xref: /openbmc/linux/net/sctp/socket.c (revision 92ed1a76)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79 
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <net/sock.h>
82 #include <net/sctp/sctp.h>
83 #include <net/sctp/sm.h>
84 
85 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
86  * any of the functions below as they are used to export functions
87  * used by a project regression testsuite.
88  */
89 
90 /* Forward declarations for internal helper functions. */
91 static int sctp_writeable(struct sock *sk);
92 static void sctp_wfree(struct sk_buff *skb);
93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
94 				size_t msg_len);
95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
97 static int sctp_wait_for_accept(struct sock *sk, long timeo);
98 static void sctp_wait_for_close(struct sock *sk, long timeo);
99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
100 					union sctp_addr *addr, int len);
101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf(struct sctp_association *asoc,
106 			    struct sctp_chunk *chunk);
107 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
108 static int sctp_autobind(struct sock *sk);
109 static void sctp_sock_migrate(struct sock *, struct sock *,
110 			      struct sctp_association *, sctp_socket_type_t);
111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
112 
113 extern struct kmem_cache *sctp_bucket_cachep;
114 extern long sysctl_sctp_mem[3];
115 extern int sysctl_sctp_rmem[3];
116 extern int sysctl_sctp_wmem[3];
117 
118 static int sctp_memory_pressure;
119 static atomic_long_t sctp_memory_allocated;
120 struct percpu_counter sctp_sockets_allocated;
121 
122 static void sctp_enter_memory_pressure(struct sock *sk)
123 {
124 	sctp_memory_pressure = 1;
125 }
126 
127 
128 /* Get the sndbuf space available at the time on the association.  */
129 static inline int sctp_wspace(struct sctp_association *asoc)
130 {
131 	int amt;
132 
133 	if (asoc->ep->sndbuf_policy)
134 		amt = asoc->sndbuf_used;
135 	else
136 		amt = sk_wmem_alloc_get(asoc->base.sk);
137 
138 	if (amt >= asoc->base.sk->sk_sndbuf) {
139 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
140 			amt = 0;
141 		else {
142 			amt = sk_stream_wspace(asoc->base.sk);
143 			if (amt < 0)
144 				amt = 0;
145 		}
146 	} else {
147 		amt = asoc->base.sk->sk_sndbuf - amt;
148 	}
149 	return amt;
150 }
151 
152 /* Increment the used sndbuf space count of the corresponding association by
153  * the size of the outgoing data chunk.
154  * Also, set the skb destructor for sndbuf accounting later.
155  *
156  * Since it is always 1-1 between chunk and skb, and also a new skb is always
157  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
158  * destructor in the data chunk skb for the purpose of the sndbuf space
159  * tracking.
160  */
161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
162 {
163 	struct sctp_association *asoc = chunk->asoc;
164 	struct sock *sk = asoc->base.sk;
165 
166 	/* The sndbuf space is tracked per association.  */
167 	sctp_association_hold(asoc);
168 
169 	skb_set_owner_w(chunk->skb, sk);
170 
171 	chunk->skb->destructor = sctp_wfree;
172 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
173 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
174 
175 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
176 				sizeof(struct sk_buff) +
177 				sizeof(struct sctp_chunk);
178 
179 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
180 	sk->sk_wmem_queued += chunk->skb->truesize;
181 	sk_mem_charge(sk, chunk->skb->truesize);
182 }
183 
184 /* Verify that this is a valid address. */
185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
186 				   int len)
187 {
188 	struct sctp_af *af;
189 
190 	/* Verify basic sockaddr. */
191 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
192 	if (!af)
193 		return -EINVAL;
194 
195 	/* Is this a valid SCTP address?  */
196 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
197 		return -EINVAL;
198 
199 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
200 		return -EINVAL;
201 
202 	return 0;
203 }
204 
205 /* Look up the association by its id.  If this is not a UDP-style
206  * socket, the ID field is always ignored.
207  */
208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
209 {
210 	struct sctp_association *asoc = NULL;
211 
212 	/* If this is not a UDP-style socket, assoc id should be ignored. */
213 	if (!sctp_style(sk, UDP)) {
214 		/* Return NULL if the socket state is not ESTABLISHED. It
215 		 * could be a TCP-style listening socket or a socket which
216 		 * hasn't yet called connect() to establish an association.
217 		 */
218 		if (!sctp_sstate(sk, ESTABLISHED))
219 			return NULL;
220 
221 		/* Get the first and the only association from the list. */
222 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
223 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
224 					  struct sctp_association, asocs);
225 		return asoc;
226 	}
227 
228 	/* Otherwise this is a UDP-style socket. */
229 	if (!id || (id == (sctp_assoc_t)-1))
230 		return NULL;
231 
232 	spin_lock_bh(&sctp_assocs_id_lock);
233 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
234 	spin_unlock_bh(&sctp_assocs_id_lock);
235 
236 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
237 		return NULL;
238 
239 	return asoc;
240 }
241 
242 /* Look up the transport from an address and an assoc id. If both address and
243  * id are specified, the associations matching the address and the id should be
244  * the same.
245  */
246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
247 					      struct sockaddr_storage *addr,
248 					      sctp_assoc_t id)
249 {
250 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
251 	struct sctp_transport *transport;
252 	union sctp_addr *laddr = (union sctp_addr *)addr;
253 
254 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
255 					       laddr,
256 					       &transport);
257 
258 	if (!addr_asoc)
259 		return NULL;
260 
261 	id_asoc = sctp_id2assoc(sk, id);
262 	if (id_asoc && (id_asoc != addr_asoc))
263 		return NULL;
264 
265 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
266 						(union sctp_addr *)addr);
267 
268 	return transport;
269 }
270 
271 /* API 3.1.2 bind() - UDP Style Syntax
272  * The syntax of bind() is,
273  *
274  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
275  *
276  *   sd      - the socket descriptor returned by socket().
277  *   addr    - the address structure (struct sockaddr_in or struct
278  *             sockaddr_in6 [RFC 2553]),
279  *   addr_len - the size of the address structure.
280  */
281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
282 {
283 	int retval = 0;
284 
285 	sctp_lock_sock(sk);
286 
287 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
288 			  sk, addr, addr_len);
289 
290 	/* Disallow binding twice. */
291 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
292 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
293 				      addr_len);
294 	else
295 		retval = -EINVAL;
296 
297 	sctp_release_sock(sk);
298 
299 	return retval;
300 }
301 
302 static long sctp_get_port_local(struct sock *, union sctp_addr *);
303 
304 /* Verify this is a valid sockaddr. */
305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
306 					union sctp_addr *addr, int len)
307 {
308 	struct sctp_af *af;
309 
310 	/* Check minimum size.  */
311 	if (len < sizeof (struct sockaddr))
312 		return NULL;
313 
314 	/* V4 mapped address are really of AF_INET family */
315 	if (addr->sa.sa_family == AF_INET6 &&
316 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
317 		if (!opt->pf->af_supported(AF_INET, opt))
318 			return NULL;
319 	} else {
320 		/* Does this PF support this AF? */
321 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
322 			return NULL;
323 	}
324 
325 	/* If we get this far, af is valid. */
326 	af = sctp_get_af_specific(addr->sa.sa_family);
327 
328 	if (len < af->sockaddr_len)
329 		return NULL;
330 
331 	return af;
332 }
333 
334 /* Bind a local address either to an endpoint or to an association.  */
335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
336 {
337 	struct sctp_sock *sp = sctp_sk(sk);
338 	struct sctp_endpoint *ep = sp->ep;
339 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
340 	struct sctp_af *af;
341 	unsigned short snum;
342 	int ret = 0;
343 
344 	/* Common sockaddr verification. */
345 	af = sctp_sockaddr_af(sp, addr, len);
346 	if (!af) {
347 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
348 				  sk, addr, len);
349 		return -EINVAL;
350 	}
351 
352 	snum = ntohs(addr->v4.sin_port);
353 
354 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
355 				 ", port: %d, new port: %d, len: %d)\n",
356 				 sk,
357 				 addr,
358 				 bp->port, snum,
359 				 len);
360 
361 	/* PF specific bind() address verification. */
362 	if (!sp->pf->bind_verify(sp, addr))
363 		return -EADDRNOTAVAIL;
364 
365 	/* We must either be unbound, or bind to the same port.
366 	 * It's OK to allow 0 ports if we are already bound.
367 	 * We'll just inhert an already bound port in this case
368 	 */
369 	if (bp->port) {
370 		if (!snum)
371 			snum = bp->port;
372 		else if (snum != bp->port) {
373 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
374 				  " New port %d does not match existing port "
375 				  "%d.\n", snum, bp->port);
376 			return -EINVAL;
377 		}
378 	}
379 
380 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
381 		return -EACCES;
382 
383 	/* See if the address matches any of the addresses we may have
384 	 * already bound before checking against other endpoints.
385 	 */
386 	if (sctp_bind_addr_match(bp, addr, sp))
387 		return -EINVAL;
388 
389 	/* Make sure we are allowed to bind here.
390 	 * The function sctp_get_port_local() does duplicate address
391 	 * detection.
392 	 */
393 	addr->v4.sin_port = htons(snum);
394 	if ((ret = sctp_get_port_local(sk, addr))) {
395 		return -EADDRINUSE;
396 	}
397 
398 	/* Refresh ephemeral port.  */
399 	if (!bp->port)
400 		bp->port = inet_sk(sk)->inet_num;
401 
402 	/* Add the address to the bind address list.
403 	 * Use GFP_ATOMIC since BHs will be disabled.
404 	 */
405 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
406 
407 	/* Copy back into socket for getsockname() use. */
408 	if (!ret) {
409 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
410 		af->to_sk_saddr(addr, sk);
411 	}
412 
413 	return ret;
414 }
415 
416  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
417  *
418  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
419  * at any one time.  If a sender, after sending an ASCONF chunk, decides
420  * it needs to transfer another ASCONF Chunk, it MUST wait until the
421  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
422  * subsequent ASCONF. Note this restriction binds each side, so at any
423  * time two ASCONF may be in-transit on any given association (one sent
424  * from each endpoint).
425  */
426 static int sctp_send_asconf(struct sctp_association *asoc,
427 			    struct sctp_chunk *chunk)
428 {
429 	int		retval = 0;
430 
431 	/* If there is an outstanding ASCONF chunk, queue it for later
432 	 * transmission.
433 	 */
434 	if (asoc->addip_last_asconf) {
435 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
436 		goto out;
437 	}
438 
439 	/* Hold the chunk until an ASCONF_ACK is received. */
440 	sctp_chunk_hold(chunk);
441 	retval = sctp_primitive_ASCONF(asoc, chunk);
442 	if (retval)
443 		sctp_chunk_free(chunk);
444 	else
445 		asoc->addip_last_asconf = chunk;
446 
447 out:
448 	return retval;
449 }
450 
451 /* Add a list of addresses as bind addresses to local endpoint or
452  * association.
453  *
454  * Basically run through each address specified in the addrs/addrcnt
455  * array/length pair, determine if it is IPv6 or IPv4 and call
456  * sctp_do_bind() on it.
457  *
458  * If any of them fails, then the operation will be reversed and the
459  * ones that were added will be removed.
460  *
461  * Only sctp_setsockopt_bindx() is supposed to call this function.
462  */
463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
464 {
465 	int cnt;
466 	int retval = 0;
467 	void *addr_buf;
468 	struct sockaddr *sa_addr;
469 	struct sctp_af *af;
470 
471 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
472 			  sk, addrs, addrcnt);
473 
474 	addr_buf = addrs;
475 	for (cnt = 0; cnt < addrcnt; cnt++) {
476 		/* The list may contain either IPv4 or IPv6 address;
477 		 * determine the address length for walking thru the list.
478 		 */
479 		sa_addr = (struct sockaddr *)addr_buf;
480 		af = sctp_get_af_specific(sa_addr->sa_family);
481 		if (!af) {
482 			retval = -EINVAL;
483 			goto err_bindx_add;
484 		}
485 
486 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
487 				      af->sockaddr_len);
488 
489 		addr_buf += af->sockaddr_len;
490 
491 err_bindx_add:
492 		if (retval < 0) {
493 			/* Failed. Cleanup the ones that have been added */
494 			if (cnt > 0)
495 				sctp_bindx_rem(sk, addrs, cnt);
496 			return retval;
497 		}
498 	}
499 
500 	return retval;
501 }
502 
503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
504  * associations that are part of the endpoint indicating that a list of local
505  * addresses are added to the endpoint.
506  *
507  * If any of the addresses is already in the bind address list of the
508  * association, we do not send the chunk for that association.  But it will not
509  * affect other associations.
510  *
511  * Only sctp_setsockopt_bindx() is supposed to call this function.
512  */
513 static int sctp_send_asconf_add_ip(struct sock		*sk,
514 				   struct sockaddr	*addrs,
515 				   int 			addrcnt)
516 {
517 	struct sctp_sock		*sp;
518 	struct sctp_endpoint		*ep;
519 	struct sctp_association		*asoc;
520 	struct sctp_bind_addr		*bp;
521 	struct sctp_chunk		*chunk;
522 	struct sctp_sockaddr_entry	*laddr;
523 	union sctp_addr			*addr;
524 	union sctp_addr			saveaddr;
525 	void				*addr_buf;
526 	struct sctp_af			*af;
527 	struct list_head		*p;
528 	int 				i;
529 	int 				retval = 0;
530 
531 	if (!sctp_addip_enable)
532 		return retval;
533 
534 	sp = sctp_sk(sk);
535 	ep = sp->ep;
536 
537 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
538 			  __func__, sk, addrs, addrcnt);
539 
540 	list_for_each_entry(asoc, &ep->asocs, asocs) {
541 
542 		if (!asoc->peer.asconf_capable)
543 			continue;
544 
545 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
546 			continue;
547 
548 		if (!sctp_state(asoc, ESTABLISHED))
549 			continue;
550 
551 		/* Check if any address in the packed array of addresses is
552 		 * in the bind address list of the association. If so,
553 		 * do not send the asconf chunk to its peer, but continue with
554 		 * other associations.
555 		 */
556 		addr_buf = addrs;
557 		for (i = 0; i < addrcnt; i++) {
558 			addr = (union sctp_addr *)addr_buf;
559 			af = sctp_get_af_specific(addr->v4.sin_family);
560 			if (!af) {
561 				retval = -EINVAL;
562 				goto out;
563 			}
564 
565 			if (sctp_assoc_lookup_laddr(asoc, addr))
566 				break;
567 
568 			addr_buf += af->sockaddr_len;
569 		}
570 		if (i < addrcnt)
571 			continue;
572 
573 		/* Use the first valid address in bind addr list of
574 		 * association as Address Parameter of ASCONF CHUNK.
575 		 */
576 		bp = &asoc->base.bind_addr;
577 		p = bp->address_list.next;
578 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
579 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
580 						   addrcnt, SCTP_PARAM_ADD_IP);
581 		if (!chunk) {
582 			retval = -ENOMEM;
583 			goto out;
584 		}
585 
586 		retval = sctp_send_asconf(asoc, chunk);
587 		if (retval)
588 			goto out;
589 
590 		/* Add the new addresses to the bind address list with
591 		 * use_as_src set to 0.
592 		 */
593 		addr_buf = addrs;
594 		for (i = 0; i < addrcnt; i++) {
595 			addr = (union sctp_addr *)addr_buf;
596 			af = sctp_get_af_specific(addr->v4.sin_family);
597 			memcpy(&saveaddr, addr, af->sockaddr_len);
598 			retval = sctp_add_bind_addr(bp, &saveaddr,
599 						    SCTP_ADDR_NEW, GFP_ATOMIC);
600 			addr_buf += af->sockaddr_len;
601 		}
602 	}
603 
604 out:
605 	return retval;
606 }
607 
608 /* Remove a list of addresses from bind addresses list.  Do not remove the
609  * last address.
610  *
611  * Basically run through each address specified in the addrs/addrcnt
612  * array/length pair, determine if it is IPv6 or IPv4 and call
613  * sctp_del_bind() on it.
614  *
615  * If any of them fails, then the operation will be reversed and the
616  * ones that were removed will be added back.
617  *
618  * At least one address has to be left; if only one address is
619  * available, the operation will return -EBUSY.
620  *
621  * Only sctp_setsockopt_bindx() is supposed to call this function.
622  */
623 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
624 {
625 	struct sctp_sock *sp = sctp_sk(sk);
626 	struct sctp_endpoint *ep = sp->ep;
627 	int cnt;
628 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
629 	int retval = 0;
630 	void *addr_buf;
631 	union sctp_addr *sa_addr;
632 	struct sctp_af *af;
633 
634 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
635 			  sk, addrs, addrcnt);
636 
637 	addr_buf = addrs;
638 	for (cnt = 0; cnt < addrcnt; cnt++) {
639 		/* If the bind address list is empty or if there is only one
640 		 * bind address, there is nothing more to be removed (we need
641 		 * at least one address here).
642 		 */
643 		if (list_empty(&bp->address_list) ||
644 		    (sctp_list_single_entry(&bp->address_list))) {
645 			retval = -EBUSY;
646 			goto err_bindx_rem;
647 		}
648 
649 		sa_addr = (union sctp_addr *)addr_buf;
650 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
651 		if (!af) {
652 			retval = -EINVAL;
653 			goto err_bindx_rem;
654 		}
655 
656 		if (!af->addr_valid(sa_addr, sp, NULL)) {
657 			retval = -EADDRNOTAVAIL;
658 			goto err_bindx_rem;
659 		}
660 
661 		if (sa_addr->v4.sin_port != htons(bp->port)) {
662 			retval = -EINVAL;
663 			goto err_bindx_rem;
664 		}
665 
666 		/* FIXME - There is probably a need to check if sk->sk_saddr and
667 		 * sk->sk_rcv_addr are currently set to one of the addresses to
668 		 * be removed. This is something which needs to be looked into
669 		 * when we are fixing the outstanding issues with multi-homing
670 		 * socket routing and failover schemes. Refer to comments in
671 		 * sctp_do_bind(). -daisy
672 		 */
673 		retval = sctp_del_bind_addr(bp, sa_addr);
674 
675 		addr_buf += af->sockaddr_len;
676 err_bindx_rem:
677 		if (retval < 0) {
678 			/* Failed. Add the ones that has been removed back */
679 			if (cnt > 0)
680 				sctp_bindx_add(sk, addrs, cnt);
681 			return retval;
682 		}
683 	}
684 
685 	return retval;
686 }
687 
688 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
689  * the associations that are part of the endpoint indicating that a list of
690  * local addresses are removed from the endpoint.
691  *
692  * If any of the addresses is already in the bind address list of the
693  * association, we do not send the chunk for that association.  But it will not
694  * affect other associations.
695  *
696  * Only sctp_setsockopt_bindx() is supposed to call this function.
697  */
698 static int sctp_send_asconf_del_ip(struct sock		*sk,
699 				   struct sockaddr	*addrs,
700 				   int			addrcnt)
701 {
702 	struct sctp_sock	*sp;
703 	struct sctp_endpoint	*ep;
704 	struct sctp_association	*asoc;
705 	struct sctp_transport	*transport;
706 	struct sctp_bind_addr	*bp;
707 	struct sctp_chunk	*chunk;
708 	union sctp_addr		*laddr;
709 	void			*addr_buf;
710 	struct sctp_af		*af;
711 	struct sctp_sockaddr_entry *saddr;
712 	int 			i;
713 	int 			retval = 0;
714 
715 	if (!sctp_addip_enable)
716 		return retval;
717 
718 	sp = sctp_sk(sk);
719 	ep = sp->ep;
720 
721 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
722 			  __func__, sk, addrs, addrcnt);
723 
724 	list_for_each_entry(asoc, &ep->asocs, asocs) {
725 
726 		if (!asoc->peer.asconf_capable)
727 			continue;
728 
729 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
730 			continue;
731 
732 		if (!sctp_state(asoc, ESTABLISHED))
733 			continue;
734 
735 		/* Check if any address in the packed array of addresses is
736 		 * not present in the bind address list of the association.
737 		 * If so, do not send the asconf chunk to its peer, but
738 		 * continue with other associations.
739 		 */
740 		addr_buf = addrs;
741 		for (i = 0; i < addrcnt; i++) {
742 			laddr = (union sctp_addr *)addr_buf;
743 			af = sctp_get_af_specific(laddr->v4.sin_family);
744 			if (!af) {
745 				retval = -EINVAL;
746 				goto out;
747 			}
748 
749 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
750 				break;
751 
752 			addr_buf += af->sockaddr_len;
753 		}
754 		if (i < addrcnt)
755 			continue;
756 
757 		/* Find one address in the association's bind address list
758 		 * that is not in the packed array of addresses. This is to
759 		 * make sure that we do not delete all the addresses in the
760 		 * association.
761 		 */
762 		bp = &asoc->base.bind_addr;
763 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
764 					       addrcnt, sp);
765 		if (!laddr)
766 			continue;
767 
768 		/* We do not need RCU protection throughout this loop
769 		 * because this is done under a socket lock from the
770 		 * setsockopt call.
771 		 */
772 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
773 						   SCTP_PARAM_DEL_IP);
774 		if (!chunk) {
775 			retval = -ENOMEM;
776 			goto out;
777 		}
778 
779 		/* Reset use_as_src flag for the addresses in the bind address
780 		 * list that are to be deleted.
781 		 */
782 		addr_buf = addrs;
783 		for (i = 0; i < addrcnt; i++) {
784 			laddr = (union sctp_addr *)addr_buf;
785 			af = sctp_get_af_specific(laddr->v4.sin_family);
786 			list_for_each_entry(saddr, &bp->address_list, list) {
787 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
788 					saddr->state = SCTP_ADDR_DEL;
789 			}
790 			addr_buf += af->sockaddr_len;
791 		}
792 
793 		/* Update the route and saddr entries for all the transports
794 		 * as some of the addresses in the bind address list are
795 		 * about to be deleted and cannot be used as source addresses.
796 		 */
797 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
798 					transports) {
799 			dst_release(transport->dst);
800 			sctp_transport_route(transport, NULL,
801 					     sctp_sk(asoc->base.sk));
802 		}
803 
804 		retval = sctp_send_asconf(asoc, chunk);
805 	}
806 out:
807 	return retval;
808 }
809 
810 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
811  *
812  * API 8.1
813  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
814  *                int flags);
815  *
816  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
817  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
818  * or IPv6 addresses.
819  *
820  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
821  * Section 3.1.2 for this usage.
822  *
823  * addrs is a pointer to an array of one or more socket addresses. Each
824  * address is contained in its appropriate structure (i.e. struct
825  * sockaddr_in or struct sockaddr_in6) the family of the address type
826  * must be used to distinguish the address length (note that this
827  * representation is termed a "packed array" of addresses). The caller
828  * specifies the number of addresses in the array with addrcnt.
829  *
830  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
831  * -1, and sets errno to the appropriate error code.
832  *
833  * For SCTP, the port given in each socket address must be the same, or
834  * sctp_bindx() will fail, setting errno to EINVAL.
835  *
836  * The flags parameter is formed from the bitwise OR of zero or more of
837  * the following currently defined flags:
838  *
839  * SCTP_BINDX_ADD_ADDR
840  *
841  * SCTP_BINDX_REM_ADDR
842  *
843  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
844  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
845  * addresses from the association. The two flags are mutually exclusive;
846  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
847  * not remove all addresses from an association; sctp_bindx() will
848  * reject such an attempt with EINVAL.
849  *
850  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
851  * additional addresses with an endpoint after calling bind().  Or use
852  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
853  * socket is associated with so that no new association accepted will be
854  * associated with those addresses. If the endpoint supports dynamic
855  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
856  * endpoint to send the appropriate message to the peer to change the
857  * peers address lists.
858  *
859  * Adding and removing addresses from a connected association is
860  * optional functionality. Implementations that do not support this
861  * functionality should return EOPNOTSUPP.
862  *
863  * Basically do nothing but copying the addresses from user to kernel
864  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
865  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
866  * from userspace.
867  *
868  * We don't use copy_from_user() for optimization: we first do the
869  * sanity checks (buffer size -fast- and access check-healthy
870  * pointer); if all of those succeed, then we can alloc the memory
871  * (expensive operation) needed to copy the data to kernel. Then we do
872  * the copying without checking the user space area
873  * (__copy_from_user()).
874  *
875  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
876  * it.
877  *
878  * sk        The sk of the socket
879  * addrs     The pointer to the addresses in user land
880  * addrssize Size of the addrs buffer
881  * op        Operation to perform (add or remove, see the flags of
882  *           sctp_bindx)
883  *
884  * Returns 0 if ok, <0 errno code on error.
885  */
886 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
887 				      struct sockaddr __user *addrs,
888 				      int addrs_size, int op)
889 {
890 	struct sockaddr *kaddrs;
891 	int err;
892 	int addrcnt = 0;
893 	int walk_size = 0;
894 	struct sockaddr *sa_addr;
895 	void *addr_buf;
896 	struct sctp_af *af;
897 
898 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
899 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
900 
901 	if (unlikely(addrs_size <= 0))
902 		return -EINVAL;
903 
904 	/* Check the user passed a healthy pointer.  */
905 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
906 		return -EFAULT;
907 
908 	/* Alloc space for the address array in kernel memory.  */
909 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
910 	if (unlikely(!kaddrs))
911 		return -ENOMEM;
912 
913 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
914 		kfree(kaddrs);
915 		return -EFAULT;
916 	}
917 
918 	/* Walk through the addrs buffer and count the number of addresses. */
919 	addr_buf = kaddrs;
920 	while (walk_size < addrs_size) {
921 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
922 			kfree(kaddrs);
923 			return -EINVAL;
924 		}
925 
926 		sa_addr = (struct sockaddr *)addr_buf;
927 		af = sctp_get_af_specific(sa_addr->sa_family);
928 
929 		/* If the address family is not supported or if this address
930 		 * causes the address buffer to overflow return EINVAL.
