1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 83 /* Forward declarations for internal helper functions. */ 84 static int sctp_writeable(struct sock *sk); 85 static void sctp_wfree(struct sk_buff *skb); 86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 87 size_t msg_len); 88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 90 static int sctp_wait_for_accept(struct sock *sk, long timeo); 91 static void sctp_wait_for_close(struct sock *sk, long timeo); 92 static void sctp_destruct_sock(struct sock *sk); 93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 94 union sctp_addr *addr, int len); 95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf(struct sctp_association *asoc, 100 struct sctp_chunk *chunk); 101 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 102 static int sctp_autobind(struct sock *sk); 103 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 104 struct sctp_association *assoc, 105 enum sctp_socket_type type); 106 107 static unsigned long sctp_memory_pressure; 108 static atomic_long_t sctp_memory_allocated; 109 struct percpu_counter sctp_sockets_allocated; 110 111 static void sctp_enter_memory_pressure(struct sock *sk) 112 { 113 sctp_memory_pressure = 1; 114 } 115 116 117 /* Get the sndbuf space available at the time on the association. */ 118 static inline int sctp_wspace(struct sctp_association *asoc) 119 { 120 int amt; 121 122 if (asoc->ep->sndbuf_policy) 123 amt = asoc->sndbuf_used; 124 else 125 amt = sk_wmem_alloc_get(asoc->base.sk); 126 127 if (amt >= asoc->base.sk->sk_sndbuf) { 128 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 129 amt = 0; 130 else { 131 amt = sk_stream_wspace(asoc->base.sk); 132 if (amt < 0) 133 amt = 0; 134 } 135 } else { 136 amt = asoc->base.sk->sk_sndbuf - amt; 137 } 138 return amt; 139 } 140 141 /* Increment the used sndbuf space count of the corresponding association by 142 * the size of the outgoing data chunk. 143 * Also, set the skb destructor for sndbuf accounting later. 144 * 145 * Since it is always 1-1 between chunk and skb, and also a new skb is always 146 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 147 * destructor in the data chunk skb for the purpose of the sndbuf space 148 * tracking. 149 */ 150 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 151 { 152 struct sctp_association *asoc = chunk->asoc; 153 struct sock *sk = asoc->base.sk; 154 155 /* The sndbuf space is tracked per association. */ 156 sctp_association_hold(asoc); 157 158 skb_set_owner_w(chunk->skb, sk); 159 160 chunk->skb->destructor = sctp_wfree; 161 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 162 skb_shinfo(chunk->skb)->destructor_arg = chunk; 163 164 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 165 sizeof(struct sk_buff) + 166 sizeof(struct sctp_chunk); 167 168 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 169 sk->sk_wmem_queued += chunk->skb->truesize; 170 sk_mem_charge(sk, chunk->skb->truesize); 171 } 172 173 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 174 { 175 skb_orphan(chunk->skb); 176 } 177 178 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 179 void (*cb)(struct sctp_chunk *)) 180 181 { 182 struct sctp_outq *q = &asoc->outqueue; 183 struct sctp_transport *t; 184 struct sctp_chunk *chunk; 185 186 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 187 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 188 cb(chunk); 189 190 list_for_each_entry(chunk, &q->retransmit, list) 191 cb(chunk); 192 193 list_for_each_entry(chunk, &q->sacked, list) 194 cb(chunk); 195 196 list_for_each_entry(chunk, &q->abandoned, list) 197 cb(chunk); 198 199 list_for_each_entry(chunk, &q->out_chunk_list, list) 200 cb(chunk); 201 } 202 203 /* Verify that this is a valid address. */ 204 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 205 int len) 206 { 207 struct sctp_af *af; 208 209 /* Verify basic sockaddr. */ 210 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 211 if (!af) 212 return -EINVAL; 213 214 /* Is this a valid SCTP address? */ 215 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 216 return -EINVAL; 217 218 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 219 return -EINVAL; 220 221 return 0; 222 } 223 224 /* Look up the association by its id. If this is not a UDP-style 225 * socket, the ID field is always ignored. 226 */ 227 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 228 { 229 struct sctp_association *asoc = NULL; 230 231 /* If this is not a UDP-style socket, assoc id should be ignored. */ 232 if (!sctp_style(sk, UDP)) { 233 /* Return NULL if the socket state is not ESTABLISHED. It 234 * could be a TCP-style listening socket or a socket which 235 * hasn't yet called connect() to establish an association. 236 */ 237 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 238 return NULL; 239 240 /* Get the first and the only association from the list. */ 241 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 242 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 243 struct sctp_association, asocs); 244 return asoc; 245 } 246 247 /* Otherwise this is a UDP-style socket. */ 248 if (!id || (id == (sctp_assoc_t)-1)) 249 return NULL; 250 251 spin_lock_bh(&sctp_assocs_id_lock); 252 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 253 spin_unlock_bh(&sctp_assocs_id_lock); 254 255 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 256 return NULL; 257 258 return asoc; 259 } 260 261 /* Look up the transport from an address and an assoc id. If both address and 262 * id are specified, the associations matching the address and the id should be 263 * the same. 264 */ 265 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 266 struct sockaddr_storage *addr, 267 sctp_assoc_t id) 268 { 269 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 270 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 271 union sctp_addr *laddr = (union sctp_addr *)addr; 272 struct sctp_transport *transport; 273 274 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 275 return NULL; 276 277 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 278 laddr, 279 &transport); 280 281 if (!addr_asoc) 282 return NULL; 283 284 id_asoc = sctp_id2assoc(sk, id); 285 if (id_asoc && (id_asoc != addr_asoc)) 286 return NULL; 287 288 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 289 (union sctp_addr *)addr); 290 291 return transport; 292 } 293 294 /* API 3.1.2 bind() - UDP Style Syntax 295 * The syntax of bind() is, 296 * 297 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 298 * 299 * sd - the socket descriptor returned by socket(). 300 * addr - the address structure (struct sockaddr_in or struct 301 * sockaddr_in6 [RFC 2553]), 302 * addr_len - the size of the address structure. 303 */ 304 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 305 { 306 int retval = 0; 307 308 lock_sock(sk); 309 310 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 311 addr, addr_len); 312 313 /* Disallow binding twice. */ 314 if (!sctp_sk(sk)->ep->base.bind_addr.port) 315 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 316 addr_len); 317 else 318 retval = -EINVAL; 319 320 release_sock(sk); 321 322 return retval; 323 } 324 325 static long sctp_get_port_local(struct sock *, union sctp_addr *); 326 327 /* Verify this is a valid sockaddr. */ 328 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 329 union sctp_addr *addr, int len) 330 { 331 struct sctp_af *af; 332 333 /* Check minimum size. */ 334 if (len < sizeof (struct sockaddr)) 335 return NULL; 336 337 /* V4 mapped address are really of AF_INET family */ 338 if (addr->sa.sa_family == AF_INET6 && 339 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 340 if (!opt->pf->af_supported(AF_INET, opt)) 341 return NULL; 342 } else { 343 /* Does this PF support this AF? */ 344 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 345 return NULL; 346 } 347 348 /* If we get this far, af is valid. */ 349 af = sctp_get_af_specific(addr->sa.sa_family); 350 351 if (len < af->sockaddr_len) 352 return NULL; 353 354 return af; 355 } 356 357 /* Bind a local address either to an endpoint or to an association. */ 358 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 359 { 360 struct net *net = sock_net(sk); 361 struct sctp_sock *sp = sctp_sk(sk); 362 struct sctp_endpoint *ep = sp->ep; 363 struct sctp_bind_addr *bp = &ep->base.bind_addr; 364 struct sctp_af *af; 365 unsigned short snum; 366 int ret = 0; 367 368 /* Common sockaddr verification. */ 369 af = sctp_sockaddr_af(sp, addr, len); 370 if (!af) { 371 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 372 __func__, sk, addr, len); 373 return -EINVAL; 374 } 375 376 snum = ntohs(addr->v4.sin_port); 377 378 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 379 __func__, sk, &addr->sa, bp->port, snum, len); 380 381 /* PF specific bind() address verification. */ 382 if (!sp->pf->bind_verify(sp, addr)) 383 return -EADDRNOTAVAIL; 384 385 /* We must either be unbound, or bind to the same port. 386 * It's OK to allow 0 ports if we are already bound. 387 * We'll just inhert an already bound port in this case 388 */ 389 if (bp->port) { 390 if (!snum) 391 snum = bp->port; 392 else if (snum != bp->port) { 393 pr_debug("%s: new port %d doesn't match existing port " 394 "%d\n", __func__, snum, bp->port); 395 return -EINVAL; 396 } 397 } 398 399 if (snum && snum < inet_prot_sock(net) && 400 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 401 return -EACCES; 402 403 /* See if the address matches any of the addresses we may have 404 * already bound before checking against other endpoints. 405 */ 406 if (sctp_bind_addr_match(bp, addr, sp)) 407 return -EINVAL; 408 409 /* Make sure we are allowed to bind here. 410 * The function sctp_get_port_local() does duplicate address 411 * detection. 412 */ 413 addr->v4.sin_port = htons(snum); 414 if ((ret = sctp_get_port_local(sk, addr))) { 415 return -EADDRINUSE; 416 } 417 418 /* Refresh ephemeral port. */ 419 if (!bp->port) 420 bp->port = inet_sk(sk)->inet_num; 421 422 /* Add the address to the bind address list. 423 * Use GFP_ATOMIC since BHs will be disabled. 424 */ 425 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 426 SCTP_ADDR_SRC, GFP_ATOMIC); 427 428 /* Copy back into socket for getsockname() use. */ 429 if (!ret) { 430 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 431 sp->pf->to_sk_saddr(addr, sk); 432 } 433 434 return ret; 435 } 436 437 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 438 * 439 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 440 * at any one time. If a sender, after sending an ASCONF chunk, decides 441 * it needs to transfer another ASCONF Chunk, it MUST wait until the 442 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 443 * subsequent ASCONF. Note this restriction binds each side, so at any 444 * time two ASCONF may be in-transit on any given association (one sent 445 * from each endpoint). 446 */ 447 static int sctp_send_asconf(struct sctp_association *asoc, 448 struct sctp_chunk *chunk) 449 { 450 struct net *net = sock_net(asoc->base.sk); 451 int retval = 0; 452 453 /* If there is an outstanding ASCONF chunk, queue it for later 454 * transmission. 455 */ 456 if (asoc->addip_last_asconf) { 457 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 458 goto out; 459 } 460 461 /* Hold the chunk until an ASCONF_ACK is received. */ 462 sctp_chunk_hold(chunk); 463 retval = sctp_primitive_ASCONF(net, asoc, chunk); 464 if (retval) 465 sctp_chunk_free(chunk); 466 else 467 asoc->addip_last_asconf = chunk; 468 469 out: 470 return retval; 471 } 472 473 /* Add a list of addresses as bind addresses to local endpoint or 474 * association. 475 * 476 * Basically run through each address specified in the addrs/addrcnt 477 * array/length pair, determine if it is IPv6 or IPv4 and call 478 * sctp_do_bind() on it. 479 * 480 * If any of them fails, then the operation will be reversed and the 481 * ones that were added will be removed. 482 * 483 * Only sctp_setsockopt_bindx() is supposed to call this function. 484 */ 485 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 486 { 487 int cnt; 488 int retval = 0; 489 void *addr_buf; 490 struct sockaddr *sa_addr; 491 struct sctp_af *af; 492 493 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 494 addrs, addrcnt); 495 496 addr_buf = addrs; 497 for (cnt = 0; cnt < addrcnt; cnt++) { 498 /* The list may contain either IPv4 or IPv6 address; 499 * determine the address length for walking thru the list. 500 */ 501 sa_addr = addr_buf; 502 af = sctp_get_af_specific(sa_addr->sa_family); 503 if (!af) { 504 retval = -EINVAL; 505 goto err_bindx_add; 506 } 507 508 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 509 af->sockaddr_len); 510 511 addr_buf += af->sockaddr_len; 512 513 err_bindx_add: 514 if (retval < 0) { 515 /* Failed. Cleanup the ones that have been added */ 516 if (cnt > 0) 517 sctp_bindx_rem(sk, addrs, cnt); 518 return retval; 519 } 520 } 521 522 return retval; 523 } 524 525 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 526 * associations that are part of the endpoint indicating that a list of local 527 * addresses are added to the endpoint. 528 * 529 * If any of the addresses is already in the bind address list of the 530 * association, we do not send the chunk for that association. But it will not 531 * affect other associations. 532 * 533 * Only sctp_setsockopt_bindx() is supposed to call this function. 534 */ 535 static int sctp_send_asconf_add_ip(struct sock *sk, 536 struct sockaddr *addrs, 537 int addrcnt) 538 { 539 struct net *net = sock_net(sk); 540 struct sctp_sock *sp; 541 struct sctp_endpoint *ep; 542 struct sctp_association *asoc; 543 struct sctp_bind_addr *bp; 544 struct sctp_chunk *chunk; 545 struct sctp_sockaddr_entry *laddr; 546 union sctp_addr *addr; 547 union sctp_addr saveaddr; 548 void *addr_buf; 549 struct sctp_af *af; 550 struct list_head *p; 551 int i; 552 int retval = 0; 553 554 if (!net->sctp.addip_enable) 555 return retval; 556 557 sp = sctp_sk(sk); 558 ep = sp->ep; 559 560 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 561 __func__, sk, addrs, addrcnt); 562 563 list_for_each_entry(asoc, &ep->asocs, asocs) { 564 if (!asoc->peer.asconf_capable) 565 continue; 566 567 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 568 continue; 569 570 if (!sctp_state(asoc, ESTABLISHED)) 571 continue; 572 573 /* Check if any address in the packed array of addresses is 574 * in the bind address list of the association. If so, 575 * do not send the asconf chunk to its peer, but continue with 576 * other associations. 577 */ 578 addr_buf = addrs; 579 for (i = 0; i < addrcnt; i++) { 580 addr = addr_buf; 581 af = sctp_get_af_specific(addr->v4.sin_family); 582 if (!af) { 583 retval = -EINVAL; 584 goto out; 585 } 586 587 if (sctp_assoc_lookup_laddr(asoc, addr)) 588 break; 589 590 addr_buf += af->sockaddr_len; 591 } 592 if (i < addrcnt) 593 continue; 594 595 /* Use the first valid address in bind addr list of 596 * association as Address Parameter of ASCONF CHUNK. 597 */ 598 bp = &asoc->base.bind_addr; 599 p = bp->address_list.next; 600 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 601 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 602 addrcnt, SCTP_PARAM_ADD_IP); 603 if (!chunk) { 604 retval = -ENOMEM; 605 goto out; 606 } 607 608 /* Add the new addresses to the bind address list with 609 * use_as_src set to 0. 610 */ 611 addr_buf = addrs; 612 for (i = 0; i < addrcnt; i++) { 613 addr = addr_buf; 614 af = sctp_get_af_specific(addr->v4.sin_family); 615 memcpy(&saveaddr, addr, af->sockaddr_len); 616 retval = sctp_add_bind_addr(bp, &saveaddr, 617 sizeof(saveaddr), 618 SCTP_ADDR_NEW, GFP_ATOMIC); 619 addr_buf += af->sockaddr_len; 620 } 621 if (asoc->src_out_of_asoc_ok) { 622 struct sctp_transport *trans; 623 624 list_for_each_entry(trans, 625 &asoc->peer.transport_addr_list, transports) { 626 /* Clear the source and route cache */ 627 sctp_transport_dst_release(trans); 628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 629 2*asoc->pathmtu, 4380)); 630 trans->ssthresh = asoc->peer.i.a_rwnd; 631 trans->rto = asoc->rto_initial; 632 sctp_max_rto(asoc, trans); 633 trans->rtt = trans->srtt = trans->rttvar = 0; 634 sctp_transport_route(trans, NULL, 635 sctp_sk(asoc->base.sk)); 636 } 637 } 638 retval = sctp_send_asconf(asoc, chunk); 639 } 640 641 out: 642 return retval; 643 } 644 645 /* Remove a list of addresses from bind addresses list. Do not remove the 646 * last address. 647 * 648 * Basically run through each address specified in the addrs/addrcnt 649 * array/length pair, determine if it is IPv6 or IPv4 and call 650 * sctp_del_bind() on it. 651 * 652 * If any of them fails, then the operation will be reversed and the 653 * ones that were removed will be added back. 654 * 655 * At least one address has to be left; if only one address is 656 * available, the operation will return -EBUSY. 657 * 658 * Only sctp_setsockopt_bindx() is supposed to call this function. 659 */ 660 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 661 { 662 struct sctp_sock *sp = sctp_sk(sk); 663 struct sctp_endpoint *ep = sp->ep; 664 int cnt; 665 struct sctp_bind_addr *bp = &ep->base.bind_addr; 666 int retval = 0; 667 void *addr_buf; 668 union sctp_addr *sa_addr; 669 struct sctp_af *af; 670 671 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 672 __func__, sk, addrs, addrcnt); 673 674 addr_buf = addrs; 675 for (cnt = 0; cnt < addrcnt; cnt++) { 676 /* If the bind address list is empty or if there is only one 677 * bind address, there is nothing more to be removed (we need 678 * at least one address here). 679 */ 680 if (list_empty(&bp->address_list) || 681 (sctp_list_single_entry(&bp->address_list))) { 682 retval = -EBUSY; 683 goto err_bindx_rem; 684 } 685 686 sa_addr = addr_buf; 687 af = sctp_get_af_specific(sa_addr->sa.sa_family); 688 if (!af) { 689 retval = -EINVAL; 690 goto err_bindx_rem; 691 } 692 693 if (!af->addr_valid(sa_addr, sp, NULL)) { 694 retval = -EADDRNOTAVAIL; 695 goto err_bindx_rem; 696 } 697 698 if (sa_addr->v4.sin_port && 699 sa_addr->v4.sin_port != htons(bp->port)) { 700 retval = -EINVAL; 701 goto err_bindx_rem; 702 } 703 704 if (!sa_addr->v4.sin_port) 705 sa_addr->v4.sin_port = htons(bp->port); 706 707 /* FIXME - There is probably a need to check if sk->sk_saddr and 708 * sk->sk_rcv_addr are currently set to one of the addresses to 709 * be removed. This is something which needs to be looked into 710 * when we are fixing the outstanding issues with multi-homing 711 * socket routing and failover schemes. Refer to comments in 712 * sctp_do_bind(). -daisy 713 */ 714 retval = sctp_del_bind_addr(bp, sa_addr); 715 716 addr_buf += af->sockaddr_len; 717 err_bindx_rem: 718 if (retval < 0) { 719 /* Failed. Add the ones that has been removed back */ 720 if (cnt > 0) 721 sctp_bindx_add(sk, addrs, cnt); 722 return retval; 723 } 724 } 725 726 return retval; 727 } 728 729 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 730 * the associations that are part of the endpoint indicating that a list of 731 * local addresses are removed from the endpoint. 732 * 733 * If any of the addresses is already in the bind address list of the 734 * association, we do not send the chunk for that association. But it will not 735 * affect other associations. 736 * 737 * Only sctp_setsockopt_bindx() is supposed to call this function. 738 */ 739 static int sctp_send_asconf_del_ip(struct sock *sk, 740 struct sockaddr *addrs, 741 int addrcnt) 742 { 743 struct net *net = sock_net(sk); 744 struct sctp_sock *sp; 745 struct sctp_endpoint *ep; 746 struct sctp_association *asoc; 747 struct sctp_transport *transport; 748 struct sctp_bind_addr *bp; 749 struct sctp_chunk *chunk; 750 union sctp_addr *laddr; 751 void *addr_buf; 752 struct sctp_af *af; 753 struct sctp_sockaddr_entry *saddr; 754 int i; 755 int retval = 0; 756 int stored = 0; 757 758 chunk = NULL; 759 if (!net->sctp.addip_enable) 760 return retval; 761 762 sp = sctp_sk(sk); 763 ep = sp->ep; 764 765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 766 __func__, sk, addrs, addrcnt); 767 768 list_for_each_entry(asoc, &ep->asocs, asocs) { 769 770 if (!asoc->peer.asconf_capable) 771 continue; 772 773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 774 continue; 775 776 if (!sctp_state(asoc, ESTABLISHED)) 777 continue; 778 779 /* Check if any address in the packed array of addresses is 780 * not present in the bind address list of the association. 781 * If so, do not send the asconf chunk to its peer, but 782 * continue with other associations. 783 */ 784 addr_buf = addrs; 785 for (i = 0; i < addrcnt; i++) { 786 laddr = addr_buf; 787 af = sctp_get_af_specific(laddr->v4.sin_family); 788 if (!af) { 789 retval = -EINVAL; 790 goto out; 791 } 792 793 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 794 break; 795 796 addr_buf += af->sockaddr_len; 797 } 798 if (i < addrcnt) 799 continue; 800 801 /* Find one address in the association's bind address list 802 * that is not in the packed array of addresses. This is to 803 * make sure that we do not delete all the addresses in the 804 * association. 805 */ 806 bp = &asoc->base.bind_addr; 807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 808 addrcnt, sp); 809 if ((laddr == NULL) && (addrcnt == 1)) { 810 if (asoc->asconf_addr_del_pending) 811 continue; 812 asoc->asconf_addr_del_pending = 813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 814 if (asoc->asconf_addr_del_pending == NULL) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 asoc->asconf_addr_del_pending->sa.sa_family = 819 addrs->sa_family; 820 asoc->asconf_addr_del_pending->v4.sin_port = 821 htons(bp->port); 822 if (addrs->sa_family == AF_INET) { 823 struct sockaddr_in *sin; 824 825 sin = (struct sockaddr_in *)addrs; 826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 827 } else if (addrs->sa_family == AF_INET6) { 828 struct sockaddr_in6 *sin6; 829 830 sin6 = (struct sockaddr_in6 *)addrs; 831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 832 } 833 834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 835 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 836 asoc->asconf_addr_del_pending); 837 838 asoc->src_out_of_asoc_ok = 1; 839 stored = 1; 840 goto skip_mkasconf; 841 } 842 843 if (laddr == NULL) 844 return -EINVAL; 845 846 /* We do not need RCU protection throughout this loop 847 * because this is done under a socket lock from the 848 * setsockopt call. 849 */ 850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 851 SCTP_PARAM_DEL_IP); 852 if (!chunk) { 853 retval = -ENOMEM; 854 goto out; 855 } 856 857 skip_mkasconf: 858 /* Reset use_as_src flag for the addresses in the bind address 859 * list that are to be deleted. 860 */ 861 addr_buf = addrs; 862 for (i = 0; i < addrcnt; i++) { 863 laddr = addr_buf; 864 af = sctp_get_af_specific(laddr->v4.sin_family); 865 list_for_each_entry(saddr, &bp->address_list, list) { 866 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 867 saddr->state = SCTP_ADDR_DEL; 868 } 869 addr_buf += af->sockaddr_len; 870 } 871 872 /* Update the route and saddr entries for all the transports 873 * as some of the addresses in the bind address list are 874 * about to be deleted and cannot be used as source addresses. 875 */ 876 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 877 transports) { 878 sctp_transport_dst_release(transport); 879 sctp_transport_route(transport, NULL, 880 sctp_sk(asoc->base.sk)); 881 } 882 883 if (stored) 884 /* We don't need to transmit ASCONF */ 885 continue; 886 retval = sctp_send_asconf(asoc, chunk); 887 } 888 out: 889 return retval; 890 } 891 892 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 893 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 894 { 895 struct sock *sk = sctp_opt2sk(sp); 896 union sctp_addr *addr; 897 struct sctp_af *af; 898 899 /* It is safe to write port space in caller. */ 900 addr = &addrw->a; 901 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 902 af = sctp_get_af_specific(addr->sa.sa_family); 903 if (!af) 904 return -EINVAL; 905 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 906 return -EINVAL; 907 908 if (addrw->state == SCTP_ADDR_NEW) 909 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 910 else 911 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 912 } 913 914 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 915 * 916 * API 8.1 917 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 918 * int flags); 919 * 920 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 921 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 922 * or IPv6 addresses. 923 * 924 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 925 * Section 3.1.2 for this usage. 926 * 927 * addrs is a pointer to an array of one or more socket addresses. Each 928 * address is contained in its appropriate structure (i.e. struct 929 * sockaddr_in or struct sockaddr_in6) the family of the address type 930 * must be used to distinguish the address length (note that this 931 * representation is termed a "packed array" of addresses). The caller 932 * specifies the number of addresses in the array with addrcnt. 933 * 934 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 935 * -1, and sets errno to the appropriate error code. 936 * 937 * For SCTP, the port given in each socket address must be the same, or 938 * sctp_bindx() will fail, setting errno to EINVAL. 939 * 940 * The flags parameter is formed from the bitwise OR of zero or more of 941 * the following currently defined flags: 942 * 943 * SCTP_BINDX_ADD_ADDR 944 * 945 * SCTP_BINDX_REM_ADDR 946 * 947 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 948 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 949 * addresses from the association. The two flags are mutually exclusive; 950 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 951 * not remove all addresses from an association; sctp_bindx() will 952 * reject such an attempt with EINVAL. 953 * 954 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 955 * additional addresses with an endpoint after calling bind(). Or use 956 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 957 * socket is associated with so that no new association accepted will be 958 * associated with those addresses. If the endpoint supports dynamic 959 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 960 * endpoint to send the appropriate message to the peer to change the 961 * peers address lists. 962 * 963 * Adding and removing addresses from a connected association is 964 * optional functionality. Implementations that do not support this 965 * functionality should return EOPNOTSUPP. 966 * 967 * Basically do nothing but copying the addresses from user to kernel 968 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 969 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 970 * from userspace. 971 * 972 * We don't use copy_from_user() for optimization: we first do the 973 * sanity checks (buffer size -fast- and access check-healthy 974 * pointer); if all of those succeed, then we can alloc the memory 975 * (expensive operation) needed to copy the data to kernel. Then we do 976 * the copying without checking the user space area 977 * (__copy_from_user()). 978 * 979 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 980 * it. 981 * 982 * sk The sk of the socket 983 * addrs The pointer to the addresses in user land 984 * addrssize Size of the addrs buffer 985 * op Operation to perform (add or remove, see the flags of 986 * sctp_bindx) 987 * 988 * Returns 0 if ok, <0 errno code on error. 989 */ 990 static int sctp_setsockopt_bindx(struct sock *sk, 991 struct sockaddr __user *addrs, 992 int addrs_size, int op) 993 { 994 struct sockaddr *kaddrs; 995 int err; 996 int addrcnt = 0; 997 int walk_size = 0; 998 struct sockaddr *sa_addr; 999 void *addr_buf; 1000 struct sctp_af *af; 1001 1002 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1003 __func__, sk, addrs, addrs_size, op); 1004 1005 if (unlikely(addrs_size <= 0)) 1006 return -EINVAL; 1007 1008 /* Check the user passed a healthy pointer. */ 1009 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1010 return -EFAULT; 1011 1012 /* Alloc space for the address array in kernel memory. */ 1013 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 1014 if (unlikely(!kaddrs)) 1015 return -ENOMEM; 1016 1017 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1018 kfree(kaddrs); 1019 return -EFAULT; 1020 } 1021 1022 /* Walk through the addrs buffer and count the number of addresses. */ 1023 addr_buf = kaddrs; 1024 while (walk_size < addrs_size) { 1025 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1026 kfree(kaddrs); 1027 return -EINVAL; 1028 } 1029 1030 sa_addr = addr_buf; 1031 af = sctp_get_af_specific(sa_addr->sa_family); 1032 1033 /* If the address family is not supported or if this address 1034 * causes the address buffer to overflow return EINVAL. 1035 */ 1036 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1037 kfree(kaddrs); 1038 return -EINVAL; 1039 } 1040 addrcnt++; 1041 addr_buf += af->sockaddr_len; 1042 walk_size += af->sockaddr_len; 1043 } 1044 1045 /* Do the work. */ 1046 switch (op) { 1047 case SCTP_BINDX_ADD_ADDR: 1048 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1049 if (err) 1050 goto out; 1051 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1052 break; 1053 1054 case SCTP_BINDX_REM_ADDR: 1055 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1056 if (err) 1057 goto out; 1058 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1059 break; 1060 1061 default: 1062 err = -EINVAL; 1063 break; 1064 } 1065 1066 out: 1067 kfree(kaddrs); 1068 1069 return err; 1070 } 1071 1072 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1073 * 1074 * Common routine for handling connect() and sctp_connectx(). 1075 * Connect will come in with just a single address. 1076 */ 1077 static int __sctp_connect(struct sock *sk, 1078 struct sockaddr *kaddrs, 1079 int addrs_size, 1080 sctp_assoc_t *assoc_id) 1081 { 1082 struct net *net = sock_net(sk); 1083 struct sctp_sock *sp; 1084 struct sctp_endpoint *ep; 1085 struct sctp_association *asoc = NULL; 1086 struct sctp_association *asoc2; 1087 struct sctp_transport *transport; 1088 union sctp_addr to; 1089 enum sctp_scope scope; 1090 long timeo; 1091 int err = 0; 1092 int addrcnt = 0; 1093 int walk_size = 0; 1094 union sctp_addr *sa_addr = NULL; 1095 void *addr_buf; 1096 unsigned short port; 1097 unsigned int f_flags = 0; 1098 1099 sp = sctp_sk(sk); 1100 ep = sp->ep; 1101 1102 /* connect() cannot be done on a socket that is already in ESTABLISHED 1103 * state - UDP-style peeled off socket or a TCP-style socket that 1104 * is already connected. 1105 * It cannot be done even on a TCP-style listening socket. 