7642 		retval = -EINVAL;
7643 		goto out;
7644 	}
7645 
7646 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7647 				  : sctp_sk(sk)->default_ss;
7648 
7649 	if (put_user(len, optlen))
7650 		goto out;
7651 
7652 	if (copy_to_user(optval, &params, len))
7653 		goto out;
7654 
7655 	retval = 0;
7656 
7657 out:
7658 	return retval;
7659 }
7660 
7661 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7662 					   char __user *optval,
7663 					   int __user *optlen)
7664 {
7665 	struct sctp_stream_value params;
7666 	struct sctp_association *asoc;
7667 	int retval = -EFAULT;
7668 
7669 	if (len < sizeof(params)) {
7670 		retval = -EINVAL;
7671 		goto out;
7672 	}
7673 
7674 	len = sizeof(params);
7675 	if (copy_from_user(&params, optval, len))
7676 		goto out;
7677 
7678 	asoc = sctp_id2assoc(sk, params.assoc_id);
7679 	if (!asoc) {
7680 		retval = -EINVAL;
7681 		goto out;
7682 	}
7683 
7684 	retval = sctp_sched_get_value(asoc, params.stream_id,
7685 				      &params.stream_value);
7686 	if (retval)
7687 		goto out;
7688 
7689 	if (put_user(len, optlen)) {
7690 		retval = -EFAULT;
7691 		goto out;
7692 	}
7693 
7694 	if (copy_to_user(optval, &params, len)) {
7695 		retval = -EFAULT;
7696 		goto out;
7697 	}
7698 
7699 out:
7700 	return retval;
7701 }
7702 
7703 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7704 						  char __user *optval,
7705 						  int __user *optlen)
7706 {
7707 	struct sctp_assoc_value params;
7708 	struct sctp_association *asoc;
7709 	int retval = -EFAULT;
7710 
7711 	if (len < sizeof(params)) {
7712 		retval = -EINVAL;
7713 		goto out;
7714 	}
7715 
7716 	len = sizeof(params);
7717 	if (copy_from_user(&params, optval, len))
7718 		goto out;
7719 
7720 	asoc = sctp_id2assoc(sk, params.assoc_id);
7721 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7722 	    sctp_style(sk, UDP)) {
7723 		retval = -EINVAL;
7724 		goto out;
7725 	}
7726 
7727 	params.assoc_value = asoc ? asoc->intl_enable
7728 				  : sctp_sk(sk)->strm_interleave;
7729 
7730 	if (put_user(len, optlen))
7731 		goto out;
7732 
7733 	if (copy_to_user(optval, &params, len))
7734 		goto out;
7735 
7736 	retval = 0;
7737 
7738 out:
7739 	return retval;
7740 }
7741 
7742 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7743 				      char __user *optval,
7744 				      int __user *optlen)
7745 {
7746 	int val;
7747 
7748 	if (len < sizeof(int))
7749 		return -EINVAL;
7750 
7751 	len = sizeof(int);
7752 	val = sctp_sk(sk)->reuse;
7753 	if (put_user(len, optlen))
7754 		return -EFAULT;
7755 
7756 	if (copy_to_user(optval, &val, len))
7757 		return -EFAULT;
7758 
7759 	return 0;
7760 }
7761 
7762 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7763 				 int __user *optlen)
7764 {
7765 	struct sctp_association *asoc;
7766 	struct sctp_event param;
7767 	__u16 subscribe;
7768 
7769 	if (len < sizeof(param))
7770 		return -EINVAL;
7771 
7772 	len = sizeof(param);
7773 	if (copy_from_user(&param, optval, len))
7774 		return -EFAULT;
7775 
7776 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7777 	    param.se_type > SCTP_SN_TYPE_MAX)
7778 		return -EINVAL;
7779 
7780 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7781 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7782 	    sctp_style(sk, UDP))
7783 		return -EINVAL;
7784 
7785 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7786 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7787 
7788 	if (put_user(len, optlen))
7789 		return -EFAULT;
7790 
7791 	if (copy_to_user(optval, &param, len))
7792 		return -EFAULT;
7793 
7794 	return 0;
7795 }
7796 
7797 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7798 			   char __user *optval, int __user *optlen)
7799 {
7800 	int retval = 0;
7801 	int len;
7802 
7803 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7804 
7805 	/* I can hardly begin to describe how wrong this is.  This is
7806 	 * so broken as to be worse than useless.  The API draft
7807 	 * REALLY is NOT helpful here...  I am not convinced that the
7808 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7809 	 * are at all well-founded.
7810 	 */
7811 	if (level != SOL_SCTP) {
7812 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7813 
7814 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7815 		return retval;
7816 	}
7817 
7818 	if (get_user(len, optlen))
7819 		return -EFAULT;
7820 
7821 	if (len < 0)
7822 		return -EINVAL;
7823 
7824 	lock_sock(sk);
7825 
7826 	switch (optname) {
7827 	case SCTP_STATUS:
7828 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7829 		break;
7830 	case SCTP_DISABLE_FRAGMENTS:
7831 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7832 							   optlen);
7833 		break;
7834 	case SCTP_EVENTS:
7835 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7836 		break;
7837 	case SCTP_AUTOCLOSE:
7838 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7839 		break;
7840 	case SCTP_SOCKOPT_PEELOFF:
7841 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7842 		break;
7843 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7844 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7845 		break;
7846 	case SCTP_PEER_ADDR_PARAMS:
7847 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7848 							  optlen);
7849 		break;
7850 	case SCTP_DELAYED_SACK:
7851 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7852 							  optlen);
7853 		break;
7854 	case SCTP_INITMSG:
7855 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7856 		break;
7857 	case SCTP_GET_PEER_ADDRS:
7858 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7859 						    optlen);
7860 		break;
7861 	case SCTP_GET_LOCAL_ADDRS:
7862 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7863 						     optlen);
7864 		break;
7865 	case SCTP_SOCKOPT_CONNECTX3:
7866 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7867 		break;
7868 	case SCTP_DEFAULT_SEND_PARAM:
7869 		retval = sctp_getsockopt_default_send_param(sk, len,
7870 							    optval, optlen);
7871 		break;
7872 	case SCTP_DEFAULT_SNDINFO:
7873 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7874 							 optval, optlen);
7875 		break;
7876 	case SCTP_PRIMARY_ADDR:
7877 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7878 		break;
7879 	case SCTP_NODELAY:
7880 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7881 		break;
7882 	case SCTP_RTOINFO:
7883 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7884 		break;
7885 	case SCTP_ASSOCINFO:
7886 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7887 		break;
7888 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7889 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7890 		break;
7891 	case SCTP_MAXSEG:
7892 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7893 		break;
7894 	case SCTP_GET_PEER_ADDR_INFO:
7895 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7896 							optlen);
7897 		break;
7898 	case SCTP_ADAPTATION_LAYER:
7899 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7900 							optlen);
7901 		break;
7902 	case SCTP_CONTEXT:
7903 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7904 		break;
7905 	case SCTP_FRAGMENT_INTERLEAVE:
7906 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7907 							     optlen);
7908 		break;
7909 	case SCTP_PARTIAL_DELIVERY_POINT:
