1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 74 #include <net/ip.h> 75 #include <net/icmp.h> 76 #include <net/route.h> 77 #include <net/ipv6.h> 78 #include <net/inet_common.h> 79 80 #include <linux/socket.h> /* for sa_family_t */ 81 #include <linux/export.h> 82 #include <net/sock.h> 83 #include <net/sctp/sctp.h> 84 #include <net/sctp/sm.h> 85 86 /* WARNING: Please do not remove the SCTP_STATIC attribute to 87 * any of the functions below as they are used to export functions 88 * used by a project regression testsuite. 89 */ 90 91 /* Forward declarations for internal helper functions. */ 92 static int sctp_writeable(struct sock *sk); 93 static void sctp_wfree(struct sk_buff *skb); 94 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 95 size_t msg_len); 96 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 97 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 98 static int sctp_wait_for_accept(struct sock *sk, long timeo); 99 static void sctp_wait_for_close(struct sock *sk, long timeo); 100 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 101 union sctp_addr *addr, int len); 102 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 103 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 104 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 106 static int sctp_send_asconf(struct sctp_association *asoc, 107 struct sctp_chunk *chunk); 108 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 109 static int sctp_autobind(struct sock *sk); 110 static void sctp_sock_migrate(struct sock *, struct sock *, 111 struct sctp_association *, sctp_socket_type_t); 112 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 113 114 extern struct kmem_cache *sctp_bucket_cachep; 115 extern long sysctl_sctp_mem[3]; 116 extern int sysctl_sctp_rmem[3]; 117 extern int sysctl_sctp_wmem[3]; 118 119 static int sctp_memory_pressure; 120 static atomic_long_t sctp_memory_allocated; 121 struct percpu_counter sctp_sockets_allocated; 122 123 static void sctp_enter_memory_pressure(struct sock *sk) 124 { 125 sctp_memory_pressure = 1; 126 } 127 128 129 /* Get the sndbuf space available at the time on the association. */ 130 static inline int sctp_wspace(struct sctp_association *asoc) 131 { 132 int amt; 133 134 if (asoc->ep->sndbuf_policy) 135 amt = asoc->sndbuf_used; 136 else 137 amt = sk_wmem_alloc_get(asoc->base.sk); 138 139 if (amt >= asoc->base.sk->sk_sndbuf) { 140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 141 amt = 0; 142 else { 143 amt = sk_stream_wspace(asoc->base.sk); 144 if (amt < 0) 145 amt = 0; 146 } 147 } else { 148 amt = asoc->base.sk->sk_sndbuf - amt; 149 } 150 return amt; 151 } 152 153 /* Increment the used sndbuf space count of the corresponding association by 154 * the size of the outgoing data chunk. 155 * Also, set the skb destructor for sndbuf accounting later. 156 * 157 * Since it is always 1-1 between chunk and skb, and also a new skb is always 158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 159 * destructor in the data chunk skb for the purpose of the sndbuf space 160 * tracking. 161 */ 162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 163 { 164 struct sctp_association *asoc = chunk->asoc; 165 struct sock *sk = asoc->base.sk; 166 167 /* The sndbuf space is tracked per association. */ 168 sctp_association_hold(asoc); 169 170 skb_set_owner_w(chunk->skb, sk); 171 172 chunk->skb->destructor = sctp_wfree; 173 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 175 176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 177 sizeof(struct sk_buff) + 178 sizeof(struct sctp_chunk); 179 180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 181 sk->sk_wmem_queued += chunk->skb->truesize; 182 sk_mem_charge(sk, chunk->skb->truesize); 183 } 184 185 /* Verify that this is a valid address. */ 186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 187 int len) 188 { 189 struct sctp_af *af; 190 191 /* Verify basic sockaddr. */ 192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 193 if (!af) 194 return -EINVAL; 195 196 /* Is this a valid SCTP address? */ 197 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 198 return -EINVAL; 199 200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 201 return -EINVAL; 202 203 return 0; 204 } 205 206 /* Look up the association by its id. If this is not a UDP-style 207 * socket, the ID field is always ignored. 208 */ 209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 210 { 211 struct sctp_association *asoc = NULL; 212 213 /* If this is not a UDP-style socket, assoc id should be ignored. */ 214 if (!sctp_style(sk, UDP)) { 215 /* Return NULL if the socket state is not ESTABLISHED. It 216 * could be a TCP-style listening socket or a socket which 217 * hasn't yet called connect() to establish an association. 218 */ 219 if (!sctp_sstate(sk, ESTABLISHED)) 220 return NULL; 221 222 /* Get the first and the only association from the list. */ 223 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 225 struct sctp_association, asocs); 226 return asoc; 227 } 228 229 /* Otherwise this is a UDP-style socket. */ 230 if (!id || (id == (sctp_assoc_t)-1)) 231 return NULL; 232 233 spin_lock_bh(&sctp_assocs_id_lock); 234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 235 spin_unlock_bh(&sctp_assocs_id_lock); 236 237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 238 return NULL; 239 240 return asoc; 241 } 242 243 /* Look up the transport from an address and an assoc id. If both address and 244 * id are specified, the associations matching the address and the id should be 245 * the same. 246 */ 247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 248 struct sockaddr_storage *addr, 249 sctp_assoc_t id) 250 { 251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 252 struct sctp_transport *transport; 253 union sctp_addr *laddr = (union sctp_addr *)addr; 254 255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 256 laddr, 257 &transport); 258 259 if (!addr_asoc) 260 return NULL; 261 262 id_asoc = sctp_id2assoc(sk, id); 263 if (id_asoc && (id_asoc != addr_asoc)) 264 return NULL; 265 266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 267 (union sctp_addr *)addr); 268 269 return transport; 270 } 271 272 /* API 3.1.2 bind() - UDP Style Syntax 273 * The syntax of bind() is, 274 * 275 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 276 * 277 * sd - the socket descriptor returned by socket(). 278 * addr - the address structure (struct sockaddr_in or struct 279 * sockaddr_in6 [RFC 2553]), 280 * addr_len - the size of the address structure. 281 */ 282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 283 { 284 int retval = 0; 285 286 sctp_lock_sock(sk); 287 288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 289 sk, addr, addr_len); 290 291 /* Disallow binding twice. */ 292 if (!sctp_sk(sk)->ep->base.bind_addr.port) 293 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 294 addr_len); 295 else 296 retval = -EINVAL; 297 298 sctp_release_sock(sk); 299 300 return retval; 301 } 302 303 static long sctp_get_port_local(struct sock *, union sctp_addr *); 304 305 /* Verify this is a valid sockaddr. */ 306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 307 union sctp_addr *addr, int len) 308 { 309 struct sctp_af *af; 310 311 /* Check minimum size. */ 312 if (len < sizeof (struct sockaddr)) 313 return NULL; 314 315 /* V4 mapped address are really of AF_INET family */ 316 if (addr->sa.sa_family == AF_INET6 && 317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 318 if (!opt->pf->af_supported(AF_INET, opt)) 319 return NULL; 320 } else { 321 /* Does this PF support this AF? */ 322 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 323 return NULL; 324 } 325 326 /* If we get this far, af is valid. */ 327 af = sctp_get_af_specific(addr->sa.sa_family); 328 329 if (len < af->sockaddr_len) 330 return NULL; 331 332 return af; 333 } 334 335 /* Bind a local address either to an endpoint or to an association. */ 336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 337 { 338 struct sctp_sock *sp = sctp_sk(sk); 339 struct sctp_endpoint *ep = sp->ep; 340 struct sctp_bind_addr *bp = &ep->base.bind_addr; 341 struct sctp_af *af; 342 unsigned short snum; 343 int ret = 0; 344 345 /* Common sockaddr verification. */ 346 af = sctp_sockaddr_af(sp, addr, len); 347 if (!af) { 348 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 349 sk, addr, len); 350 return -EINVAL; 351 } 352 353 snum = ntohs(addr->v4.sin_port); 354 355 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 356 ", port: %d, new port: %d, len: %d)\n", 357 sk, 358 addr, 359 bp->port, snum, 360 len); 361 362 /* PF specific bind() address verification. */ 363 if (!sp->pf->bind_verify(sp, addr)) 364 return -EADDRNOTAVAIL; 365 366 /* We must either be unbound, or bind to the same port. 367 * It's OK to allow 0 ports if we are already bound. 368 * We'll just inhert an already bound port in this case 369 */ 370 if (bp->port) { 371 if (!snum) 372 snum = bp->port; 373 else if (snum != bp->port) { 374 SCTP_DEBUG_PRINTK("sctp_do_bind:" 375 " New port %d does not match existing port " 376 "%d.\n", snum, bp->port); 377 return -EINVAL; 378 } 379 } 380 381 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 382 return -EACCES; 383 384 /* See if the address matches any of the addresses we may have 385 * already bound before checking against other endpoints. 386 */ 387 if (sctp_bind_addr_match(bp, addr, sp)) 388 return -EINVAL; 389 390 /* Make sure we are allowed to bind here. 391 * The function sctp_get_port_local() does duplicate address 392 * detection. 393 */ 394 addr->v4.sin_port = htons(snum); 395 if ((ret = sctp_get_port_local(sk, addr))) { 396 return -EADDRINUSE; 397 } 398 399 /* Refresh ephemeral port. */ 400 if (!bp->port) 401 bp->port = inet_sk(sk)->inet_num; 402 403 /* Add the address to the bind address list. 404 * Use GFP_ATOMIC since BHs will be disabled. 405 */ 406 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 407 408 /* Copy back into socket for getsockname() use. */ 409 if (!ret) { 410 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 411 af->to_sk_saddr(addr, sk); 412 } 413 414 return ret; 415 } 416 417 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 418 * 419 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 420 * at any one time. If a sender, after sending an ASCONF chunk, decides 421 * it needs to transfer another ASCONF Chunk, it MUST wait until the 422 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 423 * subsequent ASCONF. Note this restriction binds each side, so at any 424 * time two ASCONF may be in-transit on any given association (one sent 425 * from each endpoint). 426 */ 427 static int sctp_send_asconf(struct sctp_association *asoc, 428 struct sctp_chunk *chunk) 429 { 430 int retval = 0; 431 432 /* If there is an outstanding ASCONF chunk, queue it for later 433 * transmission. 434 */ 435 if (asoc->addip_last_asconf) { 436 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 437 goto out; 438 } 439 440 /* Hold the chunk until an ASCONF_ACK is received. */ 441 sctp_chunk_hold(chunk); 442 retval = sctp_primitive_ASCONF(asoc, chunk); 443 if (retval) 444 sctp_chunk_free(chunk); 445 else 446 asoc->addip_last_asconf = chunk; 447 448 out: 449 return retval; 450 } 451 452 /* Add a list of addresses as bind addresses to local endpoint or 453 * association. 454 * 455 * Basically run through each address specified in the addrs/addrcnt 456 * array/length pair, determine if it is IPv6 or IPv4 and call 457 * sctp_do_bind() on it. 458 * 459 * If any of them fails, then the operation will be reversed and the 460 * ones that were added will be removed. 461 * 462 * Only sctp_setsockopt_bindx() is supposed to call this function. 463 */ 464 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 465 { 466 int cnt; 467 int retval = 0; 468 void *addr_buf; 469 struct sockaddr *sa_addr; 470 struct sctp_af *af; 471 472 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 473 sk, addrs, addrcnt); 474 475 addr_buf = addrs; 476 for (cnt = 0; cnt < addrcnt; cnt++) { 477 /* The list may contain either IPv4 or IPv6 address; 478 * determine the address length for walking thru the list. 479 */ 480 sa_addr = addr_buf; 481 af = sctp_get_af_specific(sa_addr->sa_family); 482 if (!af) { 483 retval = -EINVAL; 484 goto err_bindx_add; 485 } 486 487 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 488 af->sockaddr_len); 489 490 addr_buf += af->sockaddr_len; 491 492 err_bindx_add: 493 if (retval < 0) { 494 /* Failed. Cleanup the ones that have been added */ 495 if (cnt > 0) 496 sctp_bindx_rem(sk, addrs, cnt); 497 return retval; 498 } 499 } 500 501 return retval; 502 } 503 504 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 505 * associations that are part of the endpoint indicating that a list of local 506 * addresses are added to the endpoint. 507 * 508 * If any of the addresses is already in the bind address list of the 509 * association, we do not send the chunk for that association. But it will not 510 * affect other associations. 511 * 512 * Only sctp_setsockopt_bindx() is supposed to call this function. 513 */ 514 static int sctp_send_asconf_add_ip(struct sock *sk, 515 struct sockaddr *addrs, 516 int addrcnt) 517 { 518 struct sctp_sock *sp; 519 struct sctp_endpoint *ep; 520 struct sctp_association *asoc; 521 struct sctp_bind_addr *bp; 522 struct sctp_chunk *chunk; 523 struct sctp_sockaddr_entry *laddr; 524 union sctp_addr *addr; 525 union sctp_addr saveaddr; 526 void *addr_buf; 527 struct sctp_af *af; 528 struct list_head *p; 529 int i; 530 int retval = 0; 531 532 if (!sctp_addip_enable) 533 return retval; 534 535 sp = sctp_sk(sk); 536 ep = sp->ep; 537 538 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 539 __func__, sk, addrs, addrcnt); 540 541 list_for_each_entry(asoc, &ep->asocs, asocs) { 542 543 if (!asoc->peer.asconf_capable) 544 continue; 545 546 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 547 continue; 548 549 if (!sctp_state(asoc, ESTABLISHED)) 550 continue; 551 552 /* Check if any address in the packed array of addresses is 553 * in the bind address list of the association. If so, 554 * do not send the asconf chunk to its peer, but continue with 555 * other associations. 556 */ 557 addr_buf = addrs; 558 for (i = 0; i < addrcnt; i++) { 559 addr = addr_buf; 560 af = sctp_get_af_specific(addr->v4.sin_family); 561 if (!af) { 562 retval = -EINVAL; 563 goto out; 564 } 565 566 if (sctp_assoc_lookup_laddr(asoc, addr)) 567 break; 568 569 addr_buf += af->sockaddr_len; 570 } 571 if (i < addrcnt) 572 continue; 573 574 /* Use the first valid address in bind addr list of 575 * association as Address Parameter of ASCONF CHUNK. 576 */ 577 bp = &asoc->base.bind_addr; 578 p = bp->address_list.next; 579 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 580 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 581 addrcnt, SCTP_PARAM_ADD_IP); 582 if (!chunk) { 583 retval = -ENOMEM; 584 goto out; 585 } 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 if (asoc->src_out_of_asoc_ok) { 600 struct sctp_transport *trans; 601 602 list_for_each_entry(trans, 603 &asoc->peer.transport_addr_list, transports) { 604 /* Clear the source and route cache */ 605 dst_release(trans->dst); 606 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 607 2*asoc->pathmtu, 4380)); 608 trans->ssthresh = asoc->peer.i.a_rwnd; 609 trans->rto = asoc->rto_initial; 610 trans->rtt = trans->srtt = trans->rttvar = 0; 611 sctp_transport_route(trans, NULL, 612 sctp_sk(asoc->base.sk)); 613 } 614 } 615 retval = sctp_send_asconf(asoc, chunk); 616 } 617 618 out: 619 return retval; 620 } 621 622 /* Remove a list of addresses from bind addresses list. Do not remove the 623 * last address. 624 * 625 * Basically run through each address specified in the addrs/addrcnt 626 * array/length pair, determine if it is IPv6 or IPv4 and call 627 * sctp_del_bind() on it. 628 * 629 * If any of them fails, then the operation will be reversed and the 630 * ones that were removed will be added back. 631 * 632 * At least one address has to be left; if only one address is 633 * available, the operation will return -EBUSY. 634 * 635 * Only sctp_setsockopt_bindx() is supposed to call this function. 636 */ 637 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 638 { 639 struct sctp_sock *sp = sctp_sk(sk); 640 struct sctp_endpoint *ep = sp->ep; 641 int cnt; 642 struct sctp_bind_addr *bp = &ep->base.bind_addr; 643 int retval = 0; 644 void *addr_buf; 645 union sctp_addr *sa_addr; 646 struct sctp_af *af; 647 648 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 649 sk, addrs, addrcnt); 650 651 addr_buf = addrs; 652 for (cnt = 0; cnt < addrcnt; cnt++) { 653 /* If the bind address list is empty or if there is only one 654 * bind address, there is nothing more to be removed (we need 655 * at least one address here). 656 */ 657 if (list_empty(&bp->address_list) || 658 (sctp_list_single_entry(&bp->address_list))) { 659 retval = -EBUSY; 660 goto err_bindx_rem; 661 } 662 663 sa_addr = addr_buf; 664 af = sctp_get_af_specific(sa_addr->sa.sa_family); 665 if (!af) { 666 retval = -EINVAL; 667 goto err_bindx_rem; 668 } 669 670 if (!af->addr_valid(sa_addr, sp, NULL)) { 671 retval = -EADDRNOTAVAIL; 672 goto err_bindx_rem; 673 } 674 675 if (sa_addr->v4.sin_port && 676 sa_addr->v4.sin_port != htons(bp->port)) { 677 retval = -EINVAL; 678 goto err_bindx_rem; 679 } 680 681 if (!sa_addr->v4.sin_port) 682 sa_addr->v4.sin_port = htons(bp->port); 683 684 /* FIXME - There is probably a need to check if sk->sk_saddr and 685 * sk->sk_rcv_addr are currently set to one of the addresses to 686 * be removed. This is something which needs to be looked into 687 * when we are fixing the outstanding issues with multi-homing 688 * socket routing and failover schemes. Refer to comments in 689 * sctp_do_bind(). -daisy 690 */ 691 retval = sctp_del_bind_addr(bp, sa_addr); 692 693 addr_buf += af->sockaddr_len; 694 err_bindx_rem: 695 if (retval < 0) { 696 /* Failed. Add the ones that has been removed back */ 697 if (cnt > 0) 698 sctp_bindx_add(sk, addrs, cnt); 699 return retval; 700 } 701 } 702 703 return retval; 704 } 705 706 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 707 * the associations that are part of the endpoint indicating that a list of 708 * local addresses are removed from the endpoint. 709 * 710 * If any of the addresses is already in the bind address list of the 711 * association, we do not send the chunk for that association. But it will not 712 * affect other associations. 713 * 714 * Only sctp_setsockopt_bindx() is supposed to call this function. 715 */ 716 static int sctp_send_asconf_del_ip(struct sock *sk, 717 struct sockaddr *addrs, 718 int addrcnt) 719 { 720 struct sctp_sock *sp; 721 struct sctp_endpoint *ep; 722 struct sctp_association *asoc; 723 struct sctp_transport *transport; 724 struct sctp_bind_addr *bp; 725 struct sctp_chunk *chunk; 726 union sctp_addr *laddr; 727 void *addr_buf; 728 struct sctp_af *af; 729 struct sctp_sockaddr_entry *saddr; 730 int i; 731 int retval = 0; 732 int stored = 0; 733 734 chunk = NULL; 735 if (!sctp_addip_enable) 736 return retval; 737 738 sp = sctp_sk(sk); 739 ep = sp->ep; 740 741 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 742 __func__, sk, addrs, addrcnt); 743 744 list_for_each_entry(asoc, &ep->asocs, asocs) { 745 746 if (!asoc->peer.asconf_capable) 747 continue; 748 749 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 750 continue; 751 752 if (!sctp_state(asoc, ESTABLISHED)) 753 continue; 754 755 /* Check if any address in the packed array of addresses is 756 * not present in the bind address list of the association. 757 * If so, do not send the asconf chunk to its peer, but 758 * continue with other associations. 759 */ 760 addr_buf = addrs; 761 for (i = 0; i < addrcnt; i++) { 762 laddr = addr_buf; 763 af = sctp_get_af_specific(laddr->v4.sin_family); 764 if (!af) { 765 retval = -EINVAL; 766 goto out; 767 } 768 769 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 770 break; 771 772 addr_buf += af->sockaddr_len; 773 } 774 if (i < addrcnt) 775 continue; 776 777 /* Find one address in the association's bind address list 778 * that is not in the packed array of addresses. This is to 779 * make sure that we do not delete all the addresses in the 780 * association. 781 */ 782 bp = &asoc->base.bind_addr; 783 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 784 addrcnt, sp); 785 if ((laddr == NULL) && (addrcnt == 1)) { 786 if (asoc->asconf_addr_del_pending) 787 continue; 788 asoc->asconf_addr_del_pending = 789 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 790 if (asoc->asconf_addr_del_pending == NULL) { 791 retval = -ENOMEM; 792 goto out; 793 } 794 asoc->asconf_addr_del_pending->sa.sa_family = 795 addrs->sa_family; 796 asoc->asconf_addr_del_pending->v4.sin_port = 797 htons(bp->port); 798 if (addrs->sa_family == AF_INET) { 799 struct sockaddr_in *sin; 800 801 sin = (struct sockaddr_in *)addrs; 802 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 803 } else if (addrs->sa_family == AF_INET6) { 804 struct sockaddr_in6 *sin6; 805 806 sin6 = (struct sockaddr_in6 *)addrs; 807 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 808 } 809 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ", 810 " at %p\n", asoc, asoc->asconf_addr_del_pending, 811 asoc->asconf_addr_del_pending); 812 asoc->src_out_of_asoc_ok = 1; 813 stored = 1; 814 goto skip_mkasconf; 815 } 816 817 /* We do not need RCU protection throughout this loop 818 * because this is done under a socket lock from the 819 * setsockopt call. 820 */ 821 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 822 SCTP_PARAM_DEL_IP); 823 if (!chunk) { 824 retval = -ENOMEM; 825 goto out; 826 } 827 828 skip_mkasconf: 829 /* Reset use_as_src flag for the addresses in the bind address 830 * list that are to be deleted. 831 */ 832 addr_buf = addrs; 833 for (i = 0; i < addrcnt; i++) { 834 laddr = addr_buf; 835 af = sctp_get_af_specific(laddr->v4.sin_family); 836 list_for_each_entry(saddr, &bp->address_list, list) { 837 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 838 saddr->state = SCTP_ADDR_DEL; 839 } 840 addr_buf += af->sockaddr_len; 841 } 842 843 /* Update the route and saddr entries for all the transports 844 * as some of the addresses in the bind address list are 845 * about to be deleted and cannot be used as source addresses. 846 */ 847 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 848 transports) { 849 dst_release(transport->dst); 850 sctp_transport_route(transport, NULL, 851 sctp_sk(asoc->base.sk)); 852 } 853 854 if (stored) 855 /* We don't need to transmit ASCONF */ 856 continue; 857 retval = sctp_send_asconf(asoc, chunk); 858 } 859 out: 860 return retval; 861 } 862 863 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 864 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 865 { 866 struct sock *sk = sctp_opt2sk(sp); 867 union sctp_addr *addr; 868 struct sctp_af *af; 869 870 /* It is safe to write port space in caller. */ 871 addr = &addrw->a; 872 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 873 af = sctp_get_af_specific(addr->sa.sa_family); 874 if (!af) 875 return -EINVAL; 876 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 877 return -EINVAL; 878 879 if (addrw->state == SCTP_ADDR_NEW) 880 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 881 else 882 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 883 } 884 885 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 886 * 887 * API 8.1 888 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 889 * int flags); 890 * 891 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 892 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 893 * or IPv6 addresses. 894 * 895 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 896 * Section 3.1.2 for this usage. 897 * 898 * addrs is a pointer to an array of one or more socket addresses. Each 899 * address is contained in its appropriate structure (i.e. struct 900 * sockaddr_in or struct sockaddr_in6) the family of the address type 901 * must be used to distinguish the address length (note that this 902 * representation is termed a "packed array" of addresses). The caller 903 * specifies the number of addresses in the array with addrcnt. 904 * 905 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 906 * -1, and sets errno to the appropriate error code. 907 * 908 * For SCTP, the port given in each socket address must be the same, or 909 * sctp_bindx() will fail, setting errno to EINVAL. 910 * 911 * The flags parameter is formed from the bitwise OR of zero or more of 912 * the following currently defined flags: 913 * 914 * SCTP_BINDX_ADD_ADDR 915 * 916 * SCTP_BINDX_REM_ADDR 917 * 918 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 919 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 920 * addresses from the association. The two flags are mutually exclusive; 921 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 922 * not remove all addresses from an association; sctp_bindx() will 923 * reject such an attempt with EINVAL. 924 * 925 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 926 * additional addresses with an endpoint after calling bind(). Or use 927 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 928 * socket is associated with so that no new association accepted will be 929 * associated with those addresses. If the endpoint supports dynamic 930 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 931 * endpoint to send the appropriate message to the peer to change the 932 * peers address lists. 933 * 934 * Adding and removing addresses from a connected association is 935 * optional functionality. Implementations that do not support this 936 * functionality should return EOPNOTSUPP. 937 * 938 * Basically do nothing but copying the addresses from user to kernel 939 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 940 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 941 * from userspace. 942 * 943 * We don't use copy_from_user() for optimization: we first do the 944 * sanity checks (buffer size -fast- and access check-healthy 945 * pointer); if all of those succeed, then we can alloc the memory 946 * (expensive operation) needed to copy the data to kernel. Then we do 947 * the copying without checking the user space area 948 * (__copy_from_user()). 