1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 #include <net/sctp/stream_sched.h> 83 84 /* Forward declarations for internal helper functions. */ 85 static int sctp_writeable(struct sock *sk); 86 static void sctp_wfree(struct sk_buff *skb); 87 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 88 size_t msg_len); 89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 91 static int sctp_wait_for_accept(struct sock *sk, long timeo); 92 static void sctp_wait_for_close(struct sock *sk, long timeo); 93 static void sctp_destruct_sock(struct sock *sk); 94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 95 union sctp_addr *addr, int len); 96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf(struct sctp_association *asoc, 101 struct sctp_chunk *chunk); 102 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 103 static int sctp_autobind(struct sock *sk); 104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 105 struct sctp_association *assoc, 106 enum sctp_socket_type type); 107 108 static unsigned long sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 if (chunk->shkey) 160 sctp_auth_shkey_hold(chunk->shkey); 161 162 skb_set_owner_w(chunk->skb, sk); 163 164 chunk->skb->destructor = sctp_wfree; 165 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 166 skb_shinfo(chunk->skb)->destructor_arg = chunk; 167 168 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 169 sizeof(struct sk_buff) + 170 sizeof(struct sctp_chunk); 171 172 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 173 sk->sk_wmem_queued += chunk->skb->truesize; 174 sk_mem_charge(sk, chunk->skb->truesize); 175 } 176 177 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 178 { 179 skb_orphan(chunk->skb); 180 } 181 182 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 183 void (*cb)(struct sctp_chunk *)) 184 185 { 186 struct sctp_outq *q = &asoc->outqueue; 187 struct sctp_transport *t; 188 struct sctp_chunk *chunk; 189 190 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 191 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 192 cb(chunk); 193 194 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 195 cb(chunk); 196 197 list_for_each_entry(chunk, &q->sacked, transmitted_list) 198 cb(chunk); 199 200 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 201 cb(chunk); 202 203 list_for_each_entry(chunk, &q->out_chunk_list, list) 204 cb(chunk); 205 } 206 207 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 208 void (*cb)(struct sk_buff *, struct sock *)) 209 210 { 211 struct sk_buff *skb, *tmp; 212 213 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 214 cb(skb, sk); 215 216 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 217 cb(skb, sk); 218 219 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 220 cb(skb, sk); 221 } 222 223 /* Verify that this is a valid address. */ 224 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 225 int len) 226 { 227 struct sctp_af *af; 228 229 /* Verify basic sockaddr. */ 230 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 231 if (!af) 232 return -EINVAL; 233 234 /* Is this a valid SCTP address? */ 235 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 236 return -EINVAL; 237 238 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /* Look up the association by its id. If this is not a UDP-style 245 * socket, the ID field is always ignored. 246 */ 247 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 248 { 249 struct sctp_association *asoc = NULL; 250 251 /* If this is not a UDP-style socket, assoc id should be ignored. */ 252 if (!sctp_style(sk, UDP)) { 253 /* Return NULL if the socket state is not ESTABLISHED. It 254 * could be a TCP-style listening socket or a socket which 255 * hasn't yet called connect() to establish an association. 256 */ 257 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 258 return NULL; 259 260 /* Get the first and the only association from the list. */ 261 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 262 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 263 struct sctp_association, asocs); 264 return asoc; 265 } 266 267 /* Otherwise this is a UDP-style socket. */ 268 if (!id || (id == (sctp_assoc_t)-1)) 269 return NULL; 270 271 spin_lock_bh(&sctp_assocs_id_lock); 272 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 273 spin_unlock_bh(&sctp_assocs_id_lock); 274 275 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 276 return NULL; 277 278 return asoc; 279 } 280 281 /* Look up the transport from an address and an assoc id. If both address and 282 * id are specified, the associations matching the address and the id should be 283 * the same. 284 */ 285 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 286 struct sockaddr_storage *addr, 287 sctp_assoc_t id) 288 { 289 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 290 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 291 union sctp_addr *laddr = (union sctp_addr *)addr; 292 struct sctp_transport *transport; 293 294 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 295 return NULL; 296 297 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 298 laddr, 299 &transport); 300 301 if (!addr_asoc) 302 return NULL; 303 304 id_asoc = sctp_id2assoc(sk, id); 305 if (id_asoc && (id_asoc != addr_asoc)) 306 return NULL; 307 308 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 309 (union sctp_addr *)addr); 310 311 return transport; 312 } 313 314 /* API 3.1.2 bind() - UDP Style Syntax 315 * The syntax of bind() is, 316 * 317 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 318 * 319 * sd - the socket descriptor returned by socket(). 320 * addr - the address structure (struct sockaddr_in or struct 321 * sockaddr_in6 [RFC 2553]), 322 * addr_len - the size of the address structure. 323 */ 324 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 325 { 326 int retval = 0; 327 328 lock_sock(sk); 329 330 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 331 addr, addr_len); 332 333 /* Disallow binding twice. */ 334 if (!sctp_sk(sk)->ep->base.bind_addr.port) 335 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 336 addr_len); 337 else 338 retval = -EINVAL; 339 340 release_sock(sk); 341 342 return retval; 343 } 344 345 static long sctp_get_port_local(struct sock *, union sctp_addr *); 346 347 /* Verify this is a valid sockaddr. */ 348 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 349 union sctp_addr *addr, int len) 350 { 351 struct sctp_af *af; 352 353 /* Check minimum size. */ 354 if (len < sizeof (struct sockaddr)) 355 return NULL; 356 357 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 358 return NULL; 359 360 if (addr->sa.sa_family == AF_INET6) { 361 if (len < SIN6_LEN_RFC2133) 362 return NULL; 363 /* V4 mapped address are really of AF_INET family */ 364 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 365 !opt->pf->af_supported(AF_INET, opt)) 366 return NULL; 367 } 368 369 /* If we get this far, af is valid. */ 370 af = sctp_get_af_specific(addr->sa.sa_family); 371 372 if (len < af->sockaddr_len) 373 return NULL; 374 375 return af; 376 } 377 378 /* Bind a local address either to an endpoint or to an association. */ 379 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 380 { 381 struct net *net = sock_net(sk); 382 struct sctp_sock *sp = sctp_sk(sk); 383 struct sctp_endpoint *ep = sp->ep; 384 struct sctp_bind_addr *bp = &ep->base.bind_addr; 385 struct sctp_af *af; 386 unsigned short snum; 387 int ret = 0; 388 389 /* Common sockaddr verification. */ 390 af = sctp_sockaddr_af(sp, addr, len); 391 if (!af) { 392 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 393 __func__, sk, addr, len); 394 return -EINVAL; 395 } 396 397 snum = ntohs(addr->v4.sin_port); 398 399 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 400 __func__, sk, &addr->sa, bp->port, snum, len); 401 402 /* PF specific bind() address verification. */ 403 if (!sp->pf->bind_verify(sp, addr)) 404 return -EADDRNOTAVAIL; 405 406 /* We must either be unbound, or bind to the same port. 407 * It's OK to allow 0 ports if we are already bound. 408 * We'll just inhert an already bound port in this case 409 */ 410 if (bp->port) { 411 if (!snum) 412 snum = bp->port; 413 else if (snum != bp->port) { 414 pr_debug("%s: new port %d doesn't match existing port " 415 "%d\n", __func__, snum, bp->port); 416 return -EINVAL; 417 } 418 } 419 420 if (snum && snum < inet_prot_sock(net) && 421 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 422 return -EACCES; 423 424 /* See if the address matches any of the addresses we may have 425 * already bound before checking against other endpoints. 426 */ 427 if (sctp_bind_addr_match(bp, addr, sp)) 428 return -EINVAL; 429 430 /* Make sure we are allowed to bind here. 431 * The function sctp_get_port_local() does duplicate address 432 * detection. 433 */ 434 addr->v4.sin_port = htons(snum); 435 if ((ret = sctp_get_port_local(sk, addr))) { 436 return -EADDRINUSE; 437 } 438 439 /* Refresh ephemeral port. */ 440 if (!bp->port) 441 bp->port = inet_sk(sk)->inet_num; 442 443 /* Add the address to the bind address list. 444 * Use GFP_ATOMIC since BHs will be disabled. 445 */ 446 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 447 SCTP_ADDR_SRC, GFP_ATOMIC); 448 449 /* Copy back into socket for getsockname() use. */ 450 if (!ret) { 451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 452 sp->pf->to_sk_saddr(addr, sk); 453 } 454 455 return ret; 456 } 457 458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 459 * 460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 461 * at any one time. If a sender, after sending an ASCONF chunk, decides 462 * it needs to transfer another ASCONF Chunk, it MUST wait until the 463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 464 * subsequent ASCONF. Note this restriction binds each side, so at any 465 * time two ASCONF may be in-transit on any given association (one sent 466 * from each endpoint). 467 */ 468 static int sctp_send_asconf(struct sctp_association *asoc, 469 struct sctp_chunk *chunk) 470 { 471 struct net *net = sock_net(asoc->base.sk); 472 int retval = 0; 473 474 /* If there is an outstanding ASCONF chunk, queue it for later 475 * transmission. 476 */ 477 if (asoc->addip_last_asconf) { 478 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 479 goto out; 480 } 481 482 /* Hold the chunk until an ASCONF_ACK is received. */ 483 sctp_chunk_hold(chunk); 484 retval = sctp_primitive_ASCONF(net, asoc, chunk); 485 if (retval) 486 sctp_chunk_free(chunk); 487 else 488 asoc->addip_last_asconf = chunk; 489 490 out: 491 return retval; 492 } 493 494 /* Add a list of addresses as bind addresses to local endpoint or 495 * association. 496 * 497 * Basically run through each address specified in the addrs/addrcnt 498 * array/length pair, determine if it is IPv6 or IPv4 and call 499 * sctp_do_bind() on it. 500 * 501 * If any of them fails, then the operation will be reversed and the 502 * ones that were added will be removed. 503 * 504 * Only sctp_setsockopt_bindx() is supposed to call this function. 505 */ 506 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 507 { 508 int cnt; 509 int retval = 0; 510 void *addr_buf; 511 struct sockaddr *sa_addr; 512 struct sctp_af *af; 513 514 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 515 addrs, addrcnt); 516 517 addr_buf = addrs; 518 for (cnt = 0; cnt < addrcnt; cnt++) { 519 /* The list may contain either IPv4 or IPv6 address; 520 * determine the address length for walking thru the list. 521 */ 522 sa_addr = addr_buf; 523 af = sctp_get_af_specific(sa_addr->sa_family); 524 if (!af) { 525 retval = -EINVAL; 526 goto err_bindx_add; 527 } 528 529 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 530 af->sockaddr_len); 531 532 addr_buf += af->sockaddr_len; 533 534 err_bindx_add: 535 if (retval < 0) { 536 /* Failed. Cleanup the ones that have been added */ 537 if (cnt > 0) 538 sctp_bindx_rem(sk, addrs, cnt); 539 return retval; 540 } 541 } 542 543 return retval; 544 } 545 546 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 547 * associations that are part of the endpoint indicating that a list of local 548 * addresses are added to the endpoint. 549 * 550 * If any of the addresses is already in the bind address list of the 551 * association, we do not send the chunk for that association. But it will not 552 * affect other associations. 553 * 554 * Only sctp_setsockopt_bindx() is supposed to call this function. 555 */ 556 static int sctp_send_asconf_add_ip(struct sock *sk, 557 struct sockaddr *addrs, 558 int addrcnt) 559 { 560 struct net *net = sock_net(sk); 561 struct sctp_sock *sp; 562 struct sctp_endpoint *ep; 563 struct sctp_association *asoc; 564 struct sctp_bind_addr *bp; 565 struct sctp_chunk *chunk; 566 struct sctp_sockaddr_entry *laddr; 567 union sctp_addr *addr; 568 union sctp_addr saveaddr; 569 void *addr_buf; 570 struct sctp_af *af; 571 struct list_head *p; 572 int i; 573 int retval = 0; 574 575 if (!net->sctp.addip_enable) 576 return retval; 577 578 sp = sctp_sk(sk); 579 ep = sp->ep; 580 581 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 582 __func__, sk, addrs, addrcnt); 583 584 list_for_each_entry(asoc, &ep->asocs, asocs) { 585 if (!asoc->peer.asconf_capable) 586 continue; 587 588 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 589 continue; 590 591 if (!sctp_state(asoc, ESTABLISHED)) 592 continue; 593 594 /* Check if any address in the packed array of addresses is 595 * in the bind address list of the association. If so, 596 * do not send the asconf chunk to its peer, but continue with 597 * other associations. 598 */ 599 addr_buf = addrs; 600 for (i = 0; i < addrcnt; i++) { 601 addr = addr_buf; 602 af = sctp_get_af_specific(addr->v4.sin_family); 603 if (!af) { 604 retval = -EINVAL; 605 goto out; 606 } 607 608 if (sctp_assoc_lookup_laddr(asoc, addr)) 609 break; 610 611 addr_buf += af->sockaddr_len; 612 } 613 if (i < addrcnt) 614 continue; 615 616 /* Use the first valid address in bind addr list of 617 * association as Address Parameter of ASCONF CHUNK. 618 */ 619 bp = &asoc->base.bind_addr; 620 p = bp->address_list.next; 621 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 622 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 623 addrcnt, SCTP_PARAM_ADD_IP); 624 if (!chunk) { 625 retval = -ENOMEM; 626 goto out; 627 } 628 629 /* Add the new addresses to the bind address list with 630 * use_as_src set to 0. 631 */ 632 addr_buf = addrs; 633 for (i = 0; i < addrcnt; i++) { 634 addr = addr_buf; 635 af = sctp_get_af_specific(addr->v4.sin_family); 636 memcpy(&saveaddr, addr, af->sockaddr_len); 637 retval = sctp_add_bind_addr(bp, &saveaddr, 638 sizeof(saveaddr), 639 SCTP_ADDR_NEW, GFP_ATOMIC); 640 addr_buf += af->sockaddr_len; 641 } 642 if (asoc->src_out_of_asoc_ok) { 643 struct sctp_transport *trans; 644 645 list_for_each_entry(trans, 646 &asoc->peer.transport_addr_list, transports) { 647 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 648 2*asoc->pathmtu, 4380)); 649 trans->ssthresh = asoc->peer.i.a_rwnd; 650 trans->rto = asoc->rto_initial; 651 sctp_max_rto(asoc, trans); 652 trans->rtt = trans->srtt = trans->rttvar = 0; 653 /* Clear the source and route cache */ 654 sctp_transport_route(trans, NULL, 655 sctp_sk(asoc->base.sk)); 656 } 657 } 658 retval = sctp_send_asconf(asoc, chunk); 659 } 660 661 out: 662 return retval; 663 } 664 665 /* Remove a list of addresses from bind addresses list. Do not remove the 666 * last address. 667 * 668 * Basically run through each address specified in the addrs/addrcnt 669 * array/length pair, determine if it is IPv6 or IPv4 and call 670 * sctp_del_bind() on it. 671 * 672 * If any of them fails, then the operation will be reversed and the 673 * ones that were removed will be added back. 674 * 675 * At least one address has to be left; if only one address is 676 * available, the operation will return -EBUSY. 677 * 678 * Only sctp_setsockopt_bindx() is supposed to call this function. 679 */ 680 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 681 { 682 struct sctp_sock *sp = sctp_sk(sk); 683 struct sctp_endpoint *ep = sp->ep; 684 int cnt; 685 struct sctp_bind_addr *bp = &ep->base.bind_addr; 686 int retval = 0; 687 void *addr_buf; 688 union sctp_addr *sa_addr; 689 struct sctp_af *af; 690 691 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 692 __func__, sk, addrs, addrcnt); 693 694 addr_buf = addrs; 695 for (cnt = 0; cnt < addrcnt; cnt++) { 696 /* If the bind address list is empty or if there is only one 697 * bind address, there is nothing more to be removed (we need 698 * at least one address here). 699 */ 700 if (list_empty(&bp->address_list) || 701 (sctp_list_single_entry(&bp->address_list))) { 702 retval = -EBUSY; 703 goto err_bindx_rem; 704 } 705 706 sa_addr = addr_buf; 707 af = sctp_get_af_specific(sa_addr->sa.sa_family); 708 if (!af) { 709 retval = -EINVAL; 710 goto err_bindx_rem; 711 } 712 713 if (!af->addr_valid(sa_addr, sp, NULL)) { 714 retval = -EADDRNOTAVAIL; 715 goto err_bindx_rem; 716 } 717 718 if (sa_addr->v4.sin_port && 719 sa_addr->v4.sin_port != htons(bp->port)) { 720 retval = -EINVAL; 721 goto err_bindx_rem; 722 } 723 724 if (!sa_addr->v4.sin_port) 725 sa_addr->v4.sin_port = htons(bp->port); 726 727 /* FIXME - There is probably a need to check if sk->sk_saddr and 728 * sk->sk_rcv_addr are currently set to one of the addresses to 729 * be removed. This is something which needs to be looked into 730 * when we are fixing the outstanding issues with multi-homing 731 * socket routing and failover schemes. Refer to comments in 732 * sctp_do_bind(). -daisy 733 */ 734 retval = sctp_del_bind_addr(bp, sa_addr); 735 736 addr_buf += af->sockaddr_len; 737 err_bindx_rem: 738 if (retval < 0) { 739 /* Failed. Add the ones that has been removed back */ 740 if (cnt > 0) 741 sctp_bindx_add(sk, addrs, cnt); 742 return retval; 743 } 744 } 745 746 return retval; 747 } 748 749 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 750 * the associations that are part of the endpoint indicating that a list of 751 * local addresses are removed from the endpoint. 752 * 753 * If any of the addresses is already in the bind address list of the 754 * association, we do not send the chunk for that association. But it will not 755 * affect other associations. 756 * 757 * Only sctp_setsockopt_bindx() is supposed to call this function. 758 */ 759 static int sctp_send_asconf_del_ip(struct sock *sk, 760 struct sockaddr *addrs, 761 int addrcnt) 762 { 763 struct net *net = sock_net(sk); 764 struct sctp_sock *sp; 765 struct sctp_endpoint *ep; 766 struct sctp_association *asoc; 767 struct sctp_transport *transport; 768 struct sctp_bind_addr *bp; 769 struct sctp_chunk *chunk; 770 union sctp_addr *laddr; 771 void *addr_buf; 772 struct sctp_af *af; 773 struct sctp_sockaddr_entry *saddr; 774 int i; 775 int retval = 0; 776 int stored = 0; 777 778 chunk = NULL; 779 if (!net->sctp.addip_enable) 780 return retval; 781 782 sp = sctp_sk(sk); 783 ep = sp->ep; 784 785 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 786 __func__, sk, addrs, addrcnt); 787 788 list_for_each_entry(asoc, &ep->asocs, asocs) { 789 790 if (!asoc->peer.asconf_capable) 791 continue; 792 793 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 794 continue; 795 796 if (!sctp_state(asoc, ESTABLISHED)) 797 continue; 798 799 /* Check if any address in the packed array of addresses is 800 * not present in the bind address list of the association. 801 * If so, do not send the asconf chunk to its peer, but 802 * continue with other associations. 803 */ 804 addr_buf = addrs; 805 for (i = 0; i < addrcnt; i++) { 806 laddr = addr_buf; 807 af = sctp_get_af_specific(laddr->v4.sin_family); 808 if (!af) { 809 retval = -EINVAL; 810 goto out; 811 } 812 813 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 814 break; 815 816 addr_buf += af->sockaddr_len; 817 } 818 if (i < addrcnt) 819 continue; 820 821 /* Find one address in the association's bind address list 822 * that is not in the packed array of addresses. This is to 823 * make sure that we do not delete all the addresses in the 824 * association. 825 */ 826 bp = &asoc->base.bind_addr; 827 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 828 addrcnt, sp); 829 if ((laddr == NULL) && (addrcnt == 1)) { 830 if (asoc->asconf_addr_del_pending) 831 continue; 832 asoc->asconf_addr_del_pending = 833 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 834 if (asoc->asconf_addr_del_pending == NULL) { 835 retval = -ENOMEM; 836 goto out; 837 } 838 asoc->asconf_addr_del_pending->sa.sa_family = 839 addrs->sa_family; 840 asoc->asconf_addr_del_pending->v4.sin_port = 841 htons(bp->port); 842 if (addrs->sa_family == AF_INET) { 843 struct sockaddr_in *sin; 844 845 sin = (struct sockaddr_in *)addrs; 846 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 847 } else if (addrs->sa_family == AF_INET6) { 848 struct sockaddr_in6 *sin6; 849 850 sin6 = (struct sockaddr_in6 *)addrs; 851 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 852 } 853 854 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 855 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 856 asoc->asconf_addr_del_pending); 857 858 asoc->src_out_of_asoc_ok = 1; 859 stored = 1; 860 goto skip_mkasconf; 861 } 862 863 if (laddr == NULL) 864 return -EINVAL; 865 866 /* We do not need RCU protection throughout this loop 867 * because this is done under a socket lock from the 868 * setsockopt call. 869 */ 870 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 871 SCTP_PARAM_DEL_IP); 872 if (!chunk) { 873 retval = -ENOMEM; 874 goto out; 875 } 876 877 skip_mkasconf: 878 /* Reset use_as_src flag for the addresses in the bind address 879 * list that are to be deleted. 880 */ 881 addr_buf = addrs; 882 for (i = 0; i < addrcnt; i++) { 883 laddr = addr_buf; 884 af = sctp_get_af_specific(laddr->v4.sin_family); 885 list_for_each_entry(saddr, &bp->address_list, list) { 886 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 887 saddr->state = SCTP_ADDR_DEL; 888 } 889 addr_buf += af->sockaddr_len; 890 } 891 892 /* Update the route and saddr entries for all the transports 893 * as some of the addresses in the bind address list are 894 * about to be deleted and cannot be used as source addresses. 895 */ 896 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 897 transports) { 898 sctp_transport_route(transport, NULL, 899 sctp_sk(asoc->base.sk)); 900 } 901 902 if (stored) 903 /* We don't need to transmit ASCONF */ 904 continue; 905 retval = sctp_send_asconf(asoc, chunk); 906 } 907 out: 908 return retval; 909 } 910 911 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 912 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 913 { 914 struct sock *sk = sctp_opt2sk(sp); 915 union sctp_addr *addr; 916 struct sctp_af *af; 917 918 /* It is safe to write port space in caller. */ 919 addr = &addrw->a; 920 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 921 af = sctp_get_af_specific(addr->sa.sa_family); 922 if (!af) 923 return -EINVAL; 924 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 925 return -EINVAL; 926 927 if (addrw->state == SCTP_ADDR_NEW) 928 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 929 else 930 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 931 } 932 933 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 934 * 935 * API 8.1 936 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 937 * int flags); 938 * 939 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 940 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 941 * or IPv6 addresses. 942 * 943 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 944 * Section 3.1.2 for this usage. 945 * 946 * addrs is a pointer to an array of one or more socket addresses. Each 947 * address is contained in its appropriate structure (i.e. struct 948 * sockaddr_in or struct sockaddr_in6) the family of the address type 949 * must be used to distinguish the address length (note that this 950 * representation is termed a "packed array" of addresses). The caller 951 * specifies the number of addresses in the array with addrcnt. 952 * 953 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 954 * -1, and sets errno to the appropriate error code. 955 * 956 * For SCTP, the port given in each socket address must be the same, or 957 * sctp_bindx() will fail, setting errno to EINVAL. 958 * 959 * The flags parameter is formed from the bitwise OR of zero or more of 960 * the following currently defined flags: 961 * 962 * SCTP_BINDX_ADD_ADDR 963 * 964 * SCTP_BINDX_REM_ADDR 965 * 966 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 967 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 968 * addresses from the association. The two flags are mutually exclusive; 969 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 970 * not remove all addresses from an association; sctp_bindx() will 971 * reject such an attempt with EINVAL. 972 * 973 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 974 * additional addresses with an endpoint after calling bind(). Or use 975 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 976 * socket is associated with so that no new association accepted will be 977 * associated with those addresses. If the endpoint supports dynamic 978 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 979 * endpoint to send the appropriate message to the peer to change the 980 * peers address lists. 981 * 982 * Adding and removing addresses from a connected association is 983 * optional functionality. Implementations that do not support this 984 * functionality should return EOPNOTSUPP. 985 * 986 * Basically do nothing but copying the addresses from user to kernel 987 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 988 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 989 * from userspace. 990 * 991 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 992 * it. 993 * 994 * sk The sk of the socket 995 * addrs The pointer to the addresses in user land 996 * addrssize Size of the addrs buffer 997 * op Operation to perform (add or remove, see the flags of 998 * sctp_bindx) 999 * 1000 * Returns 0 if ok, <0 errno code on error. 1001 */ 1002 static int sctp_setsockopt_bindx(struct sock *sk, 1003 struct sockaddr __user *addrs, 1004 int addrs_size, int op) 1005 { 1006 struct sockaddr *kaddrs; 1007 int err; 1008 int addrcnt = 0; 1009 int walk_size = 0; 1010 struct sockaddr *sa_addr; 1011 void *addr_buf; 1012 struct sctp_af *af; 1013 1014 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1015 __func__, sk, addrs, addrs_size, op); 1016 1017 if (unlikely(addrs_size <= 0)) 1018 return -EINVAL; 1019 1020 kaddrs = vmemdup_user(addrs, addrs_size); 1021 if (unlikely(IS_ERR(kaddrs))) 1022 return PTR_ERR(kaddrs); 1023 1024 /* Walk through the addrs buffer and count the number of addresses. */ 1025 addr_buf = kaddrs; 1026 while (walk_size < addrs_size) { 1027 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1028 kvfree(kaddrs); 1029 return -EINVAL; 1030 } 1031 1032 sa_addr = addr_buf; 1033 af = sctp_get_af_specific(sa_addr->sa_family); 1034 1035 /* If the address family is not supported or if this address 1036 * causes the address buffer to overflow return EINVAL. 1037 */ 1038 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1039 kvfree(kaddrs); 1040 return -EINVAL; 1041 } 1042 addrcnt++; 1043 addr_buf += af->sockaddr_len; 1044 walk_size += af->sockaddr_len; 1045 } 1046 1047 /* Do the work. */ 1048 switch (op) { 1049 case SCTP_BINDX_ADD_ADDR: 1050 /* Allow security module to validate bindx addresses. */ 1051 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1052 (struct sockaddr *)kaddrs, 1053 addrs_size); 1054 if (err) 1055 goto out; 1056 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1057 if (err) 1058 goto out; 1059 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1060 break; 1061 1062 case SCTP_BINDX_REM_ADDR: 1063 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1064 if (err) 1065 goto out; 1066 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1067 break; 1068 1069 default: 1070 err = -EINVAL; 1071 break; 1072 } 1073 1074 out: 1075 kvfree(kaddrs); 1076 1077 return err; 1078 } 1079 1080 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1081 * 1082 * Common routine for handling connect() and sctp_connectx(). 1083 * Connect will come in with just a single address. 1084 */ 1085 static int __sctp_connect(struct sock *sk, 1086 struct sockaddr *kaddrs, 1087 int addrs_size, int flags, 1088 sctp_assoc_t *assoc_id) 1089 { 1090 struct net *net = sock_net(sk); 1091 struct sctp_sock *sp; 1092 struct sctp_endpoint *ep; 1093 struct sctp_association *asoc = NULL; 1094 struct sctp_association *asoc2; 1095 struct sctp_transport *transport; 1096 union sctp_addr to; 1097 enum sctp_scope scope; 1098 long timeo; 1099 int err = 0; 1100 int addrcnt = 0; 1101 int walk_size = 0; 1102 union sctp_addr *sa_addr = NULL; 1103 void *addr_buf; 1104 unsigned short port; 1105 1106 sp = sctp_sk(sk); 1107 ep = sp->ep; 1108 1109 /* connect() cannot be done on a socket that is already in ESTABLISHED 1110 * state - UDP-style peeled off socket or a TCP-style socket that 1111 * is already connected. 1112 * It cannot be done even on a TCP-style listening socket. 1113 */ 1114 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1115 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1116 err = -EISCONN; 1117 goto out_free; 1118 } 1119 1120 /* Walk through the addrs buffer and count the number of addresses. */ 1121 addr_buf = kaddrs; 1122 while (walk_size < addrs_size) { 1123 struct sctp_af *af; 1124 1125 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1126 err = -EINVAL; 1127 goto out_free; 1128 } 1129 1130 sa_addr = addr_buf; 1131 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1132 1133 /* If the address family is not supported or if this address 1134 * causes the address buffer to overflow return EINVAL. 1135 */ 1136 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1137 err = -EINVAL; 1138 goto out_free; 1139 } 1140 1141 port = ntohs(sa_addr->v4.sin_port); 1142 1143 /* Save current address so we can work with it */ 1144 memcpy(&to, sa_addr, af->sockaddr_len); 1145 1146 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1147 if (err) 1148 goto out_free; 1149 1150 /* Make sure the destination port is correctly set 1151 * in all addresses. 1152 */ 1153 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1154 err = -EINVAL; 1155 goto out_free; 1156 } 1157 1158 /* Check if there already is a matching association on the 1159 * endpoint (other than the one created here). 1160 */ 1161 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1162 if (asoc2 && asoc2 != asoc) { 1163 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1164 err = -EISCONN; 1165 else 1166 err = -EALREADY; 1167 goto out_free; 1168 } 1169 1170 /* If we could not find a matching association on the endpoint, 1171 * make sure that there is no peeled-off association matching 1172 * the peer address even on another socket. 1173 */ 1174 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1175 err = -EADDRNOTAVAIL; 1176 goto out_free; 1177 } 1178 1179 if (!asoc) { 1180 /* If a bind() or sctp_bindx() is not called prior to 1181 * an sctp_connectx() call, the system picks an 1182 * ephemeral port and will choose an address set 1183 * equivalent to binding with a wildcard address. 1184 */ 1185 if (!ep->base.bind_addr.port) { 1186 if (sctp_autobind(sk)) { 1187 err = -EAGAIN; 1188 goto out_free; 1189 } 1190 } else { 1191 /* 1192 * If an unprivileged user inherits a 1-many 1193 * style socket with open associations on a 1194 * privileged port, it MAY be permitted to 1195 * accept new associations, but it SHOULD NOT 1196 * be permitted to open new associations. 