7910 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7911 								optlen);
7912 		break;
7913 	case SCTP_MAX_BURST:
7914 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7915 		break;
7916 	case SCTP_AUTH_KEY:
7917 	case SCTP_AUTH_CHUNK:
7918 	case SCTP_AUTH_DELETE_KEY:
7919 	case SCTP_AUTH_DEACTIVATE_KEY:
7920 		retval = -EOPNOTSUPP;
7921 		break;
7922 	case SCTP_HMAC_IDENT:
7923 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7924 		break;
7925 	case SCTP_AUTH_ACTIVE_KEY:
7926 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7927 		break;
7928 	case SCTP_PEER_AUTH_CHUNKS:
7929 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7930 							optlen);
7931 		break;
7932 	case SCTP_LOCAL_AUTH_CHUNKS:
7933 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7934 							optlen);
7935 		break;
7936 	case SCTP_GET_ASSOC_NUMBER:
7937 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7938 		break;
7939 	case SCTP_GET_ASSOC_ID_LIST:
7940 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7941 		break;
7942 	case SCTP_AUTO_ASCONF:
7943 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7944 		break;
7945 	case SCTP_PEER_ADDR_THLDS:
7946 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7947 		break;
7948 	case SCTP_GET_ASSOC_STATS:
7949 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7950 		break;
7951 	case SCTP_RECVRCVINFO:
7952 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7953 		break;
7954 	case SCTP_RECVNXTINFO:
7955 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7956 		break;
7957 	case SCTP_PR_SUPPORTED:
7958 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7959 		break;
7960 	case SCTP_DEFAULT_PRINFO:
7961 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7962 							optlen);
7963 		break;
7964 	case SCTP_PR_ASSOC_STATUS:
7965 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7966 							optlen);
7967 		break;
7968 	case SCTP_PR_STREAM_STATUS:
7969 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7970 							 optlen);
7971 		break;
7972 	case SCTP_RECONFIG_SUPPORTED:
7973 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7974 							    optlen);
7975 		break;
7976 	case SCTP_ENABLE_STREAM_RESET:
7977 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7978 							 optlen);
7979 		break;
7980 	case SCTP_STREAM_SCHEDULER:
7981 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7982 						   optlen);
7983 		break;
7984 	case SCTP_STREAM_SCHEDULER_VALUE:
7985 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7986 							 optlen);
7987 		break;
7988 	case SCTP_INTERLEAVING_SUPPORTED:
7989 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7990 								optlen);
7991 		break;
7992 	case SCTP_REUSE_PORT:
7993 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7994 		break;
7995 	case SCTP_EVENT:
7996 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
7997 		break;
7998 	default:
7999 		retval = -ENOPROTOOPT;
8000 		break;
8001 	}
8002 
8003 	release_sock(sk);
8004 	return retval;
8005 }
8006 
8007 static int sctp_hash(struct sock *sk)
8008 {
8009 	/* STUB */
8010 	return 0;
8011 }
8012 
8013 static void sctp_unhash(struct sock *sk)
8014 {
8015 	/* STUB */
8016 }
8017 
8018 /* Check if port is acceptable.  Possibly find first available port.
8019  *
8020  * The port hash table (contained in the 'global' SCTP protocol storage
8021  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8022  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8023  * list (the list number is the port number hashed out, so as you
8024  * would expect from a hash function, all the ports in a given list have
8025  * such a number that hashes out to the same list number; you were
8026  * expecting that, right?); so each list has a set of ports, with a
8027  * link to the socket (struct sock) that uses it, the port number and
8028  * a fastreuse flag (FIXME: NPI ipg).
8029  */
8030 static struct sctp_bind_bucket *sctp_bucket_create(
8031 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8032 
8033 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8034 {
8035 	struct sctp_sock *sp = sctp_sk(sk);
8036 	bool reuse = (sk->sk_reuse || sp->reuse);
8037 	struct sctp_bind_hashbucket *head; /* hash list */
8038 	kuid_t uid = sock_i_uid(sk);
8039 	struct sctp_bind_bucket *pp;
8040 	unsigned short snum;
8041 	int ret;
8042 
8043 	snum = ntohs(addr->v4.sin_port);
8044 
8045 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8046 
8047 	local_bh_disable();
8048 
8049 	if (snum == 0) {
8050 		/* Search for an available port. */
8051 		int low, high, remaining, index;
8052 		unsigned int rover;
8053 		struct net *net = sock_net(sk);
8054 
8055 		inet_get_local_port_range(net, &low, &high);
8056 		remaining = (high - low) + 1;
8057 		rover = prandom_u32() % remaining + low;
8058 
8059 		do {
8060 			rover++;
8061 			if ((rover < low) || (rover > high))
8062 				rover = low;
8063 			if (inet_is_local_reserved_port(net, rover))
8064 				continue;
8065 			index = sctp_phashfn(sock_net(sk), rover);
8066 			head = &sctp_port_hashtable[index];
8067 			spin_lock(&head->lock);
8068 			sctp_for_each_hentry(pp, &head->chain)
8069 				if ((pp->port == rover) &&
8070 				    net_eq(sock_net(sk), pp->net))
8071 					goto next;
8072 			break;
8073 		next:
8074 			spin_unlock(&head->lock);
8075 		} while (--remaining > 0);
8076 
8077 		/* Exhausted local port range during search? */
8078 		ret = 1;
8079 		if (remaining <= 0)
8080 			goto fail;
8081 
8082 		/* OK, here is the one we will use.  HEAD (the port
8083 		 * hash table list entry) is non-NULL and we hold it's
8084 		 * mutex.
8085 		 */
8086 		snum = rover;
8087 	} else {
8088 		/* We are given an specific port number; we verify
8089 		 * that it is not being used. If it is used, we will
8090 		 * exahust the search in the hash list corresponding
8091 		 * to the port number (snum) - we detect that with the
8092 		 * port iterator, pp being NULL.
8093 		 */
8094 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
8095 		spin_lock(&head->lock);
8096 		sctp_for_each_hentry(pp, &head->chain) {
8097 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
8098 				goto pp_found;
8099 		}
8100 	}
8101 	pp = NULL;
8102 	goto pp_not_found;
8103 pp_found:
8104 	if (!hlist_empty(&pp->owner)) {
8105 		/* We had a port hash table hit - there is an
8106 		 * available port (pp != NULL) and it is being
8107 		 * used by other socket (pp->owner not empty); that other
8108 		 * socket is going to be sk2.
8109 		 */
8110 		struct sock *sk2;
8111 
8112 		pr_debug("%s: found a possible match\n", __func__);
8113 
8114 		if ((pp->fastreuse && reuse &&
8115 		     sk->sk_state != SCTP_SS_LISTENING) ||
8116 		    (pp->fastreuseport && sk->sk_reuseport &&
8117 		     uid_eq(pp->fastuid, uid)))
8118 			goto success;
8119 
8120 		/* Run through the list of sockets bound to the port
8121 		 * (pp->port) [via the pointers bind_next and
8122 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8123 		 * we get the endpoint they describe and run through
8124 		 * the endpoint's list of IP (v4 or v6) addresses,
8125 		 * comparing each of the addresses with the address of
8126 		 * the socket sk. If we find a match, then that means
8127 		 * that this port/socket (sk) combination are already
8128 		 * in an endpoint.