1106 */ 1107 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1108 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1109 err = -EISCONN; 1110 goto out_free; 1111 } 1112 1113 /* Walk through the addrs buffer and count the number of addresses. */ 1114 addr_buf = kaddrs; 1115 while (walk_size < addrs_size) { 1116 struct sctp_af *af; 1117 1118 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 sa_addr = addr_buf; 1124 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1125 1126 /* If the address family is not supported or if this address 1127 * causes the address buffer to overflow return EINVAL. 1128 */ 1129 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1130 err = -EINVAL; 1131 goto out_free; 1132 } 1133 1134 port = ntohs(sa_addr->v4.sin_port); 1135 1136 /* Save current address so we can work with it */ 1137 memcpy(&to, sa_addr, af->sockaddr_len); 1138 1139 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1140 if (err) 1141 goto out_free; 1142 1143 /* Make sure the destination port is correctly set 1144 * in all addresses. 1145 */ 1146 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1147 err = -EINVAL; 1148 goto out_free; 1149 } 1150 1151 /* Check if there already is a matching association on the 1152 * endpoint (other than the one created here). 1153 */ 1154 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1155 if (asoc2 && asoc2 != asoc) { 1156 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1157 err = -EISCONN; 1158 else 1159 err = -EALREADY; 1160 goto out_free; 1161 } 1162 1163 /* If we could not find a matching association on the endpoint, 1164 * make sure that there is no peeled-off association matching 1165 * the peer address even on another socket. 1166 */ 1167 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1168 err = -EADDRNOTAVAIL; 1169 goto out_free; 1170 } 1171 1172 if (!asoc) { 1173 /* If a bind() or sctp_bindx() is not called prior to 1174 * an sctp_connectx() call, the system picks an 1175 * ephemeral port and will choose an address set 1176 * equivalent to binding with a wildcard address. 1177 */ 1178 if (!ep->base.bind_addr.port) { 1179 if (sctp_autobind(sk)) { 1180 err = -EAGAIN; 1181 goto out_free; 1182 } 1183 } else { 1184 /* 1185 * If an unprivileged user inherits a 1-many 1186 * style socket with open associations on a 1187 * privileged port, it MAY be permitted to 1188 * accept new associations, but it SHOULD NOT 1189 * be permitted to open new associations. 1190 */ 1191 if (ep->base.bind_addr.port < 1192 inet_prot_sock(net) && 1193 !ns_capable(net->user_ns, 1194 CAP_NET_BIND_SERVICE)) { 1195 err = -EACCES; 1196 goto out_free; 1197 } 1198 } 1199 1200 scope = sctp_scope(&to); 1201 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1202 if (!asoc) { 1203 err = -ENOMEM; 1204 goto out_free; 1205 } 1206 1207 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1208 GFP_KERNEL); 1209 if (err < 0) { 1210 goto out_free; 1211 } 1212 1213 } 1214 1215 /* Prime the peer's transport structures. */ 1216 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1217 SCTP_UNKNOWN); 1218 if (!transport) { 1219 err = -ENOMEM; 1220 goto out_free; 1221 } 1222 1223 addrcnt++; 1224 addr_buf += af->sockaddr_len; 1225 walk_size += af->sockaddr_len; 1226 } 1227 1228 /* In case the user of sctp_connectx() wants an association 1229 * id back, assign one now. 1230 */ 1231 if (assoc_id) { 1232 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1233 if (err < 0) 1234 goto out_free; 1235 } 1236 1237 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1238 if (err < 0) { 1239 goto out_free; 1240 } 1241 1242 /* Initialize sk's dport and daddr for getpeername() */ 1243 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1244 sp->pf->to_sk_daddr(sa_addr, sk); 1245 sk->sk_err = 0; 1246 1247 /* in-kernel sockets don't generally have a file allocated to them 1248 * if all they do is call sock_create_kern(). 1249 */ 1250 if (sk->sk_socket->file) 1251 f_flags = sk->sk_socket->file->f_flags; 1252 1253 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1254 1255 if (assoc_id) 1256 *assoc_id = asoc->assoc_id; 1257 err = sctp_wait_for_connect(asoc, &timeo); 1258 /* Note: the asoc may be freed after the return of 1259 * sctp_wait_for_connect. 1260 */ 1261 1262 /* Don't free association on exit. */ 1263 asoc = NULL; 1264 1265 out_free: 1266 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1267 __func__, asoc, kaddrs, err); 1268 1269 if (asoc) { 1270 /* sctp_primitive_ASSOCIATE may have added this association 1271 * To the hash table, try to unhash it, just in case, its a noop 1272 * if it wasn't hashed so we're safe 1273 */ 1274 sctp_association_free(asoc); 1275 } 1276 return err; 1277 } 1278 1279 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1280 * 1281 * API 8.9 1282 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1283 * sctp_assoc_t *asoc); 1284 * 1285 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1286 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1287 * or IPv6 addresses. 1288 * 1289 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1290 * Section 3.1.2 for this usage. 1291 * 1292 * addrs is a pointer to an array of one or more socket addresses. Each 1293 * address is contained in its appropriate structure (i.e. struct 1294 * sockaddr_in or struct sockaddr_in6) the family of the address type 1295 * must be used to distengish the address length (note that this 1296 * representation is termed a "packed array" of addresses). The caller 1297 * specifies the number of addresses in the array with addrcnt. 1298 * 1299 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1300 * the association id of the new association. On failure, sctp_connectx() 1301 * returns -1, and sets errno to the appropriate error code. The assoc_id 1302 * is not touched by the kernel. 1303 * 1304 * For SCTP, the port given in each socket address must be the same, or 1305 * sctp_connectx() will fail, setting errno to EINVAL. 1306 * 1307 * An application can use sctp_connectx to initiate an association with 1308 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1309 * allows a caller to specify multiple addresses at which a peer can be 1310 * reached. The way the SCTP stack uses the list of addresses to set up 1311 * the association is implementation dependent. This function only 1312 * specifies that the stack will try to make use of all the addresses in 1313 * the list when needed. 1314 * 1315 * Note that the list of addresses passed in is only used for setting up 1316 * the association. It does not necessarily equal the set of addresses 1317 * the peer uses for the resulting association. If the caller wants to 1318 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1319 * retrieve them after the association has been set up. 1320 * 1321 * Basically do nothing but copying the addresses from user to kernel 1322 * land and invoking either sctp_connectx(). This is used for tunneling 1323 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1324 * 1325 * We don't use copy_from_user() for optimization: we first do the 1326 * sanity checks (buffer size -fast- and access check-healthy 1327 * pointer); if all of those succeed, then we can alloc the memory 1328 * (expensive operation) needed to copy the data to kernel. Then we do 1329 * the copying without checking the user space area 1330 * (__copy_from_user()). 1331 * 1332 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1333 * it. 1334 * 1335 * sk The sk of the socket 1336 * addrs The pointer to the addresses in user land 1337 * addrssize Size of the addrs buffer 1338 * 1339 * Returns >=0 if ok, <0 errno code on error. 1340 */ 1341 static int __sctp_setsockopt_connectx(struct sock *sk, 1342 struct sockaddr __user *addrs, 1343 int addrs_size, 1344 sctp_assoc_t *assoc_id) 1345 { 1346 struct sockaddr *kaddrs; 1347 gfp_t gfp = GFP_KERNEL; 1348 int err = 0; 1349 1350 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1351 __func__, sk, addrs, addrs_size); 1352 1353 if (unlikely(addrs_size <= 0)) 1354 return -EINVAL; 1355 1356 /* Check the user passed a healthy pointer. */ 1357 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1358 return -EFAULT; 1359 1360 /* Alloc space for the address array in kernel memory. */ 1361 if (sk->sk_socket->file) 1362 gfp = GFP_USER | __GFP_NOWARN; 1363 kaddrs = kmalloc(addrs_size, gfp); 1364 if (unlikely(!kaddrs)) 1365 return -ENOMEM; 1366 1367 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1368 err = -EFAULT; 1369 } else { 1370 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1371 } 1372 1373 kfree(kaddrs); 1374 1375 return err; 1376 } 1377 1378 /* 1379 * This is an older interface. It's kept for backward compatibility 1380 * to the option that doesn't provide association id. 1381 */ 1382 static int sctp_setsockopt_connectx_old(struct sock *sk, 1383 struct sockaddr __user *addrs, 1384 int addrs_size) 1385 { 1386 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1387 } 1388 1389 /* 1390 * New interface for the API. The since the API is done with a socket 1391 * option, to make it simple we feed back the association id is as a return 1392 * indication to the call. Error is always negative and association id is 1393 * always positive. 1394 */ 1395 static int sctp_setsockopt_connectx(struct sock *sk, 1396 struct sockaddr __user *addrs, 1397 int addrs_size) 1398 { 1399 sctp_assoc_t assoc_id = 0; 1400 int err = 0; 1401 1402 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1403 1404 if (err) 1405 return err; 1406 else 1407 return assoc_id; 1408 } 1409 1410 /* 1411 * New (hopefully final) interface for the API. 1412 * We use the sctp_getaddrs_old structure so that use-space library 1413 * can avoid any unnecessary allocations. The only different part 1414 * is that we store the actual length of the address buffer into the 1415 * addrs_num structure member. That way we can re-use the existing 1416 * code. 1417 */ 1418 #ifdef CONFIG_COMPAT 1419 struct compat_sctp_getaddrs_old { 1420 sctp_assoc_t assoc_id; 1421 s32 addr_num; 1422 compat_uptr_t addrs; /* struct sockaddr * */ 1423 }; 1424 #endif 1425 1426 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1427 char __user *optval, 1428 int __user *optlen) 1429 { 1430 struct sctp_getaddrs_old param; 1431 sctp_assoc_t assoc_id = 0; 1432 int err = 0; 1433 1434 #ifdef CONFIG_COMPAT 1435 if (in_compat_syscall()) { 1436 struct compat_sctp_getaddrs_old param32; 1437 1438 if (len < sizeof(param32)) 1439 return -EINVAL; 1440 if (copy_from_user(¶m32, optval, sizeof(param32))) 1441 return -EFAULT; 1442 1443 param.assoc_id = param32.assoc_id; 1444 param.addr_num = param32.addr_num; 1445 param.addrs = compat_ptr(param32.addrs); 1446 } else 1447 #endif 1448 { 1449 if (len < sizeof(param)) 1450 return -EINVAL; 1451 if (copy_from_user(¶m, optval, sizeof(param))) 1452 return -EFAULT; 1453 } 1454 1455 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1456 param.addrs, param.addr_num, 1457 &assoc_id); 1458 if (err == 0 || err == -EINPROGRESS) { 1459 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1460 return -EFAULT; 1461 if (put_user(sizeof(assoc_id), optlen)) 1462 return -EFAULT; 1463 } 1464 1465 return err; 1466 } 1467 1468 /* API 3.1.4 close() - UDP Style Syntax 1469 * Applications use close() to perform graceful shutdown (as described in 1470 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1471 * by a UDP-style socket. 1472 * 1473 * The syntax is 1474 * 1475 * ret = close(int sd); 1476 * 1477 * sd - the socket descriptor of the associations to be closed. 1478 * 1479 * To gracefully shutdown a specific association represented by the 1480 * UDP-style socket, an application should use the sendmsg() call, 1481 * passing no user data, but including the appropriate flag in the 1482 * ancillary data (see Section xxxx). 1483 * 1484 * If sd in the close() call is a branched-off socket representing only 1485 * one association, the shutdown is performed on that association only. 1486 * 1487 * 4.1.6 close() - TCP Style Syntax 1488 * 1489 * Applications use close() to gracefully close down an association. 1490 * 1491 * The syntax is: 1492 * 1493 * int close(int sd); 1494 * 1495 * sd - the socket descriptor of the association to be closed. 1496 * 1497 * After an application calls close() on a socket descriptor, no further 1498 * socket operations will succeed on that descriptor. 1499 * 1500 * API 7.1.4 SO_LINGER 1501 * 1502 * An application using the TCP-style socket can use this option to 1503 * perform the SCTP ABORT primitive. The linger option structure is: 1504 * 1505 * struct linger { 1506 * int l_onoff; // option on/off 1507 * int l_linger; // linger time 1508 * }; 1509 * 1510 * To enable the option, set l_onoff to 1. If the l_linger value is set 1511 * to 0, calling close() is the same as the ABORT primitive. If the 1512 * value is set to a negative value, the setsockopt() call will return 1513 * an error. If the value is set to a positive value linger_time, the 1514 * close() can be blocked for at most linger_time ms. If the graceful 1515 * shutdown phase does not finish during this period, close() will 1516 * return but the graceful shutdown phase continues in the system. 1517 */ 1518 static void sctp_close(struct sock *sk, long timeout) 1519 { 1520 struct net *net = sock_net(sk); 1521 struct sctp_endpoint *ep; 1522 struct sctp_association *asoc; 1523 struct list_head *pos, *temp; 1524 unsigned int data_was_unread; 1525 1526 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1527 1528 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1529 sk->sk_shutdown = SHUTDOWN_MASK; 1530 sk->sk_state = SCTP_SS_CLOSING; 1531 1532 ep = sctp_sk(sk)->ep; 1533 1534 /* Clean up any skbs sitting on the receive queue. */ 1535 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1536 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1537 1538 /* Walk all associations on an endpoint. */ 1539 list_for_each_safe(pos, temp, &ep->asocs) { 1540 asoc = list_entry(pos, struct sctp_association, asocs); 1541 1542 if (sctp_style(sk, TCP)) { 1543 /* A closed association can still be in the list if 1544 * it belongs to a TCP-style listening socket that is 1545 * not yet accepted. If so, free it. If not, send an 1546 * ABORT or SHUTDOWN based on the linger options. 1547 */ 1548 if (sctp_state(asoc, CLOSED)) { 1549 sctp_association_free(asoc); 1550 continue; 1551 } 1552 } 1553 1554 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1555 !skb_queue_empty(&asoc->ulpq.reasm) || 1556 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1557 struct sctp_chunk *chunk; 1558 1559 chunk = sctp_make_abort_user(asoc, NULL, 0); 1560 sctp_primitive_ABORT(net, asoc, chunk); 1561 } else 1562 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1563 } 1564 1565 /* On a TCP-style socket, block for at most linger_time if set. */ 1566 if (sctp_style(sk, TCP) && timeout) 1567 sctp_wait_for_close(sk, timeout); 1568 1569 /* This will run the backlog queue. */ 1570 release_sock(sk); 1571 1572 /* Supposedly, no process has access to the socket, but 1573 * the net layers still may. 1574 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1575 * held and that should be grabbed before socket lock. 1576 */ 1577 spin_lock_bh(&net->sctp.addr_wq_lock); 1578 bh_lock_sock_nested(sk); 1579 1580 /* Hold the sock, since sk_common_release() will put sock_put() 1581 * and we have just a little more cleanup. 1582 */ 1583 sock_hold(sk); 1584 sk_common_release(sk); 1585 1586 bh_unlock_sock(sk); 1587 spin_unlock_bh(&net->sctp.addr_wq_lock); 1588 1589 sock_put(sk); 1590 1591 SCTP_DBG_OBJCNT_DEC(sock); 1592 } 1593 1594 /* Handle EPIPE error. */ 1595 static int sctp_error(struct sock *sk, int flags, int err) 1596 { 1597 if (err == -EPIPE) 1598 err = sock_error(sk) ? : -EPIPE; 1599 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1600 send_sig(SIGPIPE, current, 0); 1601 return err; 1602 } 1603 1604 /* API 3.1.3 sendmsg() - UDP Style Syntax 1605 * 1606 * An application uses sendmsg() and recvmsg() calls to transmit data to 1607 * and receive data from its peer. 1608 * 1609 * ssize_t sendmsg(int socket, const struct msghdr *message, 1610 * int flags); 1611 * 1612 * socket - the socket descriptor of the endpoint. 1613 * message - pointer to the msghdr structure which contains a single 1614 * user message and possibly some ancillary data. 1615 * 1616 * See Section 5 for complete description of the data 1617 * structures. 1618 * 1619 * flags - flags sent or received with the user message, see Section 1620 * 5 for complete description of the flags. 1621 * 1622 * Note: This function could use a rewrite especially when explicit 1623 * connect support comes in. 1624 */ 1625 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1626 1627 static int sctp_msghdr_parse(const struct msghdr *msg, 1628 struct sctp_cmsgs *cmsgs); 1629 1630 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1631 { 1632 struct net *net = sock_net(sk); 1633 struct sctp_sock *sp; 1634 struct sctp_endpoint *ep; 1635 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1636 struct sctp_transport *transport, *chunk_tp; 1637 struct sctp_chunk *chunk; 1638 union sctp_addr to; 1639 struct sockaddr *msg_name = NULL; 1640 struct sctp_sndrcvinfo default_sinfo; 1641 struct sctp_sndrcvinfo *sinfo; 1642 struct sctp_initmsg *sinit; 1643 sctp_assoc_t associd = 0; 1644 struct sctp_cmsgs cmsgs = { NULL }; 1645 enum sctp_scope scope; 1646 bool fill_sinfo_ttl = false, wait_connect = false; 1647 struct sctp_datamsg *datamsg; 1648 int msg_flags = msg->msg_flags; 1649 __u16 sinfo_flags = 0; 1650 long timeo; 1651 int err; 1652 1653 err = 0; 1654 sp = sctp_sk(sk); 1655 ep = sp->ep; 1656 1657 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1658 msg, msg_len, ep); 1659 1660 /* We cannot send a message over a TCP-style listening socket. */ 1661 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1662 err = -EPIPE; 1663 goto out_nounlock; 1664 } 1665 1666 /* Parse out the SCTP CMSGs. */ 1667 err = sctp_msghdr_parse(msg, &cmsgs); 1668 if (err) { 1669 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1670 goto out_nounlock; 1671 } 1672 1673 /* Fetch the destination address for this packet. This 1674 * address only selects the association--it is not necessarily 1675 * the address we will send to. 1676 * For a peeled-off socket, msg_name is ignored. 1677 */ 1678 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1679 int msg_namelen = msg->msg_namelen; 1680 1681 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1682 msg_namelen); 1683 if (err) 1684 return err; 1685 1686 if (msg_namelen > sizeof(to)) 1687 msg_namelen = sizeof(to); 1688 memcpy(&to, msg->msg_name, msg_namelen); 1689 msg_name = msg->msg_name; 1690 } 1691 1692 sinit = cmsgs.init; 1693 if (cmsgs.sinfo != NULL) { 1694 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1695 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1696 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1697 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1698 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1699 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1700 1701 sinfo = &default_sinfo; 1702 fill_sinfo_ttl = true; 1703 } else { 1704 sinfo = cmsgs.srinfo; 1705 } 1706 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1707 if (sinfo) { 1708 sinfo_flags = sinfo->sinfo_flags; 1709 associd = sinfo->sinfo_assoc_id; 1710 } 1711 1712 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1713 msg_len, sinfo_flags); 1714 1715 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1716 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1717 err = -EINVAL; 1718 goto out_nounlock; 1719 } 1720 1721 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1722 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1723 * If SCTP_ABORT is set, the message length could be non zero with 1724 * the msg_iov set to the user abort reason. 1725 */ 1726 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1727 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1728 err = -EINVAL; 1729 goto out_nounlock; 1730 } 1731 1732 /* If SCTP_ADDR_OVER is set, there must be an address 1733 * specified in msg_name. 1734 */ 1735 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1736 err = -EINVAL; 1737 goto out_nounlock; 1738 } 1739 1740 transport = NULL; 1741 1742 pr_debug("%s: about to look up association\n", __func__); 1743 1744 lock_sock(sk); 1745 1746 /* If a msg_name has been specified, assume this is to be used. */ 1747 if (msg_name) { 1748 /* Look for a matching association on the endpoint. */ 1749 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1750 1751 /* If we could not find a matching association on the 1752 * endpoint, make sure that it is not a TCP-style 1753 * socket that already has an association or there is 1754 * no peeled-off association on another socket. 1755 */ 1756 if (!asoc && 1757 ((sctp_style(sk, TCP) && 1758 (sctp_sstate(sk, ESTABLISHED) || 1759 sctp_sstate(sk, CLOSING))) || 1760 sctp_endpoint_is_peeled_off(ep, &to))) { 1761 err = -EADDRNOTAVAIL; 1762 goto out_unlock; 1763 } 1764 } else { 1765 asoc = sctp_id2assoc(sk, associd); 1766 if (!asoc) { 1767 err = -EPIPE; 1768 goto out_unlock; 1769 } 1770 } 1771 1772 if (asoc) { 1773 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1774 1775 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1776 * socket that has an association in CLOSED state. This can 1777 * happen when an accepted socket has an association that is 1778 * already CLOSED. 1779 */ 1780 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1781 err = -EPIPE; 1782 goto out_unlock; 1783 } 1784 1785 if (sinfo_flags & SCTP_EOF) { 1786 pr_debug("%s: shutting down association:%p\n", 1787 __func__, asoc); 1788 1789 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1790 err = 0; 1791 goto out_unlock; 1792 } 1793 if (sinfo_flags & SCTP_ABORT) { 1794 1795 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1796 if (!chunk) { 1797 err = -ENOMEM; 1798 goto out_unlock; 1799 } 1800 1801 pr_debug("%s: aborting association:%p\n", 1802 __func__, asoc); 1803 1804 sctp_primitive_ABORT(net, asoc, chunk); 1805 err = 0; 1806 goto out_unlock; 1807 } 1808 } 1809 1810 /* Do we need to create the association? */ 1811 if (!asoc) { 1812 pr_debug("%s: there is no association yet\n", __func__); 1813 1814 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1815 err = -EINVAL; 1816 goto out_unlock; 1817 } 1818 1819 /* Check for invalid stream against the stream counts, 1820 * either the default or the user specified stream counts. 1821 */ 1822 if (sinfo) { 1823 if (!sinit || !sinit->sinit_num_ostreams) { 1824 /* Check against the defaults. */ 1825 if (sinfo->sinfo_stream >= 1826 sp->initmsg.sinit_num_ostreams) { 1827 err = -EINVAL; 1828 goto out_unlock; 1829 } 1830 } else { 1831 /* Check against the requested. */ 1832 if (sinfo->sinfo_stream >= 1833 sinit->sinit_num_ostreams) { 1834 err = -EINVAL; 1835 goto out_unlock; 1836 } 1837 } 1838 } 1839 1840 /* 1841 * API 3.1.2 bind() - UDP Style Syntax 1842 * If a bind() or sctp_bindx() is not called prior to a 1843 * sendmsg() call that initiates a new association, the 1844 * system picks an ephemeral port and will choose an address 1845 * set equivalent to binding with a wildcard address. 1846 */ 1847 if (!ep->base.bind_addr.port) { 1848 if (sctp_autobind(sk)) { 1849 err = -EAGAIN; 1850 goto out_unlock; 1851 } 1852 } else { 1853 /* 1854 * If an unprivileged user inherits a one-to-many 1855 * style socket with open associations on a privileged 1856 * port, it MAY be permitted to accept new associations, 1857 * but it SHOULD NOT be permitted to open new 1858 * associations. 1859 */ 1860 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1861 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1862 err = -EACCES; 1863 goto out_unlock; 1864 } 1865 } 1866 1867 scope = sctp_scope(&to); 1868 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1869 if (!new_asoc) { 1870 err = -ENOMEM; 1871 goto out_unlock; 1872 } 1873 asoc = new_asoc; 1874 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1875 if (err < 0) { 1876 err = -ENOMEM; 1877 goto out_free; 1878 } 1879 1880 /* If the SCTP_INIT ancillary data is specified, set all 1881 * the association init values accordingly. 1882 */ 1883 if (sinit) { 1884 if (sinit->sinit_num_ostreams) { 1885 asoc->c.sinit_num_ostreams = 1886 sinit->sinit_num_ostreams; 1887 } 1888 if (sinit->sinit_max_instreams) { 1889 asoc->c.sinit_max_instreams = 1890 sinit->sinit_max_instreams; 1891 } 1892 if (sinit->sinit_max_attempts) { 1893 asoc->max_init_attempts 1894 = sinit->sinit_max_attempts; 1895 } 1896 if (sinit->sinit_max_init_timeo) { 1897 asoc->max_init_timeo = 1898 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1899 } 1900 } 1901 1902 /* Prime the peer's transport structures. */ 1903 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1904 if (!transport) { 1905 err = -ENOMEM; 1906 goto out_free; 1907 } 1908 } 1909 1910 /* ASSERT: we have a valid association at this point. */ 1911 pr_debug("%s: we have a valid association\n", __func__); 1912 1913 if (!sinfo) { 1914 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1915 * one with some defaults. 1916 */ 1917 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1918 default_sinfo.sinfo_stream = asoc->default_stream; 1919 default_sinfo.sinfo_flags = asoc->default_flags; 1920 default_sinfo.sinfo_ppid = asoc->default_ppid; 1921 default_sinfo.sinfo_context = asoc->default_context; 1922 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1923 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1924 1925 sinfo = &default_sinfo; 1926 } else if (fill_sinfo_ttl) { 1927 /* In case SNDINFO was specified, we still need to fill 1928 * it with a default ttl from the assoc here. 1929 */ 1930 sinfo->sinfo_timetolive = asoc->default_timetolive; 1931 } 1932 1933 /* API 7.1.7, the sndbuf size per association bounds the 1934 * maximum size of data that can be sent in a single send call. 1935 */ 1936 if (msg_len > sk->sk_sndbuf) { 1937 err = -EMSGSIZE; 1938 goto out_free; 1939 } 1940 1941 if (asoc->pmtu_pending) 1942 sctp_assoc_pending_pmtu(asoc); 1943 1944 /* If fragmentation is disabled and the message length exceeds the 1945 * association fragmentation point, return EMSGSIZE. The I-D 1946 * does not specify what this error is, but this looks like 1947 * a great fit. 1948 */ 1949 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1950 err = -EMSGSIZE; 1951 goto out_free; 1952 } 1953 1954 /* Check for invalid stream. */ 1955 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1956 err = -EINVAL; 1957 goto out_free; 1958 } 1959 1960 if (sctp_wspace(asoc) < msg_len) 1961 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1962 1963 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1964 if (!sctp_wspace(asoc)) { 1965 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1966 if (err) 1967 goto out_free; 1968 } 1969 1970 /* If an address is passed with the sendto/sendmsg call, it is used 1971 * to override the primary destination address in the TCP model, or 1972 * when SCTP_ADDR_OVER flag is set in the UDP model. 1973 */ 1974 if ((sctp_style(sk, TCP) && msg_name) || 1975 (sinfo_flags & SCTP_ADDR_OVER)) { 1976 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1977 if (!chunk_tp) { 1978 err = -EINVAL; 1979 goto out_free; 1980 } 1981 } else 1982 chunk_tp = NULL; 1983 1984 /* Auto-connect, if we aren't connected already. */ 1985 if (sctp_state(asoc, CLOSED)) { 1986 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1987 if (err < 0) 1988 goto out_free; 1989 1990 wait_connect = true; 1991 pr_debug("%s: we associated primitively\n", __func__); 1992 } 1993 1994 /* Break the message into multiple chunks of maximum size. */ 1995 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1996 if (IS_ERR(datamsg)) { 1997 err = PTR_ERR(datamsg); 1998 goto out_free; 1999 } 2000 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 2001 2002 /* Now send the (possibly) fragmented message. */ 2003 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 2004 sctp_chunk_hold(chunk); 2005 2006 /* Do accounting for the write space. */ 2007 sctp_set_owner_w(chunk); 2008 2009 chunk->transport = chunk_tp; 2010 } 2011 2012 /* Send it to the lower layers. Note: all chunks 2013 * must either fail or succeed. The lower layer 2014 * works that way today. Keep it that way or this 2015 * breaks. 2016 */ 2017 err = sctp_primitive_SEND(net, asoc, datamsg); 2018 /* Did the lower layer accept the chunk? */ 2019 if (err) { 2020 sctp_datamsg_free(datamsg); 2021 goto out_free; 2022 } 2023 2024 pr_debug("%s: we sent primitively\n", __func__); 2025 2026 sctp_datamsg_put(datamsg); 2027 err = msg_len; 2028 2029 if (unlikely(wait_connect)) { 2030 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 2031 sctp_wait_for_connect(asoc, &timeo); 2032 } 2033 2034 /* If we are already past ASSOCIATE, the lower 2035 * layers are responsible for association cleanup. 2036 */ 2037 goto out_unlock; 2038 2039 out_free: 2040 if (new_asoc) 2041 sctp_association_free(asoc); 2042 out_unlock: 2043 release_sock(sk); 2044 2045 out_nounlock: 2046 return sctp_error(sk, msg_flags, err); 2047 2048 #if 0 2049 do_sock_err: 2050 if (msg_len) 2051 err = msg_len; 2052 else 2053 err = sock_error(sk); 2054 goto out; 2055 2056 do_interrupted: 2057 if (msg_len) 2058 err = msg_len; 2059 goto out; 2060 #endif /* 0 */ 2061 } 2062 2063 /* This is an extended version of skb_pull() that removes the data from the 2064 * start of a skb even when data is spread across the list of skb's in the 2065 * frag_list. len specifies the total amount of data that needs to be removed. 2066 * when 'len' bytes could be removed from the skb, it returns 0. 2067 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2068 * could not be removed. 2069 */ 2070 static int sctp_skb_pull(struct sk_buff *skb, int len) 2071 { 2072 struct sk_buff *list; 2073 int skb_len = skb_headlen(skb); 2074 int rlen; 2075 2076 if (len <= skb_len) { 2077 __skb_pull(skb, len); 2078 return 0; 2079 } 2080 len -= skb_len; 2081 __skb_pull(skb, skb_len); 2082 2083 skb_walk_frags(skb, list) { 2084 rlen = sctp_skb_pull(list, len); 2085 skb->len -= (len-rlen); 2086 skb->data_len -= (len-rlen); 2087 2088 if (!rlen) 2089 return 0; 2090 2091 len = rlen; 2092 } 2093 2094 return len; 2095 } 2096 2097 /* API 3.1.3 recvmsg() - UDP Style Syntax 2098 * 2099 * ssize_t recvmsg(int socket, struct msghdr *message, 2100 * int flags); 2101 * 2102 * socket - the socket descriptor of the endpoint. 2103 * message - pointer to the msghdr structure which contains a single 2104 * user message and possibly some ancillary data. 2105 * 2106 * See Section 5 for complete description of the data 2107 * structures. 2108 * 2109 * flags - flags sent or received with the user message, see Section 2110 * 5 for complete description of the flags. 