1197 */ 1198 if (ep->base.bind_addr.port < 1199 inet_prot_sock(net) && 1200 !ns_capable(net->user_ns, 1201 CAP_NET_BIND_SERVICE)) { 1202 err = -EACCES; 1203 goto out_free; 1204 } 1205 } 1206 1207 scope = sctp_scope(&to); 1208 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1209 if (!asoc) { 1210 err = -ENOMEM; 1211 goto out_free; 1212 } 1213 1214 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1215 GFP_KERNEL); 1216 if (err < 0) { 1217 goto out_free; 1218 } 1219 1220 } 1221 1222 /* Prime the peer's transport structures. */ 1223 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1224 SCTP_UNKNOWN); 1225 if (!transport) { 1226 err = -ENOMEM; 1227 goto out_free; 1228 } 1229 1230 addrcnt++; 1231 addr_buf += af->sockaddr_len; 1232 walk_size += af->sockaddr_len; 1233 } 1234 1235 /* In case the user of sctp_connectx() wants an association 1236 * id back, assign one now. 1237 */ 1238 if (assoc_id) { 1239 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1240 if (err < 0) 1241 goto out_free; 1242 } 1243 1244 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1245 if (err < 0) { 1246 goto out_free; 1247 } 1248 1249 /* Initialize sk's dport and daddr for getpeername() */ 1250 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1251 sp->pf->to_sk_daddr(sa_addr, sk); 1252 sk->sk_err = 0; 1253 1254 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1255 1256 if (assoc_id) 1257 *assoc_id = asoc->assoc_id; 1258 1259 err = sctp_wait_for_connect(asoc, &timeo); 1260 /* Note: the asoc may be freed after the return of 1261 * sctp_wait_for_connect. 1262 */ 1263 1264 /* Don't free association on exit. */ 1265 asoc = NULL; 1266 1267 out_free: 1268 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1269 __func__, asoc, kaddrs, err); 1270 1271 if (asoc) { 1272 /* sctp_primitive_ASSOCIATE may have added this association 1273 * To the hash table, try to unhash it, just in case, its a noop 1274 * if it wasn't hashed so we're safe 1275 */ 1276 sctp_association_free(asoc); 1277 } 1278 return err; 1279 } 1280 1281 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1282 * 1283 * API 8.9 1284 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1285 * sctp_assoc_t *asoc); 1286 * 1287 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1288 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1289 * or IPv6 addresses. 1290 * 1291 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1292 * Section 3.1.2 for this usage. 1293 * 1294 * addrs is a pointer to an array of one or more socket addresses. Each 1295 * address is contained in its appropriate structure (i.e. struct 1296 * sockaddr_in or struct sockaddr_in6) the family of the address type 1297 * must be used to distengish the address length (note that this 1298 * representation is termed a "packed array" of addresses). The caller 1299 * specifies the number of addresses in the array with addrcnt. 1300 * 1301 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1302 * the association id of the new association. On failure, sctp_connectx() 1303 * returns -1, and sets errno to the appropriate error code. The assoc_id 1304 * is not touched by the kernel. 1305 * 1306 * For SCTP, the port given in each socket address must be the same, or 1307 * sctp_connectx() will fail, setting errno to EINVAL. 1308 * 1309 * An application can use sctp_connectx to initiate an association with 1310 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1311 * allows a caller to specify multiple addresses at which a peer can be 1312 * reached. The way the SCTP stack uses the list of addresses to set up 1313 * the association is implementation dependent. This function only 1314 * specifies that the stack will try to make use of all the addresses in 1315 * the list when needed. 1316 * 1317 * Note that the list of addresses passed in is only used for setting up 1318 * the association. It does not necessarily equal the set of addresses 1319 * the peer uses for the resulting association. If the caller wants to 1320 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1321 * retrieve them after the association has been set up. 1322 * 1323 * Basically do nothing but copying the addresses from user to kernel 1324 * land and invoking either sctp_connectx(). This is used for tunneling 1325 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1326 * 1327 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1328 * it. 1329 * 1330 * sk The sk of the socket 1331 * addrs The pointer to the addresses in user land 1332 * addrssize Size of the addrs buffer 1333 * 1334 * Returns >=0 if ok, <0 errno code on error. 1335 */ 1336 static int __sctp_setsockopt_connectx(struct sock *sk, 1337 struct sockaddr __user *addrs, 1338 int addrs_size, 1339 sctp_assoc_t *assoc_id) 1340 { 1341 struct sockaddr *kaddrs; 1342 int err = 0, flags = 0; 1343 1344 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1345 __func__, sk, addrs, addrs_size); 1346 1347 if (unlikely(addrs_size <= 0)) 1348 return -EINVAL; 1349 1350 kaddrs = vmemdup_user(addrs, addrs_size); 1351 if (unlikely(IS_ERR(kaddrs))) 1352 return PTR_ERR(kaddrs); 1353 1354 /* Allow security module to validate connectx addresses. */ 1355 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1356 (struct sockaddr *)kaddrs, 1357 addrs_size); 1358 if (err) 1359 goto out_free; 1360 1361 /* in-kernel sockets don't generally have a file allocated to them 1362 * if all they do is call sock_create_kern(). 1363 */ 1364 if (sk->sk_socket->file) 1365 flags = sk->sk_socket->file->f_flags; 1366 1367 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1368 1369 out_free: 1370 kvfree(kaddrs); 1371 1372 return err; 1373 } 1374 1375 /* 1376 * This is an older interface. It's kept for backward compatibility 1377 * to the option that doesn't provide association id. 1378 */ 1379 static int sctp_setsockopt_connectx_old(struct sock *sk, 1380 struct sockaddr __user *addrs, 1381 int addrs_size) 1382 { 1383 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1384 } 1385 1386 /* 1387 * New interface for the API. The since the API is done with a socket 1388 * option, to make it simple we feed back the association id is as a return 1389 * indication to the call. Error is always negative and association id is 1390 * always positive. 1391 */ 1392 static int sctp_setsockopt_connectx(struct sock *sk, 1393 struct sockaddr __user *addrs, 1394 int addrs_size) 1395 { 1396 sctp_assoc_t assoc_id = 0; 1397 int err = 0; 1398 1399 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1400 1401 if (err) 1402 return err; 1403 else 1404 return assoc_id; 1405 } 1406 1407 /* 1408 * New (hopefully final) interface for the API. 1409 * We use the sctp_getaddrs_old structure so that use-space library 1410 * can avoid any unnecessary allocations. The only different part 1411 * is that we store the actual length of the address buffer into the 1412 * addrs_num structure member. That way we can re-use the existing 1413 * code. 1414 */ 1415 #ifdef CONFIG_COMPAT 1416 struct compat_sctp_getaddrs_old { 1417 sctp_assoc_t assoc_id; 1418 s32 addr_num; 1419 compat_uptr_t addrs; /* struct sockaddr * */ 1420 }; 1421 #endif 1422 1423 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1424 char __user *optval, 1425 int __user *optlen) 1426 { 1427 struct sctp_getaddrs_old param; 1428 sctp_assoc_t assoc_id = 0; 1429 int err = 0; 1430 1431 #ifdef CONFIG_COMPAT 1432 if (in_compat_syscall()) { 1433 struct compat_sctp_getaddrs_old param32; 1434 1435 if (len < sizeof(param32)) 1436 return -EINVAL; 1437 if (copy_from_user(¶m32, optval, sizeof(param32))) 1438 return -EFAULT; 1439 1440 param.assoc_id = param32.assoc_id; 1441 param.addr_num = param32.addr_num; 1442 param.addrs = compat_ptr(param32.addrs); 1443 } else 1444 #endif 1445 { 1446 if (len < sizeof(param)) 1447 return -EINVAL; 1448 if (copy_from_user(¶m, optval, sizeof(param))) 1449 return -EFAULT; 1450 } 1451 1452 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1453 param.addrs, param.addr_num, 1454 &assoc_id); 1455 if (err == 0 || err == -EINPROGRESS) { 1456 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1457 return -EFAULT; 1458 if (put_user(sizeof(assoc_id), optlen)) 1459 return -EFAULT; 1460 } 1461 1462 return err; 1463 } 1464 1465 /* API 3.1.4 close() - UDP Style Syntax 1466 * Applications use close() to perform graceful shutdown (as described in 1467 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1468 * by a UDP-style socket. 1469 * 1470 * The syntax is 1471 * 1472 * ret = close(int sd); 1473 * 1474 * sd - the socket descriptor of the associations to be closed. 1475 * 1476 * To gracefully shutdown a specific association represented by the 1477 * UDP-style socket, an application should use the sendmsg() call, 1478 * passing no user data, but including the appropriate flag in the 1479 * ancillary data (see Section xxxx). 1480 * 1481 * If sd in the close() call is a branched-off socket representing only 1482 * one association, the shutdown is performed on that association only. 1483 * 1484 * 4.1.6 close() - TCP Style Syntax 1485 * 1486 * Applications use close() to gracefully close down an association. 1487 * 1488 * The syntax is: 1489 * 1490 * int close(int sd); 1491 * 1492 * sd - the socket descriptor of the association to be closed. 1493 * 1494 * After an application calls close() on a socket descriptor, no further 1495 * socket operations will succeed on that descriptor. 1496 * 1497 * API 7.1.4 SO_LINGER 1498 * 1499 * An application using the TCP-style socket can use this option to 1500 * perform the SCTP ABORT primitive. The linger option structure is: 1501 * 1502 * struct linger { 1503 * int l_onoff; // option on/off 1504 * int l_linger; // linger time 1505 * }; 1506 * 1507 * To enable the option, set l_onoff to 1. If the l_linger value is set 1508 * to 0, calling close() is the same as the ABORT primitive. If the 1509 * value is set to a negative value, the setsockopt() call will return 1510 * an error. If the value is set to a positive value linger_time, the 1511 * close() can be blocked for at most linger_time ms. If the graceful 1512 * shutdown phase does not finish during this period, close() will 1513 * return but the graceful shutdown phase continues in the system. 1514 */ 1515 static void sctp_close(struct sock *sk, long timeout) 1516 { 1517 struct net *net = sock_net(sk); 1518 struct sctp_endpoint *ep; 1519 struct sctp_association *asoc; 1520 struct list_head *pos, *temp; 1521 unsigned int data_was_unread; 1522 1523 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1524 1525 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1526 sk->sk_shutdown = SHUTDOWN_MASK; 1527 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1528 1529 ep = sctp_sk(sk)->ep; 1530 1531 /* Clean up any skbs sitting on the receive queue. */ 1532 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1533 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1534 1535 /* Walk all associations on an endpoint. */ 1536 list_for_each_safe(pos, temp, &ep->asocs) { 1537 asoc = list_entry(pos, struct sctp_association, asocs); 1538 1539 if (sctp_style(sk, TCP)) { 1540 /* A closed association can still be in the list if 1541 * it belongs to a TCP-style listening socket that is 1542 * not yet accepted. If so, free it. If not, send an 1543 * ABORT or SHUTDOWN based on the linger options. 1544 */ 1545 if (sctp_state(asoc, CLOSED)) { 1546 sctp_association_free(asoc); 1547 continue; 1548 } 1549 } 1550 1551 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1552 !skb_queue_empty(&asoc->ulpq.reasm) || 1553 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1554 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1555 struct sctp_chunk *chunk; 1556 1557 chunk = sctp_make_abort_user(asoc, NULL, 0); 1558 sctp_primitive_ABORT(net, asoc, chunk); 1559 } else 1560 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1561 } 1562 1563 /* On a TCP-style socket, block for at most linger_time if set. */ 1564 if (sctp_style(sk, TCP) && timeout) 1565 sctp_wait_for_close(sk, timeout); 1566 1567 /* This will run the backlog queue. */ 1568 release_sock(sk); 1569 1570 /* Supposedly, no process has access to the socket, but 1571 * the net layers still may. 1572 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1573 * held and that should be grabbed before socket lock. 1574 */ 1575 spin_lock_bh(&net->sctp.addr_wq_lock); 1576 bh_lock_sock_nested(sk); 1577 1578 /* Hold the sock, since sk_common_release() will put sock_put() 1579 * and we have just a little more cleanup. 1580 */ 1581 sock_hold(sk); 1582 sk_common_release(sk); 1583 1584 bh_unlock_sock(sk); 1585 spin_unlock_bh(&net->sctp.addr_wq_lock); 1586 1587 sock_put(sk); 1588 1589 SCTP_DBG_OBJCNT_DEC(sock); 1590 } 1591 1592 /* Handle EPIPE error. */ 1593 static int sctp_error(struct sock *sk, int flags, int err) 1594 { 1595 if (err == -EPIPE) 1596 err = sock_error(sk) ? : -EPIPE; 1597 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1598 send_sig(SIGPIPE, current, 0); 1599 return err; 1600 } 1601 1602 /* API 3.1.3 sendmsg() - UDP Style Syntax 1603 * 1604 * An application uses sendmsg() and recvmsg() calls to transmit data to 1605 * and receive data from its peer. 1606 * 1607 * ssize_t sendmsg(int socket, const struct msghdr *message, 1608 * int flags); 1609 * 1610 * socket - the socket descriptor of the endpoint. 1611 * message - pointer to the msghdr structure which contains a single 1612 * user message and possibly some ancillary data. 1613 * 1614 * See Section 5 for complete description of the data 1615 * structures. 1616 * 1617 * flags - flags sent or received with the user message, see Section 1618 * 5 for complete description of the flags. 1619 * 1620 * Note: This function could use a rewrite especially when explicit 1621 * connect support comes in. 1622 */ 1623 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1624 1625 static int sctp_msghdr_parse(const struct msghdr *msg, 1626 struct sctp_cmsgs *cmsgs); 1627 1628 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1629 struct sctp_sndrcvinfo *srinfo, 1630 const struct msghdr *msg, size_t msg_len) 1631 { 1632 __u16 sflags; 1633 int err; 1634 1635 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1636 return -EPIPE; 1637 1638 if (msg_len > sk->sk_sndbuf) 1639 return -EMSGSIZE; 1640 1641 memset(cmsgs, 0, sizeof(*cmsgs)); 1642 err = sctp_msghdr_parse(msg, cmsgs); 1643 if (err) { 1644 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1645 return err; 1646 } 1647 1648 memset(srinfo, 0, sizeof(*srinfo)); 1649 if (cmsgs->srinfo) { 1650 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1651 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1652 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1653 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1654 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1655 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1656 } 1657 1658 if (cmsgs->sinfo) { 1659 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1660 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1661 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1662 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1663 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1664 } 1665 1666 if (cmsgs->prinfo) { 1667 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1668 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1669 cmsgs->prinfo->pr_policy); 1670 } 1671 1672 sflags = srinfo->sinfo_flags; 1673 if (!sflags && msg_len) 1674 return 0; 1675 1676 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1677 return -EINVAL; 1678 1679 if (((sflags & SCTP_EOF) && msg_len > 0) || 1680 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1681 return -EINVAL; 1682 1683 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1684 return -EINVAL; 1685 1686 return 0; 1687 } 1688 1689 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1690 struct sctp_cmsgs *cmsgs, 1691 union sctp_addr *daddr, 1692 struct sctp_transport **tp) 1693 { 1694 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1695 struct net *net = sock_net(sk); 1696 struct sctp_association *asoc; 1697 enum sctp_scope scope; 1698 struct cmsghdr *cmsg; 1699 struct sctp_af *af; 1700 int err; 1701 1702 *tp = NULL; 1703 1704 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1705 return -EINVAL; 1706 1707 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1708 sctp_sstate(sk, CLOSING))) 1709 return -EADDRNOTAVAIL; 1710 1711 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1712 return -EADDRNOTAVAIL; 1713 1714 if (!ep->base.bind_addr.port) { 1715 if (sctp_autobind(sk)) 1716 return -EAGAIN; 1717 } else { 1718 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1719 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1720 return -EACCES; 1721 } 1722 1723 scope = sctp_scope(daddr); 1724 1725 /* Label connection socket for first association 1-to-many 1726 * style for client sequence socket()->sendmsg(). This 1727 * needs to be done before sctp_assoc_add_peer() as that will 1728 * set up the initial packet that needs to account for any 1729 * security ip options (CIPSO/CALIPSO) added to the packet. 1730 */ 1731 af = sctp_get_af_specific(daddr->sa.sa_family); 1732 if (!af) 1733 return -EINVAL; 1734 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1735 (struct sockaddr *)daddr, 1736 af->sockaddr_len); 1737 if (err < 0) 1738 return err; 1739 1740 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1741 if (!asoc) 1742 return -ENOMEM; 1743 1744 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1745 err = -ENOMEM; 1746 goto free; 1747 } 1748 1749 if (cmsgs->init) { 1750 struct sctp_initmsg *init = cmsgs->init; 1751 1752 if (init->sinit_num_ostreams) { 1753 __u16 outcnt = init->sinit_num_ostreams; 1754 1755 asoc->c.sinit_num_ostreams = outcnt; 1756 /* outcnt has been changed, need to re-init stream */ 1757 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1758 GFP_KERNEL); 1759 if (err) 1760 goto free; 1761 } 1762 1763 if (init->sinit_max_instreams) 1764 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1765 1766 if (init->sinit_max_attempts) 1767 asoc->max_init_attempts = init->sinit_max_attempts; 1768 1769 if (init->sinit_max_init_timeo) 1770 asoc->max_init_timeo = 1771 msecs_to_jiffies(init->sinit_max_init_timeo); 1772 } 1773 1774 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1775 if (!*tp) { 1776 err = -ENOMEM; 1777 goto free; 1778 } 1779 1780 if (!cmsgs->addrs_msg) 1781 return 0; 1782 1783 /* sendv addr list parse */ 1784 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1785 struct sctp_transport *transport; 1786 struct sctp_association *old; 1787 union sctp_addr _daddr; 1788 int dlen; 1789 1790 if (cmsg->cmsg_level != IPPROTO_SCTP || 1791 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1792 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1793 continue; 1794 1795 daddr = &_daddr; 1796 memset(daddr, 0, sizeof(*daddr)); 1797 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1798 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1799 if (dlen < sizeof(struct in_addr)) { 1800 err = -EINVAL; 1801 goto free; 1802 } 1803 1804 dlen = sizeof(struct in_addr); 1805 daddr->v4.sin_family = AF_INET; 1806 daddr->v4.sin_port = htons(asoc->peer.port); 1807 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1808 } else { 1809 if (dlen < sizeof(struct in6_addr)) { 1810 err = -EINVAL; 1811 goto free; 1812 } 1813 1814 dlen = sizeof(struct in6_addr); 1815 daddr->v6.sin6_family = AF_INET6; 1816 daddr->v6.sin6_port = htons(asoc->peer.port); 1817 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1818 } 1819 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1820 if (err) 1821 goto free; 1822 1823 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1824 if (old && old != asoc) { 1825 if (old->state >= SCTP_STATE_ESTABLISHED) 1826 err = -EISCONN; 1827 else 1828 err = -EALREADY; 1829 goto free; 1830 } 1831 1832 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1833 err = -EADDRNOTAVAIL; 1834 goto free; 1835 } 1836 1837 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1838 SCTP_UNKNOWN); 1839 if (!transport) { 1840 err = -ENOMEM; 1841 goto free; 1842 } 1843 } 1844 1845 return 0; 1846 1847 free: 1848 sctp_association_free(asoc); 1849 return err; 1850 } 1851 1852 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1853 __u16 sflags, struct msghdr *msg, 1854 size_t msg_len) 1855 { 1856 struct sock *sk = asoc->base.sk; 1857 struct net *net = sock_net(sk); 1858 1859 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1860 return -EPIPE; 1861 1862 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1863 !sctp_state(asoc, ESTABLISHED)) 1864 return 0; 1865 1866 if (sflags & SCTP_EOF) { 1867 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1868 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1869 1870 return 0; 1871 } 1872 1873 if (sflags & SCTP_ABORT) { 1874 struct sctp_chunk *chunk; 1875 1876 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1877 if (!chunk) 1878 return -ENOMEM; 1879 1880 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1881 sctp_primitive_ABORT(net, asoc, chunk); 1882 1883 return 0; 1884 } 1885 1886 return 1; 1887 } 1888 1889 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1890 struct msghdr *msg, size_t msg_len, 1891 struct sctp_transport *transport, 1892 struct sctp_sndrcvinfo *sinfo) 1893 { 1894 struct sock *sk = asoc->base.sk; 1895 struct sctp_sock *sp = sctp_sk(sk); 1896 struct net *net = sock_net(sk); 1897 struct sctp_datamsg *datamsg; 1898 bool wait_connect = false; 1899 struct sctp_chunk *chunk; 1900 long timeo; 1901 int err; 1902 1903 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1904 err = -EINVAL; 1905 goto err; 1906 } 1907 1908 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1909 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1910 if (err) 1911 goto err; 1912 } 1913 1914 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1915 err = -EMSGSIZE; 1916 goto err; 1917 } 1918 1919 if (asoc->pmtu_pending) { 1920 if (sp->param_flags & SPP_PMTUD_ENABLE) 1921 sctp_assoc_sync_pmtu(asoc); 1922 asoc->pmtu_pending = 0; 1923 } 1924 1925 if (sctp_wspace(asoc) < msg_len) 1926 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1927 1928 if (!sctp_wspace(asoc)) { 1929 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1930 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1931 if (err) 1932 goto err; 1933 } 1934 1935 if (sctp_state(asoc, CLOSED)) { 1936 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1937 if (err) 1938 goto err; 1939 1940 if (sp->strm_interleave) { 1941 timeo = sock_sndtimeo(sk, 0); 1942 err = sctp_wait_for_connect(asoc, &timeo); 1943 if (err) 1944 goto err; 1945 } else { 1946 wait_connect = true; 1947 } 1948 1949 pr_debug("%s: we associated primitively\n", __func__); 1950 } 1951 1952 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1953 if (IS_ERR(datamsg)) { 1954 err = PTR_ERR(datamsg); 1955 goto err; 1956 } 1957 1958 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1959 1960 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1961 sctp_chunk_hold(chunk); 1962 sctp_set_owner_w(chunk); 1963 chunk->transport = transport; 1964 } 1965 1966 err = sctp_primitive_SEND(net, asoc, datamsg); 1967 if (err) { 1968 sctp_datamsg_free(datamsg); 1969 goto err; 1970 } 1971 1972 pr_debug("%s: we sent primitively\n", __func__); 1973 1974 sctp_datamsg_put(datamsg); 1975 1976 if (unlikely(wait_connect)) { 1977 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1978 sctp_wait_for_connect(asoc, &timeo); 1979 } 1980 1981 err = msg_len; 1982 1983 err: 1984 return err; 1985 } 1986 1987 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1988 const struct msghdr *msg, 1989 struct sctp_cmsgs *cmsgs) 1990 { 1991 union sctp_addr *daddr = NULL; 1992 int err; 1993 1994 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1995 int len = msg->msg_namelen; 1996 1997 if (len > sizeof(*daddr)) 1998 len = sizeof(*daddr); 1999 2000 daddr = (union sctp_addr *)msg->msg_name; 2001 2002 err = sctp_verify_addr(sk, daddr, len); 2003 if (err) 2004 return ERR_PTR(err); 2005 } 2006 2007 return daddr; 2008 } 2009 2010 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2011 struct sctp_sndrcvinfo *sinfo, 2012 struct sctp_cmsgs *cmsgs) 2013 { 2014 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2015 sinfo->sinfo_stream = asoc->default_stream; 2016 sinfo->sinfo_ppid = asoc->default_ppid; 2017 sinfo->sinfo_context = asoc->default_context; 2018 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2019 2020 if (!cmsgs->prinfo) 2021 sinfo->sinfo_flags = asoc->default_flags; 2022 } 2023 2024 if (!cmsgs->srinfo && !cmsgs->prinfo) 2025 sinfo->sinfo_timetolive = asoc->default_timetolive; 2026 2027 if (cmsgs->authinfo) { 2028 /* Reuse sinfo_tsn to indicate that authinfo was set and 2029 * sinfo_ssn to save the keyid on tx path. 2030 */ 2031 sinfo->sinfo_tsn = 1; 2032 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2033 } 2034 } 2035 2036 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2037 { 2038 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2039 struct sctp_transport *transport = NULL; 2040 struct sctp_sndrcvinfo _sinfo, *sinfo; 2041 struct sctp_association *asoc; 2042 struct sctp_cmsgs cmsgs; 2043 union sctp_addr *daddr; 2044 bool new = false; 2045 __u16 sflags; 2046 int err; 2047 2048 /* Parse and get snd_info */ 2049 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2050 if (err) 2051 goto out; 2052 2053 sinfo = &_sinfo; 2054 sflags = sinfo->sinfo_flags; 2055 2056 /* Get daddr from msg */ 2057 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2058 if (IS_ERR(daddr)) { 2059 err = PTR_ERR(daddr); 2060 goto out; 2061 } 2062 2063 lock_sock(sk); 2064 2065 /* SCTP_SENDALL process */ 2066 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2067 list_for_each_entry(asoc, &ep->asocs, asocs) { 2068 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2069 msg_len); 2070 if (err == 0) 2071 continue; 2072 if (err < 0) 2073 goto out_unlock; 2074 2075 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2076 2077 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2078 NULL, sinfo); 2079 if (err < 0) 2080 goto out_unlock; 2081 2082 iov_iter_revert(&msg->msg_iter, err); 2083 } 2084 2085 goto out_unlock; 2086 } 2087 2088 /* Get and check or create asoc */ 2089 if (daddr) { 2090 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2091 if (asoc) { 2092 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2093 msg_len); 2094 if (err <= 0) 2095 goto out_unlock; 2096 } else { 2097 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2098 &transport); 2099 if (err) 2100 goto out_unlock; 2101 2102 asoc = transport->asoc; 2103 new = true; 2104 } 2105 2106 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2107 transport = NULL; 2108 } else { 2109 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2110 if (!asoc) { 2111 err = -EPIPE; 2112 goto out_unlock; 2113 } 2114 2115 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2116 if (err <= 0) 2117 goto out_unlock; 2118 } 2119 2120 /* Update snd_info with the asoc */ 2121 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2122 2123 /* Send msg to the asoc */ 2124 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2125 if (err < 0 && err != -ESRCH && new) 2126 sctp_association_free(asoc); 2127 2128 out_unlock: 2129 release_sock(sk); 2130 out: 2131 return sctp_error(sk, msg->msg_flags, err); 2132 } 2133 2134 /* This is an extended version of skb_pull() that removes the data from the 2135 * start of a skb even when data is spread across the list of skb's in the 2136 * frag_list. len specifies the total amount of data that needs to be removed. 2137 * when 'len' bytes could be removed from the skb, it returns 0. 2138 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2139 * could not be removed. 2140 */ 2141 static int sctp_skb_pull(struct sk_buff *skb, int len) 2142 { 2143 struct sk_buff *list; 2144 int skb_len = skb_headlen(skb); 2145 int rlen; 2146 2147 if (len <= skb_len) { 2148 __skb_pull(skb, len); 2149 return 0; 2150 } 2151 len -= skb_len; 2152 __skb_pull(skb, skb_len); 2153 2154 skb_walk_frags(skb, list) { 2155 rlen = sctp_skb_pull(list, len); 2156 skb->len -= (len-rlen); 2157 skb->data_len -= (len-rlen); 2158 2159 if (!rlen) 2160 return 0; 2161 2162 len = rlen; 2163 } 2164 2165 return len; 2166 } 2167 2168 /* API 3.1.3 recvmsg() - UDP Style Syntax 2169 * 2170 * ssize_t recvmsg(int socket, struct msghdr *message, 2171 * int flags); 2172 * 2173 * socket - the socket descriptor of the endpoint. 2174 * message - pointer to the msghdr structure which contains a single 2175 * user message and possibly some ancillary data. 2176 * 2177 * See Section 5 for complete description of the data 2178 * structures. 2179 * 2180 * flags - flags sent or received with the user message, see Section 2181 * 5 for complete description of the flags. 2182 */ 2183 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2184 int noblock, int flags, int *addr_len) 2185 { 2186 struct sctp_ulpevent *event = NULL; 2187 struct sctp_sock *sp = sctp_sk(sk); 2188 struct sk_buff *skb, *head_skb; 2189 int copied; 2190 int err = 0; 2191 int skb_len; 2192 2193 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2194 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2195 addr_len); 2196 2197 lock_sock(sk); 2198 2199 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2200 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2201 err = -ENOTCONN; 2202 goto out; 2203 } 2204 2205 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2206 if (!skb) 2207 goto out; 2208 2209 /* Get the total length of the skb including any skb's in the 2210 * frag_list. 2211 */ 2212 skb_len = skb->len; 2213 2214 copied = skb_len; 2215 if (copied > len) 2216 copied = len; 2217 2218 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2219 2220 event = sctp_skb2event(skb); 2221 2222 if (err) 2223 goto out_free; 2224 2225 if (event->chunk && event->chunk->head_skb) 2226 head_skb = event->chunk->head_skb; 2227 else 2228 head_skb = skb; 2229 sock_recv_ts_and_drops(msg, sk, head_skb); 2230 if (sctp_ulpevent_is_notification(event)) { 2231 msg->msg_flags |= MSG_NOTIFICATION; 2232 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2233 } else { 2234 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2235 } 2236 2237 /* Check if we allow SCTP_NXTINFO. */ 2238 if (sp->recvnxtinfo) 2239 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2240 /* Check if we allow SCTP_RCVINFO. */ 2241 if (sp->recvrcvinfo) 2242 sctp_ulpevent_read_rcvinfo(event, msg); 2243 /* Check if we allow SCTP_SNDRCVINFO. */ 2244 if (sp->subscribe.sctp_data_io_event) 2245 sctp_ulpevent_read_sndrcvinfo(event, msg); 2246 2247 err = copied; 2248 2249 /* If skb's length exceeds the user's buffer, update the skb and 2250 * push it back to the receive_queue so that the next call to 2251 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2252 */ 2253 if (skb_len > copied) { 2254 msg->msg_flags &= ~MSG_EOR; 2255 if (flags & MSG_PEEK) 2256 goto out_free; 2257 sctp_skb_pull(skb, copied); 2258 skb_queue_head(&sk->sk_receive_queue, skb); 2259 2260 /* When only partial message is copied to the user, increase 2261 * rwnd by that amount. If all the data in the skb is read, 2262 * rwnd is updated when the event is freed. 2263 */ 2264 if (!sctp_ulpevent_is_notification(event)) 2265 sctp_assoc_rwnd_increase(event->asoc, copied); 2266 goto out; 2267 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2268 (event->msg_flags & MSG_EOR)) 2269 msg->msg_flags |= MSG_EOR; 2270 else 2271 msg->msg_flags &= ~MSG_EOR; 2272 2273 out_free: 2274 if (flags & MSG_PEEK) { 2275 /* Release the skb reference acquired after peeking the skb in 2276 * sctp_skb_recv_datagram(). 2277 */ 2278 kfree_skb(skb); 2279 } else { 2280 /* Free the event which includes releasing the reference to 2281 * the owner of the skb, freeing the skb and updating the 2282 * rwnd. 2283 */ 2284 sctp_ulpevent_free(event); 2285 } 2286 out: 2287 release_sock(sk); 2288 return err; 2289 } 2290 2291 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2292 * 2293 * This option is a on/off flag. If enabled no SCTP message 2294 * fragmentation will be performed. Instead if a message being sent 2295 * exceeds the current PMTU size, the message will NOT be sent and 2296 * instead a error will be indicated to the user. 2297 */ 2298 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2299 char __user *optval, 2300 unsigned int optlen) 2301 { 2302 int val; 2303 2304 if (optlen < sizeof(int)) 2305 return -EINVAL; 2306 2307 if (get_user(val, (int __user *)optval)) 2308 return -EFAULT; 2309 2310 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2311 2312 return 0; 2313 } 2314 2315 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2316 unsigned int optlen) 2317 { 2318 struct sctp_association *asoc; 2319 struct sctp_ulpevent *event; 2320 2321 if (optlen > sizeof(struct sctp_event_subscribe)) 2322 return -EINVAL; 2323 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2324 return -EFAULT; 2325 2326 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2327 * if there is no data to be sent or retransmit, the stack will 2328 * immediately send up this notification. 