949 * 950 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 951 * it. 952 * 953 * sk The sk of the socket 954 * addrs The pointer to the addresses in user land 955 * addrssize Size of the addrs buffer 956 * op Operation to perform (add or remove, see the flags of 957 * sctp_bindx) 958 * 959 * Returns 0 if ok, <0 errno code on error. 960 */ 961 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 962 struct sockaddr __user *addrs, 963 int addrs_size, int op) 964 { 965 struct sockaddr *kaddrs; 966 int err; 967 int addrcnt = 0; 968 int walk_size = 0; 969 struct sockaddr *sa_addr; 970 void *addr_buf; 971 struct sctp_af *af; 972 973 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 974 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 975 976 if (unlikely(addrs_size <= 0)) 977 return -EINVAL; 978 979 /* Check the user passed a healthy pointer. */ 980 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 981 return -EFAULT; 982 983 /* Alloc space for the address array in kernel memory. */ 984 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 985 if (unlikely(!kaddrs)) 986 return -ENOMEM; 987 988 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 989 kfree(kaddrs); 990 return -EFAULT; 991 } 992 993 /* Walk through the addrs buffer and count the number of addresses. */ 994 addr_buf = kaddrs; 995 while (walk_size < addrs_size) { 996 if (walk_size + sizeof(sa_family_t) > addrs_size) { 997 kfree(kaddrs); 998 return -EINVAL; 999 } 1000 1001 sa_addr = addr_buf; 1002 af = sctp_get_af_specific(sa_addr->sa_family); 1003 1004 /* If the address family is not supported or if this address 1005 * causes the address buffer to overflow return EINVAL. 1006 */ 1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1008 kfree(kaddrs); 1009 return -EINVAL; 1010 } 1011 addrcnt++; 1012 addr_buf += af->sockaddr_len; 1013 walk_size += af->sockaddr_len; 1014 } 1015 1016 /* Do the work. */ 1017 switch (op) { 1018 case SCTP_BINDX_ADD_ADDR: 1019 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1020 if (err) 1021 goto out; 1022 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1023 break; 1024 1025 case SCTP_BINDX_REM_ADDR: 1026 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1027 if (err) 1028 goto out; 1029 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1030 break; 1031 1032 default: 1033 err = -EINVAL; 1034 break; 1035 } 1036 1037 out: 1038 kfree(kaddrs); 1039 1040 return err; 1041 } 1042 1043 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1044 * 1045 * Common routine for handling connect() and sctp_connectx(). 1046 * Connect will come in with just a single address. 1047 */ 1048 static int __sctp_connect(struct sock* sk, 1049 struct sockaddr *kaddrs, 1050 int addrs_size, 1051 sctp_assoc_t *assoc_id) 1052 { 1053 struct sctp_sock *sp; 1054 struct sctp_endpoint *ep; 1055 struct sctp_association *asoc = NULL; 1056 struct sctp_association *asoc2; 1057 struct sctp_transport *transport; 1058 union sctp_addr to; 1059 struct sctp_af *af; 1060 sctp_scope_t scope; 1061 long timeo; 1062 int err = 0; 1063 int addrcnt = 0; 1064 int walk_size = 0; 1065 union sctp_addr *sa_addr = NULL; 1066 void *addr_buf; 1067 unsigned short port; 1068 unsigned int f_flags = 0; 1069 1070 sp = sctp_sk(sk); 1071 ep = sp->ep; 1072 1073 /* connect() cannot be done on a socket that is already in ESTABLISHED 1074 * state - UDP-style peeled off socket or a TCP-style socket that 1075 * is already connected. 1076 * It cannot be done even on a TCP-style listening socket. 1077 */ 1078 if (sctp_sstate(sk, ESTABLISHED) || 1079 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1080 err = -EISCONN; 1081 goto out_free; 1082 } 1083 1084 /* Walk through the addrs buffer and count the number of addresses. */ 1085 addr_buf = kaddrs; 1086 while (walk_size < addrs_size) { 1087 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1088 err = -EINVAL; 1089 goto out_free; 1090 } 1091 1092 sa_addr = addr_buf; 1093 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1094 1095 /* If the address family is not supported or if this address 1096 * causes the address buffer to overflow return EINVAL. 1097 */ 1098 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1099 err = -EINVAL; 1100 goto out_free; 1101 } 1102 1103 port = ntohs(sa_addr->v4.sin_port); 1104 1105 /* Save current address so we can work with it */ 1106 memcpy(&to, sa_addr, af->sockaddr_len); 1107 1108 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1109 if (err) 1110 goto out_free; 1111 1112 /* Make sure the destination port is correctly set 1113 * in all addresses. 1114 */ 1115 if (asoc && asoc->peer.port && asoc->peer.port != port) 1116 goto out_free; 1117 1118 1119 /* Check if there already is a matching association on the 1120 * endpoint (other than the one created here). 1121 */ 1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1123 if (asoc2 && asoc2 != asoc) { 1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1125 err = -EISCONN; 1126 else 1127 err = -EALREADY; 1128 goto out_free; 1129 } 1130 1131 /* If we could not find a matching association on the endpoint, 1132 * make sure that there is no peeled-off association matching 1133 * the peer address even on another socket. 1134 */ 1135 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1136 err = -EADDRNOTAVAIL; 1137 goto out_free; 1138 } 1139 1140 if (!asoc) { 1141 /* If a bind() or sctp_bindx() is not called prior to 1142 * an sctp_connectx() call, the system picks an 1143 * ephemeral port and will choose an address set 1144 * equivalent to binding with a wildcard address. 1145 */ 1146 if (!ep->base.bind_addr.port) { 1147 if (sctp_autobind(sk)) { 1148 err = -EAGAIN; 1149 goto out_free; 1150 } 1151 } else { 1152 /* 1153 * If an unprivileged user inherits a 1-many 1154 * style socket with open associations on a 1155 * privileged port, it MAY be permitted to 1156 * accept new associations, but it SHOULD NOT 1157 * be permitted to open new associations. 1158 */ 1159 if (ep->base.bind_addr.port < PROT_SOCK && 1160 !capable(CAP_NET_BIND_SERVICE)) { 1161 err = -EACCES; 1162 goto out_free; 1163 } 1164 } 1165 1166 scope = sctp_scope(&to); 1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1168 if (!asoc) { 1169 err = -ENOMEM; 1170 goto out_free; 1171 } 1172 1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1174 GFP_KERNEL); 1175 if (err < 0) { 1176 goto out_free; 1177 } 1178 1179 } 1180 1181 /* Prime the peer's transport structures. */ 1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1183 SCTP_UNKNOWN); 1184 if (!transport) { 1185 err = -ENOMEM; 1186 goto out_free; 1187 } 1188 1189 addrcnt++; 1190 addr_buf += af->sockaddr_len; 1191 walk_size += af->sockaddr_len; 1192 } 1193 1194 /* In case the user of sctp_connectx() wants an association 1195 * id back, assign one now. 1196 */ 1197 if (assoc_id) { 1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1199 if (err < 0) 1200 goto out_free; 1201 } 1202 1203 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1204 if (err < 0) { 1205 goto out_free; 1206 } 1207 1208 /* Initialize sk's dport and daddr for getpeername() */ 1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1210 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1211 af->to_sk_daddr(sa_addr, sk); 1212 sk->sk_err = 0; 1213 1214 /* in-kernel sockets don't generally have a file allocated to them 1215 * if all they do is call sock_create_kern(). 1216 */ 1217 if (sk->sk_socket->file) 1218 f_flags = sk->sk_socket->file->f_flags; 1219 1220 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1221 1222 err = sctp_wait_for_connect(asoc, &timeo); 1223 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1224 *assoc_id = asoc->assoc_id; 1225 1226 /* Don't free association on exit. */ 1227 asoc = NULL; 1228 1229 out_free: 1230 1231 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1232 " kaddrs: %p err: %d\n", 1233 asoc, kaddrs, err); 1234 if (asoc) { 1235 /* sctp_primitive_ASSOCIATE may have added this association 1236 * To the hash table, try to unhash it, just in case, its a noop 1237 * if it wasn't hashed so we're safe 1238 */ 1239 sctp_unhash_established(asoc); 1240 sctp_association_free(asoc); 1241 } 1242 return err; 1243 } 1244 1245 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1246 * 1247 * API 8.9 1248 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1249 * sctp_assoc_t *asoc); 1250 * 1251 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1252 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1253 * or IPv6 addresses. 1254 * 1255 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1256 * Section 3.1.2 for this usage. 1257 * 1258 * addrs is a pointer to an array of one or more socket addresses. Each 1259 * address is contained in its appropriate structure (i.e. struct 1260 * sockaddr_in or struct sockaddr_in6) the family of the address type 1261 * must be used to distengish the address length (note that this 1262 * representation is termed a "packed array" of addresses). The caller 1263 * specifies the number of addresses in the array with addrcnt. 1264 * 1265 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1266 * the association id of the new association. On failure, sctp_connectx() 1267 * returns -1, and sets errno to the appropriate error code. The assoc_id 1268 * is not touched by the kernel. 1269 * 1270 * For SCTP, the port given in each socket address must be the same, or 1271 * sctp_connectx() will fail, setting errno to EINVAL. 1272 * 1273 * An application can use sctp_connectx to initiate an association with 1274 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1275 * allows a caller to specify multiple addresses at which a peer can be 1276 * reached. The way the SCTP stack uses the list of addresses to set up 1277 * the association is implementation dependent. This function only 1278 * specifies that the stack will try to make use of all the addresses in 1279 * the list when needed. 1280 * 1281 * Note that the list of addresses passed in is only used for setting up 1282 * the association. It does not necessarily equal the set of addresses 1283 * the peer uses for the resulting association. If the caller wants to 1284 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1285 * retrieve them after the association has been set up. 1286 * 1287 * Basically do nothing but copying the addresses from user to kernel 1288 * land and invoking either sctp_connectx(). This is used for tunneling 1289 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1290 * 1291 * We don't use copy_from_user() for optimization: we first do the 1292 * sanity checks (buffer size -fast- and access check-healthy 1293 * pointer); if all of those succeed, then we can alloc the memory 1294 * (expensive operation) needed to copy the data to kernel. Then we do 1295 * the copying without checking the user space area 1296 * (__copy_from_user()). 1297 * 1298 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1299 * it. 1300 * 1301 * sk The sk of the socket 1302 * addrs The pointer to the addresses in user land 1303 * addrssize Size of the addrs buffer 1304 * 1305 * Returns >=0 if ok, <0 errno code on error. 1306 */ 1307 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1308 struct sockaddr __user *addrs, 1309 int addrs_size, 1310 sctp_assoc_t *assoc_id) 1311 { 1312 int err = 0; 1313 struct sockaddr *kaddrs; 1314 1315 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1316 __func__, sk, addrs, addrs_size); 1317 1318 if (unlikely(addrs_size <= 0)) 1319 return -EINVAL; 1320 1321 /* Check the user passed a healthy pointer. */ 1322 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1323 return -EFAULT; 1324 1325 /* Alloc space for the address array in kernel memory. */ 1326 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1327 if (unlikely(!kaddrs)) 1328 return -ENOMEM; 1329 1330 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1331 err = -EFAULT; 1332 } else { 1333 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1334 } 1335 1336 kfree(kaddrs); 1337 1338 return err; 1339 } 1340 1341 /* 1342 * This is an older interface. It's kept for backward compatibility 1343 * to the option that doesn't provide association id. 1344 */ 1345 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1346 struct sockaddr __user *addrs, 1347 int addrs_size) 1348 { 1349 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1350 } 1351 1352 /* 1353 * New interface for the API. The since the API is done with a socket 1354 * option, to make it simple we feed back the association id is as a return 1355 * indication to the call. Error is always negative and association id is 1356 * always positive. 1357 */ 1358 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1359 struct sockaddr __user *addrs, 1360 int addrs_size) 1361 { 1362 sctp_assoc_t assoc_id = 0; 1363 int err = 0; 1364 1365 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1366 1367 if (err) 1368 return err; 1369 else 1370 return assoc_id; 1371 } 1372 1373 /* 1374 * New (hopefully final) interface for the API. 1375 * We use the sctp_getaddrs_old structure so that use-space library 1376 * can avoid any unnecessary allocations. The only defferent part 1377 * is that we store the actual length of the address buffer into the 1378 * addrs_num structure member. That way we can re-use the existing 1379 * code. 1380 */ 1381 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1382 char __user *optval, 1383 int __user *optlen) 1384 { 1385 struct sctp_getaddrs_old param; 1386 sctp_assoc_t assoc_id = 0; 1387 int err = 0; 1388 1389 if (len < sizeof(param)) 1390 return -EINVAL; 1391 1392 if (copy_from_user(¶m, optval, sizeof(param))) 1393 return -EFAULT; 1394 1395 err = __sctp_setsockopt_connectx(sk, 1396 (struct sockaddr __user *)param.addrs, 1397 param.addr_num, &assoc_id); 1398 1399 if (err == 0 || err == -EINPROGRESS) { 1400 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1401 return -EFAULT; 1402 if (put_user(sizeof(assoc_id), optlen)) 1403 return -EFAULT; 1404 } 1405 1406 return err; 1407 } 1408 1409 /* API 3.1.4 close() - UDP Style Syntax 1410 * Applications use close() to perform graceful shutdown (as described in 1411 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1412 * by a UDP-style socket. 1413 * 1414 * The syntax is 1415 * 1416 * ret = close(int sd); 1417 * 1418 * sd - the socket descriptor of the associations to be closed. 1419 * 1420 * To gracefully shutdown a specific association represented by the 1421 * UDP-style socket, an application should use the sendmsg() call, 1422 * passing no user data, but including the appropriate flag in the 1423 * ancillary data (see Section xxxx). 1424 * 1425 * If sd in the close() call is a branched-off socket representing only 1426 * one association, the shutdown is performed on that association only. 1427 * 1428 * 4.1.6 close() - TCP Style Syntax 1429 * 1430 * Applications use close() to gracefully close down an association. 1431 * 1432 * The syntax is: 1433 * 1434 * int close(int sd); 1435 * 1436 * sd - the socket descriptor of the association to be closed. 1437 * 1438 * After an application calls close() on a socket descriptor, no further 1439 * socket operations will succeed on that descriptor. 1440 * 1441 * API 7.1.4 SO_LINGER 1442 * 1443 * An application using the TCP-style socket can use this option to 1444 * perform the SCTP ABORT primitive. The linger option structure is: 1445 * 1446 * struct linger { 1447 * int l_onoff; // option on/off 1448 * int l_linger; // linger time 1449 * }; 1450 * 1451 * To enable the option, set l_onoff to 1. If the l_linger value is set 1452 * to 0, calling close() is the same as the ABORT primitive. If the 1453 * value is set to a negative value, the setsockopt() call will return 1454 * an error. If the value is set to a positive value linger_time, the 1455 * close() can be blocked for at most linger_time ms. If the graceful 1456 * shutdown phase does not finish during this period, close() will 1457 * return but the graceful shutdown phase continues in the system. 1458 */ 1459 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1460 { 1461 struct sctp_endpoint *ep; 1462 struct sctp_association *asoc; 1463 struct list_head *pos, *temp; 1464 unsigned int data_was_unread; 1465 1466 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1467 1468 sctp_lock_sock(sk); 1469 sk->sk_shutdown = SHUTDOWN_MASK; 1470 sk->sk_state = SCTP_SS_CLOSING; 1471 1472 ep = sctp_sk(sk)->ep; 1473 1474 /* Clean up any skbs sitting on the receive queue. */ 1475 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1476 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1477 1478 /* Walk all associations on an endpoint. */ 1479 list_for_each_safe(pos, temp, &ep->asocs) { 1480 asoc = list_entry(pos, struct sctp_association, asocs); 1481 1482 if (sctp_style(sk, TCP)) { 1483 /* A closed association can still be in the list if 1484 * it belongs to a TCP-style listening socket that is 1485 * not yet accepted. If so, free it. If not, send an 1486 * ABORT or SHUTDOWN based on the linger options. 1487 */ 1488 if (sctp_state(asoc, CLOSED)) { 1489 sctp_unhash_established(asoc); 1490 sctp_association_free(asoc); 1491 continue; 1492 } 1493 } 1494 1495 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1496 !skb_queue_empty(&asoc->ulpq.reasm) || 1497 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1498 struct sctp_chunk *chunk; 1499 1500 chunk = sctp_make_abort_user(asoc, NULL, 0); 1501 if (chunk) 1502 sctp_primitive_ABORT(asoc, chunk); 1503 } else 1504 sctp_primitive_SHUTDOWN(asoc, NULL); 1505 } 1506 1507 /* On a TCP-style socket, block for at most linger_time if set. */ 1508 if (sctp_style(sk, TCP) && timeout) 1509 sctp_wait_for_close(sk, timeout); 1510 1511 /* This will run the backlog queue. */ 1512 sctp_release_sock(sk); 1513 1514 /* Supposedly, no process has access to the socket, but 1515 * the net layers still may. 1516 */ 1517 sctp_local_bh_disable(); 1518 sctp_bh_lock_sock(sk); 1519 1520 /* Hold the sock, since sk_common_release() will put sock_put() 1521 * and we have just a little more cleanup. 1522 */ 1523 sock_hold(sk); 1524 sk_common_release(sk); 1525 1526 sctp_bh_unlock_sock(sk); 1527 sctp_local_bh_enable(); 1528 1529 sock_put(sk); 1530 1531 SCTP_DBG_OBJCNT_DEC(sock); 1532 } 1533 1534 /* Handle EPIPE error. */ 1535 static int sctp_error(struct sock *sk, int flags, int err) 1536 { 1537 if (err == -EPIPE) 1538 err = sock_error(sk) ? : -EPIPE; 1539 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1540 send_sig(SIGPIPE, current, 0); 1541 return err; 1542 } 1543 1544 /* API 3.1.3 sendmsg() - UDP Style Syntax 1545 * 1546 * An application uses sendmsg() and recvmsg() calls to transmit data to 1547 * and receive data from its peer. 1548 * 1549 * ssize_t sendmsg(int socket, const struct msghdr *message, 1550 * int flags); 1551 * 1552 * socket - the socket descriptor of the endpoint. 1553 * message - pointer to the msghdr structure which contains a single 1554 * user message and possibly some ancillary data. 1555 * 1556 * See Section 5 for complete description of the data 1557 * structures. 1558 * 1559 * flags - flags sent or received with the user message, see Section 1560 * 5 for complete description of the flags. 1561 * 1562 * Note: This function could use a rewrite especially when explicit 1563 * connect support comes in. 1564 */ 1565 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1566 1567 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1568 1569 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1570 struct msghdr *msg, size_t msg_len) 1571 { 1572 struct sctp_sock *sp; 1573 struct sctp_endpoint *ep; 1574 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1575 struct sctp_transport *transport, *chunk_tp; 1576 struct sctp_chunk *chunk; 1577 union sctp_addr to; 1578 struct sockaddr *msg_name = NULL; 1579 struct sctp_sndrcvinfo default_sinfo; 1580 struct sctp_sndrcvinfo *sinfo; 1581 struct sctp_initmsg *sinit; 1582 sctp_assoc_t associd = 0; 1583 sctp_cmsgs_t cmsgs = { NULL }; 1584 int err; 1585 sctp_scope_t scope; 1586 long timeo; 1587 __u16 sinfo_flags = 0; 1588 struct sctp_datamsg *datamsg; 1589 int msg_flags = msg->msg_flags; 1590 1591 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1592 sk, msg, msg_len); 1593 1594 err = 0; 1595 sp = sctp_sk(sk); 1596 ep = sp->ep; 1597 1598 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1599 1600 /* We cannot send a message over a TCP-style listening socket. */ 1601 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1602 err = -EPIPE; 1603 goto out_nounlock; 1604 } 1605 1606 /* Parse out the SCTP CMSGs. */ 1607 err = sctp_msghdr_parse(msg, &cmsgs); 1608 1609 if (err) { 1610 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1611 goto out_nounlock; 1612 } 1613 1614 /* Fetch the destination address for this packet. This 1615 * address only selects the association--it is not necessarily 1616 * the address we will send to. 1617 * For a peeled-off socket, msg_name is ignored. 1618 */ 1619 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1620 int msg_namelen = msg->msg_namelen; 1621 1622 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1623 msg_namelen); 1624 if (err) 1625 return err; 1626 1627 if (msg_namelen > sizeof(to)) 1628 msg_namelen = sizeof(to); 1629 memcpy(&to, msg->msg_name, msg_namelen); 1630 msg_name = msg->msg_name; 1631 } 1632 1633 sinfo = cmsgs.info; 1634 sinit = cmsgs.init; 1635 1636 /* Did the user specify SNDRCVINFO? */ 1637 if (sinfo) { 1638 sinfo_flags = sinfo->sinfo_flags; 1639 associd = sinfo->sinfo_assoc_id; 1640 } 1641 1642 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1643 msg_len, sinfo_flags); 1644 1645 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1646 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1647 err = -EINVAL; 1648 goto out_nounlock; 1649 } 1650 1651 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1652 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1653 * If SCTP_ABORT is set, the message length could be non zero with 1654 * the msg_iov set to the user abort reason. 1655 */ 1656 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1657 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1658 err = -EINVAL; 1659 goto out_nounlock; 1660 } 1661 1662 /* If SCTP_ADDR_OVER is set, there must be an address 1663 * specified in msg_name. 1664 */ 1665 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1666 err = -EINVAL; 1667 goto out_nounlock; 1668 } 1669 1670 transport = NULL; 1671 1672 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1673 1674 sctp_lock_sock(sk); 1675 1676 /* If a msg_name has been specified, assume this is to be used. */ 1677 if (msg_name) { 1678 /* Look for a matching association on the endpoint. */ 1679 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1680 if (!asoc) { 1681 /* If we could not find a matching association on the 1682 * endpoint, make sure that it is not a TCP-style 1683 * socket that already has an association or there is 1684 * no peeled-off association on another socket. 1685 */ 1686 if ((sctp_style(sk, TCP) && 1687 sctp_sstate(sk, ESTABLISHED)) || 1688 sctp_endpoint_is_peeled_off(ep, &to)) { 1689 err = -EADDRNOTAVAIL; 1690 goto out_unlock; 1691 } 1692 } 1693 } else { 1694 asoc = sctp_id2assoc(sk, associd); 1695 if (!asoc) { 1696 err = -EPIPE; 1697 goto out_unlock; 1698 } 1699 } 1700 1701 if (asoc) { 1702 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1703 1704 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1705 * socket that has an association in CLOSED state. This can 1706 * happen when an accepted socket has an association that is 1707 * already CLOSED. 1708 */ 1709 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1710 err = -EPIPE; 1711 goto out_unlock; 1712 } 1713 1714 if (sinfo_flags & SCTP_EOF) { 1715 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1716 asoc); 1717 sctp_primitive_SHUTDOWN(asoc, NULL); 1718 err = 0; 1719 goto out_unlock; 1720 } 1721 if (sinfo_flags & SCTP_ABORT) { 1722 1723 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1724 if (!chunk) { 1725 err = -ENOMEM; 1726 goto out_unlock; 1727 } 1728 1729 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1730 sctp_primitive_ABORT(asoc, chunk); 1731 err = 0; 1732 goto out_unlock; 1733 } 1734 } 1735 1736 /* Do we need to create the association? */ 1737 if (!asoc) { 1738 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1739 1740 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1741 err = -EINVAL; 1742 goto out_unlock; 1743 } 1744 1745 /* Check for invalid stream against the stream counts, 1746 * either the default or the user specified stream counts. 1747 */ 1748 if (sinfo) { 1749 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1750 /* Check against the defaults. */ 1751 if (sinfo->sinfo_stream >= 1752 sp->initmsg.sinit_num_ostreams) { 1753 err = -EINVAL; 1754 goto out_unlock; 1755 } 1756 } else { 1757 /* Check against the requested. */ 1758 if (sinfo->sinfo_stream >= 1759 sinit->sinit_num_ostreams) { 1760 err = -EINVAL; 1761 goto out_unlock; 1762 } 1763 } 1764 } 1765 1766 /* 1767 * API 3.1.2 bind() - UDP Style Syntax 1768 * If a bind() or sctp_bindx() is not called prior to a 1769 * sendmsg() call that initiates a new association, the 1770 * system picks an ephemeral port and will choose an address 1771 * set equivalent to binding with a wildcard address. 1772 */ 1773 if (!ep->base.bind_addr.port) { 1774 if (sctp_autobind(sk)) { 1775 err = -EAGAIN; 1776 goto out_unlock; 1777 } 1778 } else { 1779 /* 1780 * If an unprivileged user inherits a one-to-many 1781 * style socket with open associations on a privileged 1782 * port, it MAY be permitted to accept new associations, 1783 * but it SHOULD NOT be permitted to open new 1784 * associations. 1785 */ 1786 if (ep->base.bind_addr.port < PROT_SOCK && 1787 !capable(CAP_NET_BIND_SERVICE)) { 1788 err = -EACCES; 1789 goto out_unlock; 1790 } 1791 } 1792 1793 scope = sctp_scope(&to); 1794 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1795 if (!new_asoc) { 1796 err = -ENOMEM; 1797 goto out_unlock; 1798 } 1799 asoc = new_asoc; 1800 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1801 if (err < 0) { 1802 err = -ENOMEM; 1803 goto out_free; 1804 } 1805 1806 /* If the SCTP_INIT ancillary data is specified, set all 1807 * the association init values accordingly. 