8129 		 */
8130 		sk_for_each_bound(sk2, &pp->owner) {
8131 			struct sctp_sock *sp2 = sctp_sk(sk2);
8132 			struct sctp_endpoint *ep2 = sp2->ep;
8133 
8134 			if (sk == sk2 ||
8135 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8136 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8137 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8138 			     uid_eq(uid, sock_i_uid(sk2))))
8139 				continue;
8140 
8141 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8142 						    addr, sp2, sp)) {
8143 				ret = (long)sk2;
8144 				goto fail_unlock;
8145 			}
8146 		}
8147 
8148 		pr_debug("%s: found a match\n", __func__);
8149 	}
8150 pp_not_found:
8151 	/* If there was a hash table miss, create a new port.  */
8152 	ret = 1;
8153 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
8154 		goto fail_unlock;
8155 
8156 	/* In either case (hit or miss), make sure fastreuse is 1 only
8157 	 * if sk->sk_reuse is too (that is, if the caller requested
8158 	 * SO_REUSEADDR on this socket -sk-).
8159 	 */
8160 	if (hlist_empty(&pp->owner)) {
8161 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8162 			pp->fastreuse = 1;
8163 		else
8164 			pp->fastreuse = 0;
8165 
8166 		if (sk->sk_reuseport) {
8167 			pp->fastreuseport = 1;
8168 			pp->fastuid = uid;
8169 		} else {
8170 			pp->fastreuseport = 0;
8171 		}
8172 	} else {
8173 		if (pp->fastreuse &&
8174 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8175 			pp->fastreuse = 0;
8176 
8177 		if (pp->fastreuseport &&
8178 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8179 			pp->fastreuseport = 0;
8180 	}
8181 
8182 	/* We are set, so fill up all the data in the hash table
8183 	 * entry, tie the socket list information with the rest of the
8184 	 * sockets FIXME: Blurry, NPI (ipg).
8185 	 */
8186 success:
8187 	if (!sp->bind_hash) {
8188 		inet_sk(sk)->inet_num = snum;
8189 		sk_add_bind_node(sk, &pp->owner);
8190 		sp->bind_hash = pp;
8191 	}
8192 	ret = 0;
8193 
8194 fail_unlock:
8195 	spin_unlock(&head->lock);
8196 
8197 fail:
8198 	local_bh_enable();
8199 	return ret;
8200 }
8201 
8202 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8203  * port is requested.
8204  */
8205 static int sctp_get_port(struct sock *sk, unsigned short snum)
8206 {
8207 	union sctp_addr addr;
8208 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8209 
8210 	/* Set up a dummy address struct from the sk. */
8211 	af->from_sk(&addr, sk);
8212 	addr.v4.sin_port = htons(snum);
8213 
8214 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8215 	return !!sctp_get_port_local(sk, &addr);
8216 }
8217 
8218 /*
8219  *  Move a socket to LISTENING state.
8220  */
8221 static int sctp_listen_start(struct sock *sk, int backlog)
8222 {
8223 	struct sctp_sock *sp = sctp_sk(sk);
8224 	struct sctp_endpoint *ep = sp->ep;
8225 	struct crypto_shash *tfm = NULL;
8226 	char alg[32];
8227 
8228 	/* Allocate HMAC for generating cookie. */
8229 	if (!sp->hmac && sp->sctp_hmac_alg) {
8230 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8231 		tfm = crypto_alloc_shash(alg, 0, 0);
8232 		if (IS_ERR(tfm)) {
8233 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8234 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8235 			return -ENOSYS;
8236 		}
8237 		sctp_sk(sk)->hmac = tfm;
8238 	}
8239 
8240 	/*
8241 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8242 	 * call that allows new associations to be accepted, the system
8243 	 * picks an ephemeral port and will choose an address set equivalent
8244 	 * to binding with a wildcard address.
8245 	 *
8246 	 * This is not currently spelled out in the SCTP sockets
8247 	 * extensions draft, but follows the practice as seen in TCP
8248 	 * sockets.
8249 	 *
8250 	 */
8251 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8252 	if (!ep->base.bind_addr.port) {
8253 		if (sctp_autobind(sk))
8254 			return -EAGAIN;
8255 	} else {
8256 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8257 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8258 			return -EADDRINUSE;
8259 		}
8260 	}
8261 
8262 	sk->sk_max_ack_backlog = backlog;
8263 	return sctp_hash_endpoint(ep);
8264 }
8265 
8266 /*
8267  * 4.1.3 / 5.1.3 listen()
8268  *
8269  *   By default, new associations are not accepted for UDP style sockets.
8270  *   An application uses listen() to mark a socket as being able to
8271  *   accept new associations.
8272  *
8273  *   On TCP style sockets, applications use listen() to ready the SCTP
8274  *   endpoint for accepting inbound associations.
8275  *
8276  *   On both types of endpoints a backlog of '0' disables listening.
8277  *
8278  *  Move a socket to LISTENING state.
8279  */
8280 int sctp_inet_listen(struct socket *sock, int backlog)
8281 {
8282 	struct sock *sk = sock->sk;
8283 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8284 	int err = -EINVAL;
8285 
8286 	if (unlikely(backlog < 0))
8287 		return err;
8288 
8289 	lock_sock(sk);
8290 
8291 	/* Peeled-off sockets are not allowed to listen().  */
8292 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8293 		goto out;
8294 
8295 	if (sock->state != SS_UNCONNECTED)
8296 		goto out;
8297 
8298 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8299 		goto out;
8300 
8301 	/* If backlog is zero, disable listening. */
8302 	if (!backlog) {
8303 		if (sctp_sstate(sk, CLOSED))
8304 			goto out;
8305 
8306 		err = 0;
8307 		sctp_unhash_endpoint(ep);
8308 		sk->sk_state = SCTP_SS_CLOSED;
8309 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8310 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8311 		goto out;
8312 	}
8313 
8314 	/* If we are already listening, just update the backlog */
8315 	if (sctp_sstate(sk, LISTENING))
8316 		sk->sk_max_ack_backlog = backlog;
8317 	else {
8318 		err = sctp_listen_start(sk, backlog);
8319 		if (err)
8320 			goto out;
8321 	}
8322 
8323 	err = 0;
8324 out:
8325 	release_sock(sk);
8326 	return err;
8327 }
8328 
8329 /*
8330  * This function is done by modeling the current datagram_poll() and the
8331  * tcp_poll().  Note that, based on these implementations, we don't
8332  * lock the socket in this function, even though it seems that,
8333  * ideally, locking or some other mechanisms can be used to ensure
8334  * the integrity of the counters (sndbuf and wmem_alloc) used
8335  * in this place.  We assume that we don't need locks either until proven
8336  * otherwise.
8337  *
8338  * Another thing to note is that we include the Async I/O support
8339  * here, again, by modeling the current TCP/UDP code.  We don't have
8340  * a good way to test with it yet.
