1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 151 void (*cb)(struct sctp_chunk *)) 152 153 { 154 struct sctp_outq *q = &asoc->outqueue; 155 struct sctp_transport *t; 156 struct sctp_chunk *chunk; 157 158 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 159 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 160 cb(chunk); 161 162 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 163 cb(chunk); 164 165 list_for_each_entry(chunk, &q->sacked, transmitted_list) 166 cb(chunk); 167 168 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 169 cb(chunk); 170 171 list_for_each_entry(chunk, &q->out_chunk_list, list) 172 cb(chunk); 173 } 174 175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 176 void (*cb)(struct sk_buff *, struct sock *)) 177 178 { 179 struct sk_buff *skb, *tmp; 180 181 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 182 cb(skb, sk); 183 184 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 185 cb(skb, sk); 186 187 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 188 cb(skb, sk); 189 } 190 191 /* Verify that this is a valid address. */ 192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 193 int len) 194 { 195 struct sctp_af *af; 196 197 /* Verify basic sockaddr. */ 198 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 199 if (!af) 200 return -EINVAL; 201 202 /* Is this a valid SCTP address? */ 203 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 204 return -EINVAL; 205 206 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /* Look up the association by its id. If this is not a UDP-style 213 * socket, the ID field is always ignored. 214 */ 215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 216 { 217 struct sctp_association *asoc = NULL; 218 219 /* If this is not a UDP-style socket, assoc id should be ignored. */ 220 if (!sctp_style(sk, UDP)) { 221 /* Return NULL if the socket state is not ESTABLISHED. It 222 * could be a TCP-style listening socket or a socket which 223 * hasn't yet called connect() to establish an association. 224 */ 225 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 226 return NULL; 227 228 /* Get the first and the only association from the list. */ 229 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 230 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 231 struct sctp_association, asocs); 232 return asoc; 233 } 234 235 /* Otherwise this is a UDP-style socket. */ 236 if (id <= SCTP_ALL_ASSOC) 237 return NULL; 238 239 spin_lock_bh(&sctp_assocs_id_lock); 240 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 241 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 242 asoc = NULL; 243 spin_unlock_bh(&sctp_assocs_id_lock); 244 245 return asoc; 246 } 247 248 /* Look up the transport from an address and an assoc id. If both address and 249 * id are specified, the associations matching the address and the id should be 250 * the same. 251 */ 252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 253 struct sockaddr_storage *addr, 254 sctp_assoc_t id) 255 { 256 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 257 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 258 union sctp_addr *laddr = (union sctp_addr *)addr; 259 struct sctp_transport *transport; 260 261 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 262 return NULL; 263 264 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 265 laddr, 266 &transport); 267 268 if (!addr_asoc) 269 return NULL; 270 271 id_asoc = sctp_id2assoc(sk, id); 272 if (id_asoc && (id_asoc != addr_asoc)) 273 return NULL; 274 275 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 276 (union sctp_addr *)addr); 277 278 return transport; 279 } 280 281 /* API 3.1.2 bind() - UDP Style Syntax 282 * The syntax of bind() is, 283 * 284 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 285 * 286 * sd - the socket descriptor returned by socket(). 287 * addr - the address structure (struct sockaddr_in or struct 288 * sockaddr_in6 [RFC 2553]), 289 * addr_len - the size of the address structure. 290 */ 291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 292 { 293 int retval = 0; 294 295 lock_sock(sk); 296 297 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 298 addr, addr_len); 299 300 /* Disallow binding twice. */ 301 if (!sctp_sk(sk)->ep->base.bind_addr.port) 302 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 303 addr_len); 304 else 305 retval = -EINVAL; 306 307 release_sock(sk); 308 309 return retval; 310 } 311 312 static long sctp_get_port_local(struct sock *, union sctp_addr *); 313 314 /* Verify this is a valid sockaddr. */ 315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 316 union sctp_addr *addr, int len) 317 { 318 struct sctp_af *af; 319 320 /* Check minimum size. */ 321 if (len < sizeof (struct sockaddr)) 322 return NULL; 323 324 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 325 return NULL; 326 327 if (addr->sa.sa_family == AF_INET6) { 328 if (len < SIN6_LEN_RFC2133) 329 return NULL; 330 /* V4 mapped address are really of AF_INET family */ 331 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 332 !opt->pf->af_supported(AF_INET, opt)) 333 return NULL; 334 } 335 336 /* If we get this far, af is valid. */ 337 af = sctp_get_af_specific(addr->sa.sa_family); 338 339 if (len < af->sockaddr_len) 340 return NULL; 341 342 return af; 343 } 344 345 /* Bind a local address either to an endpoint or to an association. */ 346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 347 { 348 struct net *net = sock_net(sk); 349 struct sctp_sock *sp = sctp_sk(sk); 350 struct sctp_endpoint *ep = sp->ep; 351 struct sctp_bind_addr *bp = &ep->base.bind_addr; 352 struct sctp_af *af; 353 unsigned short snum; 354 int ret = 0; 355 356 /* Common sockaddr verification. */ 357 af = sctp_sockaddr_af(sp, addr, len); 358 if (!af) { 359 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 360 __func__, sk, addr, len); 361 return -EINVAL; 362 } 363 364 snum = ntohs(addr->v4.sin_port); 365 366 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 367 __func__, sk, &addr->sa, bp->port, snum, len); 368 369 /* PF specific bind() address verification. */ 370 if (!sp->pf->bind_verify(sp, addr)) 371 return -EADDRNOTAVAIL; 372 373 /* We must either be unbound, or bind to the same port. 374 * It's OK to allow 0 ports if we are already bound. 375 * We'll just inhert an already bound port in this case 376 */ 377 if (bp->port) { 378 if (!snum) 379 snum = bp->port; 380 else if (snum != bp->port) { 381 pr_debug("%s: new port %d doesn't match existing port " 382 "%d\n", __func__, snum, bp->port); 383 return -EINVAL; 384 } 385 } 386 387 if (snum && snum < inet_prot_sock(net) && 388 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 389 return -EACCES; 390 391 /* See if the address matches any of the addresses we may have 392 * already bound before checking against other endpoints. 393 */ 394 if (sctp_bind_addr_match(bp, addr, sp)) 395 return -EINVAL; 396 397 /* Make sure we are allowed to bind here. 398 * The function sctp_get_port_local() does duplicate address 399 * detection. 400 */ 401 addr->v4.sin_port = htons(snum); 402 if ((ret = sctp_get_port_local(sk, addr))) { 403 return -EADDRINUSE; 404 } 405 406 /* Refresh ephemeral port. */ 407 if (!bp->port) 408 bp->port = inet_sk(sk)->inet_num; 409 410 /* Add the address to the bind address list. 411 * Use GFP_ATOMIC since BHs will be disabled. 412 */ 413 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 414 SCTP_ADDR_SRC, GFP_ATOMIC); 415 416 /* Copy back into socket for getsockname() use. */ 417 if (!ret) { 418 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 419 sp->pf->to_sk_saddr(addr, sk); 420 } 421 422 return ret; 423 } 424 425 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 426 * 427 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 428 * at any one time. If a sender, after sending an ASCONF chunk, decides 429 * it needs to transfer another ASCONF Chunk, it MUST wait until the 430 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 431 * subsequent ASCONF. Note this restriction binds each side, so at any 432 * time two ASCONF may be in-transit on any given association (one sent 433 * from each endpoint). 434 */ 435 static int sctp_send_asconf(struct sctp_association *asoc, 436 struct sctp_chunk *chunk) 437 { 438 struct net *net = sock_net(asoc->base.sk); 439 int retval = 0; 440 441 /* If there is an outstanding ASCONF chunk, queue it for later 442 * transmission. 443 */ 444 if (asoc->addip_last_asconf) { 445 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 446 goto out; 447 } 448 449 /* Hold the chunk until an ASCONF_ACK is received. */ 450 sctp_chunk_hold(chunk); 451 retval = sctp_primitive_ASCONF(net, asoc, chunk); 452 if (retval) 453 sctp_chunk_free(chunk); 454 else 455 asoc->addip_last_asconf = chunk; 456 457 out: 458 return retval; 459 } 460 461 /* Add a list of addresses as bind addresses to local endpoint or 462 * association. 463 * 464 * Basically run through each address specified in the addrs/addrcnt 465 * array/length pair, determine if it is IPv6 or IPv4 and call 466 * sctp_do_bind() on it. 467 * 468 * If any of them fails, then the operation will be reversed and the 469 * ones that were added will be removed. 470 * 471 * Only sctp_setsockopt_bindx() is supposed to call this function. 472 */ 473 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 474 { 475 int cnt; 476 int retval = 0; 477 void *addr_buf; 478 struct sockaddr *sa_addr; 479 struct sctp_af *af; 480 481 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 482 addrs, addrcnt); 483 484 addr_buf = addrs; 485 for (cnt = 0; cnt < addrcnt; cnt++) { 486 /* The list may contain either IPv4 or IPv6 address; 487 * determine the address length for walking thru the list. 488 */ 489 sa_addr = addr_buf; 490 af = sctp_get_af_specific(sa_addr->sa_family); 491 if (!af) { 492 retval = -EINVAL; 493 goto err_bindx_add; 494 } 495 496 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 497 af->sockaddr_len); 498 499 addr_buf += af->sockaddr_len; 500 501 err_bindx_add: 502 if (retval < 0) { 503 /* Failed. Cleanup the ones that have been added */ 504 if (cnt > 0) 505 sctp_bindx_rem(sk, addrs, cnt); 506 return retval; 507 } 508 } 509 510 return retval; 511 } 512 513 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 514 * associations that are part of the endpoint indicating that a list of local 515 * addresses are added to the endpoint. 516 * 517 * If any of the addresses is already in the bind address list of the 518 * association, we do not send the chunk for that association. But it will not 519 * affect other associations. 520 * 521 * Only sctp_setsockopt_bindx() is supposed to call this function. 522 */ 523 static int sctp_send_asconf_add_ip(struct sock *sk, 524 struct sockaddr *addrs, 525 int addrcnt) 526 { 527 struct sctp_sock *sp; 528 struct sctp_endpoint *ep; 529 struct sctp_association *asoc; 530 struct sctp_bind_addr *bp; 531 struct sctp_chunk *chunk; 532 struct sctp_sockaddr_entry *laddr; 533 union sctp_addr *addr; 534 union sctp_addr saveaddr; 535 void *addr_buf; 536 struct sctp_af *af; 537 struct list_head *p; 538 int i; 539 int retval = 0; 540 541 sp = sctp_sk(sk); 542 ep = sp->ep; 543 544 if (!ep->asconf_enable) 545 return retval; 546 547 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 548 __func__, sk, addrs, addrcnt); 549 550 list_for_each_entry(asoc, &ep->asocs, asocs) { 551 if (!asoc->peer.asconf_capable) 552 continue; 553 554 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 555 continue; 556 557 if (!sctp_state(asoc, ESTABLISHED)) 558 continue; 559 560 /* Check if any address in the packed array of addresses is 561 * in the bind address list of the association. If so, 562 * do not send the asconf chunk to its peer, but continue with 563 * other associations. 564 */ 565 addr_buf = addrs; 566 for (i = 0; i < addrcnt; i++) { 567 addr = addr_buf; 568 af = sctp_get_af_specific(addr->v4.sin_family); 569 if (!af) { 570 retval = -EINVAL; 571 goto out; 572 } 573 574 if (sctp_assoc_lookup_laddr(asoc, addr)) 575 break; 576 577 addr_buf += af->sockaddr_len; 578 } 579 if (i < addrcnt) 580 continue; 581 582 /* Use the first valid address in bind addr list of 583 * association as Address Parameter of ASCONF CHUNK. 584 */ 585 bp = &asoc->base.bind_addr; 586 p = bp->address_list.next; 587 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 588 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 589 addrcnt, SCTP_PARAM_ADD_IP); 590 if (!chunk) { 591 retval = -ENOMEM; 592 goto out; 593 } 594 595 /* Add the new addresses to the bind address list with 596 * use_as_src set to 0. 597 */ 598 addr_buf = addrs; 599 for (i = 0; i < addrcnt; i++) { 600 addr = addr_buf; 601 af = sctp_get_af_specific(addr->v4.sin_family); 602 memcpy(&saveaddr, addr, af->sockaddr_len); 603 retval = sctp_add_bind_addr(bp, &saveaddr, 604 sizeof(saveaddr), 605 SCTP_ADDR_NEW, GFP_ATOMIC); 606 addr_buf += af->sockaddr_len; 607 } 608 if (asoc->src_out_of_asoc_ok) { 609 struct sctp_transport *trans; 610 611 list_for_each_entry(trans, 612 &asoc->peer.transport_addr_list, transports) { 613 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 614 2*asoc->pathmtu, 4380)); 615 trans->ssthresh = asoc->peer.i.a_rwnd; 616 trans->rto = asoc->rto_initial; 617 sctp_max_rto(asoc, trans); 618 trans->rtt = trans->srtt = trans->rttvar = 0; 619 /* Clear the source and route cache */ 620 sctp_transport_route(trans, NULL, 621 sctp_sk(asoc->base.sk)); 622 } 623 } 624 retval = sctp_send_asconf(asoc, chunk); 625 } 626 627 out: 628 return retval; 629 } 630 631 /* Remove a list of addresses from bind addresses list. Do not remove the 632 * last address. 633 * 634 * Basically run through each address specified in the addrs/addrcnt 635 * array/length pair, determine if it is IPv6 or IPv4 and call 636 * sctp_del_bind() on it. 637 * 638 * If any of them fails, then the operation will be reversed and the 639 * ones that were removed will be added back. 640 * 641 * At least one address has to be left; if only one address is 642 * available, the operation will return -EBUSY. 643 * 644 * Only sctp_setsockopt_bindx() is supposed to call this function. 645 */ 646 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 647 { 648 struct sctp_sock *sp = sctp_sk(sk); 649 struct sctp_endpoint *ep = sp->ep; 650 int cnt; 651 struct sctp_bind_addr *bp = &ep->base.bind_addr; 652 int retval = 0; 653 void *addr_buf; 654 union sctp_addr *sa_addr; 655 struct sctp_af *af; 656 657 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 658 __func__, sk, addrs, addrcnt); 659 660 addr_buf = addrs; 661 for (cnt = 0; cnt < addrcnt; cnt++) { 662 /* If the bind address list is empty or if there is only one 663 * bind address, there is nothing more to be removed (we need 664 * at least one address here). 665 */ 666 if (list_empty(&bp->address_list) || 667 (sctp_list_single_entry(&bp->address_list))) { 668 retval = -EBUSY; 669 goto err_bindx_rem; 670 } 671 672 sa_addr = addr_buf; 673 af = sctp_get_af_specific(sa_addr->sa.sa_family); 674 if (!af) { 675 retval = -EINVAL; 676 goto err_bindx_rem; 677 } 678 679 if (!af->addr_valid(sa_addr, sp, NULL)) { 680 retval = -EADDRNOTAVAIL; 681 goto err_bindx_rem; 682 } 683 684 if (sa_addr->v4.sin_port && 685 sa_addr->v4.sin_port != htons(bp->port)) { 686 retval = -EINVAL; 687 goto err_bindx_rem; 688 } 689 690 if (!sa_addr->v4.sin_port) 691 sa_addr->v4.sin_port = htons(bp->port); 692 693 /* FIXME - There is probably a need to check if sk->sk_saddr and 694 * sk->sk_rcv_addr are currently set to one of the addresses to 695 * be removed. This is something which needs to be looked into 696 * when we are fixing the outstanding issues with multi-homing 697 * socket routing and failover schemes. Refer to comments in 698 * sctp_do_bind(). -daisy 699 */ 700 retval = sctp_del_bind_addr(bp, sa_addr); 701 702 addr_buf += af->sockaddr_len; 703 err_bindx_rem: 704 if (retval < 0) { 705 /* Failed. Add the ones that has been removed back */ 706 if (cnt > 0) 707 sctp_bindx_add(sk, addrs, cnt); 708 return retval; 709 } 710 } 711 712 return retval; 713 } 714 715 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 716 * the associations that are part of the endpoint indicating that a list of 717 * local addresses are removed from the endpoint. 718 * 719 * If any of the addresses is already in the bind address list of the 720 * association, we do not send the chunk for that association. But it will not 721 * affect other associations. 722 * 723 * Only sctp_setsockopt_bindx() is supposed to call this function. 724 */ 725 static int sctp_send_asconf_del_ip(struct sock *sk, 726 struct sockaddr *addrs, 727 int addrcnt) 728 { 729 struct sctp_sock *sp; 730 struct sctp_endpoint *ep; 731 struct sctp_association *asoc; 732 struct sctp_transport *transport; 733 struct sctp_bind_addr *bp; 734 struct sctp_chunk *chunk; 735 union sctp_addr *laddr; 736 void *addr_buf; 737 struct sctp_af *af; 738 struct sctp_sockaddr_entry *saddr; 739 int i; 740 int retval = 0; 741 int stored = 0; 742 743 chunk = NULL; 744 sp = sctp_sk(sk); 745 ep = sp->ep; 746 747 if (!ep->asconf_enable) 748 return retval; 749 750 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 751 __func__, sk, addrs, addrcnt); 752 753 list_for_each_entry(asoc, &ep->asocs, asocs) { 754 755 if (!asoc->peer.asconf_capable) 756 continue; 757 758 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 759 continue; 760 761 if (!sctp_state(asoc, ESTABLISHED)) 762 continue; 763 764 /* Check if any address in the packed array of addresses is 765 * not present in the bind address list of the association. 766 * If so, do not send the asconf chunk to its peer, but 767 * continue with other associations. 768 */ 769 addr_buf = addrs; 770 for (i = 0; i < addrcnt; i++) { 771 laddr = addr_buf; 772 af = sctp_get_af_specific(laddr->v4.sin_family); 773 if (!af) { 774 retval = -EINVAL; 775 goto out; 776 } 777 778 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 779 break; 780 781 addr_buf += af->sockaddr_len; 782 } 783 if (i < addrcnt) 784 continue; 785 786 /* Find one address in the association's bind address list 787 * that is not in the packed array of addresses. This is to 788 * make sure that we do not delete all the addresses in the 789 * association. 790 */ 791 bp = &asoc->base.bind_addr; 792 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 793 addrcnt, sp); 794 if ((laddr == NULL) && (addrcnt == 1)) { 795 if (asoc->asconf_addr_del_pending) 796 continue; 797 asoc->asconf_addr_del_pending = 798 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 799 if (asoc->asconf_addr_del_pending == NULL) { 800 retval = -ENOMEM; 801 goto out; 802 } 803 asoc->asconf_addr_del_pending->sa.sa_family = 804 addrs->sa_family; 805 asoc->asconf_addr_del_pending->v4.sin_port = 806 htons(bp->port); 807 if (addrs->sa_family == AF_INET) { 808 struct sockaddr_in *sin; 809 810 sin = (struct sockaddr_in *)addrs; 811 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 812 } else if (addrs->sa_family == AF_INET6) { 813 struct sockaddr_in6 *sin6; 814 815 sin6 = (struct sockaddr_in6 *)addrs; 816 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 817 } 818 819 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 820 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 821 asoc->asconf_addr_del_pending); 822 823 asoc->src_out_of_asoc_ok = 1; 824 stored = 1; 825 goto skip_mkasconf; 826 } 827 828 if (laddr == NULL) 829 return -EINVAL; 830 831 /* We do not need RCU protection throughout this loop 832 * because this is done under a socket lock from the 833 * setsockopt call. 834 */ 835 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 836 SCTP_PARAM_DEL_IP); 837 if (!chunk) { 838 retval = -ENOMEM; 839 goto out; 840 } 841 842 skip_mkasconf: 843 /* Reset use_as_src flag for the addresses in the bind address 844 * list that are to be deleted. 845 */ 846 addr_buf = addrs; 847 for (i = 0; i < addrcnt; i++) { 848 laddr = addr_buf; 849 af = sctp_get_af_specific(laddr->v4.sin_family); 850 list_for_each_entry(saddr, &bp->address_list, list) { 851 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 852 saddr->state = SCTP_ADDR_DEL; 853 } 854 addr_buf += af->sockaddr_len; 855 } 856 857 /* Update the route and saddr entries for all the transports 858 * as some of the addresses in the bind address list are 859 * about to be deleted and cannot be used as source addresses. 860 */ 861 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 862 transports) { 863 sctp_transport_route(transport, NULL, 864 sctp_sk(asoc->base.sk)); 865 } 866 867 if (stored) 868 /* We don't need to transmit ASCONF */ 869 continue; 870 retval = sctp_send_asconf(asoc, chunk); 871 } 872 out: 873 return retval; 874 } 875 876 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 877 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 878 { 879 struct sock *sk = sctp_opt2sk(sp); 880 union sctp_addr *addr; 881 struct sctp_af *af; 882 883 /* It is safe to write port space in caller. */ 884 addr = &addrw->a; 885 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 886 af = sctp_get_af_specific(addr->sa.sa_family); 887 if (!af) 888 return -EINVAL; 889 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 890 return -EINVAL; 891 892 if (addrw->state == SCTP_ADDR_NEW) 893 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 894 else 895 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 896 } 897 898 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 899 * 900 * API 8.1 901 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 902 * int flags); 903 * 904 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 905 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 906 * or IPv6 addresses. 907 * 908 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 909 * Section 3.1.2 for this usage. 910 * 911 * addrs is a pointer to an array of one or more socket addresses. Each 912 * address is contained in its appropriate structure (i.e. struct 913 * sockaddr_in or struct sockaddr_in6) the family of the address type 914 * must be used to distinguish the address length (note that this 915 * representation is termed a "packed array" of addresses). The caller 916 * specifies the number of addresses in the array with addrcnt. 917 * 918 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 919 * -1, and sets errno to the appropriate error code. 920 * 921 * For SCTP, the port given in each socket address must be the same, or 922 * sctp_bindx() will fail, setting errno to EINVAL. 923 * 924 * The flags parameter is formed from the bitwise OR of zero or more of 925 * the following currently defined flags: 926 * 927 * SCTP_BINDX_ADD_ADDR 928 * 929 * SCTP_BINDX_REM_ADDR 930 * 931 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 932 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 933 * addresses from the association. The two flags are mutually exclusive; 934 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 935 * not remove all addresses from an association; sctp_bindx() will 936 * reject such an attempt with EINVAL. 937 * 938 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 939 * additional addresses with an endpoint after calling bind(). Or use 940 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 941 * socket is associated with so that no new association accepted will be 942 * associated with those addresses. If the endpoint supports dynamic 943 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 944 * endpoint to send the appropriate message to the peer to change the 945 * peers address lists. 946 * 947 * Adding and removing addresses from a connected association is 948 * optional functionality. Implementations that do not support this 949 * functionality should return EOPNOTSUPP. 950 * 951 * Basically do nothing but copying the addresses from user to kernel 952 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 953 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 954 * from userspace. 955 * 956 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 957 * it. 958 * 959 * sk The sk of the socket 960 * addrs The pointer to the addresses in user land 961 * addrssize Size of the addrs buffer 962 * op Operation to perform (add or remove, see the flags of 963 * sctp_bindx) 964 * 965 * Returns 0 if ok, <0 errno code on error. 966 */ 967 static int sctp_setsockopt_bindx(struct sock *sk, 968 struct sockaddr __user *addrs, 969 int addrs_size, int op) 970 { 971 struct sockaddr *kaddrs; 972 int err; 973 int addrcnt = 0; 974 int walk_size = 0; 975 struct sockaddr *sa_addr; 976 void *addr_buf; 977 struct sctp_af *af; 978 979 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 980 __func__, sk, addrs, addrs_size, op); 981 982 if (unlikely(addrs_size <= 0)) 983 return -EINVAL; 984 985 kaddrs = memdup_user(addrs, addrs_size); 986 if (IS_ERR(kaddrs)) 987 return PTR_ERR(kaddrs); 988 989 /* Walk through the addrs buffer and count the number of addresses. */ 990 addr_buf = kaddrs; 991 while (walk_size < addrs_size) { 992 if (walk_size + sizeof(sa_family_t) > addrs_size) { 993 kfree(kaddrs); 994 return -EINVAL; 995 } 996 997 sa_addr = addr_buf; 998 af = sctp_get_af_specific(sa_addr->sa_family); 999 1000 /* If the address family is not supported or if this address 1001 * causes the address buffer to overflow return EINVAL. 1002 */ 1003 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1004 kfree(kaddrs); 1005 return -EINVAL; 1006 } 1007 addrcnt++; 1008 addr_buf += af->sockaddr_len; 1009 walk_size += af->sockaddr_len; 1010 } 1011 1012 /* Do the work. */ 1013 switch (op) { 1014 case SCTP_BINDX_ADD_ADDR: 1015 /* Allow security module to validate bindx addresses. */ 1016 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1017 (struct sockaddr *)kaddrs, 1018 addrs_size); 1019 if (err) 1020 goto out; 1021 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1022 if (err) 1023 goto out; 1024 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1025 break; 1026 1027 case SCTP_BINDX_REM_ADDR: 1028 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1029 if (err) 1030 goto out; 1031 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1032 break; 1033 1034 default: 1035 err = -EINVAL; 1036 break; 1037 } 1038 1039 out: 1040 kfree(kaddrs); 1041 1042 return err; 1043 } 1044 1045 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1046 const union sctp_addr *daddr, 1047 const struct sctp_initmsg *init, 1048 struct sctp_transport **tp) 1049 { 1050 struct sctp_association *asoc; 1051 struct sock *sk = ep->base.sk; 1052 struct net *net = sock_net(sk); 1053 enum sctp_scope scope; 1054 int err; 1055 1056 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1057 return -EADDRNOTAVAIL; 1058 1059 if (!ep->base.bind_addr.port) { 1060 if (sctp_autobind(sk)) 1061 return -EAGAIN; 1062 } else { 1063 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1064 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1065 return -EACCES; 1066 } 1067 1068 scope = sctp_scope(daddr); 1069 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1070 if (!asoc) 1071 return -ENOMEM; 1072 1073 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1074 if (err < 0) 1075 goto free; 1076 1077 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1078 if (!