1808 */ 1809 if (sinit) { 1810 if (sinit->sinit_num_ostreams) { 1811 asoc->c.sinit_num_ostreams = 1812 sinit->sinit_num_ostreams; 1813 } 1814 if (sinit->sinit_max_instreams) { 1815 asoc->c.sinit_max_instreams = 1816 sinit->sinit_max_instreams; 1817 } 1818 if (sinit->sinit_max_attempts) { 1819 asoc->max_init_attempts 1820 = sinit->sinit_max_attempts; 1821 } 1822 if (sinit->sinit_max_init_timeo) { 1823 asoc->max_init_timeo = 1824 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1825 } 1826 } 1827 1828 /* Prime the peer's transport structures. */ 1829 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1830 if (!transport) { 1831 err = -ENOMEM; 1832 goto out_free; 1833 } 1834 } 1835 1836 /* ASSERT: we have a valid association at this point. */ 1837 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1838 1839 if (!sinfo) { 1840 /* If the user didn't specify SNDRCVINFO, make up one with 1841 * some defaults. 1842 */ 1843 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1844 default_sinfo.sinfo_stream = asoc->default_stream; 1845 default_sinfo.sinfo_flags = asoc->default_flags; 1846 default_sinfo.sinfo_ppid = asoc->default_ppid; 1847 default_sinfo.sinfo_context = asoc->default_context; 1848 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1849 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1850 sinfo = &default_sinfo; 1851 } 1852 1853 /* API 7.1.7, the sndbuf size per association bounds the 1854 * maximum size of data that can be sent in a single send call. 1855 */ 1856 if (msg_len > sk->sk_sndbuf) { 1857 err = -EMSGSIZE; 1858 goto out_free; 1859 } 1860 1861 if (asoc->pmtu_pending) 1862 sctp_assoc_pending_pmtu(sk, asoc); 1863 1864 /* If fragmentation is disabled and the message length exceeds the 1865 * association fragmentation point, return EMSGSIZE. The I-D 1866 * does not specify what this error is, but this looks like 1867 * a great fit. 1868 */ 1869 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1870 err = -EMSGSIZE; 1871 goto out_free; 1872 } 1873 1874 /* Check for invalid stream. */ 1875 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1876 err = -EINVAL; 1877 goto out_free; 1878 } 1879 1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1881 if (!sctp_wspace(asoc)) { 1882 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1883 if (err) 1884 goto out_free; 1885 } 1886 1887 /* If an address is passed with the sendto/sendmsg call, it is used 1888 * to override the primary destination address in the TCP model, or 1889 * when SCTP_ADDR_OVER flag is set in the UDP model. 1890 */ 1891 if ((sctp_style(sk, TCP) && msg_name) || 1892 (sinfo_flags & SCTP_ADDR_OVER)) { 1893 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1894 if (!chunk_tp) { 1895 err = -EINVAL; 1896 goto out_free; 1897 } 1898 } else 1899 chunk_tp = NULL; 1900 1901 /* Auto-connect, if we aren't connected already. */ 1902 if (sctp_state(asoc, CLOSED)) { 1903 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1904 if (err < 0) 1905 goto out_free; 1906 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1907 } 1908 1909 /* Break the message into multiple chunks of maximum size. */ 1910 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1911 if (!datamsg) { 1912 err = -ENOMEM; 1913 goto out_free; 1914 } 1915 1916 /* Now send the (possibly) fragmented message. */ 1917 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1918 sctp_chunk_hold(chunk); 1919 1920 /* Do accounting for the write space. */ 1921 sctp_set_owner_w(chunk); 1922 1923 chunk->transport = chunk_tp; 1924 } 1925 1926 /* Send it to the lower layers. Note: all chunks 1927 * must either fail or succeed. The lower layer 1928 * works that way today. Keep it that way or this 1929 * breaks. 1930 */ 1931 err = sctp_primitive_SEND(asoc, datamsg); 1932 /* Did the lower layer accept the chunk? */ 1933 if (err) 1934 sctp_datamsg_free(datamsg); 1935 else 1936 sctp_datamsg_put(datamsg); 1937 1938 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1939 1940 if (err) 1941 goto out_free; 1942 else 1943 err = msg_len; 1944 1945 /* If we are already past ASSOCIATE, the lower 1946 * layers are responsible for association cleanup. 1947 */ 1948 goto out_unlock; 1949 1950 out_free: 1951 if (new_asoc) { 1952 sctp_unhash_established(asoc); 1953 sctp_association_free(asoc); 1954 } 1955 out_unlock: 1956 sctp_release_sock(sk); 1957 1958 out_nounlock: 1959 return sctp_error(sk, msg_flags, err); 1960 1961 #if 0 1962 do_sock_err: 1963 if (msg_len) 1964 err = msg_len; 1965 else 1966 err = sock_error(sk); 1967 goto out; 1968 1969 do_interrupted: 1970 if (msg_len) 1971 err = msg_len; 1972 goto out; 1973 #endif /* 0 */ 1974 } 1975 1976 /* This is an extended version of skb_pull() that removes the data from the 1977 * start of a skb even when data is spread across the list of skb's in the 1978 * frag_list. len specifies the total amount of data that needs to be removed. 1979 * when 'len' bytes could be removed from the skb, it returns 0. 1980 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1981 * could not be removed. 1982 */ 1983 static int sctp_skb_pull(struct sk_buff *skb, int len) 1984 { 1985 struct sk_buff *list; 1986 int skb_len = skb_headlen(skb); 1987 int rlen; 1988 1989 if (len <= skb_len) { 1990 __skb_pull(skb, len); 1991 return 0; 1992 } 1993 len -= skb_len; 1994 __skb_pull(skb, skb_len); 1995 1996 skb_walk_frags(skb, list) { 1997 rlen = sctp_skb_pull(list, len); 1998 skb->len -= (len-rlen); 1999 skb->data_len -= (len-rlen); 2000 2001 if (!rlen) 2002 return 0; 2003 2004 len = rlen; 2005 } 2006 2007 return len; 2008 } 2009 2010 /* API 3.1.3 recvmsg() - UDP Style Syntax 2011 * 2012 * ssize_t recvmsg(int socket, struct msghdr *message, 2013 * int flags); 2014 * 2015 * socket - the socket descriptor of the endpoint. 2016 * message - pointer to the msghdr structure which contains a single 2017 * user message and possibly some ancillary data. 2018 * 2019 * See Section 5 for complete description of the data 2020 * structures. 2021 * 2022 * flags - flags sent or received with the user message, see Section 2023 * 5 for complete description of the flags. 2024 */ 2025 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2026 2027 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2028 struct msghdr *msg, size_t len, int noblock, 2029 int flags, int *addr_len) 2030 { 2031 struct sctp_ulpevent *event = NULL; 2032 struct sctp_sock *sp = sctp_sk(sk); 2033 struct sk_buff *skb; 2034 int copied; 2035 int err = 0; 2036 int skb_len; 2037 2038 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 2039 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 2040 "len", len, "knoblauch", noblock, 2041 "flags", flags, "addr_len", addr_len); 2042 2043 sctp_lock_sock(sk); 2044 2045 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2046 err = -ENOTCONN; 2047 goto out; 2048 } 2049 2050 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2051 if (!skb) 2052 goto out; 2053 2054 /* Get the total length of the skb including any skb's in the 2055 * frag_list. 2056 */ 2057 skb_len = skb->len; 2058 2059 copied = skb_len; 2060 if (copied > len) 2061 copied = len; 2062 2063 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2064 2065 event = sctp_skb2event(skb); 2066 2067 if (err) 2068 goto out_free; 2069 2070 sock_recv_ts_and_drops(msg, sk, skb); 2071 if (sctp_ulpevent_is_notification(event)) { 2072 msg->msg_flags |= MSG_NOTIFICATION; 2073 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2074 } else { 2075 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2076 } 2077 2078 /* Check if we allow SCTP_SNDRCVINFO. */ 2079 if (sp->subscribe.sctp_data_io_event) 2080 sctp_ulpevent_read_sndrcvinfo(event, msg); 2081 #if 0 2082 /* FIXME: we should be calling IP/IPv6 layers. */ 2083 if (sk->sk_protinfo.af_inet.cmsg_flags) 2084 ip_cmsg_recv(msg, skb); 2085 #endif 2086 2087 err = copied; 2088 2089 /* If skb's length exceeds the user's buffer, update the skb and 2090 * push it back to the receive_queue so that the next call to 2091 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2092 */ 2093 if (skb_len > copied) { 2094 msg->msg_flags &= ~MSG_EOR; 2095 if (flags & MSG_PEEK) 2096 goto out_free; 2097 sctp_skb_pull(skb, copied); 2098 skb_queue_head(&sk->sk_receive_queue, skb); 2099 2100 /* When only partial message is copied to the user, increase 2101 * rwnd by that amount. If all the data in the skb is read, 2102 * rwnd is updated when the event is freed. 2103 */ 2104 if (!sctp_ulpevent_is_notification(event)) 2105 sctp_assoc_rwnd_increase(event->asoc, copied); 2106 goto out; 2107 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2108 (event->msg_flags & MSG_EOR)) 2109 msg->msg_flags |= MSG_EOR; 2110 else 2111 msg->msg_flags &= ~MSG_EOR; 2112 2113 out_free: 2114 if (flags & MSG_PEEK) { 2115 /* Release the skb reference acquired after peeking the skb in 2116 * sctp_skb_recv_datagram(). 2117 */ 2118 kfree_skb(skb); 2119 } else { 2120 /* Free the event which includes releasing the reference to 2121 * the owner of the skb, freeing the skb and updating the 2122 * rwnd. 2123 */ 2124 sctp_ulpevent_free(event); 2125 } 2126 out: 2127 sctp_release_sock(sk); 2128 return err; 2129 } 2130 2131 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2132 * 2133 * This option is a on/off flag. If enabled no SCTP message 2134 * fragmentation will be performed. Instead if a message being sent 2135 * exceeds the current PMTU size, the message will NOT be sent and 2136 * instead a error will be indicated to the user. 2137 */ 2138 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2139 char __user *optval, 2140 unsigned int optlen) 2141 { 2142 int val; 2143 2144 if (optlen < sizeof(int)) 2145 return -EINVAL; 2146 2147 if (get_user(val, (int __user *)optval)) 2148 return -EFAULT; 2149 2150 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2151 2152 return 0; 2153 } 2154 2155 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2156 unsigned int optlen) 2157 { 2158 struct sctp_association *asoc; 2159 struct sctp_ulpevent *event; 2160 2161 if (optlen > sizeof(struct sctp_event_subscribe)) 2162 return -EINVAL; 2163 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2164 return -EFAULT; 2165 2166 /* 2167 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2168 * if there is no data to be sent or retransmit, the stack will 2169 * immediately send up this notification. 2170 */ 2171 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2172 &sctp_sk(sk)->subscribe)) { 2173 asoc = sctp_id2assoc(sk, 0); 2174 2175 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2176 event = sctp_ulpevent_make_sender_dry_event(asoc, 2177 GFP_ATOMIC); 2178 if (!event) 2179 return -ENOMEM; 2180 2181 sctp_ulpq_tail_event(&asoc->ulpq, event); 2182 } 2183 } 2184 2185 return 0; 2186 } 2187 2188 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2189 * 2190 * This socket option is applicable to the UDP-style socket only. When 2191 * set it will cause associations that are idle for more than the 2192 * specified number of seconds to automatically close. An association 2193 * being idle is defined an association that has NOT sent or received 2194 * user data. The special value of '0' indicates that no automatic 2195 * close of any associations should be performed. The option expects an 2196 * integer defining the number of seconds of idle time before an 2197 * association is closed. 2198 */ 2199 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2200 unsigned int optlen) 2201 { 2202 struct sctp_sock *sp = sctp_sk(sk); 2203 2204 /* Applicable to UDP-style socket only */ 2205 if (sctp_style(sk, TCP)) 2206 return -EOPNOTSUPP; 2207 if (optlen != sizeof(int)) 2208 return -EINVAL; 2209 if (copy_from_user(&sp->autoclose, optval, optlen)) 2210 return -EFAULT; 2211 2212 return 0; 2213 } 2214 2215 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2216 * 2217 * Applications can enable or disable heartbeats for any peer address of 2218 * an association, modify an address's heartbeat interval, force a 2219 * heartbeat to be sent immediately, and adjust the address's maximum 2220 * number of retransmissions sent before an address is considered 2221 * unreachable. The following structure is used to access and modify an 2222 * address's parameters: 2223 * 2224 * struct sctp_paddrparams { 2225 * sctp_assoc_t spp_assoc_id; 2226 * struct sockaddr_storage spp_address; 2227 * uint32_t spp_hbinterval; 2228 * uint16_t spp_pathmaxrxt; 2229 * uint32_t spp_pathmtu; 2230 * uint32_t spp_sackdelay; 2231 * uint32_t spp_flags; 2232 * }; 2233 * 2234 * spp_assoc_id - (one-to-many style socket) This is filled in the 2235 * application, and identifies the association for 2236 * this query. 2237 * spp_address - This specifies which address is of interest. 2238 * spp_hbinterval - This contains the value of the heartbeat interval, 2239 * in milliseconds. If a value of zero 2240 * is present in this field then no changes are to 2241 * be made to this parameter. 2242 * spp_pathmaxrxt - This contains the maximum number of 2243 * retransmissions before this address shall be 2244 * considered unreachable. If a value of zero 2245 * is present in this field then no changes are to 2246 * be made to this parameter. 2247 * spp_pathmtu - When Path MTU discovery is disabled the value 2248 * specified here will be the "fixed" path mtu. 2249 * Note that if the spp_address field is empty 2250 * then all associations on this address will 2251 * have this fixed path mtu set upon them. 2252 * 2253 * spp_sackdelay - When delayed sack is enabled, this value specifies 2254 * the number of milliseconds that sacks will be delayed 2255 * for. This value will apply to all addresses of an 2256 * association if the spp_address field is empty. Note 2257 * also, that if delayed sack is enabled and this 2258 * value is set to 0, no change is made to the last 2259 * recorded delayed sack timer value. 2260 * 2261 * spp_flags - These flags are used to control various features 2262 * on an association. The flag field may contain 2263 * zero or more of the following options. 2264 * 2265 * SPP_HB_ENABLE - Enable heartbeats on the 2266 * specified address. Note that if the address 2267 * field is empty all addresses for the association 2268 * have heartbeats enabled upon them. 2269 * 2270 * SPP_HB_DISABLE - Disable heartbeats on the 2271 * speicifed address. Note that if the address 2272 * field is empty all addresses for the association 2273 * will have their heartbeats disabled. Note also 2274 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2275 * mutually exclusive, only one of these two should 2276 * be specified. Enabling both fields will have 2277 * undetermined results. 2278 * 2279 * SPP_HB_DEMAND - Request a user initiated heartbeat 2280 * to be made immediately. 2281 * 2282 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2283 * heartbeat delayis to be set to the value of 0 2284 * milliseconds. 2285 * 2286 * SPP_PMTUD_ENABLE - This field will enable PMTU 2287 * discovery upon the specified address. Note that 2288 * if the address feild is empty then all addresses 2289 * on the association are effected. 2290 * 2291 * SPP_PMTUD_DISABLE - This field will disable PMTU 2292 * discovery upon the specified address. Note that 2293 * if the address feild is empty then all addresses 2294 * on the association are effected. Not also that 2295 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2296 * exclusive. Enabling both will have undetermined 2297 * results. 2298 * 2299 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2300 * on delayed sack. The time specified in spp_sackdelay 2301 * is used to specify the sack delay for this address. Note 2302 * that if spp_address is empty then all addresses will 2303 * enable delayed sack and take on the sack delay 2304 * value specified in spp_sackdelay. 2305 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2306 * off delayed sack. If the spp_address field is blank then 2307 * delayed sack is disabled for the entire association. Note 2308 * also that this field is mutually exclusive to 2309 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2310 * results. 2311 */ 2312 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2313 struct sctp_transport *trans, 2314 struct sctp_association *asoc, 2315 struct sctp_sock *sp, 2316 int hb_change, 2317 int pmtud_change, 2318 int sackdelay_change) 2319 { 2320 int error; 2321 2322 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2323 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2324 if (error) 2325 return error; 2326 } 2327 2328 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2329 * this field is ignored. Note also that a value of zero indicates 2330 * the current setting should be left unchanged. 2331 */ 2332 if (params->spp_flags & SPP_HB_ENABLE) { 2333 2334 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2335 * set. This lets us use 0 value when this flag 2336 * is set. 2337 */ 2338 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2339 params->spp_hbinterval = 0; 2340 2341 if (params->spp_hbinterval || 2342 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2343 if (trans) { 2344 trans->hbinterval = 2345 msecs_to_jiffies(params->spp_hbinterval); 2346 } else if (asoc) { 2347 asoc->hbinterval = 2348 msecs_to_jiffies(params->spp_hbinterval); 2349 } else { 2350 sp->hbinterval = params->spp_hbinterval; 2351 } 2352 } 2353 } 2354 2355 if (hb_change) { 2356 if (trans) { 2357 trans->param_flags = 2358 (trans->param_flags & ~SPP_HB) | hb_change; 2359 } else if (asoc) { 2360 asoc->param_flags = 2361 (asoc->param_flags & ~SPP_HB) | hb_change; 2362 } else { 2363 sp->param_flags = 2364 (sp->param_flags & ~SPP_HB) | hb_change; 2365 } 2366 } 2367 2368 /* When Path MTU discovery is disabled the value specified here will 2369 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2370 * include the flag SPP_PMTUD_DISABLE for this field to have any 2371 * effect). 2372 */ 2373 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2374 if (trans) { 2375 trans->pathmtu = params->spp_pathmtu; 2376 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2377 } else if (asoc) { 2378 asoc->pathmtu = params->spp_pathmtu; 2379 sctp_frag_point(asoc, params->spp_pathmtu); 2380 } else { 2381 sp->pathmtu = params->spp_pathmtu; 2382 } 2383 } 2384 2385 if (pmtud_change) { 2386 if (trans) { 2387 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2388 (params->spp_flags & SPP_PMTUD_ENABLE); 2389 trans->param_flags = 2390 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2391 if (update) { 2392 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2393 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2394 } 2395 } else if (asoc) { 2396 asoc->param_flags = 2397 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2398 } else { 2399 sp->param_flags = 2400 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2401 } 2402 } 2403 2404 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2405 * value of this field is ignored. Note also that a value of zero 2406 * indicates the current setting should be left unchanged. 2407 */ 2408 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2409 if (trans) { 2410 trans->sackdelay = 2411 msecs_to_jiffies(params->spp_sackdelay); 2412 } else if (asoc) { 2413 asoc->sackdelay = 2414 msecs_to_jiffies(params->spp_sackdelay); 2415 } else { 2416 sp->sackdelay = params->spp_sackdelay; 2417 } 2418 } 2419 2420 if (sackdelay_change) { 2421 if (trans) { 2422 trans->param_flags = 2423 (trans->param_flags & ~SPP_SACKDELAY) | 2424 sackdelay_change; 2425 } else if (asoc) { 2426 asoc->param_flags = 2427 (asoc->param_flags & ~SPP_SACKDELAY) | 2428 sackdelay_change; 2429 } else { 2430 sp->param_flags = 2431 (sp->param_flags & ~SPP_SACKDELAY) | 2432 sackdelay_change; 2433 } 2434 } 2435 2436 /* Note that a value of zero indicates the current setting should be 2437 left unchanged. 2438 */ 2439 if (params->spp_pathmaxrxt) { 2440 if (trans) { 2441 trans->pathmaxrxt = params->spp_pathmaxrxt; 2442 } else if (asoc) { 2443 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2444 } else { 2445 sp->pathmaxrxt = params->spp_pathmaxrxt; 2446 } 2447 } 2448 2449 return 0; 2450 } 2451 2452 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2453 char __user *optval, 2454 unsigned int optlen) 2455 { 2456 struct sctp_paddrparams params; 2457 struct sctp_transport *trans = NULL; 2458 struct sctp_association *asoc = NULL; 2459 struct sctp_sock *sp = sctp_sk(sk); 2460 int error; 2461 int hb_change, pmtud_change, sackdelay_change; 2462 2463 if (optlen != sizeof(struct sctp_paddrparams)) 2464 return - EINVAL; 2465 2466 if (copy_from_user(¶ms, optval, optlen)) 2467 return -EFAULT; 2468 2469 /* Validate flags and value parameters. */ 2470 hb_change = params.spp_flags & SPP_HB; 2471 pmtud_change = params.spp_flags & SPP_PMTUD; 2472 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2473 2474 if (hb_change == SPP_HB || 2475 pmtud_change == SPP_PMTUD || 2476 sackdelay_change == SPP_SACKDELAY || 2477 params.spp_sackdelay > 500 || 2478 (params.spp_pathmtu && 2479 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2480 return -EINVAL; 2481 2482 /* If an address other than INADDR_ANY is specified, and 2483 * no transport is found, then the request is invalid. 2484 */ 2485 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2486 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2487 params.spp_assoc_id); 2488 if (!trans) 2489 return -EINVAL; 2490 } 2491 2492 /* Get association, if assoc_id != 0 and the socket is a one 2493 * to many style socket, and an association was not found, then 2494 * the id was invalid. 2495 */ 2496 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2497 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2498 return -EINVAL; 2499 2500 /* Heartbeat demand can only be sent on a transport or 2501 * association, but not a socket. 2502 */ 2503 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2504 return -EINVAL; 2505 2506 /* Process parameters. */ 2507 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2508 hb_change, pmtud_change, 2509 sackdelay_change); 2510 2511 if (error) 2512 return error; 2513 2514 /* If changes are for association, also apply parameters to each 2515 * transport. 2516 */ 2517 if (!trans && asoc) { 2518 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2519 transports) { 2520 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2521 hb_change, pmtud_change, 2522 sackdelay_change); 2523 } 2524 } 2525 2526 return 0; 2527 } 2528 2529 /* 2530 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2531 * 2532 * This option will effect the way delayed acks are performed. This 2533 * option allows you to get or set the delayed ack time, in 2534 * milliseconds. It also allows changing the delayed ack frequency. 2535 * Changing the frequency to 1 disables the delayed sack algorithm. If 2536 * the assoc_id is 0, then this sets or gets the endpoints default 2537 * values. If the assoc_id field is non-zero, then the set or get 2538 * effects the specified association for the one to many model (the 2539 * assoc_id field is ignored by the one to one model). Note that if 2540 * sack_delay or sack_freq are 0 when setting this option, then the 2541 * current values will remain unchanged. 2542 * 2543 * struct sctp_sack_info { 2544 * sctp_assoc_t sack_assoc_id; 2545 * uint32_t sack_delay; 2546 * uint32_t sack_freq; 2547 * }; 2548 * 2549 * sack_assoc_id - This parameter, indicates which association the user 2550 * is performing an action upon. Note that if this field's value is 2551 * zero then the endpoints default value is changed (effecting future 2552 * associations only). 2553 * 2554 * sack_delay - This parameter contains the number of milliseconds that 2555 * the user is requesting the delayed ACK timer be set to. Note that 2556 * this value is defined in the standard to be between 200 and 500 2557 * milliseconds. 2558 * 2559 * sack_freq - This parameter contains the number of packets that must 2560 * be received before a sack is sent without waiting for the delay 2561 * timer to expire. The default value for this is 2, setting this 2562 * value to 1 will disable the delayed sack algorithm. 2563 */ 2564 2565 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2566 char __user *optval, unsigned int optlen) 2567 { 2568 struct sctp_sack_info params; 2569 struct sctp_transport *trans = NULL; 2570 struct sctp_association *asoc = NULL; 2571 struct sctp_sock *sp = sctp_sk(sk); 2572 2573 if (optlen == sizeof(struct sctp_sack_info)) { 2574 if (copy_from_user(¶ms, optval, optlen)) 2575 return -EFAULT; 2576 2577 if (params.sack_delay == 0 && params.sack_freq == 0) 2578 return 0; 2579 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2580 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2581 pr_warn("Use struct sctp_sack_info instead\n"); 2582 if (copy_from_user(¶ms, optval, optlen)) 2583 return -EFAULT; 2584 2585 if (params.sack_delay == 0) 2586 params.sack_freq = 1; 2587 else 2588 params.sack_freq = 0; 2589 } else 2590 return - EINVAL; 2591 2592 /* Validate value parameter. */ 2593 if (params.sack_delay > 500) 2594 return -EINVAL; 2595 2596 /* Get association, if sack_assoc_id != 0 and the socket is a one 2597 * to many style socket, and an association was not found, then 2598 * the id was invalid. 2599 */ 2600 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2601 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2602 return -EINVAL; 2603 2604 if (params.sack_delay) { 2605 if (asoc) { 2606 asoc->sackdelay = 2607 msecs_to_jiffies(params.sack_delay); 2608 asoc->param_flags = 2609 (asoc->param_flags & ~SPP_SACKDELAY) | 2610 SPP_SACKDELAY_ENABLE; 2611 } else { 2612 sp->sackdelay = params.sack_delay; 2613 sp->param_flags = 2614 (sp->param_flags & ~SPP_SACKDELAY) | 2615 SPP_SACKDELAY_ENABLE; 2616 } 2617 } 2618 2619 if (params.sack_freq == 1) { 2620 if (asoc) { 2621 asoc->param_flags = 2622 (asoc->param_flags & ~SPP_SACKDELAY) | 2623 SPP_SACKDELAY_DISABLE; 2624 } else { 2625 sp->param_flags = 2626 (sp->param_flags & ~SPP_SACKDELAY) | 2627 SPP_SACKDELAY_DISABLE; 2628 } 2629 } else if (params.sack_freq > 1) { 2630 if (asoc) { 2631 asoc->sackfreq = params.sack_freq; 2632 asoc->param_flags = 2633 (asoc->param_flags & ~SPP_SACKDELAY) | 2634 SPP_SACKDELAY_ENABLE; 2635 } else { 2636 sp->sackfreq = params.sack_freq; 2637 sp->param_flags = 2638 (sp->param_flags & ~SPP_SACKDELAY) | 2639 SPP_SACKDELAY_ENABLE; 2640 } 2641 } 2642 2643 /* If change is for association, also apply to each transport. */ 2644 if (asoc) { 2645 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2646 transports) { 2647 if (params.sack_delay) { 2648 trans->sackdelay = 2649 msecs_to_jiffies(params.sack_delay); 2650 trans->param_flags = 2651 (trans->param_flags & ~SPP_SACKDELAY) | 2652 SPP_SACKDELAY_ENABLE; 2653 } 2654 if (params.sack_freq == 1) { 2655 trans->param_flags = 2656 (trans->param_flags & ~SPP_SACKDELAY) | 2657 SPP_SACKDELAY_DISABLE; 2658 } else if (params.sack_freq > 1) { 2659 trans->sackfreq = params.sack_freq; 2660 trans->param_flags = 2661 (trans->param_flags & ~SPP_SACKDELAY) | 2662 SPP_SACKDELAY_ENABLE; 2663 } 2664 } 2665 } 2666 2667 return 0; 2668 } 2669 2670 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2671 * 2672 * Applications can specify protocol parameters for the default association 2673 * initialization. The option name argument to setsockopt() and getsockopt() 2674 * is SCTP_INITMSG. 