8341  */
8342 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8343 {
8344 	struct sock *sk = sock->sk;
8345 	struct sctp_sock *sp = sctp_sk(sk);
8346 	__poll_t mask;
8347 
8348 	poll_wait(file, sk_sleep(sk), wait);
8349 
8350 	sock_rps_record_flow(sk);
8351 
8352 	/* A TCP-style listening socket becomes readable when the accept queue
8353 	 * is not empty.
8354 	 */
8355 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8356 		return (!list_empty(&sp->ep->asocs)) ?
8357 			(EPOLLIN | EPOLLRDNORM) : 0;
8358 
8359 	mask = 0;
8360 
8361 	/* Is there any exceptional events?  */
8362 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8363 		mask |= EPOLLERR |
8364 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8365 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8366 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8367 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8368 		mask |= EPOLLHUP;
8369 
8370 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8371 	if (!skb_queue_empty(&sk->sk_receive_queue))
8372 		mask |= EPOLLIN | EPOLLRDNORM;
8373 
8374 	/* The association is either gone or not ready.  */
8375 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8376 		return mask;
8377 
8378 	/* Is it writable?  */
8379 	if (sctp_writeable(sk)) {
8380 		mask |= EPOLLOUT | EPOLLWRNORM;
8381 	} else {
8382 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8383 		/*
8384 		 * Since the socket is not locked, the buffer
8385 		 * might be made available after the writeable check and
8386 		 * before the bit is set.  This could cause a lost I/O
8387 		 * signal.  tcp_poll() has a race breaker for this race
8388 		 * condition.  Based on their implementation, we put
8389 		 * in the following code to cover it as well.
8390 		 */
8391 		if (sctp_writeable(sk))
8392 			mask |= EPOLLOUT | EPOLLWRNORM;
8393 	}
8394 	return mask;
8395 }
8396 
8397 /********************************************************************
8398  * 2nd Level Abstractions
8399  ********************************************************************/
8400 
8401 static struct sctp_bind_bucket *sctp_bucket_create(
8402 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8403 {
8404 	struct sctp_bind_bucket *pp;
8405 
8406 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8407 	if (pp) {
8408 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8409 		pp->port = snum;
8410 		pp->fastreuse = 0;
8411 		INIT_HLIST_HEAD(&pp->owner);
8412 		pp->net = net;
8413 		hlist_add_head(&pp->node, &head->chain);
8414 	}
8415 	return pp;
8416 }
8417 
8418 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8419 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8420 {
8421 	if (pp && hlist_empty(&pp->owner)) {
8422 		__hlist_del(&pp->node);
8423 		kmem_cache_free(sctp_bucket_cachep, pp);
8424 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8425 	}
8426 }
8427 
8428 /* Release this socket's reference to a local port.  */
8429 static inline void __sctp_put_port(struct sock *sk)
8430 {
8431 	struct sctp_bind_hashbucket *head =
8432 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8433 						  inet_sk(sk)->inet_num)];
8434 	struct sctp_bind_bucket *pp;
8435 
8436 	spin_lock(&head->lock);
8437 	pp = sctp_sk(sk)->bind_hash;
8438 	__sk_del_bind_node(sk);
8439 	sctp_sk(sk)->bind_hash = NULL;
8440 	inet_sk(sk)->inet_num = 0;
8441 	sctp_bucket_destroy(pp);
8442 	spin_unlock(&head->lock);
8443 }
8444 
8445 void sctp_put_port(struct sock *sk)
8446 {
8447 	local_bh_disable();
8448 	__sctp_put_port(sk);
8449 	local_bh_enable();
8450 }
8451 
8452 /*
8453  * The system picks an ephemeral port and choose an address set equivalent
8454  * to binding with a wildcard address.
8455  * One of those addresses will be the primary address for the association.
8456  * This automatically enables the multihoming capability of SCTP.
8457  */
8458 static int sctp_autobind(struct sock *sk)
8459 {
8460 	union sctp_addr autoaddr;
8461 	struct sctp_af *af;
8462 	__be16 port;
8463 
8464 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8465 	af = sctp_sk(sk)->pf->af;
8466 
8467 	port = htons(inet_sk(sk)->inet_num);
8468 	af->inaddr_any(&autoaddr, port);
8469 
8470 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8471 }
8472 
8473 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8474  *
8475  * From RFC 2292
8476  * 4.2 The cmsghdr Structure *
8477  *
8478  * When ancillary data is sent or received, any number of ancillary data
8479  * objects can be specified by the msg_control and msg_controllen members of
8480  * the msghdr structure, because each object is preceded by
8481  * a cmsghdr structure defining the object's length (the cmsg_len member).
8482  * Historically Berkeley-derived implementations have passed only one object
8483  * at a time, but this API allows multiple objects to be
8484  * passed in a single call to sendmsg() or recvmsg(). The following example
8485  * shows two ancillary data objects in a control buffer.
8486  *
8487  *   |<--------------------------- msg_controllen -------------------------->|
8488  *   |                                                                       |
8489  *
8490  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8491  *
8492  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8493  *   |                                   |                                   |
8494  *
8495  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8496  *
8497  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8498  *   |                                |  |                                |  |
8499  *
8500  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8501  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8502  *
8503  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8504  *
8505  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8506  *    ^
8507  *    |
8508  *
8509  * msg_control
8510  * points here
8511  */
8512 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8513 {
8514 	struct msghdr *my_msg = (struct msghdr *)msg;
8515 	struct cmsghdr *cmsg;
8516 
8517 	for_each_cmsghdr(cmsg, my_msg) {
8518 		if (!CMSG_OK(my_msg, cmsg))
8519 			return -EINVAL;
8520 
8521 		/* Should we parse this header or ignore?  */
8522 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8523 			continue;
8524 
8525 		/* Strictly check lengths following example in SCM code.  */
8526 		switch (cmsg->cmsg_type) {
8527 		case SCTP_INIT:
8528 			/* SCTP Socket API Extension
8529 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8530 			 *
8531 			 * This cmsghdr structure provides information for
8532 			 * initializing new SCTP associations with sendmsg().
8533 			 * The SCTP_INITMSG socket option uses this same data
8534 			 * structure.  This structure is not used for
8535 			 * recvmsg().
8536 			 *
8537 			 * cmsg_level    cmsg_type      cmsg_data[]
8538 			 * ------------  ------------   ----------------------
8539 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8540 			 */
8541 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8542 				return -EINVAL;
8543 
8544 			cmsgs->init = CMSG_DATA(cmsg);
8545 			break;
8546 
8547 		case SCTP_SNDRCV:
8548 			/* SCTP Socket API Extension
8549 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8550 			 *
8551 			 * This cmsghdr structure specifies SCTP options for
8552 			 * sendmsg() and describes SCTP header information
8553 			 * about a received message through recvmsg().
8554 			 *
8555 			 * cmsg_level    cmsg_type      cmsg_data[]
8556 			 * ------------  ------------   ----------------------
8557 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8558 			 */
8559 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8560 				return -EINVAL;
8561 
8562 			cmsgs->srinfo = CMSG_DATA(cmsg);
8563 
8564 			if (cmsgs->srinfo->sinfo_flags &
8565 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8566 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8567 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8568 				return -EINVAL;
8569 			break;
8570 
8571 		case SCTP_SNDINFO:
8572 			/* SCTP Socket API Extension
8573 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8574 			 *
8575 			 * This cmsghdr structure specifies SCTP options for
8576 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8577 			 * SCTP_SNDRCV which has been deprecated.
