xref: /openbmc/linux/net/sctp/socket.c (revision 8ee90c5c)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 
70 #include <net/ip.h>
71 #include <net/icmp.h>
72 #include <net/route.h>
73 #include <net/ipv6.h>
74 #include <net/inet_common.h>
75 #include <net/busy_poll.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <linux/export.h>
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
82 
83 /* Forward declarations for internal helper functions. */
84 static int sctp_writeable(struct sock *sk);
85 static void sctp_wfree(struct sk_buff *skb);
86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
87 				size_t msg_len);
88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
90 static int sctp_wait_for_accept(struct sock *sk, long timeo);
91 static void sctp_wait_for_close(struct sock *sk, long timeo);
92 static void sctp_destruct_sock(struct sock *sk);
93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
94 					union sctp_addr *addr, int len);
95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf(struct sctp_association *asoc,
100 			    struct sctp_chunk *chunk);
101 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
102 static int sctp_autobind(struct sock *sk);
103 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
104 			      struct sctp_association *assoc,
105 			      enum sctp_socket_type type);
106 
107 static unsigned long sctp_memory_pressure;
108 static atomic_long_t sctp_memory_allocated;
109 struct percpu_counter sctp_sockets_allocated;
110 
111 static void sctp_enter_memory_pressure(struct sock *sk)
112 {
113 	sctp_memory_pressure = 1;
114 }
115 
116 
117 /* Get the sndbuf space available at the time on the association.  */
118 static inline int sctp_wspace(struct sctp_association *asoc)
119 {
120 	int amt;
121 
122 	if (asoc->ep->sndbuf_policy)
123 		amt = asoc->sndbuf_used;
124 	else
125 		amt = sk_wmem_alloc_get(asoc->base.sk);
126 
127 	if (amt >= asoc->base.sk->sk_sndbuf) {
128 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
129 			amt = 0;
130 		else {
131 			amt = sk_stream_wspace(asoc->base.sk);
132 			if (amt < 0)
133 				amt = 0;
134 		}
135 	} else {
136 		amt = asoc->base.sk->sk_sndbuf - amt;
137 	}
138 	return amt;
139 }
140 
141 /* Increment the used sndbuf space count of the corresponding association by
142  * the size of the outgoing data chunk.
143  * Also, set the skb destructor for sndbuf accounting later.
144  *
145  * Since it is always 1-1 between chunk and skb, and also a new skb is always
146  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
147  * destructor in the data chunk skb for the purpose of the sndbuf space
148  * tracking.
149  */
150 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
151 {
152 	struct sctp_association *asoc = chunk->asoc;
153 	struct sock *sk = asoc->base.sk;
154 
155 	/* The sndbuf space is tracked per association.  */
156 	sctp_association_hold(asoc);
157 
158 	skb_set_owner_w(chunk->skb, sk);
159 
160 	chunk->skb->destructor = sctp_wfree;
161 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
162 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
163 
164 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
165 				sizeof(struct sk_buff) +
166 				sizeof(struct sctp_chunk);
167 
168 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
169 	sk->sk_wmem_queued += chunk->skb->truesize;
170 	sk_mem_charge(sk, chunk->skb->truesize);
171 }
172 
173 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
174 {
175 	skb_orphan(chunk->skb);
176 }
177 
178 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
179 				       void (*cb)(struct sctp_chunk *))
180 
181 {
182 	struct sctp_outq *q = &asoc->outqueue;
183 	struct sctp_transport *t;
184 	struct sctp_chunk *chunk;
185 
186 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
187 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
188 			cb(chunk);
189 
190 	list_for_each_entry(chunk, &q->retransmit, list)
191 		cb(chunk);
192 
193 	list_for_each_entry(chunk, &q->sacked, list)
194 		cb(chunk);
195 
196 	list_for_each_entry(chunk, &q->abandoned, list)
197 		cb(chunk);
198 
199 	list_for_each_entry(chunk, &q->out_chunk_list, list)
200 		cb(chunk);
201 }
202 
203 /* Verify that this is a valid address. */
204 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
205 				   int len)
206 {
207 	struct sctp_af *af;
208 
209 	/* Verify basic sockaddr. */
210 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
211 	if (!af)
212 		return -EINVAL;
213 
214 	/* Is this a valid SCTP address?  */
215 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
216 		return -EINVAL;
217 
218 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
219 		return -EINVAL;
220 
221 	return 0;
222 }
223 
224 /* Look up the association by its id.  If this is not a UDP-style
225  * socket, the ID field is always ignored.
226  */
227 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
228 {
229 	struct sctp_association *asoc = NULL;
230 
231 	/* If this is not a UDP-style socket, assoc id should be ignored. */
232 	if (!sctp_style(sk, UDP)) {
233 		/* Return NULL if the socket state is not ESTABLISHED. It
234 		 * could be a TCP-style listening socket or a socket which
235 		 * hasn't yet called connect() to establish an association.
236 		 */
237 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
238 			return NULL;
239 
240 		/* Get the first and the only association from the list. */
241 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
242 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
243 					  struct sctp_association, asocs);
244 		return asoc;
245 	}
246 
247 	/* Otherwise this is a UDP-style socket. */
248 	if (!id || (id == (sctp_assoc_t)-1))
249 		return NULL;
250 
251 	spin_lock_bh(&sctp_assocs_id_lock);
252 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
253 	spin_unlock_bh(&sctp_assocs_id_lock);
254 
255 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
256 		return NULL;
257 
258 	return asoc;
259 }
260 
261 /* Look up the transport from an address and an assoc id. If both address and
262  * id are specified, the associations matching the address and the id should be
263  * the same.
264  */
265 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
266 					      struct sockaddr_storage *addr,
267 					      sctp_assoc_t id)
268 {
269 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
270 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
271 	union sctp_addr *laddr = (union sctp_addr *)addr;
272 	struct sctp_transport *transport;
273 
274 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
275 		return NULL;
276 
277 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
278 					       laddr,
279 					       &transport);
280 
281 	if (!addr_asoc)
282 		return NULL;
283 
284 	id_asoc = sctp_id2assoc(sk, id);
285 	if (id_asoc && (id_asoc != addr_asoc))
286 		return NULL;
287 
288 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
289 						(union sctp_addr *)addr);
290 
291 	return transport;
292 }
293 
294 /* API 3.1.2 bind() - UDP Style Syntax
295  * The syntax of bind() is,
296  *
297  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
298  *
299  *   sd      - the socket descriptor returned by socket().
300  *   addr    - the address structure (struct sockaddr_in or struct
301  *             sockaddr_in6 [RFC 2553]),
302  *   addr_len - the size of the address structure.
303  */
304 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
305 {
306 	int retval = 0;
307 
308 	lock_sock(sk);
309 
310 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
311 		 addr, addr_len);
312 
313 	/* Disallow binding twice. */
314 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
315 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
316 				      addr_len);
317 	else
318 		retval = -EINVAL;
319 
320 	release_sock(sk);
321 
322 	return retval;
323 }
324 
325 static long sctp_get_port_local(struct sock *, union sctp_addr *);
326 
327 /* Verify this is a valid sockaddr. */
328 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
329 					union sctp_addr *addr, int len)
330 {
331 	struct sctp_af *af;
332 
333 	/* Check minimum size.  */
334 	if (len < sizeof (struct sockaddr))
335 		return NULL;
336 
337 	/* V4 mapped address are really of AF_INET family */
338 	if (addr->sa.sa_family == AF_INET6 &&
339 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
340 		if (!opt->pf->af_supported(AF_INET, opt))
341 			return NULL;
342 	} else {
343 		/* Does this PF support this AF? */
344 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
345 			return NULL;
346 	}
347 
348 	/* If we get this far, af is valid. */
349 	af = sctp_get_af_specific(addr->sa.sa_family);
350 
351 	if (len < af->sockaddr_len)
352 		return NULL;
353 
354 	return af;
355 }
356 
357 /* Bind a local address either to an endpoint or to an association.  */
358 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
359 {
360 	struct net *net = sock_net(sk);
361 	struct sctp_sock *sp = sctp_sk(sk);
362 	struct sctp_endpoint *ep = sp->ep;
363 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
364 	struct sctp_af *af;
365 	unsigned short snum;
366 	int ret = 0;
367 
368 	/* Common sockaddr verification. */
369 	af = sctp_sockaddr_af(sp, addr, len);
370 	if (!af) {
371 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
372 			 __func__, sk, addr, len);
373 		return -EINVAL;
374 	}
375 
376 	snum = ntohs(addr->v4.sin_port);
377 
378 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
379 		 __func__, sk, &addr->sa, bp->port, snum, len);
380 
381 	/* PF specific bind() address verification. */
382 	if (!sp->pf->bind_verify(sp, addr))
383 		return -EADDRNOTAVAIL;
384 
385 	/* We must either be unbound, or bind to the same port.
386 	 * It's OK to allow 0 ports if we are already bound.
387 	 * We'll just inhert an already bound port in this case
388 	 */
389 	if (bp->port) {
390 		if (!snum)
391 			snum = bp->port;
392 		else if (snum != bp->port) {
393 			pr_debug("%s: new port %d doesn't match existing port "
394 				 "%d\n", __func__, snum, bp->port);
395 			return -EINVAL;
396 		}
397 	}
398 
399 	if (snum && snum < inet_prot_sock(net) &&
400 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
401 		return -EACCES;
402 
403 	/* See if the address matches any of the addresses we may have
404 	 * already bound before checking against other endpoints.
405 	 */
406 	if (sctp_bind_addr_match(bp, addr, sp))
407 		return -EINVAL;
408 
409 	/* Make sure we are allowed to bind here.
410 	 * The function sctp_get_port_local() does duplicate address
411 	 * detection.
412 	 */
413 	addr->v4.sin_port = htons(snum);
414 	if ((ret = sctp_get_port_local(sk, addr))) {
415 		return -EADDRINUSE;
416 	}
417 
418 	/* Refresh ephemeral port.  */
419 	if (!bp->port)
420 		bp->port = inet_sk(sk)->inet_num;
421 
422 	/* Add the address to the bind address list.
423 	 * Use GFP_ATOMIC since BHs will be disabled.
424 	 */
425 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
426 				 SCTP_ADDR_SRC, GFP_ATOMIC);
427 
428 	/* Copy back into socket for getsockname() use. */
429 	if (!ret) {
430 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
431 		sp->pf->to_sk_saddr(addr, sk);
432 	}
433 
434 	return ret;
435 }
436 
437  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
438  *
439  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
440  * at any one time.  If a sender, after sending an ASCONF chunk, decides
441  * it needs to transfer another ASCONF Chunk, it MUST wait until the
442  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
443  * subsequent ASCONF. Note this restriction binds each side, so at any
444  * time two ASCONF may be in-transit on any given association (one sent
445  * from each endpoint).
446  */
447 static int sctp_send_asconf(struct sctp_association *asoc,
448 			    struct sctp_chunk *chunk)
449 {
450 	struct net 	*net = sock_net(asoc->base.sk);
451 	int		retval = 0;
452 
453 	/* If there is an outstanding ASCONF chunk, queue it for later
454 	 * transmission.
455 	 */
456 	if (asoc->addip_last_asconf) {
457 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
458 		goto out;
459 	}
460 
461 	/* Hold the chunk until an ASCONF_ACK is received. */
462 	sctp_chunk_hold(chunk);
463 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
464 	if (retval)
465 		sctp_chunk_free(chunk);
466 	else
467 		asoc->addip_last_asconf = chunk;
468 
469 out:
470 	return retval;
471 }
472 
473 /* Add a list of addresses as bind addresses to local endpoint or
474  * association.
475  *
476  * Basically run through each address specified in the addrs/addrcnt
477  * array/length pair, determine if it is IPv6 or IPv4 and call
478  * sctp_do_bind() on it.
479  *
480  * If any of them fails, then the operation will be reversed and the
481  * ones that were added will be removed.
482  *
483  * Only sctp_setsockopt_bindx() is supposed to call this function.
484  */
485 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
486 {
487 	int cnt;
488 	int retval = 0;
489 	void *addr_buf;
490 	struct sockaddr *sa_addr;
491 	struct sctp_af *af;
492 
493 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
494 		 addrs, addrcnt);
495 
496 	addr_buf = addrs;
497 	for (cnt = 0; cnt < addrcnt; cnt++) {
498 		/* The list may contain either IPv4 or IPv6 address;
499 		 * determine the address length for walking thru the list.
500 		 */
501 		sa_addr = addr_buf;
502 		af = sctp_get_af_specific(sa_addr->sa_family);
503 		if (!af) {
504 			retval = -EINVAL;
505 			goto err_bindx_add;
506 		}
507 
508 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
509 				      af->sockaddr_len);
510 
511 		addr_buf += af->sockaddr_len;
512 
513 err_bindx_add:
514 		if (retval < 0) {
515 			/* Failed. Cleanup the ones that have been added */
516 			if (cnt > 0)
517 				sctp_bindx_rem(sk, addrs, cnt);
518 			return retval;
519 		}
520 	}
521 
522 	return retval;
523 }
524 
525 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
526  * associations that are part of the endpoint indicating that a list of local
527  * addresses are added to the endpoint.
528  *
529  * If any of the addresses is already in the bind address list of the
530  * association, we do not send the chunk for that association.  But it will not
531  * affect other associations.
532  *
533  * Only sctp_setsockopt_bindx() is supposed to call this function.
534  */
535 static int sctp_send_asconf_add_ip(struct sock		*sk,
536 				   struct sockaddr	*addrs,
537 				   int 			addrcnt)
538 {
539 	struct net *net = sock_net(sk);
540 	struct sctp_sock		*sp;
541 	struct sctp_endpoint		*ep;
542 	struct sctp_association		*asoc;
543 	struct sctp_bind_addr		*bp;
544 	struct sctp_chunk		*chunk;
545 	struct sctp_sockaddr_entry	*laddr;
546 	union sctp_addr			*addr;
547 	union sctp_addr			saveaddr;
548 	void				*addr_buf;
549 	struct sctp_af			*af;
550 	struct list_head		*p;
551 	int 				i;
552 	int 				retval = 0;
553 
554 	if (!net->sctp.addip_enable)
555 		return retval;
556 
557 	sp = sctp_sk(sk);
558 	ep = sp->ep;
559 
560 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
561 		 __func__, sk, addrs, addrcnt);
562 
563 	list_for_each_entry(asoc, &ep->asocs, asocs) {
564 		if (!asoc->peer.asconf_capable)
565 			continue;
566 
567 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
568 			continue;
569 
570 		if (!sctp_state(asoc, ESTABLISHED))
571 			continue;
572 
573 		/* Check if any address in the packed array of addresses is
574 		 * in the bind address list of the association. If so,
575 		 * do not send the asconf chunk to its peer, but continue with
576 		 * other associations.
577 		 */
578 		addr_buf = addrs;
579 		for (i = 0; i < addrcnt; i++) {
580 			addr = addr_buf;
581 			af = sctp_get_af_specific(addr->v4.sin_family);
582 			if (!af) {
583 				retval = -EINVAL;
584 				goto out;
585 			}
586 
587 			if (sctp_assoc_lookup_laddr(asoc, addr))
588 				break;
589 
590 			addr_buf += af->sockaddr_len;
591 		}
592 		if (i < addrcnt)
593 			continue;
594 
595 		/* Use the first valid address in bind addr list of
596 		 * association as Address Parameter of ASCONF CHUNK.
597 		 */
598 		bp = &asoc->base.bind_addr;
599 		p = bp->address_list.next;
600 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
601 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
602 						   addrcnt, SCTP_PARAM_ADD_IP);
603 		if (!chunk) {
604 			retval = -ENOMEM;
605 			goto out;
606 		}
607 
608 		/* Add the new addresses to the bind address list with
609 		 * use_as_src set to 0.
610 		 */
611 		addr_buf = addrs;
612 		for (i = 0; i < addrcnt; i++) {
613 			addr = addr_buf;
614 			af = sctp_get_af_specific(addr->v4.sin_family);
615 			memcpy(&saveaddr, addr, af->sockaddr_len);
616 			retval = sctp_add_bind_addr(bp, &saveaddr,
617 						    sizeof(saveaddr),
618 						    SCTP_ADDR_NEW, GFP_ATOMIC);
619 			addr_buf += af->sockaddr_len;
620 		}
621 		if (asoc->src_out_of_asoc_ok) {
622 			struct sctp_transport *trans;
623 
624 			list_for_each_entry(trans,
625 			    &asoc->peer.transport_addr_list, transports) {
626 				/* Clear the source and route cache */
627 				sctp_transport_dst_release(trans);
628 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 				    2*asoc->pathmtu, 4380));
630 				trans->ssthresh = asoc->peer.i.a_rwnd;
631 				trans->rto = asoc->rto_initial;
632 				sctp_max_rto(asoc, trans);
633 				trans->rtt = trans->srtt = trans->rttvar = 0;
634 				sctp_transport_route(trans, NULL,
635 				    sctp_sk(asoc->base.sk));
636 			}
637 		}
638 		retval = sctp_send_asconf(asoc, chunk);
639 	}
640 
641 out:
642 	return retval;
643 }
644 
645 /* Remove a list of addresses from bind addresses list.  Do not remove the
646  * last address.
647  *
648  * Basically run through each address specified in the addrs/addrcnt
649  * array/length pair, determine if it is IPv6 or IPv4 and call
650  * sctp_del_bind() on it.
651  *
652  * If any of them fails, then the operation will be reversed and the
653  * ones that were removed will be added back.
654  *
655  * At least one address has to be left; if only one address is
656  * available, the operation will return -EBUSY.
657  *
658  * Only sctp_setsockopt_bindx() is supposed to call this function.
659  */
660 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
661 {
662 	struct sctp_sock *sp = sctp_sk(sk);
663 	struct sctp_endpoint *ep = sp->ep;
664 	int cnt;
665 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
666 	int retval = 0;
667 	void *addr_buf;
668 	union sctp_addr *sa_addr;
669 	struct sctp_af *af;
670 
671 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
672 		 __func__, sk, addrs, addrcnt);
673 
674 	addr_buf = addrs;
675 	for (cnt = 0; cnt < addrcnt; cnt++) {
676 		/* If the bind address list is empty or if there is only one
677 		 * bind address, there is nothing more to be removed (we need
678 		 * at least one address here).
679 		 */
680 		if (list_empty(&bp->address_list) ||
681 		    (sctp_list_single_entry(&bp->address_list))) {
682 			retval = -EBUSY;
683 			goto err_bindx_rem;
684 		}
685 
686 		sa_addr = addr_buf;
687 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
688 		if (!af) {
689 			retval = -EINVAL;
690 			goto err_bindx_rem;
691 		}
692 
693 		if (!af->addr_valid(sa_addr, sp, NULL)) {
694 			retval = -EADDRNOTAVAIL;
695 			goto err_bindx_rem;
696 		}
697 
698 		if (sa_addr->v4.sin_port &&
699 		    sa_addr->v4.sin_port != htons(bp->port)) {
700 			retval = -EINVAL;
701 			goto err_bindx_rem;
702 		}
703 
704 		if (!sa_addr->v4.sin_port)
705 			sa_addr->v4.sin_port = htons(bp->port);
706 
707 		/* FIXME - There is probably a need to check if sk->sk_saddr and
708 		 * sk->sk_rcv_addr are currently set to one of the addresses to
709 		 * be removed. This is something which needs to be looked into
710 		 * when we are fixing the outstanding issues with multi-homing
711 		 * socket routing and failover schemes. Refer to comments in
712 		 * sctp_do_bind(). -daisy
713 		 */
714 		retval = sctp_del_bind_addr(bp, sa_addr);
715 
716 		addr_buf += af->sockaddr_len;
717 err_bindx_rem:
718 		if (retval < 0) {
719 			/* Failed. Add the ones that has been removed back */
720 			if (cnt > 0)
721 				sctp_bindx_add(sk, addrs, cnt);
722 			return retval;
723 		}
724 	}
725 
726 	return retval;
727 }
728 
729 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
730  * the associations that are part of the endpoint indicating that a list of
731  * local addresses are removed from the endpoint.
732  *
733  * If any of the addresses is already in the bind address list of the
734  * association, we do not send the chunk for that association.  But it will not
735  * affect other associations.
736  *
737  * Only sctp_setsockopt_bindx() is supposed to call this function.
738  */
739 static int sctp_send_asconf_del_ip(struct sock		*sk,
740 				   struct sockaddr	*addrs,
741 				   int			addrcnt)
742 {
743 	struct net *net = sock_net(sk);
744 	struct sctp_sock	*sp;
745 	struct sctp_endpoint	*ep;
746 	struct sctp_association	*asoc;
747 	struct sctp_transport	*transport;
748 	struct sctp_bind_addr	*bp;
749 	struct sctp_chunk	*chunk;
750 	union sctp_addr		*laddr;
751 	void			*addr_buf;
752 	struct sctp_af		*af;
753 	struct sctp_sockaddr_entry *saddr;
754 	int 			i;
755 	int 			retval = 0;
756 	int			stored = 0;
757 
758 	chunk = NULL;
759 	if (!net->sctp.addip_enable)
760 		return retval;
761 
762 	sp = sctp_sk(sk);
763 	ep = sp->ep;
764 
765 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 		 __func__, sk, addrs, addrcnt);
767 
768 	list_for_each_entry(asoc, &ep->asocs, asocs) {
769 
770 		if (!asoc->peer.asconf_capable)
771 			continue;
772 
773 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 			continue;
775 
776 		if (!sctp_state(asoc, ESTABLISHED))
777 			continue;
778 
779 		/* Check if any address in the packed array of addresses is
780 		 * not present in the bind address list of the association.
781 		 * If so, do not send the asconf chunk to its peer, but
782 		 * continue with other associations.
783 		 */
784 		addr_buf = addrs;
785 		for (i = 0; i < addrcnt; i++) {
786 			laddr = addr_buf;
787 			af = sctp_get_af_specific(laddr->v4.sin_family);
788 			if (!af) {
789 				retval = -EINVAL;
790 				goto out;
791 			}
792 
793 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 				break;
795 
796 			addr_buf += af->sockaddr_len;
797 		}
798 		if (i < addrcnt)
799 			continue;
800 
801 		/* Find one address in the association's bind address list
802 		 * that is not in the packed array of addresses. This is to
803 		 * make sure that we do not delete all the addresses in the
804 		 * association.
805 		 */
806 		bp = &asoc->base.bind_addr;
807 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 					       addrcnt, sp);
809 		if ((laddr == NULL) && (addrcnt == 1)) {
810 			if (asoc->asconf_addr_del_pending)
811 				continue;
812 			asoc->asconf_addr_del_pending =
813 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 			if (asoc->asconf_addr_del_pending == NULL) {
815 				retval = -ENOMEM;
816 				goto out;
817 			}
818 			asoc->asconf_addr_del_pending->sa.sa_family =
819 				    addrs->sa_family;
820 			asoc->asconf_addr_del_pending->v4.sin_port =
821 				    htons(bp->port);
822 			if (addrs->sa_family == AF_INET) {
823 				struct sockaddr_in *sin;
824 
825 				sin = (struct sockaddr_in *)addrs;
826 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 			} else if (addrs->sa_family == AF_INET6) {
828 				struct sockaddr_in6 *sin6;
829 
830 				sin6 = (struct sockaddr_in6 *)addrs;
831 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 			}
833 
834 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 				 asoc->asconf_addr_del_pending);
837 
838 			asoc->src_out_of_asoc_ok = 1;
839 			stored = 1;
840 			goto skip_mkasconf;
841 		}
842 
843 		if (laddr == NULL)
844 			return -EINVAL;
845 
846 		/* We do not need RCU protection throughout this loop
847 		 * because this is done under a socket lock from the
848 		 * setsockopt call.
849 		 */
850 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 						   SCTP_PARAM_DEL_IP);
852 		if (!chunk) {
853 			retval = -ENOMEM;
854 			goto out;
855 		}
856 
857 skip_mkasconf:
858 		/* Reset use_as_src flag for the addresses in the bind address
859 		 * list that are to be deleted.
860 		 */
861 		addr_buf = addrs;
862 		for (i = 0; i < addrcnt; i++) {
863 			laddr = addr_buf;
864 			af = sctp_get_af_specific(laddr->v4.sin_family);
865 			list_for_each_entry(saddr, &bp->address_list, list) {
866 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 					saddr->state = SCTP_ADDR_DEL;
868 			}
869 			addr_buf += af->sockaddr_len;
870 		}
871 
872 		/* Update the route and saddr entries for all the transports
873 		 * as some of the addresses in the bind address list are
874 		 * about to be deleted and cannot be used as source addresses.
875 		 */
876 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 					transports) {
878 			sctp_transport_dst_release(transport);
879 			sctp_transport_route(transport, NULL,
880 					     sctp_sk(asoc->base.sk));
881 		}
882 
883 		if (stored)
884 			/* We don't need to transmit ASCONF */
885 			continue;
886 		retval = sctp_send_asconf(asoc, chunk);
887 	}
888 out:
889 	return retval;
890 }
891 
892 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
893 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
894 {
895 	struct sock *sk = sctp_opt2sk(sp);
896 	union sctp_addr *addr;
897 	struct sctp_af *af;
898 
899 	/* It is safe to write port space in caller. */
900 	addr = &addrw->a;
901 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
902 	af = sctp_get_af_specific(addr->sa.sa_family);
903 	if (!af)
904 		return -EINVAL;
905 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
906 		return -EINVAL;
907 
908 	if (addrw->state == SCTP_ADDR_NEW)
909 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
910 	else
911 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
912 }
913 
914 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
915  *
916  * API 8.1
917  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
918  *                int flags);
919  *
920  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
921  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
922  * or IPv6 addresses.
923  *
924  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
925  * Section 3.1.2 for this usage.
926  *
927  * addrs is a pointer to an array of one or more socket addresses. Each
928  * address is contained in its appropriate structure (i.e. struct
929  * sockaddr_in or struct sockaddr_in6) the family of the address type
930  * must be used to distinguish the address length (note that this
931  * representation is termed a "packed array" of addresses). The caller
932  * specifies the number of addresses in the array with addrcnt.
933  *
934  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
935  * -1, and sets errno to the appropriate error code.
936  *
937  * For SCTP, the port given in each socket address must be the same, or
938  * sctp_bindx() will fail, setting errno to EINVAL.
939  *
940  * The flags parameter is formed from the bitwise OR of zero or more of
941  * the following currently defined flags:
942  *
943  * SCTP_BINDX_ADD_ADDR
944  *
945  * SCTP_BINDX_REM_ADDR
946  *
947  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
948  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
949  * addresses from the association. The two flags are mutually exclusive;
950  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
951  * not remove all addresses from an association; sctp_bindx() will
952  * reject such an attempt with EINVAL.
953  *
954  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
955  * additional addresses with an endpoint after calling bind().  Or use
956  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
957  * socket is associated with so that no new association accepted will be
958  * associated with those addresses. If the endpoint supports dynamic
959  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
960  * endpoint to send the appropriate message to the peer to change the
961  * peers address lists.
962  *
963  * Adding and removing addresses from a connected association is
964  * optional functionality. Implementations that do not support this
965  * functionality should return EOPNOTSUPP.
966  *
967  * Basically do nothing but copying the addresses from user to kernel
968  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
969  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
970  * from userspace.
971  *
972  * We don't use copy_from_user() for optimization: we first do the
973  * sanity checks (buffer size -fast- and access check-healthy
974  * pointer); if all of those succeed, then we can alloc the memory
975  * (expensive operation) needed to copy the data to kernel. Then we do
976  * the copying without checking the user space area
977  * (__copy_from_user()).
978  *
979  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
980  * it.
981  *
982  * sk        The sk of the socket
983  * addrs     The pointer to the addresses in user land
984  * addrssize Size of the addrs buffer
985  * op        Operation to perform (add or remove, see the flags of
986  *           sctp_bindx)
987  *
988  * Returns 0 if ok, <0 errno code on error.
989  */
990 static int sctp_setsockopt_bindx(struct sock *sk,
991 				 struct sockaddr __user *addrs,
992 				 int addrs_size, int op)
993 {
994 	struct sockaddr *kaddrs;
995 	int err;
996 	int addrcnt = 0;
997 	int walk_size = 0;
998 	struct sockaddr *sa_addr;
999 	void *addr_buf;
1000 	struct sctp_af *af;
1001 
1002 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1003 		 __func__, sk, addrs, addrs_size, op);
1004 
1005 	if (unlikely(addrs_size <= 0))
1006 		return -EINVAL;
1007 
1008 	/* Check the user passed a healthy pointer.  */
1009 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1010 		return -EFAULT;
1011 
1012 	/* Alloc space for the address array in kernel memory.  */
1013 	kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
1014 	if (unlikely(!kaddrs))
1015 		return -ENOMEM;
1016 
1017 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1018 		kfree(kaddrs);
1019 		return -EFAULT;
1020 	}
1021 
1022 	/* Walk through the addrs buffer and count the number of addresses. */
1023 	addr_buf = kaddrs;
1024 	while (walk_size < addrs_size) {
1025 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1026 			kfree(kaddrs);
1027 			return -EINVAL;
1028 		}
1029 
1030 		sa_addr = addr_buf;
1031 		af = sctp_get_af_specific(sa_addr->sa_family);
1032 
1033 		/* If the address family is not supported or if this address
1034 		 * causes the address buffer to overflow return EINVAL.
1035 		 */
1036 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1037 			kfree(kaddrs);
1038 			return -EINVAL;
1039 		}
1040 		addrcnt++;
1041 		addr_buf += af->sockaddr_len;
1042 		walk_size += af->sockaddr_len;
1043 	}
1044 
1045 	/* Do the work. */
1046 	switch (op) {
1047 	case SCTP_BINDX_ADD_ADDR:
1048 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1049 		if (err)
1050 			goto out;
1051 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1052 		break;
1053 
1054 	case SCTP_BINDX_REM_ADDR:
1055 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1056 		if (err)
1057 			goto out;
1058 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1059 		break;
1060 
1061 	default:
1062 		err = -EINVAL;
1063 		break;
1064 	}
1065 
1066 out:
1067 	kfree(kaddrs);
1068 
1069 	return err;
1070 }
1071 
1072 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1073  *
1074  * Common routine for handling connect() and sctp_connectx().
1075  * Connect will come in with just a single address.
1076  */
1077 static int __sctp_connect(struct sock *sk,
1078 			  struct sockaddr *kaddrs,
1079 			  int addrs_size,
1080 			  sctp_assoc_t *assoc_id)
1081 {
1082 	struct net *net = sock_net(sk);
1083 	struct sctp_sock *sp;
1084 	struct sctp_endpoint *ep;
1085 	struct sctp_association *asoc = NULL;
1086 	struct sctp_association *asoc2;
1087 	struct sctp_transport *transport;
1088 	union sctp_addr to;
1089 	enum sctp_scope scope;
1090 	long timeo;
1091 	int err = 0;
1092 	int addrcnt = 0;
1093 	int walk_size = 0;
1094 	union sctp_addr *sa_addr = NULL;
1095 	void *addr_buf;
1096 	unsigned short port;
1097 	unsigned int f_flags = 0;
1098 
1099 	sp = sctp_sk(sk);
1100 	ep = sp->ep;
1101 
1102 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1103 	 * state - UDP-style peeled off socket or a TCP-style socket that
1104 	 * is already connected.
1105 	 * It cannot be done even on a TCP-style listening socket.
1106 	 */
1107 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1108 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1109 		err = -EISCONN;
1110 		goto out_free;
1111 	}
1112 
1113 	/* Walk through the addrs buffer and count the number of addresses. */
1114 	addr_buf = kaddrs;
1115 	while (walk_size < addrs_size) {
1116 		struct sctp_af *af;
1117 
1118 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		sa_addr = addr_buf;
1124 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1125 
1126 		/* If the address family is not supported or if this address
1127 		 * causes the address buffer to overflow return EINVAL.
1128 		 */
1129 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1130 			err = -EINVAL;
1131 			goto out_free;
1132 		}
1133 
1134 		port = ntohs(sa_addr->v4.sin_port);
1135 
1136 		/* Save current address so we can work with it */
1137 		memcpy(&to, sa_addr, af->sockaddr_len);
1138 
1139 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1140 		if (err)
1141 			goto out_free;
1142 
1143 		/* Make sure the destination port is correctly set
1144 		 * in all addresses.
