xref: /openbmc/linux/net/sctp/socket.c (revision 95e9fd10)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79 
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <linux/export.h>
82 #include <net/sock.h>
83 #include <net/sctp/sctp.h>
84 #include <net/sctp/sm.h>
85 
86 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
87  * any of the functions below as they are used to export functions
88  * used by a project regression testsuite.
89  */
90 
91 /* Forward declarations for internal helper functions. */
92 static int sctp_writeable(struct sock *sk);
93 static void sctp_wfree(struct sk_buff *skb);
94 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
95 				size_t msg_len);
96 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
97 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
98 static int sctp_wait_for_accept(struct sock *sk, long timeo);
99 static void sctp_wait_for_close(struct sock *sk, long timeo);
100 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
101 					union sctp_addr *addr, int len);
102 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
103 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf(struct sctp_association *asoc,
107 			    struct sctp_chunk *chunk);
108 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
109 static int sctp_autobind(struct sock *sk);
110 static void sctp_sock_migrate(struct sock *, struct sock *,
111 			      struct sctp_association *, sctp_socket_type_t);
112 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
113 
114 extern struct kmem_cache *sctp_bucket_cachep;
115 extern long sysctl_sctp_mem[3];
116 extern int sysctl_sctp_rmem[3];
117 extern int sysctl_sctp_wmem[3];
118 
119 static int sctp_memory_pressure;
120 static atomic_long_t sctp_memory_allocated;
121 struct percpu_counter sctp_sockets_allocated;
122 
123 static void sctp_enter_memory_pressure(struct sock *sk)
124 {
125 	sctp_memory_pressure = 1;
126 }
127 
128 
129 /* Get the sndbuf space available at the time on the association.  */
130 static inline int sctp_wspace(struct sctp_association *asoc)
131 {
132 	int amt;
133 
134 	if (asoc->ep->sndbuf_policy)
135 		amt = asoc->sndbuf_used;
136 	else
137 		amt = sk_wmem_alloc_get(asoc->base.sk);
138 
139 	if (amt >= asoc->base.sk->sk_sndbuf) {
140 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
141 			amt = 0;
142 		else {
143 			amt = sk_stream_wspace(asoc->base.sk);
144 			if (amt < 0)
145 				amt = 0;
146 		}
147 	} else {
148 		amt = asoc->base.sk->sk_sndbuf - amt;
149 	}
150 	return amt;
151 }
152 
153 /* Increment the used sndbuf space count of the corresponding association by
154  * the size of the outgoing data chunk.
155  * Also, set the skb destructor for sndbuf accounting later.
156  *
157  * Since it is always 1-1 between chunk and skb, and also a new skb is always
158  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
159  * destructor in the data chunk skb for the purpose of the sndbuf space
160  * tracking.
161  */
162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 {
164 	struct sctp_association *asoc = chunk->asoc;
165 	struct sock *sk = asoc->base.sk;
166 
167 	/* The sndbuf space is tracked per association.  */
168 	sctp_association_hold(asoc);
169 
170 	skb_set_owner_w(chunk->skb, sk);
171 
172 	chunk->skb->destructor = sctp_wfree;
173 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
174 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175 
176 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
177 				sizeof(struct sk_buff) +
178 				sizeof(struct sctp_chunk);
179 
180 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
181 	sk->sk_wmem_queued += chunk->skb->truesize;
182 	sk_mem_charge(sk, chunk->skb->truesize);
183 }
184 
185 /* Verify that this is a valid address. */
186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
187 				   int len)
188 {
189 	struct sctp_af *af;
190 
191 	/* Verify basic sockaddr. */
192 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
193 	if (!af)
194 		return -EINVAL;
195 
196 	/* Is this a valid SCTP address?  */
197 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
198 		return -EINVAL;
199 
200 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
201 		return -EINVAL;
202 
203 	return 0;
204 }
205 
206 /* Look up the association by its id.  If this is not a UDP-style
207  * socket, the ID field is always ignored.
208  */
209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 {
211 	struct sctp_association *asoc = NULL;
212 
213 	/* If this is not a UDP-style socket, assoc id should be ignored. */
214 	if (!sctp_style(sk, UDP)) {
215 		/* Return NULL if the socket state is not ESTABLISHED. It
216 		 * could be a TCP-style listening socket or a socket which
217 		 * hasn't yet called connect() to establish an association.
218 		 */
219 		if (!sctp_sstate(sk, ESTABLISHED))
220 			return NULL;
221 
222 		/* Get the first and the only association from the list. */
223 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
224 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
225 					  struct sctp_association, asocs);
226 		return asoc;
227 	}
228 
229 	/* Otherwise this is a UDP-style socket. */
230 	if (!id || (id == (sctp_assoc_t)-1))
231 		return NULL;
232 
233 	spin_lock_bh(&sctp_assocs_id_lock);
234 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
235 	spin_unlock_bh(&sctp_assocs_id_lock);
236 
237 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
238 		return NULL;
239 
240 	return asoc;
241 }
242 
243 /* Look up the transport from an address and an assoc id. If both address and
244  * id are specified, the associations matching the address and the id should be
245  * the same.
246  */
247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
248 					      struct sockaddr_storage *addr,
249 					      sctp_assoc_t id)
250 {
251 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
252 	struct sctp_transport *transport;
253 	union sctp_addr *laddr = (union sctp_addr *)addr;
254 
255 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
256 					       laddr,
257 					       &transport);
258 
259 	if (!addr_asoc)
260 		return NULL;
261 
262 	id_asoc = sctp_id2assoc(sk, id);
263 	if (id_asoc && (id_asoc != addr_asoc))
264 		return NULL;
265 
266 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
267 						(union sctp_addr *)addr);
268 
269 	return transport;
270 }
271 
272 /* API 3.1.2 bind() - UDP Style Syntax
273  * The syntax of bind() is,
274  *
275  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
276  *
277  *   sd      - the socket descriptor returned by socket().
278  *   addr    - the address structure (struct sockaddr_in or struct
279  *             sockaddr_in6 [RFC 2553]),
280  *   addr_len - the size of the address structure.
281  */
282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 {
284 	int retval = 0;
285 
286 	sctp_lock_sock(sk);
287 
288 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
289 			  sk, addr, addr_len);
290 
291 	/* Disallow binding twice. */
292 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
293 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
294 				      addr_len);
295 	else
296 		retval = -EINVAL;
297 
298 	sctp_release_sock(sk);
299 
300 	return retval;
301 }
302 
303 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304 
305 /* Verify this is a valid sockaddr. */
306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
307 					union sctp_addr *addr, int len)
308 {
309 	struct sctp_af *af;
310 
311 	/* Check minimum size.  */
312 	if (len < sizeof (struct sockaddr))
313 		return NULL;
314 
315 	/* V4 mapped address are really of AF_INET family */
316 	if (addr->sa.sa_family == AF_INET6 &&
317 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
318 		if (!opt->pf->af_supported(AF_INET, opt))
319 			return NULL;
320 	} else {
321 		/* Does this PF support this AF? */
322 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 			return NULL;
324 	}
325 
326 	/* If we get this far, af is valid. */
327 	af = sctp_get_af_specific(addr->sa.sa_family);
328 
329 	if (len < af->sockaddr_len)
330 		return NULL;
331 
332 	return af;
333 }
334 
335 /* Bind a local address either to an endpoint or to an association.  */
336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 {
338 	struct sctp_sock *sp = sctp_sk(sk);
339 	struct sctp_endpoint *ep = sp->ep;
340 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
341 	struct sctp_af *af;
342 	unsigned short snum;
343 	int ret = 0;
344 
345 	/* Common sockaddr verification. */
346 	af = sctp_sockaddr_af(sp, addr, len);
347 	if (!af) {
348 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
349 				  sk, addr, len);
350 		return -EINVAL;
351 	}
352 
353 	snum = ntohs(addr->v4.sin_port);
354 
355 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
356 				 ", port: %d, new port: %d, len: %d)\n",
357 				 sk,
358 				 addr,
359 				 bp->port, snum,
360 				 len);
361 
362 	/* PF specific bind() address verification. */
363 	if (!sp->pf->bind_verify(sp, addr))
364 		return -EADDRNOTAVAIL;
365 
366 	/* We must either be unbound, or bind to the same port.
367 	 * It's OK to allow 0 ports if we are already bound.
368 	 * We'll just inhert an already bound port in this case
369 	 */
370 	if (bp->port) {
371 		if (!snum)
372 			snum = bp->port;
373 		else if (snum != bp->port) {
374 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
375 				  " New port %d does not match existing port "
376 				  "%d.\n", snum, bp->port);
377 			return -EINVAL;
378 		}
379 	}
380 
381 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
382 		return -EACCES;
383 
384 	/* See if the address matches any of the addresses we may have
385 	 * already bound before checking against other endpoints.
386 	 */
387 	if (sctp_bind_addr_match(bp, addr, sp))
388 		return -EINVAL;
389 
390 	/* Make sure we are allowed to bind here.
391 	 * The function sctp_get_port_local() does duplicate address
392 	 * detection.
393 	 */
394 	addr->v4.sin_port = htons(snum);
395 	if ((ret = sctp_get_port_local(sk, addr))) {
396 		return -EADDRINUSE;
397 	}
398 
399 	/* Refresh ephemeral port.  */
400 	if (!bp->port)
401 		bp->port = inet_sk(sk)->inet_num;
402 
403 	/* Add the address to the bind address list.
404 	 * Use GFP_ATOMIC since BHs will be disabled.
405 	 */
406 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
407 
408 	/* Copy back into socket for getsockname() use. */
409 	if (!ret) {
410 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
411 		af->to_sk_saddr(addr, sk);
412 	}
413 
414 	return ret;
415 }
416 
417  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
418  *
419  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
420  * at any one time.  If a sender, after sending an ASCONF chunk, decides
421  * it needs to transfer another ASCONF Chunk, it MUST wait until the
422  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
423  * subsequent ASCONF. Note this restriction binds each side, so at any
424  * time two ASCONF may be in-transit on any given association (one sent
425  * from each endpoint).
426  */
427 static int sctp_send_asconf(struct sctp_association *asoc,
428 			    struct sctp_chunk *chunk)
429 {
430 	int		retval = 0;
431 
432 	/* If there is an outstanding ASCONF chunk, queue it for later
433 	 * transmission.
434 	 */
435 	if (asoc->addip_last_asconf) {
436 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
437 		goto out;
438 	}
439 
440 	/* Hold the chunk until an ASCONF_ACK is received. */
441 	sctp_chunk_hold(chunk);
442 	retval = sctp_primitive_ASCONF(asoc, chunk);
443 	if (retval)
444 		sctp_chunk_free(chunk);
445 	else
446 		asoc->addip_last_asconf = chunk;
447 
448 out:
449 	return retval;
450 }
451 
452 /* Add a list of addresses as bind addresses to local endpoint or
453  * association.
454  *
455  * Basically run through each address specified in the addrs/addrcnt
456  * array/length pair, determine if it is IPv6 or IPv4 and call
457  * sctp_do_bind() on it.
458  *
459  * If any of them fails, then the operation will be reversed and the
460  * ones that were added will be removed.
461  *
462  * Only sctp_setsockopt_bindx() is supposed to call this function.
463  */
464 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
465 {
466 	int cnt;
467 	int retval = 0;
468 	void *addr_buf;
469 	struct sockaddr *sa_addr;
470 	struct sctp_af *af;
471 
472 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
473 			  sk, addrs, addrcnt);
474 
475 	addr_buf = addrs;
476 	for (cnt = 0; cnt < addrcnt; cnt++) {
477 		/* The list may contain either IPv4 or IPv6 address;
478 		 * determine the address length for walking thru the list.
479 		 */
480 		sa_addr = addr_buf;
481 		af = sctp_get_af_specific(sa_addr->sa_family);
482 		if (!af) {
483 			retval = -EINVAL;
484 			goto err_bindx_add;
485 		}
486 
487 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
488 				      af->sockaddr_len);
489 
490 		addr_buf += af->sockaddr_len;
491 
492 err_bindx_add:
493 		if (retval < 0) {
494 			/* Failed. Cleanup the ones that have been added */
495 			if (cnt > 0)
496 				sctp_bindx_rem(sk, addrs, cnt);
497 			return retval;
498 		}
499 	}
500 
501 	return retval;
502 }
503 
504 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
505  * associations that are part of the endpoint indicating that a list of local
506  * addresses are added to the endpoint.
507  *
508  * If any of the addresses is already in the bind address list of the
509  * association, we do not send the chunk for that association.  But it will not
510  * affect other associations.
511  *
512  * Only sctp_setsockopt_bindx() is supposed to call this function.
513  */
514 static int sctp_send_asconf_add_ip(struct sock		*sk,
515 				   struct sockaddr	*addrs,
516 				   int 			addrcnt)
517 {
518 	struct sctp_sock		*sp;
519 	struct sctp_endpoint		*ep;
520 	struct sctp_association		*asoc;
521 	struct sctp_bind_addr		*bp;
522 	struct sctp_chunk		*chunk;
523 	struct sctp_sockaddr_entry	*laddr;
524 	union sctp_addr			*addr;
525 	union sctp_addr			saveaddr;
526 	void				*addr_buf;
527 	struct sctp_af			*af;
528 	struct list_head		*p;
529 	int 				i;
530 	int 				retval = 0;
531 
532 	if (!sctp_addip_enable)
533 		return retval;
534 
535 	sp = sctp_sk(sk);
536 	ep = sp->ep;
537 
538 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
539 			  __func__, sk, addrs, addrcnt);
540 
541 	list_for_each_entry(asoc, &ep->asocs, asocs) {
542 
543 		if (!asoc->peer.asconf_capable)
544 			continue;
545 
546 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
547 			continue;
548 
549 		if (!sctp_state(asoc, ESTABLISHED))
550 			continue;
551 
552 		/* Check if any address in the packed array of addresses is
553 		 * in the bind address list of the association. If so,
554 		 * do not send the asconf chunk to its peer, but continue with
555 		 * other associations.
556 		 */
557 		addr_buf = addrs;
558 		for (i = 0; i < addrcnt; i++) {
559 			addr = addr_buf;
560 			af = sctp_get_af_specific(addr->v4.sin_family);
561 			if (!af) {
562 				retval = -EINVAL;
563 				goto out;
564 			}
565 
566 			if (sctp_assoc_lookup_laddr(asoc, addr))
567 				break;
568 
569 			addr_buf += af->sockaddr_len;
570 		}
571 		if (i < addrcnt)
572 			continue;
573 
574 		/* Use the first valid address in bind addr list of
575 		 * association as Address Parameter of ASCONF CHUNK.
576 		 */
577 		bp = &asoc->base.bind_addr;
578 		p = bp->address_list.next;
579 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
580 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
581 						   addrcnt, SCTP_PARAM_ADD_IP);
582 		if (!chunk) {
583 			retval = -ENOMEM;
584 			goto out;
585 		}
586 
587 		/* Add the new addresses to the bind address list with
588 		 * use_as_src set to 0.
589 		 */
590 		addr_buf = addrs;
591 		for (i = 0; i < addrcnt; i++) {
592 			addr = addr_buf;
593 			af = sctp_get_af_specific(addr->v4.sin_family);
594 			memcpy(&saveaddr, addr, af->sockaddr_len);
595 			retval = sctp_add_bind_addr(bp, &saveaddr,
596 						    SCTP_ADDR_NEW, GFP_ATOMIC);
597 			addr_buf += af->sockaddr_len;
598 		}
599 		if (asoc->src_out_of_asoc_ok) {
600 			struct sctp_transport *trans;
601 
602 			list_for_each_entry(trans,
603 			    &asoc->peer.transport_addr_list, transports) {
604 				/* Clear the source and route cache */
605 				dst_release(trans->dst);
606 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
607 				    2*asoc->pathmtu, 4380));
608 				trans->ssthresh = asoc->peer.i.a_rwnd;
609 				trans->rto = asoc->rto_initial;
610 				trans->rtt = trans->srtt = trans->rttvar = 0;
611 				sctp_transport_route(trans, NULL,
612 				    sctp_sk(asoc->base.sk));
613 			}
614 		}
615 		retval = sctp_send_asconf(asoc, chunk);
616 	}
617 
618 out:
619 	return retval;
620 }
621 
622 /* Remove a list of addresses from bind addresses list.  Do not remove the
623  * last address.
624  *
625  * Basically run through each address specified in the addrs/addrcnt
626  * array/length pair, determine if it is IPv6 or IPv4 and call
627  * sctp_del_bind() on it.
628  *
629  * If any of them fails, then the operation will be reversed and the
630  * ones that were removed will be added back.
631  *
632  * At least one address has to be left; if only one address is
633  * available, the operation will return -EBUSY.
634  *
635  * Only sctp_setsockopt_bindx() is supposed to call this function.
636  */
637 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
638 {
639 	struct sctp_sock *sp = sctp_sk(sk);
640 	struct sctp_endpoint *ep = sp->ep;
641 	int cnt;
642 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
643 	int retval = 0;
644 	void *addr_buf;
645 	union sctp_addr *sa_addr;
646 	struct sctp_af *af;
647 
648 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
649 			  sk, addrs, addrcnt);
650 
651 	addr_buf = addrs;
652 	for (cnt = 0; cnt < addrcnt; cnt++) {
653 		/* If the bind address list is empty or if there is only one
654 		 * bind address, there is nothing more to be removed (we need
655 		 * at least one address here).
656 		 */
657 		if (list_empty(&bp->address_list) ||
658 		    (sctp_list_single_entry(&bp->address_list))) {
659 			retval = -EBUSY;
660 			goto err_bindx_rem;
661 		}
662 
663 		sa_addr = addr_buf;
664 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
665 		if (!af) {
666 			retval = -EINVAL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (!af->addr_valid(sa_addr, sp, NULL)) {
671 			retval = -EADDRNOTAVAIL;
672 			goto err_bindx_rem;
673 		}
674 
675 		if (sa_addr->v4.sin_port &&
676 		    sa_addr->v4.sin_port != htons(bp->port)) {
677 			retval = -EINVAL;
678 			goto err_bindx_rem;
679 		}
680 
681 		if (!sa_addr->v4.sin_port)
682 			sa_addr->v4.sin_port = htons(bp->port);
683 
684 		/* FIXME - There is probably a need to check if sk->sk_saddr and
685 		 * sk->sk_rcv_addr are currently set to one of the addresses to
686 		 * be removed. This is something which needs to be looked into
687 		 * when we are fixing the outstanding issues with multi-homing
688 		 * socket routing and failover schemes. Refer to comments in
689 		 * sctp_do_bind(). -daisy
690 		 */
691 		retval = sctp_del_bind_addr(bp, sa_addr);
692 
693 		addr_buf += af->sockaddr_len;
694 err_bindx_rem:
695 		if (retval < 0) {
696 			/* Failed. Add the ones that has been removed back */
697 			if (cnt > 0)
698 				sctp_bindx_add(sk, addrs, cnt);
699 			return retval;
700 		}
701 	}
702 
703 	return retval;
704 }
705 
706 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
707  * the associations that are part of the endpoint indicating that a list of
708  * local addresses are removed from the endpoint.
709  *
710  * If any of the addresses is already in the bind address list of the
711  * association, we do not send the chunk for that association.  But it will not
712  * affect other associations.
713  *
714  * Only sctp_setsockopt_bindx() is supposed to call this function.
715  */
716 static int sctp_send_asconf_del_ip(struct sock		*sk,
717 				   struct sockaddr	*addrs,
718 				   int			addrcnt)
719 {
720 	struct sctp_sock	*sp;
721 	struct sctp_endpoint	*ep;
722 	struct sctp_association	*asoc;
723 	struct sctp_transport	*transport;
724 	struct sctp_bind_addr	*bp;
725 	struct sctp_chunk	*chunk;
726 	union sctp_addr		*laddr;
727 	void			*addr_buf;
728 	struct sctp_af		*af;
729 	struct sctp_sockaddr_entry *saddr;
730 	int 			i;
731 	int 			retval = 0;
732 	int			stored = 0;
733 
734 	chunk = NULL;
735 	if (!sctp_addip_enable)
736 		return retval;
737 
738 	sp = sctp_sk(sk);
739 	ep = sp->ep;
740 
741 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
742 			  __func__, sk, addrs, addrcnt);
743 
744 	list_for_each_entry(asoc, &ep->asocs, asocs) {
745 
746 		if (!asoc->peer.asconf_capable)
747 			continue;
748 
749 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
750 			continue;
751 
752 		if (!sctp_state(asoc, ESTABLISHED))
753 			continue;
754 
755 		/* Check if any address in the packed array of addresses is
756 		 * not present in the bind address list of the association.
757 		 * If so, do not send the asconf chunk to its peer, but
758 		 * continue with other associations.
759 		 */
760 		addr_buf = addrs;
761 		for (i = 0; i < addrcnt; i++) {
762 			laddr = addr_buf;
763 			af = sctp_get_af_specific(laddr->v4.sin_family);
764 			if (!af) {
765 				retval = -EINVAL;
766 				goto out;
767 			}
768 
769 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
770 				break;
771 
772 			addr_buf += af->sockaddr_len;
773 		}
774 		if (i < addrcnt)
775 			continue;
776 
777 		/* Find one address in the association's bind address list
778 		 * that is not in the packed array of addresses. This is to
779 		 * make sure that we do not delete all the addresses in the
780 		 * association.
781 		 */
782 		bp = &asoc->base.bind_addr;
783 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
784 					       addrcnt, sp);
785 		if ((laddr == NULL) && (addrcnt == 1)) {
786 			if (asoc->asconf_addr_del_pending)
787 				continue;
788 			asoc->asconf_addr_del_pending =
789 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
790 			if (asoc->asconf_addr_del_pending == NULL) {
791 				retval = -ENOMEM;
792 				goto out;
793 			}
794 			asoc->asconf_addr_del_pending->sa.sa_family =
795 				    addrs->sa_family;
796 			asoc->asconf_addr_del_pending->v4.sin_port =
797 				    htons(bp->port);
798 			if (addrs->sa_family == AF_INET) {
799 				struct sockaddr_in *sin;
800 
801 				sin = (struct sockaddr_in *)addrs;
802 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
803 			} else if (addrs->sa_family == AF_INET6) {
804 				struct sockaddr_in6 *sin6;
805 
806 				sin6 = (struct sockaddr_in6 *)addrs;
807 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
808 			}
809 			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
810 			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
811 			    asoc->asconf_addr_del_pending);
812 			asoc->src_out_of_asoc_ok = 1;
813 			stored = 1;
814 			goto skip_mkasconf;
815 		}
816 
817 		/* We do not need RCU protection throughout this loop
818 		 * because this is done under a socket lock from the
819 		 * setsockopt call.
820 		 */
821 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
822 						   SCTP_PARAM_DEL_IP);
823 		if (!chunk) {
824 			retval = -ENOMEM;
825 			goto out;
826 		}
827 
828 skip_mkasconf:
829 		/* Reset use_as_src flag for the addresses in the bind address
830 		 * list that are to be deleted.
831 		 */
832 		addr_buf = addrs;
833 		for (i = 0; i < addrcnt; i++) {
834 			laddr = addr_buf;
835 			af = sctp_get_af_specific(laddr->v4.sin_family);
836 			list_for_each_entry(saddr, &bp->address_list, list) {
837 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
838 					saddr->state = SCTP_ADDR_DEL;
839 			}
840 			addr_buf += af->sockaddr_len;
841 		}
842 
843 		/* Update the route and saddr entries for all the transports
844 		 * as some of the addresses in the bind address list are
845 		 * about to be deleted and cannot be used as source addresses.
846 		 */
847 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
848 					transports) {
849 			dst_release(transport->dst);
850 			sctp_transport_route(transport, NULL,
851 					     sctp_sk(asoc->base.sk));
852 		}
853 
854 		if (stored)
855 			/* We don't need to transmit ASCONF */
856 			continue;
857 		retval = sctp_send_asconf(asoc, chunk);
858 	}
859 out:
860 	return retval;
861 }
862 
863 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
864 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
865 {
866 	struct sock *sk = sctp_opt2sk(sp);
867 	union sctp_addr *addr;
868 	struct sctp_af *af;
869 
870 	/* It is safe to write port space in caller. */
871 	addr = &addrw->a;
872 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
873 	af = sctp_get_af_specific(addr->sa.sa_family);
874 	if (!af)
875 		return -EINVAL;
876 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
877 		return -EINVAL;
878 
879 	if (addrw->state == SCTP_ADDR_NEW)
880 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
881 	else
882 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
883 }
884 
885 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
886  *
887  * API 8.1
888  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
889  *                int flags);
890  *
891  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
892  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
893  * or IPv6 addresses.
894  *
895  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
896  * Section 3.1.2 for this usage.
897  *
898  * addrs is a pointer to an array of one or more socket addresses. Each
899  * address is contained in its appropriate structure (i.e. struct
900  * sockaddr_in or struct sockaddr_in6) the family of the address type
901  * must be used to distinguish the address length (note that this
902  * representation is termed a "packed array" of addresses). The caller
903  * specifies the number of addresses in the array with addrcnt.
904  *
905  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
906  * -1, and sets errno to the appropriate error code.
907  *
908  * For SCTP, the port given in each socket address must be the same, or
909  * sctp_bindx() will fail, setting errno to EINVAL.
910  *
911  * The flags parameter is formed from the bitwise OR of zero or more of
912  * the following currently defined flags:
913  *
914  * SCTP_BINDX_ADD_ADDR
915  *
916  * SCTP_BINDX_REM_ADDR
917  *
918  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
919  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
920  * addresses from the association. The two flags are mutually exclusive;
921  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
922  * not remove all addresses from an association; sctp_bindx() will
923  * reject such an attempt with EINVAL.
924  *
925  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
926  * additional addresses with an endpoint after calling bind().  Or use
927  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
928  * socket is associated with so that no new association accepted will be
929  * associated with those addresses. If the endpoint supports dynamic
930  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
931  * endpoint to send the appropriate message to the peer to change the
932  * peers address lists.
933  *
934  * Adding and removing addresses from a connected association is
935  * optional functionality. Implementations that do not support this
936  * functionality should return EOPNOTSUPP.
937  *
938  * Basically do nothing but copying the addresses from user to kernel
939  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
940  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
941  * from userspace.
942  *
943  * We don't use copy_from_user() for optimization: we first do the
944  * sanity checks (buffer size -fast- and access check-healthy
945  * pointer); if all of those succeed, then we can alloc the memory
946  * (expensive operation) needed to copy the data to kernel. Then we do
947  * the copying without checking the user space area
948  * (__copy_from_user()).
949  *
950  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
951  * it.
952  *
953  * sk        The sk of the socket
954  * addrs     The pointer to the addresses in user land
955  * addrssize Size of the addrs buffer
956  * op        Operation to perform (add or remove, see the flags of
957  *           sctp_bindx)
958  *
959  * Returns 0 if ok, <0 errno code on error.