2675 * 2676 * Setting initialization parameters is effective only on an unconnected 2677 * socket (for UDP-style sockets only future associations are effected 2678 * by the change). With TCP-style sockets, this option is inherited by 2679 * sockets derived from a listener socket. 2680 */ 2681 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2682 { 2683 struct sctp_initmsg sinit; 2684 struct sctp_sock *sp = sctp_sk(sk); 2685 2686 if (optlen != sizeof(struct sctp_initmsg)) 2687 return -EINVAL; 2688 if (copy_from_user(&sinit, optval, optlen)) 2689 return -EFAULT; 2690 2691 if (sinit.sinit_num_ostreams) 2692 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2693 if (sinit.sinit_max_instreams) 2694 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2695 if (sinit.sinit_max_attempts) 2696 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2697 if (sinit.sinit_max_init_timeo) 2698 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2699 2700 return 0; 2701 } 2702 2703 /* 2704 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2705 * 2706 * Applications that wish to use the sendto() system call may wish to 2707 * specify a default set of parameters that would normally be supplied 2708 * through the inclusion of ancillary data. This socket option allows 2709 * such an application to set the default sctp_sndrcvinfo structure. 2710 * The application that wishes to use this socket option simply passes 2711 * in to this call the sctp_sndrcvinfo structure defined in Section 2712 * 5.2.2) The input parameters accepted by this call include 2713 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2714 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2715 * to this call if the caller is using the UDP model. 2716 */ 2717 static int sctp_setsockopt_default_send_param(struct sock *sk, 2718 char __user *optval, 2719 unsigned int optlen) 2720 { 2721 struct sctp_sndrcvinfo info; 2722 struct sctp_association *asoc; 2723 struct sctp_sock *sp = sctp_sk(sk); 2724 2725 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2726 return -EINVAL; 2727 if (copy_from_user(&info, optval, optlen)) 2728 return -EFAULT; 2729 2730 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2731 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2732 return -EINVAL; 2733 2734 if (asoc) { 2735 asoc->default_stream = info.sinfo_stream; 2736 asoc->default_flags = info.sinfo_flags; 2737 asoc->default_ppid = info.sinfo_ppid; 2738 asoc->default_context = info.sinfo_context; 2739 asoc->default_timetolive = info.sinfo_timetolive; 2740 } else { 2741 sp->default_stream = info.sinfo_stream; 2742 sp->default_flags = info.sinfo_flags; 2743 sp->default_ppid = info.sinfo_ppid; 2744 sp->default_context = info.sinfo_context; 2745 sp->default_timetolive = info.sinfo_timetolive; 2746 } 2747 2748 return 0; 2749 } 2750 2751 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2752 * 2753 * Requests that the local SCTP stack use the enclosed peer address as 2754 * the association primary. The enclosed address must be one of the 2755 * association peer's addresses. 2756 */ 2757 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2758 unsigned int optlen) 2759 { 2760 struct sctp_prim prim; 2761 struct sctp_transport *trans; 2762 2763 if (optlen != sizeof(struct sctp_prim)) 2764 return -EINVAL; 2765 2766 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2767 return -EFAULT; 2768 2769 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2770 if (!trans) 2771 return -EINVAL; 2772 2773 sctp_assoc_set_primary(trans->asoc, trans); 2774 2775 return 0; 2776 } 2777 2778 /* 2779 * 7.1.5 SCTP_NODELAY 2780 * 2781 * Turn on/off any Nagle-like algorithm. This means that packets are 2782 * generally sent as soon as possible and no unnecessary delays are 2783 * introduced, at the cost of more packets in the network. Expects an 2784 * integer boolean flag. 2785 */ 2786 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2787 unsigned int optlen) 2788 { 2789 int val; 2790 2791 if (optlen < sizeof(int)) 2792 return -EINVAL; 2793 if (get_user(val, (int __user *)optval)) 2794 return -EFAULT; 2795 2796 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2797 return 0; 2798 } 2799 2800 /* 2801 * 2802 * 7.1.1 SCTP_RTOINFO 2803 * 2804 * The protocol parameters used to initialize and bound retransmission 2805 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2806 * and modify these parameters. 2807 * All parameters are time values, in milliseconds. A value of 0, when 2808 * modifying the parameters, indicates that the current value should not 2809 * be changed. 2810 * 2811 */ 2812 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2813 { 2814 struct sctp_rtoinfo rtoinfo; 2815 struct sctp_association *asoc; 2816 2817 if (optlen != sizeof (struct sctp_rtoinfo)) 2818 return -EINVAL; 2819 2820 if (copy_from_user(&rtoinfo, optval, optlen)) 2821 return -EFAULT; 2822 2823 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2824 2825 /* Set the values to the specific association */ 2826 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2827 return -EINVAL; 2828 2829 if (asoc) { 2830 if (rtoinfo.srto_initial != 0) 2831 asoc->rto_initial = 2832 msecs_to_jiffies(rtoinfo.srto_initial); 2833 if (rtoinfo.srto_max != 0) 2834 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2835 if (rtoinfo.srto_min != 0) 2836 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2837 } else { 2838 /* If there is no association or the association-id = 0 2839 * set the values to the endpoint. 2840 */ 2841 struct sctp_sock *sp = sctp_sk(sk); 2842 2843 if (rtoinfo.srto_initial != 0) 2844 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2845 if (rtoinfo.srto_max != 0) 2846 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2847 if (rtoinfo.srto_min != 0) 2848 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2849 } 2850 2851 return 0; 2852 } 2853 2854 /* 2855 * 2856 * 7.1.2 SCTP_ASSOCINFO 2857 * 2858 * This option is used to tune the maximum retransmission attempts 2859 * of the association. 2860 * Returns an error if the new association retransmission value is 2861 * greater than the sum of the retransmission value of the peer. 2862 * See [SCTP] for more information. 2863 * 2864 */ 2865 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2866 { 2867 2868 struct sctp_assocparams assocparams; 2869 struct sctp_association *asoc; 2870 2871 if (optlen != sizeof(struct sctp_assocparams)) 2872 return -EINVAL; 2873 if (copy_from_user(&assocparams, optval, optlen)) 2874 return -EFAULT; 2875 2876 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2877 2878 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2879 return -EINVAL; 2880 2881 /* Set the values to the specific association */ 2882 if (asoc) { 2883 if (assocparams.sasoc_asocmaxrxt != 0) { 2884 __u32 path_sum = 0; 2885 int paths = 0; 2886 struct sctp_transport *peer_addr; 2887 2888 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2889 transports) { 2890 path_sum += peer_addr->pathmaxrxt; 2891 paths++; 2892 } 2893 2894 /* Only validate asocmaxrxt if we have more than 2895 * one path/transport. We do this because path 2896 * retransmissions are only counted when we have more 2897 * then one path. 2898 */ 2899 if (paths > 1 && 2900 assocparams.sasoc_asocmaxrxt > path_sum) 2901 return -EINVAL; 2902 2903 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2904 } 2905 2906 if (assocparams.sasoc_cookie_life != 0) { 2907 asoc->cookie_life.tv_sec = 2908 assocparams.sasoc_cookie_life / 1000; 2909 asoc->cookie_life.tv_usec = 2910 (assocparams.sasoc_cookie_life % 1000) 2911 * 1000; 2912 } 2913 } else { 2914 /* Set the values to the endpoint */ 2915 struct sctp_sock *sp = sctp_sk(sk); 2916 2917 if (assocparams.sasoc_asocmaxrxt != 0) 2918 sp->assocparams.sasoc_asocmaxrxt = 2919 assocparams.sasoc_asocmaxrxt; 2920 if (assocparams.sasoc_cookie_life != 0) 2921 sp->assocparams.sasoc_cookie_life = 2922 assocparams.sasoc_cookie_life; 2923 } 2924 return 0; 2925 } 2926 2927 /* 2928 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2929 * 2930 * This socket option is a boolean flag which turns on or off mapped V4 2931 * addresses. If this option is turned on and the socket is type 2932 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2933 * If this option is turned off, then no mapping will be done of V4 2934 * addresses and a user will receive both PF_INET6 and PF_INET type 2935 * addresses on the socket. 2936 */ 2937 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2938 { 2939 int val; 2940 struct sctp_sock *sp = sctp_sk(sk); 2941 2942 if (optlen < sizeof(int)) 2943 return -EINVAL; 2944 if (get_user(val, (int __user *)optval)) 2945 return -EFAULT; 2946 if (val) 2947 sp->v4mapped = 1; 2948 else 2949 sp->v4mapped = 0; 2950 2951 return 0; 2952 } 2953 2954 /* 2955 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2956 * This option will get or set the maximum size to put in any outgoing 2957 * SCTP DATA chunk. If a message is larger than this size it will be 2958 * fragmented by SCTP into the specified size. Note that the underlying 2959 * SCTP implementation may fragment into smaller sized chunks when the 2960 * PMTU of the underlying association is smaller than the value set by 2961 * the user. The default value for this option is '0' which indicates 2962 * the user is NOT limiting fragmentation and only the PMTU will effect 2963 * SCTP's choice of DATA chunk size. Note also that values set larger 2964 * than the maximum size of an IP datagram will effectively let SCTP 2965 * control fragmentation (i.e. the same as setting this option to 0). 2966 * 2967 * The following structure is used to access and modify this parameter: 2968 * 2969 * struct sctp_assoc_value { 2970 * sctp_assoc_t assoc_id; 2971 * uint32_t assoc_value; 2972 * }; 2973 * 2974 * assoc_id: This parameter is ignored for one-to-one style sockets. 2975 * For one-to-many style sockets this parameter indicates which 2976 * association the user is performing an action upon. Note that if 2977 * this field's value is zero then the endpoints default value is 2978 * changed (effecting future associations only). 2979 * assoc_value: This parameter specifies the maximum size in bytes. 2980 */ 2981 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2982 { 2983 struct sctp_assoc_value params; 2984 struct sctp_association *asoc; 2985 struct sctp_sock *sp = sctp_sk(sk); 2986 int val; 2987 2988 if (optlen == sizeof(int)) { 2989 pr_warn("Use of int in maxseg socket option deprecated\n"); 2990 pr_warn("Use struct sctp_assoc_value instead\n"); 2991 if (copy_from_user(&val, optval, optlen)) 2992 return -EFAULT; 2993 params.assoc_id = 0; 2994 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2995 if (copy_from_user(¶ms, optval, optlen)) 2996 return -EFAULT; 2997 val = params.assoc_value; 2998 } else 2999 return -EINVAL; 3000 3001 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3002 return -EINVAL; 3003 3004 asoc = sctp_id2assoc(sk, params.assoc_id); 3005 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3006 return -EINVAL; 3007 3008 if (asoc) { 3009 if (val == 0) { 3010 val = asoc->pathmtu; 3011 val -= sp->pf->af->net_header_len; 3012 val -= sizeof(struct sctphdr) + 3013 sizeof(struct sctp_data_chunk); 3014 } 3015 asoc->user_frag = val; 3016 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3017 } else { 3018 sp->user_frag = val; 3019 } 3020 3021 return 0; 3022 } 3023 3024 3025 /* 3026 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3027 * 3028 * Requests that the peer mark the enclosed address as the association 3029 * primary. The enclosed address must be one of the association's 3030 * locally bound addresses. The following structure is used to make a 3031 * set primary request: 3032 */ 3033 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3034 unsigned int optlen) 3035 { 3036 struct sctp_sock *sp; 3037 struct sctp_association *asoc = NULL; 3038 struct sctp_setpeerprim prim; 3039 struct sctp_chunk *chunk; 3040 struct sctp_af *af; 3041 int err; 3042 3043 sp = sctp_sk(sk); 3044 3045 if (!sctp_addip_enable) 3046 return -EPERM; 3047 3048 if (optlen != sizeof(struct sctp_setpeerprim)) 3049 return -EINVAL; 3050 3051 if (copy_from_user(&prim, optval, optlen)) 3052 return -EFAULT; 3053 3054 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3055 if (!asoc) 3056 return -EINVAL; 3057 3058 if (!asoc->peer.asconf_capable) 3059 return -EPERM; 3060 3061 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3062 return -EPERM; 3063 3064 if (!sctp_state(asoc, ESTABLISHED)) 3065 return -ENOTCONN; 3066 3067 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3068 if (!af) 3069 return -EINVAL; 3070 3071 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3072 return -EADDRNOTAVAIL; 3073 3074 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3075 return -EADDRNOTAVAIL; 3076 3077 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3078 chunk = sctp_make_asconf_set_prim(asoc, 3079 (union sctp_addr *)&prim.sspp_addr); 3080 if (!chunk) 3081 return -ENOMEM; 3082 3083 err = sctp_send_asconf(asoc, chunk); 3084 3085 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3086 3087 return err; 3088 } 3089 3090 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3091 unsigned int optlen) 3092 { 3093 struct sctp_setadaptation adaptation; 3094 3095 if (optlen != sizeof(struct sctp_setadaptation)) 3096 return -EINVAL; 3097 if (copy_from_user(&adaptation, optval, optlen)) 3098 return -EFAULT; 3099 3100 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3101 3102 return 0; 3103 } 3104 3105 /* 3106 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3107 * 3108 * The context field in the sctp_sndrcvinfo structure is normally only 3109 * used when a failed message is retrieved holding the value that was 3110 * sent down on the actual send call. This option allows the setting of 3111 * a default context on an association basis that will be received on 3112 * reading messages from the peer. This is especially helpful in the 3113 * one-2-many model for an application to keep some reference to an 3114 * internal state machine that is processing messages on the 3115 * association. Note that the setting of this value only effects 3116 * received messages from the peer and does not effect the value that is 3117 * saved with outbound messages. 3118 */ 3119 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3120 unsigned int optlen) 3121 { 3122 struct sctp_assoc_value params; 3123 struct sctp_sock *sp; 3124 struct sctp_association *asoc; 3125 3126 if (optlen != sizeof(struct sctp_assoc_value)) 3127 return -EINVAL; 3128 if (copy_from_user(¶ms, optval, optlen)) 3129 return -EFAULT; 3130 3131 sp = sctp_sk(sk); 3132 3133 if (params.assoc_id != 0) { 3134 asoc = sctp_id2assoc(sk, params.assoc_id); 3135 if (!asoc) 3136 return -EINVAL; 3137 asoc->default_rcv_context = params.assoc_value; 3138 } else { 3139 sp->default_rcv_context = params.assoc_value; 3140 } 3141 3142 return 0; 3143 } 3144 3145 /* 3146 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3147 * 3148 * This options will at a minimum specify if the implementation is doing 3149 * fragmented interleave. Fragmented interleave, for a one to many 3150 * socket, is when subsequent calls to receive a message may return 3151 * parts of messages from different associations. Some implementations 3152 * may allow you to turn this value on or off. If so, when turned off, 3153 * no fragment interleave will occur (which will cause a head of line 3154 * blocking amongst multiple associations sharing the same one to many 3155 * socket). When this option is turned on, then each receive call may 3156 * come from a different association (thus the user must receive data 3157 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3158 * association each receive belongs to. 3159 * 3160 * This option takes a boolean value. A non-zero value indicates that 3161 * fragmented interleave is on. A value of zero indicates that 3162 * fragmented interleave is off. 3163 * 3164 * Note that it is important that an implementation that allows this 3165 * option to be turned on, have it off by default. Otherwise an unaware 3166 * application using the one to many model may become confused and act 3167 * incorrectly. 3168 */ 3169 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3170 char __user *optval, 3171 unsigned int optlen) 3172 { 3173 int val; 3174 3175 if (optlen != sizeof(int)) 3176 return -EINVAL; 3177 if (get_user(val, (int __user *)optval)) 3178 return -EFAULT; 3179 3180 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3181 3182 return 0; 3183 } 3184 3185 /* 3186 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3187 * (SCTP_PARTIAL_DELIVERY_POINT) 3188 * 3189 * This option will set or get the SCTP partial delivery point. This 3190 * point is the size of a message where the partial delivery API will be 3191 * invoked to help free up rwnd space for the peer. Setting this to a 3192 * lower value will cause partial deliveries to happen more often. The 3193 * calls argument is an integer that sets or gets the partial delivery 3194 * point. Note also that the call will fail if the user attempts to set 3195 * this value larger than the socket receive buffer size. 3196 * 3197 * Note that any single message having a length smaller than or equal to 3198 * the SCTP partial delivery point will be delivered in one single read 3199 * call as long as the user provided buffer is large enough to hold the 3200 * message. 3201 */ 3202 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3203 char __user *optval, 3204 unsigned int optlen) 3205 { 3206 u32 val; 3207 3208 if (optlen != sizeof(u32)) 3209 return -EINVAL; 3210 if (get_user(val, (int __user *)optval)) 3211 return -EFAULT; 3212 3213 /* Note: We double the receive buffer from what the user sets 3214 * it to be, also initial rwnd is based on rcvbuf/2. 3215 */ 3216 if (val > (sk->sk_rcvbuf >> 1)) 3217 return -EINVAL; 3218 3219 sctp_sk(sk)->pd_point = val; 3220 3221 return 0; /* is this the right error code? */ 3222 } 3223 3224 /* 3225 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3226 * 3227 * This option will allow a user to change the maximum burst of packets 3228 * that can be emitted by this association. Note that the default value 3229 * is 4, and some implementations may restrict this setting so that it 3230 * can only be lowered. 3231 * 3232 * NOTE: This text doesn't seem right. Do this on a socket basis with 3233 * future associations inheriting the socket value. 3234 */ 3235 static int sctp_setsockopt_maxburst(struct sock *sk, 3236 char __user *optval, 3237 unsigned int optlen) 3238 { 3239 struct sctp_assoc_value params; 3240 struct sctp_sock *sp; 3241 struct sctp_association *asoc; 3242 int val; 3243 int assoc_id = 0; 3244 3245 if (optlen == sizeof(int)) { 3246 pr_warn("Use of int in max_burst socket option deprecated\n"); 3247 pr_warn("Use struct sctp_assoc_value instead\n"); 3248 if (copy_from_user(&val, optval, optlen)) 3249 return -EFAULT; 3250 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3251 if (copy_from_user(¶ms, optval, optlen)) 3252 return -EFAULT; 3253 val = params.assoc_value; 3254 assoc_id = params.assoc_id; 3255 } else 3256 return -EINVAL; 3257 3258 sp = sctp_sk(sk); 3259 3260 if (assoc_id != 0) { 3261 asoc = sctp_id2assoc(sk, assoc_id); 3262 if (!asoc) 3263 return -EINVAL; 3264 asoc->max_burst = val; 3265 } else 3266 sp->max_burst = val; 3267 3268 return 0; 3269 } 3270 3271 /* 3272 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3273 * 3274 * This set option adds a chunk type that the user is requesting to be 3275 * received only in an authenticated way. Changes to the list of chunks 3276 * will only effect future associations on the socket. 3277 */ 3278 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3279 char __user *optval, 3280 unsigned int optlen) 3281 { 3282 struct sctp_authchunk val; 3283 3284 if (!sctp_auth_enable) 3285 return -EACCES; 3286 3287 if (optlen != sizeof(struct sctp_authchunk)) 3288 return -EINVAL; 3289 if (copy_from_user(&val, optval, optlen)) 3290 return -EFAULT; 3291 3292 switch (val.sauth_chunk) { 3293 case SCTP_CID_INIT: 3294 case SCTP_CID_INIT_ACK: 3295 case SCTP_CID_SHUTDOWN_COMPLETE: 3296 case SCTP_CID_AUTH: 3297 return -EINVAL; 3298 } 3299 3300 /* add this chunk id to the endpoint */ 3301 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3302 } 3303 3304 /* 3305 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3306 * 3307 * This option gets or sets the list of HMAC algorithms that the local 3308 * endpoint requires the peer to use. 3309 */ 3310 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3311 char __user *optval, 3312 unsigned int optlen) 3313 { 3314 struct sctp_hmacalgo *hmacs; 3315 u32 idents; 3316 int err; 3317 3318 if (!sctp_auth_enable) 3319 return -EACCES; 3320 3321 if (optlen < sizeof(struct sctp_hmacalgo)) 3322 return -EINVAL; 3323 3324 hmacs= memdup_user(optval, optlen); 3325 if (IS_ERR(hmacs)) 3326 return PTR_ERR(hmacs); 3327 3328 idents = hmacs->shmac_num_idents; 3329 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3330 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3331 err = -EINVAL; 3332 goto out; 3333 } 3334 3335 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3336 out: 3337 kfree(hmacs); 3338 return err; 3339 } 3340 3341 /* 3342 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3343 * 3344 * This option will set a shared secret key which is used to build an 3345 * association shared key. 3346 */ 3347 static int sctp_setsockopt_auth_key(struct sock *sk, 3348 char __user *optval, 3349 unsigned int optlen) 3350 { 3351 struct sctp_authkey *authkey; 3352 struct sctp_association *asoc; 3353 int ret; 3354 3355 if (!sctp_auth_enable) 3356 return -EACCES; 3357 3358 if (optlen <= sizeof(struct sctp_authkey)) 3359 return -EINVAL; 3360 3361 authkey= memdup_user(optval, optlen); 3362 if (IS_ERR(authkey)) 3363 return PTR_ERR(authkey); 3364 3365 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3366 ret = -EINVAL; 3367 goto out; 3368 } 3369 3370 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3371 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3372 ret = -EINVAL; 3373 goto out; 3374 } 3375 3376 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3377 out: 3378 kfree(authkey); 3379 return ret; 3380 } 3381 3382 /* 3383 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3384 * 3385 * This option will get or set the active shared key to be used to build 3386 * the association shared key. 3387 */ 3388 static int sctp_setsockopt_active_key(struct sock *sk, 3389 char __user *optval, 3390 unsigned int optlen) 3391 { 3392 struct sctp_authkeyid val; 3393 struct sctp_association *asoc; 3394 3395 if (!sctp_auth_enable) 3396 return -EACCES; 3397 3398 if (optlen != sizeof(struct sctp_authkeyid)) 3399 return -EINVAL; 3400 if (copy_from_user(&val, optval, optlen)) 3401 return -EFAULT; 3402 3403 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3404 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3405 return -EINVAL; 3406 3407 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3408 val.scact_keynumber); 3409 } 3410 3411 /* 3412 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3413 * 3414 * This set option will delete a shared secret key from use. 3415 */ 3416 static int sctp_setsockopt_del_key(struct sock *sk, 3417 char __user *optval, 3418 unsigned int optlen) 3419 { 3420 struct sctp_authkeyid val; 3421 struct sctp_association *asoc; 3422 3423 if (!sctp_auth_enable) 3424 return -EACCES; 3425 3426 if (optlen != sizeof(struct sctp_authkeyid)) 3427 return -EINVAL; 3428 if (copy_from_user(&val, optval, optlen)) 3429 return -EFAULT; 3430 3431 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3432 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3433 return -EINVAL; 3434 3435 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3436 val.scact_keynumber); 3437 3438 } 3439 3440 /* 3441 * 8.1.23 SCTP_AUTO_ASCONF 3442 * 3443 * This option will enable or disable the use of the automatic generation of 3444 * ASCONF chunks to add and delete addresses to an existing association. Note 3445 * that this option has two caveats namely: a) it only affects sockets that 3446 * are bound to all addresses available to the SCTP stack, and b) the system 3447 * administrator may have an overriding control that turns the ASCONF feature 3448 * off no matter what setting the socket option may have. 3449 * This option expects an integer boolean flag, where a non-zero value turns on 3450 * the option, and a zero value turns off the option. 