2111 */ 2112 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2113 int noblock, int flags, int *addr_len) 2114 { 2115 struct sctp_ulpevent *event = NULL; 2116 struct sctp_sock *sp = sctp_sk(sk); 2117 struct sk_buff *skb, *head_skb; 2118 int copied; 2119 int err = 0; 2120 int skb_len; 2121 2122 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2123 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2124 addr_len); 2125 2126 lock_sock(sk); 2127 2128 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2129 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2130 err = -ENOTCONN; 2131 goto out; 2132 } 2133 2134 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2135 if (!skb) 2136 goto out; 2137 2138 /* Get the total length of the skb including any skb's in the 2139 * frag_list. 2140 */ 2141 skb_len = skb->len; 2142 2143 copied = skb_len; 2144 if (copied > len) 2145 copied = len; 2146 2147 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2148 2149 event = sctp_skb2event(skb); 2150 2151 if (err) 2152 goto out_free; 2153 2154 if (event->chunk && event->chunk->head_skb) 2155 head_skb = event->chunk->head_skb; 2156 else 2157 head_skb = skb; 2158 sock_recv_ts_and_drops(msg, sk, head_skb); 2159 if (sctp_ulpevent_is_notification(event)) { 2160 msg->msg_flags |= MSG_NOTIFICATION; 2161 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2162 } else { 2163 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2164 } 2165 2166 /* Check if we allow SCTP_NXTINFO. */ 2167 if (sp->recvnxtinfo) 2168 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2169 /* Check if we allow SCTP_RCVINFO. */ 2170 if (sp->recvrcvinfo) 2171 sctp_ulpevent_read_rcvinfo(event, msg); 2172 /* Check if we allow SCTP_SNDRCVINFO. */ 2173 if (sp->subscribe.sctp_data_io_event) 2174 sctp_ulpevent_read_sndrcvinfo(event, msg); 2175 2176 err = copied; 2177 2178 /* If skb's length exceeds the user's buffer, update the skb and 2179 * push it back to the receive_queue so that the next call to 2180 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2181 */ 2182 if (skb_len > copied) { 2183 msg->msg_flags &= ~MSG_EOR; 2184 if (flags & MSG_PEEK) 2185 goto out_free; 2186 sctp_skb_pull(skb, copied); 2187 skb_queue_head(&sk->sk_receive_queue, skb); 2188 2189 /* When only partial message is copied to the user, increase 2190 * rwnd by that amount. If all the data in the skb is read, 2191 * rwnd is updated when the event is freed. 2192 */ 2193 if (!sctp_ulpevent_is_notification(event)) 2194 sctp_assoc_rwnd_increase(event->asoc, copied); 2195 goto out; 2196 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2197 (event->msg_flags & MSG_EOR)) 2198 msg->msg_flags |= MSG_EOR; 2199 else 2200 msg->msg_flags &= ~MSG_EOR; 2201 2202 out_free: 2203 if (flags & MSG_PEEK) { 2204 /* Release the skb reference acquired after peeking the skb in 2205 * sctp_skb_recv_datagram(). 2206 */ 2207 kfree_skb(skb); 2208 } else { 2209 /* Free the event which includes releasing the reference to 2210 * the owner of the skb, freeing the skb and updating the 2211 * rwnd. 2212 */ 2213 sctp_ulpevent_free(event); 2214 } 2215 out: 2216 release_sock(sk); 2217 return err; 2218 } 2219 2220 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2221 * 2222 * This option is a on/off flag. If enabled no SCTP message 2223 * fragmentation will be performed. Instead if a message being sent 2224 * exceeds the current PMTU size, the message will NOT be sent and 2225 * instead a error will be indicated to the user. 2226 */ 2227 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2228 char __user *optval, 2229 unsigned int optlen) 2230 { 2231 int val; 2232 2233 if (optlen < sizeof(int)) 2234 return -EINVAL; 2235 2236 if (get_user(val, (int __user *)optval)) 2237 return -EFAULT; 2238 2239 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2240 2241 return 0; 2242 } 2243 2244 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2245 unsigned int optlen) 2246 { 2247 struct sctp_association *asoc; 2248 struct sctp_ulpevent *event; 2249 2250 if (optlen > sizeof(struct sctp_event_subscribe)) 2251 return -EINVAL; 2252 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2253 return -EFAULT; 2254 2255 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2256 * if there is no data to be sent or retransmit, the stack will 2257 * immediately send up this notification. 2258 */ 2259 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2260 &sctp_sk(sk)->subscribe)) { 2261 asoc = sctp_id2assoc(sk, 0); 2262 2263 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2264 event = sctp_ulpevent_make_sender_dry_event(asoc, 2265 GFP_ATOMIC); 2266 if (!event) 2267 return -ENOMEM; 2268 2269 sctp_ulpq_tail_event(&asoc->ulpq, event); 2270 } 2271 } 2272 2273 return 0; 2274 } 2275 2276 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2277 * 2278 * This socket option is applicable to the UDP-style socket only. When 2279 * set it will cause associations that are idle for more than the 2280 * specified number of seconds to automatically close. An association 2281 * being idle is defined an association that has NOT sent or received 2282 * user data. The special value of '0' indicates that no automatic 2283 * close of any associations should be performed. The option expects an 2284 * integer defining the number of seconds of idle time before an 2285 * association is closed. 2286 */ 2287 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2288 unsigned int optlen) 2289 { 2290 struct sctp_sock *sp = sctp_sk(sk); 2291 struct net *net = sock_net(sk); 2292 2293 /* Applicable to UDP-style socket only */ 2294 if (sctp_style(sk, TCP)) 2295 return -EOPNOTSUPP; 2296 if (optlen != sizeof(int)) 2297 return -EINVAL; 2298 if (copy_from_user(&sp->autoclose, optval, optlen)) 2299 return -EFAULT; 2300 2301 if (sp->autoclose > net->sctp.max_autoclose) 2302 sp->autoclose = net->sctp.max_autoclose; 2303 2304 return 0; 2305 } 2306 2307 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2308 * 2309 * Applications can enable or disable heartbeats for any peer address of 2310 * an association, modify an address's heartbeat interval, force a 2311 * heartbeat to be sent immediately, and adjust the address's maximum 2312 * number of retransmissions sent before an address is considered 2313 * unreachable. The following structure is used to access and modify an 2314 * address's parameters: 2315 * 2316 * struct sctp_paddrparams { 2317 * sctp_assoc_t spp_assoc_id; 2318 * struct sockaddr_storage spp_address; 2319 * uint32_t spp_hbinterval; 2320 * uint16_t spp_pathmaxrxt; 2321 * uint32_t spp_pathmtu; 2322 * uint32_t spp_sackdelay; 2323 * uint32_t spp_flags; 2324 * }; 2325 * 2326 * spp_assoc_id - (one-to-many style socket) This is filled in the 2327 * application, and identifies the association for 2328 * this query. 2329 * spp_address - This specifies which address is of interest. 2330 * spp_hbinterval - This contains the value of the heartbeat interval, 2331 * in milliseconds. If a value of zero 2332 * is present in this field then no changes are to 2333 * be made to this parameter. 2334 * spp_pathmaxrxt - This contains the maximum number of 2335 * retransmissions before this address shall be 2336 * considered unreachable. If a value of zero 2337 * is present in this field then no changes are to 2338 * be made to this parameter. 2339 * spp_pathmtu - When Path MTU discovery is disabled the value 2340 * specified here will be the "fixed" path mtu. 2341 * Note that if the spp_address field is empty 2342 * then all associations on this address will 2343 * have this fixed path mtu set upon them. 2344 * 2345 * spp_sackdelay - When delayed sack is enabled, this value specifies 2346 * the number of milliseconds that sacks will be delayed 2347 * for. This value will apply to all addresses of an 2348 * association if the spp_address field is empty. Note 2349 * also, that if delayed sack is enabled and this 2350 * value is set to 0, no change is made to the last 2351 * recorded delayed sack timer value. 2352 * 2353 * spp_flags - These flags are used to control various features 2354 * on an association. The flag field may contain 2355 * zero or more of the following options. 2356 * 2357 * SPP_HB_ENABLE - Enable heartbeats on the 2358 * specified address. Note that if the address 2359 * field is empty all addresses for the association 2360 * have heartbeats enabled upon them. 2361 * 2362 * SPP_HB_DISABLE - Disable heartbeats on the 2363 * speicifed address. Note that if the address 2364 * field is empty all addresses for the association 2365 * will have their heartbeats disabled. Note also 2366 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2367 * mutually exclusive, only one of these two should 2368 * be specified. Enabling both fields will have 2369 * undetermined results. 2370 * 2371 * SPP_HB_DEMAND - Request a user initiated heartbeat 2372 * to be made immediately. 2373 * 2374 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2375 * heartbeat delayis to be set to the value of 0 2376 * milliseconds. 2377 * 2378 * SPP_PMTUD_ENABLE - This field will enable PMTU 2379 * discovery upon the specified address. Note that 2380 * if the address feild is empty then all addresses 2381 * on the association are effected. 2382 * 2383 * SPP_PMTUD_DISABLE - This field will disable PMTU 2384 * discovery upon the specified address. Note that 2385 * if the address feild is empty then all addresses 2386 * on the association are effected. Not also that 2387 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2388 * exclusive. Enabling both will have undetermined 2389 * results. 2390 * 2391 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2392 * on delayed sack. The time specified in spp_sackdelay 2393 * is used to specify the sack delay for this address. Note 2394 * that if spp_address is empty then all addresses will 2395 * enable delayed sack and take on the sack delay 2396 * value specified in spp_sackdelay. 2397 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2398 * off delayed sack. If the spp_address field is blank then 2399 * delayed sack is disabled for the entire association. Note 2400 * also that this field is mutually exclusive to 2401 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2402 * results. 2403 */ 2404 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2405 struct sctp_transport *trans, 2406 struct sctp_association *asoc, 2407 struct sctp_sock *sp, 2408 int hb_change, 2409 int pmtud_change, 2410 int sackdelay_change) 2411 { 2412 int error; 2413 2414 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2415 struct net *net = sock_net(trans->asoc->base.sk); 2416 2417 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2418 if (error) 2419 return error; 2420 } 2421 2422 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2423 * this field is ignored. Note also that a value of zero indicates 2424 * the current setting should be left unchanged. 2425 */ 2426 if (params->spp_flags & SPP_HB_ENABLE) { 2427 2428 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2429 * set. This lets us use 0 value when this flag 2430 * is set. 2431 */ 2432 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2433 params->spp_hbinterval = 0; 2434 2435 if (params->spp_hbinterval || 2436 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2437 if (trans) { 2438 trans->hbinterval = 2439 msecs_to_jiffies(params->spp_hbinterval); 2440 } else if (asoc) { 2441 asoc->hbinterval = 2442 msecs_to_jiffies(params->spp_hbinterval); 2443 } else { 2444 sp->hbinterval = params->spp_hbinterval; 2445 } 2446 } 2447 } 2448 2449 if (hb_change) { 2450 if (trans) { 2451 trans->param_flags = 2452 (trans->param_flags & ~SPP_HB) | hb_change; 2453 } else if (asoc) { 2454 asoc->param_flags = 2455 (asoc->param_flags & ~SPP_HB) | hb_change; 2456 } else { 2457 sp->param_flags = 2458 (sp->param_flags & ~SPP_HB) | hb_change; 2459 } 2460 } 2461 2462 /* When Path MTU discovery is disabled the value specified here will 2463 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2464 * include the flag SPP_PMTUD_DISABLE for this field to have any 2465 * effect). 2466 */ 2467 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2468 if (trans) { 2469 trans->pathmtu = params->spp_pathmtu; 2470 sctp_assoc_sync_pmtu(asoc); 2471 } else if (asoc) { 2472 asoc->pathmtu = params->spp_pathmtu; 2473 } else { 2474 sp->pathmtu = params->spp_pathmtu; 2475 } 2476 } 2477 2478 if (pmtud_change) { 2479 if (trans) { 2480 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2481 (params->spp_flags & SPP_PMTUD_ENABLE); 2482 trans->param_flags = 2483 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2484 if (update) { 2485 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2486 sctp_assoc_sync_pmtu(asoc); 2487 } 2488 } else if (asoc) { 2489 asoc->param_flags = 2490 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2491 } else { 2492 sp->param_flags = 2493 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2494 } 2495 } 2496 2497 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2498 * value of this field is ignored. Note also that a value of zero 2499 * indicates the current setting should be left unchanged. 2500 */ 2501 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2502 if (trans) { 2503 trans->sackdelay = 2504 msecs_to_jiffies(params->spp_sackdelay); 2505 } else if (asoc) { 2506 asoc->sackdelay = 2507 msecs_to_jiffies(params->spp_sackdelay); 2508 } else { 2509 sp->sackdelay = params->spp_sackdelay; 2510 } 2511 } 2512 2513 if (sackdelay_change) { 2514 if (trans) { 2515 trans->param_flags = 2516 (trans->param_flags & ~SPP_SACKDELAY) | 2517 sackdelay_change; 2518 } else if (asoc) { 2519 asoc->param_flags = 2520 (asoc->param_flags & ~SPP_SACKDELAY) | 2521 sackdelay_change; 2522 } else { 2523 sp->param_flags = 2524 (sp->param_flags & ~SPP_SACKDELAY) | 2525 sackdelay_change; 2526 } 2527 } 2528 2529 /* Note that a value of zero indicates the current setting should be 2530 left unchanged. 2531 */ 2532 if (params->spp_pathmaxrxt) { 2533 if (trans) { 2534 trans->pathmaxrxt = params->spp_pathmaxrxt; 2535 } else if (asoc) { 2536 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2537 } else { 2538 sp->pathmaxrxt = params->spp_pathmaxrxt; 2539 } 2540 } 2541 2542 return 0; 2543 } 2544 2545 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2546 char __user *optval, 2547 unsigned int optlen) 2548 { 2549 struct sctp_paddrparams params; 2550 struct sctp_transport *trans = NULL; 2551 struct sctp_association *asoc = NULL; 2552 struct sctp_sock *sp = sctp_sk(sk); 2553 int error; 2554 int hb_change, pmtud_change, sackdelay_change; 2555 2556 if (optlen != sizeof(struct sctp_paddrparams)) 2557 return -EINVAL; 2558 2559 if (copy_from_user(¶ms, optval, optlen)) 2560 return -EFAULT; 2561 2562 /* Validate flags and value parameters. */ 2563 hb_change = params.spp_flags & SPP_HB; 2564 pmtud_change = params.spp_flags & SPP_PMTUD; 2565 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2566 2567 if (hb_change == SPP_HB || 2568 pmtud_change == SPP_PMTUD || 2569 sackdelay_change == SPP_SACKDELAY || 2570 params.spp_sackdelay > 500 || 2571 (params.spp_pathmtu && 2572 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2573 return -EINVAL; 2574 2575 /* If an address other than INADDR_ANY is specified, and 2576 * no transport is found, then the request is invalid. 2577 */ 2578 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2579 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2580 params.spp_assoc_id); 2581 if (!trans) 2582 return -EINVAL; 2583 } 2584 2585 /* Get association, if assoc_id != 0 and the socket is a one 2586 * to many style socket, and an association was not found, then 2587 * the id was invalid. 2588 */ 2589 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2590 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2591 return -EINVAL; 2592 2593 /* Heartbeat demand can only be sent on a transport or 2594 * association, but not a socket. 2595 */ 2596 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2597 return -EINVAL; 2598 2599 /* Process parameters. */ 2600 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2601 hb_change, pmtud_change, 2602 sackdelay_change); 2603 2604 if (error) 2605 return error; 2606 2607 /* If changes are for association, also apply parameters to each 2608 * transport. 2609 */ 2610 if (!trans && asoc) { 2611 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2612 transports) { 2613 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2614 hb_change, pmtud_change, 2615 sackdelay_change); 2616 } 2617 } 2618 2619 return 0; 2620 } 2621 2622 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2623 { 2624 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2625 } 2626 2627 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2628 { 2629 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2630 } 2631 2632 /* 2633 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2634 * 2635 * This option will effect the way delayed acks are performed. This 2636 * option allows you to get or set the delayed ack time, in 2637 * milliseconds. It also allows changing the delayed ack frequency. 2638 * Changing the frequency to 1 disables the delayed sack algorithm. If 2639 * the assoc_id is 0, then this sets or gets the endpoints default 2640 * values. If the assoc_id field is non-zero, then the set or get 2641 * effects the specified association for the one to many model (the 2642 * assoc_id field is ignored by the one to one model). Note that if 2643 * sack_delay or sack_freq are 0 when setting this option, then the 2644 * current values will remain unchanged. 2645 * 2646 * struct sctp_sack_info { 2647 * sctp_assoc_t sack_assoc_id; 2648 * uint32_t sack_delay; 2649 * uint32_t sack_freq; 2650 * }; 2651 * 2652 * sack_assoc_id - This parameter, indicates which association the user 2653 * is performing an action upon. Note that if this field's value is 2654 * zero then the endpoints default value is changed (effecting future 2655 * associations only). 2656 * 2657 * sack_delay - This parameter contains the number of milliseconds that 2658 * the user is requesting the delayed ACK timer be set to. Note that 2659 * this value is defined in the standard to be between 200 and 500 2660 * milliseconds. 2661 * 2662 * sack_freq - This parameter contains the number of packets that must 2663 * be received before a sack is sent without waiting for the delay 2664 * timer to expire. The default value for this is 2, setting this 2665 * value to 1 will disable the delayed sack algorithm. 2666 */ 2667 2668 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2669 char __user *optval, unsigned int optlen) 2670 { 2671 struct sctp_sack_info params; 2672 struct sctp_transport *trans = NULL; 2673 struct sctp_association *asoc = NULL; 2674 struct sctp_sock *sp = sctp_sk(sk); 2675 2676 if (optlen == sizeof(struct sctp_sack_info)) { 2677 if (copy_from_user(¶ms, optval, optlen)) 2678 return -EFAULT; 2679 2680 if (params.sack_delay == 0 && params.sack_freq == 0) 2681 return 0; 2682 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2683 pr_warn_ratelimited(DEPRECATED 2684 "%s (pid %d) " 2685 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2686 "Use struct sctp_sack_info instead\n", 2687 current->comm, task_pid_nr(current)); 2688 if (copy_from_user(¶ms, optval, optlen)) 2689 return -EFAULT; 2690 2691 if (params.sack_delay == 0) 2692 params.sack_freq = 1; 2693 else 2694 params.sack_freq = 0; 2695 } else 2696 return -EINVAL; 2697 2698 /* Validate value parameter. */ 2699 if (params.sack_delay > 500) 2700 return -EINVAL; 2701 2702 /* Get association, if sack_assoc_id != 0 and the socket is a one 2703 * to many style socket, and an association was not found, then 2704 * the id was invalid. 2705 */ 2706 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2707 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2708 return -EINVAL; 2709 2710 if (params.sack_delay) { 2711 if (asoc) { 2712 asoc->sackdelay = 2713 msecs_to_jiffies(params.sack_delay); 2714 asoc->param_flags = 2715 sctp_spp_sackdelay_enable(asoc->param_flags); 2716 } else { 2717 sp->sackdelay = params.sack_delay; 2718 sp->param_flags = 2719 sctp_spp_sackdelay_enable(sp->param_flags); 2720 } 2721 } 2722 2723 if (params.sack_freq == 1) { 2724 if (asoc) { 2725 asoc->param_flags = 2726 sctp_spp_sackdelay_disable(asoc->param_flags); 2727 } else { 2728 sp->param_flags = 2729 sctp_spp_sackdelay_disable(sp->param_flags); 2730 } 2731 } else if (params.sack_freq > 1) { 2732 if (asoc) { 2733 asoc->sackfreq = params.sack_freq; 2734 asoc->param_flags = 2735 sctp_spp_sackdelay_enable(asoc->param_flags); 2736 } else { 2737 sp->sackfreq = params.sack_freq; 2738 sp->param_flags = 2739 sctp_spp_sackdelay_enable(sp->param_flags); 2740 } 2741 } 2742 2743 /* If change is for association, also apply to each transport. */ 2744 if (asoc) { 2745 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2746 transports) { 2747 if (params.sack_delay) { 2748 trans->sackdelay = 2749 msecs_to_jiffies(params.sack_delay); 2750 trans->param_flags = 2751 sctp_spp_sackdelay_enable(trans->param_flags); 2752 } 2753 if (params.sack_freq == 1) { 2754 trans->param_flags = 2755 sctp_spp_sackdelay_disable(trans->param_flags); 2756 } else if (params.sack_freq > 1) { 2757 trans->sackfreq = params.sack_freq; 2758 trans->param_flags = 2759 sctp_spp_sackdelay_enable(trans->param_flags); 2760 } 2761 } 2762 } 2763 2764 return 0; 2765 } 2766 2767 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2768 * 2769 * Applications can specify protocol parameters for the default association 2770 * initialization. The option name argument to setsockopt() and getsockopt() 2771 * is SCTP_INITMSG. 2772 * 2773 * Setting initialization parameters is effective only on an unconnected 2774 * socket (for UDP-style sockets only future associations are effected 2775 * by the change). With TCP-style sockets, this option is inherited by 2776 * sockets derived from a listener socket. 2777 */ 2778 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2779 { 2780 struct sctp_initmsg sinit; 2781 struct sctp_sock *sp = sctp_sk(sk); 2782 2783 if (optlen != sizeof(struct sctp_initmsg)) 2784 return -EINVAL; 2785 if (copy_from_user(&sinit, optval, optlen)) 2786 return -EFAULT; 2787 2788 if (sinit.sinit_num_ostreams) 2789 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2790 if (sinit.sinit_max_instreams) 2791 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2792 if (sinit.sinit_max_attempts) 2793 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2794 if (sinit.sinit_max_init_timeo) 2795 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2796 2797 return 0; 2798 } 2799 2800 /* 2801 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2802 * 2803 * Applications that wish to use the sendto() system call may wish to 2804 * specify a default set of parameters that would normally be supplied 2805 * through the inclusion of ancillary data. This socket option allows 2806 * such an application to set the default sctp_sndrcvinfo structure. 2807 * The application that wishes to use this socket option simply passes 2808 * in to this call the sctp_sndrcvinfo structure defined in Section 2809 * 5.2.2) The input parameters accepted by this call include 2810 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2811 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2812 * to this call if the caller is using the UDP model. 2813 */ 2814 static int sctp_setsockopt_default_send_param(struct sock *sk, 2815 char __user *optval, 2816 unsigned int optlen) 2817 { 2818 struct sctp_sock *sp = sctp_sk(sk); 2819 struct sctp_association *asoc; 2820 struct sctp_sndrcvinfo info; 2821 2822 if (optlen != sizeof(info)) 2823 return -EINVAL; 2824 if (copy_from_user(&info, optval, optlen)) 2825 return -EFAULT; 2826 if (info.sinfo_flags & 2827 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2828 SCTP_ABORT | SCTP_EOF)) 2829 return -EINVAL; 2830 2831 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2832 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2833 return -EINVAL; 2834 if (asoc) { 2835 asoc->default_stream = info.sinfo_stream; 2836 asoc->default_flags = info.sinfo_flags; 2837 asoc->default_ppid = info.sinfo_ppid; 2838 asoc->default_context = info.sinfo_context; 2839 asoc->default_timetolive = info.sinfo_timetolive; 2840 } else { 2841 sp->default_stream = info.sinfo_stream; 2842 sp->default_flags = info.sinfo_flags; 2843 sp->default_ppid = info.sinfo_ppid; 2844 sp->default_context = info.sinfo_context; 2845 sp->default_timetolive = info.sinfo_timetolive; 2846 } 2847 2848 return 0; 2849 } 2850 2851 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2852 * (SCTP_DEFAULT_SNDINFO) 2853 */ 2854 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2855 char __user *optval, 2856 unsigned int optlen) 2857 { 2858 struct sctp_sock *sp = sctp_sk(sk); 2859 struct sctp_association *asoc; 2860 struct sctp_sndinfo info; 2861 2862 if (optlen != sizeof(info)) 2863 return -EINVAL; 2864 if (copy_from_user(&info, optval, optlen)) 2865 return -EFAULT; 2866 if (info.snd_flags & 2867 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2868 SCTP_ABORT | SCTP_EOF)) 2869 return -EINVAL; 2870 2871 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2872 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2873 return -EINVAL; 2874 if (asoc) { 2875 asoc->default_stream = info.snd_sid; 2876 asoc->default_flags = info.snd_flags; 2877 asoc->default_ppid = info.snd_ppid; 2878 asoc->default_context = info.snd_context; 2879 } else { 2880 sp->default_stream = info.snd_sid; 2881 sp->default_flags = info.snd_flags; 2882 sp->default_ppid = info.snd_ppid; 2883 sp->default_context = info.snd_context; 2884 } 2885 2886 return 0; 2887 } 2888 2889 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2890 * 2891 * Requests that the local SCTP stack use the enclosed peer address as 2892 * the association primary. The enclosed address must be one of the 2893 * association peer's addresses. 2894 */ 2895 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2896 unsigned int optlen) 2897 { 2898 struct sctp_prim prim; 2899 struct sctp_transport *trans; 2900 2901 if (optlen != sizeof(struct sctp_prim)) 2902 return -EINVAL; 2903 2904 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2905 return -EFAULT; 2906 2907 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2908 if (!trans) 2909 return -EINVAL; 2910 2911 sctp_assoc_set_primary(trans->asoc, trans); 2912 2913 return 0; 2914 } 2915 2916 /* 2917 * 7.1.5 SCTP_NODELAY 2918 * 2919 * Turn on/off any Nagle-like algorithm. This means that packets are 2920 * generally sent as soon as possible and no unnecessary delays are 2921 * introduced, at the cost of more packets in the network. Expects an 2922 * integer boolean flag. 2923 */ 2924 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2925 unsigned int optlen) 2926 { 2927 int val; 2928 2929 if (optlen < sizeof(int)) 2930 return -EINVAL; 2931 if (get_user(val, (int __user *)optval)) 2932 return -EFAULT; 2933 2934 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2935 return 0; 2936 } 2937 2938 /* 2939 * 2940 * 7.1.1 SCTP_RTOINFO 2941 * 2942 * The protocol parameters used to initialize and bound retransmission 2943 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2944 * and modify these parameters. 2945 * All parameters are time values, in milliseconds. A value of 0, when 2946 * modifying the parameters, indicates that the current value should not 2947 * be changed. 2948 * 2949 */ 2950 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2951 { 2952 struct sctp_rtoinfo rtoinfo; 2953 struct sctp_association *asoc; 2954 unsigned long rto_min, rto_max; 2955 struct sctp_sock *sp = sctp_sk(sk); 2956 2957 if (optlen != sizeof (struct sctp_rtoinfo)) 2958 return -EINVAL; 2959 2960 if (copy_from_user(&rtoinfo, optval, optlen)) 2961 return -EFAULT; 2962 2963 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2964 2965 /* Set the values to the specific association */ 2966 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2967 return -EINVAL; 2968 2969 rto_max = rtoinfo.srto_max; 2970 rto_min = rtoinfo.srto_min; 2971 2972 if (rto_max) 2973 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2974 else 2975 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2976 2977 if (rto_min) 2978 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2979 else 2980 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2981 2982 if (rto_min > rto_max) 2983 return -EINVAL; 2984 2985 if (asoc) { 2986 if (rtoinfo.srto_initial != 0) 2987 asoc->rto_initial = 2988 msecs_to_jiffies(rtoinfo.srto_initial); 2989 asoc->rto_max = rto_max; 2990 asoc->rto_min = rto_min; 2991 } else { 2992 /* If there is no association or the association-id = 0 2993 * set the values to the endpoint. 2994 */ 2995 if (rtoinfo.srto_initial != 0) 2996 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2997 sp->rtoinfo.srto_max = rto_max; 2998 sp->rtoinfo.srto_min = rto_min; 2999 } 3000 3001 return 0; 3002 } 3003 3004 /* 3005 * 3006 * 7.1.2 SCTP_ASSOCINFO 3007 * 3008 * This option is used to tune the maximum retransmission attempts 3009 * of the association. 3010 * Returns an error if the new association retransmission value is 3011 * greater than the sum of the retransmission value of the peer. 3012 * See [SCTP] for more information. 3013 * 3014 */ 3015 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3016 { 3017 3018 struct sctp_assocparams assocparams; 3019 struct sctp_association *asoc; 3020 3021 if (optlen != sizeof(struct sctp_assocparams)) 3022 return -EINVAL; 3023 if (copy_from_user(&assocparams, optval, optlen)) 3024 return -EFAULT; 3025 3026 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3027 3028 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3029 return -EINVAL; 3030 3031 /* Set the values to the specific association */ 3032 if (asoc) { 3033 if (assocparams.sasoc_asocmaxrxt != 0) { 3034 __u32 path_sum = 0; 3035 int paths = 0; 3036 struct sctp_transport *peer_addr; 3037 3038 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3039 transports) { 3040 path_sum += peer_addr->pathmaxrxt; 3041 paths++; 3042 } 3043 3044 /* Only validate asocmaxrxt if we have more than 3045 * one path/transport. We do this because path 3046 * retransmissions are only counted when we have more 3047 * then one path. 3048 */ 3049 if (paths > 1 && 3050 assocparams.sasoc_asocmaxrxt > path_sum) 3051 return -EINVAL; 3052 3053 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3054 } 3055 3056 if (assocparams.sasoc_cookie_life != 0) 3057 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3058 } else { 3059 /* Set the values to the endpoint */ 3060 struct sctp_sock *sp = sctp_sk(sk); 3061 3062 if (assocparams.sasoc_asocmaxrxt != 0) 3063 sp->assocparams.sasoc_asocmaxrxt = 3064 assocparams.sasoc_asocmaxrxt; 3065 if (assocparams.sasoc_cookie_life != 0) 3066 sp->assocparams.sasoc_cookie_life = 3067 assocparams.sasoc_cookie_life; 3068 } 3069 return 0; 3070 } 3071 3072 /* 3073 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3074 * 3075 * This socket option is a boolean flag which turns on or off mapped V4 3076 * addresses. If this option is turned on and the socket is type 3077 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3078 * If this option is turned off, then no mapping will be done of V4 3079 * addresses and a user will receive both PF_INET6 and PF_INET type 3080 * addresses on the socket. 