1145 		 */
1146 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1147 			err = -EINVAL;
1148 			goto out_free;
1149 		}
1150 
1151 		/* Check if there already is a matching association on the
1152 		 * endpoint (other than the one created here).
1153 		 */
1154 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1155 		if (asoc2 && asoc2 != asoc) {
1156 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1157 				err = -EISCONN;
1158 			else
1159 				err = -EALREADY;
1160 			goto out_free;
1161 		}
1162 
1163 		/* If we could not find a matching association on the endpoint,
1164 		 * make sure that there is no peeled-off association matching
1165 		 * the peer address even on another socket.
1166 		 */
1167 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1168 			err = -EADDRNOTAVAIL;
1169 			goto out_free;
1170 		}
1171 
1172 		if (!asoc) {
1173 			/* If a bind() or sctp_bindx() is not called prior to
1174 			 * an sctp_connectx() call, the system picks an
1175 			 * ephemeral port and will choose an address set
1176 			 * equivalent to binding with a wildcard address.
1177 			 */
1178 			if (!ep->base.bind_addr.port) {
1179 				if (sctp_autobind(sk)) {
1180 					err = -EAGAIN;
1181 					goto out_free;
1182 				}
1183 			} else {
1184 				/*
1185 				 * If an unprivileged user inherits a 1-many
1186 				 * style socket with open associations on a
1187 				 * privileged port, it MAY be permitted to
1188 				 * accept new associations, but it SHOULD NOT
1189 				 * be permitted to open new associations.
1190 				 */
1191 				if (ep->base.bind_addr.port <
1192 				    inet_prot_sock(net) &&
1193 				    !ns_capable(net->user_ns,
1194 				    CAP_NET_BIND_SERVICE)) {
1195 					err = -EACCES;
1196 					goto out_free;
1197 				}
1198 			}
1199 
1200 			scope = sctp_scope(&to);
1201 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1202 			if (!asoc) {
1203 				err = -ENOMEM;
1204 				goto out_free;
1205 			}
1206 
1207 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1208 							      GFP_KERNEL);
1209 			if (err < 0) {
1210 				goto out_free;
1211 			}
1212 
1213 		}
1214 
1215 		/* Prime the peer's transport structures.  */
1216 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1217 						SCTP_UNKNOWN);
1218 		if (!transport) {
1219 			err = -ENOMEM;
1220 			goto out_free;
1221 		}
1222 
1223 		addrcnt++;
1224 		addr_buf += af->sockaddr_len;
1225 		walk_size += af->sockaddr_len;
1226 	}
1227 
1228 	/* In case the user of sctp_connectx() wants an association
1229 	 * id back, assign one now.
1230 	 */
1231 	if (assoc_id) {
1232 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1233 		if (err < 0)
1234 			goto out_free;
1235 	}
1236 
1237 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1238 	if (err < 0) {
1239 		goto out_free;
1240 	}
1241 
1242 	/* Initialize sk's dport and daddr for getpeername() */
1243 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1244 	sp->pf->to_sk_daddr(sa_addr, sk);
1245 	sk->sk_err = 0;
1246 
1247 	/* in-kernel sockets don't generally have a file allocated to them
1248 	 * if all they do is call sock_create_kern().
1249 	 */
1250 	if (sk->sk_socket->file)
1251 		f_flags = sk->sk_socket->file->f_flags;
1252 
1253 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1254 
1255 	if (assoc_id)
1256 		*assoc_id = asoc->assoc_id;
1257 	err = sctp_wait_for_connect(asoc, &timeo);
1258 	/* Note: the asoc may be freed after the return of
1259 	 * sctp_wait_for_connect.
1260 	 */
1261 
1262 	/* Don't free association on exit. */
1263 	asoc = NULL;
1264 
1265 out_free:
1266 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1267 		 __func__, asoc, kaddrs, err);
1268 
1269 	if (asoc) {
1270 		/* sctp_primitive_ASSOCIATE may have added this association
1271 		 * To the hash table, try to unhash it, just in case, its a noop
1272 		 * if it wasn't hashed so we're safe
1273 		 */
1274 		sctp_association_free(asoc);
1275 	}
1276 	return err;
1277 }
1278 
1279 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1280  *
1281  * API 8.9
1282  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1283  * 			sctp_assoc_t *asoc);
1284  *
1285  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1286  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1287  * or IPv6 addresses.
1288  *
1289  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1290  * Section 3.1.2 for this usage.
1291  *
1292  * addrs is a pointer to an array of one or more socket addresses. Each
1293  * address is contained in its appropriate structure (i.e. struct
1294  * sockaddr_in or struct sockaddr_in6) the family of the address type
1295  * must be used to distengish the address length (note that this
1296  * representation is termed a "packed array" of addresses). The caller
1297  * specifies the number of addresses in the array with addrcnt.
1298  *
1299  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1300  * the association id of the new association.  On failure, sctp_connectx()
1301  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1302  * is not touched by the kernel.
1303  *
1304  * For SCTP, the port given in each socket address must be the same, or
1305  * sctp_connectx() will fail, setting errno to EINVAL.
1306  *
1307  * An application can use sctp_connectx to initiate an association with
1308  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1309  * allows a caller to specify multiple addresses at which a peer can be
1310  * reached.  The way the SCTP stack uses the list of addresses to set up
1311  * the association is implementation dependent.  This function only
1312  * specifies that the stack will try to make use of all the addresses in
1313  * the list when needed.
1314  *
1315  * Note that the list of addresses passed in is only used for setting up
1316  * the association.  It does not necessarily equal the set of addresses
1317  * the peer uses for the resulting association.  If the caller wants to
1318  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1319  * retrieve them after the association has been set up.
1320  *
1321  * Basically do nothing but copying the addresses from user to kernel
1322  * land and invoking either sctp_connectx(). This is used for tunneling
1323  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1324  *
1325  * We don't use copy_from_user() for optimization: we first do the
1326  * sanity checks (buffer size -fast- and access check-healthy
1327  * pointer); if all of those succeed, then we can alloc the memory
1328  * (expensive operation) needed to copy the data to kernel. Then we do
1329  * the copying without checking the user space area
1330  * (__copy_from_user()).
1331  *
1332  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1333  * it.
1334  *
1335  * sk        The sk of the socket
1336  * addrs     The pointer to the addresses in user land
1337  * addrssize Size of the addrs buffer
1338  *
1339  * Returns >=0 if ok, <0 errno code on error.
1340  */
1341 static int __sctp_setsockopt_connectx(struct sock *sk,
1342 				      struct sockaddr __user *addrs,
1343 				      int addrs_size,
1344 				      sctp_assoc_t *assoc_id)
1345 {
1346 	struct sockaddr *kaddrs;
1347 	gfp_t gfp = GFP_KERNEL;
1348 	int err = 0;
1349 
1350 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1351 		 __func__, sk, addrs, addrs_size);
1352 
1353 	if (unlikely(addrs_size <= 0))
1354 		return -EINVAL;
1355 
1356 	/* Check the user passed a healthy pointer.  */
1357 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1358 		return -EFAULT;
1359 
1360 	/* Alloc space for the address array in kernel memory.  */
1361 	if (sk->sk_socket->file)
1362 		gfp = GFP_USER | __GFP_NOWARN;
1363 	kaddrs = kmalloc(addrs_size, gfp);
1364 	if (unlikely(!kaddrs))
1365 		return -ENOMEM;
1366 
1367 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1368 		err = -EFAULT;
1369 	} else {
1370 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1371 	}
1372 
1373 	kfree(kaddrs);
1374 
1375 	return err;
1376 }
1377 
1378 /*
1379  * This is an older interface.  It's kept for backward compatibility
1380  * to the option that doesn't provide association id.
1381  */
1382 static int sctp_setsockopt_connectx_old(struct sock *sk,
1383 					struct sockaddr __user *addrs,
1384 					int addrs_size)
1385 {
1386 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1387 }
1388 
1389 /*
1390  * New interface for the API.  The since the API is done with a socket
1391  * option, to make it simple we feed back the association id is as a return
1392  * indication to the call.  Error is always negative and association id is
1393  * always positive.
1394  */
1395 static int sctp_setsockopt_connectx(struct sock *sk,
1396 				    struct sockaddr __user *addrs,
1397 				    int addrs_size)
1398 {
1399 	sctp_assoc_t assoc_id = 0;
1400 	int err = 0;
1401 
1402 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1403 
1404 	if (err)
1405 		return err;
1406 	else
1407 		return assoc_id;
1408 }
1409 
1410 /*
1411  * New (hopefully final) interface for the API.
1412  * We use the sctp_getaddrs_old structure so that use-space library
1413  * can avoid any unnecessary allocations. The only different part
1414  * is that we store the actual length of the address buffer into the
1415  * addrs_num structure member. That way we can re-use the existing
1416  * code.
1417  */
1418 #ifdef CONFIG_COMPAT
1419 struct compat_sctp_getaddrs_old {
1420 	sctp_assoc_t	assoc_id;
1421 	s32		addr_num;
1422 	compat_uptr_t	addrs;		/* struct sockaddr * */
1423 };
1424 #endif
1425 
1426 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1427 				     char __user *optval,
1428 				     int __user *optlen)
1429 {
1430 	struct sctp_getaddrs_old param;
1431 	sctp_assoc_t assoc_id = 0;
1432 	int err = 0;
1433 
1434 #ifdef CONFIG_COMPAT
1435 	if (in_compat_syscall()) {
1436 		struct compat_sctp_getaddrs_old param32;
1437 
1438 		if (len < sizeof(param32))
1439 			return -EINVAL;
1440 		if (copy_from_user(&param32, optval, sizeof(param32)))
1441 			return -EFAULT;
1442 
1443 		param.assoc_id = param32.assoc_id;
1444 		param.addr_num = param32.addr_num;
1445 		param.addrs = compat_ptr(param32.addrs);
1446 	} else
1447 #endif
1448 	{
1449 		if (len < sizeof(param))
1450 			return -EINVAL;
1451 		if (copy_from_user(&param, optval, sizeof(param)))
1452 			return -EFAULT;
1453 	}
1454 
1455 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1456 					 param.addrs, param.addr_num,
1457 					 &assoc_id);
1458 	if (err == 0 || err == -EINPROGRESS) {
1459 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1460 			return -EFAULT;
1461 		if (put_user(sizeof(assoc_id), optlen))
1462 			return -EFAULT;
1463 	}
1464 
1465 	return err;
1466 }
1467 
1468 /* API 3.1.4 close() - UDP Style Syntax
1469  * Applications use close() to perform graceful shutdown (as described in
1470  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1471  * by a UDP-style socket.
1472  *
1473  * The syntax is
1474  *
1475  *   ret = close(int sd);
1476  *
1477  *   sd      - the socket descriptor of the associations to be closed.
1478  *
1479  * To gracefully shutdown a specific association represented by the
1480  * UDP-style socket, an application should use the sendmsg() call,
1481  * passing no user data, but including the appropriate flag in the
1482  * ancillary data (see Section xxxx).
1483  *
1484  * If sd in the close() call is a branched-off socket representing only
1485  * one association, the shutdown is performed on that association only.
1486  *
1487  * 4.1.6 close() - TCP Style Syntax
1488  *
1489  * Applications use close() to gracefully close down an association.
1490  *
1491  * The syntax is:
1492  *
1493  *    int close(int sd);
1494  *
1495  *      sd      - the socket descriptor of the association to be closed.
1496  *
1497  * After an application calls close() on a socket descriptor, no further
1498  * socket operations will succeed on that descriptor.
1499  *
1500  * API 7.1.4 SO_LINGER
1501  *
1502  * An application using the TCP-style socket can use this option to
1503  * perform the SCTP ABORT primitive.  The linger option structure is:
1504  *
1505  *  struct  linger {
1506  *     int     l_onoff;                // option on/off
1507  *     int     l_linger;               // linger time
1508  * };
1509  *
1510  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1511  * to 0, calling close() is the same as the ABORT primitive.  If the
1512  * value is set to a negative value, the setsockopt() call will return
1513  * an error.  If the value is set to a positive value linger_time, the
1514  * close() can be blocked for at most linger_time ms.  If the graceful
1515  * shutdown phase does not finish during this period, close() will
1516  * return but the graceful shutdown phase continues in the system.
1517  */
1518 static void sctp_close(struct sock *sk, long timeout)
1519 {
1520 	struct net *net = sock_net(sk);
1521 	struct sctp_endpoint *ep;
1522 	struct sctp_association *asoc;
1523 	struct list_head *pos, *temp;
1524 	unsigned int data_was_unread;
1525 
1526 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1527 
1528 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1529 	sk->sk_shutdown = SHUTDOWN_MASK;
1530 	sk->sk_state = SCTP_SS_CLOSING;
1531 
1532 	ep = sctp_sk(sk)->ep;
1533 
1534 	/* Clean up any skbs sitting on the receive queue.  */
1535 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1536 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1537 
1538 	/* Walk all associations on an endpoint.  */
1539 	list_for_each_safe(pos, temp, &ep->asocs) {
1540 		asoc = list_entry(pos, struct sctp_association, asocs);
1541 
1542 		if (sctp_style(sk, TCP)) {
1543 			/* A closed association can still be in the list if
1544 			 * it belongs to a TCP-style listening socket that is
1545 			 * not yet accepted. If so, free it. If not, send an
1546 			 * ABORT or SHUTDOWN based on the linger options.
1547 			 */
1548 			if (sctp_state(asoc, CLOSED)) {
1549 				sctp_association_free(asoc);
1550 				continue;
1551 			}
1552 		}
1553 
1554 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1555 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1556 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1557 			struct sctp_chunk *chunk;
1558 
1559 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1560 			sctp_primitive_ABORT(net, asoc, chunk);
1561 		} else
1562 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1563 	}
1564 
1565 	/* On a TCP-style socket, block for at most linger_time if set. */
1566 	if (sctp_style(sk, TCP) && timeout)
1567 		sctp_wait_for_close(sk, timeout);
1568 
1569 	/* This will run the backlog queue.  */
1570 	release_sock(sk);
1571 
1572 	/* Supposedly, no process has access to the socket, but
1573 	 * the net layers still may.
1574 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1575 	 * held and that should be grabbed before socket lock.
1576 	 */
1577 	spin_lock_bh(&net->sctp.addr_wq_lock);
1578 	bh_lock_sock_nested(sk);
1579 
1580 	/* Hold the sock, since sk_common_release() will put sock_put()
1581 	 * and we have just a little more cleanup.
1582 	 */
1583 	sock_hold(sk);
1584 	sk_common_release(sk);
1585 
1586 	bh_unlock_sock(sk);
1587 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1588 
1589 	sock_put(sk);
1590 
1591 	SCTP_DBG_OBJCNT_DEC(sock);
1592 }
1593 
1594 /* Handle EPIPE error. */
1595 static int sctp_error(struct sock *sk, int flags, int err)
1596 {
1597 	if (err == -EPIPE)
1598 		err = sock_error(sk) ? : -EPIPE;
1599 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1600 		send_sig(SIGPIPE, current, 0);
1601 	return err;
1602 }
1603 
1604 /* API 3.1.3 sendmsg() - UDP Style Syntax
1605  *
1606  * An application uses sendmsg() and recvmsg() calls to transmit data to
1607  * and receive data from its peer.
1608  *
1609  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1610  *                  int flags);
1611  *
1612  *  socket  - the socket descriptor of the endpoint.
1613  *  message - pointer to the msghdr structure which contains a single
1614  *            user message and possibly some ancillary data.
1615  *
1616  *            See Section 5 for complete description of the data
1617  *            structures.
1618  *
1619  *  flags   - flags sent or received with the user message, see Section
1620  *            5 for complete description of the flags.
1621  *
1622  * Note:  This function could use a rewrite especially when explicit
1623  * connect support comes in.
1624  */
1625 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1626 
1627 static int sctp_msghdr_parse(const struct msghdr *msg,
1628 			     struct sctp_cmsgs *cmsgs);
1629 
1630 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1631 {
1632 	struct net *net = sock_net(sk);
1633 	struct sctp_sock *sp;
1634 	struct sctp_endpoint *ep;
1635 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1636 	struct sctp_transport *transport, *chunk_tp;
1637 	struct sctp_chunk *chunk;
1638 	union sctp_addr to;
1639 	struct sockaddr *msg_name = NULL;
1640 	struct sctp_sndrcvinfo default_sinfo;
1641 	struct sctp_sndrcvinfo *sinfo;
1642 	struct sctp_initmsg *sinit;
1643 	sctp_assoc_t associd = 0;
1644 	struct sctp_cmsgs cmsgs = { NULL };
1645 	enum sctp_scope scope;
1646 	bool fill_sinfo_ttl = false, wait_connect = false;
1647 	struct sctp_datamsg *datamsg;
1648 	int msg_flags = msg->msg_flags;
1649 	__u16 sinfo_flags = 0;
1650 	long timeo;
1651 	int err;
1652 
1653 	err = 0;
1654 	sp = sctp_sk(sk);
1655 	ep = sp->ep;
1656 
1657 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1658 		 msg, msg_len, ep);
1659 
1660 	/* We cannot send a message over a TCP-style listening socket. */
1661 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1662 		err = -EPIPE;
1663 		goto out_nounlock;
1664 	}
1665 
1666 	/* Parse out the SCTP CMSGs.  */
1667 	err = sctp_msghdr_parse(msg, &cmsgs);
1668 	if (err) {
1669 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1670 		goto out_nounlock;
1671 	}
1672 
1673 	/* Fetch the destination address for this packet.  This
1674 	 * address only selects the association--it is not necessarily
1675 	 * the address we will send to.
1676 	 * For a peeled-off socket, msg_name is ignored.
1677 	 */
1678 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1679 		int msg_namelen = msg->msg_namelen;
1680 
1681 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1682 				       msg_namelen);
1683 		if (err)
1684 			return err;
1685 
1686 		if (msg_namelen > sizeof(to))
1687 			msg_namelen = sizeof(to);
1688 		memcpy(&to, msg->msg_name, msg_namelen);
1689 		msg_name = msg->msg_name;
1690 	}
1691 
1692 	sinit = cmsgs.init;
1693 	if (cmsgs.sinfo != NULL) {
1694 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1695 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1696 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1697 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1698 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1699 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1700 
1701 		sinfo = &default_sinfo;
1702 		fill_sinfo_ttl = true;
1703 	} else {
1704 		sinfo = cmsgs.srinfo;
1705 	}
1706 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1707 	if (sinfo) {
1708 		sinfo_flags = sinfo->sinfo_flags;
1709 		associd = sinfo->sinfo_assoc_id;
1710 	}
1711 
1712 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1713 		 msg_len, sinfo_flags);
1714 
1715 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1716 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1717 		err = -EINVAL;
1718 		goto out_nounlock;
1719 	}
1720 
1721 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1722 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1723 	 * If SCTP_ABORT is set, the message length could be non zero with
1724 	 * the msg_iov set to the user abort reason.
1725 	 */
1726 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1727 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1728 		err = -EINVAL;
1729 		goto out_nounlock;
1730 	}
1731 
1732 	/* If SCTP_ADDR_OVER is set, there must be an address
1733 	 * specified in msg_name.
1734 	 */
1735 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1736 		err = -EINVAL;
1737 		goto out_nounlock;
1738 	}
1739 
1740 	transport = NULL;
1741 
1742 	pr_debug("%s: about to look up association\n", __func__);
1743 
1744 	lock_sock(sk);
1745 
1746 	/* If a msg_name has been specified, assume this is to be used.  */
1747 	if (msg_name) {
1748 		/* Look for a matching association on the endpoint. */
1749 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1750 
1751 		/* If we could not find a matching association on the
1752 		 * endpoint, make sure that it is not a TCP-style
1753 		 * socket that already has an association or there is
1754 		 * no peeled-off association on another socket.
1755 		 */
1756 		if (!asoc &&
1757 		    ((sctp_style(sk, TCP) &&
1758 		      (sctp_sstate(sk, ESTABLISHED) ||
1759 		       sctp_sstate(sk, CLOSING))) ||
1760 		     sctp_endpoint_is_peeled_off(ep, &to))) {
1761 			err = -EADDRNOTAVAIL;
1762 			goto out_unlock;
1763 		}
1764 	} else {
1765 		asoc = sctp_id2assoc(sk, associd);
1766 		if (!asoc) {
1767 			err = -EPIPE;
1768 			goto out_unlock;
1769 		}
1770 	}
1771 
1772 	if (asoc) {
1773 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1774 
1775 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1776 		 * socket that has an association in CLOSED state. This can
1777 		 * happen when an accepted socket has an association that is
1778 		 * already CLOSED.
1779 		 */
1780 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1781 			err = -EPIPE;
1782 			goto out_unlock;
1783 		}
1784 
1785 		if (sinfo_flags & SCTP_EOF) {
1786 			pr_debug("%s: shutting down association:%p\n",
1787 				 __func__, asoc);
1788 
1789 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1790 			err = 0;
1791 			goto out_unlock;
1792 		}
1793 		if (sinfo_flags & SCTP_ABORT) {
1794 
1795 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1796 			if (!chunk) {
1797 				err = -ENOMEM;
1798 				goto out_unlock;
1799 			}
1800 
1801 			pr_debug("%s: aborting association:%p\n",
1802 				 __func__, asoc);
1803 
1804 			sctp_primitive_ABORT(net, asoc, chunk);
1805 			err = 0;
1806 			goto out_unlock;
1807 		}
1808 	}
1809 
1810 	/* Do we need to create the association?  */
1811 	if (!asoc) {
1812 		pr_debug("%s: there is no association yet\n", __func__);
1813 
1814 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1815 			err = -EINVAL;
1816 			goto out_unlock;
1817 		}
1818 
1819 		/* Check for invalid stream against the stream counts,
1820 		 * either the default or the user specified stream counts.
1821 		 */
1822 		if (sinfo) {
1823 			if (!sinit || !sinit->sinit_num_ostreams) {
1824 				/* Check against the defaults. */
1825 				if (sinfo->sinfo_stream >=
1826 				    sp->initmsg.sinit_num_ostreams) {
1827 					err = -EINVAL;
1828 					goto out_unlock;
1829 				}
1830 			} else {
1831 				/* Check against the requested.  */
1832 				if (sinfo->sinfo_stream >=
1833 				    sinit->sinit_num_ostreams) {
1834 					err = -EINVAL;
1835 					goto out_unlock;
1836 				}
1837 			}
1838 		}
1839 
1840 		/*
1841 		 * API 3.1.2 bind() - UDP Style Syntax
1842 		 * If a bind() or sctp_bindx() is not called prior to a
1843 		 * sendmsg() call that initiates a new association, the
1844 		 * system picks an ephemeral port and will choose an address
1845 		 * set equivalent to binding with a wildcard address.
1846 		 */
1847 		if (!ep->base.bind_addr.port) {
1848 			if (sctp_autobind(sk)) {
1849 				err = -EAGAIN;
1850 				goto out_unlock;
1851 			}
1852 		} else {
1853 			/*
1854 			 * If an unprivileged user inherits a one-to-many
1855 			 * style socket with open associations on a privileged
1856 			 * port, it MAY be permitted to accept new associations,
1857 			 * but it SHOULD NOT be permitted to open new
1858 			 * associations.
1859 			 */
1860 			if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1861 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1862 				err = -EACCES;
1863 				goto out_unlock;
1864 			}
1865 		}
1866 
1867 		scope = sctp_scope(&to);
1868 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1869 		if (!new_asoc) {
1870 			err = -ENOMEM;
1871 			goto out_unlock;
1872 		}
1873 		asoc = new_asoc;
1874 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1875 		if (err < 0) {
1876 			err = -ENOMEM;
1877 			goto out_free;
1878 		}
1879 
1880 		/* If the SCTP_INIT ancillary data is specified, set all
1881 		 * the association init values accordingly.
1882 		 */
1883 		if (sinit) {
1884 			if (sinit->sinit_num_ostreams) {
1885 				asoc->c.sinit_num_ostreams =
1886 					sinit->sinit_num_ostreams;
1887 			}
1888 			if (sinit->sinit_max_instreams) {
1889 				asoc->c.sinit_max_instreams =
1890 					sinit->sinit_max_instreams;
1891 			}
1892 			if (sinit->sinit_max_attempts) {
1893 				asoc->max_init_attempts
1894 					= sinit->sinit_max_attempts;
1895 			}
1896 			if (sinit->sinit_max_init_timeo) {
1897 				asoc->max_init_timeo =
1898 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1899 			}
1900 		}
1901 
1902 		/* Prime the peer's transport structures.  */
1903 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1904 		if (!transport) {
1905 			err = -ENOMEM;
1906 			goto out_free;
1907 		}
1908 	}
1909 
1910 	/* ASSERT: we have a valid association at this point.  */
1911 	pr_debug("%s: we have a valid association\n", __func__);
1912 
1913 	if (!sinfo) {
1914 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1915 		 * one with some defaults.
1916 		 */
1917 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1918 		default_sinfo.sinfo_stream = asoc->default_stream;
1919 		default_sinfo.sinfo_flags = asoc->default_flags;
1920 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1921 		default_sinfo.sinfo_context = asoc->default_context;
1922 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1923 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1924 
1925 		sinfo = &default_sinfo;
1926 	} else if (fill_sinfo_ttl) {
1927 		/* In case SNDINFO was specified, we still need to fill
1928 		 * it with a default ttl from the assoc here.
1929 		 */
1930 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1931 	}
1932 
1933 	/* API 7.1.7, the sndbuf size per association bounds the
1934 	 * maximum size of data that can be sent in a single send call.
1935 	 */
1936 	if (msg_len > sk->sk_sndbuf) {
1937 		err = -EMSGSIZE;
1938 		goto out_free;
1939 	}
1940 
1941 	if (asoc->pmtu_pending)
1942 		sctp_assoc_pending_pmtu(asoc);
1943 
1944 	/* If fragmentation is disabled and the message length exceeds the
1945 	 * association fragmentation point, return EMSGSIZE.  The I-D
1946 	 * does not specify what this error is, but this looks like
1947 	 * a great fit.
1948 	 */
1949 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1950 		err = -EMSGSIZE;
1951 		goto out_free;
1952 	}
1953 
1954 	/* Check for invalid stream. */
1955 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1956 		err = -EINVAL;
1957 		goto out_free;
1958 	}
1959 
1960 	if (sctp_wspace(asoc) < msg_len)
1961 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1962 
1963 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1964 	if (!sctp_wspace(asoc)) {
1965 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1966 		if (err)
1967 			goto out_free;
1968 	}
1969 
1970 	/* If an address is passed with the sendto/sendmsg call, it is used
1971 	 * to override the primary destination address in the TCP model, or
1972 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1973 	 */
1974 	if ((sctp_style(sk, TCP) && msg_name) ||
1975 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1976 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1977 		if (!chunk_tp) {
1978 			err = -EINVAL;
1979 			goto out_free;
1980 		}
1981 	} else
1982 		chunk_tp = NULL;
1983 
1984 	/* Auto-connect, if we aren't connected already. */
1985 	if (sctp_state(asoc, CLOSED)) {
1986 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1987 		if (err < 0)
1988 			goto out_free;
1989 
1990 		wait_connect = true;
1991 		pr_debug("%s: we associated primitively\n", __func__);
1992 	}
1993 
1994 	/* Break the message into multiple chunks of maximum size. */
1995 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1996 	if (IS_ERR(datamsg)) {
1997 		err = PTR_ERR(datamsg);
1998 		goto out_free;
1999 	}
2000 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
2001 
2002 	/* Now send the (possibly) fragmented message. */
2003 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
2004 		sctp_chunk_hold(chunk);
2005 
2006 		/* Do accounting for the write space.  */
2007 		sctp_set_owner_w(chunk);
2008 
2009 		chunk->transport = chunk_tp;
2010 	}
2011 
2012 	/* Send it to the lower layers.  Note:  all chunks
2013 	 * must either fail or succeed.   The lower layer
2014 	 * works that way today.  Keep it that way or this
2015 	 * breaks.
2016 	 */
2017 	err = sctp_primitive_SEND(net, asoc, datamsg);
2018 	/* Did the lower layer accept the chunk? */
2019 	if (err) {
2020 		sctp_datamsg_free(datamsg);
2021 		goto out_free;
2022 	}
2023 
2024 	pr_debug("%s: we sent primitively\n", __func__);
2025 
2026 	sctp_datamsg_put(datamsg);
2027 	err = msg_len;
2028 
2029 	if (unlikely(wait_connect)) {
2030 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
2031 		sctp_wait_for_connect(asoc, &timeo);
2032 	}
2033 
2034 	/* If we are already past ASSOCIATE, the lower
2035 	 * layers are responsible for association cleanup.
2036 	 */
2037 	goto out_unlock;
2038 
2039 out_free:
2040 	if (new_asoc)
2041 		sctp_association_free(asoc);
2042 out_unlock:
2043 	release_sock(sk);
2044 
2045 out_nounlock:
2046 	return sctp_error(sk, msg_flags, err);
2047 
2048 #if 0
2049 do_sock_err:
2050 	if (msg_len)
2051 		err = msg_len;
2052 	else
2053 		err = sock_error(sk);
2054 	goto out;
2055 
2056 do_interrupted:
2057 	if (msg_len)
2058 		err = msg_len;
2059 	goto out;
2060 #endif /* 0 */
2061 }
2062 
2063 /* This is an extended version of skb_pull() that removes the data from the
2064  * start of a skb even when data is spread across the list of skb's in the
2065  * frag_list. len specifies the total amount of data that needs to be removed.
2066  * when 'len' bytes could be removed from the skb, it returns 0.
2067  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2068  * could not be removed.
2069  */
2070 static int sctp_skb_pull(struct sk_buff *skb, int len)
2071 {
2072 	struct sk_buff *list;
2073 	int skb_len = skb_headlen(skb);
2074 	int rlen;
2075 
2076 	if (len <= skb_len) {
2077 		__skb_pull(skb, len);
2078 		return 0;
2079 	}
2080 	len -= skb_len;
2081 	__skb_pull(skb, skb_len);
2082 
2083 	skb_walk_frags(skb, list) {
2084 		rlen = sctp_skb_pull(list, len);
2085 		skb->len -= (len-rlen);
2086 		skb->data_len -= (len-rlen);
2087 
2088 		if (!rlen)
2089 			return 0;
2090 
2091 		len = rlen;
2092 	}
2093 
2094 	return len;
2095 }
2096 
2097 /* API 3.1.3  recvmsg() - UDP Style Syntax
2098  *
2099  *  ssize_t recvmsg(int socket, struct msghdr *message,
2100  *                    int flags);
2101  *
2102  *  socket  - the socket descriptor of the endpoint.
2103  *  message - pointer to the msghdr structure which contains a single
2104  *            user message and possibly some ancillary data.
2105  *
2106  *            See Section 5 for complete description of the data
2107  *            structures.
2108  *
2109  *  flags   - flags sent or received with the user message, see Section
2110  *            5 for complete description of the flags.
2111  */
2112 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2113 			int noblock, int flags, int *addr_len)
2114 {
2115 	struct sctp_ulpevent *event = NULL;
2116 	struct sctp_sock *sp = sctp_sk(sk);
2117 	struct sk_buff *skb, *head_skb;
2118 	int copied;
2119 	int err = 0;
2120 	int skb_len;
2121 
2122 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2123 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2124 		 addr_len);
2125 
2126 	lock_sock(sk);
2127 
2128 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2129 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2130 		err = -ENOTCONN;
2131 		goto out;
2132 	}
2133 
2134 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2135 	if (!skb)
2136 		goto out;
2137 
2138 	/* Get the total length of the skb including any skb's in the
2139 	 * frag_list.