3451 * Note. In this implementation, socket operation overrides default parameter 3452 * being set by sysctl as well as FreeBSD implementation 3453 */ 3454 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3455 unsigned int optlen) 3456 { 3457 int val; 3458 struct sctp_sock *sp = sctp_sk(sk); 3459 3460 if (optlen < sizeof(int)) 3461 return -EINVAL; 3462 if (get_user(val, (int __user *)optval)) 3463 return -EFAULT; 3464 if (!sctp_is_ep_boundall(sk) && val) 3465 return -EINVAL; 3466 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3467 return 0; 3468 3469 if (val == 0 && sp->do_auto_asconf) { 3470 list_del(&sp->auto_asconf_list); 3471 sp->do_auto_asconf = 0; 3472 } else if (val && !sp->do_auto_asconf) { 3473 list_add_tail(&sp->auto_asconf_list, 3474 &sctp_auto_asconf_splist); 3475 sp->do_auto_asconf = 1; 3476 } 3477 return 0; 3478 } 3479 3480 3481 /* 3482 * SCTP_PEER_ADDR_THLDS 3483 * 3484 * This option allows us to alter the partially failed threshold for one or all 3485 * transports in an association. See Section 6.1 of: 3486 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3487 */ 3488 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3489 char __user *optval, 3490 unsigned int optlen) 3491 { 3492 struct sctp_paddrthlds val; 3493 struct sctp_transport *trans; 3494 struct sctp_association *asoc; 3495 3496 if (optlen < sizeof(struct sctp_paddrthlds)) 3497 return -EINVAL; 3498 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3499 sizeof(struct sctp_paddrthlds))) 3500 return -EFAULT; 3501 3502 3503 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3504 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3505 if (!asoc) 3506 return -ENOENT; 3507 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3508 transports) { 3509 if (val.spt_pathmaxrxt) 3510 trans->pathmaxrxt = val.spt_pathmaxrxt; 3511 trans->pf_retrans = val.spt_pathpfthld; 3512 } 3513 3514 if (val.spt_pathmaxrxt) 3515 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3516 asoc->pf_retrans = val.spt_pathpfthld; 3517 } else { 3518 trans = sctp_addr_id2transport(sk, &val.spt_address, 3519 val.spt_assoc_id); 3520 if (!trans) 3521 return -ENOENT; 3522 3523 if (val.spt_pathmaxrxt) 3524 trans->pathmaxrxt = val.spt_pathmaxrxt; 3525 trans->pf_retrans = val.spt_pathpfthld; 3526 } 3527 3528 return 0; 3529 } 3530 3531 /* API 6.2 setsockopt(), getsockopt() 3532 * 3533 * Applications use setsockopt() and getsockopt() to set or retrieve 3534 * socket options. Socket options are used to change the default 3535 * behavior of sockets calls. They are described in Section 7. 3536 * 3537 * The syntax is: 3538 * 3539 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3540 * int __user *optlen); 3541 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3542 * int optlen); 3543 * 3544 * sd - the socket descript. 3545 * level - set to IPPROTO_SCTP for all SCTP options. 3546 * optname - the option name. 3547 * optval - the buffer to store the value of the option. 3548 * optlen - the size of the buffer. 3549 */ 3550 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3551 char __user *optval, unsigned int optlen) 3552 { 3553 int retval = 0; 3554 3555 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3556 sk, optname); 3557 3558 /* I can hardly begin to describe how wrong this is. This is 3559 * so broken as to be worse than useless. The API draft 3560 * REALLY is NOT helpful here... I am not convinced that the 3561 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3562 * are at all well-founded. 3563 */ 3564 if (level != SOL_SCTP) { 3565 struct sctp_af *af = sctp_sk(sk)->pf->af; 3566 retval = af->setsockopt(sk, level, optname, optval, optlen); 3567 goto out_nounlock; 3568 } 3569 3570 sctp_lock_sock(sk); 3571 3572 switch (optname) { 3573 case SCTP_SOCKOPT_BINDX_ADD: 3574 /* 'optlen' is the size of the addresses buffer. */ 3575 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3576 optlen, SCTP_BINDX_ADD_ADDR); 3577 break; 3578 3579 case SCTP_SOCKOPT_BINDX_REM: 3580 /* 'optlen' is the size of the addresses buffer. */ 3581 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3582 optlen, SCTP_BINDX_REM_ADDR); 3583 break; 3584 3585 case SCTP_SOCKOPT_CONNECTX_OLD: 3586 /* 'optlen' is the size of the addresses buffer. */ 3587 retval = sctp_setsockopt_connectx_old(sk, 3588 (struct sockaddr __user *)optval, 3589 optlen); 3590 break; 3591 3592 case SCTP_SOCKOPT_CONNECTX: 3593 /* 'optlen' is the size of the addresses buffer. */ 3594 retval = sctp_setsockopt_connectx(sk, 3595 (struct sockaddr __user *)optval, 3596 optlen); 3597 break; 3598 3599 case SCTP_DISABLE_FRAGMENTS: 3600 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3601 break; 3602 3603 case SCTP_EVENTS: 3604 retval = sctp_setsockopt_events(sk, optval, optlen); 3605 break; 3606 3607 case SCTP_AUTOCLOSE: 3608 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3609 break; 3610 3611 case SCTP_PEER_ADDR_PARAMS: 3612 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3613 break; 3614 3615 case SCTP_DELAYED_SACK: 3616 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3617 break; 3618 case SCTP_PARTIAL_DELIVERY_POINT: 3619 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3620 break; 3621 3622 case SCTP_INITMSG: 3623 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3624 break; 3625 case SCTP_DEFAULT_SEND_PARAM: 3626 retval = sctp_setsockopt_default_send_param(sk, optval, 3627 optlen); 3628 break; 3629 case SCTP_PRIMARY_ADDR: 3630 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3631 break; 3632 case SCTP_SET_PEER_PRIMARY_ADDR: 3633 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3634 break; 3635 case SCTP_NODELAY: 3636 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3637 break; 3638 case SCTP_RTOINFO: 3639 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3640 break; 3641 case SCTP_ASSOCINFO: 3642 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3643 break; 3644 case SCTP_I_WANT_MAPPED_V4_ADDR: 3645 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3646 break; 3647 case SCTP_MAXSEG: 3648 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3649 break; 3650 case SCTP_ADAPTATION_LAYER: 3651 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3652 break; 3653 case SCTP_CONTEXT: 3654 retval = sctp_setsockopt_context(sk, optval, optlen); 3655 break; 3656 case SCTP_FRAGMENT_INTERLEAVE: 3657 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3658 break; 3659 case SCTP_MAX_BURST: 3660 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3661 break; 3662 case SCTP_AUTH_CHUNK: 3663 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3664 break; 3665 case SCTP_HMAC_IDENT: 3666 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3667 break; 3668 case SCTP_AUTH_KEY: 3669 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3670 break; 3671 case SCTP_AUTH_ACTIVE_KEY: 3672 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3673 break; 3674 case SCTP_AUTH_DELETE_KEY: 3675 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3676 break; 3677 case SCTP_AUTO_ASCONF: 3678 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3679 break; 3680 case SCTP_PEER_ADDR_THLDS: 3681 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3682 break; 3683 default: 3684 retval = -ENOPROTOOPT; 3685 break; 3686 } 3687 3688 sctp_release_sock(sk); 3689 3690 out_nounlock: 3691 return retval; 3692 } 3693 3694 /* API 3.1.6 connect() - UDP Style Syntax 3695 * 3696 * An application may use the connect() call in the UDP model to initiate an 3697 * association without sending data. 3698 * 3699 * The syntax is: 3700 * 3701 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3702 * 3703 * sd: the socket descriptor to have a new association added to. 3704 * 3705 * nam: the address structure (either struct sockaddr_in or struct 3706 * sockaddr_in6 defined in RFC2553 [7]). 3707 * 3708 * len: the size of the address. 3709 */ 3710 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3711 int addr_len) 3712 { 3713 int err = 0; 3714 struct sctp_af *af; 3715 3716 sctp_lock_sock(sk); 3717 3718 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3719 __func__, sk, addr, addr_len); 3720 3721 /* Validate addr_len before calling common connect/connectx routine. */ 3722 af = sctp_get_af_specific(addr->sa_family); 3723 if (!af || addr_len < af->sockaddr_len) { 3724 err = -EINVAL; 3725 } else { 3726 /* Pass correct addr len to common routine (so it knows there 3727 * is only one address being passed. 3728 */ 3729 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3730 } 3731 3732 sctp_release_sock(sk); 3733 return err; 3734 } 3735 3736 /* FIXME: Write comments. */ 3737 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3738 { 3739 return -EOPNOTSUPP; /* STUB */ 3740 } 3741 3742 /* 4.1.4 accept() - TCP Style Syntax 3743 * 3744 * Applications use accept() call to remove an established SCTP 3745 * association from the accept queue of the endpoint. A new socket 3746 * descriptor will be returned from accept() to represent the newly 3747 * formed association. 3748 */ 3749 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3750 { 3751 struct sctp_sock *sp; 3752 struct sctp_endpoint *ep; 3753 struct sock *newsk = NULL; 3754 struct sctp_association *asoc; 3755 long timeo; 3756 int error = 0; 3757 3758 sctp_lock_sock(sk); 3759 3760 sp = sctp_sk(sk); 3761 ep = sp->ep; 3762 3763 if (!sctp_style(sk, TCP)) { 3764 error = -EOPNOTSUPP; 3765 goto out; 3766 } 3767 3768 if (!sctp_sstate(sk, LISTENING)) { 3769 error = -EINVAL; 3770 goto out; 3771 } 3772 3773 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3774 3775 error = sctp_wait_for_accept(sk, timeo); 3776 if (error) 3777 goto out; 3778 3779 /* We treat the list of associations on the endpoint as the accept 3780 * queue and pick the first association on the list. 3781 */ 3782 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3783 3784 newsk = sp->pf->create_accept_sk(sk, asoc); 3785 if (!newsk) { 3786 error = -ENOMEM; 3787 goto out; 3788 } 3789 3790 /* Populate the fields of the newsk from the oldsk and migrate the 3791 * asoc to the newsk. 3792 */ 3793 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3794 3795 out: 3796 sctp_release_sock(sk); 3797 *err = error; 3798 return newsk; 3799 } 3800 3801 /* The SCTP ioctl handler. */ 3802 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3803 { 3804 int rc = -ENOTCONN; 3805 3806 sctp_lock_sock(sk); 3807 3808 /* 3809 * SEQPACKET-style sockets in LISTENING state are valid, for 3810 * SCTP, so only discard TCP-style sockets in LISTENING state. 3811 */ 3812 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3813 goto out; 3814 3815 switch (cmd) { 3816 case SIOCINQ: { 3817 struct sk_buff *skb; 3818 unsigned int amount = 0; 3819 3820 skb = skb_peek(&sk->sk_receive_queue); 3821 if (skb != NULL) { 3822 /* 3823 * We will only return the amount of this packet since 3824 * that is all that will be read. 3825 */ 3826 amount = skb->len; 3827 } 3828 rc = put_user(amount, (int __user *)arg); 3829 break; 3830 } 3831 default: 3832 rc = -ENOIOCTLCMD; 3833 break; 3834 } 3835 out: 3836 sctp_release_sock(sk); 3837 return rc; 3838 } 3839 3840 /* This is the function which gets called during socket creation to 3841 * initialized the SCTP-specific portion of the sock. 3842 * The sock structure should already be zero-filled memory. 3843 */ 3844 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3845 { 3846 struct sctp_endpoint *ep; 3847 struct sctp_sock *sp; 3848 3849 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3850 3851 sp = sctp_sk(sk); 3852 3853 /* Initialize the SCTP per socket area. */ 3854 switch (sk->sk_type) { 3855 case SOCK_SEQPACKET: 3856 sp->type = SCTP_SOCKET_UDP; 3857 break; 3858 case SOCK_STREAM: 3859 sp->type = SCTP_SOCKET_TCP; 3860 break; 3861 default: 3862 return -ESOCKTNOSUPPORT; 3863 } 3864 3865 /* Initialize default send parameters. These parameters can be 3866 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3867 */ 3868 sp->default_stream = 0; 3869 sp->default_ppid = 0; 3870 sp->default_flags = 0; 3871 sp->default_context = 0; 3872 sp->default_timetolive = 0; 3873 3874 sp->default_rcv_context = 0; 3875 sp->max_burst = sctp_max_burst; 3876 3877 /* Initialize default setup parameters. These parameters 3878 * can be modified with the SCTP_INITMSG socket option or 3879 * overridden by the SCTP_INIT CMSG. 3880 */ 3881 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3882 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3883 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3884 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3885 3886 /* Initialize default RTO related parameters. These parameters can 3887 * be modified for with the SCTP_RTOINFO socket option. 3888 */ 3889 sp->rtoinfo.srto_initial = sctp_rto_initial; 3890 sp->rtoinfo.srto_max = sctp_rto_max; 3891 sp->rtoinfo.srto_min = sctp_rto_min; 3892 3893 /* Initialize default association related parameters. These parameters 3894 * can be modified with the SCTP_ASSOCINFO socket option. 3895 */ 3896 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3897 sp->assocparams.sasoc_number_peer_destinations = 0; 3898 sp->assocparams.sasoc_peer_rwnd = 0; 3899 sp->assocparams.sasoc_local_rwnd = 0; 3900 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3901 3902 /* Initialize default event subscriptions. By default, all the 3903 * options are off. 3904 */ 3905 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3906 3907 /* Default Peer Address Parameters. These defaults can 3908 * be modified via SCTP_PEER_ADDR_PARAMS 3909 */ 3910 sp->hbinterval = sctp_hb_interval; 3911 sp->pathmaxrxt = sctp_max_retrans_path; 3912 sp->pathmtu = 0; // allow default discovery 3913 sp->sackdelay = sctp_sack_timeout; 3914 sp->sackfreq = 2; 3915 sp->param_flags = SPP_HB_ENABLE | 3916 SPP_PMTUD_ENABLE | 3917 SPP_SACKDELAY_ENABLE; 3918 3919 /* If enabled no SCTP message fragmentation will be performed. 3920 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3921 */ 3922 sp->disable_fragments = 0; 3923 3924 /* Enable Nagle algorithm by default. */ 3925 sp->nodelay = 0; 3926 3927 /* Enable by default. */ 3928 sp->v4mapped = 1; 3929 3930 /* Auto-close idle associations after the configured 3931 * number of seconds. A value of 0 disables this 3932 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3933 * for UDP-style sockets only. 3934 */ 3935 sp->autoclose = 0; 3936 3937 /* User specified fragmentation limit. */ 3938 sp->user_frag = 0; 3939 3940 sp->adaptation_ind = 0; 3941 3942 sp->pf = sctp_get_pf_specific(sk->sk_family); 3943 3944 /* Control variables for partial data delivery. */ 3945 atomic_set(&sp->pd_mode, 0); 3946 skb_queue_head_init(&sp->pd_lobby); 3947 sp->frag_interleave = 0; 3948 3949 /* Create a per socket endpoint structure. Even if we 3950 * change the data structure relationships, this may still 3951 * be useful for storing pre-connect address information. 3952 */ 3953 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3954 if (!ep) 3955 return -ENOMEM; 3956 3957 sp->ep = ep; 3958 sp->hmac = NULL; 3959 3960 SCTP_DBG_OBJCNT_INC(sock); 3961 3962 local_bh_disable(); 3963 percpu_counter_inc(&sctp_sockets_allocated); 3964 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3965 if (sctp_default_auto_asconf) { 3966 list_add_tail(&sp->auto_asconf_list, 3967 &sctp_auto_asconf_splist); 3968 sp->do_auto_asconf = 1; 3969 } else 3970 sp->do_auto_asconf = 0; 3971 local_bh_enable(); 3972 3973 return 0; 3974 } 3975 3976 /* Cleanup any SCTP per socket resources. */ 3977 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3978 { 3979 struct sctp_sock *sp; 3980 3981 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3982 3983 /* Release our hold on the endpoint. */ 3984 sp = sctp_sk(sk); 3985 if (sp->do_auto_asconf) { 3986 sp->do_auto_asconf = 0; 3987 list_del(&sp->auto_asconf_list); 3988 } 3989 sctp_endpoint_free(sp->ep); 3990 local_bh_disable(); 3991 percpu_counter_dec(&sctp_sockets_allocated); 3992 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3993 local_bh_enable(); 3994 } 3995 3996 /* API 4.1.7 shutdown() - TCP Style Syntax 3997 * int shutdown(int socket, int how); 3998 * 3999 * sd - the socket descriptor of the association to be closed. 4000 * how - Specifies the type of shutdown. The values are 4001 * as follows: 4002 * SHUT_RD 4003 * Disables further receive operations. No SCTP 4004 * protocol action is taken. 4005 * SHUT_WR 4006 * Disables further send operations, and initiates 4007 * the SCTP shutdown sequence. 4008 * SHUT_RDWR 4009 * Disables further send and receive operations 4010 * and initiates the SCTP shutdown sequence. 4011 */ 4012 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 4013 { 4014 struct sctp_endpoint *ep; 4015 struct sctp_association *asoc; 4016 4017 if (!sctp_style(sk, TCP)) 4018 return; 4019 4020 if (how & SEND_SHUTDOWN) { 4021 ep = sctp_sk(sk)->ep; 4022 if (!list_empty(&ep->asocs)) { 4023 asoc = list_entry(ep->asocs.next, 4024 struct sctp_association, asocs); 4025 sctp_primitive_SHUTDOWN(asoc, NULL); 4026 } 4027 } 4028 } 4029 4030 /* 7.2.1 Association Status (SCTP_STATUS) 4031 4032 * Applications can retrieve current status information about an 4033 * association, including association state, peer receiver window size, 4034 * number of unacked data chunks, and number of data chunks pending 4035 * receipt. This information is read-only. 4036 */ 4037 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4038 char __user *optval, 4039 int __user *optlen) 4040 { 4041 struct sctp_status status; 4042 struct sctp_association *asoc = NULL; 4043 struct sctp_transport *transport; 4044 sctp_assoc_t associd; 4045 int retval = 0; 4046 4047 if (len < sizeof(status)) { 4048 retval = -EINVAL; 4049 goto out; 4050 } 4051 4052 len = sizeof(status); 4053 if (copy_from_user(&status, optval, len)) { 4054 retval = -EFAULT; 4055 goto out; 4056 } 4057 4058 associd = status.sstat_assoc_id; 4059 asoc = sctp_id2assoc(sk, associd); 4060 if (!asoc) { 4061 retval = -EINVAL; 4062 goto out; 4063 } 4064 4065 transport = asoc->peer.primary_path; 4066 4067 status.sstat_assoc_id = sctp_assoc2id(asoc); 4068 status.sstat_state = asoc->state; 4069 status.sstat_rwnd = asoc->peer.rwnd; 4070 status.sstat_unackdata = asoc->unack_data; 4071 4072 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4073 status.sstat_instrms = asoc->c.sinit_max_instreams; 4074 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4075 status.sstat_fragmentation_point = asoc->frag_point; 4076 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4077 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4078 transport->af_specific->sockaddr_len); 4079 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4080 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4081 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4082 status.sstat_primary.spinfo_state = transport->state; 4083 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4084 status.sstat_primary.spinfo_srtt = transport->srtt; 4085 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4086 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4087 4088 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4089 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4090 4091 if (put_user(len, optlen)) { 4092 retval = -EFAULT; 4093 goto out; 4094 } 4095 4096 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 4097 len, status.sstat_state, status.sstat_rwnd, 4098 status.sstat_assoc_id); 4099 4100 if (copy_to_user(optval, &status, len)) { 4101 retval = -EFAULT; 4102 goto out; 4103 } 4104 4105 out: 4106 return retval; 4107 } 4108 4109 4110 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4111 * 4112 * Applications can retrieve information about a specific peer address 4113 * of an association, including its reachability state, congestion 4114 * window, and retransmission timer values. This information is 4115 * read-only. 4116 */ 4117 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4118 char __user *optval, 4119 int __user *optlen) 4120 { 4121 struct sctp_paddrinfo pinfo; 4122 struct sctp_transport *transport; 4123 int retval = 0; 4124 4125 if (len < sizeof(pinfo)) { 4126 retval = -EINVAL; 4127 goto out; 4128 } 4129 4130 len = sizeof(pinfo); 4131 if (copy_from_user(&pinfo, optval, len)) { 4132 retval = -EFAULT; 4133 goto out; 4134 } 4135 4136 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4137 pinfo.spinfo_assoc_id); 4138 if (!transport) 4139 return -EINVAL; 4140 4141 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4142 pinfo.spinfo_state = transport->state; 4143 pinfo.spinfo_cwnd = transport->cwnd; 4144 pinfo.spinfo_srtt = transport->srtt; 4145 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4146 pinfo.spinfo_mtu = transport->pathmtu; 4147 4148 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4149 pinfo.spinfo_state = SCTP_ACTIVE; 4150 4151 if (put_user(len, optlen)) { 4152 retval = -EFAULT; 4153 goto out; 4154 } 4155 4156 if (copy_to_user(optval, &pinfo, len)) { 4157 retval = -EFAULT; 4158 goto out; 4159 } 4160 4161 out: 4162 return retval; 4163 } 4164 4165 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4166 * 4167 * This option is a on/off flag. If enabled no SCTP message 4168 * fragmentation will be performed. Instead if a message being sent 4169 * exceeds the current PMTU size, the message will NOT be sent and 4170 * instead a error will be indicated to the user. 4171 */ 4172 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4173 char __user *optval, int __user *optlen) 4174 { 4175 int val; 4176 4177 if (len < sizeof(int)) 4178 return -EINVAL; 4179 4180 len = sizeof(int); 4181 val = (sctp_sk(sk)->disable_fragments == 1); 4182 if (put_user(len, optlen)) 4183 return -EFAULT; 4184 if (copy_to_user(optval, &val, len)) 4185 return -EFAULT; 4186 return 0; 4187 } 4188 4189 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4190 * 4191 * This socket option is used to specify various notifications and 4192 * ancillary data the user wishes to receive. 4193 */ 4194 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4195 int __user *optlen) 4196 { 4197 if (len <= 0) 4198 return -EINVAL; 4199 if (len > sizeof(struct sctp_event_subscribe)) 4200 len = sizeof(struct sctp_event_subscribe); 4201 if (put_user(len, optlen)) 4202 return -EFAULT; 4203 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4204 return -EFAULT; 4205 return 0; 4206 } 4207 4208 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4209 * 4210 * This socket option is applicable to the UDP-style socket only. When 4211 * set it will cause associations that are idle for more than the 4212 * specified number of seconds to automatically close. An association 4213 * being idle is defined an association that has NOT sent or received 4214 * user data. The special value of '0' indicates that no automatic 4215 * close of any associations should be performed. The option expects an 4216 * integer defining the number of seconds of idle time before an 4217 * association is closed. 4218 */ 4219 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4220 { 4221 /* Applicable to UDP-style socket only */ 4222 if (sctp_style(sk, TCP)) 4223 return -EOPNOTSUPP; 4224 if (len < sizeof(int)) 4225 return -EINVAL; 4226 len = sizeof(int); 4227 if (put_user(len, optlen)) 4228 return -EFAULT; 4229 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4230 return -EFAULT; 4231 return 0; 4232 } 4233 4234 /* Helper routine to branch off an association to a new socket. */ 4235 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4236 { 4237 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4238 struct socket *sock; 4239 struct sctp_af *af; 4240 int err = 0; 4241 4242 if (!asoc) 4243 return -EINVAL; 4244 4245 /* An association cannot be branched off from an already peeled-off 4246 * socket, nor is this supported for tcp style sockets. 4247 */ 4248 if (!sctp_style(sk, UDP)) 4249 return -EINVAL; 4250 4251 /* Create a new socket. */ 4252 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4253 if (err < 0) 4254 return err; 4255 4256 sctp_copy_sock(sock->sk, sk, asoc); 4257 4258 /* Make peeled-off sockets more like 1-1 accepted sockets. 4259 * Set the daddr and initialize id to something more random 4260 */ 4261 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4262 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4263 4264 /* Populate the fields of the newsk from the oldsk and migrate the 4265 * asoc to the newsk. 4266 */ 4267 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4268 4269 *sockp = sock; 4270 4271 return err; 4272 } 4273 EXPORT_SYMBOL(sctp_do_peeloff); 4274 4275 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4276 { 4277 sctp_peeloff_arg_t peeloff; 4278 struct socket *newsock; 4279 int retval = 0; 4280 4281 if (len < sizeof(sctp_peeloff_arg_t)) 4282 return -EINVAL; 4283 len = sizeof(sctp_peeloff_arg_t); 4284 if (copy_from_user(&peeloff, optval, len)) 4285 return -EFAULT; 4286 4287 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4288 if (retval < 0) 4289 goto out; 4290 4291 /* Map the socket to an unused fd that can be returned to the user. */ 4292 retval = sock_map_fd(newsock, 0); 4293 if (retval < 0) { 4294 sock_release(newsock); 4295 goto out; 4296 } 4297 4298 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n", 4299 __func__, sk, newsock->sk, retval); 4300 4301 /* Return the fd mapped to the new socket. */ 4302 peeloff.sd = retval; 4303 if (put_user(len, optlen)) 4304 return -EFAULT; 4305 if (copy_to_user(optval, &peeloff, len)) 4306 retval = -EFAULT; 4307 4308 out: 4309 return retval; 4310 } 4311 4312 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4313 * 4314 * Applications can enable or disable heartbeats for any peer address of 4315 * an association, modify an address's heartbeat interval, force a 4316 * heartbeat to be sent immediately, and adjust the address's maximum 4317 * number of retransmissions sent before an address is considered 4318 * unreachable. The following structure is used to access and modify an 4319 * address's parameters: 4320 * 4321 * struct sctp_paddrparams { 4322 * sctp_assoc_t spp_assoc_id; 4323 * struct sockaddr_storage spp_address; 4324 * uint32_t spp_hbinterval; 4325 * uint16_t spp_pathmaxrxt; 4326 * uint32_t spp_pathmtu; 4327 * uint32_t spp_sackdelay; 4328 * uint32_t spp_flags; 4329 * }; 4330 * 4331 * spp_assoc_id - (one-to-many style socket) This is filled in the 4332 * application, and identifies the association for 4333 * this query. 4334 * spp_address - This specifies which address is of interest. 4335 * spp_hbinterval - This contains the value of the heartbeat interval, 4336 * in milliseconds. If a value of zero 4337 * is present in this field then no changes are to 4338 * be made to this parameter. 4339 * spp_pathmaxrxt - This contains the maximum number of 4340 * retransmissions before this address shall be 4341 * considered unreachable. If a value of zero 4342 * is present in this field then no changes are to 4343 * be made to this parameter. 4344 * spp_pathmtu - When Path MTU discovery is disabled the value 4345 * specified here will be the "fixed" path mtu. 4346 * Note that if the spp_address field is empty 4347 * then all associations on this address will 4348 * have this fixed path mtu set upon them. 4349 * 4350 * spp_sackdelay - When delayed sack is enabled, this value specifies 4351 * the number of milliseconds that sacks will be delayed 4352 * for. This value will apply to all addresses of an 4353 * association if the spp_address field is empty. Note 4354 * also, that if delayed sack is enabled and this 4355 * value is set to 0, no change is made to the last 4356 * recorded delayed sack timer value. 