3081 */ 3082 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3083 { 3084 int val; 3085 struct sctp_sock *sp = sctp_sk(sk); 3086 3087 if (optlen < sizeof(int)) 3088 return -EINVAL; 3089 if (get_user(val, (int __user *)optval)) 3090 return -EFAULT; 3091 if (val) 3092 sp->v4mapped = 1; 3093 else 3094 sp->v4mapped = 0; 3095 3096 return 0; 3097 } 3098 3099 /* 3100 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3101 * This option will get or set the maximum size to put in any outgoing 3102 * SCTP DATA chunk. If a message is larger than this size it will be 3103 * fragmented by SCTP into the specified size. Note that the underlying 3104 * SCTP implementation may fragment into smaller sized chunks when the 3105 * PMTU of the underlying association is smaller than the value set by 3106 * the user. The default value for this option is '0' which indicates 3107 * the user is NOT limiting fragmentation and only the PMTU will effect 3108 * SCTP's choice of DATA chunk size. Note also that values set larger 3109 * than the maximum size of an IP datagram will effectively let SCTP 3110 * control fragmentation (i.e. the same as setting this option to 0). 3111 * 3112 * The following structure is used to access and modify this parameter: 3113 * 3114 * struct sctp_assoc_value { 3115 * sctp_assoc_t assoc_id; 3116 * uint32_t assoc_value; 3117 * }; 3118 * 3119 * assoc_id: This parameter is ignored for one-to-one style sockets. 3120 * For one-to-many style sockets this parameter indicates which 3121 * association the user is performing an action upon. Note that if 3122 * this field's value is zero then the endpoints default value is 3123 * changed (effecting future associations only). 3124 * assoc_value: This parameter specifies the maximum size in bytes. 3125 */ 3126 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3127 { 3128 struct sctp_assoc_value params; 3129 struct sctp_association *asoc; 3130 struct sctp_sock *sp = sctp_sk(sk); 3131 int val; 3132 3133 if (optlen == sizeof(int)) { 3134 pr_warn_ratelimited(DEPRECATED 3135 "%s (pid %d) " 3136 "Use of int in maxseg socket option.\n" 3137 "Use struct sctp_assoc_value instead\n", 3138 current->comm, task_pid_nr(current)); 3139 if (copy_from_user(&val, optval, optlen)) 3140 return -EFAULT; 3141 params.assoc_id = 0; 3142 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3143 if (copy_from_user(¶ms, optval, optlen)) 3144 return -EFAULT; 3145 val = params.assoc_value; 3146 } else 3147 return -EINVAL; 3148 3149 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3150 return -EINVAL; 3151 3152 asoc = sctp_id2assoc(sk, params.assoc_id); 3153 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3154 return -EINVAL; 3155 3156 if (asoc) { 3157 if (val == 0) { 3158 val = asoc->pathmtu; 3159 val -= sp->pf->af->net_header_len; 3160 val -= sizeof(struct sctphdr) + 3161 sizeof(struct sctp_data_chunk); 3162 } 3163 asoc->user_frag = val; 3164 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3165 } else { 3166 sp->user_frag = val; 3167 } 3168 3169 return 0; 3170 } 3171 3172 3173 /* 3174 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3175 * 3176 * Requests that the peer mark the enclosed address as the association 3177 * primary. The enclosed address must be one of the association's 3178 * locally bound addresses. The following structure is used to make a 3179 * set primary request: 3180 */ 3181 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3182 unsigned int optlen) 3183 { 3184 struct net *net = sock_net(sk); 3185 struct sctp_sock *sp; 3186 struct sctp_association *asoc = NULL; 3187 struct sctp_setpeerprim prim; 3188 struct sctp_chunk *chunk; 3189 struct sctp_af *af; 3190 int err; 3191 3192 sp = sctp_sk(sk); 3193 3194 if (!net->sctp.addip_enable) 3195 return -EPERM; 3196 3197 if (optlen != sizeof(struct sctp_setpeerprim)) 3198 return -EINVAL; 3199 3200 if (copy_from_user(&prim, optval, optlen)) 3201 return -EFAULT; 3202 3203 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3204 if (!asoc) 3205 return -EINVAL; 3206 3207 if (!asoc->peer.asconf_capable) 3208 return -EPERM; 3209 3210 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3211 return -EPERM; 3212 3213 if (!sctp_state(asoc, ESTABLISHED)) 3214 return -ENOTCONN; 3215 3216 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3217 if (!af) 3218 return -EINVAL; 3219 3220 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3221 return -EADDRNOTAVAIL; 3222 3223 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3224 return -EADDRNOTAVAIL; 3225 3226 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3227 chunk = sctp_make_asconf_set_prim(asoc, 3228 (union sctp_addr *)&prim.sspp_addr); 3229 if (!chunk) 3230 return -ENOMEM; 3231 3232 err = sctp_send_asconf(asoc, chunk); 3233 3234 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3235 3236 return err; 3237 } 3238 3239 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3240 unsigned int optlen) 3241 { 3242 struct sctp_setadaptation adaptation; 3243 3244 if (optlen != sizeof(struct sctp_setadaptation)) 3245 return -EINVAL; 3246 if (copy_from_user(&adaptation, optval, optlen)) 3247 return -EFAULT; 3248 3249 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3250 3251 return 0; 3252 } 3253 3254 /* 3255 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3256 * 3257 * The context field in the sctp_sndrcvinfo structure is normally only 3258 * used when a failed message is retrieved holding the value that was 3259 * sent down on the actual send call. This option allows the setting of 3260 * a default context on an association basis that will be received on 3261 * reading messages from the peer. This is especially helpful in the 3262 * one-2-many model for an application to keep some reference to an 3263 * internal state machine that is processing messages on the 3264 * association. Note that the setting of this value only effects 3265 * received messages from the peer and does not effect the value that is 3266 * saved with outbound messages. 3267 */ 3268 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3269 unsigned int optlen) 3270 { 3271 struct sctp_assoc_value params; 3272 struct sctp_sock *sp; 3273 struct sctp_association *asoc; 3274 3275 if (optlen != sizeof(struct sctp_assoc_value)) 3276 return -EINVAL; 3277 if (copy_from_user(¶ms, optval, optlen)) 3278 return -EFAULT; 3279 3280 sp = sctp_sk(sk); 3281 3282 if (params.assoc_id != 0) { 3283 asoc = sctp_id2assoc(sk, params.assoc_id); 3284 if (!asoc) 3285 return -EINVAL; 3286 asoc->default_rcv_context = params.assoc_value; 3287 } else { 3288 sp->default_rcv_context = params.assoc_value; 3289 } 3290 3291 return 0; 3292 } 3293 3294 /* 3295 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3296 * 3297 * This options will at a minimum specify if the implementation is doing 3298 * fragmented interleave. Fragmented interleave, for a one to many 3299 * socket, is when subsequent calls to receive a message may return 3300 * parts of messages from different associations. Some implementations 3301 * may allow you to turn this value on or off. If so, when turned off, 3302 * no fragment interleave will occur (which will cause a head of line 3303 * blocking amongst multiple associations sharing the same one to many 3304 * socket). When this option is turned on, then each receive call may 3305 * come from a different association (thus the user must receive data 3306 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3307 * association each receive belongs to. 3308 * 3309 * This option takes a boolean value. A non-zero value indicates that 3310 * fragmented interleave is on. A value of zero indicates that 3311 * fragmented interleave is off. 3312 * 3313 * Note that it is important that an implementation that allows this 3314 * option to be turned on, have it off by default. Otherwise an unaware 3315 * application using the one to many model may become confused and act 3316 * incorrectly. 3317 */ 3318 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3319 char __user *optval, 3320 unsigned int optlen) 3321 { 3322 int val; 3323 3324 if (optlen != sizeof(int)) 3325 return -EINVAL; 3326 if (get_user(val, (int __user *)optval)) 3327 return -EFAULT; 3328 3329 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3330 3331 return 0; 3332 } 3333 3334 /* 3335 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3336 * (SCTP_PARTIAL_DELIVERY_POINT) 3337 * 3338 * This option will set or get the SCTP partial delivery point. This 3339 * point is the size of a message where the partial delivery API will be 3340 * invoked to help free up rwnd space for the peer. Setting this to a 3341 * lower value will cause partial deliveries to happen more often. The 3342 * calls argument is an integer that sets or gets the partial delivery 3343 * point. Note also that the call will fail if the user attempts to set 3344 * this value larger than the socket receive buffer size. 3345 * 3346 * Note that any single message having a length smaller than or equal to 3347 * the SCTP partial delivery point will be delivered in one single read 3348 * call as long as the user provided buffer is large enough to hold the 3349 * message. 3350 */ 3351 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3352 char __user *optval, 3353 unsigned int optlen) 3354 { 3355 u32 val; 3356 3357 if (optlen != sizeof(u32)) 3358 return -EINVAL; 3359 if (get_user(val, (int __user *)optval)) 3360 return -EFAULT; 3361 3362 /* Note: We double the receive buffer from what the user sets 3363 * it to be, also initial rwnd is based on rcvbuf/2. 3364 */ 3365 if (val > (sk->sk_rcvbuf >> 1)) 3366 return -EINVAL; 3367 3368 sctp_sk(sk)->pd_point = val; 3369 3370 return 0; /* is this the right error code? */ 3371 } 3372 3373 /* 3374 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3375 * 3376 * This option will allow a user to change the maximum burst of packets 3377 * that can be emitted by this association. Note that the default value 3378 * is 4, and some implementations may restrict this setting so that it 3379 * can only be lowered. 3380 * 3381 * NOTE: This text doesn't seem right. Do this on a socket basis with 3382 * future associations inheriting the socket value. 3383 */ 3384 static int sctp_setsockopt_maxburst(struct sock *sk, 3385 char __user *optval, 3386 unsigned int optlen) 3387 { 3388 struct sctp_assoc_value params; 3389 struct sctp_sock *sp; 3390 struct sctp_association *asoc; 3391 int val; 3392 int assoc_id = 0; 3393 3394 if (optlen == sizeof(int)) { 3395 pr_warn_ratelimited(DEPRECATED 3396 "%s (pid %d) " 3397 "Use of int in max_burst socket option deprecated.\n" 3398 "Use struct sctp_assoc_value instead\n", 3399 current->comm, task_pid_nr(current)); 3400 if (copy_from_user(&val, optval, optlen)) 3401 return -EFAULT; 3402 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3403 if (copy_from_user(¶ms, optval, optlen)) 3404 return -EFAULT; 3405 val = params.assoc_value; 3406 assoc_id = params.assoc_id; 3407 } else 3408 return -EINVAL; 3409 3410 sp = sctp_sk(sk); 3411 3412 if (assoc_id != 0) { 3413 asoc = sctp_id2assoc(sk, assoc_id); 3414 if (!asoc) 3415 return -EINVAL; 3416 asoc->max_burst = val; 3417 } else 3418 sp->max_burst = val; 3419 3420 return 0; 3421 } 3422 3423 /* 3424 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3425 * 3426 * This set option adds a chunk type that the user is requesting to be 3427 * received only in an authenticated way. Changes to the list of chunks 3428 * will only effect future associations on the socket. 3429 */ 3430 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3431 char __user *optval, 3432 unsigned int optlen) 3433 { 3434 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3435 struct sctp_authchunk val; 3436 3437 if (!ep->auth_enable) 3438 return -EACCES; 3439 3440 if (optlen != sizeof(struct sctp_authchunk)) 3441 return -EINVAL; 3442 if (copy_from_user(&val, optval, optlen)) 3443 return -EFAULT; 3444 3445 switch (val.sauth_chunk) { 3446 case SCTP_CID_INIT: 3447 case SCTP_CID_INIT_ACK: 3448 case SCTP_CID_SHUTDOWN_COMPLETE: 3449 case SCTP_CID_AUTH: 3450 return -EINVAL; 3451 } 3452 3453 /* add this chunk id to the endpoint */ 3454 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3455 } 3456 3457 /* 3458 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3459 * 3460 * This option gets or sets the list of HMAC algorithms that the local 3461 * endpoint requires the peer to use. 3462 */ 3463 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3464 char __user *optval, 3465 unsigned int optlen) 3466 { 3467 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3468 struct sctp_hmacalgo *hmacs; 3469 u32 idents; 3470 int err; 3471 3472 if (!ep->auth_enable) 3473 return -EACCES; 3474 3475 if (optlen < sizeof(struct sctp_hmacalgo)) 3476 return -EINVAL; 3477 3478 hmacs = memdup_user(optval, optlen); 3479 if (IS_ERR(hmacs)) 3480 return PTR_ERR(hmacs); 3481 3482 idents = hmacs->shmac_num_idents; 3483 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3484 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3485 err = -EINVAL; 3486 goto out; 3487 } 3488 3489 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3490 out: 3491 kfree(hmacs); 3492 return err; 3493 } 3494 3495 /* 3496 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3497 * 3498 * This option will set a shared secret key which is used to build an 3499 * association shared key. 3500 */ 3501 static int sctp_setsockopt_auth_key(struct sock *sk, 3502 char __user *optval, 3503 unsigned int optlen) 3504 { 3505 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3506 struct sctp_authkey *authkey; 3507 struct sctp_association *asoc; 3508 int ret; 3509 3510 if (!ep->auth_enable) 3511 return -EACCES; 3512 3513 if (optlen <= sizeof(struct sctp_authkey)) 3514 return -EINVAL; 3515 3516 authkey = memdup_user(optval, optlen); 3517 if (IS_ERR(authkey)) 3518 return PTR_ERR(authkey); 3519 3520 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3521 ret = -EINVAL; 3522 goto out; 3523 } 3524 3525 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3526 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3527 ret = -EINVAL; 3528 goto out; 3529 } 3530 3531 ret = sctp_auth_set_key(ep, asoc, authkey); 3532 out: 3533 kzfree(authkey); 3534 return ret; 3535 } 3536 3537 /* 3538 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3539 * 3540 * This option will get or set the active shared key to be used to build 3541 * the association shared key. 3542 */ 3543 static int sctp_setsockopt_active_key(struct sock *sk, 3544 char __user *optval, 3545 unsigned int optlen) 3546 { 3547 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3548 struct sctp_authkeyid val; 3549 struct sctp_association *asoc; 3550 3551 if (!ep->auth_enable) 3552 return -EACCES; 3553 3554 if (optlen != sizeof(struct sctp_authkeyid)) 3555 return -EINVAL; 3556 if (copy_from_user(&val, optval, optlen)) 3557 return -EFAULT; 3558 3559 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3560 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3561 return -EINVAL; 3562 3563 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3564 } 3565 3566 /* 3567 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3568 * 3569 * This set option will delete a shared secret key from use. 3570 */ 3571 static int sctp_setsockopt_del_key(struct sock *sk, 3572 char __user *optval, 3573 unsigned int optlen) 3574 { 3575 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3576 struct sctp_authkeyid val; 3577 struct sctp_association *asoc; 3578 3579 if (!ep->auth_enable) 3580 return -EACCES; 3581 3582 if (optlen != sizeof(struct sctp_authkeyid)) 3583 return -EINVAL; 3584 if (copy_from_user(&val, optval, optlen)) 3585 return -EFAULT; 3586 3587 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3588 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3589 return -EINVAL; 3590 3591 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3592 3593 } 3594 3595 /* 3596 * 8.1.23 SCTP_AUTO_ASCONF 3597 * 3598 * This option will enable or disable the use of the automatic generation of 3599 * ASCONF chunks to add and delete addresses to an existing association. Note 3600 * that this option has two caveats namely: a) it only affects sockets that 3601 * are bound to all addresses available to the SCTP stack, and b) the system 3602 * administrator may have an overriding control that turns the ASCONF feature 3603 * off no matter what setting the socket option may have. 3604 * This option expects an integer boolean flag, where a non-zero value turns on 3605 * the option, and a zero value turns off the option. 3606 * Note. In this implementation, socket operation overrides default parameter 3607 * being set by sysctl as well as FreeBSD implementation 3608 */ 3609 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3610 unsigned int optlen) 3611 { 3612 int val; 3613 struct sctp_sock *sp = sctp_sk(sk); 3614 3615 if (optlen < sizeof(int)) 3616 return -EINVAL; 3617 if (get_user(val, (int __user *)optval)) 3618 return -EFAULT; 3619 if (!sctp_is_ep_boundall(sk) && val) 3620 return -EINVAL; 3621 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3622 return 0; 3623 3624 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3625 if (val == 0 && sp->do_auto_asconf) { 3626 list_del(&sp->auto_asconf_list); 3627 sp->do_auto_asconf = 0; 3628 } else if (val && !sp->do_auto_asconf) { 3629 list_add_tail(&sp->auto_asconf_list, 3630 &sock_net(sk)->sctp.auto_asconf_splist); 3631 sp->do_auto_asconf = 1; 3632 } 3633 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3634 return 0; 3635 } 3636 3637 /* 3638 * SCTP_PEER_ADDR_THLDS 3639 * 3640 * This option allows us to alter the partially failed threshold for one or all 3641 * transports in an association. See Section 6.1 of: 3642 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3643 */ 3644 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3645 char __user *optval, 3646 unsigned int optlen) 3647 { 3648 struct sctp_paddrthlds val; 3649 struct sctp_transport *trans; 3650 struct sctp_association *asoc; 3651 3652 if (optlen < sizeof(struct sctp_paddrthlds)) 3653 return -EINVAL; 3654 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3655 sizeof(struct sctp_paddrthlds))) 3656 return -EFAULT; 3657 3658 3659 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3660 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3661 if (!asoc) 3662 return -ENOENT; 3663 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3664 transports) { 3665 if (val.spt_pathmaxrxt) 3666 trans->pathmaxrxt = val.spt_pathmaxrxt; 3667 trans->pf_retrans = val.spt_pathpfthld; 3668 } 3669 3670 if (val.spt_pathmaxrxt) 3671 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3672 asoc->pf_retrans = val.spt_pathpfthld; 3673 } else { 3674 trans = sctp_addr_id2transport(sk, &val.spt_address, 3675 val.spt_assoc_id); 3676 if (!trans) 3677 return -ENOENT; 3678 3679 if (val.spt_pathmaxrxt) 3680 trans->pathmaxrxt = val.spt_pathmaxrxt; 3681 trans->pf_retrans = val.spt_pathpfthld; 3682 } 3683 3684 return 0; 3685 } 3686 3687 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3688 char __user *optval, 3689 unsigned int optlen) 3690 { 3691 int val; 3692 3693 if (optlen < sizeof(int)) 3694 return -EINVAL; 3695 if (get_user(val, (int __user *) optval)) 3696 return -EFAULT; 3697 3698 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3699 3700 return 0; 3701 } 3702 3703 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3704 char __user *optval, 3705 unsigned int optlen) 3706 { 3707 int val; 3708 3709 if (optlen < sizeof(int)) 3710 return -EINVAL; 3711 if (get_user(val, (int __user *) optval)) 3712 return -EFAULT; 3713 3714 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3715 3716 return 0; 3717 } 3718 3719 static int sctp_setsockopt_pr_supported(struct sock *sk, 3720 char __user *optval, 3721 unsigned int optlen) 3722 { 3723 struct sctp_assoc_value params; 3724 struct sctp_association *asoc; 3725 int retval = -EINVAL; 3726 3727 if (optlen != sizeof(params)) 3728 goto out; 3729 3730 if (copy_from_user(¶ms, optval, optlen)) { 3731 retval = -EFAULT; 3732 goto out; 3733 } 3734 3735 asoc = sctp_id2assoc(sk, params.assoc_id); 3736 if (asoc) { 3737 asoc->prsctp_enable = !!params.assoc_value; 3738 } else if (!params.assoc_id) { 3739 struct sctp_sock *sp = sctp_sk(sk); 3740 3741 sp->ep->prsctp_enable = !!params.assoc_value; 3742 } else { 3743 goto out; 3744 } 3745 3746 retval = 0; 3747 3748 out: 3749 return retval; 3750 } 3751 3752 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3753 char __user *optval, 3754 unsigned int optlen) 3755 { 3756 struct sctp_default_prinfo info; 3757 struct sctp_association *asoc; 3758 int retval = -EINVAL; 3759 3760 if (optlen != sizeof(info)) 3761 goto out; 3762 3763 if (copy_from_user(&info, optval, sizeof(info))) { 3764 retval = -EFAULT; 3765 goto out; 3766 } 3767 3768 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3769 goto out; 3770 3771 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3772 info.pr_value = 0; 3773 3774 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3775 if (asoc) { 3776 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3777 asoc->default_timetolive = info.pr_value; 3778 } else if (!info.pr_assoc_id) { 3779 struct sctp_sock *sp = sctp_sk(sk); 3780 3781 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3782 sp->default_timetolive = info.pr_value; 3783 } else { 3784 goto out; 3785 } 3786 3787 retval = 0; 3788 3789 out: 3790 return retval; 3791 } 3792 3793 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3794 char __user *optval, 3795 unsigned int optlen) 3796 { 3797 struct sctp_assoc_value params; 3798 struct sctp_association *asoc; 3799 int retval = -EINVAL; 3800 3801 if (optlen != sizeof(params)) 3802 goto out; 3803 3804 if (copy_from_user(¶ms, optval, optlen)) { 3805 retval = -EFAULT; 3806 goto out; 3807 } 3808 3809 asoc = sctp_id2assoc(sk, params.assoc_id); 3810 if (asoc) { 3811 asoc->reconf_enable = !!params.assoc_value; 3812 } else if (!params.assoc_id) { 3813 struct sctp_sock *sp = sctp_sk(sk); 3814 3815 sp->ep->reconf_enable = !!params.assoc_value; 3816 } else { 3817 goto out; 3818 } 3819 3820 retval = 0; 3821 3822 out: 3823 return retval; 3824 } 3825 3826 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3827 char __user *optval, 3828 unsigned int optlen) 3829 { 3830 struct sctp_assoc_value params; 3831 struct sctp_association *asoc; 3832 int retval = -EINVAL; 3833 3834 if (optlen != sizeof(params)) 3835 goto out; 3836 3837 if (copy_from_user(¶ms, optval, optlen)) { 3838 retval = -EFAULT; 3839 goto out; 3840 } 3841 3842 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3843 goto out; 3844 3845 asoc = sctp_id2assoc(sk, params.assoc_id); 3846 if (asoc) { 3847 asoc->strreset_enable = params.assoc_value; 3848 } else if (!params.assoc_id) { 3849 struct sctp_sock *sp = sctp_sk(sk); 3850 3851 sp->ep->strreset_enable = params.assoc_value; 3852 } else { 3853 goto out; 3854 } 3855 3856 retval = 0; 3857 3858 out: 3859 return retval; 3860 } 3861 3862 static int sctp_setsockopt_reset_streams(struct sock *sk, 3863 char __user *optval, 3864 unsigned int optlen) 3865 { 3866 struct sctp_reset_streams *params; 3867 struct sctp_association *asoc; 3868 int retval = -EINVAL; 3869 3870 if (optlen < sizeof(struct sctp_reset_streams)) 3871 return -EINVAL; 3872 3873 params = memdup_user(optval, optlen); 3874 if (IS_ERR(params)) 3875 return PTR_ERR(params); 3876 3877 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3878 if (!asoc) 3879 goto out; 3880 3881 retval = sctp_send_reset_streams(asoc, params); 3882 3883 out: 3884 kfree(params); 3885 return retval; 3886 } 3887 3888 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3889 char __user *optval, 3890 unsigned int optlen) 3891 { 3892 struct sctp_association *asoc; 3893 sctp_assoc_t associd; 3894 int retval = -EINVAL; 3895 3896 if (optlen != sizeof(associd)) 3897 goto out; 3898 3899 if (copy_from_user(&associd, optval, optlen)) { 3900 retval = -EFAULT; 3901 goto out; 3902 } 3903 3904 asoc = sctp_id2assoc(sk, associd); 3905 if (!asoc) 3906 goto out; 3907 3908 retval = sctp_send_reset_assoc(asoc); 3909 3910 out: 3911 return retval; 3912 } 3913 3914 static int sctp_setsockopt_add_streams(struct sock *sk, 3915 char __user *optval, 3916 unsigned int optlen) 3917 { 3918 struct sctp_association *asoc; 3919 struct sctp_add_streams params; 3920 int retval = -EINVAL; 3921 3922 if (optlen != sizeof(params)) 3923 goto out; 3924 3925 if (copy_from_user(¶ms, optval, optlen)) { 3926 retval = -EFAULT; 3927 goto out; 3928 } 3929 3930 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3931 if (!asoc) 3932 goto out; 3933 3934 retval = sctp_send_add_streams(asoc, ¶ms); 3935 3936 out: 3937 return retval; 3938 } 3939 3940 /* API 6.2 setsockopt(), getsockopt() 3941 * 3942 * Applications use setsockopt() and getsockopt() to set or retrieve 3943 * socket options. Socket options are used to change the default 3944 * behavior of sockets calls. They are described in Section 7. 3945 * 3946 * The syntax is: 3947 * 3948 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3949 * int __user *optlen); 3950 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3951 * int optlen); 3952 * 3953 * sd - the socket descript. 3954 * level - set to IPPROTO_SCTP for all SCTP options. 3955 * optname - the option name. 3956 * optval - the buffer to store the value of the option. 3957 * optlen - the size of the buffer. 3958 */ 3959 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3960 char __user *optval, unsigned int optlen) 3961 { 3962 int retval = 0; 3963 3964 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3965 3966 /* I can hardly begin to describe how wrong this is. This is 3967 * so broken as to be worse than useless. The API draft 3968 * REALLY is NOT helpful here... I am not convinced that the 3969 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3970 * are at all well-founded. 3971 */ 3972 if (level != SOL_SCTP) { 3973 struct sctp_af *af = sctp_sk(sk)->pf->af; 3974 retval = af->setsockopt(sk, level, optname, optval, optlen); 3975 goto out_nounlock; 3976 } 3977 3978 lock_sock(sk); 3979 3980 switch (optname) { 3981 case SCTP_SOCKOPT_BINDX_ADD: 3982 /* 'optlen' is the size of the addresses buffer. */ 3983 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3984 optlen, SCTP_BINDX_ADD_ADDR); 3985 break; 3986 3987 case SCTP_SOCKOPT_BINDX_REM: 3988 /* 'optlen' is the size of the addresses buffer. */ 3989 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3990 optlen, SCTP_BINDX_REM_ADDR); 3991 break; 3992 3993 case SCTP_SOCKOPT_CONNECTX_OLD: 3994 /* 'optlen' is the size of the addresses buffer. */ 3995 retval = sctp_setsockopt_connectx_old(sk, 3996 (struct sockaddr __user *)optval, 3997 optlen); 3998 break; 3999 4000 case SCTP_SOCKOPT_CONNECTX: 4001 /* 'optlen' is the size of the addresses buffer. */ 4002 retval = sctp_setsockopt_connectx(sk, 4003 (struct sockaddr __user *)optval, 4004 optlen); 4005 break; 4006 4007 case SCTP_DISABLE_FRAGMENTS: 4008 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4009 break; 4010 4011 case SCTP_EVENTS: 4012 retval = sctp_setsockopt_events(sk, optval, optlen); 4013 break; 4014 4015 case SCTP_AUTOCLOSE: 4016 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4017 break; 4018 4019 case SCTP_PEER_ADDR_PARAMS: 4020 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4021 break; 4022 4023 case SCTP_DELAYED_SACK: 4024 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4025 break; 4026 case SCTP_PARTIAL_DELIVERY_POINT: 4027 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4028 break; 4029 4030 case SCTP_INITMSG: 4031 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4032 break; 4033 case SCTP_DEFAULT_SEND_PARAM: 4034 retval = sctp_setsockopt_default_send_param(sk, optval, 4035 optlen); 4036 break; 4037 case SCTP_DEFAULT_SNDINFO: 4038 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4039 break; 4040 case SCTP_PRIMARY_ADDR: 4041 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4042 break; 4043 case SCTP_SET_PEER_PRIMARY_ADDR: 4044 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4045 break; 4046 case SCTP_NODELAY: 4047 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4048 break; 4049 case SCTP_RTOINFO: 4050 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4051 break; 4052 case SCTP_ASSOCINFO: 4053 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4054 break; 4055 case SCTP_I_WANT_MAPPED_V4_ADDR: 4056 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4057 break; 4058 case SCTP_MAXSEG: 4059 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4060 break; 4061 case SCTP_ADAPTATION_LAYER: 4062 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4063 break; 4064 case SCTP_CONTEXT: 4065 retval = sctp_setsockopt_context(sk, optval, optlen); 4066 break; 4067 case SCTP_FRAGMENT_INTERLEAVE: 4068 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4069 break; 4070 case SCTP_MAX_BURST: 4071 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4072 break; 4073 case SCTP_AUTH_CHUNK: 4074 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4075 break; 4076 case SCTP_HMAC_IDENT: 4077 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4078 break; 4079 case SCTP_AUTH_KEY: 4080 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4081 break; 4082 case SCTP_AUTH_ACTIVE_KEY: 4083 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4084 break; 4085 case SCTP_AUTH_DELETE_KEY: 4086 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4087 break; 4088 case SCTP_AUTO_ASCONF: 4089 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4090 break; 4091 case SCTP_PEER_ADDR_THLDS: 4092 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4093 break; 4094 case SCTP_RECVRCVINFO: 4095 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4096 break; 4097 case SCTP_RECVNXTINFO: 4098 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4099 break; 4100 case SCTP_PR_SUPPORTED: 4101 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4102 break; 4103 case SCTP_DEFAULT_PRINFO: 4104 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4105 break; 4106 case SCTP_RECONFIG_SUPPORTED: 4107 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4108 break; 4109 case SCTP_ENABLE_STREAM_RESET: 4110 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4111 break; 4112 case SCTP_RESET_STREAMS: 4113 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4114 break; 4115 case SCTP_RESET_ASSOC: 4116 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4117 break; 4118 case SCTP_ADD_STREAMS: 4119 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4120 break; 4121 default: 4122 retval = -ENOPROTOOPT; 4123 break; 4124 } 4125 4126 release_sock(sk); 4127 4128 out_nounlock: 4129 return retval; 4130 } 4131 4132 /* API 3.1.6 connect() - UDP Style Syntax 4133 * 4134 * An application may use the connect() call in the UDP model to initiate an 4135 * association without sending data. 4136 * 4137 * The syntax is: 4138 * 4139 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4140 * 4141 * sd: the socket descriptor to have a new association added to. 4142 * 4143 * nam: the address structure (either struct sockaddr_in or struct 4144 * sockaddr_in6 defined in RFC2553 [7]). 