8578 			 *
8579 			 * cmsg_level    cmsg_type      cmsg_data[]
8580 			 * ------------  ------------   ---------------------
8581 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8582 			 */
8583 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8584 				return -EINVAL;
8585 
8586 			cmsgs->sinfo = CMSG_DATA(cmsg);
8587 
8588 			if (cmsgs->sinfo->snd_flags &
8589 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8590 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8591 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8592 				return -EINVAL;
8593 			break;
8594 		case SCTP_PRINFO:
8595 			/* SCTP Socket API Extension
8596 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8597 			 *
8598 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8599 			 *
8600 			 * cmsg_level    cmsg_type      cmsg_data[]
8601 			 * ------------  ------------   ---------------------
8602 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8603 			 */
8604 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8605 				return -EINVAL;
8606 
8607 			cmsgs->prinfo = CMSG_DATA(cmsg);
8608 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8609 				return -EINVAL;
8610 
8611 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8612 				cmsgs->prinfo->pr_value = 0;
8613 			break;
8614 		case SCTP_AUTHINFO:
8615 			/* SCTP Socket API Extension
8616 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8617 			 *
8618 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8619 			 *
8620 			 * cmsg_level    cmsg_type      cmsg_data[]
8621 			 * ------------  ------------   ---------------------
8622 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8623 			 */
8624 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8625 				return -EINVAL;
8626 
8627 			cmsgs->authinfo = CMSG_DATA(cmsg);
8628 			break;
8629 		case SCTP_DSTADDRV4:
8630 		case SCTP_DSTADDRV6:
8631 			/* SCTP Socket API Extension
8632 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8633 			 *
8634 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8635 			 *
8636 			 * cmsg_level    cmsg_type         cmsg_data[]
8637 			 * ------------  ------------   ---------------------
8638 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8639 			 * ------------  ------------   ---------------------
8640 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8641 			 */
8642 			cmsgs->addrs_msg = my_msg;
8643 			break;
8644 		default:
8645 			return -EINVAL;
8646 		}
8647 	}
8648 
8649 	return 0;
8650 }
8651 
8652 /*
8653  * Wait for a packet..
8654  * Note: This function is the same function as in core/datagram.c
8655  * with a few modifications to make lksctp work.
8656  */
8657 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8658 {
8659 	int error;
8660 	DEFINE_WAIT(wait);
8661 
8662 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8663 
8664 	/* Socket errors? */
8665 	error = sock_error(sk);
8666 	if (error)
8667 		goto out;
8668 
8669 	if (!skb_queue_empty(&sk->sk_receive_queue))
8670 		goto ready;
8671 
8672 	/* Socket shut down?  */
8673 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8674 		goto out;
8675 
8676 	/* Sequenced packets can come disconnected.  If so we report the
8677 	 * problem.
8678 	 */
8679 	error = -ENOTCONN;
8680 
8681 	/* Is there a good reason to think that we may receive some data?  */
8682 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8683 		goto out;
8684 
8685 	/* Handle signals.  */
8686 	if (signal_pending(current))
8687 		goto interrupted;
8688 
8689 	/* Let another process have a go.  Since we are going to sleep
8690 	 * anyway.  Note: This may cause odd behaviors if the message
8691 	 * does not fit in the user's buffer, but this seems to be the
8692 	 * only way to honor MSG_DONTWAIT realistically.
8693 	 */
8694 	release_sock(sk);
8695 	*timeo_p = schedule_timeout(*timeo_p);
8696 	lock_sock(sk);
8697 
8698 ready:
8699 	finish_wait(sk_sleep(sk), &wait);
8700 	return 0;
8701 
8702 interrupted:
8703 	error = sock_intr_errno(*timeo_p);
8704 
8705 out:
8706 	finish_wait(sk_sleep(sk), &wait);
8707 	*err = error;
8708 	return error;
8709 }
8710 
8711 /* Receive a datagram.
8712  * Note: This is pretty much the same routine as in core/datagram.c
8713  * with a few changes to make lksctp work.
8714  */
8715 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8716 				       int noblock, int *err)
8717 {
8718 	int error;
8719 	struct sk_buff *skb;
8720 	long timeo;
8721 
8722 	timeo = sock_rcvtimeo(sk, noblock);
8723 
8724 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8725 		 MAX_SCHEDULE_TIMEOUT);
8726 
8727 	do {
8728 		/* Again only user level code calls this function,
8729 		 * so nothing interrupt level
8730 		 * will suddenly eat the receive_queue.
8731 		 *
8732 		 *  Look at current nfs client by the way...
8733 		 *  However, this function was correct in any case. 8)
8734 		 */
8735 		if (flags & MSG_PEEK) {
8736 			skb = skb_peek(&sk->sk_receive_queue);
8737 			if (skb)
8738 				refcount_inc(&skb->users);
8739 		} else {
8740 			skb = __skb_dequeue(&sk->sk_receive_queue);
8741 		}
8742 
8743 		if (skb)
8744 			return skb;
8745 
8746 		/* Caller is allowed not to check sk->sk_err before calling. */
8747 		error = sock_error(sk);
8748 		if (error)
8749 			goto no_packet;
8750 
8751 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8752 			break;
8753 
8754 		if (sk_can_busy_loop(sk)) {
8755 			sk_busy_loop(sk, noblock);
8756 
8757 			if (!skb_queue_empty(&sk->sk_receive_queue))
8758 				continue;
8759 		}
8760 
8761 		/* User doesn't want to wait.  */
8762 		error = -EAGAIN;
8763 		if (!timeo)
8764 			goto no_packet;
8765 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8766 
8767 	return NULL;
8768 
8769 no_packet:
8770 	*err = error;
8771 	return NULL;
8772 }
8773 
8774 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8775 static void __sctp_write_space(struct sctp_association *asoc)
8776 {
8777 	struct sock *sk = asoc->base.sk;
8778 
8779 	if (sctp_wspace(asoc) <= 0)
8780 		return;
8781 
8782 	if (waitqueue_active(&asoc->wait))
8783 		wake_up_interruptible(&asoc->wait);
8784 
8785 	if (sctp_writeable(sk)) {
8786 		struct socket_wq *wq;
8787 
8788 		rcu_read_lock();
8789 		wq = rcu_dereference(sk->sk_wq);
8790 		if (wq) {
8791 			if (waitqueue_active(&wq->wait))
8792 				wake_up_interruptible(&wq->wait);
8793 
8794 			/* Note that we try to include the Async I/O support
8795 			 * here by modeling from the current TCP/UDP code.
8796 			 * We have not tested with it yet.
8797 			 */
8798 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8799 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8800 		}
8801 		rcu_read_unlock();
8802 	}
8803 }
8804 
8805 static void sctp_wake_up_waiters(struct sock *sk,
8806 				 struct sctp_association *asoc)
8807 {
8808 	struct sctp_association *tmp = asoc;
8809 
8810 	/* We do accounting for the sndbuf space per association,
8811 	 * so we only need to wake our own association.