*tp) { 1079 err = -ENOMEM; 1080 goto free; 1081 } 1082 1083 if (!init) 1084 return 0; 1085 1086 if (init->sinit_num_ostreams) { 1087 __u16 outcnt = init->sinit_num_ostreams; 1088 1089 asoc->c.sinit_num_ostreams = outcnt; 1090 /* outcnt has been changed, need to re-init stream */ 1091 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1092 if (err) 1093 goto free; 1094 } 1095 1096 if (init->sinit_max_instreams) 1097 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1098 1099 if (init->sinit_max_attempts) 1100 asoc->max_init_attempts = init->sinit_max_attempts; 1101 1102 if (init->sinit_max_init_timeo) 1103 asoc->max_init_timeo = 1104 msecs_to_jiffies(init->sinit_max_init_timeo); 1105 1106 return 0; 1107 free: 1108 sctp_association_free(asoc); 1109 return err; 1110 } 1111 1112 static int sctp_connect_add_peer(struct sctp_association *asoc, 1113 union sctp_addr *daddr, int addr_len) 1114 { 1115 struct sctp_endpoint *ep = asoc->ep; 1116 struct sctp_association *old; 1117 struct sctp_transport *t; 1118 int err; 1119 1120 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1121 if (err) 1122 return err; 1123 1124 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1125 if (old && old != asoc) 1126 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1127 : -EALREADY; 1128 1129 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1130 return -EADDRNOTAVAIL; 1131 1132 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1133 if (!t) 1134 return -ENOMEM; 1135 1136 return 0; 1137 } 1138 1139 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1140 * 1141 * Common routine for handling connect() and sctp_connectx(). 1142 * Connect will come in with just a single address. 1143 */ 1144 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1145 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1146 { 1147 struct sctp_sock *sp = sctp_sk(sk); 1148 struct sctp_endpoint *ep = sp->ep; 1149 struct sctp_transport *transport; 1150 struct sctp_association *asoc; 1151 void *addr_buf = kaddrs; 1152 union sctp_addr *daddr; 1153 struct sctp_af *af; 1154 int walk_size, err; 1155 long timeo; 1156 1157 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1158 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1159 return -EISCONN; 1160 1161 daddr = addr_buf; 1162 af = sctp_get_af_specific(daddr->sa.sa_family); 1163 if (!af || af->sockaddr_len > addrs_size) 1164 return -EINVAL; 1165 1166 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1167 if (err) 1168 return err; 1169 1170 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1171 if (asoc) 1172 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1173 : -EALREADY; 1174 1175 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1176 if (err) 1177 return err; 1178 asoc = transport->asoc; 1179 1180 addr_buf += af->sockaddr_len; 1181 walk_size = af->sockaddr_len; 1182 while (walk_size < addrs_size) { 1183 err = -EINVAL; 1184 if (walk_size + sizeof(sa_family_t) > addrs_size) 1185 goto out_free; 1186 1187 daddr = addr_buf; 1188 af = sctp_get_af_specific(daddr->sa.sa_family); 1189 if (!af || af->sockaddr_len + walk_size > addrs_size) 1190 goto out_free; 1191 1192 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1193 goto out_free; 1194 1195 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1196 if (err) 1197 goto out_free; 1198 1199 addr_buf += af->sockaddr_len; 1200 walk_size += af->sockaddr_len; 1201 } 1202 1203 /* In case the user of sctp_connectx() wants an association 1204 * id back, assign one now. 1205 */ 1206 if (assoc_id) { 1207 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1208 if (err < 0) 1209 goto out_free; 1210 } 1211 1212 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1213 if (err < 0) 1214 goto out_free; 1215 1216 /* Initialize sk's dport and daddr for getpeername() */ 1217 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1218 sp->pf->to_sk_daddr(daddr, sk); 1219 sk->sk_err = 0; 1220 1221 if (assoc_id) 1222 *assoc_id = asoc->assoc_id; 1223 1224 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1225 return sctp_wait_for_connect(asoc, &timeo); 1226 1227 out_free: 1228 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1229 __func__, asoc, kaddrs, err); 1230 sctp_association_free(asoc); 1231 return err; 1232 } 1233 1234 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1235 * 1236 * API 8.9 1237 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1238 * sctp_assoc_t *asoc); 1239 * 1240 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1241 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1242 * or IPv6 addresses. 1243 * 1244 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1245 * Section 3.1.2 for this usage. 1246 * 1247 * addrs is a pointer to an array of one or more socket addresses. Each 1248 * address is contained in its appropriate structure (i.e. struct 1249 * sockaddr_in or struct sockaddr_in6) the family of the address type 1250 * must be used to distengish the address length (note that this 1251 * representation is termed a "packed array" of addresses). The caller 1252 * specifies the number of addresses in the array with addrcnt. 1253 * 1254 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1255 * the association id of the new association. On failure, sctp_connectx() 1256 * returns -1, and sets errno to the appropriate error code. The assoc_id 1257 * is not touched by the kernel. 1258 * 1259 * For SCTP, the port given in each socket address must be the same, or 1260 * sctp_connectx() will fail, setting errno to EINVAL. 1261 * 1262 * An application can use sctp_connectx to initiate an association with 1263 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1264 * allows a caller to specify multiple addresses at which a peer can be 1265 * reached. The way the SCTP stack uses the list of addresses to set up 1266 * the association is implementation dependent. This function only 1267 * specifies that the stack will try to make use of all the addresses in 1268 * the list when needed. 1269 * 1270 * Note that the list of addresses passed in is only used for setting up 1271 * the association. It does not necessarily equal the set of addresses 1272 * the peer uses for the resulting association. If the caller wants to 1273 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1274 * retrieve them after the association has been set up. 1275 * 1276 * Basically do nothing but copying the addresses from user to kernel 1277 * land and invoking either sctp_connectx(). This is used for tunneling 1278 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1279 * 1280 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1281 * it. 1282 * 1283 * sk The sk of the socket 1284 * addrs The pointer to the addresses in user land 1285 * addrssize Size of the addrs buffer 1286 * 1287 * Returns >=0 if ok, <0 errno code on error. 1288 */ 1289 static int __sctp_setsockopt_connectx(struct sock *sk, 1290 struct sockaddr __user *addrs, 1291 int addrs_size, 1292 sctp_assoc_t *assoc_id) 1293 { 1294 struct sockaddr *kaddrs; 1295 int err = 0, flags = 0; 1296 1297 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1298 __func__, sk, addrs, addrs_size); 1299 1300 /* make sure the 1st addr's sa_family is accessible later */ 1301 if (unlikely(addrs_size < sizeof(sa_family_t))) 1302 return -EINVAL; 1303 1304 kaddrs = memdup_user(addrs, addrs_size); 1305 if (IS_ERR(kaddrs)) 1306 return PTR_ERR(kaddrs); 1307 1308 /* Allow security module to validate connectx addresses. */ 1309 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1310 (struct sockaddr *)kaddrs, 1311 addrs_size); 1312 if (err) 1313 goto out_free; 1314 1315 /* in-kernel sockets don't generally have a file allocated to them 1316 * if all they do is call sock_create_kern(). 1317 */ 1318 if (sk->sk_socket->file) 1319 flags = sk->sk_socket->file->f_flags; 1320 1321 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1322 1323 out_free: 1324 kfree(kaddrs); 1325 1326 return err; 1327 } 1328 1329 /* 1330 * This is an older interface. It's kept for backward compatibility 1331 * to the option that doesn't provide association id. 1332 */ 1333 static int sctp_setsockopt_connectx_old(struct sock *sk, 1334 struct sockaddr __user *addrs, 1335 int addrs_size) 1336 { 1337 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1338 } 1339 1340 /* 1341 * New interface for the API. The since the API is done with a socket 1342 * option, to make it simple we feed back the association id is as a return 1343 * indication to the call. Error is always negative and association id is 1344 * always positive. 1345 */ 1346 static int sctp_setsockopt_connectx(struct sock *sk, 1347 struct sockaddr __user *addrs, 1348 int addrs_size) 1349 { 1350 sctp_assoc_t assoc_id = 0; 1351 int err = 0; 1352 1353 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1354 1355 if (err) 1356 return err; 1357 else 1358 return assoc_id; 1359 } 1360 1361 /* 1362 * New (hopefully final) interface for the API. 1363 * We use the sctp_getaddrs_old structure so that use-space library 1364 * can avoid any unnecessary allocations. The only different part 1365 * is that we store the actual length of the address buffer into the 1366 * addrs_num structure member. That way we can re-use the existing 1367 * code. 1368 */ 1369 #ifdef CONFIG_COMPAT 1370 struct compat_sctp_getaddrs_old { 1371 sctp_assoc_t assoc_id; 1372 s32 addr_num; 1373 compat_uptr_t addrs; /* struct sockaddr * */ 1374 }; 1375 #endif 1376 1377 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1378 char __user *optval, 1379 int __user *optlen) 1380 { 1381 struct sctp_getaddrs_old param; 1382 sctp_assoc_t assoc_id = 0; 1383 int err = 0; 1384 1385 #ifdef CONFIG_COMPAT 1386 if (in_compat_syscall()) { 1387 struct compat_sctp_getaddrs_old param32; 1388 1389 if (len < sizeof(param32)) 1390 return -EINVAL; 1391 if (copy_from_user(¶m32, optval, sizeof(param32))) 1392 return -EFAULT; 1393 1394 param.assoc_id = param32.assoc_id; 1395 param.addr_num = param32.addr_num; 1396 param.addrs = compat_ptr(param32.addrs); 1397 } else 1398 #endif 1399 { 1400 if (len < sizeof(param)) 1401 return -EINVAL; 1402 if (copy_from_user(¶m, optval, sizeof(param))) 1403 return -EFAULT; 1404 } 1405 1406 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1407 param.addrs, param.addr_num, 1408 &assoc_id); 1409 if (err == 0 || err == -EINPROGRESS) { 1410 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1411 return -EFAULT; 1412 if (put_user(sizeof(assoc_id), optlen)) 1413 return -EFAULT; 1414 } 1415 1416 return err; 1417 } 1418 1419 /* API 3.1.4 close() - UDP Style Syntax 1420 * Applications use close() to perform graceful shutdown (as described in 1421 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1422 * by a UDP-style socket. 1423 * 1424 * The syntax is 1425 * 1426 * ret = close(int sd); 1427 * 1428 * sd - the socket descriptor of the associations to be closed. 1429 * 1430 * To gracefully shutdown a specific association represented by the 1431 * UDP-style socket, an application should use the sendmsg() call, 1432 * passing no user data, but including the appropriate flag in the 1433 * ancillary data (see Section xxxx). 1434 * 1435 * If sd in the close() call is a branched-off socket representing only 1436 * one association, the shutdown is performed on that association only. 1437 * 1438 * 4.1.6 close() - TCP Style Syntax 1439 * 1440 * Applications use close() to gracefully close down an association. 1441 * 1442 * The syntax is: 1443 * 1444 * int close(int sd); 1445 * 1446 * sd - the socket descriptor of the association to be closed. 1447 * 1448 * After an application calls close() on a socket descriptor, no further 1449 * socket operations will succeed on that descriptor. 1450 * 1451 * API 7.1.4 SO_LINGER 1452 * 1453 * An application using the TCP-style socket can use this option to 1454 * perform the SCTP ABORT primitive. The linger option structure is: 1455 * 1456 * struct linger { 1457 * int l_onoff; // option on/off 1458 * int l_linger; // linger time 1459 * }; 1460 * 1461 * To enable the option, set l_onoff to 1. If the l_linger value is set 1462 * to 0, calling close() is the same as the ABORT primitive. If the 1463 * value is set to a negative value, the setsockopt() call will return 1464 * an error. If the value is set to a positive value linger_time, the 1465 * close() can be blocked for at most linger_time ms. If the graceful 1466 * shutdown phase does not finish during this period, close() will 1467 * return but the graceful shutdown phase continues in the system. 1468 */ 1469 static void sctp_close(struct sock *sk, long timeout) 1470 { 1471 struct net *net = sock_net(sk); 1472 struct sctp_endpoint *ep; 1473 struct sctp_association *asoc; 1474 struct list_head *pos, *temp; 1475 unsigned int data_was_unread; 1476 1477 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1478 1479 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1480 sk->sk_shutdown = SHUTDOWN_MASK; 1481 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1482 1483 ep = sctp_sk(sk)->ep; 1484 1485 /* Clean up any skbs sitting on the receive queue. */ 1486 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1487 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1488 1489 /* Walk all associations on an endpoint. */ 1490 list_for_each_safe(pos, temp, &ep->asocs) { 1491 asoc = list_entry(pos, struct sctp_association, asocs); 1492 1493 if (sctp_style(sk, TCP)) { 1494 /* A closed association can still be in the list if 1495 * it belongs to a TCP-style listening socket that is 1496 * not yet accepted. If so, free it. If not, send an 1497 * ABORT or SHUTDOWN based on the linger options. 1498 */ 1499 if (sctp_state(asoc, CLOSED)) { 1500 sctp_association_free(asoc); 1501 continue; 1502 } 1503 } 1504 1505 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1506 !skb_queue_empty(&asoc->ulpq.reasm) || 1507 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1508 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1509 struct sctp_chunk *chunk; 1510 1511 chunk = sctp_make_abort_user(asoc, NULL, 0); 1512 sctp_primitive_ABORT(net, asoc, chunk); 1513 } else 1514 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1515 } 1516 1517 /* On a TCP-style socket, block for at most linger_time if set. */ 1518 if (sctp_style(sk, TCP) && timeout) 1519 sctp_wait_for_close(sk, timeout); 1520 1521 /* This will run the backlog queue. */ 1522 release_sock(sk); 1523 1524 /* Supposedly, no process has access to the socket, but 1525 * the net layers still may. 1526 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1527 * held and that should be grabbed before socket lock. 1528 */ 1529 spin_lock_bh(&net->sctp.addr_wq_lock); 1530 bh_lock_sock_nested(sk); 1531 1532 /* Hold the sock, since sk_common_release() will put sock_put() 1533 * and we have just a little more cleanup. 1534 */ 1535 sock_hold(sk); 1536 sk_common_release(sk); 1537 1538 bh_unlock_sock(sk); 1539 spin_unlock_bh(&net->sctp.addr_wq_lock); 1540 1541 sock_put(sk); 1542 1543 SCTP_DBG_OBJCNT_DEC(sock); 1544 } 1545 1546 /* Handle EPIPE error. */ 1547 static int sctp_error(struct sock *sk, int flags, int err) 1548 { 1549 if (err == -EPIPE) 1550 err = sock_error(sk) ? : -EPIPE; 1551 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1552 send_sig(SIGPIPE, current, 0); 1553 return err; 1554 } 1555 1556 /* API 3.1.3 sendmsg() - UDP Style Syntax 1557 * 1558 * An application uses sendmsg() and recvmsg() calls to transmit data to 1559 * and receive data from its peer. 1560 * 1561 * ssize_t sendmsg(int socket, const struct msghdr *message, 1562 * int flags); 1563 * 1564 * socket - the socket descriptor of the endpoint. 1565 * message - pointer to the msghdr structure which contains a single 1566 * user message and possibly some ancillary data. 1567 * 1568 * See Section 5 for complete description of the data 1569 * structures. 1570 * 1571 * flags - flags sent or received with the user message, see Section 1572 * 5 for complete description of the flags. 1573 * 1574 * Note: This function could use a rewrite especially when explicit 1575 * connect support comes in. 1576 */ 1577 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1578 1579 static int sctp_msghdr_parse(const struct msghdr *msg, 1580 struct sctp_cmsgs *cmsgs); 1581 1582 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1583 struct sctp_sndrcvinfo *srinfo, 1584 const struct msghdr *msg, size_t msg_len) 1585 { 1586 __u16 sflags; 1587 int err; 1588 1589 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1590 return -EPIPE; 1591 1592 if (msg_len > sk->sk_sndbuf) 1593 return -EMSGSIZE; 1594 1595 memset(cmsgs, 0, sizeof(*cmsgs)); 1596 err = sctp_msghdr_parse(msg, cmsgs); 1597 if (err) { 1598 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1599 return err; 1600 } 1601 1602 memset(srinfo, 0, sizeof(*srinfo)); 1603 if (cmsgs->srinfo) { 1604 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1605 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1606 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1607 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1608 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1609 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1610 } 1611 1612 if (cmsgs->sinfo) { 1613 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1614 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1615 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1616 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1617 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1618 } 1619 1620 if (cmsgs->prinfo) { 1621 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1622 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1623 cmsgs->prinfo->pr_policy); 1624 } 1625 1626 sflags = srinfo->sinfo_flags; 1627 if (!sflags && msg_len) 1628 return 0; 1629 1630 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1631 return -EINVAL; 1632 1633 if (((sflags & SCTP_EOF) && msg_len > 0) || 1634 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1635 return -EINVAL; 1636 1637 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1638 return -EINVAL; 1639 1640 return 0; 1641 } 1642 1643 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1644 struct sctp_cmsgs *cmsgs, 1645 union sctp_addr *daddr, 1646 struct sctp_transport **tp) 1647 { 1648 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1649 struct sctp_association *asoc; 1650 struct cmsghdr *cmsg; 1651 __be32 flowinfo = 0; 1652 struct sctp_af *af; 1653 int err; 1654 1655 *tp = NULL; 1656 1657 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1658 return -EINVAL; 1659 1660 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1661 sctp_sstate(sk, CLOSING))) 1662 return -EADDRNOTAVAIL; 1663 1664 /* Label connection socket for first association 1-to-many 1665 * style for client sequence socket()->sendmsg(). This 1666 * needs to be done before sctp_assoc_add_peer() as that will 1667 * set up the initial packet that needs to account for any 1668 * security ip options (CIPSO/CALIPSO) added to the packet. 1669 */ 1670 af = sctp_get_af_specific(daddr->sa.sa_family); 1671 if (!af) 1672 return -EINVAL; 1673 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1674 (struct sockaddr *)daddr, 1675 af->sockaddr_len); 1676 if (err < 0) 1677 return err; 1678 1679 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1680 if (err) 1681 return err; 1682 asoc = (*tp)->asoc; 1683 1684 if (!cmsgs->addrs_msg) 1685 return 0; 1686 1687 if (daddr->sa.sa_family == AF_INET6) 1688 flowinfo = daddr->v6.sin6_flowinfo; 1689 1690 /* sendv addr list parse */ 1691 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1692 union sctp_addr _daddr; 1693 int dlen; 1694 1695 if (cmsg->cmsg_level != IPPROTO_SCTP || 1696 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1697 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1698 continue; 1699 1700 daddr = &_daddr; 1701 memset(daddr, 0, sizeof(*daddr)); 1702 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1703 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1704 if (dlen < sizeof(struct in_addr)) { 1705 err = -EINVAL; 1706 goto free; 1707 } 1708 1709 dlen = sizeof(struct in_addr); 1710 daddr->v4.sin_family = AF_INET; 1711 daddr->v4.sin_port = htons(asoc->peer.port); 1712 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1713 } else { 1714 if (dlen < sizeof(struct in6_addr)) { 1715 err = -EINVAL; 1716 goto free; 1717 } 1718 1719 dlen = sizeof(struct in6_addr); 1720 daddr->v6.sin6_flowinfo = flowinfo; 1721 daddr->v6.sin6_family = AF_INET6; 1722 daddr->v6.sin6_port = htons(asoc->peer.port); 1723 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1724 } 1725 1726 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1727 if (err) 1728 goto free; 1729 } 1730 1731 return 0; 1732 1733 free: 1734 sctp_association_free(asoc); 1735 return err; 1736 } 1737 1738 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1739 __u16 sflags, struct msghdr *msg, 1740 size_t msg_len) 1741 { 1742 struct sock *sk = asoc->base.sk; 1743 struct net *net = sock_net(sk); 1744 1745 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1746 return -EPIPE; 1747 1748 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1749 !sctp_state(asoc, ESTABLISHED)) 1750 return 0; 1751 1752 if (sflags & SCTP_EOF) { 1753 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1754 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1755 1756 return 0; 1757 } 1758 1759 if (sflags & SCTP_ABORT) { 1760 struct sctp_chunk *chunk; 1761 1762 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1763 if (!chunk) 1764 return -ENOMEM; 1765 1766 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1767 sctp_primitive_ABORT(net, asoc, chunk); 1768 iov_iter_revert(&msg->msg_iter, msg_len); 1769 1770 return 0; 1771 } 1772 1773 return 1; 1774 } 1775 1776 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1777 struct msghdr *msg, size_t msg_len, 1778 struct sctp_transport *transport, 1779 struct sctp_sndrcvinfo *sinfo) 1780 { 1781 struct sock *sk = asoc->base.sk; 1782 struct sctp_sock *sp = sctp_sk(sk); 1783 struct net *net = sock_net(sk); 1784 struct sctp_datamsg *datamsg; 1785 bool wait_connect = false; 1786 struct sctp_chunk *chunk; 1787 long timeo; 1788 int err; 1789 1790 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1791 err = -EINVAL; 1792 goto err; 1793 } 1794 1795 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1796 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1797 if (err) 1798 goto err; 1799 } 1800 1801 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1802 err = -EMSGSIZE; 1803 goto err; 1804 } 1805 1806 if (asoc->pmtu_pending) { 1807 if (sp->param_flags & SPP_PMTUD_ENABLE) 1808 sctp_assoc_sync_pmtu(asoc); 1809 asoc->pmtu_pending = 0; 1810 } 1811 1812 if (sctp_wspace(asoc) < (int)msg_len) 1813 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1814 1815 if (sk_under_memory_pressure(sk)) 1816 sk_mem_reclaim(sk); 1817 1818 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1819 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1820 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1821 if (err) 1822 goto err; 1823 } 1824 1825 if (sctp_state(asoc, CLOSED)) { 1826 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1827 if (err) 1828 goto err; 1829 1830 if (asoc->ep->intl_enable) { 1831 timeo = sock_sndtimeo(sk, 0); 1832 err = sctp_wait_for_connect(asoc, &timeo); 1833 if (err) { 1834 err = -ESRCH; 1835 goto err; 1836 } 1837 } else { 1838 wait_connect = true; 1839 } 1840 1841 pr_debug("%s: we associated primitively\n", __func__); 1842 } 1843 1844 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1845 if (IS_ERR(datamsg)) { 1846 err = PTR_ERR(datamsg); 1847 goto err; 1848 } 1849 1850 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1851 1852 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1853 sctp_chunk_hold(chunk); 1854 sctp_set_owner_w(chunk); 1855 chunk->transport = transport; 1856 } 1857 1858 err = sctp_primitive_SEND(net, asoc, datamsg); 1859 if (err) { 1860 sctp_datamsg_free(datamsg); 1861 goto err; 1862 } 1863 1864 pr_debug("%s: we sent primitively\n", __func__); 1865 1866 sctp_datamsg_put(datamsg); 1867 1868 if (unlikely(wait_connect)) { 1869 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1870 sctp_wait_for_connect(asoc, &timeo); 1871 } 1872 1873 err = msg_len; 1874 1875 err: 1876 return err; 1877 } 1878 1879 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1880 const struct msghdr *msg, 1881 struct sctp_cmsgs *cmsgs) 1882 { 1883 union sctp_addr *daddr = NULL; 1884 int err; 1885 1886 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1887 int len = msg->msg_namelen; 1888 1889 if (len > sizeof(*daddr)) 1890 len = sizeof(*daddr); 1891 1892 daddr = (union sctp_addr *)msg->msg_name; 1893 1894 err = sctp_verify_addr(sk, daddr, len); 1895 if (err) 1896 return ERR_PTR(err); 1897 } 1898 1899 return daddr; 1900 } 1901 1902 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1903 struct sctp_sndrcvinfo *sinfo, 1904 struct sctp_cmsgs *cmsgs) 1905 { 1906 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1907 sinfo->sinfo_stream = asoc->default_stream; 1908 sinfo->sinfo_ppid = asoc->default_ppid; 1909 sinfo->sinfo_context = asoc->default_context; 1910 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1911 1912 if (!cmsgs->prinfo) 1913 sinfo->sinfo_flags = asoc->default_flags; 1914 } 1915 1916 if (!cmsgs->srinfo && !cmsgs->prinfo) 1917 sinfo->sinfo_timetolive = asoc->default_timetolive; 1918 1919 if (cmsgs->authinfo) { 1920 /* Reuse sinfo_tsn to indicate that authinfo was set and 1921 * sinfo_ssn to save the keyid on tx path. 1922 */ 1923 sinfo->sinfo_tsn = 1; 1924 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1925 } 1926 } 1927 1928 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1929 { 1930 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1931 struct sctp_transport *transport = NULL; 1932 struct sctp_sndrcvinfo _sinfo, *sinfo; 1933 struct sctp_association *asoc, *tmp; 1934 struct sctp_cmsgs cmsgs; 1935 union sctp_addr *daddr; 1936 bool new = false; 1937 __u16 sflags; 1938 int err; 1939 1940 /* Parse and get snd_info */ 1941 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1942 if (err) 1943 goto out; 1944 1945 sinfo = &_sinfo; 1946 sflags = sinfo->sinfo_flags; 1947 1948 /* Get daddr from msg */ 1949 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1950 if (IS_ERR(daddr)) { 1951 err = PTR_ERR(daddr); 1952 goto out; 1953 } 1954 1955 lock_sock(sk); 1956 1957 /* SCTP_SENDALL process */ 1958 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1959 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1960 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1961 msg_len); 1962 if (err == 0) 1963 continue; 1964 if (err < 0) 1965 goto out_unlock; 1966 1967 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1968 1969 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1970 NULL, sinfo); 1971 if (err < 0) 1972 goto out_unlock; 1973 1974 iov_iter_revert(&msg->msg_iter, err); 1975 } 1976 1977 goto out_unlock; 1978 } 1979 1980 /* Get and check or create asoc */ 1981 if (daddr) { 1982 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1983 if (asoc) { 1984 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1985 msg_len); 1986 if (err <= 0) 1987 goto out_unlock; 1988 } else { 1989 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1990 &transport); 1991 if (err) 1992 goto out_unlock; 1993 1994 asoc = transport->asoc; 1995 new = true; 1996 } 1997 1998 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 1999 transport = NULL; 2000 } else { 2001 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2002 if (!asoc) { 2003 err = -EPIPE; 2004 goto out_unlock; 2005 } 2006 2007 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2008 if (err <= 0) 2009 goto out_unlock; 2010 } 2011 2012 /* Update snd_info with the asoc */ 2013 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2014 2015 /* Send msg to the asoc */ 2016 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2017 if (err < 0 && err != -ESRCH && new) 2018 sctp_association_free(asoc); 2019 2020 out_unlock: 2021 release_sock(sk); 2022 out: 2023 return sctp_error(sk, msg->msg_flags, err); 2024 } 2025 2026 /* This is an extended version of skb_pull() that removes the data from the 2027 * start of a skb even when data is spread across the list of skb's in the 2028 * frag_list. len specifies the total amount of data that needs to be removed. 