960  */
961 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
962 				      struct sockaddr __user *addrs,
963 				      int addrs_size, int op)
964 {
965 	struct sockaddr *kaddrs;
966 	int err;
967 	int addrcnt = 0;
968 	int walk_size = 0;
969 	struct sockaddr *sa_addr;
970 	void *addr_buf;
971 	struct sctp_af *af;
972 
973 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
974 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
975 
976 	if (unlikely(addrs_size <= 0))
977 		return -EINVAL;
978 
979 	/* Check the user passed a healthy pointer.  */
980 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
981 		return -EFAULT;
982 
983 	/* Alloc space for the address array in kernel memory.  */
984 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
985 	if (unlikely(!kaddrs))
986 		return -ENOMEM;
987 
988 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
989 		kfree(kaddrs);
990 		return -EFAULT;
991 	}
992 
993 	/* Walk through the addrs buffer and count the number of addresses. */
994 	addr_buf = kaddrs;
995 	while (walk_size < addrs_size) {
996 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
997 			kfree(kaddrs);
998 			return -EINVAL;
999 		}
1000 
1001 		sa_addr = addr_buf;
1002 		af = sctp_get_af_specific(sa_addr->sa_family);
1003 
1004 		/* If the address family is not supported or if this address
1005 		 * causes the address buffer to overflow return EINVAL.
1006 		 */
1007 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1008 			kfree(kaddrs);
1009 			return -EINVAL;
1010 		}
1011 		addrcnt++;
1012 		addr_buf += af->sockaddr_len;
1013 		walk_size += af->sockaddr_len;
1014 	}
1015 
1016 	/* Do the work. */
1017 	switch (op) {
1018 	case SCTP_BINDX_ADD_ADDR:
1019 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1020 		if (err)
1021 			goto out;
1022 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1023 		break;
1024 
1025 	case SCTP_BINDX_REM_ADDR:
1026 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1027 		if (err)
1028 			goto out;
1029 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1030 		break;
1031 
1032 	default:
1033 		err = -EINVAL;
1034 		break;
1035 	}
1036 
1037 out:
1038 	kfree(kaddrs);
1039 
1040 	return err;
1041 }
1042 
1043 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1044  *
1045  * Common routine for handling connect() and sctp_connectx().
1046  * Connect will come in with just a single address.
1047  */
1048 static int __sctp_connect(struct sock* sk,
1049 			  struct sockaddr *kaddrs,
1050 			  int addrs_size,
1051 			  sctp_assoc_t *assoc_id)
1052 {
1053 	struct sctp_sock *sp;
1054 	struct sctp_endpoint *ep;
1055 	struct sctp_association *asoc = NULL;
1056 	struct sctp_association *asoc2;
1057 	struct sctp_transport *transport;
1058 	union sctp_addr to;
1059 	struct sctp_af *af;
1060 	sctp_scope_t scope;
1061 	long timeo;
1062 	int err = 0;
1063 	int addrcnt = 0;
1064 	int walk_size = 0;
1065 	union sctp_addr *sa_addr = NULL;
1066 	void *addr_buf;
1067 	unsigned short port;
1068 	unsigned int f_flags = 0;
1069 
1070 	sp = sctp_sk(sk);
1071 	ep = sp->ep;
1072 
1073 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1074 	 * state - UDP-style peeled off socket or a TCP-style socket that
1075 	 * is already connected.
1076 	 * It cannot be done even on a TCP-style listening socket.
1077 	 */
1078 	if (sctp_sstate(sk, ESTABLISHED) ||
1079 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1080 		err = -EISCONN;
1081 		goto out_free;
1082 	}
1083 
1084 	/* Walk through the addrs buffer and count the number of addresses. */
1085 	addr_buf = kaddrs;
1086 	while (walk_size < addrs_size) {
1087 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1088 			err = -EINVAL;
1089 			goto out_free;
1090 		}
1091 
1092 		sa_addr = addr_buf;
1093 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1094 
1095 		/* If the address family is not supported or if this address
1096 		 * causes the address buffer to overflow return EINVAL.
1097 		 */
1098 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1099 			err = -EINVAL;
1100 			goto out_free;
1101 		}
1102 
1103 		port = ntohs(sa_addr->v4.sin_port);
1104 
1105 		/* Save current address so we can work with it */
1106 		memcpy(&to, sa_addr, af->sockaddr_len);
1107 
1108 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1109 		if (err)
1110 			goto out_free;
1111 
1112 		/* Make sure the destination port is correctly set
1113 		 * in all addresses.
1114 		 */
1115 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1116 			goto out_free;
1117 
1118 
1119 		/* Check if there already is a matching association on the
1120 		 * endpoint (other than the one created here).
1121 		 */
1122 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 		if (asoc2 && asoc2 != asoc) {
1124 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 				err = -EISCONN;
1126 			else
1127 				err = -EALREADY;
1128 			goto out_free;
1129 		}
1130 
1131 		/* If we could not find a matching association on the endpoint,
1132 		 * make sure that there is no peeled-off association matching
1133 		 * the peer address even on another socket.
1134 		 */
1135 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 			err = -EADDRNOTAVAIL;
1137 			goto out_free;
1138 		}
1139 
1140 		if (!asoc) {
1141 			/* If a bind() or sctp_bindx() is not called prior to
1142 			 * an sctp_connectx() call, the system picks an
1143 			 * ephemeral port and will choose an address set
1144 			 * equivalent to binding with a wildcard address.
1145 			 */
1146 			if (!ep->base.bind_addr.port) {
1147 				if (sctp_autobind(sk)) {
1148 					err = -EAGAIN;
1149 					goto out_free;
1150 				}
1151 			} else {
1152 				/*
1153 				 * If an unprivileged user inherits a 1-many
1154 				 * style socket with open associations on a
1155 				 * privileged port, it MAY be permitted to
1156 				 * accept new associations, but it SHOULD NOT
1157 				 * be permitted to open new associations.
1158 				 */
1159 				if (ep->base.bind_addr.port < PROT_SOCK &&
1160 				    !capable(CAP_NET_BIND_SERVICE)) {
1161 					err = -EACCES;
1162 					goto out_free;
1163 				}
1164 			}
1165 
1166 			scope = sctp_scope(&to);
1167 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 			if (!asoc) {
1169 				err = -ENOMEM;
1170 				goto out_free;
1171 			}
1172 
1173 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 							      GFP_KERNEL);
1175 			if (err < 0) {
1176 				goto out_free;
1177 			}
1178 
1179 		}
1180 
1181 		/* Prime the peer's transport structures.  */
1182 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 						SCTP_UNKNOWN);
1184 		if (!transport) {
1185 			err = -ENOMEM;
1186 			goto out_free;
1187 		}
1188 
1189 		addrcnt++;
1190 		addr_buf += af->sockaddr_len;
1191 		walk_size += af->sockaddr_len;
1192 	}
1193 
1194 	/* In case the user of sctp_connectx() wants an association
1195 	 * id back, assign one now.
1196 	 */
1197 	if (assoc_id) {
1198 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 		if (err < 0)
1200 			goto out_free;
1201 	}
1202 
1203 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1204 	if (err < 0) {
1205 		goto out_free;
1206 	}
1207 
1208 	/* Initialize sk's dport and daddr for getpeername() */
1209 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1211 	af->to_sk_daddr(sa_addr, sk);
1212 	sk->sk_err = 0;
1213 
1214 	/* in-kernel sockets don't generally have a file allocated to them
1215 	 * if all they do is call sock_create_kern().
1216 	 */
1217 	if (sk->sk_socket->file)
1218 		f_flags = sk->sk_socket->file->f_flags;
1219 
1220 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1221 
1222 	err = sctp_wait_for_connect(asoc, &timeo);
1223 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1224 		*assoc_id = asoc->assoc_id;
1225 
1226 	/* Don't free association on exit. */
1227 	asoc = NULL;
1228 
1229 out_free:
1230 
1231 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1232 			  " kaddrs: %p err: %d\n",
1233 			  asoc, kaddrs, err);
1234 	if (asoc) {
1235 		/* sctp_primitive_ASSOCIATE may have added this association
1236 		 * To the hash table, try to unhash it, just in case, its a noop
1237 		 * if it wasn't hashed so we're safe
1238 		 */
1239 		sctp_unhash_established(asoc);
1240 		sctp_association_free(asoc);
1241 	}
1242 	return err;
1243 }
1244 
1245 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1246  *
1247  * API 8.9
1248  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1249  * 			sctp_assoc_t *asoc);
1250  *
1251  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1252  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1253  * or IPv6 addresses.
1254  *
1255  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1256  * Section 3.1.2 for this usage.
1257  *
1258  * addrs is a pointer to an array of one or more socket addresses. Each
1259  * address is contained in its appropriate structure (i.e. struct
1260  * sockaddr_in or struct sockaddr_in6) the family of the address type
1261  * must be used to distengish the address length (note that this
1262  * representation is termed a "packed array" of addresses). The caller
1263  * specifies the number of addresses in the array with addrcnt.
1264  *
1265  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1266  * the association id of the new association.  On failure, sctp_connectx()
1267  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1268  * is not touched by the kernel.
1269  *
1270  * For SCTP, the port given in each socket address must be the same, or
1271  * sctp_connectx() will fail, setting errno to EINVAL.
1272  *
1273  * An application can use sctp_connectx to initiate an association with
1274  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1275  * allows a caller to specify multiple addresses at which a peer can be
1276  * reached.  The way the SCTP stack uses the list of addresses to set up
1277  * the association is implementation dependent.  This function only
1278  * specifies that the stack will try to make use of all the addresses in
1279  * the list when needed.
1280  *
1281  * Note that the list of addresses passed in is only used for setting up
1282  * the association.  It does not necessarily equal the set of addresses
1283  * the peer uses for the resulting association.  If the caller wants to
1284  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1285  * retrieve them after the association has been set up.
1286  *
1287  * Basically do nothing but copying the addresses from user to kernel
1288  * land and invoking either sctp_connectx(). This is used for tunneling
1289  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1290  *
1291  * We don't use copy_from_user() for optimization: we first do the
1292  * sanity checks (buffer size -fast- and access check-healthy
1293  * pointer); if all of those succeed, then we can alloc the memory
1294  * (expensive operation) needed to copy the data to kernel. Then we do
1295  * the copying without checking the user space area
1296  * (__copy_from_user()).
1297  *
1298  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1299  * it.
1300  *
1301  * sk        The sk of the socket
1302  * addrs     The pointer to the addresses in user land
1303  * addrssize Size of the addrs buffer
1304  *
1305  * Returns >=0 if ok, <0 errno code on error.
1306  */
1307 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1308 				      struct sockaddr __user *addrs,
1309 				      int addrs_size,
1310 				      sctp_assoc_t *assoc_id)
1311 {
1312 	int err = 0;
1313 	struct sockaddr *kaddrs;
1314 
1315 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1316 			  __func__, sk, addrs, addrs_size);
1317 
1318 	if (unlikely(addrs_size <= 0))
1319 		return -EINVAL;
1320 
1321 	/* Check the user passed a healthy pointer.  */
1322 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1323 		return -EFAULT;
1324 
1325 	/* Alloc space for the address array in kernel memory.  */
1326 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1327 	if (unlikely(!kaddrs))
1328 		return -ENOMEM;
1329 
1330 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1331 		err = -EFAULT;
1332 	} else {
1333 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1334 	}
1335 
1336 	kfree(kaddrs);
1337 
1338 	return err;
1339 }
1340 
1341 /*
1342  * This is an older interface.  It's kept for backward compatibility
1343  * to the option that doesn't provide association id.
1344  */
1345 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1346 				      struct sockaddr __user *addrs,
1347 				      int addrs_size)
1348 {
1349 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1350 }
1351 
1352 /*
1353  * New interface for the API.  The since the API is done with a socket
1354  * option, to make it simple we feed back the association id is as a return
1355  * indication to the call.  Error is always negative and association id is
1356  * always positive.
1357  */
1358 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1359 				      struct sockaddr __user *addrs,
1360 				      int addrs_size)
1361 {
1362 	sctp_assoc_t assoc_id = 0;
1363 	int err = 0;
1364 
1365 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1366 
1367 	if (err)
1368 		return err;
1369 	else
1370 		return assoc_id;
1371 }
1372 
1373 /*
1374  * New (hopefully final) interface for the API.
1375  * We use the sctp_getaddrs_old structure so that use-space library
1376  * can avoid any unnecessary allocations.   The only defferent part
1377  * is that we store the actual length of the address buffer into the
1378  * addrs_num structure member.  That way we can re-use the existing
1379  * code.
1380  */
1381 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1382 					char __user *optval,
1383 					int __user *optlen)
1384 {
1385 	struct sctp_getaddrs_old param;
1386 	sctp_assoc_t assoc_id = 0;
1387 	int err = 0;
1388 
1389 	if (len < sizeof(param))
1390 		return -EINVAL;
1391 
1392 	if (copy_from_user(&param, optval, sizeof(param)))
1393 		return -EFAULT;
1394 
1395 	err = __sctp_setsockopt_connectx(sk,
1396 			(struct sockaddr __user *)param.addrs,
1397 			param.addr_num, &assoc_id);
1398 
1399 	if (err == 0 || err == -EINPROGRESS) {
1400 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1401 			return -EFAULT;
1402 		if (put_user(sizeof(assoc_id), optlen))
1403 			return -EFAULT;
1404 	}
1405 
1406 	return err;
1407 }
1408 
1409 /* API 3.1.4 close() - UDP Style Syntax
1410  * Applications use close() to perform graceful shutdown (as described in
1411  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1412  * by a UDP-style socket.
1413  *
1414  * The syntax is
1415  *
1416  *   ret = close(int sd);
1417  *
1418  *   sd      - the socket descriptor of the associations to be closed.
1419  *
1420  * To gracefully shutdown a specific association represented by the
1421  * UDP-style socket, an application should use the sendmsg() call,
1422  * passing no user data, but including the appropriate flag in the
1423  * ancillary data (see Section xxxx).
1424  *
1425  * If sd in the close() call is a branched-off socket representing only
1426  * one association, the shutdown is performed on that association only.
1427  *
1428  * 4.1.6 close() - TCP Style Syntax
1429  *
1430  * Applications use close() to gracefully close down an association.
1431  *
1432  * The syntax is:
1433  *
1434  *    int close(int sd);
1435  *
1436  *      sd      - the socket descriptor of the association to be closed.
1437  *
1438  * After an application calls close() on a socket descriptor, no further
1439  * socket operations will succeed on that descriptor.
1440  *
1441  * API 7.1.4 SO_LINGER
1442  *
1443  * An application using the TCP-style socket can use this option to
1444  * perform the SCTP ABORT primitive.  The linger option structure is:
1445  *
1446  *  struct  linger {
1447  *     int     l_onoff;                // option on/off
1448  *     int     l_linger;               // linger time
1449  * };
1450  *
1451  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1452  * to 0, calling close() is the same as the ABORT primitive.  If the
1453  * value is set to a negative value, the setsockopt() call will return
1454  * an error.  If the value is set to a positive value linger_time, the
1455  * close() can be blocked for at most linger_time ms.  If the graceful
1456  * shutdown phase does not finish during this period, close() will
1457  * return but the graceful shutdown phase continues in the system.
1458  */
1459 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1460 {
1461 	struct sctp_endpoint *ep;
1462 	struct sctp_association *asoc;
1463 	struct list_head *pos, *temp;
1464 	unsigned int data_was_unread;
1465 
1466 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1467 
1468 	sctp_lock_sock(sk);
1469 	sk->sk_shutdown = SHUTDOWN_MASK;
1470 	sk->sk_state = SCTP_SS_CLOSING;
1471 
1472 	ep = sctp_sk(sk)->ep;
1473 
1474 	/* Clean up any skbs sitting on the receive queue.  */
1475 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1476 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1477 
1478 	/* Walk all associations on an endpoint.  */
1479 	list_for_each_safe(pos, temp, &ep->asocs) {
1480 		asoc = list_entry(pos, struct sctp_association, asocs);
1481 
1482 		if (sctp_style(sk, TCP)) {
1483 			/* A closed association can still be in the list if
1484 			 * it belongs to a TCP-style listening socket that is
1485 			 * not yet accepted. If so, free it. If not, send an
1486 			 * ABORT or SHUTDOWN based on the linger options.
1487 			 */
1488 			if (sctp_state(asoc, CLOSED)) {
1489 				sctp_unhash_established(asoc);
1490 				sctp_association_free(asoc);
1491 				continue;
1492 			}
1493 		}
1494 
1495 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1496 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1497 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1498 			struct sctp_chunk *chunk;
1499 
1500 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1501 			if (chunk)
1502 				sctp_primitive_ABORT(asoc, chunk);
1503 		} else
1504 			sctp_primitive_SHUTDOWN(asoc, NULL);
1505 	}
1506 
1507 	/* On a TCP-style socket, block for at most linger_time if set. */
1508 	if (sctp_style(sk, TCP) && timeout)
1509 		sctp_wait_for_close(sk, timeout);
1510 
1511 	/* This will run the backlog queue.  */
1512 	sctp_release_sock(sk);
1513 
1514 	/* Supposedly, no process has access to the socket, but
1515 	 * the net layers still may.
1516 	 */
1517 	sctp_local_bh_disable();
1518 	sctp_bh_lock_sock(sk);
1519 
1520 	/* Hold the sock, since sk_common_release() will put sock_put()
1521 	 * and we have just a little more cleanup.
1522 	 */
1523 	sock_hold(sk);
1524 	sk_common_release(sk);
1525 
1526 	sctp_bh_unlock_sock(sk);
1527 	sctp_local_bh_enable();
1528 
1529 	sock_put(sk);
1530 
1531 	SCTP_DBG_OBJCNT_DEC(sock);
1532 }
1533 
1534 /* Handle EPIPE error. */
1535 static int sctp_error(struct sock *sk, int flags, int err)
1536 {
1537 	if (err == -EPIPE)
1538 		err = sock_error(sk) ? : -EPIPE;
1539 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1540 		send_sig(SIGPIPE, current, 0);
1541 	return err;
1542 }
1543 
1544 /* API 3.1.3 sendmsg() - UDP Style Syntax
1545  *
1546  * An application uses sendmsg() and recvmsg() calls to transmit data to
1547  * and receive data from its peer.
1548  *
1549  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1550  *                  int flags);
1551  *
1552  *  socket  - the socket descriptor of the endpoint.
1553  *  message - pointer to the msghdr structure which contains a single
1554  *            user message and possibly some ancillary data.
1555  *
1556  *            See Section 5 for complete description of the data
1557  *            structures.
1558  *
1559  *  flags   - flags sent or received with the user message, see Section
1560  *            5 for complete description of the flags.
1561  *
1562  * Note:  This function could use a rewrite especially when explicit
1563  * connect support comes in.
1564  */
1565 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1566 
1567 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1568 
1569 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1570 			     struct msghdr *msg, size_t msg_len)
1571 {
1572 	struct sctp_sock *sp;
1573 	struct sctp_endpoint *ep;
1574 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1575 	struct sctp_transport *transport, *chunk_tp;
1576 	struct sctp_chunk *chunk;
1577 	union sctp_addr to;
1578 	struct sockaddr *msg_name = NULL;
1579 	struct sctp_sndrcvinfo default_sinfo;
1580 	struct sctp_sndrcvinfo *sinfo;
1581 	struct sctp_initmsg *sinit;
1582 	sctp_assoc_t associd = 0;
1583 	sctp_cmsgs_t cmsgs = { NULL };
1584 	int err;
1585 	sctp_scope_t scope;
1586 	long timeo;
1587 	__u16 sinfo_flags = 0;
1588 	struct sctp_datamsg *datamsg;
1589 	int msg_flags = msg->msg_flags;
1590 
1591 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1592 			  sk, msg, msg_len);
1593 
1594 	err = 0;
1595 	sp = sctp_sk(sk);
1596 	ep = sp->ep;
1597 
1598 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1599 
1600 	/* We cannot send a message over a TCP-style listening socket. */
1601 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1602 		err = -EPIPE;
1603 		goto out_nounlock;
1604 	}
1605 
1606 	/* Parse out the SCTP CMSGs.  */
1607 	err = sctp_msghdr_parse(msg, &cmsgs);
1608 
1609 	if (err) {
1610 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1611 		goto out_nounlock;
1612 	}
1613 
1614 	/* Fetch the destination address for this packet.  This
1615 	 * address only selects the association--it is not necessarily
1616 	 * the address we will send to.
1617 	 * For a peeled-off socket, msg_name is ignored.
1618 	 */
1619 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1620 		int msg_namelen = msg->msg_namelen;
1621 
1622 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1623 				       msg_namelen);
1624 		if (err)
1625 			return err;
1626 
1627 		if (msg_namelen > sizeof(to))
1628 			msg_namelen = sizeof(to);
1629 		memcpy(&to, msg->msg_name, msg_namelen);
1630 		msg_name = msg->msg_name;
1631 	}
1632 
1633 	sinfo = cmsgs.info;
1634 	sinit = cmsgs.init;
1635 
1636 	/* Did the user specify SNDRCVINFO?  */
1637 	if (sinfo) {
1638 		sinfo_flags = sinfo->sinfo_flags;
1639 		associd = sinfo->sinfo_assoc_id;
1640 	}
1641 
1642 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1643 			  msg_len, sinfo_flags);
1644 
1645 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1646 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1647 		err = -EINVAL;
1648 		goto out_nounlock;
1649 	}
1650 
1651 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1652 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1653 	 * If SCTP_ABORT is set, the message length could be non zero with
1654 	 * the msg_iov set to the user abort reason.
1655 	 */
1656 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1657 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1658 		err = -EINVAL;
1659 		goto out_nounlock;
1660 	}
1661 
1662 	/* If SCTP_ADDR_OVER is set, there must be an address
1663 	 * specified in msg_name.
1664 	 */
1665 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1666 		err = -EINVAL;
1667 		goto out_nounlock;
1668 	}
1669 
1670 	transport = NULL;
1671 
1672 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1673 
1674 	sctp_lock_sock(sk);
1675 
1676 	/* If a msg_name has been specified, assume this is to be used.  */
1677 	if (msg_name) {
1678 		/* Look for a matching association on the endpoint. */
1679 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1680 		if (!asoc) {
1681 			/* If we could not find a matching association on the
1682 			 * endpoint, make sure that it is not a TCP-style
1683 			 * socket that already has an association or there is
1684 			 * no peeled-off association on another socket.
1685 			 */
1686 			if ((sctp_style(sk, TCP) &&
1687 			     sctp_sstate(sk, ESTABLISHED)) ||
1688 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1689 				err = -EADDRNOTAVAIL;
1690 				goto out_unlock;
1691 			}
1692 		}
1693 	} else {
1694 		asoc = sctp_id2assoc(sk, associd);
1695 		if (!asoc) {
1696 			err = -EPIPE;
1697 			goto out_unlock;
1698 		}
1699 	}
1700 
1701 	if (asoc) {
1702 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1703 
1704 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1705 		 * socket that has an association in CLOSED state. This can
1706 		 * happen when an accepted socket has an association that is
1707 		 * already CLOSED.
1708 		 */
1709 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1710 			err = -EPIPE;
1711 			goto out_unlock;
1712 		}
1713 
1714 		if (sinfo_flags & SCTP_EOF) {
1715 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1716 					  asoc);
1717 			sctp_primitive_SHUTDOWN(asoc, NULL);
1718 			err = 0;
1719 			goto out_unlock;
1720 		}
1721 		if (sinfo_flags & SCTP_ABORT) {
1722 
1723 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1724 			if (!chunk) {
1725 				err = -ENOMEM;
1726 				goto out_unlock;
1727 			}
1728 
1729 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1730 			sctp_primitive_ABORT(asoc, chunk);
1731 			err = 0;
1732 			goto out_unlock;
1733 		}
1734 	}
1735 
1736 	/* Do we need to create the association?  */
1737 	if (!asoc) {
1738 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1739 
1740 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1741 			err = -EINVAL;
1742 			goto out_unlock;
1743 		}
1744 
1745 		/* Check for invalid stream against the stream counts,
1746 		 * either the default or the user specified stream counts.
1747 		 */
1748 		if (sinfo) {
1749 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1750 				/* Check against the defaults. */
1751 				if (sinfo->sinfo_stream >=
1752 				    sp->initmsg.sinit_num_ostreams) {
1753 					err = -EINVAL;
1754 					goto out_unlock;
1755 				}
1756 			} else {
1757 				/* Check against the requested.  */
1758 				if (sinfo->sinfo_stream >=
1759 				    sinit->sinit_num_ostreams) {
1760 					err = -EINVAL;
1761 					goto out_unlock;
1762 				}
1763 			}
1764 		}
1765 
1766 		/*
1767 		 * API 3.1.2 bind() - UDP Style Syntax
1768 		 * If a bind() or sctp_bindx() is not called prior to a
1769 		 * sendmsg() call that initiates a new association, the
1770 		 * system picks an ephemeral port and will choose an address
1771 		 * set equivalent to binding with a wildcard address.
1772 		 */
1773 		if (!ep->base.bind_addr.port) {
1774 			if (sctp_autobind(sk)) {
1775 				err = -EAGAIN;
1776 				goto out_unlock;
1777 			}
1778 		} else {
1779 			/*
1780 			 * If an unprivileged user inherits a one-to-many
1781 			 * style socket with open associations on a privileged
1782 			 * port, it MAY be permitted to accept new associations,
1783 			 * but it SHOULD NOT be permitted to open new
1784 			 * associations.
1785 			 */
1786 			if (ep->base.bind_addr.port < PROT_SOCK &&
1787 			    !capable(CAP_NET_BIND_SERVICE)) {
1788 				err = -EACCES;
1789 				goto out_unlock;
1790 			}
1791 		}
1792 
1793 		scope = sctp_scope(&to);
1794 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1795 		if (!new_asoc) {
1796 			err = -ENOMEM;
1797 			goto out_unlock;
1798 		}
1799 		asoc = new_asoc;
1800 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1801 		if (err < 0) {
1802 			err = -ENOMEM;
1803 			goto out_free;
1804 		}
1805 
1806 		/* If the SCTP_INIT ancillary data is specified, set all
1807 		 * the association init values accordingly.
1808 		 */
1809 		if (sinit) {
1810 			if (sinit->sinit_num_ostreams) {
1811 				asoc->c.sinit_num_ostreams =
1812 					sinit->sinit_num_ostreams;
1813 			}
1814 			if (sinit->sinit_max_instreams) {
1815 				asoc->c.sinit_max_instreams =
1816 					sinit->sinit_max_instreams;
1817 			}
1818 			if (sinit->sinit_max_attempts) {
1819 				asoc->max_init_attempts
1820 					= sinit->sinit_max_attempts;
1821 			}
1822 			if (sinit->sinit_max_init_timeo) {
1823 				asoc->max_init_timeo =
1824 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1825 			}
1826 		}
1827 
1828 		/* Prime the peer's transport structures.  */
1829 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1830 		if (!transport) {
1831 			err = -ENOMEM;
1832 			goto out_free;
1833 		}
1834 	}
1835 
1836 	/* ASSERT: we have a valid association at this point.  */
1837 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1838 
1839 	if (!sinfo) {
1840 		/* If the user didn't specify SNDRCVINFO, make up one with
1841 		 * some defaults.