2329 */ 2330 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2331 &sctp_sk(sk)->subscribe)) { 2332 asoc = sctp_id2assoc(sk, 0); 2333 2334 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2335 event = sctp_ulpevent_make_sender_dry_event(asoc, 2336 GFP_USER | __GFP_NOWARN); 2337 if (!event) 2338 return -ENOMEM; 2339 2340 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2348 * 2349 * This socket option is applicable to the UDP-style socket only. When 2350 * set it will cause associations that are idle for more than the 2351 * specified number of seconds to automatically close. An association 2352 * being idle is defined an association that has NOT sent or received 2353 * user data. The special value of '0' indicates that no automatic 2354 * close of any associations should be performed. The option expects an 2355 * integer defining the number of seconds of idle time before an 2356 * association is closed. 2357 */ 2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2359 unsigned int optlen) 2360 { 2361 struct sctp_sock *sp = sctp_sk(sk); 2362 struct net *net = sock_net(sk); 2363 2364 /* Applicable to UDP-style socket only */ 2365 if (sctp_style(sk, TCP)) 2366 return -EOPNOTSUPP; 2367 if (optlen != sizeof(int)) 2368 return -EINVAL; 2369 if (copy_from_user(&sp->autoclose, optval, optlen)) 2370 return -EFAULT; 2371 2372 if (sp->autoclose > net->sctp.max_autoclose) 2373 sp->autoclose = net->sctp.max_autoclose; 2374 2375 return 0; 2376 } 2377 2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2379 * 2380 * Applications can enable or disable heartbeats for any peer address of 2381 * an association, modify an address's heartbeat interval, force a 2382 * heartbeat to be sent immediately, and adjust the address's maximum 2383 * number of retransmissions sent before an address is considered 2384 * unreachable. The following structure is used to access and modify an 2385 * address's parameters: 2386 * 2387 * struct sctp_paddrparams { 2388 * sctp_assoc_t spp_assoc_id; 2389 * struct sockaddr_storage spp_address; 2390 * uint32_t spp_hbinterval; 2391 * uint16_t spp_pathmaxrxt; 2392 * uint32_t spp_pathmtu; 2393 * uint32_t spp_sackdelay; 2394 * uint32_t spp_flags; 2395 * }; 2396 * 2397 * spp_assoc_id - (one-to-many style socket) This is filled in the 2398 * application, and identifies the association for 2399 * this query. 2400 * spp_address - This specifies which address is of interest. 2401 * spp_hbinterval - This contains the value of the heartbeat interval, 2402 * in milliseconds. If a value of zero 2403 * is present in this field then no changes are to 2404 * be made to this parameter. 2405 * spp_pathmaxrxt - This contains the maximum number of 2406 * retransmissions before this address shall be 2407 * considered unreachable. If a value of zero 2408 * is present in this field then no changes are to 2409 * be made to this parameter. 2410 * spp_pathmtu - When Path MTU discovery is disabled the value 2411 * specified here will be the "fixed" path mtu. 2412 * Note that if the spp_address field is empty 2413 * then all associations on this address will 2414 * have this fixed path mtu set upon them. 2415 * 2416 * spp_sackdelay - When delayed sack is enabled, this value specifies 2417 * the number of milliseconds that sacks will be delayed 2418 * for. This value will apply to all addresses of an 2419 * association if the spp_address field is empty. Note 2420 * also, that if delayed sack is enabled and this 2421 * value is set to 0, no change is made to the last 2422 * recorded delayed sack timer value. 2423 * 2424 * spp_flags - These flags are used to control various features 2425 * on an association. The flag field may contain 2426 * zero or more of the following options. 2427 * 2428 * SPP_HB_ENABLE - Enable heartbeats on the 2429 * specified address. Note that if the address 2430 * field is empty all addresses for the association 2431 * have heartbeats enabled upon them. 2432 * 2433 * SPP_HB_DISABLE - Disable heartbeats on the 2434 * speicifed address. Note that if the address 2435 * field is empty all addresses for the association 2436 * will have their heartbeats disabled. Note also 2437 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2438 * mutually exclusive, only one of these two should 2439 * be specified. Enabling both fields will have 2440 * undetermined results. 2441 * 2442 * SPP_HB_DEMAND - Request a user initiated heartbeat 2443 * to be made immediately. 2444 * 2445 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2446 * heartbeat delayis to be set to the value of 0 2447 * milliseconds. 2448 * 2449 * SPP_PMTUD_ENABLE - This field will enable PMTU 2450 * discovery upon the specified address. Note that 2451 * if the address feild is empty then all addresses 2452 * on the association are effected. 2453 * 2454 * SPP_PMTUD_DISABLE - This field will disable PMTU 2455 * discovery upon the specified address. Note that 2456 * if the address feild is empty then all addresses 2457 * on the association are effected. Not also that 2458 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2459 * exclusive. Enabling both will have undetermined 2460 * results. 2461 * 2462 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2463 * on delayed sack. The time specified in spp_sackdelay 2464 * is used to specify the sack delay for this address. Note 2465 * that if spp_address is empty then all addresses will 2466 * enable delayed sack and take on the sack delay 2467 * value specified in spp_sackdelay. 2468 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2469 * off delayed sack. If the spp_address field is blank then 2470 * delayed sack is disabled for the entire association. Note 2471 * also that this field is mutually exclusive to 2472 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2473 * results. 2474 */ 2475 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2476 struct sctp_transport *trans, 2477 struct sctp_association *asoc, 2478 struct sctp_sock *sp, 2479 int hb_change, 2480 int pmtud_change, 2481 int sackdelay_change) 2482 { 2483 int error; 2484 2485 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2486 struct net *net = sock_net(trans->asoc->base.sk); 2487 2488 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2489 if (error) 2490 return error; 2491 } 2492 2493 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2494 * this field is ignored. Note also that a value of zero indicates 2495 * the current setting should be left unchanged. 2496 */ 2497 if (params->spp_flags & SPP_HB_ENABLE) { 2498 2499 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2500 * set. This lets us use 0 value when this flag 2501 * is set. 2502 */ 2503 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2504 params->spp_hbinterval = 0; 2505 2506 if (params->spp_hbinterval || 2507 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2508 if (trans) { 2509 trans->hbinterval = 2510 msecs_to_jiffies(params->spp_hbinterval); 2511 } else if (asoc) { 2512 asoc->hbinterval = 2513 msecs_to_jiffies(params->spp_hbinterval); 2514 } else { 2515 sp->hbinterval = params->spp_hbinterval; 2516 } 2517 } 2518 } 2519 2520 if (hb_change) { 2521 if (trans) { 2522 trans->param_flags = 2523 (trans->param_flags & ~SPP_HB) | hb_change; 2524 } else if (asoc) { 2525 asoc->param_flags = 2526 (asoc->param_flags & ~SPP_HB) | hb_change; 2527 } else { 2528 sp->param_flags = 2529 (sp->param_flags & ~SPP_HB) | hb_change; 2530 } 2531 } 2532 2533 /* When Path MTU discovery is disabled the value specified here will 2534 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2535 * include the flag SPP_PMTUD_DISABLE for this field to have any 2536 * effect). 2537 */ 2538 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2539 if (trans) { 2540 trans->pathmtu = params->spp_pathmtu; 2541 sctp_assoc_sync_pmtu(asoc); 2542 } else if (asoc) { 2543 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2544 } else { 2545 sp->pathmtu = params->spp_pathmtu; 2546 } 2547 } 2548 2549 if (pmtud_change) { 2550 if (trans) { 2551 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2552 (params->spp_flags & SPP_PMTUD_ENABLE); 2553 trans->param_flags = 2554 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2555 if (update) { 2556 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2557 sctp_assoc_sync_pmtu(asoc); 2558 } 2559 } else if (asoc) { 2560 asoc->param_flags = 2561 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2562 } else { 2563 sp->param_flags = 2564 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2565 } 2566 } 2567 2568 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2569 * value of this field is ignored. Note also that a value of zero 2570 * indicates the current setting should be left unchanged. 2571 */ 2572 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2573 if (trans) { 2574 trans->sackdelay = 2575 msecs_to_jiffies(params->spp_sackdelay); 2576 } else if (asoc) { 2577 asoc->sackdelay = 2578 msecs_to_jiffies(params->spp_sackdelay); 2579 } else { 2580 sp->sackdelay = params->spp_sackdelay; 2581 } 2582 } 2583 2584 if (sackdelay_change) { 2585 if (trans) { 2586 trans->param_flags = 2587 (trans->param_flags & ~SPP_SACKDELAY) | 2588 sackdelay_change; 2589 } else if (asoc) { 2590 asoc->param_flags = 2591 (asoc->param_flags & ~SPP_SACKDELAY) | 2592 sackdelay_change; 2593 } else { 2594 sp->param_flags = 2595 (sp->param_flags & ~SPP_SACKDELAY) | 2596 sackdelay_change; 2597 } 2598 } 2599 2600 /* Note that a value of zero indicates the current setting should be 2601 left unchanged. 2602 */ 2603 if (params->spp_pathmaxrxt) { 2604 if (trans) { 2605 trans->pathmaxrxt = params->spp_pathmaxrxt; 2606 } else if (asoc) { 2607 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2608 } else { 2609 sp->pathmaxrxt = params->spp_pathmaxrxt; 2610 } 2611 } 2612 2613 return 0; 2614 } 2615 2616 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2617 char __user *optval, 2618 unsigned int optlen) 2619 { 2620 struct sctp_paddrparams params; 2621 struct sctp_transport *trans = NULL; 2622 struct sctp_association *asoc = NULL; 2623 struct sctp_sock *sp = sctp_sk(sk); 2624 int error; 2625 int hb_change, pmtud_change, sackdelay_change; 2626 2627 if (optlen != sizeof(struct sctp_paddrparams)) 2628 return -EINVAL; 2629 2630 if (copy_from_user(¶ms, optval, optlen)) 2631 return -EFAULT; 2632 2633 /* Validate flags and value parameters. */ 2634 hb_change = params.spp_flags & SPP_HB; 2635 pmtud_change = params.spp_flags & SPP_PMTUD; 2636 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2637 2638 if (hb_change == SPP_HB || 2639 pmtud_change == SPP_PMTUD || 2640 sackdelay_change == SPP_SACKDELAY || 2641 params.spp_sackdelay > 500 || 2642 (params.spp_pathmtu && 2643 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2644 return -EINVAL; 2645 2646 /* If an address other than INADDR_ANY is specified, and 2647 * no transport is found, then the request is invalid. 2648 */ 2649 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2650 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2651 params.spp_assoc_id); 2652 if (!trans) 2653 return -EINVAL; 2654 } 2655 2656 /* Get association, if assoc_id != 0 and the socket is a one 2657 * to many style socket, and an association was not found, then 2658 * the id was invalid. 2659 */ 2660 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2661 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2662 return -EINVAL; 2663 2664 /* Heartbeat demand can only be sent on a transport or 2665 * association, but not a socket. 2666 */ 2667 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2668 return -EINVAL; 2669 2670 /* Process parameters. */ 2671 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2672 hb_change, pmtud_change, 2673 sackdelay_change); 2674 2675 if (error) 2676 return error; 2677 2678 /* If changes are for association, also apply parameters to each 2679 * transport. 2680 */ 2681 if (!trans && asoc) { 2682 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2683 transports) { 2684 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2685 hb_change, pmtud_change, 2686 sackdelay_change); 2687 } 2688 } 2689 2690 return 0; 2691 } 2692 2693 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2694 { 2695 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2696 } 2697 2698 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2699 { 2700 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2701 } 2702 2703 /* 2704 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2705 * 2706 * This option will effect the way delayed acks are performed. This 2707 * option allows you to get or set the delayed ack time, in 2708 * milliseconds. It also allows changing the delayed ack frequency. 2709 * Changing the frequency to 1 disables the delayed sack algorithm. If 2710 * the assoc_id is 0, then this sets or gets the endpoints default 2711 * values. If the assoc_id field is non-zero, then the set or get 2712 * effects the specified association for the one to many model (the 2713 * assoc_id field is ignored by the one to one model). Note that if 2714 * sack_delay or sack_freq are 0 when setting this option, then the 2715 * current values will remain unchanged. 2716 * 2717 * struct sctp_sack_info { 2718 * sctp_assoc_t sack_assoc_id; 2719 * uint32_t sack_delay; 2720 * uint32_t sack_freq; 2721 * }; 2722 * 2723 * sack_assoc_id - This parameter, indicates which association the user 2724 * is performing an action upon. Note that if this field's value is 2725 * zero then the endpoints default value is changed (effecting future 2726 * associations only). 2727 * 2728 * sack_delay - This parameter contains the number of milliseconds that 2729 * the user is requesting the delayed ACK timer be set to. Note that 2730 * this value is defined in the standard to be between 200 and 500 2731 * milliseconds. 2732 * 2733 * sack_freq - This parameter contains the number of packets that must 2734 * be received before a sack is sent without waiting for the delay 2735 * timer to expire. The default value for this is 2, setting this 2736 * value to 1 will disable the delayed sack algorithm. 2737 */ 2738 2739 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2740 char __user *optval, unsigned int optlen) 2741 { 2742 struct sctp_sack_info params; 2743 struct sctp_transport *trans = NULL; 2744 struct sctp_association *asoc = NULL; 2745 struct sctp_sock *sp = sctp_sk(sk); 2746 2747 if (optlen == sizeof(struct sctp_sack_info)) { 2748 if (copy_from_user(¶ms, optval, optlen)) 2749 return -EFAULT; 2750 2751 if (params.sack_delay == 0 && params.sack_freq == 0) 2752 return 0; 2753 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2754 pr_warn_ratelimited(DEPRECATED 2755 "%s (pid %d) " 2756 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2757 "Use struct sctp_sack_info instead\n", 2758 current->comm, task_pid_nr(current)); 2759 if (copy_from_user(¶ms, optval, optlen)) 2760 return -EFAULT; 2761 2762 if (params.sack_delay == 0) 2763 params.sack_freq = 1; 2764 else 2765 params.sack_freq = 0; 2766 } else 2767 return -EINVAL; 2768 2769 /* Validate value parameter. */ 2770 if (params.sack_delay > 500) 2771 return -EINVAL; 2772 2773 /* Get association, if sack_assoc_id != 0 and the socket is a one 2774 * to many style socket, and an association was not found, then 2775 * the id was invalid. 2776 */ 2777 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2778 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2779 return -EINVAL; 2780 2781 if (params.sack_delay) { 2782 if (asoc) { 2783 asoc->sackdelay = 2784 msecs_to_jiffies(params.sack_delay); 2785 asoc->param_flags = 2786 sctp_spp_sackdelay_enable(asoc->param_flags); 2787 } else { 2788 sp->sackdelay = params.sack_delay; 2789 sp->param_flags = 2790 sctp_spp_sackdelay_enable(sp->param_flags); 2791 } 2792 } 2793 2794 if (params.sack_freq == 1) { 2795 if (asoc) { 2796 asoc->param_flags = 2797 sctp_spp_sackdelay_disable(asoc->param_flags); 2798 } else { 2799 sp->param_flags = 2800 sctp_spp_sackdelay_disable(sp->param_flags); 2801 } 2802 } else if (params.sack_freq > 1) { 2803 if (asoc) { 2804 asoc->sackfreq = params.sack_freq; 2805 asoc->param_flags = 2806 sctp_spp_sackdelay_enable(asoc->param_flags); 2807 } else { 2808 sp->sackfreq = params.sack_freq; 2809 sp->param_flags = 2810 sctp_spp_sackdelay_enable(sp->param_flags); 2811 } 2812 } 2813 2814 /* If change is for association, also apply to each transport. */ 2815 if (asoc) { 2816 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2817 transports) { 2818 if (params.sack_delay) { 2819 trans->sackdelay = 2820 msecs_to_jiffies(params.sack_delay); 2821 trans->param_flags = 2822 sctp_spp_sackdelay_enable(trans->param_flags); 2823 } 2824 if (params.sack_freq == 1) { 2825 trans->param_flags = 2826 sctp_spp_sackdelay_disable(trans->param_flags); 2827 } else if (params.sack_freq > 1) { 2828 trans->sackfreq = params.sack_freq; 2829 trans->param_flags = 2830 sctp_spp_sackdelay_enable(trans->param_flags); 2831 } 2832 } 2833 } 2834 2835 return 0; 2836 } 2837 2838 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2839 * 2840 * Applications can specify protocol parameters for the default association 2841 * initialization. The option name argument to setsockopt() and getsockopt() 2842 * is SCTP_INITMSG. 2843 * 2844 * Setting initialization parameters is effective only on an unconnected 2845 * socket (for UDP-style sockets only future associations are effected 2846 * by the change). With TCP-style sockets, this option is inherited by 2847 * sockets derived from a listener socket. 2848 */ 2849 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2850 { 2851 struct sctp_initmsg sinit; 2852 struct sctp_sock *sp = sctp_sk(sk); 2853 2854 if (optlen != sizeof(struct sctp_initmsg)) 2855 return -EINVAL; 2856 if (copy_from_user(&sinit, optval, optlen)) 2857 return -EFAULT; 2858 2859 if (sinit.sinit_num_ostreams) 2860 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2861 if (sinit.sinit_max_instreams) 2862 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2863 if (sinit.sinit_max_attempts) 2864 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2865 if (sinit.sinit_max_init_timeo) 2866 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2867 2868 return 0; 2869 } 2870 2871 /* 2872 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2873 * 2874 * Applications that wish to use the sendto() system call may wish to 2875 * specify a default set of parameters that would normally be supplied 2876 * through the inclusion of ancillary data. This socket option allows 2877 * such an application to set the default sctp_sndrcvinfo structure. 2878 * The application that wishes to use this socket option simply passes 2879 * in to this call the sctp_sndrcvinfo structure defined in Section 2880 * 5.2.2) The input parameters accepted by this call include 2881 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2882 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2883 * to this call if the caller is using the UDP model. 2884 */ 2885 static int sctp_setsockopt_default_send_param(struct sock *sk, 2886 char __user *optval, 2887 unsigned int optlen) 2888 { 2889 struct sctp_sock *sp = sctp_sk(sk); 2890 struct sctp_association *asoc; 2891 struct sctp_sndrcvinfo info; 2892 2893 if (optlen != sizeof(info)) 2894 return -EINVAL; 2895 if (copy_from_user(&info, optval, optlen)) 2896 return -EFAULT; 2897 if (info.sinfo_flags & 2898 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2899 SCTP_ABORT | SCTP_EOF)) 2900 return -EINVAL; 2901 2902 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2903 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2904 return -EINVAL; 2905 if (asoc) { 2906 asoc->default_stream = info.sinfo_stream; 2907 asoc->default_flags = info.sinfo_flags; 2908 asoc->default_ppid = info.sinfo_ppid; 2909 asoc->default_context = info.sinfo_context; 2910 asoc->default_timetolive = info.sinfo_timetolive; 2911 } else { 2912 sp->default_stream = info.sinfo_stream; 2913 sp->default_flags = info.sinfo_flags; 2914 sp->default_ppid = info.sinfo_ppid; 2915 sp->default_context = info.sinfo_context; 2916 sp->default_timetolive = info.sinfo_timetolive; 2917 } 2918 2919 return 0; 2920 } 2921 2922 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2923 * (SCTP_DEFAULT_SNDINFO) 2924 */ 2925 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2926 char __user *optval, 2927 unsigned int optlen) 2928 { 2929 struct sctp_sock *sp = sctp_sk(sk); 2930 struct sctp_association *asoc; 2931 struct sctp_sndinfo info; 2932 2933 if (optlen != sizeof(info)) 2934 return -EINVAL; 2935 if (copy_from_user(&info, optval, optlen)) 2936 return -EFAULT; 2937 if (info.snd_flags & 2938 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2939 SCTP_ABORT | SCTP_EOF)) 2940 return -EINVAL; 2941 2942 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2943 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2944 return -EINVAL; 2945 if (asoc) { 2946 asoc->default_stream = info.snd_sid; 2947 asoc->default_flags = info.snd_flags; 2948 asoc->default_ppid = info.snd_ppid; 2949 asoc->default_context = info.snd_context; 2950 } else { 2951 sp->default_stream = info.snd_sid; 2952 sp->default_flags = info.snd_flags; 2953 sp->default_ppid = info.snd_ppid; 2954 sp->default_context = info.snd_context; 2955 } 2956 2957 return 0; 2958 } 2959 2960 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2961 * 2962 * Requests that the local SCTP stack use the enclosed peer address as 2963 * the association primary. The enclosed address must be one of the 2964 * association peer's addresses. 2965 */ 2966 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2967 unsigned int optlen) 2968 { 2969 struct sctp_prim prim; 2970 struct sctp_transport *trans; 2971 struct sctp_af *af; 2972 int err; 2973 2974 if (optlen != sizeof(struct sctp_prim)) 2975 return -EINVAL; 2976 2977 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2978 return -EFAULT; 2979 2980 /* Allow security module to validate address but need address len. */ 2981 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 2982 if (!af) 2983 return -EINVAL; 2984 2985 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 2986 (struct sockaddr *)&prim.ssp_addr, 2987 af->sockaddr_len); 2988 if (err) 2989 return err; 2990 2991 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2992 if (!trans) 2993 return -EINVAL; 2994 2995 sctp_assoc_set_primary(trans->asoc, trans); 2996 2997 return 0; 2998 } 2999 3000 /* 3001 * 7.1.5 SCTP_NODELAY 3002 * 3003 * Turn on/off any Nagle-like algorithm. This means that packets are 3004 * generally sent as soon as possible and no unnecessary delays are 3005 * introduced, at the cost of more packets in the network. Expects an 3006 * integer boolean flag. 3007 */ 3008 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3009 unsigned int optlen) 3010 { 3011 int val; 3012 3013 if (optlen < sizeof(int)) 3014 return -EINVAL; 3015 if (get_user(val, (int __user *)optval)) 3016 return -EFAULT; 3017 3018 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3019 return 0; 3020 } 3021 3022 /* 3023 * 3024 * 7.1.1 SCTP_RTOINFO 3025 * 3026 * The protocol parameters used to initialize and bound retransmission 3027 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3028 * and modify these parameters. 3029 * All parameters are time values, in milliseconds. A value of 0, when 3030 * modifying the parameters, indicates that the current value should not 3031 * be changed. 3032 * 3033 */ 3034 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3035 { 3036 struct sctp_rtoinfo rtoinfo; 3037 struct sctp_association *asoc; 3038 unsigned long rto_min, rto_max; 3039 struct sctp_sock *sp = sctp_sk(sk); 3040 3041 if (optlen != sizeof (struct sctp_rtoinfo)) 3042 return -EINVAL; 3043 3044 if (copy_from_user(&rtoinfo, optval, optlen)) 3045 return -EFAULT; 3046 3047 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3048 3049 /* Set the values to the specific association */ 3050 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3051 return -EINVAL; 3052 3053 rto_max = rtoinfo.srto_max; 3054 rto_min = rtoinfo.srto_min; 3055 3056 if (rto_max) 3057 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3058 else 3059 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3060 3061 if (rto_min) 3062 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3063 else 3064 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3065 3066 if (rto_min > rto_max) 3067 return -EINVAL; 3068 3069 if (asoc) { 3070 if (rtoinfo.srto_initial != 0) 3071 asoc->rto_initial = 3072 msecs_to_jiffies(rtoinfo.srto_initial); 3073 asoc->rto_max = rto_max; 3074 asoc->rto_min = rto_min; 3075 } else { 3076 /* If there is no association or the association-id = 0 3077 * set the values to the endpoint. 3078 */ 3079 if (rtoinfo.srto_initial != 0) 3080 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3081 sp->rtoinfo.srto_max = rto_max; 3082 sp->rtoinfo.srto_min = rto_min; 3083 } 3084 3085 return 0; 3086 } 3087 3088 /* 3089 * 3090 * 7.1.2 SCTP_ASSOCINFO 3091 * 3092 * This option is used to tune the maximum retransmission attempts 3093 * of the association. 3094 * Returns an error if the new association retransmission value is 3095 * greater than the sum of the retransmission value of the peer. 3096 * See [SCTP] for more information. 3097 * 3098 */ 3099 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3100 { 3101 3102 struct sctp_assocparams assocparams; 3103 struct sctp_association *asoc; 3104 3105 if (optlen != sizeof(struct sctp_assocparams)) 3106 return -EINVAL; 3107 if (copy_from_user(&assocparams, optval, optlen)) 3108 return -EFAULT; 3109 3110 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3111 3112 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3113 return -EINVAL; 3114 3115 /* Set the values to the specific association */ 3116 if (asoc) { 3117 if (assocparams.sasoc_asocmaxrxt != 0) { 3118 __u32 path_sum = 0; 3119 int paths = 0; 3120 struct sctp_transport *peer_addr; 3121 3122 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3123 transports) { 3124 path_sum += peer_addr->pathmaxrxt; 3125 paths++; 3126 } 3127 3128 /* Only validate asocmaxrxt if we have more than 3129 * one path/transport. We do this because path 3130 * retransmissions are only counted when we have more 3131 * then one path. 3132 */ 3133 if (paths > 1 && 3134 assocparams.sasoc_asocmaxrxt > path_sum) 3135 return -EINVAL; 3136 3137 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3138 } 3139 3140 if (assocparams.sasoc_cookie_life != 0) 3141 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3142 } else { 3143 /* Set the values to the endpoint */ 3144 struct sctp_sock *sp = sctp_sk(sk); 3145 3146 if (assocparams.sasoc_asocmaxrxt != 0) 3147 sp->assocparams.sasoc_asocmaxrxt = 3148 assocparams.sasoc_asocmaxrxt; 3149 if (assocparams.sasoc_cookie_life != 0) 3150 sp->assocparams.sasoc_cookie_life = 3151 assocparams.sasoc_cookie_life; 3152 } 3153 return 0; 3154 } 3155 3156 /* 3157 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3158 * 3159 * This socket option is a boolean flag which turns on or off mapped V4 3160 * addresses. If this option is turned on and the socket is type 3161 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3162 * If this option is turned off, then no mapping will be done of V4 3163 * addresses and a user will receive both PF_INET6 and PF_INET type 3164 * addresses on the socket. 3165 */ 3166 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3167 { 3168 int val; 3169 struct sctp_sock *sp = sctp_sk(sk); 3170 3171 if (optlen < sizeof(int)) 3172 return -EINVAL; 3173 if (get_user(val, (int __user *)optval)) 3174 return -EFAULT; 3175 if (val) 3176 sp->v4mapped = 1; 3177 else 3178 sp->v4mapped = 0; 3179 3180 return 0; 3181 } 3182 3183 /* 3184 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3185 * This option will get or set the maximum size to put in any outgoing 3186 * SCTP DATA chunk. If a message is larger than this size it will be 3187 * fragmented by SCTP into the specified size. Note that the underlying 3188 * SCTP implementation may fragment into smaller sized chunks when the 3189 * PMTU of the underlying association is smaller than the value set by 3190 * the user. The default value for this option is '0' which indicates 3191 * the user is NOT limiting fragmentation and only the PMTU will effect 3192 * SCTP's choice of DATA chunk size. Note also that values set larger 3193 * than the maximum size of an IP datagram will effectively let SCTP 3194 * control fragmentation (i.e. the same as setting this option to 0). 3195 * 3196 * The following structure is used to access and modify this parameter: 3197 * 3198 * struct sctp_assoc_value { 3199 * sctp_assoc_t assoc_id; 3200 * uint32_t assoc_value; 3201 * }; 3202 * 3203 * assoc_id: This parameter is ignored for one-to-one style sockets. 3204 * For one-to-many style sockets this parameter indicates which 3205 * association the user is performing an action upon. Note that if 3206 * this field's value is zero then the endpoints default value is 3207 * changed (effecting future associations only). 3208 * assoc_value: This parameter specifies the maximum size in bytes. 3209 */ 3210 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3211 { 3212 struct sctp_sock *sp = sctp_sk(sk); 3213 struct sctp_assoc_value params; 3214 struct sctp_association *asoc; 3215 int val; 3216 3217 if (optlen == sizeof(int)) { 3218 pr_warn_ratelimited(DEPRECATED 3219 "%s (pid %d) " 3220 "Use of int in maxseg socket option.\n" 3221 "Use struct sctp_assoc_value instead\n", 3222 current->comm, task_pid_nr(current)); 3223 if (copy_from_user(&val, optval, optlen)) 3224 return -EFAULT; 3225 params.assoc_id = 0; 3226 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3227 if (copy_from_user(¶ms, optval, optlen)) 3228 return -EFAULT; 3229 val = params.assoc_value; 3230 } else { 3231 return -EINVAL; 3232 } 3233 3234 asoc = sctp_id2assoc(sk, params.assoc_id); 3235 3236 if (val) { 3237 int min_len, max_len; 3238 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3239 sizeof(struct sctp_data_chunk); 3240 3241 min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT, 3242 datasize); 3243 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3244 3245 if (val < min_len || val > max_len) 3246 return -EINVAL; 3247 } 3248 3249 if (asoc) { 3250 asoc->user_frag = val; 3251 sctp_assoc_update_frag_point(asoc); 3252 } else { 3253 if (params.assoc_id && sctp_style(sk, UDP)) 3254 return -EINVAL; 3255 sp->user_frag = val; 3256 } 3257 3258 return 0; 3259 } 3260 3261 3262 /* 3263 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3264 * 3265 * Requests that the peer mark the enclosed address as the association 3266 * primary. The enclosed address must be one of the association's 3267 * locally bound addresses. The following structure is used to make a 3268 * set primary request: 3269 */ 3270 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3271 unsigned int optlen) 3272 { 3273 struct net *net = sock_net(sk); 3274 struct sctp_sock *sp; 3275 struct sctp_association *asoc = NULL; 3276 struct sctp_setpeerprim prim; 3277 struct sctp_chunk *chunk; 3278 struct sctp_af *af; 3279 int err; 3280 3281 sp = sctp_sk(sk); 3282 3283 if (!net->sctp.addip_enable) 3284 return -EPERM; 3285 3286 if (optlen != sizeof(struct sctp_setpeerprim)) 3287 return -EINVAL; 3288 3289 if (copy_from_user(&prim, optval, optlen)) 3290 return -EFAULT; 3291 3292 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3293 if (!asoc) 3294 return -EINVAL; 3295 3296 if (!asoc->peer.asconf_capable) 3297 return -EPERM; 3298 3299 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3300 return -EPERM; 3301 3302 if (!sctp_state(asoc, ESTABLISHED)) 3303 return -ENOTCONN; 3304 3305 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3306 if (!af) 3307 return -EINVAL; 3308 3309 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3310 return -EADDRNOTAVAIL; 3311 3312 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3313 return -EADDRNOTAVAIL; 3314 3315 /* Allow security module to validate address. */ 3316 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3317 (struct sockaddr *)&prim.sspp_addr, 3318 af->sockaddr_len); 3319 if (err) 3320 return err; 3321 3322 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3323 chunk = sctp_make_asconf_set_prim(asoc, 3324 (union sctp_addr *)&prim.sspp_addr); 3325 if (!chunk) 3326 return -ENOMEM; 3327 3328 err = sctp_send_asconf(asoc, chunk); 3329 3330 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3331 3332 return err; 3333 } 3334 3335 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3336 unsigned int optlen) 3337 { 3338 struct sctp_setadaptation adaptation; 3339 3340 if (optlen != sizeof(struct sctp_setadaptation)) 3341 return -EINVAL; 3342 if (copy_from_user(&adaptation, optval, optlen)) 3343 return -EFAULT; 3344 3345 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3346 3347 return 0; 3348 } 3349 3350 /* 3351 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3352 * 3353 * The context field in the sctp_sndrcvinfo structure is normally only 3354 * used when a failed message is retrieved holding the value that was 3355 * sent down on the actual send call. This option allows the setting of 3356 * a default context on an association basis that will be received on 3357 * reading messages from the peer. This is especially helpful in the 3358 * one-2-many model for an application to keep some reference to an 3359 * internal state machine that is processing messages on the 3360 * association. Note that the setting of this value only effects 3361 * received messages from the peer and does not effect the value that is 3362 * saved with outbound messages. 