2029 * when 'len' bytes could be removed from the skb, it returns 0. 2030 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2031 * could not be removed. 2032 */ 2033 static int sctp_skb_pull(struct sk_buff *skb, int len) 2034 { 2035 struct sk_buff *list; 2036 int skb_len = skb_headlen(skb); 2037 int rlen; 2038 2039 if (len <= skb_len) { 2040 __skb_pull(skb, len); 2041 return 0; 2042 } 2043 len -= skb_len; 2044 __skb_pull(skb, skb_len); 2045 2046 skb_walk_frags(skb, list) { 2047 rlen = sctp_skb_pull(list, len); 2048 skb->len -= (len-rlen); 2049 skb->data_len -= (len-rlen); 2050 2051 if (!rlen) 2052 return 0; 2053 2054 len = rlen; 2055 } 2056 2057 return len; 2058 } 2059 2060 /* API 3.1.3 recvmsg() - UDP Style Syntax 2061 * 2062 * ssize_t recvmsg(int socket, struct msghdr *message, 2063 * int flags); 2064 * 2065 * socket - the socket descriptor of the endpoint. 2066 * message - pointer to the msghdr structure which contains a single 2067 * user message and possibly some ancillary data. 2068 * 2069 * See Section 5 for complete description of the data 2070 * structures. 2071 * 2072 * flags - flags sent or received with the user message, see Section 2073 * 5 for complete description of the flags. 2074 */ 2075 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2076 int noblock, int flags, int *addr_len) 2077 { 2078 struct sctp_ulpevent *event = NULL; 2079 struct sctp_sock *sp = sctp_sk(sk); 2080 struct sk_buff *skb, *head_skb; 2081 int copied; 2082 int err = 0; 2083 int skb_len; 2084 2085 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2086 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2087 addr_len); 2088 2089 lock_sock(sk); 2090 2091 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2092 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2093 err = -ENOTCONN; 2094 goto out; 2095 } 2096 2097 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2098 if (!skb) 2099 goto out; 2100 2101 /* Get the total length of the skb including any skb's in the 2102 * frag_list. 2103 */ 2104 skb_len = skb->len; 2105 2106 copied = skb_len; 2107 if (copied > len) 2108 copied = len; 2109 2110 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2111 2112 event = sctp_skb2event(skb); 2113 2114 if (err) 2115 goto out_free; 2116 2117 if (event->chunk && event->chunk->head_skb) 2118 head_skb = event->chunk->head_skb; 2119 else 2120 head_skb = skb; 2121 sock_recv_ts_and_drops(msg, sk, head_skb); 2122 if (sctp_ulpevent_is_notification(event)) { 2123 msg->msg_flags |= MSG_NOTIFICATION; 2124 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2125 } else { 2126 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2127 } 2128 2129 /* Check if we allow SCTP_NXTINFO. */ 2130 if (sp->recvnxtinfo) 2131 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2132 /* Check if we allow SCTP_RCVINFO. */ 2133 if (sp->recvrcvinfo) 2134 sctp_ulpevent_read_rcvinfo(event, msg); 2135 /* Check if we allow SCTP_SNDRCVINFO. */ 2136 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2137 sctp_ulpevent_read_sndrcvinfo(event, msg); 2138 2139 err = copied; 2140 2141 /* If skb's length exceeds the user's buffer, update the skb and 2142 * push it back to the receive_queue so that the next call to 2143 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2144 */ 2145 if (skb_len > copied) { 2146 msg->msg_flags &= ~MSG_EOR; 2147 if (flags & MSG_PEEK) 2148 goto out_free; 2149 sctp_skb_pull(skb, copied); 2150 skb_queue_head(&sk->sk_receive_queue, skb); 2151 2152 /* When only partial message is copied to the user, increase 2153 * rwnd by that amount. If all the data in the skb is read, 2154 * rwnd is updated when the event is freed. 2155 */ 2156 if (!sctp_ulpevent_is_notification(event)) 2157 sctp_assoc_rwnd_increase(event->asoc, copied); 2158 goto out; 2159 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2160 (event->msg_flags & MSG_EOR)) 2161 msg->msg_flags |= MSG_EOR; 2162 else 2163 msg->msg_flags &= ~MSG_EOR; 2164 2165 out_free: 2166 if (flags & MSG_PEEK) { 2167 /* Release the skb reference acquired after peeking the skb in 2168 * sctp_skb_recv_datagram(). 2169 */ 2170 kfree_skb(skb); 2171 } else { 2172 /* Free the event which includes releasing the reference to 2173 * the owner of the skb, freeing the skb and updating the 2174 * rwnd. 2175 */ 2176 sctp_ulpevent_free(event); 2177 } 2178 out: 2179 release_sock(sk); 2180 return err; 2181 } 2182 2183 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2184 * 2185 * This option is a on/off flag. If enabled no SCTP message 2186 * fragmentation will be performed. Instead if a message being sent 2187 * exceeds the current PMTU size, the message will NOT be sent and 2188 * instead a error will be indicated to the user. 2189 */ 2190 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2191 char __user *optval, 2192 unsigned int optlen) 2193 { 2194 int val; 2195 2196 if (optlen < sizeof(int)) 2197 return -EINVAL; 2198 2199 if (get_user(val, (int __user *)optval)) 2200 return -EFAULT; 2201 2202 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2203 2204 return 0; 2205 } 2206 2207 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2208 unsigned int optlen) 2209 { 2210 struct sctp_event_subscribe subscribe; 2211 __u8 *sn_type = (__u8 *)&subscribe; 2212 struct sctp_sock *sp = sctp_sk(sk); 2213 struct sctp_association *asoc; 2214 int i; 2215 2216 if (optlen > sizeof(struct sctp_event_subscribe)) 2217 return -EINVAL; 2218 2219 if (copy_from_user(&subscribe, optval, optlen)) 2220 return -EFAULT; 2221 2222 for (i = 0; i < optlen; i++) 2223 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2224 sn_type[i]); 2225 2226 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2227 asoc->subscribe = sctp_sk(sk)->subscribe; 2228 2229 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2230 * if there is no data to be sent or retransmit, the stack will 2231 * immediately send up this notification. 2232 */ 2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2234 struct sctp_ulpevent *event; 2235 2236 asoc = sctp_id2assoc(sk, 0); 2237 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2238 event = sctp_ulpevent_make_sender_dry_event(asoc, 2239 GFP_USER | __GFP_NOWARN); 2240 if (!event) 2241 return -ENOMEM; 2242 2243 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2244 } 2245 } 2246 2247 return 0; 2248 } 2249 2250 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2251 * 2252 * This socket option is applicable to the UDP-style socket only. When 2253 * set it will cause associations that are idle for more than the 2254 * specified number of seconds to automatically close. An association 2255 * being idle is defined an association that has NOT sent or received 2256 * user data. The special value of '0' indicates that no automatic 2257 * close of any associations should be performed. The option expects an 2258 * integer defining the number of seconds of idle time before an 2259 * association is closed. 2260 */ 2261 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2262 unsigned int optlen) 2263 { 2264 struct sctp_sock *sp = sctp_sk(sk); 2265 struct net *net = sock_net(sk); 2266 2267 /* Applicable to UDP-style socket only */ 2268 if (sctp_style(sk, TCP)) 2269 return -EOPNOTSUPP; 2270 if (optlen != sizeof(int)) 2271 return -EINVAL; 2272 if (copy_from_user(&sp->autoclose, optval, optlen)) 2273 return -EFAULT; 2274 2275 if (sp->autoclose > net->sctp.max_autoclose) 2276 sp->autoclose = net->sctp.max_autoclose; 2277 2278 return 0; 2279 } 2280 2281 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2282 * 2283 * Applications can enable or disable heartbeats for any peer address of 2284 * an association, modify an address's heartbeat interval, force a 2285 * heartbeat to be sent immediately, and adjust the address's maximum 2286 * number of retransmissions sent before an address is considered 2287 * unreachable. The following structure is used to access and modify an 2288 * address's parameters: 2289 * 2290 * struct sctp_paddrparams { 2291 * sctp_assoc_t spp_assoc_id; 2292 * struct sockaddr_storage spp_address; 2293 * uint32_t spp_hbinterval; 2294 * uint16_t spp_pathmaxrxt; 2295 * uint32_t spp_pathmtu; 2296 * uint32_t spp_sackdelay; 2297 * uint32_t spp_flags; 2298 * uint32_t spp_ipv6_flowlabel; 2299 * uint8_t spp_dscp; 2300 * }; 2301 * 2302 * spp_assoc_id - (one-to-many style socket) This is filled in the 2303 * application, and identifies the association for 2304 * this query. 2305 * spp_address - This specifies which address is of interest. 2306 * spp_hbinterval - This contains the value of the heartbeat interval, 2307 * in milliseconds. If a value of zero 2308 * is present in this field then no changes are to 2309 * be made to this parameter. 2310 * spp_pathmaxrxt - This contains the maximum number of 2311 * retransmissions before this address shall be 2312 * considered unreachable. If a value of zero 2313 * is present in this field then no changes are to 2314 * be made to this parameter. 2315 * spp_pathmtu - When Path MTU discovery is disabled the value 2316 * specified here will be the "fixed" path mtu. 2317 * Note that if the spp_address field is empty 2318 * then all associations on this address will 2319 * have this fixed path mtu set upon them. 2320 * 2321 * spp_sackdelay - When delayed sack is enabled, this value specifies 2322 * the number of milliseconds that sacks will be delayed 2323 * for. This value will apply to all addresses of an 2324 * association if the spp_address field is empty. Note 2325 * also, that if delayed sack is enabled and this 2326 * value is set to 0, no change is made to the last 2327 * recorded delayed sack timer value. 2328 * 2329 * spp_flags - These flags are used to control various features 2330 * on an association. The flag field may contain 2331 * zero or more of the following options. 2332 * 2333 * SPP_HB_ENABLE - Enable heartbeats on the 2334 * specified address. Note that if the address 2335 * field is empty all addresses for the association 2336 * have heartbeats enabled upon them. 2337 * 2338 * SPP_HB_DISABLE - Disable heartbeats on the 2339 * speicifed address. Note that if the address 2340 * field is empty all addresses for the association 2341 * will have their heartbeats disabled. Note also 2342 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2343 * mutually exclusive, only one of these two should 2344 * be specified. Enabling both fields will have 2345 * undetermined results. 2346 * 2347 * SPP_HB_DEMAND - Request a user initiated heartbeat 2348 * to be made immediately. 2349 * 2350 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2351 * heartbeat delayis to be set to the value of 0 2352 * milliseconds. 2353 * 2354 * SPP_PMTUD_ENABLE - This field will enable PMTU 2355 * discovery upon the specified address. Note that 2356 * if the address feild is empty then all addresses 2357 * on the association are effected. 2358 * 2359 * SPP_PMTUD_DISABLE - This field will disable PMTU 2360 * discovery upon the specified address. Note that 2361 * if the address feild is empty then all addresses 2362 * on the association are effected. Not also that 2363 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2364 * exclusive. Enabling both will have undetermined 2365 * results. 2366 * 2367 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2368 * on delayed sack. The time specified in spp_sackdelay 2369 * is used to specify the sack delay for this address. Note 2370 * that if spp_address is empty then all addresses will 2371 * enable delayed sack and take on the sack delay 2372 * value specified in spp_sackdelay. 2373 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2374 * off delayed sack. If the spp_address field is blank then 2375 * delayed sack is disabled for the entire association. Note 2376 * also that this field is mutually exclusive to 2377 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2378 * results. 2379 * 2380 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2381 * setting of the IPV6 flow label value. The value is 2382 * contained in the spp_ipv6_flowlabel field. 2383 * Upon retrieval, this flag will be set to indicate that 2384 * the spp_ipv6_flowlabel field has a valid value returned. 2385 * If a specific destination address is set (in the 2386 * spp_address field), then the value returned is that of 2387 * the address. If just an association is specified (and 2388 * no address), then the association's default flow label 2389 * is returned. If neither an association nor a destination 2390 * is specified, then the socket's default flow label is 2391 * returned. For non-IPv6 sockets, this flag will be left 2392 * cleared. 2393 * 2394 * SPP_DSCP: Setting this flag enables the setting of the 2395 * Differentiated Services Code Point (DSCP) value 2396 * associated with either the association or a specific 2397 * address. The value is obtained in the spp_dscp field. 2398 * Upon retrieval, this flag will be set to indicate that 2399 * the spp_dscp field has a valid value returned. If a 2400 * specific destination address is set when called (in the 2401 * spp_address field), then that specific destination 2402 * address's DSCP value is returned. If just an association 2403 * is specified, then the association's default DSCP is 2404 * returned. If neither an association nor a destination is 2405 * specified, then the socket's default DSCP is returned. 2406 * 2407 * spp_ipv6_flowlabel 2408 * - This field is used in conjunction with the 2409 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2410 * The 20 least significant bits are used for the flow 2411 * label. This setting has precedence over any IPv6-layer 2412 * setting. 2413 * 2414 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2415 * and contains the DSCP. The 6 most significant bits are 2416 * used for the DSCP. This setting has precedence over any 2417 * IPv4- or IPv6- layer setting. 2418 */ 2419 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2420 struct sctp_transport *trans, 2421 struct sctp_association *asoc, 2422 struct sctp_sock *sp, 2423 int hb_change, 2424 int pmtud_change, 2425 int sackdelay_change) 2426 { 2427 int error; 2428 2429 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2430 struct net *net = sock_net(trans->asoc->base.sk); 2431 2432 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2433 if (error) 2434 return error; 2435 } 2436 2437 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2438 * this field is ignored. Note also that a value of zero indicates 2439 * the current setting should be left unchanged. 2440 */ 2441 if (params->spp_flags & SPP_HB_ENABLE) { 2442 2443 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2444 * set. This lets us use 0 value when this flag 2445 * is set. 2446 */ 2447 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2448 params->spp_hbinterval = 0; 2449 2450 if (params->spp_hbinterval || 2451 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2452 if (trans) { 2453 trans->hbinterval = 2454 msecs_to_jiffies(params->spp_hbinterval); 2455 } else if (asoc) { 2456 asoc->hbinterval = 2457 msecs_to_jiffies(params->spp_hbinterval); 2458 } else { 2459 sp->hbinterval = params->spp_hbinterval; 2460 } 2461 } 2462 } 2463 2464 if (hb_change) { 2465 if (trans) { 2466 trans->param_flags = 2467 (trans->param_flags & ~SPP_HB) | hb_change; 2468 } else if (asoc) { 2469 asoc->param_flags = 2470 (asoc->param_flags & ~SPP_HB) | hb_change; 2471 } else { 2472 sp->param_flags = 2473 (sp->param_flags & ~SPP_HB) | hb_change; 2474 } 2475 } 2476 2477 /* When Path MTU discovery is disabled the value specified here will 2478 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2479 * include the flag SPP_PMTUD_DISABLE for this field to have any 2480 * effect). 2481 */ 2482 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2483 if (trans) { 2484 trans->pathmtu = params->spp_pathmtu; 2485 sctp_assoc_sync_pmtu(asoc); 2486 } else if (asoc) { 2487 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2488 } else { 2489 sp->pathmtu = params->spp_pathmtu; 2490 } 2491 } 2492 2493 if (pmtud_change) { 2494 if (trans) { 2495 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2496 (params->spp_flags & SPP_PMTUD_ENABLE); 2497 trans->param_flags = 2498 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2499 if (update) { 2500 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2501 sctp_assoc_sync_pmtu(asoc); 2502 } 2503 } else if (asoc) { 2504 asoc->param_flags = 2505 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2506 } else { 2507 sp->param_flags = 2508 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2509 } 2510 } 2511 2512 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2513 * value of this field is ignored. Note also that a value of zero 2514 * indicates the current setting should be left unchanged. 2515 */ 2516 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2517 if (trans) { 2518 trans->sackdelay = 2519 msecs_to_jiffies(params->spp_sackdelay); 2520 } else if (asoc) { 2521 asoc->sackdelay = 2522 msecs_to_jiffies(params->spp_sackdelay); 2523 } else { 2524 sp->sackdelay = params->spp_sackdelay; 2525 } 2526 } 2527 2528 if (sackdelay_change) { 2529 if (trans) { 2530 trans->param_flags = 2531 (trans->param_flags & ~SPP_SACKDELAY) | 2532 sackdelay_change; 2533 } else if (asoc) { 2534 asoc->param_flags = 2535 (asoc->param_flags & ~SPP_SACKDELAY) | 2536 sackdelay_change; 2537 } else { 2538 sp->param_flags = 2539 (sp->param_flags & ~SPP_SACKDELAY) | 2540 sackdelay_change; 2541 } 2542 } 2543 2544 /* Note that a value of zero indicates the current setting should be 2545 left unchanged. 2546 */ 2547 if (params->spp_pathmaxrxt) { 2548 if (trans) { 2549 trans->pathmaxrxt = params->spp_pathmaxrxt; 2550 } else if (asoc) { 2551 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2552 } else { 2553 sp->pathmaxrxt = params->spp_pathmaxrxt; 2554 } 2555 } 2556 2557 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2558 if (trans) { 2559 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2560 trans->flowlabel = params->spp_ipv6_flowlabel & 2561 SCTP_FLOWLABEL_VAL_MASK; 2562 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2563 } 2564 } else if (asoc) { 2565 struct sctp_transport *t; 2566 2567 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2568 transports) { 2569 if (t->ipaddr.sa.sa_family != AF_INET6) 2570 continue; 2571 t->flowlabel = params->spp_ipv6_flowlabel & 2572 SCTP_FLOWLABEL_VAL_MASK; 2573 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2574 } 2575 asoc->flowlabel = params->spp_ipv6_flowlabel & 2576 SCTP_FLOWLABEL_VAL_MASK; 2577 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2578 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2579 sp->flowlabel = params->spp_ipv6_flowlabel & 2580 SCTP_FLOWLABEL_VAL_MASK; 2581 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2582 } 2583 } 2584 2585 if (params->spp_flags & SPP_DSCP) { 2586 if (trans) { 2587 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2588 trans->dscp |= SCTP_DSCP_SET_MASK; 2589 } else if (asoc) { 2590 struct sctp_transport *t; 2591 2592 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2593 transports) { 2594 t->dscp = params->spp_dscp & 2595 SCTP_DSCP_VAL_MASK; 2596 t->dscp |= SCTP_DSCP_SET_MASK; 2597 } 2598 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2599 asoc->dscp |= SCTP_DSCP_SET_MASK; 2600 } else { 2601 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2602 sp->dscp |= SCTP_DSCP_SET_MASK; 2603 } 2604 } 2605 2606 return 0; 2607 } 2608 2609 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2610 char __user *optval, 2611 unsigned int optlen) 2612 { 2613 struct sctp_paddrparams params; 2614 struct sctp_transport *trans = NULL; 2615 struct sctp_association *asoc = NULL; 2616 struct sctp_sock *sp = sctp_sk(sk); 2617 int error; 2618 int hb_change, pmtud_change, sackdelay_change; 2619 2620 if (optlen == sizeof(params)) { 2621 if (copy_from_user(¶ms, optval, optlen)) 2622 return -EFAULT; 2623 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2624 spp_ipv6_flowlabel), 4)) { 2625 if (copy_from_user(¶ms, optval, optlen)) 2626 return -EFAULT; 2627 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2628 return -EINVAL; 2629 } else { 2630 return -EINVAL; 2631 } 2632 2633 /* Validate flags and value parameters. */ 2634 hb_change = params.spp_flags & SPP_HB; 2635 pmtud_change = params.spp_flags & SPP_PMTUD; 2636 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2637 2638 if (hb_change == SPP_HB || 2639 pmtud_change == SPP_PMTUD || 2640 sackdelay_change == SPP_SACKDELAY || 2641 params.spp_sackdelay > 500 || 2642 (params.spp_pathmtu && 2643 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2644 return -EINVAL; 2645 2646 /* If an address other than INADDR_ANY is specified, and 2647 * no transport is found, then the request is invalid. 2648 */ 2649 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2650 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2651 params.spp_assoc_id); 2652 if (!trans) 2653 return -EINVAL; 2654 } 2655 2656 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2657 * socket is a one to many style socket, and an association 2658 * was not found, then the id was invalid. 2659 */ 2660 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2661 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2662 sctp_style(sk, UDP)) 2663 return -EINVAL; 2664 2665 /* Heartbeat demand can only be sent on a transport or 2666 * association, but not a socket. 2667 */ 2668 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2669 return -EINVAL; 2670 2671 /* Process parameters. */ 2672 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2673 hb_change, pmtud_change, 2674 sackdelay_change); 2675 2676 if (error) 2677 return error; 2678 2679 /* If changes are for association, also apply parameters to each 2680 * transport. 2681 */ 2682 if (!trans && asoc) { 2683 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2684 transports) { 2685 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2686 hb_change, pmtud_change, 2687 sackdelay_change); 2688 } 2689 } 2690 2691 return 0; 2692 } 2693 2694 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2695 { 2696 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2697 } 2698 2699 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2700 { 2701 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2702 } 2703 2704 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2705 struct sctp_association *asoc) 2706 { 2707 struct sctp_transport *trans; 2708 2709 if (params->sack_delay) { 2710 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2711 asoc->param_flags = 2712 sctp_spp_sackdelay_enable(asoc->param_flags); 2713 } 2714 if (params->sack_freq == 1) { 2715 asoc->param_flags = 2716 sctp_spp_sackdelay_disable(asoc->param_flags); 2717 } else if (params->sack_freq > 1) { 2718 asoc->sackfreq = params->sack_freq; 2719 asoc->param_flags = 2720 sctp_spp_sackdelay_enable(asoc->param_flags); 2721 } 2722 2723 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2724 transports) { 2725 if (params->sack_delay) { 2726 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2727 trans->param_flags = 2728 sctp_spp_sackdelay_enable(trans->param_flags); 2729 } 2730 if (params->sack_freq == 1) { 2731 trans->param_flags = 2732 sctp_spp_sackdelay_disable(trans->param_flags); 2733 } else if (params->sack_freq > 1) { 2734 trans->sackfreq = params->sack_freq; 2735 trans->param_flags = 2736 sctp_spp_sackdelay_enable(trans->param_flags); 2737 } 2738 } 2739 } 2740 2741 /* 2742 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2743 * 2744 * This option will effect the way delayed acks are performed. This 2745 * option allows you to get or set the delayed ack time, in 2746 * milliseconds. It also allows changing the delayed ack frequency. 2747 * Changing the frequency to 1 disables the delayed sack algorithm. If 2748 * the assoc_id is 0, then this sets or gets the endpoints default 2749 * values. If the assoc_id field is non-zero, then the set or get 2750 * effects the specified association for the one to many model (the 2751 * assoc_id field is ignored by the one to one model). Note that if 2752 * sack_delay or sack_freq are 0 when setting this option, then the 2753 * current values will remain unchanged. 2754 * 2755 * struct sctp_sack_info { 2756 * sctp_assoc_t sack_assoc_id; 2757 * uint32_t sack_delay; 2758 * uint32_t sack_freq; 2759 * }; 2760 * 2761 * sack_assoc_id - This parameter, indicates which association the user 2762 * is performing an action upon. Note that if this field's value is 2763 * zero then the endpoints default value is changed (effecting future 2764 * associations only). 2765 * 2766 * sack_delay - This parameter contains the number of milliseconds that 2767 * the user is requesting the delayed ACK timer be set to. Note that 2768 * this value is defined in the standard to be between 200 and 500 2769 * milliseconds. 2770 * 2771 * sack_freq - This parameter contains the number of packets that must 2772 * be received before a sack is sent without waiting for the delay 2773 * timer to expire. The default value for this is 2, setting this 2774 * value to 1 will disable the delayed sack algorithm. 2775 */ 2776 2777 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2778 char __user *optval, unsigned int optlen) 2779 { 2780 struct sctp_sock *sp = sctp_sk(sk); 2781 struct sctp_association *asoc; 2782 struct sctp_sack_info params; 2783 2784 if (optlen == sizeof(struct sctp_sack_info)) { 2785 if (copy_from_user(¶ms, optval, optlen)) 2786 return -EFAULT; 2787 2788 if (params.sack_delay == 0 && params.sack_freq == 0) 2789 return 0; 2790 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2791 pr_warn_ratelimited(DEPRECATED 2792 "%s (pid %d) " 2793 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2794 "Use struct sctp_sack_info instead\n", 2795 current->comm, task_pid_nr(current)); 2796 if (copy_from_user(¶ms, optval, optlen)) 2797 return -EFAULT; 2798 2799 if (params.sack_delay == 0) 2800 params.sack_freq = 1; 2801 else 2802 params.sack_freq = 0; 2803 } else 2804 return -EINVAL; 2805 2806 /* Validate value parameter. */ 2807 if (params.sack_delay > 500) 2808 return -EINVAL; 2809 2810 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2811 * socket is a one to many style socket, and an association 2812 * was not found, then the id was invalid. 