931 		 */
932 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
933 			kfree(kaddrs);
934 			return -EINVAL;
935 		}
936 		addrcnt++;
937 		addr_buf += af->sockaddr_len;
938 		walk_size += af->sockaddr_len;
939 	}
940 
941 	/* Do the work. */
942 	switch (op) {
943 	case SCTP_BINDX_ADD_ADDR:
944 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
945 		if (err)
946 			goto out;
947 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
948 		break;
949 
950 	case SCTP_BINDX_REM_ADDR:
951 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
952 		if (err)
953 			goto out;
954 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
955 		break;
956 
957 	default:
958 		err = -EINVAL;
959 		break;
960 	}
961 
962 out:
963 	kfree(kaddrs);
964 
965 	return err;
966 }
967 
968 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
969  *
970  * Common routine for handling connect() and sctp_connectx().
971  * Connect will come in with just a single address.
972  */
973 static int __sctp_connect(struct sock* sk,
974 			  struct sockaddr *kaddrs,
975 			  int addrs_size,
976 			  sctp_assoc_t *assoc_id)
977 {
978 	struct sctp_sock *sp;
979 	struct sctp_endpoint *ep;
980 	struct sctp_association *asoc = NULL;
981 	struct sctp_association *asoc2;
982 	struct sctp_transport *transport;
983 	union sctp_addr to;
984 	struct sctp_af *af;
985 	sctp_scope_t scope;
986 	long timeo;
987 	int err = 0;
988 	int addrcnt = 0;
989 	int walk_size = 0;
990 	union sctp_addr *sa_addr = NULL;
991 	void *addr_buf;
992 	unsigned short port;
993 	unsigned int f_flags = 0;
994 
995 	sp = sctp_sk(sk);
996 	ep = sp->ep;
997 
998 	/* connect() cannot be done on a socket that is already in ESTABLISHED
999 	 * state - UDP-style peeled off socket or a TCP-style socket that
1000 	 * is already connected.
1001 	 * It cannot be done even on a TCP-style listening socket.
1002 	 */
1003 	if (sctp_sstate(sk, ESTABLISHED) ||
1004 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1005 		err = -EISCONN;
1006 		goto out_free;
1007 	}
1008 
1009 	/* Walk through the addrs buffer and count the number of addresses. */
1010 	addr_buf = kaddrs;
1011 	while (walk_size < addrs_size) {
1012 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1013 			err = -EINVAL;
1014 			goto out_free;
1015 		}
1016 
1017 		sa_addr = (union sctp_addr *)addr_buf;
1018 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1019 
1020 		/* If the address family is not supported or if this address
1021 		 * causes the address buffer to overflow return EINVAL.
1022 		 */
1023 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1024 			err = -EINVAL;
1025 			goto out_free;
1026 		}
1027 
1028 		port = ntohs(sa_addr->v4.sin_port);
1029 
1030 		/* Save current address so we can work with it */
1031 		memcpy(&to, sa_addr, af->sockaddr_len);
1032 
1033 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1034 		if (err)
1035 			goto out_free;
1036 
1037 		/* Make sure the destination port is correctly set
1038 		 * in all addresses.
1039 		 */
1040 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1041 			goto out_free;
1042 
1043 
1044 		/* Check if there already is a matching association on the
1045 		 * endpoint (other than the one created here).
1046 		 */
1047 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1048 		if (asoc2 && asoc2 != asoc) {
1049 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1050 				err = -EISCONN;
1051 			else
1052 				err = -EALREADY;
1053 			goto out_free;
1054 		}
1055 
1056 		/* If we could not find a matching association on the endpoint,
1057 		 * make sure that there is no peeled-off association matching
1058 		 * the peer address even on another socket.
1059 		 */
1060 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1061 			err = -EADDRNOTAVAIL;
1062 			goto out_free;
1063 		}
1064 
1065 		if (!asoc) {
1066 			/* If a bind() or sctp_bindx() is not called prior to
1067 			 * an sctp_connectx() call, the system picks an
1068 			 * ephemeral port and will choose an address set
1069 			 * equivalent to binding with a wildcard address.
1070 			 */
1071 			if (!ep->base.bind_addr.port) {
1072 				if (sctp_autobind(sk)) {
1073 					err = -EAGAIN;
1074 					goto out_free;
1075 				}
1076 			} else {
1077 				/*
1078 				 * If an unprivileged user inherits a 1-many
1079 				 * style socket with open associations on a
1080 				 * privileged port, it MAY be permitted to
1081 				 * accept new associations, but it SHOULD NOT
1082 				 * be permitted to open new associations.
1083 				 */
1084 				if (ep->base.bind_addr.port < PROT_SOCK &&
1085 				    !capable(CAP_NET_BIND_SERVICE)) {
1086 					err = -EACCES;
1087 					goto out_free;
1088 				}
1089 			}
1090 
1091 			scope = sctp_scope(&to);
1092 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1093 			if (!asoc) {
1094 				err = -ENOMEM;
1095 				goto out_free;
1096 			}
1097 
1098 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1099 							      GFP_KERNEL);
1100 			if (err < 0) {
1101 				goto out_free;
1102 			}
1103 
1104 		}
1105 
1106 		/* Prime the peer's transport structures.  */
1107 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1108 						SCTP_UNKNOWN);
1109 		if (!transport) {
1110 			err = -ENOMEM;
1111 			goto out_free;
1112 		}
1113 
1114 		addrcnt++;
1115 		addr_buf += af->sockaddr_len;
1116 		walk_size += af->sockaddr_len;
1117 	}
1118 
1119 	/* In case the user of sctp_connectx() wants an association
1120 	 * id back, assign one now.
1121 	 */
1122 	if (assoc_id) {
1123 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1124 		if (err < 0)
1125 			goto out_free;
1126 	}
1127 
1128 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1129 	if (err < 0) {
1130 		goto out_free;
1131 	}
1132 
1133 	/* Initialize sk's dport and daddr for getpeername() */
1134 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1135 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1136 	af->to_sk_daddr(sa_addr, sk);
1137 	sk->sk_err = 0;
1138 
1139 	/* in-kernel sockets don't generally have a file allocated to them
1140 	 * if all they do is call sock_create_kern().
1141 	 */
1142 	if (sk->sk_socket->file)
1143 		f_flags = sk->sk_socket->file->f_flags;
1144 
1145 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1146 
1147 	err = sctp_wait_for_connect(asoc, &timeo);
1148 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1149 		*assoc_id = asoc->assoc_id;
1150 
1151 	/* Don't free association on exit. */
1152 	asoc = NULL;
1153 
1154 out_free:
1155 
1156 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1157 			  " kaddrs: %p err: %d\n",
1158 			  asoc, kaddrs, err);
1159 	if (asoc)
1160 		sctp_association_free(asoc);
1161 	return err;
1162 }
1163 
1164 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1165  *
1166  * API 8.9
1167  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1168  * 			sctp_assoc_t *asoc);
1169  *
1170  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1171  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1172  * or IPv6 addresses.
1173  *
1174  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1175  * Section 3.1.2 for this usage.
1176  *
1177  * addrs is a pointer to an array of one or more socket addresses. Each
1178  * address is contained in its appropriate structure (i.e. struct
1179  * sockaddr_in or struct sockaddr_in6) the family of the address type
1180  * must be used to distengish the address length (note that this
1181  * representation is termed a "packed array" of addresses). The caller
1182  * specifies the number of addresses in the array with addrcnt.
1183  *
1184  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1185  * the association id of the new association.  On failure, sctp_connectx()
1186  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1187  * is not touched by the kernel.
1188  *
1189  * For SCTP, the port given in each socket address must be the same, or
1190  * sctp_connectx() will fail, setting errno to EINVAL.
1191  *
1192  * An application can use sctp_connectx to initiate an association with
1193  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1194  * allows a caller to specify multiple addresses at which a peer can be
1195  * reached.  The way the SCTP stack uses the list of addresses to set up
1196  * the association is implementation dependant.  This function only
1197  * specifies that the stack will try to make use of all the addresses in
1198  * the list when needed.
1199  *
1200  * Note that the list of addresses passed in is only used for setting up
1201  * the association.  It does not necessarily equal the set of addresses
1202  * the peer uses for the resulting association.  If the caller wants to
1203  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1204  * retrieve them after the association has been set up.
1205  *
1206  * Basically do nothing but copying the addresses from user to kernel
1207  * land and invoking either sctp_connectx(). This is used for tunneling
1208  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1209  *
1210  * We don't use copy_from_user() for optimization: we first do the
1211  * sanity checks (buffer size -fast- and access check-healthy
1212  * pointer); if all of those succeed, then we can alloc the memory
1213  * (expensive operation) needed to copy the data to kernel. Then we do
1214  * the copying without checking the user space area
1215  * (__copy_from_user()).
1216  *
1217  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1218  * it.
1219  *
1220  * sk        The sk of the socket
1221  * addrs     The pointer to the addresses in user land
1222  * addrssize Size of the addrs buffer
1223  *
1224  * Returns >=0 if ok, <0 errno code on error.
1225  */
1226 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1227 				      struct sockaddr __user *addrs,
1228 				      int addrs_size,
1229 				      sctp_assoc_t *assoc_id)
1230 {
1231 	int err = 0;
1232 	struct sockaddr *kaddrs;
1233 
1234 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1235 			  __func__, sk, addrs, addrs_size);
1236 
1237 	if (unlikely(addrs_size <= 0))
1238 		return -EINVAL;
1239 
1240 	/* Check the user passed a healthy pointer.  */
1241 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1242 		return -EFAULT;
1243 
1244 	/* Alloc space for the address array in kernel memory.  */
1245 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1246 	if (unlikely(!kaddrs))
1247 		return -ENOMEM;
1248 
1249 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1250 		err = -EFAULT;
1251 	} else {
1252 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1253 	}
1254 
1255 	kfree(kaddrs);
1256 
1257 	return err;
1258 }
1259 
1260 /*
1261  * This is an older interface.  It's kept for backward compatibility
1262  * to the option that doesn't provide association id.
1263  */
1264 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1265 				      struct sockaddr __user *addrs,
1266 				      int addrs_size)
1267 {
1268 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1269 }
1270 
1271 /*
1272  * New interface for the API.  The since the API is done with a socket
1273  * option, to make it simple we feed back the association id is as a return
1274  * indication to the call.  Error is always negative and association id is
1275  * always positive.
1276  */
1277 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1278 				      struct sockaddr __user *addrs,
1279 				      int addrs_size)
1280 {
1281 	sctp_assoc_t assoc_id = 0;
1282 	int err = 0;
1283 
1284 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1285 
1286 	if (err)
1287 		return err;
1288 	else
1289 		return assoc_id;
1290 }
1291 
1292 /*
1293  * New (hopefully final) interface for the API.
1294  * We use the sctp_getaddrs_old structure so that use-space library
1295  * can avoid any unnecessary allocations.   The only defferent part
1296  * is that we store the actual length of the address buffer into the
1297  * addrs_num structure member.  That way we can re-use the existing
1298  * code.
1299  */
1300 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1301 					char __user *optval,
1302 					int __user *optlen)
1303 {
1304 	struct sctp_getaddrs_old param;
1305 	sctp_assoc_t assoc_id = 0;
1306 	int err = 0;
1307 
1308 	if (len < sizeof(param))
1309 		return -EINVAL;
1310 
1311 	if (copy_from_user(&param, optval, sizeof(param)))
1312 		return -EFAULT;
1313 
1314 	err = __sctp_setsockopt_connectx(sk,
1315 			(struct sockaddr __user *)param.addrs,
1316 			param.addr_num, &assoc_id);
1317 
1318 	if (err == 0 || err == -EINPROGRESS) {
1319 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1320 			return -EFAULT;
1321 		if (put_user(sizeof(assoc_id), optlen))
1322 			return -EFAULT;
1323 	}
1324 
1325 	return err;
1326 }
1327 
1328 /* API 3.1.4 close() - UDP Style Syntax
1329  * Applications use close() to perform graceful shutdown (as described in
1330  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1331  * by a UDP-style socket.
1332  *
1333  * The syntax is
1334  *
1335  *   ret = close(int sd);
1336  *
1337  *   sd      - the socket descriptor of the associations to be closed.
1338  *
1339  * To gracefully shutdown a specific association represented by the
1340  * UDP-style socket, an application should use the sendmsg() call,
1341  * passing no user data, but including the appropriate flag in the
1342  * ancillary data (see Section xxxx).
1343  *
1344  * If sd in the close() call is a branched-off socket representing only
1345  * one association, the shutdown is performed on that association only.
1346  *
1347  * 4.1.6 close() - TCP Style Syntax
1348  *
1349  * Applications use close() to gracefully close down an association.
1350  *
1351  * The syntax is:
1352  *
1353  *    int close(int sd);
1354  *
1355  *      sd      - the socket descriptor of the association to be closed.
1356  *
1357  * After an application calls close() on a socket descriptor, no further
1358  * socket operations will succeed on that descriptor.
1359  *
1360  * API 7.1.4 SO_LINGER
1361  *
1362  * An application using the TCP-style socket can use this option to
1363  * perform the SCTP ABORT primitive.  The linger option structure is:
1364  *
1365  *  struct  linger {
1366  *     int     l_onoff;                // option on/off
1367  *     int     l_linger;               // linger time
1368  * };
1369  *
1370  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1371  * to 0, calling close() is the same as the ABORT primitive.  If the
1372  * value is set to a negative value, the setsockopt() call will return
1373  * an error.  If the value is set to a positive value linger_time, the
1374  * close() can be blocked for at most linger_time ms.  If the graceful
1375  * shutdown phase does not finish during this period, close() will
1376  * return but the graceful shutdown phase continues in the system.
1377  */
1378 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1379 {
1380 	struct sctp_endpoint *ep;
1381 	struct sctp_association *asoc;
1382 	struct list_head *pos, *temp;
1383 
1384 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1385 
1386 	sctp_lock_sock(sk);
1387 	sk->sk_shutdown = SHUTDOWN_MASK;
1388 	sk->sk_state = SCTP_SS_CLOSING;
1389 
1390 	ep = sctp_sk(sk)->ep;
1391 
1392 	/* Walk all associations on an endpoint.  */
1393 	list_for_each_safe(pos, temp, &ep->asocs) {
1394 		asoc = list_entry(pos, struct sctp_association, asocs);
1395 
1396 		if (sctp_style(sk, TCP)) {
1397 			/* A closed association can still be in the list if
1398 			 * it belongs to a TCP-style listening socket that is
1399 			 * not yet accepted. If so, free it. If not, send an
1400 			 * ABORT or SHUTDOWN based on the linger options.
1401 			 */
1402 			if (sctp_state(asoc, CLOSED)) {
1403 				sctp_unhash_established(asoc);
1404 				sctp_association_free(asoc);
1405 				continue;
1406 			}
1407 		}
1408 
1409 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1410 			struct sctp_chunk *chunk;
1411 
1412 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1413 			if (chunk)
1414 				sctp_primitive_ABORT(asoc, chunk);
1415 		} else
1416 			sctp_primitive_SHUTDOWN(asoc, NULL);
1417 	}
1418 
1419 	/* Clean up any skbs sitting on the receive queue.  */
1420 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1421 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1422 
1423 	/* On a TCP-style socket, block for at most linger_time if set. */
1424 	if (sctp_style(sk, TCP) && timeout)
1425 		sctp_wait_for_close(sk, timeout);
1426 
1427 	/* This will run the backlog queue.  */
1428 	sctp_release_sock(sk);
1429 
1430 	/* Supposedly, no process has access to the socket, but
1431 	 * the net layers still may.
1432 	 */
1433 	sctp_local_bh_disable();
1434 	sctp_bh_lock_sock(sk);
1435 
1436 	/* Hold the sock, since sk_common_release() will put sock_put()
1437 	 * and we have just a little more cleanup.
1438 	 */
1439 	sock_hold(sk);
1440 	sk_common_release(sk);
1441 
1442 	sctp_bh_unlock_sock(sk);
1443 	sctp_local_bh_enable();
1444 
1445 	sock_put(sk);
1446 
1447 	SCTP_DBG_OBJCNT_DEC(sock);
1448 }
1449 
1450 /* Handle EPIPE error. */
1451 static int sctp_error(struct sock *sk, int flags, int err)
1452 {
1453 	if (err == -EPIPE)
1454 		err = sock_error(sk) ? : -EPIPE;
1455 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1456 		send_sig(SIGPIPE, current, 0);
1457 	return err;
1458 }
1459 
1460 /* API 3.1.3 sendmsg() - UDP Style Syntax
1461  *
1462  * An application uses sendmsg() and recvmsg() calls to transmit data to
1463  * and receive data from its peer.
1464  *
1465  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1466  *                  int flags);
1467  *
1468  *  socket  - the socket descriptor of the endpoint.
1469  *  message - pointer to the msghdr structure which contains a single
1470  *            user message and possibly some ancillary data.
1471  *
1472  *            See Section 5 for complete description of the data
1473  *            structures.
1474  *
1475  *  flags   - flags sent or received with the user message, see Section
1476  *            5 for complete description of the flags.
1477  *
1478  * Note:  This function could use a rewrite especially when explicit
1479  * connect support comes in.
1480  */
1481 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1482 
1483 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1484 
1485 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1486 			     struct msghdr *msg, size_t msg_len)
1487 {
1488 	struct sctp_sock *sp;
1489 	struct sctp_endpoint *ep;
1490 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1491 	struct sctp_transport *transport, *chunk_tp;
1492 	struct sctp_chunk *chunk;
1493 	union sctp_addr to;
1494 	struct sockaddr *msg_name = NULL;
1495 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1496 	struct sctp_sndrcvinfo *sinfo;
1497 	struct sctp_initmsg *sinit;
1498 	sctp_assoc_t associd = 0;
1499 	sctp_cmsgs_t cmsgs = { NULL };
1500 	int err;
1501 	sctp_scope_t scope;
1502 	long timeo;
1503 	__u16 sinfo_flags = 0;
1504 	struct sctp_datamsg *datamsg;
1505 	int msg_flags = msg->msg_flags;
1506 
1507 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1508 			  sk, msg, msg_len);
1509 
1510 	err = 0;
1511 	sp = sctp_sk(sk);
1512 	ep = sp->ep;
1513 
1514 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1515 
1516 	/* We cannot send a message over a TCP-style listening socket. */
1517 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1518 		err = -EPIPE;
1519 		goto out_nounlock;
1520 	}
1521 
1522 	/* Parse out the SCTP CMSGs.  */
1523 	err = sctp_msghdr_parse(msg, &cmsgs);
1524 
1525 	if (err) {
1526 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1527 		goto out_nounlock;
1528 	}
1529 
1530 	/* Fetch the destination address for this packet.  This
1531 	 * address only selects the association--it is not necessarily
1532 	 * the address we will send to.
1533 	 * For a peeled-off socket, msg_name is ignored.
1534 	 */
1535 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1536 		int msg_namelen = msg->msg_namelen;
1537 
1538 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1539 				       msg_namelen);
1540 		if (err)
1541 			return err;
1542 
1543 		if (msg_namelen > sizeof(to))
1544 			msg_namelen = sizeof(to);
1545 		memcpy(&to, msg->msg_name, msg_namelen);
1546 		msg_name = msg->msg_name;
1547 	}
1548 
1549 	sinfo = cmsgs.info;
1550 	sinit = cmsgs.init;
1551 
1552 	/* Did the user specify SNDRCVINFO?  */
1553 	if (sinfo) {
1554 		sinfo_flags = sinfo->sinfo_flags;
1555 		associd = sinfo->sinfo_assoc_id;
1556 	}
1557 
1558 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1559 			  msg_len, sinfo_flags);
1560 
1561 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1562 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1563 		err = -EINVAL;
1564 		goto out_nounlock;
1565 	}
1566 
1567 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1568 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1569 	 * If SCTP_ABORT is set, the message length could be non zero with
1570 	 * the msg_iov set to the user abort reason.
1571 	 */
1572 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1573 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1574 		err = -EINVAL;
1575 		goto out_nounlock;
1576 	}
1577 
1578 	/* If SCTP_ADDR_OVER is set, there must be an address
1579 	 * specified in msg_name.
1580 	 */
1581 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1582 		err = -EINVAL;
1583 		goto out_nounlock;
1584 	}
1585 
1586 	transport = NULL;
1587 
1588 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1589 
1590 	sctp_lock_sock(sk);
1591 
1592 	/* If a msg_name has been specified, assume this is to be used.  */
1593 	if (msg_name) {
1594 		/* Look for a matching association on the endpoint. */
1595 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1596 		if (!asoc) {
1597 			/* If we could not find a matching association on the
1598 			 * endpoint, make sure that it is not a TCP-style
1599 			 * socket that already has an association or there is
1600 			 * no peeled-off association on another socket.
1601 			 */
1602 			if ((sctp_style(sk, TCP) &&
1603 			     sctp_sstate(sk, ESTABLISHED)) ||
1604 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1605 				err = -EADDRNOTAVAIL;
1606 				goto out_unlock;
1607 			}
1608 		}
1609 	} else {
1610 		asoc = sctp_id2assoc(sk, associd);
1611 		if (!asoc) {
1612 			err = -EPIPE;
1613 			goto out_unlock;
1614 		}
1615 	}
1616 
1617 	if (asoc) {
1618 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1619 
1620 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1621 		 * socket that has an association in CLOSED state. This can
1622 		 * happen when an accepted socket has an association that is
1623 		 * already CLOSED.
1624 		 */
1625 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1626 			err = -EPIPE;
1627 			goto out_unlock;
1628 		}
1629 
1630 		if (sinfo_flags & SCTP_EOF) {
1631 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1632 					  asoc);
1633 			sctp_primitive_SHUTDOWN(asoc, NULL);
1634 			err = 0;
1635 			goto out_unlock;
1636 		}
1637 		if (sinfo_flags & SCTP_ABORT) {
1638 
1639 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1640 			if (!chunk) {
1641 				err = -ENOMEM;
1642 				goto out_unlock;
1643 			}
1644 
1645 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1646 			sctp_primitive_ABORT(asoc, chunk);
1647 			err = 0;
1648 			goto out_unlock;
1649 		}
1650 	}
1651 
1652 	/* Do we need to create the association?  */
1653 	if (!asoc) {
1654 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1655 
1656 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1657 			err = -EINVAL;
1658 			goto out_unlock;
1659 		}
1660 
1661 		/* Check for invalid stream against the stream counts,
1662 		 * either the default or the user specified stream counts.
1663 		 */
1664 		if (sinfo) {
1665 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1666 				/* Check against the defaults. */
1667 				if (sinfo->sinfo_stream >=
1668 				    sp->initmsg.sinit_num_ostreams) {
1669 					err = -EINVAL;
1670 					goto out_unlock;
1671 				}
1672 			} else {
1673 				/* Check against the requested.  */
1674 				if (sinfo->sinfo_stream >=
1675 				    sinit->sinit_num_ostreams) {
1676 					err = -EINVAL;
1677 					goto out_unlock;
1678 				}
1679 			}
1680 		}
1681 
1682 		/*
1683 		 * API 3.1.2 bind() - UDP Style Syntax
1684 		 * If a bind() or sctp_bindx() is not called prior to a
1685 		 * sendmsg() call that initiates a new association, the
1686 		 * system picks an ephemeral port and will choose an address
1687 		 * set equivalent to binding with a wildcard address.
1688 		 */
1689 		if (!ep->base.bind_addr.port) {
1690 			if (sctp_autobind(sk)) {
1691 				err = -EAGAIN;
1692 				goto out_unlock;
1693 			}
1694 		} else {
1695 			/*
1696 			 * If an unprivileged user inherits a one-to-many
1697 			 * style socket with open associations on a privileged
1698 			 * port, it MAY be permitted to accept new associations,
1699 			 * but it SHOULD NOT be permitted to open new
1700 			 * associations.
1701 			 */
1702 			if (ep->base.bind_addr.port < PROT_SOCK &&
1703 			    !capable(CAP_NET_BIND_SERVICE)) {
1704 				err = -EACCES;
1705 				goto out_unlock;
1706 			}
1707 		}
1708 
1709 		scope = sctp_scope(&to);
1710 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1711 		if (!new_asoc) {
1712 			err = -ENOMEM;
1713 			goto out_unlock;
1714 		}
1715 		asoc = new_asoc;
1716 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1717 		if (err < 0) {
1718 			err = -ENOMEM;
1719 			goto out_free;
1720 		}
1721 
1722 		/* If the SCTP_INIT ancillary data is specified, set all
1723 		 * the association init values accordingly.
1724 		 */
1725 		if (sinit) {
1726 			if (sinit->sinit_num_ostreams) {
1727 				asoc->c.sinit_num_ostreams =
1728 					sinit->sinit_num_ostreams;
1729 			}
1730 			if (sinit->sinit_max_instreams) {
1731 				asoc->c.sinit_max_instreams =
1732 					sinit->sinit_max_instreams;
1733 			}
1734 			if (sinit->sinit_max_attempts) {
1735 				asoc->max_init_attempts
1736 					= sinit->sinit_max_attempts;
1737 			}
1738 			if (sinit->sinit_max_init_timeo) {
1739 				asoc->max_init_timeo =
1740 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1741 			}
1742 		}
1743 
1744 		/* Prime the peer's transport structures.  */
1745 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1746 		if (!transport) {
1747 			err = -ENOMEM;
1748 			goto out_free;
1749 		}
1750 	}
1751 
1752 	/* ASSERT: we have a valid association at this point.  */
1753 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1754 
1755 	if (!sinfo) {
1756 		/* If the user didn't specify SNDRCVINFO, make up one with
1757 		 * some defaults.