2140 	 */
2141 	skb_len = skb->len;
2142 
2143 	copied = skb_len;
2144 	if (copied > len)
2145 		copied = len;
2146 
2147 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2148 
2149 	event = sctp_skb2event(skb);
2150 
2151 	if (err)
2152 		goto out_free;
2153 
2154 	if (event->chunk && event->chunk->head_skb)
2155 		head_skb = event->chunk->head_skb;
2156 	else
2157 		head_skb = skb;
2158 	sock_recv_ts_and_drops(msg, sk, head_skb);
2159 	if (sctp_ulpevent_is_notification(event)) {
2160 		msg->msg_flags |= MSG_NOTIFICATION;
2161 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2162 	} else {
2163 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2164 	}
2165 
2166 	/* Check if we allow SCTP_NXTINFO. */
2167 	if (sp->recvnxtinfo)
2168 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2169 	/* Check if we allow SCTP_RCVINFO. */
2170 	if (sp->recvrcvinfo)
2171 		sctp_ulpevent_read_rcvinfo(event, msg);
2172 	/* Check if we allow SCTP_SNDRCVINFO. */
2173 	if (sp->subscribe.sctp_data_io_event)
2174 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2175 
2176 	err = copied;
2177 
2178 	/* If skb's length exceeds the user's buffer, update the skb and
2179 	 * push it back to the receive_queue so that the next call to
2180 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2181 	 */
2182 	if (skb_len > copied) {
2183 		msg->msg_flags &= ~MSG_EOR;
2184 		if (flags & MSG_PEEK)
2185 			goto out_free;
2186 		sctp_skb_pull(skb, copied);
2187 		skb_queue_head(&sk->sk_receive_queue, skb);
2188 
2189 		/* When only partial message is copied to the user, increase
2190 		 * rwnd by that amount. If all the data in the skb is read,
2191 		 * rwnd is updated when the event is freed.
2192 		 */
2193 		if (!sctp_ulpevent_is_notification(event))
2194 			sctp_assoc_rwnd_increase(event->asoc, copied);
2195 		goto out;
2196 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2197 		   (event->msg_flags & MSG_EOR))
2198 		msg->msg_flags |= MSG_EOR;
2199 	else
2200 		msg->msg_flags &= ~MSG_EOR;
2201 
2202 out_free:
2203 	if (flags & MSG_PEEK) {
2204 		/* Release the skb reference acquired after peeking the skb in
2205 		 * sctp_skb_recv_datagram().
2206 		 */
2207 		kfree_skb(skb);
2208 	} else {
2209 		/* Free the event which includes releasing the reference to
2210 		 * the owner of the skb, freeing the skb and updating the
2211 		 * rwnd.
2212 		 */
2213 		sctp_ulpevent_free(event);
2214 	}
2215 out:
2216 	release_sock(sk);
2217 	return err;
2218 }
2219 
2220 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2221  *
2222  * This option is a on/off flag.  If enabled no SCTP message
2223  * fragmentation will be performed.  Instead if a message being sent
2224  * exceeds the current PMTU size, the message will NOT be sent and
2225  * instead a error will be indicated to the user.
2226  */
2227 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2228 					     char __user *optval,
2229 					     unsigned int optlen)
2230 {
2231 	int val;
2232 
2233 	if (optlen < sizeof(int))
2234 		return -EINVAL;
2235 
2236 	if (get_user(val, (int __user *)optval))
2237 		return -EFAULT;
2238 
2239 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2240 
2241 	return 0;
2242 }
2243 
2244 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2245 				  unsigned int optlen)
2246 {
2247 	struct sctp_association *asoc;
2248 	struct sctp_ulpevent *event;
2249 
2250 	if (optlen > sizeof(struct sctp_event_subscribe))
2251 		return -EINVAL;
2252 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2253 		return -EFAULT;
2254 
2255 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2256 	 * if there is no data to be sent or retransmit, the stack will
2257 	 * immediately send up this notification.
2258 	 */
2259 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2260 				       &sctp_sk(sk)->subscribe)) {
2261 		asoc = sctp_id2assoc(sk, 0);
2262 
2263 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2264 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2265 					GFP_ATOMIC);
2266 			if (!event)
2267 				return -ENOMEM;
2268 
2269 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2270 		}
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2277  *
2278  * This socket option is applicable to the UDP-style socket only.  When
2279  * set it will cause associations that are idle for more than the
2280  * specified number of seconds to automatically close.  An association
2281  * being idle is defined an association that has NOT sent or received
2282  * user data.  The special value of '0' indicates that no automatic
2283  * close of any associations should be performed.  The option expects an
2284  * integer defining the number of seconds of idle time before an
2285  * association is closed.
2286  */
2287 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2288 				     unsigned int optlen)
2289 {
2290 	struct sctp_sock *sp = sctp_sk(sk);
2291 	struct net *net = sock_net(sk);
2292 
2293 	/* Applicable to UDP-style socket only */
2294 	if (sctp_style(sk, TCP))
2295 		return -EOPNOTSUPP;
2296 	if (optlen != sizeof(int))
2297 		return -EINVAL;
2298 	if (copy_from_user(&sp->autoclose, optval, optlen))
2299 		return -EFAULT;
2300 
2301 	if (sp->autoclose > net->sctp.max_autoclose)
2302 		sp->autoclose = net->sctp.max_autoclose;
2303 
2304 	return 0;
2305 }
2306 
2307 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2308  *
2309  * Applications can enable or disable heartbeats for any peer address of
2310  * an association, modify an address's heartbeat interval, force a
2311  * heartbeat to be sent immediately, and adjust the address's maximum
2312  * number of retransmissions sent before an address is considered
2313  * unreachable.  The following structure is used to access and modify an
2314  * address's parameters:
2315  *
2316  *  struct sctp_paddrparams {
2317  *     sctp_assoc_t            spp_assoc_id;
2318  *     struct sockaddr_storage spp_address;
2319  *     uint32_t                spp_hbinterval;
2320  *     uint16_t                spp_pathmaxrxt;
2321  *     uint32_t                spp_pathmtu;
2322  *     uint32_t                spp_sackdelay;
2323  *     uint32_t                spp_flags;
2324  * };
2325  *
2326  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2327  *                     application, and identifies the association for
2328  *                     this query.
2329  *   spp_address     - This specifies which address is of interest.
2330  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2331  *                     in milliseconds.  If a  value of zero
2332  *                     is present in this field then no changes are to
2333  *                     be made to this parameter.
2334  *   spp_pathmaxrxt  - This contains the maximum number of
2335  *                     retransmissions before this address shall be
2336  *                     considered unreachable. If a  value of zero
2337  *                     is present in this field then no changes are to
2338  *                     be made to this parameter.
2339  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2340  *                     specified here will be the "fixed" path mtu.
2341  *                     Note that if the spp_address field is empty
2342  *                     then all associations on this address will
2343  *                     have this fixed path mtu set upon them.
2344  *
2345  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2346  *                     the number of milliseconds that sacks will be delayed
2347  *                     for. This value will apply to all addresses of an
2348  *                     association if the spp_address field is empty. Note
2349  *                     also, that if delayed sack is enabled and this
2350  *                     value is set to 0, no change is made to the last
2351  *                     recorded delayed sack timer value.
2352  *
2353  *   spp_flags       - These flags are used to control various features
2354  *                     on an association. The flag field may contain
2355  *                     zero or more of the following options.
2356  *
2357  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2358  *                     specified address. Note that if the address
2359  *                     field is empty all addresses for the association
2360  *                     have heartbeats enabled upon them.
2361  *
2362  *                     SPP_HB_DISABLE - Disable heartbeats on the
2363  *                     speicifed address. Note that if the address
2364  *                     field is empty all addresses for the association
2365  *                     will have their heartbeats disabled. Note also
2366  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2367  *                     mutually exclusive, only one of these two should
2368  *                     be specified. Enabling both fields will have
2369  *                     undetermined results.
2370  *
2371  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2372  *                     to be made immediately.
2373  *
2374  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2375  *                     heartbeat delayis to be set to the value of 0
2376  *                     milliseconds.
2377  *
2378  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2379  *                     discovery upon the specified address. Note that
2380  *                     if the address feild is empty then all addresses
2381  *                     on the association are effected.
2382  *
2383  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2384  *                     discovery upon the specified address. Note that
2385  *                     if the address feild is empty then all addresses
2386  *                     on the association are effected. Not also that
2387  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2388  *                     exclusive. Enabling both will have undetermined
2389  *                     results.
2390  *
2391  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2392  *                     on delayed sack. The time specified in spp_sackdelay
2393  *                     is used to specify the sack delay for this address. Note
2394  *                     that if spp_address is empty then all addresses will
2395  *                     enable delayed sack and take on the sack delay
2396  *                     value specified in spp_sackdelay.
2397  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2398  *                     off delayed sack. If the spp_address field is blank then
2399  *                     delayed sack is disabled for the entire association. Note
2400  *                     also that this field is mutually exclusive to
2401  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2402  *                     results.
2403  */
2404 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2405 				       struct sctp_transport   *trans,
2406 				       struct sctp_association *asoc,
2407 				       struct sctp_sock        *sp,
2408 				       int                      hb_change,
2409 				       int                      pmtud_change,
2410 				       int                      sackdelay_change)
2411 {
2412 	int error;
2413 
2414 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2415 		struct net *net = sock_net(trans->asoc->base.sk);
2416 
2417 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2418 		if (error)
2419 			return error;
2420 	}
2421 
2422 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2423 	 * this field is ignored.  Note also that a value of zero indicates
2424 	 * the current setting should be left unchanged.
2425 	 */
2426 	if (params->spp_flags & SPP_HB_ENABLE) {
2427 
2428 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2429 		 * set.  This lets us use 0 value when this flag
2430 		 * is set.
2431 		 */
2432 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2433 			params->spp_hbinterval = 0;
2434 
2435 		if (params->spp_hbinterval ||
2436 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2437 			if (trans) {
2438 				trans->hbinterval =
2439 				    msecs_to_jiffies(params->spp_hbinterval);
2440 			} else if (asoc) {
2441 				asoc->hbinterval =
2442 				    msecs_to_jiffies(params->spp_hbinterval);
2443 			} else {
2444 				sp->hbinterval = params->spp_hbinterval;
2445 			}
2446 		}
2447 	}
2448 
2449 	if (hb_change) {
2450 		if (trans) {
2451 			trans->param_flags =
2452 				(trans->param_flags & ~SPP_HB) | hb_change;
2453 		} else if (asoc) {
2454 			asoc->param_flags =
2455 				(asoc->param_flags & ~SPP_HB) | hb_change;
2456 		} else {
2457 			sp->param_flags =
2458 				(sp->param_flags & ~SPP_HB) | hb_change;
2459 		}
2460 	}
2461 
2462 	/* When Path MTU discovery is disabled the value specified here will
2463 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2464 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2465 	 * effect).
2466 	 */
2467 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2468 		if (trans) {
2469 			trans->pathmtu = params->spp_pathmtu;
2470 			sctp_assoc_sync_pmtu(asoc);
2471 		} else if (asoc) {
2472 			asoc->pathmtu = params->spp_pathmtu;
2473 		} else {
2474 			sp->pathmtu = params->spp_pathmtu;
2475 		}
2476 	}
2477 
2478 	if (pmtud_change) {
2479 		if (trans) {
2480 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2481 				(params->spp_flags & SPP_PMTUD_ENABLE);
2482 			trans->param_flags =
2483 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2484 			if (update) {
2485 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2486 				sctp_assoc_sync_pmtu(asoc);
2487 			}
2488 		} else if (asoc) {
2489 			asoc->param_flags =
2490 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2491 		} else {
2492 			sp->param_flags =
2493 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2494 		}
2495 	}
2496 
2497 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2498 	 * value of this field is ignored.  Note also that a value of zero
2499 	 * indicates the current setting should be left unchanged.
2500 	 */
2501 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2502 		if (trans) {
2503 			trans->sackdelay =
2504 				msecs_to_jiffies(params->spp_sackdelay);
2505 		} else if (asoc) {
2506 			asoc->sackdelay =
2507 				msecs_to_jiffies(params->spp_sackdelay);
2508 		} else {
2509 			sp->sackdelay = params->spp_sackdelay;
2510 		}
2511 	}
2512 
2513 	if (sackdelay_change) {
2514 		if (trans) {
2515 			trans->param_flags =
2516 				(trans->param_flags & ~SPP_SACKDELAY) |
2517 				sackdelay_change;
2518 		} else if (asoc) {
2519 			asoc->param_flags =
2520 				(asoc->param_flags & ~SPP_SACKDELAY) |
2521 				sackdelay_change;
2522 		} else {
2523 			sp->param_flags =
2524 				(sp->param_flags & ~SPP_SACKDELAY) |
2525 				sackdelay_change;
2526 		}
2527 	}
2528 
2529 	/* Note that a value of zero indicates the current setting should be
2530 	   left unchanged.
2531 	 */
2532 	if (params->spp_pathmaxrxt) {
2533 		if (trans) {
2534 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2535 		} else if (asoc) {
2536 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2537 		} else {
2538 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2539 		}
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2546 					    char __user *optval,
2547 					    unsigned int optlen)
2548 {
2549 	struct sctp_paddrparams  params;
2550 	struct sctp_transport   *trans = NULL;
2551 	struct sctp_association *asoc = NULL;
2552 	struct sctp_sock        *sp = sctp_sk(sk);
2553 	int error;
2554 	int hb_change, pmtud_change, sackdelay_change;
2555 
2556 	if (optlen != sizeof(struct sctp_paddrparams))
2557 		return -EINVAL;
2558 
2559 	if (copy_from_user(&params, optval, optlen))
2560 		return -EFAULT;
2561 
2562 	/* Validate flags and value parameters. */
2563 	hb_change        = params.spp_flags & SPP_HB;
2564 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2565 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2566 
2567 	if (hb_change        == SPP_HB ||
2568 	    pmtud_change     == SPP_PMTUD ||
2569 	    sackdelay_change == SPP_SACKDELAY ||
2570 	    params.spp_sackdelay > 500 ||
2571 	    (params.spp_pathmtu &&
2572 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2573 		return -EINVAL;
2574 
2575 	/* If an address other than INADDR_ANY is specified, and
2576 	 * no transport is found, then the request is invalid.
2577 	 */
2578 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2579 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2580 					       params.spp_assoc_id);
2581 		if (!trans)
2582 			return -EINVAL;
2583 	}
2584 
2585 	/* Get association, if assoc_id != 0 and the socket is a one
2586 	 * to many style socket, and an association was not found, then
2587 	 * the id was invalid.
2588 	 */
2589 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2590 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2591 		return -EINVAL;
2592 
2593 	/* Heartbeat demand can only be sent on a transport or
2594 	 * association, but not a socket.
2595 	 */
2596 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2597 		return -EINVAL;
2598 
2599 	/* Process parameters. */
2600 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2601 					    hb_change, pmtud_change,
2602 					    sackdelay_change);
2603 
2604 	if (error)
2605 		return error;
2606 
2607 	/* If changes are for association, also apply parameters to each
2608 	 * transport.
2609 	 */
2610 	if (!trans && asoc) {
2611 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2612 				transports) {
2613 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2614 						    hb_change, pmtud_change,
2615 						    sackdelay_change);
2616 		}
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2623 {
2624 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2625 }
2626 
2627 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2628 {
2629 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2630 }
2631 
2632 /*
2633  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2634  *
2635  * This option will effect the way delayed acks are performed.  This
2636  * option allows you to get or set the delayed ack time, in
2637  * milliseconds.  It also allows changing the delayed ack frequency.
2638  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2639  * the assoc_id is 0, then this sets or gets the endpoints default
2640  * values.  If the assoc_id field is non-zero, then the set or get
2641  * effects the specified association for the one to many model (the
2642  * assoc_id field is ignored by the one to one model).  Note that if
2643  * sack_delay or sack_freq are 0 when setting this option, then the
2644  * current values will remain unchanged.
2645  *
2646  * struct sctp_sack_info {
2647  *     sctp_assoc_t            sack_assoc_id;
2648  *     uint32_t                sack_delay;
2649  *     uint32_t                sack_freq;
2650  * };
2651  *
2652  * sack_assoc_id -  This parameter, indicates which association the user
2653  *    is performing an action upon.  Note that if this field's value is
2654  *    zero then the endpoints default value is changed (effecting future
2655  *    associations only).
2656  *
2657  * sack_delay -  This parameter contains the number of milliseconds that
2658  *    the user is requesting the delayed ACK timer be set to.  Note that
2659  *    this value is defined in the standard to be between 200 and 500
2660  *    milliseconds.
2661  *
2662  * sack_freq -  This parameter contains the number of packets that must
2663  *    be received before a sack is sent without waiting for the delay
2664  *    timer to expire.  The default value for this is 2, setting this
2665  *    value to 1 will disable the delayed sack algorithm.
2666  */
2667 
2668 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2669 				       char __user *optval, unsigned int optlen)
2670 {
2671 	struct sctp_sack_info    params;
2672 	struct sctp_transport   *trans = NULL;
2673 	struct sctp_association *asoc = NULL;
2674 	struct sctp_sock        *sp = sctp_sk(sk);
2675 
2676 	if (optlen == sizeof(struct sctp_sack_info)) {
2677 		if (copy_from_user(&params, optval, optlen))
2678 			return -EFAULT;
2679 
2680 		if (params.sack_delay == 0 && params.sack_freq == 0)
2681 			return 0;
2682 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2683 		pr_warn_ratelimited(DEPRECATED
2684 				    "%s (pid %d) "
2685 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2686 				    "Use struct sctp_sack_info instead\n",
2687 				    current->comm, task_pid_nr(current));
2688 		if (copy_from_user(&params, optval, optlen))
2689 			return -EFAULT;
2690 
2691 		if (params.sack_delay == 0)
2692 			params.sack_freq = 1;
2693 		else
2694 			params.sack_freq = 0;
2695 	} else
2696 		return -EINVAL;
2697 
2698 	/* Validate value parameter. */
2699 	if (params.sack_delay > 500)
2700 		return -EINVAL;
2701 
2702 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2703 	 * to many style socket, and an association was not found, then
2704 	 * the id was invalid.
2705 	 */
2706 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2707 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2708 		return -EINVAL;
2709 
2710 	if (params.sack_delay) {
2711 		if (asoc) {
2712 			asoc->sackdelay =
2713 				msecs_to_jiffies(params.sack_delay);
2714 			asoc->param_flags =
2715 				sctp_spp_sackdelay_enable(asoc->param_flags);
2716 		} else {
2717 			sp->sackdelay = params.sack_delay;
2718 			sp->param_flags =
2719 				sctp_spp_sackdelay_enable(sp->param_flags);
2720 		}
2721 	}
2722 
2723 	if (params.sack_freq == 1) {
2724 		if (asoc) {
2725 			asoc->param_flags =
2726 				sctp_spp_sackdelay_disable(asoc->param_flags);
2727 		} else {
2728 			sp->param_flags =
2729 				sctp_spp_sackdelay_disable(sp->param_flags);
2730 		}
2731 	} else if (params.sack_freq > 1) {
2732 		if (asoc) {
2733 			asoc->sackfreq = params.sack_freq;
2734 			asoc->param_flags =
2735 				sctp_spp_sackdelay_enable(asoc->param_flags);
2736 		} else {
2737 			sp->sackfreq = params.sack_freq;
2738 			sp->param_flags =
2739 				sctp_spp_sackdelay_enable(sp->param_flags);
2740 		}
2741 	}
2742 
2743 	/* If change is for association, also apply to each transport. */
2744 	if (asoc) {
2745 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2746 				transports) {
2747 			if (params.sack_delay) {
2748 				trans->sackdelay =
2749 					msecs_to_jiffies(params.sack_delay);
2750 				trans->param_flags =
2751 					sctp_spp_sackdelay_enable(trans->param_flags);
2752 			}
2753 			if (params.sack_freq == 1) {
2754 				trans->param_flags =
2755 					sctp_spp_sackdelay_disable(trans->param_flags);
2756 			} else if (params.sack_freq > 1) {
2757 				trans->sackfreq = params.sack_freq;
2758 				trans->param_flags =
2759 					sctp_spp_sackdelay_enable(trans->param_flags);
2760 			}
2761 		}
2762 	}
2763 
2764 	return 0;
2765 }
2766 
2767 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2768  *
2769  * Applications can specify protocol parameters for the default association
2770  * initialization.  The option name argument to setsockopt() and getsockopt()
2771  * is SCTP_INITMSG.
2772  *
2773  * Setting initialization parameters is effective only on an unconnected
2774  * socket (for UDP-style sockets only future associations are effected
2775  * by the change).  With TCP-style sockets, this option is inherited by
2776  * sockets derived from a listener socket.
2777  */
2778 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2779 {
2780 	struct sctp_initmsg sinit;
2781 	struct sctp_sock *sp = sctp_sk(sk);
2782 
2783 	if (optlen != sizeof(struct sctp_initmsg))
2784 		return -EINVAL;
2785 	if (copy_from_user(&sinit, optval, optlen))
2786 		return -EFAULT;
2787 
2788 	if (sinit.sinit_num_ostreams)
2789 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2790 	if (sinit.sinit_max_instreams)
2791 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2792 	if (sinit.sinit_max_attempts)
2793 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2794 	if (sinit.sinit_max_init_timeo)
2795 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2796 
2797 	return 0;
2798 }
2799 
2800 /*
2801  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2802  *
2803  *   Applications that wish to use the sendto() system call may wish to
2804  *   specify a default set of parameters that would normally be supplied
2805  *   through the inclusion of ancillary data.  This socket option allows
2806  *   such an application to set the default sctp_sndrcvinfo structure.
2807  *   The application that wishes to use this socket option simply passes
2808  *   in to this call the sctp_sndrcvinfo structure defined in Section
2809  *   5.2.2) The input parameters accepted by this call include
2810  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2811  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2812  *   to this call if the caller is using the UDP model.
2813  */
2814 static int sctp_setsockopt_default_send_param(struct sock *sk,
2815 					      char __user *optval,
2816 					      unsigned int optlen)
2817 {
2818 	struct sctp_sock *sp = sctp_sk(sk);
2819 	struct sctp_association *asoc;
2820 	struct sctp_sndrcvinfo info;
2821 
2822 	if (optlen != sizeof(info))
2823 		return -EINVAL;
2824 	if (copy_from_user(&info, optval, optlen))
2825 		return -EFAULT;
2826 	if (info.sinfo_flags &
2827 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2828 	      SCTP_ABORT | SCTP_EOF))
2829 		return -EINVAL;
2830 
2831 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2832 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2833 		return -EINVAL;
2834 	if (asoc) {
2835 		asoc->default_stream = info.sinfo_stream;
2836 		asoc->default_flags = info.sinfo_flags;
2837 		asoc->default_ppid = info.sinfo_ppid;
2838 		asoc->default_context = info.sinfo_context;
2839 		asoc->default_timetolive = info.sinfo_timetolive;
2840 	} else {
2841 		sp->default_stream = info.sinfo_stream;
2842 		sp->default_flags = info.sinfo_flags;
2843 		sp->default_ppid = info.sinfo_ppid;
2844 		sp->default_context = info.sinfo_context;
2845 		sp->default_timetolive = info.sinfo_timetolive;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2852  * (SCTP_DEFAULT_SNDINFO)
2853  */
2854 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2855 					   char __user *optval,
2856 					   unsigned int optlen)
2857 {
2858 	struct sctp_sock *sp = sctp_sk(sk);
2859 	struct sctp_association *asoc;
2860 	struct sctp_sndinfo info;
2861 
2862 	if (optlen != sizeof(info))
2863 		return -EINVAL;
2864 	if (copy_from_user(&info, optval, optlen))
2865 		return -EFAULT;
2866 	if (info.snd_flags &
2867 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2868 	      SCTP_ABORT | SCTP_EOF))
2869 		return -EINVAL;
2870 
2871 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2872 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2873 		return -EINVAL;
2874 	if (asoc) {
2875 		asoc->default_stream = info.snd_sid;
2876 		asoc->default_flags = info.snd_flags;
2877 		asoc->default_ppid = info.snd_ppid;
2878 		asoc->default_context = info.snd_context;
2879 	} else {
2880 		sp->default_stream = info.snd_sid;
2881 		sp->default_flags = info.snd_flags;
2882 		sp->default_ppid = info.snd_ppid;
2883 		sp->default_context = info.snd_context;
2884 	}
2885 
2886 	return 0;
2887 }
2888 
2889 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2890  *
2891  * Requests that the local SCTP stack use the enclosed peer address as
2892  * the association primary.  The enclosed address must be one of the
2893  * association peer's addresses.
2894  */
2895 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2896 					unsigned int optlen)
2897 {
2898 	struct sctp_prim prim;
2899 	struct sctp_transport *trans;
2900 
2901 	if (optlen != sizeof(struct sctp_prim))
2902 		return -EINVAL;
2903 
2904 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2905 		return -EFAULT;
2906 
2907 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2908 	if (!trans)
2909 		return -EINVAL;
2910 
2911 	sctp_assoc_set_primary(trans->asoc, trans);
2912 
2913 	return 0;
2914 }
2915 
2916 /*
2917  * 7.1.5 SCTP_NODELAY
2918  *
2919  * Turn on/off any Nagle-like algorithm.  This means that packets are
2920  * generally sent as soon as possible and no unnecessary delays are
2921  * introduced, at the cost of more packets in the network.  Expects an
2922  *  integer boolean flag.
2923  */
2924 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2925 				   unsigned int optlen)
2926 {
2927 	int val;
2928 
2929 	if (optlen < sizeof(int))
2930 		return -EINVAL;
2931 	if (get_user(val, (int __user *)optval))
2932 		return -EFAULT;
2933 
2934 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2935 	return 0;
2936 }
2937 
2938 /*
2939  *
2940  * 7.1.1 SCTP_RTOINFO
2941  *
2942  * The protocol parameters used to initialize and bound retransmission
2943  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2944  * and modify these parameters.
2945  * All parameters are time values, in milliseconds.  A value of 0, when
2946  * modifying the parameters, indicates that the current value should not
2947  * be changed.
2948  *
2949  */
2950 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2951 {
2952 	struct sctp_rtoinfo rtoinfo;
2953 	struct sctp_association *asoc;
2954 	unsigned long rto_min, rto_max;
2955 	struct sctp_sock *sp = sctp_sk(sk);
2956 
2957 	if (optlen != sizeof (struct sctp_rtoinfo))
2958 		return -EINVAL;
2959 
2960 	if (copy_from_user(&rtoinfo, optval, optlen))
2961 		return -EFAULT;
2962 
2963 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2964 
2965 	/* Set the values to the specific association */
2966 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2967 		return -EINVAL;
2968 
2969 	rto_max = rtoinfo.srto_max;
2970 	rto_min = rtoinfo.srto_min;
2971 
2972 	if (rto_max)
2973 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2974 	else
2975 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2976 
2977 	if (rto_min)
2978 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2979 	else
2980 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2981 
2982 	if (rto_min > rto_max)
2983 		return -EINVAL;
2984 
2985 	if (asoc) {
2986 		if (rtoinfo.srto_initial != 0)
2987 			asoc->rto_initial =
2988 				msecs_to_jiffies(rtoinfo.srto_initial);
2989 		asoc->rto_max = rto_max;
2990 		asoc->rto_min = rto_min;
2991 	} else {
2992 		/* If there is no association or the association-id = 0
2993 		 * set the values to the endpoint.
2994 		 */
2995 		if (rtoinfo.srto_initial != 0)
2996 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2997 		sp->rtoinfo.srto_max = rto_max;
2998 		sp->rtoinfo.srto_min = rto_min;
2999 	}
3000 
3001 	return 0;
3002 }
3003 
3004 /*
3005  *
3006  * 7.1.2 SCTP_ASSOCINFO
3007  *
3008  * This option is used to tune the maximum retransmission attempts
3009  * of the association.
3010  * Returns an error if the new association retransmission value is
3011  * greater than the sum of the retransmission value  of the peer.
3012  * See [SCTP] for more information.
3013  *
3014  */
3015 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3016 {
3017 
3018 	struct sctp_assocparams assocparams;
3019 	struct sctp_association *asoc;
3020 
3021 	if (optlen != sizeof(struct sctp_assocparams))
3022 		return -EINVAL;
3023 	if (copy_from_user(&assocparams, optval, optlen))
3024 		return -EFAULT;
3025 
3026 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3027 
3028 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3029 		return -EINVAL;
3030 
3031 	/* Set the values to the specific association */
3032 	if (asoc) {
3033 		if (assocparams.sasoc_asocmaxrxt != 0) {
3034 			__u32 path_sum = 0;
3035 			int   paths = 0;
3036 			struct sctp_transport *peer_addr;
3037 
3038 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3039 					transports) {
3040 				path_sum += peer_addr->pathmaxrxt;
3041 				paths++;
3042 			}
3043 
3044 			/* Only validate asocmaxrxt if we have more than
3045 			 * one path/transport.  We do this because path
3046 			 * retransmissions are only counted when we have more
3047 			 * then one path.
3048 			 */
3049 			if (paths > 1 &&
3050 			    assocparams.sasoc_asocmaxrxt > path_sum)
3051 				return -EINVAL;
3052 
3053 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3054 		}
3055 
3056 		if (assocparams.sasoc_cookie_life != 0)
3057 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3058 	} else {
3059 		/* Set the values to the endpoint */
3060 		struct sctp_sock *sp = sctp_sk(sk);
3061 
3062 		if (assocparams.sasoc_asocmaxrxt != 0)
3063 			sp->assocparams.sasoc_asocmaxrxt =
3064 						assocparams.sasoc_asocmaxrxt;
3065 		if (assocparams.sasoc_cookie_life != 0)
3066 			sp->assocparams.sasoc_cookie_life =
3067 						assocparams.sasoc_cookie_life;
3068 	}
3069 	return 0;
3070 }
3071 
3072 /*
3073  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3074  *
3075  * This socket option is a boolean flag which turns on or off mapped V4
3076  * addresses.  If this option is turned on and the socket is type
3077  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3078  * If this option is turned off, then no mapping will be done of V4
3079  * addresses and a user will receive both PF_INET6 and PF_INET type
3080  * addresses on the socket.
3081  */
3082 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3083 {
3084 	int val;
3085 	struct sctp_sock *sp = sctp_sk(sk);
3086 
3087 	if (optlen < sizeof(int))
3088 		return -EINVAL;
3089 	if (get_user(val, (int __user *)optval))
3090 		return -EFAULT;
3091 	if (val)
3092 		sp->v4mapped = 1;
3093 	else
3094 		sp->v4mapped = 0;
3095 
3096 	return 0;
3097 }
3098 
3099 /*
3100  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3101  * This option will get or set the maximum size to put in any outgoing
3102  * SCTP DATA chunk.  If a message is larger than this size it will be
3103  * fragmented by SCTP into the specified size.  Note that the underlying
3104  * SCTP implementation may fragment into smaller sized chunks when the
3105  * PMTU of the underlying association is smaller than the value set by
3106  * the user.  The default value for this option is '0' which indicates
3107  * the user is NOT limiting fragmentation and only the PMTU will effect
3108  * SCTP's choice of DATA chunk size.  Note also that values set larger
3109  * than the maximum size of an IP datagram will effectively let SCTP
3110  * control fragmentation (i.e. the same as setting this option to 0).
3111  *
3112  * The following structure is used to access and modify this parameter:
3113  *
3114  * struct sctp_assoc_value {
3115  *   sctp_assoc_t assoc_id;
3116  *   uint32_t assoc_value;
3117  * };
3118  *
3119  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3120  *    For one-to-many style sockets this parameter indicates which
3121  *    association the user is performing an action upon.  Note that if
3122  *    this field's value is zero then the endpoints default value is
3123  *    changed (effecting future associations only).
3124  * assoc_value:  This parameter specifies the maximum size in bytes.