8812 	 */
8813 	if (asoc->ep->sndbuf_policy)
8814 		return __sctp_write_space(asoc);
8815 
8816 	/* If association goes down and is just flushing its
8817 	 * outq, then just normally notify others.
8818 	 */
8819 	if (asoc->base.dead)
8820 		return sctp_write_space(sk);
8821 
8822 	/* Accounting for the sndbuf space is per socket, so we
8823 	 * need to wake up others, try to be fair and in case of
8824 	 * other associations, let them have a go first instead
8825 	 * of just doing a sctp_write_space() call.
8826 	 *
8827 	 * Note that we reach sctp_wake_up_waiters() only when
8828 	 * associations free up queued chunks, thus we are under
8829 	 * lock and the list of associations on a socket is
8830 	 * guaranteed not to change.
8831 	 */
8832 	for (tmp = list_next_entry(tmp, asocs); 1;
8833 	     tmp = list_next_entry(tmp, asocs)) {
8834 		/* Manually skip the head element. */
8835 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8836 			continue;
8837 		/* Wake up association. */
8838 		__sctp_write_space(tmp);
8839 		/* We've reached the end. */
8840 		if (tmp == asoc)
8841 			break;
8842 	}
8843 }
8844 
8845 /* Do accounting for the sndbuf space.
8846  * Decrement the used sndbuf space of the corresponding association by the
8847  * data size which was just transmitted(freed).
8848  */
8849 static void sctp_wfree(struct sk_buff *skb)
8850 {
8851 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8852 	struct sctp_association *asoc = chunk->asoc;
8853 	struct sock *sk = asoc->base.sk;
8854 
8855 	sk_mem_uncharge(sk, skb->truesize);
8856 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8857 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8858 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8859 				      &sk->sk_wmem_alloc));
8860 
8861 	if (chunk->shkey) {
8862 		struct sctp_shared_key *shkey = chunk->shkey;
8863 
8864 		/* refcnt == 2 and !list_empty mean after this release, it's
8865 		 * not being used anywhere, and it's time to notify userland
8866 		 * that this shkey can be freed if it's been deactivated.
8867 		 */
8868 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8869 		    refcount_read(&shkey->refcnt) == 2) {
8870 			struct sctp_ulpevent *ev;
8871 
8872 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8873 							SCTP_AUTH_FREE_KEY,
8874 							GFP_KERNEL);
8875 			if (ev)
8876 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8877 		}
8878 		sctp_auth_shkey_release(chunk->shkey);
8879 	}
8880 
8881 	sock_wfree(skb);
8882 	sctp_wake_up_waiters(sk, asoc);
8883 
8884 	sctp_association_put(asoc);
8885 }
8886 
8887 /* Do accounting for the receive space on the socket.
8888  * Accounting for the association is done in ulpevent.c
8889  * We set this as a destructor for the cloned data skbs so that
8890  * accounting is done at the correct time.
8891  */
8892 void sctp_sock_rfree(struct sk_buff *skb)
8893 {
8894 	struct sock *sk = skb->sk;
8895 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8896 
8897 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8898 
8899 	/*
8900 	 * Mimic the behavior of sock_rfree
8901 	 */
8902 	sk_mem_uncharge(sk, event->rmem_len);
8903 }
8904 
8905 
8906 /* Helper function to wait for space in the sndbuf.  */
8907 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8908 				size_t msg_len)
8909 {
8910 	struct sock *sk = asoc->base.sk;
8911 	long current_timeo = *timeo_p;
8912 	DEFINE_WAIT(wait);
8913 	int err = 0;
8914 
8915 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8916 		 *timeo_p, msg_len);
8917 
8918 	/* Increment the association's refcnt.  */
8919 	sctp_association_hold(asoc);
8920 
8921 	/* Wait on the association specific sndbuf space. */
8922 	for (;;) {
8923 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8924 					  TASK_INTERRUPTIBLE);
8925 		if (asoc->base.dead)
8926 			goto do_dead;
8927 		if (!*timeo_p)
8928 			goto do_nonblock;
8929 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8930 			goto do_error;
8931 		if (signal_pending(current))
8932 			goto do_interrupted;
8933 		if ((int)msg_len <= sctp_wspace(asoc))
8934 			break;
8935 
8936 		/* Let another process have a go.  Since we are going
8937 		 * to sleep anyway.
8938 		 */
8939 		release_sock(sk);
8940 		current_timeo = schedule_timeout(current_timeo);
8941 		lock_sock(sk);
8942 		if (sk != asoc->base.sk)
8943 			goto do_error;
8944 
8945 		*timeo_p = current_timeo;
8946 	}
8947 
8948 out:
8949 	finish_wait(&asoc->wait, &wait);
8950 
8951 	/* Release the association's refcnt.  */
8952 	sctp_association_put(asoc);
8953 
8954 	return err;
8955 
8956 do_dead:
8957 	err = -ESRCH;
8958 	goto out;
8959 
8960 do_error:
8961 	err = -EPIPE;
8962 	goto out;
8963 
8964 do_interrupted:
8965 	err = sock_intr_errno(*timeo_p);
8966 	goto out;
8967 
8968 do_nonblock:
8969 	err = -EAGAIN;
8970 	goto out;
8971 }
8972 
8973 void sctp_data_ready(struct sock *sk)
8974 {
8975 	struct socket_wq *wq;
8976 
8977 	rcu_read_lock();
8978 	wq = rcu_dereference(sk->sk_wq);
8979 	if (skwq_has_sleeper(wq))
8980 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8981 						EPOLLRDNORM | EPOLLRDBAND);
8982 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8983 	rcu_read_unlock();
8984 }
8985 
8986 /* If socket sndbuf has changed, wake up all per association waiters.  */
8987 void sctp_write_space(struct sock *sk)
8988 {
8989 	struct sctp_association *asoc;
8990 
8991 	/* Wake up the tasks in each wait queue.  */
8992 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8993 		__sctp_write_space(asoc);
8994 	}
8995 }
8996 
8997 /* Is there any sndbuf space available on the socket?
8998  *
8999  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9000  * associations on the same socket.  For a UDP-style socket with
9001  * multiple associations, it is possible for it to be "unwriteable"
9002  * prematurely.  I assume that this is acceptable because
9003  * a premature "unwriteable" is better than an accidental "writeable" which
9004  * would cause an unwanted block under certain circumstances.  For the 1-1
9005  * UDP-style sockets or TCP-style sockets, this code should work.
9006  *  - Daisy
9007  */
9008 static bool sctp_writeable(struct sock *sk)
9009 {
9010 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9011 }
9012 
9013 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9014  * returns immediately with EINPROGRESS.
9015  */
9016 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9017 {
9018 	struct sock *sk = asoc->base.sk;
9019 	int err = 0;
9020 	long current_timeo = *timeo_p;
9021 	DEFINE_WAIT(wait);
9022 
9023 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9024 
9025 	/* Increment the association's refcnt.  */
9026 	sctp_association_hold(asoc);
9027 
9028 	for (;;) {
9029 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9030 					  TASK_INTERRUPTIBLE);
9031 		if (!*timeo_p)
9032 			goto do_nonblock;
9033 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9034 			break;
9035 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9036 		    asoc->base.dead)
9037 			goto do_error;
9038 		if (signal_pending(current))
9039 			goto do_interrupted;
9040 
9041 		if (sctp_state(asoc, ESTABLISHED))
9042 			break;
9043 
9044 		/* Let another process have a go.  Since we are going
9045 		 * to sleep anyway.