1758 		 */
1759 		default_sinfo.sinfo_stream = asoc->default_stream;
1760 		default_sinfo.sinfo_flags = asoc->default_flags;
1761 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1762 		default_sinfo.sinfo_context = asoc->default_context;
1763 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1764 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1765 		sinfo = &default_sinfo;
1766 	}
1767 
1768 	/* API 7.1.7, the sndbuf size per association bounds the
1769 	 * maximum size of data that can be sent in a single send call.
1770 	 */
1771 	if (msg_len > sk->sk_sndbuf) {
1772 		err = -EMSGSIZE;
1773 		goto out_free;
1774 	}
1775 
1776 	if (asoc->pmtu_pending)
1777 		sctp_assoc_pending_pmtu(asoc);
1778 
1779 	/* If fragmentation is disabled and the message length exceeds the
1780 	 * association fragmentation point, return EMSGSIZE.  The I-D
1781 	 * does not specify what this error is, but this looks like
1782 	 * a great fit.
1783 	 */
1784 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1785 		err = -EMSGSIZE;
1786 		goto out_free;
1787 	}
1788 
1789 	if (sinfo) {
1790 		/* Check for invalid stream. */
1791 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1792 			err = -EINVAL;
1793 			goto out_free;
1794 		}
1795 	}
1796 
1797 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1798 	if (!sctp_wspace(asoc)) {
1799 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1800 		if (err)
1801 			goto out_free;
1802 	}
1803 
1804 	/* If an address is passed with the sendto/sendmsg call, it is used
1805 	 * to override the primary destination address in the TCP model, or
1806 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1807 	 */
1808 	if ((sctp_style(sk, TCP) && msg_name) ||
1809 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1810 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1811 		if (!chunk_tp) {
1812 			err = -EINVAL;
1813 			goto out_free;
1814 		}
1815 	} else
1816 		chunk_tp = NULL;
1817 
1818 	/* Auto-connect, if we aren't connected already. */
1819 	if (sctp_state(asoc, CLOSED)) {
1820 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1821 		if (err < 0)
1822 			goto out_free;
1823 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1824 	}
1825 
1826 	/* Break the message into multiple chunks of maximum size. */
1827 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1828 	if (!datamsg) {
1829 		err = -ENOMEM;
1830 		goto out_free;
1831 	}
1832 
1833 	/* Now send the (possibly) fragmented message. */
1834 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1835 		sctp_chunk_hold(chunk);
1836 
1837 		/* Do accounting for the write space.  */
1838 		sctp_set_owner_w(chunk);
1839 
1840 		chunk->transport = chunk_tp;
1841 	}
1842 
1843 	/* Send it to the lower layers.  Note:  all chunks
1844 	 * must either fail or succeed.   The lower layer
1845 	 * works that way today.  Keep it that way or this
1846 	 * breaks.
1847 	 */
1848 	err = sctp_primitive_SEND(asoc, datamsg);
1849 	/* Did the lower layer accept the chunk? */
1850 	if (err)
1851 		sctp_datamsg_free(datamsg);
1852 	else
1853 		sctp_datamsg_put(datamsg);
1854 
1855 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1856 
1857 	if (err)
1858 		goto out_free;
1859 	else
1860 		err = msg_len;
1861 
1862 	/* If we are already past ASSOCIATE, the lower
1863 	 * layers are responsible for association cleanup.
1864 	 */
1865 	goto out_unlock;
1866 
1867 out_free:
1868 	if (new_asoc)
1869 		sctp_association_free(asoc);
1870 out_unlock:
1871 	sctp_release_sock(sk);
1872 
1873 out_nounlock:
1874 	return sctp_error(sk, msg_flags, err);
1875 
1876 #if 0
1877 do_sock_err:
1878 	if (msg_len)
1879 		err = msg_len;
1880 	else
1881 		err = sock_error(sk);
1882 	goto out;
1883 
1884 do_interrupted:
1885 	if (msg_len)
1886 		err = msg_len;
1887 	goto out;
1888 #endif /* 0 */
1889 }
1890 
1891 /* This is an extended version of skb_pull() that removes the data from the
1892  * start of a skb even when data is spread across the list of skb's in the
1893  * frag_list. len specifies the total amount of data that needs to be removed.
1894  * when 'len' bytes could be removed from the skb, it returns 0.
1895  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1896  * could not be removed.
1897  */
1898 static int sctp_skb_pull(struct sk_buff *skb, int len)
1899 {
1900 	struct sk_buff *list;
1901 	int skb_len = skb_headlen(skb);
1902 	int rlen;
1903 
1904 	if (len <= skb_len) {
1905 		__skb_pull(skb, len);
1906 		return 0;
1907 	}
1908 	len -= skb_len;
1909 	__skb_pull(skb, skb_len);
1910 
1911 	skb_walk_frags(skb, list) {
1912 		rlen = sctp_skb_pull(list, len);
1913 		skb->len -= (len-rlen);
1914 		skb->data_len -= (len-rlen);
1915 
1916 		if (!rlen)
1917 			return 0;
1918 
1919 		len = rlen;
1920 	}
1921 
1922 	return len;
1923 }
1924 
1925 /* API 3.1.3  recvmsg() - UDP Style Syntax
1926  *
1927  *  ssize_t recvmsg(int socket, struct msghdr *message,
1928  *                    int flags);
1929  *
1930  *  socket  - the socket descriptor of the endpoint.
1931  *  message - pointer to the msghdr structure which contains a single
1932  *            user message and possibly some ancillary data.
1933  *
1934  *            See Section 5 for complete description of the data
1935  *            structures.
1936  *
1937  *  flags   - flags sent or received with the user message, see Section
1938  *            5 for complete description of the flags.
1939  */
1940 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1941 
1942 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1943 			     struct msghdr *msg, size_t len, int noblock,
1944 			     int flags, int *addr_len)
1945 {
1946 	struct sctp_ulpevent *event = NULL;
1947 	struct sctp_sock *sp = sctp_sk(sk);
1948 	struct sk_buff *skb;
1949 	int copied;
1950 	int err = 0;
1951 	int skb_len;
1952 
1953 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1954 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1955 			  "len", len, "knoblauch", noblock,
1956 			  "flags", flags, "addr_len", addr_len);
1957 
1958 	sctp_lock_sock(sk);
1959 
1960 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1961 		err = -ENOTCONN;
1962 		goto out;
1963 	}
1964 
1965 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1966 	if (!skb)
1967 		goto out;
1968 
1969 	/* Get the total length of the skb including any skb's in the
1970 	 * frag_list.
1971 	 */
1972 	skb_len = skb->len;
1973 
1974 	copied = skb_len;
1975 	if (copied > len)
1976 		copied = len;
1977 
1978 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1979 
1980 	event = sctp_skb2event(skb);
1981 
1982 	if (err)
1983 		goto out_free;
1984 
1985 	sock_recv_ts_and_drops(msg, sk, skb);
1986 	if (sctp_ulpevent_is_notification(event)) {
1987 		msg->msg_flags |= MSG_NOTIFICATION;
1988 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1989 	} else {
1990 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1991 	}
1992 
1993 	/* Check if we allow SCTP_SNDRCVINFO. */
1994 	if (sp->subscribe.sctp_data_io_event)
1995 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1996 #if 0
1997 	/* FIXME: we should be calling IP/IPv6 layers.  */
1998 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1999 		ip_cmsg_recv(msg, skb);
2000 #endif
2001 
2002 	err = copied;
2003 
2004 	/* If skb's length exceeds the user's buffer, update the skb and
2005 	 * push it back to the receive_queue so that the next call to
2006 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2007 	 */
2008 	if (skb_len > copied) {
2009 		msg->msg_flags &= ~MSG_EOR;
2010 		if (flags & MSG_PEEK)
2011 			goto out_free;
2012 		sctp_skb_pull(skb, copied);
2013 		skb_queue_head(&sk->sk_receive_queue, skb);
2014 
2015 		/* When only partial message is copied to the user, increase
2016 		 * rwnd by that amount. If all the data in the skb is read,
2017 		 * rwnd is updated when the event is freed.
2018 		 */
2019 		if (!sctp_ulpevent_is_notification(event))
2020 			sctp_assoc_rwnd_increase(event->asoc, copied);
2021 		goto out;
2022 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2023 		   (event->msg_flags & MSG_EOR))
2024 		msg->msg_flags |= MSG_EOR;
2025 	else
2026 		msg->msg_flags &= ~MSG_EOR;
2027 
2028 out_free:
2029 	if (flags & MSG_PEEK) {
2030 		/* Release the skb reference acquired after peeking the skb in
2031 		 * sctp_skb_recv_datagram().
2032 		 */
2033 		kfree_skb(skb);
2034 	} else {
2035 		/* Free the event which includes releasing the reference to
2036 		 * the owner of the skb, freeing the skb and updating the
2037 		 * rwnd.
2038 		 */
2039 		sctp_ulpevent_free(event);
2040 	}
2041 out:
2042 	sctp_release_sock(sk);
2043 	return err;
2044 }
2045 
2046 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2047  *
2048  * This option is a on/off flag.  If enabled no SCTP message
2049  * fragmentation will be performed.  Instead if a message being sent
2050  * exceeds the current PMTU size, the message will NOT be sent and
2051  * instead a error will be indicated to the user.
2052  */
2053 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2054 					     char __user *optval,
2055 					     unsigned int optlen)
2056 {
2057 	int val;
2058 
2059 	if (optlen < sizeof(int))
2060 		return -EINVAL;
2061 
2062 	if (get_user(val, (int __user *)optval))
2063 		return -EFAULT;
2064 
2065 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2066 
2067 	return 0;
2068 }
2069 
2070 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2071 				  unsigned int optlen)
2072 {
2073 	if (optlen > sizeof(struct sctp_event_subscribe))
2074 		return -EINVAL;
2075 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2076 		return -EFAULT;
2077 	return 0;
2078 }
2079 
2080 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2081  *
2082  * This socket option is applicable to the UDP-style socket only.  When
2083  * set it will cause associations that are idle for more than the
2084  * specified number of seconds to automatically close.  An association
2085  * being idle is defined an association that has NOT sent or received
2086  * user data.  The special value of '0' indicates that no automatic
2087  * close of any associations should be performed.  The option expects an
2088  * integer defining the number of seconds of idle time before an
2089  * association is closed.
2090  */
2091 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2092 				     unsigned int optlen)
2093 {
2094 	struct sctp_sock *sp = sctp_sk(sk);
2095 
2096 	/* Applicable to UDP-style socket only */
2097 	if (sctp_style(sk, TCP))
2098 		return -EOPNOTSUPP;
2099 	if (optlen != sizeof(int))
2100 		return -EINVAL;
2101 	if (copy_from_user(&sp->autoclose, optval, optlen))
2102 		return -EFAULT;
2103 	/* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2104 	sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2105 
2106 	return 0;
2107 }
2108 
2109 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2110  *
2111  * Applications can enable or disable heartbeats for any peer address of
2112  * an association, modify an address's heartbeat interval, force a
2113  * heartbeat to be sent immediately, and adjust the address's maximum
2114  * number of retransmissions sent before an address is considered
2115  * unreachable.  The following structure is used to access and modify an
2116  * address's parameters:
2117  *
2118  *  struct sctp_paddrparams {
2119  *     sctp_assoc_t            spp_assoc_id;
2120  *     struct sockaddr_storage spp_address;
2121  *     uint32_t                spp_hbinterval;
2122  *     uint16_t                spp_pathmaxrxt;
2123  *     uint32_t                spp_pathmtu;
2124  *     uint32_t                spp_sackdelay;
2125  *     uint32_t                spp_flags;
2126  * };
2127  *
2128  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2129  *                     application, and identifies the association for
2130  *                     this query.
2131  *   spp_address     - This specifies which address is of interest.
2132  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2133  *                     in milliseconds.  If a  value of zero
2134  *                     is present in this field then no changes are to
2135  *                     be made to this parameter.
2136  *   spp_pathmaxrxt  - This contains the maximum number of
2137  *                     retransmissions before this address shall be
2138  *                     considered unreachable. If a  value of zero
2139  *                     is present in this field then no changes are to
2140  *                     be made to this parameter.
2141  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2142  *                     specified here will be the "fixed" path mtu.
2143  *                     Note that if the spp_address field is empty
2144  *                     then all associations on this address will
2145  *                     have this fixed path mtu set upon them.
2146  *
2147  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2148  *                     the number of milliseconds that sacks will be delayed
2149  *                     for. This value will apply to all addresses of an
2150  *                     association if the spp_address field is empty. Note
2151  *                     also, that if delayed sack is enabled and this
2152  *                     value is set to 0, no change is made to the last
2153  *                     recorded delayed sack timer value.
2154  *
2155  *   spp_flags       - These flags are used to control various features
2156  *                     on an association. The flag field may contain
2157  *                     zero or more of the following options.
2158  *
2159  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2160  *                     specified address. Note that if the address
2161  *                     field is empty all addresses for the association
2162  *                     have heartbeats enabled upon them.
2163  *
2164  *                     SPP_HB_DISABLE - Disable heartbeats on the
2165  *                     speicifed address. Note that if the address
2166  *                     field is empty all addresses for the association
2167  *                     will have their heartbeats disabled. Note also
2168  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2169  *                     mutually exclusive, only one of these two should
2170  *                     be specified. Enabling both fields will have
2171  *                     undetermined results.
2172  *
2173  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2174  *                     to be made immediately.
2175  *
2176  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2177  *                     heartbeat delayis to be set to the value of 0
2178  *                     milliseconds.
2179  *
2180  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2181  *                     discovery upon the specified address. Note that
2182  *                     if the address feild is empty then all addresses
2183  *                     on the association are effected.
2184  *
2185  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2186  *                     discovery upon the specified address. Note that
2187  *                     if the address feild is empty then all addresses
2188  *                     on the association are effected. Not also that
2189  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2190  *                     exclusive. Enabling both will have undetermined
2191  *                     results.
2192  *
2193  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2194  *                     on delayed sack. The time specified in spp_sackdelay
2195  *                     is used to specify the sack delay for this address. Note
2196  *                     that if spp_address is empty then all addresses will
2197  *                     enable delayed sack and take on the sack delay
2198  *                     value specified in spp_sackdelay.
2199  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2200  *                     off delayed sack. If the spp_address field is blank then
2201  *                     delayed sack is disabled for the entire association. Note
2202  *                     also that this field is mutually exclusive to
2203  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2204  *                     results.
2205  */
2206 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2207 				       struct sctp_transport   *trans,
2208 				       struct sctp_association *asoc,
2209 				       struct sctp_sock        *sp,
2210 				       int                      hb_change,
2211 				       int                      pmtud_change,
2212 				       int                      sackdelay_change)
2213 {
2214 	int error;
2215 
2216 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2217 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2218 		if (error)
2219 			return error;
2220 	}
2221 
2222 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2223 	 * this field is ignored.  Note also that a value of zero indicates
2224 	 * the current setting should be left unchanged.
2225 	 */
2226 	if (params->spp_flags & SPP_HB_ENABLE) {
2227 
2228 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2229 		 * set.  This lets us use 0 value when this flag
2230 		 * is set.
2231 		 */
2232 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2233 			params->spp_hbinterval = 0;
2234 
2235 		if (params->spp_hbinterval ||
2236 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2237 			if (trans) {
2238 				trans->hbinterval =
2239 				    msecs_to_jiffies(params->spp_hbinterval);
2240 			} else if (asoc) {
2241 				asoc->hbinterval =
2242 				    msecs_to_jiffies(params->spp_hbinterval);
2243 			} else {
2244 				sp->hbinterval = params->spp_hbinterval;
2245 			}
2246 		}
2247 	}
2248 
2249 	if (hb_change) {
2250 		if (trans) {
2251 			trans->param_flags =
2252 				(trans->param_flags & ~SPP_HB) | hb_change;
2253 		} else if (asoc) {
2254 			asoc->param_flags =
2255 				(asoc->param_flags & ~SPP_HB) | hb_change;
2256 		} else {
2257 			sp->param_flags =
2258 				(sp->param_flags & ~SPP_HB) | hb_change;
2259 		}
2260 	}
2261 
2262 	/* When Path MTU discovery is disabled the value specified here will
2263 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2264 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2265 	 * effect).
2266 	 */
2267 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2268 		if (trans) {
2269 			trans->pathmtu = params->spp_pathmtu;
2270 			sctp_assoc_sync_pmtu(asoc);
2271 		} else if (asoc) {
2272 			asoc->pathmtu = params->spp_pathmtu;
2273 			sctp_frag_point(asoc, params->spp_pathmtu);
2274 		} else {
2275 			sp->pathmtu = params->spp_pathmtu;
2276 		}
2277 	}
2278 
2279 	if (pmtud_change) {
2280 		if (trans) {
2281 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2282 				(params->spp_flags & SPP_PMTUD_ENABLE);
2283 			trans->param_flags =
2284 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2285 			if (update) {
2286 				sctp_transport_pmtu(trans);
2287 				sctp_assoc_sync_pmtu(asoc);
2288 			}
2289 		} else if (asoc) {
2290 			asoc->param_flags =
2291 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2292 		} else {
2293 			sp->param_flags =
2294 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2295 		}
2296 	}
2297 
2298 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2299 	 * value of this field is ignored.  Note also that a value of zero
2300 	 * indicates the current setting should be left unchanged.
2301 	 */
2302 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2303 		if (trans) {
2304 			trans->sackdelay =
2305 				msecs_to_jiffies(params->spp_sackdelay);
2306 		} else if (asoc) {
2307 			asoc->sackdelay =
2308 				msecs_to_jiffies(params->spp_sackdelay);
2309 		} else {
2310 			sp->sackdelay = params->spp_sackdelay;
2311 		}
2312 	}
2313 
2314 	if (sackdelay_change) {
2315 		if (trans) {
2316 			trans->param_flags =
2317 				(trans->param_flags & ~SPP_SACKDELAY) |
2318 				sackdelay_change;
2319 		} else if (asoc) {
2320 			asoc->param_flags =
2321 				(asoc->param_flags & ~SPP_SACKDELAY) |
2322 				sackdelay_change;
2323 		} else {
2324 			sp->param_flags =
2325 				(sp->param_flags & ~SPP_SACKDELAY) |
2326 				sackdelay_change;
2327 		}
2328 	}
2329 
2330 	/* Note that a value of zero indicates the current setting should be
2331 	   left unchanged.
2332 	 */
2333 	if (params->spp_pathmaxrxt) {
2334 		if (trans) {
2335 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2336 		} else if (asoc) {
2337 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2338 		} else {
2339 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2340 		}
2341 	}
2342 
2343 	return 0;
2344 }
2345 
2346 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2347 					    char __user *optval,
2348 					    unsigned int optlen)
2349 {
2350 	struct sctp_paddrparams  params;
2351 	struct sctp_transport   *trans = NULL;
2352 	struct sctp_association *asoc = NULL;
2353 	struct sctp_sock        *sp = sctp_sk(sk);
2354 	int error;
2355 	int hb_change, pmtud_change, sackdelay_change;
2356 
2357 	if (optlen != sizeof(struct sctp_paddrparams))
2358 		return - EINVAL;
2359 
2360 	if (copy_from_user(&params, optval, optlen))
2361 		return -EFAULT;
2362 
2363 	/* Validate flags and value parameters. */
2364 	hb_change        = params.spp_flags & SPP_HB;
2365 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2366 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2367 
2368 	if (hb_change        == SPP_HB ||
2369 	    pmtud_change     == SPP_PMTUD ||
2370 	    sackdelay_change == SPP_SACKDELAY ||
2371 	    params.spp_sackdelay > 500 ||
2372 	    (params.spp_pathmtu &&
2373 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2374 		return -EINVAL;
2375 
2376 	/* If an address other than INADDR_ANY is specified, and
2377 	 * no transport is found, then the request is invalid.
2378 	 */
2379 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2380 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2381 					       params.spp_assoc_id);
2382 		if (!trans)
2383 			return -EINVAL;
2384 	}
2385 
2386 	/* Get association, if assoc_id != 0 and the socket is a one
2387 	 * to many style socket, and an association was not found, then
2388 	 * the id was invalid.
2389 	 */
2390 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2391 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2392 		return -EINVAL;
2393 
2394 	/* Heartbeat demand can only be sent on a transport or
2395 	 * association, but not a socket.
2396 	 */
2397 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2398 		return -EINVAL;
2399 
2400 	/* Process parameters. */
2401 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2402 					    hb_change, pmtud_change,
2403 					    sackdelay_change);
2404 
2405 	if (error)
2406 		return error;
2407 
2408 	/* If changes are for association, also apply parameters to each
2409 	 * transport.
2410 	 */
2411 	if (!trans && asoc) {
2412 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2413 				transports) {
2414 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2415 						    hb_change, pmtud_change,
2416 						    sackdelay_change);
2417 		}
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 /*
2424  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2425  *
2426  * This option will effect the way delayed acks are performed.  This
2427  * option allows you to get or set the delayed ack time, in
2428  * milliseconds.  It also allows changing the delayed ack frequency.
2429  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2430  * the assoc_id is 0, then this sets or gets the endpoints default
2431  * values.  If the assoc_id field is non-zero, then the set or get
2432  * effects the specified association for the one to many model (the
2433  * assoc_id field is ignored by the one to one model).  Note that if
2434  * sack_delay or sack_freq are 0 when setting this option, then the
2435  * current values will remain unchanged.
2436  *
2437  * struct sctp_sack_info {
2438  *     sctp_assoc_t            sack_assoc_id;
2439  *     uint32_t                sack_delay;
2440  *     uint32_t                sack_freq;
2441  * };
2442  *
2443  * sack_assoc_id -  This parameter, indicates which association the user
2444  *    is performing an action upon.  Note that if this field's value is
2445  *    zero then the endpoints default value is changed (effecting future
2446  *    associations only).
2447  *
2448  * sack_delay -  This parameter contains the number of milliseconds that
2449  *    the user is requesting the delayed ACK timer be set to.  Note that
2450  *    this value is defined in the standard to be between 200 and 500
2451  *    milliseconds.
2452  *
2453  * sack_freq -  This parameter contains the number of packets that must
2454  *    be received before a sack is sent without waiting for the delay
2455  *    timer to expire.  The default value for this is 2, setting this
2456  *    value to 1 will disable the delayed sack algorithm.
2457  */
2458 
2459 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2460 				       char __user *optval, unsigned int optlen)
2461 {
2462 	struct sctp_sack_info    params;
2463 	struct sctp_transport   *trans = NULL;
2464 	struct sctp_association *asoc = NULL;
2465 	struct sctp_sock        *sp = sctp_sk(sk);
2466 
2467 	if (optlen == sizeof(struct sctp_sack_info)) {
2468 		if (copy_from_user(&params, optval, optlen))
2469 			return -EFAULT;
2470 
2471 		if (params.sack_delay == 0 && params.sack_freq == 0)
2472 			return 0;
2473 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2474 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2475 		pr_warn("Use struct sctp_sack_info instead\n");
2476 		if (copy_from_user(&params, optval, optlen))
2477 			return -EFAULT;
2478 
2479 		if (params.sack_delay == 0)
2480 			params.sack_freq = 1;
2481 		else
2482 			params.sack_freq = 0;
2483 	} else
2484 		return - EINVAL;
2485 
2486 	/* Validate value parameter. */
2487 	if (params.sack_delay > 500)
2488 		return -EINVAL;
2489 
2490 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2491 	 * to many style socket, and an association was not found, then
2492 	 * the id was invalid.
2493 	 */
2494 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2495 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2496 		return -EINVAL;
2497 
2498 	if (params.sack_delay) {
2499 		if (asoc) {
2500 			asoc->sackdelay =
2501 				msecs_to_jiffies(params.sack_delay);
2502 			asoc->param_flags =
2503 				(asoc->param_flags & ~SPP_SACKDELAY) |
2504 				SPP_SACKDELAY_ENABLE;
2505 		} else {
2506 			sp->sackdelay = params.sack_delay;
2507 			sp->param_flags =
2508 				(sp->param_flags & ~SPP_SACKDELAY) |
2509 				SPP_SACKDELAY_ENABLE;
2510 		}
2511 	}
2512 
2513 	if (params.sack_freq == 1) {
2514 		if (asoc) {
2515 			asoc->param_flags =
2516 				(asoc->param_flags & ~SPP_SACKDELAY) |
2517 				SPP_SACKDELAY_DISABLE;
2518 		} else {
2519 			sp->param_flags =
2520 				(sp->param_flags & ~SPP_SACKDELAY) |
2521 				SPP_SACKDELAY_DISABLE;
2522 		}
2523 	} else if (params.sack_freq > 1) {
2524 		if (asoc) {
2525 			asoc->sackfreq = params.sack_freq;
2526 			asoc->param_flags =
2527 				(asoc->param_flags & ~SPP_SACKDELAY) |
2528 				SPP_SACKDELAY_ENABLE;
2529 		} else {
2530 			sp->sackfreq = params.sack_freq;
2531 			sp->param_flags =
2532 				(sp->param_flags & ~SPP_SACKDELAY) |
2533 				SPP_SACKDELAY_ENABLE;
2534 		}
2535 	}
2536 
2537 	/* If change is for association, also apply to each transport. */
2538 	if (asoc) {
2539 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2540 				transports) {
2541 			if (params.sack_delay) {
2542 				trans->sackdelay =
2543 					msecs_to_jiffies(params.sack_delay);
2544 				trans->param_flags =
2545 					(trans->param_flags & ~SPP_SACKDELAY) |
2546 					SPP_SACKDELAY_ENABLE;
2547 			}
2548 			if (params.sack_freq == 1) {
2549 				trans->param_flags =
2550 					(trans->param_flags & ~SPP_SACKDELAY) |
2551 					SPP_SACKDELAY_DISABLE;
2552 			} else if (params.sack_freq > 1) {
2553 				trans->sackfreq = params.sack_freq;
2554 				trans->param_flags =
2555 					(trans->param_flags & ~SPP_SACKDELAY) |
2556 					SPP_SACKDELAY_ENABLE;
2557 			}
2558 		}
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2565  *
2566  * Applications can specify protocol parameters for the default association
2567  * initialization.  The option name argument to setsockopt() and getsockopt()
2568  * is SCTP_INITMSG.