1842 		 */
1843 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1844 		default_sinfo.sinfo_stream = asoc->default_stream;
1845 		default_sinfo.sinfo_flags = asoc->default_flags;
1846 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1847 		default_sinfo.sinfo_context = asoc->default_context;
1848 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1849 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1850 		sinfo = &default_sinfo;
1851 	}
1852 
1853 	/* API 7.1.7, the sndbuf size per association bounds the
1854 	 * maximum size of data that can be sent in a single send call.
1855 	 */
1856 	if (msg_len > sk->sk_sndbuf) {
1857 		err = -EMSGSIZE;
1858 		goto out_free;
1859 	}
1860 
1861 	if (asoc->pmtu_pending)
1862 		sctp_assoc_pending_pmtu(sk, asoc);
1863 
1864 	/* If fragmentation is disabled and the message length exceeds the
1865 	 * association fragmentation point, return EMSGSIZE.  The I-D
1866 	 * does not specify what this error is, but this looks like
1867 	 * a great fit.
1868 	 */
1869 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1870 		err = -EMSGSIZE;
1871 		goto out_free;
1872 	}
1873 
1874 	/* Check for invalid stream. */
1875 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1876 		err = -EINVAL;
1877 		goto out_free;
1878 	}
1879 
1880 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 	if (!sctp_wspace(asoc)) {
1882 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1883 		if (err)
1884 			goto out_free;
1885 	}
1886 
1887 	/* If an address is passed with the sendto/sendmsg call, it is used
1888 	 * to override the primary destination address in the TCP model, or
1889 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1890 	 */
1891 	if ((sctp_style(sk, TCP) && msg_name) ||
1892 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1893 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1894 		if (!chunk_tp) {
1895 			err = -EINVAL;
1896 			goto out_free;
1897 		}
1898 	} else
1899 		chunk_tp = NULL;
1900 
1901 	/* Auto-connect, if we aren't connected already. */
1902 	if (sctp_state(asoc, CLOSED)) {
1903 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1904 		if (err < 0)
1905 			goto out_free;
1906 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1907 	}
1908 
1909 	/* Break the message into multiple chunks of maximum size. */
1910 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1911 	if (!datamsg) {
1912 		err = -ENOMEM;
1913 		goto out_free;
1914 	}
1915 
1916 	/* Now send the (possibly) fragmented message. */
1917 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1918 		sctp_chunk_hold(chunk);
1919 
1920 		/* Do accounting for the write space.  */
1921 		sctp_set_owner_w(chunk);
1922 
1923 		chunk->transport = chunk_tp;
1924 	}
1925 
1926 	/* Send it to the lower layers.  Note:  all chunks
1927 	 * must either fail or succeed.   The lower layer
1928 	 * works that way today.  Keep it that way or this
1929 	 * breaks.
1930 	 */
1931 	err = sctp_primitive_SEND(asoc, datamsg);
1932 	/* Did the lower layer accept the chunk? */
1933 	if (err)
1934 		sctp_datamsg_free(datamsg);
1935 	else
1936 		sctp_datamsg_put(datamsg);
1937 
1938 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1939 
1940 	if (err)
1941 		goto out_free;
1942 	else
1943 		err = msg_len;
1944 
1945 	/* If we are already past ASSOCIATE, the lower
1946 	 * layers are responsible for association cleanup.
1947 	 */
1948 	goto out_unlock;
1949 
1950 out_free:
1951 	if (new_asoc) {
1952 		sctp_unhash_established(asoc);
1953 		sctp_association_free(asoc);
1954 	}
1955 out_unlock:
1956 	sctp_release_sock(sk);
1957 
1958 out_nounlock:
1959 	return sctp_error(sk, msg_flags, err);
1960 
1961 #if 0
1962 do_sock_err:
1963 	if (msg_len)
1964 		err = msg_len;
1965 	else
1966 		err = sock_error(sk);
1967 	goto out;
1968 
1969 do_interrupted:
1970 	if (msg_len)
1971 		err = msg_len;
1972 	goto out;
1973 #endif /* 0 */
1974 }
1975 
1976 /* This is an extended version of skb_pull() that removes the data from the
1977  * start of a skb even when data is spread across the list of skb's in the
1978  * frag_list. len specifies the total amount of data that needs to be removed.
1979  * when 'len' bytes could be removed from the skb, it returns 0.
1980  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1981  * could not be removed.
1982  */
1983 static int sctp_skb_pull(struct sk_buff *skb, int len)
1984 {
1985 	struct sk_buff *list;
1986 	int skb_len = skb_headlen(skb);
1987 	int rlen;
1988 
1989 	if (len <= skb_len) {
1990 		__skb_pull(skb, len);
1991 		return 0;
1992 	}
1993 	len -= skb_len;
1994 	__skb_pull(skb, skb_len);
1995 
1996 	skb_walk_frags(skb, list) {
1997 		rlen = sctp_skb_pull(list, len);
1998 		skb->len -= (len-rlen);
1999 		skb->data_len -= (len-rlen);
2000 
2001 		if (!rlen)
2002 			return 0;
2003 
2004 		len = rlen;
2005 	}
2006 
2007 	return len;
2008 }
2009 
2010 /* API 3.1.3  recvmsg() - UDP Style Syntax
2011  *
2012  *  ssize_t recvmsg(int socket, struct msghdr *message,
2013  *                    int flags);
2014  *
2015  *  socket  - the socket descriptor of the endpoint.
2016  *  message - pointer to the msghdr structure which contains a single
2017  *            user message and possibly some ancillary data.
2018  *
2019  *            See Section 5 for complete description of the data
2020  *            structures.
2021  *
2022  *  flags   - flags sent or received with the user message, see Section
2023  *            5 for complete description of the flags.
2024  */
2025 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2026 
2027 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2028 			     struct msghdr *msg, size_t len, int noblock,
2029 			     int flags, int *addr_len)
2030 {
2031 	struct sctp_ulpevent *event = NULL;
2032 	struct sctp_sock *sp = sctp_sk(sk);
2033 	struct sk_buff *skb;
2034 	int copied;
2035 	int err = 0;
2036 	int skb_len;
2037 
2038 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2039 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2040 			  "len", len, "knoblauch", noblock,
2041 			  "flags", flags, "addr_len", addr_len);
2042 
2043 	sctp_lock_sock(sk);
2044 
2045 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2046 		err = -ENOTCONN;
2047 		goto out;
2048 	}
2049 
2050 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2051 	if (!skb)
2052 		goto out;
2053 
2054 	/* Get the total length of the skb including any skb's in the
2055 	 * frag_list.
2056 	 */
2057 	skb_len = skb->len;
2058 
2059 	copied = skb_len;
2060 	if (copied > len)
2061 		copied = len;
2062 
2063 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2064 
2065 	event = sctp_skb2event(skb);
2066 
2067 	if (err)
2068 		goto out_free;
2069 
2070 	sock_recv_ts_and_drops(msg, sk, skb);
2071 	if (sctp_ulpevent_is_notification(event)) {
2072 		msg->msg_flags |= MSG_NOTIFICATION;
2073 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2074 	} else {
2075 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2076 	}
2077 
2078 	/* Check if we allow SCTP_SNDRCVINFO. */
2079 	if (sp->subscribe.sctp_data_io_event)
2080 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2081 #if 0
2082 	/* FIXME: we should be calling IP/IPv6 layers.  */
2083 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2084 		ip_cmsg_recv(msg, skb);
2085 #endif
2086 
2087 	err = copied;
2088 
2089 	/* If skb's length exceeds the user's buffer, update the skb and
2090 	 * push it back to the receive_queue so that the next call to
2091 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2092 	 */
2093 	if (skb_len > copied) {
2094 		msg->msg_flags &= ~MSG_EOR;
2095 		if (flags & MSG_PEEK)
2096 			goto out_free;
2097 		sctp_skb_pull(skb, copied);
2098 		skb_queue_head(&sk->sk_receive_queue, skb);
2099 
2100 		/* When only partial message is copied to the user, increase
2101 		 * rwnd by that amount. If all the data in the skb is read,
2102 		 * rwnd is updated when the event is freed.
2103 		 */
2104 		if (!sctp_ulpevent_is_notification(event))
2105 			sctp_assoc_rwnd_increase(event->asoc, copied);
2106 		goto out;
2107 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2108 		   (event->msg_flags & MSG_EOR))
2109 		msg->msg_flags |= MSG_EOR;
2110 	else
2111 		msg->msg_flags &= ~MSG_EOR;
2112 
2113 out_free:
2114 	if (flags & MSG_PEEK) {
2115 		/* Release the skb reference acquired after peeking the skb in
2116 		 * sctp_skb_recv_datagram().
2117 		 */
2118 		kfree_skb(skb);
2119 	} else {
2120 		/* Free the event which includes releasing the reference to
2121 		 * the owner of the skb, freeing the skb and updating the
2122 		 * rwnd.
2123 		 */
2124 		sctp_ulpevent_free(event);
2125 	}
2126 out:
2127 	sctp_release_sock(sk);
2128 	return err;
2129 }
2130 
2131 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2132  *
2133  * This option is a on/off flag.  If enabled no SCTP message
2134  * fragmentation will be performed.  Instead if a message being sent
2135  * exceeds the current PMTU size, the message will NOT be sent and
2136  * instead a error will be indicated to the user.
2137  */
2138 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2139 					     char __user *optval,
2140 					     unsigned int optlen)
2141 {
2142 	int val;
2143 
2144 	if (optlen < sizeof(int))
2145 		return -EINVAL;
2146 
2147 	if (get_user(val, (int __user *)optval))
2148 		return -EFAULT;
2149 
2150 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2151 
2152 	return 0;
2153 }
2154 
2155 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2156 				  unsigned int optlen)
2157 {
2158 	struct sctp_association *asoc;
2159 	struct sctp_ulpevent *event;
2160 
2161 	if (optlen > sizeof(struct sctp_event_subscribe))
2162 		return -EINVAL;
2163 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2164 		return -EFAULT;
2165 
2166 	/*
2167 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2168 	 * if there is no data to be sent or retransmit, the stack will
2169 	 * immediately send up this notification.
2170 	 */
2171 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2172 				       &sctp_sk(sk)->subscribe)) {
2173 		asoc = sctp_id2assoc(sk, 0);
2174 
2175 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2176 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2177 					GFP_ATOMIC);
2178 			if (!event)
2179 				return -ENOMEM;
2180 
2181 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2182 		}
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2189  *
2190  * This socket option is applicable to the UDP-style socket only.  When
2191  * set it will cause associations that are idle for more than the
2192  * specified number of seconds to automatically close.  An association
2193  * being idle is defined an association that has NOT sent or received
2194  * user data.  The special value of '0' indicates that no automatic
2195  * close of any associations should be performed.  The option expects an
2196  * integer defining the number of seconds of idle time before an
2197  * association is closed.
2198  */
2199 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2200 				     unsigned int optlen)
2201 {
2202 	struct sctp_sock *sp = sctp_sk(sk);
2203 
2204 	/* Applicable to UDP-style socket only */
2205 	if (sctp_style(sk, TCP))
2206 		return -EOPNOTSUPP;
2207 	if (optlen != sizeof(int))
2208 		return -EINVAL;
2209 	if (copy_from_user(&sp->autoclose, optval, optlen))
2210 		return -EFAULT;
2211 
2212 	return 0;
2213 }
2214 
2215 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2216  *
2217  * Applications can enable or disable heartbeats for any peer address of
2218  * an association, modify an address's heartbeat interval, force a
2219  * heartbeat to be sent immediately, and adjust the address's maximum
2220  * number of retransmissions sent before an address is considered
2221  * unreachable.  The following structure is used to access and modify an
2222  * address's parameters:
2223  *
2224  *  struct sctp_paddrparams {
2225  *     sctp_assoc_t            spp_assoc_id;
2226  *     struct sockaddr_storage spp_address;
2227  *     uint32_t                spp_hbinterval;
2228  *     uint16_t                spp_pathmaxrxt;
2229  *     uint32_t                spp_pathmtu;
2230  *     uint32_t                spp_sackdelay;
2231  *     uint32_t                spp_flags;
2232  * };
2233  *
2234  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2235  *                     application, and identifies the association for
2236  *                     this query.
2237  *   spp_address     - This specifies which address is of interest.
2238  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2239  *                     in milliseconds.  If a  value of zero
2240  *                     is present in this field then no changes are to
2241  *                     be made to this parameter.
2242  *   spp_pathmaxrxt  - This contains the maximum number of
2243  *                     retransmissions before this address shall be
2244  *                     considered unreachable. If a  value of zero
2245  *                     is present in this field then no changes are to
2246  *                     be made to this parameter.
2247  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2248  *                     specified here will be the "fixed" path mtu.
2249  *                     Note that if the spp_address field is empty
2250  *                     then all associations on this address will
2251  *                     have this fixed path mtu set upon them.
2252  *
2253  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2254  *                     the number of milliseconds that sacks will be delayed
2255  *                     for. This value will apply to all addresses of an
2256  *                     association if the spp_address field is empty. Note
2257  *                     also, that if delayed sack is enabled and this
2258  *                     value is set to 0, no change is made to the last
2259  *                     recorded delayed sack timer value.
2260  *
2261  *   spp_flags       - These flags are used to control various features
2262  *                     on an association. The flag field may contain
2263  *                     zero or more of the following options.
2264  *
2265  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2266  *                     specified address. Note that if the address
2267  *                     field is empty all addresses for the association
2268  *                     have heartbeats enabled upon them.
2269  *
2270  *                     SPP_HB_DISABLE - Disable heartbeats on the
2271  *                     speicifed address. Note that if the address
2272  *                     field is empty all addresses for the association
2273  *                     will have their heartbeats disabled. Note also
2274  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2275  *                     mutually exclusive, only one of these two should
2276  *                     be specified. Enabling both fields will have
2277  *                     undetermined results.
2278  *
2279  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2280  *                     to be made immediately.
2281  *
2282  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2283  *                     heartbeat delayis to be set to the value of 0
2284  *                     milliseconds.
2285  *
2286  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2287  *                     discovery upon the specified address. Note that
2288  *                     if the address feild is empty then all addresses
2289  *                     on the association are effected.
2290  *
2291  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2292  *                     discovery upon the specified address. Note that
2293  *                     if the address feild is empty then all addresses
2294  *                     on the association are effected. Not also that
2295  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2296  *                     exclusive. Enabling both will have undetermined
2297  *                     results.
2298  *
2299  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2300  *                     on delayed sack. The time specified in spp_sackdelay
2301  *                     is used to specify the sack delay for this address. Note
2302  *                     that if spp_address is empty then all addresses will
2303  *                     enable delayed sack and take on the sack delay
2304  *                     value specified in spp_sackdelay.
2305  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2306  *                     off delayed sack. If the spp_address field is blank then
2307  *                     delayed sack is disabled for the entire association. Note
2308  *                     also that this field is mutually exclusive to
2309  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2310  *                     results.
2311  */
2312 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2313 				       struct sctp_transport   *trans,
2314 				       struct sctp_association *asoc,
2315 				       struct sctp_sock        *sp,
2316 				       int                      hb_change,
2317 				       int                      pmtud_change,
2318 				       int                      sackdelay_change)
2319 {
2320 	int error;
2321 
2322 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2323 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2324 		if (error)
2325 			return error;
2326 	}
2327 
2328 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2329 	 * this field is ignored.  Note also that a value of zero indicates
2330 	 * the current setting should be left unchanged.
2331 	 */
2332 	if (params->spp_flags & SPP_HB_ENABLE) {
2333 
2334 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2335 		 * set.  This lets us use 0 value when this flag
2336 		 * is set.
2337 		 */
2338 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2339 			params->spp_hbinterval = 0;
2340 
2341 		if (params->spp_hbinterval ||
2342 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2343 			if (trans) {
2344 				trans->hbinterval =
2345 				    msecs_to_jiffies(params->spp_hbinterval);
2346 			} else if (asoc) {
2347 				asoc->hbinterval =
2348 				    msecs_to_jiffies(params->spp_hbinterval);
2349 			} else {
2350 				sp->hbinterval = params->spp_hbinterval;
2351 			}
2352 		}
2353 	}
2354 
2355 	if (hb_change) {
2356 		if (trans) {
2357 			trans->param_flags =
2358 				(trans->param_flags & ~SPP_HB) | hb_change;
2359 		} else if (asoc) {
2360 			asoc->param_flags =
2361 				(asoc->param_flags & ~SPP_HB) | hb_change;
2362 		} else {
2363 			sp->param_flags =
2364 				(sp->param_flags & ~SPP_HB) | hb_change;
2365 		}
2366 	}
2367 
2368 	/* When Path MTU discovery is disabled the value specified here will
2369 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2370 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2371 	 * effect).
2372 	 */
2373 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2374 		if (trans) {
2375 			trans->pathmtu = params->spp_pathmtu;
2376 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2377 		} else if (asoc) {
2378 			asoc->pathmtu = params->spp_pathmtu;
2379 			sctp_frag_point(asoc, params->spp_pathmtu);
2380 		} else {
2381 			sp->pathmtu = params->spp_pathmtu;
2382 		}
2383 	}
2384 
2385 	if (pmtud_change) {
2386 		if (trans) {
2387 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2388 				(params->spp_flags & SPP_PMTUD_ENABLE);
2389 			trans->param_flags =
2390 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2391 			if (update) {
2392 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2393 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2394 			}
2395 		} else if (asoc) {
2396 			asoc->param_flags =
2397 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2398 		} else {
2399 			sp->param_flags =
2400 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2401 		}
2402 	}
2403 
2404 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2405 	 * value of this field is ignored.  Note also that a value of zero
2406 	 * indicates the current setting should be left unchanged.
2407 	 */
2408 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2409 		if (trans) {
2410 			trans->sackdelay =
2411 				msecs_to_jiffies(params->spp_sackdelay);
2412 		} else if (asoc) {
2413 			asoc->sackdelay =
2414 				msecs_to_jiffies(params->spp_sackdelay);
2415 		} else {
2416 			sp->sackdelay = params->spp_sackdelay;
2417 		}
2418 	}
2419 
2420 	if (sackdelay_change) {
2421 		if (trans) {
2422 			trans->param_flags =
2423 				(trans->param_flags & ~SPP_SACKDELAY) |
2424 				sackdelay_change;
2425 		} else if (asoc) {
2426 			asoc->param_flags =
2427 				(asoc->param_flags & ~SPP_SACKDELAY) |
2428 				sackdelay_change;
2429 		} else {
2430 			sp->param_flags =
2431 				(sp->param_flags & ~SPP_SACKDELAY) |
2432 				sackdelay_change;
2433 		}
2434 	}
2435 
2436 	/* Note that a value of zero indicates the current setting should be
2437 	   left unchanged.
2438 	 */
2439 	if (params->spp_pathmaxrxt) {
2440 		if (trans) {
2441 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2442 		} else if (asoc) {
2443 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2444 		} else {
2445 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2446 		}
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2453 					    char __user *optval,
2454 					    unsigned int optlen)
2455 {
2456 	struct sctp_paddrparams  params;
2457 	struct sctp_transport   *trans = NULL;
2458 	struct sctp_association *asoc = NULL;
2459 	struct sctp_sock        *sp = sctp_sk(sk);
2460 	int error;
2461 	int hb_change, pmtud_change, sackdelay_change;
2462 
2463 	if (optlen != sizeof(struct sctp_paddrparams))
2464 		return - EINVAL;
2465 
2466 	if (copy_from_user(&params, optval, optlen))
2467 		return -EFAULT;
2468 
2469 	/* Validate flags and value parameters. */
2470 	hb_change        = params.spp_flags & SPP_HB;
2471 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2472 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2473 
2474 	if (hb_change        == SPP_HB ||
2475 	    pmtud_change     == SPP_PMTUD ||
2476 	    sackdelay_change == SPP_SACKDELAY ||
2477 	    params.spp_sackdelay > 500 ||
2478 	    (params.spp_pathmtu &&
2479 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2480 		return -EINVAL;
2481 
2482 	/* If an address other than INADDR_ANY is specified, and
2483 	 * no transport is found, then the request is invalid.
2484 	 */
2485 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2486 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2487 					       params.spp_assoc_id);
2488 		if (!trans)
2489 			return -EINVAL;
2490 	}
2491 
2492 	/* Get association, if assoc_id != 0 and the socket is a one
2493 	 * to many style socket, and an association was not found, then
2494 	 * the id was invalid.
2495 	 */
2496 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2497 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2498 		return -EINVAL;
2499 
2500 	/* Heartbeat demand can only be sent on a transport or
2501 	 * association, but not a socket.
2502 	 */
2503 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2504 		return -EINVAL;
2505 
2506 	/* Process parameters. */
2507 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2508 					    hb_change, pmtud_change,
2509 					    sackdelay_change);
2510 
2511 	if (error)
2512 		return error;
2513 
2514 	/* If changes are for association, also apply parameters to each
2515 	 * transport.
2516 	 */
2517 	if (!trans && asoc) {
2518 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2519 				transports) {
2520 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2521 						    hb_change, pmtud_change,
2522 						    sackdelay_change);
2523 		}
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 /*
2530  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2531  *
2532  * This option will effect the way delayed acks are performed.  This
2533  * option allows you to get or set the delayed ack time, in
2534  * milliseconds.  It also allows changing the delayed ack frequency.
2535  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2536  * the assoc_id is 0, then this sets or gets the endpoints default
2537  * values.  If the assoc_id field is non-zero, then the set or get
2538  * effects the specified association for the one to many model (the
2539  * assoc_id field is ignored by the one to one model).  Note that if
2540  * sack_delay or sack_freq are 0 when setting this option, then the
2541  * current values will remain unchanged.
2542  *
2543  * struct sctp_sack_info {
2544  *     sctp_assoc_t            sack_assoc_id;
2545  *     uint32_t                sack_delay;
2546  *     uint32_t                sack_freq;
2547  * };
2548  *
2549  * sack_assoc_id -  This parameter, indicates which association the user
2550  *    is performing an action upon.  Note that if this field's value is
2551  *    zero then the endpoints default value is changed (effecting future
2552  *    associations only).
2553  *
2554  * sack_delay -  This parameter contains the number of milliseconds that
2555  *    the user is requesting the delayed ACK timer be set to.  Note that
2556  *    this value is defined in the standard to be between 200 and 500
2557  *    milliseconds.
2558  *
2559  * sack_freq -  This parameter contains the number of packets that must
2560  *    be received before a sack is sent without waiting for the delay
2561  *    timer to expire.  The default value for this is 2, setting this
2562  *    value to 1 will disable the delayed sack algorithm.
2563  */
2564 
2565 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2566 				       char __user *optval, unsigned int optlen)
2567 {
2568 	struct sctp_sack_info    params;
2569 	struct sctp_transport   *trans = NULL;
2570 	struct sctp_association *asoc = NULL;
2571 	struct sctp_sock        *sp = sctp_sk(sk);
2572 
2573 	if (optlen == sizeof(struct sctp_sack_info)) {
2574 		if (copy_from_user(&params, optval, optlen))
2575 			return -EFAULT;
2576 
2577 		if (params.sack_delay == 0 && params.sack_freq == 0)
2578 			return 0;
2579 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2580 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2581 		pr_warn("Use struct sctp_sack_info instead\n");
2582 		if (copy_from_user(&params, optval, optlen))
2583 			return -EFAULT;
2584 
2585 		if (params.sack_delay == 0)
2586 			params.sack_freq = 1;
2587 		else
2588 			params.sack_freq = 0;
2589 	} else
2590 		return - EINVAL;
2591 
2592 	/* Validate value parameter. */
2593 	if (params.sack_delay > 500)
2594 		return -EINVAL;
2595 
2596 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2597 	 * to many style socket, and an association was not found, then
2598 	 * the id was invalid.
2599 	 */
2600 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2601 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2602 		return -EINVAL;
2603 
2604 	if (params.sack_delay) {
2605 		if (asoc) {
2606 			asoc->sackdelay =
2607 				msecs_to_jiffies(params.sack_delay);
2608 			asoc->param_flags =
2609 				(asoc->param_flags & ~SPP_SACKDELAY) |
2610 				SPP_SACKDELAY_ENABLE;
2611 		} else {
2612 			sp->sackdelay = params.sack_delay;
2613 			sp->param_flags =
2614 				(sp->param_flags & ~SPP_SACKDELAY) |
2615 				SPP_SACKDELAY_ENABLE;
2616 		}
2617 	}
2618 
2619 	if (params.sack_freq == 1) {
2620 		if (asoc) {
2621 			asoc->param_flags =
2622 				(asoc->param_flags & ~SPP_SACKDELAY) |
2623 				SPP_SACKDELAY_DISABLE;
2624 		} else {
2625 			sp->param_flags =
2626 				(sp->param_flags & ~SPP_SACKDELAY) |
2627 				SPP_SACKDELAY_DISABLE;
2628 		}
2629 	} else if (params.sack_freq > 1) {
2630 		if (asoc) {
2631 			asoc->sackfreq = params.sack_freq;
2632 			asoc->param_flags =
2633 				(asoc->param_flags & ~SPP_SACKDELAY) |
2634 				SPP_SACKDELAY_ENABLE;
2635 		} else {
2636 			sp->sackfreq = params.sack_freq;
2637 			sp->param_flags =
2638 				(sp->param_flags & ~SPP_SACKDELAY) |
2639 				SPP_SACKDELAY_ENABLE;
2640 		}
2641 	}
2642 
2643 	/* If change is for association, also apply to each transport. */
2644 	if (asoc) {
2645 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2646 				transports) {
2647 			if (params.sack_delay) {
2648 				trans->sackdelay =
2649 					msecs_to_jiffies(params.sack_delay);
2650 				trans->param_flags =
2651 					(trans->param_flags & ~SPP_SACKDELAY) |
2652 					SPP_SACKDELAY_ENABLE;
2653 			}
2654 			if (params.sack_freq == 1) {
2655 				trans->param_flags =
2656 					(trans->param_flags & ~SPP_SACKDELAY) |
2657 					SPP_SACKDELAY_DISABLE;
2658 			} else if (params.sack_freq > 1) {
2659 				trans->sackfreq = params.sack_freq;
2660 				trans->param_flags =
2661 					(trans->param_flags & ~SPP_SACKDELAY) |
2662 					SPP_SACKDELAY_ENABLE;
2663 			}
2664 		}
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2671  *
2672  * Applications can specify protocol parameters for the default association
2673  * initialization.  The option name argument to setsockopt() and getsockopt()
2674  * is SCTP_INITMSG.