4145 * 4146 * len: the size of the address. 4147 */ 4148 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4149 int addr_len) 4150 { 4151 int err = 0; 4152 struct sctp_af *af; 4153 4154 lock_sock(sk); 4155 4156 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4157 addr, addr_len); 4158 4159 /* Validate addr_len before calling common connect/connectx routine. */ 4160 af = sctp_get_af_specific(addr->sa_family); 4161 if (!af || addr_len < af->sockaddr_len) { 4162 err = -EINVAL; 4163 } else { 4164 /* Pass correct addr len to common routine (so it knows there 4165 * is only one address being passed. 4166 */ 4167 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4168 } 4169 4170 release_sock(sk); 4171 return err; 4172 } 4173 4174 /* FIXME: Write comments. */ 4175 static int sctp_disconnect(struct sock *sk, int flags) 4176 { 4177 return -EOPNOTSUPP; /* STUB */ 4178 } 4179 4180 /* 4.1.4 accept() - TCP Style Syntax 4181 * 4182 * Applications use accept() call to remove an established SCTP 4183 * association from the accept queue of the endpoint. A new socket 4184 * descriptor will be returned from accept() to represent the newly 4185 * formed association. 4186 */ 4187 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4188 { 4189 struct sctp_sock *sp; 4190 struct sctp_endpoint *ep; 4191 struct sock *newsk = NULL; 4192 struct sctp_association *asoc; 4193 long timeo; 4194 int error = 0; 4195 4196 lock_sock(sk); 4197 4198 sp = sctp_sk(sk); 4199 ep = sp->ep; 4200 4201 if (!sctp_style(sk, TCP)) { 4202 error = -EOPNOTSUPP; 4203 goto out; 4204 } 4205 4206 if (!sctp_sstate(sk, LISTENING)) { 4207 error = -EINVAL; 4208 goto out; 4209 } 4210 4211 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4212 4213 error = sctp_wait_for_accept(sk, timeo); 4214 if (error) 4215 goto out; 4216 4217 /* We treat the list of associations on the endpoint as the accept 4218 * queue and pick the first association on the list. 4219 */ 4220 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4221 4222 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4223 if (!newsk) { 4224 error = -ENOMEM; 4225 goto out; 4226 } 4227 4228 /* Populate the fields of the newsk from the oldsk and migrate the 4229 * asoc to the newsk. 4230 */ 4231 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4232 4233 out: 4234 release_sock(sk); 4235 *err = error; 4236 return newsk; 4237 } 4238 4239 /* The SCTP ioctl handler. */ 4240 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4241 { 4242 int rc = -ENOTCONN; 4243 4244 lock_sock(sk); 4245 4246 /* 4247 * SEQPACKET-style sockets in LISTENING state are valid, for 4248 * SCTP, so only discard TCP-style sockets in LISTENING state. 4249 */ 4250 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4251 goto out; 4252 4253 switch (cmd) { 4254 case SIOCINQ: { 4255 struct sk_buff *skb; 4256 unsigned int amount = 0; 4257 4258 skb = skb_peek(&sk->sk_receive_queue); 4259 if (skb != NULL) { 4260 /* 4261 * We will only return the amount of this packet since 4262 * that is all that will be read. 4263 */ 4264 amount = skb->len; 4265 } 4266 rc = put_user(amount, (int __user *)arg); 4267 break; 4268 } 4269 default: 4270 rc = -ENOIOCTLCMD; 4271 break; 4272 } 4273 out: 4274 release_sock(sk); 4275 return rc; 4276 } 4277 4278 /* This is the function which gets called during socket creation to 4279 * initialized the SCTP-specific portion of the sock. 4280 * The sock structure should already be zero-filled memory. 4281 */ 4282 static int sctp_init_sock(struct sock *sk) 4283 { 4284 struct net *net = sock_net(sk); 4285 struct sctp_sock *sp; 4286 4287 pr_debug("%s: sk:%p\n", __func__, sk); 4288 4289 sp = sctp_sk(sk); 4290 4291 /* Initialize the SCTP per socket area. */ 4292 switch (sk->sk_type) { 4293 case SOCK_SEQPACKET: 4294 sp->type = SCTP_SOCKET_UDP; 4295 break; 4296 case SOCK_STREAM: 4297 sp->type = SCTP_SOCKET_TCP; 4298 break; 4299 default: 4300 return -ESOCKTNOSUPPORT; 4301 } 4302 4303 sk->sk_gso_type = SKB_GSO_SCTP; 4304 4305 /* Initialize default send parameters. These parameters can be 4306 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4307 */ 4308 sp->default_stream = 0; 4309 sp->default_ppid = 0; 4310 sp->default_flags = 0; 4311 sp->default_context = 0; 4312 sp->default_timetolive = 0; 4313 4314 sp->default_rcv_context = 0; 4315 sp->max_burst = net->sctp.max_burst; 4316 4317 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4318 4319 /* Initialize default setup parameters. These parameters 4320 * can be modified with the SCTP_INITMSG socket option or 4321 * overridden by the SCTP_INIT CMSG. 4322 */ 4323 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4324 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4325 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4326 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4327 4328 /* Initialize default RTO related parameters. These parameters can 4329 * be modified for with the SCTP_RTOINFO socket option. 4330 */ 4331 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4332 sp->rtoinfo.srto_max = net->sctp.rto_max; 4333 sp->rtoinfo.srto_min = net->sctp.rto_min; 4334 4335 /* Initialize default association related parameters. These parameters 4336 * can be modified with the SCTP_ASSOCINFO socket option. 4337 */ 4338 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4339 sp->assocparams.sasoc_number_peer_destinations = 0; 4340 sp->assocparams.sasoc_peer_rwnd = 0; 4341 sp->assocparams.sasoc_local_rwnd = 0; 4342 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4343 4344 /* Initialize default event subscriptions. By default, all the 4345 * options are off. 4346 */ 4347 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4348 4349 /* Default Peer Address Parameters. These defaults can 4350 * be modified via SCTP_PEER_ADDR_PARAMS 4351 */ 4352 sp->hbinterval = net->sctp.hb_interval; 4353 sp->pathmaxrxt = net->sctp.max_retrans_path; 4354 sp->pathmtu = 0; /* allow default discovery */ 4355 sp->sackdelay = net->sctp.sack_timeout; 4356 sp->sackfreq = 2; 4357 sp->param_flags = SPP_HB_ENABLE | 4358 SPP_PMTUD_ENABLE | 4359 SPP_SACKDELAY_ENABLE; 4360 4361 /* If enabled no SCTP message fragmentation will be performed. 4362 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4363 */ 4364 sp->disable_fragments = 0; 4365 4366 /* Enable Nagle algorithm by default. */ 4367 sp->nodelay = 0; 4368 4369 sp->recvrcvinfo = 0; 4370 sp->recvnxtinfo = 0; 4371 4372 /* Enable by default. */ 4373 sp->v4mapped = 1; 4374 4375 /* Auto-close idle associations after the configured 4376 * number of seconds. A value of 0 disables this 4377 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4378 * for UDP-style sockets only. 4379 */ 4380 sp->autoclose = 0; 4381 4382 /* User specified fragmentation limit. */ 4383 sp->user_frag = 0; 4384 4385 sp->adaptation_ind = 0; 4386 4387 sp->pf = sctp_get_pf_specific(sk->sk_family); 4388 4389 /* Control variables for partial data delivery. */ 4390 atomic_set(&sp->pd_mode, 0); 4391 skb_queue_head_init(&sp->pd_lobby); 4392 sp->frag_interleave = 0; 4393 4394 /* Create a per socket endpoint structure. Even if we 4395 * change the data structure relationships, this may still 4396 * be useful for storing pre-connect address information. 4397 */ 4398 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4399 if (!sp->ep) 4400 return -ENOMEM; 4401 4402 sp->hmac = NULL; 4403 4404 sk->sk_destruct = sctp_destruct_sock; 4405 4406 SCTP_DBG_OBJCNT_INC(sock); 4407 4408 local_bh_disable(); 4409 percpu_counter_inc(&sctp_sockets_allocated); 4410 sock_prot_inuse_add(net, sk->sk_prot, 1); 4411 4412 /* Nothing can fail after this block, otherwise 4413 * sctp_destroy_sock() will be called without addr_wq_lock held 4414 */ 4415 if (net->sctp.default_auto_asconf) { 4416 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4417 list_add_tail(&sp->auto_asconf_list, 4418 &net->sctp.auto_asconf_splist); 4419 sp->do_auto_asconf = 1; 4420 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4421 } else { 4422 sp->do_auto_asconf = 0; 4423 } 4424 4425 local_bh_enable(); 4426 4427 return 0; 4428 } 4429 4430 /* Cleanup any SCTP per socket resources. Must be called with 4431 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4432 */ 4433 static void sctp_destroy_sock(struct sock *sk) 4434 { 4435 struct sctp_sock *sp; 4436 4437 pr_debug("%s: sk:%p\n", __func__, sk); 4438 4439 /* Release our hold on the endpoint. */ 4440 sp = sctp_sk(sk); 4441 /* This could happen during socket init, thus we bail out 4442 * early, since the rest of the below is not setup either. 4443 */ 4444 if (sp->ep == NULL) 4445 return; 4446 4447 if (sp->do_auto_asconf) { 4448 sp->do_auto_asconf = 0; 4449 list_del(&sp->auto_asconf_list); 4450 } 4451 sctp_endpoint_free(sp->ep); 4452 local_bh_disable(); 4453 percpu_counter_dec(&sctp_sockets_allocated); 4454 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4455 local_bh_enable(); 4456 } 4457 4458 /* Triggered when there are no references on the socket anymore */ 4459 static void sctp_destruct_sock(struct sock *sk) 4460 { 4461 struct sctp_sock *sp = sctp_sk(sk); 4462 4463 /* Free up the HMAC transform. */ 4464 crypto_free_shash(sp->hmac); 4465 4466 inet_sock_destruct(sk); 4467 } 4468 4469 /* API 4.1.7 shutdown() - TCP Style Syntax 4470 * int shutdown(int socket, int how); 4471 * 4472 * sd - the socket descriptor of the association to be closed. 4473 * how - Specifies the type of shutdown. The values are 4474 * as follows: 4475 * SHUT_RD 4476 * Disables further receive operations. No SCTP 4477 * protocol action is taken. 4478 * SHUT_WR 4479 * Disables further send operations, and initiates 4480 * the SCTP shutdown sequence. 4481 * SHUT_RDWR 4482 * Disables further send and receive operations 4483 * and initiates the SCTP shutdown sequence. 4484 */ 4485 static void sctp_shutdown(struct sock *sk, int how) 4486 { 4487 struct net *net = sock_net(sk); 4488 struct sctp_endpoint *ep; 4489 4490 if (!sctp_style(sk, TCP)) 4491 return; 4492 4493 ep = sctp_sk(sk)->ep; 4494 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4495 struct sctp_association *asoc; 4496 4497 sk->sk_state = SCTP_SS_CLOSING; 4498 asoc = list_entry(ep->asocs.next, 4499 struct sctp_association, asocs); 4500 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4501 } 4502 } 4503 4504 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4505 struct sctp_info *info) 4506 { 4507 struct sctp_transport *prim; 4508 struct list_head *pos; 4509 int mask; 4510 4511 memset(info, 0, sizeof(*info)); 4512 if (!asoc) { 4513 struct sctp_sock *sp = sctp_sk(sk); 4514 4515 info->sctpi_s_autoclose = sp->autoclose; 4516 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4517 info->sctpi_s_pd_point = sp->pd_point; 4518 info->sctpi_s_nodelay = sp->nodelay; 4519 info->sctpi_s_disable_fragments = sp->disable_fragments; 4520 info->sctpi_s_v4mapped = sp->v4mapped; 4521 info->sctpi_s_frag_interleave = sp->frag_interleave; 4522 info->sctpi_s_type = sp->type; 4523 4524 return 0; 4525 } 4526 4527 info->sctpi_tag = asoc->c.my_vtag; 4528 info->sctpi_state = asoc->state; 4529 info->sctpi_rwnd = asoc->a_rwnd; 4530 info->sctpi_unackdata = asoc->unack_data; 4531 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4532 info->sctpi_instrms = asoc->stream.incnt; 4533 info->sctpi_outstrms = asoc->stream.outcnt; 4534 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4535 info->sctpi_inqueue++; 4536 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4537 info->sctpi_outqueue++; 4538 info->sctpi_overall_error = asoc->overall_error_count; 4539 info->sctpi_max_burst = asoc->max_burst; 4540 info->sctpi_maxseg = asoc->frag_point; 4541 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4542 info->sctpi_peer_tag = asoc->c.peer_vtag; 4543 4544 mask = asoc->peer.ecn_capable << 1; 4545 mask = (mask | asoc->peer.ipv4_address) << 1; 4546 mask = (mask | asoc->peer.ipv6_address) << 1; 4547 mask = (mask | asoc->peer.hostname_address) << 1; 4548 mask = (mask | asoc->peer.asconf_capable) << 1; 4549 mask = (mask | asoc->peer.prsctp_capable) << 1; 4550 mask = (mask | asoc->peer.auth_capable); 4551 info->sctpi_peer_capable = mask; 4552 mask = asoc->peer.sack_needed << 1; 4553 mask = (mask | asoc->peer.sack_generation) << 1; 4554 mask = (mask | asoc->peer.zero_window_announced); 4555 info->sctpi_peer_sack = mask; 4556 4557 info->sctpi_isacks = asoc->stats.isacks; 4558 info->sctpi_osacks = asoc->stats.osacks; 4559 info->sctpi_opackets = asoc->stats.opackets; 4560 info->sctpi_ipackets = asoc->stats.ipackets; 4561 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4562 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4563 info->sctpi_idupchunks = asoc->stats.idupchunks; 4564 info->sctpi_gapcnt = asoc->stats.gapcnt; 4565 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4566 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4567 info->sctpi_oodchunks = asoc->stats.oodchunks; 4568 info->sctpi_iodchunks = asoc->stats.iodchunks; 4569 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4570 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4571 4572 prim = asoc->peer.primary_path; 4573 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4574 info->sctpi_p_state = prim->state; 4575 info->sctpi_p_cwnd = prim->cwnd; 4576 info->sctpi_p_srtt = prim->srtt; 4577 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4578 info->sctpi_p_hbinterval = prim->hbinterval; 4579 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4580 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4581 info->sctpi_p_ssthresh = prim->ssthresh; 4582 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4583 info->sctpi_p_flight_size = prim->flight_size; 4584 info->sctpi_p_error = prim->error_count; 4585 4586 return 0; 4587 } 4588 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4589 4590 /* use callback to avoid exporting the core structure */ 4591 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4592 { 4593 int err; 4594 4595 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4596 4597 err = rhashtable_walk_start(iter); 4598 if (err && err != -EAGAIN) { 4599 rhashtable_walk_stop(iter); 4600 rhashtable_walk_exit(iter); 4601 return err; 4602 } 4603 4604 return 0; 4605 } 4606 4607 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4608 { 4609 rhashtable_walk_stop(iter); 4610 rhashtable_walk_exit(iter); 4611 } 4612 4613 struct sctp_transport *sctp_transport_get_next(struct net *net, 4614 struct rhashtable_iter *iter) 4615 { 4616 struct sctp_transport *t; 4617 4618 t = rhashtable_walk_next(iter); 4619 for (; t; t = rhashtable_walk_next(iter)) { 4620 if (IS_ERR(t)) { 4621 if (PTR_ERR(t) == -EAGAIN) 4622 continue; 4623 break; 4624 } 4625 4626 if (net_eq(sock_net(t->asoc->base.sk), net) && 4627 t->asoc->peer.primary_path == t) 4628 break; 4629 } 4630 4631 return t; 4632 } 4633 4634 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4635 struct rhashtable_iter *iter, 4636 int pos) 4637 { 4638 void *obj = SEQ_START_TOKEN; 4639 4640 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4641 !IS_ERR(obj)) 4642 pos--; 4643 4644 return obj; 4645 } 4646 4647 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4648 void *p) { 4649 int err = 0; 4650 int hash = 0; 4651 struct sctp_ep_common *epb; 4652 struct sctp_hashbucket *head; 4653 4654 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4655 hash++, head++) { 4656 read_lock_bh(&head->lock); 4657 sctp_for_each_hentry(epb, &head->chain) { 4658 err = cb(sctp_ep(epb), p); 4659 if (err) 4660 break; 4661 } 4662 read_unlock_bh(&head->lock); 4663 } 4664 4665 return err; 4666 } 4667 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4668 4669 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4670 struct net *net, 4671 const union sctp_addr *laddr, 4672 const union sctp_addr *paddr, void *p) 4673 { 4674 struct sctp_transport *transport; 4675 int err; 4676 4677 rcu_read_lock(); 4678 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4679 rcu_read_unlock(); 4680 if (!transport) 4681 return -ENOENT; 4682 4683 err = cb(transport, p); 4684 sctp_transport_put(transport); 4685 4686 return err; 4687 } 4688 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4689 4690 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4691 int (*cb_done)(struct sctp_transport *, void *), 4692 struct net *net, int *pos, void *p) { 4693 struct rhashtable_iter hti; 4694 struct sctp_transport *tsp; 4695 int ret; 4696 4697 again: 4698 ret = sctp_transport_walk_start(&hti); 4699 if (ret) 4700 return ret; 4701 4702 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4703 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4704 if (!sctp_transport_hold(tsp)) 4705 continue; 4706 ret = cb(tsp, p); 4707 if (ret) 4708 break; 4709 (*pos)++; 4710 sctp_transport_put(tsp); 4711 } 4712 sctp_transport_walk_stop(&hti); 4713 4714 if (ret) { 4715 if (cb_done && !cb_done(tsp, p)) { 4716 (*pos)++; 4717 sctp_transport_put(tsp); 4718 goto again; 4719 } 4720 sctp_transport_put(tsp); 4721 } 4722 4723 return ret; 4724 } 4725 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4726 4727 /* 7.2.1 Association Status (SCTP_STATUS) 4728 4729 * Applications can retrieve current status information about an 4730 * association, including association state, peer receiver window size, 4731 * number of unacked data chunks, and number of data chunks pending 4732 * receipt. This information is read-only. 4733 */ 4734 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4735 char __user *optval, 4736 int __user *optlen) 4737 { 4738 struct sctp_status status; 4739 struct sctp_association *asoc = NULL; 4740 struct sctp_transport *transport; 4741 sctp_assoc_t associd; 4742 int retval = 0; 4743 4744 if (len < sizeof(status)) { 4745 retval = -EINVAL; 4746 goto out; 4747 } 4748 4749 len = sizeof(status); 4750 if (copy_from_user(&status, optval, len)) { 4751 retval = -EFAULT; 4752 goto out; 4753 } 4754 4755 associd = status.sstat_assoc_id; 4756 asoc = sctp_id2assoc(sk, associd); 4757 if (!asoc) { 4758 retval = -EINVAL; 4759 goto out; 4760 } 4761 4762 transport = asoc->peer.primary_path; 4763 4764 status.sstat_assoc_id = sctp_assoc2id(asoc); 4765 status.sstat_state = sctp_assoc_to_state(asoc); 4766 status.sstat_rwnd = asoc->peer.rwnd; 4767 status.sstat_unackdata = asoc->unack_data; 4768 4769 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4770 status.sstat_instrms = asoc->stream.incnt; 4771 status.sstat_outstrms = asoc->stream.outcnt; 4772 status.sstat_fragmentation_point = asoc->frag_point; 4773 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4774 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4775 transport->af_specific->sockaddr_len); 4776 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4777 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4778 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4779 status.sstat_primary.spinfo_state = transport->state; 4780 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4781 status.sstat_primary.spinfo_srtt = transport->srtt; 4782 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4783 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4784 4785 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4786 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4787 4788 if (put_user(len, optlen)) { 4789 retval = -EFAULT; 4790 goto out; 4791 } 4792 4793 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4794 __func__, len, status.sstat_state, status.sstat_rwnd, 4795 status.sstat_assoc_id); 4796 4797 if (copy_to_user(optval, &status, len)) { 4798 retval = -EFAULT; 4799 goto out; 4800 } 4801 4802 out: 4803 return retval; 4804 } 4805 4806 4807 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4808 * 4809 * Applications can retrieve information about a specific peer address 4810 * of an association, including its reachability state, congestion 4811 * window, and retransmission timer values. This information is 4812 * read-only. 4813 */ 4814 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4815 char __user *optval, 4816 int __user *optlen) 4817 { 4818 struct sctp_paddrinfo pinfo; 4819 struct sctp_transport *transport; 4820 int retval = 0; 4821 4822 if (len < sizeof(pinfo)) { 4823 retval = -EINVAL; 4824 goto out; 4825 } 4826 4827 len = sizeof(pinfo); 4828 if (copy_from_user(&pinfo, optval, len)) { 4829 retval = -EFAULT; 4830 goto out; 4831 } 4832 4833 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4834 pinfo.spinfo_assoc_id); 4835 if (!transport) 4836 return -EINVAL; 4837 4838 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4839 pinfo.spinfo_state = transport->state; 4840 pinfo.spinfo_cwnd = transport->cwnd; 4841 pinfo.spinfo_srtt = transport->srtt; 4842 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4843 pinfo.spinfo_mtu = transport->pathmtu; 4844 4845 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4846 pinfo.spinfo_state = SCTP_ACTIVE; 4847 4848 if (put_user(len, optlen)) { 4849 retval = -EFAULT; 4850 goto out; 4851 } 4852 4853 if (copy_to_user(optval, &pinfo, len)) { 4854 retval = -EFAULT; 4855 goto out; 4856 } 4857 4858 out: 4859 return retval; 4860 } 4861 4862 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4863 * 4864 * This option is a on/off flag. If enabled no SCTP message 4865 * fragmentation will be performed. Instead if a message being sent 4866 * exceeds the current PMTU size, the message will NOT be sent and 4867 * instead a error will be indicated to the user. 4868 */ 4869 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4870 char __user *optval, int __user *optlen) 4871 { 4872 int val; 4873 4874 if (len < sizeof(int)) 4875 return -EINVAL; 4876 4877 len = sizeof(int); 4878 val = (sctp_sk(sk)->disable_fragments == 1); 4879 if (put_user(len, optlen)) 4880 return -EFAULT; 4881 if (copy_to_user(optval, &val, len)) 4882 return -EFAULT; 4883 return 0; 4884 } 4885 4886 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4887 * 4888 * This socket option is used to specify various notifications and 4889 * ancillary data the user wishes to receive. 4890 */ 4891 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4892 int __user *optlen) 4893 { 4894 if (len == 0) 4895 return -EINVAL; 4896 if (len > sizeof(struct sctp_event_subscribe)) 4897 len = sizeof(struct sctp_event_subscribe); 4898 if (put_user(len, optlen)) 4899 return -EFAULT; 4900 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4901 return -EFAULT; 4902 return 0; 4903 } 4904 4905 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4906 * 4907 * This socket option is applicable to the UDP-style socket only. When 4908 * set it will cause associations that are idle for more than the 4909 * specified number of seconds to automatically close. An association 4910 * being idle is defined an association that has NOT sent or received 4911 * user data. The special value of '0' indicates that no automatic 4912 * close of any associations should be performed. The option expects an 4913 * integer defining the number of seconds of idle time before an 4914 * association is closed. 4915 */ 4916 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4917 { 4918 /* Applicable to UDP-style socket only */ 4919 if (sctp_style(sk, TCP)) 4920 return -EOPNOTSUPP; 4921 if (len < sizeof(int)) 4922 return -EINVAL; 4923 len = sizeof(int); 4924 if (put_user(len, optlen)) 4925 return -EFAULT; 4926 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4927 return -EFAULT; 4928 return 0; 4929 } 4930 4931 /* Helper routine to branch off an association to a new socket. */ 4932 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4933 { 4934 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4935 struct sctp_sock *sp = sctp_sk(sk); 4936 struct socket *sock; 4937 int err = 0; 4938 4939 /* Do not peel off from one netns to another one. */ 4940 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 4941 return -EINVAL; 4942 4943 if (!asoc) 4944 return -EINVAL; 4945 4946 /* If there is a thread waiting on more sndbuf space for 4947 * sending on this asoc, it cannot be peeled. 4948 */ 4949 if (waitqueue_active(&asoc->wait)) 4950 return -EBUSY; 4951 4952 /* An association cannot be branched off from an already peeled-off 4953 * socket, nor is this supported for tcp style sockets. 4954 */ 4955 if (!sctp_style(sk, UDP)) 4956 return -EINVAL; 4957 4958 /* Create a new socket. */ 4959 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4960 if (err < 0) 4961 return err; 4962 4963 sctp_copy_sock(sock->sk, sk, asoc); 4964 4965 /* Make peeled-off sockets more like 1-1 accepted sockets. 4966 * Set the daddr and initialize id to something more random 4967 */ 4968 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4969 4970 /* Populate the fields of the newsk from the oldsk and migrate the 4971 * asoc to the newsk. 4972 */ 4973 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4974 4975 *sockp = sock; 4976 4977 return err; 4978 } 4979 EXPORT_SYMBOL(sctp_do_peeloff); 4980 4981 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 4982 struct file **newfile, unsigned flags) 4983 { 4984 struct socket *newsock; 4985 int retval; 4986 4987 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 4988 if (retval < 0) 4989 goto out; 4990 4991 /* Map the socket to an unused fd that can be returned to the user. */ 4992 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 4993 if (retval < 0) { 4994 sock_release(newsock); 4995 goto out; 4996 } 4997 4998 *newfile = sock_alloc_file(newsock, 0, NULL); 4999 if (IS_ERR(*newfile)) { 5000 put_unused_fd(retval); 5001 sock_release(newsock); 5002 retval = PTR_ERR(*newfile); 5003 *newfile = NULL; 5004 return retval; 5005 } 5006 5007 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5008 retval); 5009 5010 peeloff->sd = retval; 5011 5012 if (flags & SOCK_NONBLOCK) 5013 (*newfile)->f_flags |= O_NONBLOCK; 5014 out: 5015 return retval; 5016 } 5017 5018 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5019 { 5020 sctp_peeloff_arg_t peeloff; 5021 struct file *newfile = NULL; 5022 int retval = 0; 5023 5024 if (len < sizeof(sctp_peeloff_arg_t)) 5025 return -EINVAL; 5026 len = sizeof(sctp_peeloff_arg_t); 5027 if (copy_from_user(&peeloff, optval, len)) 5028 return -EFAULT; 5029 5030 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5031 if (retval < 0) 5032 goto out; 5033 5034 /* Return the fd mapped to the new socket. */ 5035 if (put_user(len, optlen)) { 5036 fput(newfile); 5037 put_unused_fd(retval); 5038 return -EFAULT; 5039 } 5040 5041 if (copy_to_user(optval, &peeloff, len)) { 5042 fput(newfile); 5043 put_unused_fd(retval); 5044 return -EFAULT; 5045 } 5046 fd_install(retval, newfile); 5047 out: 5048 return retval; 5049 } 5050 5051 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5052 char __user *optval, int __user *optlen) 5053 { 5054 sctp_peeloff_flags_arg_t peeloff; 5055 struct file *newfile = NULL; 5056 int retval = 0; 5057 5058 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5059 return -EINVAL; 5060 len = sizeof(sctp_peeloff_flags_arg_t); 5061 if (copy_from_user(&peeloff, optval, len)) 5062 return -EFAULT; 5063 5064 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5065 &newfile, peeloff.flags); 5066 if (retval < 0) 5067 goto out; 5068 5069 /* Return the fd mapped to the new socket. */ 5070 if (put_user(len, optlen)) { 5071 fput(newfile); 5072 put_unused_fd(retval); 5073 return -EFAULT; 5074 } 5075 5076 if (copy_to_user(optval, &peeloff, len)) { 5077 fput(newfile); 5078 put_unused_fd(retval); 5079 return -EFAULT; 5080 } 5081 fd_install(retval, newfile); 5082 out: 5083 return retval; 5084 } 5085 5086 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5087 * 5088 * Applications can enable or disable heartbeats for any peer address of 5089 * an association, modify an address's heartbeat interval, force a 5090 * heartbeat to be sent immediately, and adjust the address's maximum 5091 * number of retransmissions sent before an address is considered 5092 * unreachable. The following structure is used to access and modify an 5093 * address's parameters: 5094 * 5095 * struct sctp_paddrparams { 5096 * sctp_assoc_t spp_assoc_id; 5097 * struct sockaddr_storage spp_address; 5098 * uint32_t spp_hbinterval; 5099 * uint16_t spp_pathmaxrxt; 5100 * uint32_t spp_pathmtu; 5101 * uint32_t spp_sackdelay; 5102 * uint32_t spp_flags; 5103 * }; 5104 * 5105 * spp_assoc_id - (one-to-many style socket) This is filled in the 5106 * application, and identifies the association for 5107 * this query. 5108 * spp_address - This specifies which address is of interest. 5109 * spp_hbinterval - This contains the value of the heartbeat interval, 5110 * in milliseconds. If a value of zero 5111 * is present in this field then no changes are to 5112 * be made to this parameter. 5113 * spp_pathmaxrxt - This contains the maximum number of 5114 * retransmissions before this address shall be 5115 * considered unreachable. If a value of zero 5116 * is present in this field then no changes are to 5117 * be made to this parameter. 5118 * spp_pathmtu - When Path MTU discovery is disabled the value 5119 * specified here will be the "fixed" path mtu. 5120 * Note that if the spp_address field is empty 5121 * then all associations on this address will 5122 * have this fixed path mtu set upon them. 5123 * 5124 * spp_sackdelay - When delayed sack is enabled, this value specifies 5125 * the number of milliseconds that sacks will be delayed 5126 * for. This value will apply to all addresses of an 5127 * association if the spp_address field is empty. Note 5128 * also, that if delayed sack is enabled and this 5129 * value is set to 0, no change is made to the last 5130 * recorded delayed sack timer value. 5131 * 5132 * spp_flags - These flags are used to control various features 5133 * on an association. The flag field may contain 5134 * zero or more of the following options. 5135 * 5136 * SPP_HB_ENABLE - Enable heartbeats on the 5137 * specified address. Note that if the address 5138 * field is empty all addresses for the association 5139 * have heartbeats enabled upon them. 5140 * 5141 * SPP_HB_DISABLE - Disable heartbeats on the 5142 * speicifed address. Note that if the address 5143 * field is empty all addresses for the association 5144 * will have their heartbeats disabled. Note also 5145 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5146 * mutually exclusive, only one of these two should 5147 * be specified. Enabling both fields will have 5148 * undetermined results. 5149 * 5150 * SPP_HB_DEMAND - Request a user initiated heartbeat 5151 * to be made immediately. 5152 * 5153 * SPP_PMTUD_ENABLE - This field will enable PMTU 5154 * discovery upon the specified address. Note that 5155 * if the address feild is empty then all addresses 5156 * on the association are effected. 