2569  *
2570  * Setting initialization parameters is effective only on an unconnected
2571  * socket (for UDP-style sockets only future associations are effected
2572  * by the change).  With TCP-style sockets, this option is inherited by
2573  * sockets derived from a listener socket.
2574  */
2575 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2576 {
2577 	struct sctp_initmsg sinit;
2578 	struct sctp_sock *sp = sctp_sk(sk);
2579 
2580 	if (optlen != sizeof(struct sctp_initmsg))
2581 		return -EINVAL;
2582 	if (copy_from_user(&sinit, optval, optlen))
2583 		return -EFAULT;
2584 
2585 	if (sinit.sinit_num_ostreams)
2586 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2587 	if (sinit.sinit_max_instreams)
2588 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2589 	if (sinit.sinit_max_attempts)
2590 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2591 	if (sinit.sinit_max_init_timeo)
2592 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2593 
2594 	return 0;
2595 }
2596 
2597 /*
2598  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2599  *
2600  *   Applications that wish to use the sendto() system call may wish to
2601  *   specify a default set of parameters that would normally be supplied
2602  *   through the inclusion of ancillary data.  This socket option allows
2603  *   such an application to set the default sctp_sndrcvinfo structure.
2604  *   The application that wishes to use this socket option simply passes
2605  *   in to this call the sctp_sndrcvinfo structure defined in Section
2606  *   5.2.2) The input parameters accepted by this call include
2607  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2608  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2609  *   to this call if the caller is using the UDP model.
2610  */
2611 static int sctp_setsockopt_default_send_param(struct sock *sk,
2612 					      char __user *optval,
2613 					      unsigned int optlen)
2614 {
2615 	struct sctp_sndrcvinfo info;
2616 	struct sctp_association *asoc;
2617 	struct sctp_sock *sp = sctp_sk(sk);
2618 
2619 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2620 		return -EINVAL;
2621 	if (copy_from_user(&info, optval, optlen))
2622 		return -EFAULT;
2623 
2624 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2625 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2626 		return -EINVAL;
2627 
2628 	if (asoc) {
2629 		asoc->default_stream = info.sinfo_stream;
2630 		asoc->default_flags = info.sinfo_flags;
2631 		asoc->default_ppid = info.sinfo_ppid;
2632 		asoc->default_context = info.sinfo_context;
2633 		asoc->default_timetolive = info.sinfo_timetolive;
2634 	} else {
2635 		sp->default_stream = info.sinfo_stream;
2636 		sp->default_flags = info.sinfo_flags;
2637 		sp->default_ppid = info.sinfo_ppid;
2638 		sp->default_context = info.sinfo_context;
2639 		sp->default_timetolive = info.sinfo_timetolive;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2646  *
2647  * Requests that the local SCTP stack use the enclosed peer address as
2648  * the association primary.  The enclosed address must be one of the
2649  * association peer's addresses.
2650  */
2651 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2652 					unsigned int optlen)
2653 {
2654 	struct sctp_prim prim;
2655 	struct sctp_transport *trans;
2656 
2657 	if (optlen != sizeof(struct sctp_prim))
2658 		return -EINVAL;
2659 
2660 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2661 		return -EFAULT;
2662 
2663 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2664 	if (!trans)
2665 		return -EINVAL;
2666 
2667 	sctp_assoc_set_primary(trans->asoc, trans);
2668 
2669 	return 0;
2670 }
2671 
2672 /*
2673  * 7.1.5 SCTP_NODELAY
2674  *
2675  * Turn on/off any Nagle-like algorithm.  This means that packets are
2676  * generally sent as soon as possible and no unnecessary delays are
2677  * introduced, at the cost of more packets in the network.  Expects an
2678  *  integer boolean flag.
2679  */
2680 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2681 				   unsigned int optlen)
2682 {
2683 	int val;
2684 
2685 	if (optlen < sizeof(int))
2686 		return -EINVAL;
2687 	if (get_user(val, (int __user *)optval))
2688 		return -EFAULT;
2689 
2690 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2691 	return 0;
2692 }
2693 
2694 /*
2695  *
2696  * 7.1.1 SCTP_RTOINFO
2697  *
2698  * The protocol parameters used to initialize and bound retransmission
2699  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2700  * and modify these parameters.
2701  * All parameters are time values, in milliseconds.  A value of 0, when
2702  * modifying the parameters, indicates that the current value should not
2703  * be changed.
2704  *
2705  */
2706 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2707 {
2708 	struct sctp_rtoinfo rtoinfo;
2709 	struct sctp_association *asoc;
2710 
2711 	if (optlen != sizeof (struct sctp_rtoinfo))
2712 		return -EINVAL;
2713 
2714 	if (copy_from_user(&rtoinfo, optval, optlen))
2715 		return -EFAULT;
2716 
2717 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2718 
2719 	/* Set the values to the specific association */
2720 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2721 		return -EINVAL;
2722 
2723 	if (asoc) {
2724 		if (rtoinfo.srto_initial != 0)
2725 			asoc->rto_initial =
2726 				msecs_to_jiffies(rtoinfo.srto_initial);
2727 		if (rtoinfo.srto_max != 0)
2728 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2729 		if (rtoinfo.srto_min != 0)
2730 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2731 	} else {
2732 		/* If there is no association or the association-id = 0
2733 		 * set the values to the endpoint.
2734 		 */
2735 		struct sctp_sock *sp = sctp_sk(sk);
2736 
2737 		if (rtoinfo.srto_initial != 0)
2738 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2739 		if (rtoinfo.srto_max != 0)
2740 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2741 		if (rtoinfo.srto_min != 0)
2742 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 /*
2749  *
2750  * 7.1.2 SCTP_ASSOCINFO
2751  *
2752  * This option is used to tune the maximum retransmission attempts
2753  * of the association.
2754  * Returns an error if the new association retransmission value is
2755  * greater than the sum of the retransmission value  of the peer.
2756  * See [SCTP] for more information.
2757  *
2758  */
2759 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2760 {
2761 
2762 	struct sctp_assocparams assocparams;
2763 	struct sctp_association *asoc;
2764 
2765 	if (optlen != sizeof(struct sctp_assocparams))
2766 		return -EINVAL;
2767 	if (copy_from_user(&assocparams, optval, optlen))
2768 		return -EFAULT;
2769 
2770 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2771 
2772 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2773 		return -EINVAL;
2774 
2775 	/* Set the values to the specific association */
2776 	if (asoc) {
2777 		if (assocparams.sasoc_asocmaxrxt != 0) {
2778 			__u32 path_sum = 0;
2779 			int   paths = 0;
2780 			struct sctp_transport *peer_addr;
2781 
2782 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2783 					transports) {
2784 				path_sum += peer_addr->pathmaxrxt;
2785 				paths++;
2786 			}
2787 
2788 			/* Only validate asocmaxrxt if we have more than
2789 			 * one path/transport.  We do this because path
2790 			 * retransmissions are only counted when we have more
2791 			 * then one path.
2792 			 */
2793 			if (paths > 1 &&
2794 			    assocparams.sasoc_asocmaxrxt > path_sum)
2795 				return -EINVAL;
2796 
2797 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2798 		}
2799 
2800 		if (assocparams.sasoc_cookie_life != 0) {
2801 			asoc->cookie_life.tv_sec =
2802 					assocparams.sasoc_cookie_life / 1000;
2803 			asoc->cookie_life.tv_usec =
2804 					(assocparams.sasoc_cookie_life % 1000)
2805 					* 1000;
2806 		}
2807 	} else {
2808 		/* Set the values to the endpoint */
2809 		struct sctp_sock *sp = sctp_sk(sk);
2810 
2811 		if (assocparams.sasoc_asocmaxrxt != 0)
2812 			sp->assocparams.sasoc_asocmaxrxt =
2813 						assocparams.sasoc_asocmaxrxt;
2814 		if (assocparams.sasoc_cookie_life != 0)
2815 			sp->assocparams.sasoc_cookie_life =
2816 						assocparams.sasoc_cookie_life;
2817 	}
2818 	return 0;
2819 }
2820 
2821 /*
2822  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2823  *
2824  * This socket option is a boolean flag which turns on or off mapped V4
2825  * addresses.  If this option is turned on and the socket is type
2826  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2827  * If this option is turned off, then no mapping will be done of V4
2828  * addresses and a user will receive both PF_INET6 and PF_INET type
2829  * addresses on the socket.
2830  */
2831 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2832 {
2833 	int val;
2834 	struct sctp_sock *sp = sctp_sk(sk);
2835 
2836 	if (optlen < sizeof(int))
2837 		return -EINVAL;
2838 	if (get_user(val, (int __user *)optval))
2839 		return -EFAULT;
2840 	if (val)
2841 		sp->v4mapped = 1;
2842 	else
2843 		sp->v4mapped = 0;
2844 
2845 	return 0;
2846 }
2847 
2848 /*
2849  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2850  * This option will get or set the maximum size to put in any outgoing
2851  * SCTP DATA chunk.  If a message is larger than this size it will be
2852  * fragmented by SCTP into the specified size.  Note that the underlying
2853  * SCTP implementation may fragment into smaller sized chunks when the
2854  * PMTU of the underlying association is smaller than the value set by
2855  * the user.  The default value for this option is '0' which indicates
2856  * the user is NOT limiting fragmentation and only the PMTU will effect
2857  * SCTP's choice of DATA chunk size.  Note also that values set larger
2858  * than the maximum size of an IP datagram will effectively let SCTP
2859  * control fragmentation (i.e. the same as setting this option to 0).
2860  *
2861  * The following structure is used to access and modify this parameter:
2862  *
2863  * struct sctp_assoc_value {
2864  *   sctp_assoc_t assoc_id;
2865  *   uint32_t assoc_value;
2866  * };
2867  *
2868  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2869  *    For one-to-many style sockets this parameter indicates which
2870  *    association the user is performing an action upon.  Note that if
2871  *    this field's value is zero then the endpoints default value is
2872  *    changed (effecting future associations only).
2873  * assoc_value:  This parameter specifies the maximum size in bytes.
2874  */
2875 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2876 {
2877 	struct sctp_assoc_value params;
2878 	struct sctp_association *asoc;
2879 	struct sctp_sock *sp = sctp_sk(sk);
2880 	int val;
2881 
2882 	if (optlen == sizeof(int)) {
2883 		pr_warn("Use of int in maxseg socket option deprecated\n");
2884 		pr_warn("Use struct sctp_assoc_value instead\n");
2885 		if (copy_from_user(&val, optval, optlen))
2886 			return -EFAULT;
2887 		params.assoc_id = 0;
2888 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2889 		if (copy_from_user(&params, optval, optlen))
2890 			return -EFAULT;
2891 		val = params.assoc_value;
2892 	} else
2893 		return -EINVAL;
2894 
2895 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2896 		return -EINVAL;
2897 
2898 	asoc = sctp_id2assoc(sk, params.assoc_id);
2899 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2900 		return -EINVAL;
2901 
2902 	if (asoc) {
2903 		if (val == 0) {
2904 			val = asoc->pathmtu;
2905 			val -= sp->pf->af->net_header_len;
2906 			val -= sizeof(struct sctphdr) +
2907 					sizeof(struct sctp_data_chunk);
2908 		}
2909 		asoc->user_frag = val;
2910 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2911 	} else {
2912 		sp->user_frag = val;
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 
2919 /*
2920  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2921  *
2922  *   Requests that the peer mark the enclosed address as the association
2923  *   primary. The enclosed address must be one of the association's
2924  *   locally bound addresses. The following structure is used to make a
2925  *   set primary request:
2926  */
2927 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2928 					     unsigned int optlen)
2929 {
2930 	struct sctp_sock	*sp;
2931 	struct sctp_endpoint	*ep;
2932 	struct sctp_association	*asoc = NULL;
2933 	struct sctp_setpeerprim	prim;
2934 	struct sctp_chunk	*chunk;
2935 	struct sctp_af		*af;
2936 	int 			err;
2937 
2938 	sp = sctp_sk(sk);
2939 	ep = sp->ep;
2940 
2941 	if (!sctp_addip_enable)
2942 		return -EPERM;
2943 
2944 	if (optlen != sizeof(struct sctp_setpeerprim))
2945 		return -EINVAL;
2946 
2947 	if (copy_from_user(&prim, optval, optlen))
2948 		return -EFAULT;
2949 
2950 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2951 	if (!asoc)
2952 		return -EINVAL;
2953 
2954 	if (!asoc->peer.asconf_capable)
2955 		return -EPERM;
2956 
2957 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2958 		return -EPERM;
2959 
2960 	if (!sctp_state(asoc, ESTABLISHED))
2961 		return -ENOTCONN;
2962 
2963 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
2964 	if (!af)
2965 		return -EINVAL;
2966 
2967 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
2968 		return -EADDRNOTAVAIL;
2969 
2970 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2971 		return -EADDRNOTAVAIL;
2972 
2973 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2974 	chunk = sctp_make_asconf_set_prim(asoc,
2975 					  (union sctp_addr *)&prim.sspp_addr);
2976 	if (!chunk)
2977 		return -ENOMEM;
2978 
2979 	err = sctp_send_asconf(asoc, chunk);
2980 
2981 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2982 
2983 	return err;
2984 }
2985 
2986 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2987 					    unsigned int optlen)
2988 {
2989 	struct sctp_setadaptation adaptation;
2990 
2991 	if (optlen != sizeof(struct sctp_setadaptation))
2992 		return -EINVAL;
2993 	if (copy_from_user(&adaptation, optval, optlen))
2994 		return -EFAULT;
2995 
2996 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2997 
2998 	return 0;
2999 }
3000 
3001 /*
3002  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3003  *
3004  * The context field in the sctp_sndrcvinfo structure is normally only
3005  * used when a failed message is retrieved holding the value that was
3006  * sent down on the actual send call.  This option allows the setting of
3007  * a default context on an association basis that will be received on
3008  * reading messages from the peer.  This is especially helpful in the
3009  * one-2-many model for an application to keep some reference to an
3010  * internal state machine that is processing messages on the
3011  * association.  Note that the setting of this value only effects
3012  * received messages from the peer and does not effect the value that is
3013  * saved with outbound messages.
3014  */
3015 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3016 				   unsigned int optlen)
3017 {
3018 	struct sctp_assoc_value params;
3019 	struct sctp_sock *sp;
3020 	struct sctp_association *asoc;
3021 
3022 	if (optlen != sizeof(struct sctp_assoc_value))
3023 		return -EINVAL;
3024 	if (copy_from_user(&params, optval, optlen))
3025 		return -EFAULT;
3026 
3027 	sp = sctp_sk(sk);
3028 
3029 	if (params.assoc_id != 0) {
3030 		asoc = sctp_id2assoc(sk, params.assoc_id);
3031 		if (!asoc)
3032 			return -EINVAL;
3033 		asoc->default_rcv_context = params.assoc_value;
3034 	} else {
3035 		sp->default_rcv_context = params.assoc_value;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 /*
3042  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3043  *
3044  * This options will at a minimum specify if the implementation is doing
3045  * fragmented interleave.  Fragmented interleave, for a one to many
3046  * socket, is when subsequent calls to receive a message may return
3047  * parts of messages from different associations.  Some implementations
3048  * may allow you to turn this value on or off.  If so, when turned off,
3049  * no fragment interleave will occur (which will cause a head of line
3050  * blocking amongst multiple associations sharing the same one to many
3051  * socket).  When this option is turned on, then each receive call may
3052  * come from a different association (thus the user must receive data
3053  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3054  * association each receive belongs to.
3055  *
3056  * This option takes a boolean value.  A non-zero value indicates that
3057  * fragmented interleave is on.  A value of zero indicates that
3058  * fragmented interleave is off.
3059  *
3060  * Note that it is important that an implementation that allows this
3061  * option to be turned on, have it off by default.  Otherwise an unaware
3062  * application using the one to many model may become confused and act
3063  * incorrectly.
3064  */
3065 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3066 					       char __user *optval,
3067 					       unsigned int optlen)
3068 {
3069 	int val;
3070 
3071 	if (optlen != sizeof(int))
3072 		return -EINVAL;
3073 	if (get_user(val, (int __user *)optval))
3074 		return -EFAULT;
3075 
3076 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3077 
3078 	return 0;
3079 }
3080 
3081 /*
3082  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3083  *       (SCTP_PARTIAL_DELIVERY_POINT)
3084  *
3085  * This option will set or get the SCTP partial delivery point.  This
3086  * point is the size of a message where the partial delivery API will be
3087  * invoked to help free up rwnd space for the peer.  Setting this to a
3088  * lower value will cause partial deliveries to happen more often.  The
3089  * calls argument is an integer that sets or gets the partial delivery
3090  * point.  Note also that the call will fail if the user attempts to set
3091  * this value larger than the socket receive buffer size.
3092  *
3093  * Note that any single message having a length smaller than or equal to
3094  * the SCTP partial delivery point will be delivered in one single read
3095  * call as long as the user provided buffer is large enough to hold the
3096  * message.
3097  */
3098 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3099 						  char __user *optval,
3100 						  unsigned int optlen)
3101 {
3102 	u32 val;
3103 
3104 	if (optlen != sizeof(u32))
3105 		return -EINVAL;
3106 	if (get_user(val, (int __user *)optval))
3107 		return -EFAULT;
3108 
3109 	/* Note: We double the receive buffer from what the user sets
3110 	 * it to be, also initial rwnd is based on rcvbuf/2.
3111 	 */
3112 	if (val > (sk->sk_rcvbuf >> 1))
3113 		return -EINVAL;
3114 
3115 	sctp_sk(sk)->pd_point = val;
3116 
3117 	return 0; /* is this the right error code? */
3118 }
3119 
3120 /*
3121  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3122  *
3123  * This option will allow a user to change the maximum burst of packets
3124  * that can be emitted by this association.  Note that the default value
3125  * is 4, and some implementations may restrict this setting so that it
3126  * can only be lowered.
3127  *
3128  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3129  * future associations inheriting the socket value.
3130  */
3131 static int sctp_setsockopt_maxburst(struct sock *sk,
3132 				    char __user *optval,
3133 				    unsigned int optlen)
3134 {
3135 	struct sctp_assoc_value params;
3136 	struct sctp_sock *sp;
3137 	struct sctp_association *asoc;
3138 	int val;
3139 	int assoc_id = 0;
3140 
3141 	if (optlen == sizeof(int)) {
3142 		pr_warn("Use of int in max_burst socket option deprecated\n");
3143 		pr_warn("Use struct sctp_assoc_value instead\n");
3144 		if (copy_from_user(&val, optval, optlen))
3145 			return -EFAULT;
3146 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3147 		if (copy_from_user(&params, optval, optlen))
3148 			return -EFAULT;
3149 		val = params.assoc_value;
3150 		assoc_id = params.assoc_id;
3151 	} else
3152 		return -EINVAL;
3153 
3154 	sp = sctp_sk(sk);
3155 
3156 	if (assoc_id != 0) {
3157 		asoc = sctp_id2assoc(sk, assoc_id);
3158 		if (!asoc)
3159 			return -EINVAL;
3160 		asoc->max_burst = val;
3161 	} else
3162 		sp->max_burst = val;
3163 
3164 	return 0;
3165 }
3166 
3167 /*
3168  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3169  *
3170  * This set option adds a chunk type that the user is requesting to be
3171  * received only in an authenticated way.  Changes to the list of chunks
3172  * will only effect future associations on the socket.
3173  */
3174 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3175 				      char __user *optval,
3176 				      unsigned int optlen)
3177 {
3178 	struct sctp_authchunk val;
3179 
3180 	if (!sctp_auth_enable)
3181 		return -EACCES;
3182 
3183 	if (optlen != sizeof(struct sctp_authchunk))
3184 		return -EINVAL;
3185 	if (copy_from_user(&val, optval, optlen))
3186 		return -EFAULT;
3187 
3188 	switch (val.sauth_chunk) {
3189 		case SCTP_CID_INIT:
3190 		case SCTP_CID_INIT_ACK:
3191 		case SCTP_CID_SHUTDOWN_COMPLETE:
3192 		case SCTP_CID_AUTH:
3193 			return -EINVAL;
3194 	}
3195 
3196 	/* add this chunk id to the endpoint */
3197 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3198 }
3199 
3200 /*
3201  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3202  *
3203  * This option gets or sets the list of HMAC algorithms that the local
3204  * endpoint requires the peer to use.
3205  */
3206 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3207 				      char __user *optval,
3208 				      unsigned int optlen)
3209 {
3210 	struct sctp_hmacalgo *hmacs;
3211 	u32 idents;
3212 	int err;
3213 
3214 	if (!sctp_auth_enable)
3215 		return -EACCES;
3216 
3217 	if (optlen < sizeof(struct sctp_hmacalgo))
3218 		return -EINVAL;
3219 
3220 	hmacs = kmalloc(optlen, GFP_KERNEL);
3221 	if (!hmacs)
3222 		return -ENOMEM;
3223 
3224 	if (copy_from_user(hmacs, optval, optlen)) {
3225 		err = -EFAULT;
3226 		goto out;
3227 	}
3228 
3229 	idents = hmacs->shmac_num_idents;
3230 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3231 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3232 		err = -EINVAL;
3233 		goto out;
3234 	}
3235 
3236 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3237 out:
3238 	kfree(hmacs);
3239 	return err;
3240 }
3241 
3242 /*
3243  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3244  *
3245  * This option will set a shared secret key which is used to build an
3246  * association shared key.
3247  */
3248 static int sctp_setsockopt_auth_key(struct sock *sk,
3249 				    char __user *optval,
3250 				    unsigned int optlen)
3251 {
3252 	struct sctp_authkey *authkey;
3253 	struct sctp_association *asoc;
3254 	int ret;
3255 
3256 	if (!sctp_auth_enable)
3257 		return -EACCES;
3258 
3259 	if (optlen <= sizeof(struct sctp_authkey))
3260 		return -EINVAL;
3261 
3262 	authkey = kmalloc(optlen, GFP_KERNEL);
3263 	if (!authkey)
3264 		return -ENOMEM;
3265 
3266 	if (copy_from_user(authkey, optval, optlen)) {
3267 		ret = -EFAULT;
3268 		goto out;
3269 	}
3270 
3271 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3272 		ret = -EINVAL;
3273 		goto out;
3274 	}
3275 
3276 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3277 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3278 		ret = -EINVAL;
3279 		goto out;
3280 	}
3281 
3282 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3283 out:
3284 	kfree(authkey);
3285 	return ret;
3286 }
3287 
3288 /*
3289  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3290  *
3291  * This option will get or set the active shared key to be used to build
3292  * the association shared key.
3293  */
3294 static int sctp_setsockopt_active_key(struct sock *sk,
3295 				      char __user *optval,
3296 				      unsigned int optlen)
3297 {
3298 	struct sctp_authkeyid val;
3299 	struct sctp_association *asoc;
3300 
3301 	if (!sctp_auth_enable)
3302 		return -EACCES;
3303 
3304 	if (optlen != sizeof(struct sctp_authkeyid))
3305 		return -EINVAL;
3306 	if (copy_from_user(&val, optval, optlen))
3307 		return -EFAULT;
3308 
3309 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3310 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3311 		return -EINVAL;
3312 
3313 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3314 					val.scact_keynumber);
3315 }
3316 
3317 /*
3318  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3319  *
3320  * This set option will delete a shared secret key from use.
3321  */
3322 static int sctp_setsockopt_del_key(struct sock *sk,
3323 				   char __user *optval,
3324 				   unsigned int optlen)
3325 {
3326 	struct sctp_authkeyid val;
3327 	struct sctp_association *asoc;
3328 
3329 	if (!sctp_auth_enable)
3330 		return -EACCES;
3331 
3332 	if (optlen != sizeof(struct sctp_authkeyid))
3333 		return -EINVAL;
3334 	if (copy_from_user(&val, optval, optlen))
3335 		return -EFAULT;
3336 
3337 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3338 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3339 		return -EINVAL;
3340 
3341 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3342 				    val.scact_keynumber);
3343 
3344 }
3345 
3346 
3347 /* API 6.2 setsockopt(), getsockopt()
3348  *
3349  * Applications use setsockopt() and getsockopt() to set or retrieve
3350  * socket options.  Socket options are used to change the default
3351  * behavior of sockets calls.  They are described in Section 7.
3352  *
3353  * The syntax is:
3354  *
3355  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3356  *                    int __user *optlen);
3357  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3358  *                    int optlen);
3359  *
3360  *   sd      - the socket descript.
3361  *   level   - set to IPPROTO_SCTP for all SCTP options.
3362  *   optname - the option name.
3363  *   optval  - the buffer to store the value of the option.
3364  *   optlen  - the size of the buffer.
3365  */
3366 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3367 				char __user *optval, unsigned int optlen)
3368 {
3369 	int retval = 0;
3370 
3371 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3372 			  sk, optname);
3373 
3374 	/* I can hardly begin to describe how wrong this is.  This is
3375 	 * so broken as to be worse than useless.  The API draft
3376 	 * REALLY is NOT helpful here...  I am not convinced that the
3377 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3378 	 * are at all well-founded.