3125  */
3126 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3127 {
3128 	struct sctp_assoc_value params;
3129 	struct sctp_association *asoc;
3130 	struct sctp_sock *sp = sctp_sk(sk);
3131 	int val;
3132 
3133 	if (optlen == sizeof(int)) {
3134 		pr_warn_ratelimited(DEPRECATED
3135 				    "%s (pid %d) "
3136 				    "Use of int in maxseg socket option.\n"
3137 				    "Use struct sctp_assoc_value instead\n",
3138 				    current->comm, task_pid_nr(current));
3139 		if (copy_from_user(&val, optval, optlen))
3140 			return -EFAULT;
3141 		params.assoc_id = 0;
3142 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3143 		if (copy_from_user(&params, optval, optlen))
3144 			return -EFAULT;
3145 		val = params.assoc_value;
3146 	} else
3147 		return -EINVAL;
3148 
3149 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3150 		return -EINVAL;
3151 
3152 	asoc = sctp_id2assoc(sk, params.assoc_id);
3153 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3154 		return -EINVAL;
3155 
3156 	if (asoc) {
3157 		if (val == 0) {
3158 			val = asoc->pathmtu;
3159 			val -= sp->pf->af->net_header_len;
3160 			val -= sizeof(struct sctphdr) +
3161 					sizeof(struct sctp_data_chunk);
3162 		}
3163 		asoc->user_frag = val;
3164 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3165 	} else {
3166 		sp->user_frag = val;
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 
3173 /*
3174  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3175  *
3176  *   Requests that the peer mark the enclosed address as the association
3177  *   primary. The enclosed address must be one of the association's
3178  *   locally bound addresses. The following structure is used to make a
3179  *   set primary request:
3180  */
3181 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3182 					     unsigned int optlen)
3183 {
3184 	struct net *net = sock_net(sk);
3185 	struct sctp_sock	*sp;
3186 	struct sctp_association	*asoc = NULL;
3187 	struct sctp_setpeerprim	prim;
3188 	struct sctp_chunk	*chunk;
3189 	struct sctp_af		*af;
3190 	int 			err;
3191 
3192 	sp = sctp_sk(sk);
3193 
3194 	if (!net->sctp.addip_enable)
3195 		return -EPERM;
3196 
3197 	if (optlen != sizeof(struct sctp_setpeerprim))
3198 		return -EINVAL;
3199 
3200 	if (copy_from_user(&prim, optval, optlen))
3201 		return -EFAULT;
3202 
3203 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3204 	if (!asoc)
3205 		return -EINVAL;
3206 
3207 	if (!asoc->peer.asconf_capable)
3208 		return -EPERM;
3209 
3210 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3211 		return -EPERM;
3212 
3213 	if (!sctp_state(asoc, ESTABLISHED))
3214 		return -ENOTCONN;
3215 
3216 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3217 	if (!af)
3218 		return -EINVAL;
3219 
3220 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3221 		return -EADDRNOTAVAIL;
3222 
3223 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3224 		return -EADDRNOTAVAIL;
3225 
3226 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3227 	chunk = sctp_make_asconf_set_prim(asoc,
3228 					  (union sctp_addr *)&prim.sspp_addr);
3229 	if (!chunk)
3230 		return -ENOMEM;
3231 
3232 	err = sctp_send_asconf(asoc, chunk);
3233 
3234 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3235 
3236 	return err;
3237 }
3238 
3239 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3240 					    unsigned int optlen)
3241 {
3242 	struct sctp_setadaptation adaptation;
3243 
3244 	if (optlen != sizeof(struct sctp_setadaptation))
3245 		return -EINVAL;
3246 	if (copy_from_user(&adaptation, optval, optlen))
3247 		return -EFAULT;
3248 
3249 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3250 
3251 	return 0;
3252 }
3253 
3254 /*
3255  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3256  *
3257  * The context field in the sctp_sndrcvinfo structure is normally only
3258  * used when a failed message is retrieved holding the value that was
3259  * sent down on the actual send call.  This option allows the setting of
3260  * a default context on an association basis that will be received on
3261  * reading messages from the peer.  This is especially helpful in the
3262  * one-2-many model for an application to keep some reference to an
3263  * internal state machine that is processing messages on the
3264  * association.  Note that the setting of this value only effects
3265  * received messages from the peer and does not effect the value that is
3266  * saved with outbound messages.
3267  */
3268 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3269 				   unsigned int optlen)
3270 {
3271 	struct sctp_assoc_value params;
3272 	struct sctp_sock *sp;
3273 	struct sctp_association *asoc;
3274 
3275 	if (optlen != sizeof(struct sctp_assoc_value))
3276 		return -EINVAL;
3277 	if (copy_from_user(&params, optval, optlen))
3278 		return -EFAULT;
3279 
3280 	sp = sctp_sk(sk);
3281 
3282 	if (params.assoc_id != 0) {
3283 		asoc = sctp_id2assoc(sk, params.assoc_id);
3284 		if (!asoc)
3285 			return -EINVAL;
3286 		asoc->default_rcv_context = params.assoc_value;
3287 	} else {
3288 		sp->default_rcv_context = params.assoc_value;
3289 	}
3290 
3291 	return 0;
3292 }
3293 
3294 /*
3295  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3296  *
3297  * This options will at a minimum specify if the implementation is doing
3298  * fragmented interleave.  Fragmented interleave, for a one to many
3299  * socket, is when subsequent calls to receive a message may return
3300  * parts of messages from different associations.  Some implementations
3301  * may allow you to turn this value on or off.  If so, when turned off,
3302  * no fragment interleave will occur (which will cause a head of line
3303  * blocking amongst multiple associations sharing the same one to many
3304  * socket).  When this option is turned on, then each receive call may
3305  * come from a different association (thus the user must receive data
3306  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3307  * association each receive belongs to.
3308  *
3309  * This option takes a boolean value.  A non-zero value indicates that
3310  * fragmented interleave is on.  A value of zero indicates that
3311  * fragmented interleave is off.
3312  *
3313  * Note that it is important that an implementation that allows this
3314  * option to be turned on, have it off by default.  Otherwise an unaware
3315  * application using the one to many model may become confused and act
3316  * incorrectly.
3317  */
3318 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3319 					       char __user *optval,
3320 					       unsigned int optlen)
3321 {
3322 	int val;
3323 
3324 	if (optlen != sizeof(int))
3325 		return -EINVAL;
3326 	if (get_user(val, (int __user *)optval))
3327 		return -EFAULT;
3328 
3329 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3330 
3331 	return 0;
3332 }
3333 
3334 /*
3335  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3336  *       (SCTP_PARTIAL_DELIVERY_POINT)
3337  *
3338  * This option will set or get the SCTP partial delivery point.  This
3339  * point is the size of a message where the partial delivery API will be
3340  * invoked to help free up rwnd space for the peer.  Setting this to a
3341  * lower value will cause partial deliveries to happen more often.  The
3342  * calls argument is an integer that sets or gets the partial delivery
3343  * point.  Note also that the call will fail if the user attempts to set
3344  * this value larger than the socket receive buffer size.
3345  *
3346  * Note that any single message having a length smaller than or equal to
3347  * the SCTP partial delivery point will be delivered in one single read
3348  * call as long as the user provided buffer is large enough to hold the
3349  * message.
3350  */
3351 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3352 						  char __user *optval,
3353 						  unsigned int optlen)
3354 {
3355 	u32 val;
3356 
3357 	if (optlen != sizeof(u32))
3358 		return -EINVAL;
3359 	if (get_user(val, (int __user *)optval))
3360 		return -EFAULT;
3361 
3362 	/* Note: We double the receive buffer from what the user sets
3363 	 * it to be, also initial rwnd is based on rcvbuf/2.
3364 	 */
3365 	if (val > (sk->sk_rcvbuf >> 1))
3366 		return -EINVAL;
3367 
3368 	sctp_sk(sk)->pd_point = val;
3369 
3370 	return 0; /* is this the right error code? */
3371 }
3372 
3373 /*
3374  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3375  *
3376  * This option will allow a user to change the maximum burst of packets
3377  * that can be emitted by this association.  Note that the default value
3378  * is 4, and some implementations may restrict this setting so that it
3379  * can only be lowered.
3380  *
3381  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3382  * future associations inheriting the socket value.
3383  */
3384 static int sctp_setsockopt_maxburst(struct sock *sk,
3385 				    char __user *optval,
3386 				    unsigned int optlen)
3387 {
3388 	struct sctp_assoc_value params;
3389 	struct sctp_sock *sp;
3390 	struct sctp_association *asoc;
3391 	int val;
3392 	int assoc_id = 0;
3393 
3394 	if (optlen == sizeof(int)) {
3395 		pr_warn_ratelimited(DEPRECATED
3396 				    "%s (pid %d) "
3397 				    "Use of int in max_burst socket option deprecated.\n"
3398 				    "Use struct sctp_assoc_value instead\n",
3399 				    current->comm, task_pid_nr(current));
3400 		if (copy_from_user(&val, optval, optlen))
3401 			return -EFAULT;
3402 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3403 		if (copy_from_user(&params, optval, optlen))
3404 			return -EFAULT;
3405 		val = params.assoc_value;
3406 		assoc_id = params.assoc_id;
3407 	} else
3408 		return -EINVAL;
3409 
3410 	sp = sctp_sk(sk);
3411 
3412 	if (assoc_id != 0) {
3413 		asoc = sctp_id2assoc(sk, assoc_id);
3414 		if (!asoc)
3415 			return -EINVAL;
3416 		asoc->max_burst = val;
3417 	} else
3418 		sp->max_burst = val;
3419 
3420 	return 0;
3421 }
3422 
3423 /*
3424  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3425  *
3426  * This set option adds a chunk type that the user is requesting to be
3427  * received only in an authenticated way.  Changes to the list of chunks
3428  * will only effect future associations on the socket.
3429  */
3430 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3431 				      char __user *optval,
3432 				      unsigned int optlen)
3433 {
3434 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3435 	struct sctp_authchunk val;
3436 
3437 	if (!ep->auth_enable)
3438 		return -EACCES;
3439 
3440 	if (optlen != sizeof(struct sctp_authchunk))
3441 		return -EINVAL;
3442 	if (copy_from_user(&val, optval, optlen))
3443 		return -EFAULT;
3444 
3445 	switch (val.sauth_chunk) {
3446 	case SCTP_CID_INIT:
3447 	case SCTP_CID_INIT_ACK:
3448 	case SCTP_CID_SHUTDOWN_COMPLETE:
3449 	case SCTP_CID_AUTH:
3450 		return -EINVAL;
3451 	}
3452 
3453 	/* add this chunk id to the endpoint */
3454 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3455 }
3456 
3457 /*
3458  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3459  *
3460  * This option gets or sets the list of HMAC algorithms that the local
3461  * endpoint requires the peer to use.
3462  */
3463 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3464 				      char __user *optval,
3465 				      unsigned int optlen)
3466 {
3467 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3468 	struct sctp_hmacalgo *hmacs;
3469 	u32 idents;
3470 	int err;
3471 
3472 	if (!ep->auth_enable)
3473 		return -EACCES;
3474 
3475 	if (optlen < sizeof(struct sctp_hmacalgo))
3476 		return -EINVAL;
3477 
3478 	hmacs = memdup_user(optval, optlen);
3479 	if (IS_ERR(hmacs))
3480 		return PTR_ERR(hmacs);
3481 
3482 	idents = hmacs->shmac_num_idents;
3483 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3484 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3485 		err = -EINVAL;
3486 		goto out;
3487 	}
3488 
3489 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3490 out:
3491 	kfree(hmacs);
3492 	return err;
3493 }
3494 
3495 /*
3496  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3497  *
3498  * This option will set a shared secret key which is used to build an
3499  * association shared key.
3500  */
3501 static int sctp_setsockopt_auth_key(struct sock *sk,
3502 				    char __user *optval,
3503 				    unsigned int optlen)
3504 {
3505 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3506 	struct sctp_authkey *authkey;
3507 	struct sctp_association *asoc;
3508 	int ret;
3509 
3510 	if (!ep->auth_enable)
3511 		return -EACCES;
3512 
3513 	if (optlen <= sizeof(struct sctp_authkey))
3514 		return -EINVAL;
3515 
3516 	authkey = memdup_user(optval, optlen);
3517 	if (IS_ERR(authkey))
3518 		return PTR_ERR(authkey);
3519 
3520 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3521 		ret = -EINVAL;
3522 		goto out;
3523 	}
3524 
3525 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3526 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3527 		ret = -EINVAL;
3528 		goto out;
3529 	}
3530 
3531 	ret = sctp_auth_set_key(ep, asoc, authkey);
3532 out:
3533 	kzfree(authkey);
3534 	return ret;
3535 }
3536 
3537 /*
3538  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3539  *
3540  * This option will get or set the active shared key to be used to build
3541  * the association shared key.
3542  */
3543 static int sctp_setsockopt_active_key(struct sock *sk,
3544 				      char __user *optval,
3545 				      unsigned int optlen)
3546 {
3547 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3548 	struct sctp_authkeyid val;
3549 	struct sctp_association *asoc;
3550 
3551 	if (!ep->auth_enable)
3552 		return -EACCES;
3553 
3554 	if (optlen != sizeof(struct sctp_authkeyid))
3555 		return -EINVAL;
3556 	if (copy_from_user(&val, optval, optlen))
3557 		return -EFAULT;
3558 
3559 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3560 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3561 		return -EINVAL;
3562 
3563 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3564 }
3565 
3566 /*
3567  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3568  *
3569  * This set option will delete a shared secret key from use.
3570  */
3571 static int sctp_setsockopt_del_key(struct sock *sk,
3572 				   char __user *optval,
3573 				   unsigned int optlen)
3574 {
3575 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3576 	struct sctp_authkeyid val;
3577 	struct sctp_association *asoc;
3578 
3579 	if (!ep->auth_enable)
3580 		return -EACCES;
3581 
3582 	if (optlen != sizeof(struct sctp_authkeyid))
3583 		return -EINVAL;
3584 	if (copy_from_user(&val, optval, optlen))
3585 		return -EFAULT;
3586 
3587 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3588 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3589 		return -EINVAL;
3590 
3591 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3592 
3593 }
3594 
3595 /*
3596  * 8.1.23 SCTP_AUTO_ASCONF
3597  *
3598  * This option will enable or disable the use of the automatic generation of
3599  * ASCONF chunks to add and delete addresses to an existing association.  Note
3600  * that this option has two caveats namely: a) it only affects sockets that
3601  * are bound to all addresses available to the SCTP stack, and b) the system
3602  * administrator may have an overriding control that turns the ASCONF feature
3603  * off no matter what setting the socket option may have.
3604  * This option expects an integer boolean flag, where a non-zero value turns on
3605  * the option, and a zero value turns off the option.
3606  * Note. In this implementation, socket operation overrides default parameter
3607  * being set by sysctl as well as FreeBSD implementation
3608  */
3609 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3610 					unsigned int optlen)
3611 {
3612 	int val;
3613 	struct sctp_sock *sp = sctp_sk(sk);
3614 
3615 	if (optlen < sizeof(int))
3616 		return -EINVAL;
3617 	if (get_user(val, (int __user *)optval))
3618 		return -EFAULT;
3619 	if (!sctp_is_ep_boundall(sk) && val)
3620 		return -EINVAL;
3621 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3622 		return 0;
3623 
3624 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3625 	if (val == 0 && sp->do_auto_asconf) {
3626 		list_del(&sp->auto_asconf_list);
3627 		sp->do_auto_asconf = 0;
3628 	} else if (val && !sp->do_auto_asconf) {
3629 		list_add_tail(&sp->auto_asconf_list,
3630 		    &sock_net(sk)->sctp.auto_asconf_splist);
3631 		sp->do_auto_asconf = 1;
3632 	}
3633 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3634 	return 0;
3635 }
3636 
3637 /*
3638  * SCTP_PEER_ADDR_THLDS
3639  *
3640  * This option allows us to alter the partially failed threshold for one or all
3641  * transports in an association.  See Section 6.1 of:
3642  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3643  */
3644 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3645 					    char __user *optval,
3646 					    unsigned int optlen)
3647 {
3648 	struct sctp_paddrthlds val;
3649 	struct sctp_transport *trans;
3650 	struct sctp_association *asoc;
3651 
3652 	if (optlen < sizeof(struct sctp_paddrthlds))
3653 		return -EINVAL;
3654 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3655 			   sizeof(struct sctp_paddrthlds)))
3656 		return -EFAULT;
3657 
3658 
3659 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3660 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3661 		if (!asoc)
3662 			return -ENOENT;
3663 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3664 				    transports) {
3665 			if (val.spt_pathmaxrxt)
3666 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3667 			trans->pf_retrans = val.spt_pathpfthld;
3668 		}
3669 
3670 		if (val.spt_pathmaxrxt)
3671 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3672 		asoc->pf_retrans = val.spt_pathpfthld;
3673 	} else {
3674 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3675 					       val.spt_assoc_id);
3676 		if (!trans)
3677 			return -ENOENT;
3678 
3679 		if (val.spt_pathmaxrxt)
3680 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3681 		trans->pf_retrans = val.spt_pathpfthld;
3682 	}
3683 
3684 	return 0;
3685 }
3686 
3687 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3688 				       char __user *optval,
3689 				       unsigned int optlen)
3690 {
3691 	int val;
3692 
3693 	if (optlen < sizeof(int))
3694 		return -EINVAL;
3695 	if (get_user(val, (int __user *) optval))
3696 		return -EFAULT;
3697 
3698 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3699 
3700 	return 0;
3701 }
3702 
3703 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3704 				       char __user *optval,
3705 				       unsigned int optlen)
3706 {
3707 	int val;
3708 
3709 	if (optlen < sizeof(int))
3710 		return -EINVAL;
3711 	if (get_user(val, (int __user *) optval))
3712 		return -EFAULT;
3713 
3714 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3715 
3716 	return 0;
3717 }
3718 
3719 static int sctp_setsockopt_pr_supported(struct sock *sk,
3720 					char __user *optval,
3721 					unsigned int optlen)
3722 {
3723 	struct sctp_assoc_value params;
3724 	struct sctp_association *asoc;
3725 	int retval = -EINVAL;
3726 
3727 	if (optlen != sizeof(params))
3728 		goto out;
3729 
3730 	if (copy_from_user(&params, optval, optlen)) {
3731 		retval = -EFAULT;
3732 		goto out;
3733 	}
3734 
3735 	asoc = sctp_id2assoc(sk, params.assoc_id);
3736 	if (asoc) {
3737 		asoc->prsctp_enable = !!params.assoc_value;
3738 	} else if (!params.assoc_id) {
3739 		struct sctp_sock *sp = sctp_sk(sk);
3740 
3741 		sp->ep->prsctp_enable = !!params.assoc_value;
3742 	} else {
3743 		goto out;
3744 	}
3745 
3746 	retval = 0;
3747 
3748 out:
3749 	return retval;
3750 }
3751 
3752 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3753 					  char __user *optval,
3754 					  unsigned int optlen)
3755 {
3756 	struct sctp_default_prinfo info;
3757 	struct sctp_association *asoc;
3758 	int retval = -EINVAL;
3759 
3760 	if (optlen != sizeof(info))
3761 		goto out;
3762 
3763 	if (copy_from_user(&info, optval, sizeof(info))) {
3764 		retval = -EFAULT;
3765 		goto out;
3766 	}
3767 
3768 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3769 		goto out;
3770 
3771 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3772 		info.pr_value = 0;
3773 
3774 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3775 	if (asoc) {
3776 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3777 		asoc->default_timetolive = info.pr_value;
3778 	} else if (!info.pr_assoc_id) {
3779 		struct sctp_sock *sp = sctp_sk(sk);
3780 
3781 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3782 		sp->default_timetolive = info.pr_value;
3783 	} else {
3784 		goto out;
3785 	}
3786 
3787 	retval = 0;
3788 
3789 out:
3790 	return retval;
3791 }
3792 
3793 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3794 					      char __user *optval,
3795 					      unsigned int optlen)
3796 {
3797 	struct sctp_assoc_value params;
3798 	struct sctp_association *asoc;
3799 	int retval = -EINVAL;
3800 
3801 	if (optlen != sizeof(params))
3802 		goto out;
3803 
3804 	if (copy_from_user(&params, optval, optlen)) {
3805 		retval = -EFAULT;
3806 		goto out;
3807 	}
3808 
3809 	asoc = sctp_id2assoc(sk, params.assoc_id);
3810 	if (asoc) {
3811 		asoc->reconf_enable = !!params.assoc_value;
3812 	} else if (!params.assoc_id) {
3813 		struct sctp_sock *sp = sctp_sk(sk);
3814 
3815 		sp->ep->reconf_enable = !!params.assoc_value;
3816 	} else {
3817 		goto out;
3818 	}
3819 
3820 	retval = 0;
3821 
3822 out:
3823 	return retval;
3824 }
3825 
3826 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3827 					   char __user *optval,
3828 					   unsigned int optlen)
3829 {
3830 	struct sctp_assoc_value params;
3831 	struct sctp_association *asoc;
3832 	int retval = -EINVAL;
3833 
3834 	if (optlen != sizeof(params))
3835 		goto out;
3836 
3837 	if (copy_from_user(&params, optval, optlen)) {
3838 		retval = -EFAULT;
3839 		goto out;
3840 	}
3841 
3842 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3843 		goto out;
3844 
3845 	asoc = sctp_id2assoc(sk, params.assoc_id);
3846 	if (asoc) {
3847 		asoc->strreset_enable = params.assoc_value;
3848 	} else if (!params.assoc_id) {
3849 		struct sctp_sock *sp = sctp_sk(sk);
3850 
3851 		sp->ep->strreset_enable = params.assoc_value;
3852 	} else {
3853 		goto out;
3854 	}
3855 
3856 	retval = 0;
3857 
3858 out:
3859 	return retval;
3860 }
3861 
3862 static int sctp_setsockopt_reset_streams(struct sock *sk,
3863 					 char __user *optval,
3864 					 unsigned int optlen)
3865 {
3866 	struct sctp_reset_streams *params;
3867 	struct sctp_association *asoc;
3868 	int retval = -EINVAL;
3869 
3870 	if (optlen < sizeof(struct sctp_reset_streams))
3871 		return -EINVAL;
3872 
3873 	params = memdup_user(optval, optlen);
3874 	if (IS_ERR(params))
3875 		return PTR_ERR(params);
3876 
3877 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3878 	if (!asoc)
3879 		goto out;
3880 
3881 	retval = sctp_send_reset_streams(asoc, params);
3882 
3883 out:
3884 	kfree(params);
3885 	return retval;
3886 }
3887 
3888 static int sctp_setsockopt_reset_assoc(struct sock *sk,
3889 				       char __user *optval,
3890 				       unsigned int optlen)
3891 {
3892 	struct sctp_association *asoc;
3893 	sctp_assoc_t associd;
3894 	int retval = -EINVAL;
3895 
3896 	if (optlen != sizeof(associd))
3897 		goto out;
3898 
3899 	if (copy_from_user(&associd, optval, optlen)) {
3900 		retval = -EFAULT;
3901 		goto out;
3902 	}
3903 
3904 	asoc = sctp_id2assoc(sk, associd);
3905 	if (!asoc)
3906 		goto out;
3907 
3908 	retval = sctp_send_reset_assoc(asoc);
3909 
3910 out:
3911 	return retval;
3912 }
3913 
3914 static int sctp_setsockopt_add_streams(struct sock *sk,
3915 				       char __user *optval,
3916 				       unsigned int optlen)
3917 {
3918 	struct sctp_association *asoc;
3919 	struct sctp_add_streams params;
3920 	int retval = -EINVAL;
3921 
3922 	if (optlen != sizeof(params))
3923 		goto out;
3924 
3925 	if (copy_from_user(&params, optval, optlen)) {
3926 		retval = -EFAULT;
3927 		goto out;
3928 	}
3929 
3930 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
3931 	if (!asoc)
3932 		goto out;
3933 
3934 	retval = sctp_send_add_streams(asoc, &params);
3935 
3936 out:
3937 	return retval;
3938 }
3939 
3940 /* API 6.2 setsockopt(), getsockopt()
3941  *
3942  * Applications use setsockopt() and getsockopt() to set or retrieve
3943  * socket options.  Socket options are used to change the default
3944  * behavior of sockets calls.  They are described in Section 7.
3945  *
3946  * The syntax is:
3947  *
3948  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3949  *                    int __user *optlen);
3950  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3951  *                    int optlen);
3952  *
3953  *   sd      - the socket descript.
3954  *   level   - set to IPPROTO_SCTP for all SCTP options.
3955  *   optname - the option name.
3956  *   optval  - the buffer to store the value of the option.
3957  *   optlen  - the size of the buffer.
3958  */
3959 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3960 			   char __user *optval, unsigned int optlen)
3961 {
3962 	int retval = 0;
3963 
3964 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3965 
3966 	/* I can hardly begin to describe how wrong this is.  This is
3967 	 * so broken as to be worse than useless.  The API draft
3968 	 * REALLY is NOT helpful here...  I am not convinced that the
3969 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3970 	 * are at all well-founded.
3971 	 */
3972 	if (level != SOL_SCTP) {
3973 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3974 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3975 		goto out_nounlock;
3976 	}
3977 
3978 	lock_sock(sk);
3979 
3980 	switch (optname) {
3981 	case SCTP_SOCKOPT_BINDX_ADD:
3982 		/* 'optlen' is the size of the addresses buffer. */
3983 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3984 					       optlen, SCTP_BINDX_ADD_ADDR);
3985 		break;
3986 
3987 	case SCTP_SOCKOPT_BINDX_REM:
3988 		/* 'optlen' is the size of the addresses buffer. */
3989 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3990 					       optlen, SCTP_BINDX_REM_ADDR);
3991 		break;
3992 
3993 	case SCTP_SOCKOPT_CONNECTX_OLD:
3994 		/* 'optlen' is the size of the addresses buffer. */
3995 		retval = sctp_setsockopt_connectx_old(sk,
3996 					    (struct sockaddr __user *)optval,
3997 					    optlen);
3998 		break;
3999 
4000 	case SCTP_SOCKOPT_CONNECTX:
4001 		/* 'optlen' is the size of the addresses buffer. */
4002 		retval = sctp_setsockopt_connectx(sk,
4003 					    (struct sockaddr __user *)optval,
4004 					    optlen);
4005 		break;
4006 
4007 	case SCTP_DISABLE_FRAGMENTS:
4008 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4009 		break;
4010 
4011 	case SCTP_EVENTS:
4012 		retval = sctp_setsockopt_events(sk, optval, optlen);
4013 		break;
4014 
4015 	case SCTP_AUTOCLOSE:
4016 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4017 		break;
4018 
4019 	case SCTP_PEER_ADDR_PARAMS:
4020 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4021 		break;
4022 
4023 	case SCTP_DELAYED_SACK:
4024 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4025 		break;
4026 	case SCTP_PARTIAL_DELIVERY_POINT:
4027 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4028 		break;
4029 
4030 	case SCTP_INITMSG:
4031 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4032 		break;
4033 	case SCTP_DEFAULT_SEND_PARAM:
4034 		retval = sctp_setsockopt_default_send_param(sk, optval,
4035 							    optlen);
4036 		break;
4037 	case SCTP_DEFAULT_SNDINFO:
4038 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4039 		break;
4040 	case SCTP_PRIMARY_ADDR:
4041 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4042 		break;
4043 	case SCTP_SET_PEER_PRIMARY_ADDR:
4044 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4045 		break;
4046 	case SCTP_NODELAY:
4047 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4048 		break;
4049 	case SCTP_RTOINFO:
4050 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4051 		break;
4052 	case SCTP_ASSOCINFO:
4053 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4054 		break;
4055 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4056 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4057 		break;
4058 	case SCTP_MAXSEG:
4059 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4060 		break;
4061 	case SCTP_ADAPTATION_LAYER:
4062 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4063 		break;
4064 	case SCTP_CONTEXT:
4065 		retval = sctp_setsockopt_context(sk, optval, optlen);
4066 		break;
4067 	case SCTP_FRAGMENT_INTERLEAVE:
4068 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4069 		break;
4070 	case SCTP_MAX_BURST:
4071 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4072 		break;
4073 	case SCTP_AUTH_CHUNK:
4074 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4075 		break;
4076 	case SCTP_HMAC_IDENT:
4077 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4078 		break;
4079 	case SCTP_AUTH_KEY:
4080 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4081 		break;
4082 	case SCTP_AUTH_ACTIVE_KEY:
4083 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4084 		break;
4085 	case SCTP_AUTH_DELETE_KEY:
4086 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4087 		break;
4088 	case SCTP_AUTO_ASCONF:
4089 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4090 		break;
4091 	case SCTP_PEER_ADDR_THLDS:
4092 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4093 		break;
4094 	case SCTP_RECVRCVINFO:
4095 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4096 		break;
4097 	case SCTP_RECVNXTINFO:
4098 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4099 		break;
4100 	case SCTP_PR_SUPPORTED:
4101 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4102 		break;
4103 	case SCTP_DEFAULT_PRINFO:
4104 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4105 		break;
4106 	case SCTP_RECONFIG_SUPPORTED:
4107 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4108 		break;
4109 	case SCTP_ENABLE_STREAM_RESET:
4110 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4111 		break;
4112 	case SCTP_RESET_STREAMS:
4113 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4114 		break;
4115 	case SCTP_RESET_ASSOC:
4116 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4117 		break;
4118 	case SCTP_ADD_STREAMS:
4119 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4120 		break;
4121 	default:
4122 		retval = -ENOPROTOOPT;
4123 		break;
4124 	}
4125 
4126 	release_sock(sk);
4127 
4128 out_nounlock:
4129 	return retval;
4130 }
4131 
4132 /* API 3.1.6 connect() - UDP Style Syntax
4133  *
4134  * An application may use the connect() call in the UDP model to initiate an
4135  * association without sending data.
4136  *
4137  * The syntax is:
4138  *
4139  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4140  *
4141  * sd: the socket descriptor to have a new association added to.
4142  *
4143  * nam: the address structure (either struct sockaddr_in or struct
4144  *    sockaddr_in6 defined in RFC2553 [7]).
4145  *
4146  * len: the size of the address.
4147  */
4148 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4149 			int addr_len)
4150 {
4151 	int err = 0;
4152 	struct sctp_af *af;
4153 
4154 	lock_sock(sk);
4155 
4156 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4157 		 addr, addr_len);
4158 
4159 	/* Validate addr_len before calling common connect/connectx routine. */
4160 	af = sctp_get_af_specific(addr->sa_family);
4161 	if (!af || addr_len < af->sockaddr_len) {
4162 		err = -EINVAL;
4163 	} else {
4164 		/* Pass correct addr len to common routine (so it knows there
4165 		 * is only one address being passed.
4166 		 */
4167 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
4168 	}
4169 
4170 	release_sock(sk);
4171 	return err;
4172 }
4173 
4174 /* FIXME: Write comments. */
4175 static int sctp_disconnect(struct sock *sk, int flags)
4176 {
4177 	return -EOPNOTSUPP; /* STUB */
4178 }
4179 
4180 /* 4.1.4 accept() - TCP Style Syntax
4181  *
4182  * Applications use accept() call to remove an established SCTP
4183  * association from the accept queue of the endpoint.  A new socket
4184  * descriptor will be returned from accept() to represent the newly
4185  * formed association.
4186  */
4187 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4188 {
4189 	struct sctp_sock *sp;
4190 	struct sctp_endpoint *ep;
4191 	struct sock *newsk = NULL;
4192 	struct sctp_association *asoc;
4193 	long timeo;
4194 	int error = 0;
4195 
4196 	lock_sock(sk);
4197 
4198 	sp = sctp_sk(sk);
4199 	ep = sp->ep;
4200 
4201 	if (!sctp_style(sk, TCP)) {
4202 		error = -EOPNOTSUPP;
4203 		goto out;
4204 	}
4205 
4206 	if (!sctp_sstate(sk, LISTENING)) {
4207 		error = -EINVAL;
4208 		goto out;
4209 	}
4210 
4211 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4212 
4213 	error = sctp_wait_for_accept(sk, timeo);
4214 	if (error)
4215 		goto out;
4216 
4217 	/* We treat the list of associations on the endpoint as the accept
4218 	 * queue and pick the first association on the list.
4219 	 */
4220 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4221 
4222 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4223 	if (!newsk) {
4224 		error = -ENOMEM;
4225 		goto out;
4226 	}
4227 
4228 	/* Populate the fields of the newsk from the oldsk and migrate the
4229 	 * asoc to the newsk.