2813 */ 2814 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2815 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2816 sctp_style(sk, UDP)) 2817 return -EINVAL; 2818 2819 if (asoc) { 2820 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2821 2822 return 0; 2823 } 2824 2825 if (sctp_style(sk, TCP)) 2826 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2827 2828 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2829 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2830 if (params.sack_delay) { 2831 sp->sackdelay = params.sack_delay; 2832 sp->param_flags = 2833 sctp_spp_sackdelay_enable(sp->param_flags); 2834 } 2835 if (params.sack_freq == 1) { 2836 sp->param_flags = 2837 sctp_spp_sackdelay_disable(sp->param_flags); 2838 } else if (params.sack_freq > 1) { 2839 sp->sackfreq = params.sack_freq; 2840 sp->param_flags = 2841 sctp_spp_sackdelay_enable(sp->param_flags); 2842 } 2843 } 2844 2845 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2846 params.sack_assoc_id == SCTP_ALL_ASSOC) 2847 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2848 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2849 2850 return 0; 2851 } 2852 2853 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2854 * 2855 * Applications can specify protocol parameters for the default association 2856 * initialization. The option name argument to setsockopt() and getsockopt() 2857 * is SCTP_INITMSG. 2858 * 2859 * Setting initialization parameters is effective only on an unconnected 2860 * socket (for UDP-style sockets only future associations are effected 2861 * by the change). With TCP-style sockets, this option is inherited by 2862 * sockets derived from a listener socket. 2863 */ 2864 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2865 { 2866 struct sctp_initmsg sinit; 2867 struct sctp_sock *sp = sctp_sk(sk); 2868 2869 if (optlen != sizeof(struct sctp_initmsg)) 2870 return -EINVAL; 2871 if (copy_from_user(&sinit, optval, optlen)) 2872 return -EFAULT; 2873 2874 if (sinit.sinit_num_ostreams) 2875 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2876 if (sinit.sinit_max_instreams) 2877 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2878 if (sinit.sinit_max_attempts) 2879 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2880 if (sinit.sinit_max_init_timeo) 2881 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2882 2883 return 0; 2884 } 2885 2886 /* 2887 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2888 * 2889 * Applications that wish to use the sendto() system call may wish to 2890 * specify a default set of parameters that would normally be supplied 2891 * through the inclusion of ancillary data. This socket option allows 2892 * such an application to set the default sctp_sndrcvinfo structure. 2893 * The application that wishes to use this socket option simply passes 2894 * in to this call the sctp_sndrcvinfo structure defined in Section 2895 * 5.2.2) The input parameters accepted by this call include 2896 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2897 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2898 * to this call if the caller is using the UDP model. 2899 */ 2900 static int sctp_setsockopt_default_send_param(struct sock *sk, 2901 char __user *optval, 2902 unsigned int optlen) 2903 { 2904 struct sctp_sock *sp = sctp_sk(sk); 2905 struct sctp_association *asoc; 2906 struct sctp_sndrcvinfo info; 2907 2908 if (optlen != sizeof(info)) 2909 return -EINVAL; 2910 if (copy_from_user(&info, optval, optlen)) 2911 return -EFAULT; 2912 if (info.sinfo_flags & 2913 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2914 SCTP_ABORT | SCTP_EOF)) 2915 return -EINVAL; 2916 2917 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2918 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 2919 sctp_style(sk, UDP)) 2920 return -EINVAL; 2921 2922 if (asoc) { 2923 asoc->default_stream = info.sinfo_stream; 2924 asoc->default_flags = info.sinfo_flags; 2925 asoc->default_ppid = info.sinfo_ppid; 2926 asoc->default_context = info.sinfo_context; 2927 asoc->default_timetolive = info.sinfo_timetolive; 2928 2929 return 0; 2930 } 2931 2932 if (sctp_style(sk, TCP)) 2933 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2934 2935 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2936 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2937 sp->default_stream = info.sinfo_stream; 2938 sp->default_flags = info.sinfo_flags; 2939 sp->default_ppid = info.sinfo_ppid; 2940 sp->default_context = info.sinfo_context; 2941 sp->default_timetolive = info.sinfo_timetolive; 2942 } 2943 2944 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2945 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2946 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2947 asoc->default_stream = info.sinfo_stream; 2948 asoc->default_flags = info.sinfo_flags; 2949 asoc->default_ppid = info.sinfo_ppid; 2950 asoc->default_context = info.sinfo_context; 2951 asoc->default_timetolive = info.sinfo_timetolive; 2952 } 2953 } 2954 2955 return 0; 2956 } 2957 2958 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2959 * (SCTP_DEFAULT_SNDINFO) 2960 */ 2961 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2962 char __user *optval, 2963 unsigned int optlen) 2964 { 2965 struct sctp_sock *sp = sctp_sk(sk); 2966 struct sctp_association *asoc; 2967 struct sctp_sndinfo info; 2968 2969 if (optlen != sizeof(info)) 2970 return -EINVAL; 2971 if (copy_from_user(&info, optval, optlen)) 2972 return -EFAULT; 2973 if (info.snd_flags & 2974 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2975 SCTP_ABORT | SCTP_EOF)) 2976 return -EINVAL; 2977 2978 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2979 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 2980 sctp_style(sk, UDP)) 2981 return -EINVAL; 2982 2983 if (asoc) { 2984 asoc->default_stream = info.snd_sid; 2985 asoc->default_flags = info.snd_flags; 2986 asoc->default_ppid = info.snd_ppid; 2987 asoc->default_context = info.snd_context; 2988 2989 return 0; 2990 } 2991 2992 if (sctp_style(sk, TCP)) 2993 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 2994 2995 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 2996 info.snd_assoc_id == SCTP_ALL_ASSOC) { 2997 sp->default_stream = info.snd_sid; 2998 sp->default_flags = info.snd_flags; 2999 sp->default_ppid = info.snd_ppid; 3000 sp->default_context = info.snd_context; 3001 } 3002 3003 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3004 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3005 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3006 asoc->default_stream = info.snd_sid; 3007 asoc->default_flags = info.snd_flags; 3008 asoc->default_ppid = info.snd_ppid; 3009 asoc->default_context = info.snd_context; 3010 } 3011 } 3012 3013 return 0; 3014 } 3015 3016 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3017 * 3018 * Requests that the local SCTP stack use the enclosed peer address as 3019 * the association primary. The enclosed address must be one of the 3020 * association peer's addresses. 3021 */ 3022 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3023 unsigned int optlen) 3024 { 3025 struct sctp_prim prim; 3026 struct sctp_transport *trans; 3027 struct sctp_af *af; 3028 int err; 3029 3030 if (optlen != sizeof(struct sctp_prim)) 3031 return -EINVAL; 3032 3033 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3034 return -EFAULT; 3035 3036 /* Allow security module to validate address but need address len. */ 3037 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3038 if (!af) 3039 return -EINVAL; 3040 3041 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3042 (struct sockaddr *)&prim.ssp_addr, 3043 af->sockaddr_len); 3044 if (err) 3045 return err; 3046 3047 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3048 if (!trans) 3049 return -EINVAL; 3050 3051 sctp_assoc_set_primary(trans->asoc, trans); 3052 3053 return 0; 3054 } 3055 3056 /* 3057 * 7.1.5 SCTP_NODELAY 3058 * 3059 * Turn on/off any Nagle-like algorithm. This means that packets are 3060 * generally sent as soon as possible and no unnecessary delays are 3061 * introduced, at the cost of more packets in the network. Expects an 3062 * integer boolean flag. 3063 */ 3064 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3065 unsigned int optlen) 3066 { 3067 int val; 3068 3069 if (optlen < sizeof(int)) 3070 return -EINVAL; 3071 if (get_user(val, (int __user *)optval)) 3072 return -EFAULT; 3073 3074 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3075 return 0; 3076 } 3077 3078 /* 3079 * 3080 * 7.1.1 SCTP_RTOINFO 3081 * 3082 * The protocol parameters used to initialize and bound retransmission 3083 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3084 * and modify these parameters. 3085 * All parameters are time values, in milliseconds. A value of 0, when 3086 * modifying the parameters, indicates that the current value should not 3087 * be changed. 3088 * 3089 */ 3090 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3091 { 3092 struct sctp_rtoinfo rtoinfo; 3093 struct sctp_association *asoc; 3094 unsigned long rto_min, rto_max; 3095 struct sctp_sock *sp = sctp_sk(sk); 3096 3097 if (optlen != sizeof (struct sctp_rtoinfo)) 3098 return -EINVAL; 3099 3100 if (copy_from_user(&rtoinfo, optval, optlen)) 3101 return -EFAULT; 3102 3103 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3104 3105 /* Set the values to the specific association */ 3106 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3107 sctp_style(sk, UDP)) 3108 return -EINVAL; 3109 3110 rto_max = rtoinfo.srto_max; 3111 rto_min = rtoinfo.srto_min; 3112 3113 if (rto_max) 3114 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3115 else 3116 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3117 3118 if (rto_min) 3119 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3120 else 3121 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3122 3123 if (rto_min > rto_max) 3124 return -EINVAL; 3125 3126 if (asoc) { 3127 if (rtoinfo.srto_initial != 0) 3128 asoc->rto_initial = 3129 msecs_to_jiffies(rtoinfo.srto_initial); 3130 asoc->rto_max = rto_max; 3131 asoc->rto_min = rto_min; 3132 } else { 3133 /* If there is no association or the association-id = 0 3134 * set the values to the endpoint. 3135 */ 3136 if (rtoinfo.srto_initial != 0) 3137 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3138 sp->rtoinfo.srto_max = rto_max; 3139 sp->rtoinfo.srto_min = rto_min; 3140 } 3141 3142 return 0; 3143 } 3144 3145 /* 3146 * 3147 * 7.1.2 SCTP_ASSOCINFO 3148 * 3149 * This option is used to tune the maximum retransmission attempts 3150 * of the association. 3151 * Returns an error if the new association retransmission value is 3152 * greater than the sum of the retransmission value of the peer. 3153 * See [SCTP] for more information. 3154 * 3155 */ 3156 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3157 { 3158 3159 struct sctp_assocparams assocparams; 3160 struct sctp_association *asoc; 3161 3162 if (optlen != sizeof(struct sctp_assocparams)) 3163 return -EINVAL; 3164 if (copy_from_user(&assocparams, optval, optlen)) 3165 return -EFAULT; 3166 3167 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3168 3169 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3170 sctp_style(sk, UDP)) 3171 return -EINVAL; 3172 3173 /* Set the values to the specific association */ 3174 if (asoc) { 3175 if (assocparams.sasoc_asocmaxrxt != 0) { 3176 __u32 path_sum = 0; 3177 int paths = 0; 3178 struct sctp_transport *peer_addr; 3179 3180 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3181 transports) { 3182 path_sum += peer_addr->pathmaxrxt; 3183 paths++; 3184 } 3185 3186 /* Only validate asocmaxrxt if we have more than 3187 * one path/transport. We do this because path 3188 * retransmissions are only counted when we have more 3189 * then one path. 3190 */ 3191 if (paths > 1 && 3192 assocparams.sasoc_asocmaxrxt > path_sum) 3193 return -EINVAL; 3194 3195 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3196 } 3197 3198 if (assocparams.sasoc_cookie_life != 0) 3199 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3200 } else { 3201 /* Set the values to the endpoint */ 3202 struct sctp_sock *sp = sctp_sk(sk); 3203 3204 if (assocparams.sasoc_asocmaxrxt != 0) 3205 sp->assocparams.sasoc_asocmaxrxt = 3206 assocparams.sasoc_asocmaxrxt; 3207 if (assocparams.sasoc_cookie_life != 0) 3208 sp->assocparams.sasoc_cookie_life = 3209 assocparams.sasoc_cookie_life; 3210 } 3211 return 0; 3212 } 3213 3214 /* 3215 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3216 * 3217 * This socket option is a boolean flag which turns on or off mapped V4 3218 * addresses. If this option is turned on and the socket is type 3219 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3220 * If this option is turned off, then no mapping will be done of V4 3221 * addresses and a user will receive both PF_INET6 and PF_INET type 3222 * addresses on the socket. 3223 */ 3224 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3225 { 3226 int val; 3227 struct sctp_sock *sp = sctp_sk(sk); 3228 3229 if (optlen < sizeof(int)) 3230 return -EINVAL; 3231 if (get_user(val, (int __user *)optval)) 3232 return -EFAULT; 3233 if (val) 3234 sp->v4mapped = 1; 3235 else 3236 sp->v4mapped = 0; 3237 3238 return 0; 3239 } 3240 3241 /* 3242 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3243 * This option will get or set the maximum size to put in any outgoing 3244 * SCTP DATA chunk. If a message is larger than this size it will be 3245 * fragmented by SCTP into the specified size. Note that the underlying 3246 * SCTP implementation may fragment into smaller sized chunks when the 3247 * PMTU of the underlying association is smaller than the value set by 3248 * the user. The default value for this option is '0' which indicates 3249 * the user is NOT limiting fragmentation and only the PMTU will effect 3250 * SCTP's choice of DATA chunk size. Note also that values set larger 3251 * than the maximum size of an IP datagram will effectively let SCTP 3252 * control fragmentation (i.e. the same as setting this option to 0). 3253 * 3254 * The following structure is used to access and modify this parameter: 3255 * 3256 * struct sctp_assoc_value { 3257 * sctp_assoc_t assoc_id; 3258 * uint32_t assoc_value; 3259 * }; 3260 * 3261 * assoc_id: This parameter is ignored for one-to-one style sockets. 3262 * For one-to-many style sockets this parameter indicates which 3263 * association the user is performing an action upon. Note that if 3264 * this field's value is zero then the endpoints default value is 3265 * changed (effecting future associations only). 3266 * assoc_value: This parameter specifies the maximum size in bytes. 3267 */ 3268 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3269 { 3270 struct sctp_sock *sp = sctp_sk(sk); 3271 struct sctp_assoc_value params; 3272 struct sctp_association *asoc; 3273 int val; 3274 3275 if (optlen == sizeof(int)) { 3276 pr_warn_ratelimited(DEPRECATED 3277 "%s (pid %d) " 3278 "Use of int in maxseg socket option.\n" 3279 "Use struct sctp_assoc_value instead\n", 3280 current->comm, task_pid_nr(current)); 3281 if (copy_from_user(&val, optval, optlen)) 3282 return -EFAULT; 3283 params.assoc_id = SCTP_FUTURE_ASSOC; 3284 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3285 if (copy_from_user(¶ms, optval, optlen)) 3286 return -EFAULT; 3287 val = params.assoc_value; 3288 } else { 3289 return -EINVAL; 3290 } 3291 3292 asoc = sctp_id2assoc(sk, params.assoc_id); 3293 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3294 sctp_style(sk, UDP)) 3295 return -EINVAL; 3296 3297 if (val) { 3298 int min_len, max_len; 3299 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3300 sizeof(struct sctp_data_chunk); 3301 3302 min_len = sctp_min_frag_point(sp, datasize); 3303 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3304 3305 if (val < min_len || val > max_len) 3306 return -EINVAL; 3307 } 3308 3309 if (asoc) { 3310 asoc->user_frag = val; 3311 sctp_assoc_update_frag_point(asoc); 3312 } else { 3313 sp->user_frag = val; 3314 } 3315 3316 return 0; 3317 } 3318 3319 3320 /* 3321 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3322 * 3323 * Requests that the peer mark the enclosed address as the association 3324 * primary. The enclosed address must be one of the association's 3325 * locally bound addresses. The following structure is used to make a 3326 * set primary request: 3327 */ 3328 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3329 unsigned int optlen) 3330 { 3331 struct sctp_sock *sp; 3332 struct sctp_association *asoc = NULL; 3333 struct sctp_setpeerprim prim; 3334 struct sctp_chunk *chunk; 3335 struct sctp_af *af; 3336 int err; 3337 3338 sp = sctp_sk(sk); 3339 3340 if (!sp->ep->asconf_enable) 3341 return -EPERM; 3342 3343 if (optlen != sizeof(struct sctp_setpeerprim)) 3344 return -EINVAL; 3345 3346 if (copy_from_user(&prim, optval, optlen)) 3347 return -EFAULT; 3348 3349 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3350 if (!asoc) 3351 return -EINVAL; 3352 3353 if (!asoc->peer.asconf_capable) 3354 return -EPERM; 3355 3356 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3357 return -EPERM; 3358 3359 if (!sctp_state(asoc, ESTABLISHED)) 3360 return -ENOTCONN; 3361 3362 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3363 if (!af) 3364 return -EINVAL; 3365 3366 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3367 return -EADDRNOTAVAIL; 3368 3369 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3370 return -EADDRNOTAVAIL; 3371 3372 /* Allow security module to validate address. */ 3373 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3374 (struct sockaddr *)&prim.sspp_addr, 3375 af->sockaddr_len); 3376 if (err) 3377 return err; 3378 3379 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3380 chunk = sctp_make_asconf_set_prim(asoc, 3381 (union sctp_addr *)&prim.sspp_addr); 3382 if (!chunk) 3383 return -ENOMEM; 3384 3385 err = sctp_send_asconf(asoc, chunk); 3386 3387 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3388 3389 return err; 3390 } 3391 3392 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3393 unsigned int optlen) 3394 { 3395 struct sctp_setadaptation adaptation; 3396 3397 if (optlen != sizeof(struct sctp_setadaptation)) 3398 return -EINVAL; 3399 if (copy_from_user(&adaptation, optval, optlen)) 3400 return -EFAULT; 3401 3402 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3403 3404 return 0; 3405 } 3406 3407 /* 3408 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3409 * 3410 * The context field in the sctp_sndrcvinfo structure is normally only 3411 * used when a failed message is retrieved holding the value that was 3412 * sent down on the actual send call. This option allows the setting of 3413 * a default context on an association basis that will be received on 3414 * reading messages from the peer. This is especially helpful in the 3415 * one-2-many model for an application to keep some reference to an 3416 * internal state machine that is processing messages on the 3417 * association. Note that the setting of this value only effects 3418 * received messages from the peer and does not effect the value that is 3419 * saved with outbound messages. 3420 */ 3421 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3422 unsigned int optlen) 3423 { 3424 struct sctp_sock *sp = sctp_sk(sk); 3425 struct sctp_assoc_value params; 3426 struct sctp_association *asoc; 3427 3428 if (optlen != sizeof(struct sctp_assoc_value)) 3429 return -EINVAL; 3430 if (copy_from_user(¶ms, optval, optlen)) 3431 return -EFAULT; 3432 3433 asoc = sctp_id2assoc(sk, params.assoc_id); 3434 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3435 sctp_style(sk, UDP)) 3436 return -EINVAL; 3437 3438 if (asoc) { 3439 asoc->default_rcv_context = params.assoc_value; 3440 3441 return 0; 3442 } 3443 3444 if (sctp_style(sk, TCP)) 3445 params.assoc_id = SCTP_FUTURE_ASSOC; 3446 3447 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3448 params.assoc_id == SCTP_ALL_ASSOC) 3449 sp->default_rcv_context = params.assoc_value; 3450 3451 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3452 params.assoc_id == SCTP_ALL_ASSOC) 3453 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3454 asoc->default_rcv_context = params.assoc_value; 3455 3456 return 0; 3457 } 3458 3459 /* 3460 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3461 * 3462 * This options will at a minimum specify if the implementation is doing 3463 * fragmented interleave. Fragmented interleave, for a one to many 3464 * socket, is when subsequent calls to receive a message may return 3465 * parts of messages from different associations. Some implementations 3466 * may allow you to turn this value on or off. If so, when turned off, 3467 * no fragment interleave will occur (which will cause a head of line 3468 * blocking amongst multiple associations sharing the same one to many 3469 * socket). When this option is turned on, then each receive call may 3470 * come from a different association (thus the user must receive data 3471 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3472 * association each receive belongs to. 3473 * 3474 * This option takes a boolean value. A non-zero value indicates that 3475 * fragmented interleave is on. A value of zero indicates that 3476 * fragmented interleave is off. 3477 * 3478 * Note that it is important that an implementation that allows this 3479 * option to be turned on, have it off by default. Otherwise an unaware 3480 * application using the one to many model may become confused and act 3481 * incorrectly. 3482 */ 3483 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3484 char __user *optval, 3485 unsigned int optlen) 3486 { 3487 int val; 3488 3489 if (optlen != sizeof(int)) 3490 return -EINVAL; 3491 if (get_user(val, (int __user *)optval)) 3492 return -EFAULT; 3493 3494 sctp_sk(sk)->frag_interleave = !!val; 3495 3496 if (!sctp_sk(sk)->frag_interleave) 3497 sctp_sk(sk)->ep->intl_enable = 0; 3498 3499 return 0; 3500 } 3501 3502 /* 3503 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3504 * (SCTP_PARTIAL_DELIVERY_POINT) 3505 * 3506 * This option will set or get the SCTP partial delivery point. This 3507 * point is the size of a message where the partial delivery API will be 3508 * invoked to help free up rwnd space for the peer. Setting this to a 3509 * lower value will cause partial deliveries to happen more often. The 3510 * calls argument is an integer that sets or gets the partial delivery 3511 * point. Note also that the call will fail if the user attempts to set 3512 * this value larger than the socket receive buffer size. 3513 * 3514 * Note that any single message having a length smaller than or equal to 3515 * the SCTP partial delivery point will be delivered in one single read 3516 * call as long as the user provided buffer is large enough to hold the 3517 * message. 3518 */ 3519 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3520 char __user *optval, 3521 unsigned int optlen) 3522 { 3523 u32 val; 3524 3525 if (optlen != sizeof(u32)) 3526 return -EINVAL; 3527 if (get_user(val, (int __user *)optval)) 3528 return -EFAULT; 3529 3530 /* Note: We double the receive buffer from what the user sets 3531 * it to be, also initial rwnd is based on rcvbuf/2. 3532 */ 3533 if (val > (sk->sk_rcvbuf >> 1)) 3534 return -EINVAL; 3535 3536 sctp_sk(sk)->pd_point = val; 3537 3538 return 0; /* is this the right error code? */ 3539 } 3540 3541 /* 3542 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3543 * 3544 * This option will allow a user to change the maximum burst of packets 3545 * that can be emitted by this association. Note that the default value 3546 * is 4, and some implementations may restrict this setting so that it 3547 * can only be lowered. 3548 * 3549 * NOTE: This text doesn't seem right. Do this on a socket basis with 3550 * future associations inheriting the socket value. 3551 */ 3552 static int sctp_setsockopt_maxburst(struct sock *sk, 3553 char __user *optval, 3554 unsigned int optlen) 3555 { 3556 struct sctp_sock *sp = sctp_sk(sk); 3557 struct sctp_assoc_value params; 3558 struct sctp_association *asoc; 3559 3560 if (optlen == sizeof(int)) { 3561 pr_warn_ratelimited(DEPRECATED 3562 "%s (pid %d) " 3563 "Use of int in max_burst socket option deprecated.\n" 3564 "Use struct sctp_assoc_value instead\n", 3565 current->comm, task_pid_nr(current)); 3566 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3567 return -EFAULT; 3568 params.assoc_id = SCTP_FUTURE_ASSOC; 3569 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3570 if (copy_from_user(¶ms, optval, optlen)) 3571 return -EFAULT; 3572 } else 3573 return -EINVAL; 3574 3575 asoc = sctp_id2assoc(sk, params.assoc_id); 3576 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3577 sctp_style(sk, UDP)) 3578 return -EINVAL; 3579 3580 if (asoc) { 3581 asoc->max_burst = params.assoc_value; 3582 3583 return 0; 3584 } 3585 3586 if (sctp_style(sk, TCP)) 3587 params.assoc_id = SCTP_FUTURE_ASSOC; 3588 3589 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3590 params.assoc_id == SCTP_ALL_ASSOC) 3591 sp->max_burst = params.assoc_value; 3592 3593 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3594 params.assoc_id == SCTP_ALL_ASSOC) 3595 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3596 asoc->max_burst = params.assoc_value; 3597 3598 return 0; 3599 } 3600 3601 /* 3602 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3603 * 3604 * This set option adds a chunk type that the user is requesting to be 3605 * received only in an authenticated way. Changes to the list of chunks 3606 * will only effect future associations on the socket. 