3379 	 */
3380 	if (level != SOL_SCTP) {
3381 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3382 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3383 		goto out_nounlock;
3384 	}
3385 
3386 	sctp_lock_sock(sk);
3387 
3388 	switch (optname) {
3389 	case SCTP_SOCKOPT_BINDX_ADD:
3390 		/* 'optlen' is the size of the addresses buffer. */
3391 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3392 					       optlen, SCTP_BINDX_ADD_ADDR);
3393 		break;
3394 
3395 	case SCTP_SOCKOPT_BINDX_REM:
3396 		/* 'optlen' is the size of the addresses buffer. */
3397 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3398 					       optlen, SCTP_BINDX_REM_ADDR);
3399 		break;
3400 
3401 	case SCTP_SOCKOPT_CONNECTX_OLD:
3402 		/* 'optlen' is the size of the addresses buffer. */
3403 		retval = sctp_setsockopt_connectx_old(sk,
3404 					    (struct sockaddr __user *)optval,
3405 					    optlen);
3406 		break;
3407 
3408 	case SCTP_SOCKOPT_CONNECTX:
3409 		/* 'optlen' is the size of the addresses buffer. */
3410 		retval = sctp_setsockopt_connectx(sk,
3411 					    (struct sockaddr __user *)optval,
3412 					    optlen);
3413 		break;
3414 
3415 	case SCTP_DISABLE_FRAGMENTS:
3416 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3417 		break;
3418 
3419 	case SCTP_EVENTS:
3420 		retval = sctp_setsockopt_events(sk, optval, optlen);
3421 		break;
3422 
3423 	case SCTP_AUTOCLOSE:
3424 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3425 		break;
3426 
3427 	case SCTP_PEER_ADDR_PARAMS:
3428 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3429 		break;
3430 
3431 	case SCTP_DELAYED_ACK:
3432 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3433 		break;
3434 	case SCTP_PARTIAL_DELIVERY_POINT:
3435 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3436 		break;
3437 
3438 	case SCTP_INITMSG:
3439 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3440 		break;
3441 	case SCTP_DEFAULT_SEND_PARAM:
3442 		retval = sctp_setsockopt_default_send_param(sk, optval,
3443 							    optlen);
3444 		break;
3445 	case SCTP_PRIMARY_ADDR:
3446 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3447 		break;
3448 	case SCTP_SET_PEER_PRIMARY_ADDR:
3449 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3450 		break;
3451 	case SCTP_NODELAY:
3452 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3453 		break;
3454 	case SCTP_RTOINFO:
3455 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3456 		break;
3457 	case SCTP_ASSOCINFO:
3458 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3459 		break;
3460 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3461 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3462 		break;
3463 	case SCTP_MAXSEG:
3464 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3465 		break;
3466 	case SCTP_ADAPTATION_LAYER:
3467 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3468 		break;
3469 	case SCTP_CONTEXT:
3470 		retval = sctp_setsockopt_context(sk, optval, optlen);
3471 		break;
3472 	case SCTP_FRAGMENT_INTERLEAVE:
3473 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3474 		break;
3475 	case SCTP_MAX_BURST:
3476 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3477 		break;
3478 	case SCTP_AUTH_CHUNK:
3479 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3480 		break;
3481 	case SCTP_HMAC_IDENT:
3482 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3483 		break;
3484 	case SCTP_AUTH_KEY:
3485 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3486 		break;
3487 	case SCTP_AUTH_ACTIVE_KEY:
3488 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3489 		break;
3490 	case SCTP_AUTH_DELETE_KEY:
3491 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3492 		break;
3493 	default:
3494 		retval = -ENOPROTOOPT;
3495 		break;
3496 	}
3497 
3498 	sctp_release_sock(sk);
3499 
3500 out_nounlock:
3501 	return retval;
3502 }
3503 
3504 /* API 3.1.6 connect() - UDP Style Syntax
3505  *
3506  * An application may use the connect() call in the UDP model to initiate an
3507  * association without sending data.
3508  *
3509  * The syntax is:
3510  *
3511  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3512  *
3513  * sd: the socket descriptor to have a new association added to.
3514  *
3515  * nam: the address structure (either struct sockaddr_in or struct
3516  *    sockaddr_in6 defined in RFC2553 [7]).
3517  *
3518  * len: the size of the address.
3519  */
3520 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3521 			     int addr_len)
3522 {
3523 	int err = 0;
3524 	struct sctp_af *af;
3525 
3526 	sctp_lock_sock(sk);
3527 
3528 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3529 			  __func__, sk, addr, addr_len);
3530 
3531 	/* Validate addr_len before calling common connect/connectx routine. */
3532 	af = sctp_get_af_specific(addr->sa_family);
3533 	if (!af || addr_len < af->sockaddr_len) {
3534 		err = -EINVAL;
3535 	} else {
3536 		/* Pass correct addr len to common routine (so it knows there
3537 		 * is only one address being passed.
3538 		 */
3539 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3540 	}
3541 
3542 	sctp_release_sock(sk);
3543 	return err;
3544 }
3545 
3546 /* FIXME: Write comments. */
3547 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3548 {
3549 	return -EOPNOTSUPP; /* STUB */
3550 }
3551 
3552 /* 4.1.4 accept() - TCP Style Syntax
3553  *
3554  * Applications use accept() call to remove an established SCTP
3555  * association from the accept queue of the endpoint.  A new socket
3556  * descriptor will be returned from accept() to represent the newly
3557  * formed association.
3558  */
3559 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3560 {
3561 	struct sctp_sock *sp;
3562 	struct sctp_endpoint *ep;
3563 	struct sock *newsk = NULL;
3564 	struct sctp_association *asoc;
3565 	long timeo;
3566 	int error = 0;
3567 
3568 	sctp_lock_sock(sk);
3569 
3570 	sp = sctp_sk(sk);
3571 	ep = sp->ep;
3572 
3573 	if (!sctp_style(sk, TCP)) {
3574 		error = -EOPNOTSUPP;
3575 		goto out;
3576 	}
3577 
3578 	if (!sctp_sstate(sk, LISTENING)) {
3579 		error = -EINVAL;
3580 		goto out;
3581 	}
3582 
3583 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3584 
3585 	error = sctp_wait_for_accept(sk, timeo);
3586 	if (error)
3587 		goto out;
3588 
3589 	/* We treat the list of associations on the endpoint as the accept
3590 	 * queue and pick the first association on the list.
3591 	 */
3592 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3593 
3594 	newsk = sp->pf->create_accept_sk(sk, asoc);
3595 	if (!newsk) {
3596 		error = -ENOMEM;
3597 		goto out;
3598 	}
3599 
3600 	/* Populate the fields of the newsk from the oldsk and migrate the
3601 	 * asoc to the newsk.
3602 	 */
3603 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3604 
3605 out:
3606 	sctp_release_sock(sk);
3607 	*err = error;
3608 	return newsk;
3609 }
3610 
3611 /* The SCTP ioctl handler. */
3612 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3613 {
3614 	int rc = -ENOTCONN;
3615 
3616 	sctp_lock_sock(sk);
3617 
3618 	/*
3619 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3620 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3621 	 */
3622 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3623 		goto out;
3624 
3625 	switch (cmd) {
3626 	case SIOCINQ: {
3627 		struct sk_buff *skb;
3628 		unsigned int amount = 0;
3629 
3630 		skb = skb_peek(&sk->sk_receive_queue);
3631 		if (skb != NULL) {
3632 			/*
3633 			 * We will only return the amount of this packet since
3634 			 * that is all that will be read.
3635 			 */
3636 			amount = skb->len;
3637 		}
3638 		rc = put_user(amount, (int __user *)arg);
3639 		break;
3640 	}
3641 	default:
3642 		rc = -ENOIOCTLCMD;
3643 		break;
3644 	}
3645 out:
3646 	sctp_release_sock(sk);
3647 	return rc;
3648 }
3649 
3650 /* This is the function which gets called during socket creation to
3651  * initialized the SCTP-specific portion of the sock.
3652  * The sock structure should already be zero-filled memory.
3653  */
3654 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3655 {
3656 	struct sctp_endpoint *ep;
3657 	struct sctp_sock *sp;
3658 
3659 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3660 
3661 	sp = sctp_sk(sk);
3662 
3663 	/* Initialize the SCTP per socket area.  */
3664 	switch (sk->sk_type) {
3665 	case SOCK_SEQPACKET:
3666 		sp->type = SCTP_SOCKET_UDP;
3667 		break;
3668 	case SOCK_STREAM:
3669 		sp->type = SCTP_SOCKET_TCP;
3670 		break;
3671 	default:
3672 		return -ESOCKTNOSUPPORT;
3673 	}
3674 
3675 	/* Initialize default send parameters. These parameters can be
3676 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3677 	 */
3678 	sp->default_stream = 0;
3679 	sp->default_ppid = 0;
3680 	sp->default_flags = 0;
3681 	sp->default_context = 0;
3682 	sp->default_timetolive = 0;
3683 
3684 	sp->default_rcv_context = 0;
3685 	sp->max_burst = sctp_max_burst;
3686 
3687 	/* Initialize default setup parameters. These parameters
3688 	 * can be modified with the SCTP_INITMSG socket option or
3689 	 * overridden by the SCTP_INIT CMSG.
3690 	 */
3691 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3692 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3693 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3694 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3695 
3696 	/* Initialize default RTO related parameters.  These parameters can
3697 	 * be modified for with the SCTP_RTOINFO socket option.
3698 	 */
3699 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3700 	sp->rtoinfo.srto_max     = sctp_rto_max;
3701 	sp->rtoinfo.srto_min     = sctp_rto_min;
3702 
3703 	/* Initialize default association related parameters. These parameters
3704 	 * can be modified with the SCTP_ASSOCINFO socket option.
3705 	 */
3706 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3707 	sp->assocparams.sasoc_number_peer_destinations = 0;
3708 	sp->assocparams.sasoc_peer_rwnd = 0;
3709 	sp->assocparams.sasoc_local_rwnd = 0;
3710 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3711 
3712 	/* Initialize default event subscriptions. By default, all the
3713 	 * options are off.
3714 	 */
3715 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3716 
3717 	/* Default Peer Address Parameters.  These defaults can
3718 	 * be modified via SCTP_PEER_ADDR_PARAMS
3719 	 */
3720 	sp->hbinterval  = sctp_hb_interval;
3721 	sp->pathmaxrxt  = sctp_max_retrans_path;
3722 	sp->pathmtu     = 0; // allow default discovery
3723 	sp->sackdelay   = sctp_sack_timeout;
3724 	sp->sackfreq	= 2;
3725 	sp->param_flags = SPP_HB_ENABLE |
3726 			  SPP_PMTUD_ENABLE |
3727 			  SPP_SACKDELAY_ENABLE;
3728 
3729 	/* If enabled no SCTP message fragmentation will be performed.
3730 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3731 	 */
3732 	sp->disable_fragments = 0;
3733 
3734 	/* Enable Nagle algorithm by default.  */
3735 	sp->nodelay           = 0;
3736 
3737 	/* Enable by default. */
3738 	sp->v4mapped          = 1;
3739 
3740 	/* Auto-close idle associations after the configured
3741 	 * number of seconds.  A value of 0 disables this
3742 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3743 	 * for UDP-style sockets only.
3744 	 */
3745 	sp->autoclose         = 0;
3746 
3747 	/* User specified fragmentation limit. */
3748 	sp->user_frag         = 0;
3749 
3750 	sp->adaptation_ind = 0;
3751 
3752 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3753 
3754 	/* Control variables for partial data delivery. */
3755 	atomic_set(&sp->pd_mode, 0);
3756 	skb_queue_head_init(&sp->pd_lobby);
3757 	sp->frag_interleave = 0;
3758 
3759 	/* Create a per socket endpoint structure.  Even if we
3760 	 * change the data structure relationships, this may still
3761 	 * be useful for storing pre-connect address information.
3762 	 */
3763 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3764 	if (!ep)
3765 		return -ENOMEM;
3766 
3767 	sp->ep = ep;
3768 	sp->hmac = NULL;
3769 
3770 	SCTP_DBG_OBJCNT_INC(sock);
3771 
3772 	local_bh_disable();
3773 	percpu_counter_inc(&sctp_sockets_allocated);
3774 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3775 	local_bh_enable();
3776 
3777 	return 0;
3778 }
3779 
3780 /* Cleanup any SCTP per socket resources.  */
3781 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3782 {
3783 	struct sctp_endpoint *ep;
3784 
3785 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3786 
3787 	/* Release our hold on the endpoint. */
3788 	ep = sctp_sk(sk)->ep;
3789 	sctp_endpoint_free(ep);
3790 	local_bh_disable();
3791 	percpu_counter_dec(&sctp_sockets_allocated);
3792 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3793 	local_bh_enable();
3794 }
3795 
3796 /* API 4.1.7 shutdown() - TCP Style Syntax
3797  *     int shutdown(int socket, int how);
3798  *
3799  *     sd      - the socket descriptor of the association to be closed.
3800  *     how     - Specifies the type of shutdown.  The  values  are
3801  *               as follows:
3802  *               SHUT_RD
3803  *                     Disables further receive operations. No SCTP
3804  *                     protocol action is taken.
3805  *               SHUT_WR
3806  *                     Disables further send operations, and initiates
3807  *                     the SCTP shutdown sequence.
3808  *               SHUT_RDWR
3809  *                     Disables further send  and  receive  operations
3810  *                     and initiates the SCTP shutdown sequence.
3811  */
3812 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3813 {
3814 	struct sctp_endpoint *ep;
3815 	struct sctp_association *asoc;
3816 
3817 	if (!sctp_style(sk, TCP))
3818 		return;
3819 
3820 	if (how & SEND_SHUTDOWN) {
3821 		ep = sctp_sk(sk)->ep;
3822 		if (!list_empty(&ep->asocs)) {
3823 			asoc = list_entry(ep->asocs.next,
3824 					  struct sctp_association, asocs);
3825 			sctp_primitive_SHUTDOWN(asoc, NULL);
3826 		}
3827 	}
3828 }
3829 
3830 /* 7.2.1 Association Status (SCTP_STATUS)
3831 
3832  * Applications can retrieve current status information about an
3833  * association, including association state, peer receiver window size,
3834  * number of unacked data chunks, and number of data chunks pending
3835  * receipt.  This information is read-only.
3836  */
3837 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3838 				       char __user *optval,
3839 				       int __user *optlen)
3840 {
3841 	struct sctp_status status;
3842 	struct sctp_association *asoc = NULL;
3843 	struct sctp_transport *transport;
3844 	sctp_assoc_t associd;
3845 	int retval = 0;
3846 
3847 	if (len < sizeof(status)) {
3848 		retval = -EINVAL;
3849 		goto out;
3850 	}
3851 
3852 	len = sizeof(status);
3853 	if (copy_from_user(&status, optval, len)) {
3854 		retval = -EFAULT;
3855 		goto out;
3856 	}
3857 
3858 	associd = status.sstat_assoc_id;
3859 	asoc = sctp_id2assoc(sk, associd);
3860 	if (!asoc) {
3861 		retval = -EINVAL;
3862 		goto out;
3863 	}
3864 
3865 	transport = asoc->peer.primary_path;
3866 
3867 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3868 	status.sstat_state = asoc->state;
3869 	status.sstat_rwnd =  asoc->peer.rwnd;
3870 	status.sstat_unackdata = asoc->unack_data;
3871 
3872 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3873 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3874 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3875 	status.sstat_fragmentation_point = asoc->frag_point;
3876 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3877 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3878 			transport->af_specific->sockaddr_len);
3879 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3880 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3881 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3882 	status.sstat_primary.spinfo_state = transport->state;
3883 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3884 	status.sstat_primary.spinfo_srtt = transport->srtt;
3885 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3886 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3887 
3888 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3889 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3890 
3891 	if (put_user(len, optlen)) {
3892 		retval = -EFAULT;
3893 		goto out;
3894 	}
3895 
3896 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3897 			  len, status.sstat_state, status.sstat_rwnd,
3898 			  status.sstat_assoc_id);
3899 
3900 	if (copy_to_user(optval, &status, len)) {
3901 		retval = -EFAULT;
3902 		goto out;
3903 	}
3904 
3905 out:
3906 	return retval;
3907 }
3908 
3909 
3910 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3911  *
3912  * Applications can retrieve information about a specific peer address
3913  * of an association, including its reachability state, congestion
3914  * window, and retransmission timer values.  This information is
3915  * read-only.
3916  */
3917 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3918 					  char __user *optval,
3919 					  int __user *optlen)
3920 {
3921 	struct sctp_paddrinfo pinfo;
3922 	struct sctp_transport *transport;
3923 	int retval = 0;
3924 
3925 	if (len < sizeof(pinfo)) {
3926 		retval = -EINVAL;
3927 		goto out;
3928 	}
3929 
3930 	len = sizeof(pinfo);
3931 	if (copy_from_user(&pinfo, optval, len)) {
3932 		retval = -EFAULT;
3933 		goto out;
3934 	}
3935 
3936 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3937 					   pinfo.spinfo_assoc_id);
3938 	if (!transport)
3939 		return -EINVAL;
3940 
3941 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3942 	pinfo.spinfo_state = transport->state;
3943 	pinfo.spinfo_cwnd = transport->cwnd;
3944 	pinfo.spinfo_srtt = transport->srtt;
3945 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3946 	pinfo.spinfo_mtu = transport->pathmtu;
3947 
3948 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3949 		pinfo.spinfo_state = SCTP_ACTIVE;
3950 
3951 	if (put_user(len, optlen)) {
3952 		retval = -EFAULT;
3953 		goto out;
3954 	}
3955 
3956 	if (copy_to_user(optval, &pinfo, len)) {
3957 		retval = -EFAULT;
3958 		goto out;
3959 	}
3960 
3961 out:
3962 	return retval;
3963 }
3964 
3965 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3966  *
3967  * This option is a on/off flag.  If enabled no SCTP message
3968  * fragmentation will be performed.  Instead if a message being sent
3969  * exceeds the current PMTU size, the message will NOT be sent and
3970  * instead a error will be indicated to the user.
3971  */
3972 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3973 					char __user *optval, int __user *optlen)
3974 {
3975 	int val;
3976 
3977 	if (len < sizeof(int))
3978 		return -EINVAL;
3979 
3980 	len = sizeof(int);
3981 	val = (sctp_sk(sk)->disable_fragments == 1);
3982 	if (put_user(len, optlen))
3983 		return -EFAULT;
3984 	if (copy_to_user(optval, &val, len))
3985 		return -EFAULT;
3986 	return 0;
3987 }
3988 
3989 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3990  *
3991  * This socket option is used to specify various notifications and
3992  * ancillary data the user wishes to receive.
3993  */
3994 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3995 				  int __user *optlen)
3996 {
3997 	if (len < sizeof(struct sctp_event_subscribe))
3998 		return -EINVAL;
3999 	len = sizeof(struct sctp_event_subscribe);
4000 	if (put_user(len, optlen))
4001 		return -EFAULT;
4002 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4003 		return -EFAULT;
4004 	return 0;
4005 }
4006 
4007 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4008  *
4009  * This socket option is applicable to the UDP-style socket only.  When
4010  * set it will cause associations that are idle for more than the
4011  * specified number of seconds to automatically close.  An association
4012  * being idle is defined an association that has NOT sent or received
4013  * user data.  The special value of '0' indicates that no automatic
4014  * close of any associations should be performed.  The option expects an
4015  * integer defining the number of seconds of idle time before an
4016  * association is closed.
4017  */
4018 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4019 {
4020 	/* Applicable to UDP-style socket only */
4021 	if (sctp_style(sk, TCP))
4022 		return -EOPNOTSUPP;
4023 	if (len < sizeof(int))
4024 		return -EINVAL;
4025 	len = sizeof(int);
4026 	if (put_user(len, optlen))
4027 		return -EFAULT;
4028 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4029 		return -EFAULT;
4030 	return 0;
4031 }
4032 
4033 /* Helper routine to branch off an association to a new socket.  */
4034 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4035 				struct socket **sockp)
4036 {
4037 	struct sock *sk = asoc->base.sk;
4038 	struct socket *sock;
4039 	struct sctp_af *af;
4040 	int err = 0;
4041 
4042 	/* An association cannot be branched off from an already peeled-off
4043 	 * socket, nor is this supported for tcp style sockets.
4044 	 */
4045 	if (!sctp_style(sk, UDP))
4046 		return -EINVAL;
4047 
4048 	/* Create a new socket.  */
4049 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4050 	if (err < 0)
4051 		return err;
4052 
4053 	sctp_copy_sock(sock->sk, sk, asoc);
4054 
4055 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4056 	 * Set the daddr and initialize id to something more random
4057 	 */
4058 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4059 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4060 
4061 	/* Populate the fields of the newsk from the oldsk and migrate the
4062 	 * asoc to the newsk.
4063 	 */
4064 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4065 
4066 	*sockp = sock;
4067 
4068 	return err;
4069 }
4070 
4071 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4072 {
4073 	sctp_peeloff_arg_t peeloff;
4074 	struct socket *newsock;
4075 	int retval = 0;
4076 	struct sctp_association *asoc;
4077 
4078 	if (len < sizeof(sctp_peeloff_arg_t))
4079 		return -EINVAL;
4080 	len = sizeof(sctp_peeloff_arg_t);
4081 	if (copy_from_user(&peeloff, optval, len))
4082 		return -EFAULT;
4083 
4084 	asoc = sctp_id2assoc(sk, peeloff.associd);
4085 	if (!asoc) {
4086 		retval = -EINVAL;
4087 		goto out;
4088 	}
4089 
4090 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4091 
4092 	retval = sctp_do_peeloff(asoc, &newsock);
4093 	if (retval < 0)
4094 		goto out;
4095 
4096 	/* Map the socket to an unused fd that can be returned to the user.  */
4097 	retval = sock_map_fd(newsock, 0);
4098 	if (retval < 0) {
4099 		sock_release(newsock);
4100 		goto out;
4101 	}
4102 
4103 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4104 			  __func__, sk, asoc, newsock->sk, retval);
4105 
4106 	/* Return the fd mapped to the new socket.  */
4107 	peeloff.sd = retval;
4108 	if (put_user(len, optlen))
4109 		return -EFAULT;
4110 	if (copy_to_user(optval, &peeloff, len))
4111 		retval = -EFAULT;
4112 
4113 out:
4114 	return retval;
4115 }
4116 
4117 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4118  *
4119  * Applications can enable or disable heartbeats for any peer address of
4120  * an association, modify an address's heartbeat interval, force a
4121  * heartbeat to be sent immediately, and adjust the address's maximum
4122  * number of retransmissions sent before an address is considered
4123  * unreachable.  The following structure is used to access and modify an
4124  * address's parameters:
4125  *
4126  *  struct sctp_paddrparams {
4127  *     sctp_assoc_t            spp_assoc_id;
4128  *     struct sockaddr_storage spp_address;
4129  *     uint32_t                spp_hbinterval;
4130  *     uint16_t                spp_pathmaxrxt;
4131  *     uint32_t                spp_pathmtu;
4132  *     uint32_t                spp_sackdelay;
4133  *     uint32_t                spp_flags;
4134  * };
4135  *
4136  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4137  *                     application, and identifies the association for
4138  *                     this query.
4139  *   spp_address     - This specifies which address is of interest.
4140  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4141  *                     in milliseconds.  If a  value of zero
4142  *                     is present in this field then no changes are to
4143  *                     be made to this parameter.
4144  *   spp_pathmaxrxt  - This contains the maximum number of
4145  *                     retransmissions before this address shall be
4146  *                     considered unreachable. If a  value of zero
4147  *                     is present in this field then no changes are to
4148  *                     be made to this parameter.
4149  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4150  *                     specified here will be the "fixed" path mtu.
4151  *                     Note that if the spp_address field is empty
4152  *                     then all associations on this address will
4153  *                     have this fixed path mtu set upon them.
4154  *
4155  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4156  *                     the number of milliseconds that sacks will be delayed
4157  *                     for. This value will apply to all addresses of an
4158  *                     association if the spp_address field is empty. Note
4159  *                     also, that if delayed sack is enabled and this
4160  *                     value is set to 0, no change is made to the last
4161  *                     recorded delayed sack timer value.
4162  *
4163  *   spp_flags       - These flags are used to control various features
4164  *                     on an association. The flag field may contain
4165  *                     zero or more of the following options.
4166  *
4167  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4168  *                     specified address. Note that if the address
4169  *                     field is empty all addresses for the association
4170  *                     have heartbeats enabled upon them.
4171  *
4172  *                     SPP_HB_DISABLE - Disable heartbeats on the
4173  *                     speicifed address. Note that if the address
4174  *                     field is empty all addresses for the association
4175  *                     will have their heartbeats disabled. Note also
4176  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4177  *                     mutually exclusive, only one of these two should
4178  *                     be specified. Enabling both fields will have
4179  *                     undetermined results.
4180  *
4181  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4182  *                     to be made immediately.
4183  *
4184  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4185  *                     discovery upon the specified address. Note that
4186  *                     if the address feild is empty then all addresses
4187  *                     on the association are effected.
4188  *
4189  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4190  *                     discovery upon the specified address. Note that
4191  *                     if the address feild is empty then all addresses
4192  *                     on the association are effected. Not also that
4193  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4194  *                     exclusive. Enabling both will have undetermined
4195  *                     results.
4196  *
4197  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4198  *                     on delayed sack. The time specified in spp_sackdelay
4199  *                     is used to specify the sack delay for this address. Note
4200  *                     that if spp_address is empty then all addresses will
4201  *                     enable delayed sack and take on the sack delay
4202  *                     value specified in spp_sackdelay.
4203  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4204  *                     off delayed sack. If the spp_address field is blank then
4205  *                     delayed sack is disabled for the entire association. Note
4206  *                     also that this field is mutually exclusive to
4207  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4208  *                     results.