5157 * 5158 * SPP_PMTUD_DISABLE - This field will disable PMTU 5159 * discovery upon the specified address. Note that 5160 * if the address feild is empty then all addresses 5161 * on the association are effected. Not also that 5162 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5163 * exclusive. Enabling both will have undetermined 5164 * results. 5165 * 5166 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5167 * on delayed sack. The time specified in spp_sackdelay 5168 * is used to specify the sack delay for this address. Note 5169 * that if spp_address is empty then all addresses will 5170 * enable delayed sack and take on the sack delay 5171 * value specified in spp_sackdelay. 5172 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5173 * off delayed sack. If the spp_address field is blank then 5174 * delayed sack is disabled for the entire association. Note 5175 * also that this field is mutually exclusive to 5176 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5177 * results. 5178 */ 5179 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5180 char __user *optval, int __user *optlen) 5181 { 5182 struct sctp_paddrparams params; 5183 struct sctp_transport *trans = NULL; 5184 struct sctp_association *asoc = NULL; 5185 struct sctp_sock *sp = sctp_sk(sk); 5186 5187 if (len < sizeof(struct sctp_paddrparams)) 5188 return -EINVAL; 5189 len = sizeof(struct sctp_paddrparams); 5190 if (copy_from_user(¶ms, optval, len)) 5191 return -EFAULT; 5192 5193 /* If an address other than INADDR_ANY is specified, and 5194 * no transport is found, then the request is invalid. 5195 */ 5196 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5197 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5198 params.spp_assoc_id); 5199 if (!trans) { 5200 pr_debug("%s: failed no transport\n", __func__); 5201 return -EINVAL; 5202 } 5203 } 5204 5205 /* Get association, if assoc_id != 0 and the socket is a one 5206 * to many style socket, and an association was not found, then 5207 * the id was invalid. 5208 */ 5209 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5210 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5211 pr_debug("%s: failed no association\n", __func__); 5212 return -EINVAL; 5213 } 5214 5215 if (trans) { 5216 /* Fetch transport values. */ 5217 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5218 params.spp_pathmtu = trans->pathmtu; 5219 params.spp_pathmaxrxt = trans->pathmaxrxt; 5220 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5221 5222 /*draft-11 doesn't say what to return in spp_flags*/ 5223 params.spp_flags = trans->param_flags; 5224 } else if (asoc) { 5225 /* Fetch association values. */ 5226 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5227 params.spp_pathmtu = asoc->pathmtu; 5228 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5229 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5230 5231 /*draft-11 doesn't say what to return in spp_flags*/ 5232 params.spp_flags = asoc->param_flags; 5233 } else { 5234 /* Fetch socket values. */ 5235 params.spp_hbinterval = sp->hbinterval; 5236 params.spp_pathmtu = sp->pathmtu; 5237 params.spp_sackdelay = sp->sackdelay; 5238 params.spp_pathmaxrxt = sp->pathmaxrxt; 5239 5240 /*draft-11 doesn't say what to return in spp_flags*/ 5241 params.spp_flags = sp->param_flags; 5242 } 5243 5244 if (copy_to_user(optval, ¶ms, len)) 5245 return -EFAULT; 5246 5247 if (put_user(len, optlen)) 5248 return -EFAULT; 5249 5250 return 0; 5251 } 5252 5253 /* 5254 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5255 * 5256 * This option will effect the way delayed acks are performed. This 5257 * option allows you to get or set the delayed ack time, in 5258 * milliseconds. It also allows changing the delayed ack frequency. 5259 * Changing the frequency to 1 disables the delayed sack algorithm. If 5260 * the assoc_id is 0, then this sets or gets the endpoints default 5261 * values. If the assoc_id field is non-zero, then the set or get 5262 * effects the specified association for the one to many model (the 5263 * assoc_id field is ignored by the one to one model). Note that if 5264 * sack_delay or sack_freq are 0 when setting this option, then the 5265 * current values will remain unchanged. 5266 * 5267 * struct sctp_sack_info { 5268 * sctp_assoc_t sack_assoc_id; 5269 * uint32_t sack_delay; 5270 * uint32_t sack_freq; 5271 * }; 5272 * 5273 * sack_assoc_id - This parameter, indicates which association the user 5274 * is performing an action upon. Note that if this field's value is 5275 * zero then the endpoints default value is changed (effecting future 5276 * associations only). 5277 * 5278 * sack_delay - This parameter contains the number of milliseconds that 5279 * the user is requesting the delayed ACK timer be set to. Note that 5280 * this value is defined in the standard to be between 200 and 500 5281 * milliseconds. 5282 * 5283 * sack_freq - This parameter contains the number of packets that must 5284 * be received before a sack is sent without waiting for the delay 5285 * timer to expire. The default value for this is 2, setting this 5286 * value to 1 will disable the delayed sack algorithm. 5287 */ 5288 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5289 char __user *optval, 5290 int __user *optlen) 5291 { 5292 struct sctp_sack_info params; 5293 struct sctp_association *asoc = NULL; 5294 struct sctp_sock *sp = sctp_sk(sk); 5295 5296 if (len >= sizeof(struct sctp_sack_info)) { 5297 len = sizeof(struct sctp_sack_info); 5298 5299 if (copy_from_user(¶ms, optval, len)) 5300 return -EFAULT; 5301 } else if (len == sizeof(struct sctp_assoc_value)) { 5302 pr_warn_ratelimited(DEPRECATED 5303 "%s (pid %d) " 5304 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5305 "Use struct sctp_sack_info instead\n", 5306 current->comm, task_pid_nr(current)); 5307 if (copy_from_user(¶ms, optval, len)) 5308 return -EFAULT; 5309 } else 5310 return -EINVAL; 5311 5312 /* Get association, if sack_assoc_id != 0 and the socket is a one 5313 * to many style socket, and an association was not found, then 5314 * the id was invalid. 5315 */ 5316 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5317 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5318 return -EINVAL; 5319 5320 if (asoc) { 5321 /* Fetch association values. */ 5322 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5323 params.sack_delay = jiffies_to_msecs( 5324 asoc->sackdelay); 5325 params.sack_freq = asoc->sackfreq; 5326 5327 } else { 5328 params.sack_delay = 0; 5329 params.sack_freq = 1; 5330 } 5331 } else { 5332 /* Fetch socket values. */ 5333 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5334 params.sack_delay = sp->sackdelay; 5335 params.sack_freq = sp->sackfreq; 5336 } else { 5337 params.sack_delay = 0; 5338 params.sack_freq = 1; 5339 } 5340 } 5341 5342 if (copy_to_user(optval, ¶ms, len)) 5343 return -EFAULT; 5344 5345 if (put_user(len, optlen)) 5346 return -EFAULT; 5347 5348 return 0; 5349 } 5350 5351 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5352 * 5353 * Applications can specify protocol parameters for the default association 5354 * initialization. The option name argument to setsockopt() and getsockopt() 5355 * is SCTP_INITMSG. 5356 * 5357 * Setting initialization parameters is effective only on an unconnected 5358 * socket (for UDP-style sockets only future associations are effected 5359 * by the change). With TCP-style sockets, this option is inherited by 5360 * sockets derived from a listener socket. 5361 */ 5362 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5363 { 5364 if (len < sizeof(struct sctp_initmsg)) 5365 return -EINVAL; 5366 len = sizeof(struct sctp_initmsg); 5367 if (put_user(len, optlen)) 5368 return -EFAULT; 5369 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5370 return -EFAULT; 5371 return 0; 5372 } 5373 5374 5375 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5376 char __user *optval, int __user *optlen) 5377 { 5378 struct sctp_association *asoc; 5379 int cnt = 0; 5380 struct sctp_getaddrs getaddrs; 5381 struct sctp_transport *from; 5382 void __user *to; 5383 union sctp_addr temp; 5384 struct sctp_sock *sp = sctp_sk(sk); 5385 int addrlen; 5386 size_t space_left; 5387 int bytes_copied; 5388 5389 if (len < sizeof(struct sctp_getaddrs)) 5390 return -EINVAL; 5391 5392 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5393 return -EFAULT; 5394 5395 /* For UDP-style sockets, id specifies the association to query. */ 5396 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5397 if (!asoc) 5398 return -EINVAL; 5399 5400 to = optval + offsetof(struct sctp_getaddrs, addrs); 5401 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5402 5403 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5404 transports) { 5405 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5406 addrlen = sctp_get_pf_specific(sk->sk_family) 5407 ->addr_to_user(sp, &temp); 5408 if (space_left < addrlen) 5409 return -ENOMEM; 5410 if (copy_to_user(to, &temp, addrlen)) 5411 return -EFAULT; 5412 to += addrlen; 5413 cnt++; 5414 space_left -= addrlen; 5415 } 5416 5417 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5418 return -EFAULT; 5419 bytes_copied = ((char __user *)to) - optval; 5420 if (put_user(bytes_copied, optlen)) 5421 return -EFAULT; 5422 5423 return 0; 5424 } 5425 5426 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5427 size_t space_left, int *bytes_copied) 5428 { 5429 struct sctp_sockaddr_entry *addr; 5430 union sctp_addr temp; 5431 int cnt = 0; 5432 int addrlen; 5433 struct net *net = sock_net(sk); 5434 5435 rcu_read_lock(); 5436 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5437 if (!addr->valid) 5438 continue; 5439 5440 if ((PF_INET == sk->sk_family) && 5441 (AF_INET6 == addr->a.sa.sa_family)) 5442 continue; 5443 if ((PF_INET6 == sk->sk_family) && 5444 inet_v6_ipv6only(sk) && 5445 (AF_INET == addr->a.sa.sa_family)) 5446 continue; 5447 memcpy(&temp, &addr->a, sizeof(temp)); 5448 if (!temp.v4.sin_port) 5449 temp.v4.sin_port = htons(port); 5450 5451 addrlen = sctp_get_pf_specific(sk->sk_family) 5452 ->addr_to_user(sctp_sk(sk), &temp); 5453 5454 if (space_left < addrlen) { 5455 cnt = -ENOMEM; 5456 break; 5457 } 5458 memcpy(to, &temp, addrlen); 5459 5460 to += addrlen; 5461 cnt++; 5462 space_left -= addrlen; 5463 *bytes_copied += addrlen; 5464 } 5465 rcu_read_unlock(); 5466 5467 return cnt; 5468 } 5469 5470 5471 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5472 char __user *optval, int __user *optlen) 5473 { 5474 struct sctp_bind_addr *bp; 5475 struct sctp_association *asoc; 5476 int cnt = 0; 5477 struct sctp_getaddrs getaddrs; 5478 struct sctp_sockaddr_entry *addr; 5479 void __user *to; 5480 union sctp_addr temp; 5481 struct sctp_sock *sp = sctp_sk(sk); 5482 int addrlen; 5483 int err = 0; 5484 size_t space_left; 5485 int bytes_copied = 0; 5486 void *addrs; 5487 void *buf; 5488 5489 if (len < sizeof(struct sctp_getaddrs)) 5490 return -EINVAL; 5491 5492 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5493 return -EFAULT; 5494 5495 /* 5496 * For UDP-style sockets, id specifies the association to query. 5497 * If the id field is set to the value '0' then the locally bound 5498 * addresses are returned without regard to any particular 5499 * association. 5500 */ 5501 if (0 == getaddrs.assoc_id) { 5502 bp = &sctp_sk(sk)->ep->base.bind_addr; 5503 } else { 5504 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5505 if (!asoc) 5506 return -EINVAL; 5507 bp = &asoc->base.bind_addr; 5508 } 5509 5510 to = optval + offsetof(struct sctp_getaddrs, addrs); 5511 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5512 5513 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5514 if (!addrs) 5515 return -ENOMEM; 5516 5517 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5518 * addresses from the global local address list. 5519 */ 5520 if (sctp_list_single_entry(&bp->address_list)) { 5521 addr = list_entry(bp->address_list.next, 5522 struct sctp_sockaddr_entry, list); 5523 if (sctp_is_any(sk, &addr->a)) { 5524 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5525 space_left, &bytes_copied); 5526 if (cnt < 0) { 5527 err = cnt; 5528 goto out; 5529 } 5530 goto copy_getaddrs; 5531 } 5532 } 5533 5534 buf = addrs; 5535 /* Protection on the bound address list is not needed since 5536 * in the socket option context we hold a socket lock and 5537 * thus the bound address list can't change. 5538 */ 5539 list_for_each_entry(addr, &bp->address_list, list) { 5540 memcpy(&temp, &addr->a, sizeof(temp)); 5541 addrlen = sctp_get_pf_specific(sk->sk_family) 5542 ->addr_to_user(sp, &temp); 5543 if (space_left < addrlen) { 5544 err = -ENOMEM; /*fixme: right error?*/ 5545 goto out; 5546 } 5547 memcpy(buf, &temp, addrlen); 5548 buf += addrlen; 5549 bytes_copied += addrlen; 5550 cnt++; 5551 space_left -= addrlen; 5552 } 5553 5554 copy_getaddrs: 5555 if (copy_to_user(to, addrs, bytes_copied)) { 5556 err = -EFAULT; 5557 goto out; 5558 } 5559 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5560 err = -EFAULT; 5561 goto out; 5562 } 5563 if (put_user(bytes_copied, optlen)) 5564 err = -EFAULT; 5565 out: 5566 kfree(addrs); 5567 return err; 5568 } 5569 5570 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5571 * 5572 * Requests that the local SCTP stack use the enclosed peer address as 5573 * the association primary. The enclosed address must be one of the 5574 * association peer's addresses. 5575 */ 5576 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5577 char __user *optval, int __user *optlen) 5578 { 5579 struct sctp_prim prim; 5580 struct sctp_association *asoc; 5581 struct sctp_sock *sp = sctp_sk(sk); 5582 5583 if (len < sizeof(struct sctp_prim)) 5584 return -EINVAL; 5585 5586 len = sizeof(struct sctp_prim); 5587 5588 if (copy_from_user(&prim, optval, len)) 5589 return -EFAULT; 5590 5591 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5592 if (!asoc) 5593 return -EINVAL; 5594 5595 if (!asoc->peer.primary_path) 5596 return -ENOTCONN; 5597 5598 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5599 asoc->peer.primary_path->af_specific->sockaddr_len); 5600 5601 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5602 (union sctp_addr *)&prim.ssp_addr); 5603 5604 if (put_user(len, optlen)) 5605 return -EFAULT; 5606 if (copy_to_user(optval, &prim, len)) 5607 return -EFAULT; 5608 5609 return 0; 5610 } 5611 5612 /* 5613 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5614 * 5615 * Requests that the local endpoint set the specified Adaptation Layer 5616 * Indication parameter for all future INIT and INIT-ACK exchanges. 5617 */ 5618 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5619 char __user *optval, int __user *optlen) 5620 { 5621 struct sctp_setadaptation adaptation; 5622 5623 if (len < sizeof(struct sctp_setadaptation)) 5624 return -EINVAL; 5625 5626 len = sizeof(struct sctp_setadaptation); 5627 5628 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5629 5630 if (put_user(len, optlen)) 5631 return -EFAULT; 5632 if (copy_to_user(optval, &adaptation, len)) 5633 return -EFAULT; 5634 5635 return 0; 5636 } 5637 5638 /* 5639 * 5640 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5641 * 5642 * Applications that wish to use the sendto() system call may wish to 5643 * specify a default set of parameters that would normally be supplied 5644 * through the inclusion of ancillary data. This socket option allows 5645 * such an application to set the default sctp_sndrcvinfo structure. 5646 5647 5648 * The application that wishes to use this socket option simply passes 5649 * in to this call the sctp_sndrcvinfo structure defined in Section 5650 * 5.2.2) The input parameters accepted by this call include 5651 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5652 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5653 * to this call if the caller is using the UDP model. 5654 * 5655 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5656 */ 5657 static int sctp_getsockopt_default_send_param(struct sock *sk, 5658 int len, char __user *optval, 5659 int __user *optlen) 5660 { 5661 struct sctp_sock *sp = sctp_sk(sk); 5662 struct sctp_association *asoc; 5663 struct sctp_sndrcvinfo info; 5664 5665 if (len < sizeof(info)) 5666 return -EINVAL; 5667 5668 len = sizeof(info); 5669 5670 if (copy_from_user(&info, optval, len)) 5671 return -EFAULT; 5672 5673 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5674 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5675 return -EINVAL; 5676 if (asoc) { 5677 info.sinfo_stream = asoc->default_stream; 5678 info.sinfo_flags = asoc->default_flags; 5679 info.sinfo_ppid = asoc->default_ppid; 5680 info.sinfo_context = asoc->default_context; 5681 info.sinfo_timetolive = asoc->default_timetolive; 5682 } else { 5683 info.sinfo_stream = sp->default_stream; 5684 info.sinfo_flags = sp->default_flags; 5685 info.sinfo_ppid = sp->default_ppid; 5686 info.sinfo_context = sp->default_context; 5687 info.sinfo_timetolive = sp->default_timetolive; 5688 } 5689 5690 if (put_user(len, optlen)) 5691 return -EFAULT; 5692 if (copy_to_user(optval, &info, len)) 5693 return -EFAULT; 5694 5695 return 0; 5696 } 5697 5698 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5699 * (SCTP_DEFAULT_SNDINFO) 5700 */ 5701 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5702 char __user *optval, 5703 int __user *optlen) 5704 { 5705 struct sctp_sock *sp = sctp_sk(sk); 5706 struct sctp_association *asoc; 5707 struct sctp_sndinfo info; 5708 5709 if (len < sizeof(info)) 5710 return -EINVAL; 5711 5712 len = sizeof(info); 5713 5714 if (copy_from_user(&info, optval, len)) 5715 return -EFAULT; 5716 5717 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5718 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5719 return -EINVAL; 5720 if (asoc) { 5721 info.snd_sid = asoc->default_stream; 5722 info.snd_flags = asoc->default_flags; 5723 info.snd_ppid = asoc->default_ppid; 5724 info.snd_context = asoc->default_context; 5725 } else { 5726 info.snd_sid = sp->default_stream; 5727 info.snd_flags = sp->default_flags; 5728 info.snd_ppid = sp->default_ppid; 5729 info.snd_context = sp->default_context; 5730 } 5731 5732 if (put_user(len, optlen)) 5733 return -EFAULT; 5734 if (copy_to_user(optval, &info, len)) 5735 return -EFAULT; 5736 5737 return 0; 5738 } 5739 5740 /* 5741 * 5742 * 7.1.5 SCTP_NODELAY 5743 * 5744 * Turn on/off any Nagle-like algorithm. This means that packets are 5745 * generally sent as soon as possible and no unnecessary delays are 5746 * introduced, at the cost of more packets in the network. Expects an 5747 * integer boolean flag. 5748 */ 5749 5750 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5751 char __user *optval, int __user *optlen) 5752 { 5753 int val; 5754 5755 if (len < sizeof(int)) 5756 return -EINVAL; 5757 5758 len = sizeof(int); 5759 val = (sctp_sk(sk)->nodelay == 1); 5760 if (put_user(len, optlen)) 5761 return -EFAULT; 5762 if (copy_to_user(optval, &val, len)) 5763 return -EFAULT; 5764 return 0; 5765 } 5766 5767 /* 5768 * 5769 * 7.1.1 SCTP_RTOINFO 5770 * 5771 * The protocol parameters used to initialize and bound retransmission 5772 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5773 * and modify these parameters. 5774 * All parameters are time values, in milliseconds. A value of 0, when 5775 * modifying the parameters, indicates that the current value should not 5776 * be changed. 5777 * 5778 */ 5779 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5780 char __user *optval, 5781 int __user *optlen) { 5782 struct sctp_rtoinfo rtoinfo; 5783 struct sctp_association *asoc; 5784 5785 if (len < sizeof (struct sctp_rtoinfo)) 5786 return -EINVAL; 5787 5788 len = sizeof(struct sctp_rtoinfo); 5789 5790 if (copy_from_user(&rtoinfo, optval, len)) 5791 return -EFAULT; 5792 5793 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5794 5795 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5796 return -EINVAL; 5797 5798 /* Values corresponding to the specific association. */ 5799 if (asoc) { 5800 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5801 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5802 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5803 } else { 5804 /* Values corresponding to the endpoint. */ 5805 struct sctp_sock *sp = sctp_sk(sk); 5806 5807 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5808 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5809 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5810 } 5811 5812 if (put_user(len, optlen)) 5813 return -EFAULT; 5814 5815 if (copy_to_user(optval, &rtoinfo, len)) 5816 return -EFAULT; 5817 5818 return 0; 5819 } 5820 5821 /* 5822 * 5823 * 7.1.2 SCTP_ASSOCINFO 5824 * 5825 * This option is used to tune the maximum retransmission attempts 5826 * of the association. 5827 * Returns an error if the new association retransmission value is 5828 * greater than the sum of the retransmission value of the peer. 5829 * See [SCTP] for more information. 5830 * 5831 */ 5832 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5833 char __user *optval, 5834 int __user *optlen) 5835 { 5836 5837 struct sctp_assocparams assocparams; 5838 struct sctp_association *asoc; 5839 struct list_head *pos; 5840 int cnt = 0; 5841 5842 if (len < sizeof (struct sctp_assocparams)) 5843 return -EINVAL; 5844 5845 len = sizeof(struct sctp_assocparams); 5846 5847 if (copy_from_user(&assocparams, optval, len)) 5848 return -EFAULT; 5849 5850 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5851 5852 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5853 return -EINVAL; 5854 5855 /* Values correspoinding to the specific association */ 5856 if (asoc) { 5857 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5858 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5859 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5860 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5861 5862 list_for_each(pos, &asoc->peer.transport_addr_list) { 5863 cnt++; 5864 } 5865 5866 assocparams.sasoc_number_peer_destinations = cnt; 5867 } else { 5868 /* Values corresponding to the endpoint */ 5869 struct sctp_sock *sp = sctp_sk(sk); 5870 5871 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5872 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5873 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5874 assocparams.sasoc_cookie_life = 5875 sp->assocparams.sasoc_cookie_life; 5876 assocparams.sasoc_number_peer_destinations = 5877 sp->assocparams. 5878 sasoc_number_peer_destinations; 5879 } 5880 5881 if (put_user(len, optlen)) 5882 return -EFAULT; 5883 5884 if (copy_to_user(optval, &assocparams, len)) 5885 return -EFAULT; 5886 5887 return 0; 5888 } 5889 5890 /* 5891 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5892 * 5893 * This socket option is a boolean flag which turns on or off mapped V4 5894 * addresses. If this option is turned on and the socket is type 5895 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5896 * If this option is turned off, then no mapping will be done of V4 5897 * addresses and a user will receive both PF_INET6 and PF_INET type 5898 * addresses on the socket. 5899 */ 5900 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5901 char __user *optval, int __user *optlen) 5902 { 5903 int val; 5904 struct sctp_sock *sp = sctp_sk(sk); 5905 5906 if (len < sizeof(int)) 5907 return -EINVAL; 5908 5909 len = sizeof(int); 5910 val = sp->v4mapped; 5911 if (put_user(len, optlen)) 5912 return -EFAULT; 5913 if (copy_to_user(optval, &val, len)) 5914 return -EFAULT; 5915 5916 return 0; 5917 } 5918 5919 /* 5920 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5921 * (chapter and verse is quoted at sctp_setsockopt_context()) 5922 */ 5923 static int sctp_getsockopt_context(struct sock *sk, int len, 5924 char __user *optval, int __user *optlen) 5925 { 5926 struct sctp_assoc_value params; 5927 struct sctp_sock *sp; 5928 struct sctp_association *asoc; 5929 5930 if (len < sizeof(struct sctp_assoc_value)) 5931 return -EINVAL; 5932 5933 len = sizeof(struct sctp_assoc_value); 5934 5935 if (copy_from_user(¶ms, optval, len)) 5936 return -EFAULT; 5937 5938 sp = sctp_sk(sk); 5939 5940 if (params.assoc_id != 0) { 5941 asoc = sctp_id2assoc(sk, params.assoc_id); 5942 if (!asoc) 5943 return -EINVAL; 5944 params.assoc_value = asoc->default_rcv_context; 5945 } else { 5946 params.assoc_value = sp->default_rcv_context; 5947 } 5948 5949 if (put_user(len, optlen)) 5950 return -EFAULT; 5951 if (copy_to_user(optval, ¶ms, len)) 5952 return -EFAULT; 5953 5954 return 0; 5955 } 5956 5957 /* 5958 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5959 * This option will get or set the maximum size to put in any outgoing 5960 * SCTP DATA chunk. If a message is larger than this size it will be 5961 * fragmented by SCTP into the specified size. Note that the underlying 5962 * SCTP implementation may fragment into smaller sized chunks when the 5963 * PMTU of the underlying association is smaller than the value set by 5964 * the user. The default value for this option is '0' which indicates 5965 * the user is NOT limiting fragmentation and only the PMTU will effect 5966 * SCTP's choice of DATA chunk size. Note also that values set larger 5967 * than the maximum size of an IP datagram will effectively let SCTP 5968 * control fragmentation (i.e. the same as setting this option to 0). 5969 * 5970 * The following structure is used to access and modify this parameter: 5971 * 5972 * struct sctp_assoc_value { 5973 * sctp_assoc_t assoc_id; 5974 * uint32_t assoc_value; 5975 * }; 5976 * 5977 * assoc_id: This parameter is ignored for one-to-one style sockets. 5978 * For one-to-many style sockets this parameter indicates which 5979 * association the user is performing an action upon. Note that if 5980 * this field's value is zero then the endpoints default value is 5981 * changed (effecting future associations only). 5982 * assoc_value: This parameter specifies the maximum size in bytes. 5983 */ 5984 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5985 char __user *optval, int __user *optlen) 5986 { 5987 struct sctp_assoc_value params; 5988 struct sctp_association *asoc; 5989 5990 if (len == sizeof(int)) { 5991 pr_warn_ratelimited(DEPRECATED 5992 "%s (pid %d) " 5993 "Use of int in maxseg socket option.\n" 5994 "Use struct sctp_assoc_value instead\n", 5995 current->comm, task_pid_nr(current)); 5996 params.assoc_id = 0; 5997 } else if (len >= sizeof(struct sctp_assoc_value)) { 5998 len = sizeof(struct sctp_assoc_value); 5999 if (copy_from_user(¶ms, optval, sizeof(params))) 6000 return -EFAULT; 6001 } else 6002 return -EINVAL; 6003 6004 asoc = sctp_id2assoc(sk, params.assoc_id); 6005 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6006 return -EINVAL; 6007 6008 if (asoc) 6009 params.assoc_value = asoc->frag_point; 6010 else 6011 params.assoc_value = sctp_sk(sk)->user_frag; 6012 6013 if (put_user(len, optlen)) 6014 return -EFAULT; 6015 if (len == sizeof(int)) { 6016 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6017 return -EFAULT; 6018 } else { 6019 if (copy_to_user(optval, ¶ms, len)) 6020 return -EFAULT; 6021 } 6022 6023 return 0; 6024 } 6025 6026 /* 6027 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6028 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6029 */ 6030 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6031 char __user *optval, int __user *optlen) 6032 { 6033 int val; 6034 6035 if (len < sizeof(int)) 6036 return -EINVAL; 6037 6038 len = sizeof(int); 6039 6040 val = sctp_sk(sk)->frag_interleave; 6041 if (put_user(len, optlen)) 6042 return -EFAULT; 6043 if (copy_to_user(optval, &val, len)) 6044 return -EFAULT; 6045 6046 return 0; 6047 } 6048 6049 /* 6050 * 7.1.25. Set or Get the sctp partial delivery point 6051 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6052 */ 6053 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6054 char __user *optval, 6055 int __user *optlen) 6056 { 6057 u32 val; 6058 6059 if (len < sizeof(u32)) 6060 return -EINVAL; 6061 6062 len = sizeof(u32); 6063 6064 val = sctp_sk(sk)->pd_point; 6065 if (put_user(len, optlen)) 6066 return -EFAULT; 6067 if (copy_to_user(optval, &val, len)) 6068 return -EFAULT; 6069 6070 return 0; 6071 } 6072 6073 /* 6074 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6075 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6076 */ 6077 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6078 char __user *optval, 6079 int __user *optlen) 6080 { 6081 struct sctp_assoc_value params; 6082 struct sctp_sock *sp; 6083 struct sctp_association *asoc; 6084 6085 if (len == sizeof(int)) { 6086 pr_warn_ratelimited(DEPRECATED 6087 "%s (pid %d) " 6088 "Use of int in max_burst socket option.