3363 */ 3364 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3365 unsigned int optlen) 3366 { 3367 struct sctp_assoc_value params; 3368 struct sctp_sock *sp; 3369 struct sctp_association *asoc; 3370 3371 if (optlen != sizeof(struct sctp_assoc_value)) 3372 return -EINVAL; 3373 if (copy_from_user(¶ms, optval, optlen)) 3374 return -EFAULT; 3375 3376 sp = sctp_sk(sk); 3377 3378 if (params.assoc_id != 0) { 3379 asoc = sctp_id2assoc(sk, params.assoc_id); 3380 if (!asoc) 3381 return -EINVAL; 3382 asoc->default_rcv_context = params.assoc_value; 3383 } else { 3384 sp->default_rcv_context = params.assoc_value; 3385 } 3386 3387 return 0; 3388 } 3389 3390 /* 3391 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3392 * 3393 * This options will at a minimum specify if the implementation is doing 3394 * fragmented interleave. Fragmented interleave, for a one to many 3395 * socket, is when subsequent calls to receive a message may return 3396 * parts of messages from different associations. Some implementations 3397 * may allow you to turn this value on or off. If so, when turned off, 3398 * no fragment interleave will occur (which will cause a head of line 3399 * blocking amongst multiple associations sharing the same one to many 3400 * socket). When this option is turned on, then each receive call may 3401 * come from a different association (thus the user must receive data 3402 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3403 * association each receive belongs to. 3404 * 3405 * This option takes a boolean value. A non-zero value indicates that 3406 * fragmented interleave is on. A value of zero indicates that 3407 * fragmented interleave is off. 3408 * 3409 * Note that it is important that an implementation that allows this 3410 * option to be turned on, have it off by default. Otherwise an unaware 3411 * application using the one to many model may become confused and act 3412 * incorrectly. 3413 */ 3414 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3415 char __user *optval, 3416 unsigned int optlen) 3417 { 3418 int val; 3419 3420 if (optlen != sizeof(int)) 3421 return -EINVAL; 3422 if (get_user(val, (int __user *)optval)) 3423 return -EFAULT; 3424 3425 sctp_sk(sk)->frag_interleave = !!val; 3426 3427 if (!sctp_sk(sk)->frag_interleave) 3428 sctp_sk(sk)->strm_interleave = 0; 3429 3430 return 0; 3431 } 3432 3433 /* 3434 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3435 * (SCTP_PARTIAL_DELIVERY_POINT) 3436 * 3437 * This option will set or get the SCTP partial delivery point. This 3438 * point is the size of a message where the partial delivery API will be 3439 * invoked to help free up rwnd space for the peer. Setting this to a 3440 * lower value will cause partial deliveries to happen more often. The 3441 * calls argument is an integer that sets or gets the partial delivery 3442 * point. Note also that the call will fail if the user attempts to set 3443 * this value larger than the socket receive buffer size. 3444 * 3445 * Note that any single message having a length smaller than or equal to 3446 * the SCTP partial delivery point will be delivered in one single read 3447 * call as long as the user provided buffer is large enough to hold the 3448 * message. 3449 */ 3450 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3451 char __user *optval, 3452 unsigned int optlen) 3453 { 3454 u32 val; 3455 3456 if (optlen != sizeof(u32)) 3457 return -EINVAL; 3458 if (get_user(val, (int __user *)optval)) 3459 return -EFAULT; 3460 3461 /* Note: We double the receive buffer from what the user sets 3462 * it to be, also initial rwnd is based on rcvbuf/2. 3463 */ 3464 if (val > (sk->sk_rcvbuf >> 1)) 3465 return -EINVAL; 3466 3467 sctp_sk(sk)->pd_point = val; 3468 3469 return 0; /* is this the right error code? */ 3470 } 3471 3472 /* 3473 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3474 * 3475 * This option will allow a user to change the maximum burst of packets 3476 * that can be emitted by this association. Note that the default value 3477 * is 4, and some implementations may restrict this setting so that it 3478 * can only be lowered. 3479 * 3480 * NOTE: This text doesn't seem right. Do this on a socket basis with 3481 * future associations inheriting the socket value. 3482 */ 3483 static int sctp_setsockopt_maxburst(struct sock *sk, 3484 char __user *optval, 3485 unsigned int optlen) 3486 { 3487 struct sctp_assoc_value params; 3488 struct sctp_sock *sp; 3489 struct sctp_association *asoc; 3490 int val; 3491 int assoc_id = 0; 3492 3493 if (optlen == sizeof(int)) { 3494 pr_warn_ratelimited(DEPRECATED 3495 "%s (pid %d) " 3496 "Use of int in max_burst socket option deprecated.\n" 3497 "Use struct sctp_assoc_value instead\n", 3498 current->comm, task_pid_nr(current)); 3499 if (copy_from_user(&val, optval, optlen)) 3500 return -EFAULT; 3501 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3502 if (copy_from_user(¶ms, optval, optlen)) 3503 return -EFAULT; 3504 val = params.assoc_value; 3505 assoc_id = params.assoc_id; 3506 } else 3507 return -EINVAL; 3508 3509 sp = sctp_sk(sk); 3510 3511 if (assoc_id != 0) { 3512 asoc = sctp_id2assoc(sk, assoc_id); 3513 if (!asoc) 3514 return -EINVAL; 3515 asoc->max_burst = val; 3516 } else 3517 sp->max_burst = val; 3518 3519 return 0; 3520 } 3521 3522 /* 3523 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3524 * 3525 * This set option adds a chunk type that the user is requesting to be 3526 * received only in an authenticated way. Changes to the list of chunks 3527 * will only effect future associations on the socket. 3528 */ 3529 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3530 char __user *optval, 3531 unsigned int optlen) 3532 { 3533 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3534 struct sctp_authchunk val; 3535 3536 if (!ep->auth_enable) 3537 return -EACCES; 3538 3539 if (optlen != sizeof(struct sctp_authchunk)) 3540 return -EINVAL; 3541 if (copy_from_user(&val, optval, optlen)) 3542 return -EFAULT; 3543 3544 switch (val.sauth_chunk) { 3545 case SCTP_CID_INIT: 3546 case SCTP_CID_INIT_ACK: 3547 case SCTP_CID_SHUTDOWN_COMPLETE: 3548 case SCTP_CID_AUTH: 3549 return -EINVAL; 3550 } 3551 3552 /* add this chunk id to the endpoint */ 3553 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3554 } 3555 3556 /* 3557 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3558 * 3559 * This option gets or sets the list of HMAC algorithms that the local 3560 * endpoint requires the peer to use. 3561 */ 3562 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3563 char __user *optval, 3564 unsigned int optlen) 3565 { 3566 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3567 struct sctp_hmacalgo *hmacs; 3568 u32 idents; 3569 int err; 3570 3571 if (!ep->auth_enable) 3572 return -EACCES; 3573 3574 if (optlen < sizeof(struct sctp_hmacalgo)) 3575 return -EINVAL; 3576 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3577 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3578 3579 hmacs = memdup_user(optval, optlen); 3580 if (IS_ERR(hmacs)) 3581 return PTR_ERR(hmacs); 3582 3583 idents = hmacs->shmac_num_idents; 3584 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3585 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3586 err = -EINVAL; 3587 goto out; 3588 } 3589 3590 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3591 out: 3592 kfree(hmacs); 3593 return err; 3594 } 3595 3596 /* 3597 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3598 * 3599 * This option will set a shared secret key which is used to build an 3600 * association shared key. 3601 */ 3602 static int sctp_setsockopt_auth_key(struct sock *sk, 3603 char __user *optval, 3604 unsigned int optlen) 3605 { 3606 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3607 struct sctp_authkey *authkey; 3608 struct sctp_association *asoc; 3609 int ret; 3610 3611 if (!ep->auth_enable) 3612 return -EACCES; 3613 3614 if (optlen <= sizeof(struct sctp_authkey)) 3615 return -EINVAL; 3616 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3617 * this. 3618 */ 3619 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3620 sizeof(struct sctp_authkey)); 3621 3622 authkey = memdup_user(optval, optlen); 3623 if (IS_ERR(authkey)) 3624 return PTR_ERR(authkey); 3625 3626 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3627 ret = -EINVAL; 3628 goto out; 3629 } 3630 3631 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3632 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3633 ret = -EINVAL; 3634 goto out; 3635 } 3636 3637 ret = sctp_auth_set_key(ep, asoc, authkey); 3638 out: 3639 kzfree(authkey); 3640 return ret; 3641 } 3642 3643 /* 3644 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3645 * 3646 * This option will get or set the active shared key to be used to build 3647 * the association shared key. 3648 */ 3649 static int sctp_setsockopt_active_key(struct sock *sk, 3650 char __user *optval, 3651 unsigned int optlen) 3652 { 3653 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3654 struct sctp_authkeyid val; 3655 struct sctp_association *asoc; 3656 3657 if (!ep->auth_enable) 3658 return -EACCES; 3659 3660 if (optlen != sizeof(struct sctp_authkeyid)) 3661 return -EINVAL; 3662 if (copy_from_user(&val, optval, optlen)) 3663 return -EFAULT; 3664 3665 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3666 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3667 return -EINVAL; 3668 3669 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3670 } 3671 3672 /* 3673 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3674 * 3675 * This set option will delete a shared secret key from use. 3676 */ 3677 static int sctp_setsockopt_del_key(struct sock *sk, 3678 char __user *optval, 3679 unsigned int optlen) 3680 { 3681 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3682 struct sctp_authkeyid val; 3683 struct sctp_association *asoc; 3684 3685 if (!ep->auth_enable) 3686 return -EACCES; 3687 3688 if (optlen != sizeof(struct sctp_authkeyid)) 3689 return -EINVAL; 3690 if (copy_from_user(&val, optval, optlen)) 3691 return -EFAULT; 3692 3693 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3694 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3695 return -EINVAL; 3696 3697 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3698 3699 } 3700 3701 /* 3702 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3703 * 3704 * This set option will deactivate a shared secret key. 3705 */ 3706 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3707 unsigned int optlen) 3708 { 3709 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3710 struct sctp_authkeyid val; 3711 struct sctp_association *asoc; 3712 3713 if (!ep->auth_enable) 3714 return -EACCES; 3715 3716 if (optlen != sizeof(struct sctp_authkeyid)) 3717 return -EINVAL; 3718 if (copy_from_user(&val, optval, optlen)) 3719 return -EFAULT; 3720 3721 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3722 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3723 return -EINVAL; 3724 3725 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3726 } 3727 3728 /* 3729 * 8.1.23 SCTP_AUTO_ASCONF 3730 * 3731 * This option will enable or disable the use of the automatic generation of 3732 * ASCONF chunks to add and delete addresses to an existing association. Note 3733 * that this option has two caveats namely: a) it only affects sockets that 3734 * are bound to all addresses available to the SCTP stack, and b) the system 3735 * administrator may have an overriding control that turns the ASCONF feature 3736 * off no matter what setting the socket option may have. 3737 * This option expects an integer boolean flag, where a non-zero value turns on 3738 * the option, and a zero value turns off the option. 3739 * Note. In this implementation, socket operation overrides default parameter 3740 * being set by sysctl as well as FreeBSD implementation 3741 */ 3742 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3743 unsigned int optlen) 3744 { 3745 int val; 3746 struct sctp_sock *sp = sctp_sk(sk); 3747 3748 if (optlen < sizeof(int)) 3749 return -EINVAL; 3750 if (get_user(val, (int __user *)optval)) 3751 return -EFAULT; 3752 if (!sctp_is_ep_boundall(sk) && val) 3753 return -EINVAL; 3754 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3755 return 0; 3756 3757 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3758 if (val == 0 && sp->do_auto_asconf) { 3759 list_del(&sp->auto_asconf_list); 3760 sp->do_auto_asconf = 0; 3761 } else if (val && !sp->do_auto_asconf) { 3762 list_add_tail(&sp->auto_asconf_list, 3763 &sock_net(sk)->sctp.auto_asconf_splist); 3764 sp->do_auto_asconf = 1; 3765 } 3766 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3767 return 0; 3768 } 3769 3770 /* 3771 * SCTP_PEER_ADDR_THLDS 3772 * 3773 * This option allows us to alter the partially failed threshold for one or all 3774 * transports in an association. See Section 6.1 of: 3775 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3776 */ 3777 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3778 char __user *optval, 3779 unsigned int optlen) 3780 { 3781 struct sctp_paddrthlds val; 3782 struct sctp_transport *trans; 3783 struct sctp_association *asoc; 3784 3785 if (optlen < sizeof(struct sctp_paddrthlds)) 3786 return -EINVAL; 3787 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3788 sizeof(struct sctp_paddrthlds))) 3789 return -EFAULT; 3790 3791 3792 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3793 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3794 if (!asoc) 3795 return -ENOENT; 3796 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3797 transports) { 3798 if (val.spt_pathmaxrxt) 3799 trans->pathmaxrxt = val.spt_pathmaxrxt; 3800 trans->pf_retrans = val.spt_pathpfthld; 3801 } 3802 3803 if (val.spt_pathmaxrxt) 3804 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3805 asoc->pf_retrans = val.spt_pathpfthld; 3806 } else { 3807 trans = sctp_addr_id2transport(sk, &val.spt_address, 3808 val.spt_assoc_id); 3809 if (!trans) 3810 return -ENOENT; 3811 3812 if (val.spt_pathmaxrxt) 3813 trans->pathmaxrxt = val.spt_pathmaxrxt; 3814 trans->pf_retrans = val.spt_pathpfthld; 3815 } 3816 3817 return 0; 3818 } 3819 3820 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3821 char __user *optval, 3822 unsigned int optlen) 3823 { 3824 int val; 3825 3826 if (optlen < sizeof(int)) 3827 return -EINVAL; 3828 if (get_user(val, (int __user *) optval)) 3829 return -EFAULT; 3830 3831 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3832 3833 return 0; 3834 } 3835 3836 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3837 char __user *optval, 3838 unsigned int optlen) 3839 { 3840 int val; 3841 3842 if (optlen < sizeof(int)) 3843 return -EINVAL; 3844 if (get_user(val, (int __user *) optval)) 3845 return -EFAULT; 3846 3847 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3848 3849 return 0; 3850 } 3851 3852 static int sctp_setsockopt_pr_supported(struct sock *sk, 3853 char __user *optval, 3854 unsigned int optlen) 3855 { 3856 struct sctp_assoc_value params; 3857 struct sctp_association *asoc; 3858 int retval = -EINVAL; 3859 3860 if (optlen != sizeof(params)) 3861 goto out; 3862 3863 if (copy_from_user(¶ms, optval, optlen)) { 3864 retval = -EFAULT; 3865 goto out; 3866 } 3867 3868 asoc = sctp_id2assoc(sk, params.assoc_id); 3869 if (asoc) { 3870 asoc->prsctp_enable = !!params.assoc_value; 3871 } else if (!params.assoc_id) { 3872 struct sctp_sock *sp = sctp_sk(sk); 3873 3874 sp->ep->prsctp_enable = !!params.assoc_value; 3875 } else { 3876 goto out; 3877 } 3878 3879 retval = 0; 3880 3881 out: 3882 return retval; 3883 } 3884 3885 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3886 char __user *optval, 3887 unsigned int optlen) 3888 { 3889 struct sctp_default_prinfo info; 3890 struct sctp_association *asoc; 3891 int retval = -EINVAL; 3892 3893 if (optlen != sizeof(info)) 3894 goto out; 3895 3896 if (copy_from_user(&info, optval, sizeof(info))) { 3897 retval = -EFAULT; 3898 goto out; 3899 } 3900 3901 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3902 goto out; 3903 3904 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3905 info.pr_value = 0; 3906 3907 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3908 if (asoc) { 3909 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3910 asoc->default_timetolive = info.pr_value; 3911 } else if (!info.pr_assoc_id) { 3912 struct sctp_sock *sp = sctp_sk(sk); 3913 3914 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3915 sp->default_timetolive = info.pr_value; 3916 } else { 3917 goto out; 3918 } 3919 3920 retval = 0; 3921 3922 out: 3923 return retval; 3924 } 3925 3926 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3927 char __user *optval, 3928 unsigned int optlen) 3929 { 3930 struct sctp_assoc_value params; 3931 struct sctp_association *asoc; 3932 int retval = -EINVAL; 3933 3934 if (optlen != sizeof(params)) 3935 goto out; 3936 3937 if (copy_from_user(¶ms, optval, optlen)) { 3938 retval = -EFAULT; 3939 goto out; 3940 } 3941 3942 asoc = sctp_id2assoc(sk, params.assoc_id); 3943 if (asoc) { 3944 asoc->reconf_enable = !!params.assoc_value; 3945 } else if (!params.assoc_id) { 3946 struct sctp_sock *sp = sctp_sk(sk); 3947 3948 sp->ep->reconf_enable = !!params.assoc_value; 3949 } else { 3950 goto out; 3951 } 3952 3953 retval = 0; 3954 3955 out: 3956 return retval; 3957 } 3958 3959 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3960 char __user *optval, 3961 unsigned int optlen) 3962 { 3963 struct sctp_assoc_value params; 3964 struct sctp_association *asoc; 3965 int retval = -EINVAL; 3966 3967 if (optlen != sizeof(params)) 3968 goto out; 3969 3970 if (copy_from_user(¶ms, optval, optlen)) { 3971 retval = -EFAULT; 3972 goto out; 3973 } 3974 3975 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3976 goto out; 3977 3978 asoc = sctp_id2assoc(sk, params.assoc_id); 3979 if (asoc) { 3980 asoc->strreset_enable = params.assoc_value; 3981 } else if (!params.assoc_id) { 3982 struct sctp_sock *sp = sctp_sk(sk); 3983 3984 sp->ep->strreset_enable = params.assoc_value; 3985 } else { 3986 goto out; 3987 } 3988 3989 retval = 0; 3990 3991 out: 3992 return retval; 3993 } 3994 3995 static int sctp_setsockopt_reset_streams(struct sock *sk, 3996 char __user *optval, 3997 unsigned int optlen) 3998 { 3999 struct sctp_reset_streams *params; 4000 struct sctp_association *asoc; 4001 int retval = -EINVAL; 4002 4003 if (optlen < sizeof(*params)) 4004 return -EINVAL; 4005 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4006 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4007 sizeof(__u16) * sizeof(*params)); 4008 4009 params = memdup_user(optval, optlen); 4010 if (IS_ERR(params)) 4011 return PTR_ERR(params); 4012 4013 if (params->srs_number_streams * sizeof(__u16) > 4014 optlen - sizeof(*params)) 4015 goto out; 4016 4017 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4018 if (!asoc) 4019 goto out; 4020 4021 retval = sctp_send_reset_streams(asoc, params); 4022 4023 out: 4024 kfree(params); 4025 return retval; 4026 } 4027 4028 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4029 char __user *optval, 4030 unsigned int optlen) 4031 { 4032 struct sctp_association *asoc; 4033 sctp_assoc_t associd; 4034 int retval = -EINVAL; 4035 4036 if (optlen != sizeof(associd)) 4037 goto out; 4038 4039 if (copy_from_user(&associd, optval, optlen)) { 4040 retval = -EFAULT; 4041 goto out; 4042 } 4043 4044 asoc = sctp_id2assoc(sk, associd); 4045 if (!asoc) 4046 goto out; 4047 4048 retval = sctp_send_reset_assoc(asoc); 4049 4050 out: 4051 return retval; 4052 } 4053 4054 static int sctp_setsockopt_add_streams(struct sock *sk, 4055 char __user *optval, 4056 unsigned int optlen) 4057 { 4058 struct sctp_association *asoc; 4059 struct sctp_add_streams params; 4060 int retval = -EINVAL; 4061 4062 if (optlen != sizeof(params)) 4063 goto out; 4064 4065 if (copy_from_user(¶ms, optval, optlen)) { 4066 retval = -EFAULT; 4067 goto out; 4068 } 4069 4070 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4071 if (!asoc) 4072 goto out; 4073 4074 retval = sctp_send_add_streams(asoc, ¶ms); 4075 4076 out: 4077 return retval; 4078 } 4079 4080 static int sctp_setsockopt_scheduler(struct sock *sk, 4081 char __user *optval, 4082 unsigned int optlen) 4083 { 4084 struct sctp_association *asoc; 4085 struct sctp_assoc_value params; 4086 int retval = -EINVAL; 4087 4088 if (optlen < sizeof(params)) 4089 goto out; 4090 4091 optlen = sizeof(params); 4092 if (copy_from_user(¶ms, optval, optlen)) { 4093 retval = -EFAULT; 4094 goto out; 4095 } 4096 4097 if (params.assoc_value > SCTP_SS_MAX) 4098 goto out; 4099 4100 asoc = sctp_id2assoc(sk, params.assoc_id); 4101 if (!asoc) 4102 goto out; 4103 4104 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4105 4106 out: 4107 return retval; 4108 } 4109 4110 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4111 char __user *optval, 4112 unsigned int optlen) 4113 { 4114 struct sctp_association *asoc; 4115 struct sctp_stream_value params; 4116 int retval = -EINVAL; 4117 4118 if (optlen < sizeof(params)) 4119 goto out; 4120 4121 optlen = sizeof(params); 4122 if (copy_from_user(¶ms, optval, optlen)) { 4123 retval = -EFAULT; 4124 goto out; 4125 } 4126 4127 asoc = sctp_id2assoc(sk, params.assoc_id); 4128 if (!asoc) 4129 goto out; 4130 4131 retval = sctp_sched_set_value(asoc, params.stream_id, 4132 params.stream_value, GFP_KERNEL); 4133 4134 out: 4135 return retval; 4136 } 4137 4138 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4139 char __user *optval, 4140 unsigned int optlen) 4141 { 4142 struct sctp_sock *sp = sctp_sk(sk); 4143 struct net *net = sock_net(sk); 4144 struct sctp_assoc_value params; 4145 int retval = -EINVAL; 4146 4147 if (optlen < sizeof(params)) 4148 goto out; 4149 4150 optlen = sizeof(params); 4151 if (copy_from_user(¶ms, optval, optlen)) { 4152 retval = -EFAULT; 4153 goto out; 4154 } 4155 4156 if (params.assoc_id) 4157 goto out; 4158 4159 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4160 retval = -EPERM; 4161 goto out; 4162 } 4163 4164 sp->strm_interleave = !!params.assoc_value; 4165 4166 retval = 0; 4167 4168 out: 4169 return retval; 4170 } 4171 4172 /* API 6.2 setsockopt(), getsockopt() 4173 * 4174 * Applications use setsockopt() and getsockopt() to set or retrieve 4175 * socket options. Socket options are used to change the default 4176 * behavior of sockets calls. They are described in Section 7. 4177 * 4178 * The syntax is: 4179 * 4180 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4181 * int __user *optlen); 4182 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4183 * int optlen); 4184 * 4185 * sd - the socket descript. 4186 * level - set to IPPROTO_SCTP for all SCTP options. 4187 * optname - the option name. 4188 * optval - the buffer to store the value of the option. 4189 * optlen - the size of the buffer. 4190 */ 4191 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4192 char __user *optval, unsigned int optlen) 4193 { 4194 int retval = 0; 4195 4196 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4197 4198 /* I can hardly begin to describe how wrong this is. This is 4199 * so broken as to be worse than useless. The API draft 4200 * REALLY is NOT helpful here... I am not convinced that the 4201 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4202 * are at all well-founded. 4203 */ 4204 if (level != SOL_SCTP) { 4205 struct sctp_af *af = sctp_sk(sk)->pf->af; 4206 retval = af->setsockopt(sk, level, optname, optval, optlen); 4207 goto out_nounlock; 4208 } 4209 4210 lock_sock(sk); 4211 4212 switch (optname) { 4213 case SCTP_SOCKOPT_BINDX_ADD: 4214 /* 'optlen' is the size of the addresses buffer. */ 4215 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4216 optlen, SCTP_BINDX_ADD_ADDR); 4217 break; 4218 4219 case SCTP_SOCKOPT_BINDX_REM: 4220 /* 'optlen' is the size of the addresses buffer. */ 4221 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4222 optlen, SCTP_BINDX_REM_ADDR); 4223 break; 4224 4225 case SCTP_SOCKOPT_CONNECTX_OLD: 4226 /* 'optlen' is the size of the addresses buffer. */ 4227 retval = sctp_setsockopt_connectx_old(sk, 4228 (struct sockaddr __user *)optval, 4229 optlen); 4230 break; 4231 4232 case SCTP_SOCKOPT_CONNECTX: 4233 /* 'optlen' is the size of the addresses buffer. */ 4234 retval = sctp_setsockopt_connectx(sk, 4235 (struct sockaddr __user *)optval, 4236 optlen); 4237 break; 4238 4239 case SCTP_DISABLE_FRAGMENTS: 4240 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4241 break; 4242 4243 case SCTP_EVENTS: 4244 retval = sctp_setsockopt_events(sk, optval, optlen); 4245 break; 4246 4247 case SCTP_AUTOCLOSE: 4248 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4249 break; 4250 4251 case SCTP_PEER_ADDR_PARAMS: 4252 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4253 break; 4254 4255 case SCTP_DELAYED_SACK: 4256 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4257 break; 4258 case SCTP_PARTIAL_DELIVERY_POINT: 4259 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4260 break; 4261 4262 case SCTP_INITMSG: 4263 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4264 break; 4265 case SCTP_DEFAULT_SEND_PARAM: 4266 retval = sctp_setsockopt_default_send_param(sk, optval, 4267 optlen); 4268 break; 4269 case SCTP_DEFAULT_SNDINFO: 4270 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4271 break; 4272 case SCTP_PRIMARY_ADDR: 4273 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4274 break; 4275 case SCTP_SET_PEER_PRIMARY_ADDR: 4276 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4277 break; 4278 case SCTP_NODELAY: 4279 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4280 break; 4281 case SCTP_RTOINFO: 4282 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4283 break; 4284 case SCTP_ASSOCINFO: 4285 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4286 break; 4287 case SCTP_I_WANT_MAPPED_V4_ADDR: 4288 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4289 break; 4290 case SCTP_MAXSEG: 4291 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4292 break; 4293 case SCTP_ADAPTATION_LAYER: 4294 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4295 break; 4296 case SCTP_CONTEXT: 4297 retval = sctp_setsockopt_context(sk, optval, optlen); 4298 break; 4299 case SCTP_FRAGMENT_INTERLEAVE: 4300 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4301 break; 4302 case SCTP_MAX_BURST: 4303 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4304 break; 4305 case SCTP_AUTH_CHUNK: 4306 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4307 break; 4308 case SCTP_HMAC_IDENT: 4309 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4310 break; 4311 case SCTP_AUTH_KEY: 4312 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4313 break; 4314 case SCTP_AUTH_ACTIVE_KEY: 4315 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4316 break; 4317 case SCTP_AUTH_DELETE_KEY: 4318 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4319 break; 4320 case SCTP_AUTH_DEACTIVATE_KEY: 4321 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4322 break; 4323 case SCTP_AUTO_ASCONF: 4324 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4325 break; 4326 case SCTP_PEER_ADDR_THLDS: 4327 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4328 break; 4329 case SCTP_RECVRCVINFO: 4330 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4331 break; 4332 case SCTP_RECVNXTINFO: 4333 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4334 break; 4335 case SCTP_PR_SUPPORTED: 4336 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4337 break; 4338 case SCTP_DEFAULT_PRINFO: 4339 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4340 break; 4341 case SCTP_RECONFIG_SUPPORTED: 4342 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4343 break; 4344 case SCTP_ENABLE_STREAM_RESET: 4345 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4346 break; 4347 case SCTP_RESET_STREAMS: 4348 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4349 break; 4350 case SCTP_RESET_ASSOC: 4351 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4352 break; 4353 case SCTP_ADD_STREAMS: 4354 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4355 break; 4356 case SCTP_STREAM_SCHEDULER: 4357 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4358 break; 4359 case SCTP_STREAM_SCHEDULER_VALUE: 4360 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4361 break; 4362 case SCTP_INTERLEAVING_SUPPORTED: 4363 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4364 optlen); 4365 break; 4366 default: 4367 retval = -ENOPROTOOPT; 4368 break; 4369 } 4370 4371 release_sock(sk); 4372 4373 out_nounlock: 4374 return retval; 4375 } 4376 4377 /* API 3.1.6 connect() - UDP Style Syntax 4378 * 4379 * An application may use the connect() call in the UDP model to initiate an 4380 * association without sending data. 4381 * 4382 * The syntax is: 4383 * 4384 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4385 * 4386 * sd: the socket descriptor to have a new association added to. 4387 * 4388 * nam: the address structure (either struct sockaddr_in or struct 4389 * sockaddr_in6 defined in RFC2553 [7]). 4390 * 4391 * len: the size of the address. 4392 */ 4393 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4394 int addr_len, int flags) 4395 { 4396 struct inet_sock *inet = inet_sk(sk); 4397 struct sctp_af *af; 4398 int err = 0; 4399 4400 lock_sock(sk); 4401 4402 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4403 addr, addr_len); 4404 4405 /* We may need to bind the socket. */ 4406 if (!inet->inet_num) { 4407 if (sk->sk_prot->get_port(sk, 0)) { 4408 release_sock(sk); 4409 return -EAGAIN; 4410 } 4411 inet->inet_sport = htons(inet->inet_num); 4412 } 4413 4414 /* Validate addr_len before calling common connect/connectx routine. */ 4415 af = sctp_get_af_specific(addr->sa_family); 4416 if (!af || addr_len < af->sockaddr_len) { 4417 err = -EINVAL; 4418 } else { 4419 /* Pass correct addr len to common routine (so it knows there 4420 * is only one address being passed. 