3607 */ 3608 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3609 char __user *optval, 3610 unsigned int optlen) 3611 { 3612 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3613 struct sctp_authchunk val; 3614 3615 if (!ep->auth_enable) 3616 return -EACCES; 3617 3618 if (optlen != sizeof(struct sctp_authchunk)) 3619 return -EINVAL; 3620 if (copy_from_user(&val, optval, optlen)) 3621 return -EFAULT; 3622 3623 switch (val.sauth_chunk) { 3624 case SCTP_CID_INIT: 3625 case SCTP_CID_INIT_ACK: 3626 case SCTP_CID_SHUTDOWN_COMPLETE: 3627 case SCTP_CID_AUTH: 3628 return -EINVAL; 3629 } 3630 3631 /* add this chunk id to the endpoint */ 3632 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3633 } 3634 3635 /* 3636 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3637 * 3638 * This option gets or sets the list of HMAC algorithms that the local 3639 * endpoint requires the peer to use. 3640 */ 3641 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3642 char __user *optval, 3643 unsigned int optlen) 3644 { 3645 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3646 struct sctp_hmacalgo *hmacs; 3647 u32 idents; 3648 int err; 3649 3650 if (!ep->auth_enable) 3651 return -EACCES; 3652 3653 if (optlen < sizeof(struct sctp_hmacalgo)) 3654 return -EINVAL; 3655 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3656 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3657 3658 hmacs = memdup_user(optval, optlen); 3659 if (IS_ERR(hmacs)) 3660 return PTR_ERR(hmacs); 3661 3662 idents = hmacs->shmac_num_idents; 3663 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3664 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3665 err = -EINVAL; 3666 goto out; 3667 } 3668 3669 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3670 out: 3671 kfree(hmacs); 3672 return err; 3673 } 3674 3675 /* 3676 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3677 * 3678 * This option will set a shared secret key which is used to build an 3679 * association shared key. 3680 */ 3681 static int sctp_setsockopt_auth_key(struct sock *sk, 3682 char __user *optval, 3683 unsigned int optlen) 3684 { 3685 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3686 struct sctp_authkey *authkey; 3687 struct sctp_association *asoc; 3688 int ret = -EINVAL; 3689 3690 if (optlen <= sizeof(struct sctp_authkey)) 3691 return -EINVAL; 3692 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3693 * this. 3694 */ 3695 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3696 3697 authkey = memdup_user(optval, optlen); 3698 if (IS_ERR(authkey)) 3699 return PTR_ERR(authkey); 3700 3701 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3702 goto out; 3703 3704 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3705 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3706 sctp_style(sk, UDP)) 3707 goto out; 3708 3709 if (asoc) { 3710 ret = sctp_auth_set_key(ep, asoc, authkey); 3711 goto out; 3712 } 3713 3714 if (sctp_style(sk, TCP)) 3715 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3716 3717 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3718 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3719 ret = sctp_auth_set_key(ep, asoc, authkey); 3720 if (ret) 3721 goto out; 3722 } 3723 3724 ret = 0; 3725 3726 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3727 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3728 list_for_each_entry(asoc, &ep->asocs, asocs) { 3729 int res = sctp_auth_set_key(ep, asoc, authkey); 3730 3731 if (res && !ret) 3732 ret = res; 3733 } 3734 } 3735 3736 out: 3737 kzfree(authkey); 3738 return ret; 3739 } 3740 3741 /* 3742 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3743 * 3744 * This option will get or set the active shared key to be used to build 3745 * the association shared key. 3746 */ 3747 static int sctp_setsockopt_active_key(struct sock *sk, 3748 char __user *optval, 3749 unsigned int optlen) 3750 { 3751 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3752 struct sctp_association *asoc; 3753 struct sctp_authkeyid val; 3754 int ret = 0; 3755 3756 if (optlen != sizeof(struct sctp_authkeyid)) 3757 return -EINVAL; 3758 if (copy_from_user(&val, optval, optlen)) 3759 return -EFAULT; 3760 3761 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3762 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3763 sctp_style(sk, UDP)) 3764 return -EINVAL; 3765 3766 if (asoc) 3767 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3768 3769 if (sctp_style(sk, TCP)) 3770 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3771 3772 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3773 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3774 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3775 if (ret) 3776 return ret; 3777 } 3778 3779 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3780 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3781 list_for_each_entry(asoc, &ep->asocs, asocs) { 3782 int res = sctp_auth_set_active_key(ep, asoc, 3783 val.scact_keynumber); 3784 3785 if (res && !ret) 3786 ret = res; 3787 } 3788 } 3789 3790 return ret; 3791 } 3792 3793 /* 3794 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3795 * 3796 * This set option will delete a shared secret key from use. 3797 */ 3798 static int sctp_setsockopt_del_key(struct sock *sk, 3799 char __user *optval, 3800 unsigned int optlen) 3801 { 3802 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3803 struct sctp_association *asoc; 3804 struct sctp_authkeyid val; 3805 int ret = 0; 3806 3807 if (optlen != sizeof(struct sctp_authkeyid)) 3808 return -EINVAL; 3809 if (copy_from_user(&val, optval, optlen)) 3810 return -EFAULT; 3811 3812 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3813 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3814 sctp_style(sk, UDP)) 3815 return -EINVAL; 3816 3817 if (asoc) 3818 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3819 3820 if (sctp_style(sk, TCP)) 3821 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3822 3823 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3824 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3825 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3826 if (ret) 3827 return ret; 3828 } 3829 3830 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3831 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3832 list_for_each_entry(asoc, &ep->asocs, asocs) { 3833 int res = sctp_auth_del_key_id(ep, asoc, 3834 val.scact_keynumber); 3835 3836 if (res && !ret) 3837 ret = res; 3838 } 3839 } 3840 3841 return ret; 3842 } 3843 3844 /* 3845 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3846 * 3847 * This set option will deactivate a shared secret key. 3848 */ 3849 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3850 unsigned int optlen) 3851 { 3852 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3853 struct sctp_association *asoc; 3854 struct sctp_authkeyid val; 3855 int ret = 0; 3856 3857 if (optlen != sizeof(struct sctp_authkeyid)) 3858 return -EINVAL; 3859 if (copy_from_user(&val, optval, optlen)) 3860 return -EFAULT; 3861 3862 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3863 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3864 sctp_style(sk, UDP)) 3865 return -EINVAL; 3866 3867 if (asoc) 3868 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3869 3870 if (sctp_style(sk, TCP)) 3871 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3872 3873 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3874 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3875 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3876 if (ret) 3877 return ret; 3878 } 3879 3880 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3881 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3882 list_for_each_entry(asoc, &ep->asocs, asocs) { 3883 int res = sctp_auth_deact_key_id(ep, asoc, 3884 val.scact_keynumber); 3885 3886 if (res && !ret) 3887 ret = res; 3888 } 3889 } 3890 3891 return ret; 3892 } 3893 3894 /* 3895 * 8.1.23 SCTP_AUTO_ASCONF 3896 * 3897 * This option will enable or disable the use of the automatic generation of 3898 * ASCONF chunks to add and delete addresses to an existing association. Note 3899 * that this option has two caveats namely: a) it only affects sockets that 3900 * are bound to all addresses available to the SCTP stack, and b) the system 3901 * administrator may have an overriding control that turns the ASCONF feature 3902 * off no matter what setting the socket option may have. 3903 * This option expects an integer boolean flag, where a non-zero value turns on 3904 * the option, and a zero value turns off the option. 3905 * Note. In this implementation, socket operation overrides default parameter 3906 * being set by sysctl as well as FreeBSD implementation 3907 */ 3908 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3909 unsigned int optlen) 3910 { 3911 int val; 3912 struct sctp_sock *sp = sctp_sk(sk); 3913 3914 if (optlen < sizeof(int)) 3915 return -EINVAL; 3916 if (get_user(val, (int __user *)optval)) 3917 return -EFAULT; 3918 if (!sctp_is_ep_boundall(sk) && val) 3919 return -EINVAL; 3920 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3921 return 0; 3922 3923 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3924 if (val == 0 && sp->do_auto_asconf) { 3925 list_del(&sp->auto_asconf_list); 3926 sp->do_auto_asconf = 0; 3927 } else if (val && !sp->do_auto_asconf) { 3928 list_add_tail(&sp->auto_asconf_list, 3929 &sock_net(sk)->sctp.auto_asconf_splist); 3930 sp->do_auto_asconf = 1; 3931 } 3932 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3933 return 0; 3934 } 3935 3936 /* 3937 * SCTP_PEER_ADDR_THLDS 3938 * 3939 * This option allows us to alter the partially failed threshold for one or all 3940 * transports in an association. See Section 6.1 of: 3941 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3942 */ 3943 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3944 char __user *optval, 3945 unsigned int optlen) 3946 { 3947 struct sctp_paddrthlds val; 3948 struct sctp_transport *trans; 3949 struct sctp_association *asoc; 3950 3951 if (optlen < sizeof(struct sctp_paddrthlds)) 3952 return -EINVAL; 3953 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3954 sizeof(struct sctp_paddrthlds))) 3955 return -EFAULT; 3956 3957 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3958 trans = sctp_addr_id2transport(sk, &val.spt_address, 3959 val.spt_assoc_id); 3960 if (!trans) 3961 return -ENOENT; 3962 3963 if (val.spt_pathmaxrxt) 3964 trans->pathmaxrxt = val.spt_pathmaxrxt; 3965 trans->pf_retrans = val.spt_pathpfthld; 3966 3967 return 0; 3968 } 3969 3970 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3971 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 3972 sctp_style(sk, UDP)) 3973 return -EINVAL; 3974 3975 if (asoc) { 3976 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3977 transports) { 3978 if (val.spt_pathmaxrxt) 3979 trans->pathmaxrxt = val.spt_pathmaxrxt; 3980 trans->pf_retrans = val.spt_pathpfthld; 3981 } 3982 3983 if (val.spt_pathmaxrxt) 3984 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3985 asoc->pf_retrans = val.spt_pathpfthld; 3986 } else { 3987 struct sctp_sock *sp = sctp_sk(sk); 3988 3989 if (val.spt_pathmaxrxt) 3990 sp->pathmaxrxt = val.spt_pathmaxrxt; 3991 sp->pf_retrans = val.spt_pathpfthld; 3992 } 3993 3994 return 0; 3995 } 3996 3997 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3998 char __user *optval, 3999 unsigned int optlen) 4000 { 4001 int val; 4002 4003 if (optlen < sizeof(int)) 4004 return -EINVAL; 4005 if (get_user(val, (int __user *) optval)) 4006 return -EFAULT; 4007 4008 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4009 4010 return 0; 4011 } 4012 4013 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4014 char __user *optval, 4015 unsigned int optlen) 4016 { 4017 int val; 4018 4019 if (optlen < sizeof(int)) 4020 return -EINVAL; 4021 if (get_user(val, (int __user *) optval)) 4022 return -EFAULT; 4023 4024 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4025 4026 return 0; 4027 } 4028 4029 static int sctp_setsockopt_pr_supported(struct sock *sk, 4030 char __user *optval, 4031 unsigned int optlen) 4032 { 4033 struct sctp_assoc_value params; 4034 struct sctp_association *asoc; 4035 4036 if (optlen != sizeof(params)) 4037 return -EINVAL; 4038 4039 if (copy_from_user(¶ms, optval, optlen)) 4040 return -EFAULT; 4041 4042 asoc = sctp_id2assoc(sk, params.assoc_id); 4043 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4044 sctp_style(sk, UDP)) 4045 return -EINVAL; 4046 4047 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4048 4049 return 0; 4050 } 4051 4052 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4053 char __user *optval, 4054 unsigned int optlen) 4055 { 4056 struct sctp_sock *sp = sctp_sk(sk); 4057 struct sctp_default_prinfo info; 4058 struct sctp_association *asoc; 4059 int retval = -EINVAL; 4060 4061 if (optlen != sizeof(info)) 4062 goto out; 4063 4064 if (copy_from_user(&info, optval, sizeof(info))) { 4065 retval = -EFAULT; 4066 goto out; 4067 } 4068 4069 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4070 goto out; 4071 4072 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4073 info.pr_value = 0; 4074 4075 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4076 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4077 sctp_style(sk, UDP)) 4078 goto out; 4079 4080 retval = 0; 4081 4082 if (asoc) { 4083 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4084 asoc->default_timetolive = info.pr_value; 4085 goto out; 4086 } 4087 4088 if (sctp_style(sk, TCP)) 4089 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4090 4091 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4092 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4093 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4094 sp->default_timetolive = info.pr_value; 4095 } 4096 4097 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4098 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4099 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4100 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4101 asoc->default_timetolive = info.pr_value; 4102 } 4103 } 4104 4105 out: 4106 return retval; 4107 } 4108 4109 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4110 char __user *optval, 4111 unsigned int optlen) 4112 { 4113 struct sctp_assoc_value params; 4114 struct sctp_association *asoc; 4115 int retval = -EINVAL; 4116 4117 if (optlen != sizeof(params)) 4118 goto out; 4119 4120 if (copy_from_user(¶ms, optval, optlen)) { 4121 retval = -EFAULT; 4122 goto out; 4123 } 4124 4125 asoc = sctp_id2assoc(sk, params.assoc_id); 4126 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4127 sctp_style(sk, UDP)) 4128 goto out; 4129 4130 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4131 4132 retval = 0; 4133 4134 out: 4135 return retval; 4136 } 4137 4138 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4139 char __user *optval, 4140 unsigned int optlen) 4141 { 4142 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4143 struct sctp_assoc_value params; 4144 struct sctp_association *asoc; 4145 int retval = -EINVAL; 4146 4147 if (optlen != sizeof(params)) 4148 goto out; 4149 4150 if (copy_from_user(¶ms, optval, optlen)) { 4151 retval = -EFAULT; 4152 goto out; 4153 } 4154 4155 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4156 goto out; 4157 4158 asoc = sctp_id2assoc(sk, params.assoc_id); 4159 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4160 sctp_style(sk, UDP)) 4161 goto out; 4162 4163 retval = 0; 4164 4165 if (asoc) { 4166 asoc->strreset_enable = params.assoc_value; 4167 goto out; 4168 } 4169 4170 if (sctp_style(sk, TCP)) 4171 params.assoc_id = SCTP_FUTURE_ASSOC; 4172 4173 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4174 params.assoc_id == SCTP_ALL_ASSOC) 4175 ep->strreset_enable = params.assoc_value; 4176 4177 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4178 params.assoc_id == SCTP_ALL_ASSOC) 4179 list_for_each_entry(asoc, &ep->asocs, asocs) 4180 asoc->strreset_enable = params.assoc_value; 4181 4182 out: 4183 return retval; 4184 } 4185 4186 static int sctp_setsockopt_reset_streams(struct sock *sk, 4187 char __user *optval, 4188 unsigned int optlen) 4189 { 4190 struct sctp_reset_streams *params; 4191 struct sctp_association *asoc; 4192 int retval = -EINVAL; 4193 4194 if (optlen < sizeof(*params)) 4195 return -EINVAL; 4196 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4197 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4198 sizeof(__u16) * sizeof(*params)); 4199 4200 params = memdup_user(optval, optlen); 4201 if (IS_ERR(params)) 4202 return PTR_ERR(params); 4203 4204 if (params->srs_number_streams * sizeof(__u16) > 4205 optlen - sizeof(*params)) 4206 goto out; 4207 4208 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4209 if (!asoc) 4210 goto out; 4211 4212 retval = sctp_send_reset_streams(asoc, params); 4213 4214 out: 4215 kfree(params); 4216 return retval; 4217 } 4218 4219 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4220 char __user *optval, 4221 unsigned int optlen) 4222 { 4223 struct sctp_association *asoc; 4224 sctp_assoc_t associd; 4225 int retval = -EINVAL; 4226 4227 if (optlen != sizeof(associd)) 4228 goto out; 4229 4230 if (copy_from_user(&associd, optval, optlen)) { 4231 retval = -EFAULT; 4232 goto out; 4233 } 4234 4235 asoc = sctp_id2assoc(sk, associd); 4236 if (!asoc) 4237 goto out; 4238 4239 retval = sctp_send_reset_assoc(asoc); 4240 4241 out: 4242 return retval; 4243 } 4244 4245 static int sctp_setsockopt_add_streams(struct sock *sk, 4246 char __user *optval, 4247 unsigned int optlen) 4248 { 4249 struct sctp_association *asoc; 4250 struct sctp_add_streams params; 4251 int retval = -EINVAL; 4252 4253 if (optlen != sizeof(params)) 4254 goto out; 4255 4256 if (copy_from_user(¶ms, optval, optlen)) { 4257 retval = -EFAULT; 4258 goto out; 4259 } 4260 4261 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4262 if (!asoc) 4263 goto out; 4264 4265 retval = sctp_send_add_streams(asoc, ¶ms); 4266 4267 out: 4268 return retval; 4269 } 4270 4271 static int sctp_setsockopt_scheduler(struct sock *sk, 4272 char __user *optval, 4273 unsigned int optlen) 4274 { 4275 struct sctp_sock *sp = sctp_sk(sk); 4276 struct sctp_association *asoc; 4277 struct sctp_assoc_value params; 4278 int retval = 0; 4279 4280 if (optlen < sizeof(params)) 4281 return -EINVAL; 4282 4283 optlen = sizeof(params); 4284 if (copy_from_user(¶ms, optval, optlen)) 4285 return -EFAULT; 4286 4287 if (params.assoc_value > SCTP_SS_MAX) 4288 return -EINVAL; 4289 4290 asoc = sctp_id2assoc(sk, params.assoc_id); 4291 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4292 sctp_style(sk, UDP)) 4293 return -EINVAL; 4294 4295 if (asoc) 4296 return sctp_sched_set_sched(asoc, params.assoc_value); 4297 4298 if (sctp_style(sk, TCP)) 4299 params.assoc_id = SCTP_FUTURE_ASSOC; 4300 4301 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4302 params.assoc_id == SCTP_ALL_ASSOC) 4303 sp->default_ss = params.assoc_value; 4304 4305 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4306 params.assoc_id == SCTP_ALL_ASSOC) { 4307 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4308 int ret = sctp_sched_set_sched(asoc, 4309 params.assoc_value); 4310 4311 if (ret && !retval) 4312 retval = ret; 4313 } 4314 } 4315 4316 return retval; 4317 } 4318 4319 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4320 char __user *optval, 4321 unsigned int optlen) 4322 { 4323 struct sctp_stream_value params; 4324 struct sctp_association *asoc; 4325 int retval = -EINVAL; 4326 4327 if (optlen < sizeof(params)) 4328 goto out; 4329 4330 optlen = sizeof(params); 4331 if (copy_from_user(¶ms, optval, optlen)) { 4332 retval = -EFAULT; 4333 goto out; 4334 } 4335 4336 asoc = sctp_id2assoc(sk, params.assoc_id); 4337 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4338 sctp_style(sk, UDP)) 4339 goto out; 4340 4341 if (asoc) { 4342 retval = sctp_sched_set_value(asoc, params.stream_id, 4343 params.stream_value, GFP_KERNEL); 4344 goto out; 4345 } 4346 4347 retval = 0; 4348 4349 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4350 int ret = sctp_sched_set_value(asoc, params.stream_id, 4351 params.stream_value, GFP_KERNEL); 4352 if (ret && !retval) /* try to return the 1st error. */ 4353 retval = ret; 4354 } 4355 4356 out: 4357 return retval; 4358 } 4359 4360 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4361 char __user *optval, 4362 unsigned int optlen) 4363 { 4364 struct sctp_sock *sp = sctp_sk(sk); 4365 struct sctp_assoc_value params; 4366 struct sctp_association *asoc; 4367 int retval = -EINVAL; 4368 4369 if (optlen < sizeof(params)) 4370 goto out; 4371 4372 optlen = sizeof(params); 4373 if (copy_from_user(¶ms, optval, optlen)) { 4374 retval = -EFAULT; 4375 goto out; 4376 } 4377 4378 asoc = sctp_id2assoc(sk, params.assoc_id); 4379 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4380 sctp_style(sk, UDP)) 4381 goto out; 4382 4383 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4384 retval = -EPERM; 4385 goto out; 4386 } 4387 4388 sp->ep->intl_enable = !!params.assoc_value; 4389 4390 retval = 0; 4391 4392 out: 4393 return retval; 4394 } 4395 4396 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4397 unsigned int optlen) 4398 { 4399 int val; 4400 4401 if (!sctp_style(sk, TCP)) 4402 return -EOPNOTSUPP; 4403 4404 if (sctp_sk(sk)->ep->base.bind_addr.port) 4405 return -EFAULT; 4406 4407 if (optlen < sizeof(int)) 4408 return -EINVAL; 4409 4410 if (get_user(val, (int __user *)optval)) 4411 return -EFAULT; 4412 4413 sctp_sk(sk)->reuse = !!val; 4414 4415 return 0; 4416 } 4417 4418 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4419 struct sctp_association *asoc) 4420 { 4421 struct sctp_ulpevent *event; 4422 4423 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4424 4425 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4426 if (sctp_outq_is_empty(&asoc->outqueue)) { 4427 event = sctp_ulpevent_make_sender_dry_event(asoc, 4428 GFP_USER | __GFP_NOWARN); 4429 if (!event) 4430 return -ENOMEM; 4431 4432 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4433 } 4434 } 4435 4436 return 0; 4437 } 4438 4439 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4440 unsigned int optlen) 4441 { 4442 struct sctp_sock *sp = sctp_sk(sk); 4443 struct sctp_association *asoc; 4444 struct sctp_event param; 4445 int retval = 0; 4446 4447 if (optlen < sizeof(param)) 4448 return -EINVAL; 4449 4450 optlen = sizeof(param); 4451 if (copy_from_user(¶m, optval, optlen)) 4452 return -EFAULT; 4453 4454 if (param.se_type < SCTP_SN_TYPE_BASE || 4455 param.se_type > SCTP_SN_TYPE_MAX) 4456 return -EINVAL; 4457 4458 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4459 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4460 sctp_style(sk, UDP)) 4461 return -EINVAL; 4462 4463 if (asoc) 4464 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4465 4466 if (sctp_style(sk, TCP)) 4467 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4468 4469 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4470 param.se_assoc_id == SCTP_ALL_ASSOC) 4471 sctp_ulpevent_type_set(&sp->subscribe, 4472 param.se_type, param.se_on); 4473 4474 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4475 param.se_assoc_id == SCTP_ALL_ASSOC) { 4476 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4477 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4478 4479 if (ret && !retval) 4480 retval = ret; 4481 } 4482 } 4483 4484 return retval; 4485 } 4486 4487 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4488 char __user *optval, 4489 unsigned int optlen) 4490 { 4491 struct sctp_assoc_value params; 4492 struct sctp_association *asoc; 4493 struct sctp_endpoint *ep; 4494 int retval = -EINVAL; 4495 4496 if (optlen != sizeof(params)) 4497 goto out; 4498 4499 if (copy_from_user(¶ms, optval, optlen)) { 4500 retval = -EFAULT; 4501 goto out; 4502 } 4503 4504 asoc = sctp_id2assoc(sk, params.assoc_id); 4505 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4506 sctp_style(sk, UDP)) 4507 goto out; 4508 4509 ep = sctp_sk(sk)->ep; 4510 ep->asconf_enable = !!params.assoc_value; 4511 4512 if (ep->asconf_enable && ep->auth_enable) { 4513 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4514 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4515 } 4516 4517 retval = 0; 4518 4519 out: 4520 return retval; 4521 } 4522 4523 static int sctp_setsockopt_auth_supported(struct sock *sk, 4524 char __user *optval, 4525 unsigned int optlen) 4526 { 4527 struct sctp_assoc_value params; 4528 struct sctp_association *asoc; 4529 struct sctp_endpoint *ep; 4530 int retval = -EINVAL; 4531 4532 if (optlen != sizeof(params)) 4533 goto out; 4534 4535 if (copy_from_user(¶ms, optval, optlen)) { 4536 retval = -EFAULT; 4537 goto out; 4538 } 4539 4540 asoc = sctp_id2assoc(sk, params.assoc_id); 4541 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4542 sctp_style(sk, UDP)) 4543 goto out; 4544 4545 ep = sctp_sk(sk)->ep; 4546 if (params.assoc_value) { 4547 retval = sctp_auth_init(ep, GFP_KERNEL); 4548 if (retval) 4549 goto out; 4550 if (ep->asconf_enable) { 4551 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4552 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4553 } 4554 } 4555 4556 ep->auth_enable = !!params.assoc_value; 4557 retval = 0; 4558 4559 out: 4560 return retval; 4561 } 4562 4563 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4564 char __user *optval, 4565 unsigned int optlen) 4566 { 4567 struct sctp_assoc_value params; 4568 struct sctp_association *asoc; 4569 int retval = -EINVAL; 4570 4571 if (optlen != sizeof(params)) 4572 goto out; 4573 4574 if (copy_from_user(¶ms, optval, optlen)) { 4575 retval = -EFAULT; 4576 goto out; 4577 } 4578 4579 asoc = sctp_id2assoc(sk, params.assoc_id); 4580 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4581 sctp_style(sk, UDP)) 4582 goto out; 4583 4584 sctp_sk(sk)->ep->ecn_enable = !!params.assoc_value; 4585 retval = 0; 4586 4587 out: 4588 return retval; 4589 } 4590 4591 /* API 6.2 setsockopt(), getsockopt() 4592 * 4593 * Applications use setsockopt() and getsockopt() to set or retrieve 4594 * socket options. Socket options are used to change the default 4595 * behavior of sockets calls. They are described in Section 7. 4596 * 4597 * The syntax is: 4598 * 4599 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4600 * int __user *optlen); 4601 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4602 * int optlen); 4603 * 4604 * sd - the socket descript. 4605 * level - set to IPPROTO_SCTP for all SCTP options. 4606 * optname - the option name. 4607 * optval - the buffer to store the value of the option. 4608 * optlen - the size of the buffer. 4609 */ 4610 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4611 char __user *optval, unsigned int optlen) 4612 { 4613 int retval = 0; 4614 4615 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4616 4617 /* I can hardly begin to describe how wrong this is. This is 4618 * so broken as to be worse than useless. The API draft 4619 * REALLY is NOT helpful here... I am not convinced that the 4620 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4621 * are at all well-founded. 