4357 * 4358 * spp_flags - These flags are used to control various features 4359 * on an association. The flag field may contain 4360 * zero or more of the following options. 4361 * 4362 * SPP_HB_ENABLE - Enable heartbeats on the 4363 * specified address. Note that if the address 4364 * field is empty all addresses for the association 4365 * have heartbeats enabled upon them. 4366 * 4367 * SPP_HB_DISABLE - Disable heartbeats on the 4368 * speicifed address. Note that if the address 4369 * field is empty all addresses for the association 4370 * will have their heartbeats disabled. Note also 4371 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4372 * mutually exclusive, only one of these two should 4373 * be specified. Enabling both fields will have 4374 * undetermined results. 4375 * 4376 * SPP_HB_DEMAND - Request a user initiated heartbeat 4377 * to be made immediately. 4378 * 4379 * SPP_PMTUD_ENABLE - This field will enable PMTU 4380 * discovery upon the specified address. Note that 4381 * if the address feild is empty then all addresses 4382 * on the association are effected. 4383 * 4384 * SPP_PMTUD_DISABLE - This field will disable PMTU 4385 * discovery upon the specified address. Note that 4386 * if the address feild is empty then all addresses 4387 * on the association are effected. Not also that 4388 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4389 * exclusive. Enabling both will have undetermined 4390 * results. 4391 * 4392 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4393 * on delayed sack. The time specified in spp_sackdelay 4394 * is used to specify the sack delay for this address. Note 4395 * that if spp_address is empty then all addresses will 4396 * enable delayed sack and take on the sack delay 4397 * value specified in spp_sackdelay. 4398 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4399 * off delayed sack. If the spp_address field is blank then 4400 * delayed sack is disabled for the entire association. Note 4401 * also that this field is mutually exclusive to 4402 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4403 * results. 4404 */ 4405 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4406 char __user *optval, int __user *optlen) 4407 { 4408 struct sctp_paddrparams params; 4409 struct sctp_transport *trans = NULL; 4410 struct sctp_association *asoc = NULL; 4411 struct sctp_sock *sp = sctp_sk(sk); 4412 4413 if (len < sizeof(struct sctp_paddrparams)) 4414 return -EINVAL; 4415 len = sizeof(struct sctp_paddrparams); 4416 if (copy_from_user(¶ms, optval, len)) 4417 return -EFAULT; 4418 4419 /* If an address other than INADDR_ANY is specified, and 4420 * no transport is found, then the request is invalid. 4421 */ 4422 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4423 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4424 params.spp_assoc_id); 4425 if (!trans) { 4426 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4427 return -EINVAL; 4428 } 4429 } 4430 4431 /* Get association, if assoc_id != 0 and the socket is a one 4432 * to many style socket, and an association was not found, then 4433 * the id was invalid. 4434 */ 4435 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4436 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4437 SCTP_DEBUG_PRINTK("Failed no association\n"); 4438 return -EINVAL; 4439 } 4440 4441 if (trans) { 4442 /* Fetch transport values. */ 4443 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4444 params.spp_pathmtu = trans->pathmtu; 4445 params.spp_pathmaxrxt = trans->pathmaxrxt; 4446 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4447 4448 /*draft-11 doesn't say what to return in spp_flags*/ 4449 params.spp_flags = trans->param_flags; 4450 } else if (asoc) { 4451 /* Fetch association values. */ 4452 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4453 params.spp_pathmtu = asoc->pathmtu; 4454 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4455 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4456 4457 /*draft-11 doesn't say what to return in spp_flags*/ 4458 params.spp_flags = asoc->param_flags; 4459 } else { 4460 /* Fetch socket values. */ 4461 params.spp_hbinterval = sp->hbinterval; 4462 params.spp_pathmtu = sp->pathmtu; 4463 params.spp_sackdelay = sp->sackdelay; 4464 params.spp_pathmaxrxt = sp->pathmaxrxt; 4465 4466 /*draft-11 doesn't say what to return in spp_flags*/ 4467 params.spp_flags = sp->param_flags; 4468 } 4469 4470 if (copy_to_user(optval, ¶ms, len)) 4471 return -EFAULT; 4472 4473 if (put_user(len, optlen)) 4474 return -EFAULT; 4475 4476 return 0; 4477 } 4478 4479 /* 4480 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4481 * 4482 * This option will effect the way delayed acks are performed. This 4483 * option allows you to get or set the delayed ack time, in 4484 * milliseconds. It also allows changing the delayed ack frequency. 4485 * Changing the frequency to 1 disables the delayed sack algorithm. If 4486 * the assoc_id is 0, then this sets or gets the endpoints default 4487 * values. If the assoc_id field is non-zero, then the set or get 4488 * effects the specified association for the one to many model (the 4489 * assoc_id field is ignored by the one to one model). Note that if 4490 * sack_delay or sack_freq are 0 when setting this option, then the 4491 * current values will remain unchanged. 4492 * 4493 * struct sctp_sack_info { 4494 * sctp_assoc_t sack_assoc_id; 4495 * uint32_t sack_delay; 4496 * uint32_t sack_freq; 4497 * }; 4498 * 4499 * sack_assoc_id - This parameter, indicates which association the user 4500 * is performing an action upon. Note that if this field's value is 4501 * zero then the endpoints default value is changed (effecting future 4502 * associations only). 4503 * 4504 * sack_delay - This parameter contains the number of milliseconds that 4505 * the user is requesting the delayed ACK timer be set to. Note that 4506 * this value is defined in the standard to be between 200 and 500 4507 * milliseconds. 4508 * 4509 * sack_freq - This parameter contains the number of packets that must 4510 * be received before a sack is sent without waiting for the delay 4511 * timer to expire. The default value for this is 2, setting this 4512 * value to 1 will disable the delayed sack algorithm. 4513 */ 4514 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4515 char __user *optval, 4516 int __user *optlen) 4517 { 4518 struct sctp_sack_info params; 4519 struct sctp_association *asoc = NULL; 4520 struct sctp_sock *sp = sctp_sk(sk); 4521 4522 if (len >= sizeof(struct sctp_sack_info)) { 4523 len = sizeof(struct sctp_sack_info); 4524 4525 if (copy_from_user(¶ms, optval, len)) 4526 return -EFAULT; 4527 } else if (len == sizeof(struct sctp_assoc_value)) { 4528 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4529 pr_warn("Use struct sctp_sack_info instead\n"); 4530 if (copy_from_user(¶ms, optval, len)) 4531 return -EFAULT; 4532 } else 4533 return - EINVAL; 4534 4535 /* Get association, if sack_assoc_id != 0 and the socket is a one 4536 * to many style socket, and an association was not found, then 4537 * the id was invalid. 4538 */ 4539 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4540 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4541 return -EINVAL; 4542 4543 if (asoc) { 4544 /* Fetch association values. */ 4545 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4546 params.sack_delay = jiffies_to_msecs( 4547 asoc->sackdelay); 4548 params.sack_freq = asoc->sackfreq; 4549 4550 } else { 4551 params.sack_delay = 0; 4552 params.sack_freq = 1; 4553 } 4554 } else { 4555 /* Fetch socket values. */ 4556 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4557 params.sack_delay = sp->sackdelay; 4558 params.sack_freq = sp->sackfreq; 4559 } else { 4560 params.sack_delay = 0; 4561 params.sack_freq = 1; 4562 } 4563 } 4564 4565 if (copy_to_user(optval, ¶ms, len)) 4566 return -EFAULT; 4567 4568 if (put_user(len, optlen)) 4569 return -EFAULT; 4570 4571 return 0; 4572 } 4573 4574 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4575 * 4576 * Applications can specify protocol parameters for the default association 4577 * initialization. The option name argument to setsockopt() and getsockopt() 4578 * is SCTP_INITMSG. 4579 * 4580 * Setting initialization parameters is effective only on an unconnected 4581 * socket (for UDP-style sockets only future associations are effected 4582 * by the change). With TCP-style sockets, this option is inherited by 4583 * sockets derived from a listener socket. 4584 */ 4585 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4586 { 4587 if (len < sizeof(struct sctp_initmsg)) 4588 return -EINVAL; 4589 len = sizeof(struct sctp_initmsg); 4590 if (put_user(len, optlen)) 4591 return -EFAULT; 4592 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4593 return -EFAULT; 4594 return 0; 4595 } 4596 4597 4598 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4599 char __user *optval, int __user *optlen) 4600 { 4601 struct sctp_association *asoc; 4602 int cnt = 0; 4603 struct sctp_getaddrs getaddrs; 4604 struct sctp_transport *from; 4605 void __user *to; 4606 union sctp_addr temp; 4607 struct sctp_sock *sp = sctp_sk(sk); 4608 int addrlen; 4609 size_t space_left; 4610 int bytes_copied; 4611 4612 if (len < sizeof(struct sctp_getaddrs)) 4613 return -EINVAL; 4614 4615 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4616 return -EFAULT; 4617 4618 /* For UDP-style sockets, id specifies the association to query. */ 4619 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4620 if (!asoc) 4621 return -EINVAL; 4622 4623 to = optval + offsetof(struct sctp_getaddrs,addrs); 4624 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4625 4626 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4627 transports) { 4628 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4629 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4630 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4631 if (space_left < addrlen) 4632 return -ENOMEM; 4633 if (copy_to_user(to, &temp, addrlen)) 4634 return -EFAULT; 4635 to += addrlen; 4636 cnt++; 4637 space_left -= addrlen; 4638 } 4639 4640 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4641 return -EFAULT; 4642 bytes_copied = ((char __user *)to) - optval; 4643 if (put_user(bytes_copied, optlen)) 4644 return -EFAULT; 4645 4646 return 0; 4647 } 4648 4649 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4650 size_t space_left, int *bytes_copied) 4651 { 4652 struct sctp_sockaddr_entry *addr; 4653 union sctp_addr temp; 4654 int cnt = 0; 4655 int addrlen; 4656 4657 rcu_read_lock(); 4658 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4659 if (!addr->valid) 4660 continue; 4661 4662 if ((PF_INET == sk->sk_family) && 4663 (AF_INET6 == addr->a.sa.sa_family)) 4664 continue; 4665 if ((PF_INET6 == sk->sk_family) && 4666 inet_v6_ipv6only(sk) && 4667 (AF_INET == addr->a.sa.sa_family)) 4668 continue; 4669 memcpy(&temp, &addr->a, sizeof(temp)); 4670 if (!temp.v4.sin_port) 4671 temp.v4.sin_port = htons(port); 4672 4673 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4674 &temp); 4675 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4676 if (space_left < addrlen) { 4677 cnt = -ENOMEM; 4678 break; 4679 } 4680 memcpy(to, &temp, addrlen); 4681 4682 to += addrlen; 4683 cnt ++; 4684 space_left -= addrlen; 4685 *bytes_copied += addrlen; 4686 } 4687 rcu_read_unlock(); 4688 4689 return cnt; 4690 } 4691 4692 4693 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4694 char __user *optval, int __user *optlen) 4695 { 4696 struct sctp_bind_addr *bp; 4697 struct sctp_association *asoc; 4698 int cnt = 0; 4699 struct sctp_getaddrs getaddrs; 4700 struct sctp_sockaddr_entry *addr; 4701 void __user *to; 4702 union sctp_addr temp; 4703 struct sctp_sock *sp = sctp_sk(sk); 4704 int addrlen; 4705 int err = 0; 4706 size_t space_left; 4707 int bytes_copied = 0; 4708 void *addrs; 4709 void *buf; 4710 4711 if (len < sizeof(struct sctp_getaddrs)) 4712 return -EINVAL; 4713 4714 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4715 return -EFAULT; 4716 4717 /* 4718 * For UDP-style sockets, id specifies the association to query. 4719 * If the id field is set to the value '0' then the locally bound 4720 * addresses are returned without regard to any particular 4721 * association. 4722 */ 4723 if (0 == getaddrs.assoc_id) { 4724 bp = &sctp_sk(sk)->ep->base.bind_addr; 4725 } else { 4726 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4727 if (!asoc) 4728 return -EINVAL; 4729 bp = &asoc->base.bind_addr; 4730 } 4731 4732 to = optval + offsetof(struct sctp_getaddrs,addrs); 4733 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4734 4735 addrs = kmalloc(space_left, GFP_KERNEL); 4736 if (!addrs) 4737 return -ENOMEM; 4738 4739 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4740 * addresses from the global local address list. 4741 */ 4742 if (sctp_list_single_entry(&bp->address_list)) { 4743 addr = list_entry(bp->address_list.next, 4744 struct sctp_sockaddr_entry, list); 4745 if (sctp_is_any(sk, &addr->a)) { 4746 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4747 space_left, &bytes_copied); 4748 if (cnt < 0) { 4749 err = cnt; 4750 goto out; 4751 } 4752 goto copy_getaddrs; 4753 } 4754 } 4755 4756 buf = addrs; 4757 /* Protection on the bound address list is not needed since 4758 * in the socket option context we hold a socket lock and 4759 * thus the bound address list can't change. 4760 */ 4761 list_for_each_entry(addr, &bp->address_list, list) { 4762 memcpy(&temp, &addr->a, sizeof(temp)); 4763 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4764 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4765 if (space_left < addrlen) { 4766 err = -ENOMEM; /*fixme: right error?*/ 4767 goto out; 4768 } 4769 memcpy(buf, &temp, addrlen); 4770 buf += addrlen; 4771 bytes_copied += addrlen; 4772 cnt ++; 4773 space_left -= addrlen; 4774 } 4775 4776 copy_getaddrs: 4777 if (copy_to_user(to, addrs, bytes_copied)) { 4778 err = -EFAULT; 4779 goto out; 4780 } 4781 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4782 err = -EFAULT; 4783 goto out; 4784 } 4785 if (put_user(bytes_copied, optlen)) 4786 err = -EFAULT; 4787 out: 4788 kfree(addrs); 4789 return err; 4790 } 4791 4792 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4793 * 4794 * Requests that the local SCTP stack use the enclosed peer address as 4795 * the association primary. The enclosed address must be one of the 4796 * association peer's addresses. 4797 */ 4798 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4799 char __user *optval, int __user *optlen) 4800 { 4801 struct sctp_prim prim; 4802 struct sctp_association *asoc; 4803 struct sctp_sock *sp = sctp_sk(sk); 4804 4805 if (len < sizeof(struct sctp_prim)) 4806 return -EINVAL; 4807 4808 len = sizeof(struct sctp_prim); 4809 4810 if (copy_from_user(&prim, optval, len)) 4811 return -EFAULT; 4812 4813 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4814 if (!asoc) 4815 return -EINVAL; 4816 4817 if (!asoc->peer.primary_path) 4818 return -ENOTCONN; 4819 4820 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4821 asoc->peer.primary_path->af_specific->sockaddr_len); 4822 4823 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4824 (union sctp_addr *)&prim.ssp_addr); 4825 4826 if (put_user(len, optlen)) 4827 return -EFAULT; 4828 if (copy_to_user(optval, &prim, len)) 4829 return -EFAULT; 4830 4831 return 0; 4832 } 4833 4834 /* 4835 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4836 * 4837 * Requests that the local endpoint set the specified Adaptation Layer 4838 * Indication parameter for all future INIT and INIT-ACK exchanges. 4839 */ 4840 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4841 char __user *optval, int __user *optlen) 4842 { 4843 struct sctp_setadaptation adaptation; 4844 4845 if (len < sizeof(struct sctp_setadaptation)) 4846 return -EINVAL; 4847 4848 len = sizeof(struct sctp_setadaptation); 4849 4850 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4851 4852 if (put_user(len, optlen)) 4853 return -EFAULT; 4854 if (copy_to_user(optval, &adaptation, len)) 4855 return -EFAULT; 4856 4857 return 0; 4858 } 4859 4860 /* 4861 * 4862 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4863 * 4864 * Applications that wish to use the sendto() system call may wish to 4865 * specify a default set of parameters that would normally be supplied 4866 * through the inclusion of ancillary data. This socket option allows 4867 * such an application to set the default sctp_sndrcvinfo structure. 4868 4869 4870 * The application that wishes to use this socket option simply passes 4871 * in to this call the sctp_sndrcvinfo structure defined in Section 4872 * 5.2.2) The input parameters accepted by this call include 4873 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4874 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4875 * to this call if the caller is using the UDP model. 4876 * 4877 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4878 */ 4879 static int sctp_getsockopt_default_send_param(struct sock *sk, 4880 int len, char __user *optval, 4881 int __user *optlen) 4882 { 4883 struct sctp_sndrcvinfo info; 4884 struct sctp_association *asoc; 4885 struct sctp_sock *sp = sctp_sk(sk); 4886 4887 if (len < sizeof(struct sctp_sndrcvinfo)) 4888 return -EINVAL; 4889 4890 len = sizeof(struct sctp_sndrcvinfo); 4891 4892 if (copy_from_user(&info, optval, len)) 4893 return -EFAULT; 4894 4895 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4896 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4897 return -EINVAL; 4898 4899 if (asoc) { 4900 info.sinfo_stream = asoc->default_stream; 4901 info.sinfo_flags = asoc->default_flags; 4902 info.sinfo_ppid = asoc->default_ppid; 4903 info.sinfo_context = asoc->default_context; 4904 info.sinfo_timetolive = asoc->default_timetolive; 4905 } else { 4906 info.sinfo_stream = sp->default_stream; 4907 info.sinfo_flags = sp->default_flags; 4908 info.sinfo_ppid = sp->default_ppid; 4909 info.sinfo_context = sp->default_context; 4910 info.sinfo_timetolive = sp->default_timetolive; 4911 } 4912 4913 if (put_user(len, optlen)) 4914 return -EFAULT; 4915 if (copy_to_user(optval, &info, len)) 4916 return -EFAULT; 4917 4918 return 0; 4919 } 4920 4921 /* 4922 * 4923 * 7.1.5 SCTP_NODELAY 4924 * 4925 * Turn on/off any Nagle-like algorithm. This means that packets are 4926 * generally sent as soon as possible and no unnecessary delays are 4927 * introduced, at the cost of more packets in the network. Expects an 4928 * integer boolean flag. 4929 */ 4930 4931 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4932 char __user *optval, int __user *optlen) 4933 { 4934 int val; 4935 4936 if (len < sizeof(int)) 4937 return -EINVAL; 4938 4939 len = sizeof(int); 4940 val = (sctp_sk(sk)->nodelay == 1); 4941 if (put_user(len, optlen)) 4942 return -EFAULT; 4943 if (copy_to_user(optval, &val, len)) 4944 return -EFAULT; 4945 return 0; 4946 } 4947 4948 /* 4949 * 4950 * 7.1.1 SCTP_RTOINFO 4951 * 4952 * The protocol parameters used to initialize and bound retransmission 4953 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4954 * and modify these parameters. 4955 * All parameters are time values, in milliseconds. A value of 0, when 4956 * modifying the parameters, indicates that the current value should not 4957 * be changed. 4958 * 4959 */ 4960 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4961 char __user *optval, 4962 int __user *optlen) { 4963 struct sctp_rtoinfo rtoinfo; 4964 struct sctp_association *asoc; 4965 4966 if (len < sizeof (struct sctp_rtoinfo)) 4967 return -EINVAL; 4968 4969 len = sizeof(struct sctp_rtoinfo); 4970 4971 if (copy_from_user(&rtoinfo, optval, len)) 4972 return -EFAULT; 4973 4974 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4975 4976 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4977 return -EINVAL; 4978 4979 /* Values corresponding to the specific association. */ 4980 if (asoc) { 4981 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4982 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4983 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4984 } else { 4985 /* Values corresponding to the endpoint. */ 4986 struct sctp_sock *sp = sctp_sk(sk); 4987 4988 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4989 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4990 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4991 } 4992 4993 if (put_user(len, optlen)) 4994 return -EFAULT; 4995 4996 if (copy_to_user(optval, &rtoinfo, len)) 4997 return -EFAULT; 4998 4999 return 0; 5000 } 5001 5002 /* 5003 * 5004 * 7.1.2 SCTP_ASSOCINFO 5005 * 5006 * This option is used to tune the maximum retransmission attempts 5007 * of the association. 5008 * Returns an error if the new association retransmission value is 5009 * greater than the sum of the retransmission value of the peer. 5010 * See [SCTP] for more information. 5011 * 5012 */ 5013 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5014 char __user *optval, 5015 int __user *optlen) 5016 { 5017 5018 struct sctp_assocparams assocparams; 5019 struct sctp_association *asoc; 5020 struct list_head *pos; 5021 int cnt = 0; 5022 5023 if (len < sizeof (struct sctp_assocparams)) 5024 return -EINVAL; 5025 5026 len = sizeof(struct sctp_assocparams); 5027 5028 if (copy_from_user(&assocparams, optval, len)) 5029 return -EFAULT; 5030 5031 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5032 5033 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5034 return -EINVAL; 5035 5036 /* Values correspoinding to the specific association */ 5037 if (asoc) { 5038 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5039 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5040 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5041 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5042 * 1000) + 5043 (asoc->cookie_life.tv_usec 5044 / 1000); 5045 5046 list_for_each(pos, &asoc->peer.transport_addr_list) { 5047 cnt ++; 5048 } 5049 5050 assocparams.sasoc_number_peer_destinations = cnt; 5051 } else { 5052 /* Values corresponding to the endpoint */ 5053 struct sctp_sock *sp = sctp_sk(sk); 5054 5055 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5056 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5057 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5058 assocparams.sasoc_cookie_life = 5059 sp->assocparams.sasoc_cookie_life; 5060 assocparams.sasoc_number_peer_destinations = 5061 sp->assocparams. 5062 sasoc_number_peer_destinations; 5063 } 5064 5065 if (put_user(len, optlen)) 5066 return -EFAULT; 5067 5068 if (copy_to_user(optval, &assocparams, len)) 5069 return -EFAULT; 5070 5071 return 0; 5072 } 5073 5074 /* 5075 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5076 * 5077 * This socket option is a boolean flag which turns on or off mapped V4 5078 * addresses. If this option is turned on and the socket is type 5079 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5080 * If this option is turned off, then no mapping will be done of V4 5081 * addresses and a user will receive both PF_INET6 and PF_INET type 5082 * addresses on the socket. 5083 */ 5084 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5085 char __user *optval, int __user *optlen) 5086 { 5087 int val; 5088 struct sctp_sock *sp = sctp_sk(sk); 5089 5090 if (len < sizeof(int)) 5091 return -EINVAL; 5092 5093 len = sizeof(int); 5094 val = sp->v4mapped; 5095 if (put_user(len, optlen)) 5096 return -EFAULT; 5097 if (copy_to_user(optval, &val, len)) 5098 return -EFAULT; 5099 5100 return 0; 5101 } 5102 5103 /* 5104 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5105 * (chapter and verse is quoted at sctp_setsockopt_context()) 5106 */ 5107 static int sctp_getsockopt_context(struct sock *sk, int len, 5108 char __user *optval, int __user *optlen) 5109 { 5110 struct sctp_assoc_value params; 5111 struct sctp_sock *sp; 5112 struct sctp_association *asoc; 5113 5114 if (len < sizeof(struct sctp_assoc_value)) 5115 return -EINVAL; 5116 5117 len = sizeof(struct sctp_assoc_value); 5118 5119 if (copy_from_user(¶ms, optval, len)) 5120 return -EFAULT; 5121 5122 sp = sctp_sk(sk); 5123 5124 if (params.assoc_id != 0) { 5125 asoc = sctp_id2assoc(sk, params.assoc_id); 5126 if (!asoc) 5127 return -EINVAL; 5128 params.assoc_value = asoc->default_rcv_context; 5129 } else { 5130 params.assoc_value = sp->default_rcv_context; 5131 } 5132 5133 if (put_user(len, optlen)) 5134 return -EFAULT; 5135 if (copy_to_user(optval, ¶ms, len)) 5136 return -EFAULT; 5137 5138 return 0; 5139 } 5140 5141 /* 5142 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5143 * This option will get or set the maximum size to put in any outgoing 5144 * SCTP DATA chunk. If a message is larger than this size it will be 5145 * fragmented by SCTP into the specified size. Note that the underlying 5146 * SCTP implementation may fragment into smaller sized chunks when the 5147 * PMTU of the underlying association is smaller than the value set by 5148 * the user. The default value for this option is '0' which indicates 5149 * the user is NOT limiting fragmentation and only the PMTU will effect 5150 * SCTP's choice of DATA chunk size. Note also that values set larger 5151 * than the maximum size of an IP datagram will effectively let SCTP 5152 * control fragmentation (i.e. the same as setting this option to 0). 5153 * 5154 * The following structure is used to access and modify this parameter: 5155 * 5156 * struct sctp_assoc_value { 5157 * sctp_assoc_t assoc_id; 5158 * uint32_t assoc_value; 5159 * }; 5160 * 5161 * assoc_id: This parameter is ignored for one-to-one style sockets. 5162 * For one-to-many style sockets this parameter indicates which 5163 * association the user is performing an action upon. Note that if 5164 * this field's value is zero then the endpoints default value is 5165 * changed (effecting future associations only). 5166 * assoc_value: This parameter specifies the maximum size in bytes. 