4421 */ 4422 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4423 } 4424 4425 release_sock(sk); 4426 return err; 4427 } 4428 4429 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4430 int addr_len, int flags) 4431 { 4432 if (addr_len < sizeof(uaddr->sa_family)) 4433 return -EINVAL; 4434 4435 if (uaddr->sa_family == AF_UNSPEC) 4436 return -EOPNOTSUPP; 4437 4438 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4439 } 4440 4441 /* FIXME: Write comments. */ 4442 static int sctp_disconnect(struct sock *sk, int flags) 4443 { 4444 return -EOPNOTSUPP; /* STUB */ 4445 } 4446 4447 /* 4.1.4 accept() - TCP Style Syntax 4448 * 4449 * Applications use accept() call to remove an established SCTP 4450 * association from the accept queue of the endpoint. A new socket 4451 * descriptor will be returned from accept() to represent the newly 4452 * formed association. 4453 */ 4454 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4455 { 4456 struct sctp_sock *sp; 4457 struct sctp_endpoint *ep; 4458 struct sock *newsk = NULL; 4459 struct sctp_association *asoc; 4460 long timeo; 4461 int error = 0; 4462 4463 lock_sock(sk); 4464 4465 sp = sctp_sk(sk); 4466 ep = sp->ep; 4467 4468 if (!sctp_style(sk, TCP)) { 4469 error = -EOPNOTSUPP; 4470 goto out; 4471 } 4472 4473 if (!sctp_sstate(sk, LISTENING)) { 4474 error = -EINVAL; 4475 goto out; 4476 } 4477 4478 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4479 4480 error = sctp_wait_for_accept(sk, timeo); 4481 if (error) 4482 goto out; 4483 4484 /* We treat the list of associations on the endpoint as the accept 4485 * queue and pick the first association on the list. 4486 */ 4487 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4488 4489 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4490 if (!newsk) { 4491 error = -ENOMEM; 4492 goto out; 4493 } 4494 4495 /* Populate the fields of the newsk from the oldsk and migrate the 4496 * asoc to the newsk. 4497 */ 4498 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4499 4500 out: 4501 release_sock(sk); 4502 *err = error; 4503 return newsk; 4504 } 4505 4506 /* The SCTP ioctl handler. */ 4507 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4508 { 4509 int rc = -ENOTCONN; 4510 4511 lock_sock(sk); 4512 4513 /* 4514 * SEQPACKET-style sockets in LISTENING state are valid, for 4515 * SCTP, so only discard TCP-style sockets in LISTENING state. 4516 */ 4517 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4518 goto out; 4519 4520 switch (cmd) { 4521 case SIOCINQ: { 4522 struct sk_buff *skb; 4523 unsigned int amount = 0; 4524 4525 skb = skb_peek(&sk->sk_receive_queue); 4526 if (skb != NULL) { 4527 /* 4528 * We will only return the amount of this packet since 4529 * that is all that will be read. 4530 */ 4531 amount = skb->len; 4532 } 4533 rc = put_user(amount, (int __user *)arg); 4534 break; 4535 } 4536 default: 4537 rc = -ENOIOCTLCMD; 4538 break; 4539 } 4540 out: 4541 release_sock(sk); 4542 return rc; 4543 } 4544 4545 /* This is the function which gets called during socket creation to 4546 * initialized the SCTP-specific portion of the sock. 4547 * The sock structure should already be zero-filled memory. 4548 */ 4549 static int sctp_init_sock(struct sock *sk) 4550 { 4551 struct net *net = sock_net(sk); 4552 struct sctp_sock *sp; 4553 4554 pr_debug("%s: sk:%p\n", __func__, sk); 4555 4556 sp = sctp_sk(sk); 4557 4558 /* Initialize the SCTP per socket area. */ 4559 switch (sk->sk_type) { 4560 case SOCK_SEQPACKET: 4561 sp->type = SCTP_SOCKET_UDP; 4562 break; 4563 case SOCK_STREAM: 4564 sp->type = SCTP_SOCKET_TCP; 4565 break; 4566 default: 4567 return -ESOCKTNOSUPPORT; 4568 } 4569 4570 sk->sk_gso_type = SKB_GSO_SCTP; 4571 4572 /* Initialize default send parameters. These parameters can be 4573 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4574 */ 4575 sp->default_stream = 0; 4576 sp->default_ppid = 0; 4577 sp->default_flags = 0; 4578 sp->default_context = 0; 4579 sp->default_timetolive = 0; 4580 4581 sp->default_rcv_context = 0; 4582 sp->max_burst = net->sctp.max_burst; 4583 4584 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4585 4586 /* Initialize default setup parameters. These parameters 4587 * can be modified with the SCTP_INITMSG socket option or 4588 * overridden by the SCTP_INIT CMSG. 4589 */ 4590 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4591 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4592 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4593 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4594 4595 /* Initialize default RTO related parameters. These parameters can 4596 * be modified for with the SCTP_RTOINFO socket option. 4597 */ 4598 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4599 sp->rtoinfo.srto_max = net->sctp.rto_max; 4600 sp->rtoinfo.srto_min = net->sctp.rto_min; 4601 4602 /* Initialize default association related parameters. These parameters 4603 * can be modified with the SCTP_ASSOCINFO socket option. 4604 */ 4605 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4606 sp->assocparams.sasoc_number_peer_destinations = 0; 4607 sp->assocparams.sasoc_peer_rwnd = 0; 4608 sp->assocparams.sasoc_local_rwnd = 0; 4609 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4610 4611 /* Initialize default event subscriptions. By default, all the 4612 * options are off. 4613 */ 4614 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4615 4616 /* Default Peer Address Parameters. These defaults can 4617 * be modified via SCTP_PEER_ADDR_PARAMS 4618 */ 4619 sp->hbinterval = net->sctp.hb_interval; 4620 sp->pathmaxrxt = net->sctp.max_retrans_path; 4621 sp->pathmtu = 0; /* allow default discovery */ 4622 sp->sackdelay = net->sctp.sack_timeout; 4623 sp->sackfreq = 2; 4624 sp->param_flags = SPP_HB_ENABLE | 4625 SPP_PMTUD_ENABLE | 4626 SPP_SACKDELAY_ENABLE; 4627 4628 /* If enabled no SCTP message fragmentation will be performed. 4629 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4630 */ 4631 sp->disable_fragments = 0; 4632 4633 /* Enable Nagle algorithm by default. */ 4634 sp->nodelay = 0; 4635 4636 sp->recvrcvinfo = 0; 4637 sp->recvnxtinfo = 0; 4638 4639 /* Enable by default. */ 4640 sp->v4mapped = 1; 4641 4642 /* Auto-close idle associations after the configured 4643 * number of seconds. A value of 0 disables this 4644 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4645 * for UDP-style sockets only. 4646 */ 4647 sp->autoclose = 0; 4648 4649 /* User specified fragmentation limit. */ 4650 sp->user_frag = 0; 4651 4652 sp->adaptation_ind = 0; 4653 4654 sp->pf = sctp_get_pf_specific(sk->sk_family); 4655 4656 /* Control variables for partial data delivery. */ 4657 atomic_set(&sp->pd_mode, 0); 4658 skb_queue_head_init(&sp->pd_lobby); 4659 sp->frag_interleave = 0; 4660 4661 /* Create a per socket endpoint structure. Even if we 4662 * change the data structure relationships, this may still 4663 * be useful for storing pre-connect address information. 4664 */ 4665 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4666 if (!sp->ep) 4667 return -ENOMEM; 4668 4669 sp->hmac = NULL; 4670 4671 sk->sk_destruct = sctp_destruct_sock; 4672 4673 SCTP_DBG_OBJCNT_INC(sock); 4674 4675 local_bh_disable(); 4676 sk_sockets_allocated_inc(sk); 4677 sock_prot_inuse_add(net, sk->sk_prot, 1); 4678 4679 /* Nothing can fail after this block, otherwise 4680 * sctp_destroy_sock() will be called without addr_wq_lock held 4681 */ 4682 if (net->sctp.default_auto_asconf) { 4683 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4684 list_add_tail(&sp->auto_asconf_list, 4685 &net->sctp.auto_asconf_splist); 4686 sp->do_auto_asconf = 1; 4687 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4688 } else { 4689 sp->do_auto_asconf = 0; 4690 } 4691 4692 local_bh_enable(); 4693 4694 return 0; 4695 } 4696 4697 /* Cleanup any SCTP per socket resources. Must be called with 4698 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4699 */ 4700 static void sctp_destroy_sock(struct sock *sk) 4701 { 4702 struct sctp_sock *sp; 4703 4704 pr_debug("%s: sk:%p\n", __func__, sk); 4705 4706 /* Release our hold on the endpoint. */ 4707 sp = sctp_sk(sk); 4708 /* This could happen during socket init, thus we bail out 4709 * early, since the rest of the below is not setup either. 4710 */ 4711 if (sp->ep == NULL) 4712 return; 4713 4714 if (sp->do_auto_asconf) { 4715 sp->do_auto_asconf = 0; 4716 list_del(&sp->auto_asconf_list); 4717 } 4718 sctp_endpoint_free(sp->ep); 4719 local_bh_disable(); 4720 sk_sockets_allocated_dec(sk); 4721 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4722 local_bh_enable(); 4723 } 4724 4725 /* Triggered when there are no references on the socket anymore */ 4726 static void sctp_destruct_sock(struct sock *sk) 4727 { 4728 struct sctp_sock *sp = sctp_sk(sk); 4729 4730 /* Free up the HMAC transform. */ 4731 crypto_free_shash(sp->hmac); 4732 4733 inet_sock_destruct(sk); 4734 } 4735 4736 /* API 4.1.7 shutdown() - TCP Style Syntax 4737 * int shutdown(int socket, int how); 4738 * 4739 * sd - the socket descriptor of the association to be closed. 4740 * how - Specifies the type of shutdown. The values are 4741 * as follows: 4742 * SHUT_RD 4743 * Disables further receive operations. No SCTP 4744 * protocol action is taken. 4745 * SHUT_WR 4746 * Disables further send operations, and initiates 4747 * the SCTP shutdown sequence. 4748 * SHUT_RDWR 4749 * Disables further send and receive operations 4750 * and initiates the SCTP shutdown sequence. 4751 */ 4752 static void sctp_shutdown(struct sock *sk, int how) 4753 { 4754 struct net *net = sock_net(sk); 4755 struct sctp_endpoint *ep; 4756 4757 if (!sctp_style(sk, TCP)) 4758 return; 4759 4760 ep = sctp_sk(sk)->ep; 4761 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4762 struct sctp_association *asoc; 4763 4764 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4765 asoc = list_entry(ep->asocs.next, 4766 struct sctp_association, asocs); 4767 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4768 } 4769 } 4770 4771 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4772 struct sctp_info *info) 4773 { 4774 struct sctp_transport *prim; 4775 struct list_head *pos; 4776 int mask; 4777 4778 memset(info, 0, sizeof(*info)); 4779 if (!asoc) { 4780 struct sctp_sock *sp = sctp_sk(sk); 4781 4782 info->sctpi_s_autoclose = sp->autoclose; 4783 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4784 info->sctpi_s_pd_point = sp->pd_point; 4785 info->sctpi_s_nodelay = sp->nodelay; 4786 info->sctpi_s_disable_fragments = sp->disable_fragments; 4787 info->sctpi_s_v4mapped = sp->v4mapped; 4788 info->sctpi_s_frag_interleave = sp->frag_interleave; 4789 info->sctpi_s_type = sp->type; 4790 4791 return 0; 4792 } 4793 4794 info->sctpi_tag = asoc->c.my_vtag; 4795 info->sctpi_state = asoc->state; 4796 info->sctpi_rwnd = asoc->a_rwnd; 4797 info->sctpi_unackdata = asoc->unack_data; 4798 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4799 info->sctpi_instrms = asoc->stream.incnt; 4800 info->sctpi_outstrms = asoc->stream.outcnt; 4801 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4802 info->sctpi_inqueue++; 4803 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4804 info->sctpi_outqueue++; 4805 info->sctpi_overall_error = asoc->overall_error_count; 4806 info->sctpi_max_burst = asoc->max_burst; 4807 info->sctpi_maxseg = asoc->frag_point; 4808 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4809 info->sctpi_peer_tag = asoc->c.peer_vtag; 4810 4811 mask = asoc->peer.ecn_capable << 1; 4812 mask = (mask | asoc->peer.ipv4_address) << 1; 4813 mask = (mask | asoc->peer.ipv6_address) << 1; 4814 mask = (mask | asoc->peer.hostname_address) << 1; 4815 mask = (mask | asoc->peer.asconf_capable) << 1; 4816 mask = (mask | asoc->peer.prsctp_capable) << 1; 4817 mask = (mask | asoc->peer.auth_capable); 4818 info->sctpi_peer_capable = mask; 4819 mask = asoc->peer.sack_needed << 1; 4820 mask = (mask | asoc->peer.sack_generation) << 1; 4821 mask = (mask | asoc->peer.zero_window_announced); 4822 info->sctpi_peer_sack = mask; 4823 4824 info->sctpi_isacks = asoc->stats.isacks; 4825 info->sctpi_osacks = asoc->stats.osacks; 4826 info->sctpi_opackets = asoc->stats.opackets; 4827 info->sctpi_ipackets = asoc->stats.ipackets; 4828 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4829 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4830 info->sctpi_idupchunks = asoc->stats.idupchunks; 4831 info->sctpi_gapcnt = asoc->stats.gapcnt; 4832 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4833 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4834 info->sctpi_oodchunks = asoc->stats.oodchunks; 4835 info->sctpi_iodchunks = asoc->stats.iodchunks; 4836 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4837 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4838 4839 prim = asoc->peer.primary_path; 4840 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4841 info->sctpi_p_state = prim->state; 4842 info->sctpi_p_cwnd = prim->cwnd; 4843 info->sctpi_p_srtt = prim->srtt; 4844 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4845 info->sctpi_p_hbinterval = prim->hbinterval; 4846 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4847 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4848 info->sctpi_p_ssthresh = prim->ssthresh; 4849 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4850 info->sctpi_p_flight_size = prim->flight_size; 4851 info->sctpi_p_error = prim->error_count; 4852 4853 return 0; 4854 } 4855 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4856 4857 /* use callback to avoid exporting the core structure */ 4858 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4859 { 4860 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4861 4862 rhashtable_walk_start(iter); 4863 } 4864 4865 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4866 { 4867 rhashtable_walk_stop(iter); 4868 rhashtable_walk_exit(iter); 4869 } 4870 4871 struct sctp_transport *sctp_transport_get_next(struct net *net, 4872 struct rhashtable_iter *iter) 4873 { 4874 struct sctp_transport *t; 4875 4876 t = rhashtable_walk_next(iter); 4877 for (; t; t = rhashtable_walk_next(iter)) { 4878 if (IS_ERR(t)) { 4879 if (PTR_ERR(t) == -EAGAIN) 4880 continue; 4881 break; 4882 } 4883 4884 if (net_eq(sock_net(t->asoc->base.sk), net) && 4885 t->asoc->peer.primary_path == t) 4886 break; 4887 } 4888 4889 return t; 4890 } 4891 4892 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4893 struct rhashtable_iter *iter, 4894 int pos) 4895 { 4896 void *obj = SEQ_START_TOKEN; 4897 4898 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4899 !IS_ERR(obj)) 4900 pos--; 4901 4902 return obj; 4903 } 4904 4905 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4906 void *p) { 4907 int err = 0; 4908 int hash = 0; 4909 struct sctp_ep_common *epb; 4910 struct sctp_hashbucket *head; 4911 4912 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4913 hash++, head++) { 4914 read_lock_bh(&head->lock); 4915 sctp_for_each_hentry(epb, &head->chain) { 4916 err = cb(sctp_ep(epb), p); 4917 if (err) 4918 break; 4919 } 4920 read_unlock_bh(&head->lock); 4921 } 4922 4923 return err; 4924 } 4925 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4926 4927 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4928 struct net *net, 4929 const union sctp_addr *laddr, 4930 const union sctp_addr *paddr, void *p) 4931 { 4932 struct sctp_transport *transport; 4933 int err; 4934 4935 rcu_read_lock(); 4936 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4937 rcu_read_unlock(); 4938 if (!transport) 4939 return -ENOENT; 4940 4941 err = cb(transport, p); 4942 sctp_transport_put(transport); 4943 4944 return err; 4945 } 4946 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4947 4948 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4949 int (*cb_done)(struct sctp_transport *, void *), 4950 struct net *net, int *pos, void *p) { 4951 struct rhashtable_iter hti; 4952 struct sctp_transport *tsp; 4953 int ret; 4954 4955 again: 4956 ret = 0; 4957 sctp_transport_walk_start(&hti); 4958 4959 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4960 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4961 if (!sctp_transport_hold(tsp)) 4962 continue; 4963 ret = cb(tsp, p); 4964 if (ret) 4965 break; 4966 (*pos)++; 4967 sctp_transport_put(tsp); 4968 } 4969 sctp_transport_walk_stop(&hti); 4970 4971 if (ret) { 4972 if (cb_done && !cb_done(tsp, p)) { 4973 (*pos)++; 4974 sctp_transport_put(tsp); 4975 goto again; 4976 } 4977 sctp_transport_put(tsp); 4978 } 4979 4980 return ret; 4981 } 4982 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4983 4984 /* 7.2.1 Association Status (SCTP_STATUS) 4985 4986 * Applications can retrieve current status information about an 4987 * association, including association state, peer receiver window size, 4988 * number of unacked data chunks, and number of data chunks pending 4989 * receipt. This information is read-only. 4990 */ 4991 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4992 char __user *optval, 4993 int __user *optlen) 4994 { 4995 struct sctp_status status; 4996 struct sctp_association *asoc = NULL; 4997 struct sctp_transport *transport; 4998 sctp_assoc_t associd; 4999 int retval = 0; 5000 5001 if (len < sizeof(status)) { 5002 retval = -EINVAL; 5003 goto out; 5004 } 5005 5006 len = sizeof(status); 5007 if (copy_from_user(&status, optval, len)) { 5008 retval = -EFAULT; 5009 goto out; 5010 } 5011 5012 associd = status.sstat_assoc_id; 5013 asoc = sctp_id2assoc(sk, associd); 5014 if (!asoc) { 5015 retval = -EINVAL; 5016 goto out; 5017 } 5018 5019 transport = asoc->peer.primary_path; 5020 5021 status.sstat_assoc_id = sctp_assoc2id(asoc); 5022 status.sstat_state = sctp_assoc_to_state(asoc); 5023 status.sstat_rwnd = asoc->peer.rwnd; 5024 status.sstat_unackdata = asoc->unack_data; 5025 5026 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5027 status.sstat_instrms = asoc->stream.incnt; 5028 status.sstat_outstrms = asoc->stream.outcnt; 5029 status.sstat_fragmentation_point = asoc->frag_point; 5030 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5031 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5032 transport->af_specific->sockaddr_len); 5033 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5034 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5035 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5036 status.sstat_primary.spinfo_state = transport->state; 5037 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5038 status.sstat_primary.spinfo_srtt = transport->srtt; 5039 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5040 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5041 5042 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5043 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5044 5045 if (put_user(len, optlen)) { 5046 retval = -EFAULT; 5047 goto out; 5048 } 5049 5050 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5051 __func__, len, status.sstat_state, status.sstat_rwnd, 5052 status.sstat_assoc_id); 5053 5054 if (copy_to_user(optval, &status, len)) { 5055 retval = -EFAULT; 5056 goto out; 5057 } 5058 5059 out: 5060 return retval; 5061 } 5062 5063 5064 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5065 * 5066 * Applications can retrieve information about a specific peer address 5067 * of an association, including its reachability state, congestion 5068 * window, and retransmission timer values. This information is 5069 * read-only. 5070 */ 5071 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5072 char __user *optval, 5073 int __user *optlen) 5074 { 5075 struct sctp_paddrinfo pinfo; 5076 struct sctp_transport *transport; 5077 int retval = 0; 5078 5079 if (len < sizeof(pinfo)) { 5080 retval = -EINVAL; 5081 goto out; 5082 } 5083 5084 len = sizeof(pinfo); 5085 if (copy_from_user(&pinfo, optval, len)) { 5086 retval = -EFAULT; 5087 goto out; 5088 } 5089 5090 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5091 pinfo.spinfo_assoc_id); 5092 if (!transport) 5093 return -EINVAL; 5094 5095 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5096 pinfo.spinfo_state = transport->state; 5097 pinfo.spinfo_cwnd = transport->cwnd; 5098 pinfo.spinfo_srtt = transport->srtt; 5099 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5100 pinfo.spinfo_mtu = transport->pathmtu; 5101 5102 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5103 pinfo.spinfo_state = SCTP_ACTIVE; 5104 5105 if (put_user(len, optlen)) { 5106 retval = -EFAULT; 5107 goto out; 5108 } 5109 5110 if (copy_to_user(optval, &pinfo, len)) { 5111 retval = -EFAULT; 5112 goto out; 5113 } 5114 5115 out: 5116 return retval; 5117 } 5118 5119 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5120 * 5121 * This option is a on/off flag. If enabled no SCTP message 5122 * fragmentation will be performed. Instead if a message being sent 5123 * exceeds the current PMTU size, the message will NOT be sent and 5124 * instead a error will be indicated to the user. 5125 */ 5126 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5127 char __user *optval, int __user *optlen) 5128 { 5129 int val; 5130 5131 if (len < sizeof(int)) 5132 return -EINVAL; 5133 5134 len = sizeof(int); 5135 val = (sctp_sk(sk)->disable_fragments == 1); 5136 if (put_user(len, optlen)) 5137 return -EFAULT; 5138 if (copy_to_user(optval, &val, len)) 5139 return -EFAULT; 5140 return 0; 5141 } 5142 5143 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5144 * 5145 * This socket option is used to specify various notifications and 5146 * ancillary data the user wishes to receive. 5147 */ 5148 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5149 int __user *optlen) 5150 { 5151 if (len == 0) 5152 return -EINVAL; 5153 if (len > sizeof(struct sctp_event_subscribe)) 5154 len = sizeof(struct sctp_event_subscribe); 5155 if (put_user(len, optlen)) 5156 return -EFAULT; 5157 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5158 return -EFAULT; 5159 return 0; 5160 } 5161 5162 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5163 * 5164 * This socket option is applicable to the UDP-style socket only. When 5165 * set it will cause associations that are idle for more than the 5166 * specified number of seconds to automatically close. An association 5167 * being idle is defined an association that has NOT sent or received 5168 * user data. The special value of '0' indicates that no automatic 5169 * close of any associations should be performed. The option expects an 5170 * integer defining the number of seconds of idle time before an 5171 * association is closed. 5172 */ 5173 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5174 { 5175 /* Applicable to UDP-style socket only */ 5176 if (sctp_style(sk, TCP)) 5177 return -EOPNOTSUPP; 5178 if (len < sizeof(int)) 5179 return -EINVAL; 5180 len = sizeof(int); 5181 if (put_user(len, optlen)) 5182 return -EFAULT; 5183 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5184 return -EFAULT; 5185 return 0; 5186 } 5187 5188 /* Helper routine to branch off an association to a new socket. */ 5189 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5190 { 5191 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5192 struct sctp_sock *sp = sctp_sk(sk); 5193 struct socket *sock; 5194 int err = 0; 5195 5196 /* Do not peel off from one netns to another one. */ 5197 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5198 return -EINVAL; 5199 5200 if (!asoc) 5201 return -EINVAL; 5202 5203 /* An association cannot be branched off from an already peeled-off 5204 * socket, nor is this supported for tcp style sockets. 5205 */ 5206 if (!sctp_style(sk, UDP)) 5207 return -EINVAL; 5208 5209 /* Create a new socket. */ 5210 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5211 if (err < 0) 5212 return err; 5213 5214 sctp_copy_sock(sock->sk, sk, asoc); 5215 5216 /* Make peeled-off sockets more like 1-1 accepted sockets. 5217 * Set the daddr and initialize id to something more random and also 5218 * copy over any ip options. 5219 */ 5220 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5221 sp->pf->copy_ip_options(sk, sock->sk); 5222 5223 /* Populate the fields of the newsk from the oldsk and migrate the 5224 * asoc to the newsk. 5225 */ 5226 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5227 5228 *sockp = sock; 5229 5230 return err; 5231 } 5232 EXPORT_SYMBOL(sctp_do_peeloff); 5233 5234 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5235 struct file **newfile, unsigned flags) 5236 { 5237 struct socket *newsock; 5238 int retval; 5239 5240 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5241 if (retval < 0) 5242 goto out; 5243 5244 /* Map the socket to an unused fd that can be returned to the user. */ 5245 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5246 if (retval < 0) { 5247 sock_release(newsock); 5248 goto out; 5249 } 5250 5251 *newfile = sock_alloc_file(newsock, 0, NULL); 5252 if (IS_ERR(*newfile)) { 5253 put_unused_fd(retval); 5254 retval = PTR_ERR(*newfile); 5255 *newfile = NULL; 5256 return retval; 5257 } 5258 5259 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5260 retval); 5261 5262 peeloff->sd = retval; 5263 5264 if (flags & SOCK_NONBLOCK) 5265 (*newfile)->f_flags |= O_NONBLOCK; 5266 out: 5267 return retval; 5268 } 5269 5270 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5271 { 5272 sctp_peeloff_arg_t peeloff; 5273 struct file *newfile = NULL; 5274 int retval = 0; 5275 5276 if (len < sizeof(sctp_peeloff_arg_t)) 5277 return -EINVAL; 5278 len = sizeof(sctp_peeloff_arg_t); 5279 if (copy_from_user(&peeloff, optval, len)) 5280 return -EFAULT; 5281 5282 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5283 if (retval < 0) 5284 goto out; 5285 5286 /* Return the fd mapped to the new socket. */ 5287 if (put_user(len, optlen)) { 5288 fput(newfile); 5289 put_unused_fd(retval); 5290 return -EFAULT; 5291 } 5292 5293 if (copy_to_user(optval, &peeloff, len)) { 5294 fput(newfile); 5295 put_unused_fd(retval); 5296 return -EFAULT; 5297 } 5298 fd_install(retval, newfile); 5299 out: 5300 return retval; 5301 } 5302 5303 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5304 char __user *optval, int __user *optlen) 5305 { 5306 sctp_peeloff_flags_arg_t peeloff; 5307 struct file *newfile = NULL; 5308 int retval = 0; 5309 5310 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5311 return -EINVAL; 5312 len = sizeof(sctp_peeloff_flags_arg_t); 5313 if (copy_from_user(&peeloff, optval, len)) 5314 return -EFAULT; 5315 5316 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5317 &newfile, peeloff.flags); 5318 if (retval < 0) 5319 goto out; 5320 5321 /* Return the fd mapped to the new socket. */ 5322 if (put_user(len, optlen)) { 5323 fput(newfile); 5324 put_unused_fd(retval); 5325 return -EFAULT; 5326 } 5327 5328 if (copy_to_user(optval, &peeloff, len)) { 5329 fput(newfile); 5330 put_unused_fd(retval); 5331 return -EFAULT; 5332 } 5333 fd_install(retval, newfile); 5334 out: 5335 return retval; 5336 } 5337 5338 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5339 * 5340 * Applications can enable or disable heartbeats for any peer address of 5341 * an association, modify an address's heartbeat interval, force a 5342 * heartbeat to be sent immediately, and adjust the address's maximum 5343 * number of retransmissions sent before an address is considered 5344 * unreachable. The following structure is used to access and modify an 5345 * address's parameters: 5346 * 5347 * struct sctp_paddrparams { 5348 * sctp_assoc_t spp_assoc_id; 5349 * struct sockaddr_storage spp_address; 5350 * uint32_t spp_hbinterval; 5351 * uint16_t spp_pathmaxrxt; 5352 * uint32_t spp_pathmtu; 5353 * uint32_t spp_sackdelay; 5354 * uint32_t spp_flags; 5355 * }; 5356 * 5357 * spp_assoc_id - (one-to-many style socket) This is filled in the 5358 * application, and identifies the association for 5359 * this query. 5360 * spp_address - This specifies which address is of interest. 5361 * spp_hbinterval - This contains the value of the heartbeat interval, 5362 * in milliseconds. If a value of zero 5363 * is present in this field then no changes are to 5364 * be made to this parameter. 5365 * spp_pathmaxrxt - This contains the maximum number of 5366 * retransmissions before this address shall be 5367 * considered unreachable. If a value of zero 5368 * is present in this field then no changes are to 5369 * be made to this parameter. 5370 * spp_pathmtu - When Path MTU discovery is disabled the value 5371 * specified here will be the "fixed" path mtu. 5372 * Note that if the spp_address field is empty 5373 * then all associations on this address will 5374 * have this fixed path mtu set upon them. 5375 * 5376 * spp_sackdelay - When delayed sack is enabled, this value specifies 5377 * the number of milliseconds that sacks will be delayed 5378 * for. This value will apply to all addresses of an 5379 * association if the spp_address field is empty. Note 5380 * also, that if delayed sack is enabled and this 5381 * value is set to 0, no change is made to the last 5382 * recorded delayed sack timer value. 5383 * 5384 * spp_flags - These flags are used to control various features 5385 * on an association. The flag field may contain 5386 * zero or more of the following options. 5387 * 5388 * SPP_HB_ENABLE - Enable heartbeats on the 5389 * specified address. Note that if the address 5390 * field is empty all addresses for the association 5391 * have heartbeats enabled upon them. 5392 * 5393 * SPP_HB_DISABLE - Disable heartbeats on the 5394 * speicifed address. Note that if the address 5395 * field is empty all addresses for the association 5396 * will have their heartbeats disabled. Note also 5397 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5398 * mutually exclusive, only one of these two should 5399 * be specified. Enabling both fields will have 5400 * undetermined results. 5401 * 5402 * SPP_HB_DEMAND - Request a user initiated heartbeat 5403 * to be made immediately. 5404 * 5405 * SPP_PMTUD_ENABLE - This field will enable PMTU 5406 * discovery upon the specified address. Note that 5407 * if the address feild is empty then all addresses 5408 * on the association are effected. 5409 * 5410 * SPP_PMTUD_DISABLE - This field will disable PMTU 5411 * discovery upon the specified address. Note that 5412 * if the address feild is empty then all addresses 5413 * on the association are effected. Not also that 5414 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5415 * exclusive. Enabling both will have undetermined 5416 * results. 5417 * 5418 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5419 * on delayed sack. The time specified in spp_sackdelay 5420 * is used to specify the sack delay for this address. Note 5421 * that if spp_address is empty then all addresses will 5422 * enable delayed sack and take on the sack delay 5423 * value specified in spp_sackdelay. 5424 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5425 * off delayed sack. If the spp_address field is blank then 5426 * delayed sack is disabled for the entire association. Note 5427 * also that this field is mutually exclusive to 5428 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5429 * results. 5430 */ 5431 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5432 char __user *optval, int __user *optlen) 5433 { 5434 struct sctp_paddrparams params; 5435 struct sctp_transport *trans = NULL; 5436 struct sctp_association *asoc = NULL; 5437 struct sctp_sock *sp = sctp_sk(sk); 5438 5439 if (len < sizeof(struct sctp_paddrparams)) 5440 return -EINVAL; 5441 len = sizeof(struct sctp_paddrparams); 5442 if (copy_from_user(¶ms, optval, len)) 5443 return -EFAULT; 5444 5445 /* If an address other than INADDR_ANY is specified, and 5446 * no transport is found, then the request is invalid. 5447 */ 5448 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5449 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5450 params.spp_assoc_id); 5451 if (!trans) { 5452 pr_debug("%s: failed no transport\n", __func__); 5453 return -EINVAL; 5454 } 5455 } 5456 5457 /* Get association, if assoc_id != 0 and the socket is a one 5458 * to many style socket, and an association was not found, then 5459 * the id was invalid. 