4622 */ 4623 if (level != SOL_SCTP) { 4624 struct sctp_af *af = sctp_sk(sk)->pf->af; 4625 retval = af->setsockopt(sk, level, optname, optval, optlen); 4626 goto out_nounlock; 4627 } 4628 4629 lock_sock(sk); 4630 4631 switch (optname) { 4632 case SCTP_SOCKOPT_BINDX_ADD: 4633 /* 'optlen' is the size of the addresses buffer. */ 4634 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4635 optlen, SCTP_BINDX_ADD_ADDR); 4636 break; 4637 4638 case SCTP_SOCKOPT_BINDX_REM: 4639 /* 'optlen' is the size of the addresses buffer. */ 4640 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4641 optlen, SCTP_BINDX_REM_ADDR); 4642 break; 4643 4644 case SCTP_SOCKOPT_CONNECTX_OLD: 4645 /* 'optlen' is the size of the addresses buffer. */ 4646 retval = sctp_setsockopt_connectx_old(sk, 4647 (struct sockaddr __user *)optval, 4648 optlen); 4649 break; 4650 4651 case SCTP_SOCKOPT_CONNECTX: 4652 /* 'optlen' is the size of the addresses buffer. */ 4653 retval = sctp_setsockopt_connectx(sk, 4654 (struct sockaddr __user *)optval, 4655 optlen); 4656 break; 4657 4658 case SCTP_DISABLE_FRAGMENTS: 4659 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4660 break; 4661 4662 case SCTP_EVENTS: 4663 retval = sctp_setsockopt_events(sk, optval, optlen); 4664 break; 4665 4666 case SCTP_AUTOCLOSE: 4667 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4668 break; 4669 4670 case SCTP_PEER_ADDR_PARAMS: 4671 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4672 break; 4673 4674 case SCTP_DELAYED_SACK: 4675 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4676 break; 4677 case SCTP_PARTIAL_DELIVERY_POINT: 4678 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4679 break; 4680 4681 case SCTP_INITMSG: 4682 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4683 break; 4684 case SCTP_DEFAULT_SEND_PARAM: 4685 retval = sctp_setsockopt_default_send_param(sk, optval, 4686 optlen); 4687 break; 4688 case SCTP_DEFAULT_SNDINFO: 4689 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4690 break; 4691 case SCTP_PRIMARY_ADDR: 4692 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4693 break; 4694 case SCTP_SET_PEER_PRIMARY_ADDR: 4695 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4696 break; 4697 case SCTP_NODELAY: 4698 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4699 break; 4700 case SCTP_RTOINFO: 4701 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4702 break; 4703 case SCTP_ASSOCINFO: 4704 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4705 break; 4706 case SCTP_I_WANT_MAPPED_V4_ADDR: 4707 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4708 break; 4709 case SCTP_MAXSEG: 4710 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4711 break; 4712 case SCTP_ADAPTATION_LAYER: 4713 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4714 break; 4715 case SCTP_CONTEXT: 4716 retval = sctp_setsockopt_context(sk, optval, optlen); 4717 break; 4718 case SCTP_FRAGMENT_INTERLEAVE: 4719 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4720 break; 4721 case SCTP_MAX_BURST: 4722 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4723 break; 4724 case SCTP_AUTH_CHUNK: 4725 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4726 break; 4727 case SCTP_HMAC_IDENT: 4728 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4729 break; 4730 case SCTP_AUTH_KEY: 4731 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4732 break; 4733 case SCTP_AUTH_ACTIVE_KEY: 4734 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4735 break; 4736 case SCTP_AUTH_DELETE_KEY: 4737 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4738 break; 4739 case SCTP_AUTH_DEACTIVATE_KEY: 4740 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4741 break; 4742 case SCTP_AUTO_ASCONF: 4743 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4744 break; 4745 case SCTP_PEER_ADDR_THLDS: 4746 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4747 break; 4748 case SCTP_RECVRCVINFO: 4749 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4750 break; 4751 case SCTP_RECVNXTINFO: 4752 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4753 break; 4754 case SCTP_PR_SUPPORTED: 4755 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4756 break; 4757 case SCTP_DEFAULT_PRINFO: 4758 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4759 break; 4760 case SCTP_RECONFIG_SUPPORTED: 4761 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4762 break; 4763 case SCTP_ENABLE_STREAM_RESET: 4764 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4765 break; 4766 case SCTP_RESET_STREAMS: 4767 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4768 break; 4769 case SCTP_RESET_ASSOC: 4770 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4771 break; 4772 case SCTP_ADD_STREAMS: 4773 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4774 break; 4775 case SCTP_STREAM_SCHEDULER: 4776 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4777 break; 4778 case SCTP_STREAM_SCHEDULER_VALUE: 4779 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4780 break; 4781 case SCTP_INTERLEAVING_SUPPORTED: 4782 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4783 optlen); 4784 break; 4785 case SCTP_REUSE_PORT: 4786 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4787 break; 4788 case SCTP_EVENT: 4789 retval = sctp_setsockopt_event(sk, optval, optlen); 4790 break; 4791 case SCTP_ASCONF_SUPPORTED: 4792 retval = sctp_setsockopt_asconf_supported(sk, optval, optlen); 4793 break; 4794 case SCTP_AUTH_SUPPORTED: 4795 retval = sctp_setsockopt_auth_supported(sk, optval, optlen); 4796 break; 4797 case SCTP_ECN_SUPPORTED: 4798 retval = sctp_setsockopt_ecn_supported(sk, optval, optlen); 4799 break; 4800 default: 4801 retval = -ENOPROTOOPT; 4802 break; 4803 } 4804 4805 release_sock(sk); 4806 4807 out_nounlock: 4808 return retval; 4809 } 4810 4811 /* API 3.1.6 connect() - UDP Style Syntax 4812 * 4813 * An application may use the connect() call in the UDP model to initiate an 4814 * association without sending data. 4815 * 4816 * The syntax is: 4817 * 4818 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4819 * 4820 * sd: the socket descriptor to have a new association added to. 4821 * 4822 * nam: the address structure (either struct sockaddr_in or struct 4823 * sockaddr_in6 defined in RFC2553 [7]). 4824 * 4825 * len: the size of the address. 4826 */ 4827 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4828 int addr_len, int flags) 4829 { 4830 struct sctp_af *af; 4831 int err = -EINVAL; 4832 4833 lock_sock(sk); 4834 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4835 addr, addr_len); 4836 4837 /* Validate addr_len before calling common connect/connectx routine. */ 4838 af = sctp_get_af_specific(addr->sa_family); 4839 if (af && addr_len >= af->sockaddr_len) 4840 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4841 4842 release_sock(sk); 4843 return err; 4844 } 4845 4846 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4847 int addr_len, int flags) 4848 { 4849 if (addr_len < sizeof(uaddr->sa_family)) 4850 return -EINVAL; 4851 4852 if (uaddr->sa_family == AF_UNSPEC) 4853 return -EOPNOTSUPP; 4854 4855 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4856 } 4857 4858 /* FIXME: Write comments. */ 4859 static int sctp_disconnect(struct sock *sk, int flags) 4860 { 4861 return -EOPNOTSUPP; /* STUB */ 4862 } 4863 4864 /* 4.1.4 accept() - TCP Style Syntax 4865 * 4866 * Applications use accept() call to remove an established SCTP 4867 * association from the accept queue of the endpoint. A new socket 4868 * descriptor will be returned from accept() to represent the newly 4869 * formed association. 4870 */ 4871 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4872 { 4873 struct sctp_sock *sp; 4874 struct sctp_endpoint *ep; 4875 struct sock *newsk = NULL; 4876 struct sctp_association *asoc; 4877 long timeo; 4878 int error = 0; 4879 4880 lock_sock(sk); 4881 4882 sp = sctp_sk(sk); 4883 ep = sp->ep; 4884 4885 if (!sctp_style(sk, TCP)) { 4886 error = -EOPNOTSUPP; 4887 goto out; 4888 } 4889 4890 if (!sctp_sstate(sk, LISTENING)) { 4891 error = -EINVAL; 4892 goto out; 4893 } 4894 4895 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4896 4897 error = sctp_wait_for_accept(sk, timeo); 4898 if (error) 4899 goto out; 4900 4901 /* We treat the list of associations on the endpoint as the accept 4902 * queue and pick the first association on the list. 4903 */ 4904 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4905 4906 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4907 if (!newsk) { 4908 error = -ENOMEM; 4909 goto out; 4910 } 4911 4912 /* Populate the fields of the newsk from the oldsk and migrate the 4913 * asoc to the newsk. 4914 */ 4915 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4916 if (error) { 4917 sk_common_release(newsk); 4918 newsk = NULL; 4919 } 4920 4921 out: 4922 release_sock(sk); 4923 *err = error; 4924 return newsk; 4925 } 4926 4927 /* The SCTP ioctl handler. */ 4928 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4929 { 4930 int rc = -ENOTCONN; 4931 4932 lock_sock(sk); 4933 4934 /* 4935 * SEQPACKET-style sockets in LISTENING state are valid, for 4936 * SCTP, so only discard TCP-style sockets in LISTENING state. 4937 */ 4938 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4939 goto out; 4940 4941 switch (cmd) { 4942 case SIOCINQ: { 4943 struct sk_buff *skb; 4944 unsigned int amount = 0; 4945 4946 skb = skb_peek(&sk->sk_receive_queue); 4947 if (skb != NULL) { 4948 /* 4949 * We will only return the amount of this packet since 4950 * that is all that will be read. 4951 */ 4952 amount = skb->len; 4953 } 4954 rc = put_user(amount, (int __user *)arg); 4955 break; 4956 } 4957 default: 4958 rc = -ENOIOCTLCMD; 4959 break; 4960 } 4961 out: 4962 release_sock(sk); 4963 return rc; 4964 } 4965 4966 /* This is the function which gets called during socket creation to 4967 * initialized the SCTP-specific portion of the sock. 4968 * The sock structure should already be zero-filled memory. 4969 */ 4970 static int sctp_init_sock(struct sock *sk) 4971 { 4972 struct net *net = sock_net(sk); 4973 struct sctp_sock *sp; 4974 4975 pr_debug("%s: sk:%p\n", __func__, sk); 4976 4977 sp = sctp_sk(sk); 4978 4979 /* Initialize the SCTP per socket area. */ 4980 switch (sk->sk_type) { 4981 case SOCK_SEQPACKET: 4982 sp->type = SCTP_SOCKET_UDP; 4983 break; 4984 case SOCK_STREAM: 4985 sp->type = SCTP_SOCKET_TCP; 4986 break; 4987 default: 4988 return -ESOCKTNOSUPPORT; 4989 } 4990 4991 sk->sk_gso_type = SKB_GSO_SCTP; 4992 4993 /* Initialize default send parameters. These parameters can be 4994 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4995 */ 4996 sp->default_stream = 0; 4997 sp->default_ppid = 0; 4998 sp->default_flags = 0; 4999 sp->default_context = 0; 5000 sp->default_timetolive = 0; 5001 5002 sp->default_rcv_context = 0; 5003 sp->max_burst = net->sctp.max_burst; 5004 5005 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5006 5007 /* Initialize default setup parameters. These parameters 5008 * can be modified with the SCTP_INITMSG socket option or 5009 * overridden by the SCTP_INIT CMSG. 5010 */ 5011 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5012 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5013 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5014 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5015 5016 /* Initialize default RTO related parameters. These parameters can 5017 * be modified for with the SCTP_RTOINFO socket option. 5018 */ 5019 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5020 sp->rtoinfo.srto_max = net->sctp.rto_max; 5021 sp->rtoinfo.srto_min = net->sctp.rto_min; 5022 5023 /* Initialize default association related parameters. These parameters 5024 * can be modified with the SCTP_ASSOCINFO socket option. 5025 */ 5026 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5027 sp->assocparams.sasoc_number_peer_destinations = 0; 5028 sp->assocparams.sasoc_peer_rwnd = 0; 5029 sp->assocparams.sasoc_local_rwnd = 0; 5030 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5031 5032 /* Initialize default event subscriptions. By default, all the 5033 * options are off. 5034 */ 5035 sp->subscribe = 0; 5036 5037 /* Default Peer Address Parameters. These defaults can 5038 * be modified via SCTP_PEER_ADDR_PARAMS 5039 */ 5040 sp->hbinterval = net->sctp.hb_interval; 5041 sp->pathmaxrxt = net->sctp.max_retrans_path; 5042 sp->pf_retrans = net->sctp.pf_retrans; 5043 sp->pathmtu = 0; /* allow default discovery */ 5044 sp->sackdelay = net->sctp.sack_timeout; 5045 sp->sackfreq = 2; 5046 sp->param_flags = SPP_HB_ENABLE | 5047 SPP_PMTUD_ENABLE | 5048 SPP_SACKDELAY_ENABLE; 5049 sp->default_ss = SCTP_SS_DEFAULT; 5050 5051 /* If enabled no SCTP message fragmentation will be performed. 5052 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5053 */ 5054 sp->disable_fragments = 0; 5055 5056 /* Enable Nagle algorithm by default. */ 5057 sp->nodelay = 0; 5058 5059 sp->recvrcvinfo = 0; 5060 sp->recvnxtinfo = 0; 5061 5062 /* Enable by default. */ 5063 sp->v4mapped = 1; 5064 5065 /* Auto-close idle associations after the configured 5066 * number of seconds. A value of 0 disables this 5067 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5068 * for UDP-style sockets only. 5069 */ 5070 sp->autoclose = 0; 5071 5072 /* User specified fragmentation limit. */ 5073 sp->user_frag = 0; 5074 5075 sp->adaptation_ind = 0; 5076 5077 sp->pf = sctp_get_pf_specific(sk->sk_family); 5078 5079 /* Control variables for partial data delivery. */ 5080 atomic_set(&sp->pd_mode, 0); 5081 skb_queue_head_init(&sp->pd_lobby); 5082 sp->frag_interleave = 0; 5083 5084 /* Create a per socket endpoint structure. Even if we 5085 * change the data structure relationships, this may still 5086 * be useful for storing pre-connect address information. 5087 */ 5088 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5089 if (!sp->ep) 5090 return -ENOMEM; 5091 5092 sp->hmac = NULL; 5093 5094 sk->sk_destruct = sctp_destruct_sock; 5095 5096 SCTP_DBG_OBJCNT_INC(sock); 5097 5098 local_bh_disable(); 5099 sk_sockets_allocated_inc(sk); 5100 sock_prot_inuse_add(net, sk->sk_prot, 1); 5101 5102 /* Nothing can fail after this block, otherwise 5103 * sctp_destroy_sock() will be called without addr_wq_lock held 5104 */ 5105 if (net->sctp.default_auto_asconf) { 5106 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5107 list_add_tail(&sp->auto_asconf_list, 5108 &net->sctp.auto_asconf_splist); 5109 sp->do_auto_asconf = 1; 5110 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5111 } else { 5112 sp->do_auto_asconf = 0; 5113 } 5114 5115 local_bh_enable(); 5116 5117 return 0; 5118 } 5119 5120 /* Cleanup any SCTP per socket resources. Must be called with 5121 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5122 */ 5123 static void sctp_destroy_sock(struct sock *sk) 5124 { 5125 struct sctp_sock *sp; 5126 5127 pr_debug("%s: sk:%p\n", __func__, sk); 5128 5129 /* Release our hold on the endpoint. */ 5130 sp = sctp_sk(sk); 5131 /* This could happen during socket init, thus we bail out 5132 * early, since the rest of the below is not setup either. 5133 */ 5134 if (sp->ep == NULL) 5135 return; 5136 5137 if (sp->do_auto_asconf) { 5138 sp->do_auto_asconf = 0; 5139 list_del(&sp->auto_asconf_list); 5140 } 5141 sctp_endpoint_free(sp->ep); 5142 local_bh_disable(); 5143 sk_sockets_allocated_dec(sk); 5144 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5145 local_bh_enable(); 5146 } 5147 5148 /* Triggered when there are no references on the socket anymore */ 5149 static void sctp_destruct_sock(struct sock *sk) 5150 { 5151 struct sctp_sock *sp = sctp_sk(sk); 5152 5153 /* Free up the HMAC transform. */ 5154 crypto_free_shash(sp->hmac); 5155 5156 inet_sock_destruct(sk); 5157 } 5158 5159 /* API 4.1.7 shutdown() - TCP Style Syntax 5160 * int shutdown(int socket, int how); 5161 * 5162 * sd - the socket descriptor of the association to be closed. 5163 * how - Specifies the type of shutdown. The values are 5164 * as follows: 5165 * SHUT_RD 5166 * Disables further receive operations. No SCTP 5167 * protocol action is taken. 5168 * SHUT_WR 5169 * Disables further send operations, and initiates 5170 * the SCTP shutdown sequence. 5171 * SHUT_RDWR 5172 * Disables further send and receive operations 5173 * and initiates the SCTP shutdown sequence. 5174 */ 5175 static void sctp_shutdown(struct sock *sk, int how) 5176 { 5177 struct net *net = sock_net(sk); 5178 struct sctp_endpoint *ep; 5179 5180 if (!sctp_style(sk, TCP)) 5181 return; 5182 5183 ep = sctp_sk(sk)->ep; 5184 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5185 struct sctp_association *asoc; 5186 5187 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5188 asoc = list_entry(ep->asocs.next, 5189 struct sctp_association, asocs); 5190 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5191 } 5192 } 5193 5194 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5195 struct sctp_info *info) 5196 { 5197 struct sctp_transport *prim; 5198 struct list_head *pos; 5199 int mask; 5200 5201 memset(info, 0, sizeof(*info)); 5202 if (!asoc) { 5203 struct sctp_sock *sp = sctp_sk(sk); 5204 5205 info->sctpi_s_autoclose = sp->autoclose; 5206 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5207 info->sctpi_s_pd_point = sp->pd_point; 5208 info->sctpi_s_nodelay = sp->nodelay; 5209 info->sctpi_s_disable_fragments = sp->disable_fragments; 5210 info->sctpi_s_v4mapped = sp->v4mapped; 5211 info->sctpi_s_frag_interleave = sp->frag_interleave; 5212 info->sctpi_s_type = sp->type; 5213 5214 return 0; 5215 } 5216 5217 info->sctpi_tag = asoc->c.my_vtag; 5218 info->sctpi_state = asoc->state; 5219 info->sctpi_rwnd = asoc->a_rwnd; 5220 info->sctpi_unackdata = asoc->unack_data; 5221 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5222 info->sctpi_instrms = asoc->stream.incnt; 5223 info->sctpi_outstrms = asoc->stream.outcnt; 5224 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5225 info->sctpi_inqueue++; 5226 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5227 info->sctpi_outqueue++; 5228 info->sctpi_overall_error = asoc->overall_error_count; 5229 info->sctpi_max_burst = asoc->max_burst; 5230 info->sctpi_maxseg = asoc->frag_point; 5231 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5232 info->sctpi_peer_tag = asoc->c.peer_vtag; 5233 5234 mask = asoc->peer.ecn_capable << 1; 5235 mask = (mask | asoc->peer.ipv4_address) << 1; 5236 mask = (mask | asoc->peer.ipv6_address) << 1; 5237 mask = (mask | asoc->peer.hostname_address) << 1; 5238 mask = (mask | asoc->peer.asconf_capable) << 1; 5239 mask = (mask | asoc->peer.prsctp_capable) << 1; 5240 mask = (mask | asoc->peer.auth_capable); 5241 info->sctpi_peer_capable = mask; 5242 mask = asoc->peer.sack_needed << 1; 5243 mask = (mask | asoc->peer.sack_generation) << 1; 5244 mask = (mask | asoc->peer.zero_window_announced); 5245 info->sctpi_peer_sack = mask; 5246 5247 info->sctpi_isacks = asoc->stats.isacks; 5248 info->sctpi_osacks = asoc->stats.osacks; 5249 info->sctpi_opackets = asoc->stats.opackets; 5250 info->sctpi_ipackets = asoc->stats.ipackets; 5251 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5252 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5253 info->sctpi_idupchunks = asoc->stats.idupchunks; 5254 info->sctpi_gapcnt = asoc->stats.gapcnt; 5255 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5256 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5257 info->sctpi_oodchunks = asoc->stats.oodchunks; 5258 info->sctpi_iodchunks = asoc->stats.iodchunks; 5259 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5260 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5261 5262 prim = asoc->peer.primary_path; 5263 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5264 info->sctpi_p_state = prim->state; 5265 info->sctpi_p_cwnd = prim->cwnd; 5266 info->sctpi_p_srtt = prim->srtt; 5267 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5268 info->sctpi_p_hbinterval = prim->hbinterval; 5269 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5270 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5271 info->sctpi_p_ssthresh = prim->ssthresh; 5272 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5273 info->sctpi_p_flight_size = prim->flight_size; 5274 info->sctpi_p_error = prim->error_count; 5275 5276 return 0; 5277 } 5278 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5279 5280 /* use callback to avoid exporting the core structure */ 5281 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5282 { 5283 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5284 5285 rhashtable_walk_start(iter); 5286 } 5287 5288 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5289 { 5290 rhashtable_walk_stop(iter); 5291 rhashtable_walk_exit(iter); 5292 } 5293 5294 struct sctp_transport *sctp_transport_get_next(struct net *net, 5295 struct rhashtable_iter *iter) 5296 { 5297 struct sctp_transport *t; 5298 5299 t = rhashtable_walk_next(iter); 5300 for (; t; t = rhashtable_walk_next(iter)) { 5301 if (IS_ERR(t)) { 5302 if (PTR_ERR(t) == -EAGAIN) 5303 continue; 5304 break; 5305 } 5306 5307 if (!sctp_transport_hold(t)) 5308 continue; 5309 5310 if (net_eq(sock_net(t->asoc->base.sk), net) && 5311 t->asoc->peer.primary_path == t) 5312 break; 5313 5314 sctp_transport_put(t); 5315 } 5316 5317 return t; 5318 } 5319 5320 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5321 struct rhashtable_iter *iter, 5322 int pos) 5323 { 5324 struct sctp_transport *t; 5325 5326 if (!pos) 5327 return SEQ_START_TOKEN; 5328 5329 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5330 if (!--pos) 5331 break; 5332 sctp_transport_put(t); 5333 } 5334 5335 return t; 5336 } 5337 5338 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5339 void *p) { 5340 int err = 0; 5341 int hash = 0; 5342 struct sctp_ep_common *epb; 5343 struct sctp_hashbucket *head; 5344 5345 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5346 hash++, head++) { 5347 read_lock_bh(&head->lock); 5348 sctp_for_each_hentry(epb, &head->chain) { 5349 err = cb(sctp_ep(epb), p); 5350 if (err) 5351 break; 5352 } 5353 read_unlock_bh(&head->lock); 5354 } 5355 5356 return err; 5357 } 5358 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5359 5360 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5361 struct net *net, 5362 const union sctp_addr *laddr, 5363 const union sctp_addr *paddr, void *p) 5364 { 5365 struct sctp_transport *transport; 5366 int err; 5367 5368 rcu_read_lock(); 5369 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5370 rcu_read_unlock(); 5371 if (!transport) 5372 return -ENOENT; 5373 5374 err = cb(transport, p); 5375 sctp_transport_put(transport); 5376 5377 return err; 5378 } 5379 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5380 5381 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5382 int (*cb_done)(struct sctp_transport *, void *), 5383 struct net *net, int *pos, void *p) { 5384 struct rhashtable_iter hti; 5385 struct sctp_transport *tsp; 5386 int ret; 5387 5388 again: 5389 ret = 0; 5390 sctp_transport_walk_start(&hti); 5391 5392 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5393 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5394 ret = cb(tsp, p); 5395 if (ret) 5396 break; 5397 (*pos)++; 5398 sctp_transport_put(tsp); 5399 } 5400 sctp_transport_walk_stop(&hti); 5401 5402 if (ret) { 5403 if (cb_done && !cb_done(tsp, p)) { 5404 (*pos)++; 5405 sctp_transport_put(tsp); 5406 goto again; 5407 } 5408 sctp_transport_put(tsp); 5409 } 5410 5411 return ret; 5412 } 5413 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5414 5415 /* 7.2.1 Association Status (SCTP_STATUS) 5416 5417 * Applications can retrieve current status information about an 5418 * association, including association state, peer receiver window size, 5419 * number of unacked data chunks, and number of data chunks pending 5420 * receipt. This information is read-only. 5421 */ 5422 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5423 char __user *optval, 5424 int __user *optlen) 5425 { 5426 struct sctp_status status; 5427 struct sctp_association *asoc = NULL; 5428 struct sctp_transport *transport; 5429 sctp_assoc_t associd; 5430 int retval = 0; 5431 5432 if (len < sizeof(status)) { 5433 retval = -EINVAL; 5434 goto out; 5435 } 5436 5437 len = sizeof(status); 5438 if (copy_from_user(&status, optval, len)) { 5439 retval = -EFAULT; 5440 goto out; 5441 } 5442 5443 associd = status.sstat_assoc_id; 5444 asoc = sctp_id2assoc(sk, associd); 5445 if (!asoc) { 5446 retval = -EINVAL; 5447 goto out; 5448 } 5449 5450 transport = asoc->peer.primary_path; 5451 5452 status.sstat_assoc_id = sctp_assoc2id(asoc); 5453 status.sstat_state = sctp_assoc_to_state(asoc); 5454 status.sstat_rwnd = asoc->peer.rwnd; 5455 status.sstat_unackdata = asoc->unack_data; 5456 5457 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5458 status.sstat_instrms = asoc->stream.incnt; 5459 status.sstat_outstrms = asoc->stream.outcnt; 5460 status.sstat_fragmentation_point = asoc->frag_point; 5461 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5462 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5463 transport->af_specific->sockaddr_len); 5464 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5465 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5466 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5467 status.sstat_primary.spinfo_state = transport->state; 5468 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5469 status.sstat_primary.spinfo_srtt = transport->srtt; 5470 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5471 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5472 5473 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5474 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5475 5476 if (put_user(len, optlen)) { 5477 retval = -EFAULT; 5478 goto out; 5479 } 5480 5481 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5482 __func__, len, status.sstat_state, status.sstat_rwnd, 5483 status.sstat_assoc_id); 5484 5485 if (copy_to_user(optval, &status, len)) { 5486 retval = -EFAULT; 5487 goto out; 5488 } 5489 5490 out: 5491 return retval; 5492 } 5493 5494 5495 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5496 * 5497 * Applications can retrieve information about a specific peer address 5498 * of an association, including its reachability state, congestion 5499 * window, and retransmission timer values. This information is 5500 * read-only. 5501 */ 5502 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5503 char __user *optval, 5504 int __user *optlen) 5505 { 5506 struct sctp_paddrinfo pinfo; 5507 struct sctp_transport *transport; 5508 int retval = 0; 5509 5510 if (len < sizeof(pinfo)) { 5511 retval = -EINVAL; 5512 goto out; 5513 } 5514 5515 len = sizeof(pinfo); 5516 if (copy_from_user(&pinfo, optval, len)) { 5517 retval = -EFAULT; 5518 goto out; 5519 } 5520 5521 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5522 pinfo.spinfo_assoc_id); 5523 if (!transport) 5524 return -EINVAL; 5525 5526 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5527 pinfo.spinfo_state = transport->state; 5528 pinfo.spinfo_cwnd = transport->cwnd; 5529 pinfo.spinfo_srtt = transport->srtt; 5530 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5531 pinfo.spinfo_mtu = transport->pathmtu; 5532 5533 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5534 pinfo.spinfo_state = SCTP_ACTIVE; 5535 5536 if (put_user(len, optlen)) { 5537 retval = -EFAULT; 5538 goto out; 5539 } 5540 5541 if (copy_to_user(optval, &pinfo, len)) { 5542 retval = -EFAULT; 5543 goto out; 5544 } 5545 5546 out: 5547 return retval; 5548 } 5549 5550 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5551 * 5552 * This option is a on/off flag. If enabled no SCTP message 5553 * fragmentation will be performed. Instead if a message being sent 5554 * exceeds the current PMTU size, the message will NOT be sent and 5555 * instead a error will be indicated to the user. 5556 */ 5557 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5558 char __user *optval, int __user *optlen) 5559 { 5560 int val; 5561 5562 if (len < sizeof(int)) 5563 return -EINVAL; 5564 5565 len = sizeof(int); 5566 val = (sctp_sk(sk)->disable_fragments == 1); 5567 if (put_user(len, optlen)) 5568 return -EFAULT; 5569 if (copy_to_user(optval, &val, len)) 5570 return -EFAULT; 5571 return 0; 5572 } 5573 5574 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5575 * 5576 * This socket option is used to specify various notifications and 5577 * ancillary data the user wishes to receive. 5578 */ 5579 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5580 int __user *optlen) 5581 { 5582 struct sctp_event_subscribe subscribe; 5583 __u8 *sn_type = (__u8 *)&subscribe; 5584 int i; 5585 5586 if (len == 0) 5587 return -EINVAL; 5588 if (len > sizeof(struct sctp_event_subscribe)) 5589 len = sizeof(struct sctp_event_subscribe); 5590 if (put_user(len, optlen)) 5591 return -EFAULT; 5592 5593 for (i = 0; i < len; i++) 5594 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5595 SCTP_SN_TYPE_BASE + i); 5596 5597 if (copy_to_user(optval, &subscribe, len)) 5598 return -EFAULT; 5599 5600 return 0; 5601 } 5602 5603 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5604 * 5605 * This socket option is applicable to the UDP-style socket only. When 5606 * set it will cause associations that are idle for more than the 5607 * specified number of seconds to automatically close. An association 5608 * being idle is defined an association that has NOT sent or received 5609 * user data. The special value of '0' indicates that no automatic 5610 * close of any associations should be performed. The option expects an 5611 * integer defining the number of seconds of idle time before an 5612 * association is closed. 5613 */ 5614 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5615 { 5616 /* Applicable to UDP-style socket only */ 5617 if (sctp_style(sk, TCP)) 5618 return -EOPNOTSUPP; 5619 if (len < sizeof(int)) 5620 return -EINVAL; 5621 len = sizeof(int); 5622 if (put_user(len, optlen)) 5623 return -EFAULT; 5624 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5625 return -EFAULT; 5626 return 0; 5627 } 5628 5629 /* Helper routine to branch off an association to a new socket. */ 5630 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5631 { 5632 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5633 struct sctp_sock *sp = sctp_sk(sk); 5634 struct socket *sock; 5635 int err = 0; 5636 5637 /* Do not peel off from one netns to another one. */ 5638 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5639 return -EINVAL; 5640 5641 if (!asoc) 5642 return -EINVAL; 5643 5644 /* An association cannot be branched off from an already peeled-off 5645 * socket, nor is this supported for tcp style sockets. 