5167 */ 5168 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5169 char __user *optval, int __user *optlen) 5170 { 5171 struct sctp_assoc_value params; 5172 struct sctp_association *asoc; 5173 5174 if (len == sizeof(int)) { 5175 pr_warn("Use of int in maxseg socket option deprecated\n"); 5176 pr_warn("Use struct sctp_assoc_value instead\n"); 5177 params.assoc_id = 0; 5178 } else if (len >= sizeof(struct sctp_assoc_value)) { 5179 len = sizeof(struct sctp_assoc_value); 5180 if (copy_from_user(¶ms, optval, sizeof(params))) 5181 return -EFAULT; 5182 } else 5183 return -EINVAL; 5184 5185 asoc = sctp_id2assoc(sk, params.assoc_id); 5186 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5187 return -EINVAL; 5188 5189 if (asoc) 5190 params.assoc_value = asoc->frag_point; 5191 else 5192 params.assoc_value = sctp_sk(sk)->user_frag; 5193 5194 if (put_user(len, optlen)) 5195 return -EFAULT; 5196 if (len == sizeof(int)) { 5197 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5198 return -EFAULT; 5199 } else { 5200 if (copy_to_user(optval, ¶ms, len)) 5201 return -EFAULT; 5202 } 5203 5204 return 0; 5205 } 5206 5207 /* 5208 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5209 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5210 */ 5211 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5212 char __user *optval, int __user *optlen) 5213 { 5214 int val; 5215 5216 if (len < sizeof(int)) 5217 return -EINVAL; 5218 5219 len = sizeof(int); 5220 5221 val = sctp_sk(sk)->frag_interleave; 5222 if (put_user(len, optlen)) 5223 return -EFAULT; 5224 if (copy_to_user(optval, &val, len)) 5225 return -EFAULT; 5226 5227 return 0; 5228 } 5229 5230 /* 5231 * 7.1.25. Set or Get the sctp partial delivery point 5232 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5233 */ 5234 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5235 char __user *optval, 5236 int __user *optlen) 5237 { 5238 u32 val; 5239 5240 if (len < sizeof(u32)) 5241 return -EINVAL; 5242 5243 len = sizeof(u32); 5244 5245 val = sctp_sk(sk)->pd_point; 5246 if (put_user(len, optlen)) 5247 return -EFAULT; 5248 if (copy_to_user(optval, &val, len)) 5249 return -EFAULT; 5250 5251 return 0; 5252 } 5253 5254 /* 5255 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5256 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5257 */ 5258 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5259 char __user *optval, 5260 int __user *optlen) 5261 { 5262 struct sctp_assoc_value params; 5263 struct sctp_sock *sp; 5264 struct sctp_association *asoc; 5265 5266 if (len == sizeof(int)) { 5267 pr_warn("Use of int in max_burst socket option deprecated\n"); 5268 pr_warn("Use struct sctp_assoc_value instead\n"); 5269 params.assoc_id = 0; 5270 } else if (len >= sizeof(struct sctp_assoc_value)) { 5271 len = sizeof(struct sctp_assoc_value); 5272 if (copy_from_user(¶ms, optval, len)) 5273 return -EFAULT; 5274 } else 5275 return -EINVAL; 5276 5277 sp = sctp_sk(sk); 5278 5279 if (params.assoc_id != 0) { 5280 asoc = sctp_id2assoc(sk, params.assoc_id); 5281 if (!asoc) 5282 return -EINVAL; 5283 params.assoc_value = asoc->max_burst; 5284 } else 5285 params.assoc_value = sp->max_burst; 5286 5287 if (len == sizeof(int)) { 5288 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5289 return -EFAULT; 5290 } else { 5291 if (copy_to_user(optval, ¶ms, len)) 5292 return -EFAULT; 5293 } 5294 5295 return 0; 5296 5297 } 5298 5299 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5300 char __user *optval, int __user *optlen) 5301 { 5302 struct sctp_hmacalgo __user *p = (void __user *)optval; 5303 struct sctp_hmac_algo_param *hmacs; 5304 __u16 data_len = 0; 5305 u32 num_idents; 5306 5307 if (!sctp_auth_enable) 5308 return -EACCES; 5309 5310 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5311 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5312 5313 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5314 return -EINVAL; 5315 5316 len = sizeof(struct sctp_hmacalgo) + data_len; 5317 num_idents = data_len / sizeof(u16); 5318 5319 if (put_user(len, optlen)) 5320 return -EFAULT; 5321 if (put_user(num_idents, &p->shmac_num_idents)) 5322 return -EFAULT; 5323 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5324 return -EFAULT; 5325 return 0; 5326 } 5327 5328 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5329 char __user *optval, int __user *optlen) 5330 { 5331 struct sctp_authkeyid val; 5332 struct sctp_association *asoc; 5333 5334 if (!sctp_auth_enable) 5335 return -EACCES; 5336 5337 if (len < sizeof(struct sctp_authkeyid)) 5338 return -EINVAL; 5339 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5340 return -EFAULT; 5341 5342 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5343 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5344 return -EINVAL; 5345 5346 if (asoc) 5347 val.scact_keynumber = asoc->active_key_id; 5348 else 5349 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5350 5351 len = sizeof(struct sctp_authkeyid); 5352 if (put_user(len, optlen)) 5353 return -EFAULT; 5354 if (copy_to_user(optval, &val, len)) 5355 return -EFAULT; 5356 5357 return 0; 5358 } 5359 5360 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5361 char __user *optval, int __user *optlen) 5362 { 5363 struct sctp_authchunks __user *p = (void __user *)optval; 5364 struct sctp_authchunks val; 5365 struct sctp_association *asoc; 5366 struct sctp_chunks_param *ch; 5367 u32 num_chunks = 0; 5368 char __user *to; 5369 5370 if (!sctp_auth_enable) 5371 return -EACCES; 5372 5373 if (len < sizeof(struct sctp_authchunks)) 5374 return -EINVAL; 5375 5376 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5377 return -EFAULT; 5378 5379 to = p->gauth_chunks; 5380 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5381 if (!asoc) 5382 return -EINVAL; 5383 5384 ch = asoc->peer.peer_chunks; 5385 if (!ch) 5386 goto num; 5387 5388 /* See if the user provided enough room for all the data */ 5389 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5390 if (len < num_chunks) 5391 return -EINVAL; 5392 5393 if (copy_to_user(to, ch->chunks, num_chunks)) 5394 return -EFAULT; 5395 num: 5396 len = sizeof(struct sctp_authchunks) + num_chunks; 5397 if (put_user(len, optlen)) return -EFAULT; 5398 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5399 return -EFAULT; 5400 return 0; 5401 } 5402 5403 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5404 char __user *optval, int __user *optlen) 5405 { 5406 struct sctp_authchunks __user *p = (void __user *)optval; 5407 struct sctp_authchunks val; 5408 struct sctp_association *asoc; 5409 struct sctp_chunks_param *ch; 5410 u32 num_chunks = 0; 5411 char __user *to; 5412 5413 if (!sctp_auth_enable) 5414 return -EACCES; 5415 5416 if (len < sizeof(struct sctp_authchunks)) 5417 return -EINVAL; 5418 5419 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5420 return -EFAULT; 5421 5422 to = p->gauth_chunks; 5423 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5424 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5425 return -EINVAL; 5426 5427 if (asoc) 5428 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5429 else 5430 ch = sctp_sk(sk)->ep->auth_chunk_list; 5431 5432 if (!ch) 5433 goto num; 5434 5435 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5436 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5437 return -EINVAL; 5438 5439 if (copy_to_user(to, ch->chunks, num_chunks)) 5440 return -EFAULT; 5441 num: 5442 len = sizeof(struct sctp_authchunks) + num_chunks; 5443 if (put_user(len, optlen)) 5444 return -EFAULT; 5445 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5446 return -EFAULT; 5447 5448 return 0; 5449 } 5450 5451 /* 5452 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5453 * This option gets the current number of associations that are attached 5454 * to a one-to-many style socket. The option value is an uint32_t. 5455 */ 5456 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5457 char __user *optval, int __user *optlen) 5458 { 5459 struct sctp_sock *sp = sctp_sk(sk); 5460 struct sctp_association *asoc; 5461 u32 val = 0; 5462 5463 if (sctp_style(sk, TCP)) 5464 return -EOPNOTSUPP; 5465 5466 if (len < sizeof(u32)) 5467 return -EINVAL; 5468 5469 len = sizeof(u32); 5470 5471 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5472 val++; 5473 } 5474 5475 if (put_user(len, optlen)) 5476 return -EFAULT; 5477 if (copy_to_user(optval, &val, len)) 5478 return -EFAULT; 5479 5480 return 0; 5481 } 5482 5483 /* 5484 * 8.1.23 SCTP_AUTO_ASCONF 5485 * See the corresponding setsockopt entry as description 5486 */ 5487 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5488 char __user *optval, int __user *optlen) 5489 { 5490 int val = 0; 5491 5492 if (len < sizeof(int)) 5493 return -EINVAL; 5494 5495 len = sizeof(int); 5496 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5497 val = 1; 5498 if (put_user(len, optlen)) 5499 return -EFAULT; 5500 if (copy_to_user(optval, &val, len)) 5501 return -EFAULT; 5502 return 0; 5503 } 5504 5505 /* 5506 * 8.2.6. Get the Current Identifiers of Associations 5507 * (SCTP_GET_ASSOC_ID_LIST) 5508 * 5509 * This option gets the current list of SCTP association identifiers of 5510 * the SCTP associations handled by a one-to-many style socket. 5511 */ 5512 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5513 char __user *optval, int __user *optlen) 5514 { 5515 struct sctp_sock *sp = sctp_sk(sk); 5516 struct sctp_association *asoc; 5517 struct sctp_assoc_ids *ids; 5518 u32 num = 0; 5519 5520 if (sctp_style(sk, TCP)) 5521 return -EOPNOTSUPP; 5522 5523 if (len < sizeof(struct sctp_assoc_ids)) 5524 return -EINVAL; 5525 5526 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5527 num++; 5528 } 5529 5530 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5531 return -EINVAL; 5532 5533 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5534 5535 ids = kmalloc(len, GFP_KERNEL); 5536 if (unlikely(!ids)) 5537 return -ENOMEM; 5538 5539 ids->gaids_number_of_ids = num; 5540 num = 0; 5541 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5542 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5543 } 5544 5545 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5546 kfree(ids); 5547 return -EFAULT; 5548 } 5549 5550 kfree(ids); 5551 return 0; 5552 } 5553 5554 /* 5555 * SCTP_PEER_ADDR_THLDS 5556 * 5557 * This option allows us to fetch the partially failed threshold for one or all 5558 * transports in an association. See Section 6.1 of: 5559 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5560 */ 5561 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5562 char __user *optval, 5563 int len, 5564 int __user *optlen) 5565 { 5566 struct sctp_paddrthlds val; 5567 struct sctp_transport *trans; 5568 struct sctp_association *asoc; 5569 5570 if (len < sizeof(struct sctp_paddrthlds)) 5571 return -EINVAL; 5572 len = sizeof(struct sctp_paddrthlds); 5573 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5574 return -EFAULT; 5575 5576 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5577 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5578 if (!asoc) 5579 return -ENOENT; 5580 5581 val.spt_pathpfthld = asoc->pf_retrans; 5582 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5583 } else { 5584 trans = sctp_addr_id2transport(sk, &val.spt_address, 5585 val.spt_assoc_id); 5586 if (!trans) 5587 return -ENOENT; 5588 5589 val.spt_pathmaxrxt = trans->pathmaxrxt; 5590 val.spt_pathpfthld = trans->pf_retrans; 5591 } 5592 5593 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5594 return -EFAULT; 5595 5596 return 0; 5597 } 5598 5599 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5600 char __user *optval, int __user *optlen) 5601 { 5602 int retval = 0; 5603 int len; 5604 5605 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5606 sk, optname); 5607 5608 /* I can hardly begin to describe how wrong this is. This is 5609 * so broken as to be worse than useless. The API draft 5610 * REALLY is NOT helpful here... I am not convinced that the 5611 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5612 * are at all well-founded. 5613 */ 5614 if (level != SOL_SCTP) { 5615 struct sctp_af *af = sctp_sk(sk)->pf->af; 5616 5617 retval = af->getsockopt(sk, level, optname, optval, optlen); 5618 return retval; 5619 } 5620 5621 if (get_user(len, optlen)) 5622 return -EFAULT; 5623 5624 sctp_lock_sock(sk); 5625 5626 switch (optname) { 5627 case SCTP_STATUS: 5628 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5629 break; 5630 case SCTP_DISABLE_FRAGMENTS: 5631 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5632 optlen); 5633 break; 5634 case SCTP_EVENTS: 5635 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5636 break; 5637 case SCTP_AUTOCLOSE: 5638 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5639 break; 5640 case SCTP_SOCKOPT_PEELOFF: 5641 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5642 break; 5643 case SCTP_PEER_ADDR_PARAMS: 5644 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5645 optlen); 5646 break; 5647 case SCTP_DELAYED_SACK: 5648 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5649 optlen); 5650 break; 5651 case SCTP_INITMSG: 5652 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5653 break; 5654 case SCTP_GET_PEER_ADDRS: 5655 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5656 optlen); 5657 break; 5658 case SCTP_GET_LOCAL_ADDRS: 5659 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5660 optlen); 5661 break; 5662 case SCTP_SOCKOPT_CONNECTX3: 5663 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5664 break; 5665 case SCTP_DEFAULT_SEND_PARAM: 5666 retval = sctp_getsockopt_default_send_param(sk, len, 5667 optval, optlen); 5668 break; 5669 case SCTP_PRIMARY_ADDR: 5670 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5671 break; 5672 case SCTP_NODELAY: 5673 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5674 break; 5675 case SCTP_RTOINFO: 5676 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5677 break; 5678 case SCTP_ASSOCINFO: 5679 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5680 break; 5681 case SCTP_I_WANT_MAPPED_V4_ADDR: 5682 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5683 break; 5684 case SCTP_MAXSEG: 5685 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5686 break; 5687 case SCTP_GET_PEER_ADDR_INFO: 5688 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5689 optlen); 5690 break; 5691 case SCTP_ADAPTATION_LAYER: 5692 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5693 optlen); 5694 break; 5695 case SCTP_CONTEXT: 5696 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5697 break; 5698 case SCTP_FRAGMENT_INTERLEAVE: 5699 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5700 optlen); 5701 break; 5702 case SCTP_PARTIAL_DELIVERY_POINT: 5703 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5704 optlen); 5705 break; 5706 case SCTP_MAX_BURST: 5707 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5708 break; 5709 case SCTP_AUTH_KEY: 5710 case SCTP_AUTH_CHUNK: 5711 case SCTP_AUTH_DELETE_KEY: 5712 retval = -EOPNOTSUPP; 5713 break; 5714 case SCTP_HMAC_IDENT: 5715 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5716 break; 5717 case SCTP_AUTH_ACTIVE_KEY: 5718 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5719 break; 5720 case SCTP_PEER_AUTH_CHUNKS: 5721 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5722 optlen); 5723 break; 5724 case SCTP_LOCAL_AUTH_CHUNKS: 5725 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5726 optlen); 5727 break; 5728 case SCTP_GET_ASSOC_NUMBER: 5729 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5730 break; 5731 case SCTP_GET_ASSOC_ID_LIST: 5732 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5733 break; 5734 case SCTP_AUTO_ASCONF: 5735 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5736 break; 5737 case SCTP_PEER_ADDR_THLDS: 5738 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 5739 break; 5740 default: 5741 retval = -ENOPROTOOPT; 5742 break; 5743 } 5744 5745 sctp_release_sock(sk); 5746 return retval; 5747 } 5748 5749 static void sctp_hash(struct sock *sk) 5750 { 5751 /* STUB */ 5752 } 5753 5754 static void sctp_unhash(struct sock *sk) 5755 { 5756 /* STUB */ 5757 } 5758 5759 /* Check if port is acceptable. Possibly find first available port. 5760 * 5761 * The port hash table (contained in the 'global' SCTP protocol storage 5762 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5763 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5764 * list (the list number is the port number hashed out, so as you 5765 * would expect from a hash function, all the ports in a given list have 5766 * such a number that hashes out to the same list number; you were 5767 * expecting that, right?); so each list has a set of ports, with a 5768 * link to the socket (struct sock) that uses it, the port number and 5769 * a fastreuse flag (FIXME: NPI ipg). 5770 */ 5771 static struct sctp_bind_bucket *sctp_bucket_create( 5772 struct sctp_bind_hashbucket *head, unsigned short snum); 5773 5774 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5775 { 5776 struct sctp_bind_hashbucket *head; /* hash list */ 5777 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5778 struct hlist_node *node; 5779 unsigned short snum; 5780 int ret; 5781 5782 snum = ntohs(addr->v4.sin_port); 5783 5784 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5785 sctp_local_bh_disable(); 5786 5787 if (snum == 0) { 5788 /* Search for an available port. */ 5789 int low, high, remaining, index; 5790 unsigned int rover; 5791 5792 inet_get_local_port_range(&low, &high); 5793 remaining = (high - low) + 1; 5794 rover = net_random() % remaining + low; 5795 5796 do { 5797 rover++; 5798 if ((rover < low) || (rover > high)) 5799 rover = low; 5800 if (inet_is_reserved_local_port(rover)) 5801 continue; 5802 index = sctp_phashfn(rover); 5803 head = &sctp_port_hashtable[index]; 5804 sctp_spin_lock(&head->lock); 5805 sctp_for_each_hentry(pp, node, &head->chain) 5806 if (pp->port == rover) 5807 goto next; 5808 break; 5809 next: 5810 sctp_spin_unlock(&head->lock); 5811 } while (--remaining > 0); 5812 5813 /* Exhausted local port range during search? */ 5814 ret = 1; 5815 if (remaining <= 0) 5816 goto fail; 5817 5818 /* OK, here is the one we will use. HEAD (the port 5819 * hash table list entry) is non-NULL and we hold it's 5820 * mutex. 5821 */ 5822 snum = rover; 5823 } else { 5824 /* We are given an specific port number; we verify 5825 * that it is not being used. If it is used, we will 5826 * exahust the search in the hash list corresponding 5827 * to the port number (snum) - we detect that with the 5828 * port iterator, pp being NULL. 5829 */ 5830 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5831 sctp_spin_lock(&head->lock); 5832 sctp_for_each_hentry(pp, node, &head->chain) { 5833 if (pp->port == snum) 5834 goto pp_found; 5835 } 5836 } 5837 pp = NULL; 5838 goto pp_not_found; 5839 pp_found: 5840 if (!hlist_empty(&pp->owner)) { 5841 /* We had a port hash table hit - there is an 5842 * available port (pp != NULL) and it is being 5843 * used by other socket (pp->owner not empty); that other 5844 * socket is going to be sk2. 5845 */ 5846 int reuse = sk->sk_reuse; 5847 struct sock *sk2; 5848 5849 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5850 if (pp->fastreuse && sk->sk_reuse && 5851 sk->sk_state != SCTP_SS_LISTENING) 5852 goto success; 5853 5854 /* Run through the list of sockets bound to the port 5855 * (pp->port) [via the pointers bind_next and 5856 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5857 * we get the endpoint they describe and run through 5858 * the endpoint's list of IP (v4 or v6) addresses, 5859 * comparing each of the addresses with the address of 5860 * the socket sk. If we find a match, then that means 5861 * that this port/socket (sk) combination are already 5862 * in an endpoint. 5863 */ 5864 sk_for_each_bound(sk2, node, &pp->owner) { 5865 struct sctp_endpoint *ep2; 5866 ep2 = sctp_sk(sk2)->ep; 5867 5868 if (sk == sk2 || 5869 (reuse && sk2->sk_reuse && 5870 sk2->sk_state != SCTP_SS_LISTENING)) 5871 continue; 5872 5873 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5874 sctp_sk(sk2), sctp_sk(sk))) { 5875 ret = (long)sk2; 5876 goto fail_unlock; 5877 } 5878 } 5879 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5880 } 5881 pp_not_found: 5882 /* If there was a hash table miss, create a new port. */ 5883 ret = 1; 5884 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5885 goto fail_unlock; 5886 5887 /* In either case (hit or miss), make sure fastreuse is 1 only 5888 * if sk->sk_reuse is too (that is, if the caller requested 5889 * SO_REUSEADDR on this socket -sk-). 5890 */ 5891 if (hlist_empty(&pp->owner)) { 5892 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5893 pp->fastreuse = 1; 5894 else 5895 pp->fastreuse = 0; 5896 } else if (pp->fastreuse && 5897 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5898 pp->fastreuse = 0; 5899 5900 /* We are set, so fill up all the data in the hash table 5901 * entry, tie the socket list information with the rest of the 5902 * sockets FIXME: Blurry, NPI (ipg). 5903 */ 5904 success: 5905 if (!sctp_sk(sk)->bind_hash) { 5906 inet_sk(sk)->inet_num = snum; 5907 sk_add_bind_node(sk, &pp->owner); 5908 sctp_sk(sk)->bind_hash = pp; 5909 } 5910 ret = 0; 5911 5912 fail_unlock: 5913 sctp_spin_unlock(&head->lock); 5914 5915 fail: 5916 sctp_local_bh_enable(); 5917 return ret; 5918 } 5919 5920 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5921 * port is requested. 5922 */ 5923 static int sctp_get_port(struct sock *sk, unsigned short snum) 5924 { 5925 long ret; 5926 union sctp_addr addr; 5927 struct sctp_af *af = sctp_sk(sk)->pf->af; 5928 5929 /* Set up a dummy address struct from the sk. */ 5930 af->from_sk(&addr, sk); 5931 addr.v4.sin_port = htons(snum); 5932 5933 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5934 ret = sctp_get_port_local(sk, &addr); 5935 5936 return ret ? 1 : 0; 5937 } 5938 5939 /* 5940 * Move a socket to LISTENING state. 5941 */ 5942 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5943 { 5944 struct sctp_sock *sp = sctp_sk(sk); 5945 struct sctp_endpoint *ep = sp->ep; 5946 struct crypto_hash *tfm = NULL; 5947 5948 /* Allocate HMAC for generating cookie. */ 5949 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5950 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5951 if (IS_ERR(tfm)) { 5952 net_info_ratelimited("failed to load transform for %s: %ld\n", 5953 sctp_hmac_alg, PTR_ERR(tfm)); 5954 return -ENOSYS; 5955 } 5956 sctp_sk(sk)->hmac = tfm; 5957 } 5958 5959 /* 5960 * If a bind() or sctp_bindx() is not called prior to a listen() 5961 * call that allows new associations to be accepted, the system 5962 * picks an ephemeral port and will choose an address set equivalent 5963 * to binding with a wildcard address. 5964 * 5965 * This is not currently spelled out in the SCTP sockets 5966 * extensions draft, but follows the practice as seen in TCP 5967 * sockets. 5968 * 5969 */ 5970 sk->sk_state = SCTP_SS_LISTENING; 5971 if (!ep->base.bind_addr.port) { 5972 if (sctp_autobind(sk)) 5973 return -EAGAIN; 5974 } else { 5975 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5976 sk->sk_state = SCTP_SS_CLOSED; 5977 return -EADDRINUSE; 5978 } 5979 } 5980 5981 sk->sk_max_ack_backlog = backlog; 5982 sctp_hash_endpoint(ep); 5983 return 0; 5984 } 5985 5986 /* 5987 * 4.1.3 / 5.1.3 listen() 5988 * 5989 * By default, new associations are not accepted for UDP style sockets. 5990 * An application uses listen() to mark a socket as being able to 5991 * accept new associations. 5992 * 5993 * On TCP style sockets, applications use listen() to ready the SCTP 5994 * endpoint for accepting inbound associations. 5995 * 5996 * On both types of endpoints a backlog of '0' disables listening. 5997 * 5998 * Move a socket to LISTENING state. 5999 */ 6000 int sctp_inet_listen(struct socket *sock, int backlog) 6001 { 6002 struct sock *sk = sock->sk; 6003 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6004 int err = -EINVAL; 6005 6006 if (unlikely(backlog < 0)) 6007 return err; 6008 6009 sctp_lock_sock(sk); 6010 6011 /* Peeled-off sockets are not allowed to listen(). */ 6012 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6013 goto out; 6014 6015 if (sock->state != SS_UNCONNECTED) 6016 goto out; 6017 6018 /* If backlog is zero, disable listening. */ 6019 if (!backlog) { 6020 if (sctp_sstate(sk, CLOSED)) 6021 goto out; 6022 6023 err = 0; 6024 sctp_unhash_endpoint(ep); 6025 sk->sk_state = SCTP_SS_CLOSED; 6026 if (sk->sk_reuse) 6027 sctp_sk(sk)->bind_hash->fastreuse = 1; 6028 goto out; 6029 } 6030 6031 /* If we are already listening, just update the backlog */ 6032 if (sctp_sstate(sk, LISTENING)) 6033 sk->sk_max_ack_backlog = backlog; 6034 else { 6035 err = sctp_listen_start(sk, backlog); 6036 if (err) 6037 goto out; 6038 } 6039 6040 err = 0; 6041 out: 6042 sctp_release_sock(sk); 6043 return err; 6044 } 6045 6046 /* 6047 * This function is done by modeling the current datagram_poll() and the 6048 * tcp_poll(). Note that, based on these implementations, we don't 6049 * lock the socket in this function, even though it seems that, 6050 * ideally, locking or some other mechanisms can be used to ensure 6051 * the integrity of the counters (sndbuf and wmem_alloc) used 6052 * in this place. We assume that we don't need locks either until proven 6053 * otherwise. 6054 * 6055 * Another thing to note is that we include the Async I/O support 6056 * here, again, by modeling the current TCP/UDP code. We don't have 6057 * a good way to test with it yet. 6058 */ 6059 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6060 { 6061 struct sock *sk = sock->sk; 6062 struct sctp_sock *sp = sctp_sk(sk); 6063 unsigned int mask; 6064 6065 poll_wait(file, sk_sleep(sk), wait); 6066 6067 /* A TCP-style listening socket becomes readable when the accept queue 6068 * is not empty. 6069 */ 6070 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6071 return (!list_empty(&sp->ep->asocs)) ? 