5460 */ 5461 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5462 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5463 pr_debug("%s: failed no association\n", __func__); 5464 return -EINVAL; 5465 } 5466 5467 if (trans) { 5468 /* Fetch transport values. */ 5469 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5470 params.spp_pathmtu = trans->pathmtu; 5471 params.spp_pathmaxrxt = trans->pathmaxrxt; 5472 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5473 5474 /*draft-11 doesn't say what to return in spp_flags*/ 5475 params.spp_flags = trans->param_flags; 5476 } else if (asoc) { 5477 /* Fetch association values. */ 5478 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5479 params.spp_pathmtu = asoc->pathmtu; 5480 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5481 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5482 5483 /*draft-11 doesn't say what to return in spp_flags*/ 5484 params.spp_flags = asoc->param_flags; 5485 } else { 5486 /* Fetch socket values. */ 5487 params.spp_hbinterval = sp->hbinterval; 5488 params.spp_pathmtu = sp->pathmtu; 5489 params.spp_sackdelay = sp->sackdelay; 5490 params.spp_pathmaxrxt = sp->pathmaxrxt; 5491 5492 /*draft-11 doesn't say what to return in spp_flags*/ 5493 params.spp_flags = sp->param_flags; 5494 } 5495 5496 if (copy_to_user(optval, ¶ms, len)) 5497 return -EFAULT; 5498 5499 if (put_user(len, optlen)) 5500 return -EFAULT; 5501 5502 return 0; 5503 } 5504 5505 /* 5506 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5507 * 5508 * This option will effect the way delayed acks are performed. This 5509 * option allows you to get or set the delayed ack time, in 5510 * milliseconds. It also allows changing the delayed ack frequency. 5511 * Changing the frequency to 1 disables the delayed sack algorithm. If 5512 * the assoc_id is 0, then this sets or gets the endpoints default 5513 * values. If the assoc_id field is non-zero, then the set or get 5514 * effects the specified association for the one to many model (the 5515 * assoc_id field is ignored by the one to one model). Note that if 5516 * sack_delay or sack_freq are 0 when setting this option, then the 5517 * current values will remain unchanged. 5518 * 5519 * struct sctp_sack_info { 5520 * sctp_assoc_t sack_assoc_id; 5521 * uint32_t sack_delay; 5522 * uint32_t sack_freq; 5523 * }; 5524 * 5525 * sack_assoc_id - This parameter, indicates which association the user 5526 * is performing an action upon. Note that if this field's value is 5527 * zero then the endpoints default value is changed (effecting future 5528 * associations only). 5529 * 5530 * sack_delay - This parameter contains the number of milliseconds that 5531 * the user is requesting the delayed ACK timer be set to. Note that 5532 * this value is defined in the standard to be between 200 and 500 5533 * milliseconds. 5534 * 5535 * sack_freq - This parameter contains the number of packets that must 5536 * be received before a sack is sent without waiting for the delay 5537 * timer to expire. The default value for this is 2, setting this 5538 * value to 1 will disable the delayed sack algorithm. 5539 */ 5540 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5541 char __user *optval, 5542 int __user *optlen) 5543 { 5544 struct sctp_sack_info params; 5545 struct sctp_association *asoc = NULL; 5546 struct sctp_sock *sp = sctp_sk(sk); 5547 5548 if (len >= sizeof(struct sctp_sack_info)) { 5549 len = sizeof(struct sctp_sack_info); 5550 5551 if (copy_from_user(¶ms, optval, len)) 5552 return -EFAULT; 5553 } else if (len == sizeof(struct sctp_assoc_value)) { 5554 pr_warn_ratelimited(DEPRECATED 5555 "%s (pid %d) " 5556 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5557 "Use struct sctp_sack_info instead\n", 5558 current->comm, task_pid_nr(current)); 5559 if (copy_from_user(¶ms, optval, len)) 5560 return -EFAULT; 5561 } else 5562 return -EINVAL; 5563 5564 /* Get association, if sack_assoc_id != 0 and the socket is a one 5565 * to many style socket, and an association was not found, then 5566 * the id was invalid. 5567 */ 5568 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5569 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5570 return -EINVAL; 5571 5572 if (asoc) { 5573 /* Fetch association values. */ 5574 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5575 params.sack_delay = jiffies_to_msecs( 5576 asoc->sackdelay); 5577 params.sack_freq = asoc->sackfreq; 5578 5579 } else { 5580 params.sack_delay = 0; 5581 params.sack_freq = 1; 5582 } 5583 } else { 5584 /* Fetch socket values. */ 5585 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5586 params.sack_delay = sp->sackdelay; 5587 params.sack_freq = sp->sackfreq; 5588 } else { 5589 params.sack_delay = 0; 5590 params.sack_freq = 1; 5591 } 5592 } 5593 5594 if (copy_to_user(optval, ¶ms, len)) 5595 return -EFAULT; 5596 5597 if (put_user(len, optlen)) 5598 return -EFAULT; 5599 5600 return 0; 5601 } 5602 5603 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5604 * 5605 * Applications can specify protocol parameters for the default association 5606 * initialization. The option name argument to setsockopt() and getsockopt() 5607 * is SCTP_INITMSG. 5608 * 5609 * Setting initialization parameters is effective only on an unconnected 5610 * socket (for UDP-style sockets only future associations are effected 5611 * by the change). With TCP-style sockets, this option is inherited by 5612 * sockets derived from a listener socket. 5613 */ 5614 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5615 { 5616 if (len < sizeof(struct sctp_initmsg)) 5617 return -EINVAL; 5618 len = sizeof(struct sctp_initmsg); 5619 if (put_user(len, optlen)) 5620 return -EFAULT; 5621 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5622 return -EFAULT; 5623 return 0; 5624 } 5625 5626 5627 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5628 char __user *optval, int __user *optlen) 5629 { 5630 struct sctp_association *asoc; 5631 int cnt = 0; 5632 struct sctp_getaddrs getaddrs; 5633 struct sctp_transport *from; 5634 void __user *to; 5635 union sctp_addr temp; 5636 struct sctp_sock *sp = sctp_sk(sk); 5637 int addrlen; 5638 size_t space_left; 5639 int bytes_copied; 5640 5641 if (len < sizeof(struct sctp_getaddrs)) 5642 return -EINVAL; 5643 5644 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5645 return -EFAULT; 5646 5647 /* For UDP-style sockets, id specifies the association to query. */ 5648 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5649 if (!asoc) 5650 return -EINVAL; 5651 5652 to = optval + offsetof(struct sctp_getaddrs, addrs); 5653 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5654 5655 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5656 transports) { 5657 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5658 addrlen = sctp_get_pf_specific(sk->sk_family) 5659 ->addr_to_user(sp, &temp); 5660 if (space_left < addrlen) 5661 return -ENOMEM; 5662 if (copy_to_user(to, &temp, addrlen)) 5663 return -EFAULT; 5664 to += addrlen; 5665 cnt++; 5666 space_left -= addrlen; 5667 } 5668 5669 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5670 return -EFAULT; 5671 bytes_copied = ((char __user *)to) - optval; 5672 if (put_user(bytes_copied, optlen)) 5673 return -EFAULT; 5674 5675 return 0; 5676 } 5677 5678 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5679 size_t space_left, int *bytes_copied) 5680 { 5681 struct sctp_sockaddr_entry *addr; 5682 union sctp_addr temp; 5683 int cnt = 0; 5684 int addrlen; 5685 struct net *net = sock_net(sk); 5686 5687 rcu_read_lock(); 5688 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5689 if (!addr->valid) 5690 continue; 5691 5692 if ((PF_INET == sk->sk_family) && 5693 (AF_INET6 == addr->a.sa.sa_family)) 5694 continue; 5695 if ((PF_INET6 == sk->sk_family) && 5696 inet_v6_ipv6only(sk) && 5697 (AF_INET == addr->a.sa.sa_family)) 5698 continue; 5699 memcpy(&temp, &addr->a, sizeof(temp)); 5700 if (!temp.v4.sin_port) 5701 temp.v4.sin_port = htons(port); 5702 5703 addrlen = sctp_get_pf_specific(sk->sk_family) 5704 ->addr_to_user(sctp_sk(sk), &temp); 5705 5706 if (space_left < addrlen) { 5707 cnt = -ENOMEM; 5708 break; 5709 } 5710 memcpy(to, &temp, addrlen); 5711 5712 to += addrlen; 5713 cnt++; 5714 space_left -= addrlen; 5715 *bytes_copied += addrlen; 5716 } 5717 rcu_read_unlock(); 5718 5719 return cnt; 5720 } 5721 5722 5723 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5724 char __user *optval, int __user *optlen) 5725 { 5726 struct sctp_bind_addr *bp; 5727 struct sctp_association *asoc; 5728 int cnt = 0; 5729 struct sctp_getaddrs getaddrs; 5730 struct sctp_sockaddr_entry *addr; 5731 void __user *to; 5732 union sctp_addr temp; 5733 struct sctp_sock *sp = sctp_sk(sk); 5734 int addrlen; 5735 int err = 0; 5736 size_t space_left; 5737 int bytes_copied = 0; 5738 void *addrs; 5739 void *buf; 5740 5741 if (len < sizeof(struct sctp_getaddrs)) 5742 return -EINVAL; 5743 5744 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5745 return -EFAULT; 5746 5747 /* 5748 * For UDP-style sockets, id specifies the association to query. 5749 * If the id field is set to the value '0' then the locally bound 5750 * addresses are returned without regard to any particular 5751 * association. 5752 */ 5753 if (0 == getaddrs.assoc_id) { 5754 bp = &sctp_sk(sk)->ep->base.bind_addr; 5755 } else { 5756 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5757 if (!asoc) 5758 return -EINVAL; 5759 bp = &asoc->base.bind_addr; 5760 } 5761 5762 to = optval + offsetof(struct sctp_getaddrs, addrs); 5763 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5764 5765 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5766 if (!addrs) 5767 return -ENOMEM; 5768 5769 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5770 * addresses from the global local address list. 5771 */ 5772 if (sctp_list_single_entry(&bp->address_list)) { 5773 addr = list_entry(bp->address_list.next, 5774 struct sctp_sockaddr_entry, list); 5775 if (sctp_is_any(sk, &addr->a)) { 5776 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5777 space_left, &bytes_copied); 5778 if (cnt < 0) { 5779 err = cnt; 5780 goto out; 5781 } 5782 goto copy_getaddrs; 5783 } 5784 } 5785 5786 buf = addrs; 5787 /* Protection on the bound address list is not needed since 5788 * in the socket option context we hold a socket lock and 5789 * thus the bound address list can't change. 5790 */ 5791 list_for_each_entry(addr, &bp->address_list, list) { 5792 memcpy(&temp, &addr->a, sizeof(temp)); 5793 addrlen = sctp_get_pf_specific(sk->sk_family) 5794 ->addr_to_user(sp, &temp); 5795 if (space_left < addrlen) { 5796 err = -ENOMEM; /*fixme: right error?*/ 5797 goto out; 5798 } 5799 memcpy(buf, &temp, addrlen); 5800 buf += addrlen; 5801 bytes_copied += addrlen; 5802 cnt++; 5803 space_left -= addrlen; 5804 } 5805 5806 copy_getaddrs: 5807 if (copy_to_user(to, addrs, bytes_copied)) { 5808 err = -EFAULT; 5809 goto out; 5810 } 5811 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5812 err = -EFAULT; 5813 goto out; 5814 } 5815 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5816 * but we can't change it anymore. 5817 */ 5818 if (put_user(bytes_copied, optlen)) 5819 err = -EFAULT; 5820 out: 5821 kfree(addrs); 5822 return err; 5823 } 5824 5825 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5826 * 5827 * Requests that the local SCTP stack use the enclosed peer address as 5828 * the association primary. The enclosed address must be one of the 5829 * association peer's addresses. 5830 */ 5831 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5832 char __user *optval, int __user *optlen) 5833 { 5834 struct sctp_prim prim; 5835 struct sctp_association *asoc; 5836 struct sctp_sock *sp = sctp_sk(sk); 5837 5838 if (len < sizeof(struct sctp_prim)) 5839 return -EINVAL; 5840 5841 len = sizeof(struct sctp_prim); 5842 5843 if (copy_from_user(&prim, optval, len)) 5844 return -EFAULT; 5845 5846 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5847 if (!asoc) 5848 return -EINVAL; 5849 5850 if (!asoc->peer.primary_path) 5851 return -ENOTCONN; 5852 5853 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5854 asoc->peer.primary_path->af_specific->sockaddr_len); 5855 5856 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5857 (union sctp_addr *)&prim.ssp_addr); 5858 5859 if (put_user(len, optlen)) 5860 return -EFAULT; 5861 if (copy_to_user(optval, &prim, len)) 5862 return -EFAULT; 5863 5864 return 0; 5865 } 5866 5867 /* 5868 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5869 * 5870 * Requests that the local endpoint set the specified Adaptation Layer 5871 * Indication parameter for all future INIT and INIT-ACK exchanges. 5872 */ 5873 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5874 char __user *optval, int __user *optlen) 5875 { 5876 struct sctp_setadaptation adaptation; 5877 5878 if (len < sizeof(struct sctp_setadaptation)) 5879 return -EINVAL; 5880 5881 len = sizeof(struct sctp_setadaptation); 5882 5883 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5884 5885 if (put_user(len, optlen)) 5886 return -EFAULT; 5887 if (copy_to_user(optval, &adaptation, len)) 5888 return -EFAULT; 5889 5890 return 0; 5891 } 5892 5893 /* 5894 * 5895 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5896 * 5897 * Applications that wish to use the sendto() system call may wish to 5898 * specify a default set of parameters that would normally be supplied 5899 * through the inclusion of ancillary data. This socket option allows 5900 * such an application to set the default sctp_sndrcvinfo structure. 5901 5902 5903 * The application that wishes to use this socket option simply passes 5904 * in to this call the sctp_sndrcvinfo structure defined in Section 5905 * 5.2.2) The input parameters accepted by this call include 5906 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5907 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5908 * to this call if the caller is using the UDP model. 5909 * 5910 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5911 */ 5912 static int sctp_getsockopt_default_send_param(struct sock *sk, 5913 int len, char __user *optval, 5914 int __user *optlen) 5915 { 5916 struct sctp_sock *sp = sctp_sk(sk); 5917 struct sctp_association *asoc; 5918 struct sctp_sndrcvinfo info; 5919 5920 if (len < sizeof(info)) 5921 return -EINVAL; 5922 5923 len = sizeof(info); 5924 5925 if (copy_from_user(&info, optval, len)) 5926 return -EFAULT; 5927 5928 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5929 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5930 return -EINVAL; 5931 if (asoc) { 5932 info.sinfo_stream = asoc->default_stream; 5933 info.sinfo_flags = asoc->default_flags; 5934 info.sinfo_ppid = asoc->default_ppid; 5935 info.sinfo_context = asoc->default_context; 5936 info.sinfo_timetolive = asoc->default_timetolive; 5937 } else { 5938 info.sinfo_stream = sp->default_stream; 5939 info.sinfo_flags = sp->default_flags; 5940 info.sinfo_ppid = sp->default_ppid; 5941 info.sinfo_context = sp->default_context; 5942 info.sinfo_timetolive = sp->default_timetolive; 5943 } 5944 5945 if (put_user(len, optlen)) 5946 return -EFAULT; 5947 if (copy_to_user(optval, &info, len)) 5948 return -EFAULT; 5949 5950 return 0; 5951 } 5952 5953 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5954 * (SCTP_DEFAULT_SNDINFO) 5955 */ 5956 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5957 char __user *optval, 5958 int __user *optlen) 5959 { 5960 struct sctp_sock *sp = sctp_sk(sk); 5961 struct sctp_association *asoc; 5962 struct sctp_sndinfo info; 5963 5964 if (len < sizeof(info)) 5965 return -EINVAL; 5966 5967 len = sizeof(info); 5968 5969 if (copy_from_user(&info, optval, len)) 5970 return -EFAULT; 5971 5972 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5973 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5974 return -EINVAL; 5975 if (asoc) { 5976 info.snd_sid = asoc->default_stream; 5977 info.snd_flags = asoc->default_flags; 5978 info.snd_ppid = asoc->default_ppid; 5979 info.snd_context = asoc->default_context; 5980 } else { 5981 info.snd_sid = sp->default_stream; 5982 info.snd_flags = sp->default_flags; 5983 info.snd_ppid = sp->default_ppid; 5984 info.snd_context = sp->default_context; 5985 } 5986 5987 if (put_user(len, optlen)) 5988 return -EFAULT; 5989 if (copy_to_user(optval, &info, len)) 5990 return -EFAULT; 5991 5992 return 0; 5993 } 5994 5995 /* 5996 * 5997 * 7.1.5 SCTP_NODELAY 5998 * 5999 * Turn on/off any Nagle-like algorithm. This means that packets are 6000 * generally sent as soon as possible and no unnecessary delays are 6001 * introduced, at the cost of more packets in the network. Expects an 6002 * integer boolean flag. 6003 */ 6004 6005 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6006 char __user *optval, int __user *optlen) 6007 { 6008 int val; 6009 6010 if (len < sizeof(int)) 6011 return -EINVAL; 6012 6013 len = sizeof(int); 6014 val = (sctp_sk(sk)->nodelay == 1); 6015 if (put_user(len, optlen)) 6016 return -EFAULT; 6017 if (copy_to_user(optval, &val, len)) 6018 return -EFAULT; 6019 return 0; 6020 } 6021 6022 /* 6023 * 6024 * 7.1.1 SCTP_RTOINFO 6025 * 6026 * The protocol parameters used to initialize and bound retransmission 6027 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6028 * and modify these parameters. 6029 * All parameters are time values, in milliseconds. A value of 0, when 6030 * modifying the parameters, indicates that the current value should not 6031 * be changed. 6032 * 6033 */ 6034 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6035 char __user *optval, 6036 int __user *optlen) { 6037 struct sctp_rtoinfo rtoinfo; 6038 struct sctp_association *asoc; 6039 6040 if (len < sizeof (struct sctp_rtoinfo)) 6041 return -EINVAL; 6042 6043 len = sizeof(struct sctp_rtoinfo); 6044 6045 if (copy_from_user(&rtoinfo, optval, len)) 6046 return -EFAULT; 6047 6048 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6049 6050 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6051 return -EINVAL; 6052 6053 /* Values corresponding to the specific association. */ 6054 if (asoc) { 6055 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6056 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6057 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6058 } else { 6059 /* Values corresponding to the endpoint. */ 6060 struct sctp_sock *sp = sctp_sk(sk); 6061 6062 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6063 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6064 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6065 } 6066 6067 if (put_user(len, optlen)) 6068 return -EFAULT; 6069 6070 if (copy_to_user(optval, &rtoinfo, len)) 6071 return -EFAULT; 6072 6073 return 0; 6074 } 6075 6076 /* 6077 * 6078 * 7.1.2 SCTP_ASSOCINFO 6079 * 6080 * This option is used to tune the maximum retransmission attempts 6081 * of the association. 6082 * Returns an error if the new association retransmission value is 6083 * greater than the sum of the retransmission value of the peer. 6084 * See [SCTP] for more information. 6085 * 6086 */ 6087 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6088 char __user *optval, 6089 int __user *optlen) 6090 { 6091 6092 struct sctp_assocparams assocparams; 6093 struct sctp_association *asoc; 6094 struct list_head *pos; 6095 int cnt = 0; 6096 6097 if (len < sizeof (struct sctp_assocparams)) 6098 return -EINVAL; 6099 6100 len = sizeof(struct sctp_assocparams); 6101 6102 if (copy_from_user(&assocparams, optval, len)) 6103 return -EFAULT; 6104 6105 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6106 6107 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6108 return -EINVAL; 6109 6110 /* Values correspoinding to the specific association */ 6111 if (asoc) { 6112 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6113 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6114 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6115 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6116 6117 list_for_each(pos, &asoc->peer.transport_addr_list) { 6118 cnt++; 6119 } 6120 6121 assocparams.sasoc_number_peer_destinations = cnt; 6122 } else { 6123 /* Values corresponding to the endpoint */ 6124 struct sctp_sock *sp = sctp_sk(sk); 6125 6126 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6127 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6128 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6129 assocparams.sasoc_cookie_life = 6130 sp->assocparams.sasoc_cookie_life; 6131 assocparams.sasoc_number_peer_destinations = 6132 sp->assocparams. 6133 sasoc_number_peer_destinations; 6134 } 6135 6136 if (put_user(len, optlen)) 6137 return -EFAULT; 6138 6139 if (copy_to_user(optval, &assocparams, len)) 6140 return -EFAULT; 6141 6142 return 0; 6143 } 6144 6145 /* 6146 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6147 * 6148 * This socket option is a boolean flag which turns on or off mapped V4 6149 * addresses. If this option is turned on and the socket is type 6150 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6151 * If this option is turned off, then no mapping will be done of V4 6152 * addresses and a user will receive both PF_INET6 and PF_INET type 6153 * addresses on the socket. 6154 */ 6155 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6156 char __user *optval, int __user *optlen) 6157 { 6158 int val; 6159 struct sctp_sock *sp = sctp_sk(sk); 6160 6161 if (len < sizeof(int)) 6162 return -EINVAL; 6163 6164 len = sizeof(int); 6165 val = sp->v4mapped; 6166 if (put_user(len, optlen)) 6167 return -EFAULT; 6168 if (copy_to_user(optval, &val, len)) 6169 return -EFAULT; 6170 6171 return 0; 6172 } 6173 6174 /* 6175 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6176 * (chapter and verse is quoted at sctp_setsockopt_context()) 6177 */ 6178 static int sctp_getsockopt_context(struct sock *sk, int len, 6179 char __user *optval, int __user *optlen) 6180 { 6181 struct sctp_assoc_value params; 6182 struct sctp_sock *sp; 6183 struct sctp_association *asoc; 6184 6185 if (len < sizeof(struct sctp_assoc_value)) 6186 return -EINVAL; 6187 6188 len = sizeof(struct sctp_assoc_value); 6189 6190 if (copy_from_user(¶ms, optval, len)) 6191 return -EFAULT; 6192 6193 sp = sctp_sk(sk); 6194 6195 if (params.assoc_id != 0) { 6196 asoc = sctp_id2assoc(sk, params.assoc_id); 6197 if (!asoc) 6198 return -EINVAL; 6199 params.assoc_value = asoc->default_rcv_context; 6200 } else { 6201 params.assoc_value = sp->default_rcv_context; 6202 } 6203 6204 if (put_user(len, optlen)) 6205 return -EFAULT; 6206 if (copy_to_user(optval, ¶ms, len)) 6207 return -EFAULT; 6208 6209 return 0; 6210 } 6211 6212 /* 6213 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6214 * This option will get or set the maximum size to put in any outgoing 6215 * SCTP DATA chunk. If a message is larger than this size it will be 6216 * fragmented by SCTP into the specified size. Note that the underlying 6217 * SCTP implementation may fragment into smaller sized chunks when the 6218 * PMTU of the underlying association is smaller than the value set by 6219 * the user. The default value for this option is '0' which indicates 6220 * the user is NOT limiting fragmentation and only the PMTU will effect 6221 * SCTP's choice of DATA chunk size. Note also that values set larger 6222 * than the maximum size of an IP datagram will effectively let SCTP 6223 * control fragmentation (i.e. the same as setting this option to 0). 6224 * 6225 * The following structure is used to access and modify this parameter: 6226 * 6227 * struct sctp_assoc_value { 6228 * sctp_assoc_t assoc_id; 6229 * uint32_t assoc_value; 6230 * }; 6231 * 6232 * assoc_id: This parameter is ignored for one-to-one style sockets. 6233 * For one-to-many style sockets this parameter indicates which 6234 * association the user is performing an action upon. Note that if 6235 * this field's value is zero then the endpoints default value is 6236 * changed (effecting future associations only). 6237 * assoc_value: This parameter specifies the maximum size in bytes. 6238 */ 6239 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6240 char __user *optval, int __user *optlen) 6241 { 6242 struct sctp_assoc_value params; 6243 struct sctp_association *asoc; 6244 6245 if (len == sizeof(int)) { 6246 pr_warn_ratelimited(DEPRECATED 6247 "%s (pid %d) " 6248 "Use of int in maxseg socket option.\n" 6249 "Use struct sctp_assoc_value instead\n", 6250 current->comm, task_pid_nr(current)); 6251 params.assoc_id = 0; 6252 } else if (len >= sizeof(struct sctp_assoc_value)) { 6253 len = sizeof(struct sctp_assoc_value); 6254 if (copy_from_user(¶ms, optval, len)) 6255 return -EFAULT; 6256 } else 6257 return -EINVAL; 6258 6259 asoc = sctp_id2assoc(sk, params.assoc_id); 6260 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6261 return -EINVAL; 6262 6263 if (asoc) 6264 params.assoc_value = asoc->frag_point; 6265 else 6266 params.assoc_value = sctp_sk(sk)->user_frag; 6267 6268 if (put_user(len, optlen)) 6269 return -EFAULT; 6270 if (len == sizeof(int)) { 6271 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6272 return -EFAULT; 6273 } else { 6274 if (copy_to_user(optval, ¶ms, len)) 6275 return -EFAULT; 6276 } 6277 6278 return 0; 6279 } 6280 6281 /* 6282 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6283 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6284 */ 6285 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6286 char __user *optval, int __user *optlen) 6287 { 6288 int val; 6289 6290 if (len < sizeof(int)) 6291 return -EINVAL; 6292 6293 len = sizeof(int); 6294 6295 val = sctp_sk(sk)->frag_interleave; 6296 if (put_user(len, optlen)) 6297 return -EFAULT; 6298 if (copy_to_user(optval, &val, len)) 6299 return -EFAULT; 6300 6301 return 0; 6302 } 6303 6304 /* 6305 * 7.1.25. Set or Get the sctp partial delivery point 6306 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6307 */ 6308 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6309 char __user *optval, 6310 int __user *optlen) 6311 { 6312 u32 val; 6313 6314 if (len < sizeof(u32)) 6315 return -EINVAL; 6316 6317 len = sizeof(u32); 6318 6319 val = sctp_sk(sk)->pd_point; 6320 if (put_user(len, optlen)) 6321 return -EFAULT; 6322 if (copy_to_user(optval, &val, len)) 6323 return -EFAULT; 6324 6325 return 0; 6326 } 6327 6328 /* 6329 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6330 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6331 */ 6332 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6333 char __user *optval, 6334 int __user *optlen) 6335 { 6336 struct sctp_assoc_value params; 6337 struct sctp_sock *sp; 6338 struct sctp_association *asoc; 6339 6340 if (len == sizeof(int)) { 6341 pr_warn_ratelimited(DEPRECATED 6342 "%s (pid %d) " 6343 "Use of int in max_burst socket option.\n" 6344 "Use struct sctp_assoc_value instead\n", 6345 current->comm, task_pid_nr(current)); 6346 params.assoc_id = 0; 6347 } else if (len >= sizeof(struct sctp_assoc_value)) { 6348 len = sizeof(struct sctp_assoc_value); 6349 if (copy_from_user(¶ms, optval, len)) 6350 return -EFAULT; 6351 } else 6352 return -EINVAL; 6353 6354 sp = sctp_sk(sk); 6355 6356 if (params.assoc_id != 0) { 6357 asoc = sctp_id2assoc(sk, params.assoc_id); 6358 if (!asoc) 6359 return -EINVAL; 6360 params.assoc_value = asoc->max_burst; 6361 } else 6362 params.assoc_value = sp->max_burst; 6363 6364 if (len == sizeof(int)) { 6365 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6366 return -EFAULT; 6367 } else { 6368 if (copy_to_user(optval, ¶ms, len)) 6369 return -EFAULT; 6370 } 6371 6372 return 0; 6373 6374 } 6375 6376 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6377 char __user *optval, int __user *optlen) 6378 { 6379 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6380 struct sctp_hmacalgo __user *p = (void __user *)optval; 6381 struct sctp_hmac_algo_param *hmacs; 6382 __u16 data_len = 0; 6383 u32 num_idents; 6384 int i; 6385 6386 if (!ep->auth_enable) 6387 return -EACCES; 6388 6389 hmacs = ep->auth_hmacs_list; 6390 data_len = ntohs(hmacs->param_hdr.length) - 6391 sizeof(struct sctp_paramhdr); 6392 6393 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6394 return -EINVAL; 6395 6396 len = sizeof(struct sctp_hmacalgo) + data_len; 6397 num_idents = data_len / sizeof(u16); 6398 6399 if (put_user(len, optlen)) 6400 return -EFAULT; 6401 if (put_user(num_idents, &p->shmac_num_idents)) 6402 return -EFAULT; 6403 for (i = 0; i < num_idents; i++) { 6404 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6405 6406 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6407 return -EFAULT; 6408 } 6409 return 0; 6410 } 6411 6412 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6413 char __user *optval, int __user *optlen) 6414 { 6415 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6416 struct sctp_authkeyid val; 6417 struct sctp_association *asoc; 6418 6419 if (!ep->auth_enable) 6420 return -EACCES; 6421 6422 if (len < sizeof(struct sctp_authkeyid)) 6423 return -EINVAL; 6424 6425 len = sizeof(struct sctp_authkeyid); 6426 if (copy_from_user(&val, optval, len)) 6427 return -EFAULT; 6428 6429 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6430 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6431 return -EINVAL; 6432 6433 if (asoc) 6434 val.scact_keynumber = asoc->active_key_id; 6435 else 6436 val.scact_keynumber = ep->active_key_id; 6437 6438 if (put_user(len, optlen)) 6439 return -EFAULT; 6440 if (copy_to_user(optval, &val, len)) 6441 return -EFAULT; 6442 6443 return 0; 6444 } 6445 6446 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6447 char __user *optval, int __user *optlen) 6448 { 6449 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6450 struct sctp_authchunks __user *p = (void __user *)optval; 6451 struct sctp_authchunks val; 6452 struct sctp_association *asoc; 6453 struct sctp_chunks_param *ch; 6454 u32 num_chunks = 0; 6455 char __user *to; 6456 6457 if (!ep->auth_enable) 6458 return -EACCES; 6459 6460 if (len < sizeof(struct sctp_authchunks)) 6461 return -EINVAL; 6462 6463 if (copy_from_user(&val, optval, sizeof(val))) 6464 return -EFAULT; 6465 6466 to = p->gauth_chunks; 6467 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6468 if (!asoc) 6469 return -EINVAL; 6470 6471 ch = asoc->peer.peer_chunks; 6472 if (!ch) 6473 goto num; 6474 6475 /* See if the user provided enough room for all the data */ 6476 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6477 if (len < num_chunks) 6478 return -EINVAL; 6479 6480 if (copy_to_user(to, ch->chunks, num_chunks)) 6481 return -EFAULT; 6482 num: 6483 len = sizeof(struct sctp_authchunks) + num_chunks; 6484 if (put_user(len, optlen)) 6485 return -EFAULT; 6486 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6487 return -EFAULT; 6488 return 0; 6489 } 6490 6491 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6492 char __user *optval, int __user *optlen) 6493 { 6494 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6495 struct sctp_authchunks __user *p = (void __user *)optval; 6496 struct sctp_authchunks val; 6497 struct sctp_association *asoc; 6498 struct sctp_chunks_param *ch; 6499 u32 num_chunks = 0; 6500 char __user *to; 6501 6502 if (!ep->auth_enable) 6503 return -EACCES; 6504 6505 if (len < sizeof(struct sctp_authchunks)) 6506 return -EINVAL; 6507 6508 if (copy_from_user(&val, optval, sizeof(val))) 6509 return -EFAULT; 6510 6511 to = p->gauth_chunks; 6512 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6513 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6514 return -EINVAL; 6515 6516 if (asoc) 6517 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6518 else 6519 ch = ep->auth_chunk_list; 6520 6521 if (!ch) 6522 goto num; 6523 6524 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6525 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6526 return -EINVAL; 6527 6528 if (copy_to_user(to, ch->chunks, num_chunks)) 6529 return -EFAULT; 6530 num: 6531 len = sizeof(struct sctp_authchunks) + num_chunks; 6532 if (put_user(len, optlen)) 6533 return -EFAULT; 6534 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6535 return -EFAULT; 6536 6537 return 0; 6538 } 6539 6540 /* 6541 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6542 * This option gets the current number of associations that are attached 6543 * to a one-to-many style socket. The option value is an uint32_t. 6544 */ 6545 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6546 char __user *optval, int __user *optlen) 6547 { 6548 struct sctp_sock *sp = sctp_sk(sk); 6549 struct sctp_association *asoc; 6550 u32 val = 0; 6551 6552 if (sctp_style(sk, TCP)) 6553 return -EOPNOTSUPP; 6554 6555 if (len < sizeof(u32)) 6556 return -EINVAL; 6557 6558 len = sizeof(u32); 6559 6560 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6561 val++; 6562 } 6563 6564 if (put_user(len, optlen)) 6565 return -EFAULT; 6566 if (copy_to_user(optval, &val, len)) 6567 return -EFAULT; 6568 6569 return 0; 6570 } 6571 6572 /* 6573 * 8.1.23 SCTP_AUTO_ASCONF 6574 * See the corresponding setsockopt entry as description 6575 */ 6576 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6577 char __user *optval, int __user *optlen) 6578 { 6579 int val = 0; 6580 6581 if (len < sizeof(int)) 6582 return -EINVAL; 6583 6584 len = sizeof(int); 6585 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6586 val = 1; 6587 if (put_user(len, optlen)) 6588 return -EFAULT; 6589 if (copy_to_user(optval, &val, len)) 6590 return -EFAULT; 6591 return 0; 6592 } 6593 6594 /* 6595 * 8.2.6. Get the Current Identifiers of Associations 6596 * (SCTP_GET_ASSOC_ID_LIST) 6597 * 6598 * This option gets the current list of SCTP association identifiers of 6599 * the SCTP associations handled by a one-to-many style socket. 