2675  *
2676  * Setting initialization parameters is effective only on an unconnected
2677  * socket (for UDP-style sockets only future associations are effected
2678  * by the change).  With TCP-style sockets, this option is inherited by
2679  * sockets derived from a listener socket.
2680  */
2681 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2682 {
2683 	struct sctp_initmsg sinit;
2684 	struct sctp_sock *sp = sctp_sk(sk);
2685 
2686 	if (optlen != sizeof(struct sctp_initmsg))
2687 		return -EINVAL;
2688 	if (copy_from_user(&sinit, optval, optlen))
2689 		return -EFAULT;
2690 
2691 	if (sinit.sinit_num_ostreams)
2692 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2693 	if (sinit.sinit_max_instreams)
2694 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2695 	if (sinit.sinit_max_attempts)
2696 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2697 	if (sinit.sinit_max_init_timeo)
2698 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2699 
2700 	return 0;
2701 }
2702 
2703 /*
2704  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2705  *
2706  *   Applications that wish to use the sendto() system call may wish to
2707  *   specify a default set of parameters that would normally be supplied
2708  *   through the inclusion of ancillary data.  This socket option allows
2709  *   such an application to set the default sctp_sndrcvinfo structure.
2710  *   The application that wishes to use this socket option simply passes
2711  *   in to this call the sctp_sndrcvinfo structure defined in Section
2712  *   5.2.2) The input parameters accepted by this call include
2713  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2714  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2715  *   to this call if the caller is using the UDP model.
2716  */
2717 static int sctp_setsockopt_default_send_param(struct sock *sk,
2718 					      char __user *optval,
2719 					      unsigned int optlen)
2720 {
2721 	struct sctp_sndrcvinfo info;
2722 	struct sctp_association *asoc;
2723 	struct sctp_sock *sp = sctp_sk(sk);
2724 
2725 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2726 		return -EINVAL;
2727 	if (copy_from_user(&info, optval, optlen))
2728 		return -EFAULT;
2729 
2730 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2731 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2732 		return -EINVAL;
2733 
2734 	if (asoc) {
2735 		asoc->default_stream = info.sinfo_stream;
2736 		asoc->default_flags = info.sinfo_flags;
2737 		asoc->default_ppid = info.sinfo_ppid;
2738 		asoc->default_context = info.sinfo_context;
2739 		asoc->default_timetolive = info.sinfo_timetolive;
2740 	} else {
2741 		sp->default_stream = info.sinfo_stream;
2742 		sp->default_flags = info.sinfo_flags;
2743 		sp->default_ppid = info.sinfo_ppid;
2744 		sp->default_context = info.sinfo_context;
2745 		sp->default_timetolive = info.sinfo_timetolive;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2752  *
2753  * Requests that the local SCTP stack use the enclosed peer address as
2754  * the association primary.  The enclosed address must be one of the
2755  * association peer's addresses.
2756  */
2757 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2758 					unsigned int optlen)
2759 {
2760 	struct sctp_prim prim;
2761 	struct sctp_transport *trans;
2762 
2763 	if (optlen != sizeof(struct sctp_prim))
2764 		return -EINVAL;
2765 
2766 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2767 		return -EFAULT;
2768 
2769 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2770 	if (!trans)
2771 		return -EINVAL;
2772 
2773 	sctp_assoc_set_primary(trans->asoc, trans);
2774 
2775 	return 0;
2776 }
2777 
2778 /*
2779  * 7.1.5 SCTP_NODELAY
2780  *
2781  * Turn on/off any Nagle-like algorithm.  This means that packets are
2782  * generally sent as soon as possible and no unnecessary delays are
2783  * introduced, at the cost of more packets in the network.  Expects an
2784  *  integer boolean flag.
2785  */
2786 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2787 				   unsigned int optlen)
2788 {
2789 	int val;
2790 
2791 	if (optlen < sizeof(int))
2792 		return -EINVAL;
2793 	if (get_user(val, (int __user *)optval))
2794 		return -EFAULT;
2795 
2796 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2797 	return 0;
2798 }
2799 
2800 /*
2801  *
2802  * 7.1.1 SCTP_RTOINFO
2803  *
2804  * The protocol parameters used to initialize and bound retransmission
2805  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2806  * and modify these parameters.
2807  * All parameters are time values, in milliseconds.  A value of 0, when
2808  * modifying the parameters, indicates that the current value should not
2809  * be changed.
2810  *
2811  */
2812 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2813 {
2814 	struct sctp_rtoinfo rtoinfo;
2815 	struct sctp_association *asoc;
2816 
2817 	if (optlen != sizeof (struct sctp_rtoinfo))
2818 		return -EINVAL;
2819 
2820 	if (copy_from_user(&rtoinfo, optval, optlen))
2821 		return -EFAULT;
2822 
2823 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2824 
2825 	/* Set the values to the specific association */
2826 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2827 		return -EINVAL;
2828 
2829 	if (asoc) {
2830 		if (rtoinfo.srto_initial != 0)
2831 			asoc->rto_initial =
2832 				msecs_to_jiffies(rtoinfo.srto_initial);
2833 		if (rtoinfo.srto_max != 0)
2834 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2835 		if (rtoinfo.srto_min != 0)
2836 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2837 	} else {
2838 		/* If there is no association or the association-id = 0
2839 		 * set the values to the endpoint.
2840 		 */
2841 		struct sctp_sock *sp = sctp_sk(sk);
2842 
2843 		if (rtoinfo.srto_initial != 0)
2844 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2845 		if (rtoinfo.srto_max != 0)
2846 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2847 		if (rtoinfo.srto_min != 0)
2848 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 /*
2855  *
2856  * 7.1.2 SCTP_ASSOCINFO
2857  *
2858  * This option is used to tune the maximum retransmission attempts
2859  * of the association.
2860  * Returns an error if the new association retransmission value is
2861  * greater than the sum of the retransmission value  of the peer.
2862  * See [SCTP] for more information.
2863  *
2864  */
2865 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2866 {
2867 
2868 	struct sctp_assocparams assocparams;
2869 	struct sctp_association *asoc;
2870 
2871 	if (optlen != sizeof(struct sctp_assocparams))
2872 		return -EINVAL;
2873 	if (copy_from_user(&assocparams, optval, optlen))
2874 		return -EFAULT;
2875 
2876 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2877 
2878 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2879 		return -EINVAL;
2880 
2881 	/* Set the values to the specific association */
2882 	if (asoc) {
2883 		if (assocparams.sasoc_asocmaxrxt != 0) {
2884 			__u32 path_sum = 0;
2885 			int   paths = 0;
2886 			struct sctp_transport *peer_addr;
2887 
2888 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2889 					transports) {
2890 				path_sum += peer_addr->pathmaxrxt;
2891 				paths++;
2892 			}
2893 
2894 			/* Only validate asocmaxrxt if we have more than
2895 			 * one path/transport.  We do this because path
2896 			 * retransmissions are only counted when we have more
2897 			 * then one path.
2898 			 */
2899 			if (paths > 1 &&
2900 			    assocparams.sasoc_asocmaxrxt > path_sum)
2901 				return -EINVAL;
2902 
2903 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2904 		}
2905 
2906 		if (assocparams.sasoc_cookie_life != 0) {
2907 			asoc->cookie_life.tv_sec =
2908 					assocparams.sasoc_cookie_life / 1000;
2909 			asoc->cookie_life.tv_usec =
2910 					(assocparams.sasoc_cookie_life % 1000)
2911 					* 1000;
2912 		}
2913 	} else {
2914 		/* Set the values to the endpoint */
2915 		struct sctp_sock *sp = sctp_sk(sk);
2916 
2917 		if (assocparams.sasoc_asocmaxrxt != 0)
2918 			sp->assocparams.sasoc_asocmaxrxt =
2919 						assocparams.sasoc_asocmaxrxt;
2920 		if (assocparams.sasoc_cookie_life != 0)
2921 			sp->assocparams.sasoc_cookie_life =
2922 						assocparams.sasoc_cookie_life;
2923 	}
2924 	return 0;
2925 }
2926 
2927 /*
2928  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2929  *
2930  * This socket option is a boolean flag which turns on or off mapped V4
2931  * addresses.  If this option is turned on and the socket is type
2932  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2933  * If this option is turned off, then no mapping will be done of V4
2934  * addresses and a user will receive both PF_INET6 and PF_INET type
2935  * addresses on the socket.
2936  */
2937 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2938 {
2939 	int val;
2940 	struct sctp_sock *sp = sctp_sk(sk);
2941 
2942 	if (optlen < sizeof(int))
2943 		return -EINVAL;
2944 	if (get_user(val, (int __user *)optval))
2945 		return -EFAULT;
2946 	if (val)
2947 		sp->v4mapped = 1;
2948 	else
2949 		sp->v4mapped = 0;
2950 
2951 	return 0;
2952 }
2953 
2954 /*
2955  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2956  * This option will get or set the maximum size to put in any outgoing
2957  * SCTP DATA chunk.  If a message is larger than this size it will be
2958  * fragmented by SCTP into the specified size.  Note that the underlying
2959  * SCTP implementation may fragment into smaller sized chunks when the
2960  * PMTU of the underlying association is smaller than the value set by
2961  * the user.  The default value for this option is '0' which indicates
2962  * the user is NOT limiting fragmentation and only the PMTU will effect
2963  * SCTP's choice of DATA chunk size.  Note also that values set larger
2964  * than the maximum size of an IP datagram will effectively let SCTP
2965  * control fragmentation (i.e. the same as setting this option to 0).
2966  *
2967  * The following structure is used to access and modify this parameter:
2968  *
2969  * struct sctp_assoc_value {
2970  *   sctp_assoc_t assoc_id;
2971  *   uint32_t assoc_value;
2972  * };
2973  *
2974  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2975  *    For one-to-many style sockets this parameter indicates which
2976  *    association the user is performing an action upon.  Note that if
2977  *    this field's value is zero then the endpoints default value is
2978  *    changed (effecting future associations only).
2979  * assoc_value:  This parameter specifies the maximum size in bytes.
2980  */
2981 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2982 {
2983 	struct sctp_assoc_value params;
2984 	struct sctp_association *asoc;
2985 	struct sctp_sock *sp = sctp_sk(sk);
2986 	int val;
2987 
2988 	if (optlen == sizeof(int)) {
2989 		pr_warn("Use of int in maxseg socket option deprecated\n");
2990 		pr_warn("Use struct sctp_assoc_value instead\n");
2991 		if (copy_from_user(&val, optval, optlen))
2992 			return -EFAULT;
2993 		params.assoc_id = 0;
2994 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2995 		if (copy_from_user(&params, optval, optlen))
2996 			return -EFAULT;
2997 		val = params.assoc_value;
2998 	} else
2999 		return -EINVAL;
3000 
3001 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3002 		return -EINVAL;
3003 
3004 	asoc = sctp_id2assoc(sk, params.assoc_id);
3005 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3006 		return -EINVAL;
3007 
3008 	if (asoc) {
3009 		if (val == 0) {
3010 			val = asoc->pathmtu;
3011 			val -= sp->pf->af->net_header_len;
3012 			val -= sizeof(struct sctphdr) +
3013 					sizeof(struct sctp_data_chunk);
3014 		}
3015 		asoc->user_frag = val;
3016 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3017 	} else {
3018 		sp->user_frag = val;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 
3025 /*
3026  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3027  *
3028  *   Requests that the peer mark the enclosed address as the association
3029  *   primary. The enclosed address must be one of the association's
3030  *   locally bound addresses. The following structure is used to make a
3031  *   set primary request:
3032  */
3033 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3034 					     unsigned int optlen)
3035 {
3036 	struct sctp_sock	*sp;
3037 	struct sctp_association	*asoc = NULL;
3038 	struct sctp_setpeerprim	prim;
3039 	struct sctp_chunk	*chunk;
3040 	struct sctp_af		*af;
3041 	int 			err;
3042 
3043 	sp = sctp_sk(sk);
3044 
3045 	if (!sctp_addip_enable)
3046 		return -EPERM;
3047 
3048 	if (optlen != sizeof(struct sctp_setpeerprim))
3049 		return -EINVAL;
3050 
3051 	if (copy_from_user(&prim, optval, optlen))
3052 		return -EFAULT;
3053 
3054 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3055 	if (!asoc)
3056 		return -EINVAL;
3057 
3058 	if (!asoc->peer.asconf_capable)
3059 		return -EPERM;
3060 
3061 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3062 		return -EPERM;
3063 
3064 	if (!sctp_state(asoc, ESTABLISHED))
3065 		return -ENOTCONN;
3066 
3067 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3068 	if (!af)
3069 		return -EINVAL;
3070 
3071 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3072 		return -EADDRNOTAVAIL;
3073 
3074 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3075 		return -EADDRNOTAVAIL;
3076 
3077 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3078 	chunk = sctp_make_asconf_set_prim(asoc,
3079 					  (union sctp_addr *)&prim.sspp_addr);
3080 	if (!chunk)
3081 		return -ENOMEM;
3082 
3083 	err = sctp_send_asconf(asoc, chunk);
3084 
3085 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3086 
3087 	return err;
3088 }
3089 
3090 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3091 					    unsigned int optlen)
3092 {
3093 	struct sctp_setadaptation adaptation;
3094 
3095 	if (optlen != sizeof(struct sctp_setadaptation))
3096 		return -EINVAL;
3097 	if (copy_from_user(&adaptation, optval, optlen))
3098 		return -EFAULT;
3099 
3100 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3101 
3102 	return 0;
3103 }
3104 
3105 /*
3106  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3107  *
3108  * The context field in the sctp_sndrcvinfo structure is normally only
3109  * used when a failed message is retrieved holding the value that was
3110  * sent down on the actual send call.  This option allows the setting of
3111  * a default context on an association basis that will be received on
3112  * reading messages from the peer.  This is especially helpful in the
3113  * one-2-many model for an application to keep some reference to an
3114  * internal state machine that is processing messages on the
3115  * association.  Note that the setting of this value only effects
3116  * received messages from the peer and does not effect the value that is
3117  * saved with outbound messages.
3118  */
3119 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3120 				   unsigned int optlen)
3121 {
3122 	struct sctp_assoc_value params;
3123 	struct sctp_sock *sp;
3124 	struct sctp_association *asoc;
3125 
3126 	if (optlen != sizeof(struct sctp_assoc_value))
3127 		return -EINVAL;
3128 	if (copy_from_user(&params, optval, optlen))
3129 		return -EFAULT;
3130 
3131 	sp = sctp_sk(sk);
3132 
3133 	if (params.assoc_id != 0) {
3134 		asoc = sctp_id2assoc(sk, params.assoc_id);
3135 		if (!asoc)
3136 			return -EINVAL;
3137 		asoc->default_rcv_context = params.assoc_value;
3138 	} else {
3139 		sp->default_rcv_context = params.assoc_value;
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 /*
3146  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3147  *
3148  * This options will at a minimum specify if the implementation is doing
3149  * fragmented interleave.  Fragmented interleave, for a one to many
3150  * socket, is when subsequent calls to receive a message may return
3151  * parts of messages from different associations.  Some implementations
3152  * may allow you to turn this value on or off.  If so, when turned off,
3153  * no fragment interleave will occur (which will cause a head of line
3154  * blocking amongst multiple associations sharing the same one to many
3155  * socket).  When this option is turned on, then each receive call may
3156  * come from a different association (thus the user must receive data
3157  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3158  * association each receive belongs to.
3159  *
3160  * This option takes a boolean value.  A non-zero value indicates that
3161  * fragmented interleave is on.  A value of zero indicates that
3162  * fragmented interleave is off.
3163  *
3164  * Note that it is important that an implementation that allows this
3165  * option to be turned on, have it off by default.  Otherwise an unaware
3166  * application using the one to many model may become confused and act
3167  * incorrectly.
3168  */
3169 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3170 					       char __user *optval,
3171 					       unsigned int optlen)
3172 {
3173 	int val;
3174 
3175 	if (optlen != sizeof(int))
3176 		return -EINVAL;
3177 	if (get_user(val, (int __user *)optval))
3178 		return -EFAULT;
3179 
3180 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3181 
3182 	return 0;
3183 }
3184 
3185 /*
3186  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3187  *       (SCTP_PARTIAL_DELIVERY_POINT)
3188  *
3189  * This option will set or get the SCTP partial delivery point.  This
3190  * point is the size of a message where the partial delivery API will be
3191  * invoked to help free up rwnd space for the peer.  Setting this to a
3192  * lower value will cause partial deliveries to happen more often.  The
3193  * calls argument is an integer that sets or gets the partial delivery
3194  * point.  Note also that the call will fail if the user attempts to set
3195  * this value larger than the socket receive buffer size.
3196  *
3197  * Note that any single message having a length smaller than or equal to
3198  * the SCTP partial delivery point will be delivered in one single read
3199  * call as long as the user provided buffer is large enough to hold the
3200  * message.
3201  */
3202 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3203 						  char __user *optval,
3204 						  unsigned int optlen)
3205 {
3206 	u32 val;
3207 
3208 	if (optlen != sizeof(u32))
3209 		return -EINVAL;
3210 	if (get_user(val, (int __user *)optval))
3211 		return -EFAULT;
3212 
3213 	/* Note: We double the receive buffer from what the user sets
3214 	 * it to be, also initial rwnd is based on rcvbuf/2.
3215 	 */
3216 	if (val > (sk->sk_rcvbuf >> 1))
3217 		return -EINVAL;
3218 
3219 	sctp_sk(sk)->pd_point = val;
3220 
3221 	return 0; /* is this the right error code? */
3222 }
3223 
3224 /*
3225  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3226  *
3227  * This option will allow a user to change the maximum burst of packets
3228  * that can be emitted by this association.  Note that the default value
3229  * is 4, and some implementations may restrict this setting so that it
3230  * can only be lowered.
3231  *
3232  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3233  * future associations inheriting the socket value.
3234  */
3235 static int sctp_setsockopt_maxburst(struct sock *sk,
3236 				    char __user *optval,
3237 				    unsigned int optlen)
3238 {
3239 	struct sctp_assoc_value params;
3240 	struct sctp_sock *sp;
3241 	struct sctp_association *asoc;
3242 	int val;
3243 	int assoc_id = 0;
3244 
3245 	if (optlen == sizeof(int)) {
3246 		pr_warn("Use of int in max_burst socket option deprecated\n");
3247 		pr_warn("Use struct sctp_assoc_value instead\n");
3248 		if (copy_from_user(&val, optval, optlen))
3249 			return -EFAULT;
3250 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3251 		if (copy_from_user(&params, optval, optlen))
3252 			return -EFAULT;
3253 		val = params.assoc_value;
3254 		assoc_id = params.assoc_id;
3255 	} else
3256 		return -EINVAL;
3257 
3258 	sp = sctp_sk(sk);
3259 
3260 	if (assoc_id != 0) {
3261 		asoc = sctp_id2assoc(sk, assoc_id);
3262 		if (!asoc)
3263 			return -EINVAL;
3264 		asoc->max_burst = val;
3265 	} else
3266 		sp->max_burst = val;
3267 
3268 	return 0;
3269 }
3270 
3271 /*
3272  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3273  *
3274  * This set option adds a chunk type that the user is requesting to be
3275  * received only in an authenticated way.  Changes to the list of chunks
3276  * will only effect future associations on the socket.
3277  */
3278 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3279 				      char __user *optval,
3280 				      unsigned int optlen)
3281 {
3282 	struct sctp_authchunk val;
3283 
3284 	if (!sctp_auth_enable)
3285 		return -EACCES;
3286 
3287 	if (optlen != sizeof(struct sctp_authchunk))
3288 		return -EINVAL;
3289 	if (copy_from_user(&val, optval, optlen))
3290 		return -EFAULT;
3291 
3292 	switch (val.sauth_chunk) {
3293 	case SCTP_CID_INIT:
3294 	case SCTP_CID_INIT_ACK:
3295 	case SCTP_CID_SHUTDOWN_COMPLETE:
3296 	case SCTP_CID_AUTH:
3297 		return -EINVAL;
3298 	}
3299 
3300 	/* add this chunk id to the endpoint */
3301 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3302 }
3303 
3304 /*
3305  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3306  *
3307  * This option gets or sets the list of HMAC algorithms that the local
3308  * endpoint requires the peer to use.
3309  */
3310 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3311 				      char __user *optval,
3312 				      unsigned int optlen)
3313 {
3314 	struct sctp_hmacalgo *hmacs;
3315 	u32 idents;
3316 	int err;
3317 
3318 	if (!sctp_auth_enable)
3319 		return -EACCES;
3320 
3321 	if (optlen < sizeof(struct sctp_hmacalgo))
3322 		return -EINVAL;
3323 
3324 	hmacs= memdup_user(optval, optlen);
3325 	if (IS_ERR(hmacs))
3326 		return PTR_ERR(hmacs);
3327 
3328 	idents = hmacs->shmac_num_idents;
3329 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3330 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3331 		err = -EINVAL;
3332 		goto out;
3333 	}
3334 
3335 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3336 out:
3337 	kfree(hmacs);
3338 	return err;
3339 }
3340 
3341 /*
3342  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3343  *
3344  * This option will set a shared secret key which is used to build an
3345  * association shared key.
3346  */
3347 static int sctp_setsockopt_auth_key(struct sock *sk,
3348 				    char __user *optval,
3349 				    unsigned int optlen)
3350 {
3351 	struct sctp_authkey *authkey;
3352 	struct sctp_association *asoc;
3353 	int ret;
3354 
3355 	if (!sctp_auth_enable)
3356 		return -EACCES;
3357 
3358 	if (optlen <= sizeof(struct sctp_authkey))
3359 		return -EINVAL;
3360 
3361 	authkey= memdup_user(optval, optlen);
3362 	if (IS_ERR(authkey))
3363 		return PTR_ERR(authkey);
3364 
3365 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3366 		ret = -EINVAL;
3367 		goto out;
3368 	}
3369 
3370 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3371 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3372 		ret = -EINVAL;
3373 		goto out;
3374 	}
3375 
3376 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3377 out:
3378 	kfree(authkey);
3379 	return ret;
3380 }
3381 
3382 /*
3383  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3384  *
3385  * This option will get or set the active shared key to be used to build
3386  * the association shared key.
3387  */
3388 static int sctp_setsockopt_active_key(struct sock *sk,
3389 				      char __user *optval,
3390 				      unsigned int optlen)
3391 {
3392 	struct sctp_authkeyid val;
3393 	struct sctp_association *asoc;
3394 
3395 	if (!sctp_auth_enable)
3396 		return -EACCES;
3397 
3398 	if (optlen != sizeof(struct sctp_authkeyid))
3399 		return -EINVAL;
3400 	if (copy_from_user(&val, optval, optlen))
3401 		return -EFAULT;
3402 
3403 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3404 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3405 		return -EINVAL;
3406 
3407 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3408 					val.scact_keynumber);
3409 }
3410 
3411 /*
3412  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3413  *
3414  * This set option will delete a shared secret key from use.
3415  */
3416 static int sctp_setsockopt_del_key(struct sock *sk,
3417 				   char __user *optval,
3418 				   unsigned int optlen)
3419 {
3420 	struct sctp_authkeyid val;
3421 	struct sctp_association *asoc;
3422 
3423 	if (!sctp_auth_enable)
3424 		return -EACCES;
3425 
3426 	if (optlen != sizeof(struct sctp_authkeyid))
3427 		return -EINVAL;
3428 	if (copy_from_user(&val, optval, optlen))
3429 		return -EFAULT;
3430 
3431 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3432 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3433 		return -EINVAL;
3434 
3435 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3436 				    val.scact_keynumber);
3437 
3438 }
3439 
3440 /*
3441  * 8.1.23 SCTP_AUTO_ASCONF
3442  *
3443  * This option will enable or disable the use of the automatic generation of
3444  * ASCONF chunks to add and delete addresses to an existing association.  Note
3445  * that this option has two caveats namely: a) it only affects sockets that
3446  * are bound to all addresses available to the SCTP stack, and b) the system
3447  * administrator may have an overriding control that turns the ASCONF feature
3448  * off no matter what setting the socket option may have.
3449  * This option expects an integer boolean flag, where a non-zero value turns on
3450  * the option, and a zero value turns off the option.
3451  * Note. In this implementation, socket operation overrides default parameter
3452  * being set by sysctl as well as FreeBSD implementation
3453  */
3454 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3455 					unsigned int optlen)
3456 {
3457 	int val;
3458 	struct sctp_sock *sp = sctp_sk(sk);
3459 
3460 	if (optlen < sizeof(int))
3461 		return -EINVAL;
3462 	if (get_user(val, (int __user *)optval))
3463 		return -EFAULT;
3464 	if (!sctp_is_ep_boundall(sk) && val)
3465 		return -EINVAL;
3466 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3467 		return 0;
3468 
3469 	if (val == 0 && sp->do_auto_asconf) {
3470 		list_del(&sp->auto_asconf_list);
3471 		sp->do_auto_asconf = 0;
3472 	} else if (val && !sp->do_auto_asconf) {
3473 		list_add_tail(&sp->auto_asconf_list,
3474 		    &sctp_auto_asconf_splist);
3475 		sp->do_auto_asconf = 1;
3476 	}
3477 	return 0;
3478 }
3479 
3480 
3481 /*
3482  * SCTP_PEER_ADDR_THLDS
3483  *
3484  * This option allows us to alter the partially failed threshold for one or all
3485  * transports in an association.  See Section 6.1 of:
3486  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3487  */
3488 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3489 					    char __user *optval,
3490 					    unsigned int optlen)
3491 {
3492 	struct sctp_paddrthlds val;
3493 	struct sctp_transport *trans;
3494 	struct sctp_association *asoc;
3495 
3496 	if (optlen < sizeof(struct sctp_paddrthlds))
3497 		return -EINVAL;
3498 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3499 			   sizeof(struct sctp_paddrthlds)))
3500 		return -EFAULT;
3501 
3502 
3503 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3504 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3505 		if (!asoc)
3506 			return -ENOENT;
3507 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3508 				    transports) {
3509 			if (val.spt_pathmaxrxt)
3510 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3511 			trans->pf_retrans = val.spt_pathpfthld;
3512 		}
3513 
3514 		if (val.spt_pathmaxrxt)
3515 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3516 		asoc->pf_retrans = val.spt_pathpfthld;
3517 	} else {
3518 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3519 					       val.spt_assoc_id);
3520 		if (!trans)
3521 			return -ENOENT;
3522 
3523 		if (val.spt_pathmaxrxt)
3524 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3525 		trans->pf_retrans = val.spt_pathpfthld;
3526 	}
3527 
3528 	return 0;
3529 }
3530 
3531 /* API 6.2 setsockopt(), getsockopt()
3532  *
3533  * Applications use setsockopt() and getsockopt() to set or retrieve
3534  * socket options.  Socket options are used to change the default
3535  * behavior of sockets calls.  They are described in Section 7.