6072 (POLLIN | POLLRDNORM) : 0; 6073 6074 mask = 0; 6075 6076 /* Is there any exceptional events? */ 6077 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6078 mask |= POLLERR; 6079 if (sk->sk_shutdown & RCV_SHUTDOWN) 6080 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6081 if (sk->sk_shutdown == SHUTDOWN_MASK) 6082 mask |= POLLHUP; 6083 6084 /* Is it readable? Reconsider this code with TCP-style support. */ 6085 if (!skb_queue_empty(&sk->sk_receive_queue)) 6086 mask |= POLLIN | POLLRDNORM; 6087 6088 /* The association is either gone or not ready. */ 6089 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6090 return mask; 6091 6092 /* Is it writable? */ 6093 if (sctp_writeable(sk)) { 6094 mask |= POLLOUT | POLLWRNORM; 6095 } else { 6096 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6097 /* 6098 * Since the socket is not locked, the buffer 6099 * might be made available after the writeable check and 6100 * before the bit is set. This could cause a lost I/O 6101 * signal. tcp_poll() has a race breaker for this race 6102 * condition. Based on their implementation, we put 6103 * in the following code to cover it as well. 6104 */ 6105 if (sctp_writeable(sk)) 6106 mask |= POLLOUT | POLLWRNORM; 6107 } 6108 return mask; 6109 } 6110 6111 /******************************************************************** 6112 * 2nd Level Abstractions 6113 ********************************************************************/ 6114 6115 static struct sctp_bind_bucket *sctp_bucket_create( 6116 struct sctp_bind_hashbucket *head, unsigned short snum) 6117 { 6118 struct sctp_bind_bucket *pp; 6119 6120 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6121 if (pp) { 6122 SCTP_DBG_OBJCNT_INC(bind_bucket); 6123 pp->port = snum; 6124 pp->fastreuse = 0; 6125 INIT_HLIST_HEAD(&pp->owner); 6126 hlist_add_head(&pp->node, &head->chain); 6127 } 6128 return pp; 6129 } 6130 6131 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6132 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6133 { 6134 if (pp && hlist_empty(&pp->owner)) { 6135 __hlist_del(&pp->node); 6136 kmem_cache_free(sctp_bucket_cachep, pp); 6137 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6138 } 6139 } 6140 6141 /* Release this socket's reference to a local port. */ 6142 static inline void __sctp_put_port(struct sock *sk) 6143 { 6144 struct sctp_bind_hashbucket *head = 6145 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 6146 struct sctp_bind_bucket *pp; 6147 6148 sctp_spin_lock(&head->lock); 6149 pp = sctp_sk(sk)->bind_hash; 6150 __sk_del_bind_node(sk); 6151 sctp_sk(sk)->bind_hash = NULL; 6152 inet_sk(sk)->inet_num = 0; 6153 sctp_bucket_destroy(pp); 6154 sctp_spin_unlock(&head->lock); 6155 } 6156 6157 void sctp_put_port(struct sock *sk) 6158 { 6159 sctp_local_bh_disable(); 6160 __sctp_put_port(sk); 6161 sctp_local_bh_enable(); 6162 } 6163 6164 /* 6165 * The system picks an ephemeral port and choose an address set equivalent 6166 * to binding with a wildcard address. 6167 * One of those addresses will be the primary address for the association. 6168 * This automatically enables the multihoming capability of SCTP. 6169 */ 6170 static int sctp_autobind(struct sock *sk) 6171 { 6172 union sctp_addr autoaddr; 6173 struct sctp_af *af; 6174 __be16 port; 6175 6176 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6177 af = sctp_sk(sk)->pf->af; 6178 6179 port = htons(inet_sk(sk)->inet_num); 6180 af->inaddr_any(&autoaddr, port); 6181 6182 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6183 } 6184 6185 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6186 * 6187 * From RFC 2292 6188 * 4.2 The cmsghdr Structure * 6189 * 6190 * When ancillary data is sent or received, any number of ancillary data 6191 * objects can be specified by the msg_control and msg_controllen members of 6192 * the msghdr structure, because each object is preceded by 6193 * a cmsghdr structure defining the object's length (the cmsg_len member). 6194 * Historically Berkeley-derived implementations have passed only one object 6195 * at a time, but this API allows multiple objects to be 6196 * passed in a single call to sendmsg() or recvmsg(). The following example 6197 * shows two ancillary data objects in a control buffer. 6198 * 6199 * |<--------------------------- msg_controllen -------------------------->| 6200 * | | 6201 * 6202 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6203 * 6204 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6205 * | | | 6206 * 6207 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6208 * 6209 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6210 * | | | | | 6211 * 6212 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6213 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6214 * 6215 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6216 * 6217 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6218 * ^ 6219 * | 6220 * 6221 * msg_control 6222 * points here 6223 */ 6224 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6225 sctp_cmsgs_t *cmsgs) 6226 { 6227 struct cmsghdr *cmsg; 6228 struct msghdr *my_msg = (struct msghdr *)msg; 6229 6230 for (cmsg = CMSG_FIRSTHDR(msg); 6231 cmsg != NULL; 6232 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6233 if (!CMSG_OK(my_msg, cmsg)) 6234 return -EINVAL; 6235 6236 /* Should we parse this header or ignore? */ 6237 if (cmsg->cmsg_level != IPPROTO_SCTP) 6238 continue; 6239 6240 /* Strictly check lengths following example in SCM code. */ 6241 switch (cmsg->cmsg_type) { 6242 case SCTP_INIT: 6243 /* SCTP Socket API Extension 6244 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6245 * 6246 * This cmsghdr structure provides information for 6247 * initializing new SCTP associations with sendmsg(). 6248 * The SCTP_INITMSG socket option uses this same data 6249 * structure. This structure is not used for 6250 * recvmsg(). 6251 * 6252 * cmsg_level cmsg_type cmsg_data[] 6253 * ------------ ------------ ---------------------- 6254 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6255 */ 6256 if (cmsg->cmsg_len != 6257 CMSG_LEN(sizeof(struct sctp_initmsg))) 6258 return -EINVAL; 6259 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6260 break; 6261 6262 case SCTP_SNDRCV: 6263 /* SCTP Socket API Extension 6264 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6265 * 6266 * This cmsghdr structure specifies SCTP options for 6267 * sendmsg() and describes SCTP header information 6268 * about a received message through recvmsg(). 6269 * 6270 * cmsg_level cmsg_type cmsg_data[] 6271 * ------------ ------------ ---------------------- 6272 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6273 */ 6274 if (cmsg->cmsg_len != 6275 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6276 return -EINVAL; 6277 6278 cmsgs->info = 6279 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6280 6281 /* Minimally, validate the sinfo_flags. */ 6282 if (cmsgs->info->sinfo_flags & 6283 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6284 SCTP_ABORT | SCTP_EOF)) 6285 return -EINVAL; 6286 break; 6287 6288 default: 6289 return -EINVAL; 6290 } 6291 } 6292 return 0; 6293 } 6294 6295 /* 6296 * Wait for a packet.. 6297 * Note: This function is the same function as in core/datagram.c 6298 * with a few modifications to make lksctp work. 6299 */ 6300 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6301 { 6302 int error; 6303 DEFINE_WAIT(wait); 6304 6305 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6306 6307 /* Socket errors? */ 6308 error = sock_error(sk); 6309 if (error) 6310 goto out; 6311 6312 if (!skb_queue_empty(&sk->sk_receive_queue)) 6313 goto ready; 6314 6315 /* Socket shut down? */ 6316 if (sk->sk_shutdown & RCV_SHUTDOWN) 6317 goto out; 6318 6319 /* Sequenced packets can come disconnected. If so we report the 6320 * problem. 6321 */ 6322 error = -ENOTCONN; 6323 6324 /* Is there a good reason to think that we may receive some data? */ 6325 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6326 goto out; 6327 6328 /* Handle signals. */ 6329 if (signal_pending(current)) 6330 goto interrupted; 6331 6332 /* Let another process have a go. Since we are going to sleep 6333 * anyway. Note: This may cause odd behaviors if the message 6334 * does not fit in the user's buffer, but this seems to be the 6335 * only way to honor MSG_DONTWAIT realistically. 6336 */ 6337 sctp_release_sock(sk); 6338 *timeo_p = schedule_timeout(*timeo_p); 6339 sctp_lock_sock(sk); 6340 6341 ready: 6342 finish_wait(sk_sleep(sk), &wait); 6343 return 0; 6344 6345 interrupted: 6346 error = sock_intr_errno(*timeo_p); 6347 6348 out: 6349 finish_wait(sk_sleep(sk), &wait); 6350 *err = error; 6351 return error; 6352 } 6353 6354 /* Receive a datagram. 6355 * Note: This is pretty much the same routine as in core/datagram.c 6356 * with a few changes to make lksctp work. 6357 */ 6358 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6359 int noblock, int *err) 6360 { 6361 int error; 6362 struct sk_buff *skb; 6363 long timeo; 6364 6365 timeo = sock_rcvtimeo(sk, noblock); 6366 6367 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6368 timeo, MAX_SCHEDULE_TIMEOUT); 6369 6370 do { 6371 /* Again only user level code calls this function, 6372 * so nothing interrupt level 6373 * will suddenly eat the receive_queue. 6374 * 6375 * Look at current nfs client by the way... 6376 * However, this function was correct in any case. 8) 6377 */ 6378 if (flags & MSG_PEEK) { 6379 spin_lock_bh(&sk->sk_receive_queue.lock); 6380 skb = skb_peek(&sk->sk_receive_queue); 6381 if (skb) 6382 atomic_inc(&skb->users); 6383 spin_unlock_bh(&sk->sk_receive_queue.lock); 6384 } else { 6385 skb = skb_dequeue(&sk->sk_receive_queue); 6386 } 6387 6388 if (skb) 6389 return skb; 6390 6391 /* Caller is allowed not to check sk->sk_err before calling. */ 6392 error = sock_error(sk); 6393 if (error) 6394 goto no_packet; 6395 6396 if (sk->sk_shutdown & RCV_SHUTDOWN) 6397 break; 6398 6399 /* User doesn't want to wait. */ 6400 error = -EAGAIN; 6401 if (!timeo) 6402 goto no_packet; 6403 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6404 6405 return NULL; 6406 6407 no_packet: 6408 *err = error; 6409 return NULL; 6410 } 6411 6412 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6413 static void __sctp_write_space(struct sctp_association *asoc) 6414 { 6415 struct sock *sk = asoc->base.sk; 6416 struct socket *sock = sk->sk_socket; 6417 6418 if ((sctp_wspace(asoc) > 0) && sock) { 6419 if (waitqueue_active(&asoc->wait)) 6420 wake_up_interruptible(&asoc->wait); 6421 6422 if (sctp_writeable(sk)) { 6423 wait_queue_head_t *wq = sk_sleep(sk); 6424 6425 if (wq && waitqueue_active(wq)) 6426 wake_up_interruptible(wq); 6427 6428 /* Note that we try to include the Async I/O support 6429 * here by modeling from the current TCP/UDP code. 6430 * We have not tested with it yet. 6431 */ 6432 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6433 sock_wake_async(sock, 6434 SOCK_WAKE_SPACE, POLL_OUT); 6435 } 6436 } 6437 } 6438 6439 /* Do accounting for the sndbuf space. 6440 * Decrement the used sndbuf space of the corresponding association by the 6441 * data size which was just transmitted(freed). 6442 */ 6443 static void sctp_wfree(struct sk_buff *skb) 6444 { 6445 struct sctp_association *asoc; 6446 struct sctp_chunk *chunk; 6447 struct sock *sk; 6448 6449 /* Get the saved chunk pointer. */ 6450 chunk = *((struct sctp_chunk **)(skb->cb)); 6451 asoc = chunk->asoc; 6452 sk = asoc->base.sk; 6453 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6454 sizeof(struct sk_buff) + 6455 sizeof(struct sctp_chunk); 6456 6457 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6458 6459 /* 6460 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6461 */ 6462 sk->sk_wmem_queued -= skb->truesize; 6463 sk_mem_uncharge(sk, skb->truesize); 6464 6465 sock_wfree(skb); 6466 __sctp_write_space(asoc); 6467 6468 sctp_association_put(asoc); 6469 } 6470 6471 /* Do accounting for the receive space on the socket. 6472 * Accounting for the association is done in ulpevent.c 6473 * We set this as a destructor for the cloned data skbs so that 6474 * accounting is done at the correct time. 6475 */ 6476 void sctp_sock_rfree(struct sk_buff *skb) 6477 { 6478 struct sock *sk = skb->sk; 6479 struct sctp_ulpevent *event = sctp_skb2event(skb); 6480 6481 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6482 6483 /* 6484 * Mimic the behavior of sock_rfree 6485 */ 6486 sk_mem_uncharge(sk, event->rmem_len); 6487 } 6488 6489 6490 /* Helper function to wait for space in the sndbuf. */ 6491 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6492 size_t msg_len) 6493 { 6494 struct sock *sk = asoc->base.sk; 6495 int err = 0; 6496 long current_timeo = *timeo_p; 6497 DEFINE_WAIT(wait); 6498 6499 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6500 asoc, (long)(*timeo_p), msg_len); 6501 6502 /* Increment the association's refcnt. */ 6503 sctp_association_hold(asoc); 6504 6505 /* Wait on the association specific sndbuf space. */ 6506 for (;;) { 6507 prepare_to_wait_exclusive(&asoc->wait, &wait, 6508 TASK_INTERRUPTIBLE); 6509 if (!*timeo_p) 6510 goto do_nonblock; 6511 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6512 asoc->base.dead) 6513 goto do_error; 6514 if (signal_pending(current)) 6515 goto do_interrupted; 6516 if (msg_len <= sctp_wspace(asoc)) 6517 break; 6518 6519 /* Let another process have a go. Since we are going 6520 * to sleep anyway. 6521 */ 6522 sctp_release_sock(sk); 6523 current_timeo = schedule_timeout(current_timeo); 6524 BUG_ON(sk != asoc->base.sk); 6525 sctp_lock_sock(sk); 6526 6527 *timeo_p = current_timeo; 6528 } 6529 6530 out: 6531 finish_wait(&asoc->wait, &wait); 6532 6533 /* Release the association's refcnt. */ 6534 sctp_association_put(asoc); 6535 6536 return err; 6537 6538 do_error: 6539 err = -EPIPE; 6540 goto out; 6541 6542 do_interrupted: 6543 err = sock_intr_errno(*timeo_p); 6544 goto out; 6545 6546 do_nonblock: 6547 err = -EAGAIN; 6548 goto out; 6549 } 6550 6551 void sctp_data_ready(struct sock *sk, int len) 6552 { 6553 struct socket_wq *wq; 6554 6555 rcu_read_lock(); 6556 wq = rcu_dereference(sk->sk_wq); 6557 if (wq_has_sleeper(wq)) 6558 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6559 POLLRDNORM | POLLRDBAND); 6560 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6561 rcu_read_unlock(); 6562 } 6563 6564 /* If socket sndbuf has changed, wake up all per association waiters. */ 6565 void sctp_write_space(struct sock *sk) 6566 { 6567 struct sctp_association *asoc; 6568 6569 /* Wake up the tasks in each wait queue. */ 6570 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6571 __sctp_write_space(asoc); 6572 } 6573 } 6574 6575 /* Is there any sndbuf space available on the socket? 6576 * 6577 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6578 * associations on the same socket. For a UDP-style socket with 6579 * multiple associations, it is possible for it to be "unwriteable" 6580 * prematurely. I assume that this is acceptable because 6581 * a premature "unwriteable" is better than an accidental "writeable" which 6582 * would cause an unwanted block under certain circumstances. For the 1-1 6583 * UDP-style sockets or TCP-style sockets, this code should work. 6584 * - Daisy 6585 */ 6586 static int sctp_writeable(struct sock *sk) 6587 { 6588 int amt = 0; 6589 6590 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6591 if (amt < 0) 6592 amt = 0; 6593 return amt; 6594 } 6595 6596 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6597 * returns immediately with EINPROGRESS. 6598 */ 6599 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6600 { 6601 struct sock *sk = asoc->base.sk; 6602 int err = 0; 6603 long current_timeo = *timeo_p; 6604 DEFINE_WAIT(wait); 6605 6606 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6607 (long)(*timeo_p)); 6608 6609 /* Increment the association's refcnt. */ 6610 sctp_association_hold(asoc); 6611 6612 for (;;) { 6613 prepare_to_wait_exclusive(&asoc->wait, &wait, 6614 TASK_INTERRUPTIBLE); 6615 if (!*timeo_p) 6616 goto do_nonblock; 6617 if (sk->sk_shutdown & RCV_SHUTDOWN) 6618 break; 6619 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6620 asoc->base.dead) 6621 goto do_error; 6622 if (signal_pending(current)) 6623 goto do_interrupted; 6624 6625 if (sctp_state(asoc, ESTABLISHED)) 6626 break; 6627 6628 /* Let another process have a go. Since we are going 6629 * to sleep anyway. 6630 */ 6631 sctp_release_sock(sk); 6632 current_timeo = schedule_timeout(current_timeo); 6633 sctp_lock_sock(sk); 6634 6635 *timeo_p = current_timeo; 6636 } 6637 6638 out: 6639 finish_wait(&asoc->wait, &wait); 6640 6641 /* Release the association's refcnt. */ 6642 sctp_association_put(asoc); 6643 6644 return err; 6645 6646 do_error: 6647 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6648 err = -ETIMEDOUT; 6649 else 6650 err = -ECONNREFUSED; 6651 goto out; 6652 6653 do_interrupted: 6654 err = sock_intr_errno(*timeo_p); 6655 goto out; 6656 6657 do_nonblock: 6658 err = -EINPROGRESS; 6659 goto out; 6660 } 6661 6662 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6663 { 6664 struct sctp_endpoint *ep; 6665 int err = 0; 6666 DEFINE_WAIT(wait); 6667 6668 ep = sctp_sk(sk)->ep; 6669 6670 6671 for (;;) { 6672 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6673 TASK_INTERRUPTIBLE); 6674 6675 if (list_empty(&ep->asocs)) { 6676 sctp_release_sock(sk); 6677 timeo = schedule_timeout(timeo); 6678 sctp_lock_sock(sk); 6679 } 6680 6681 err = -EINVAL; 6682 if (!sctp_sstate(sk, LISTENING)) 6683 break; 6684 6685 err = 0; 6686 if (!list_empty(&ep->asocs)) 6687 break; 6688 6689 err = sock_intr_errno(timeo); 6690 if (signal_pending(current)) 6691 break; 6692 6693 err = -EAGAIN; 6694 if (!timeo) 6695 break; 6696 } 6697 6698 finish_wait(sk_sleep(sk), &wait); 6699 6700 return err; 6701 } 6702 6703 static void sctp_wait_for_close(struct sock *sk, long timeout) 6704 { 6705 DEFINE_WAIT(wait); 6706 6707 do { 6708 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6709 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6710 break; 6711 sctp_release_sock(sk); 6712 timeout = schedule_timeout(timeout); 6713 sctp_lock_sock(sk); 6714 } while (!signal_pending(current) && timeout); 6715 6716 finish_wait(sk_sleep(sk), &wait); 6717 } 6718 6719 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6720 { 6721 struct sk_buff *frag; 6722 6723 if (!skb->data_len) 6724 goto done; 6725 6726 /* Don't forget the fragments. */ 6727 skb_walk_frags(skb, frag) 6728 sctp_skb_set_owner_r_frag(frag, sk); 6729 6730 done: 6731 sctp_skb_set_owner_r(skb, sk); 6732 } 6733 6734 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6735 struct sctp_association *asoc) 6736 { 6737 struct inet_sock *inet = inet_sk(sk); 6738 struct inet_sock *newinet; 6739 6740 newsk->sk_type = sk->sk_type; 6741 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6742 newsk->sk_flags = sk->sk_flags; 6743 newsk->sk_no_check = sk->sk_no_check; 6744 newsk->sk_reuse = sk->sk_reuse; 6745 6746 newsk->sk_shutdown = sk->sk_shutdown; 6747 newsk->sk_destruct = inet_sock_destruct; 6748 newsk->sk_family = sk->sk_family; 6749 newsk->sk_protocol = IPPROTO_SCTP; 6750 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6751 newsk->sk_sndbuf = sk->sk_sndbuf; 6752 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6753 newsk->sk_lingertime = sk->sk_lingertime; 6754 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6755 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6756 6757 newinet = inet_sk(newsk); 6758 6759 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6760 * getsockname() and getpeername() 6761 */ 6762 newinet->inet_sport = inet->inet_sport; 6763 newinet->inet_saddr = inet->inet_saddr; 6764 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6765 newinet->inet_dport = htons(asoc->peer.port); 6766 newinet->pmtudisc = inet->pmtudisc; 6767 newinet->inet_id = asoc->next_tsn ^ jiffies; 6768 6769 newinet->uc_ttl = inet->uc_ttl; 6770 newinet->mc_loop = 1; 6771 newinet->mc_ttl = 1; 6772 newinet->mc_index = 0; 6773 newinet->mc_list = NULL; 6774 } 6775 6776 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6777 * and its messages to the newsk. 6778 */ 6779 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6780 struct sctp_association *assoc, 6781 sctp_socket_type_t type) 6782 { 6783 struct sctp_sock *oldsp = sctp_sk(oldsk); 6784 struct sctp_sock *newsp = sctp_sk(newsk); 6785 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6786 struct sctp_endpoint *newep = newsp->ep; 6787 struct sk_buff *skb, *tmp; 6788 struct sctp_ulpevent *event; 6789 struct sctp_bind_hashbucket *head; 6790 struct list_head tmplist; 6791 6792 /* Migrate socket buffer sizes and all the socket level options to the 6793 * new socket. 6794 */ 6795 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6796 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6797 /* Brute force copy old sctp opt. */ 6798 if (oldsp->do_auto_asconf) { 6799 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6800 inet_sk_copy_descendant(newsk, oldsk); 6801 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6802 } else 6803 inet_sk_copy_descendant(newsk, oldsk); 6804 6805 /* Restore the ep value that was overwritten with the above structure 6806 * copy. 6807 */ 6808 newsp->ep = newep; 6809 newsp->hmac = NULL; 6810 6811 /* Hook this new socket in to the bind_hash list. */ 6812 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6813 sctp_local_bh_disable(); 6814 sctp_spin_lock(&head->lock); 6815 pp = sctp_sk(oldsk)->bind_hash; 6816 sk_add_bind_node(newsk, &pp->owner); 6817 sctp_sk(newsk)->bind_hash = pp; 6818 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6819 sctp_spin_unlock(&head->lock); 6820 sctp_local_bh_enable(); 6821 6822 /* Copy the bind_addr list from the original endpoint to the new 6823 * endpoint so that we can handle restarts properly 6824 */ 6825 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6826 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6827 6828 /* Move any messages in the old socket's receive queue that are for the 6829 * peeled off association to the new socket's receive queue. 6830 */ 6831 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6832 event = sctp_skb2event(skb); 6833 if (event->asoc == assoc) { 6834 __skb_unlink(skb, &oldsk->sk_receive_queue); 6835 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6836 sctp_skb_set_owner_r_frag(skb, newsk); 6837 } 6838 } 6839 6840 /* Clean up any messages pending delivery due to partial 6841 * delivery. Three cases: 6842 * 1) No partial deliver; no work. 6843 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6844 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6845 */ 6846 skb_queue_head_init(&newsp->pd_lobby); 6847 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6848 6849 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6850 struct sk_buff_head *queue; 6851 6852 /* Decide which queue to move pd_lobby skbs to. */ 6853 if (assoc->ulpq.pd_mode) { 6854 queue = &newsp->pd_lobby; 6855 } else 6856 queue = &newsk->sk_receive_queue; 6857 6858 /* Walk through the pd_lobby, looking for skbs that 6859 * need moved to the new socket. 6860 */ 6861 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6862 event = sctp_skb2event(skb); 6863 if (event->asoc == assoc) { 6864 __skb_unlink(skb, &oldsp->pd_lobby); 6865 __skb_queue_tail(queue, skb); 6866 sctp_skb_set_owner_r_frag(skb, newsk); 6867 } 6868 } 6869 6870 /* Clear up any skbs waiting for the partial 6871 * delivery to finish. 6872 */ 6873 if (assoc->ulpq.pd_mode) 6874 sctp_clear_pd(oldsk, NULL); 6875 6876 } 6877 6878 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6879 sctp_skb_set_owner_r_frag(skb, newsk); 6880 6881 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6882 sctp_skb_set_owner_r_frag(skb, newsk); 6883 6884 /* Set the type of socket to indicate that it is peeled off from the 6885 * original UDP-style socket or created with the accept() call on a 6886 * TCP-style socket.. 6887 */ 6888 newsp->type = type; 6889 6890 /* Mark the new socket "in-use" by the user so that any packets 6891 * that may arrive on the association after we've moved it are 6892 * queued to the backlog. This prevents a potential race between 6893 * backlog processing on the old socket and new-packet processing 6894 * on the new socket. 6895 * 6896 * The caller has just allocated newsk so we can guarantee that other 6897 * paths won't try to lock it and then oldsk. 6898 */ 6899 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6900 sctp_assoc_migrate(assoc, newsk); 6901 6902 /* If the association on the newsk is already closed before accept() 6903 * is called, set RCV_SHUTDOWN flag. 6904 */ 6905 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6906 newsk->sk_shutdown |= RCV_SHUTDOWN; 6907 6908 newsk->sk_state = SCTP_SS_ESTABLISHED; 6909 sctp_release_sock(newsk); 6910 } 6911 6912 6913 /* This proto struct describes the ULP interface for SCTP. */ 6914 struct proto sctp_prot = { 6915 .name = "SCTP", 6916 .owner = THIS_MODULE, 6917 .close = sctp_close, 6918 .connect = sctp_connect, 6919 .disconnect = sctp_disconnect, 6920 .accept = sctp_accept, 6921 .ioctl = sctp_ioctl, 6922 .init = sctp_init_sock, 6923 .destroy = sctp_destroy_sock, 6924 .shutdown = sctp_shutdown, 6925 .setsockopt = sctp_setsockopt, 6926 .getsockopt = sctp_getsockopt, 6927 .sendmsg = sctp_sendmsg, 6928 .recvmsg = sctp_recvmsg, 6929 .bind = sctp_bind, 6930 .backlog_rcv = sctp_backlog_rcv, 6931 .hash = sctp_hash, 6932 .unhash = sctp_unhash, 6933 .get_port = sctp_get_port, 6934 .obj_size = sizeof(struct sctp_sock), 6935 .sysctl_mem = sysctl_sctp_mem, 6936 .sysctl_rmem = sysctl_sctp_rmem, 6937 .sysctl_wmem = sysctl_sctp_wmem, 6938 .memory_pressure = &sctp_memory_pressure, 6939 .enter_memory_pressure = sctp_enter_memory_pressure, 6940 .memory_allocated = &sctp_memory_allocated, 6941 .sockets_allocated = &sctp_sockets_allocated, 6942 }; 6943 6944 #if IS_ENABLED(CONFIG_IPV6) 6945 6946 struct proto sctpv6_prot = { 6947 .name = "SCTPv6", 6948 .owner = THIS_MODULE, 6949 .close = sctp_close, 6950 .connect = sctp_connect, 6951 .disconnect = sctp_disconnect, 6952 .accept = sctp_accept, 6953 .ioctl = sctp_ioctl, 6954 .init = sctp_init_sock, 6955 .destroy = sctp_destroy_sock, 6956 .shutdown = sctp_shutdown, 6957 .setsockopt = sctp_setsockopt, 6958 .getsockopt = sctp_getsockopt, 6959 .sendmsg = sctp_sendmsg, 6960 .recvmsg = sctp_recvmsg, 6961 .bind = sctp_bind, 6962 .backlog_rcv = sctp_backlog_rcv, 6963 .hash = sctp_hash, 6964 .unhash = sctp_unhash, 6965 .get_port = sctp_get_port, 6966 .obj_size = sizeof(struct sctp6_sock), 6967 .sysctl_mem = sysctl_sctp_mem, 6968 .sysctl_rmem = sysctl_sctp_rmem, 6969 .sysctl_wmem = sysctl_sctp_wmem, 6970 .memory_pressure = &sctp_memory_pressure, 6971 .enter_memory_pressure = sctp_enter_memory_pressure, 6972 .memory_allocated = &sctp_memory_allocated, 6973 .sockets_allocated = &sctp_sockets_allocated, 6974 }; 6975 #endif /* IS_ENABLED(CONFIG_IPV6) */ 6976