4230 	 */
4231 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4232 
4233 out:
4234 	release_sock(sk);
4235 	*err = error;
4236 	return newsk;
4237 }
4238 
4239 /* The SCTP ioctl handler. */
4240 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4241 {
4242 	int rc = -ENOTCONN;
4243 
4244 	lock_sock(sk);
4245 
4246 	/*
4247 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4248 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4249 	 */
4250 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4251 		goto out;
4252 
4253 	switch (cmd) {
4254 	case SIOCINQ: {
4255 		struct sk_buff *skb;
4256 		unsigned int amount = 0;
4257 
4258 		skb = skb_peek(&sk->sk_receive_queue);
4259 		if (skb != NULL) {
4260 			/*
4261 			 * We will only return the amount of this packet since
4262 			 * that is all that will be read.
4263 			 */
4264 			amount = skb->len;
4265 		}
4266 		rc = put_user(amount, (int __user *)arg);
4267 		break;
4268 	}
4269 	default:
4270 		rc = -ENOIOCTLCMD;
4271 		break;
4272 	}
4273 out:
4274 	release_sock(sk);
4275 	return rc;
4276 }
4277 
4278 /* This is the function which gets called during socket creation to
4279  * initialized the SCTP-specific portion of the sock.
4280  * The sock structure should already be zero-filled memory.
4281  */
4282 static int sctp_init_sock(struct sock *sk)
4283 {
4284 	struct net *net = sock_net(sk);
4285 	struct sctp_sock *sp;
4286 
4287 	pr_debug("%s: sk:%p\n", __func__, sk);
4288 
4289 	sp = sctp_sk(sk);
4290 
4291 	/* Initialize the SCTP per socket area.  */
4292 	switch (sk->sk_type) {
4293 	case SOCK_SEQPACKET:
4294 		sp->type = SCTP_SOCKET_UDP;
4295 		break;
4296 	case SOCK_STREAM:
4297 		sp->type = SCTP_SOCKET_TCP;
4298 		break;
4299 	default:
4300 		return -ESOCKTNOSUPPORT;
4301 	}
4302 
4303 	sk->sk_gso_type = SKB_GSO_SCTP;
4304 
4305 	/* Initialize default send parameters. These parameters can be
4306 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4307 	 */
4308 	sp->default_stream = 0;
4309 	sp->default_ppid = 0;
4310 	sp->default_flags = 0;
4311 	sp->default_context = 0;
4312 	sp->default_timetolive = 0;
4313 
4314 	sp->default_rcv_context = 0;
4315 	sp->max_burst = net->sctp.max_burst;
4316 
4317 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4318 
4319 	/* Initialize default setup parameters. These parameters
4320 	 * can be modified with the SCTP_INITMSG socket option or
4321 	 * overridden by the SCTP_INIT CMSG.
4322 	 */
4323 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4324 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4325 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4326 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4327 
4328 	/* Initialize default RTO related parameters.  These parameters can
4329 	 * be modified for with the SCTP_RTOINFO socket option.
4330 	 */
4331 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4332 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4333 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4334 
4335 	/* Initialize default association related parameters. These parameters
4336 	 * can be modified with the SCTP_ASSOCINFO socket option.
4337 	 */
4338 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4339 	sp->assocparams.sasoc_number_peer_destinations = 0;
4340 	sp->assocparams.sasoc_peer_rwnd = 0;
4341 	sp->assocparams.sasoc_local_rwnd = 0;
4342 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4343 
4344 	/* Initialize default event subscriptions. By default, all the
4345 	 * options are off.
4346 	 */
4347 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4348 
4349 	/* Default Peer Address Parameters.  These defaults can
4350 	 * be modified via SCTP_PEER_ADDR_PARAMS
4351 	 */
4352 	sp->hbinterval  = net->sctp.hb_interval;
4353 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4354 	sp->pathmtu     = 0; /* allow default discovery */
4355 	sp->sackdelay   = net->sctp.sack_timeout;
4356 	sp->sackfreq	= 2;
4357 	sp->param_flags = SPP_HB_ENABLE |
4358 			  SPP_PMTUD_ENABLE |
4359 			  SPP_SACKDELAY_ENABLE;
4360 
4361 	/* If enabled no SCTP message fragmentation will be performed.
4362 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4363 	 */
4364 	sp->disable_fragments = 0;
4365 
4366 	/* Enable Nagle algorithm by default.  */
4367 	sp->nodelay           = 0;
4368 
4369 	sp->recvrcvinfo = 0;
4370 	sp->recvnxtinfo = 0;
4371 
4372 	/* Enable by default. */
4373 	sp->v4mapped          = 1;
4374 
4375 	/* Auto-close idle associations after the configured
4376 	 * number of seconds.  A value of 0 disables this
4377 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4378 	 * for UDP-style sockets only.
4379 	 */
4380 	sp->autoclose         = 0;
4381 
4382 	/* User specified fragmentation limit. */
4383 	sp->user_frag         = 0;
4384 
4385 	sp->adaptation_ind = 0;
4386 
4387 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4388 
4389 	/* Control variables for partial data delivery. */
4390 	atomic_set(&sp->pd_mode, 0);
4391 	skb_queue_head_init(&sp->pd_lobby);
4392 	sp->frag_interleave = 0;
4393 
4394 	/* Create a per socket endpoint structure.  Even if we
4395 	 * change the data structure relationships, this may still
4396 	 * be useful for storing pre-connect address information.
4397 	 */
4398 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4399 	if (!sp->ep)
4400 		return -ENOMEM;
4401 
4402 	sp->hmac = NULL;
4403 
4404 	sk->sk_destruct = sctp_destruct_sock;
4405 
4406 	SCTP_DBG_OBJCNT_INC(sock);
4407 
4408 	local_bh_disable();
4409 	percpu_counter_inc(&sctp_sockets_allocated);
4410 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4411 
4412 	/* Nothing can fail after this block, otherwise
4413 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4414 	 */
4415 	if (net->sctp.default_auto_asconf) {
4416 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4417 		list_add_tail(&sp->auto_asconf_list,
4418 		    &net->sctp.auto_asconf_splist);
4419 		sp->do_auto_asconf = 1;
4420 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4421 	} else {
4422 		sp->do_auto_asconf = 0;
4423 	}
4424 
4425 	local_bh_enable();
4426 
4427 	return 0;
4428 }
4429 
4430 /* Cleanup any SCTP per socket resources. Must be called with
4431  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4432  */
4433 static void sctp_destroy_sock(struct sock *sk)
4434 {
4435 	struct sctp_sock *sp;
4436 
4437 	pr_debug("%s: sk:%p\n", __func__, sk);
4438 
4439 	/* Release our hold on the endpoint. */
4440 	sp = sctp_sk(sk);
4441 	/* This could happen during socket init, thus we bail out
4442 	 * early, since the rest of the below is not setup either.
4443 	 */
4444 	if (sp->ep == NULL)
4445 		return;
4446 
4447 	if (sp->do_auto_asconf) {
4448 		sp->do_auto_asconf = 0;
4449 		list_del(&sp->auto_asconf_list);
4450 	}
4451 	sctp_endpoint_free(sp->ep);
4452 	local_bh_disable();
4453 	percpu_counter_dec(&sctp_sockets_allocated);
4454 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4455 	local_bh_enable();
4456 }
4457 
4458 /* Triggered when there are no references on the socket anymore */
4459 static void sctp_destruct_sock(struct sock *sk)
4460 {
4461 	struct sctp_sock *sp = sctp_sk(sk);
4462 
4463 	/* Free up the HMAC transform. */
4464 	crypto_free_shash(sp->hmac);
4465 
4466 	inet_sock_destruct(sk);
4467 }
4468 
4469 /* API 4.1.7 shutdown() - TCP Style Syntax
4470  *     int shutdown(int socket, int how);
4471  *
4472  *     sd      - the socket descriptor of the association to be closed.
4473  *     how     - Specifies the type of shutdown.  The  values  are
4474  *               as follows:
4475  *               SHUT_RD
4476  *                     Disables further receive operations. No SCTP
4477  *                     protocol action is taken.
4478  *               SHUT_WR
4479  *                     Disables further send operations, and initiates
4480  *                     the SCTP shutdown sequence.
4481  *               SHUT_RDWR
4482  *                     Disables further send  and  receive  operations
4483  *                     and initiates the SCTP shutdown sequence.
4484  */
4485 static void sctp_shutdown(struct sock *sk, int how)
4486 {
4487 	struct net *net = sock_net(sk);
4488 	struct sctp_endpoint *ep;
4489 
4490 	if (!sctp_style(sk, TCP))
4491 		return;
4492 
4493 	ep = sctp_sk(sk)->ep;
4494 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4495 		struct sctp_association *asoc;
4496 
4497 		sk->sk_state = SCTP_SS_CLOSING;
4498 		asoc = list_entry(ep->asocs.next,
4499 				  struct sctp_association, asocs);
4500 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4501 	}
4502 }
4503 
4504 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4505 		       struct sctp_info *info)
4506 {
4507 	struct sctp_transport *prim;
4508 	struct list_head *pos;
4509 	int mask;
4510 
4511 	memset(info, 0, sizeof(*info));
4512 	if (!asoc) {
4513 		struct sctp_sock *sp = sctp_sk(sk);
4514 
4515 		info->sctpi_s_autoclose = sp->autoclose;
4516 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4517 		info->sctpi_s_pd_point = sp->pd_point;
4518 		info->sctpi_s_nodelay = sp->nodelay;
4519 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4520 		info->sctpi_s_v4mapped = sp->v4mapped;
4521 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4522 		info->sctpi_s_type = sp->type;
4523 
4524 		return 0;
4525 	}
4526 
4527 	info->sctpi_tag = asoc->c.my_vtag;
4528 	info->sctpi_state = asoc->state;
4529 	info->sctpi_rwnd = asoc->a_rwnd;
4530 	info->sctpi_unackdata = asoc->unack_data;
4531 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4532 	info->sctpi_instrms = asoc->stream.incnt;
4533 	info->sctpi_outstrms = asoc->stream.outcnt;
4534 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4535 		info->sctpi_inqueue++;
4536 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4537 		info->sctpi_outqueue++;
4538 	info->sctpi_overall_error = asoc->overall_error_count;
4539 	info->sctpi_max_burst = asoc->max_burst;
4540 	info->sctpi_maxseg = asoc->frag_point;
4541 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4542 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4543 
4544 	mask = asoc->peer.ecn_capable << 1;
4545 	mask = (mask | asoc->peer.ipv4_address) << 1;
4546 	mask = (mask | asoc->peer.ipv6_address) << 1;
4547 	mask = (mask | asoc->peer.hostname_address) << 1;
4548 	mask = (mask | asoc->peer.asconf_capable) << 1;
4549 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4550 	mask = (mask | asoc->peer.auth_capable);
4551 	info->sctpi_peer_capable = mask;
4552 	mask = asoc->peer.sack_needed << 1;
4553 	mask = (mask | asoc->peer.sack_generation) << 1;
4554 	mask = (mask | asoc->peer.zero_window_announced);
4555 	info->sctpi_peer_sack = mask;
4556 
4557 	info->sctpi_isacks = asoc->stats.isacks;
4558 	info->sctpi_osacks = asoc->stats.osacks;
4559 	info->sctpi_opackets = asoc->stats.opackets;
4560 	info->sctpi_ipackets = asoc->stats.ipackets;
4561 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4562 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4563 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4564 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4565 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4566 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4567 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4568 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4569 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4570 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4571 
4572 	prim = asoc->peer.primary_path;
4573 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4574 	info->sctpi_p_state = prim->state;
4575 	info->sctpi_p_cwnd = prim->cwnd;
4576 	info->sctpi_p_srtt = prim->srtt;
4577 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4578 	info->sctpi_p_hbinterval = prim->hbinterval;
4579 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4580 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4581 	info->sctpi_p_ssthresh = prim->ssthresh;
4582 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4583 	info->sctpi_p_flight_size = prim->flight_size;
4584 	info->sctpi_p_error = prim->error_count;
4585 
4586 	return 0;
4587 }
4588 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4589 
4590 /* use callback to avoid exporting the core structure */
4591 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4592 {
4593 	int err;
4594 
4595 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
4596 
4597 	err = rhashtable_walk_start(iter);
4598 	if (err && err != -EAGAIN) {
4599 		rhashtable_walk_stop(iter);
4600 		rhashtable_walk_exit(iter);
4601 		return err;
4602 	}
4603 
4604 	return 0;
4605 }
4606 
4607 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4608 {
4609 	rhashtable_walk_stop(iter);
4610 	rhashtable_walk_exit(iter);
4611 }
4612 
4613 struct sctp_transport *sctp_transport_get_next(struct net *net,
4614 					       struct rhashtable_iter *iter)
4615 {
4616 	struct sctp_transport *t;
4617 
4618 	t = rhashtable_walk_next(iter);
4619 	for (; t; t = rhashtable_walk_next(iter)) {
4620 		if (IS_ERR(t)) {
4621 			if (PTR_ERR(t) == -EAGAIN)
4622 				continue;
4623 			break;
4624 		}
4625 
4626 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
4627 		    t->asoc->peer.primary_path == t)
4628 			break;
4629 	}
4630 
4631 	return t;
4632 }
4633 
4634 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4635 					      struct rhashtable_iter *iter,
4636 					      int pos)
4637 {
4638 	void *obj = SEQ_START_TOKEN;
4639 
4640 	while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4641 	       !IS_ERR(obj))
4642 		pos--;
4643 
4644 	return obj;
4645 }
4646 
4647 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4648 			   void *p) {
4649 	int err = 0;
4650 	int hash = 0;
4651 	struct sctp_ep_common *epb;
4652 	struct sctp_hashbucket *head;
4653 
4654 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4655 	     hash++, head++) {
4656 		read_lock_bh(&head->lock);
4657 		sctp_for_each_hentry(epb, &head->chain) {
4658 			err = cb(sctp_ep(epb), p);
4659 			if (err)
4660 				break;
4661 		}
4662 		read_unlock_bh(&head->lock);
4663 	}
4664 
4665 	return err;
4666 }
4667 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4668 
4669 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4670 				  struct net *net,
4671 				  const union sctp_addr *laddr,
4672 				  const union sctp_addr *paddr, void *p)
4673 {
4674 	struct sctp_transport *transport;
4675 	int err;
4676 
4677 	rcu_read_lock();
4678 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4679 	rcu_read_unlock();
4680 	if (!transport)
4681 		return -ENOENT;
4682 
4683 	err = cb(transport, p);
4684 	sctp_transport_put(transport);
4685 
4686 	return err;
4687 }
4688 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4689 
4690 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4691 			    int (*cb_done)(struct sctp_transport *, void *),
4692 			    struct net *net, int *pos, void *p) {
4693 	struct rhashtable_iter hti;
4694 	struct sctp_transport *tsp;
4695 	int ret;
4696 
4697 again:
4698 	ret = sctp_transport_walk_start(&hti);
4699 	if (ret)
4700 		return ret;
4701 
4702 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
4703 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
4704 		if (!sctp_transport_hold(tsp))
4705 			continue;
4706 		ret = cb(tsp, p);
4707 		if (ret)
4708 			break;
4709 		(*pos)++;
4710 		sctp_transport_put(tsp);
4711 	}
4712 	sctp_transport_walk_stop(&hti);
4713 
4714 	if (ret) {
4715 		if (cb_done && !cb_done(tsp, p)) {
4716 			(*pos)++;
4717 			sctp_transport_put(tsp);
4718 			goto again;
4719 		}
4720 		sctp_transport_put(tsp);
4721 	}
4722 
4723 	return ret;
4724 }
4725 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4726 
4727 /* 7.2.1 Association Status (SCTP_STATUS)
4728 
4729  * Applications can retrieve current status information about an
4730  * association, including association state, peer receiver window size,
4731  * number of unacked data chunks, and number of data chunks pending
4732  * receipt.  This information is read-only.
4733  */
4734 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4735 				       char __user *optval,
4736 				       int __user *optlen)
4737 {
4738 	struct sctp_status status;
4739 	struct sctp_association *asoc = NULL;
4740 	struct sctp_transport *transport;
4741 	sctp_assoc_t associd;
4742 	int retval = 0;
4743 
4744 	if (len < sizeof(status)) {
4745 		retval = -EINVAL;
4746 		goto out;
4747 	}
4748 
4749 	len = sizeof(status);
4750 	if (copy_from_user(&status, optval, len)) {
4751 		retval = -EFAULT;
4752 		goto out;
4753 	}
4754 
4755 	associd = status.sstat_assoc_id;
4756 	asoc = sctp_id2assoc(sk, associd);
4757 	if (!asoc) {
4758 		retval = -EINVAL;
4759 		goto out;
4760 	}
4761 
4762 	transport = asoc->peer.primary_path;
4763 
4764 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4765 	status.sstat_state = sctp_assoc_to_state(asoc);
4766 	status.sstat_rwnd =  asoc->peer.rwnd;
4767 	status.sstat_unackdata = asoc->unack_data;
4768 
4769 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4770 	status.sstat_instrms = asoc->stream.incnt;
4771 	status.sstat_outstrms = asoc->stream.outcnt;
4772 	status.sstat_fragmentation_point = asoc->frag_point;
4773 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4774 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4775 			transport->af_specific->sockaddr_len);
4776 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4777 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4778 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4779 	status.sstat_primary.spinfo_state = transport->state;
4780 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4781 	status.sstat_primary.spinfo_srtt = transport->srtt;
4782 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4783 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4784 
4785 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4786 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4787 
4788 	if (put_user(len, optlen)) {
4789 		retval = -EFAULT;
4790 		goto out;
4791 	}
4792 
4793 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4794 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4795 		 status.sstat_assoc_id);
4796 
4797 	if (copy_to_user(optval, &status, len)) {
4798 		retval = -EFAULT;
4799 		goto out;
4800 	}
4801 
4802 out:
4803 	return retval;
4804 }
4805 
4806 
4807 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4808  *
4809  * Applications can retrieve information about a specific peer address
4810  * of an association, including its reachability state, congestion
4811  * window, and retransmission timer values.  This information is
4812  * read-only.
4813  */
4814 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4815 					  char __user *optval,
4816 					  int __user *optlen)
4817 {
4818 	struct sctp_paddrinfo pinfo;
4819 	struct sctp_transport *transport;
4820 	int retval = 0;
4821 
4822 	if (len < sizeof(pinfo)) {
4823 		retval = -EINVAL;
4824 		goto out;
4825 	}
4826 
4827 	len = sizeof(pinfo);
4828 	if (copy_from_user(&pinfo, optval, len)) {
4829 		retval = -EFAULT;
4830 		goto out;
4831 	}
4832 
4833 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4834 					   pinfo.spinfo_assoc_id);
4835 	if (!transport)
4836 		return -EINVAL;
4837 
4838 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4839 	pinfo.spinfo_state = transport->state;
4840 	pinfo.spinfo_cwnd = transport->cwnd;
4841 	pinfo.spinfo_srtt = transport->srtt;
4842 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4843 	pinfo.spinfo_mtu = transport->pathmtu;
4844 
4845 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4846 		pinfo.spinfo_state = SCTP_ACTIVE;
4847 
4848 	if (put_user(len, optlen)) {
4849 		retval = -EFAULT;
4850 		goto out;
4851 	}
4852 
4853 	if (copy_to_user(optval, &pinfo, len)) {
4854 		retval = -EFAULT;
4855 		goto out;
4856 	}
4857 
4858 out:
4859 	return retval;
4860 }
4861 
4862 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4863  *
4864  * This option is a on/off flag.  If enabled no SCTP message
4865  * fragmentation will be performed.  Instead if a message being sent
4866  * exceeds the current PMTU size, the message will NOT be sent and
4867  * instead a error will be indicated to the user.
4868  */
4869 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4870 					char __user *optval, int __user *optlen)
4871 {
4872 	int val;
4873 
4874 	if (len < sizeof(int))
4875 		return -EINVAL;
4876 
4877 	len = sizeof(int);
4878 	val = (sctp_sk(sk)->disable_fragments == 1);
4879 	if (put_user(len, optlen))
4880 		return -EFAULT;
4881 	if (copy_to_user(optval, &val, len))
4882 		return -EFAULT;
4883 	return 0;
4884 }
4885 
4886 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4887  *
4888  * This socket option is used to specify various notifications and
4889  * ancillary data the user wishes to receive.
4890  */
4891 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4892 				  int __user *optlen)
4893 {
4894 	if (len == 0)
4895 		return -EINVAL;
4896 	if (len > sizeof(struct sctp_event_subscribe))
4897 		len = sizeof(struct sctp_event_subscribe);
4898 	if (put_user(len, optlen))
4899 		return -EFAULT;
4900 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4901 		return -EFAULT;
4902 	return 0;
4903 }
4904 
4905 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4906  *
4907  * This socket option is applicable to the UDP-style socket only.  When
4908  * set it will cause associations that are idle for more than the
4909  * specified number of seconds to automatically close.  An association
4910  * being idle is defined an association that has NOT sent or received
4911  * user data.  The special value of '0' indicates that no automatic
4912  * close of any associations should be performed.  The option expects an
4913  * integer defining the number of seconds of idle time before an
4914  * association is closed.
4915  */
4916 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4917 {
4918 	/* Applicable to UDP-style socket only */
4919 	if (sctp_style(sk, TCP))
4920 		return -EOPNOTSUPP;
4921 	if (len < sizeof(int))
4922 		return -EINVAL;
4923 	len = sizeof(int);
4924 	if (put_user(len, optlen))
4925 		return -EFAULT;
4926 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4927 		return -EFAULT;
4928 	return 0;
4929 }
4930 
4931 /* Helper routine to branch off an association to a new socket.  */
4932 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4933 {
4934 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4935 	struct sctp_sock *sp = sctp_sk(sk);
4936 	struct socket *sock;
4937 	int err = 0;
4938 
4939 	/* Do not peel off from one netns to another one. */
4940 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
4941 		return -EINVAL;
4942 
4943 	if (!asoc)
4944 		return -EINVAL;
4945 
4946 	/* If there is a thread waiting on more sndbuf space for
4947 	 * sending on this asoc, it cannot be peeled.
4948 	 */
4949 	if (waitqueue_active(&asoc->wait))
4950 		return -EBUSY;
4951 
4952 	/* An association cannot be branched off from an already peeled-off
4953 	 * socket, nor is this supported for tcp style sockets.
4954 	 */
4955 	if (!sctp_style(sk, UDP))
4956 		return -EINVAL;
4957 
4958 	/* Create a new socket.  */
4959 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4960 	if (err < 0)
4961 		return err;
4962 
4963 	sctp_copy_sock(sock->sk, sk, asoc);
4964 
4965 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4966 	 * Set the daddr and initialize id to something more random
4967 	 */
4968 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4969 
4970 	/* Populate the fields of the newsk from the oldsk and migrate the
4971 	 * asoc to the newsk.
4972 	 */
4973 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4974 
4975 	*sockp = sock;
4976 
4977 	return err;
4978 }
4979 EXPORT_SYMBOL(sctp_do_peeloff);
4980 
4981 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
4982 					  struct file **newfile, unsigned flags)
4983 {
4984 	struct socket *newsock;
4985 	int retval;
4986 
4987 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
4988 	if (retval < 0)
4989 		goto out;
4990 
4991 	/* Map the socket to an unused fd that can be returned to the user.  */
4992 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
4993 	if (retval < 0) {
4994 		sock_release(newsock);
4995 		goto out;
4996 	}
4997 
4998 	*newfile = sock_alloc_file(newsock, 0, NULL);
4999 	if (IS_ERR(*newfile)) {
5000 		put_unused_fd(retval);
5001 		sock_release(newsock);
5002 		retval = PTR_ERR(*newfile);
5003 		*newfile = NULL;
5004 		return retval;
5005 	}
5006 
5007 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5008 		 retval);
5009 
5010 	peeloff->sd = retval;
5011 
5012 	if (flags & SOCK_NONBLOCK)
5013 		(*newfile)->f_flags |= O_NONBLOCK;
5014 out:
5015 	return retval;
5016 }
5017 
5018 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5019 {
5020 	sctp_peeloff_arg_t peeloff;
5021 	struct file *newfile = NULL;
5022 	int retval = 0;
5023 
5024 	if (len < sizeof(sctp_peeloff_arg_t))
5025 		return -EINVAL;
5026 	len = sizeof(sctp_peeloff_arg_t);
5027 	if (copy_from_user(&peeloff, optval, len))
5028 		return -EFAULT;
5029 
5030 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5031 	if (retval < 0)
5032 		goto out;
5033 
5034 	/* Return the fd mapped to the new socket.  */
5035 	if (put_user(len, optlen)) {
5036 		fput(newfile);
5037 		put_unused_fd(retval);
5038 		return -EFAULT;
5039 	}
5040 
5041 	if (copy_to_user(optval, &peeloff, len)) {
5042 		fput(newfile);
5043 		put_unused_fd(retval);
5044 		return -EFAULT;
5045 	}
5046 	fd_install(retval, newfile);
5047 out:
5048 	return retval;
5049 }
5050 
5051 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5052 					 char __user *optval, int __user *optlen)
5053 {
5054 	sctp_peeloff_flags_arg_t peeloff;
5055 	struct file *newfile = NULL;
5056 	int retval = 0;
5057 
5058 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5059 		return -EINVAL;
5060 	len = sizeof(sctp_peeloff_flags_arg_t);
5061 	if (copy_from_user(&peeloff, optval, len))
5062 		return -EFAULT;
5063 
5064 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5065 						&newfile, peeloff.flags);
5066 	if (retval < 0)
5067 		goto out;
5068 
5069 	/* Return the fd mapped to the new socket.  */
5070 	if (put_user(len, optlen)) {
5071 		fput(newfile);
5072 		put_unused_fd(retval);
5073 		return -EFAULT;
5074 	}
5075 
5076 	if (copy_to_user(optval, &peeloff, len)) {
5077 		fput(newfile);
5078 		put_unused_fd(retval);
5079 		return -EFAULT;
5080 	}
5081 	fd_install(retval, newfile);
5082 out:
5083 	return retval;
5084 }
5085 
5086 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5087  *
5088  * Applications can enable or disable heartbeats for any peer address of
5089  * an association, modify an address's heartbeat interval, force a
5090  * heartbeat to be sent immediately, and adjust the address's maximum
5091  * number of retransmissions sent before an address is considered
5092  * unreachable.  The following structure is used to access and modify an
5093  * address's parameters:
5094  *
5095  *  struct sctp_paddrparams {
5096  *     sctp_assoc_t            spp_assoc_id;
5097  *     struct sockaddr_storage spp_address;
5098  *     uint32_t                spp_hbinterval;
5099  *     uint16_t                spp_pathmaxrxt;
5100  *     uint32_t                spp_pathmtu;
5101  *     uint32_t                spp_sackdelay;
5102  *     uint32_t                spp_flags;
5103  * };
5104  *
5105  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5106  *                     application, and identifies the association for
5107  *                     this query.
5108  *   spp_address     - This specifies which address is of interest.
5109  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5110  *                     in milliseconds.  If a  value of zero
5111  *                     is present in this field then no changes are to
5112  *                     be made to this parameter.
5113  *   spp_pathmaxrxt  - This contains the maximum number of
5114  *                     retransmissions before this address shall be
5115  *                     considered unreachable. If a  value of zero
5116  *                     is present in this field then no changes are to
5117  *                     be made to this parameter.
5118  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5119  *                     specified here will be the "fixed" path mtu.
5120  *                     Note that if the spp_address field is empty
5121  *                     then all associations on this address will
5122  *                     have this fixed path mtu set upon them.
5123  *
5124  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5125  *                     the number of milliseconds that sacks will be delayed
5126  *                     for. This value will apply to all addresses of an
5127  *                     association if the spp_address field is empty. Note
5128  *                     also, that if delayed sack is enabled and this
5129  *                     value is set to 0, no change is made to the last
5130  *                     recorded delayed sack timer value.
5131  *
5132  *   spp_flags       - These flags are used to control various features
5133  *                     on an association. The flag field may contain
5134  *                     zero or more of the following options.
5135  *
5136  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5137  *                     specified address. Note that if the address
5138  *                     field is empty all addresses for the association
5139  *                     have heartbeats enabled upon them.
5140  *
5141  *                     SPP_HB_DISABLE - Disable heartbeats on the
5142  *                     speicifed address. Note that if the address
5143  *                     field is empty all addresses for the association
5144  *                     will have their heartbeats disabled. Note also
5145  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5146  *                     mutually exclusive, only one of these two should
5147  *                     be specified. Enabling both fields will have
5148  *                     undetermined results.
5149  *
5150  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5151  *                     to be made immediately.
5152  *
5153  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5154  *                     discovery upon the specified address. Note that
5155  *                     if the address feild is empty then all addresses
5156  *                     on the association are effected.
5157  *
5158  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5159  *                     discovery upon the specified address. Note that
5160  *                     if the address feild is empty then all addresses
5161  *                     on the association are effected. Not also that
5162  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5163  *                     exclusive. Enabling both will have undetermined
5164  *                     results.
5165  *
5166  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5167  *                     on delayed sack. The time specified in spp_sackdelay
5168  *                     is used to specify the sack delay for this address. Note
5169  *                     that if spp_address is empty then all addresses will
5170  *                     enable delayed sack and take on the sack delay
5171  *                     value specified in spp_sackdelay.
5172  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5173  *                     off delayed sack. If the spp_address field is blank then
5174  *                     delayed sack is disabled for the entire association. Note
5175  *                     also that this field is mutually exclusive to
5176  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5177  *                     results.
5178  */
5179 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5180 					    char __user *optval, int __user *optlen)
5181 {
5182 	struct sctp_paddrparams  params;
5183 	struct sctp_transport   *trans = NULL;
5184 	struct sctp_association *asoc = NULL;
5185 	struct sctp_sock        *sp = sctp_sk(sk);
5186 
5187 	if (len < sizeof(struct sctp_paddrparams))
5188 		return -EINVAL;
5189 	len = sizeof(struct sctp_paddrparams);
5190 	if (copy_from_user(&params, optval, len))
5191 		return -EFAULT;
5192 
5193 	/* If an address other than INADDR_ANY is specified, and
5194 	 * no transport is found, then the request is invalid.
5195 	 */
5196 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5197 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5198 					       params.spp_assoc_id);
5199 		if (!trans) {
5200 			pr_debug("%s: failed no transport\n", __func__);
5201 			return -EINVAL;
5202 		}
5203 	}
5204 
5205 	/* Get association, if assoc_id != 0 and the socket is a one
5206 	 * to many style socket, and an association was not found, then
5207 	 * the id was invalid.
5208 	 */
5209 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5210 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5211 		pr_debug("%s: failed no association\n", __func__);
5212 		return -EINVAL;
5213 	}
5214 
5215 	if (trans) {
5216 		/* Fetch transport values. */
5217 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5218 		params.spp_pathmtu    = trans->pathmtu;
5219 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5220 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5221 
5222 		/*draft-11 doesn't say what to return in spp_flags*/
5223 		params.spp_flags      = trans->param_flags;
5224 	} else if (asoc) {
5225 		/* Fetch association values. */
5226 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5227 		params.spp_pathmtu    = asoc->pathmtu;
5228 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5229 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5230 
5231 		/*draft-11 doesn't say what to return in spp_flags*/
5232 		params.spp_flags      = asoc->param_flags;
5233 	} else {
5234 		/* Fetch socket values. */
5235 		params.spp_hbinterval = sp->hbinterval;
5236 		params.spp_pathmtu    = sp->pathmtu;
5237 		params.spp_sackdelay  = sp->sackdelay;
5238 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5239 
5240 		/*draft-11 doesn't say what to return in spp_flags*/
5241 		params.spp_flags      = sp->param_flags;
5242 	}
5243 
5244 	if (copy_to_user(optval, &params, len))
5245 		return -EFAULT;
5246 
5247 	if (put_user(len, optlen))
5248 		return -EFAULT;
5249 
5250 	return 0;
5251 }
5252 
5253 /*
5254  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5255  *
5256  * This option will effect the way delayed acks are performed.  This
5257  * option allows you to get or set the delayed ack time, in
5258  * milliseconds.  It also allows changing the delayed ack frequency.