3536  *
3537  * The syntax is:
3538  *
3539  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3540  *                    int __user *optlen);
3541  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3542  *                    int optlen);
3543  *
3544  *   sd      - the socket descript.
3545  *   level   - set to IPPROTO_SCTP for all SCTP options.
3546  *   optname - the option name.
3547  *   optval  - the buffer to store the value of the option.
3548  *   optlen  - the size of the buffer.
3549  */
3550 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3551 				char __user *optval, unsigned int optlen)
3552 {
3553 	int retval = 0;
3554 
3555 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3556 			  sk, optname);
3557 
3558 	/* I can hardly begin to describe how wrong this is.  This is
3559 	 * so broken as to be worse than useless.  The API draft
3560 	 * REALLY is NOT helpful here...  I am not convinced that the
3561 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3562 	 * are at all well-founded.
3563 	 */
3564 	if (level != SOL_SCTP) {
3565 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3566 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3567 		goto out_nounlock;
3568 	}
3569 
3570 	sctp_lock_sock(sk);
3571 
3572 	switch (optname) {
3573 	case SCTP_SOCKOPT_BINDX_ADD:
3574 		/* 'optlen' is the size of the addresses buffer. */
3575 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3576 					       optlen, SCTP_BINDX_ADD_ADDR);
3577 		break;
3578 
3579 	case SCTP_SOCKOPT_BINDX_REM:
3580 		/* 'optlen' is the size of the addresses buffer. */
3581 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3582 					       optlen, SCTP_BINDX_REM_ADDR);
3583 		break;
3584 
3585 	case SCTP_SOCKOPT_CONNECTX_OLD:
3586 		/* 'optlen' is the size of the addresses buffer. */
3587 		retval = sctp_setsockopt_connectx_old(sk,
3588 					    (struct sockaddr __user *)optval,
3589 					    optlen);
3590 		break;
3591 
3592 	case SCTP_SOCKOPT_CONNECTX:
3593 		/* 'optlen' is the size of the addresses buffer. */
3594 		retval = sctp_setsockopt_connectx(sk,
3595 					    (struct sockaddr __user *)optval,
3596 					    optlen);
3597 		break;
3598 
3599 	case SCTP_DISABLE_FRAGMENTS:
3600 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3601 		break;
3602 
3603 	case SCTP_EVENTS:
3604 		retval = sctp_setsockopt_events(sk, optval, optlen);
3605 		break;
3606 
3607 	case SCTP_AUTOCLOSE:
3608 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3609 		break;
3610 
3611 	case SCTP_PEER_ADDR_PARAMS:
3612 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3613 		break;
3614 
3615 	case SCTP_DELAYED_SACK:
3616 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3617 		break;
3618 	case SCTP_PARTIAL_DELIVERY_POINT:
3619 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3620 		break;
3621 
3622 	case SCTP_INITMSG:
3623 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3624 		break;
3625 	case SCTP_DEFAULT_SEND_PARAM:
3626 		retval = sctp_setsockopt_default_send_param(sk, optval,
3627 							    optlen);
3628 		break;
3629 	case SCTP_PRIMARY_ADDR:
3630 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3631 		break;
3632 	case SCTP_SET_PEER_PRIMARY_ADDR:
3633 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3634 		break;
3635 	case SCTP_NODELAY:
3636 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3637 		break;
3638 	case SCTP_RTOINFO:
3639 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3640 		break;
3641 	case SCTP_ASSOCINFO:
3642 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3643 		break;
3644 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3645 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3646 		break;
3647 	case SCTP_MAXSEG:
3648 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3649 		break;
3650 	case SCTP_ADAPTATION_LAYER:
3651 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3652 		break;
3653 	case SCTP_CONTEXT:
3654 		retval = sctp_setsockopt_context(sk, optval, optlen);
3655 		break;
3656 	case SCTP_FRAGMENT_INTERLEAVE:
3657 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3658 		break;
3659 	case SCTP_MAX_BURST:
3660 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3661 		break;
3662 	case SCTP_AUTH_CHUNK:
3663 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3664 		break;
3665 	case SCTP_HMAC_IDENT:
3666 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3667 		break;
3668 	case SCTP_AUTH_KEY:
3669 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3670 		break;
3671 	case SCTP_AUTH_ACTIVE_KEY:
3672 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3673 		break;
3674 	case SCTP_AUTH_DELETE_KEY:
3675 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3676 		break;
3677 	case SCTP_AUTO_ASCONF:
3678 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3679 		break;
3680 	case SCTP_PEER_ADDR_THLDS:
3681 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3682 		break;
3683 	default:
3684 		retval = -ENOPROTOOPT;
3685 		break;
3686 	}
3687 
3688 	sctp_release_sock(sk);
3689 
3690 out_nounlock:
3691 	return retval;
3692 }
3693 
3694 /* API 3.1.6 connect() - UDP Style Syntax
3695  *
3696  * An application may use the connect() call in the UDP model to initiate an
3697  * association without sending data.
3698  *
3699  * The syntax is:
3700  *
3701  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3702  *
3703  * sd: the socket descriptor to have a new association added to.
3704  *
3705  * nam: the address structure (either struct sockaddr_in or struct
3706  *    sockaddr_in6 defined in RFC2553 [7]).
3707  *
3708  * len: the size of the address.
3709  */
3710 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3711 			     int addr_len)
3712 {
3713 	int err = 0;
3714 	struct sctp_af *af;
3715 
3716 	sctp_lock_sock(sk);
3717 
3718 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3719 			  __func__, sk, addr, addr_len);
3720 
3721 	/* Validate addr_len before calling common connect/connectx routine. */
3722 	af = sctp_get_af_specific(addr->sa_family);
3723 	if (!af || addr_len < af->sockaddr_len) {
3724 		err = -EINVAL;
3725 	} else {
3726 		/* Pass correct addr len to common routine (so it knows there
3727 		 * is only one address being passed.
3728 		 */
3729 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3730 	}
3731 
3732 	sctp_release_sock(sk);
3733 	return err;
3734 }
3735 
3736 /* FIXME: Write comments. */
3737 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3738 {
3739 	return -EOPNOTSUPP; /* STUB */
3740 }
3741 
3742 /* 4.1.4 accept() - TCP Style Syntax
3743  *
3744  * Applications use accept() call to remove an established SCTP
3745  * association from the accept queue of the endpoint.  A new socket
3746  * descriptor will be returned from accept() to represent the newly
3747  * formed association.
3748  */
3749 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3750 {
3751 	struct sctp_sock *sp;
3752 	struct sctp_endpoint *ep;
3753 	struct sock *newsk = NULL;
3754 	struct sctp_association *asoc;
3755 	long timeo;
3756 	int error = 0;
3757 
3758 	sctp_lock_sock(sk);
3759 
3760 	sp = sctp_sk(sk);
3761 	ep = sp->ep;
3762 
3763 	if (!sctp_style(sk, TCP)) {
3764 		error = -EOPNOTSUPP;
3765 		goto out;
3766 	}
3767 
3768 	if (!sctp_sstate(sk, LISTENING)) {
3769 		error = -EINVAL;
3770 		goto out;
3771 	}
3772 
3773 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3774 
3775 	error = sctp_wait_for_accept(sk, timeo);
3776 	if (error)
3777 		goto out;
3778 
3779 	/* We treat the list of associations on the endpoint as the accept
3780 	 * queue and pick the first association on the list.
3781 	 */
3782 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3783 
3784 	newsk = sp->pf->create_accept_sk(sk, asoc);
3785 	if (!newsk) {
3786 		error = -ENOMEM;
3787 		goto out;
3788 	}
3789 
3790 	/* Populate the fields of the newsk from the oldsk and migrate the
3791 	 * asoc to the newsk.
3792 	 */
3793 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3794 
3795 out:
3796 	sctp_release_sock(sk);
3797 	*err = error;
3798 	return newsk;
3799 }
3800 
3801 /* The SCTP ioctl handler. */
3802 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3803 {
3804 	int rc = -ENOTCONN;
3805 
3806 	sctp_lock_sock(sk);
3807 
3808 	/*
3809 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3810 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3811 	 */
3812 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3813 		goto out;
3814 
3815 	switch (cmd) {
3816 	case SIOCINQ: {
3817 		struct sk_buff *skb;
3818 		unsigned int amount = 0;
3819 
3820 		skb = skb_peek(&sk->sk_receive_queue);
3821 		if (skb != NULL) {
3822 			/*
3823 			 * We will only return the amount of this packet since
3824 			 * that is all that will be read.
3825 			 */
3826 			amount = skb->len;
3827 		}
3828 		rc = put_user(amount, (int __user *)arg);
3829 		break;
3830 	}
3831 	default:
3832 		rc = -ENOIOCTLCMD;
3833 		break;
3834 	}
3835 out:
3836 	sctp_release_sock(sk);
3837 	return rc;
3838 }
3839 
3840 /* This is the function which gets called during socket creation to
3841  * initialized the SCTP-specific portion of the sock.
3842  * The sock structure should already be zero-filled memory.
3843  */
3844 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3845 {
3846 	struct sctp_endpoint *ep;
3847 	struct sctp_sock *sp;
3848 
3849 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3850 
3851 	sp = sctp_sk(sk);
3852 
3853 	/* Initialize the SCTP per socket area.  */
3854 	switch (sk->sk_type) {
3855 	case SOCK_SEQPACKET:
3856 		sp->type = SCTP_SOCKET_UDP;
3857 		break;
3858 	case SOCK_STREAM:
3859 		sp->type = SCTP_SOCKET_TCP;
3860 		break;
3861 	default:
3862 		return -ESOCKTNOSUPPORT;
3863 	}
3864 
3865 	/* Initialize default send parameters. These parameters can be
3866 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3867 	 */
3868 	sp->default_stream = 0;
3869 	sp->default_ppid = 0;
3870 	sp->default_flags = 0;
3871 	sp->default_context = 0;
3872 	sp->default_timetolive = 0;
3873 
3874 	sp->default_rcv_context = 0;
3875 	sp->max_burst = sctp_max_burst;
3876 
3877 	/* Initialize default setup parameters. These parameters
3878 	 * can be modified with the SCTP_INITMSG socket option or
3879 	 * overridden by the SCTP_INIT CMSG.
3880 	 */
3881 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3882 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3883 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3884 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3885 
3886 	/* Initialize default RTO related parameters.  These parameters can
3887 	 * be modified for with the SCTP_RTOINFO socket option.
3888 	 */
3889 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3890 	sp->rtoinfo.srto_max     = sctp_rto_max;
3891 	sp->rtoinfo.srto_min     = sctp_rto_min;
3892 
3893 	/* Initialize default association related parameters. These parameters
3894 	 * can be modified with the SCTP_ASSOCINFO socket option.
3895 	 */
3896 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3897 	sp->assocparams.sasoc_number_peer_destinations = 0;
3898 	sp->assocparams.sasoc_peer_rwnd = 0;
3899 	sp->assocparams.sasoc_local_rwnd = 0;
3900 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3901 
3902 	/* Initialize default event subscriptions. By default, all the
3903 	 * options are off.
3904 	 */
3905 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3906 
3907 	/* Default Peer Address Parameters.  These defaults can
3908 	 * be modified via SCTP_PEER_ADDR_PARAMS
3909 	 */
3910 	sp->hbinterval  = sctp_hb_interval;
3911 	sp->pathmaxrxt  = sctp_max_retrans_path;
3912 	sp->pathmtu     = 0; // allow default discovery
3913 	sp->sackdelay   = sctp_sack_timeout;
3914 	sp->sackfreq	= 2;
3915 	sp->param_flags = SPP_HB_ENABLE |
3916 			  SPP_PMTUD_ENABLE |
3917 			  SPP_SACKDELAY_ENABLE;
3918 
3919 	/* If enabled no SCTP message fragmentation will be performed.
3920 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3921 	 */
3922 	sp->disable_fragments = 0;
3923 
3924 	/* Enable Nagle algorithm by default.  */
3925 	sp->nodelay           = 0;
3926 
3927 	/* Enable by default. */
3928 	sp->v4mapped          = 1;
3929 
3930 	/* Auto-close idle associations after the configured
3931 	 * number of seconds.  A value of 0 disables this
3932 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3933 	 * for UDP-style sockets only.
3934 	 */
3935 	sp->autoclose         = 0;
3936 
3937 	/* User specified fragmentation limit. */
3938 	sp->user_frag         = 0;
3939 
3940 	sp->adaptation_ind = 0;
3941 
3942 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3943 
3944 	/* Control variables for partial data delivery. */
3945 	atomic_set(&sp->pd_mode, 0);
3946 	skb_queue_head_init(&sp->pd_lobby);
3947 	sp->frag_interleave = 0;
3948 
3949 	/* Create a per socket endpoint structure.  Even if we
3950 	 * change the data structure relationships, this may still
3951 	 * be useful for storing pre-connect address information.
3952 	 */
3953 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3954 	if (!ep)
3955 		return -ENOMEM;
3956 
3957 	sp->ep = ep;
3958 	sp->hmac = NULL;
3959 
3960 	SCTP_DBG_OBJCNT_INC(sock);
3961 
3962 	local_bh_disable();
3963 	percpu_counter_inc(&sctp_sockets_allocated);
3964 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3965 	if (sctp_default_auto_asconf) {
3966 		list_add_tail(&sp->auto_asconf_list,
3967 		    &sctp_auto_asconf_splist);
3968 		sp->do_auto_asconf = 1;
3969 	} else
3970 		sp->do_auto_asconf = 0;
3971 	local_bh_enable();
3972 
3973 	return 0;
3974 }
3975 
3976 /* Cleanup any SCTP per socket resources.  */
3977 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3978 {
3979 	struct sctp_sock *sp;
3980 
3981 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3982 
3983 	/* Release our hold on the endpoint. */
3984 	sp = sctp_sk(sk);
3985 	if (sp->do_auto_asconf) {
3986 		sp->do_auto_asconf = 0;
3987 		list_del(&sp->auto_asconf_list);
3988 	}
3989 	sctp_endpoint_free(sp->ep);
3990 	local_bh_disable();
3991 	percpu_counter_dec(&sctp_sockets_allocated);
3992 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3993 	local_bh_enable();
3994 }
3995 
3996 /* API 4.1.7 shutdown() - TCP Style Syntax
3997  *     int shutdown(int socket, int how);
3998  *
3999  *     sd      - the socket descriptor of the association to be closed.
4000  *     how     - Specifies the type of shutdown.  The  values  are
4001  *               as follows:
4002  *               SHUT_RD
4003  *                     Disables further receive operations. No SCTP
4004  *                     protocol action is taken.
4005  *               SHUT_WR
4006  *                     Disables further send operations, and initiates
4007  *                     the SCTP shutdown sequence.
4008  *               SHUT_RDWR
4009  *                     Disables further send  and  receive  operations
4010  *                     and initiates the SCTP shutdown sequence.
4011  */
4012 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
4013 {
4014 	struct sctp_endpoint *ep;
4015 	struct sctp_association *asoc;
4016 
4017 	if (!sctp_style(sk, TCP))
4018 		return;
4019 
4020 	if (how & SEND_SHUTDOWN) {
4021 		ep = sctp_sk(sk)->ep;
4022 		if (!list_empty(&ep->asocs)) {
4023 			asoc = list_entry(ep->asocs.next,
4024 					  struct sctp_association, asocs);
4025 			sctp_primitive_SHUTDOWN(asoc, NULL);
4026 		}
4027 	}
4028 }
4029 
4030 /* 7.2.1 Association Status (SCTP_STATUS)
4031 
4032  * Applications can retrieve current status information about an
4033  * association, including association state, peer receiver window size,
4034  * number of unacked data chunks, and number of data chunks pending
4035  * receipt.  This information is read-only.
4036  */
4037 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4038 				       char __user *optval,
4039 				       int __user *optlen)
4040 {
4041 	struct sctp_status status;
4042 	struct sctp_association *asoc = NULL;
4043 	struct sctp_transport *transport;
4044 	sctp_assoc_t associd;
4045 	int retval = 0;
4046 
4047 	if (len < sizeof(status)) {
4048 		retval = -EINVAL;
4049 		goto out;
4050 	}
4051 
4052 	len = sizeof(status);
4053 	if (copy_from_user(&status, optval, len)) {
4054 		retval = -EFAULT;
4055 		goto out;
4056 	}
4057 
4058 	associd = status.sstat_assoc_id;
4059 	asoc = sctp_id2assoc(sk, associd);
4060 	if (!asoc) {
4061 		retval = -EINVAL;
4062 		goto out;
4063 	}
4064 
4065 	transport = asoc->peer.primary_path;
4066 
4067 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4068 	status.sstat_state = asoc->state;
4069 	status.sstat_rwnd =  asoc->peer.rwnd;
4070 	status.sstat_unackdata = asoc->unack_data;
4071 
4072 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4073 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4074 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4075 	status.sstat_fragmentation_point = asoc->frag_point;
4076 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4077 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4078 			transport->af_specific->sockaddr_len);
4079 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4080 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4081 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4082 	status.sstat_primary.spinfo_state = transport->state;
4083 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4084 	status.sstat_primary.spinfo_srtt = transport->srtt;
4085 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4086 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4087 
4088 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4089 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4090 
4091 	if (put_user(len, optlen)) {
4092 		retval = -EFAULT;
4093 		goto out;
4094 	}
4095 
4096 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4097 			  len, status.sstat_state, status.sstat_rwnd,
4098 			  status.sstat_assoc_id);
4099 
4100 	if (copy_to_user(optval, &status, len)) {
4101 		retval = -EFAULT;
4102 		goto out;
4103 	}
4104 
4105 out:
4106 	return retval;
4107 }
4108 
4109 
4110 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4111  *
4112  * Applications can retrieve information about a specific peer address
4113  * of an association, including its reachability state, congestion
4114  * window, and retransmission timer values.  This information is
4115  * read-only.
4116  */
4117 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4118 					  char __user *optval,
4119 					  int __user *optlen)
4120 {
4121 	struct sctp_paddrinfo pinfo;
4122 	struct sctp_transport *transport;
4123 	int retval = 0;
4124 
4125 	if (len < sizeof(pinfo)) {
4126 		retval = -EINVAL;
4127 		goto out;
4128 	}
4129 
4130 	len = sizeof(pinfo);
4131 	if (copy_from_user(&pinfo, optval, len)) {
4132 		retval = -EFAULT;
4133 		goto out;
4134 	}
4135 
4136 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4137 					   pinfo.spinfo_assoc_id);
4138 	if (!transport)
4139 		return -EINVAL;
4140 
4141 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4142 	pinfo.spinfo_state = transport->state;
4143 	pinfo.spinfo_cwnd = transport->cwnd;
4144 	pinfo.spinfo_srtt = transport->srtt;
4145 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4146 	pinfo.spinfo_mtu = transport->pathmtu;
4147 
4148 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4149 		pinfo.spinfo_state = SCTP_ACTIVE;
4150 
4151 	if (put_user(len, optlen)) {
4152 		retval = -EFAULT;
4153 		goto out;
4154 	}
4155 
4156 	if (copy_to_user(optval, &pinfo, len)) {
4157 		retval = -EFAULT;
4158 		goto out;
4159 	}
4160 
4161 out:
4162 	return retval;
4163 }
4164 
4165 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4166  *
4167  * This option is a on/off flag.  If enabled no SCTP message
4168  * fragmentation will be performed.  Instead if a message being sent
4169  * exceeds the current PMTU size, the message will NOT be sent and
4170  * instead a error will be indicated to the user.
4171  */
4172 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4173 					char __user *optval, int __user *optlen)
4174 {
4175 	int val;
4176 
4177 	if (len < sizeof(int))
4178 		return -EINVAL;
4179 
4180 	len = sizeof(int);
4181 	val = (sctp_sk(sk)->disable_fragments == 1);
4182 	if (put_user(len, optlen))
4183 		return -EFAULT;
4184 	if (copy_to_user(optval, &val, len))
4185 		return -EFAULT;
4186 	return 0;
4187 }
4188 
4189 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4190  *
4191  * This socket option is used to specify various notifications and
4192  * ancillary data the user wishes to receive.
4193  */
4194 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4195 				  int __user *optlen)
4196 {
4197 	if (len <= 0)
4198 		return -EINVAL;
4199 	if (len > sizeof(struct sctp_event_subscribe))
4200 		len = sizeof(struct sctp_event_subscribe);
4201 	if (put_user(len, optlen))
4202 		return -EFAULT;
4203 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4204 		return -EFAULT;
4205 	return 0;
4206 }
4207 
4208 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4209  *
4210  * This socket option is applicable to the UDP-style socket only.  When
4211  * set it will cause associations that are idle for more than the
4212  * specified number of seconds to automatically close.  An association
4213  * being idle is defined an association that has NOT sent or received
4214  * user data.  The special value of '0' indicates that no automatic
4215  * close of any associations should be performed.  The option expects an
4216  * integer defining the number of seconds of idle time before an
4217  * association is closed.
4218  */
4219 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4220 {
4221 	/* Applicable to UDP-style socket only */
4222 	if (sctp_style(sk, TCP))
4223 		return -EOPNOTSUPP;
4224 	if (len < sizeof(int))
4225 		return -EINVAL;
4226 	len = sizeof(int);
4227 	if (put_user(len, optlen))
4228 		return -EFAULT;
4229 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4230 		return -EFAULT;
4231 	return 0;
4232 }
4233 
4234 /* Helper routine to branch off an association to a new socket.  */
4235 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4236 {
4237 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4238 	struct socket *sock;
4239 	struct sctp_af *af;
4240 	int err = 0;
4241 
4242 	if (!asoc)
4243 		return -EINVAL;
4244 
4245 	/* An association cannot be branched off from an already peeled-off
4246 	 * socket, nor is this supported for tcp style sockets.
4247 	 */
4248 	if (!sctp_style(sk, UDP))
4249 		return -EINVAL;
4250 
4251 	/* Create a new socket.  */
4252 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4253 	if (err < 0)
4254 		return err;
4255 
4256 	sctp_copy_sock(sock->sk, sk, asoc);
4257 
4258 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4259 	 * Set the daddr and initialize id to something more random
4260 	 */
4261 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4262 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4263 
4264 	/* Populate the fields of the newsk from the oldsk and migrate the
4265 	 * asoc to the newsk.
4266 	 */
4267 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4268 
4269 	*sockp = sock;
4270 
4271 	return err;
4272 }
4273 EXPORT_SYMBOL(sctp_do_peeloff);
4274 
4275 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4276 {
4277 	sctp_peeloff_arg_t peeloff;
4278 	struct socket *newsock;
4279 	int retval = 0;
4280 
4281 	if (len < sizeof(sctp_peeloff_arg_t))
4282 		return -EINVAL;
4283 	len = sizeof(sctp_peeloff_arg_t);
4284 	if (copy_from_user(&peeloff, optval, len))
4285 		return -EFAULT;
4286 
4287 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4288 	if (retval < 0)
4289 		goto out;
4290 
4291 	/* Map the socket to an unused fd that can be returned to the user.  */
4292 	retval = sock_map_fd(newsock, 0);
4293 	if (retval < 0) {
4294 		sock_release(newsock);
4295 		goto out;
4296 	}
4297 
4298 	SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4299 			  __func__, sk, newsock->sk, retval);
4300 
4301 	/* Return the fd mapped to the new socket.  */
4302 	peeloff.sd = retval;
4303 	if (put_user(len, optlen))
4304 		return -EFAULT;
4305 	if (copy_to_user(optval, &peeloff, len))
4306 		retval = -EFAULT;
4307 
4308 out:
4309 	return retval;
4310 }
4311 
4312 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4313  *
4314  * Applications can enable or disable heartbeats for any peer address of
4315  * an association, modify an address's heartbeat interval, force a
4316  * heartbeat to be sent immediately, and adjust the address's maximum
4317  * number of retransmissions sent before an address is considered
4318  * unreachable.  The following structure is used to access and modify an
4319  * address's parameters:
4320  *
4321  *  struct sctp_paddrparams {
4322  *     sctp_assoc_t            spp_assoc_id;
4323  *     struct sockaddr_storage spp_address;
4324  *     uint32_t                spp_hbinterval;
4325  *     uint16_t                spp_pathmaxrxt;
4326  *     uint32_t                spp_pathmtu;
4327  *     uint32_t                spp_sackdelay;
4328  *     uint32_t                spp_flags;
4329  * };
4330  *
4331  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4332  *                     application, and identifies the association for
4333  *                     this query.
4334  *   spp_address     - This specifies which address is of interest.
4335  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4336  *                     in milliseconds.  If a  value of zero
4337  *                     is present in this field then no changes are to
4338  *                     be made to this parameter.
4339  *   spp_pathmaxrxt  - This contains the maximum number of
4340  *                     retransmissions before this address shall be
4341  *                     considered unreachable. If a  value of zero
4342  *                     is present in this field then no changes are to
4343  *                     be made to this parameter.
4344  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4345  *                     specified here will be the "fixed" path mtu.
4346  *                     Note that if the spp_address field is empty
4347  *                     then all associations on this address will
4348  *                     have this fixed path mtu set upon them.
4349  *
4350  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4351  *                     the number of milliseconds that sacks will be delayed
4352  *                     for. This value will apply to all addresses of an
4353  *                     association if the spp_address field is empty. Note
4354  *                     also, that if delayed sack is enabled and this
4355  *                     value is set to 0, no change is made to the last
4356  *                     recorded delayed sack timer value.
4357  *
4358  *   spp_flags       - These flags are used to control various features
4359  *                     on an association. The flag field may contain
4360  *                     zero or more of the following options.
4361  *
4362  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4363  *                     specified address. Note that if the address
4364  *                     field is empty all addresses for the association
4365  *                     have heartbeats enabled upon them.
4366  *
4367  *                     SPP_HB_DISABLE - Disable heartbeats on the
4368  *                     speicifed address. Note that if the address
4369  *                     field is empty all addresses for the association
4370  *                     will have their heartbeats disabled. Note also
4371  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4372  *                     mutually exclusive, only one of these two should
4373  *                     be specified. Enabling both fields will have
4374  *                     undetermined results.
4375  *
4376  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4377  *                     to be made immediately.
4378  *
4379  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4380  *                     discovery upon the specified address. Note that
4381  *                     if the address feild is empty then all addresses
4382  *                     on the association are effected.
4383  *
4384  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4385  *                     discovery upon the specified address. Note that
4386  *                     if the address feild is empty then all addresses
4387  *                     on the association are effected. Not also that
4388  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4389  *                     exclusive. Enabling both will have undetermined
4390  *                     results.
4391  *
4392  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4393  *                     on delayed sack. The time specified in spp_sackdelay
4394  *                     is used to specify the sack delay for this address. Note
4395  *                     that if spp_address is empty then all addresses will
4396  *                     enable delayed sack and take on the sack delay
4397  *                     value specified in spp_sackdelay.