5646 */ 5647 if (!sctp_style(sk, UDP)) 5648 return -EINVAL; 5649 5650 /* Create a new socket. */ 5651 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5652 if (err < 0) 5653 return err; 5654 5655 sctp_copy_sock(sock->sk, sk, asoc); 5656 5657 /* Make peeled-off sockets more like 1-1 accepted sockets. 5658 * Set the daddr and initialize id to something more random and also 5659 * copy over any ip options. 5660 */ 5661 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5662 sp->pf->copy_ip_options(sk, sock->sk); 5663 5664 /* Populate the fields of the newsk from the oldsk and migrate the 5665 * asoc to the newsk. 5666 */ 5667 err = sctp_sock_migrate(sk, sock->sk, asoc, 5668 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5669 if (err) { 5670 sock_release(sock); 5671 sock = NULL; 5672 } 5673 5674 *sockp = sock; 5675 5676 return err; 5677 } 5678 EXPORT_SYMBOL(sctp_do_peeloff); 5679 5680 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5681 struct file **newfile, unsigned flags) 5682 { 5683 struct socket *newsock; 5684 int retval; 5685 5686 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5687 if (retval < 0) 5688 goto out; 5689 5690 /* Map the socket to an unused fd that can be returned to the user. */ 5691 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5692 if (retval < 0) { 5693 sock_release(newsock); 5694 goto out; 5695 } 5696 5697 *newfile = sock_alloc_file(newsock, 0, NULL); 5698 if (IS_ERR(*newfile)) { 5699 put_unused_fd(retval); 5700 retval = PTR_ERR(*newfile); 5701 *newfile = NULL; 5702 return retval; 5703 } 5704 5705 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5706 retval); 5707 5708 peeloff->sd = retval; 5709 5710 if (flags & SOCK_NONBLOCK) 5711 (*newfile)->f_flags |= O_NONBLOCK; 5712 out: 5713 return retval; 5714 } 5715 5716 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5717 { 5718 sctp_peeloff_arg_t peeloff; 5719 struct file *newfile = NULL; 5720 int retval = 0; 5721 5722 if (len < sizeof(sctp_peeloff_arg_t)) 5723 return -EINVAL; 5724 len = sizeof(sctp_peeloff_arg_t); 5725 if (copy_from_user(&peeloff, optval, len)) 5726 return -EFAULT; 5727 5728 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5729 if (retval < 0) 5730 goto out; 5731 5732 /* Return the fd mapped to the new socket. */ 5733 if (put_user(len, optlen)) { 5734 fput(newfile); 5735 put_unused_fd(retval); 5736 return -EFAULT; 5737 } 5738 5739 if (copy_to_user(optval, &peeloff, len)) { 5740 fput(newfile); 5741 put_unused_fd(retval); 5742 return -EFAULT; 5743 } 5744 fd_install(retval, newfile); 5745 out: 5746 return retval; 5747 } 5748 5749 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5750 char __user *optval, int __user *optlen) 5751 { 5752 sctp_peeloff_flags_arg_t peeloff; 5753 struct file *newfile = NULL; 5754 int retval = 0; 5755 5756 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5757 return -EINVAL; 5758 len = sizeof(sctp_peeloff_flags_arg_t); 5759 if (copy_from_user(&peeloff, optval, len)) 5760 return -EFAULT; 5761 5762 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5763 &newfile, peeloff.flags); 5764 if (retval < 0) 5765 goto out; 5766 5767 /* Return the fd mapped to the new socket. */ 5768 if (put_user(len, optlen)) { 5769 fput(newfile); 5770 put_unused_fd(retval); 5771 return -EFAULT; 5772 } 5773 5774 if (copy_to_user(optval, &peeloff, len)) { 5775 fput(newfile); 5776 put_unused_fd(retval); 5777 return -EFAULT; 5778 } 5779 fd_install(retval, newfile); 5780 out: 5781 return retval; 5782 } 5783 5784 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5785 * 5786 * Applications can enable or disable heartbeats for any peer address of 5787 * an association, modify an address's heartbeat interval, force a 5788 * heartbeat to be sent immediately, and adjust the address's maximum 5789 * number of retransmissions sent before an address is considered 5790 * unreachable. The following structure is used to access and modify an 5791 * address's parameters: 5792 * 5793 * struct sctp_paddrparams { 5794 * sctp_assoc_t spp_assoc_id; 5795 * struct sockaddr_storage spp_address; 5796 * uint32_t spp_hbinterval; 5797 * uint16_t spp_pathmaxrxt; 5798 * uint32_t spp_pathmtu; 5799 * uint32_t spp_sackdelay; 5800 * uint32_t spp_flags; 5801 * }; 5802 * 5803 * spp_assoc_id - (one-to-many style socket) This is filled in the 5804 * application, and identifies the association for 5805 * this query. 5806 * spp_address - This specifies which address is of interest. 5807 * spp_hbinterval - This contains the value of the heartbeat interval, 5808 * in milliseconds. If a value of zero 5809 * is present in this field then no changes are to 5810 * be made to this parameter. 5811 * spp_pathmaxrxt - This contains the maximum number of 5812 * retransmissions before this address shall be 5813 * considered unreachable. If a value of zero 5814 * is present in this field then no changes are to 5815 * be made to this parameter. 5816 * spp_pathmtu - When Path MTU discovery is disabled the value 5817 * specified here will be the "fixed" path mtu. 5818 * Note that if the spp_address field is empty 5819 * then all associations on this address will 5820 * have this fixed path mtu set upon them. 5821 * 5822 * spp_sackdelay - When delayed sack is enabled, this value specifies 5823 * the number of milliseconds that sacks will be delayed 5824 * for. This value will apply to all addresses of an 5825 * association if the spp_address field is empty. Note 5826 * also, that if delayed sack is enabled and this 5827 * value is set to 0, no change is made to the last 5828 * recorded delayed sack timer value. 5829 * 5830 * spp_flags - These flags are used to control various features 5831 * on an association. The flag field may contain 5832 * zero or more of the following options. 5833 * 5834 * SPP_HB_ENABLE - Enable heartbeats on the 5835 * specified address. Note that if the address 5836 * field is empty all addresses for the association 5837 * have heartbeats enabled upon them. 5838 * 5839 * SPP_HB_DISABLE - Disable heartbeats on the 5840 * speicifed address. Note that if the address 5841 * field is empty all addresses for the association 5842 * will have their heartbeats disabled. Note also 5843 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5844 * mutually exclusive, only one of these two should 5845 * be specified. Enabling both fields will have 5846 * undetermined results. 5847 * 5848 * SPP_HB_DEMAND - Request a user initiated heartbeat 5849 * to be made immediately. 5850 * 5851 * SPP_PMTUD_ENABLE - This field will enable PMTU 5852 * discovery upon the specified address. Note that 5853 * if the address feild is empty then all addresses 5854 * on the association are effected. 5855 * 5856 * SPP_PMTUD_DISABLE - This field will disable PMTU 5857 * discovery upon the specified address. Note that 5858 * if the address feild is empty then all addresses 5859 * on the association are effected. Not also that 5860 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5861 * exclusive. Enabling both will have undetermined 5862 * results. 5863 * 5864 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5865 * on delayed sack. The time specified in spp_sackdelay 5866 * is used to specify the sack delay for this address. Note 5867 * that if spp_address is empty then all addresses will 5868 * enable delayed sack and take on the sack delay 5869 * value specified in spp_sackdelay. 5870 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5871 * off delayed sack. If the spp_address field is blank then 5872 * delayed sack is disabled for the entire association. Note 5873 * also that this field is mutually exclusive to 5874 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5875 * results. 5876 * 5877 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5878 * setting of the IPV6 flow label value. The value is 5879 * contained in the spp_ipv6_flowlabel field. 5880 * Upon retrieval, this flag will be set to indicate that 5881 * the spp_ipv6_flowlabel field has a valid value returned. 5882 * If a specific destination address is set (in the 5883 * spp_address field), then the value returned is that of 5884 * the address. If just an association is specified (and 5885 * no address), then the association's default flow label 5886 * is returned. If neither an association nor a destination 5887 * is specified, then the socket's default flow label is 5888 * returned. For non-IPv6 sockets, this flag will be left 5889 * cleared. 5890 * 5891 * SPP_DSCP: Setting this flag enables the setting of the 5892 * Differentiated Services Code Point (DSCP) value 5893 * associated with either the association or a specific 5894 * address. The value is obtained in the spp_dscp field. 5895 * Upon retrieval, this flag will be set to indicate that 5896 * the spp_dscp field has a valid value returned. If a 5897 * specific destination address is set when called (in the 5898 * spp_address field), then that specific destination 5899 * address's DSCP value is returned. If just an association 5900 * is specified, then the association's default DSCP is 5901 * returned. If neither an association nor a destination is 5902 * specified, then the socket's default DSCP is returned. 5903 * 5904 * spp_ipv6_flowlabel 5905 * - This field is used in conjunction with the 5906 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5907 * The 20 least significant bits are used for the flow 5908 * label. This setting has precedence over any IPv6-layer 5909 * setting. 5910 * 5911 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5912 * and contains the DSCP. The 6 most significant bits are 5913 * used for the DSCP. This setting has precedence over any 5914 * IPv4- or IPv6- layer setting. 5915 */ 5916 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5917 char __user *optval, int __user *optlen) 5918 { 5919 struct sctp_paddrparams params; 5920 struct sctp_transport *trans = NULL; 5921 struct sctp_association *asoc = NULL; 5922 struct sctp_sock *sp = sctp_sk(sk); 5923 5924 if (len >= sizeof(params)) 5925 len = sizeof(params); 5926 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5927 spp_ipv6_flowlabel), 4)) 5928 len = ALIGN(offsetof(struct sctp_paddrparams, 5929 spp_ipv6_flowlabel), 4); 5930 else 5931 return -EINVAL; 5932 5933 if (copy_from_user(¶ms, optval, len)) 5934 return -EFAULT; 5935 5936 /* If an address other than INADDR_ANY is specified, and 5937 * no transport is found, then the request is invalid. 5938 */ 5939 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5940 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5941 params.spp_assoc_id); 5942 if (!trans) { 5943 pr_debug("%s: failed no transport\n", __func__); 5944 return -EINVAL; 5945 } 5946 } 5947 5948 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5949 * socket is a one to many style socket, and an association 5950 * was not found, then the id was invalid. 5951 */ 5952 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5953 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5954 sctp_style(sk, UDP)) { 5955 pr_debug("%s: failed no association\n", __func__); 5956 return -EINVAL; 5957 } 5958 5959 if (trans) { 5960 /* Fetch transport values. */ 5961 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5962 params.spp_pathmtu = trans->pathmtu; 5963 params.spp_pathmaxrxt = trans->pathmaxrxt; 5964 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5965 5966 /*draft-11 doesn't say what to return in spp_flags*/ 5967 params.spp_flags = trans->param_flags; 5968 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5969 params.spp_ipv6_flowlabel = trans->flowlabel & 5970 SCTP_FLOWLABEL_VAL_MASK; 5971 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5972 } 5973 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5974 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5975 params.spp_flags |= SPP_DSCP; 5976 } 5977 } else if (asoc) { 5978 /* Fetch association values. */ 5979 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5980 params.spp_pathmtu = asoc->pathmtu; 5981 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5982 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5983 5984 /*draft-11 doesn't say what to return in spp_flags*/ 5985 params.spp_flags = asoc->param_flags; 5986 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5987 params.spp_ipv6_flowlabel = asoc->flowlabel & 5988 SCTP_FLOWLABEL_VAL_MASK; 5989 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5990 } 5991 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5992 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5993 params.spp_flags |= SPP_DSCP; 5994 } 5995 } else { 5996 /* Fetch socket values. */ 5997 params.spp_hbinterval = sp->hbinterval; 5998 params.spp_pathmtu = sp->pathmtu; 5999 params.spp_sackdelay = sp->sackdelay; 6000 params.spp_pathmaxrxt = sp->pathmaxrxt; 6001 6002 /*draft-11 doesn't say what to return in spp_flags*/ 6003 params.spp_flags = sp->param_flags; 6004 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6005 params.spp_ipv6_flowlabel = sp->flowlabel & 6006 SCTP_FLOWLABEL_VAL_MASK; 6007 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6008 } 6009 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6010 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6011 params.spp_flags |= SPP_DSCP; 6012 } 6013 } 6014 6015 if (copy_to_user(optval, ¶ms, len)) 6016 return -EFAULT; 6017 6018 if (put_user(len, optlen)) 6019 return -EFAULT; 6020 6021 return 0; 6022 } 6023 6024 /* 6025 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6026 * 6027 * This option will effect the way delayed acks are performed. This 6028 * option allows you to get or set the delayed ack time, in 6029 * milliseconds. It also allows changing the delayed ack frequency. 6030 * Changing the frequency to 1 disables the delayed sack algorithm. If 6031 * the assoc_id is 0, then this sets or gets the endpoints default 6032 * values. If the assoc_id field is non-zero, then the set or get 6033 * effects the specified association for the one to many model (the 6034 * assoc_id field is ignored by the one to one model). Note that if 6035 * sack_delay or sack_freq are 0 when setting this option, then the 6036 * current values will remain unchanged. 6037 * 6038 * struct sctp_sack_info { 6039 * sctp_assoc_t sack_assoc_id; 6040 * uint32_t sack_delay; 6041 * uint32_t sack_freq; 6042 * }; 6043 * 6044 * sack_assoc_id - This parameter, indicates which association the user 6045 * is performing an action upon. Note that if this field's value is 6046 * zero then the endpoints default value is changed (effecting future 6047 * associations only). 6048 * 6049 * sack_delay - This parameter contains the number of milliseconds that 6050 * the user is requesting the delayed ACK timer be set to. Note that 6051 * this value is defined in the standard to be between 200 and 500 6052 * milliseconds. 6053 * 6054 * sack_freq - This parameter contains the number of packets that must 6055 * be received before a sack is sent without waiting for the delay 6056 * timer to expire. The default value for this is 2, setting this 6057 * value to 1 will disable the delayed sack algorithm. 6058 */ 6059 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6060 char __user *optval, 6061 int __user *optlen) 6062 { 6063 struct sctp_sack_info params; 6064 struct sctp_association *asoc = NULL; 6065 struct sctp_sock *sp = sctp_sk(sk); 6066 6067 if (len >= sizeof(struct sctp_sack_info)) { 6068 len = sizeof(struct sctp_sack_info); 6069 6070 if (copy_from_user(¶ms, optval, len)) 6071 return -EFAULT; 6072 } else if (len == sizeof(struct sctp_assoc_value)) { 6073 pr_warn_ratelimited(DEPRECATED 6074 "%s (pid %d) " 6075 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6076 "Use struct sctp_sack_info instead\n", 6077 current->comm, task_pid_nr(current)); 6078 if (copy_from_user(¶ms, optval, len)) 6079 return -EFAULT; 6080 } else 6081 return -EINVAL; 6082 6083 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6084 * socket is a one to many style socket, and an association 6085 * was not found, then the id was invalid. 6086 */ 6087 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6088 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6089 sctp_style(sk, UDP)) 6090 return -EINVAL; 6091 6092 if (asoc) { 6093 /* Fetch association values. */ 6094 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6095 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6096 params.sack_freq = asoc->sackfreq; 6097 6098 } else { 6099 params.sack_delay = 0; 6100 params.sack_freq = 1; 6101 } 6102 } else { 6103 /* Fetch socket values. */ 6104 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6105 params.sack_delay = sp->sackdelay; 6106 params.sack_freq = sp->sackfreq; 6107 } else { 6108 params.sack_delay = 0; 6109 params.sack_freq = 1; 6110 } 6111 } 6112 6113 if (copy_to_user(optval, ¶ms, len)) 6114 return -EFAULT; 6115 6116 if (put_user(len, optlen)) 6117 return -EFAULT; 6118 6119 return 0; 6120 } 6121 6122 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6123 * 6124 * Applications can specify protocol parameters for the default association 6125 * initialization. The option name argument to setsockopt() and getsockopt() 6126 * is SCTP_INITMSG. 6127 * 6128 * Setting initialization parameters is effective only on an unconnected 6129 * socket (for UDP-style sockets only future associations are effected 6130 * by the change). With TCP-style sockets, this option is inherited by 6131 * sockets derived from a listener socket. 6132 */ 6133 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6134 { 6135 if (len < sizeof(struct sctp_initmsg)) 6136 return -EINVAL; 6137 len = sizeof(struct sctp_initmsg); 6138 if (put_user(len, optlen)) 6139 return -EFAULT; 6140 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6141 return -EFAULT; 6142 return 0; 6143 } 6144 6145 6146 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6147 char __user *optval, int __user *optlen) 6148 { 6149 struct sctp_association *asoc; 6150 int cnt = 0; 6151 struct sctp_getaddrs getaddrs; 6152 struct sctp_transport *from; 6153 void __user *to; 6154 union sctp_addr temp; 6155 struct sctp_sock *sp = sctp_sk(sk); 6156 int addrlen; 6157 size_t space_left; 6158 int bytes_copied; 6159 6160 if (len < sizeof(struct sctp_getaddrs)) 6161 return -EINVAL; 6162 6163 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6164 return -EFAULT; 6165 6166 /* For UDP-style sockets, id specifies the association to query. */ 6167 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6168 if (!asoc) 6169 return -EINVAL; 6170 6171 to = optval + offsetof(struct sctp_getaddrs, addrs); 6172 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6173 6174 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6175 transports) { 6176 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6177 addrlen = sctp_get_pf_specific(sk->sk_family) 6178 ->addr_to_user(sp, &temp); 6179 if (space_left < addrlen) 6180 return -ENOMEM; 6181 if (copy_to_user(to, &temp, addrlen)) 6182 return -EFAULT; 6183 to += addrlen; 6184 cnt++; 6185 space_left -= addrlen; 6186 } 6187 6188 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6189 return -EFAULT; 6190 bytes_copied = ((char __user *)to) - optval; 6191 if (put_user(bytes_copied, optlen)) 6192 return -EFAULT; 6193 6194 return 0; 6195 } 6196 6197 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6198 size_t space_left, int *bytes_copied) 6199 { 6200 struct sctp_sockaddr_entry *addr; 6201 union sctp_addr temp; 6202 int cnt = 0; 6203 int addrlen; 6204 struct net *net = sock_net(sk); 6205 6206 rcu_read_lock(); 6207 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6208 if (!addr->valid) 6209 continue; 6210 6211 if ((PF_INET == sk->sk_family) && 6212 (AF_INET6 == addr->a.sa.sa_family)) 6213 continue; 6214 if ((PF_INET6 == sk->sk_family) && 6215 inet_v6_ipv6only(sk) && 6216 (AF_INET == addr->a.sa.sa_family)) 6217 continue; 6218 memcpy(&temp, &addr->a, sizeof(temp)); 6219 if (!temp.v4.sin_port) 6220 temp.v4.sin_port = htons(port); 6221 6222 addrlen = sctp_get_pf_specific(sk->sk_family) 6223 ->addr_to_user(sctp_sk(sk), &temp); 6224 6225 if (space_left < addrlen) { 6226 cnt = -ENOMEM; 6227 break; 6228 } 6229 memcpy(to, &temp, addrlen); 6230 6231 to += addrlen; 6232 cnt++; 6233 space_left -= addrlen; 6234 *bytes_copied += addrlen; 6235 } 6236 rcu_read_unlock(); 6237 6238 return cnt; 6239 } 6240 6241 6242 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6243 char __user *optval, int __user *optlen) 6244 { 6245 struct sctp_bind_addr *bp; 6246 struct sctp_association *asoc; 6247 int cnt = 0; 6248 struct sctp_getaddrs getaddrs; 6249 struct sctp_sockaddr_entry *addr; 6250 void __user *to; 6251 union sctp_addr temp; 6252 struct sctp_sock *sp = sctp_sk(sk); 6253 int addrlen; 6254 int err = 0; 6255 size_t space_left; 6256 int bytes_copied = 0; 6257 void *addrs; 6258 void *buf; 6259 6260 if (len < sizeof(struct sctp_getaddrs)) 6261 return -EINVAL; 6262 6263 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6264 return -EFAULT; 6265 6266 /* 6267 * For UDP-style sockets, id specifies the association to query. 6268 * If the id field is set to the value '0' then the locally bound 6269 * addresses are returned without regard to any particular 6270 * association. 6271 */ 6272 if (0 == getaddrs.assoc_id) { 6273 bp = &sctp_sk(sk)->ep->base.bind_addr; 6274 } else { 6275 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6276 if (!asoc) 6277 return -EINVAL; 6278 bp = &asoc->base.bind_addr; 6279 } 6280 6281 to = optval + offsetof(struct sctp_getaddrs, addrs); 6282 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6283 6284 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6285 if (!addrs) 6286 return -ENOMEM; 6287 6288 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6289 * addresses from the global local address list. 6290 */ 6291 if (sctp_list_single_entry(&bp->address_list)) { 6292 addr = list_entry(bp->address_list.next, 6293 struct sctp_sockaddr_entry, list); 6294 if (sctp_is_any(sk, &addr->a)) { 6295 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6296 space_left, &bytes_copied); 6297 if (cnt < 0) { 6298 err = cnt; 6299 goto out; 6300 } 6301 goto copy_getaddrs; 6302 } 6303 } 6304 6305 buf = addrs; 6306 /* Protection on the bound address list is not needed since 6307 * in the socket option context we hold a socket lock and 6308 * thus the bound address list can't change. 6309 */ 6310 list_for_each_entry(addr, &bp->address_list, list) { 6311 memcpy(&temp, &addr->a, sizeof(temp)); 6312 addrlen = sctp_get_pf_specific(sk->sk_family) 6313 ->addr_to_user(sp, &temp); 6314 if (space_left < addrlen) { 6315 err = -ENOMEM; /*fixme: right error?*/ 6316 goto out; 6317 } 6318 memcpy(buf, &temp, addrlen); 6319 buf += addrlen; 6320 bytes_copied += addrlen; 6321 cnt++; 6322 space_left -= addrlen; 6323 } 6324 6325 copy_getaddrs: 6326 if (copy_to_user(to, addrs, bytes_copied)) { 6327 err = -EFAULT; 6328 goto out; 6329 } 6330 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6331 err = -EFAULT; 6332 goto out; 6333 } 6334 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6335 * but we can't change it anymore. 6336 */ 6337 if (put_user(bytes_copied, optlen)) 6338 err = -EFAULT; 6339 out: 6340 kfree(addrs); 6341 return err; 6342 } 6343 6344 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6345 * 6346 * Requests that the local SCTP stack use the enclosed peer address as 6347 * the association primary. The enclosed address must be one of the 6348 * association peer's addresses. 6349 */ 6350 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6351 char __user *optval, int __user *optlen) 6352 { 6353 struct sctp_prim prim; 6354 struct sctp_association *asoc; 6355 struct sctp_sock *sp = sctp_sk(sk); 6356 6357 if (len < sizeof(struct sctp_prim)) 6358 return -EINVAL; 6359 6360 len = sizeof(struct sctp_prim); 6361 6362 if (copy_from_user(&prim, optval, len)) 6363 return -EFAULT; 6364 6365 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6366 if (!asoc) 6367 return -EINVAL; 6368 6369 if (!asoc->peer.primary_path) 6370 return -ENOTCONN; 6371 6372 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6373 asoc->peer.primary_path->af_specific->sockaddr_len); 6374 6375 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6376 (union sctp_addr *)&prim.ssp_addr); 6377 6378 if (put_user(len, optlen)) 6379 return -EFAULT; 6380 if (copy_to_user(optval, &prim, len)) 6381 return -EFAULT; 6382 6383 return 0; 6384 } 6385 6386 /* 6387 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6388 * 6389 * Requests that the local endpoint set the specified Adaptation Layer 6390 * Indication parameter for all future INIT and INIT-ACK exchanges. 6391 */ 6392 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6393 char __user *optval, int __user *optlen) 6394 { 6395 struct sctp_setadaptation adaptation; 6396 6397 if (len < sizeof(struct sctp_setadaptation)) 6398 return -EINVAL; 6399 6400 len = sizeof(struct sctp_setadaptation); 6401 6402 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6403 6404 if (put_user(len, optlen)) 6405 return -EFAULT; 6406 if (copy_to_user(optval, &adaptation, len)) 6407 return -EFAULT; 6408 6409 return 0; 6410 } 6411 6412 /* 6413 * 6414 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6415 * 6416 * Applications that wish to use the sendto() system call may wish to 6417 * specify a default set of parameters that would normally be supplied 6418 * through the inclusion of ancillary data. This socket option allows 6419 * such an application to set the default sctp_sndrcvinfo structure. 6420 6421 6422 * The application that wishes to use this socket option simply passes 6423 * in to this call the sctp_sndrcvinfo structure defined in Section 6424 * 5.2.2) The input parameters accepted by this call include 6425 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6426 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6427 * to this call if the caller is using the UDP model. 