4209  */
4210 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4211 					    char __user *optval, int __user *optlen)
4212 {
4213 	struct sctp_paddrparams  params;
4214 	struct sctp_transport   *trans = NULL;
4215 	struct sctp_association *asoc = NULL;
4216 	struct sctp_sock        *sp = sctp_sk(sk);
4217 
4218 	if (len < sizeof(struct sctp_paddrparams))
4219 		return -EINVAL;
4220 	len = sizeof(struct sctp_paddrparams);
4221 	if (copy_from_user(&params, optval, len))
4222 		return -EFAULT;
4223 
4224 	/* If an address other than INADDR_ANY is specified, and
4225 	 * no transport is found, then the request is invalid.
4226 	 */
4227 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4228 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4229 					       params.spp_assoc_id);
4230 		if (!trans) {
4231 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4232 			return -EINVAL;
4233 		}
4234 	}
4235 
4236 	/* Get association, if assoc_id != 0 and the socket is a one
4237 	 * to many style socket, and an association was not found, then
4238 	 * the id was invalid.
4239 	 */
4240 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4241 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4242 		SCTP_DEBUG_PRINTK("Failed no association\n");
4243 		return -EINVAL;
4244 	}
4245 
4246 	if (trans) {
4247 		/* Fetch transport values. */
4248 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4249 		params.spp_pathmtu    = trans->pathmtu;
4250 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4251 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4252 
4253 		/*draft-11 doesn't say what to return in spp_flags*/
4254 		params.spp_flags      = trans->param_flags;
4255 	} else if (asoc) {
4256 		/* Fetch association values. */
4257 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4258 		params.spp_pathmtu    = asoc->pathmtu;
4259 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4260 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4261 
4262 		/*draft-11 doesn't say what to return in spp_flags*/
4263 		params.spp_flags      = asoc->param_flags;
4264 	} else {
4265 		/* Fetch socket values. */
4266 		params.spp_hbinterval = sp->hbinterval;
4267 		params.spp_pathmtu    = sp->pathmtu;
4268 		params.spp_sackdelay  = sp->sackdelay;
4269 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4270 
4271 		/*draft-11 doesn't say what to return in spp_flags*/
4272 		params.spp_flags      = sp->param_flags;
4273 	}
4274 
4275 	if (copy_to_user(optval, &params, len))
4276 		return -EFAULT;
4277 
4278 	if (put_user(len, optlen))
4279 		return -EFAULT;
4280 
4281 	return 0;
4282 }
4283 
4284 /*
4285  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4286  *
4287  * This option will effect the way delayed acks are performed.  This
4288  * option allows you to get or set the delayed ack time, in
4289  * milliseconds.  It also allows changing the delayed ack frequency.
4290  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4291  * the assoc_id is 0, then this sets or gets the endpoints default
4292  * values.  If the assoc_id field is non-zero, then the set or get
4293  * effects the specified association for the one to many model (the
4294  * assoc_id field is ignored by the one to one model).  Note that if
4295  * sack_delay or sack_freq are 0 when setting this option, then the
4296  * current values will remain unchanged.
4297  *
4298  * struct sctp_sack_info {
4299  *     sctp_assoc_t            sack_assoc_id;
4300  *     uint32_t                sack_delay;
4301  *     uint32_t                sack_freq;
4302  * };
4303  *
4304  * sack_assoc_id -  This parameter, indicates which association the user
4305  *    is performing an action upon.  Note that if this field's value is
4306  *    zero then the endpoints default value is changed (effecting future
4307  *    associations only).
4308  *
4309  * sack_delay -  This parameter contains the number of milliseconds that
4310  *    the user is requesting the delayed ACK timer be set to.  Note that
4311  *    this value is defined in the standard to be between 200 and 500
4312  *    milliseconds.
4313  *
4314  * sack_freq -  This parameter contains the number of packets that must
4315  *    be received before a sack is sent without waiting for the delay
4316  *    timer to expire.  The default value for this is 2, setting this
4317  *    value to 1 will disable the delayed sack algorithm.
4318  */
4319 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4320 					    char __user *optval,
4321 					    int __user *optlen)
4322 {
4323 	struct sctp_sack_info    params;
4324 	struct sctp_association *asoc = NULL;
4325 	struct sctp_sock        *sp = sctp_sk(sk);
4326 
4327 	if (len >= sizeof(struct sctp_sack_info)) {
4328 		len = sizeof(struct sctp_sack_info);
4329 
4330 		if (copy_from_user(&params, optval, len))
4331 			return -EFAULT;
4332 	} else if (len == sizeof(struct sctp_assoc_value)) {
4333 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4334 		pr_warn("Use struct sctp_sack_info instead\n");
4335 		if (copy_from_user(&params, optval, len))
4336 			return -EFAULT;
4337 	} else
4338 		return - EINVAL;
4339 
4340 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4341 	 * to many style socket, and an association was not found, then
4342 	 * the id was invalid.
4343 	 */
4344 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4345 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4346 		return -EINVAL;
4347 
4348 	if (asoc) {
4349 		/* Fetch association values. */
4350 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4351 			params.sack_delay = jiffies_to_msecs(
4352 				asoc->sackdelay);
4353 			params.sack_freq = asoc->sackfreq;
4354 
4355 		} else {
4356 			params.sack_delay = 0;
4357 			params.sack_freq = 1;
4358 		}
4359 	} else {
4360 		/* Fetch socket values. */
4361 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4362 			params.sack_delay  = sp->sackdelay;
4363 			params.sack_freq = sp->sackfreq;
4364 		} else {
4365 			params.sack_delay  = 0;
4366 			params.sack_freq = 1;
4367 		}
4368 	}
4369 
4370 	if (copy_to_user(optval, &params, len))
4371 		return -EFAULT;
4372 
4373 	if (put_user(len, optlen))
4374 		return -EFAULT;
4375 
4376 	return 0;
4377 }
4378 
4379 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4380  *
4381  * Applications can specify protocol parameters for the default association
4382  * initialization.  The option name argument to setsockopt() and getsockopt()
4383  * is SCTP_INITMSG.
4384  *
4385  * Setting initialization parameters is effective only on an unconnected
4386  * socket (for UDP-style sockets only future associations are effected
4387  * by the change).  With TCP-style sockets, this option is inherited by
4388  * sockets derived from a listener socket.
4389  */
4390 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4391 {
4392 	if (len < sizeof(struct sctp_initmsg))
4393 		return -EINVAL;
4394 	len = sizeof(struct sctp_initmsg);
4395 	if (put_user(len, optlen))
4396 		return -EFAULT;
4397 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4398 		return -EFAULT;
4399 	return 0;
4400 }
4401 
4402 
4403 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4404 				      char __user *optval, int __user *optlen)
4405 {
4406 	struct sctp_association *asoc;
4407 	int cnt = 0;
4408 	struct sctp_getaddrs getaddrs;
4409 	struct sctp_transport *from;
4410 	void __user *to;
4411 	union sctp_addr temp;
4412 	struct sctp_sock *sp = sctp_sk(sk);
4413 	int addrlen;
4414 	size_t space_left;
4415 	int bytes_copied;
4416 
4417 	if (len < sizeof(struct sctp_getaddrs))
4418 		return -EINVAL;
4419 
4420 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4421 		return -EFAULT;
4422 
4423 	/* For UDP-style sockets, id specifies the association to query.  */
4424 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4425 	if (!asoc)
4426 		return -EINVAL;
4427 
4428 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4429 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4430 
4431 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4432 				transports) {
4433 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4434 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4435 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4436 		if (space_left < addrlen)
4437 			return -ENOMEM;
4438 		if (copy_to_user(to, &temp, addrlen))
4439 			return -EFAULT;
4440 		to += addrlen;
4441 		cnt++;
4442 		space_left -= addrlen;
4443 	}
4444 
4445 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4446 		return -EFAULT;
4447 	bytes_copied = ((char __user *)to) - optval;
4448 	if (put_user(bytes_copied, optlen))
4449 		return -EFAULT;
4450 
4451 	return 0;
4452 }
4453 
4454 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4455 			    size_t space_left, int *bytes_copied)
4456 {
4457 	struct sctp_sockaddr_entry *addr;
4458 	union sctp_addr temp;
4459 	int cnt = 0;
4460 	int addrlen;
4461 
4462 	rcu_read_lock();
4463 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4464 		if (!addr->valid)
4465 			continue;
4466 
4467 		if ((PF_INET == sk->sk_family) &&
4468 		    (AF_INET6 == addr->a.sa.sa_family))
4469 			continue;
4470 		if ((PF_INET6 == sk->sk_family) &&
4471 		    inet_v6_ipv6only(sk) &&
4472 		    (AF_INET == addr->a.sa.sa_family))
4473 			continue;
4474 		memcpy(&temp, &addr->a, sizeof(temp));
4475 		if (!temp.v4.sin_port)
4476 			temp.v4.sin_port = htons(port);
4477 
4478 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4479 								&temp);
4480 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4481 		if (space_left < addrlen) {
4482 			cnt =  -ENOMEM;
4483 			break;
4484 		}
4485 		memcpy(to, &temp, addrlen);
4486 
4487 		to += addrlen;
4488 		cnt ++;
4489 		space_left -= addrlen;
4490 		*bytes_copied += addrlen;
4491 	}
4492 	rcu_read_unlock();
4493 
4494 	return cnt;
4495 }
4496 
4497 
4498 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4499 				       char __user *optval, int __user *optlen)
4500 {
4501 	struct sctp_bind_addr *bp;
4502 	struct sctp_association *asoc;
4503 	int cnt = 0;
4504 	struct sctp_getaddrs getaddrs;
4505 	struct sctp_sockaddr_entry *addr;
4506 	void __user *to;
4507 	union sctp_addr temp;
4508 	struct sctp_sock *sp = sctp_sk(sk);
4509 	int addrlen;
4510 	int err = 0;
4511 	size_t space_left;
4512 	int bytes_copied = 0;
4513 	void *addrs;
4514 	void *buf;
4515 
4516 	if (len < sizeof(struct sctp_getaddrs))
4517 		return -EINVAL;
4518 
4519 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4520 		return -EFAULT;
4521 
4522 	/*
4523 	 *  For UDP-style sockets, id specifies the association to query.
4524 	 *  If the id field is set to the value '0' then the locally bound
4525 	 *  addresses are returned without regard to any particular
4526 	 *  association.
4527 	 */
4528 	if (0 == getaddrs.assoc_id) {
4529 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4530 	} else {
4531 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4532 		if (!asoc)
4533 			return -EINVAL;
4534 		bp = &asoc->base.bind_addr;
4535 	}
4536 
4537 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4538 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4539 
4540 	addrs = kmalloc(space_left, GFP_KERNEL);
4541 	if (!addrs)
4542 		return -ENOMEM;
4543 
4544 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4545 	 * addresses from the global local address list.
4546 	 */
4547 	if (sctp_list_single_entry(&bp->address_list)) {
4548 		addr = list_entry(bp->address_list.next,
4549 				  struct sctp_sockaddr_entry, list);
4550 		if (sctp_is_any(sk, &addr->a)) {
4551 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4552 						space_left, &bytes_copied);
4553 			if (cnt < 0) {
4554 				err = cnt;
4555 				goto out;
4556 			}
4557 			goto copy_getaddrs;
4558 		}
4559 	}
4560 
4561 	buf = addrs;
4562 	/* Protection on the bound address list is not needed since
4563 	 * in the socket option context we hold a socket lock and
4564 	 * thus the bound address list can't change.
4565 	 */
4566 	list_for_each_entry(addr, &bp->address_list, list) {
4567 		memcpy(&temp, &addr->a, sizeof(temp));
4568 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4569 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4570 		if (space_left < addrlen) {
4571 			err =  -ENOMEM; /*fixme: right error?*/
4572 			goto out;
4573 		}
4574 		memcpy(buf, &temp, addrlen);
4575 		buf += addrlen;
4576 		bytes_copied += addrlen;
4577 		cnt ++;
4578 		space_left -= addrlen;
4579 	}
4580 
4581 copy_getaddrs:
4582 	if (copy_to_user(to, addrs, bytes_copied)) {
4583 		err = -EFAULT;
4584 		goto out;
4585 	}
4586 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4587 		err = -EFAULT;
4588 		goto out;
4589 	}
4590 	if (put_user(bytes_copied, optlen))
4591 		err = -EFAULT;
4592 out:
4593 	kfree(addrs);
4594 	return err;
4595 }
4596 
4597 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4598  *
4599  * Requests that the local SCTP stack use the enclosed peer address as
4600  * the association primary.  The enclosed address must be one of the
4601  * association peer's addresses.
4602  */
4603 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4604 					char __user *optval, int __user *optlen)
4605 {
4606 	struct sctp_prim prim;
4607 	struct sctp_association *asoc;
4608 	struct sctp_sock *sp = sctp_sk(sk);
4609 
4610 	if (len < sizeof(struct sctp_prim))
4611 		return -EINVAL;
4612 
4613 	len = sizeof(struct sctp_prim);
4614 
4615 	if (copy_from_user(&prim, optval, len))
4616 		return -EFAULT;
4617 
4618 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4619 	if (!asoc)
4620 		return -EINVAL;
4621 
4622 	if (!asoc->peer.primary_path)
4623 		return -ENOTCONN;
4624 
4625 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4626 		asoc->peer.primary_path->af_specific->sockaddr_len);
4627 
4628 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4629 			(union sctp_addr *)&prim.ssp_addr);
4630 
4631 	if (put_user(len, optlen))
4632 		return -EFAULT;
4633 	if (copy_to_user(optval, &prim, len))
4634 		return -EFAULT;
4635 
4636 	return 0;
4637 }
4638 
4639 /*
4640  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4641  *
4642  * Requests that the local endpoint set the specified Adaptation Layer
4643  * Indication parameter for all future INIT and INIT-ACK exchanges.
4644  */
4645 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4646 				  char __user *optval, int __user *optlen)
4647 {
4648 	struct sctp_setadaptation adaptation;
4649 
4650 	if (len < sizeof(struct sctp_setadaptation))
4651 		return -EINVAL;
4652 
4653 	len = sizeof(struct sctp_setadaptation);
4654 
4655 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4656 
4657 	if (put_user(len, optlen))
4658 		return -EFAULT;
4659 	if (copy_to_user(optval, &adaptation, len))
4660 		return -EFAULT;
4661 
4662 	return 0;
4663 }
4664 
4665 /*
4666  *
4667  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4668  *
4669  *   Applications that wish to use the sendto() system call may wish to
4670  *   specify a default set of parameters that would normally be supplied
4671  *   through the inclusion of ancillary data.  This socket option allows
4672  *   such an application to set the default sctp_sndrcvinfo structure.
4673 
4674 
4675  *   The application that wishes to use this socket option simply passes
4676  *   in to this call the sctp_sndrcvinfo structure defined in Section
4677  *   5.2.2) The input parameters accepted by this call include
4678  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4679  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4680  *   to this call if the caller is using the UDP model.
4681  *
4682  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4683  */
4684 static int sctp_getsockopt_default_send_param(struct sock *sk,
4685 					int len, char __user *optval,
4686 					int __user *optlen)
4687 {
4688 	struct sctp_sndrcvinfo info;
4689 	struct sctp_association *asoc;
4690 	struct sctp_sock *sp = sctp_sk(sk);
4691 
4692 	if (len < sizeof(struct sctp_sndrcvinfo))
4693 		return -EINVAL;
4694 
4695 	len = sizeof(struct sctp_sndrcvinfo);
4696 
4697 	if (copy_from_user(&info, optval, len))
4698 		return -EFAULT;
4699 
4700 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4701 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4702 		return -EINVAL;
4703 
4704 	if (asoc) {
4705 		info.sinfo_stream = asoc->default_stream;
4706 		info.sinfo_flags = asoc->default_flags;
4707 		info.sinfo_ppid = asoc->default_ppid;
4708 		info.sinfo_context = asoc->default_context;
4709 		info.sinfo_timetolive = asoc->default_timetolive;
4710 	} else {
4711 		info.sinfo_stream = sp->default_stream;
4712 		info.sinfo_flags = sp->default_flags;
4713 		info.sinfo_ppid = sp->default_ppid;
4714 		info.sinfo_context = sp->default_context;
4715 		info.sinfo_timetolive = sp->default_timetolive;
4716 	}
4717 
4718 	if (put_user(len, optlen))
4719 		return -EFAULT;
4720 	if (copy_to_user(optval, &info, len))
4721 		return -EFAULT;
4722 
4723 	return 0;
4724 }
4725 
4726 /*
4727  *
4728  * 7.1.5 SCTP_NODELAY
4729  *
4730  * Turn on/off any Nagle-like algorithm.  This means that packets are
4731  * generally sent as soon as possible and no unnecessary delays are
4732  * introduced, at the cost of more packets in the network.  Expects an
4733  * integer boolean flag.
4734  */
4735 
4736 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4737 				   char __user *optval, int __user *optlen)
4738 {
4739 	int val;
4740 
4741 	if (len < sizeof(int))
4742 		return -EINVAL;
4743 
4744 	len = sizeof(int);
4745 	val = (sctp_sk(sk)->nodelay == 1);
4746 	if (put_user(len, optlen))
4747 		return -EFAULT;
4748 	if (copy_to_user(optval, &val, len))
4749 		return -EFAULT;
4750 	return 0;
4751 }
4752 
4753 /*
4754  *
4755  * 7.1.1 SCTP_RTOINFO
4756  *
4757  * The protocol parameters used to initialize and bound retransmission
4758  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4759  * and modify these parameters.
4760  * All parameters are time values, in milliseconds.  A value of 0, when
4761  * modifying the parameters, indicates that the current value should not
4762  * be changed.
4763  *
4764  */
4765 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4766 				char __user *optval,
4767 				int __user *optlen) {
4768 	struct sctp_rtoinfo rtoinfo;
4769 	struct sctp_association *asoc;
4770 
4771 	if (len < sizeof (struct sctp_rtoinfo))
4772 		return -EINVAL;
4773 
4774 	len = sizeof(struct sctp_rtoinfo);
4775 
4776 	if (copy_from_user(&rtoinfo, optval, len))
4777 		return -EFAULT;
4778 
4779 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4780 
4781 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4782 		return -EINVAL;
4783 
4784 	/* Values corresponding to the specific association. */
4785 	if (asoc) {
4786 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4787 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4788 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4789 	} else {
4790 		/* Values corresponding to the endpoint. */
4791 		struct sctp_sock *sp = sctp_sk(sk);
4792 
4793 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4794 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4795 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4796 	}
4797 
4798 	if (put_user(len, optlen))
4799 		return -EFAULT;
4800 
4801 	if (copy_to_user(optval, &rtoinfo, len))
4802 		return -EFAULT;
4803 
4804 	return 0;
4805 }
4806 
4807 /*
4808  *
4809  * 7.1.2 SCTP_ASSOCINFO
4810  *
4811  * This option is used to tune the maximum retransmission attempts
4812  * of the association.
4813  * Returns an error if the new association retransmission value is
4814  * greater than the sum of the retransmission value  of the peer.
4815  * See [SCTP] for more information.
4816  *
4817  */
4818 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4819 				     char __user *optval,
4820 				     int __user *optlen)
4821 {
4822 
4823 	struct sctp_assocparams assocparams;
4824 	struct sctp_association *asoc;
4825 	struct list_head *pos;
4826 	int cnt = 0;
4827 
4828 	if (len < sizeof (struct sctp_assocparams))
4829 		return -EINVAL;
4830 
4831 	len = sizeof(struct sctp_assocparams);
4832 
4833 	if (copy_from_user(&assocparams, optval, len))
4834 		return -EFAULT;
4835 
4836 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4837 
4838 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4839 		return -EINVAL;
4840 
4841 	/* Values correspoinding to the specific association */
4842 	if (asoc) {
4843 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4844 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4845 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4846 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4847 						* 1000) +
4848 						(asoc->cookie_life.tv_usec
4849 						/ 1000);
4850 
4851 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4852 			cnt ++;
4853 		}
4854 
4855 		assocparams.sasoc_number_peer_destinations = cnt;
4856 	} else {
4857 		/* Values corresponding to the endpoint */
4858 		struct sctp_sock *sp = sctp_sk(sk);
4859 
4860 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4861 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4862 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4863 		assocparams.sasoc_cookie_life =
4864 					sp->assocparams.sasoc_cookie_life;
4865 		assocparams.sasoc_number_peer_destinations =
4866 					sp->assocparams.
4867 					sasoc_number_peer_destinations;
4868 	}
4869 
4870 	if (put_user(len, optlen))
4871 		return -EFAULT;
4872 
4873 	if (copy_to_user(optval, &assocparams, len))
4874 		return -EFAULT;
4875 
4876 	return 0;
4877 }
4878 
4879 /*
4880  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4881  *
4882  * This socket option is a boolean flag which turns on or off mapped V4
4883  * addresses.  If this option is turned on and the socket is type
4884  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4885  * If this option is turned off, then no mapping will be done of V4
4886  * addresses and a user will receive both PF_INET6 and PF_INET type
4887  * addresses on the socket.
4888  */
4889 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4890 				    char __user *optval, int __user *optlen)
4891 {
4892 	int val;
4893 	struct sctp_sock *sp = sctp_sk(sk);
4894 
4895 	if (len < sizeof(int))
4896 		return -EINVAL;
4897 
4898 	len = sizeof(int);
4899 	val = sp->v4mapped;
4900 	if (put_user(len, optlen))
4901 		return -EFAULT;
4902 	if (copy_to_user(optval, &val, len))
4903 		return -EFAULT;
4904 
4905 	return 0;
4906 }
4907 
4908 /*
4909  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
4910  * (chapter and verse is quoted at sctp_setsockopt_context())
4911  */
4912 static int sctp_getsockopt_context(struct sock *sk, int len,
4913 				   char __user *optval, int __user *optlen)
4914 {
4915 	struct sctp_assoc_value params;
4916 	struct sctp_sock *sp;
4917 	struct sctp_association *asoc;
4918 
4919 	if (len < sizeof(struct sctp_assoc_value))
4920 		return -EINVAL;
4921 
4922 	len = sizeof(struct sctp_assoc_value);
4923 
4924 	if (copy_from_user(&params, optval, len))
4925 		return -EFAULT;
4926 
4927 	sp = sctp_sk(sk);
4928 
4929 	if (params.assoc_id != 0) {
4930 		asoc = sctp_id2assoc(sk, params.assoc_id);
4931 		if (!asoc)
4932 			return -EINVAL;
4933 		params.assoc_value = asoc->default_rcv_context;
4934 	} else {
4935 		params.assoc_value = sp->default_rcv_context;
4936 	}
4937 
4938 	if (put_user(len, optlen))
4939 		return -EFAULT;
4940 	if (copy_to_user(optval, &params, len))
4941 		return -EFAULT;
4942 
4943 	return 0;
4944 }
4945 
4946 /*
4947  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
4948  * This option will get or set the maximum size to put in any outgoing
4949  * SCTP DATA chunk.  If a message is larger than this size it will be
4950  * fragmented by SCTP into the specified size.  Note that the underlying
4951  * SCTP implementation may fragment into smaller sized chunks when the
4952  * PMTU of the underlying association is smaller than the value set by
4953  * the user.  The default value for this option is '0' which indicates
4954  * the user is NOT limiting fragmentation and only the PMTU will effect
4955  * SCTP's choice of DATA chunk size.  Note also that values set larger
4956  * than the maximum size of an IP datagram will effectively let SCTP
4957  * control fragmentation (i.e. the same as setting this option to 0).
4958  *
4959  * The following structure is used to access and modify this parameter:
4960  *
4961  * struct sctp_assoc_value {
4962  *   sctp_assoc_t assoc_id;
4963  *   uint32_t assoc_value;
4964  * };
4965  *
4966  * assoc_id:  This parameter is ignored for one-to-one style sockets.
4967  *    For one-to-many style sockets this parameter indicates which
4968  *    association the user is performing an action upon.  Note that if
4969  *    this field's value is zero then the endpoints default value is
4970  *    changed (effecting future associations only).
4971  * assoc_value:  This parameter specifies the maximum size in bytes.