4398  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4399  *                     off delayed sack. If the spp_address field is blank then
4400  *                     delayed sack is disabled for the entire association. Note
4401  *                     also that this field is mutually exclusive to
4402  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4403  *                     results.
4404  */
4405 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4406 					    char __user *optval, int __user *optlen)
4407 {
4408 	struct sctp_paddrparams  params;
4409 	struct sctp_transport   *trans = NULL;
4410 	struct sctp_association *asoc = NULL;
4411 	struct sctp_sock        *sp = sctp_sk(sk);
4412 
4413 	if (len < sizeof(struct sctp_paddrparams))
4414 		return -EINVAL;
4415 	len = sizeof(struct sctp_paddrparams);
4416 	if (copy_from_user(&params, optval, len))
4417 		return -EFAULT;
4418 
4419 	/* If an address other than INADDR_ANY is specified, and
4420 	 * no transport is found, then the request is invalid.
4421 	 */
4422 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4423 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4424 					       params.spp_assoc_id);
4425 		if (!trans) {
4426 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4427 			return -EINVAL;
4428 		}
4429 	}
4430 
4431 	/* Get association, if assoc_id != 0 and the socket is a one
4432 	 * to many style socket, and an association was not found, then
4433 	 * the id was invalid.
4434 	 */
4435 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4436 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4437 		SCTP_DEBUG_PRINTK("Failed no association\n");
4438 		return -EINVAL;
4439 	}
4440 
4441 	if (trans) {
4442 		/* Fetch transport values. */
4443 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4444 		params.spp_pathmtu    = trans->pathmtu;
4445 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4446 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4447 
4448 		/*draft-11 doesn't say what to return in spp_flags*/
4449 		params.spp_flags      = trans->param_flags;
4450 	} else if (asoc) {
4451 		/* Fetch association values. */
4452 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4453 		params.spp_pathmtu    = asoc->pathmtu;
4454 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4455 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4456 
4457 		/*draft-11 doesn't say what to return in spp_flags*/
4458 		params.spp_flags      = asoc->param_flags;
4459 	} else {
4460 		/* Fetch socket values. */
4461 		params.spp_hbinterval = sp->hbinterval;
4462 		params.spp_pathmtu    = sp->pathmtu;
4463 		params.spp_sackdelay  = sp->sackdelay;
4464 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4465 
4466 		/*draft-11 doesn't say what to return in spp_flags*/
4467 		params.spp_flags      = sp->param_flags;
4468 	}
4469 
4470 	if (copy_to_user(optval, &params, len))
4471 		return -EFAULT;
4472 
4473 	if (put_user(len, optlen))
4474 		return -EFAULT;
4475 
4476 	return 0;
4477 }
4478 
4479 /*
4480  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4481  *
4482  * This option will effect the way delayed acks are performed.  This
4483  * option allows you to get or set the delayed ack time, in
4484  * milliseconds.  It also allows changing the delayed ack frequency.
4485  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4486  * the assoc_id is 0, then this sets or gets the endpoints default
4487  * values.  If the assoc_id field is non-zero, then the set or get
4488  * effects the specified association for the one to many model (the
4489  * assoc_id field is ignored by the one to one model).  Note that if
4490  * sack_delay or sack_freq are 0 when setting this option, then the
4491  * current values will remain unchanged.
4492  *
4493  * struct sctp_sack_info {
4494  *     sctp_assoc_t            sack_assoc_id;
4495  *     uint32_t                sack_delay;
4496  *     uint32_t                sack_freq;
4497  * };
4498  *
4499  * sack_assoc_id -  This parameter, indicates which association the user
4500  *    is performing an action upon.  Note that if this field's value is
4501  *    zero then the endpoints default value is changed (effecting future
4502  *    associations only).
4503  *
4504  * sack_delay -  This parameter contains the number of milliseconds that
4505  *    the user is requesting the delayed ACK timer be set to.  Note that
4506  *    this value is defined in the standard to be between 200 and 500
4507  *    milliseconds.
4508  *
4509  * sack_freq -  This parameter contains the number of packets that must
4510  *    be received before a sack is sent without waiting for the delay
4511  *    timer to expire.  The default value for this is 2, setting this
4512  *    value to 1 will disable the delayed sack algorithm.
4513  */
4514 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4515 					    char __user *optval,
4516 					    int __user *optlen)
4517 {
4518 	struct sctp_sack_info    params;
4519 	struct sctp_association *asoc = NULL;
4520 	struct sctp_sock        *sp = sctp_sk(sk);
4521 
4522 	if (len >= sizeof(struct sctp_sack_info)) {
4523 		len = sizeof(struct sctp_sack_info);
4524 
4525 		if (copy_from_user(&params, optval, len))
4526 			return -EFAULT;
4527 	} else if (len == sizeof(struct sctp_assoc_value)) {
4528 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4529 		pr_warn("Use struct sctp_sack_info instead\n");
4530 		if (copy_from_user(&params, optval, len))
4531 			return -EFAULT;
4532 	} else
4533 		return - EINVAL;
4534 
4535 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4536 	 * to many style socket, and an association was not found, then
4537 	 * the id was invalid.
4538 	 */
4539 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4540 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4541 		return -EINVAL;
4542 
4543 	if (asoc) {
4544 		/* Fetch association values. */
4545 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4546 			params.sack_delay = jiffies_to_msecs(
4547 				asoc->sackdelay);
4548 			params.sack_freq = asoc->sackfreq;
4549 
4550 		} else {
4551 			params.sack_delay = 0;
4552 			params.sack_freq = 1;
4553 		}
4554 	} else {
4555 		/* Fetch socket values. */
4556 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4557 			params.sack_delay  = sp->sackdelay;
4558 			params.sack_freq = sp->sackfreq;
4559 		} else {
4560 			params.sack_delay  = 0;
4561 			params.sack_freq = 1;
4562 		}
4563 	}
4564 
4565 	if (copy_to_user(optval, &params, len))
4566 		return -EFAULT;
4567 
4568 	if (put_user(len, optlen))
4569 		return -EFAULT;
4570 
4571 	return 0;
4572 }
4573 
4574 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4575  *
4576  * Applications can specify protocol parameters for the default association
4577  * initialization.  The option name argument to setsockopt() and getsockopt()
4578  * is SCTP_INITMSG.
4579  *
4580  * Setting initialization parameters is effective only on an unconnected
4581  * socket (for UDP-style sockets only future associations are effected
4582  * by the change).  With TCP-style sockets, this option is inherited by
4583  * sockets derived from a listener socket.
4584  */
4585 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4586 {
4587 	if (len < sizeof(struct sctp_initmsg))
4588 		return -EINVAL;
4589 	len = sizeof(struct sctp_initmsg);
4590 	if (put_user(len, optlen))
4591 		return -EFAULT;
4592 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4593 		return -EFAULT;
4594 	return 0;
4595 }
4596 
4597 
4598 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4599 				      char __user *optval, int __user *optlen)
4600 {
4601 	struct sctp_association *asoc;
4602 	int cnt = 0;
4603 	struct sctp_getaddrs getaddrs;
4604 	struct sctp_transport *from;
4605 	void __user *to;
4606 	union sctp_addr temp;
4607 	struct sctp_sock *sp = sctp_sk(sk);
4608 	int addrlen;
4609 	size_t space_left;
4610 	int bytes_copied;
4611 
4612 	if (len < sizeof(struct sctp_getaddrs))
4613 		return -EINVAL;
4614 
4615 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4616 		return -EFAULT;
4617 
4618 	/* For UDP-style sockets, id specifies the association to query.  */
4619 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4620 	if (!asoc)
4621 		return -EINVAL;
4622 
4623 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4624 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4625 
4626 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4627 				transports) {
4628 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4629 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4630 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4631 		if (space_left < addrlen)
4632 			return -ENOMEM;
4633 		if (copy_to_user(to, &temp, addrlen))
4634 			return -EFAULT;
4635 		to += addrlen;
4636 		cnt++;
4637 		space_left -= addrlen;
4638 	}
4639 
4640 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4641 		return -EFAULT;
4642 	bytes_copied = ((char __user *)to) - optval;
4643 	if (put_user(bytes_copied, optlen))
4644 		return -EFAULT;
4645 
4646 	return 0;
4647 }
4648 
4649 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4650 			    size_t space_left, int *bytes_copied)
4651 {
4652 	struct sctp_sockaddr_entry *addr;
4653 	union sctp_addr temp;
4654 	int cnt = 0;
4655 	int addrlen;
4656 
4657 	rcu_read_lock();
4658 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4659 		if (!addr->valid)
4660 			continue;
4661 
4662 		if ((PF_INET == sk->sk_family) &&
4663 		    (AF_INET6 == addr->a.sa.sa_family))
4664 			continue;
4665 		if ((PF_INET6 == sk->sk_family) &&
4666 		    inet_v6_ipv6only(sk) &&
4667 		    (AF_INET == addr->a.sa.sa_family))
4668 			continue;
4669 		memcpy(&temp, &addr->a, sizeof(temp));
4670 		if (!temp.v4.sin_port)
4671 			temp.v4.sin_port = htons(port);
4672 
4673 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4674 								&temp);
4675 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4676 		if (space_left < addrlen) {
4677 			cnt =  -ENOMEM;
4678 			break;
4679 		}
4680 		memcpy(to, &temp, addrlen);
4681 
4682 		to += addrlen;
4683 		cnt ++;
4684 		space_left -= addrlen;
4685 		*bytes_copied += addrlen;
4686 	}
4687 	rcu_read_unlock();
4688 
4689 	return cnt;
4690 }
4691 
4692 
4693 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4694 				       char __user *optval, int __user *optlen)
4695 {
4696 	struct sctp_bind_addr *bp;
4697 	struct sctp_association *asoc;
4698 	int cnt = 0;
4699 	struct sctp_getaddrs getaddrs;
4700 	struct sctp_sockaddr_entry *addr;
4701 	void __user *to;
4702 	union sctp_addr temp;
4703 	struct sctp_sock *sp = sctp_sk(sk);
4704 	int addrlen;
4705 	int err = 0;
4706 	size_t space_left;
4707 	int bytes_copied = 0;
4708 	void *addrs;
4709 	void *buf;
4710 
4711 	if (len < sizeof(struct sctp_getaddrs))
4712 		return -EINVAL;
4713 
4714 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4715 		return -EFAULT;
4716 
4717 	/*
4718 	 *  For UDP-style sockets, id specifies the association to query.
4719 	 *  If the id field is set to the value '0' then the locally bound
4720 	 *  addresses are returned without regard to any particular
4721 	 *  association.
4722 	 */
4723 	if (0 == getaddrs.assoc_id) {
4724 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4725 	} else {
4726 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4727 		if (!asoc)
4728 			return -EINVAL;
4729 		bp = &asoc->base.bind_addr;
4730 	}
4731 
4732 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4733 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4734 
4735 	addrs = kmalloc(space_left, GFP_KERNEL);
4736 	if (!addrs)
4737 		return -ENOMEM;
4738 
4739 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4740 	 * addresses from the global local address list.
4741 	 */
4742 	if (sctp_list_single_entry(&bp->address_list)) {
4743 		addr = list_entry(bp->address_list.next,
4744 				  struct sctp_sockaddr_entry, list);
4745 		if (sctp_is_any(sk, &addr->a)) {
4746 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4747 						space_left, &bytes_copied);
4748 			if (cnt < 0) {
4749 				err = cnt;
4750 				goto out;
4751 			}
4752 			goto copy_getaddrs;
4753 		}
4754 	}
4755 
4756 	buf = addrs;
4757 	/* Protection on the bound address list is not needed since
4758 	 * in the socket option context we hold a socket lock and
4759 	 * thus the bound address list can't change.
4760 	 */
4761 	list_for_each_entry(addr, &bp->address_list, list) {
4762 		memcpy(&temp, &addr->a, sizeof(temp));
4763 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4764 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4765 		if (space_left < addrlen) {
4766 			err =  -ENOMEM; /*fixme: right error?*/
4767 			goto out;
4768 		}
4769 		memcpy(buf, &temp, addrlen);
4770 		buf += addrlen;
4771 		bytes_copied += addrlen;
4772 		cnt ++;
4773 		space_left -= addrlen;
4774 	}
4775 
4776 copy_getaddrs:
4777 	if (copy_to_user(to, addrs, bytes_copied)) {
4778 		err = -EFAULT;
4779 		goto out;
4780 	}
4781 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4782 		err = -EFAULT;
4783 		goto out;
4784 	}
4785 	if (put_user(bytes_copied, optlen))
4786 		err = -EFAULT;
4787 out:
4788 	kfree(addrs);
4789 	return err;
4790 }
4791 
4792 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4793  *
4794  * Requests that the local SCTP stack use the enclosed peer address as
4795  * the association primary.  The enclosed address must be one of the
4796  * association peer's addresses.
4797  */
4798 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4799 					char __user *optval, int __user *optlen)
4800 {
4801 	struct sctp_prim prim;
4802 	struct sctp_association *asoc;
4803 	struct sctp_sock *sp = sctp_sk(sk);
4804 
4805 	if (len < sizeof(struct sctp_prim))
4806 		return -EINVAL;
4807 
4808 	len = sizeof(struct sctp_prim);
4809 
4810 	if (copy_from_user(&prim, optval, len))
4811 		return -EFAULT;
4812 
4813 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4814 	if (!asoc)
4815 		return -EINVAL;
4816 
4817 	if (!asoc->peer.primary_path)
4818 		return -ENOTCONN;
4819 
4820 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4821 		asoc->peer.primary_path->af_specific->sockaddr_len);
4822 
4823 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4824 			(union sctp_addr *)&prim.ssp_addr);
4825 
4826 	if (put_user(len, optlen))
4827 		return -EFAULT;
4828 	if (copy_to_user(optval, &prim, len))
4829 		return -EFAULT;
4830 
4831 	return 0;
4832 }
4833 
4834 /*
4835  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4836  *
4837  * Requests that the local endpoint set the specified Adaptation Layer
4838  * Indication parameter for all future INIT and INIT-ACK exchanges.
4839  */
4840 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4841 				  char __user *optval, int __user *optlen)
4842 {
4843 	struct sctp_setadaptation adaptation;
4844 
4845 	if (len < sizeof(struct sctp_setadaptation))
4846 		return -EINVAL;
4847 
4848 	len = sizeof(struct sctp_setadaptation);
4849 
4850 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4851 
4852 	if (put_user(len, optlen))
4853 		return -EFAULT;
4854 	if (copy_to_user(optval, &adaptation, len))
4855 		return -EFAULT;
4856 
4857 	return 0;
4858 }
4859 
4860 /*
4861  *
4862  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4863  *
4864  *   Applications that wish to use the sendto() system call may wish to
4865  *   specify a default set of parameters that would normally be supplied
4866  *   through the inclusion of ancillary data.  This socket option allows
4867  *   such an application to set the default sctp_sndrcvinfo structure.
4868 
4869 
4870  *   The application that wishes to use this socket option simply passes
4871  *   in to this call the sctp_sndrcvinfo structure defined in Section
4872  *   5.2.2) The input parameters accepted by this call include
4873  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4874  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4875  *   to this call if the caller is using the UDP model.
4876  *
4877  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4878  */
4879 static int sctp_getsockopt_default_send_param(struct sock *sk,
4880 					int len, char __user *optval,
4881 					int __user *optlen)
4882 {
4883 	struct sctp_sndrcvinfo info;
4884 	struct sctp_association *asoc;
4885 	struct sctp_sock *sp = sctp_sk(sk);
4886 
4887 	if (len < sizeof(struct sctp_sndrcvinfo))
4888 		return -EINVAL;
4889 
4890 	len = sizeof(struct sctp_sndrcvinfo);
4891 
4892 	if (copy_from_user(&info, optval, len))
4893 		return -EFAULT;
4894 
4895 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4896 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4897 		return -EINVAL;
4898 
4899 	if (asoc) {
4900 		info.sinfo_stream = asoc->default_stream;
4901 		info.sinfo_flags = asoc->default_flags;
4902 		info.sinfo_ppid = asoc->default_ppid;
4903 		info.sinfo_context = asoc->default_context;
4904 		info.sinfo_timetolive = asoc->default_timetolive;
4905 	} else {
4906 		info.sinfo_stream = sp->default_stream;
4907 		info.sinfo_flags = sp->default_flags;
4908 		info.sinfo_ppid = sp->default_ppid;
4909 		info.sinfo_context = sp->default_context;
4910 		info.sinfo_timetolive = sp->default_timetolive;
4911 	}
4912 
4913 	if (put_user(len, optlen))
4914 		return -EFAULT;
4915 	if (copy_to_user(optval, &info, len))
4916 		return -EFAULT;
4917 
4918 	return 0;
4919 }
4920 
4921 /*
4922  *
4923  * 7.1.5 SCTP_NODELAY
4924  *
4925  * Turn on/off any Nagle-like algorithm.  This means that packets are
4926  * generally sent as soon as possible and no unnecessary delays are
4927  * introduced, at the cost of more packets in the network.  Expects an
4928  * integer boolean flag.
4929  */
4930 
4931 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4932 				   char __user *optval, int __user *optlen)
4933 {
4934 	int val;
4935 
4936 	if (len < sizeof(int))
4937 		return -EINVAL;
4938 
4939 	len = sizeof(int);
4940 	val = (sctp_sk(sk)->nodelay == 1);
4941 	if (put_user(len, optlen))
4942 		return -EFAULT;
4943 	if (copy_to_user(optval, &val, len))
4944 		return -EFAULT;
4945 	return 0;
4946 }
4947 
4948 /*
4949  *
4950  * 7.1.1 SCTP_RTOINFO
4951  *
4952  * The protocol parameters used to initialize and bound retransmission
4953  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4954  * and modify these parameters.
4955  * All parameters are time values, in milliseconds.  A value of 0, when
4956  * modifying the parameters, indicates that the current value should not
4957  * be changed.
4958  *
4959  */
4960 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4961 				char __user *optval,
4962 				int __user *optlen) {
4963 	struct sctp_rtoinfo rtoinfo;
4964 	struct sctp_association *asoc;
4965 
4966 	if (len < sizeof (struct sctp_rtoinfo))
4967 		return -EINVAL;
4968 
4969 	len = sizeof(struct sctp_rtoinfo);
4970 
4971 	if (copy_from_user(&rtoinfo, optval, len))
4972 		return -EFAULT;
4973 
4974 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4975 
4976 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4977 		return -EINVAL;
4978 
4979 	/* Values corresponding to the specific association. */
4980 	if (asoc) {
4981 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4982 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4983 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4984 	} else {
4985 		/* Values corresponding to the endpoint. */
4986 		struct sctp_sock *sp = sctp_sk(sk);
4987 
4988 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4989 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4990 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4991 	}
4992 
4993 	if (put_user(len, optlen))
4994 		return -EFAULT;
4995 
4996 	if (copy_to_user(optval, &rtoinfo, len))
4997 		return -EFAULT;
4998 
4999 	return 0;
5000 }
5001 
5002 /*
5003  *
5004  * 7.1.2 SCTP_ASSOCINFO
5005  *
5006  * This option is used to tune the maximum retransmission attempts
5007  * of the association.
5008  * Returns an error if the new association retransmission value is
5009  * greater than the sum of the retransmission value  of the peer.
5010  * See [SCTP] for more information.
5011  *
5012  */
5013 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5014 				     char __user *optval,
5015 				     int __user *optlen)
5016 {
5017 
5018 	struct sctp_assocparams assocparams;
5019 	struct sctp_association *asoc;
5020 	struct list_head *pos;
5021 	int cnt = 0;
5022 
5023 	if (len < sizeof (struct sctp_assocparams))
5024 		return -EINVAL;
5025 
5026 	len = sizeof(struct sctp_assocparams);
5027 
5028 	if (copy_from_user(&assocparams, optval, len))
5029 		return -EFAULT;
5030 
5031 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5032 
5033 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5034 		return -EINVAL;
5035 
5036 	/* Values correspoinding to the specific association */
5037 	if (asoc) {
5038 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5039 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5040 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5041 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5042 						* 1000) +
5043 						(asoc->cookie_life.tv_usec
5044 						/ 1000);
5045 
5046 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5047 			cnt ++;
5048 		}
5049 
5050 		assocparams.sasoc_number_peer_destinations = cnt;
5051 	} else {
5052 		/* Values corresponding to the endpoint */
5053 		struct sctp_sock *sp = sctp_sk(sk);
5054 
5055 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5056 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5057 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5058 		assocparams.sasoc_cookie_life =
5059 					sp->assocparams.sasoc_cookie_life;
5060 		assocparams.sasoc_number_peer_destinations =
5061 					sp->assocparams.
5062 					sasoc_number_peer_destinations;
5063 	}
5064 
5065 	if (put_user(len, optlen))
5066 		return -EFAULT;
5067 
5068 	if (copy_to_user(optval, &assocparams, len))
5069 		return -EFAULT;
5070 
5071 	return 0;
5072 }
5073 
5074 /*
5075  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5076  *
5077  * This socket option is a boolean flag which turns on or off mapped V4
5078  * addresses.  If this option is turned on and the socket is type
5079  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5080  * If this option is turned off, then no mapping will be done of V4
5081  * addresses and a user will receive both PF_INET6 and PF_INET type
5082  * addresses on the socket.
5083  */
5084 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5085 				    char __user *optval, int __user *optlen)
5086 {
5087 	int val;
5088 	struct sctp_sock *sp = sctp_sk(sk);
5089 
5090 	if (len < sizeof(int))
5091 		return -EINVAL;
5092 
5093 	len = sizeof(int);
5094 	val = sp->v4mapped;
5095 	if (put_user(len, optlen))
5096 		return -EFAULT;
5097 	if (copy_to_user(optval, &val, len))
5098 		return -EFAULT;
5099 
5100 	return 0;
5101 }
5102 
5103 /*
5104  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5105  * (chapter and verse is quoted at sctp_setsockopt_context())
5106  */
5107 static int sctp_getsockopt_context(struct sock *sk, int len,
5108 				   char __user *optval, int __user *optlen)
5109 {
5110 	struct sctp_assoc_value params;
5111 	struct sctp_sock *sp;
5112 	struct sctp_association *asoc;
5113 
5114 	if (len < sizeof(struct sctp_assoc_value))
5115 		return -EINVAL;
5116 
5117 	len = sizeof(struct sctp_assoc_value);
5118 
5119 	if (copy_from_user(&params, optval, len))
5120 		return -EFAULT;
5121 
5122 	sp = sctp_sk(sk);
5123 
5124 	if (params.assoc_id != 0) {
5125 		asoc = sctp_id2assoc(sk, params.assoc_id);
5126 		if (!asoc)
5127 			return -EINVAL;
5128 		params.assoc_value = asoc->default_rcv_context;
5129 	} else {
5130 		params.assoc_value = sp->default_rcv_context;
5131 	}
5132 
5133 	if (put_user(len, optlen))
5134 		return -EFAULT;
5135 	if (copy_to_user(optval, &params, len))
5136 		return -EFAULT;
5137 
5138 	return 0;
5139 }
5140 
5141 /*
5142  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5143  * This option will get or set the maximum size to put in any outgoing
5144  * SCTP DATA chunk.  If a message is larger than this size it will be
5145  * fragmented by SCTP into the specified size.  Note that the underlying
5146  * SCTP implementation may fragment into smaller sized chunks when the
5147  * PMTU of the underlying association is smaller than the value set by
5148  * the user.  The default value for this option is '0' which indicates
5149  * the user is NOT limiting fragmentation and only the PMTU will effect
5150  * SCTP's choice of DATA chunk size.  Note also that values set larger
5151  * than the maximum size of an IP datagram will effectively let SCTP
5152  * control fragmentation (i.e. the same as setting this option to 0).
5153  *
5154  * The following structure is used to access and modify this parameter:
5155  *
5156  * struct sctp_assoc_value {
5157  *   sctp_assoc_t assoc_id;
5158  *   uint32_t assoc_value;
5159  * };
5160  *
5161  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5162  *    For one-to-many style sockets this parameter indicates which
5163  *    association the user is performing an action upon.  Note that if
5164  *    this field's value is zero then the endpoints default value is
5165  *    changed (effecting future associations only).
5166  * assoc_value:  This parameter specifies the maximum size in bytes.