9046 		 */
9047 		release_sock(sk);
9048 		current_timeo = schedule_timeout(current_timeo);
9049 		lock_sock(sk);
9050 
9051 		*timeo_p = current_timeo;
9052 	}
9053 
9054 out:
9055 	finish_wait(&asoc->wait, &wait);
9056 
9057 	/* Release the association's refcnt.  */
9058 	sctp_association_put(asoc);
9059 
9060 	return err;
9061 
9062 do_error:
9063 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9064 		err = -ETIMEDOUT;
9065 	else
9066 		err = -ECONNREFUSED;
9067 	goto out;
9068 
9069 do_interrupted:
9070 	err = sock_intr_errno(*timeo_p);
9071 	goto out;
9072 
9073 do_nonblock:
9074 	err = -EINPROGRESS;
9075 	goto out;
9076 }
9077 
9078 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9079 {
9080 	struct sctp_endpoint *ep;
9081 	int err = 0;
9082 	DEFINE_WAIT(wait);
9083 
9084 	ep = sctp_sk(sk)->ep;
9085 
9086 
9087 	for (;;) {
9088 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9089 					  TASK_INTERRUPTIBLE);
9090 
9091 		if (list_empty(&ep->asocs)) {
9092 			release_sock(sk);
9093 			timeo = schedule_timeout(timeo);
9094 			lock_sock(sk);
9095 		}
9096 
9097 		err = -EINVAL;
9098 		if (!sctp_sstate(sk, LISTENING))
9099 			break;
9100 
9101 		err = 0;
9102 		if (!list_empty(&ep->asocs))
9103 			break;
9104 
9105 		err = sock_intr_errno(timeo);
9106 		if (signal_pending(current))
9107 			break;
9108 
9109 		err = -EAGAIN;
9110 		if (!timeo)
9111 			break;
9112 	}
9113 
9114 	finish_wait(sk_sleep(sk), &wait);
9115 
9116 	return err;
9117 }
9118 
9119 static void sctp_wait_for_close(struct sock *sk, long timeout)
9120 {
9121 	DEFINE_WAIT(wait);
9122 
9123 	do {
9124 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9125 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9126 			break;
9127 		release_sock(sk);
9128 		timeout = schedule_timeout(timeout);
9129 		lock_sock(sk);
9130 	} while (!signal_pending(current) && timeout);
9131 
9132 	finish_wait(sk_sleep(sk), &wait);
9133 }
9134 
9135 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9136 {
9137 	struct sk_buff *frag;
9138 
9139 	if (!skb->data_len)
9140 		goto done;
9141 
9142 	/* Don't forget the fragments. */
9143 	skb_walk_frags(skb, frag)
9144 		sctp_skb_set_owner_r_frag(frag, sk);
9145 
9146 done:
9147 	sctp_skb_set_owner_r(skb, sk);
9148 }
9149 
9150 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9151 		    struct sctp_association *asoc)
9152 {
9153 	struct inet_sock *inet = inet_sk(sk);
9154 	struct inet_sock *newinet;
9155 	struct sctp_sock *sp = sctp_sk(sk);
9156 	struct sctp_endpoint *ep = sp->ep;
9157 
9158 	newsk->sk_type = sk->sk_type;
9159 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9160 	newsk->sk_flags = sk->sk_flags;
9161 	newsk->sk_tsflags = sk->sk_tsflags;
9162 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9163 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9164 	newsk->sk_reuse = sk->sk_reuse;
9165 	sctp_sk(newsk)->reuse = sp->reuse;
9166 
9167 	newsk->sk_shutdown = sk->sk_shutdown;
9168 	newsk->sk_destruct = sctp_destruct_sock;
9169 	newsk->sk_family = sk->sk_family;
9170 	newsk->sk_protocol = IPPROTO_SCTP;
9171 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9172 	newsk->sk_sndbuf = sk->sk_sndbuf;
9173 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9174 	newsk->sk_lingertime = sk->sk_lingertime;
9175 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9176 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9177 	newsk->sk_rxhash = sk->sk_rxhash;
9178 
9179 	newinet = inet_sk(newsk);
9180 
9181 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9182 	 * getsockname() and getpeername()
9183 	 */
9184 	newinet->inet_sport = inet->inet_sport;
9185 	newinet->inet_saddr = inet->inet_saddr;
9186 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9187 	newinet->inet_dport = htons(asoc->peer.port);
9188 	newinet->pmtudisc = inet->pmtudisc;
9189 	newinet->inet_id = asoc->next_tsn ^ jiffies;
9190 
9191 	newinet->uc_ttl = inet->uc_ttl;
9192 	newinet->mc_loop = 1;
9193 	newinet->mc_ttl = 1;
9194 	newinet->mc_index = 0;
9195 	newinet->mc_list = NULL;
9196 
9197 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9198 		net_enable_timestamp();
9199 
9200 	/* Set newsk security attributes from orginal sk and connection
9201 	 * security attribute from ep.
9202 	 */
9203 	security_sctp_sk_clone(ep, sk, newsk);
9204 }
9205 
9206 static inline void sctp_copy_descendant(struct sock *sk_to,
9207 					const struct sock *sk_from)
9208 {
9209 	int ancestor_size = sizeof(struct inet_sock) +
9210 			    sizeof(struct sctp_sock) -
9211 			    offsetof(struct sctp_sock, pd_lobby);
9212 
9213 	if (sk_from->sk_family == PF_INET6)
9214 		ancestor_size += sizeof(struct ipv6_pinfo);
9215 
9216 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9217 }
9218 
9219 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9220  * and its messages to the newsk.
9221  */
9222 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9223 			     struct sctp_association *assoc,
9224 			     enum sctp_socket_type type)
9225 {
9226 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9227 	struct sctp_sock *newsp = sctp_sk(newsk);
9228 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9229 	struct sctp_endpoint *newep = newsp->ep;
9230 	struct sk_buff *skb, *tmp;
9231 	struct sctp_ulpevent *event;
9232 	struct sctp_bind_hashbucket *head;
9233 	int err;
9234 
9235 	/* Migrate socket buffer sizes and all the socket level options to the
9236 	 * new socket.
9237 	 */
9238 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9239 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9240 	/* Brute force copy old sctp opt. */
9241 	sctp_copy_descendant(newsk, oldsk);
9242 
9243 	/* Restore the ep value that was overwritten with the above structure
9244 	 * copy.