5259  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5260  * the assoc_id is 0, then this sets or gets the endpoints default
5261  * values.  If the assoc_id field is non-zero, then the set or get
5262  * effects the specified association for the one to many model (the
5263  * assoc_id field is ignored by the one to one model).  Note that if
5264  * sack_delay or sack_freq are 0 when setting this option, then the
5265  * current values will remain unchanged.
5266  *
5267  * struct sctp_sack_info {
5268  *     sctp_assoc_t            sack_assoc_id;
5269  *     uint32_t                sack_delay;
5270  *     uint32_t                sack_freq;
5271  * };
5272  *
5273  * sack_assoc_id -  This parameter, indicates which association the user
5274  *    is performing an action upon.  Note that if this field's value is
5275  *    zero then the endpoints default value is changed (effecting future
5276  *    associations only).
5277  *
5278  * sack_delay -  This parameter contains the number of milliseconds that
5279  *    the user is requesting the delayed ACK timer be set to.  Note that
5280  *    this value is defined in the standard to be between 200 and 500
5281  *    milliseconds.
5282  *
5283  * sack_freq -  This parameter contains the number of packets that must
5284  *    be received before a sack is sent without waiting for the delay
5285  *    timer to expire.  The default value for this is 2, setting this
5286  *    value to 1 will disable the delayed sack algorithm.
5287  */
5288 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5289 					    char __user *optval,
5290 					    int __user *optlen)
5291 {
5292 	struct sctp_sack_info    params;
5293 	struct sctp_association *asoc = NULL;
5294 	struct sctp_sock        *sp = sctp_sk(sk);
5295 
5296 	if (len >= sizeof(struct sctp_sack_info)) {
5297 		len = sizeof(struct sctp_sack_info);
5298 
5299 		if (copy_from_user(&params, optval, len))
5300 			return -EFAULT;
5301 	} else if (len == sizeof(struct sctp_assoc_value)) {
5302 		pr_warn_ratelimited(DEPRECATED
5303 				    "%s (pid %d) "
5304 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5305 				    "Use struct sctp_sack_info instead\n",
5306 				    current->comm, task_pid_nr(current));
5307 		if (copy_from_user(&params, optval, len))
5308 			return -EFAULT;
5309 	} else
5310 		return -EINVAL;
5311 
5312 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5313 	 * to many style socket, and an association was not found, then
5314 	 * the id was invalid.
5315 	 */
5316 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5317 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5318 		return -EINVAL;
5319 
5320 	if (asoc) {
5321 		/* Fetch association values. */
5322 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5323 			params.sack_delay = jiffies_to_msecs(
5324 				asoc->sackdelay);
5325 			params.sack_freq = asoc->sackfreq;
5326 
5327 		} else {
5328 			params.sack_delay = 0;
5329 			params.sack_freq = 1;
5330 		}
5331 	} else {
5332 		/* Fetch socket values. */
5333 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5334 			params.sack_delay  = sp->sackdelay;
5335 			params.sack_freq = sp->sackfreq;
5336 		} else {
5337 			params.sack_delay  = 0;
5338 			params.sack_freq = 1;
5339 		}
5340 	}
5341 
5342 	if (copy_to_user(optval, &params, len))
5343 		return -EFAULT;
5344 
5345 	if (put_user(len, optlen))
5346 		return -EFAULT;
5347 
5348 	return 0;
5349 }
5350 
5351 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5352  *
5353  * Applications can specify protocol parameters for the default association
5354  * initialization.  The option name argument to setsockopt() and getsockopt()
5355  * is SCTP_INITMSG.
5356  *
5357  * Setting initialization parameters is effective only on an unconnected
5358  * socket (for UDP-style sockets only future associations are effected
5359  * by the change).  With TCP-style sockets, this option is inherited by
5360  * sockets derived from a listener socket.
5361  */
5362 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5363 {
5364 	if (len < sizeof(struct sctp_initmsg))
5365 		return -EINVAL;
5366 	len = sizeof(struct sctp_initmsg);
5367 	if (put_user(len, optlen))
5368 		return -EFAULT;
5369 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5370 		return -EFAULT;
5371 	return 0;
5372 }
5373 
5374 
5375 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5376 				      char __user *optval, int __user *optlen)
5377 {
5378 	struct sctp_association *asoc;
5379 	int cnt = 0;
5380 	struct sctp_getaddrs getaddrs;
5381 	struct sctp_transport *from;
5382 	void __user *to;
5383 	union sctp_addr temp;
5384 	struct sctp_sock *sp = sctp_sk(sk);
5385 	int addrlen;
5386 	size_t space_left;
5387 	int bytes_copied;
5388 
5389 	if (len < sizeof(struct sctp_getaddrs))
5390 		return -EINVAL;
5391 
5392 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5393 		return -EFAULT;
5394 
5395 	/* For UDP-style sockets, id specifies the association to query.  */
5396 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5397 	if (!asoc)
5398 		return -EINVAL;
5399 
5400 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5401 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5402 
5403 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5404 				transports) {
5405 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5406 		addrlen = sctp_get_pf_specific(sk->sk_family)
5407 			      ->addr_to_user(sp, &temp);
5408 		if (space_left < addrlen)
5409 			return -ENOMEM;
5410 		if (copy_to_user(to, &temp, addrlen))
5411 			return -EFAULT;
5412 		to += addrlen;
5413 		cnt++;
5414 		space_left -= addrlen;
5415 	}
5416 
5417 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5418 		return -EFAULT;
5419 	bytes_copied = ((char __user *)to) - optval;
5420 	if (put_user(bytes_copied, optlen))
5421 		return -EFAULT;
5422 
5423 	return 0;
5424 }
5425 
5426 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5427 			    size_t space_left, int *bytes_copied)
5428 {
5429 	struct sctp_sockaddr_entry *addr;
5430 	union sctp_addr temp;
5431 	int cnt = 0;
5432 	int addrlen;
5433 	struct net *net = sock_net(sk);
5434 
5435 	rcu_read_lock();
5436 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5437 		if (!addr->valid)
5438 			continue;
5439 
5440 		if ((PF_INET == sk->sk_family) &&
5441 		    (AF_INET6 == addr->a.sa.sa_family))
5442 			continue;
5443 		if ((PF_INET6 == sk->sk_family) &&
5444 		    inet_v6_ipv6only(sk) &&
5445 		    (AF_INET == addr->a.sa.sa_family))
5446 			continue;
5447 		memcpy(&temp, &addr->a, sizeof(temp));
5448 		if (!temp.v4.sin_port)
5449 			temp.v4.sin_port = htons(port);
5450 
5451 		addrlen = sctp_get_pf_specific(sk->sk_family)
5452 			      ->addr_to_user(sctp_sk(sk), &temp);
5453 
5454 		if (space_left < addrlen) {
5455 			cnt =  -ENOMEM;
5456 			break;
5457 		}
5458 		memcpy(to, &temp, addrlen);
5459 
5460 		to += addrlen;
5461 		cnt++;
5462 		space_left -= addrlen;
5463 		*bytes_copied += addrlen;
5464 	}
5465 	rcu_read_unlock();
5466 
5467 	return cnt;
5468 }
5469 
5470 
5471 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5472 				       char __user *optval, int __user *optlen)
5473 {
5474 	struct sctp_bind_addr *bp;
5475 	struct sctp_association *asoc;
5476 	int cnt = 0;
5477 	struct sctp_getaddrs getaddrs;
5478 	struct sctp_sockaddr_entry *addr;
5479 	void __user *to;
5480 	union sctp_addr temp;
5481 	struct sctp_sock *sp = sctp_sk(sk);
5482 	int addrlen;
5483 	int err = 0;
5484 	size_t space_left;
5485 	int bytes_copied = 0;
5486 	void *addrs;
5487 	void *buf;
5488 
5489 	if (len < sizeof(struct sctp_getaddrs))
5490 		return -EINVAL;
5491 
5492 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5493 		return -EFAULT;
5494 
5495 	/*
5496 	 *  For UDP-style sockets, id specifies the association to query.
5497 	 *  If the id field is set to the value '0' then the locally bound
5498 	 *  addresses are returned without regard to any particular
5499 	 *  association.
5500 	 */
5501 	if (0 == getaddrs.assoc_id) {
5502 		bp = &sctp_sk(sk)->ep->base.bind_addr;
5503 	} else {
5504 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5505 		if (!asoc)
5506 			return -EINVAL;
5507 		bp = &asoc->base.bind_addr;
5508 	}
5509 
5510 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5511 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5512 
5513 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5514 	if (!addrs)
5515 		return -ENOMEM;
5516 
5517 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5518 	 * addresses from the global local address list.
5519 	 */
5520 	if (sctp_list_single_entry(&bp->address_list)) {
5521 		addr = list_entry(bp->address_list.next,
5522 				  struct sctp_sockaddr_entry, list);
5523 		if (sctp_is_any(sk, &addr->a)) {
5524 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5525 						space_left, &bytes_copied);
5526 			if (cnt < 0) {
5527 				err = cnt;
5528 				goto out;
5529 			}
5530 			goto copy_getaddrs;
5531 		}
5532 	}
5533 
5534 	buf = addrs;
5535 	/* Protection on the bound address list is not needed since
5536 	 * in the socket option context we hold a socket lock and
5537 	 * thus the bound address list can't change.
5538 	 */
5539 	list_for_each_entry(addr, &bp->address_list, list) {
5540 		memcpy(&temp, &addr->a, sizeof(temp));
5541 		addrlen = sctp_get_pf_specific(sk->sk_family)
5542 			      ->addr_to_user(sp, &temp);
5543 		if (space_left < addrlen) {
5544 			err =  -ENOMEM; /*fixme: right error?*/
5545 			goto out;
5546 		}
5547 		memcpy(buf, &temp, addrlen);
5548 		buf += addrlen;
5549 		bytes_copied += addrlen;
5550 		cnt++;
5551 		space_left -= addrlen;
5552 	}
5553 
5554 copy_getaddrs:
5555 	if (copy_to_user(to, addrs, bytes_copied)) {
5556 		err = -EFAULT;
5557 		goto out;
5558 	}
5559 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5560 		err = -EFAULT;
5561 		goto out;
5562 	}
5563 	if (put_user(bytes_copied, optlen))
5564 		err = -EFAULT;
5565 out:
5566 	kfree(addrs);
5567 	return err;
5568 }
5569 
5570 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5571  *
5572  * Requests that the local SCTP stack use the enclosed peer address as
5573  * the association primary.  The enclosed address must be one of the
5574  * association peer's addresses.
5575  */
5576 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5577 					char __user *optval, int __user *optlen)
5578 {
5579 	struct sctp_prim prim;
5580 	struct sctp_association *asoc;
5581 	struct sctp_sock *sp = sctp_sk(sk);
5582 
5583 	if (len < sizeof(struct sctp_prim))
5584 		return -EINVAL;
5585 
5586 	len = sizeof(struct sctp_prim);
5587 
5588 	if (copy_from_user(&prim, optval, len))
5589 		return -EFAULT;
5590 
5591 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5592 	if (!asoc)
5593 		return -EINVAL;
5594 
5595 	if (!asoc->peer.primary_path)
5596 		return -ENOTCONN;
5597 
5598 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5599 		asoc->peer.primary_path->af_specific->sockaddr_len);
5600 
5601 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5602 			(union sctp_addr *)&prim.ssp_addr);
5603 
5604 	if (put_user(len, optlen))
5605 		return -EFAULT;
5606 	if (copy_to_user(optval, &prim, len))
5607 		return -EFAULT;
5608 
5609 	return 0;
5610 }
5611 
5612 /*
5613  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5614  *
5615  * Requests that the local endpoint set the specified Adaptation Layer
5616  * Indication parameter for all future INIT and INIT-ACK exchanges.
5617  */
5618 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5619 				  char __user *optval, int __user *optlen)
5620 {
5621 	struct sctp_setadaptation adaptation;
5622 
5623 	if (len < sizeof(struct sctp_setadaptation))
5624 		return -EINVAL;
5625 
5626 	len = sizeof(struct sctp_setadaptation);
5627 
5628 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5629 
5630 	if (put_user(len, optlen))
5631 		return -EFAULT;
5632 	if (copy_to_user(optval, &adaptation, len))
5633 		return -EFAULT;
5634 
5635 	return 0;
5636 }
5637 
5638 /*
5639  *
5640  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5641  *
5642  *   Applications that wish to use the sendto() system call may wish to
5643  *   specify a default set of parameters that would normally be supplied
5644  *   through the inclusion of ancillary data.  This socket option allows
5645  *   such an application to set the default sctp_sndrcvinfo structure.
5646 
5647 
5648  *   The application that wishes to use this socket option simply passes
5649  *   in to this call the sctp_sndrcvinfo structure defined in Section
5650  *   5.2.2) The input parameters accepted by this call include
5651  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5652  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5653  *   to this call if the caller is using the UDP model.
5654  *
5655  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5656  */
5657 static int sctp_getsockopt_default_send_param(struct sock *sk,
5658 					int len, char __user *optval,
5659 					int __user *optlen)
5660 {
5661 	struct sctp_sock *sp = sctp_sk(sk);
5662 	struct sctp_association *asoc;
5663 	struct sctp_sndrcvinfo info;
5664 
5665 	if (len < sizeof(info))
5666 		return -EINVAL;
5667 
5668 	len = sizeof(info);
5669 
5670 	if (copy_from_user(&info, optval, len))
5671 		return -EFAULT;
5672 
5673 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5674 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5675 		return -EINVAL;
5676 	if (asoc) {
5677 		info.sinfo_stream = asoc->default_stream;
5678 		info.sinfo_flags = asoc->default_flags;
5679 		info.sinfo_ppid = asoc->default_ppid;
5680 		info.sinfo_context = asoc->default_context;
5681 		info.sinfo_timetolive = asoc->default_timetolive;
5682 	} else {
5683 		info.sinfo_stream = sp->default_stream;
5684 		info.sinfo_flags = sp->default_flags;
5685 		info.sinfo_ppid = sp->default_ppid;
5686 		info.sinfo_context = sp->default_context;
5687 		info.sinfo_timetolive = sp->default_timetolive;
5688 	}
5689 
5690 	if (put_user(len, optlen))
5691 		return -EFAULT;
5692 	if (copy_to_user(optval, &info, len))
5693 		return -EFAULT;
5694 
5695 	return 0;
5696 }
5697 
5698 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5699  * (SCTP_DEFAULT_SNDINFO)
5700  */
5701 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5702 					   char __user *optval,
5703 					   int __user *optlen)
5704 {
5705 	struct sctp_sock *sp = sctp_sk(sk);
5706 	struct sctp_association *asoc;
5707 	struct sctp_sndinfo info;
5708 
5709 	if (len < sizeof(info))
5710 		return -EINVAL;
5711 
5712 	len = sizeof(info);
5713 
5714 	if (copy_from_user(&info, optval, len))
5715 		return -EFAULT;
5716 
5717 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5718 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5719 		return -EINVAL;
5720 	if (asoc) {
5721 		info.snd_sid = asoc->default_stream;
5722 		info.snd_flags = asoc->default_flags;
5723 		info.snd_ppid = asoc->default_ppid;
5724 		info.snd_context = asoc->default_context;
5725 	} else {
5726 		info.snd_sid = sp->default_stream;
5727 		info.snd_flags = sp->default_flags;
5728 		info.snd_ppid = sp->default_ppid;
5729 		info.snd_context = sp->default_context;
5730 	}
5731 
5732 	if (put_user(len, optlen))
5733 		return -EFAULT;
5734 	if (copy_to_user(optval, &info, len))
5735 		return -EFAULT;
5736 
5737 	return 0;
5738 }
5739 
5740 /*
5741  *
5742  * 7.1.5 SCTP_NODELAY
5743  *
5744  * Turn on/off any Nagle-like algorithm.  This means that packets are
5745  * generally sent as soon as possible and no unnecessary delays are
5746  * introduced, at the cost of more packets in the network.  Expects an
5747  * integer boolean flag.
5748  */
5749 
5750 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5751 				   char __user *optval, int __user *optlen)
5752 {
5753 	int val;
5754 
5755 	if (len < sizeof(int))
5756 		return -EINVAL;
5757 
5758 	len = sizeof(int);
5759 	val = (sctp_sk(sk)->nodelay == 1);
5760 	if (put_user(len, optlen))
5761 		return -EFAULT;
5762 	if (copy_to_user(optval, &val, len))
5763 		return -EFAULT;
5764 	return 0;
5765 }
5766 
5767 /*
5768  *
5769  * 7.1.1 SCTP_RTOINFO
5770  *
5771  * The protocol parameters used to initialize and bound retransmission
5772  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5773  * and modify these parameters.
5774  * All parameters are time values, in milliseconds.  A value of 0, when
5775  * modifying the parameters, indicates that the current value should not
5776  * be changed.
5777  *
5778  */
5779 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5780 				char __user *optval,
5781 				int __user *optlen) {
5782 	struct sctp_rtoinfo rtoinfo;
5783 	struct sctp_association *asoc;
5784 
5785 	if (len < sizeof (struct sctp_rtoinfo))
5786 		return -EINVAL;
5787 
5788 	len = sizeof(struct sctp_rtoinfo);
5789 
5790 	if (copy_from_user(&rtoinfo, optval, len))
5791 		return -EFAULT;
5792 
5793 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5794 
5795 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5796 		return -EINVAL;
5797 
5798 	/* Values corresponding to the specific association. */
5799 	if (asoc) {
5800 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5801 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5802 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5803 	} else {
5804 		/* Values corresponding to the endpoint. */
5805 		struct sctp_sock *sp = sctp_sk(sk);
5806 
5807 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5808 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5809 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5810 	}
5811 
5812 	if (put_user(len, optlen))
5813 		return -EFAULT;
5814 
5815 	if (copy_to_user(optval, &rtoinfo, len))
5816 		return -EFAULT;
5817 
5818 	return 0;
5819 }
5820 
5821 /*
5822  *
5823  * 7.1.2 SCTP_ASSOCINFO
5824  *
5825  * This option is used to tune the maximum retransmission attempts
5826  * of the association.
5827  * Returns an error if the new association retransmission value is
5828  * greater than the sum of the retransmission value  of the peer.
5829  * See [SCTP] for more information.
5830  *
5831  */
5832 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5833 				     char __user *optval,
5834 				     int __user *optlen)
5835 {
5836 
5837 	struct sctp_assocparams assocparams;
5838 	struct sctp_association *asoc;
5839 	struct list_head *pos;
5840 	int cnt = 0;
5841 
5842 	if (len < sizeof (struct sctp_assocparams))
5843 		return -EINVAL;
5844 
5845 	len = sizeof(struct sctp_assocparams);
5846 
5847 	if (copy_from_user(&assocparams, optval, len))
5848 		return -EFAULT;
5849 
5850 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5851 
5852 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5853 		return -EINVAL;
5854 
5855 	/* Values correspoinding to the specific association */
5856 	if (asoc) {
5857 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5858 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5859 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5860 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5861 
5862 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5863 			cnt++;
5864 		}
5865 
5866 		assocparams.sasoc_number_peer_destinations = cnt;
5867 	} else {
5868 		/* Values corresponding to the endpoint */
5869 		struct sctp_sock *sp = sctp_sk(sk);
5870 
5871 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5872 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5873 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5874 		assocparams.sasoc_cookie_life =
5875 					sp->assocparams.sasoc_cookie_life;
5876 		assocparams.sasoc_number_peer_destinations =
5877 					sp->assocparams.
5878 					sasoc_number_peer_destinations;
5879 	}
5880 
5881 	if (put_user(len, optlen))
5882 		return -EFAULT;
5883 
5884 	if (copy_to_user(optval, &assocparams, len))
5885 		return -EFAULT;
5886 
5887 	return 0;
5888 }
5889 
5890 /*
5891  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5892  *
5893  * This socket option is a boolean flag which turns on or off mapped V4
5894  * addresses.  If this option is turned on and the socket is type
5895  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5896  * If this option is turned off, then no mapping will be done of V4
5897  * addresses and a user will receive both PF_INET6 and PF_INET type
5898  * addresses on the socket.
5899  */
5900 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5901 				    char __user *optval, int __user *optlen)
5902 {
5903 	int val;
5904 	struct sctp_sock *sp = sctp_sk(sk);
5905 
5906 	if (len < sizeof(int))
5907 		return -EINVAL;
5908 
5909 	len = sizeof(int);
5910 	val = sp->v4mapped;
5911 	if (put_user(len, optlen))
5912 		return -EFAULT;
5913 	if (copy_to_user(optval, &val, len))
5914 		return -EFAULT;
5915 
5916 	return 0;
5917 }
5918 
5919 /*
5920  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5921  * (chapter and verse is quoted at sctp_setsockopt_context())
5922  */
5923 static int sctp_getsockopt_context(struct sock *sk, int len,
5924 				   char __user *optval, int __user *optlen)
5925 {
5926 	struct sctp_assoc_value params;
5927 	struct sctp_sock *sp;
5928 	struct sctp_association *asoc;
5929 
5930 	if (len < sizeof(struct sctp_assoc_value))
5931 		return -EINVAL;
5932 
5933 	len = sizeof(struct sctp_assoc_value);
5934 
5935 	if (copy_from_user(&params, optval, len))
5936 		return -EFAULT;
5937 
5938 	sp = sctp_sk(sk);
5939 
5940 	if (params.assoc_id != 0) {
5941 		asoc = sctp_id2assoc(sk, params.assoc_id);
5942 		if (!asoc)
5943 			return -EINVAL;
5944 		params.assoc_value = asoc->default_rcv_context;
5945 	} else {
5946 		params.assoc_value = sp->default_rcv_context;
5947 	}
5948 
5949 	if (put_user(len, optlen))
5950 		return -EFAULT;
5951 	if (copy_to_user(optval, &params, len))
5952 		return -EFAULT;
5953 
5954 	return 0;
5955 }
5956 
5957 /*
5958  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5959  * This option will get or set the maximum size to put in any outgoing
5960  * SCTP DATA chunk.  If a message is larger than this size it will be
5961  * fragmented by SCTP into the specified size.  Note that the underlying
5962  * SCTP implementation may fragment into smaller sized chunks when the
5963  * PMTU of the underlying association is smaller than the value set by
5964  * the user.  The default value for this option is '0' which indicates
5965  * the user is NOT limiting fragmentation and only the PMTU will effect
5966  * SCTP's choice of DATA chunk size.  Note also that values set larger
5967  * than the maximum size of an IP datagram will effectively let SCTP
5968  * control fragmentation (i.e. the same as setting this option to 0).
5969  *
5970  * The following structure is used to access and modify this parameter:
5971  *
5972  * struct sctp_assoc_value {
5973  *   sctp_assoc_t assoc_id;
5974  *   uint32_t assoc_value;
5975  * };
5976  *
5977  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5978  *    For one-to-many style sockets this parameter indicates which
5979  *    association the user is performing an action upon.  Note that if
5980  *    this field's value is zero then the endpoints default value is
5981  *    changed (effecting future associations only).
5982  * assoc_value:  This parameter specifies the maximum size in bytes.
5983  */
5984 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5985 				  char __user *optval, int __user *optlen)
5986 {
5987 	struct sctp_assoc_value params;
5988 	struct sctp_association *asoc;
5989 
5990 	if (len == sizeof(int)) {
5991 		pr_warn_ratelimited(DEPRECATED
5992 				    "%s (pid %d) "
5993 				    "Use of int in maxseg socket option.\n"
5994 				    "Use struct sctp_assoc_value instead\n",
5995 				    current->comm, task_pid_nr(current));
5996 		params.assoc_id = 0;
5997 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5998 		len = sizeof(struct sctp_assoc_value);
5999 		if (copy_from_user(&params, optval, sizeof(params)))
6000 			return -EFAULT;
6001 	} else
6002 		return -EINVAL;
6003 
6004 	asoc = sctp_id2assoc(sk, params.assoc_id);
6005 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6006 		return -EINVAL;
6007 
6008 	if (asoc)
6009 		params.assoc_value = asoc->frag_point;
6010 	else
6011 		params.assoc_value = sctp_sk(sk)->user_frag;
6012 
6013 	if (put_user(len, optlen))
6014 		return -EFAULT;
6015 	if (len == sizeof(int)) {
6016 		if (copy_to_user(optval, &params.assoc_value, len))
6017 			return -EFAULT;
6018 	} else {
6019 		if (copy_to_user(optval, &params, len))
6020 			return -EFAULT;
6021 	}
6022 
6023 	return 0;
6024 }
6025 
6026 /*
6027  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6028  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6029  */
6030 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6031 					       char __user *optval, int __user *optlen)
6032 {
6033 	int val;
6034 
6035 	if (len < sizeof(int))
6036 		return -EINVAL;
6037 
6038 	len = sizeof(int);
6039 
6040 	val = sctp_sk(sk)->frag_interleave;
6041 	if (put_user(len, optlen))
6042 		return -EFAULT;
6043 	if (copy_to_user(optval, &val, len))
6044 		return -EFAULT;
6045 
6046 	return 0;
6047 }
6048 
6049 /*
6050  * 7.1.25.  Set or Get the sctp partial delivery point
6051  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6052  */
6053 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6054 						  char __user *optval,
6055 						  int __user *optlen)
6056 {
6057 	u32 val;
6058 
6059 	if (len < sizeof(u32))
6060 		return -EINVAL;
6061 
6062 	len = sizeof(u32);
6063 
6064 	val = sctp_sk(sk)->pd_point;
6065 	if (put_user(len, optlen))
6066 		return -EFAULT;
6067 	if (copy_to_user(optval, &val, len))
6068 		return -EFAULT;
6069 
6070 	return 0;
6071 }
6072 
6073 /*
6074  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6075  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6076  */
6077 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6078 				    char __user *optval,
6079 				    int __user *optlen)
6080 {
6081 	struct sctp_assoc_value params;
6082 	struct sctp_sock *sp;
6083 	struct sctp_association *asoc;
6084 
6085 	if (len == sizeof(int)) {
6086 		pr_warn_ratelimited(DEPRECATED
6087 				    "%s (pid %d) "
6088 				    "Use of int in max_burst socket option.\n"
6089 				    "Use struct sctp_assoc_value instead\n",
6090 				    current->comm, task_pid_nr(current));
6091 		params.assoc_id = 0;
6092 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6093 		len = sizeof(struct sctp_assoc_value);
6094 		if (copy_from_user(&params, optval, len))
6095 			return -EFAULT;
6096 	} else
6097 		return -EINVAL;
6098 
6099 	sp = sctp_sk(sk);
6100 
6101 	if (params.assoc_id != 0) {
6102 		asoc = sctp_id2assoc(sk, params.assoc_id);
6103 		if (!asoc)
6104 			return -EINVAL;
6105 		params.assoc_value = asoc->max_burst;
6106 	} else
6107 		params.assoc_value = sp->max_burst;
6108 
6109 	if (len == sizeof(int)) {
6110 		if (copy_to_user(optval, &params.assoc_value, len))
6111 			return -EFAULT;
6112 	} else {
6113 		if (copy_to_user(optval, &params, len))
6114 			return -EFAULT;
6115 	}
6116 
6117 	return 0;
6118 
6119 }
6120 
6121 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6122 				    char __user *optval, int __user *optlen)
6123 {
6124 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6125 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6126 	struct sctp_hmac_algo_param *hmacs;
6127 	__u16 data_len = 0;
6128 	u32 num_idents;
6129 	int i;
6130 
6131 	if (!ep->auth_enable)
6132 		return -EACCES;
6133 
6134 	hmacs = ep->auth_hmacs_list;
6135 	data_len = ntohs(hmacs->param_hdr.length) -
6136 		   sizeof(struct sctp_paramhdr);
6137 
6138 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6139 		return -EINVAL;
6140 
6141 	len = sizeof(struct sctp_hmacalgo) + data_len;
6142 	num_idents = data_len / sizeof(u16);
6143 
6144 	if (put_user(len, optlen))
6145 		return -EFAULT;
6146 	if (put_user(num_idents, &p->shmac_num_idents))
6147 		return -EFAULT;
6148 	for (i = 0; i < num_idents; i++) {
6149 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6150 
6151 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6152 			return -EFAULT;
6153 	}
6154 	return 0;
6155 }
6156 
6157 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6158 				    char __user *optval, int __user *optlen)
6159 {
6160 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6161 	struct sctp_authkeyid val;
6162 	struct sctp_association *asoc;
6163 
6164 	if (!ep->auth_enable)
6165 		return -EACCES;
6166 
6167 	if (len < sizeof(struct sctp_authkeyid))
6168 		return -EINVAL;
6169 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
6170 		return -EFAULT;
6171 
6172 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6173 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6174 		return -EINVAL;
6175 
6176 	if (asoc)
6177 		val.scact_keynumber = asoc->active_key_id;
6178 	else
6179 		val.scact_keynumber = ep->active_key_id;
6180 
6181 	len = sizeof(struct sctp_authkeyid);
6182 	if (put_user(len, optlen))
6183 		return -EFAULT;
6184 	if (copy_to_user(optval, &val, len))
6185 		return -EFAULT;
6186 
6187 	return 0;
6188 }
6189 
6190 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6191 				    char __user *optval, int __user *optlen)
6192 {
6193 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6194 	struct sctp_authchunks __user *p = (void __user *)optval;
6195 	struct sctp_authchunks val;
6196 	struct sctp_association *asoc;
6197 	struct sctp_chunks_param *ch;
6198 	u32    num_chunks = 0;
6199 	char __user *to;
6200 
6201 	if (!ep->auth_enable)
6202 		return -EACCES;
6203 
6204 	if (len < sizeof(struct sctp_authchunks))
6205 		return -EINVAL;
6206 
6207 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6208 		return -EFAULT;
6209 
6210 	to = p->gauth_chunks;
6211 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6212 	if (!asoc)
6213 		return -EINVAL;
6214 
6215 	ch = asoc->peer.peer_chunks;
6216 	if (!ch)
6217 		goto num;
6218 
6219 	/* See if the user provided enough room for all the data */
6220 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6221 	if (len < num_chunks)
6222 		return -EINVAL;
6223 
6224 	if (copy_to_user(to, ch->chunks, num_chunks))
6225 		return -EFAULT;
6226 num:
6227 	len = sizeof(struct sctp_authchunks) + num_chunks;
6228 	if (put_user(len, optlen))
6229 		return -EFAULT;
6230 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6231 		return -EFAULT;
6232 	return 0;
6233 }
6234 
6235 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6236 				    char __user *optval, int __user *optlen)
6237 {
6238 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6239 	struct sctp_authchunks __user *p = (void __user *)optval;
6240 	struct sctp_authchunks val;
6241 	struct sctp_association *asoc;
6242 	struct sctp_chunks_param *ch;
6243 	u32    num_chunks = 0;
6244 	char __user *to;
6245 
6246 	if (!ep->auth_enable)
6247 		return -EACCES;
6248 
6249 	if (len < sizeof(struct sctp_authchunks))
6250 		return -EINVAL;
6251 
6252 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6253 		return -EFAULT;
6254 
6255 	to = p->gauth_chunks;
6256 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6257 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6258 		return -EINVAL;
6259 
6260 	if (asoc)
6261 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6262 	else
6263 		ch = ep->auth_chunk_list;
6264 
6265 	if (!ch)
6266 		goto num;
6267 
6268 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6269 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6270 		return -EINVAL;
6271 
6272 	if (copy_to_user(to, ch->chunks, num_chunks))
6273 		return -EFAULT;
6274 num:
6275 	len = sizeof(struct sctp_authchunks) + num_chunks;
6276 	if (put_user(len, optlen))
6277 		return -EFAULT;
6278 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6279 		return -EFAULT;
6280 
6281 	return 0;
6282 }
6283 
6284 /*
6285  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6286  * This option gets the current number of associations that are attached
6287  * to a one-to-many style socket.  The option value is an uint32_t.