4972  */
4973 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4974 				  char __user *optval, int __user *optlen)
4975 {
4976 	struct sctp_assoc_value params;
4977 	struct sctp_association *asoc;
4978 
4979 	if (len == sizeof(int)) {
4980 		pr_warn("Use of int in maxseg socket option deprecated\n");
4981 		pr_warn("Use struct sctp_assoc_value instead\n");
4982 		params.assoc_id = 0;
4983 	} else if (len >= sizeof(struct sctp_assoc_value)) {
4984 		len = sizeof(struct sctp_assoc_value);
4985 		if (copy_from_user(&params, optval, sizeof(params)))
4986 			return -EFAULT;
4987 	} else
4988 		return -EINVAL;
4989 
4990 	asoc = sctp_id2assoc(sk, params.assoc_id);
4991 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
4992 		return -EINVAL;
4993 
4994 	if (asoc)
4995 		params.assoc_value = asoc->frag_point;
4996 	else
4997 		params.assoc_value = sctp_sk(sk)->user_frag;
4998 
4999 	if (put_user(len, optlen))
5000 		return -EFAULT;
5001 	if (len == sizeof(int)) {
5002 		if (copy_to_user(optval, &params.assoc_value, len))
5003 			return -EFAULT;
5004 	} else {
5005 		if (copy_to_user(optval, &params, len))
5006 			return -EFAULT;
5007 	}
5008 
5009 	return 0;
5010 }
5011 
5012 /*
5013  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5014  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5015  */
5016 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5017 					       char __user *optval, int __user *optlen)
5018 {
5019 	int val;
5020 
5021 	if (len < sizeof(int))
5022 		return -EINVAL;
5023 
5024 	len = sizeof(int);
5025 
5026 	val = sctp_sk(sk)->frag_interleave;
5027 	if (put_user(len, optlen))
5028 		return -EFAULT;
5029 	if (copy_to_user(optval, &val, len))
5030 		return -EFAULT;
5031 
5032 	return 0;
5033 }
5034 
5035 /*
5036  * 7.1.25.  Set or Get the sctp partial delivery point
5037  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5038  */
5039 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5040 						  char __user *optval,
5041 						  int __user *optlen)
5042 {
5043 	u32 val;
5044 
5045 	if (len < sizeof(u32))
5046 		return -EINVAL;
5047 
5048 	len = sizeof(u32);
5049 
5050 	val = sctp_sk(sk)->pd_point;
5051 	if (put_user(len, optlen))
5052 		return -EFAULT;
5053 	if (copy_to_user(optval, &val, len))
5054 		return -EFAULT;
5055 
5056 	return 0;
5057 }
5058 
5059 /*
5060  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5061  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5062  */
5063 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5064 				    char __user *optval,
5065 				    int __user *optlen)
5066 {
5067 	struct sctp_assoc_value params;
5068 	struct sctp_sock *sp;
5069 	struct sctp_association *asoc;
5070 
5071 	if (len == sizeof(int)) {
5072 		pr_warn("Use of int in max_burst socket option deprecated\n");
5073 		pr_warn("Use struct sctp_assoc_value instead\n");
5074 		params.assoc_id = 0;
5075 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5076 		len = sizeof(struct sctp_assoc_value);
5077 		if (copy_from_user(&params, optval, len))
5078 			return -EFAULT;
5079 	} else
5080 		return -EINVAL;
5081 
5082 	sp = sctp_sk(sk);
5083 
5084 	if (params.assoc_id != 0) {
5085 		asoc = sctp_id2assoc(sk, params.assoc_id);
5086 		if (!asoc)
5087 			return -EINVAL;
5088 		params.assoc_value = asoc->max_burst;
5089 	} else
5090 		params.assoc_value = sp->max_burst;
5091 
5092 	if (len == sizeof(int)) {
5093 		if (copy_to_user(optval, &params.assoc_value, len))
5094 			return -EFAULT;
5095 	} else {
5096 		if (copy_to_user(optval, &params, len))
5097 			return -EFAULT;
5098 	}
5099 
5100 	return 0;
5101 
5102 }
5103 
5104 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5105 				    char __user *optval, int __user *optlen)
5106 {
5107 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5108 	struct sctp_hmac_algo_param *hmacs;
5109 	__u16 data_len = 0;
5110 	u32 num_idents;
5111 
5112 	if (!sctp_auth_enable)
5113 		return -EACCES;
5114 
5115 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5116 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5117 
5118 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5119 		return -EINVAL;
5120 
5121 	len = sizeof(struct sctp_hmacalgo) + data_len;
5122 	num_idents = data_len / sizeof(u16);
5123 
5124 	if (put_user(len, optlen))
5125 		return -EFAULT;
5126 	if (put_user(num_idents, &p->shmac_num_idents))
5127 		return -EFAULT;
5128 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5129 		return -EFAULT;
5130 	return 0;
5131 }
5132 
5133 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5134 				    char __user *optval, int __user *optlen)
5135 {
5136 	struct sctp_authkeyid val;
5137 	struct sctp_association *asoc;
5138 
5139 	if (!sctp_auth_enable)
5140 		return -EACCES;
5141 
5142 	if (len < sizeof(struct sctp_authkeyid))
5143 		return -EINVAL;
5144 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5145 		return -EFAULT;
5146 
5147 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5148 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5149 		return -EINVAL;
5150 
5151 	if (asoc)
5152 		val.scact_keynumber = asoc->active_key_id;
5153 	else
5154 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5155 
5156 	len = sizeof(struct sctp_authkeyid);
5157 	if (put_user(len, optlen))
5158 		return -EFAULT;
5159 	if (copy_to_user(optval, &val, len))
5160 		return -EFAULT;
5161 
5162 	return 0;
5163 }
5164 
5165 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5166 				    char __user *optval, int __user *optlen)
5167 {
5168 	struct sctp_authchunks __user *p = (void __user *)optval;
5169 	struct sctp_authchunks val;
5170 	struct sctp_association *asoc;
5171 	struct sctp_chunks_param *ch;
5172 	u32    num_chunks = 0;
5173 	char __user *to;
5174 
5175 	if (!sctp_auth_enable)
5176 		return -EACCES;
5177 
5178 	if (len < sizeof(struct sctp_authchunks))
5179 		return -EINVAL;
5180 
5181 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5182 		return -EFAULT;
5183 
5184 	to = p->gauth_chunks;
5185 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5186 	if (!asoc)
5187 		return -EINVAL;
5188 
5189 	ch = asoc->peer.peer_chunks;
5190 	if (!ch)
5191 		goto num;
5192 
5193 	/* See if the user provided enough room for all the data */
5194 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5195 	if (len < num_chunks)
5196 		return -EINVAL;
5197 
5198 	if (copy_to_user(to, ch->chunks, num_chunks))
5199 		return -EFAULT;
5200 num:
5201 	len = sizeof(struct sctp_authchunks) + num_chunks;
5202 	if (put_user(len, optlen)) return -EFAULT;
5203 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5204 		return -EFAULT;
5205 	return 0;
5206 }
5207 
5208 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5209 				    char __user *optval, int __user *optlen)
5210 {
5211 	struct sctp_authchunks __user *p = (void __user *)optval;
5212 	struct sctp_authchunks val;
5213 	struct sctp_association *asoc;
5214 	struct sctp_chunks_param *ch;
5215 	u32    num_chunks = 0;
5216 	char __user *to;
5217 
5218 	if (!sctp_auth_enable)
5219 		return -EACCES;
5220 
5221 	if (len < sizeof(struct sctp_authchunks))
5222 		return -EINVAL;
5223 
5224 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5225 		return -EFAULT;
5226 
5227 	to = p->gauth_chunks;
5228 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5229 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5230 		return -EINVAL;
5231 
5232 	if (asoc)
5233 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5234 	else
5235 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5236 
5237 	if (!ch)
5238 		goto num;
5239 
5240 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5241 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5242 		return -EINVAL;
5243 
5244 	if (copy_to_user(to, ch->chunks, num_chunks))
5245 		return -EFAULT;
5246 num:
5247 	len = sizeof(struct sctp_authchunks) + num_chunks;
5248 	if (put_user(len, optlen))
5249 		return -EFAULT;
5250 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5251 		return -EFAULT;
5252 
5253 	return 0;
5254 }
5255 
5256 /*
5257  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5258  * This option gets the current number of associations that are attached
5259  * to a one-to-many style socket.  The option value is an uint32_t.
5260  */
5261 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5262 				    char __user *optval, int __user *optlen)
5263 {
5264 	struct sctp_sock *sp = sctp_sk(sk);
5265 	struct sctp_association *asoc;
5266 	u32 val = 0;
5267 
5268 	if (sctp_style(sk, TCP))
5269 		return -EOPNOTSUPP;
5270 
5271 	if (len < sizeof(u32))
5272 		return -EINVAL;
5273 
5274 	len = sizeof(u32);
5275 
5276 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5277 		val++;
5278 	}
5279 
5280 	if (put_user(len, optlen))
5281 		return -EFAULT;
5282 	if (copy_to_user(optval, &val, len))
5283 		return -EFAULT;
5284 
5285 	return 0;
5286 }
5287 
5288 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5289 				char __user *optval, int __user *optlen)
5290 {
5291 	int retval = 0;
5292 	int len;
5293 
5294 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5295 			  sk, optname);
5296 
5297 	/* I can hardly begin to describe how wrong this is.  This is
5298 	 * so broken as to be worse than useless.  The API draft
5299 	 * REALLY is NOT helpful here...  I am not convinced that the
5300 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5301 	 * are at all well-founded.
5302 	 */
5303 	if (level != SOL_SCTP) {
5304 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5305 
5306 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5307 		return retval;
5308 	}
5309 
5310 	if (get_user(len, optlen))
5311 		return -EFAULT;
5312 
5313 	sctp_lock_sock(sk);
5314 
5315 	switch (optname) {
5316 	case SCTP_STATUS:
5317 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5318 		break;
5319 	case SCTP_DISABLE_FRAGMENTS:
5320 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5321 							   optlen);
5322 		break;
5323 	case SCTP_EVENTS:
5324 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5325 		break;
5326 	case SCTP_AUTOCLOSE:
5327 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5328 		break;
5329 	case SCTP_SOCKOPT_PEELOFF:
5330 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5331 		break;
5332 	case SCTP_PEER_ADDR_PARAMS:
5333 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5334 							  optlen);
5335 		break;
5336 	case SCTP_DELAYED_ACK:
5337 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5338 							  optlen);
5339 		break;
5340 	case SCTP_INITMSG:
5341 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5342 		break;
5343 	case SCTP_GET_PEER_ADDRS:
5344 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5345 						    optlen);
5346 		break;
5347 	case SCTP_GET_LOCAL_ADDRS:
5348 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5349 						     optlen);
5350 		break;
5351 	case SCTP_SOCKOPT_CONNECTX3:
5352 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5353 		break;
5354 	case SCTP_DEFAULT_SEND_PARAM:
5355 		retval = sctp_getsockopt_default_send_param(sk, len,
5356 							    optval, optlen);
5357 		break;
5358 	case SCTP_PRIMARY_ADDR:
5359 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5360 		break;
5361 	case SCTP_NODELAY:
5362 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5363 		break;
5364 	case SCTP_RTOINFO:
5365 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5366 		break;
5367 	case SCTP_ASSOCINFO:
5368 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5369 		break;
5370 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5371 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5372 		break;
5373 	case SCTP_MAXSEG:
5374 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5375 		break;
5376 	case SCTP_GET_PEER_ADDR_INFO:
5377 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5378 							optlen);
5379 		break;
5380 	case SCTP_ADAPTATION_LAYER:
5381 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5382 							optlen);
5383 		break;
5384 	case SCTP_CONTEXT:
5385 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5386 		break;
5387 	case SCTP_FRAGMENT_INTERLEAVE:
5388 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5389 							     optlen);
5390 		break;
5391 	case SCTP_PARTIAL_DELIVERY_POINT:
5392 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5393 								optlen);
5394 		break;
5395 	case SCTP_MAX_BURST:
5396 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5397 		break;
5398 	case SCTP_AUTH_KEY:
5399 	case SCTP_AUTH_CHUNK:
5400 	case SCTP_AUTH_DELETE_KEY:
5401 		retval = -EOPNOTSUPP;
5402 		break;
5403 	case SCTP_HMAC_IDENT:
5404 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5405 		break;
5406 	case SCTP_AUTH_ACTIVE_KEY:
5407 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5408 		break;
5409 	case SCTP_PEER_AUTH_CHUNKS:
5410 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5411 							optlen);
5412 		break;
5413 	case SCTP_LOCAL_AUTH_CHUNKS:
5414 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5415 							optlen);
5416 		break;
5417 	case SCTP_GET_ASSOC_NUMBER:
5418 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5419 		break;
5420 	default:
5421 		retval = -ENOPROTOOPT;
5422 		break;
5423 	}
5424 
5425 	sctp_release_sock(sk);
5426 	return retval;
5427 }
5428 
5429 static void sctp_hash(struct sock *sk)
5430 {
5431 	/* STUB */
5432 }
5433 
5434 static void sctp_unhash(struct sock *sk)
5435 {
5436 	/* STUB */
5437 }
5438 
5439 /* Check if port is acceptable.  Possibly find first available port.
5440  *
5441  * The port hash table (contained in the 'global' SCTP protocol storage
5442  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5443  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5444  * list (the list number is the port number hashed out, so as you
5445  * would expect from a hash function, all the ports in a given list have
5446  * such a number that hashes out to the same list number; you were
5447  * expecting that, right?); so each list has a set of ports, with a
5448  * link to the socket (struct sock) that uses it, the port number and
5449  * a fastreuse flag (FIXME: NPI ipg).
5450  */
5451 static struct sctp_bind_bucket *sctp_bucket_create(
5452 	struct sctp_bind_hashbucket *head, unsigned short snum);
5453 
5454 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5455 {
5456 	struct sctp_bind_hashbucket *head; /* hash list */
5457 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5458 	struct hlist_node *node;
5459 	unsigned short snum;
5460 	int ret;
5461 
5462 	snum = ntohs(addr->v4.sin_port);
5463 
5464 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5465 	sctp_local_bh_disable();
5466 
5467 	if (snum == 0) {
5468 		/* Search for an available port. */
5469 		int low, high, remaining, index;
5470 		unsigned int rover;
5471 
5472 		inet_get_local_port_range(&low, &high);
5473 		remaining = (high - low) + 1;
5474 		rover = net_random() % remaining + low;
5475 
5476 		do {
5477 			rover++;
5478 			if ((rover < low) || (rover > high))
5479 				rover = low;
5480 			if (inet_is_reserved_local_port(rover))
5481 				continue;
5482 			index = sctp_phashfn(rover);
5483 			head = &sctp_port_hashtable[index];
5484 			sctp_spin_lock(&head->lock);
5485 			sctp_for_each_hentry(pp, node, &head->chain)
5486 				if (pp->port == rover)
5487 					goto next;
5488 			break;
5489 		next:
5490 			sctp_spin_unlock(&head->lock);
5491 		} while (--remaining > 0);
5492 
5493 		/* Exhausted local port range during search? */
5494 		ret = 1;
5495 		if (remaining <= 0)
5496 			goto fail;
5497 
5498 		/* OK, here is the one we will use.  HEAD (the port
5499 		 * hash table list entry) is non-NULL and we hold it's
5500 		 * mutex.
5501 		 */
5502 		snum = rover;
5503 	} else {
5504 		/* We are given an specific port number; we verify
5505 		 * that it is not being used. If it is used, we will
5506 		 * exahust the search in the hash list corresponding
5507 		 * to the port number (snum) - we detect that with the
5508 		 * port iterator, pp being NULL.
5509 		 */
5510 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5511 		sctp_spin_lock(&head->lock);
5512 		sctp_for_each_hentry(pp, node, &head->chain) {
5513 			if (pp->port == snum)
5514 				goto pp_found;
5515 		}
5516 	}
5517 	pp = NULL;
5518 	goto pp_not_found;
5519 pp_found:
5520 	if (!hlist_empty(&pp->owner)) {
5521 		/* We had a port hash table hit - there is an
5522 		 * available port (pp != NULL) and it is being
5523 		 * used by other socket (pp->owner not empty); that other
5524 		 * socket is going to be sk2.
5525 		 */
5526 		int reuse = sk->sk_reuse;
5527 		struct sock *sk2;
5528 
5529 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5530 		if (pp->fastreuse && sk->sk_reuse &&
5531 			sk->sk_state != SCTP_SS_LISTENING)
5532 			goto success;
5533 
5534 		/* Run through the list of sockets bound to the port
5535 		 * (pp->port) [via the pointers bind_next and
5536 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5537 		 * we get the endpoint they describe and run through
5538 		 * the endpoint's list of IP (v4 or v6) addresses,
5539 		 * comparing each of the addresses with the address of
5540 		 * the socket sk. If we find a match, then that means
5541 		 * that this port/socket (sk) combination are already
5542 		 * in an endpoint.
5543 		 */
5544 		sk_for_each_bound(sk2, node, &pp->owner) {
5545 			struct sctp_endpoint *ep2;
5546 			ep2 = sctp_sk(sk2)->ep;
5547 
5548 			if (sk == sk2 ||
5549 			    (reuse && sk2->sk_reuse &&
5550 			     sk2->sk_state != SCTP_SS_LISTENING))
5551 				continue;
5552 
5553 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5554 						 sctp_sk(sk2), sctp_sk(sk))) {
5555 				ret = (long)sk2;
5556 				goto fail_unlock;
5557 			}
5558 		}
5559 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5560 	}
5561 pp_not_found:
5562 	/* If there was a hash table miss, create a new port.  */
5563 	ret = 1;
5564 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5565 		goto fail_unlock;
5566 
5567 	/* In either case (hit or miss), make sure fastreuse is 1 only
5568 	 * if sk->sk_reuse is too (that is, if the caller requested
5569 	 * SO_REUSEADDR on this socket -sk-).
5570 	 */
5571 	if (hlist_empty(&pp->owner)) {
5572 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5573 			pp->fastreuse = 1;
5574 		else
5575 			pp->fastreuse = 0;
5576 	} else if (pp->fastreuse &&
5577 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5578 		pp->fastreuse = 0;
5579 
5580 	/* We are set, so fill up all the data in the hash table
5581 	 * entry, tie the socket list information with the rest of the
5582 	 * sockets FIXME: Blurry, NPI (ipg).
5583 	 */
5584 success:
5585 	if (!sctp_sk(sk)->bind_hash) {
5586 		inet_sk(sk)->inet_num = snum;
5587 		sk_add_bind_node(sk, &pp->owner);
5588 		sctp_sk(sk)->bind_hash = pp;
5589 	}
5590 	ret = 0;
5591 
5592 fail_unlock:
5593 	sctp_spin_unlock(&head->lock);
5594 
5595 fail:
5596 	sctp_local_bh_enable();
5597 	return ret;
5598 }
5599 
5600 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5601  * port is requested.
5602  */
5603 static int sctp_get_port(struct sock *sk, unsigned short snum)
5604 {
5605 	long ret;
5606 	union sctp_addr addr;
5607 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5608 
5609 	/* Set up a dummy address struct from the sk. */
5610 	af->from_sk(&addr, sk);
5611 	addr.v4.sin_port = htons(snum);
5612 
5613 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5614 	ret = sctp_get_port_local(sk, &addr);
5615 
5616 	return ret ? 1 : 0;
5617 }
5618 
5619 /*
5620  *  Move a socket to LISTENING state.
5621  */
5622 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5623 {
5624 	struct sctp_sock *sp = sctp_sk(sk);
5625 	struct sctp_endpoint *ep = sp->ep;
5626 	struct crypto_hash *tfm = NULL;
5627 
5628 	/* Allocate HMAC for generating cookie. */
5629 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5630 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5631 		if (IS_ERR(tfm)) {
5632 			if (net_ratelimit()) {
5633 				pr_info("failed to load transform for %s: %ld\n",
5634 					sctp_hmac_alg, PTR_ERR(tfm));
5635 			}
5636 			return -ENOSYS;
5637 		}
5638 		sctp_sk(sk)->hmac = tfm;
5639 	}
5640 
5641 	/*
5642 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5643 	 * call that allows new associations to be accepted, the system
5644 	 * picks an ephemeral port and will choose an address set equivalent
5645 	 * to binding with a wildcard address.
5646 	 *
5647 	 * This is not currently spelled out in the SCTP sockets
5648 	 * extensions draft, but follows the practice as seen in TCP
5649 	 * sockets.
5650 	 *
5651 	 */
5652 	sk->sk_state = SCTP_SS_LISTENING;
5653 	if (!ep->base.bind_addr.port) {
5654 		if (sctp_autobind(sk))
5655 			return -EAGAIN;
5656 	} else {
5657 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5658 			sk->sk_state = SCTP_SS_CLOSED;
5659 			return -EADDRINUSE;
5660 		}
5661 	}
5662 
5663 	sk->sk_max_ack_backlog = backlog;
5664 	sctp_hash_endpoint(ep);
5665 	return 0;
5666 }
5667 
5668 /*
5669  * 4.1.3 / 5.1.3 listen()
5670  *
5671  *   By default, new associations are not accepted for UDP style sockets.
5672  *   An application uses listen() to mark a socket as being able to
5673  *   accept new associations.
5674  *
5675  *   On TCP style sockets, applications use listen() to ready the SCTP
5676  *   endpoint for accepting inbound associations.
5677  *
5678  *   On both types of endpoints a backlog of '0' disables listening.
5679  *
5680  *  Move a socket to LISTENING state.
5681  */
5682 int sctp_inet_listen(struct socket *sock, int backlog)
5683 {
5684 	struct sock *sk = sock->sk;
5685 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5686 	int err = -EINVAL;
5687 
5688 	if (unlikely(backlog < 0))
5689 		return err;
5690 
5691 	sctp_lock_sock(sk);
5692 
5693 	/* Peeled-off sockets are not allowed to listen().  */
5694 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5695 		goto out;
5696 
5697 	if (sock->state != SS_UNCONNECTED)
5698 		goto out;
5699 
5700 	/* If backlog is zero, disable listening. */
5701 	if (!backlog) {
5702 		if (sctp_sstate(sk, CLOSED))
5703 			goto out;
5704 
5705 		err = 0;
5706 		sctp_unhash_endpoint(ep);
5707 		sk->sk_state = SCTP_SS_CLOSED;
5708 		if (sk->sk_reuse)
5709 			sctp_sk(sk)->bind_hash->fastreuse = 1;
5710 		goto out;
5711 	}
5712 
5713 	/* If we are already listening, just update the backlog */
5714 	if (sctp_sstate(sk, LISTENING))
5715 		sk->sk_max_ack_backlog = backlog;
5716 	else {
5717 		err = sctp_listen_start(sk, backlog);
5718 		if (err)
5719 			goto out;
5720 	}
5721 
5722 	err = 0;
5723 out:
5724 	sctp_release_sock(sk);
5725 	return err;
5726 }
5727 
5728 /*
5729  * This function is done by modeling the current datagram_poll() and the
5730  * tcp_poll().  Note that, based on these implementations, we don't
5731  * lock the socket in this function, even though it seems that,
5732  * ideally, locking or some other mechanisms can be used to ensure
5733  * the integrity of the counters (sndbuf and wmem_alloc) used
5734  * in this place.  We assume that we don't need locks either until proven
5735  * otherwise.
5736  *
5737  * Another thing to note is that we include the Async I/O support
5738  * here, again, by modeling the current TCP/UDP code.  We don't have
5739  * a good way to test with it yet.
5740  */
5741 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5742 {
5743 	struct sock *sk = sock->sk;
5744 	struct sctp_sock *sp = sctp_sk(sk);
5745 	unsigned int mask;
5746 
5747 	poll_wait(file, sk_sleep(sk), wait);
5748 
5749 	/* A TCP-style listening socket becomes readable when the accept queue
5750 	 * is not empty.
5751 	 */
5752 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5753 		return (!list_empty(&sp->ep->asocs)) ?
5754 			(POLLIN | POLLRDNORM) : 0;
5755 
5756 	mask = 0;
5757 
5758 	/* Is there any exceptional events?  */
5759 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5760 		mask |= POLLERR;
5761 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5762 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5763 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5764 		mask |= POLLHUP;
5765 
5766 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5767 	if (!skb_queue_empty(&sk->sk_receive_queue))
5768 		mask |= POLLIN | POLLRDNORM;
5769 
5770 	/* The association is either gone or not ready.  */
5771 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5772 		return mask;
5773 
5774 	/* Is it writable?  */
5775 	if (sctp_writeable(sk)) {
5776 		mask |= POLLOUT | POLLWRNORM;
5777 	} else {
5778 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5779 		/*
5780 		 * Since the socket is not locked, the buffer
5781 		 * might be made available after the writeable check and
5782 		 * before the bit is set.  This could cause a lost I/O
5783 		 * signal.  tcp_poll() has a race breaker for this race
5784 		 * condition.  Based on their implementation, we put
5785 		 * in the following code to cover it as well.
5786 		 */
5787 		if (sctp_writeable(sk))
5788 			mask |= POLLOUT | POLLWRNORM;
5789 	}
5790 	return mask;
5791 }
5792 
5793 /********************************************************************
5794  * 2nd Level Abstractions
5795  ********************************************************************/
5796 
5797 static struct sctp_bind_bucket *sctp_bucket_create(
5798 	struct sctp_bind_hashbucket *head, unsigned short snum)
5799 {
5800 	struct sctp_bind_bucket *pp;
5801 
5802 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5803 	if (pp) {
5804 		SCTP_DBG_OBJCNT_INC(bind_bucket);
5805 		pp->port = snum;
5806 		pp->fastreuse = 0;
5807 		INIT_HLIST_HEAD(&pp->owner);
5808 		hlist_add_head(&pp->node, &head->chain);
5809 	}
5810 	return pp;
5811 }
5812 
5813 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5814 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5815 {
5816 	if (pp && hlist_empty(&pp->owner)) {
5817 		__hlist_del(&pp->node);
5818 		kmem_cache_free(sctp_bucket_cachep, pp);
5819 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5820 	}
5821 }
5822 
5823 /* Release this socket's reference to a local port.  */
5824 static inline void __sctp_put_port(struct sock *sk)
5825 {
5826 	struct sctp_bind_hashbucket *head =
5827 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
5828 	struct sctp_bind_bucket *pp;
5829 
5830 	sctp_spin_lock(&head->lock);
5831 	pp = sctp_sk(sk)->bind_hash;
5832 	__sk_del_bind_node(sk);
5833 	sctp_sk(sk)->bind_hash = NULL;
5834 	inet_sk(sk)->inet_num = 0;
5835 	sctp_bucket_destroy(pp);
5836 	sctp_spin_unlock(&head->lock);
5837 }
5838 
5839 void sctp_put_port(struct sock *sk)
5840 {
5841 	sctp_local_bh_disable();
5842 	__sctp_put_port(sk);
5843 	sctp_local_bh_enable();
5844 }
5845 
5846 /*
5847  * The system picks an ephemeral port and choose an address set equivalent
5848  * to binding with a wildcard address.
5849  * One of those addresses will be the primary address for the association.
5850  * This automatically enables the multihoming capability of SCTP.