\n" 6089 "Use struct sctp_assoc_value instead\n", 6090 current->comm, task_pid_nr(current)); 6091 params.assoc_id = 0; 6092 } else if (len >= sizeof(struct sctp_assoc_value)) { 6093 len = sizeof(struct sctp_assoc_value); 6094 if (copy_from_user(¶ms, optval, len)) 6095 return -EFAULT; 6096 } else 6097 return -EINVAL; 6098 6099 sp = sctp_sk(sk); 6100 6101 if (params.assoc_id != 0) { 6102 asoc = sctp_id2assoc(sk, params.assoc_id); 6103 if (!asoc) 6104 return -EINVAL; 6105 params.assoc_value = asoc->max_burst; 6106 } else 6107 params.assoc_value = sp->max_burst; 6108 6109 if (len == sizeof(int)) { 6110 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6111 return -EFAULT; 6112 } else { 6113 if (copy_to_user(optval, ¶ms, len)) 6114 return -EFAULT; 6115 } 6116 6117 return 0; 6118 6119 } 6120 6121 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6122 char __user *optval, int __user *optlen) 6123 { 6124 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6125 struct sctp_hmacalgo __user *p = (void __user *)optval; 6126 struct sctp_hmac_algo_param *hmacs; 6127 __u16 data_len = 0; 6128 u32 num_idents; 6129 int i; 6130 6131 if (!ep->auth_enable) 6132 return -EACCES; 6133 6134 hmacs = ep->auth_hmacs_list; 6135 data_len = ntohs(hmacs->param_hdr.length) - 6136 sizeof(struct sctp_paramhdr); 6137 6138 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6139 return -EINVAL; 6140 6141 len = sizeof(struct sctp_hmacalgo) + data_len; 6142 num_idents = data_len / sizeof(u16); 6143 6144 if (put_user(len, optlen)) 6145 return -EFAULT; 6146 if (put_user(num_idents, &p->shmac_num_idents)) 6147 return -EFAULT; 6148 for (i = 0; i < num_idents; i++) { 6149 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6150 6151 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6152 return -EFAULT; 6153 } 6154 return 0; 6155 } 6156 6157 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6158 char __user *optval, int __user *optlen) 6159 { 6160 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6161 struct sctp_authkeyid val; 6162 struct sctp_association *asoc; 6163 6164 if (!ep->auth_enable) 6165 return -EACCES; 6166 6167 if (len < sizeof(struct sctp_authkeyid)) 6168 return -EINVAL; 6169 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 6170 return -EFAULT; 6171 6172 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6173 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6174 return -EINVAL; 6175 6176 if (asoc) 6177 val.scact_keynumber = asoc->active_key_id; 6178 else 6179 val.scact_keynumber = ep->active_key_id; 6180 6181 len = sizeof(struct sctp_authkeyid); 6182 if (put_user(len, optlen)) 6183 return -EFAULT; 6184 if (copy_to_user(optval, &val, len)) 6185 return -EFAULT; 6186 6187 return 0; 6188 } 6189 6190 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6191 char __user *optval, int __user *optlen) 6192 { 6193 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6194 struct sctp_authchunks __user *p = (void __user *)optval; 6195 struct sctp_authchunks val; 6196 struct sctp_association *asoc; 6197 struct sctp_chunks_param *ch; 6198 u32 num_chunks = 0; 6199 char __user *to; 6200 6201 if (!ep->auth_enable) 6202 return -EACCES; 6203 6204 if (len < sizeof(struct sctp_authchunks)) 6205 return -EINVAL; 6206 6207 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6208 return -EFAULT; 6209 6210 to = p->gauth_chunks; 6211 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6212 if (!asoc) 6213 return -EINVAL; 6214 6215 ch = asoc->peer.peer_chunks; 6216 if (!ch) 6217 goto num; 6218 6219 /* See if the user provided enough room for all the data */ 6220 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6221 if (len < num_chunks) 6222 return -EINVAL; 6223 6224 if (copy_to_user(to, ch->chunks, num_chunks)) 6225 return -EFAULT; 6226 num: 6227 len = sizeof(struct sctp_authchunks) + num_chunks; 6228 if (put_user(len, optlen)) 6229 return -EFAULT; 6230 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6231 return -EFAULT; 6232 return 0; 6233 } 6234 6235 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6236 char __user *optval, int __user *optlen) 6237 { 6238 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6239 struct sctp_authchunks __user *p = (void __user *)optval; 6240 struct sctp_authchunks val; 6241 struct sctp_association *asoc; 6242 struct sctp_chunks_param *ch; 6243 u32 num_chunks = 0; 6244 char __user *to; 6245 6246 if (!ep->auth_enable) 6247 return -EACCES; 6248 6249 if (len < sizeof(struct sctp_authchunks)) 6250 return -EINVAL; 6251 6252 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6253 return -EFAULT; 6254 6255 to = p->gauth_chunks; 6256 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6257 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6258 return -EINVAL; 6259 6260 if (asoc) 6261 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6262 else 6263 ch = ep->auth_chunk_list; 6264 6265 if (!ch) 6266 goto num; 6267 6268 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6269 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6270 return -EINVAL; 6271 6272 if (copy_to_user(to, ch->chunks, num_chunks)) 6273 return -EFAULT; 6274 num: 6275 len = sizeof(struct sctp_authchunks) + num_chunks; 6276 if (put_user(len, optlen)) 6277 return -EFAULT; 6278 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6279 return -EFAULT; 6280 6281 return 0; 6282 } 6283 6284 /* 6285 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6286 * This option gets the current number of associations that are attached 6287 * to a one-to-many style socket. The option value is an uint32_t. 6288 */ 6289 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6290 char __user *optval, int __user *optlen) 6291 { 6292 struct sctp_sock *sp = sctp_sk(sk); 6293 struct sctp_association *asoc; 6294 u32 val = 0; 6295 6296 if (sctp_style(sk, TCP)) 6297 return -EOPNOTSUPP; 6298 6299 if (len < sizeof(u32)) 6300 return -EINVAL; 6301 6302 len = sizeof(u32); 6303 6304 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6305 val++; 6306 } 6307 6308 if (put_user(len, optlen)) 6309 return -EFAULT; 6310 if (copy_to_user(optval, &val, len)) 6311 return -EFAULT; 6312 6313 return 0; 6314 } 6315 6316 /* 6317 * 8.1.23 SCTP_AUTO_ASCONF 6318 * See the corresponding setsockopt entry as description 6319 */ 6320 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6321 char __user *optval, int __user *optlen) 6322 { 6323 int val = 0; 6324 6325 if (len < sizeof(int)) 6326 return -EINVAL; 6327 6328 len = sizeof(int); 6329 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6330 val = 1; 6331 if (put_user(len, optlen)) 6332 return -EFAULT; 6333 if (copy_to_user(optval, &val, len)) 6334 return -EFAULT; 6335 return 0; 6336 } 6337 6338 /* 6339 * 8.2.6. Get the Current Identifiers of Associations 6340 * (SCTP_GET_ASSOC_ID_LIST) 6341 * 6342 * This option gets the current list of SCTP association identifiers of 6343 * the SCTP associations handled by a one-to-many style socket. 6344 */ 6345 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6346 char __user *optval, int __user *optlen) 6347 { 6348 struct sctp_sock *sp = sctp_sk(sk); 6349 struct sctp_association *asoc; 6350 struct sctp_assoc_ids *ids; 6351 u32 num = 0; 6352 6353 if (sctp_style(sk, TCP)) 6354 return -EOPNOTSUPP; 6355 6356 if (len < sizeof(struct sctp_assoc_ids)) 6357 return -EINVAL; 6358 6359 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6360 num++; 6361 } 6362 6363 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6364 return -EINVAL; 6365 6366 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6367 6368 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6369 if (unlikely(!ids)) 6370 return -ENOMEM; 6371 6372 ids->gaids_number_of_ids = num; 6373 num = 0; 6374 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6375 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6376 } 6377 6378 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6379 kfree(ids); 6380 return -EFAULT; 6381 } 6382 6383 kfree(ids); 6384 return 0; 6385 } 6386 6387 /* 6388 * SCTP_PEER_ADDR_THLDS 6389 * 6390 * This option allows us to fetch the partially failed threshold for one or all 6391 * transports in an association. See Section 6.1 of: 6392 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6393 */ 6394 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6395 char __user *optval, 6396 int len, 6397 int __user *optlen) 6398 { 6399 struct sctp_paddrthlds val; 6400 struct sctp_transport *trans; 6401 struct sctp_association *asoc; 6402 6403 if (len < sizeof(struct sctp_paddrthlds)) 6404 return -EINVAL; 6405 len = sizeof(struct sctp_paddrthlds); 6406 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6407 return -EFAULT; 6408 6409 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6410 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6411 if (!asoc) 6412 return -ENOENT; 6413 6414 val.spt_pathpfthld = asoc->pf_retrans; 6415 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6416 } else { 6417 trans = sctp_addr_id2transport(sk, &val.spt_address, 6418 val.spt_assoc_id); 6419 if (!trans) 6420 return -ENOENT; 6421 6422 val.spt_pathmaxrxt = trans->pathmaxrxt; 6423 val.spt_pathpfthld = trans->pf_retrans; 6424 } 6425 6426 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6427 return -EFAULT; 6428 6429 return 0; 6430 } 6431 6432 /* 6433 * SCTP_GET_ASSOC_STATS 6434 * 6435 * This option retrieves local per endpoint statistics. It is modeled 6436 * after OpenSolaris' implementation 6437 */ 6438 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6439 char __user *optval, 6440 int __user *optlen) 6441 { 6442 struct sctp_assoc_stats sas; 6443 struct sctp_association *asoc = NULL; 6444 6445 /* User must provide at least the assoc id */ 6446 if (len < sizeof(sctp_assoc_t)) 6447 return -EINVAL; 6448 6449 /* Allow the struct to grow and fill in as much as possible */ 6450 len = min_t(size_t, len, sizeof(sas)); 6451 6452 if (copy_from_user(&sas, optval, len)) 6453 return -EFAULT; 6454 6455 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6456 if (!asoc) 6457 return -EINVAL; 6458 6459 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6460 sas.sas_gapcnt = asoc->stats.gapcnt; 6461 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6462 sas.sas_osacks = asoc->stats.osacks; 6463 sas.sas_isacks = asoc->stats.isacks; 6464 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6465 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6466 sas.sas_oodchunks = asoc->stats.oodchunks; 6467 sas.sas_iodchunks = asoc->stats.iodchunks; 6468 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6469 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6470 sas.sas_idupchunks = asoc->stats.idupchunks; 6471 sas.sas_opackets = asoc->stats.opackets; 6472 sas.sas_ipackets = asoc->stats.ipackets; 6473 6474 /* New high max rto observed, will return 0 if not a single 6475 * RTO update took place. obs_rto_ipaddr will be bogus 6476 * in such a case 6477 */ 6478 sas.sas_maxrto = asoc->stats.max_obs_rto; 6479 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6480 sizeof(struct sockaddr_storage)); 6481 6482 /* Mark beginning of a new observation period */ 6483 asoc->stats.max_obs_rto = asoc->rto_min; 6484 6485 if (put_user(len, optlen)) 6486 return -EFAULT; 6487 6488 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6489 6490 if (copy_to_user(optval, &sas, len)) 6491 return -EFAULT; 6492 6493 return 0; 6494 } 6495 6496 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6497 char __user *optval, 6498 int __user *optlen) 6499 { 6500 int val = 0; 6501 6502 if (len < sizeof(int)) 6503 return -EINVAL; 6504 6505 len = sizeof(int); 6506 if (sctp_sk(sk)->recvrcvinfo) 6507 val = 1; 6508 if (put_user(len, optlen)) 6509 return -EFAULT; 6510 if (copy_to_user(optval, &val, len)) 6511 return -EFAULT; 6512 6513 return 0; 6514 } 6515 6516 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6517 char __user *optval, 6518 int __user *optlen) 6519 { 6520 int val = 0; 6521 6522 if (len < sizeof(int)) 6523 return -EINVAL; 6524 6525 len = sizeof(int); 6526 if (sctp_sk(sk)->recvnxtinfo) 6527 val = 1; 6528 if (put_user(len, optlen)) 6529 return -EFAULT; 6530 if (copy_to_user(optval, &val, len)) 6531 return -EFAULT; 6532 6533 return 0; 6534 } 6535 6536 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6537 char __user *optval, 6538 int __user *optlen) 6539 { 6540 struct sctp_assoc_value params; 6541 struct sctp_association *asoc; 6542 int retval = -EFAULT; 6543 6544 if (len < sizeof(params)) { 6545 retval = -EINVAL; 6546 goto out; 6547 } 6548 6549 len = sizeof(params); 6550 if (copy_from_user(¶ms, optval, len)) 6551 goto out; 6552 6553 asoc = sctp_id2assoc(sk, params.assoc_id); 6554 if (asoc) { 6555 params.assoc_value = asoc->prsctp_enable; 6556 } else if (!params.assoc_id) { 6557 struct sctp_sock *sp = sctp_sk(sk); 6558 6559 params.assoc_value = sp->ep->prsctp_enable; 6560 } else { 6561 retval = -EINVAL; 6562 goto out; 6563 } 6564 6565 if (put_user(len, optlen)) 6566 goto out; 6567 6568 if (copy_to_user(optval, ¶ms, len)) 6569 goto out; 6570 6571 retval = 0; 6572 6573 out: 6574 return retval; 6575 } 6576 6577 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6578 char __user *optval, 6579 int __user *optlen) 6580 { 6581 struct sctp_default_prinfo info; 6582 struct sctp_association *asoc; 6583 int retval = -EFAULT; 6584 6585 if (len < sizeof(info)) { 6586 retval = -EINVAL; 6587 goto out; 6588 } 6589 6590 len = sizeof(info); 6591 if (copy_from_user(&info, optval, len)) 6592 goto out; 6593 6594 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6595 if (asoc) { 6596 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6597 info.pr_value = asoc->default_timetolive; 6598 } else if (!info.pr_assoc_id) { 6599 struct sctp_sock *sp = sctp_sk(sk); 6600 6601 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6602 info.pr_value = sp->default_timetolive; 6603 } else { 6604 retval = -EINVAL; 6605 goto out; 6606 } 6607 6608 if (put_user(len, optlen)) 6609 goto out; 6610 6611 if (copy_to_user(optval, &info, len)) 6612 goto out; 6613 6614 retval = 0; 6615 6616 out: 6617 return retval; 6618 } 6619 6620 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6621 char __user *optval, 6622 int __user *optlen) 6623 { 6624 struct sctp_prstatus params; 6625 struct sctp_association *asoc; 6626 int policy; 6627 int retval = -EINVAL; 6628 6629 if (len < sizeof(params)) 6630 goto out; 6631 6632 len = sizeof(params); 6633 if (copy_from_user(¶ms, optval, len)) { 6634 retval = -EFAULT; 6635 goto out; 6636 } 6637 6638 policy = params.sprstat_policy; 6639 if (policy & ~SCTP_PR_SCTP_MASK) 6640 goto out; 6641 6642 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6643 if (!asoc) 6644 goto out; 6645 6646 if (policy == SCTP_PR_SCTP_NONE) { 6647 params.sprstat_abandoned_unsent = 0; 6648 params.sprstat_abandoned_sent = 0; 6649 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6650 params.sprstat_abandoned_unsent += 6651 asoc->abandoned_unsent[policy]; 6652 params.sprstat_abandoned_sent += 6653 asoc->abandoned_sent[policy]; 6654 } 6655 } else { 6656 params.sprstat_abandoned_unsent = 6657 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6658 params.sprstat_abandoned_sent = 6659 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6660 } 6661 6662 if (put_user(len, optlen)) { 6663 retval = -EFAULT; 6664 goto out; 6665 } 6666 6667 if (copy_to_user(optval, ¶ms, len)) { 6668 retval = -EFAULT; 6669 goto out; 6670 } 6671 6672 retval = 0; 6673 6674 out: 6675 return retval; 6676 } 6677 6678 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6679 char __user *optval, 6680 int __user *optlen) 6681 { 6682 struct sctp_stream_out *streamout; 6683 struct sctp_association *asoc; 6684 struct sctp_prstatus params; 6685 int retval = -EINVAL; 6686 int policy; 6687 6688 if (len < sizeof(params)) 6689 goto out; 6690 6691 len = sizeof(params); 6692 if (copy_from_user(¶ms, optval, len)) { 6693 retval = -EFAULT; 6694 goto out; 6695 } 6696 6697 policy = params.sprstat_policy; 6698 if (policy & ~SCTP_PR_SCTP_MASK) 6699 goto out; 6700 6701 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6702 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6703 goto out; 6704 6705 streamout = &asoc->stream.out[params.sprstat_sid]; 6706 if (policy == SCTP_PR_SCTP_NONE) { 6707 params.sprstat_abandoned_unsent = 0; 6708 params.sprstat_abandoned_sent = 0; 6709 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6710 params.sprstat_abandoned_unsent += 6711 streamout->abandoned_unsent[policy]; 6712 params.sprstat_abandoned_sent += 6713 streamout->abandoned_sent[policy]; 6714 } 6715 } else { 6716 params.sprstat_abandoned_unsent = 6717 streamout->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6718 params.sprstat_abandoned_sent = 6719 streamout->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6720 } 6721 6722 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6723 retval = -EFAULT; 6724 goto out; 6725 } 6726 6727 retval = 0; 6728 6729 out: 6730 return retval; 6731 } 6732 6733 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6734 char __user *optval, 6735 int __user *optlen) 6736 { 6737 struct sctp_assoc_value params; 6738 struct sctp_association *asoc; 6739 int retval = -EFAULT; 6740 6741 if (len < sizeof(params)) { 6742 retval = -EINVAL; 6743 goto out; 6744 } 6745 6746 len = sizeof(params); 6747 if (copy_from_user(¶ms, optval, len)) 6748 goto out; 6749 6750 asoc = sctp_id2assoc(sk, params.assoc_id); 6751 if (asoc) { 6752 params.assoc_value = asoc->reconf_enable; 6753 } else if (!params.assoc_id) { 6754 struct sctp_sock *sp = sctp_sk(sk); 6755 6756 params.assoc_value = sp->ep->reconf_enable; 6757 } else { 6758 retval = -EINVAL; 6759 goto out; 6760 } 6761 6762 if (put_user(len, optlen)) 6763 goto out; 6764 6765 if (copy_to_user(optval, ¶ms, len)) 6766 goto out; 6767 6768 retval = 0; 6769 6770 out: 6771 return retval; 6772 } 6773 6774 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6775 char __user *optval, 6776 int __user *optlen) 6777 { 6778 struct sctp_assoc_value params; 6779 struct sctp_association *asoc; 6780 int retval = -EFAULT; 6781 6782 if (len < sizeof(params)) { 6783 retval = -EINVAL; 6784 goto out; 6785 } 6786 6787 len = sizeof(params); 6788 if (copy_from_user(¶ms, optval, len)) 6789 goto out; 6790 6791 asoc = sctp_id2assoc(sk, params.assoc_id); 6792 if (asoc) { 6793 params.assoc_value = asoc->strreset_enable; 6794 } else if (!params.assoc_id) { 6795 struct sctp_sock *sp = sctp_sk(sk); 6796 6797 params.assoc_value = sp->ep->strreset_enable; 6798 } else { 6799 retval = -EINVAL; 6800 goto out; 6801 } 6802 6803 if (put_user(len, optlen)) 6804 goto out; 6805 6806 if (copy_to_user(optval, ¶ms, len)) 6807 goto out; 6808 6809 retval = 0; 6810 6811 out: 6812 return retval; 6813 } 6814 6815 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6816 char __user *optval, int __user *optlen) 6817 { 6818 int retval = 0; 6819 int len; 6820 6821 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6822 6823 /* I can hardly begin to describe how wrong this is. This is 6824 * so broken as to be worse than useless. The API draft 6825 * REALLY is NOT helpful here... I am not convinced that the 6826 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6827 * are at all well-founded. 6828 */ 6829 if (level != SOL_SCTP) { 6830 struct sctp_af *af = sctp_sk(sk)->pf->af; 6831 6832 retval = af->getsockopt(sk, level, optname, optval, optlen); 6833 return retval; 6834 } 6835 6836 if (get_user(len, optlen)) 6837 return -EFAULT; 6838 6839 if (len < 0) 6840 return -EINVAL; 6841 6842 lock_sock(sk); 6843 6844 switch (optname) { 6845 case SCTP_STATUS: 6846 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6847 break; 6848 case SCTP_DISABLE_FRAGMENTS: 6849 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6850 optlen); 6851 break; 6852 case SCTP_EVENTS: 6853 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6854 break; 6855 case SCTP_AUTOCLOSE: 6856 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6857 break; 6858 case SCTP_SOCKOPT_PEELOFF: 6859 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6860 break; 6861 case SCTP_SOCKOPT_PEELOFF_FLAGS: 6862 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 6863 break; 6864 case SCTP_PEER_ADDR_PARAMS: 6865 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6866 optlen); 6867 break; 6868 case SCTP_DELAYED_SACK: 6869 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6870 optlen); 6871 break; 6872 case SCTP_INITMSG: 6873 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6874 break; 6875 case SCTP_GET_PEER_ADDRS: 6876 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6877 optlen); 6878 break; 6879 case SCTP_GET_LOCAL_ADDRS: 6880 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6881 optlen); 6882 break; 6883 case SCTP_SOCKOPT_CONNECTX3: 6884 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6885 break; 6886 case SCTP_DEFAULT_SEND_PARAM: 6887 retval = sctp_getsockopt_default_send_param(sk, len, 6888 optval, optlen); 6889 break; 6890 case SCTP_DEFAULT_SNDINFO: 6891 retval = sctp_getsockopt_default_sndinfo(sk, len, 6892 optval, optlen); 6893 break; 6894 case SCTP_PRIMARY_ADDR: 6895 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6896 break; 6897 case SCTP_NODELAY: 6898 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6899 break; 6900 case SCTP_RTOINFO: 6901 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6902 break; 6903 case SCTP_ASSOCINFO: 6904 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6905 break; 6906 case SCTP_I_WANT_MAPPED_V4_ADDR: 6907 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6908 break; 6909 case SCTP_MAXSEG: 6910 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6911 break; 6912 case SCTP_GET_PEER_ADDR_INFO: 6913 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6914 optlen); 6915 break; 6916 case SCTP_ADAPTATION_LAYER: 6917 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6918 optlen); 6919 break; 6920 case SCTP_CONTEXT: 6921 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6922 break; 6923 case SCTP_FRAGMENT_INTERLEAVE: 6924 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6925 optlen); 6926 break; 6927 case SCTP_PARTIAL_DELIVERY_POINT: 6928 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6929 optlen); 6930 break; 6931 case SCTP_MAX_BURST: 6932 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6933 break; 6934 case SCTP_AUTH_KEY: 6935 case SCTP_AUTH_CHUNK: 6936 case SCTP_AUTH_DELETE_KEY: 6937 retval = -EOPNOTSUPP; 6938 break; 6939 case SCTP_HMAC_IDENT: 6940 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6941 break; 6942 case SCTP_AUTH_ACTIVE_KEY: 6943 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6944 break; 6945 case SCTP_PEER_AUTH_CHUNKS: 6946 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6947 optlen); 6948 break; 6949 case SCTP_LOCAL_AUTH_CHUNKS: 6950 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6951 optlen); 6952 break; 6953 case SCTP_GET_ASSOC_NUMBER: 6954 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6955 break; 6956 case SCTP_GET_ASSOC_ID_LIST: 6957 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6958 break; 6959 case SCTP_AUTO_ASCONF: 6960 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6961 break; 6962 case SCTP_PEER_ADDR_THLDS: 6963 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6964 break; 6965 case SCTP_GET_ASSOC_STATS: 6966 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6967 break; 6968 case SCTP_RECVRCVINFO: 6969 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6970 break; 6971 case SCTP_RECVNXTINFO: 6972 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6973 break; 6974 case SCTP_PR_SUPPORTED: 6975 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6976 break; 6977 case SCTP_DEFAULT_PRINFO: 6978 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6979 optlen); 6980 break; 6981 case SCTP_PR_ASSOC_STATUS: 6982 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6983 optlen); 6984 break; 6985 case SCTP_PR_STREAM_STATUS: 6986 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 6987 optlen); 6988 break; 6989 case SCTP_RECONFIG_SUPPORTED: 6990 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 6991 optlen); 6992 break; 6993 case SCTP_ENABLE_STREAM_RESET: 6994 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 6995 optlen); 6996 break; 6997 default: 6998 retval = -ENOPROTOOPT; 6999 break; 7000 } 7001 7002 release_sock(sk); 7003 return retval; 7004 } 7005 7006 static int sctp_hash(struct sock *sk) 7007 { 7008 /* STUB */ 7009 return 0; 7010 } 7011 7012 static void sctp_unhash(struct sock *sk) 7013 { 7014 /* STUB */ 7015 } 7016 7017 /* Check if port is acceptable. Possibly find first available port. 7018 * 7019 * The port hash table (contained in the 'global' SCTP protocol storage 7020 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7021 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7022 * list (the list number is the port number hashed out, so as you 7023 * would expect from a hash function, all the ports in a given list have 7024 * such a number that hashes out to the same list number; you were 7025 * expecting that, right?); so each list has a set of ports, with a 7026 * link to the socket (struct sock) that uses it, the port number and 7027 * a fastreuse flag (FIXME: NPI ipg). 7028 */ 7029 static struct sctp_bind_bucket *sctp_bucket_create( 7030 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7031 7032 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7033 { 7034 struct sctp_bind_hashbucket *head; /* hash list */ 7035 struct sctp_bind_bucket *pp; 7036 unsigned short snum; 7037 int ret; 7038 7039 snum = ntohs(addr->v4.sin_port); 7040 7041 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7042 7043 local_bh_disable(); 7044 7045 if (snum == 0) { 7046 /* Search for an available port. */ 7047 int low, high, remaining, index; 7048 unsigned int rover; 7049 struct net *net = sock_net(sk); 7050 7051 inet_get_local_port_range(net, &low, &high); 7052 remaining = (high - low) + 1; 7053 rover = prandom_u32() % remaining + low; 7054 7055 do { 7056 rover++; 7057 if ((rover < low) || (rover > high)) 7058 rover = low; 7059 if (inet_is_local_reserved_port(net, rover)) 7060 continue; 7061 index = sctp_phashfn(sock_net(sk), rover); 7062 head = &sctp_port_hashtable[index]; 7063 spin_lock(&head->lock); 7064 sctp_for_each_hentry(pp, &head->chain) 7065 if ((pp->port == rover) && 7066 net_eq(sock_net(sk), pp->net)) 7067 goto next; 7068 break; 7069 next: 7070 spin_unlock(&head->lock); 7071 } while (--remaining > 0); 7072 7073 /* Exhausted local port range during search? */ 7074 ret = 1; 7075 if (remaining <= 0) 7076 goto fail; 7077 7078 /* OK, here is the one we will use. HEAD (the port 7079 * hash table list entry) is non-NULL and we hold it's 7080 * mutex. 7081 */ 7082 snum = rover; 7083 } else { 7084 /* We are given an specific port number; we verify 7085 * that it is not being used. If it is used, we will 7086 * exahust the search in the hash list corresponding 7087 * to the port number (snum) - we detect that with the 7088 * port iterator, pp being NULL. 7089 */ 7090 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7091 spin_lock(&head->lock); 7092 sctp_for_each_hentry(pp, &head->chain) { 7093 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7094 goto pp_found; 7095 } 7096 } 7097 pp = NULL; 7098 goto pp_not_found; 7099 pp_found: 7100 if (!hlist_empty(&pp->owner)) { 7101 /* We had a port hash table hit - there is an 7102 * available port (pp != NULL) and it is being 7103 * used by other socket (pp->owner not empty); that other 7104 * socket is going to be sk2. 7105 */ 7106 int reuse = sk->sk_reuse; 7107 struct sock *sk2; 7108 7109 pr_debug("%s: found a possible match\n", __func__); 7110 7111 if (pp->fastreuse && sk->sk_reuse && 7112 sk->sk_state != SCTP_SS_LISTENING) 7113 goto success; 7114 7115 /* Run through the list of sockets bound to the port 7116 * (pp->port) [via the pointers bind_next and 7117 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7118 * we get the endpoint they describe and run through 7119 * the endpoint's list of IP (v4 or v6) addresses, 7120 * comparing each of the addresses with the address of 7121 * the socket sk. If we find a match, then that means 7122 * that this port/socket (sk) combination are already 7123 * in an endpoint. 7124 */ 7125 sk_for_each_bound(sk2, &pp->owner) { 7126 struct sctp_endpoint *ep2; 7127 ep2 = sctp_sk(sk2)->ep; 7128 7129 if (sk == sk2 || 7130 (reuse && sk2->sk_reuse && 7131 sk2->sk_state != SCTP_SS_LISTENING)) 7132 continue; 7133 7134 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7135 sctp_sk(sk2), sctp_sk(sk))) { 7136 ret = (long)sk2; 7137 goto fail_unlock; 7138 } 7139 } 7140 7141 pr_debug("%s: found a match\n", __func__); 7142 } 7143 pp_not_found: 7144 /* If there was a hash table miss, create a new port. */ 7145 ret = 1; 7146 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7147 goto fail_unlock; 7148 7149 /* In either case (hit or miss), make sure fastreuse is 1 only 7150 * if sk->sk_reuse is too (that is, if the caller requested 7151 * SO_REUSEADDR on this socket -sk-). 7152 */ 7153 if (hlist_empty(&pp->owner)) { 7154 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7155 pp->fastreuse = 1; 7156 else 7157 pp->fastreuse = 0; 7158 } else if (pp->fastreuse && 7159 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7160 pp->fastreuse = 0; 7161 7162 /* We are set, so fill up all the data in the hash table 7163 * entry, tie the socket list information with the rest of the 7164 * sockets FIXME: Blurry, NPI (ipg). 7165 */ 7166 success: 7167 if (!sctp_sk(sk)->bind_hash) { 7168 inet_sk(sk)->inet_num = snum; 7169 sk_add_bind_node(sk, &pp->owner); 7170 sctp_sk(sk)->bind_hash = pp; 7171 } 7172 ret = 0; 7173 7174 fail_unlock: 7175 spin_unlock(&head->lock); 7176 7177 fail: 7178 local_bh_enable(); 7179 return ret; 7180 } 7181 7182 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7183 * port is requested. 7184 */ 7185 static int sctp_get_port(struct sock *sk, unsigned short snum) 7186 { 7187 union sctp_addr addr; 7188 struct sctp_af *af = sctp_sk(sk)->pf->af; 7189 7190 /* Set up a dummy address struct from the sk. */ 7191 af->from_sk(&addr, sk); 7192 addr.v4.sin_port = htons(snum); 7193 7194 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7195 return !!sctp_get_port_local(sk, &addr); 7196 } 7197 7198 /* 7199 * Move a socket to LISTENING state. 7200 */ 7201 static int sctp_listen_start(struct sock *sk, int backlog) 7202 { 7203 struct sctp_sock *sp = sctp_sk(sk); 7204 struct sctp_endpoint *ep = sp->ep; 7205 struct crypto_shash *tfm = NULL; 7206 char alg[32]; 7207 7208 /* Allocate HMAC for generating cookie. */ 7209 if (!sp->hmac && sp->sctp_hmac_alg) { 7210 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7211 tfm = crypto_alloc_shash(alg, 0, 0); 7212 if (IS_ERR(tfm)) { 7213 net_info_ratelimited("failed to load transform for %s: %ld\n", 7214 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7215 return -ENOSYS; 7216 } 7217 sctp_sk(sk)->hmac = tfm; 7218 } 7219 7220 /* 7221 * If a bind() or sctp_bindx() is not called prior to a listen() 7222 * call that allows new associations to be accepted, the system 7223 * picks an ephemeral port and will choose an address set equivalent 7224 * to binding with a wildcard address. 7225 * 7226 * This is not currently spelled out in the SCTP sockets 7227 * extensions draft, but follows the practice as seen in TCP 7228 * sockets. 7229 * 7230 */ 7231 sk->sk_state = SCTP_SS_LISTENING; 7232 if (!ep->base.bind_addr.port) { 7233 if (sctp_autobind(sk)) 7234 return -EAGAIN; 7235 } else { 7236 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7237 sk->sk_state = SCTP_SS_CLOSED; 7238 return -EADDRINUSE; 7239 } 7240 } 7241 7242 sk->sk_max_ack_backlog = backlog; 7243 sctp_hash_endpoint(ep); 7244 return 0; 7245 } 7246 7247 /* 7248 * 4.1.3 / 5.1.3 listen() 7249 * 7250 * By default, new associations are not accepted for UDP style sockets. 7251 * An application uses listen() to mark a socket as being able to 7252 * accept new associations. 7253 * 7254 * On TCP style sockets, applications use listen() to ready the SCTP 7255 * endpoint for accepting inbound associations. 7256 * 7257 * On both types of endpoints a backlog of '0' disables listening. 7258 * 7259 * Move a socket to LISTENING state. 7260 */ 7261 int sctp_inet_listen(struct socket *sock, int backlog) 7262 { 7263 struct sock *sk = sock->sk; 7264 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7265 int err = -EINVAL; 7266 7267 if (unlikely(backlog < 0)) 7268 return err; 7269 7270 lock_sock(sk); 7271 7272 /* Peeled-off sockets are not allowed to listen(). */ 7273 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7274 goto out; 7275 7276 if (sock->state != SS_UNCONNECTED) 7277 goto out; 7278 7279 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7280 goto out; 7281 7282 /* If backlog is zero, disable listening. */ 7283 if (!backlog) { 7284 if (sctp_sstate(sk, CLOSED)) 7285 goto out; 7286 7287 err = 0; 7288 sctp_unhash_endpoint(ep); 7289 sk->sk_state = SCTP_SS_CLOSED; 7290 if (sk->sk_reuse) 7291 sctp_sk(sk)->bind_hash->fastreuse = 1; 7292 goto out; 7293 } 7294 7295 /* If we are already listening, just update the backlog */ 7296 if (sctp_sstate(sk, LISTENING)) 7297 sk->sk_max_ack_backlog = backlog; 7298 else { 7299 err = sctp_listen_start(sk, backlog); 7300 if (err) 7301 goto out; 7302 } 7303 7304 err = 0; 7305 out: 7306 release_sock(sk); 7307 return err; 7308 } 7309 7310 /* 7311 * This function is done by modeling the current datagram_poll() and the 7312 * tcp_poll(). Note that, based on these implementations, we don't 7313 * lock the socket in this function, even though it seems that, 7314 * ideally, locking or some other mechanisms can be used to ensure 7315 * the integrity of the counters (sndbuf and wmem_alloc) used 7316 * in this place. We assume that we don't need locks either until proven 7317 * otherwise. 