6288  */
6289 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6290 				    char __user *optval, int __user *optlen)
6291 {
6292 	struct sctp_sock *sp = sctp_sk(sk);
6293 	struct sctp_association *asoc;
6294 	u32 val = 0;
6295 
6296 	if (sctp_style(sk, TCP))
6297 		return -EOPNOTSUPP;
6298 
6299 	if (len < sizeof(u32))
6300 		return -EINVAL;
6301 
6302 	len = sizeof(u32);
6303 
6304 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6305 		val++;
6306 	}
6307 
6308 	if (put_user(len, optlen))
6309 		return -EFAULT;
6310 	if (copy_to_user(optval, &val, len))
6311 		return -EFAULT;
6312 
6313 	return 0;
6314 }
6315 
6316 /*
6317  * 8.1.23 SCTP_AUTO_ASCONF
6318  * See the corresponding setsockopt entry as description
6319  */
6320 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6321 				   char __user *optval, int __user *optlen)
6322 {
6323 	int val = 0;
6324 
6325 	if (len < sizeof(int))
6326 		return -EINVAL;
6327 
6328 	len = sizeof(int);
6329 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6330 		val = 1;
6331 	if (put_user(len, optlen))
6332 		return -EFAULT;
6333 	if (copy_to_user(optval, &val, len))
6334 		return -EFAULT;
6335 	return 0;
6336 }
6337 
6338 /*
6339  * 8.2.6. Get the Current Identifiers of Associations
6340  *        (SCTP_GET_ASSOC_ID_LIST)
6341  *
6342  * This option gets the current list of SCTP association identifiers of
6343  * the SCTP associations handled by a one-to-many style socket.
6344  */
6345 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6346 				    char __user *optval, int __user *optlen)
6347 {
6348 	struct sctp_sock *sp = sctp_sk(sk);
6349 	struct sctp_association *asoc;
6350 	struct sctp_assoc_ids *ids;
6351 	u32 num = 0;
6352 
6353 	if (sctp_style(sk, TCP))
6354 		return -EOPNOTSUPP;
6355 
6356 	if (len < sizeof(struct sctp_assoc_ids))
6357 		return -EINVAL;
6358 
6359 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6360 		num++;
6361 	}
6362 
6363 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6364 		return -EINVAL;
6365 
6366 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6367 
6368 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6369 	if (unlikely(!ids))
6370 		return -ENOMEM;
6371 
6372 	ids->gaids_number_of_ids = num;
6373 	num = 0;
6374 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6375 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6376 	}
6377 
6378 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6379 		kfree(ids);
6380 		return -EFAULT;
6381 	}
6382 
6383 	kfree(ids);
6384 	return 0;
6385 }
6386 
6387 /*
6388  * SCTP_PEER_ADDR_THLDS
6389  *
6390  * This option allows us to fetch the partially failed threshold for one or all
6391  * transports in an association.  See Section 6.1 of:
6392  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6393  */
6394 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6395 					    char __user *optval,
6396 					    int len,
6397 					    int __user *optlen)
6398 {
6399 	struct sctp_paddrthlds val;
6400 	struct sctp_transport *trans;
6401 	struct sctp_association *asoc;
6402 
6403 	if (len < sizeof(struct sctp_paddrthlds))
6404 		return -EINVAL;
6405 	len = sizeof(struct sctp_paddrthlds);
6406 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6407 		return -EFAULT;
6408 
6409 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6410 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6411 		if (!asoc)
6412 			return -ENOENT;
6413 
6414 		val.spt_pathpfthld = asoc->pf_retrans;
6415 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6416 	} else {
6417 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6418 					       val.spt_assoc_id);
6419 		if (!trans)
6420 			return -ENOENT;
6421 
6422 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6423 		val.spt_pathpfthld = trans->pf_retrans;
6424 	}
6425 
6426 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6427 		return -EFAULT;
6428 
6429 	return 0;
6430 }
6431 
6432 /*
6433  * SCTP_GET_ASSOC_STATS
6434  *
6435  * This option retrieves local per endpoint statistics. It is modeled
6436  * after OpenSolaris' implementation
6437  */
6438 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6439 				       char __user *optval,
6440 				       int __user *optlen)
6441 {
6442 	struct sctp_assoc_stats sas;
6443 	struct sctp_association *asoc = NULL;
6444 
6445 	/* User must provide at least the assoc id */
6446 	if (len < sizeof(sctp_assoc_t))
6447 		return -EINVAL;
6448 
6449 	/* Allow the struct to grow and fill in as much as possible */
6450 	len = min_t(size_t, len, sizeof(sas));
6451 
6452 	if (copy_from_user(&sas, optval, len))
6453 		return -EFAULT;
6454 
6455 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6456 	if (!asoc)
6457 		return -EINVAL;
6458 
6459 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6460 	sas.sas_gapcnt = asoc->stats.gapcnt;
6461 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6462 	sas.sas_osacks = asoc->stats.osacks;
6463 	sas.sas_isacks = asoc->stats.isacks;
6464 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6465 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6466 	sas.sas_oodchunks = asoc->stats.oodchunks;
6467 	sas.sas_iodchunks = asoc->stats.iodchunks;
6468 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6469 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6470 	sas.sas_idupchunks = asoc->stats.idupchunks;
6471 	sas.sas_opackets = asoc->stats.opackets;
6472 	sas.sas_ipackets = asoc->stats.ipackets;
6473 
6474 	/* New high max rto observed, will return 0 if not a single
6475 	 * RTO update took place. obs_rto_ipaddr will be bogus
6476 	 * in such a case
6477 	 */
6478 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6479 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6480 		sizeof(struct sockaddr_storage));
6481 
6482 	/* Mark beginning of a new observation period */
6483 	asoc->stats.max_obs_rto = asoc->rto_min;
6484 
6485 	if (put_user(len, optlen))
6486 		return -EFAULT;
6487 
6488 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6489 
6490 	if (copy_to_user(optval, &sas, len))
6491 		return -EFAULT;
6492 
6493 	return 0;
6494 }
6495 
6496 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
6497 				       char __user *optval,
6498 				       int __user *optlen)
6499 {
6500 	int val = 0;
6501 
6502 	if (len < sizeof(int))
6503 		return -EINVAL;
6504 
6505 	len = sizeof(int);
6506 	if (sctp_sk(sk)->recvrcvinfo)
6507 		val = 1;
6508 	if (put_user(len, optlen))
6509 		return -EFAULT;
6510 	if (copy_to_user(optval, &val, len))
6511 		return -EFAULT;
6512 
6513 	return 0;
6514 }
6515 
6516 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
6517 				       char __user *optval,
6518 				       int __user *optlen)
6519 {
6520 	int val = 0;
6521 
6522 	if (len < sizeof(int))
6523 		return -EINVAL;
6524 
6525 	len = sizeof(int);
6526 	if (sctp_sk(sk)->recvnxtinfo)
6527 		val = 1;
6528 	if (put_user(len, optlen))
6529 		return -EFAULT;
6530 	if (copy_to_user(optval, &val, len))
6531 		return -EFAULT;
6532 
6533 	return 0;
6534 }
6535 
6536 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6537 					char __user *optval,
6538 					int __user *optlen)
6539 {
6540 	struct sctp_assoc_value params;
6541 	struct sctp_association *asoc;
6542 	int retval = -EFAULT;
6543 
6544 	if (len < sizeof(params)) {
6545 		retval = -EINVAL;
6546 		goto out;
6547 	}
6548 
6549 	len = sizeof(params);
6550 	if (copy_from_user(&params, optval, len))
6551 		goto out;
6552 
6553 	asoc = sctp_id2assoc(sk, params.assoc_id);
6554 	if (asoc) {
6555 		params.assoc_value = asoc->prsctp_enable;
6556 	} else if (!params.assoc_id) {
6557 		struct sctp_sock *sp = sctp_sk(sk);
6558 
6559 		params.assoc_value = sp->ep->prsctp_enable;
6560 	} else {
6561 		retval = -EINVAL;
6562 		goto out;
6563 	}
6564 
6565 	if (put_user(len, optlen))
6566 		goto out;
6567 
6568 	if (copy_to_user(optval, &params, len))
6569 		goto out;
6570 
6571 	retval = 0;
6572 
6573 out:
6574 	return retval;
6575 }
6576 
6577 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6578 					  char __user *optval,
6579 					  int __user *optlen)
6580 {
6581 	struct sctp_default_prinfo info;
6582 	struct sctp_association *asoc;
6583 	int retval = -EFAULT;
6584 
6585 	if (len < sizeof(info)) {
6586 		retval = -EINVAL;
6587 		goto out;
6588 	}
6589 
6590 	len = sizeof(info);
6591 	if (copy_from_user(&info, optval, len))
6592 		goto out;
6593 
6594 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6595 	if (asoc) {
6596 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6597 		info.pr_value = asoc->default_timetolive;
6598 	} else if (!info.pr_assoc_id) {
6599 		struct sctp_sock *sp = sctp_sk(sk);
6600 
6601 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6602 		info.pr_value = sp->default_timetolive;
6603 	} else {
6604 		retval = -EINVAL;
6605 		goto out;
6606 	}
6607 
6608 	if (put_user(len, optlen))
6609 		goto out;
6610 
6611 	if (copy_to_user(optval, &info, len))
6612 		goto out;
6613 
6614 	retval = 0;
6615 
6616 out:
6617 	return retval;
6618 }
6619 
6620 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6621 					  char __user *optval,
6622 					  int __user *optlen)
6623 {
6624 	struct sctp_prstatus params;
6625 	struct sctp_association *asoc;
6626 	int policy;
6627 	int retval = -EINVAL;
6628 
6629 	if (len < sizeof(params))
6630 		goto out;
6631 
6632 	len = sizeof(params);
6633 	if (copy_from_user(&params, optval, len)) {
6634 		retval = -EFAULT;
6635 		goto out;
6636 	}
6637 
6638 	policy = params.sprstat_policy;
6639 	if (policy & ~SCTP_PR_SCTP_MASK)
6640 		goto out;
6641 
6642 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6643 	if (!asoc)
6644 		goto out;
6645 
6646 	if (policy == SCTP_PR_SCTP_NONE) {
6647 		params.sprstat_abandoned_unsent = 0;
6648 		params.sprstat_abandoned_sent = 0;
6649 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6650 			params.sprstat_abandoned_unsent +=
6651 				asoc->abandoned_unsent[policy];
6652 			params.sprstat_abandoned_sent +=
6653 				asoc->abandoned_sent[policy];
6654 		}
6655 	} else {
6656 		params.sprstat_abandoned_unsent =
6657 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6658 		params.sprstat_abandoned_sent =
6659 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6660 	}
6661 
6662 	if (put_user(len, optlen)) {
6663 		retval = -EFAULT;
6664 		goto out;
6665 	}
6666 
6667 	if (copy_to_user(optval, &params, len)) {
6668 		retval = -EFAULT;
6669 		goto out;
6670 	}
6671 
6672 	retval = 0;
6673 
6674 out:
6675 	return retval;
6676 }
6677 
6678 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
6679 					   char __user *optval,
6680 					   int __user *optlen)
6681 {
6682 	struct sctp_stream_out *streamout;
6683 	struct sctp_association *asoc;
6684 	struct sctp_prstatus params;
6685 	int retval = -EINVAL;
6686 	int policy;
6687 
6688 	if (len < sizeof(params))
6689 		goto out;
6690 
6691 	len = sizeof(params);
6692 	if (copy_from_user(&params, optval, len)) {
6693 		retval = -EFAULT;
6694 		goto out;
6695 	}
6696 
6697 	policy = params.sprstat_policy;
6698 	if (policy & ~SCTP_PR_SCTP_MASK)
6699 		goto out;
6700 
6701 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6702 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
6703 		goto out;
6704 
6705 	streamout = &asoc->stream.out[params.sprstat_sid];
6706 	if (policy == SCTP_PR_SCTP_NONE) {
6707 		params.sprstat_abandoned_unsent = 0;
6708 		params.sprstat_abandoned_sent = 0;
6709 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6710 			params.sprstat_abandoned_unsent +=
6711 				streamout->abandoned_unsent[policy];
6712 			params.sprstat_abandoned_sent +=
6713 				streamout->abandoned_sent[policy];
6714 		}
6715 	} else {
6716 		params.sprstat_abandoned_unsent =
6717 			streamout->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6718 		params.sprstat_abandoned_sent =
6719 			streamout->abandoned_sent[__SCTP_PR_INDEX(policy)];
6720 	}
6721 
6722 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
6723 		retval = -EFAULT;
6724 		goto out;
6725 	}
6726 
6727 	retval = 0;
6728 
6729 out:
6730 	return retval;
6731 }
6732 
6733 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
6734 					      char __user *optval,
6735 					      int __user *optlen)
6736 {
6737 	struct sctp_assoc_value params;
6738 	struct sctp_association *asoc;
6739 	int retval = -EFAULT;
6740 
6741 	if (len < sizeof(params)) {
6742 		retval = -EINVAL;
6743 		goto out;
6744 	}
6745 
6746 	len = sizeof(params);
6747 	if (copy_from_user(&params, optval, len))
6748 		goto out;
6749 
6750 	asoc = sctp_id2assoc(sk, params.assoc_id);
6751 	if (asoc) {
6752 		params.assoc_value = asoc->reconf_enable;
6753 	} else if (!params.assoc_id) {
6754 		struct sctp_sock *sp = sctp_sk(sk);
6755 
6756 		params.assoc_value = sp->ep->reconf_enable;
6757 	} else {
6758 		retval = -EINVAL;
6759 		goto out;
6760 	}
6761 
6762 	if (put_user(len, optlen))
6763 		goto out;
6764 
6765 	if (copy_to_user(optval, &params, len))
6766 		goto out;
6767 
6768 	retval = 0;
6769 
6770 out:
6771 	return retval;
6772 }
6773 
6774 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6775 					   char __user *optval,
6776 					   int __user *optlen)
6777 {
6778 	struct sctp_assoc_value params;
6779 	struct sctp_association *asoc;
6780 	int retval = -EFAULT;
6781 
6782 	if (len < sizeof(params)) {
6783 		retval = -EINVAL;
6784 		goto out;
6785 	}
6786 
6787 	len = sizeof(params);
6788 	if (copy_from_user(&params, optval, len))
6789 		goto out;
6790 
6791 	asoc = sctp_id2assoc(sk, params.assoc_id);
6792 	if (asoc) {
6793 		params.assoc_value = asoc->strreset_enable;
6794 	} else if (!params.assoc_id) {
6795 		struct sctp_sock *sp = sctp_sk(sk);
6796 
6797 		params.assoc_value = sp->ep->strreset_enable;
6798 	} else {
6799 		retval = -EINVAL;
6800 		goto out;
6801 	}
6802 
6803 	if (put_user(len, optlen))
6804 		goto out;
6805 
6806 	if (copy_to_user(optval, &params, len))
6807 		goto out;
6808 
6809 	retval = 0;
6810 
6811 out:
6812 	return retval;
6813 }
6814 
6815 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6816 			   char __user *optval, int __user *optlen)
6817 {
6818 	int retval = 0;
6819 	int len;
6820 
6821 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6822 
6823 	/* I can hardly begin to describe how wrong this is.  This is
6824 	 * so broken as to be worse than useless.  The API draft
6825 	 * REALLY is NOT helpful here...  I am not convinced that the
6826 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6827 	 * are at all well-founded.
6828 	 */
6829 	if (level != SOL_SCTP) {
6830 		struct sctp_af *af = sctp_sk(sk)->pf->af;
6831 
6832 		retval = af->getsockopt(sk, level, optname, optval, optlen);
6833 		return retval;
6834 	}
6835 
6836 	if (get_user(len, optlen))
6837 		return -EFAULT;
6838 
6839 	if (len < 0)
6840 		return -EINVAL;
6841 
6842 	lock_sock(sk);
6843 
6844 	switch (optname) {
6845 	case SCTP_STATUS:
6846 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6847 		break;
6848 	case SCTP_DISABLE_FRAGMENTS:
6849 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6850 							   optlen);
6851 		break;
6852 	case SCTP_EVENTS:
6853 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
6854 		break;
6855 	case SCTP_AUTOCLOSE:
6856 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6857 		break;
6858 	case SCTP_SOCKOPT_PEELOFF:
6859 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6860 		break;
6861 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
6862 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
6863 		break;
6864 	case SCTP_PEER_ADDR_PARAMS:
6865 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6866 							  optlen);
6867 		break;
6868 	case SCTP_DELAYED_SACK:
6869 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6870 							  optlen);
6871 		break;
6872 	case SCTP_INITMSG:
6873 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6874 		break;
6875 	case SCTP_GET_PEER_ADDRS:
6876 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6877 						    optlen);
6878 		break;
6879 	case SCTP_GET_LOCAL_ADDRS:
6880 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6881 						     optlen);
6882 		break;
6883 	case SCTP_SOCKOPT_CONNECTX3:
6884 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6885 		break;
6886 	case SCTP_DEFAULT_SEND_PARAM:
6887 		retval = sctp_getsockopt_default_send_param(sk, len,
6888 							    optval, optlen);
6889 		break;
6890 	case SCTP_DEFAULT_SNDINFO:
6891 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6892 							 optval, optlen);
6893 		break;
6894 	case SCTP_PRIMARY_ADDR:
6895 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6896 		break;
6897 	case SCTP_NODELAY:
6898 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6899 		break;
6900 	case SCTP_RTOINFO:
6901 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6902 		break;
6903 	case SCTP_ASSOCINFO:
6904 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6905 		break;
6906 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6907 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6908 		break;
6909 	case SCTP_MAXSEG:
6910 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6911 		break;
6912 	case SCTP_GET_PEER_ADDR_INFO:
6913 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6914 							optlen);
6915 		break;
6916 	case SCTP_ADAPTATION_LAYER:
6917 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6918 							optlen);
6919 		break;
6920 	case SCTP_CONTEXT:
6921 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6922 		break;
6923 	case SCTP_FRAGMENT_INTERLEAVE:
6924 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6925 							     optlen);
6926 		break;
6927 	case SCTP_PARTIAL_DELIVERY_POINT:
6928 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6929 								optlen);
6930 		break;
6931 	case SCTP_MAX_BURST:
6932 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6933 		break;
6934 	case SCTP_AUTH_KEY:
6935 	case SCTP_AUTH_CHUNK:
6936 	case SCTP_AUTH_DELETE_KEY:
6937 		retval = -EOPNOTSUPP;
6938 		break;
6939 	case SCTP_HMAC_IDENT:
6940 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6941 		break;
6942 	case SCTP_AUTH_ACTIVE_KEY:
6943 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6944 		break;
6945 	case SCTP_PEER_AUTH_CHUNKS:
6946 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6947 							optlen);
6948 		break;
6949 	case SCTP_LOCAL_AUTH_CHUNKS:
6950 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6951 							optlen);
6952 		break;
6953 	case SCTP_GET_ASSOC_NUMBER:
6954 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6955 		break;
6956 	case SCTP_GET_ASSOC_ID_LIST:
6957 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6958 		break;
6959 	case SCTP_AUTO_ASCONF:
6960 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6961 		break;
6962 	case SCTP_PEER_ADDR_THLDS:
6963 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6964 		break;
6965 	case SCTP_GET_ASSOC_STATS:
6966 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6967 		break;
6968 	case SCTP_RECVRCVINFO:
6969 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6970 		break;
6971 	case SCTP_RECVNXTINFO:
6972 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6973 		break;
6974 	case SCTP_PR_SUPPORTED:
6975 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6976 		break;
6977 	case SCTP_DEFAULT_PRINFO:
6978 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6979 							optlen);
6980 		break;
6981 	case SCTP_PR_ASSOC_STATUS:
6982 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6983 							optlen);
6984 		break;
6985 	case SCTP_PR_STREAM_STATUS:
6986 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
6987 							 optlen);
6988 		break;
6989 	case SCTP_RECONFIG_SUPPORTED:
6990 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
6991 							    optlen);
6992 		break;
6993 	case SCTP_ENABLE_STREAM_RESET:
6994 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
6995 							 optlen);
6996 		break;
6997 	default:
6998 		retval = -ENOPROTOOPT;
6999 		break;
7000 	}
7001 
7002 	release_sock(sk);
7003 	return retval;
7004 }
7005 
7006 static int sctp_hash(struct sock *sk)
7007 {
7008 	/* STUB */
7009 	return 0;
7010 }
7011 
7012 static void sctp_unhash(struct sock *sk)
7013 {
7014 	/* STUB */
7015 }
7016 
7017 /* Check if port is acceptable.  Possibly find first available port.
7018  *
7019  * The port hash table (contained in the 'global' SCTP protocol storage
7020  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7021  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7022  * list (the list number is the port number hashed out, so as you
7023  * would expect from a hash function, all the ports in a given list have
7024  * such a number that hashes out to the same list number; you were
7025  * expecting that, right?); so each list has a set of ports, with a
7026  * link to the socket (struct sock) that uses it, the port number and
7027  * a fastreuse flag (FIXME: NPI ipg).
7028  */
7029 static struct sctp_bind_bucket *sctp_bucket_create(
7030 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7031 
7032 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7033 {
7034 	struct sctp_bind_hashbucket *head; /* hash list */
7035 	struct sctp_bind_bucket *pp;
7036 	unsigned short snum;
7037 	int ret;
7038 
7039 	snum = ntohs(addr->v4.sin_port);
7040 
7041 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7042 
7043 	local_bh_disable();
7044 
7045 	if (snum == 0) {
7046 		/* Search for an available port. */
7047 		int low, high, remaining, index;
7048 		unsigned int rover;
7049 		struct net *net = sock_net(sk);
7050 
7051 		inet_get_local_port_range(net, &low, &high);
7052 		remaining = (high - low) + 1;
7053 		rover = prandom_u32() % remaining + low;
7054 
7055 		do {
7056 			rover++;
7057 			if ((rover < low) || (rover > high))
7058 				rover = low;
7059 			if (inet_is_local_reserved_port(net, rover))
7060 				continue;
7061 			index = sctp_phashfn(sock_net(sk), rover);
7062 			head = &sctp_port_hashtable[index];
7063 			spin_lock(&head->lock);
7064 			sctp_for_each_hentry(pp, &head->chain)
7065 				if ((pp->port == rover) &&
7066 				    net_eq(sock_net(sk), pp->net))
7067 					goto next;
7068 			break;
7069 		next:
7070 			spin_unlock(&head->lock);
7071 		} while (--remaining > 0);
7072 
7073 		/* Exhausted local port range during search? */
7074 		ret = 1;
7075 		if (remaining <= 0)
7076 			goto fail;
7077 
7078 		/* OK, here is the one we will use.  HEAD (the port
7079 		 * hash table list entry) is non-NULL and we hold it's
7080 		 * mutex.
7081 		 */
7082 		snum = rover;
7083 	} else {
7084 		/* We are given an specific port number; we verify
7085 		 * that it is not being used. If it is used, we will
7086 		 * exahust the search in the hash list corresponding
7087 		 * to the port number (snum) - we detect that with the
7088 		 * port iterator, pp being NULL.
7089 		 */
7090 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7091 		spin_lock(&head->lock);
7092 		sctp_for_each_hentry(pp, &head->chain) {
7093 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7094 				goto pp_found;
7095 		}
7096 	}
7097 	pp = NULL;
7098 	goto pp_not_found;
7099 pp_found:
7100 	if (!hlist_empty(&pp->owner)) {
7101 		/* We had a port hash table hit - there is an
7102 		 * available port (pp != NULL) and it is being
7103 		 * used by other socket (pp->owner not empty); that other
7104 		 * socket is going to be sk2.
7105 		 */
7106 		int reuse = sk->sk_reuse;
7107 		struct sock *sk2;
7108 
7109 		pr_debug("%s: found a possible match\n", __func__);
7110 
7111 		if (pp->fastreuse && sk->sk_reuse &&
7112 			sk->sk_state != SCTP_SS_LISTENING)
7113 			goto success;
7114 
7115 		/* Run through the list of sockets bound to the port
7116 		 * (pp->port) [via the pointers bind_next and
7117 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7118 		 * we get the endpoint they describe and run through
7119 		 * the endpoint's list of IP (v4 or v6) addresses,
7120 		 * comparing each of the addresses with the address of
7121 		 * the socket sk. If we find a match, then that means
7122 		 * that this port/socket (sk) combination are already
7123 		 * in an endpoint.
7124 		 */
7125 		sk_for_each_bound(sk2, &pp->owner) {
7126 			struct sctp_endpoint *ep2;
7127 			ep2 = sctp_sk(sk2)->ep;
7128 
7129 			if (sk == sk2 ||
7130 			    (reuse && sk2->sk_reuse &&
7131 			     sk2->sk_state != SCTP_SS_LISTENING))
7132 				continue;
7133 
7134 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7135 						 sctp_sk(sk2), sctp_sk(sk))) {
7136 				ret = (long)sk2;
7137 				goto fail_unlock;
7138 			}
7139 		}
7140 
7141 		pr_debug("%s: found a match\n", __func__);
7142 	}
7143 pp_not_found:
7144 	/* If there was a hash table miss, create a new port.  */
7145 	ret = 1;
7146 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7147 		goto fail_unlock;
7148 
7149 	/* In either case (hit or miss), make sure fastreuse is 1 only
7150 	 * if sk->sk_reuse is too (that is, if the caller requested
7151 	 * SO_REUSEADDR on this socket -sk-).
7152 	 */
7153 	if (hlist_empty(&pp->owner)) {
7154 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
7155 			pp->fastreuse = 1;
7156 		else
7157 			pp->fastreuse = 0;
7158 	} else if (pp->fastreuse &&
7159 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
7160 		pp->fastreuse = 0;
7161 
7162 	/* We are set, so fill up all the data in the hash table
7163 	 * entry, tie the socket list information with the rest of the
7164 	 * sockets FIXME: Blurry, NPI (ipg).
7165 	 */
7166 success:
7167 	if (!sctp_sk(sk)->bind_hash) {
7168 		inet_sk(sk)->inet_num = snum;
7169 		sk_add_bind_node(sk, &pp->owner);
7170 		sctp_sk(sk)->bind_hash = pp;
7171 	}
7172 	ret = 0;
7173 
7174 fail_unlock:
7175 	spin_unlock(&head->lock);
7176 
7177 fail:
7178 	local_bh_enable();
7179 	return ret;
7180 }
7181 
7182 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
7183  * port is requested.
7184  */
7185 static int sctp_get_port(struct sock *sk, unsigned short snum)
7186 {
7187 	union sctp_addr addr;
7188 	struct sctp_af *af = sctp_sk(sk)->pf->af;
7189 
7190 	/* Set up a dummy address struct from the sk. */
7191 	af->from_sk(&addr, sk);
7192 	addr.v4.sin_port = htons(snum);
7193 
7194 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
7195 	return !!sctp_get_port_local(sk, &addr);
7196 }
7197 
7198 /*
7199  *  Move a socket to LISTENING state.
7200  */
7201 static int sctp_listen_start(struct sock *sk, int backlog)
7202 {
7203 	struct sctp_sock *sp = sctp_sk(sk);
7204 	struct sctp_endpoint *ep = sp->ep;
7205 	struct crypto_shash *tfm = NULL;
7206 	char alg[32];
7207 
7208 	/* Allocate HMAC for generating cookie. */
7209 	if (!sp->hmac && sp->sctp_hmac_alg) {
7210 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7211 		tfm = crypto_alloc_shash(alg, 0, 0);
7212 		if (IS_ERR(tfm)) {
7213 			net_info_ratelimited("failed to load transform for %s: %ld\n",
7214 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
7215 			return -ENOSYS;
7216 		}
7217 		sctp_sk(sk)->hmac = tfm;
7218 	}
7219 
7220 	/*
7221 	 * If a bind() or sctp_bindx() is not called prior to a listen()
7222 	 * call that allows new associations to be accepted, the system
7223 	 * picks an ephemeral port and will choose an address set equivalent
7224 	 * to binding with a wildcard address.
7225 	 *
7226 	 * This is not currently spelled out in the SCTP sockets
7227 	 * extensions draft, but follows the practice as seen in TCP
7228 	 * sockets.
7229 	 *
7230 	 */
7231 	sk->sk_state = SCTP_SS_LISTENING;
7232 	if (!ep->base.bind_addr.port) {
7233 		if (sctp_autobind(sk))
7234 			return -EAGAIN;
7235 	} else {
7236 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7237 			sk->sk_state = SCTP_SS_CLOSED;
7238 			return -EADDRINUSE;
7239 		}
7240 	}
7241 
7242 	sk->sk_max_ack_backlog = backlog;
7243 	sctp_hash_endpoint(ep);
7244 	return 0;
7245 }
7246 
7247 /*
7248  * 4.1.3 / 5.1.3 listen()
7249  *
7250  *   By default, new associations are not accepted for UDP style sockets.
7251  *   An application uses listen() to mark a socket as being able to
7252  *   accept new associations.
7253  *
7254  *   On TCP style sockets, applications use listen() to ready the SCTP
7255  *   endpoint for accepting inbound associations.
7256  *
7257  *   On both types of endpoints a backlog of '0' disables listening.
7258  *
7259  *  Move a socket to LISTENING state.
7260  */
7261 int sctp_inet_listen(struct socket *sock, int backlog)
7262 {
7263 	struct sock *sk = sock->sk;
7264 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7265 	int err = -EINVAL;
7266 
7267 	if (unlikely(backlog < 0))
7268 		return err;
7269 
7270 	lock_sock(sk);
7271 
7272 	/* Peeled-off sockets are not allowed to listen().  */
7273 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7274 		goto out;
7275 
7276 	if (sock->state != SS_UNCONNECTED)
7277 		goto out;
7278 
7279 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7280 		goto out;
7281 
7282 	/* If backlog is zero, disable listening. */
7283 	if (!backlog) {
7284 		if (sctp_sstate(sk, CLOSED))
7285 			goto out;
7286 
7287 		err = 0;
7288 		sctp_unhash_endpoint(ep);
7289 		sk->sk_state = SCTP_SS_CLOSED;
7290 		if (sk->sk_reuse)
7291 			sctp_sk(sk)->bind_hash->fastreuse = 1;
7292 		goto out;
7293 	}
7294 
7295 	/* If we are already listening, just update the backlog */
7296 	if (sctp_sstate(sk, LISTENING))
7297 		sk->sk_max_ack_backlog = backlog;
7298 	else {
7299 		err = sctp_listen_start(sk, backlog);
7300 		if (err)
7301 			goto out;
7302 	}
7303 
7304 	err = 0;
7305 out:
7306 	release_sock(sk);
7307 	return err;
7308 }
7309 
7310 /*
7311  * This function is done by modeling the current datagram_poll() and the
7312  * tcp_poll().  Note that, based on these implementations, we don't
7313  * lock the socket in this function, even though it seems that,
7314  * ideally, locking or some other mechanisms can be used to ensure
7315  * the integrity of the counters (sndbuf and wmem_alloc) used
7316  * in this place.  We assume that we don't need locks either until proven
7317  * otherwise.
7318  *
7319  * Another thing to note is that we include the Async I/O support
7320  * here, again, by modeling the current TCP/UDP code.  We don't have
7321  * a good way to test with it yet.
7322  */
7323 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7324 {
7325 	struct sock *sk = sock->sk;
7326 	struct sctp_sock *sp = sctp_sk(sk);
7327 	unsigned int mask;
7328 
7329 	poll_wait(file, sk_sleep(sk), wait);
7330 
7331 	sock_rps_record_flow(sk);
7332 
7333 	/* A TCP-style listening socket becomes readable when the accept queue
7334 	 * is not empty.
7335 	 */
7336 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7337 		return (!list_empty(&sp->ep->asocs)) ?
7338 			(POLLIN | POLLRDNORM) : 0;
7339 
7340 	mask = 0;
7341 
7342 	/* Is there any exceptional events?  */
7343 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7344 		mask |= POLLERR |
7345 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7346 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7347 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7348 	if (sk->sk_shutdown == SHUTDOWN_MASK)
7349 		mask |= POLLHUP;
7350 
7351 	/* Is it readable?  Reconsider this code with TCP-style support.  */
7352 	if (!skb_queue_empty(&sk->sk_receive_queue))
7353 		mask |= POLLIN | POLLRDNORM;
7354 
7355 	/* The association is either gone or not ready.  */
7356 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7357 		return mask;
7358 
7359 	/* Is it writable?  */
7360 	if (sctp_writeable(sk)) {
7361 		mask |= POLLOUT | POLLWRNORM;
7362 	} else {
7363 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7364 		/*
7365 		 * Since the socket is not locked, the buffer
7366 		 * might be made available after the writeable check and
7367 		 * before the bit is set.  This could cause a lost I/O
7368 		 * signal.  tcp_poll() has a race breaker for this race
7369 		 * condition.  Based on their implementation, we put
7370 		 * in the following code to cover it as well.