5851  */
5852 static int sctp_autobind(struct sock *sk)
5853 {
5854 	union sctp_addr autoaddr;
5855 	struct sctp_af *af;
5856 	__be16 port;
5857 
5858 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5859 	af = sctp_sk(sk)->pf->af;
5860 
5861 	port = htons(inet_sk(sk)->inet_num);
5862 	af->inaddr_any(&autoaddr, port);
5863 
5864 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5865 }
5866 
5867 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5868  *
5869  * From RFC 2292
5870  * 4.2 The cmsghdr Structure *
5871  *
5872  * When ancillary data is sent or received, any number of ancillary data
5873  * objects can be specified by the msg_control and msg_controllen members of
5874  * the msghdr structure, because each object is preceded by
5875  * a cmsghdr structure defining the object's length (the cmsg_len member).
5876  * Historically Berkeley-derived implementations have passed only one object
5877  * at a time, but this API allows multiple objects to be
5878  * passed in a single call to sendmsg() or recvmsg(). The following example
5879  * shows two ancillary data objects in a control buffer.
5880  *
5881  *   |<--------------------------- msg_controllen -------------------------->|
5882  *   |                                                                       |
5883  *
5884  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5885  *
5886  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5887  *   |                                   |                                   |
5888  *
5889  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5890  *
5891  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5892  *   |                                |  |                                |  |
5893  *
5894  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5895  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5896  *
5897  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5898  *
5899  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5900  *    ^
5901  *    |
5902  *
5903  * msg_control
5904  * points here
5905  */
5906 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5907 				  sctp_cmsgs_t *cmsgs)
5908 {
5909 	struct cmsghdr *cmsg;
5910 	struct msghdr *my_msg = (struct msghdr *)msg;
5911 
5912 	for (cmsg = CMSG_FIRSTHDR(msg);
5913 	     cmsg != NULL;
5914 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5915 		if (!CMSG_OK(my_msg, cmsg))
5916 			return -EINVAL;
5917 
5918 		/* Should we parse this header or ignore?  */
5919 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5920 			continue;
5921 
5922 		/* Strictly check lengths following example in SCM code.  */
5923 		switch (cmsg->cmsg_type) {
5924 		case SCTP_INIT:
5925 			/* SCTP Socket API Extension
5926 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5927 			 *
5928 			 * This cmsghdr structure provides information for
5929 			 * initializing new SCTP associations with sendmsg().
5930 			 * The SCTP_INITMSG socket option uses this same data
5931 			 * structure.  This structure is not used for
5932 			 * recvmsg().
5933 			 *
5934 			 * cmsg_level    cmsg_type      cmsg_data[]
5935 			 * ------------  ------------   ----------------------
5936 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5937 			 */
5938 			if (cmsg->cmsg_len !=
5939 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5940 				return -EINVAL;
5941 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5942 			break;
5943 
5944 		case SCTP_SNDRCV:
5945 			/* SCTP Socket API Extension
5946 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5947 			 *
5948 			 * This cmsghdr structure specifies SCTP options for
5949 			 * sendmsg() and describes SCTP header information
5950 			 * about a received message through recvmsg().
5951 			 *
5952 			 * cmsg_level    cmsg_type      cmsg_data[]
5953 			 * ------------  ------------   ----------------------
5954 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5955 			 */
5956 			if (cmsg->cmsg_len !=
5957 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5958 				return -EINVAL;
5959 
5960 			cmsgs->info =
5961 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5962 
5963 			/* Minimally, validate the sinfo_flags. */
5964 			if (cmsgs->info->sinfo_flags &
5965 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5966 			      SCTP_ABORT | SCTP_EOF))
5967 				return -EINVAL;
5968 			break;
5969 
5970 		default:
5971 			return -EINVAL;
5972 		}
5973 	}
5974 	return 0;
5975 }
5976 
5977 /*
5978  * Wait for a packet..
5979  * Note: This function is the same function as in core/datagram.c
5980  * with a few modifications to make lksctp work.
5981  */
5982 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5983 {
5984 	int error;
5985 	DEFINE_WAIT(wait);
5986 
5987 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
5988 
5989 	/* Socket errors? */
5990 	error = sock_error(sk);
5991 	if (error)
5992 		goto out;
5993 
5994 	if (!skb_queue_empty(&sk->sk_receive_queue))
5995 		goto ready;
5996 
5997 	/* Socket shut down?  */
5998 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5999 		goto out;
6000 
6001 	/* Sequenced packets can come disconnected.  If so we report the
6002 	 * problem.
6003 	 */
6004 	error = -ENOTCONN;
6005 
6006 	/* Is there a good reason to think that we may receive some data?  */
6007 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6008 		goto out;
6009 
6010 	/* Handle signals.  */
6011 	if (signal_pending(current))
6012 		goto interrupted;
6013 
6014 	/* Let another process have a go.  Since we are going to sleep
6015 	 * anyway.  Note: This may cause odd behaviors if the message
6016 	 * does not fit in the user's buffer, but this seems to be the
6017 	 * only way to honor MSG_DONTWAIT realistically.
6018 	 */
6019 	sctp_release_sock(sk);
6020 	*timeo_p = schedule_timeout(*timeo_p);
6021 	sctp_lock_sock(sk);
6022 
6023 ready:
6024 	finish_wait(sk_sleep(sk), &wait);
6025 	return 0;
6026 
6027 interrupted:
6028 	error = sock_intr_errno(*timeo_p);
6029 
6030 out:
6031 	finish_wait(sk_sleep(sk), &wait);
6032 	*err = error;
6033 	return error;
6034 }
6035 
6036 /* Receive a datagram.
6037  * Note: This is pretty much the same routine as in core/datagram.c
6038  * with a few changes to make lksctp work.
6039  */
6040 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6041 					      int noblock, int *err)
6042 {
6043 	int error;
6044 	struct sk_buff *skb;
6045 	long timeo;
6046 
6047 	timeo = sock_rcvtimeo(sk, noblock);
6048 
6049 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6050 			  timeo, MAX_SCHEDULE_TIMEOUT);
6051 
6052 	do {
6053 		/* Again only user level code calls this function,
6054 		 * so nothing interrupt level
6055 		 * will suddenly eat the receive_queue.
6056 		 *
6057 		 *  Look at current nfs client by the way...
6058 		 *  However, this function was correct in any case. 8)
6059 		 */
6060 		if (flags & MSG_PEEK) {
6061 			spin_lock_bh(&sk->sk_receive_queue.lock);
6062 			skb = skb_peek(&sk->sk_receive_queue);
6063 			if (skb)
6064 				atomic_inc(&skb->users);
6065 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6066 		} else {
6067 			skb = skb_dequeue(&sk->sk_receive_queue);
6068 		}
6069 
6070 		if (skb)
6071 			return skb;
6072 
6073 		/* Caller is allowed not to check sk->sk_err before calling. */
6074 		error = sock_error(sk);
6075 		if (error)
6076 			goto no_packet;
6077 
6078 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6079 			break;
6080 
6081 		/* User doesn't want to wait.  */
6082 		error = -EAGAIN;
6083 		if (!timeo)
6084 			goto no_packet;
6085 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6086 
6087 	return NULL;
6088 
6089 no_packet:
6090 	*err = error;
6091 	return NULL;
6092 }
6093 
6094 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6095 static void __sctp_write_space(struct sctp_association *asoc)
6096 {
6097 	struct sock *sk = asoc->base.sk;
6098 	struct socket *sock = sk->sk_socket;
6099 
6100 	if ((sctp_wspace(asoc) > 0) && sock) {
6101 		if (waitqueue_active(&asoc->wait))
6102 			wake_up_interruptible(&asoc->wait);
6103 
6104 		if (sctp_writeable(sk)) {
6105 			if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
6106 				wake_up_interruptible(sk_sleep(sk));
6107 
6108 			/* Note that we try to include the Async I/O support
6109 			 * here by modeling from the current TCP/UDP code.
6110 			 * We have not tested with it yet.
6111 			 */
6112 			if (sock->wq->fasync_list &&
6113 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
6114 				sock_wake_async(sock,
6115 						SOCK_WAKE_SPACE, POLL_OUT);
6116 		}
6117 	}
6118 }
6119 
6120 /* Do accounting for the sndbuf space.
6121  * Decrement the used sndbuf space of the corresponding association by the
6122  * data size which was just transmitted(freed).
6123  */
6124 static void sctp_wfree(struct sk_buff *skb)
6125 {
6126 	struct sctp_association *asoc;
6127 	struct sctp_chunk *chunk;
6128 	struct sock *sk;
6129 
6130 	/* Get the saved chunk pointer.  */
6131 	chunk = *((struct sctp_chunk **)(skb->cb));
6132 	asoc = chunk->asoc;
6133 	sk = asoc->base.sk;
6134 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6135 				sizeof(struct sk_buff) +
6136 				sizeof(struct sctp_chunk);
6137 
6138 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6139 
6140 	/*
6141 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6142 	 */
6143 	sk->sk_wmem_queued   -= skb->truesize;
6144 	sk_mem_uncharge(sk, skb->truesize);
6145 
6146 	sock_wfree(skb);
6147 	__sctp_write_space(asoc);
6148 
6149 	sctp_association_put(asoc);
6150 }
6151 
6152 /* Do accounting for the receive space on the socket.
6153  * Accounting for the association is done in ulpevent.c
6154  * We set this as a destructor for the cloned data skbs so that
6155  * accounting is done at the correct time.
6156  */
6157 void sctp_sock_rfree(struct sk_buff *skb)
6158 {
6159 	struct sock *sk = skb->sk;
6160 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6161 
6162 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6163 
6164 	/*
6165 	 * Mimic the behavior of sock_rfree
6166 	 */
6167 	sk_mem_uncharge(sk, event->rmem_len);
6168 }
6169 
6170 
6171 /* Helper function to wait for space in the sndbuf.  */
6172 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6173 				size_t msg_len)
6174 {
6175 	struct sock *sk = asoc->base.sk;
6176 	int err = 0;
6177 	long current_timeo = *timeo_p;
6178 	DEFINE_WAIT(wait);
6179 
6180 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6181 			  asoc, (long)(*timeo_p), msg_len);
6182 
6183 	/* Increment the association's refcnt.  */
6184 	sctp_association_hold(asoc);
6185 
6186 	/* Wait on the association specific sndbuf space. */
6187 	for (;;) {
6188 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6189 					  TASK_INTERRUPTIBLE);
6190 		if (!*timeo_p)
6191 			goto do_nonblock;
6192 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6193 		    asoc->base.dead)
6194 			goto do_error;
6195 		if (signal_pending(current))
6196 			goto do_interrupted;
6197 		if (msg_len <= sctp_wspace(asoc))
6198 			break;
6199 
6200 		/* Let another process have a go.  Since we are going
6201 		 * to sleep anyway.
6202 		 */
6203 		sctp_release_sock(sk);
6204 		current_timeo = schedule_timeout(current_timeo);
6205 		BUG_ON(sk != asoc->base.sk);
6206 		sctp_lock_sock(sk);
6207 
6208 		*timeo_p = current_timeo;
6209 	}
6210 
6211 out:
6212 	finish_wait(&asoc->wait, &wait);
6213 
6214 	/* Release the association's refcnt.  */
6215 	sctp_association_put(asoc);
6216 
6217 	return err;
6218 
6219 do_error:
6220 	err = -EPIPE;
6221 	goto out;
6222 
6223 do_interrupted:
6224 	err = sock_intr_errno(*timeo_p);
6225 	goto out;
6226 
6227 do_nonblock:
6228 	err = -EAGAIN;
6229 	goto out;
6230 }
6231 
6232 void sctp_data_ready(struct sock *sk, int len)
6233 {
6234 	struct socket_wq *wq;
6235 
6236 	rcu_read_lock();
6237 	wq = rcu_dereference(sk->sk_wq);
6238 	if (wq_has_sleeper(wq))
6239 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6240 						POLLRDNORM | POLLRDBAND);
6241 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6242 	rcu_read_unlock();
6243 }
6244 
6245 /* If socket sndbuf has changed, wake up all per association waiters.  */
6246 void sctp_write_space(struct sock *sk)
6247 {
6248 	struct sctp_association *asoc;
6249 
6250 	/* Wake up the tasks in each wait queue.  */
6251 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6252 		__sctp_write_space(asoc);
6253 	}
6254 }
6255 
6256 /* Is there any sndbuf space available on the socket?
6257  *
6258  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6259  * associations on the same socket.  For a UDP-style socket with
6260  * multiple associations, it is possible for it to be "unwriteable"
6261  * prematurely.  I assume that this is acceptable because
6262  * a premature "unwriteable" is better than an accidental "writeable" which
6263  * would cause an unwanted block under certain circumstances.  For the 1-1
6264  * UDP-style sockets or TCP-style sockets, this code should work.
6265  *  - Daisy
6266  */
6267 static int sctp_writeable(struct sock *sk)
6268 {
6269 	int amt = 0;
6270 
6271 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6272 	if (amt < 0)
6273 		amt = 0;
6274 	return amt;
6275 }
6276 
6277 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6278  * returns immediately with EINPROGRESS.
6279  */
6280 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6281 {
6282 	struct sock *sk = asoc->base.sk;
6283 	int err = 0;
6284 	long current_timeo = *timeo_p;
6285 	DEFINE_WAIT(wait);
6286 
6287 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6288 			  (long)(*timeo_p));
6289 
6290 	/* Increment the association's refcnt.  */
6291 	sctp_association_hold(asoc);
6292 
6293 	for (;;) {
6294 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6295 					  TASK_INTERRUPTIBLE);
6296 		if (!*timeo_p)
6297 			goto do_nonblock;
6298 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6299 			break;
6300 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6301 		    asoc->base.dead)
6302 			goto do_error;
6303 		if (signal_pending(current))
6304 			goto do_interrupted;
6305 
6306 		if (sctp_state(asoc, ESTABLISHED))
6307 			break;
6308 
6309 		/* Let another process have a go.  Since we are going
6310 		 * to sleep anyway.
6311 		 */
6312 		sctp_release_sock(sk);
6313 		current_timeo = schedule_timeout(current_timeo);
6314 		sctp_lock_sock(sk);
6315 
6316 		*timeo_p = current_timeo;
6317 	}
6318 
6319 out:
6320 	finish_wait(&asoc->wait, &wait);
6321 
6322 	/* Release the association's refcnt.  */
6323 	sctp_association_put(asoc);
6324 
6325 	return err;
6326 
6327 do_error:
6328 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6329 		err = -ETIMEDOUT;
6330 	else
6331 		err = -ECONNREFUSED;
6332 	goto out;
6333 
6334 do_interrupted:
6335 	err = sock_intr_errno(*timeo_p);
6336 	goto out;
6337 
6338 do_nonblock:
6339 	err = -EINPROGRESS;
6340 	goto out;
6341 }
6342 
6343 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6344 {
6345 	struct sctp_endpoint *ep;
6346 	int err = 0;
6347 	DEFINE_WAIT(wait);
6348 
6349 	ep = sctp_sk(sk)->ep;
6350 
6351 
6352 	for (;;) {
6353 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6354 					  TASK_INTERRUPTIBLE);
6355 
6356 		if (list_empty(&ep->asocs)) {
6357 			sctp_release_sock(sk);
6358 			timeo = schedule_timeout(timeo);
6359 			sctp_lock_sock(sk);
6360 		}
6361 
6362 		err = -EINVAL;
6363 		if (!sctp_sstate(sk, LISTENING))
6364 			break;
6365 
6366 		err = 0;
6367 		if (!list_empty(&ep->asocs))
6368 			break;
6369 
6370 		err = sock_intr_errno(timeo);
6371 		if (signal_pending(current))
6372 			break;
6373 
6374 		err = -EAGAIN;
6375 		if (!timeo)
6376 			break;
6377 	}
6378 
6379 	finish_wait(sk_sleep(sk), &wait);
6380 
6381 	return err;
6382 }
6383 
6384 static void sctp_wait_for_close(struct sock *sk, long timeout)
6385 {
6386 	DEFINE_WAIT(wait);
6387 
6388 	do {
6389 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6390 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6391 			break;
6392 		sctp_release_sock(sk);
6393 		timeout = schedule_timeout(timeout);
6394 		sctp_lock_sock(sk);
6395 	} while (!signal_pending(current) && timeout);
6396 
6397 	finish_wait(sk_sleep(sk), &wait);
6398 }
6399 
6400 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6401 {
6402 	struct sk_buff *frag;
6403 
6404 	if (!skb->data_len)
6405 		goto done;
6406 
6407 	/* Don't forget the fragments. */
6408 	skb_walk_frags(skb, frag)
6409 		sctp_skb_set_owner_r_frag(frag, sk);
6410 
6411 done:
6412 	sctp_skb_set_owner_r(skb, sk);
6413 }
6414 
6415 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6416 		    struct sctp_association *asoc)
6417 {
6418 	struct inet_sock *inet = inet_sk(sk);
6419 	struct inet_sock *newinet;
6420 
6421 	newsk->sk_type = sk->sk_type;
6422 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6423 	newsk->sk_flags = sk->sk_flags;
6424 	newsk->sk_no_check = sk->sk_no_check;
6425 	newsk->sk_reuse = sk->sk_reuse;
6426 
6427 	newsk->sk_shutdown = sk->sk_shutdown;
6428 	newsk->sk_destruct = inet_sock_destruct;
6429 	newsk->sk_family = sk->sk_family;
6430 	newsk->sk_protocol = IPPROTO_SCTP;
6431 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6432 	newsk->sk_sndbuf = sk->sk_sndbuf;
6433 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6434 	newsk->sk_lingertime = sk->sk_lingertime;
6435 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6436 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6437 
6438 	newinet = inet_sk(newsk);
6439 
6440 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6441 	 * getsockname() and getpeername()
6442 	 */
6443 	newinet->inet_sport = inet->inet_sport;
6444 	newinet->inet_saddr = inet->inet_saddr;
6445 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6446 	newinet->inet_dport = htons(asoc->peer.port);
6447 	newinet->pmtudisc = inet->pmtudisc;
6448 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6449 
6450 	newinet->uc_ttl = inet->uc_ttl;
6451 	newinet->mc_loop = 1;
6452 	newinet->mc_ttl = 1;
6453 	newinet->mc_index = 0;
6454 	newinet->mc_list = NULL;
6455 }
6456 
6457 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6458  * and its messages to the newsk.
6459  */
6460 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6461 			      struct sctp_association *assoc,
6462 			      sctp_socket_type_t type)
6463 {
6464 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6465 	struct sctp_sock *newsp = sctp_sk(newsk);
6466 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6467 	struct sctp_endpoint *newep = newsp->ep;
6468 	struct sk_buff *skb, *tmp;
6469 	struct sctp_ulpevent *event;
6470 	struct sctp_bind_hashbucket *head;
6471 
6472 	/* Migrate socket buffer sizes and all the socket level options to the
6473 	 * new socket.
6474 	 */
6475 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6476 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6477 	/* Brute force copy old sctp opt. */
6478 	inet_sk_copy_descendant(newsk, oldsk);
6479 
6480 	/* Restore the ep value that was overwritten with the above structure
6481 	 * copy.
6482 	 */
6483 	newsp->ep = newep;
6484 	newsp->hmac = NULL;
6485 
6486 	/* Hook this new socket in to the bind_hash list. */
6487 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6488 	sctp_local_bh_disable();
6489 	sctp_spin_lock(&head->lock);
6490 	pp = sctp_sk(oldsk)->bind_hash;
6491 	sk_add_bind_node(newsk, &pp->owner);
6492 	sctp_sk(newsk)->bind_hash = pp;
6493 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6494 	sctp_spin_unlock(&head->lock);
6495 	sctp_local_bh_enable();
6496 
6497 	/* Copy the bind_addr list from the original endpoint to the new
6498 	 * endpoint so that we can handle restarts properly
6499 	 */
6500 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6501 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6502 
6503 	/* Move any messages in the old socket's receive queue that are for the
6504 	 * peeled off association to the new socket's receive queue.
6505 	 */
6506 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6507 		event = sctp_skb2event(skb);
6508 		if (event->asoc == assoc) {
6509 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6510 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6511 			sctp_skb_set_owner_r_frag(skb, newsk);
6512 		}
6513 	}
6514 
6515 	/* Clean up any messages pending delivery due to partial
6516 	 * delivery.   Three cases:
6517 	 * 1) No partial deliver;  no work.
6518 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6519 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6520 	 */
6521 	skb_queue_head_init(&newsp->pd_lobby);
6522 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6523 
6524 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6525 		struct sk_buff_head *queue;
6526 
6527 		/* Decide which queue to move pd_lobby skbs to. */
6528 		if (assoc->ulpq.pd_mode) {
6529 			queue = &newsp->pd_lobby;
6530 		} else
6531 			queue = &newsk->sk_receive_queue;
6532 
6533 		/* Walk through the pd_lobby, looking for skbs that
6534 		 * need moved to the new socket.
6535 		 */
6536 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6537 			event = sctp_skb2event(skb);
6538 			if (event->asoc == assoc) {
6539 				__skb_unlink(skb, &oldsp->pd_lobby);
6540 				__skb_queue_tail(queue, skb);
6541 				sctp_skb_set_owner_r_frag(skb, newsk);
6542 			}
6543 		}
6544 
6545 		/* Clear up any skbs waiting for the partial
6546 		 * delivery to finish.
6547 		 */
6548 		if (assoc->ulpq.pd_mode)
6549 			sctp_clear_pd(oldsk, NULL);
6550 
6551 	}
6552 
6553 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6554 		sctp_skb_set_owner_r_frag(skb, newsk);
6555 
6556 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6557 		sctp_skb_set_owner_r_frag(skb, newsk);
6558 
6559 	/* Set the type of socket to indicate that it is peeled off from the
6560 	 * original UDP-style socket or created with the accept() call on a
6561 	 * TCP-style socket..
6562 	 */
6563 	newsp->type = type;
6564 
6565 	/* Mark the new socket "in-use" by the user so that any packets
6566 	 * that may arrive on the association after we've moved it are
6567 	 * queued to the backlog.  This prevents a potential race between
6568 	 * backlog processing on the old socket and new-packet processing
6569 	 * on the new socket.
6570 	 *
6571 	 * The caller has just allocated newsk so we can guarantee that other
6572 	 * paths won't try to lock it and then oldsk.
6573 	 */
6574 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6575 	sctp_assoc_migrate(assoc, newsk);
6576 
6577 	/* If the association on the newsk is already closed before accept()
6578 	 * is called, set RCV_SHUTDOWN flag.
6579 	 */
6580 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6581 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6582 
6583 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6584 	sctp_release_sock(newsk);
6585 }
6586 
6587 
6588 /* This proto struct describes the ULP interface for SCTP.  */
6589 struct proto sctp_prot = {
6590 	.name        =	"SCTP",
6591 	.owner       =	THIS_MODULE,
6592 	.close       =	sctp_close,
6593 	.connect     =	sctp_connect,
6594 	.disconnect  =	sctp_disconnect,
6595 	.accept      =	sctp_accept,
6596 	.ioctl       =	sctp_ioctl,
6597 	.init        =	sctp_init_sock,
6598 	.destroy     =	sctp_destroy_sock,
6599 	.shutdown    =	sctp_shutdown,
6600 	.setsockopt  =	sctp_setsockopt,
6601 	.getsockopt  =	sctp_getsockopt,
6602 	.sendmsg     =	sctp_sendmsg,
6603 	.recvmsg     =	sctp_recvmsg,
6604 	.bind        =	sctp_bind,
6605 	.backlog_rcv =	sctp_backlog_rcv,
6606 	.hash        =	sctp_hash,
6607 	.unhash      =	sctp_unhash,
6608 	.get_port    =	sctp_get_port,
6609 	.obj_size    =  sizeof(struct sctp_sock),
6610 	.sysctl_mem  =  sysctl_sctp_mem,
6611 	.sysctl_rmem =  sysctl_sctp_rmem,
6612 	.sysctl_wmem =  sysctl_sctp_wmem,
6613 	.memory_pressure = &sctp_memory_pressure,
6614 	.enter_memory_pressure = sctp_enter_memory_pressure,
6615 	.memory_allocated = &sctp_memory_allocated,
6616 	.sockets_allocated = &sctp_sockets_allocated,
6617 };
6618 
6619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6620 
6621 struct proto sctpv6_prot = {
6622 	.name		= "SCTPv6",
6623 	.owner		= THIS_MODULE,
6624 	.close		= sctp_close,
6625 	.connect	= sctp_connect,
6626 	.disconnect	= sctp_disconnect,
6627 	.accept		= sctp_accept,
6628 	.ioctl		= sctp_ioctl,
6629 	.init		= sctp_init_sock,
6630 	.destroy	= sctp_destroy_sock,
6631 	.shutdown	= sctp_shutdown,
6632 	.setsockopt	= sctp_setsockopt,
6633 	.getsockopt	= sctp_getsockopt,
6634 	.sendmsg	= sctp_sendmsg,
6635 	.recvmsg	= sctp_recvmsg,
6636 	.bind		= sctp_bind,
6637 	.backlog_rcv	= sctp_backlog_rcv,
6638 	.hash		= sctp_hash,
6639 	.unhash		= sctp_unhash,
6640 	.get_port	= sctp_get_port,
6641 	.obj_size	= sizeof(struct sctp6_sock),
6642 	.sysctl_mem	= sysctl_sctp_mem,
6643 	.sysctl_rmem	= sysctl_sctp_rmem,
6644 	.sysctl_wmem	= sysctl_sctp_wmem,
6645 	.memory_pressure = &sctp_memory_pressure,
6646 	.enter_memory_pressure = sctp_enter_memory_pressure,
6647 	.memory_allocated = &sctp_memory_allocated,
6648 	.sockets_allocated = &sctp_sockets_allocated,
6649 };
6650 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6651