5167  */
5168 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5169 				  char __user *optval, int __user *optlen)
5170 {
5171 	struct sctp_assoc_value params;
5172 	struct sctp_association *asoc;
5173 
5174 	if (len == sizeof(int)) {
5175 		pr_warn("Use of int in maxseg socket option deprecated\n");
5176 		pr_warn("Use struct sctp_assoc_value instead\n");
5177 		params.assoc_id = 0;
5178 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5179 		len = sizeof(struct sctp_assoc_value);
5180 		if (copy_from_user(&params, optval, sizeof(params)))
5181 			return -EFAULT;
5182 	} else
5183 		return -EINVAL;
5184 
5185 	asoc = sctp_id2assoc(sk, params.assoc_id);
5186 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5187 		return -EINVAL;
5188 
5189 	if (asoc)
5190 		params.assoc_value = asoc->frag_point;
5191 	else
5192 		params.assoc_value = sctp_sk(sk)->user_frag;
5193 
5194 	if (put_user(len, optlen))
5195 		return -EFAULT;
5196 	if (len == sizeof(int)) {
5197 		if (copy_to_user(optval, &params.assoc_value, len))
5198 			return -EFAULT;
5199 	} else {
5200 		if (copy_to_user(optval, &params, len))
5201 			return -EFAULT;
5202 	}
5203 
5204 	return 0;
5205 }
5206 
5207 /*
5208  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5209  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5210  */
5211 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5212 					       char __user *optval, int __user *optlen)
5213 {
5214 	int val;
5215 
5216 	if (len < sizeof(int))
5217 		return -EINVAL;
5218 
5219 	len = sizeof(int);
5220 
5221 	val = sctp_sk(sk)->frag_interleave;
5222 	if (put_user(len, optlen))
5223 		return -EFAULT;
5224 	if (copy_to_user(optval, &val, len))
5225 		return -EFAULT;
5226 
5227 	return 0;
5228 }
5229 
5230 /*
5231  * 7.1.25.  Set or Get the sctp partial delivery point
5232  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5233  */
5234 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5235 						  char __user *optval,
5236 						  int __user *optlen)
5237 {
5238 	u32 val;
5239 
5240 	if (len < sizeof(u32))
5241 		return -EINVAL;
5242 
5243 	len = sizeof(u32);
5244 
5245 	val = sctp_sk(sk)->pd_point;
5246 	if (put_user(len, optlen))
5247 		return -EFAULT;
5248 	if (copy_to_user(optval, &val, len))
5249 		return -EFAULT;
5250 
5251 	return 0;
5252 }
5253 
5254 /*
5255  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5256  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5257  */
5258 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5259 				    char __user *optval,
5260 				    int __user *optlen)
5261 {
5262 	struct sctp_assoc_value params;
5263 	struct sctp_sock *sp;
5264 	struct sctp_association *asoc;
5265 
5266 	if (len == sizeof(int)) {
5267 		pr_warn("Use of int in max_burst socket option deprecated\n");
5268 		pr_warn("Use struct sctp_assoc_value instead\n");
5269 		params.assoc_id = 0;
5270 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5271 		len = sizeof(struct sctp_assoc_value);
5272 		if (copy_from_user(&params, optval, len))
5273 			return -EFAULT;
5274 	} else
5275 		return -EINVAL;
5276 
5277 	sp = sctp_sk(sk);
5278 
5279 	if (params.assoc_id != 0) {
5280 		asoc = sctp_id2assoc(sk, params.assoc_id);
5281 		if (!asoc)
5282 			return -EINVAL;
5283 		params.assoc_value = asoc->max_burst;
5284 	} else
5285 		params.assoc_value = sp->max_burst;
5286 
5287 	if (len == sizeof(int)) {
5288 		if (copy_to_user(optval, &params.assoc_value, len))
5289 			return -EFAULT;
5290 	} else {
5291 		if (copy_to_user(optval, &params, len))
5292 			return -EFAULT;
5293 	}
5294 
5295 	return 0;
5296 
5297 }
5298 
5299 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5300 				    char __user *optval, int __user *optlen)
5301 {
5302 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5303 	struct sctp_hmac_algo_param *hmacs;
5304 	__u16 data_len = 0;
5305 	u32 num_idents;
5306 
5307 	if (!sctp_auth_enable)
5308 		return -EACCES;
5309 
5310 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5311 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5312 
5313 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5314 		return -EINVAL;
5315 
5316 	len = sizeof(struct sctp_hmacalgo) + data_len;
5317 	num_idents = data_len / sizeof(u16);
5318 
5319 	if (put_user(len, optlen))
5320 		return -EFAULT;
5321 	if (put_user(num_idents, &p->shmac_num_idents))
5322 		return -EFAULT;
5323 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5324 		return -EFAULT;
5325 	return 0;
5326 }
5327 
5328 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5329 				    char __user *optval, int __user *optlen)
5330 {
5331 	struct sctp_authkeyid val;
5332 	struct sctp_association *asoc;
5333 
5334 	if (!sctp_auth_enable)
5335 		return -EACCES;
5336 
5337 	if (len < sizeof(struct sctp_authkeyid))
5338 		return -EINVAL;
5339 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5340 		return -EFAULT;
5341 
5342 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5343 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5344 		return -EINVAL;
5345 
5346 	if (asoc)
5347 		val.scact_keynumber = asoc->active_key_id;
5348 	else
5349 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5350 
5351 	len = sizeof(struct sctp_authkeyid);
5352 	if (put_user(len, optlen))
5353 		return -EFAULT;
5354 	if (copy_to_user(optval, &val, len))
5355 		return -EFAULT;
5356 
5357 	return 0;
5358 }
5359 
5360 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5361 				    char __user *optval, int __user *optlen)
5362 {
5363 	struct sctp_authchunks __user *p = (void __user *)optval;
5364 	struct sctp_authchunks val;
5365 	struct sctp_association *asoc;
5366 	struct sctp_chunks_param *ch;
5367 	u32    num_chunks = 0;
5368 	char __user *to;
5369 
5370 	if (!sctp_auth_enable)
5371 		return -EACCES;
5372 
5373 	if (len < sizeof(struct sctp_authchunks))
5374 		return -EINVAL;
5375 
5376 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5377 		return -EFAULT;
5378 
5379 	to = p->gauth_chunks;
5380 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5381 	if (!asoc)
5382 		return -EINVAL;
5383 
5384 	ch = asoc->peer.peer_chunks;
5385 	if (!ch)
5386 		goto num;
5387 
5388 	/* See if the user provided enough room for all the data */
5389 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5390 	if (len < num_chunks)
5391 		return -EINVAL;
5392 
5393 	if (copy_to_user(to, ch->chunks, num_chunks))
5394 		return -EFAULT;
5395 num:
5396 	len = sizeof(struct sctp_authchunks) + num_chunks;
5397 	if (put_user(len, optlen)) return -EFAULT;
5398 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5399 		return -EFAULT;
5400 	return 0;
5401 }
5402 
5403 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5404 				    char __user *optval, int __user *optlen)
5405 {
5406 	struct sctp_authchunks __user *p = (void __user *)optval;
5407 	struct sctp_authchunks val;
5408 	struct sctp_association *asoc;
5409 	struct sctp_chunks_param *ch;
5410 	u32    num_chunks = 0;
5411 	char __user *to;
5412 
5413 	if (!sctp_auth_enable)
5414 		return -EACCES;
5415 
5416 	if (len < sizeof(struct sctp_authchunks))
5417 		return -EINVAL;
5418 
5419 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5420 		return -EFAULT;
5421 
5422 	to = p->gauth_chunks;
5423 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5424 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5425 		return -EINVAL;
5426 
5427 	if (asoc)
5428 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5429 	else
5430 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5431 
5432 	if (!ch)
5433 		goto num;
5434 
5435 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5436 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5437 		return -EINVAL;
5438 
5439 	if (copy_to_user(to, ch->chunks, num_chunks))
5440 		return -EFAULT;
5441 num:
5442 	len = sizeof(struct sctp_authchunks) + num_chunks;
5443 	if (put_user(len, optlen))
5444 		return -EFAULT;
5445 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5446 		return -EFAULT;
5447 
5448 	return 0;
5449 }
5450 
5451 /*
5452  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5453  * This option gets the current number of associations that are attached
5454  * to a one-to-many style socket.  The option value is an uint32_t.
5455  */
5456 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5457 				    char __user *optval, int __user *optlen)
5458 {
5459 	struct sctp_sock *sp = sctp_sk(sk);
5460 	struct sctp_association *asoc;
5461 	u32 val = 0;
5462 
5463 	if (sctp_style(sk, TCP))
5464 		return -EOPNOTSUPP;
5465 
5466 	if (len < sizeof(u32))
5467 		return -EINVAL;
5468 
5469 	len = sizeof(u32);
5470 
5471 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5472 		val++;
5473 	}
5474 
5475 	if (put_user(len, optlen))
5476 		return -EFAULT;
5477 	if (copy_to_user(optval, &val, len))
5478 		return -EFAULT;
5479 
5480 	return 0;
5481 }
5482 
5483 /*
5484  * 8.1.23 SCTP_AUTO_ASCONF
5485  * See the corresponding setsockopt entry as description
5486  */
5487 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5488 				   char __user *optval, int __user *optlen)
5489 {
5490 	int val = 0;
5491 
5492 	if (len < sizeof(int))
5493 		return -EINVAL;
5494 
5495 	len = sizeof(int);
5496 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5497 		val = 1;
5498 	if (put_user(len, optlen))
5499 		return -EFAULT;
5500 	if (copy_to_user(optval, &val, len))
5501 		return -EFAULT;
5502 	return 0;
5503 }
5504 
5505 /*
5506  * 8.2.6. Get the Current Identifiers of Associations
5507  *        (SCTP_GET_ASSOC_ID_LIST)
5508  *
5509  * This option gets the current list of SCTP association identifiers of
5510  * the SCTP associations handled by a one-to-many style socket.
5511  */
5512 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5513 				    char __user *optval, int __user *optlen)
5514 {
5515 	struct sctp_sock *sp = sctp_sk(sk);
5516 	struct sctp_association *asoc;
5517 	struct sctp_assoc_ids *ids;
5518 	u32 num = 0;
5519 
5520 	if (sctp_style(sk, TCP))
5521 		return -EOPNOTSUPP;
5522 
5523 	if (len < sizeof(struct sctp_assoc_ids))
5524 		return -EINVAL;
5525 
5526 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5527 		num++;
5528 	}
5529 
5530 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5531 		return -EINVAL;
5532 
5533 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5534 
5535 	ids = kmalloc(len, GFP_KERNEL);
5536 	if (unlikely(!ids))
5537 		return -ENOMEM;
5538 
5539 	ids->gaids_number_of_ids = num;
5540 	num = 0;
5541 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5542 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5543 	}
5544 
5545 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5546 		kfree(ids);
5547 		return -EFAULT;
5548 	}
5549 
5550 	kfree(ids);
5551 	return 0;
5552 }
5553 
5554 /*
5555  * SCTP_PEER_ADDR_THLDS
5556  *
5557  * This option allows us to fetch the partially failed threshold for one or all
5558  * transports in an association.  See Section 6.1 of:
5559  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5560  */
5561 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5562 					    char __user *optval,
5563 					    int len,
5564 					    int __user *optlen)
5565 {
5566 	struct sctp_paddrthlds val;
5567 	struct sctp_transport *trans;
5568 	struct sctp_association *asoc;
5569 
5570 	if (len < sizeof(struct sctp_paddrthlds))
5571 		return -EINVAL;
5572 	len = sizeof(struct sctp_paddrthlds);
5573 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5574 		return -EFAULT;
5575 
5576 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5577 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5578 		if (!asoc)
5579 			return -ENOENT;
5580 
5581 		val.spt_pathpfthld = asoc->pf_retrans;
5582 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5583 	} else {
5584 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5585 					       val.spt_assoc_id);
5586 		if (!trans)
5587 			return -ENOENT;
5588 
5589 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5590 		val.spt_pathpfthld = trans->pf_retrans;
5591 	}
5592 
5593 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5594 		return -EFAULT;
5595 
5596 	return 0;
5597 }
5598 
5599 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5600 				char __user *optval, int __user *optlen)
5601 {
5602 	int retval = 0;
5603 	int len;
5604 
5605 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5606 			  sk, optname);
5607 
5608 	/* I can hardly begin to describe how wrong this is.  This is
5609 	 * so broken as to be worse than useless.  The API draft
5610 	 * REALLY is NOT helpful here...  I am not convinced that the
5611 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5612 	 * are at all well-founded.
5613 	 */
5614 	if (level != SOL_SCTP) {
5615 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5616 
5617 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5618 		return retval;
5619 	}
5620 
5621 	if (get_user(len, optlen))
5622 		return -EFAULT;
5623 
5624 	sctp_lock_sock(sk);
5625 
5626 	switch (optname) {
5627 	case SCTP_STATUS:
5628 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5629 		break;
5630 	case SCTP_DISABLE_FRAGMENTS:
5631 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5632 							   optlen);
5633 		break;
5634 	case SCTP_EVENTS:
5635 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5636 		break;
5637 	case SCTP_AUTOCLOSE:
5638 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5639 		break;
5640 	case SCTP_SOCKOPT_PEELOFF:
5641 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5642 		break;
5643 	case SCTP_PEER_ADDR_PARAMS:
5644 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5645 							  optlen);
5646 		break;
5647 	case SCTP_DELAYED_SACK:
5648 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5649 							  optlen);
5650 		break;
5651 	case SCTP_INITMSG:
5652 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5653 		break;
5654 	case SCTP_GET_PEER_ADDRS:
5655 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5656 						    optlen);
5657 		break;
5658 	case SCTP_GET_LOCAL_ADDRS:
5659 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5660 						     optlen);
5661 		break;
5662 	case SCTP_SOCKOPT_CONNECTX3:
5663 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5664 		break;
5665 	case SCTP_DEFAULT_SEND_PARAM:
5666 		retval = sctp_getsockopt_default_send_param(sk, len,
5667 							    optval, optlen);
5668 		break;
5669 	case SCTP_PRIMARY_ADDR:
5670 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5671 		break;
5672 	case SCTP_NODELAY:
5673 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5674 		break;
5675 	case SCTP_RTOINFO:
5676 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5677 		break;
5678 	case SCTP_ASSOCINFO:
5679 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5680 		break;
5681 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5682 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5683 		break;
5684 	case SCTP_MAXSEG:
5685 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5686 		break;
5687 	case SCTP_GET_PEER_ADDR_INFO:
5688 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5689 							optlen);
5690 		break;
5691 	case SCTP_ADAPTATION_LAYER:
5692 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5693 							optlen);
5694 		break;
5695 	case SCTP_CONTEXT:
5696 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5697 		break;
5698 	case SCTP_FRAGMENT_INTERLEAVE:
5699 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5700 							     optlen);
5701 		break;
5702 	case SCTP_PARTIAL_DELIVERY_POINT:
5703 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5704 								optlen);
5705 		break;
5706 	case SCTP_MAX_BURST:
5707 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5708 		break;
5709 	case SCTP_AUTH_KEY:
5710 	case SCTP_AUTH_CHUNK:
5711 	case SCTP_AUTH_DELETE_KEY:
5712 		retval = -EOPNOTSUPP;
5713 		break;
5714 	case SCTP_HMAC_IDENT:
5715 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5716 		break;
5717 	case SCTP_AUTH_ACTIVE_KEY:
5718 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5719 		break;
5720 	case SCTP_PEER_AUTH_CHUNKS:
5721 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5722 							optlen);
5723 		break;
5724 	case SCTP_LOCAL_AUTH_CHUNKS:
5725 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5726 							optlen);
5727 		break;
5728 	case SCTP_GET_ASSOC_NUMBER:
5729 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5730 		break;
5731 	case SCTP_GET_ASSOC_ID_LIST:
5732 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5733 		break;
5734 	case SCTP_AUTO_ASCONF:
5735 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5736 		break;
5737 	case SCTP_PEER_ADDR_THLDS:
5738 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5739 		break;
5740 	default:
5741 		retval = -ENOPROTOOPT;
5742 		break;
5743 	}
5744 
5745 	sctp_release_sock(sk);
5746 	return retval;
5747 }
5748 
5749 static void sctp_hash(struct sock *sk)
5750 {
5751 	/* STUB */
5752 }
5753 
5754 static void sctp_unhash(struct sock *sk)
5755 {
5756 	/* STUB */
5757 }
5758 
5759 /* Check if port is acceptable.  Possibly find first available port.
5760  *
5761  * The port hash table (contained in the 'global' SCTP protocol storage
5762  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5763  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5764  * list (the list number is the port number hashed out, so as you
5765  * would expect from a hash function, all the ports in a given list have
5766  * such a number that hashes out to the same list number; you were
5767  * expecting that, right?); so each list has a set of ports, with a
5768  * link to the socket (struct sock) that uses it, the port number and
5769  * a fastreuse flag (FIXME: NPI ipg).
5770  */
5771 static struct sctp_bind_bucket *sctp_bucket_create(
5772 	struct sctp_bind_hashbucket *head, unsigned short snum);
5773 
5774 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5775 {
5776 	struct sctp_bind_hashbucket *head; /* hash list */
5777 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5778 	struct hlist_node *node;
5779 	unsigned short snum;
5780 	int ret;
5781 
5782 	snum = ntohs(addr->v4.sin_port);
5783 
5784 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5785 	sctp_local_bh_disable();
5786 
5787 	if (snum == 0) {
5788 		/* Search for an available port. */
5789 		int low, high, remaining, index;
5790 		unsigned int rover;
5791 
5792 		inet_get_local_port_range(&low, &high);
5793 		remaining = (high - low) + 1;
5794 		rover = net_random() % remaining + low;
5795 
5796 		do {
5797 			rover++;
5798 			if ((rover < low) || (rover > high))
5799 				rover = low;
5800 			if (inet_is_reserved_local_port(rover))
5801 				continue;
5802 			index = sctp_phashfn(rover);
5803 			head = &sctp_port_hashtable[index];
5804 			sctp_spin_lock(&head->lock);
5805 			sctp_for_each_hentry(pp, node, &head->chain)
5806 				if (pp->port == rover)
5807 					goto next;
5808 			break;
5809 		next:
5810 			sctp_spin_unlock(&head->lock);
5811 		} while (--remaining > 0);
5812 
5813 		/* Exhausted local port range during search? */
5814 		ret = 1;
5815 		if (remaining <= 0)
5816 			goto fail;
5817 
5818 		/* OK, here is the one we will use.  HEAD (the port
5819 		 * hash table list entry) is non-NULL and we hold it's
5820 		 * mutex.
5821 		 */
5822 		snum = rover;
5823 	} else {
5824 		/* We are given an specific port number; we verify
5825 		 * that it is not being used. If it is used, we will
5826 		 * exahust the search in the hash list corresponding
5827 		 * to the port number (snum) - we detect that with the
5828 		 * port iterator, pp being NULL.
5829 		 */
5830 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5831 		sctp_spin_lock(&head->lock);
5832 		sctp_for_each_hentry(pp, node, &head->chain) {
5833 			if (pp->port == snum)
5834 				goto pp_found;
5835 		}
5836 	}
5837 	pp = NULL;
5838 	goto pp_not_found;
5839 pp_found:
5840 	if (!hlist_empty(&pp->owner)) {
5841 		/* We had a port hash table hit - there is an
5842 		 * available port (pp != NULL) and it is being
5843 		 * used by other socket (pp->owner not empty); that other
5844 		 * socket is going to be sk2.
5845 		 */
5846 		int reuse = sk->sk_reuse;
5847 		struct sock *sk2;
5848 
5849 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5850 		if (pp->fastreuse && sk->sk_reuse &&
5851 			sk->sk_state != SCTP_SS_LISTENING)
5852 			goto success;
5853 
5854 		/* Run through the list of sockets bound to the port
5855 		 * (pp->port) [via the pointers bind_next and
5856 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5857 		 * we get the endpoint they describe and run through
5858 		 * the endpoint's list of IP (v4 or v6) addresses,
5859 		 * comparing each of the addresses with the address of
5860 		 * the socket sk. If we find a match, then that means
5861 		 * that this port/socket (sk) combination are already
5862 		 * in an endpoint.
5863 		 */
5864 		sk_for_each_bound(sk2, node, &pp->owner) {
5865 			struct sctp_endpoint *ep2;
5866 			ep2 = sctp_sk(sk2)->ep;
5867 
5868 			if (sk == sk2 ||
5869 			    (reuse && sk2->sk_reuse &&
5870 			     sk2->sk_state != SCTP_SS_LISTENING))
5871 				continue;
5872 
5873 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5874 						 sctp_sk(sk2), sctp_sk(sk))) {
5875 				ret = (long)sk2;
5876 				goto fail_unlock;
5877 			}
5878 		}
5879 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5880 	}
5881 pp_not_found:
5882 	/* If there was a hash table miss, create a new port.  */
5883 	ret = 1;
5884 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5885 		goto fail_unlock;
5886 
5887 	/* In either case (hit or miss), make sure fastreuse is 1 only
5888 	 * if sk->sk_reuse is too (that is, if the caller requested
5889 	 * SO_REUSEADDR on this socket -sk-).
5890 	 */
5891 	if (hlist_empty(&pp->owner)) {
5892 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5893 			pp->fastreuse = 1;
5894 		else
5895 			pp->fastreuse = 0;
5896 	} else if (pp->fastreuse &&
5897 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5898 		pp->fastreuse = 0;
5899 
5900 	/* We are set, so fill up all the data in the hash table
5901 	 * entry, tie the socket list information with the rest of the
5902 	 * sockets FIXME: Blurry, NPI (ipg).
5903 	 */
5904 success:
5905 	if (!sctp_sk(sk)->bind_hash) {
5906 		inet_sk(sk)->inet_num = snum;
5907 		sk_add_bind_node(sk, &pp->owner);
5908 		sctp_sk(sk)->bind_hash = pp;
5909 	}
5910 	ret = 0;
5911 
5912 fail_unlock:
5913 	sctp_spin_unlock(&head->lock);
5914 
5915 fail:
5916 	sctp_local_bh_enable();
5917 	return ret;
5918 }
5919 
5920 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5921  * port is requested.
5922  */
5923 static int sctp_get_port(struct sock *sk, unsigned short snum)
5924 {
5925 	long ret;
5926 	union sctp_addr addr;
5927 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5928 
5929 	/* Set up a dummy address struct from the sk. */
5930 	af->from_sk(&addr, sk);
5931 	addr.v4.sin_port = htons(snum);
5932 
5933 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5934 	ret = sctp_get_port_local(sk, &addr);
5935 
5936 	return ret ? 1 : 0;
5937 }
5938 
5939 /*
5940  *  Move a socket to LISTENING state.
5941  */
5942 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5943 {
5944 	struct sctp_sock *sp = sctp_sk(sk);
5945 	struct sctp_endpoint *ep = sp->ep;
5946 	struct crypto_hash *tfm = NULL;
5947 
5948 	/* Allocate HMAC for generating cookie. */
5949 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5950 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5951 		if (IS_ERR(tfm)) {
5952 			net_info_ratelimited("failed to load transform for %s: %ld\n",
5953 					     sctp_hmac_alg, PTR_ERR(tfm));
5954 			return -ENOSYS;
5955 		}
5956 		sctp_sk(sk)->hmac = tfm;
5957 	}
5958 
5959 	/*
5960 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5961 	 * call that allows new associations to be accepted, the system
5962 	 * picks an ephemeral port and will choose an address set equivalent
5963 	 * to binding with a wildcard address.
5964 	 *
5965 	 * This is not currently spelled out in the SCTP sockets
5966 	 * extensions draft, but follows the practice as seen in TCP
5967 	 * sockets.
5968 	 *
5969 	 */
5970 	sk->sk_state = SCTP_SS_LISTENING;
5971 	if (!ep->base.bind_addr.port) {
5972 		if (sctp_autobind(sk))
5973 			return -EAGAIN;
5974 	} else {
5975 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5976 			sk->sk_state = SCTP_SS_CLOSED;
5977 			return -EADDRINUSE;
5978 		}
5979 	}
5980 
5981 	sk->sk_max_ack_backlog = backlog;
5982 	sctp_hash_endpoint(ep);
5983 	return 0;
5984 }
5985 
5986 /*
5987  * 4.1.3 / 5.1.3 listen()
5988  *
5989  *   By default, new associations are not accepted for UDP style sockets.
5990  *   An application uses listen() to mark a socket as being able to
5991  *   accept new associations.
5992  *
5993  *   On TCP style sockets, applications use listen() to ready the SCTP
5994  *   endpoint for accepting inbound associations.
5995  *
5996  *   On both types of endpoints a backlog of '0' disables listening.
5997  *
5998  *  Move a socket to LISTENING state.
5999  */
6000 int sctp_inet_listen(struct socket *sock, int backlog)
6001 {
6002 	struct sock *sk = sock->sk;
6003 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6004 	int err = -EINVAL;
6005 
6006 	if (unlikely(backlog < 0))
6007 		return err;
6008 
6009 	sctp_lock_sock(sk);
6010 
6011 	/* Peeled-off sockets are not allowed to listen().  */
6012 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6013 		goto out;
6014 
6015 	if (sock->state != SS_UNCONNECTED)
6016 		goto out;
6017 
6018 	/* If backlog is zero, disable listening. */
6019 	if (!backlog) {
6020 		if (sctp_sstate(sk, CLOSED))
6021 			goto out;
6022 
6023 		err = 0;
6024 		sctp_unhash_endpoint(ep);
6025 		sk->sk_state = SCTP_SS_CLOSED;
6026 		if (sk->sk_reuse)
6027 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6028 		goto out;
6029 	}
6030 
6031 	/* If we are already listening, just update the backlog */
6032 	if (sctp_sstate(sk, LISTENING))
6033 		sk->sk_max_ack_backlog = backlog;
6034 	else {
6035 		err = sctp_listen_start(sk, backlog);
6036 		if (err)
6037 			goto out;
6038 	}
6039 
6040 	err = 0;
6041 out:
6042 	sctp_release_sock(sk);
6043 	return err;
6044 }
6045 
6046 /*
6047  * This function is done by modeling the current datagram_poll() and the
6048  * tcp_poll().  Note that, based on these implementations, we don't
6049  * lock the socket in this function, even though it seems that,
6050  * ideally, locking or some other mechanisms can be used to ensure
6051  * the integrity of the counters (sndbuf and wmem_alloc) used
6052  * in this place.  We assume that we don't need locks either until proven
6053  * otherwise.
6054  *
6055  * Another thing to note is that we include the Async I/O support
6056  * here, again, by modeling the current TCP/UDP code.  We don't have
6057  * a good way to test with it yet.
6058  */
6059 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6060 {
6061 	struct sock *sk = sock->sk;
6062 	struct sctp_sock *sp = sctp_sk(sk);
6063 	unsigned int mask;
6064 
6065 	poll_wait(file, sk_sleep(sk), wait);
6066 
6067 	/* A TCP-style listening socket becomes readable when the accept queue
6068 	 * is not empty.
6069 	 */
6070 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6071 		return (!list_empty(&sp->ep->asocs)) ?
6072 			(POLLIN | POLLRDNORM) : 0;
6073 
6074 	mask = 0;
6075 
6076 	/* Is there any exceptional events?  */
6077 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6078 		mask |= POLLERR;
6079 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6080 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6081 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6082 		mask |= POLLHUP;
6083 
6084 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6085 	if (!skb_queue_empty(&sk->sk_receive_queue))
6086 		mask |= POLLIN | POLLRDNORM;
6087 
6088 	/* The association is either gone or not ready.  */
6089 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6090 		return mask;
6091 
6092 	/* Is it writable?  */
6093 	if (sctp_writeable(sk)) {
6094 		mask |= POLLOUT | POLLWRNORM;
6095 	} else {
6096 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6097 		/*
6098 		 * Since the socket is not locked, the buffer
6099 		 * might be made available after the writeable check and
6100 		 * before the bit is set.  This could cause a lost I/O
6101 		 * signal.  tcp_poll() has a race breaker for this race
6102 		 * condition.  Based on their implementation, we put
6103 		 * in the following code to cover it as well.
6104 		 */
6105 		if (sctp_writeable(sk))
6106 			mask |= POLLOUT | POLLWRNORM;
6107 	}
6108 	return mask;
6109 }
6110 
6111 /********************************************************************
6112  * 2nd Level Abstractions
6113  ********************************************************************/
6114 
6115 static struct sctp_bind_bucket *sctp_bucket_create(
6116 	struct sctp_bind_hashbucket *head, unsigned short snum)
6117 {
6118 	struct sctp_bind_bucket *pp;
6119 
6120 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6121 	if (pp) {
6122 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6123 		pp->port = snum;
6124 		pp->fastreuse = 0;
6125 		INIT_HLIST_HEAD(&pp->owner);
6126 		hlist_add_head(&pp->node, &head->chain);
6127 	}
6128 	return pp;
6129 }
6130 
6131 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6132 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6133 {
6134 	if (pp && hlist_empty(&pp->owner)) {
6135 		__hlist_del(&pp->node);
6136 		kmem_cache_free(sctp_bucket_cachep, pp);
6137 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6138 	}
6139 }
6140 
6141 /* Release this socket's reference to a local port.  */
6142 static inline void __sctp_put_port(struct sock *sk)
6143 {
6144 	struct sctp_bind_hashbucket *head =
6145 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6146 	struct sctp_bind_bucket *pp;
6147 
6148 	sctp_spin_lock(&head->lock);
6149 	pp = sctp_sk(sk)->bind_hash;
6150 	__sk_del_bind_node(sk);
6151 	sctp_sk(sk)->bind_hash = NULL;
6152 	inet_sk(sk)->inet_num = 0;
6153 	sctp_bucket_destroy(pp);
6154 	sctp_spin_unlock(&head->lock);
6155 }
6156 
6157 void sctp_put_port(struct sock *sk)
6158 {
6159 	sctp_local_bh_disable();
6160 	__sctp_put_port(sk);
6161 	sctp_local_bh_enable();
6162 }
6163 
6164 /*
6165  * The system picks an ephemeral port and choose an address set equivalent
6166  * to binding with a wildcard address.