6600 */ 6601 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6602 char __user *optval, int __user *optlen) 6603 { 6604 struct sctp_sock *sp = sctp_sk(sk); 6605 struct sctp_association *asoc; 6606 struct sctp_assoc_ids *ids; 6607 u32 num = 0; 6608 6609 if (sctp_style(sk, TCP)) 6610 return -EOPNOTSUPP; 6611 6612 if (len < sizeof(struct sctp_assoc_ids)) 6613 return -EINVAL; 6614 6615 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6616 num++; 6617 } 6618 6619 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6620 return -EINVAL; 6621 6622 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6623 6624 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6625 if (unlikely(!ids)) 6626 return -ENOMEM; 6627 6628 ids->gaids_number_of_ids = num; 6629 num = 0; 6630 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6631 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6632 } 6633 6634 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6635 kfree(ids); 6636 return -EFAULT; 6637 } 6638 6639 kfree(ids); 6640 return 0; 6641 } 6642 6643 /* 6644 * SCTP_PEER_ADDR_THLDS 6645 * 6646 * This option allows us to fetch the partially failed threshold for one or all 6647 * transports in an association. See Section 6.1 of: 6648 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6649 */ 6650 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6651 char __user *optval, 6652 int len, 6653 int __user *optlen) 6654 { 6655 struct sctp_paddrthlds val; 6656 struct sctp_transport *trans; 6657 struct sctp_association *asoc; 6658 6659 if (len < sizeof(struct sctp_paddrthlds)) 6660 return -EINVAL; 6661 len = sizeof(struct sctp_paddrthlds); 6662 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6663 return -EFAULT; 6664 6665 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6666 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6667 if (!asoc) 6668 return -ENOENT; 6669 6670 val.spt_pathpfthld = asoc->pf_retrans; 6671 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6672 } else { 6673 trans = sctp_addr_id2transport(sk, &val.spt_address, 6674 val.spt_assoc_id); 6675 if (!trans) 6676 return -ENOENT; 6677 6678 val.spt_pathmaxrxt = trans->pathmaxrxt; 6679 val.spt_pathpfthld = trans->pf_retrans; 6680 } 6681 6682 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6683 return -EFAULT; 6684 6685 return 0; 6686 } 6687 6688 /* 6689 * SCTP_GET_ASSOC_STATS 6690 * 6691 * This option retrieves local per endpoint statistics. It is modeled 6692 * after OpenSolaris' implementation 6693 */ 6694 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6695 char __user *optval, 6696 int __user *optlen) 6697 { 6698 struct sctp_assoc_stats sas; 6699 struct sctp_association *asoc = NULL; 6700 6701 /* User must provide at least the assoc id */ 6702 if (len < sizeof(sctp_assoc_t)) 6703 return -EINVAL; 6704 6705 /* Allow the struct to grow and fill in as much as possible */ 6706 len = min_t(size_t, len, sizeof(sas)); 6707 6708 if (copy_from_user(&sas, optval, len)) 6709 return -EFAULT; 6710 6711 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6712 if (!asoc) 6713 return -EINVAL; 6714 6715 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6716 sas.sas_gapcnt = asoc->stats.gapcnt; 6717 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6718 sas.sas_osacks = asoc->stats.osacks; 6719 sas.sas_isacks = asoc->stats.isacks; 6720 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6721 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6722 sas.sas_oodchunks = asoc->stats.oodchunks; 6723 sas.sas_iodchunks = asoc->stats.iodchunks; 6724 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6725 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6726 sas.sas_idupchunks = asoc->stats.idupchunks; 6727 sas.sas_opackets = asoc->stats.opackets; 6728 sas.sas_ipackets = asoc->stats.ipackets; 6729 6730 /* New high max rto observed, will return 0 if not a single 6731 * RTO update took place. obs_rto_ipaddr will be bogus 6732 * in such a case 6733 */ 6734 sas.sas_maxrto = asoc->stats.max_obs_rto; 6735 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6736 sizeof(struct sockaddr_storage)); 6737 6738 /* Mark beginning of a new observation period */ 6739 asoc->stats.max_obs_rto = asoc->rto_min; 6740 6741 if (put_user(len, optlen)) 6742 return -EFAULT; 6743 6744 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6745 6746 if (copy_to_user(optval, &sas, len)) 6747 return -EFAULT; 6748 6749 return 0; 6750 } 6751 6752 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6753 char __user *optval, 6754 int __user *optlen) 6755 { 6756 int val = 0; 6757 6758 if (len < sizeof(int)) 6759 return -EINVAL; 6760 6761 len = sizeof(int); 6762 if (sctp_sk(sk)->recvrcvinfo) 6763 val = 1; 6764 if (put_user(len, optlen)) 6765 return -EFAULT; 6766 if (copy_to_user(optval, &val, len)) 6767 return -EFAULT; 6768 6769 return 0; 6770 } 6771 6772 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6773 char __user *optval, 6774 int __user *optlen) 6775 { 6776 int val = 0; 6777 6778 if (len < sizeof(int)) 6779 return -EINVAL; 6780 6781 len = sizeof(int); 6782 if (sctp_sk(sk)->recvnxtinfo) 6783 val = 1; 6784 if (put_user(len, optlen)) 6785 return -EFAULT; 6786 if (copy_to_user(optval, &val, len)) 6787 return -EFAULT; 6788 6789 return 0; 6790 } 6791 6792 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6793 char __user *optval, 6794 int __user *optlen) 6795 { 6796 struct sctp_assoc_value params; 6797 struct sctp_association *asoc; 6798 int retval = -EFAULT; 6799 6800 if (len < sizeof(params)) { 6801 retval = -EINVAL; 6802 goto out; 6803 } 6804 6805 len = sizeof(params); 6806 if (copy_from_user(¶ms, optval, len)) 6807 goto out; 6808 6809 asoc = sctp_id2assoc(sk, params.assoc_id); 6810 if (asoc) { 6811 params.assoc_value = asoc->prsctp_enable; 6812 } else if (!params.assoc_id) { 6813 struct sctp_sock *sp = sctp_sk(sk); 6814 6815 params.assoc_value = sp->ep->prsctp_enable; 6816 } else { 6817 retval = -EINVAL; 6818 goto out; 6819 } 6820 6821 if (put_user(len, optlen)) 6822 goto out; 6823 6824 if (copy_to_user(optval, ¶ms, len)) 6825 goto out; 6826 6827 retval = 0; 6828 6829 out: 6830 return retval; 6831 } 6832 6833 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6834 char __user *optval, 6835 int __user *optlen) 6836 { 6837 struct sctp_default_prinfo info; 6838 struct sctp_association *asoc; 6839 int retval = -EFAULT; 6840 6841 if (len < sizeof(info)) { 6842 retval = -EINVAL; 6843 goto out; 6844 } 6845 6846 len = sizeof(info); 6847 if (copy_from_user(&info, optval, len)) 6848 goto out; 6849 6850 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6851 if (asoc) { 6852 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6853 info.pr_value = asoc->default_timetolive; 6854 } else if (!info.pr_assoc_id) { 6855 struct sctp_sock *sp = sctp_sk(sk); 6856 6857 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6858 info.pr_value = sp->default_timetolive; 6859 } else { 6860 retval = -EINVAL; 6861 goto out; 6862 } 6863 6864 if (put_user(len, optlen)) 6865 goto out; 6866 6867 if (copy_to_user(optval, &info, len)) 6868 goto out; 6869 6870 retval = 0; 6871 6872 out: 6873 return retval; 6874 } 6875 6876 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6877 char __user *optval, 6878 int __user *optlen) 6879 { 6880 struct sctp_prstatus params; 6881 struct sctp_association *asoc; 6882 int policy; 6883 int retval = -EINVAL; 6884 6885 if (len < sizeof(params)) 6886 goto out; 6887 6888 len = sizeof(params); 6889 if (copy_from_user(¶ms, optval, len)) { 6890 retval = -EFAULT; 6891 goto out; 6892 } 6893 6894 policy = params.sprstat_policy; 6895 if (policy & ~SCTP_PR_SCTP_MASK) 6896 goto out; 6897 6898 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6899 if (!asoc) 6900 goto out; 6901 6902 if (policy == SCTP_PR_SCTP_NONE) { 6903 params.sprstat_abandoned_unsent = 0; 6904 params.sprstat_abandoned_sent = 0; 6905 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6906 params.sprstat_abandoned_unsent += 6907 asoc->abandoned_unsent[policy]; 6908 params.sprstat_abandoned_sent += 6909 asoc->abandoned_sent[policy]; 6910 } 6911 } else { 6912 params.sprstat_abandoned_unsent = 6913 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6914 params.sprstat_abandoned_sent = 6915 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6916 } 6917 6918 if (put_user(len, optlen)) { 6919 retval = -EFAULT; 6920 goto out; 6921 } 6922 6923 if (copy_to_user(optval, ¶ms, len)) { 6924 retval = -EFAULT; 6925 goto out; 6926 } 6927 6928 retval = 0; 6929 6930 out: 6931 return retval; 6932 } 6933 6934 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6935 char __user *optval, 6936 int __user *optlen) 6937 { 6938 struct sctp_stream_out_ext *streamoute; 6939 struct sctp_association *asoc; 6940 struct sctp_prstatus params; 6941 int retval = -EINVAL; 6942 int policy; 6943 6944 if (len < sizeof(params)) 6945 goto out; 6946 6947 len = sizeof(params); 6948 if (copy_from_user(¶ms, optval, len)) { 6949 retval = -EFAULT; 6950 goto out; 6951 } 6952 6953 policy = params.sprstat_policy; 6954 if (policy & ~SCTP_PR_SCTP_MASK) 6955 goto out; 6956 6957 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6958 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6959 goto out; 6960 6961 streamoute = asoc->stream.out[params.sprstat_sid].ext; 6962 if (!streamoute) { 6963 /* Not allocated yet, means all stats are 0 */ 6964 params.sprstat_abandoned_unsent = 0; 6965 params.sprstat_abandoned_sent = 0; 6966 retval = 0; 6967 goto out; 6968 } 6969 6970 if (policy == SCTP_PR_SCTP_NONE) { 6971 params.sprstat_abandoned_unsent = 0; 6972 params.sprstat_abandoned_sent = 0; 6973 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6974 params.sprstat_abandoned_unsent += 6975 streamoute->abandoned_unsent[policy]; 6976 params.sprstat_abandoned_sent += 6977 streamoute->abandoned_sent[policy]; 6978 } 6979 } else { 6980 params.sprstat_abandoned_unsent = 6981 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6982 params.sprstat_abandoned_sent = 6983 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6984 } 6985 6986 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6987 retval = -EFAULT; 6988 goto out; 6989 } 6990 6991 retval = 0; 6992 6993 out: 6994 return retval; 6995 } 6996 6997 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6998 char __user *optval, 6999 int __user *optlen) 7000 { 7001 struct sctp_assoc_value params; 7002 struct sctp_association *asoc; 7003 int retval = -EFAULT; 7004 7005 if (len < sizeof(params)) { 7006 retval = -EINVAL; 7007 goto out; 7008 } 7009 7010 len = sizeof(params); 7011 if (copy_from_user(¶ms, optval, len)) 7012 goto out; 7013 7014 asoc = sctp_id2assoc(sk, params.assoc_id); 7015 if (asoc) { 7016 params.assoc_value = asoc->reconf_enable; 7017 } else if (!params.assoc_id) { 7018 struct sctp_sock *sp = sctp_sk(sk); 7019 7020 params.assoc_value = sp->ep->reconf_enable; 7021 } else { 7022 retval = -EINVAL; 7023 goto out; 7024 } 7025 7026 if (put_user(len, optlen)) 7027 goto out; 7028 7029 if (copy_to_user(optval, ¶ms, len)) 7030 goto out; 7031 7032 retval = 0; 7033 7034 out: 7035 return retval; 7036 } 7037 7038 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7039 char __user *optval, 7040 int __user *optlen) 7041 { 7042 struct sctp_assoc_value params; 7043 struct sctp_association *asoc; 7044 int retval = -EFAULT; 7045 7046 if (len < sizeof(params)) { 7047 retval = -EINVAL; 7048 goto out; 7049 } 7050 7051 len = sizeof(params); 7052 if (copy_from_user(¶ms, optval, len)) 7053 goto out; 7054 7055 asoc = sctp_id2assoc(sk, params.assoc_id); 7056 if (asoc) { 7057 params.assoc_value = asoc->strreset_enable; 7058 } else if (!params.assoc_id) { 7059 struct sctp_sock *sp = sctp_sk(sk); 7060 7061 params.assoc_value = sp->ep->strreset_enable; 7062 } else { 7063 retval = -EINVAL; 7064 goto out; 7065 } 7066 7067 if (put_user(len, optlen)) 7068 goto out; 7069 7070 if (copy_to_user(optval, ¶ms, len)) 7071 goto out; 7072 7073 retval = 0; 7074 7075 out: 7076 return retval; 7077 } 7078 7079 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7080 char __user *optval, 7081 int __user *optlen) 7082 { 7083 struct sctp_assoc_value params; 7084 struct sctp_association *asoc; 7085 int retval = -EFAULT; 7086 7087 if (len < sizeof(params)) { 7088 retval = -EINVAL; 7089 goto out; 7090 } 7091 7092 len = sizeof(params); 7093 if (copy_from_user(¶ms, optval, len)) 7094 goto out; 7095 7096 asoc = sctp_id2assoc(sk, params.assoc_id); 7097 if (!asoc) { 7098 retval = -EINVAL; 7099 goto out; 7100 } 7101 7102 params.assoc_value = sctp_sched_get_sched(asoc); 7103 7104 if (put_user(len, optlen)) 7105 goto out; 7106 7107 if (copy_to_user(optval, ¶ms, len)) 7108 goto out; 7109 7110 retval = 0; 7111 7112 out: 7113 return retval; 7114 } 7115 7116 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7117 char __user *optval, 7118 int __user *optlen) 7119 { 7120 struct sctp_stream_value params; 7121 struct sctp_association *asoc; 7122 int retval = -EFAULT; 7123 7124 if (len < sizeof(params)) { 7125 retval = -EINVAL; 7126 goto out; 7127 } 7128 7129 len = sizeof(params); 7130 if (copy_from_user(¶ms, optval, len)) 7131 goto out; 7132 7133 asoc = sctp_id2assoc(sk, params.assoc_id); 7134 if (!asoc) { 7135 retval = -EINVAL; 7136 goto out; 7137 } 7138 7139 retval = sctp_sched_get_value(asoc, params.stream_id, 7140 ¶ms.stream_value); 7141 if (retval) 7142 goto out; 7143 7144 if (put_user(len, optlen)) { 7145 retval = -EFAULT; 7146 goto out; 7147 } 7148 7149 if (copy_to_user(optval, ¶ms, len)) { 7150 retval = -EFAULT; 7151 goto out; 7152 } 7153 7154 out: 7155 return retval; 7156 } 7157 7158 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7159 char __user *optval, 7160 int __user *optlen) 7161 { 7162 struct sctp_assoc_value params; 7163 struct sctp_association *asoc; 7164 int retval = -EFAULT; 7165 7166 if (len < sizeof(params)) { 7167 retval = -EINVAL; 7168 goto out; 7169 } 7170 7171 len = sizeof(params); 7172 if (copy_from_user(¶ms, optval, len)) 7173 goto out; 7174 7175 asoc = sctp_id2assoc(sk, params.assoc_id); 7176 if (asoc) { 7177 params.assoc_value = asoc->intl_enable; 7178 } else if (!params.assoc_id) { 7179 struct sctp_sock *sp = sctp_sk(sk); 7180 7181 params.assoc_value = sp->strm_interleave; 7182 } else { 7183 retval = -EINVAL; 7184 goto out; 7185 } 7186 7187 if (put_user(len, optlen)) 7188 goto out; 7189 7190 if (copy_to_user(optval, ¶ms, len)) 7191 goto out; 7192 7193 retval = 0; 7194 7195 out: 7196 return retval; 7197 } 7198 7199 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7200 char __user *optval, int __user *optlen) 7201 { 7202 int retval = 0; 7203 int len; 7204 7205 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7206 7207 /* I can hardly begin to describe how wrong this is. This is 7208 * so broken as to be worse than useless. The API draft 7209 * REALLY is NOT helpful here... I am not convinced that the 7210 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7211 * are at all well-founded. 7212 */ 7213 if (level != SOL_SCTP) { 7214 struct sctp_af *af = sctp_sk(sk)->pf->af; 7215 7216 retval = af->getsockopt(sk, level, optname, optval, optlen); 7217 return retval; 7218 } 7219 7220 if (get_user(len, optlen)) 7221 return -EFAULT; 7222 7223 if (len < 0) 7224 return -EINVAL; 7225 7226 lock_sock(sk); 7227 7228 switch (optname) { 7229 case SCTP_STATUS: 7230 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7231 break; 7232 case SCTP_DISABLE_FRAGMENTS: 7233 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7234 optlen); 7235 break; 7236 case SCTP_EVENTS: 7237 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7238 break; 7239 case SCTP_AUTOCLOSE: 7240 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7241 break; 7242 case SCTP_SOCKOPT_PEELOFF: 7243 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7244 break; 7245 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7246 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7247 break; 7248 case SCTP_PEER_ADDR_PARAMS: 7249 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7250 optlen); 7251 break; 7252 case SCTP_DELAYED_SACK: 7253 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7254 optlen); 7255 break; 7256 case SCTP_INITMSG: 7257 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7258 break; 7259 case SCTP_GET_PEER_ADDRS: 7260 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7261 optlen); 7262 break; 7263 case SCTP_GET_LOCAL_ADDRS: 7264 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7265 optlen); 7266 break; 7267 case SCTP_SOCKOPT_CONNECTX3: 7268 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7269 break; 7270 case SCTP_DEFAULT_SEND_PARAM: 7271 retval = sctp_getsockopt_default_send_param(sk, len, 7272 optval, optlen); 7273 break; 7274 case SCTP_DEFAULT_SNDINFO: 7275 retval = sctp_getsockopt_default_sndinfo(sk, len, 7276 optval, optlen); 7277 break; 7278 case SCTP_PRIMARY_ADDR: 7279 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7280 break; 7281 case SCTP_NODELAY: 7282 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7283 break; 7284 case SCTP_RTOINFO: 7285 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7286 break; 7287 case SCTP_ASSOCINFO: 7288 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7289 break; 7290 case SCTP_I_WANT_MAPPED_V4_ADDR: 7291 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7292 break; 7293 case SCTP_MAXSEG: 7294 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7295 break; 7296 case SCTP_GET_PEER_ADDR_INFO: 7297 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7298 optlen); 7299 break; 7300 case SCTP_ADAPTATION_LAYER: 7301 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7302 optlen); 7303 break; 7304 case SCTP_CONTEXT: 7305 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7306 break; 7307 case SCTP_FRAGMENT_INTERLEAVE: 7308 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7309 optlen); 7310 break; 7311 case SCTP_PARTIAL_DELIVERY_POINT: 7312 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7313 optlen); 7314 break; 7315 case SCTP_MAX_BURST: 7316 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7317 break; 7318 case SCTP_AUTH_KEY: 7319 case SCTP_AUTH_CHUNK: 7320 case SCTP_AUTH_DELETE_KEY: 7321 case SCTP_AUTH_DEACTIVATE_KEY: 7322 retval = -EOPNOTSUPP; 7323 break; 7324 case SCTP_HMAC_IDENT: 7325 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7326 break; 7327 case SCTP_AUTH_ACTIVE_KEY: 7328 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7329 break; 7330 case SCTP_PEER_AUTH_CHUNKS: 7331 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7332 optlen); 7333 break; 7334 case SCTP_LOCAL_AUTH_CHUNKS: 7335 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7336 optlen); 7337 break; 7338 case SCTP_GET_ASSOC_NUMBER: 7339 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7340 break; 7341 case SCTP_GET_ASSOC_ID_LIST: 7342 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7343 break; 7344 case SCTP_AUTO_ASCONF: 7345 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7346 break; 7347 case SCTP_PEER_ADDR_THLDS: 7348 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7349 break; 7350 case SCTP_GET_ASSOC_STATS: 7351 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7352 break; 7353 case SCTP_RECVRCVINFO: 7354 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7355 break; 7356 case SCTP_RECVNXTINFO: 7357 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7358 break; 7359 case SCTP_PR_SUPPORTED: 7360 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7361 break; 7362 case SCTP_DEFAULT_PRINFO: 7363 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7364 optlen); 7365 break; 7366 case SCTP_PR_ASSOC_STATUS: 7367 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7368 optlen); 7369 break; 7370 case SCTP_PR_STREAM_STATUS: 7371 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7372 optlen); 7373 break; 7374 case SCTP_RECONFIG_SUPPORTED: 7375 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7376 optlen); 7377 break; 7378 case SCTP_ENABLE_STREAM_RESET: 7379 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7380 optlen); 7381 break; 7382 case SCTP_STREAM_SCHEDULER: 7383 retval = sctp_getsockopt_scheduler(sk, len, optval, 7384 optlen); 7385 break; 7386 case SCTP_STREAM_SCHEDULER_VALUE: 7387 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7388 optlen); 7389 break; 7390 case SCTP_INTERLEAVING_SUPPORTED: 7391 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7392 optlen); 7393 break; 7394 default: 7395 retval = -ENOPROTOOPT; 7396 break; 7397 } 7398 7399 release_sock(sk); 7400 return retval; 7401 } 7402 7403 static int sctp_hash(struct sock *sk) 7404 { 7405 /* STUB */ 7406 return 0; 7407 } 7408 7409 static void sctp_unhash(struct sock *sk) 7410 { 7411 /* STUB */ 7412 } 7413 7414 /* Check if port is acceptable. Possibly find first available port. 7415 * 7416 * The port hash table (contained in the 'global' SCTP protocol storage 7417 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7418 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7419 * list (the list number is the port number hashed out, so as you 7420 * would expect from a hash function, all the ports in a given list have 7421 * such a number that hashes out to the same list number; you were 7422 * expecting that, right?); so each list has a set of ports, with a 7423 * link to the socket (struct sock) that uses it, the port number and 7424 * a fastreuse flag (FIXME: NPI ipg). 7425 */ 7426 static struct sctp_bind_bucket *sctp_bucket_create( 7427 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7428 7429 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7430 { 7431 struct sctp_bind_hashbucket *head; /* hash list */ 7432 struct sctp_bind_bucket *pp; 7433 unsigned short snum; 7434 int ret; 7435 7436 snum = ntohs(addr->v4.sin_port); 7437 7438 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7439 7440 local_bh_disable(); 7441 7442 if (snum == 0) { 7443 /* Search for an available port. */ 7444 int low, high, remaining, index; 7445 unsigned int rover; 7446 struct net *net = sock_net(sk); 7447 7448 inet_get_local_port_range(net, &low, &high); 7449 remaining = (high - low) + 1; 7450 rover = prandom_u32() % remaining + low; 7451 7452 do { 7453 rover++; 7454 if ((rover < low) || (rover > high)) 7455 rover = low; 7456 if (inet_is_local_reserved_port(net, rover)) 7457 continue; 7458 index = sctp_phashfn(sock_net(sk), rover); 7459 head = &sctp_port_hashtable[index]; 7460 spin_lock(&head->lock); 7461 sctp_for_each_hentry(pp, &head->chain) 7462 if ((pp->port == rover) && 7463 net_eq(sock_net(sk), pp->net)) 7464 goto next; 7465 break; 7466 next: 7467 spin_unlock(&head->lock); 7468 } while (--remaining > 0); 7469 7470 /* Exhausted local port range during search? */ 7471 ret = 1; 7472 if (remaining <= 0) 7473 goto fail; 7474 7475 /* OK, here is the one we will use. HEAD (the port 7476 * hash table list entry) is non-NULL and we hold it's 7477 * mutex. 7478 */ 7479 snum = rover; 7480 } else { 7481 /* We are given an specific port number; we verify 7482 * that it is not being used. If it is used, we will 7483 * exahust the search in the hash list corresponding 7484 * to the port number (snum) - we detect that with the 7485 * port iterator, pp being NULL. 7486 */ 7487 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7488 spin_lock(&head->lock); 7489 sctp_for_each_hentry(pp, &head->chain) { 7490 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7491 goto pp_found; 7492 } 7493 } 7494 pp = NULL; 7495 goto pp_not_found; 7496 pp_found: 7497 if (!hlist_empty(&pp->owner)) { 7498 /* We had a port hash table hit - there is an 7499 * available port (pp != NULL) and it is being 7500 * used by other socket (pp->owner not empty); that other 7501 * socket is going to be sk2. 7502 */ 7503 int reuse = sk->sk_reuse; 7504 struct sock *sk2; 7505 7506 pr_debug("%s: found a possible match\n", __func__); 7507 7508 if (pp->fastreuse && sk->sk_reuse && 7509 sk->sk_state != SCTP_SS_LISTENING) 7510 goto success; 7511 7512 /* Run through the list of sockets bound to the port 7513 * (pp->port) [via the pointers bind_next and 7514 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7515 * we get the endpoint they describe and run through 7516 * the endpoint's list of IP (v4 or v6) addresses, 7517 * comparing each of the addresses with the address of 7518 * the socket sk. If we find a match, then that means 7519 * that this port/socket (sk) combination are already 7520 * in an endpoint. 7521 */ 7522 sk_for_each_bound(sk2, &pp->owner) { 7523 struct sctp_endpoint *ep2; 7524 ep2 = sctp_sk(sk2)->ep; 7525 7526 if (sk == sk2 || 7527 (reuse && sk2->sk_reuse && 7528 sk2->sk_state != SCTP_SS_LISTENING)) 7529 continue; 7530 7531 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7532 sctp_sk(sk2), sctp_sk(sk))) { 7533 ret = (long)sk2; 7534 goto fail_unlock; 7535 } 7536 } 7537 7538 pr_debug("%s: found a match\n", __func__); 7539 } 7540 pp_not_found: 7541 /* If there was a hash table miss, create a new port. */ 7542 ret = 1; 7543 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7544 goto fail_unlock; 7545 7546 /* In either case (hit or miss), make sure fastreuse is 1 only 7547 * if sk->sk_reuse is too (that is, if the caller requested 7548 * SO_REUSEADDR on this socket -sk-). 7549 */ 7550 if (hlist_empty(&pp->owner)) { 7551 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7552 pp->fastreuse = 1; 7553 else 7554 pp->fastreuse = 0; 7555 } else if (pp->fastreuse && 7556 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7557 pp->fastreuse = 0; 7558 7559 /* We are set, so fill up all the data in the hash table 7560 * entry, tie the socket list information with the rest of the 7561 * sockets FIXME: Blurry, NPI (ipg). 7562 */ 7563 success: 7564 if (!sctp_sk(sk)->bind_hash) { 7565 inet_sk(sk)->inet_num = snum; 7566 sk_add_bind_node(sk, &pp->owner); 7567 sctp_sk(sk)->bind_hash = pp; 7568 } 7569 ret = 0; 7570 7571 fail_unlock: 7572 spin_unlock(&head->lock); 7573 7574 fail: 7575 local_bh_enable(); 7576 return ret; 7577 } 7578 7579 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7580 * port is requested. 7581 */ 7582 static int sctp_get_port(struct sock *sk, unsigned short snum) 7583 { 7584 union sctp_addr addr; 7585 struct sctp_af *af = sctp_sk(sk)->pf->af; 7586 7587 /* Set up a dummy address struct from the sk. */ 7588 af->from_sk(&addr, sk); 7589 addr.v4.sin_port = htons(snum); 7590 7591 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7592 return !!sctp_get_port_local(sk, &addr); 7593 } 7594 7595 /* 7596 * Move a socket to LISTENING state. 7597 */ 7598 static int sctp_listen_start(struct sock *sk, int backlog) 7599 { 7600 struct sctp_sock *sp = sctp_sk(sk); 7601 struct sctp_endpoint *ep = sp->ep; 7602 struct crypto_shash *tfm = NULL; 7603 char alg[32]; 7604 7605 /* Allocate HMAC for generating cookie. */ 7606 if (!sp->hmac && sp->sctp_hmac_alg) { 7607 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7608 tfm = crypto_alloc_shash(alg, 0, 0); 7609 if (IS_ERR(tfm)) { 7610 net_info_ratelimited("failed to load transform for %s: %ld\n", 7611 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7612 return -ENOSYS; 7613 } 7614 sctp_sk(sk)->hmac = tfm; 7615 } 7616 7617 /* 7618 * If a bind() or sctp_bindx() is not called prior to a listen() 7619 * call that allows new associations to be accepted, the system 7620 * picks an ephemeral port and will choose an address set equivalent 7621 * to binding with a wildcard address. 7622 * 7623 * This is not currently spelled out in the SCTP sockets 7624 * extensions draft, but follows the practice as seen in TCP 7625 * sockets. 7626 * 7627 */ 7628 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7629 if (!ep->base.bind_addr.port) { 7630 if (sctp_autobind(sk)) 7631 return -EAGAIN; 7632 } else { 7633 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7634 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7635 return -EADDRINUSE; 7636 } 7637 } 7638 7639 sk->sk_max_ack_backlog = backlog; 7640 sctp_hash_endpoint(ep); 7641 return 0; 7642 } 7643 7644 /* 7645 * 4.1.3 / 5.1.3 listen() 7646 * 7647 * By default, new associations are not accepted for UDP style sockets. 7648 * An application uses listen() to mark a socket as being able to 7649 * accept new associations. 7650 * 7651 * On TCP style sockets, applications use listen() to ready the SCTP 7652 * endpoint for accepting inbound associations. 7653 * 7654 * On both types of endpoints a backlog of '0' disables listening. 7655 * 7656 * Move a socket to LISTENING state. 7657 */ 7658 int sctp_inet_listen(struct socket *sock, int backlog) 7659 { 7660 struct sock *sk = sock->sk; 7661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7662 int err = -EINVAL; 7663 7664 if (unlikely(backlog < 0)) 7665 return err; 7666 7667 lock_sock(sk); 7668 7669 /* Peeled-off sockets are not allowed to listen(). */ 7670 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7671 goto out; 7672 7673 if (sock->state != SS_UNCONNECTED) 7674 goto out; 7675 7676 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7677 goto out; 7678 7679 /* If backlog is zero, disable listening. */ 7680 if (!backlog) { 7681 if (sctp_sstate(sk, CLOSED)) 7682 goto out; 7683 7684 err = 0; 7685 sctp_unhash_endpoint(ep); 7686 sk->sk_state = SCTP_SS_CLOSED; 7687 if (sk->sk_reuse) 7688 sctp_sk(sk)->bind_hash->fastreuse = 1; 7689 goto out; 7690 } 7691 7692 /* If we are already listening, just update the backlog */ 7693 if (sctp_sstate(sk, LISTENING)) 7694 sk->sk_max_ack_backlog = backlog; 7695 else { 7696 err = sctp_listen_start(sk, backlog); 7697 if (err) 7698 goto out; 7699 } 7700 7701 err = 0; 7702 out: 7703 release_sock(sk); 7704 return err; 7705 } 7706 7707 /* 7708 * This function is done by modeling the current datagram_poll() and the 7709 * tcp_poll(). Note that, based on these implementations, we don't 7710 * lock the socket in this function, even though it seems that, 7711 * ideally, locking or some other mechanisms can be used to ensure 7712 * the integrity of the counters (sndbuf and wmem_alloc) used 7713 * in this place. We assume that we don't need locks either until proven 7714 * otherwise. 7715 * 7716 * Another thing to note is that we include the Async I/O support 7717 * here, again, by modeling the current TCP/UDP code. We don't have 7718 * a good way to test with it yet. 7719 */ 7720 __poll_t sctp_poll_mask(struct socket *sock, __poll_t events) 7721 { 7722 struct sock *sk = sock->sk; 7723 struct sctp_sock *sp = sctp_sk(sk); 7724 __poll_t mask; 7725 7726 sock_rps_record_flow(sk); 7727 7728 /* A TCP-style listening socket becomes readable when the accept queue 7729 * is not empty. 7730 */ 7731 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7732 return (!list_empty(&sp->ep->asocs)) ? 