7318 * 7319 * Another thing to note is that we include the Async I/O support 7320 * here, again, by modeling the current TCP/UDP code. We don't have 7321 * a good way to test with it yet. 7322 */ 7323 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7324 { 7325 struct sock *sk = sock->sk; 7326 struct sctp_sock *sp = sctp_sk(sk); 7327 unsigned int mask; 7328 7329 poll_wait(file, sk_sleep(sk), wait); 7330 7331 sock_rps_record_flow(sk); 7332 7333 /* A TCP-style listening socket becomes readable when the accept queue 7334 * is not empty. 7335 */ 7336 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7337 return (!list_empty(&sp->ep->asocs)) ? 7338 (POLLIN | POLLRDNORM) : 0; 7339 7340 mask = 0; 7341 7342 /* Is there any exceptional events? */ 7343 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7344 mask |= POLLERR | 7345 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7346 if (sk->sk_shutdown & RCV_SHUTDOWN) 7347 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7348 if (sk->sk_shutdown == SHUTDOWN_MASK) 7349 mask |= POLLHUP; 7350 7351 /* Is it readable? Reconsider this code with TCP-style support. */ 7352 if (!skb_queue_empty(&sk->sk_receive_queue)) 7353 mask |= POLLIN | POLLRDNORM; 7354 7355 /* The association is either gone or not ready. */ 7356 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7357 return mask; 7358 7359 /* Is it writable? */ 7360 if (sctp_writeable(sk)) { 7361 mask |= POLLOUT | POLLWRNORM; 7362 } else { 7363 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7364 /* 7365 * Since the socket is not locked, the buffer 7366 * might be made available after the writeable check and 7367 * before the bit is set. This could cause a lost I/O 7368 * signal. tcp_poll() has a race breaker for this race 7369 * condition. Based on their implementation, we put 7370 * in the following code to cover it as well. 7371 */ 7372 if (sctp_writeable(sk)) 7373 mask |= POLLOUT | POLLWRNORM; 7374 } 7375 return mask; 7376 } 7377 7378 /******************************************************************** 7379 * 2nd Level Abstractions 7380 ********************************************************************/ 7381 7382 static struct sctp_bind_bucket *sctp_bucket_create( 7383 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7384 { 7385 struct sctp_bind_bucket *pp; 7386 7387 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7388 if (pp) { 7389 SCTP_DBG_OBJCNT_INC(bind_bucket); 7390 pp->port = snum; 7391 pp->fastreuse = 0; 7392 INIT_HLIST_HEAD(&pp->owner); 7393 pp->net = net; 7394 hlist_add_head(&pp->node, &head->chain); 7395 } 7396 return pp; 7397 } 7398 7399 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7400 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7401 { 7402 if (pp && hlist_empty(&pp->owner)) { 7403 __hlist_del(&pp->node); 7404 kmem_cache_free(sctp_bucket_cachep, pp); 7405 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7406 } 7407 } 7408 7409 /* Release this socket's reference to a local port. */ 7410 static inline void __sctp_put_port(struct sock *sk) 7411 { 7412 struct sctp_bind_hashbucket *head = 7413 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7414 inet_sk(sk)->inet_num)]; 7415 struct sctp_bind_bucket *pp; 7416 7417 spin_lock(&head->lock); 7418 pp = sctp_sk(sk)->bind_hash; 7419 __sk_del_bind_node(sk); 7420 sctp_sk(sk)->bind_hash = NULL; 7421 inet_sk(sk)->inet_num = 0; 7422 sctp_bucket_destroy(pp); 7423 spin_unlock(&head->lock); 7424 } 7425 7426 void sctp_put_port(struct sock *sk) 7427 { 7428 local_bh_disable(); 7429 __sctp_put_port(sk); 7430 local_bh_enable(); 7431 } 7432 7433 /* 7434 * The system picks an ephemeral port and choose an address set equivalent 7435 * to binding with a wildcard address. 7436 * One of those addresses will be the primary address for the association. 7437 * This automatically enables the multihoming capability of SCTP. 7438 */ 7439 static int sctp_autobind(struct sock *sk) 7440 { 7441 union sctp_addr autoaddr; 7442 struct sctp_af *af; 7443 __be16 port; 7444 7445 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7446 af = sctp_sk(sk)->pf->af; 7447 7448 port = htons(inet_sk(sk)->inet_num); 7449 af->inaddr_any(&autoaddr, port); 7450 7451 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7452 } 7453 7454 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7455 * 7456 * From RFC 2292 7457 * 4.2 The cmsghdr Structure * 7458 * 7459 * When ancillary data is sent or received, any number of ancillary data 7460 * objects can be specified by the msg_control and msg_controllen members of 7461 * the msghdr structure, because each object is preceded by 7462 * a cmsghdr structure defining the object's length (the cmsg_len member). 7463 * Historically Berkeley-derived implementations have passed only one object 7464 * at a time, but this API allows multiple objects to be 7465 * passed in a single call to sendmsg() or recvmsg(). The following example 7466 * shows two ancillary data objects in a control buffer. 7467 * 7468 * |<--------------------------- msg_controllen -------------------------->| 7469 * | | 7470 * 7471 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7472 * 7473 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7474 * | | | 7475 * 7476 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7477 * 7478 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7479 * | | | | | 7480 * 7481 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7482 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7483 * 7484 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7485 * 7486 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7487 * ^ 7488 * | 7489 * 7490 * msg_control 7491 * points here 7492 */ 7493 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7494 { 7495 struct msghdr *my_msg = (struct msghdr *)msg; 7496 struct cmsghdr *cmsg; 7497 7498 for_each_cmsghdr(cmsg, my_msg) { 7499 if (!CMSG_OK(my_msg, cmsg)) 7500 return -EINVAL; 7501 7502 /* Should we parse this header or ignore? */ 7503 if (cmsg->cmsg_level != IPPROTO_SCTP) 7504 continue; 7505 7506 /* Strictly check lengths following example in SCM code. */ 7507 switch (cmsg->cmsg_type) { 7508 case SCTP_INIT: 7509 /* SCTP Socket API Extension 7510 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7511 * 7512 * This cmsghdr structure provides information for 7513 * initializing new SCTP associations with sendmsg(). 7514 * The SCTP_INITMSG socket option uses this same data 7515 * structure. This structure is not used for 7516 * recvmsg(). 7517 * 7518 * cmsg_level cmsg_type cmsg_data[] 7519 * ------------ ------------ ---------------------- 7520 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7521 */ 7522 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7523 return -EINVAL; 7524 7525 cmsgs->init = CMSG_DATA(cmsg); 7526 break; 7527 7528 case SCTP_SNDRCV: 7529 /* SCTP Socket API Extension 7530 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7531 * 7532 * This cmsghdr structure specifies SCTP options for 7533 * sendmsg() and describes SCTP header information 7534 * about a received message through recvmsg(). 7535 * 7536 * cmsg_level cmsg_type cmsg_data[] 7537 * ------------ ------------ ---------------------- 7538 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7539 */ 7540 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7541 return -EINVAL; 7542 7543 cmsgs->srinfo = CMSG_DATA(cmsg); 7544 7545 if (cmsgs->srinfo->sinfo_flags & 7546 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7547 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7548 SCTP_ABORT | SCTP_EOF)) 7549 return -EINVAL; 7550 break; 7551 7552 case SCTP_SNDINFO: 7553 /* SCTP Socket API Extension 7554 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7555 * 7556 * This cmsghdr structure specifies SCTP options for 7557 * sendmsg(). This structure and SCTP_RCVINFO replaces 7558 * SCTP_SNDRCV which has been deprecated. 7559 * 7560 * cmsg_level cmsg_type cmsg_data[] 7561 * ------------ ------------ --------------------- 7562 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7563 */ 7564 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7565 return -EINVAL; 7566 7567 cmsgs->sinfo = CMSG_DATA(cmsg); 7568 7569 if (cmsgs->sinfo->snd_flags & 7570 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7571 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7572 SCTP_ABORT | SCTP_EOF)) 7573 return -EINVAL; 7574 break; 7575 default: 7576 return -EINVAL; 7577 } 7578 } 7579 7580 return 0; 7581 } 7582 7583 /* 7584 * Wait for a packet.. 7585 * Note: This function is the same function as in core/datagram.c 7586 * with a few modifications to make lksctp work. 7587 */ 7588 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7589 { 7590 int error; 7591 DEFINE_WAIT(wait); 7592 7593 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7594 7595 /* Socket errors? */ 7596 error = sock_error(sk); 7597 if (error) 7598 goto out; 7599 7600 if (!skb_queue_empty(&sk->sk_receive_queue)) 7601 goto ready; 7602 7603 /* Socket shut down? */ 7604 if (sk->sk_shutdown & RCV_SHUTDOWN) 7605 goto out; 7606 7607 /* Sequenced packets can come disconnected. If so we report the 7608 * problem. 7609 */ 7610 error = -ENOTCONN; 7611 7612 /* Is there a good reason to think that we may receive some data? */ 7613 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7614 goto out; 7615 7616 /* Handle signals. */ 7617 if (signal_pending(current)) 7618 goto interrupted; 7619 7620 /* Let another process have a go. Since we are going to sleep 7621 * anyway. Note: This may cause odd behaviors if the message 7622 * does not fit in the user's buffer, but this seems to be the 7623 * only way to honor MSG_DONTWAIT realistically. 7624 */ 7625 release_sock(sk); 7626 *timeo_p = schedule_timeout(*timeo_p); 7627 lock_sock(sk); 7628 7629 ready: 7630 finish_wait(sk_sleep(sk), &wait); 7631 return 0; 7632 7633 interrupted: 7634 error = sock_intr_errno(*timeo_p); 7635 7636 out: 7637 finish_wait(sk_sleep(sk), &wait); 7638 *err = error; 7639 return error; 7640 } 7641 7642 /* Receive a datagram. 7643 * Note: This is pretty much the same routine as in core/datagram.c 7644 * with a few changes to make lksctp work. 7645 */ 7646 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7647 int noblock, int *err) 7648 { 7649 int error; 7650 struct sk_buff *skb; 7651 long timeo; 7652 7653 timeo = sock_rcvtimeo(sk, noblock); 7654 7655 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7656 MAX_SCHEDULE_TIMEOUT); 7657 7658 do { 7659 /* Again only user level code calls this function, 7660 * so nothing interrupt level 7661 * will suddenly eat the receive_queue. 7662 * 7663 * Look at current nfs client by the way... 7664 * However, this function was correct in any case. 8) 7665 */ 7666 if (flags & MSG_PEEK) { 7667 skb = skb_peek(&sk->sk_receive_queue); 7668 if (skb) 7669 refcount_inc(&skb->users); 7670 } else { 7671 skb = __skb_dequeue(&sk->sk_receive_queue); 7672 } 7673 7674 if (skb) 7675 return skb; 7676 7677 /* Caller is allowed not to check sk->sk_err before calling. */ 7678 error = sock_error(sk); 7679 if (error) 7680 goto no_packet; 7681 7682 if (sk->sk_shutdown & RCV_SHUTDOWN) 7683 break; 7684 7685 if (sk_can_busy_loop(sk)) { 7686 sk_busy_loop(sk, noblock); 7687 7688 if (!skb_queue_empty(&sk->sk_receive_queue)) 7689 continue; 7690 } 7691 7692 /* User doesn't want to wait. */ 7693 error = -EAGAIN; 7694 if (!timeo) 7695 goto no_packet; 7696 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7697 7698 return NULL; 7699 7700 no_packet: 7701 *err = error; 7702 return NULL; 7703 } 7704 7705 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7706 static void __sctp_write_space(struct sctp_association *asoc) 7707 { 7708 struct sock *sk = asoc->base.sk; 7709 7710 if (sctp_wspace(asoc) <= 0) 7711 return; 7712 7713 if (waitqueue_active(&asoc->wait)) 7714 wake_up_interruptible(&asoc->wait); 7715 7716 if (sctp_writeable(sk)) { 7717 struct socket_wq *wq; 7718 7719 rcu_read_lock(); 7720 wq = rcu_dereference(sk->sk_wq); 7721 if (wq) { 7722 if (waitqueue_active(&wq->wait)) 7723 wake_up_interruptible(&wq->wait); 7724 7725 /* Note that we try to include the Async I/O support 7726 * here by modeling from the current TCP/UDP code. 7727 * We have not tested with it yet. 7728 */ 7729 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7730 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7731 } 7732 rcu_read_unlock(); 7733 } 7734 } 7735 7736 static void sctp_wake_up_waiters(struct sock *sk, 7737 struct sctp_association *asoc) 7738 { 7739 struct sctp_association *tmp = asoc; 7740 7741 /* We do accounting for the sndbuf space per association, 7742 * so we only need to wake our own association. 7743 */ 7744 if (asoc->ep->sndbuf_policy) 7745 return __sctp_write_space(asoc); 7746 7747 /* If association goes down and is just flushing its 7748 * outq, then just normally notify others. 7749 */ 7750 if (asoc->base.dead) 7751 return sctp_write_space(sk); 7752 7753 /* Accounting for the sndbuf space is per socket, so we 7754 * need to wake up others, try to be fair and in case of 7755 * other associations, let them have a go first instead 7756 * of just doing a sctp_write_space() call. 7757 * 7758 * Note that we reach sctp_wake_up_waiters() only when 7759 * associations free up queued chunks, thus we are under 7760 * lock and the list of associations on a socket is 7761 * guaranteed not to change. 7762 */ 7763 for (tmp = list_next_entry(tmp, asocs); 1; 7764 tmp = list_next_entry(tmp, asocs)) { 7765 /* Manually skip the head element. */ 7766 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7767 continue; 7768 /* Wake up association. */ 7769 __sctp_write_space(tmp); 7770 /* We've reached the end. */ 7771 if (tmp == asoc) 7772 break; 7773 } 7774 } 7775 7776 /* Do accounting for the sndbuf space. 7777 * Decrement the used sndbuf space of the corresponding association by the 7778 * data size which was just transmitted(freed). 7779 */ 7780 static void sctp_wfree(struct sk_buff *skb) 7781 { 7782 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7783 struct sctp_association *asoc = chunk->asoc; 7784 struct sock *sk = asoc->base.sk; 7785 7786 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7787 sizeof(struct sk_buff) + 7788 sizeof(struct sctp_chunk); 7789 7790 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 7791 7792 /* 7793 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7794 */ 7795 sk->sk_wmem_queued -= skb->truesize; 7796 sk_mem_uncharge(sk, skb->truesize); 7797 7798 sock_wfree(skb); 7799 sctp_wake_up_waiters(sk, asoc); 7800 7801 sctp_association_put(asoc); 7802 } 7803 7804 /* Do accounting for the receive space on the socket. 7805 * Accounting for the association is done in ulpevent.c 7806 * We set this as a destructor for the cloned data skbs so that 7807 * accounting is done at the correct time. 7808 */ 7809 void sctp_sock_rfree(struct sk_buff *skb) 7810 { 7811 struct sock *sk = skb->sk; 7812 struct sctp_ulpevent *event = sctp_skb2event(skb); 7813 7814 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7815 7816 /* 7817 * Mimic the behavior of sock_rfree 7818 */ 7819 sk_mem_uncharge(sk, event->rmem_len); 7820 } 7821 7822 7823 /* Helper function to wait for space in the sndbuf. */ 7824 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7825 size_t msg_len) 7826 { 7827 struct sock *sk = asoc->base.sk; 7828 int err = 0; 7829 long current_timeo = *timeo_p; 7830 DEFINE_WAIT(wait); 7831 7832 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7833 *timeo_p, msg_len); 7834 7835 /* Increment the association's refcnt. */ 7836 sctp_association_hold(asoc); 7837 7838 /* Wait on the association specific sndbuf space. */ 7839 for (;;) { 7840 prepare_to_wait_exclusive(&asoc->wait, &wait, 7841 TASK_INTERRUPTIBLE); 7842 if (!*timeo_p) 7843 goto do_nonblock; 7844 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7845 asoc->base.dead) 7846 goto do_error; 7847 if (signal_pending(current)) 7848 goto do_interrupted; 7849 if (msg_len <= sctp_wspace(asoc)) 7850 break; 7851 7852 /* Let another process have a go. Since we are going 7853 * to sleep anyway. 7854 */ 7855 release_sock(sk); 7856 current_timeo = schedule_timeout(current_timeo); 7857 lock_sock(sk); 7858 7859 *timeo_p = current_timeo; 7860 } 7861 7862 out: 7863 finish_wait(&asoc->wait, &wait); 7864 7865 /* Release the association's refcnt. */ 7866 sctp_association_put(asoc); 7867 7868 return err; 7869 7870 do_error: 7871 err = -EPIPE; 7872 goto out; 7873 7874 do_interrupted: 7875 err = sock_intr_errno(*timeo_p); 7876 goto out; 7877 7878 do_nonblock: 7879 err = -EAGAIN; 7880 goto out; 7881 } 7882 7883 void sctp_data_ready(struct sock *sk) 7884 { 7885 struct socket_wq *wq; 7886 7887 rcu_read_lock(); 7888 wq = rcu_dereference(sk->sk_wq); 7889 if (skwq_has_sleeper(wq)) 7890 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7891 POLLRDNORM | POLLRDBAND); 7892 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7893 rcu_read_unlock(); 7894 } 7895 7896 /* If socket sndbuf has changed, wake up all per association waiters. */ 7897 void sctp_write_space(struct sock *sk) 7898 { 7899 struct sctp_association *asoc; 7900 7901 /* Wake up the tasks in each wait queue. */ 7902 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7903 __sctp_write_space(asoc); 7904 } 7905 } 7906 7907 /* Is there any sndbuf space available on the socket? 7908 * 7909 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7910 * associations on the same socket. For a UDP-style socket with 7911 * multiple associations, it is possible for it to be "unwriteable" 7912 * prematurely. I assume that this is acceptable because 7913 * a premature "unwriteable" is better than an accidental "writeable" which 7914 * would cause an unwanted block under certain circumstances. For the 1-1 7915 * UDP-style sockets or TCP-style sockets, this code should work. 7916 * - Daisy 7917 */ 7918 static int sctp_writeable(struct sock *sk) 7919 { 7920 int amt = 0; 7921 7922 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7923 if (amt < 0) 7924 amt = 0; 7925 return amt; 7926 } 7927 7928 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7929 * returns immediately with EINPROGRESS. 7930 */ 7931 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7932 { 7933 struct sock *sk = asoc->base.sk; 7934 int err = 0; 7935 long current_timeo = *timeo_p; 7936 DEFINE_WAIT(wait); 7937 7938 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7939 7940 /* Increment the association's refcnt. */ 7941 sctp_association_hold(asoc); 7942 7943 for (;;) { 7944 prepare_to_wait_exclusive(&asoc->wait, &wait, 7945 TASK_INTERRUPTIBLE); 7946 if (!*timeo_p) 7947 goto do_nonblock; 7948 if (sk->sk_shutdown & RCV_SHUTDOWN) 7949 break; 7950 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7951 asoc->base.dead) 7952 goto do_error; 7953 if (signal_pending(current)) 7954 goto do_interrupted; 7955 7956 if (sctp_state(asoc, ESTABLISHED)) 7957 break; 7958 7959 /* Let another process have a go. Since we are going 7960 * to sleep anyway. 7961 */ 7962 release_sock(sk); 7963 current_timeo = schedule_timeout(current_timeo); 7964 lock_sock(sk); 7965 7966 *timeo_p = current_timeo; 7967 } 7968 7969 out: 7970 finish_wait(&asoc->wait, &wait); 7971 7972 /* Release the association's refcnt. */ 7973 sctp_association_put(asoc); 7974 7975 return err; 7976 7977 do_error: 7978 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7979 err = -ETIMEDOUT; 7980 else 7981 err = -ECONNREFUSED; 7982 goto out; 7983 7984 do_interrupted: 7985 err = sock_intr_errno(*timeo_p); 7986 goto out; 7987 7988 do_nonblock: 7989 err = -EINPROGRESS; 7990 goto out; 7991 } 7992 7993 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7994 { 7995 struct sctp_endpoint *ep; 7996 int err = 0; 7997 DEFINE_WAIT(wait); 7998 7999 ep = sctp_sk(sk)->ep; 8000 8001 8002 for (;;) { 8003 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8004 TASK_INTERRUPTIBLE); 8005 8006 if (list_empty(&ep->asocs)) { 8007 release_sock(sk); 8008 timeo = schedule_timeout(timeo); 8009 lock_sock(sk); 8010 } 8011 8012 err = -EINVAL; 8013 if (!sctp_sstate(sk, LISTENING)) 8014 break; 8015 8016 err = 0; 8017 if (!list_empty(&ep->asocs)) 8018 break; 8019 8020 err = sock_intr_errno(timeo); 8021 if (signal_pending(current)) 8022 break; 8023 8024 err = -EAGAIN; 8025 if (!timeo) 8026 break; 8027 } 8028 8029 finish_wait(sk_sleep(sk), &wait); 8030 8031 return err; 8032 } 8033 8034 static void sctp_wait_for_close(struct sock *sk, long timeout) 8035 { 8036 DEFINE_WAIT(wait); 8037 8038 do { 8039 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8040 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8041 break; 8042 release_sock(sk); 8043 timeout = schedule_timeout(timeout); 8044 lock_sock(sk); 8045 } while (!signal_pending(current) && timeout); 8046 8047 finish_wait(sk_sleep(sk), &wait); 8048 } 8049 8050 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8051 { 8052 struct sk_buff *frag; 8053 8054 if (!skb->data_len) 8055 goto done; 8056 8057 /* Don't forget the fragments. */ 8058 skb_walk_frags(skb, frag) 8059 sctp_skb_set_owner_r_frag(frag, sk); 8060 8061 done: 8062 sctp_skb_set_owner_r(skb, sk); 8063 } 8064 8065 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8066 struct sctp_association *asoc) 8067 { 8068 struct inet_sock *inet = inet_sk(sk); 8069 struct inet_sock *newinet; 8070 8071 newsk->sk_type = sk->sk_type; 8072 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8073 newsk->sk_flags = sk->sk_flags; 8074 newsk->sk_tsflags = sk->sk_tsflags; 8075 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8076 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8077 newsk->sk_reuse = sk->sk_reuse; 8078 8079 newsk->sk_shutdown = sk->sk_shutdown; 8080 newsk->sk_destruct = sctp_destruct_sock; 8081 newsk->sk_family = sk->sk_family; 8082 newsk->sk_protocol = IPPROTO_SCTP; 8083 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8084 newsk->sk_sndbuf = sk->sk_sndbuf; 8085 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8086 newsk->sk_lingertime = sk->sk_lingertime; 8087 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8088 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8089 newsk->sk_rxhash = sk->sk_rxhash; 8090 8091 newinet = inet_sk(newsk); 8092 8093 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8094 * getsockname() and getpeername() 8095 */ 8096 newinet->inet_sport = inet->inet_sport; 8097 newinet->inet_saddr = inet->inet_saddr; 8098 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8099 newinet->inet_dport = htons(asoc->peer.port); 8100 newinet->pmtudisc = inet->pmtudisc; 8101 newinet->inet_id = asoc->next_tsn ^ jiffies; 8102 8103 newinet->uc_ttl = inet->uc_ttl; 8104 newinet->mc_loop = 1; 8105 newinet->mc_ttl = 1; 8106 newinet->mc_index = 0; 8107 newinet->mc_list = NULL; 8108 8109 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8110 net_enable_timestamp(); 8111 8112 security_sk_clone(sk, newsk); 8113 } 8114 8115 static inline void sctp_copy_descendant(struct sock *sk_to, 8116 const struct sock *sk_from) 8117 { 8118 int ancestor_size = sizeof(struct inet_sock) + 8119 sizeof(struct sctp_sock) - 8120 offsetof(struct sctp_sock, auto_asconf_list); 8121 8122 if (sk_from->sk_family == PF_INET6) 8123 ancestor_size += sizeof(struct ipv6_pinfo); 8124 8125 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8126 } 8127 8128 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8129 * and its messages to the newsk. 8130 */ 8131 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8132 struct sctp_association *assoc, 8133 enum sctp_socket_type type) 8134 { 8135 struct sctp_sock *oldsp = sctp_sk(oldsk); 8136 struct sctp_sock *newsp = sctp_sk(newsk); 8137 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8138 struct sctp_endpoint *newep = newsp->ep; 8139 struct sk_buff *skb, *tmp; 8140 struct sctp_ulpevent *event; 8141 struct sctp_bind_hashbucket *head; 8142 8143 /* Migrate socket buffer sizes and all the socket level options to the 8144 * new socket. 8145 */ 8146 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8147 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8148 /* Brute force copy old sctp opt. */ 8149 sctp_copy_descendant(newsk, oldsk); 8150 8151 /* Restore the ep value that was overwritten with the above structure 8152 * copy. 8153 */ 8154 newsp->ep = newep; 8155 newsp->hmac = NULL; 8156 8157 /* Hook this new socket in to the bind_hash list. */ 8158 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8159 inet_sk(oldsk)->inet_num)]; 8160 spin_lock_bh(&head->lock); 8161 pp = sctp_sk(oldsk)->bind_hash; 8162 sk_add_bind_node(newsk, &pp->owner); 8163 sctp_sk(newsk)->bind_hash = pp; 8164 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8165 spin_unlock_bh(&head->lock); 8166 8167 /* Copy the bind_addr list from the original endpoint to the new 8168 * endpoint so that we can handle restarts properly 8169 */ 8170 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8171 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8172 8173 /* Move any messages in the old socket's receive queue that are for the 8174 * peeled off association to the new socket's receive queue. 8175 */ 8176 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8177 event = sctp_skb2event(skb); 8178 if (event->asoc == assoc) { 8179 __skb_unlink(skb, &oldsk->sk_receive_queue); 8180 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8181 sctp_skb_set_owner_r_frag(skb, newsk); 8182 } 8183 } 8184 8185 /* Clean up any messages pending delivery due to partial 8186 * delivery. Three cases: 8187 * 1) No partial deliver; no work. 8188 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8189 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8190 */ 8191 skb_queue_head_init(&newsp->pd_lobby); 8192 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8193 8194 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8195 struct sk_buff_head *queue; 8196 8197 /* Decide which queue to move pd_lobby skbs to. */ 8198 if (assoc->ulpq.pd_mode) { 8199 queue = &newsp->pd_lobby; 8200 } else 8201 queue = &newsk->sk_receive_queue; 8202 8203 /* Walk through the pd_lobby, looking for skbs that 8204 * need moved to the new socket. 8205 */ 8206 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8207 event = sctp_skb2event(skb); 8208 if (event->asoc == assoc) { 8209 __skb_unlink(skb, &oldsp->pd_lobby); 8210 __skb_queue_tail(queue, skb); 8211 sctp_skb_set_owner_r_frag(skb, newsk); 8212 } 8213 } 8214 8215 /* Clear up any skbs waiting for the partial 8216 * delivery to finish. 8217 */ 8218 if (assoc->ulpq.pd_mode) 8219 sctp_clear_pd(oldsk, NULL); 8220 8221 } 8222 8223 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 8224 sctp_skb_set_owner_r_frag(skb, newsk); 8225 8226 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 8227 sctp_skb_set_owner_r_frag(skb, newsk); 8228 8229 /* Set the type of socket to indicate that it is peeled off from the 8230 * original UDP-style socket or created with the accept() call on a 8231 * TCP-style socket.. 8232 */ 8233 newsp->type = type; 8234 8235 /* Mark the new socket "in-use" by the user so that any packets 8236 * that may arrive on the association after we've moved it are 8237 * queued to the backlog. This prevents a potential race between 8238 * backlog processing on the old socket and new-packet processing 8239 * on the new socket. 8240 * 8241 * The caller has just allocated newsk so we can guarantee that other 8242 * paths won't try to lock it and then oldsk. 8243 */ 8244 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8245 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8246 sctp_assoc_migrate(assoc, newsk); 8247 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8248 8249 /* If the association on the newsk is already closed before accept() 8250 * is called, set RCV_SHUTDOWN flag. 8251 */ 8252 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8253 newsk->sk_state = SCTP_SS_CLOSED; 8254 newsk->sk_shutdown |= RCV_SHUTDOWN; 8255 } else { 8256 newsk->sk_state = SCTP_SS_ESTABLISHED; 8257 } 8258 8259 release_sock(newsk); 8260 } 8261 8262 8263 /* This proto struct describes the ULP interface for SCTP. */ 8264 struct proto sctp_prot = { 8265 .name = "SCTP", 8266 .owner = THIS_MODULE, 8267 .close = sctp_close, 8268 .connect = sctp_connect, 8269 .disconnect = sctp_disconnect, 8270 .accept = sctp_accept, 8271 .ioctl = sctp_ioctl, 8272 .init = sctp_init_sock, 8273 .destroy = sctp_destroy_sock, 8274 .shutdown = sctp_shutdown, 8275 .setsockopt = sctp_setsockopt, 8276 .getsockopt = sctp_getsockopt, 8277 .sendmsg = sctp_sendmsg, 8278 .recvmsg = sctp_recvmsg, 8279 .bind = sctp_bind, 8280 .backlog_rcv = sctp_backlog_rcv, 8281 .hash = sctp_hash, 8282 .unhash = sctp_unhash, 8283 .get_port = sctp_get_port, 8284 .obj_size = sizeof(struct sctp_sock), 8285 .sysctl_mem = sysctl_sctp_mem, 8286 .sysctl_rmem = sysctl_sctp_rmem, 8287 .sysctl_wmem = sysctl_sctp_wmem, 8288 .memory_pressure = &sctp_memory_pressure, 8289 .enter_memory_pressure = sctp_enter_memory_pressure, 8290 .memory_allocated = &sctp_memory_allocated, 8291 .sockets_allocated = &sctp_sockets_allocated, 8292 }; 8293 8294 #if IS_ENABLED(CONFIG_IPV6) 8295 8296 #include <net/transp_v6.h> 8297 static void sctp_v6_destroy_sock(struct sock *sk) 8298 { 8299 sctp_destroy_sock(sk); 8300 inet6_destroy_sock(sk); 8301 } 8302 8303 struct proto sctpv6_prot = { 8304 .name = "SCTPv6", 8305 .owner = THIS_MODULE, 8306 .close = sctp_close, 8307 .connect = sctp_connect, 8308 .disconnect = sctp_disconnect, 8309 .accept = sctp_accept, 8310 .ioctl = sctp_ioctl, 8311 .init = sctp_init_sock, 8312 .destroy = sctp_v6_destroy_sock, 8313 .shutdown = sctp_shutdown, 8314 .setsockopt = sctp_setsockopt, 8315 .getsockopt = sctp_getsockopt, 8316 .sendmsg = sctp_sendmsg, 8317 .recvmsg = sctp_recvmsg, 8318 .bind = sctp_bind, 8319 .backlog_rcv = sctp_backlog_rcv, 8320 .hash = sctp_hash, 8321 .unhash = sctp_unhash, 8322 .get_port = sctp_get_port, 8323 .obj_size = sizeof(struct sctp6_sock), 8324 .sysctl_mem = sysctl_sctp_mem, 8325 .sysctl_rmem = sysctl_sctp_rmem, 8326 .sysctl_wmem = sysctl_sctp_wmem, 8327 .memory_pressure = &sctp_memory_pressure, 8328 .enter_memory_pressure = sctp_enter_memory_pressure, 8329 .memory_allocated = &sctp_memory_allocated, 8330 .sockets_allocated = &sctp_sockets_allocated, 8331 }; 8332 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8333