9245 	 */
9246 	newsp->ep = newep;
9247 	newsp->hmac = NULL;
9248 
9249 	/* Hook this new socket in to the bind_hash list. */
9250 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9251 						 inet_sk(oldsk)->inet_num)];
9252 	spin_lock_bh(&head->lock);
9253 	pp = sctp_sk(oldsk)->bind_hash;
9254 	sk_add_bind_node(newsk, &pp->owner);
9255 	sctp_sk(newsk)->bind_hash = pp;
9256 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9257 	spin_unlock_bh(&head->lock);
9258 
9259 	/* Copy the bind_addr list from the original endpoint to the new
9260 	 * endpoint so that we can handle restarts properly
9261 	 */
9262 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9263 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9264 	if (err)
9265 		return err;
9266 
9267 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9268 	 * that net->sctp.auth_enable has been changed to 0 by users and
9269 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9270 	 */
9271 	if (oldsp->ep->auth_hmacs) {
9272 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9273 		if (err)
9274 			return err;
9275 	}
9276 
9277 	/* Move any messages in the old socket's receive queue that are for the
9278 	 * peeled off association to the new socket's receive queue.
9279 	 */
9280 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9281 		event = sctp_skb2event(skb);
9282 		if (event->asoc == assoc) {
9283 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9284 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9285 			sctp_skb_set_owner_r_frag(skb, newsk);
9286 		}
9287 	}
9288 
9289 	/* Clean up any messages pending delivery due to partial
9290 	 * delivery.   Three cases:
9291 	 * 1) No partial deliver;  no work.
9292 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9293 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9294 	 */
9295 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9296 
9297 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9298 		struct sk_buff_head *queue;
9299 
9300 		/* Decide which queue to move pd_lobby skbs to. */
9301 		if (assoc->ulpq.pd_mode) {
9302 			queue = &newsp->pd_lobby;
9303 		} else
9304 			queue = &newsk->sk_receive_queue;
9305 
9306 		/* Walk through the pd_lobby, looking for skbs that
9307 		 * need moved to the new socket.
9308 		 */
9309 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9310 			event = sctp_skb2event(skb);
9311 			if (event->asoc == assoc) {
9312 				__skb_unlink(skb, &oldsp->pd_lobby);
9313 				__skb_queue_tail(queue, skb);
9314 				sctp_skb_set_owner_r_frag(skb, newsk);
9315 			}
9316 		}
9317 
9318 		/* Clear up any skbs waiting for the partial
9319 		 * delivery to finish.
9320 		 */
9321 		if (assoc->ulpq.pd_mode)
9322 			sctp_clear_pd(oldsk, NULL);
9323 
9324 	}
9325 
9326 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9327 
9328 	/* Set the type of socket to indicate that it is peeled off from the
9329 	 * original UDP-style socket or created with the accept() call on a
9330 	 * TCP-style socket..
9331 	 */
9332 	newsp->type = type;
9333 
9334 	/* Mark the new socket "in-use" by the user so that any packets
9335 	 * that may arrive on the association after we've moved it are
9336 	 * queued to the backlog.  This prevents a potential race between
9337 	 * backlog processing on the old socket and new-packet processing
9338 	 * on the new socket.
9339 	 *
9340 	 * The caller has just allocated newsk so we can guarantee that other
9341 	 * paths won't try to lock it and then oldsk.
9342 	 */
9343 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9344 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9345 	sctp_assoc_migrate(assoc, newsk);
9346 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9347 
9348 	/* If the association on the newsk is already closed before accept()
9349 	 * is called, set RCV_SHUTDOWN flag.
9350 	 */
9351 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9352 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9353 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9354 	} else {
9355 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9356 	}
9357 
9358 	release_sock(newsk);
9359 
9360 	return 0;
9361 }
9362 
9363 
9364 /* This proto struct describes the ULP interface for SCTP.  */
9365 struct proto sctp_prot = {
9366 	.name        =	"SCTP",
9367 	.owner       =	THIS_MODULE,
9368 	.close       =	sctp_close,
9369 	.disconnect  =	sctp_disconnect,
9370 	.accept      =	sctp_accept,
9371 	.ioctl       =	sctp_ioctl,
9372 	.init        =	sctp_init_sock,
9373 	.destroy     =	sctp_destroy_sock,
9374 	.shutdown    =	sctp_shutdown,
9375 	.setsockopt  =	sctp_setsockopt,
9376 	.getsockopt  =	sctp_getsockopt,
9377 	.sendmsg     =	sctp_sendmsg,
9378 	.recvmsg     =	sctp_recvmsg,
9379 	.bind        =	sctp_bind,
9380 	.backlog_rcv =	sctp_backlog_rcv,
9381 	.hash        =	sctp_hash,
9382 	.unhash      =	sctp_unhash,
9383 	.get_port    =	sctp_get_port,
9384 	.obj_size    =  sizeof(struct sctp_sock),
9385 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9386 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9387 				offsetof(struct sctp_sock, subscribe) +
9388 				sizeof_field(struct sctp_sock, initmsg),
9389 	.sysctl_mem  =  sysctl_sctp_mem,
9390 	.sysctl_rmem =  sysctl_sctp_rmem,
9391 	.sysctl_wmem =  sysctl_sctp_wmem,
9392 	.memory_pressure = &sctp_memory_pressure,
9393 	.enter_memory_pressure = sctp_enter_memory_pressure,
9394 	.memory_allocated = &sctp_memory_allocated,
9395 	.sockets_allocated = &sctp_sockets_allocated,
9396 };
9397 
9398 #if IS_ENABLED(CONFIG_IPV6)
9399 
9400 #include <net/transp_v6.h>
9401 static void sctp_v6_destroy_sock(struct sock *sk)
9402 {
9403 	sctp_destroy_sock(sk);
9404 	inet6_destroy_sock(sk);
9405 }
9406 
9407 struct proto sctpv6_prot = {
9408 	.name		= "SCTPv6",
9409 	.owner		= THIS_MODULE,
9410 	.close		= sctp_close,
9411 	.disconnect	= sctp_disconnect,
9412 	.accept		= sctp_accept,
9413 	.ioctl		= sctp_ioctl,
9414 	.init		= sctp_init_sock,
9415 	.destroy	= sctp_v6_destroy_sock,
9416 	.shutdown	= sctp_shutdown,
9417 	.setsockopt	= sctp_setsockopt,
9418 	.getsockopt	= sctp_getsockopt,
9419 	.sendmsg	= sctp_sendmsg,
9420 	.recvmsg	= sctp_recvmsg,
9421 	.bind		= sctp_bind,
9422 	.backlog_rcv	= sctp_backlog_rcv,
9423 	.hash		= sctp_hash,
9424 	.unhash		= sctp_unhash,
9425 	.get_port	= sctp_get_port,
9426 	.obj_size	= sizeof(struct sctp6_sock),
9427 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9428 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9429 				offsetof(struct sctp6_sock, sctp.subscribe) +
9430 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9431 	.sysctl_mem	= sysctl_sctp_mem,
9432 	.sysctl_rmem	= sysctl_sctp_rmem,
9433 	.sysctl_wmem	= sysctl_sctp_wmem,
9434 	.memory_pressure = &sctp_memory_pressure,
9435 	.enter_memory_pressure = sctp_enter_memory_pressure,
9436 	.memory_allocated = &sctp_memory_allocated,
9437 	.sockets_allocated = &sctp_sockets_allocated,
9438 };
9439 #endif /* IS_ENABLED(CONFIG_IPV6) */
9440