7733 (EPOLLIN | EPOLLRDNORM) : 0; 7734 7735 mask = 0; 7736 7737 /* Is there any exceptional events? */ 7738 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7739 mask |= EPOLLERR | 7740 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7741 if (sk->sk_shutdown & RCV_SHUTDOWN) 7742 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7743 if (sk->sk_shutdown == SHUTDOWN_MASK) 7744 mask |= EPOLLHUP; 7745 7746 /* Is it readable? Reconsider this code with TCP-style support. */ 7747 if (!skb_queue_empty(&sk->sk_receive_queue)) 7748 mask |= EPOLLIN | EPOLLRDNORM; 7749 7750 /* The association is either gone or not ready. */ 7751 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7752 return mask; 7753 7754 /* Is it writable? */ 7755 if (sctp_writeable(sk)) { 7756 mask |= EPOLLOUT | EPOLLWRNORM; 7757 } else { 7758 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7759 /* 7760 * Since the socket is not locked, the buffer 7761 * might be made available after the writeable check and 7762 * before the bit is set. This could cause a lost I/O 7763 * signal. tcp_poll() has a race breaker for this race 7764 * condition. Based on their implementation, we put 7765 * in the following code to cover it as well. 7766 */ 7767 if (sctp_writeable(sk)) 7768 mask |= EPOLLOUT | EPOLLWRNORM; 7769 } 7770 return mask; 7771 } 7772 7773 /******************************************************************** 7774 * 2nd Level Abstractions 7775 ********************************************************************/ 7776 7777 static struct sctp_bind_bucket *sctp_bucket_create( 7778 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7779 { 7780 struct sctp_bind_bucket *pp; 7781 7782 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7783 if (pp) { 7784 SCTP_DBG_OBJCNT_INC(bind_bucket); 7785 pp->port = snum; 7786 pp->fastreuse = 0; 7787 INIT_HLIST_HEAD(&pp->owner); 7788 pp->net = net; 7789 hlist_add_head(&pp->node, &head->chain); 7790 } 7791 return pp; 7792 } 7793 7794 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7795 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7796 { 7797 if (pp && hlist_empty(&pp->owner)) { 7798 __hlist_del(&pp->node); 7799 kmem_cache_free(sctp_bucket_cachep, pp); 7800 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7801 } 7802 } 7803 7804 /* Release this socket's reference to a local port. */ 7805 static inline void __sctp_put_port(struct sock *sk) 7806 { 7807 struct sctp_bind_hashbucket *head = 7808 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7809 inet_sk(sk)->inet_num)]; 7810 struct sctp_bind_bucket *pp; 7811 7812 spin_lock(&head->lock); 7813 pp = sctp_sk(sk)->bind_hash; 7814 __sk_del_bind_node(sk); 7815 sctp_sk(sk)->bind_hash = NULL; 7816 inet_sk(sk)->inet_num = 0; 7817 sctp_bucket_destroy(pp); 7818 spin_unlock(&head->lock); 7819 } 7820 7821 void sctp_put_port(struct sock *sk) 7822 { 7823 local_bh_disable(); 7824 __sctp_put_port(sk); 7825 local_bh_enable(); 7826 } 7827 7828 /* 7829 * The system picks an ephemeral port and choose an address set equivalent 7830 * to binding with a wildcard address. 7831 * One of those addresses will be the primary address for the association. 7832 * This automatically enables the multihoming capability of SCTP. 7833 */ 7834 static int sctp_autobind(struct sock *sk) 7835 { 7836 union sctp_addr autoaddr; 7837 struct sctp_af *af; 7838 __be16 port; 7839 7840 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7841 af = sctp_sk(sk)->pf->af; 7842 7843 port = htons(inet_sk(sk)->inet_num); 7844 af->inaddr_any(&autoaddr, port); 7845 7846 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7847 } 7848 7849 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7850 * 7851 * From RFC 2292 7852 * 4.2 The cmsghdr Structure * 7853 * 7854 * When ancillary data is sent or received, any number of ancillary data 7855 * objects can be specified by the msg_control and msg_controllen members of 7856 * the msghdr structure, because each object is preceded by 7857 * a cmsghdr structure defining the object's length (the cmsg_len member). 7858 * Historically Berkeley-derived implementations have passed only one object 7859 * at a time, but this API allows multiple objects to be 7860 * passed in a single call to sendmsg() or recvmsg(). The following example 7861 * shows two ancillary data objects in a control buffer. 7862 * 7863 * |<--------------------------- msg_controllen -------------------------->| 7864 * | | 7865 * 7866 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7867 * 7868 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7869 * | | | 7870 * 7871 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7872 * 7873 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7874 * | | | | | 7875 * 7876 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7877 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7878 * 7879 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7880 * 7881 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7882 * ^ 7883 * | 7884 * 7885 * msg_control 7886 * points here 7887 */ 7888 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7889 { 7890 struct msghdr *my_msg = (struct msghdr *)msg; 7891 struct cmsghdr *cmsg; 7892 7893 for_each_cmsghdr(cmsg, my_msg) { 7894 if (!CMSG_OK(my_msg, cmsg)) 7895 return -EINVAL; 7896 7897 /* Should we parse this header or ignore? */ 7898 if (cmsg->cmsg_level != IPPROTO_SCTP) 7899 continue; 7900 7901 /* Strictly check lengths following example in SCM code. */ 7902 switch (cmsg->cmsg_type) { 7903 case SCTP_INIT: 7904 /* SCTP Socket API Extension 7905 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7906 * 7907 * This cmsghdr structure provides information for 7908 * initializing new SCTP associations with sendmsg(). 7909 * The SCTP_INITMSG socket option uses this same data 7910 * structure. This structure is not used for 7911 * recvmsg(). 7912 * 7913 * cmsg_level cmsg_type cmsg_data[] 7914 * ------------ ------------ ---------------------- 7915 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7916 */ 7917 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7918 return -EINVAL; 7919 7920 cmsgs->init = CMSG_DATA(cmsg); 7921 break; 7922 7923 case SCTP_SNDRCV: 7924 /* SCTP Socket API Extension 7925 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7926 * 7927 * This cmsghdr structure specifies SCTP options for 7928 * sendmsg() and describes SCTP header information 7929 * about a received message through recvmsg(). 7930 * 7931 * cmsg_level cmsg_type cmsg_data[] 7932 * ------------ ------------ ---------------------- 7933 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7934 */ 7935 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7936 return -EINVAL; 7937 7938 cmsgs->srinfo = CMSG_DATA(cmsg); 7939 7940 if (cmsgs->srinfo->sinfo_flags & 7941 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7942 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7943 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7944 return -EINVAL; 7945 break; 7946 7947 case SCTP_SNDINFO: 7948 /* SCTP Socket API Extension 7949 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7950 * 7951 * This cmsghdr structure specifies SCTP options for 7952 * sendmsg(). This structure and SCTP_RCVINFO replaces 7953 * SCTP_SNDRCV which has been deprecated. 7954 * 7955 * cmsg_level cmsg_type cmsg_data[] 7956 * ------------ ------------ --------------------- 7957 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7958 */ 7959 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7960 return -EINVAL; 7961 7962 cmsgs->sinfo = CMSG_DATA(cmsg); 7963 7964 if (cmsgs->sinfo->snd_flags & 7965 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7966 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7967 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7968 return -EINVAL; 7969 break; 7970 case SCTP_PRINFO: 7971 /* SCTP Socket API Extension 7972 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 7973 * 7974 * This cmsghdr structure specifies SCTP options for sendmsg(). 7975 * 7976 * cmsg_level cmsg_type cmsg_data[] 7977 * ------------ ------------ --------------------- 7978 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 7979 */ 7980 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 7981 return -EINVAL; 7982 7983 cmsgs->prinfo = CMSG_DATA(cmsg); 7984 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 7985 return -EINVAL; 7986 7987 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 7988 cmsgs->prinfo->pr_value = 0; 7989 break; 7990 case SCTP_AUTHINFO: 7991 /* SCTP Socket API Extension 7992 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 7993 * 7994 * This cmsghdr structure specifies SCTP options for sendmsg(). 7995 * 7996 * cmsg_level cmsg_type cmsg_data[] 7997 * ------------ ------------ --------------------- 7998 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 7999 */ 8000 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8001 return -EINVAL; 8002 8003 cmsgs->authinfo = CMSG_DATA(cmsg); 8004 break; 8005 case SCTP_DSTADDRV4: 8006 case SCTP_DSTADDRV6: 8007 /* SCTP Socket API Extension 8008 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8009 * 8010 * This cmsghdr structure specifies SCTP options for sendmsg(). 8011 * 8012 * cmsg_level cmsg_type cmsg_data[] 8013 * ------------ ------------ --------------------- 8014 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8015 * ------------ ------------ --------------------- 8016 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8017 */ 8018 cmsgs->addrs_msg = my_msg; 8019 break; 8020 default: 8021 return -EINVAL; 8022 } 8023 } 8024 8025 return 0; 8026 } 8027 8028 /* 8029 * Wait for a packet.. 8030 * Note: This function is the same function as in core/datagram.c 8031 * with a few modifications to make lksctp work. 8032 */ 8033 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8034 { 8035 int error; 8036 DEFINE_WAIT(wait); 8037 8038 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8039 8040 /* Socket errors? */ 8041 error = sock_error(sk); 8042 if (error) 8043 goto out; 8044 8045 if (!skb_queue_empty(&sk->sk_receive_queue)) 8046 goto ready; 8047 8048 /* Socket shut down? */ 8049 if (sk->sk_shutdown & RCV_SHUTDOWN) 8050 goto out; 8051 8052 /* Sequenced packets can come disconnected. If so we report the 8053 * problem. 8054 */ 8055 error = -ENOTCONN; 8056 8057 /* Is there a good reason to think that we may receive some data? */ 8058 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8059 goto out; 8060 8061 /* Handle signals. */ 8062 if (signal_pending(current)) 8063 goto interrupted; 8064 8065 /* Let another process have a go. Since we are going to sleep 8066 * anyway. Note: This may cause odd behaviors if the message 8067 * does not fit in the user's buffer, but this seems to be the 8068 * only way to honor MSG_DONTWAIT realistically. 8069 */ 8070 release_sock(sk); 8071 *timeo_p = schedule_timeout(*timeo_p); 8072 lock_sock(sk); 8073 8074 ready: 8075 finish_wait(sk_sleep(sk), &wait); 8076 return 0; 8077 8078 interrupted: 8079 error = sock_intr_errno(*timeo_p); 8080 8081 out: 8082 finish_wait(sk_sleep(sk), &wait); 8083 *err = error; 8084 return error; 8085 } 8086 8087 /* Receive a datagram. 8088 * Note: This is pretty much the same routine as in core/datagram.c 8089 * with a few changes to make lksctp work. 8090 */ 8091 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8092 int noblock, int *err) 8093 { 8094 int error; 8095 struct sk_buff *skb; 8096 long timeo; 8097 8098 timeo = sock_rcvtimeo(sk, noblock); 8099 8100 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8101 MAX_SCHEDULE_TIMEOUT); 8102 8103 do { 8104 /* Again only user level code calls this function, 8105 * so nothing interrupt level 8106 * will suddenly eat the receive_queue. 8107 * 8108 * Look at current nfs client by the way... 8109 * However, this function was correct in any case. 8) 8110 */ 8111 if (flags & MSG_PEEK) { 8112 skb = skb_peek(&sk->sk_receive_queue); 8113 if (skb) 8114 refcount_inc(&skb->users); 8115 } else { 8116 skb = __skb_dequeue(&sk->sk_receive_queue); 8117 } 8118 8119 if (skb) 8120 return skb; 8121 8122 /* Caller is allowed not to check sk->sk_err before calling. */ 8123 error = sock_error(sk); 8124 if (error) 8125 goto no_packet; 8126 8127 if (sk->sk_shutdown & RCV_SHUTDOWN) 8128 break; 8129 8130 if (sk_can_busy_loop(sk)) { 8131 sk_busy_loop(sk, noblock); 8132 8133 if (!skb_queue_empty(&sk->sk_receive_queue)) 8134 continue; 8135 } 8136 8137 /* User doesn't want to wait. */ 8138 error = -EAGAIN; 8139 if (!timeo) 8140 goto no_packet; 8141 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8142 8143 return NULL; 8144 8145 no_packet: 8146 *err = error; 8147 return NULL; 8148 } 8149 8150 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8151 static void __sctp_write_space(struct sctp_association *asoc) 8152 { 8153 struct sock *sk = asoc->base.sk; 8154 8155 if (sctp_wspace(asoc) <= 0) 8156 return; 8157 8158 if (waitqueue_active(&asoc->wait)) 8159 wake_up_interruptible(&asoc->wait); 8160 8161 if (sctp_writeable(sk)) { 8162 struct socket_wq *wq; 8163 8164 rcu_read_lock(); 8165 wq = rcu_dereference(sk->sk_wq); 8166 if (wq) { 8167 if (waitqueue_active(&wq->wait)) 8168 wake_up_interruptible(&wq->wait); 8169 8170 /* Note that we try to include the Async I/O support 8171 * here by modeling from the current TCP/UDP code. 8172 * We have not tested with it yet. 8173 */ 8174 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8175 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8176 } 8177 rcu_read_unlock(); 8178 } 8179 } 8180 8181 static void sctp_wake_up_waiters(struct sock *sk, 8182 struct sctp_association *asoc) 8183 { 8184 struct sctp_association *tmp = asoc; 8185 8186 /* We do accounting for the sndbuf space per association, 8187 * so we only need to wake our own association. 8188 */ 8189 if (asoc->ep->sndbuf_policy) 8190 return __sctp_write_space(asoc); 8191 8192 /* If association goes down and is just flushing its 8193 * outq, then just normally notify others. 8194 */ 8195 if (asoc->base.dead) 8196 return sctp_write_space(sk); 8197 8198 /* Accounting for the sndbuf space is per socket, so we 8199 * need to wake up others, try to be fair and in case of 8200 * other associations, let them have a go first instead 8201 * of just doing a sctp_write_space() call. 8202 * 8203 * Note that we reach sctp_wake_up_waiters() only when 8204 * associations free up queued chunks, thus we are under 8205 * lock and the list of associations on a socket is 8206 * guaranteed not to change. 8207 */ 8208 for (tmp = list_next_entry(tmp, asocs); 1; 8209 tmp = list_next_entry(tmp, asocs)) { 8210 /* Manually skip the head element. */ 8211 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8212 continue; 8213 /* Wake up association. */ 8214 __sctp_write_space(tmp); 8215 /* We've reached the end. */ 8216 if (tmp == asoc) 8217 break; 8218 } 8219 } 8220 8221 /* Do accounting for the sndbuf space. 8222 * Decrement the used sndbuf space of the corresponding association by the 8223 * data size which was just transmitted(freed). 8224 */ 8225 static void sctp_wfree(struct sk_buff *skb) 8226 { 8227 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8228 struct sctp_association *asoc = chunk->asoc; 8229 struct sock *sk = asoc->base.sk; 8230 8231 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 8232 sizeof(struct sk_buff) + 8233 sizeof(struct sctp_chunk); 8234 8235 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 8236 8237 /* 8238 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 8239 */ 8240 sk->sk_wmem_queued -= skb->truesize; 8241 sk_mem_uncharge(sk, skb->truesize); 8242 8243 if (chunk->shkey) { 8244 struct sctp_shared_key *shkey = chunk->shkey; 8245 8246 /* refcnt == 2 and !list_empty mean after this release, it's 8247 * not being used anywhere, and it's time to notify userland 8248 * that this shkey can be freed if it's been deactivated. 8249 */ 8250 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8251 refcount_read(&shkey->refcnt) == 2) { 8252 struct sctp_ulpevent *ev; 8253 8254 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8255 SCTP_AUTH_FREE_KEY, 8256 GFP_KERNEL); 8257 if (ev) 8258 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8259 } 8260 sctp_auth_shkey_release(chunk->shkey); 8261 } 8262 8263 sock_wfree(skb); 8264 sctp_wake_up_waiters(sk, asoc); 8265 8266 sctp_association_put(asoc); 8267 } 8268 8269 /* Do accounting for the receive space on the socket. 8270 * Accounting for the association is done in ulpevent.c 8271 * We set this as a destructor for the cloned data skbs so that 8272 * accounting is done at the correct time. 8273 */ 8274 void sctp_sock_rfree(struct sk_buff *skb) 8275 { 8276 struct sock *sk = skb->sk; 8277 struct sctp_ulpevent *event = sctp_skb2event(skb); 8278 8279 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8280 8281 /* 8282 * Mimic the behavior of sock_rfree 8283 */ 8284 sk_mem_uncharge(sk, event->rmem_len); 8285 } 8286 8287 8288 /* Helper function to wait for space in the sndbuf. */ 8289 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8290 size_t msg_len) 8291 { 8292 struct sock *sk = asoc->base.sk; 8293 long current_timeo = *timeo_p; 8294 DEFINE_WAIT(wait); 8295 int err = 0; 8296 8297 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8298 *timeo_p, msg_len); 8299 8300 /* Increment the association's refcnt. */ 8301 sctp_association_hold(asoc); 8302 8303 /* Wait on the association specific sndbuf space. */ 8304 for (;;) { 8305 prepare_to_wait_exclusive(&asoc->wait, &wait, 8306 TASK_INTERRUPTIBLE); 8307 if (asoc->base.dead) 8308 goto do_dead; 8309 if (!*timeo_p) 8310 goto do_nonblock; 8311 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8312 goto do_error; 8313 if (signal_pending(current)) 8314 goto do_interrupted; 8315 if (msg_len <= sctp_wspace(asoc)) 8316 break; 8317 8318 /* Let another process have a go. Since we are going 8319 * to sleep anyway. 8320 */ 8321 release_sock(sk); 8322 current_timeo = schedule_timeout(current_timeo); 8323 lock_sock(sk); 8324 if (sk != asoc->base.sk) 8325 goto do_error; 8326 8327 *timeo_p = current_timeo; 8328 } 8329 8330 out: 8331 finish_wait(&asoc->wait, &wait); 8332 8333 /* Release the association's refcnt. */ 8334 sctp_association_put(asoc); 8335 8336 return err; 8337 8338 do_dead: 8339 err = -ESRCH; 8340 goto out; 8341 8342 do_error: 8343 err = -EPIPE; 8344 goto out; 8345 8346 do_interrupted: 8347 err = sock_intr_errno(*timeo_p); 8348 goto out; 8349 8350 do_nonblock: 8351 err = -EAGAIN; 8352 goto out; 8353 } 8354 8355 void sctp_data_ready(struct sock *sk) 8356 { 8357 struct socket_wq *wq; 8358 8359 rcu_read_lock(); 8360 wq = rcu_dereference(sk->sk_wq); 8361 if (skwq_has_sleeper(wq)) 8362 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8363 EPOLLRDNORM | EPOLLRDBAND); 8364 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8365 rcu_read_unlock(); 8366 } 8367 8368 /* If socket sndbuf has changed, wake up all per association waiters. */ 8369 void sctp_write_space(struct sock *sk) 8370 { 8371 struct sctp_association *asoc; 8372 8373 /* Wake up the tasks in each wait queue. */ 8374 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8375 __sctp_write_space(asoc); 8376 } 8377 } 8378 8379 /* Is there any sndbuf space available on the socket? 8380 * 8381 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8382 * associations on the same socket. For a UDP-style socket with 8383 * multiple associations, it is possible for it to be "unwriteable" 8384 * prematurely. I assume that this is acceptable because 8385 * a premature "unwriteable" is better than an accidental "writeable" which 8386 * would cause an unwanted block under certain circumstances. For the 1-1 8387 * UDP-style sockets or TCP-style sockets, this code should work. 8388 * - Daisy 8389 */ 8390 static int sctp_writeable(struct sock *sk) 8391 { 8392 int amt = 0; 8393 8394 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8395 if (amt < 0) 8396 amt = 0; 8397 return amt; 8398 } 8399 8400 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8401 * returns immediately with EINPROGRESS. 8402 */ 8403 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8404 { 8405 struct sock *sk = asoc->base.sk; 8406 int err = 0; 8407 long current_timeo = *timeo_p; 8408 DEFINE_WAIT(wait); 8409 8410 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8411 8412 /* Increment the association's refcnt. */ 8413 sctp_association_hold(asoc); 8414 8415 for (;;) { 8416 prepare_to_wait_exclusive(&asoc->wait, &wait, 8417 TASK_INTERRUPTIBLE); 8418 if (!*timeo_p) 8419 goto do_nonblock; 8420 if (sk->sk_shutdown & RCV_SHUTDOWN) 8421 break; 8422 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8423 asoc->base.dead) 8424 goto do_error; 8425 if (signal_pending(current)) 8426 goto do_interrupted; 8427 8428 if (sctp_state(asoc, ESTABLISHED)) 8429 break; 8430 8431 /* Let another process have a go. Since we are going 8432 * to sleep anyway. 8433 */ 8434 release_sock(sk); 8435 current_timeo = schedule_timeout(current_timeo); 8436 lock_sock(sk); 8437 8438 *timeo_p = current_timeo; 8439 } 8440 8441 out: 8442 finish_wait(&asoc->wait, &wait); 8443 8444 /* Release the association's refcnt. */ 8445 sctp_association_put(asoc); 8446 8447 return err; 8448 8449 do_error: 8450 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8451 err = -ETIMEDOUT; 8452 else 8453 err = -ECONNREFUSED; 8454 goto out; 8455 8456 do_interrupted: 8457 err = sock_intr_errno(*timeo_p); 8458 goto out; 8459 8460 do_nonblock: 8461 err = -EINPROGRESS; 8462 goto out; 8463 } 8464 8465 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8466 { 8467 struct sctp_endpoint *ep; 8468 int err = 0; 8469 DEFINE_WAIT(wait); 8470 8471 ep = sctp_sk(sk)->ep; 8472 8473 8474 for (;;) { 8475 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8476 TASK_INTERRUPTIBLE); 8477 8478 if (list_empty(&ep->asocs)) { 8479 release_sock(sk); 8480 timeo = schedule_timeout(timeo); 8481 lock_sock(sk); 8482 } 8483 8484 err = -EINVAL; 8485 if (!sctp_sstate(sk, LISTENING)) 8486 break; 8487 8488 err = 0; 8489 if (!list_empty(&ep->asocs)) 8490 break; 8491 8492 err = sock_intr_errno(timeo); 8493 if (signal_pending(current)) 8494 break; 8495 8496 err = -EAGAIN; 8497 if (!timeo) 8498 break; 8499 } 8500 8501 finish_wait(sk_sleep(sk), &wait); 8502 8503 return err; 8504 } 8505 8506 static void sctp_wait_for_close(struct sock *sk, long timeout) 8507 { 8508 DEFINE_WAIT(wait); 8509 8510 do { 8511 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8512 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8513 break; 8514 release_sock(sk); 8515 timeout = schedule_timeout(timeout); 8516 lock_sock(sk); 8517 } while (!signal_pending(current) && timeout); 8518 8519 finish_wait(sk_sleep(sk), &wait); 8520 } 8521 8522 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8523 { 8524 struct sk_buff *frag; 8525 8526 if (!skb->data_len) 8527 goto done; 8528 8529 /* Don't forget the fragments. */ 8530 skb_walk_frags(skb, frag) 8531 sctp_skb_set_owner_r_frag(frag, sk); 8532 8533 done: 8534 sctp_skb_set_owner_r(skb, sk); 8535 } 8536 8537 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8538 struct sctp_association *asoc) 8539 { 8540 struct inet_sock *inet = inet_sk(sk); 8541 struct inet_sock *newinet; 8542 struct sctp_sock *sp = sctp_sk(sk); 8543 struct sctp_endpoint *ep = sp->ep; 8544 8545 newsk->sk_type = sk->sk_type; 8546 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8547 newsk->sk_flags = sk->sk_flags; 8548 newsk->sk_tsflags = sk->sk_tsflags; 8549 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8550 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8551 newsk->sk_reuse = sk->sk_reuse; 8552 8553 newsk->sk_shutdown = sk->sk_shutdown; 8554 newsk->sk_destruct = sctp_destruct_sock; 8555 newsk->sk_family = sk->sk_family; 8556 newsk->sk_protocol = IPPROTO_SCTP; 8557 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8558 newsk->sk_sndbuf = sk->sk_sndbuf; 8559 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8560 newsk->sk_lingertime = sk->sk_lingertime; 8561 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8562 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8563 newsk->sk_rxhash = sk->sk_rxhash; 8564 8565 newinet = inet_sk(newsk); 8566 8567 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8568 * getsockname() and getpeername() 8569 */ 8570 newinet->inet_sport = inet->inet_sport; 8571 newinet->inet_saddr = inet->inet_saddr; 8572 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8573 newinet->inet_dport = htons(asoc->peer.port); 8574 newinet->pmtudisc = inet->pmtudisc; 8575 newinet->inet_id = asoc->next_tsn ^ jiffies; 8576 8577 newinet->uc_ttl = inet->uc_ttl; 8578 newinet->mc_loop = 1; 8579 newinet->mc_ttl = 1; 8580 newinet->mc_index = 0; 8581 newinet->mc_list = NULL; 8582 8583 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8584 net_enable_timestamp(); 8585 8586 /* Set newsk security attributes from orginal sk and connection 8587 * security attribute from ep. 8588 */ 8589 security_sctp_sk_clone(ep, sk, newsk); 8590 } 8591 8592 static inline void sctp_copy_descendant(struct sock *sk_to, 8593 const struct sock *sk_from) 8594 { 8595 int ancestor_size = sizeof(struct inet_sock) + 8596 sizeof(struct sctp_sock) - 8597 offsetof(struct sctp_sock, auto_asconf_list); 8598 8599 if (sk_from->sk_family == PF_INET6) 8600 ancestor_size += sizeof(struct ipv6_pinfo); 8601 8602 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8603 } 8604 8605 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8606 * and its messages to the newsk. 8607 */ 8608 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8609 struct sctp_association *assoc, 8610 enum sctp_socket_type type) 8611 { 8612 struct sctp_sock *oldsp = sctp_sk(oldsk); 8613 struct sctp_sock *newsp = sctp_sk(newsk); 8614 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8615 struct sctp_endpoint *newep = newsp->ep; 8616 struct sk_buff *skb, *tmp; 8617 struct sctp_ulpevent *event; 8618 struct sctp_bind_hashbucket *head; 8619 8620 /* Migrate socket buffer sizes and all the socket level options to the 8621 * new socket. 8622 */ 8623 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8624 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8625 /* Brute force copy old sctp opt. */ 8626 sctp_copy_descendant(newsk, oldsk); 8627 8628 /* Restore the ep value that was overwritten with the above structure 8629 * copy. 8630 */ 8631 newsp->ep = newep; 8632 newsp->hmac = NULL; 8633 8634 /* Hook this new socket in to the bind_hash list. */ 8635 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8636 inet_sk(oldsk)->inet_num)]; 8637 spin_lock_bh(&head->lock); 8638 pp = sctp_sk(oldsk)->bind_hash; 8639 sk_add_bind_node(newsk, &pp->owner); 8640 sctp_sk(newsk)->bind_hash = pp; 8641 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8642 spin_unlock_bh(&head->lock); 8643 8644 /* Copy the bind_addr list from the original endpoint to the new 8645 * endpoint so that we can handle restarts properly 8646 */ 8647 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8648 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8649 8650 /* Move any messages in the old socket's receive queue that are for the 8651 * peeled off association to the new socket's receive queue. 8652 */ 8653 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8654 event = sctp_skb2event(skb); 8655 if (event->asoc == assoc) { 8656 __skb_unlink(skb, &oldsk->sk_receive_queue); 8657 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8658 sctp_skb_set_owner_r_frag(skb, newsk); 8659 } 8660 } 8661 8662 /* Clean up any messages pending delivery due to partial 8663 * delivery. Three cases: 8664 * 1) No partial deliver; no work. 8665 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8666 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8667 */ 8668 skb_queue_head_init(&newsp->pd_lobby); 8669 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8670 8671 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8672 struct sk_buff_head *queue; 8673 8674 /* Decide which queue to move pd_lobby skbs to. */ 8675 if (assoc->ulpq.pd_mode) { 8676 queue = &newsp->pd_lobby; 8677 } else 8678 queue = &newsk->sk_receive_queue; 8679 8680 /* Walk through the pd_lobby, looking for skbs that 8681 * need moved to the new socket. 8682 */ 8683 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8684 event = sctp_skb2event(skb); 8685 if (event->asoc == assoc) { 8686 __skb_unlink(skb, &oldsp->pd_lobby); 8687 __skb_queue_tail(queue, skb); 8688 sctp_skb_set_owner_r_frag(skb, newsk); 8689 } 8690 } 8691 8692 /* Clear up any skbs waiting for the partial 8693 * delivery to finish. 8694 */ 8695 if (assoc->ulpq.pd_mode) 8696 sctp_clear_pd(oldsk, NULL); 8697 8698 } 8699 8700 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8701 8702 /* Set the type of socket to indicate that it is peeled off from the 8703 * original UDP-style socket or created with the accept() call on a 8704 * TCP-style socket.. 8705 */ 8706 newsp->type = type; 8707 8708 /* Mark the new socket "in-use" by the user so that any packets 8709 * that may arrive on the association after we've moved it are 8710 * queued to the backlog. This prevents a potential race between 8711 * backlog processing on the old socket and new-packet processing 8712 * on the new socket. 8713 * 8714 * The caller has just allocated newsk so we can guarantee that other 8715 * paths won't try to lock it and then oldsk. 8716 */ 8717 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8718 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8719 sctp_assoc_migrate(assoc, newsk); 8720 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8721 8722 /* If the association on the newsk is already closed before accept() 8723 * is called, set RCV_SHUTDOWN flag. 8724 */ 8725 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8726 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8727 newsk->sk_shutdown |= RCV_SHUTDOWN; 8728 } else { 8729 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8730 } 8731 8732 release_sock(newsk); 8733 } 8734 8735 8736 /* This proto struct describes the ULP interface for SCTP. */ 8737 struct proto sctp_prot = { 8738 .name = "SCTP", 8739 .owner = THIS_MODULE, 8740 .close = sctp_close, 8741 .disconnect = sctp_disconnect, 8742 .accept = sctp_accept, 8743 .ioctl = sctp_ioctl, 8744 .init = sctp_init_sock, 8745 .destroy = sctp_destroy_sock, 8746 .shutdown = sctp_shutdown, 8747 .setsockopt = sctp_setsockopt, 8748 .getsockopt = sctp_getsockopt, 8749 .sendmsg = sctp_sendmsg, 8750 .recvmsg = sctp_recvmsg, 8751 .bind = sctp_bind, 8752 .backlog_rcv = sctp_backlog_rcv, 8753 .hash = sctp_hash, 8754 .unhash = sctp_unhash, 8755 .get_port = sctp_get_port, 8756 .obj_size = sizeof(struct sctp_sock), 8757 .useroffset = offsetof(struct sctp_sock, subscribe), 8758 .usersize = offsetof(struct sctp_sock, initmsg) - 8759 offsetof(struct sctp_sock, subscribe) + 8760 sizeof_field(struct sctp_sock, initmsg), 8761 .sysctl_mem = sysctl_sctp_mem, 8762 .sysctl_rmem = sysctl_sctp_rmem, 8763 .sysctl_wmem = sysctl_sctp_wmem, 8764 .memory_pressure = &sctp_memory_pressure, 8765 .enter_memory_pressure = sctp_enter_memory_pressure, 8766 .memory_allocated = &sctp_memory_allocated, 8767 .sockets_allocated = &sctp_sockets_allocated, 8768 }; 8769 8770 #if IS_ENABLED(CONFIG_IPV6) 8771 8772 #include <net/transp_v6.h> 8773 static void sctp_v6_destroy_sock(struct sock *sk) 8774 { 8775 sctp_destroy_sock(sk); 8776 inet6_destroy_sock(sk); 8777 } 8778 8779 struct proto sctpv6_prot = { 8780 .name = "SCTPv6", 8781 .owner = THIS_MODULE, 8782 .close = sctp_close, 8783 .disconnect = sctp_disconnect, 8784 .accept = sctp_accept, 8785 .ioctl = sctp_ioctl, 8786 .init = sctp_init_sock, 8787 .destroy = sctp_v6_destroy_sock, 8788 .shutdown = sctp_shutdown, 8789 .setsockopt = sctp_setsockopt, 8790 .getsockopt = sctp_getsockopt, 8791 .sendmsg = sctp_sendmsg, 8792 .recvmsg = sctp_recvmsg, 8793 .bind = sctp_bind, 8794 .backlog_rcv = sctp_backlog_rcv, 8795 .hash = sctp_hash, 8796 .unhash = sctp_unhash, 8797 .get_port = sctp_get_port, 8798 .obj_size = sizeof(struct sctp6_sock), 8799 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 8800 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 8801 offsetof(struct sctp6_sock, sctp.subscribe) + 8802 sizeof_field(struct sctp6_sock, sctp.initmsg), 8803 .sysctl_mem = sysctl_sctp_mem, 8804 .sysctl_rmem = sysctl_sctp_rmem, 8805 .sysctl_wmem = sysctl_sctp_wmem, 8806 .memory_pressure = &sctp_memory_pressure, 8807 .enter_memory_pressure = sctp_enter_memory_pressure, 8808 .memory_allocated = &sctp_memory_allocated, 8809 .sockets_allocated = &sctp_sockets_allocated, 8810 }; 8811 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8812