6167  * One of those addresses will be the primary address for the association.
6168  * This automatically enables the multihoming capability of SCTP.
6169  */
6170 static int sctp_autobind(struct sock *sk)
6171 {
6172 	union sctp_addr autoaddr;
6173 	struct sctp_af *af;
6174 	__be16 port;
6175 
6176 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6177 	af = sctp_sk(sk)->pf->af;
6178 
6179 	port = htons(inet_sk(sk)->inet_num);
6180 	af->inaddr_any(&autoaddr, port);
6181 
6182 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6183 }
6184 
6185 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6186  *
6187  * From RFC 2292
6188  * 4.2 The cmsghdr Structure *
6189  *
6190  * When ancillary data is sent or received, any number of ancillary data
6191  * objects can be specified by the msg_control and msg_controllen members of
6192  * the msghdr structure, because each object is preceded by
6193  * a cmsghdr structure defining the object's length (the cmsg_len member).
6194  * Historically Berkeley-derived implementations have passed only one object
6195  * at a time, but this API allows multiple objects to be
6196  * passed in a single call to sendmsg() or recvmsg(). The following example
6197  * shows two ancillary data objects in a control buffer.
6198  *
6199  *   |<--------------------------- msg_controllen -------------------------->|
6200  *   |                                                                       |
6201  *
6202  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6203  *
6204  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6205  *   |                                   |                                   |
6206  *
6207  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6208  *
6209  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6210  *   |                                |  |                                |  |
6211  *
6212  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6213  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6214  *
6215  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6216  *
6217  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6218  *    ^
6219  *    |
6220  *
6221  * msg_control
6222  * points here
6223  */
6224 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6225 				  sctp_cmsgs_t *cmsgs)
6226 {
6227 	struct cmsghdr *cmsg;
6228 	struct msghdr *my_msg = (struct msghdr *)msg;
6229 
6230 	for (cmsg = CMSG_FIRSTHDR(msg);
6231 	     cmsg != NULL;
6232 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6233 		if (!CMSG_OK(my_msg, cmsg))
6234 			return -EINVAL;
6235 
6236 		/* Should we parse this header or ignore?  */
6237 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6238 			continue;
6239 
6240 		/* Strictly check lengths following example in SCM code.  */
6241 		switch (cmsg->cmsg_type) {
6242 		case SCTP_INIT:
6243 			/* SCTP Socket API Extension
6244 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6245 			 *
6246 			 * This cmsghdr structure provides information for
6247 			 * initializing new SCTP associations with sendmsg().
6248 			 * The SCTP_INITMSG socket option uses this same data
6249 			 * structure.  This structure is not used for
6250 			 * recvmsg().
6251 			 *
6252 			 * cmsg_level    cmsg_type      cmsg_data[]
6253 			 * ------------  ------------   ----------------------
6254 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6255 			 */
6256 			if (cmsg->cmsg_len !=
6257 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6258 				return -EINVAL;
6259 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6260 			break;
6261 
6262 		case SCTP_SNDRCV:
6263 			/* SCTP Socket API Extension
6264 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6265 			 *
6266 			 * This cmsghdr structure specifies SCTP options for
6267 			 * sendmsg() and describes SCTP header information
6268 			 * about a received message through recvmsg().
6269 			 *
6270 			 * cmsg_level    cmsg_type      cmsg_data[]
6271 			 * ------------  ------------   ----------------------
6272 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6273 			 */
6274 			if (cmsg->cmsg_len !=
6275 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6276 				return -EINVAL;
6277 
6278 			cmsgs->info =
6279 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6280 
6281 			/* Minimally, validate the sinfo_flags. */
6282 			if (cmsgs->info->sinfo_flags &
6283 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6284 			      SCTP_ABORT | SCTP_EOF))
6285 				return -EINVAL;
6286 			break;
6287 
6288 		default:
6289 			return -EINVAL;
6290 		}
6291 	}
6292 	return 0;
6293 }
6294 
6295 /*
6296  * Wait for a packet..
6297  * Note: This function is the same function as in core/datagram.c
6298  * with a few modifications to make lksctp work.
6299  */
6300 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6301 {
6302 	int error;
6303 	DEFINE_WAIT(wait);
6304 
6305 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6306 
6307 	/* Socket errors? */
6308 	error = sock_error(sk);
6309 	if (error)
6310 		goto out;
6311 
6312 	if (!skb_queue_empty(&sk->sk_receive_queue))
6313 		goto ready;
6314 
6315 	/* Socket shut down?  */
6316 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6317 		goto out;
6318 
6319 	/* Sequenced packets can come disconnected.  If so we report the
6320 	 * problem.
6321 	 */
6322 	error = -ENOTCONN;
6323 
6324 	/* Is there a good reason to think that we may receive some data?  */
6325 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6326 		goto out;
6327 
6328 	/* Handle signals.  */
6329 	if (signal_pending(current))
6330 		goto interrupted;
6331 
6332 	/* Let another process have a go.  Since we are going to sleep
6333 	 * anyway.  Note: This may cause odd behaviors if the message
6334 	 * does not fit in the user's buffer, but this seems to be the
6335 	 * only way to honor MSG_DONTWAIT realistically.
6336 	 */
6337 	sctp_release_sock(sk);
6338 	*timeo_p = schedule_timeout(*timeo_p);
6339 	sctp_lock_sock(sk);
6340 
6341 ready:
6342 	finish_wait(sk_sleep(sk), &wait);
6343 	return 0;
6344 
6345 interrupted:
6346 	error = sock_intr_errno(*timeo_p);
6347 
6348 out:
6349 	finish_wait(sk_sleep(sk), &wait);
6350 	*err = error;
6351 	return error;
6352 }
6353 
6354 /* Receive a datagram.
6355  * Note: This is pretty much the same routine as in core/datagram.c
6356  * with a few changes to make lksctp work.
6357  */
6358 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6359 					      int noblock, int *err)
6360 {
6361 	int error;
6362 	struct sk_buff *skb;
6363 	long timeo;
6364 
6365 	timeo = sock_rcvtimeo(sk, noblock);
6366 
6367 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6368 			  timeo, MAX_SCHEDULE_TIMEOUT);
6369 
6370 	do {
6371 		/* Again only user level code calls this function,
6372 		 * so nothing interrupt level
6373 		 * will suddenly eat the receive_queue.
6374 		 *
6375 		 *  Look at current nfs client by the way...
6376 		 *  However, this function was correct in any case. 8)
6377 		 */
6378 		if (flags & MSG_PEEK) {
6379 			spin_lock_bh(&sk->sk_receive_queue.lock);
6380 			skb = skb_peek(&sk->sk_receive_queue);
6381 			if (skb)
6382 				atomic_inc(&skb->users);
6383 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6384 		} else {
6385 			skb = skb_dequeue(&sk->sk_receive_queue);
6386 		}
6387 
6388 		if (skb)
6389 			return skb;
6390 
6391 		/* Caller is allowed not to check sk->sk_err before calling. */
6392 		error = sock_error(sk);
6393 		if (error)
6394 			goto no_packet;
6395 
6396 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6397 			break;
6398 
6399 		/* User doesn't want to wait.  */
6400 		error = -EAGAIN;
6401 		if (!timeo)
6402 			goto no_packet;
6403 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6404 
6405 	return NULL;
6406 
6407 no_packet:
6408 	*err = error;
6409 	return NULL;
6410 }
6411 
6412 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6413 static void __sctp_write_space(struct sctp_association *asoc)
6414 {
6415 	struct sock *sk = asoc->base.sk;
6416 	struct socket *sock = sk->sk_socket;
6417 
6418 	if ((sctp_wspace(asoc) > 0) && sock) {
6419 		if (waitqueue_active(&asoc->wait))
6420 			wake_up_interruptible(&asoc->wait);
6421 
6422 		if (sctp_writeable(sk)) {
6423 			wait_queue_head_t *wq = sk_sleep(sk);
6424 
6425 			if (wq && waitqueue_active(wq))
6426 				wake_up_interruptible(wq);
6427 
6428 			/* Note that we try to include the Async I/O support
6429 			 * here by modeling from the current TCP/UDP code.
6430 			 * We have not tested with it yet.
6431 			 */
6432 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6433 				sock_wake_async(sock,
6434 						SOCK_WAKE_SPACE, POLL_OUT);
6435 		}
6436 	}
6437 }
6438 
6439 /* Do accounting for the sndbuf space.
6440  * Decrement the used sndbuf space of the corresponding association by the
6441  * data size which was just transmitted(freed).
6442  */
6443 static void sctp_wfree(struct sk_buff *skb)
6444 {
6445 	struct sctp_association *asoc;
6446 	struct sctp_chunk *chunk;
6447 	struct sock *sk;
6448 
6449 	/* Get the saved chunk pointer.  */
6450 	chunk = *((struct sctp_chunk **)(skb->cb));
6451 	asoc = chunk->asoc;
6452 	sk = asoc->base.sk;
6453 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6454 				sizeof(struct sk_buff) +
6455 				sizeof(struct sctp_chunk);
6456 
6457 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6458 
6459 	/*
6460 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6461 	 */
6462 	sk->sk_wmem_queued   -= skb->truesize;
6463 	sk_mem_uncharge(sk, skb->truesize);
6464 
6465 	sock_wfree(skb);
6466 	__sctp_write_space(asoc);
6467 
6468 	sctp_association_put(asoc);
6469 }
6470 
6471 /* Do accounting for the receive space on the socket.
6472  * Accounting for the association is done in ulpevent.c
6473  * We set this as a destructor for the cloned data skbs so that
6474  * accounting is done at the correct time.
6475  */
6476 void sctp_sock_rfree(struct sk_buff *skb)
6477 {
6478 	struct sock *sk = skb->sk;
6479 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6480 
6481 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6482 
6483 	/*
6484 	 * Mimic the behavior of sock_rfree
6485 	 */
6486 	sk_mem_uncharge(sk, event->rmem_len);
6487 }
6488 
6489 
6490 /* Helper function to wait for space in the sndbuf.  */
6491 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6492 				size_t msg_len)
6493 {
6494 	struct sock *sk = asoc->base.sk;
6495 	int err = 0;
6496 	long current_timeo = *timeo_p;
6497 	DEFINE_WAIT(wait);
6498 
6499 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6500 			  asoc, (long)(*timeo_p), msg_len);
6501 
6502 	/* Increment the association's refcnt.  */
6503 	sctp_association_hold(asoc);
6504 
6505 	/* Wait on the association specific sndbuf space. */
6506 	for (;;) {
6507 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6508 					  TASK_INTERRUPTIBLE);
6509 		if (!*timeo_p)
6510 			goto do_nonblock;
6511 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6512 		    asoc->base.dead)
6513 			goto do_error;
6514 		if (signal_pending(current))
6515 			goto do_interrupted;
6516 		if (msg_len <= sctp_wspace(asoc))
6517 			break;
6518 
6519 		/* Let another process have a go.  Since we are going
6520 		 * to sleep anyway.
6521 		 */
6522 		sctp_release_sock(sk);
6523 		current_timeo = schedule_timeout(current_timeo);
6524 		BUG_ON(sk != asoc->base.sk);
6525 		sctp_lock_sock(sk);
6526 
6527 		*timeo_p = current_timeo;
6528 	}
6529 
6530 out:
6531 	finish_wait(&asoc->wait, &wait);
6532 
6533 	/* Release the association's refcnt.  */
6534 	sctp_association_put(asoc);
6535 
6536 	return err;
6537 
6538 do_error:
6539 	err = -EPIPE;
6540 	goto out;
6541 
6542 do_interrupted:
6543 	err = sock_intr_errno(*timeo_p);
6544 	goto out;
6545 
6546 do_nonblock:
6547 	err = -EAGAIN;
6548 	goto out;
6549 }
6550 
6551 void sctp_data_ready(struct sock *sk, int len)
6552 {
6553 	struct socket_wq *wq;
6554 
6555 	rcu_read_lock();
6556 	wq = rcu_dereference(sk->sk_wq);
6557 	if (wq_has_sleeper(wq))
6558 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6559 						POLLRDNORM | POLLRDBAND);
6560 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6561 	rcu_read_unlock();
6562 }
6563 
6564 /* If socket sndbuf has changed, wake up all per association waiters.  */
6565 void sctp_write_space(struct sock *sk)
6566 {
6567 	struct sctp_association *asoc;
6568 
6569 	/* Wake up the tasks in each wait queue.  */
6570 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6571 		__sctp_write_space(asoc);
6572 	}
6573 }
6574 
6575 /* Is there any sndbuf space available on the socket?
6576  *
6577  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6578  * associations on the same socket.  For a UDP-style socket with
6579  * multiple associations, it is possible for it to be "unwriteable"
6580  * prematurely.  I assume that this is acceptable because
6581  * a premature "unwriteable" is better than an accidental "writeable" which
6582  * would cause an unwanted block under certain circumstances.  For the 1-1
6583  * UDP-style sockets or TCP-style sockets, this code should work.
6584  *  - Daisy
6585  */
6586 static int sctp_writeable(struct sock *sk)
6587 {
6588 	int amt = 0;
6589 
6590 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6591 	if (amt < 0)
6592 		amt = 0;
6593 	return amt;
6594 }
6595 
6596 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6597  * returns immediately with EINPROGRESS.
6598  */
6599 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6600 {
6601 	struct sock *sk = asoc->base.sk;
6602 	int err = 0;
6603 	long current_timeo = *timeo_p;
6604 	DEFINE_WAIT(wait);
6605 
6606 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6607 			  (long)(*timeo_p));
6608 
6609 	/* Increment the association's refcnt.  */
6610 	sctp_association_hold(asoc);
6611 
6612 	for (;;) {
6613 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6614 					  TASK_INTERRUPTIBLE);
6615 		if (!*timeo_p)
6616 			goto do_nonblock;
6617 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6618 			break;
6619 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6620 		    asoc->base.dead)
6621 			goto do_error;
6622 		if (signal_pending(current))
6623 			goto do_interrupted;
6624 
6625 		if (sctp_state(asoc, ESTABLISHED))
6626 			break;
6627 
6628 		/* Let another process have a go.  Since we are going
6629 		 * to sleep anyway.
6630 		 */
6631 		sctp_release_sock(sk);
6632 		current_timeo = schedule_timeout(current_timeo);
6633 		sctp_lock_sock(sk);
6634 
6635 		*timeo_p = current_timeo;
6636 	}
6637 
6638 out:
6639 	finish_wait(&asoc->wait, &wait);
6640 
6641 	/* Release the association's refcnt.  */
6642 	sctp_association_put(asoc);
6643 
6644 	return err;
6645 
6646 do_error:
6647 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6648 		err = -ETIMEDOUT;
6649 	else
6650 		err = -ECONNREFUSED;
6651 	goto out;
6652 
6653 do_interrupted:
6654 	err = sock_intr_errno(*timeo_p);
6655 	goto out;
6656 
6657 do_nonblock:
6658 	err = -EINPROGRESS;
6659 	goto out;
6660 }
6661 
6662 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6663 {
6664 	struct sctp_endpoint *ep;
6665 	int err = 0;
6666 	DEFINE_WAIT(wait);
6667 
6668 	ep = sctp_sk(sk)->ep;
6669 
6670 
6671 	for (;;) {
6672 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6673 					  TASK_INTERRUPTIBLE);
6674 
6675 		if (list_empty(&ep->asocs)) {
6676 			sctp_release_sock(sk);
6677 			timeo = schedule_timeout(timeo);
6678 			sctp_lock_sock(sk);
6679 		}
6680 
6681 		err = -EINVAL;
6682 		if (!sctp_sstate(sk, LISTENING))
6683 			break;
6684 
6685 		err = 0;
6686 		if (!list_empty(&ep->asocs))
6687 			break;
6688 
6689 		err = sock_intr_errno(timeo);
6690 		if (signal_pending(current))
6691 			break;
6692 
6693 		err = -EAGAIN;
6694 		if (!timeo)
6695 			break;
6696 	}
6697 
6698 	finish_wait(sk_sleep(sk), &wait);
6699 
6700 	return err;
6701 }
6702 
6703 static void sctp_wait_for_close(struct sock *sk, long timeout)
6704 {
6705 	DEFINE_WAIT(wait);
6706 
6707 	do {
6708 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6709 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6710 			break;
6711 		sctp_release_sock(sk);
6712 		timeout = schedule_timeout(timeout);
6713 		sctp_lock_sock(sk);
6714 	} while (!signal_pending(current) && timeout);
6715 
6716 	finish_wait(sk_sleep(sk), &wait);
6717 }
6718 
6719 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6720 {
6721 	struct sk_buff *frag;
6722 
6723 	if (!skb->data_len)
6724 		goto done;
6725 
6726 	/* Don't forget the fragments. */
6727 	skb_walk_frags(skb, frag)
6728 		sctp_skb_set_owner_r_frag(frag, sk);
6729 
6730 done:
6731 	sctp_skb_set_owner_r(skb, sk);
6732 }
6733 
6734 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6735 		    struct sctp_association *asoc)
6736 {
6737 	struct inet_sock *inet = inet_sk(sk);
6738 	struct inet_sock *newinet;
6739 
6740 	newsk->sk_type = sk->sk_type;
6741 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6742 	newsk->sk_flags = sk->sk_flags;
6743 	newsk->sk_no_check = sk->sk_no_check;
6744 	newsk->sk_reuse = sk->sk_reuse;
6745 
6746 	newsk->sk_shutdown = sk->sk_shutdown;
6747 	newsk->sk_destruct = inet_sock_destruct;
6748 	newsk->sk_family = sk->sk_family;
6749 	newsk->sk_protocol = IPPROTO_SCTP;
6750 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6751 	newsk->sk_sndbuf = sk->sk_sndbuf;
6752 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6753 	newsk->sk_lingertime = sk->sk_lingertime;
6754 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6755 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6756 
6757 	newinet = inet_sk(newsk);
6758 
6759 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6760 	 * getsockname() and getpeername()
6761 	 */
6762 	newinet->inet_sport = inet->inet_sport;
6763 	newinet->inet_saddr = inet->inet_saddr;
6764 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6765 	newinet->inet_dport = htons(asoc->peer.port);
6766 	newinet->pmtudisc = inet->pmtudisc;
6767 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6768 
6769 	newinet->uc_ttl = inet->uc_ttl;
6770 	newinet->mc_loop = 1;
6771 	newinet->mc_ttl = 1;
6772 	newinet->mc_index = 0;
6773 	newinet->mc_list = NULL;
6774 }
6775 
6776 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6777  * and its messages to the newsk.
6778  */
6779 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6780 			      struct sctp_association *assoc,
6781 			      sctp_socket_type_t type)
6782 {
6783 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6784 	struct sctp_sock *newsp = sctp_sk(newsk);
6785 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6786 	struct sctp_endpoint *newep = newsp->ep;
6787 	struct sk_buff *skb, *tmp;
6788 	struct sctp_ulpevent *event;
6789 	struct sctp_bind_hashbucket *head;
6790 	struct list_head tmplist;
6791 
6792 	/* Migrate socket buffer sizes and all the socket level options to the
6793 	 * new socket.
6794 	 */
6795 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6796 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6797 	/* Brute force copy old sctp opt. */
6798 	if (oldsp->do_auto_asconf) {
6799 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6800 		inet_sk_copy_descendant(newsk, oldsk);
6801 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6802 	} else
6803 		inet_sk_copy_descendant(newsk, oldsk);
6804 
6805 	/* Restore the ep value that was overwritten with the above structure
6806 	 * copy.
6807 	 */
6808 	newsp->ep = newep;
6809 	newsp->hmac = NULL;
6810 
6811 	/* Hook this new socket in to the bind_hash list. */
6812 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6813 	sctp_local_bh_disable();
6814 	sctp_spin_lock(&head->lock);
6815 	pp = sctp_sk(oldsk)->bind_hash;
6816 	sk_add_bind_node(newsk, &pp->owner);
6817 	sctp_sk(newsk)->bind_hash = pp;
6818 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6819 	sctp_spin_unlock(&head->lock);
6820 	sctp_local_bh_enable();
6821 
6822 	/* Copy the bind_addr list from the original endpoint to the new
6823 	 * endpoint so that we can handle restarts properly
6824 	 */
6825 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6826 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6827 
6828 	/* Move any messages in the old socket's receive queue that are for the
6829 	 * peeled off association to the new socket's receive queue.
6830 	 */
6831 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6832 		event = sctp_skb2event(skb);
6833 		if (event->asoc == assoc) {
6834 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6835 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6836 			sctp_skb_set_owner_r_frag(skb, newsk);
6837 		}
6838 	}
6839 
6840 	/* Clean up any messages pending delivery due to partial
6841 	 * delivery.   Three cases:
6842 	 * 1) No partial deliver;  no work.
6843 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6844 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6845 	 */
6846 	skb_queue_head_init(&newsp->pd_lobby);
6847 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6848 
6849 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6850 		struct sk_buff_head *queue;
6851 
6852 		/* Decide which queue to move pd_lobby skbs to. */
6853 		if (assoc->ulpq.pd_mode) {
6854 			queue = &newsp->pd_lobby;
6855 		} else
6856 			queue = &newsk->sk_receive_queue;
6857 
6858 		/* Walk through the pd_lobby, looking for skbs that
6859 		 * need moved to the new socket.
6860 		 */
6861 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6862 			event = sctp_skb2event(skb);
6863 			if (event->asoc == assoc) {
6864 				__skb_unlink(skb, &oldsp->pd_lobby);
6865 				__skb_queue_tail(queue, skb);
6866 				sctp_skb_set_owner_r_frag(skb, newsk);
6867 			}
6868 		}
6869 
6870 		/* Clear up any skbs waiting for the partial
6871 		 * delivery to finish.
6872 		 */
6873 		if (assoc->ulpq.pd_mode)
6874 			sctp_clear_pd(oldsk, NULL);
6875 
6876 	}
6877 
6878 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6879 		sctp_skb_set_owner_r_frag(skb, newsk);
6880 
6881 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6882 		sctp_skb_set_owner_r_frag(skb, newsk);
6883 
6884 	/* Set the type of socket to indicate that it is peeled off from the
6885 	 * original UDP-style socket or created with the accept() call on a
6886 	 * TCP-style socket..
6887 	 */
6888 	newsp->type = type;
6889 
6890 	/* Mark the new socket "in-use" by the user so that any packets
6891 	 * that may arrive on the association after we've moved it are
6892 	 * queued to the backlog.  This prevents a potential race between
6893 	 * backlog processing on the old socket and new-packet processing
6894 	 * on the new socket.
6895 	 *
6896 	 * The caller has just allocated newsk so we can guarantee that other
6897 	 * paths won't try to lock it and then oldsk.
6898 	 */
6899 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6900 	sctp_assoc_migrate(assoc, newsk);
6901 
6902 	/* If the association on the newsk is already closed before accept()
6903 	 * is called, set RCV_SHUTDOWN flag.
6904 	 */
6905 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6906 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6907 
6908 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6909 	sctp_release_sock(newsk);
6910 }
6911 
6912 
6913 /* This proto struct describes the ULP interface for SCTP.  */
6914 struct proto sctp_prot = {
6915 	.name        =	"SCTP",
6916 	.owner       =	THIS_MODULE,
6917 	.close       =	sctp_close,
6918 	.connect     =	sctp_connect,
6919 	.disconnect  =	sctp_disconnect,
6920 	.accept      =	sctp_accept,
6921 	.ioctl       =	sctp_ioctl,
6922 	.init        =	sctp_init_sock,
6923 	.destroy     =	sctp_destroy_sock,
6924 	.shutdown    =	sctp_shutdown,
6925 	.setsockopt  =	sctp_setsockopt,
6926 	.getsockopt  =	sctp_getsockopt,
6927 	.sendmsg     =	sctp_sendmsg,
6928 	.recvmsg     =	sctp_recvmsg,
6929 	.bind        =	sctp_bind,
6930 	.backlog_rcv =	sctp_backlog_rcv,
6931 	.hash        =	sctp_hash,
6932 	.unhash      =	sctp_unhash,
6933 	.get_port    =	sctp_get_port,
6934 	.obj_size    =  sizeof(struct sctp_sock),
6935 	.sysctl_mem  =  sysctl_sctp_mem,
6936 	.sysctl_rmem =  sysctl_sctp_rmem,
6937 	.sysctl_wmem =  sysctl_sctp_wmem,
6938 	.memory_pressure = &sctp_memory_pressure,
6939 	.enter_memory_pressure = sctp_enter_memory_pressure,
6940 	.memory_allocated = &sctp_memory_allocated,
6941 	.sockets_allocated = &sctp_sockets_allocated,
6942 };
6943 
6944 #if IS_ENABLED(CONFIG_IPV6)
6945 
6946 struct proto sctpv6_prot = {
6947 	.name		= "SCTPv6",
6948 	.owner		= THIS_MODULE,
6949 	.close		= sctp_close,
6950 	.connect	= sctp_connect,
6951 	.disconnect	= sctp_disconnect,
6952 	.accept		= sctp_accept,
6953 	.ioctl		= sctp_ioctl,
6954 	.init		= sctp_init_sock,
6955 	.destroy	= sctp_destroy_sock,
6956 	.shutdown	= sctp_shutdown,
6957 	.setsockopt	= sctp_setsockopt,
6958 	.getsockopt	= sctp_getsockopt,
6959 	.sendmsg	= sctp_sendmsg,
6960 	.recvmsg	= sctp_recvmsg,
6961 	.bind		= sctp_bind,
6962 	.backlog_rcv	= sctp_backlog_rcv,
6963 	.hash		= sctp_hash,
6964 	.unhash		= sctp_unhash,
6965 	.get_port	= sctp_get_port,
6966 	.obj_size	= sizeof(struct sctp6_sock),
6967 	.sysctl_mem	= sysctl_sctp_mem,
6968 	.sysctl_rmem	= sysctl_sctp_rmem,
6969 	.sysctl_wmem	= sysctl_sctp_wmem,
6970 	.memory_pressure = &sctp_memory_pressure,
6971 	.enter_memory_pressure = sctp_enter_memory_pressure,
6972 	.memory_allocated = &sctp_memory_allocated,
6973 	.sockets_allocated = &sctp_sockets_allocated,
6974 };
6975 #endif /* IS_ENABLED(CONFIG_IPV6) */
6976