7371 		 */
7372 		if (sctp_writeable(sk))
7373 			mask |= POLLOUT | POLLWRNORM;
7374 	}
7375 	return mask;
7376 }
7377 
7378 /********************************************************************
7379  * 2nd Level Abstractions
7380  ********************************************************************/
7381 
7382 static struct sctp_bind_bucket *sctp_bucket_create(
7383 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7384 {
7385 	struct sctp_bind_bucket *pp;
7386 
7387 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7388 	if (pp) {
7389 		SCTP_DBG_OBJCNT_INC(bind_bucket);
7390 		pp->port = snum;
7391 		pp->fastreuse = 0;
7392 		INIT_HLIST_HEAD(&pp->owner);
7393 		pp->net = net;
7394 		hlist_add_head(&pp->node, &head->chain);
7395 	}
7396 	return pp;
7397 }
7398 
7399 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7400 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7401 {
7402 	if (pp && hlist_empty(&pp->owner)) {
7403 		__hlist_del(&pp->node);
7404 		kmem_cache_free(sctp_bucket_cachep, pp);
7405 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
7406 	}
7407 }
7408 
7409 /* Release this socket's reference to a local port.  */
7410 static inline void __sctp_put_port(struct sock *sk)
7411 {
7412 	struct sctp_bind_hashbucket *head =
7413 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7414 						  inet_sk(sk)->inet_num)];
7415 	struct sctp_bind_bucket *pp;
7416 
7417 	spin_lock(&head->lock);
7418 	pp = sctp_sk(sk)->bind_hash;
7419 	__sk_del_bind_node(sk);
7420 	sctp_sk(sk)->bind_hash = NULL;
7421 	inet_sk(sk)->inet_num = 0;
7422 	sctp_bucket_destroy(pp);
7423 	spin_unlock(&head->lock);
7424 }
7425 
7426 void sctp_put_port(struct sock *sk)
7427 {
7428 	local_bh_disable();
7429 	__sctp_put_port(sk);
7430 	local_bh_enable();
7431 }
7432 
7433 /*
7434  * The system picks an ephemeral port and choose an address set equivalent
7435  * to binding with a wildcard address.
7436  * One of those addresses will be the primary address for the association.
7437  * This automatically enables the multihoming capability of SCTP.
7438  */
7439 static int sctp_autobind(struct sock *sk)
7440 {
7441 	union sctp_addr autoaddr;
7442 	struct sctp_af *af;
7443 	__be16 port;
7444 
7445 	/* Initialize a local sockaddr structure to INADDR_ANY. */
7446 	af = sctp_sk(sk)->pf->af;
7447 
7448 	port = htons(inet_sk(sk)->inet_num);
7449 	af->inaddr_any(&autoaddr, port);
7450 
7451 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7452 }
7453 
7454 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
7455  *
7456  * From RFC 2292
7457  * 4.2 The cmsghdr Structure *
7458  *
7459  * When ancillary data is sent or received, any number of ancillary data
7460  * objects can be specified by the msg_control and msg_controllen members of
7461  * the msghdr structure, because each object is preceded by
7462  * a cmsghdr structure defining the object's length (the cmsg_len member).
7463  * Historically Berkeley-derived implementations have passed only one object
7464  * at a time, but this API allows multiple objects to be
7465  * passed in a single call to sendmsg() or recvmsg(). The following example
7466  * shows two ancillary data objects in a control buffer.
7467  *
7468  *   |<--------------------------- msg_controllen -------------------------->|
7469  *   |                                                                       |
7470  *
7471  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
7472  *
7473  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7474  *   |                                   |                                   |
7475  *
7476  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
7477  *
7478  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
7479  *   |                                |  |                                |  |
7480  *
7481  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7482  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
7483  *
7484  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
7485  *
7486  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7487  *    ^
7488  *    |
7489  *
7490  * msg_control
7491  * points here
7492  */
7493 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
7494 {
7495 	struct msghdr *my_msg = (struct msghdr *)msg;
7496 	struct cmsghdr *cmsg;
7497 
7498 	for_each_cmsghdr(cmsg, my_msg) {
7499 		if (!CMSG_OK(my_msg, cmsg))
7500 			return -EINVAL;
7501 
7502 		/* Should we parse this header or ignore?  */
7503 		if (cmsg->cmsg_level != IPPROTO_SCTP)
7504 			continue;
7505 
7506 		/* Strictly check lengths following example in SCM code.  */
7507 		switch (cmsg->cmsg_type) {
7508 		case SCTP_INIT:
7509 			/* SCTP Socket API Extension
7510 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7511 			 *
7512 			 * This cmsghdr structure provides information for
7513 			 * initializing new SCTP associations with sendmsg().
7514 			 * The SCTP_INITMSG socket option uses this same data
7515 			 * structure.  This structure is not used for
7516 			 * recvmsg().
7517 			 *
7518 			 * cmsg_level    cmsg_type      cmsg_data[]
7519 			 * ------------  ------------   ----------------------
7520 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
7521 			 */
7522 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7523 				return -EINVAL;
7524 
7525 			cmsgs->init = CMSG_DATA(cmsg);
7526 			break;
7527 
7528 		case SCTP_SNDRCV:
7529 			/* SCTP Socket API Extension
7530 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7531 			 *
7532 			 * This cmsghdr structure specifies SCTP options for
7533 			 * sendmsg() and describes SCTP header information
7534 			 * about a received message through recvmsg().
7535 			 *
7536 			 * cmsg_level    cmsg_type      cmsg_data[]
7537 			 * ------------  ------------   ----------------------
7538 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
7539 			 */
7540 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7541 				return -EINVAL;
7542 
7543 			cmsgs->srinfo = CMSG_DATA(cmsg);
7544 
7545 			if (cmsgs->srinfo->sinfo_flags &
7546 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7547 			      SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7548 			      SCTP_ABORT | SCTP_EOF))
7549 				return -EINVAL;
7550 			break;
7551 
7552 		case SCTP_SNDINFO:
7553 			/* SCTP Socket API Extension
7554 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7555 			 *
7556 			 * This cmsghdr structure specifies SCTP options for
7557 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
7558 			 * SCTP_SNDRCV which has been deprecated.
7559 			 *
7560 			 * cmsg_level    cmsg_type      cmsg_data[]
7561 			 * ------------  ------------   ---------------------
7562 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
7563 			 */
7564 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7565 				return -EINVAL;
7566 
7567 			cmsgs->sinfo = CMSG_DATA(cmsg);
7568 
7569 			if (cmsgs->sinfo->snd_flags &
7570 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7571 			      SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7572 			      SCTP_ABORT | SCTP_EOF))
7573 				return -EINVAL;
7574 			break;
7575 		default:
7576 			return -EINVAL;
7577 		}
7578 	}
7579 
7580 	return 0;
7581 }
7582 
7583 /*
7584  * Wait for a packet..
7585  * Note: This function is the same function as in core/datagram.c
7586  * with a few modifications to make lksctp work.
7587  */
7588 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7589 {
7590 	int error;
7591 	DEFINE_WAIT(wait);
7592 
7593 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7594 
7595 	/* Socket errors? */
7596 	error = sock_error(sk);
7597 	if (error)
7598 		goto out;
7599 
7600 	if (!skb_queue_empty(&sk->sk_receive_queue))
7601 		goto ready;
7602 
7603 	/* Socket shut down?  */
7604 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7605 		goto out;
7606 
7607 	/* Sequenced packets can come disconnected.  If so we report the
7608 	 * problem.
7609 	 */
7610 	error = -ENOTCONN;
7611 
7612 	/* Is there a good reason to think that we may receive some data?  */
7613 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7614 		goto out;
7615 
7616 	/* Handle signals.  */
7617 	if (signal_pending(current))
7618 		goto interrupted;
7619 
7620 	/* Let another process have a go.  Since we are going to sleep
7621 	 * anyway.  Note: This may cause odd behaviors if the message
7622 	 * does not fit in the user's buffer, but this seems to be the
7623 	 * only way to honor MSG_DONTWAIT realistically.
7624 	 */
7625 	release_sock(sk);
7626 	*timeo_p = schedule_timeout(*timeo_p);
7627 	lock_sock(sk);
7628 
7629 ready:
7630 	finish_wait(sk_sleep(sk), &wait);
7631 	return 0;
7632 
7633 interrupted:
7634 	error = sock_intr_errno(*timeo_p);
7635 
7636 out:
7637 	finish_wait(sk_sleep(sk), &wait);
7638 	*err = error;
7639 	return error;
7640 }
7641 
7642 /* Receive a datagram.
7643  * Note: This is pretty much the same routine as in core/datagram.c
7644  * with a few changes to make lksctp work.
7645  */
7646 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7647 				       int noblock, int *err)
7648 {
7649 	int error;
7650 	struct sk_buff *skb;
7651 	long timeo;
7652 
7653 	timeo = sock_rcvtimeo(sk, noblock);
7654 
7655 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7656 		 MAX_SCHEDULE_TIMEOUT);
7657 
7658 	do {
7659 		/* Again only user level code calls this function,
7660 		 * so nothing interrupt level
7661 		 * will suddenly eat the receive_queue.
7662 		 *
7663 		 *  Look at current nfs client by the way...
7664 		 *  However, this function was correct in any case. 8)
7665 		 */
7666 		if (flags & MSG_PEEK) {
7667 			skb = skb_peek(&sk->sk_receive_queue);
7668 			if (skb)
7669 				refcount_inc(&skb->users);
7670 		} else {
7671 			skb = __skb_dequeue(&sk->sk_receive_queue);
7672 		}
7673 
7674 		if (skb)
7675 			return skb;
7676 
7677 		/* Caller is allowed not to check sk->sk_err before calling. */
7678 		error = sock_error(sk);
7679 		if (error)
7680 			goto no_packet;
7681 
7682 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7683 			break;
7684 
7685 		if (sk_can_busy_loop(sk)) {
7686 			sk_busy_loop(sk, noblock);
7687 
7688 			if (!skb_queue_empty(&sk->sk_receive_queue))
7689 				continue;
7690 		}
7691 
7692 		/* User doesn't want to wait.  */
7693 		error = -EAGAIN;
7694 		if (!timeo)
7695 			goto no_packet;
7696 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7697 
7698 	return NULL;
7699 
7700 no_packet:
7701 	*err = error;
7702 	return NULL;
7703 }
7704 
7705 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
7706 static void __sctp_write_space(struct sctp_association *asoc)
7707 {
7708 	struct sock *sk = asoc->base.sk;
7709 
7710 	if (sctp_wspace(asoc) <= 0)
7711 		return;
7712 
7713 	if (waitqueue_active(&asoc->wait))
7714 		wake_up_interruptible(&asoc->wait);
7715 
7716 	if (sctp_writeable(sk)) {
7717 		struct socket_wq *wq;
7718 
7719 		rcu_read_lock();
7720 		wq = rcu_dereference(sk->sk_wq);
7721 		if (wq) {
7722 			if (waitqueue_active(&wq->wait))
7723 				wake_up_interruptible(&wq->wait);
7724 
7725 			/* Note that we try to include the Async I/O support
7726 			 * here by modeling from the current TCP/UDP code.
7727 			 * We have not tested with it yet.
7728 			 */
7729 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7730 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7731 		}
7732 		rcu_read_unlock();
7733 	}
7734 }
7735 
7736 static void sctp_wake_up_waiters(struct sock *sk,
7737 				 struct sctp_association *asoc)
7738 {
7739 	struct sctp_association *tmp = asoc;
7740 
7741 	/* We do accounting for the sndbuf space per association,
7742 	 * so we only need to wake our own association.
7743 	 */
7744 	if (asoc->ep->sndbuf_policy)
7745 		return __sctp_write_space(asoc);
7746 
7747 	/* If association goes down and is just flushing its
7748 	 * outq, then just normally notify others.
7749 	 */
7750 	if (asoc->base.dead)
7751 		return sctp_write_space(sk);
7752 
7753 	/* Accounting for the sndbuf space is per socket, so we
7754 	 * need to wake up others, try to be fair and in case of
7755 	 * other associations, let them have a go first instead
7756 	 * of just doing a sctp_write_space() call.
7757 	 *
7758 	 * Note that we reach sctp_wake_up_waiters() only when
7759 	 * associations free up queued chunks, thus we are under
7760 	 * lock and the list of associations on a socket is
7761 	 * guaranteed not to change.
7762 	 */
7763 	for (tmp = list_next_entry(tmp, asocs); 1;
7764 	     tmp = list_next_entry(tmp, asocs)) {
7765 		/* Manually skip the head element. */
7766 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7767 			continue;
7768 		/* Wake up association. */
7769 		__sctp_write_space(tmp);
7770 		/* We've reached the end. */
7771 		if (tmp == asoc)
7772 			break;
7773 	}
7774 }
7775 
7776 /* Do accounting for the sndbuf space.
7777  * Decrement the used sndbuf space of the corresponding association by the
7778  * data size which was just transmitted(freed).
7779  */
7780 static void sctp_wfree(struct sk_buff *skb)
7781 {
7782 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7783 	struct sctp_association *asoc = chunk->asoc;
7784 	struct sock *sk = asoc->base.sk;
7785 
7786 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7787 				sizeof(struct sk_buff) +
7788 				sizeof(struct sctp_chunk);
7789 
7790 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc));
7791 
7792 	/*
7793 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7794 	 */
7795 	sk->sk_wmem_queued   -= skb->truesize;
7796 	sk_mem_uncharge(sk, skb->truesize);
7797 
7798 	sock_wfree(skb);
7799 	sctp_wake_up_waiters(sk, asoc);
7800 
7801 	sctp_association_put(asoc);
7802 }
7803 
7804 /* Do accounting for the receive space on the socket.
7805  * Accounting for the association is done in ulpevent.c
7806  * We set this as a destructor for the cloned data skbs so that
7807  * accounting is done at the correct time.
7808  */
7809 void sctp_sock_rfree(struct sk_buff *skb)
7810 {
7811 	struct sock *sk = skb->sk;
7812 	struct sctp_ulpevent *event = sctp_skb2event(skb);
7813 
7814 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7815 
7816 	/*
7817 	 * Mimic the behavior of sock_rfree
7818 	 */
7819 	sk_mem_uncharge(sk, event->rmem_len);
7820 }
7821 
7822 
7823 /* Helper function to wait for space in the sndbuf.  */
7824 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7825 				size_t msg_len)
7826 {
7827 	struct sock *sk = asoc->base.sk;
7828 	int err = 0;
7829 	long current_timeo = *timeo_p;
7830 	DEFINE_WAIT(wait);
7831 
7832 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7833 		 *timeo_p, msg_len);
7834 
7835 	/* Increment the association's refcnt.  */
7836 	sctp_association_hold(asoc);
7837 
7838 	/* Wait on the association specific sndbuf space. */
7839 	for (;;) {
7840 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7841 					  TASK_INTERRUPTIBLE);
7842 		if (!*timeo_p)
7843 			goto do_nonblock;
7844 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7845 		    asoc->base.dead)
7846 			goto do_error;
7847 		if (signal_pending(current))
7848 			goto do_interrupted;
7849 		if (msg_len <= sctp_wspace(asoc))
7850 			break;
7851 
7852 		/* Let another process have a go.  Since we are going
7853 		 * to sleep anyway.
7854 		 */
7855 		release_sock(sk);
7856 		current_timeo = schedule_timeout(current_timeo);
7857 		lock_sock(sk);
7858 
7859 		*timeo_p = current_timeo;
7860 	}
7861 
7862 out:
7863 	finish_wait(&asoc->wait, &wait);
7864 
7865 	/* Release the association's refcnt.  */
7866 	sctp_association_put(asoc);
7867 
7868 	return err;
7869 
7870 do_error:
7871 	err = -EPIPE;
7872 	goto out;
7873 
7874 do_interrupted:
7875 	err = sock_intr_errno(*timeo_p);
7876 	goto out;
7877 
7878 do_nonblock:
7879 	err = -EAGAIN;
7880 	goto out;
7881 }
7882 
7883 void sctp_data_ready(struct sock *sk)
7884 {
7885 	struct socket_wq *wq;
7886 
7887 	rcu_read_lock();
7888 	wq = rcu_dereference(sk->sk_wq);
7889 	if (skwq_has_sleeper(wq))
7890 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7891 						POLLRDNORM | POLLRDBAND);
7892 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7893 	rcu_read_unlock();
7894 }
7895 
7896 /* If socket sndbuf has changed, wake up all per association waiters.  */
7897 void sctp_write_space(struct sock *sk)
7898 {
7899 	struct sctp_association *asoc;
7900 
7901 	/* Wake up the tasks in each wait queue.  */
7902 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7903 		__sctp_write_space(asoc);
7904 	}
7905 }
7906 
7907 /* Is there any sndbuf space available on the socket?
7908  *
7909  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7910  * associations on the same socket.  For a UDP-style socket with
7911  * multiple associations, it is possible for it to be "unwriteable"
7912  * prematurely.  I assume that this is acceptable because
7913  * a premature "unwriteable" is better than an accidental "writeable" which
7914  * would cause an unwanted block under certain circumstances.  For the 1-1
7915  * UDP-style sockets or TCP-style sockets, this code should work.
7916  *  - Daisy
7917  */
7918 static int sctp_writeable(struct sock *sk)
7919 {
7920 	int amt = 0;
7921 
7922 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7923 	if (amt < 0)
7924 		amt = 0;
7925 	return amt;
7926 }
7927 
7928 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7929  * returns immediately with EINPROGRESS.
7930  */
7931 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7932 {
7933 	struct sock *sk = asoc->base.sk;
7934 	int err = 0;
7935 	long current_timeo = *timeo_p;
7936 	DEFINE_WAIT(wait);
7937 
7938 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7939 
7940 	/* Increment the association's refcnt.  */
7941 	sctp_association_hold(asoc);
7942 
7943 	for (;;) {
7944 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7945 					  TASK_INTERRUPTIBLE);
7946 		if (!*timeo_p)
7947 			goto do_nonblock;
7948 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7949 			break;
7950 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7951 		    asoc->base.dead)
7952 			goto do_error;
7953 		if (signal_pending(current))
7954 			goto do_interrupted;
7955 
7956 		if (sctp_state(asoc, ESTABLISHED))
7957 			break;
7958 
7959 		/* Let another process have a go.  Since we are going
7960 		 * to sleep anyway.
7961 		 */
7962 		release_sock(sk);
7963 		current_timeo = schedule_timeout(current_timeo);
7964 		lock_sock(sk);
7965 
7966 		*timeo_p = current_timeo;
7967 	}
7968 
7969 out:
7970 	finish_wait(&asoc->wait, &wait);
7971 
7972 	/* Release the association's refcnt.  */
7973 	sctp_association_put(asoc);
7974 
7975 	return err;
7976 
7977 do_error:
7978 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7979 		err = -ETIMEDOUT;
7980 	else
7981 		err = -ECONNREFUSED;
7982 	goto out;
7983 
7984 do_interrupted:
7985 	err = sock_intr_errno(*timeo_p);
7986 	goto out;
7987 
7988 do_nonblock:
7989 	err = -EINPROGRESS;
7990 	goto out;
7991 }
7992 
7993 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7994 {
7995 	struct sctp_endpoint *ep;
7996 	int err = 0;
7997 	DEFINE_WAIT(wait);
7998 
7999 	ep = sctp_sk(sk)->ep;
8000 
8001 
8002 	for (;;) {
8003 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8004 					  TASK_INTERRUPTIBLE);
8005 
8006 		if (list_empty(&ep->asocs)) {
8007 			release_sock(sk);
8008 			timeo = schedule_timeout(timeo);
8009 			lock_sock(sk);
8010 		}
8011 
8012 		err = -EINVAL;
8013 		if (!sctp_sstate(sk, LISTENING))
8014 			break;
8015 
8016 		err = 0;
8017 		if (!list_empty(&ep->asocs))
8018 			break;
8019 
8020 		err = sock_intr_errno(timeo);
8021 		if (signal_pending(current))
8022 			break;
8023 
8024 		err = -EAGAIN;
8025 		if (!timeo)
8026 			break;
8027 	}
8028 
8029 	finish_wait(sk_sleep(sk), &wait);
8030 
8031 	return err;
8032 }
8033 
8034 static void sctp_wait_for_close(struct sock *sk, long timeout)
8035 {
8036 	DEFINE_WAIT(wait);
8037 
8038 	do {
8039 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8040 		if (list_empty(&sctp_sk(sk)->ep->asocs))
8041 			break;
8042 		release_sock(sk);
8043 		timeout = schedule_timeout(timeout);
8044 		lock_sock(sk);
8045 	} while (!signal_pending(current) && timeout);
8046 
8047 	finish_wait(sk_sleep(sk), &wait);
8048 }
8049 
8050 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8051 {
8052 	struct sk_buff *frag;
8053 
8054 	if (!skb->data_len)
8055 		goto done;
8056 
8057 	/* Don't forget the fragments. */
8058 	skb_walk_frags(skb, frag)
8059 		sctp_skb_set_owner_r_frag(frag, sk);
8060 
8061 done:
8062 	sctp_skb_set_owner_r(skb, sk);
8063 }
8064 
8065 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8066 		    struct sctp_association *asoc)
8067 {
8068 	struct inet_sock *inet = inet_sk(sk);
8069 	struct inet_sock *newinet;
8070 
8071 	newsk->sk_type = sk->sk_type;
8072 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8073 	newsk->sk_flags = sk->sk_flags;
8074 	newsk->sk_tsflags = sk->sk_tsflags;
8075 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
8076 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
8077 	newsk->sk_reuse = sk->sk_reuse;
8078 
8079 	newsk->sk_shutdown = sk->sk_shutdown;
8080 	newsk->sk_destruct = sctp_destruct_sock;
8081 	newsk->sk_family = sk->sk_family;
8082 	newsk->sk_protocol = IPPROTO_SCTP;
8083 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8084 	newsk->sk_sndbuf = sk->sk_sndbuf;
8085 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
8086 	newsk->sk_lingertime = sk->sk_lingertime;
8087 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8088 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
8089 	newsk->sk_rxhash = sk->sk_rxhash;
8090 
8091 	newinet = inet_sk(newsk);
8092 
8093 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
8094 	 * getsockname() and getpeername()
8095 	 */
8096 	newinet->inet_sport = inet->inet_sport;
8097 	newinet->inet_saddr = inet->inet_saddr;
8098 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8099 	newinet->inet_dport = htons(asoc->peer.port);
8100 	newinet->pmtudisc = inet->pmtudisc;
8101 	newinet->inet_id = asoc->next_tsn ^ jiffies;
8102 
8103 	newinet->uc_ttl = inet->uc_ttl;
8104 	newinet->mc_loop = 1;
8105 	newinet->mc_ttl = 1;
8106 	newinet->mc_index = 0;
8107 	newinet->mc_list = NULL;
8108 
8109 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8110 		net_enable_timestamp();
8111 
8112 	security_sk_clone(sk, newsk);
8113 }
8114 
8115 static inline void sctp_copy_descendant(struct sock *sk_to,
8116 					const struct sock *sk_from)
8117 {
8118 	int ancestor_size = sizeof(struct inet_sock) +
8119 			    sizeof(struct sctp_sock) -
8120 			    offsetof(struct sctp_sock, auto_asconf_list);
8121 
8122 	if (sk_from->sk_family == PF_INET6)
8123 		ancestor_size += sizeof(struct ipv6_pinfo);
8124 
8125 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8126 }
8127 
8128 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8129  * and its messages to the newsk.
8130  */
8131 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8132 			      struct sctp_association *assoc,
8133 			      enum sctp_socket_type type)
8134 {
8135 	struct sctp_sock *oldsp = sctp_sk(oldsk);
8136 	struct sctp_sock *newsp = sctp_sk(newsk);
8137 	struct sctp_bind_bucket *pp; /* hash list port iterator */
8138 	struct sctp_endpoint *newep = newsp->ep;
8139 	struct sk_buff *skb, *tmp;
8140 	struct sctp_ulpevent *event;
8141 	struct sctp_bind_hashbucket *head;
8142 
8143 	/* Migrate socket buffer sizes and all the socket level options to the
8144 	 * new socket.
8145 	 */
8146 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
8147 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8148 	/* Brute force copy old sctp opt. */
8149 	sctp_copy_descendant(newsk, oldsk);
8150 
8151 	/* Restore the ep value that was overwritten with the above structure
8152 	 * copy.
8153 	 */
8154 	newsp->ep = newep;
8155 	newsp->hmac = NULL;
8156 
8157 	/* Hook this new socket in to the bind_hash list. */
8158 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8159 						 inet_sk(oldsk)->inet_num)];
8160 	spin_lock_bh(&head->lock);
8161 	pp = sctp_sk(oldsk)->bind_hash;
8162 	sk_add_bind_node(newsk, &pp->owner);
8163 	sctp_sk(newsk)->bind_hash = pp;
8164 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8165 	spin_unlock_bh(&head->lock);
8166 
8167 	/* Copy the bind_addr list from the original endpoint to the new
8168 	 * endpoint so that we can handle restarts properly
8169 	 */
8170 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8171 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
8172 
8173 	/* Move any messages in the old socket's receive queue that are for the
8174 	 * peeled off association to the new socket's receive queue.
8175 	 */
8176 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8177 		event = sctp_skb2event(skb);
8178 		if (event->asoc == assoc) {
8179 			__skb_unlink(skb, &oldsk->sk_receive_queue);
8180 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
8181 			sctp_skb_set_owner_r_frag(skb, newsk);
8182 		}
8183 	}
8184 
8185 	/* Clean up any messages pending delivery due to partial
8186 	 * delivery.   Three cases:
8187 	 * 1) No partial deliver;  no work.
8188 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8189 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8190 	 */
8191 	skb_queue_head_init(&newsp->pd_lobby);
8192 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8193 
8194 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8195 		struct sk_buff_head *queue;
8196 
8197 		/* Decide which queue to move pd_lobby skbs to. */
8198 		if (assoc->ulpq.pd_mode) {
8199 			queue = &newsp->pd_lobby;
8200 		} else
8201 			queue = &newsk->sk_receive_queue;
8202 
8203 		/* Walk through the pd_lobby, looking for skbs that
8204 		 * need moved to the new socket.
8205 		 */
8206 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8207 			event = sctp_skb2event(skb);
8208 			if (event->asoc == assoc) {
8209 				__skb_unlink(skb, &oldsp->pd_lobby);
8210 				__skb_queue_tail(queue, skb);
8211 				sctp_skb_set_owner_r_frag(skb, newsk);
8212 			}
8213 		}
8214 
8215 		/* Clear up any skbs waiting for the partial
8216 		 * delivery to finish.
8217 		 */
8218 		if (assoc->ulpq.pd_mode)
8219 			sctp_clear_pd(oldsk, NULL);
8220 
8221 	}
8222 
8223 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
8224 		sctp_skb_set_owner_r_frag(skb, newsk);
8225 
8226 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
8227 		sctp_skb_set_owner_r_frag(skb, newsk);
8228 
8229 	/* Set the type of socket to indicate that it is peeled off from the
8230 	 * original UDP-style socket or created with the accept() call on a
8231 	 * TCP-style socket..
8232 	 */
8233 	newsp->type = type;
8234 
8235 	/* Mark the new socket "in-use" by the user so that any packets
8236 	 * that may arrive on the association after we've moved it are
8237 	 * queued to the backlog.  This prevents a potential race between
8238 	 * backlog processing on the old socket and new-packet processing
8239 	 * on the new socket.
8240 	 *
8241 	 * The caller has just allocated newsk so we can guarantee that other
8242 	 * paths won't try to lock it and then oldsk.
8243 	 */
8244 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8245 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
8246 	sctp_assoc_migrate(assoc, newsk);
8247 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
8248 
8249 	/* If the association on the newsk is already closed before accept()
8250 	 * is called, set RCV_SHUTDOWN flag.
8251 	 */
8252 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8253 		newsk->sk_state = SCTP_SS_CLOSED;
8254 		newsk->sk_shutdown |= RCV_SHUTDOWN;
8255 	} else {
8256 		newsk->sk_state = SCTP_SS_ESTABLISHED;
8257 	}
8258 
8259 	release_sock(newsk);
8260 }
8261 
8262 
8263 /* This proto struct describes the ULP interface for SCTP.  */
8264 struct proto sctp_prot = {
8265 	.name        =	"SCTP",
8266 	.owner       =	THIS_MODULE,
8267 	.close       =	sctp_close,
8268 	.connect     =	sctp_connect,
8269 	.disconnect  =	sctp_disconnect,
8270 	.accept      =	sctp_accept,
8271 	.ioctl       =	sctp_ioctl,
8272 	.init        =	sctp_init_sock,
8273 	.destroy     =	sctp_destroy_sock,
8274 	.shutdown    =	sctp_shutdown,
8275 	.setsockopt  =	sctp_setsockopt,
8276 	.getsockopt  =	sctp_getsockopt,
8277 	.sendmsg     =	sctp_sendmsg,
8278 	.recvmsg     =	sctp_recvmsg,
8279 	.bind        =	sctp_bind,
8280 	.backlog_rcv =	sctp_backlog_rcv,
8281 	.hash        =	sctp_hash,
8282 	.unhash      =	sctp_unhash,
8283 	.get_port    =	sctp_get_port,
8284 	.obj_size    =  sizeof(struct sctp_sock),
8285 	.sysctl_mem  =  sysctl_sctp_mem,
8286 	.sysctl_rmem =  sysctl_sctp_rmem,
8287 	.sysctl_wmem =  sysctl_sctp_wmem,
8288 	.memory_pressure = &sctp_memory_pressure,
8289 	.enter_memory_pressure = sctp_enter_memory_pressure,
8290 	.memory_allocated = &sctp_memory_allocated,
8291 	.sockets_allocated = &sctp_sockets_allocated,
8292 };
8293 
8294 #if IS_ENABLED(CONFIG_IPV6)
8295 
8296 #include <net/transp_v6.h>
8297 static void sctp_v6_destroy_sock(struct sock *sk)
8298 {
8299 	sctp_destroy_sock(sk);
8300 	inet6_destroy_sock(sk);
8301 }
8302 
8303 struct proto sctpv6_prot = {
8304 	.name		= "SCTPv6",
8305 	.owner		= THIS_MODULE,
8306 	.close		= sctp_close,
8307 	.connect	= sctp_connect,
8308 	.disconnect	= sctp_disconnect,
8309 	.accept		= sctp_accept,
8310 	.ioctl		= sctp_ioctl,
8311 	.init		= sctp_init_sock,
8312 	.destroy	= sctp_v6_destroy_sock,
8313 	.shutdown	= sctp_shutdown,
8314 	.setsockopt	= sctp_setsockopt,
8315 	.getsockopt	= sctp_getsockopt,
8316 	.sendmsg	= sctp_sendmsg,
8317 	.recvmsg	= sctp_recvmsg,
8318 	.bind		= sctp_bind,
8319 	.backlog_rcv	= sctp_backlog_rcv,
8320 	.hash		= sctp_hash,
8321 	.unhash		= sctp_unhash,
8322 	.get_port	= sctp_get_port,
8323 	.obj_size	= sizeof(struct sctp6_sock),
8324 	.sysctl_mem	= sysctl_sctp_mem,
8325 	.sysctl_rmem	= sysctl_sctp_rmem,
8326 	.sysctl_wmem	= sysctl_sctp_wmem,
8327 	.memory_pressure = &sctp_memory_pressure,
8328 	.enter_memory_pressure = sctp_enter_memory_pressure,
8329 	.memory_allocated = &sctp_memory_allocated,
8330 	.sockets_allocated = &sctp_sockets_allocated,
8331 };
8332 #endif /* IS_ENABLED(CONFIG_IPV6) */
8333