6428 * 6429 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6430 */ 6431 static int sctp_getsockopt_default_send_param(struct sock *sk, 6432 int len, char __user *optval, 6433 int __user *optlen) 6434 { 6435 struct sctp_sock *sp = sctp_sk(sk); 6436 struct sctp_association *asoc; 6437 struct sctp_sndrcvinfo info; 6438 6439 if (len < sizeof(info)) 6440 return -EINVAL; 6441 6442 len = sizeof(info); 6443 6444 if (copy_from_user(&info, optval, len)) 6445 return -EFAULT; 6446 6447 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6448 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6449 sctp_style(sk, UDP)) 6450 return -EINVAL; 6451 6452 if (asoc) { 6453 info.sinfo_stream = asoc->default_stream; 6454 info.sinfo_flags = asoc->default_flags; 6455 info.sinfo_ppid = asoc->default_ppid; 6456 info.sinfo_context = asoc->default_context; 6457 info.sinfo_timetolive = asoc->default_timetolive; 6458 } else { 6459 info.sinfo_stream = sp->default_stream; 6460 info.sinfo_flags = sp->default_flags; 6461 info.sinfo_ppid = sp->default_ppid; 6462 info.sinfo_context = sp->default_context; 6463 info.sinfo_timetolive = sp->default_timetolive; 6464 } 6465 6466 if (put_user(len, optlen)) 6467 return -EFAULT; 6468 if (copy_to_user(optval, &info, len)) 6469 return -EFAULT; 6470 6471 return 0; 6472 } 6473 6474 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6475 * (SCTP_DEFAULT_SNDINFO) 6476 */ 6477 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6478 char __user *optval, 6479 int __user *optlen) 6480 { 6481 struct sctp_sock *sp = sctp_sk(sk); 6482 struct sctp_association *asoc; 6483 struct sctp_sndinfo info; 6484 6485 if (len < sizeof(info)) 6486 return -EINVAL; 6487 6488 len = sizeof(info); 6489 6490 if (copy_from_user(&info, optval, len)) 6491 return -EFAULT; 6492 6493 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6494 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6495 sctp_style(sk, UDP)) 6496 return -EINVAL; 6497 6498 if (asoc) { 6499 info.snd_sid = asoc->default_stream; 6500 info.snd_flags = asoc->default_flags; 6501 info.snd_ppid = asoc->default_ppid; 6502 info.snd_context = asoc->default_context; 6503 } else { 6504 info.snd_sid = sp->default_stream; 6505 info.snd_flags = sp->default_flags; 6506 info.snd_ppid = sp->default_ppid; 6507 info.snd_context = sp->default_context; 6508 } 6509 6510 if (put_user(len, optlen)) 6511 return -EFAULT; 6512 if (copy_to_user(optval, &info, len)) 6513 return -EFAULT; 6514 6515 return 0; 6516 } 6517 6518 /* 6519 * 6520 * 7.1.5 SCTP_NODELAY 6521 * 6522 * Turn on/off any Nagle-like algorithm. This means that packets are 6523 * generally sent as soon as possible and no unnecessary delays are 6524 * introduced, at the cost of more packets in the network. Expects an 6525 * integer boolean flag. 6526 */ 6527 6528 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6529 char __user *optval, int __user *optlen) 6530 { 6531 int val; 6532 6533 if (len < sizeof(int)) 6534 return -EINVAL; 6535 6536 len = sizeof(int); 6537 val = (sctp_sk(sk)->nodelay == 1); 6538 if (put_user(len, optlen)) 6539 return -EFAULT; 6540 if (copy_to_user(optval, &val, len)) 6541 return -EFAULT; 6542 return 0; 6543 } 6544 6545 /* 6546 * 6547 * 7.1.1 SCTP_RTOINFO 6548 * 6549 * The protocol parameters used to initialize and bound retransmission 6550 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6551 * and modify these parameters. 6552 * All parameters are time values, in milliseconds. A value of 0, when 6553 * modifying the parameters, indicates that the current value should not 6554 * be changed. 6555 * 6556 */ 6557 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6558 char __user *optval, 6559 int __user *optlen) { 6560 struct sctp_rtoinfo rtoinfo; 6561 struct sctp_association *asoc; 6562 6563 if (len < sizeof (struct sctp_rtoinfo)) 6564 return -EINVAL; 6565 6566 len = sizeof(struct sctp_rtoinfo); 6567 6568 if (copy_from_user(&rtoinfo, optval, len)) 6569 return -EFAULT; 6570 6571 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6572 6573 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6574 sctp_style(sk, UDP)) 6575 return -EINVAL; 6576 6577 /* Values corresponding to the specific association. */ 6578 if (asoc) { 6579 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6580 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6581 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6582 } else { 6583 /* Values corresponding to the endpoint. */ 6584 struct sctp_sock *sp = sctp_sk(sk); 6585 6586 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6587 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6588 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6589 } 6590 6591 if (put_user(len, optlen)) 6592 return -EFAULT; 6593 6594 if (copy_to_user(optval, &rtoinfo, len)) 6595 return -EFAULT; 6596 6597 return 0; 6598 } 6599 6600 /* 6601 * 6602 * 7.1.2 SCTP_ASSOCINFO 6603 * 6604 * This option is used to tune the maximum retransmission attempts 6605 * of the association. 6606 * Returns an error if the new association retransmission value is 6607 * greater than the sum of the retransmission value of the peer. 6608 * See [SCTP] for more information. 6609 * 6610 */ 6611 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6612 char __user *optval, 6613 int __user *optlen) 6614 { 6615 6616 struct sctp_assocparams assocparams; 6617 struct sctp_association *asoc; 6618 struct list_head *pos; 6619 int cnt = 0; 6620 6621 if (len < sizeof (struct sctp_assocparams)) 6622 return -EINVAL; 6623 6624 len = sizeof(struct sctp_assocparams); 6625 6626 if (copy_from_user(&assocparams, optval, len)) 6627 return -EFAULT; 6628 6629 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6630 6631 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6632 sctp_style(sk, UDP)) 6633 return -EINVAL; 6634 6635 /* Values correspoinding to the specific association */ 6636 if (asoc) { 6637 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6638 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6639 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6640 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6641 6642 list_for_each(pos, &asoc->peer.transport_addr_list) { 6643 cnt++; 6644 } 6645 6646 assocparams.sasoc_number_peer_destinations = cnt; 6647 } else { 6648 /* Values corresponding to the endpoint */ 6649 struct sctp_sock *sp = sctp_sk(sk); 6650 6651 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6652 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6653 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6654 assocparams.sasoc_cookie_life = 6655 sp->assocparams.sasoc_cookie_life; 6656 assocparams.sasoc_number_peer_destinations = 6657 sp->assocparams. 6658 sasoc_number_peer_destinations; 6659 } 6660 6661 if (put_user(len, optlen)) 6662 return -EFAULT; 6663 6664 if (copy_to_user(optval, &assocparams, len)) 6665 return -EFAULT; 6666 6667 return 0; 6668 } 6669 6670 /* 6671 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6672 * 6673 * This socket option is a boolean flag which turns on or off mapped V4 6674 * addresses. If this option is turned on and the socket is type 6675 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6676 * If this option is turned off, then no mapping will be done of V4 6677 * addresses and a user will receive both PF_INET6 and PF_INET type 6678 * addresses on the socket. 6679 */ 6680 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6681 char __user *optval, int __user *optlen) 6682 { 6683 int val; 6684 struct sctp_sock *sp = sctp_sk(sk); 6685 6686 if (len < sizeof(int)) 6687 return -EINVAL; 6688 6689 len = sizeof(int); 6690 val = sp->v4mapped; 6691 if (put_user(len, optlen)) 6692 return -EFAULT; 6693 if (copy_to_user(optval, &val, len)) 6694 return -EFAULT; 6695 6696 return 0; 6697 } 6698 6699 /* 6700 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6701 * (chapter and verse is quoted at sctp_setsockopt_context()) 6702 */ 6703 static int sctp_getsockopt_context(struct sock *sk, int len, 6704 char __user *optval, int __user *optlen) 6705 { 6706 struct sctp_assoc_value params; 6707 struct sctp_association *asoc; 6708 6709 if (len < sizeof(struct sctp_assoc_value)) 6710 return -EINVAL; 6711 6712 len = sizeof(struct sctp_assoc_value); 6713 6714 if (copy_from_user(¶ms, optval, len)) 6715 return -EFAULT; 6716 6717 asoc = sctp_id2assoc(sk, params.assoc_id); 6718 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6719 sctp_style(sk, UDP)) 6720 return -EINVAL; 6721 6722 params.assoc_value = asoc ? asoc->default_rcv_context 6723 : sctp_sk(sk)->default_rcv_context; 6724 6725 if (put_user(len, optlen)) 6726 return -EFAULT; 6727 if (copy_to_user(optval, ¶ms, len)) 6728 return -EFAULT; 6729 6730 return 0; 6731 } 6732 6733 /* 6734 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6735 * This option will get or set the maximum size to put in any outgoing 6736 * SCTP DATA chunk. If a message is larger than this size it will be 6737 * fragmented by SCTP into the specified size. Note that the underlying 6738 * SCTP implementation may fragment into smaller sized chunks when the 6739 * PMTU of the underlying association is smaller than the value set by 6740 * the user. The default value for this option is '0' which indicates 6741 * the user is NOT limiting fragmentation and only the PMTU will effect 6742 * SCTP's choice of DATA chunk size. Note also that values set larger 6743 * than the maximum size of an IP datagram will effectively let SCTP 6744 * control fragmentation (i.e. the same as setting this option to 0). 6745 * 6746 * The following structure is used to access and modify this parameter: 6747 * 6748 * struct sctp_assoc_value { 6749 * sctp_assoc_t assoc_id; 6750 * uint32_t assoc_value; 6751 * }; 6752 * 6753 * assoc_id: This parameter is ignored for one-to-one style sockets. 6754 * For one-to-many style sockets this parameter indicates which 6755 * association the user is performing an action upon. Note that if 6756 * this field's value is zero then the endpoints default value is 6757 * changed (effecting future associations only). 6758 * assoc_value: This parameter specifies the maximum size in bytes. 6759 */ 6760 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6761 char __user *optval, int __user *optlen) 6762 { 6763 struct sctp_assoc_value params; 6764 struct sctp_association *asoc; 6765 6766 if (len == sizeof(int)) { 6767 pr_warn_ratelimited(DEPRECATED 6768 "%s (pid %d) " 6769 "Use of int in maxseg socket option.\n" 6770 "Use struct sctp_assoc_value instead\n", 6771 current->comm, task_pid_nr(current)); 6772 params.assoc_id = SCTP_FUTURE_ASSOC; 6773 } else if (len >= sizeof(struct sctp_assoc_value)) { 6774 len = sizeof(struct sctp_assoc_value); 6775 if (copy_from_user(¶ms, optval, len)) 6776 return -EFAULT; 6777 } else 6778 return -EINVAL; 6779 6780 asoc = sctp_id2assoc(sk, params.assoc_id); 6781 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6782 sctp_style(sk, UDP)) 6783 return -EINVAL; 6784 6785 if (asoc) 6786 params.assoc_value = asoc->frag_point; 6787 else 6788 params.assoc_value = sctp_sk(sk)->user_frag; 6789 6790 if (put_user(len, optlen)) 6791 return -EFAULT; 6792 if (len == sizeof(int)) { 6793 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6794 return -EFAULT; 6795 } else { 6796 if (copy_to_user(optval, ¶ms, len)) 6797 return -EFAULT; 6798 } 6799 6800 return 0; 6801 } 6802 6803 /* 6804 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6805 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6806 */ 6807 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6808 char __user *optval, int __user *optlen) 6809 { 6810 int val; 6811 6812 if (len < sizeof(int)) 6813 return -EINVAL; 6814 6815 len = sizeof(int); 6816 6817 val = sctp_sk(sk)->frag_interleave; 6818 if (put_user(len, optlen)) 6819 return -EFAULT; 6820 if (copy_to_user(optval, &val, len)) 6821 return -EFAULT; 6822 6823 return 0; 6824 } 6825 6826 /* 6827 * 7.1.25. Set or Get the sctp partial delivery point 6828 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6829 */ 6830 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6831 char __user *optval, 6832 int __user *optlen) 6833 { 6834 u32 val; 6835 6836 if (len < sizeof(u32)) 6837 return -EINVAL; 6838 6839 len = sizeof(u32); 6840 6841 val = sctp_sk(sk)->pd_point; 6842 if (put_user(len, optlen)) 6843 return -EFAULT; 6844 if (copy_to_user(optval, &val, len)) 6845 return -EFAULT; 6846 6847 return 0; 6848 } 6849 6850 /* 6851 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6852 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6853 */ 6854 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6855 char __user *optval, 6856 int __user *optlen) 6857 { 6858 struct sctp_assoc_value params; 6859 struct sctp_association *asoc; 6860 6861 if (len == sizeof(int)) { 6862 pr_warn_ratelimited(DEPRECATED 6863 "%s (pid %d) " 6864 "Use of int in max_burst socket option.\n" 6865 "Use struct sctp_assoc_value instead\n", 6866 current->comm, task_pid_nr(current)); 6867 params.assoc_id = SCTP_FUTURE_ASSOC; 6868 } else if (len >= sizeof(struct sctp_assoc_value)) { 6869 len = sizeof(struct sctp_assoc_value); 6870 if (copy_from_user(¶ms, optval, len)) 6871 return -EFAULT; 6872 } else 6873 return -EINVAL; 6874 6875 asoc = sctp_id2assoc(sk, params.assoc_id); 6876 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6877 sctp_style(sk, UDP)) 6878 return -EINVAL; 6879 6880 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6881 6882 if (len == sizeof(int)) { 6883 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6884 return -EFAULT; 6885 } else { 6886 if (copy_to_user(optval, ¶ms, len)) 6887 return -EFAULT; 6888 } 6889 6890 return 0; 6891 6892 } 6893 6894 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6895 char __user *optval, int __user *optlen) 6896 { 6897 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6898 struct sctp_hmacalgo __user *p = (void __user *)optval; 6899 struct sctp_hmac_algo_param *hmacs; 6900 __u16 data_len = 0; 6901 u32 num_idents; 6902 int i; 6903 6904 if (!ep->auth_enable) 6905 return -EACCES; 6906 6907 hmacs = ep->auth_hmacs_list; 6908 data_len = ntohs(hmacs->param_hdr.length) - 6909 sizeof(struct sctp_paramhdr); 6910 6911 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6912 return -EINVAL; 6913 6914 len = sizeof(struct sctp_hmacalgo) + data_len; 6915 num_idents = data_len / sizeof(u16); 6916 6917 if (put_user(len, optlen)) 6918 return -EFAULT; 6919 if (put_user(num_idents, &p->shmac_num_idents)) 6920 return -EFAULT; 6921 for (i = 0; i < num_idents; i++) { 6922 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6923 6924 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6925 return -EFAULT; 6926 } 6927 return 0; 6928 } 6929 6930 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6931 char __user *optval, int __user *optlen) 6932 { 6933 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6934 struct sctp_authkeyid val; 6935 struct sctp_association *asoc; 6936 6937 if (len < sizeof(struct sctp_authkeyid)) 6938 return -EINVAL; 6939 6940 len = sizeof(struct sctp_authkeyid); 6941 if (copy_from_user(&val, optval, len)) 6942 return -EFAULT; 6943 6944 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6945 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6946 return -EINVAL; 6947 6948 if (asoc) { 6949 if (!asoc->peer.auth_capable) 6950 return -EACCES; 6951 val.scact_keynumber = asoc->active_key_id; 6952 } else { 6953 if (!ep->auth_enable) 6954 return -EACCES; 6955 val.scact_keynumber = ep->active_key_id; 6956 } 6957 6958 if (put_user(len, optlen)) 6959 return -EFAULT; 6960 if (copy_to_user(optval, &val, len)) 6961 return -EFAULT; 6962 6963 return 0; 6964 } 6965 6966 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6967 char __user *optval, int __user *optlen) 6968 { 6969 struct sctp_authchunks __user *p = (void __user *)optval; 6970 struct sctp_authchunks val; 6971 struct sctp_association *asoc; 6972 struct sctp_chunks_param *ch; 6973 u32 num_chunks = 0; 6974 char __user *to; 6975 6976 if (len < sizeof(struct sctp_authchunks)) 6977 return -EINVAL; 6978 6979 if (copy_from_user(&val, optval, sizeof(val))) 6980 return -EFAULT; 6981 6982 to = p->gauth_chunks; 6983 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6984 if (!asoc) 6985 return -EINVAL; 6986 6987 if (!asoc->peer.auth_capable) 6988 return -EACCES; 6989 6990 ch = asoc->peer.peer_chunks; 6991 if (!ch) 6992 goto num; 6993 6994 /* See if the user provided enough room for all the data */ 6995 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6996 if (len < num_chunks) 6997 return -EINVAL; 6998 6999 if (copy_to_user(to, ch->chunks, num_chunks)) 7000 return -EFAULT; 7001 num: 7002 len = sizeof(struct sctp_authchunks) + num_chunks; 7003 if (put_user(len, optlen)) 7004 return -EFAULT; 7005 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7006 return -EFAULT; 7007 return 0; 7008 } 7009 7010 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7011 char __user *optval, int __user *optlen) 7012 { 7013 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7014 struct sctp_authchunks __user *p = (void __user *)optval; 7015 struct sctp_authchunks val; 7016 struct sctp_association *asoc; 7017 struct sctp_chunks_param *ch; 7018 u32 num_chunks = 0; 7019 char __user *to; 7020 7021 if (len < sizeof(struct sctp_authchunks)) 7022 return -EINVAL; 7023 7024 if (copy_from_user(&val, optval, sizeof(val))) 7025 return -EFAULT; 7026 7027 to = p->gauth_chunks; 7028 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7029 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7030 sctp_style(sk, UDP)) 7031 return -EINVAL; 7032 7033 if (asoc) { 7034 if (!asoc->peer.auth_capable) 7035 return -EACCES; 7036 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7037 } else { 7038 if (!ep->auth_enable) 7039 return -EACCES; 7040 ch = ep->auth_chunk_list; 7041 } 7042 if (!ch) 7043 goto num; 7044 7045 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7046 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7047 return -EINVAL; 7048 7049 if (copy_to_user(to, ch->chunks, num_chunks)) 7050 return -EFAULT; 7051 num: 7052 len = sizeof(struct sctp_authchunks) + num_chunks; 7053 if (put_user(len, optlen)) 7054 return -EFAULT; 7055 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7056 return -EFAULT; 7057 7058 return 0; 7059 } 7060 7061 /* 7062 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7063 * This option gets the current number of associations that are attached 7064 * to a one-to-many style socket. The option value is an uint32_t. 7065 */ 7066 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7067 char __user *optval, int __user *optlen) 7068 { 7069 struct sctp_sock *sp = sctp_sk(sk); 7070 struct sctp_association *asoc; 7071 u32 val = 0; 7072 7073 if (sctp_style(sk, TCP)) 7074 return -EOPNOTSUPP; 7075 7076 if (len < sizeof(u32)) 7077 return -EINVAL; 7078 7079 len = sizeof(u32); 7080 7081 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7082 val++; 7083 } 7084 7085 if (put_user(len, optlen)) 7086 return -EFAULT; 7087 if (copy_to_user(optval, &val, len)) 7088 return -EFAULT; 7089 7090 return 0; 7091 } 7092 7093 /* 7094 * 8.1.23 SCTP_AUTO_ASCONF 7095 * See the corresponding setsockopt entry as description 7096 */ 7097 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7098 char __user *optval, int __user *optlen) 7099 { 7100 int val = 0; 7101 7102 if (len < sizeof(int)) 7103 return -EINVAL; 7104 7105 len = sizeof(int); 7106 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7107 val = 1; 7108 if (put_user(len, optlen)) 7109 return -EFAULT; 7110 if (copy_to_user(optval, &val, len)) 7111 return -EFAULT; 7112 return 0; 7113 } 7114 7115 /* 7116 * 8.2.6. Get the Current Identifiers of Associations 7117 * (SCTP_GET_ASSOC_ID_LIST) 7118 * 7119 * This option gets the current list of SCTP association identifiers of 7120 * the SCTP associations handled by a one-to-many style socket. 7121 */ 7122 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7123 char __user *optval, int __user *optlen) 7124 { 7125 struct sctp_sock *sp = sctp_sk(sk); 7126 struct sctp_association *asoc; 7127 struct sctp_assoc_ids *ids; 7128 u32 num = 0; 7129 7130 if (sctp_style(sk, TCP)) 7131 return -EOPNOTSUPP; 7132 7133 if (len < sizeof(struct sctp_assoc_ids)) 7134 return -EINVAL; 7135 7136 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7137 num++; 7138 } 7139 7140 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7141 return -EINVAL; 7142 7143 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7144 7145 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7146 if (unlikely(!ids)) 7147 return -ENOMEM; 7148 7149 ids->gaids_number_of_ids = num; 7150 num = 0; 7151 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7152 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7153 } 7154 7155 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7156 kfree(ids); 7157 return -EFAULT; 7158 } 7159 7160 kfree(ids); 7161 return 0; 7162 } 7163 7164 /* 7165 * SCTP_PEER_ADDR_THLDS 7166 * 7167 * This option allows us to fetch the partially failed threshold for one or all 7168 * transports in an association. See Section 6.1 of: 7169 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7170 */ 7171 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7172 char __user *optval, 7173 int len, 7174 int __user *optlen) 7175 { 7176 struct sctp_paddrthlds val; 7177 struct sctp_transport *trans; 7178 struct sctp_association *asoc; 7179 7180 if (len < sizeof(struct sctp_paddrthlds)) 7181 return -EINVAL; 7182 len = sizeof(struct sctp_paddrthlds); 7183 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7184 return -EFAULT; 7185 7186 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7187 trans = sctp_addr_id2transport(sk, &val.spt_address, 7188 val.spt_assoc_id); 7189 if (!trans) 7190 return -ENOENT; 7191 7192 val.spt_pathmaxrxt = trans->pathmaxrxt; 7193 val.spt_pathpfthld = trans->pf_retrans; 7194 7195 return 0; 7196 } 7197 7198 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7199 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7200 sctp_style(sk, UDP)) 7201 return -EINVAL; 7202 7203 if (asoc) { 7204 val.spt_pathpfthld = asoc->pf_retrans; 7205 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7206 } else { 7207 struct sctp_sock *sp = sctp_sk(sk); 7208 7209 val.spt_pathpfthld = sp->pf_retrans; 7210 val.spt_pathmaxrxt = sp->pathmaxrxt; 7211 } 7212 7213 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7214 return -EFAULT; 7215 7216 return 0; 7217 } 7218 7219 /* 7220 * SCTP_GET_ASSOC_STATS 7221 * 7222 * This option retrieves local per endpoint statistics. It is modeled 7223 * after OpenSolaris' implementation 7224 */ 7225 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7226 char __user *optval, 7227 int __user *optlen) 7228 { 7229 struct sctp_assoc_stats sas; 7230 struct sctp_association *asoc = NULL; 7231 7232 /* User must provide at least the assoc id */ 7233 if (len < sizeof(sctp_assoc_t)) 7234 return -EINVAL; 7235 7236 /* Allow the struct to grow and fill in as much as possible */ 7237 len = min_t(size_t, len, sizeof(sas)); 7238 7239 if (copy_from_user(&sas, optval, len)) 7240 return -EFAULT; 7241 7242 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7243 if (!asoc) 7244 return -EINVAL; 7245 7246 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7247 sas.sas_gapcnt = asoc->stats.gapcnt; 7248 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7249 sas.sas_osacks = asoc->stats.osacks; 7250 sas.sas_isacks = asoc->stats.isacks; 7251 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7252 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7253 sas.sas_oodchunks = asoc->stats.oodchunks; 7254 sas.sas_iodchunks = asoc->stats.iodchunks; 7255 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7256 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7257 sas.sas_idupchunks = asoc->stats.idupchunks; 7258 sas.sas_opackets = asoc->stats.opackets; 7259 sas.sas_ipackets = asoc->stats.ipackets; 7260 7261 /* New high max rto observed, will return 0 if not a single 7262 * RTO update took place. obs_rto_ipaddr will be bogus 7263 * in such a case 7264 */ 7265 sas.sas_maxrto = asoc->stats.max_obs_rto; 7266 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7267 sizeof(struct sockaddr_storage)); 7268 7269 /* Mark beginning of a new observation period */ 7270 asoc->stats.max_obs_rto = asoc->rto_min; 7271 7272 if (put_user(len, optlen)) 7273 return -EFAULT; 7274 7275 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7276 7277 if (copy_to_user(optval, &sas, len)) 7278 return -EFAULT; 7279 7280 return 0; 7281 } 7282 7283 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7284 char __user *optval, 7285 int __user *optlen) 7286 { 7287 int val = 0; 7288 7289 if (len < sizeof(int)) 7290 return -EINVAL; 7291 7292 len = sizeof(int); 7293 if (sctp_sk(sk)->recvrcvinfo) 7294 val = 1; 7295 if (put_user(len, optlen)) 7296 return -EFAULT; 7297 if (copy_to_user(optval, &val, len)) 7298 return -EFAULT; 7299 7300 return 0; 7301 } 7302 7303 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7304 char __user *optval, 7305 int __user *optlen) 7306 { 7307 int val = 0; 7308 7309 if (len < sizeof(int)) 7310 return -EINVAL; 7311 7312 len = sizeof(int); 7313 if (sctp_sk(sk)->recvnxtinfo) 7314 val = 1; 7315 if (put_user(len, optlen)) 7316 return -EFAULT; 7317 if (copy_to_user(optval, &val, len)) 7318 return -EFAULT; 7319 7320 return 0; 7321 } 7322 7323 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7324 char __user *optval, 7325 int __user *optlen) 7326 { 7327 struct sctp_assoc_value params; 7328 struct sctp_association *asoc; 7329 int retval = -EFAULT; 7330 7331 if (len < sizeof(params)) { 7332 retval = -EINVAL; 7333 goto out; 7334 } 7335 7336 len = sizeof(params); 7337 if (copy_from_user(¶ms, optval, len)) 7338 goto out; 7339 7340 asoc = sctp_id2assoc(sk, params.assoc_id); 7341 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7342 sctp_style(sk, UDP)) { 7343 retval = -EINVAL; 7344 goto out; 7345 } 7346 7347 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7348 : sctp_sk(sk)->ep->prsctp_enable; 7349 7350 if (put_user(len, optlen)) 7351 goto out; 7352 7353 if (copy_to_user(optval, ¶ms, len)) 7354 goto out; 7355 7356 retval = 0; 7357 7358 out: 7359 return retval; 7360 } 7361 7362 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7363 char __user *optval, 7364 int __user *optlen) 7365 { 7366 struct sctp_default_prinfo info; 7367 struct sctp_association *asoc; 7368 int retval = -EFAULT; 7369 7370 if (len < sizeof(info)) { 7371 retval = -EINVAL; 7372 goto out; 7373 } 7374 7375 len = sizeof(info); 7376 if (copy_from_user(&info, optval, len)) 7377 goto out; 7378 7379 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7380 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7381 sctp_style(sk, UDP)) { 7382 retval = -EINVAL; 7383 goto out; 7384 } 7385 7386 if (asoc) { 7387 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7388 info.pr_value = asoc->default_timetolive; 7389 } else { 7390 struct sctp_sock *sp = sctp_sk(sk); 7391 7392 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7393 info.pr_value = sp->default_timetolive; 7394 } 7395 7396 if (put_user(len, optlen)) 7397 goto out; 7398 7399 if (copy_to_user(optval, &info, len)) 7400 goto out; 7401 7402 retval = 0; 7403 7404 out: 7405 return retval; 7406 } 7407 7408 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7409 char __user *optval, 7410 int __user *optlen) 7411 { 7412 struct sctp_prstatus params; 7413 struct sctp_association *asoc; 7414 int policy; 7415 int retval = -EINVAL; 7416 7417 if (len < sizeof(params)) 7418 goto out; 7419 7420 len = sizeof(params); 7421 if (copy_from_user(¶ms, optval, len)) { 7422 retval = -EFAULT; 7423 goto out; 7424 } 7425 7426 policy = params.sprstat_policy; 7427 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7428 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7429 goto out; 7430 7431 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7432 if (!asoc) 7433 goto out; 7434 7435 if (policy == SCTP_PR_SCTP_ALL) { 7436 params.sprstat_abandoned_unsent = 0; 7437 params.sprstat_abandoned_sent = 0; 7438 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7439 params.sprstat_abandoned_unsent += 7440 asoc->abandoned_unsent[policy]; 7441 params.sprstat_abandoned_sent += 7442 asoc->abandoned_sent[policy]; 7443 } 7444 } else { 7445 params.sprstat_abandoned_unsent = 7446 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7447 params.sprstat_abandoned_sent = 7448 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7449 } 7450 7451 if (put_user(len, optlen)) { 7452 retval = -EFAULT; 7453 goto out; 7454 } 7455 7456 if (copy_to_user(optval, ¶ms, len)) { 7457 retval = -EFAULT; 7458 goto out; 7459 } 7460 7461 retval = 0; 7462 7463 out: 7464 return retval; 7465 } 7466 7467 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7468 char __user *optval, 7469 int __user *optlen) 7470 { 7471 struct sctp_stream_out_ext *streamoute; 7472 struct sctp_association *asoc; 7473 struct sctp_prstatus params; 7474 int retval = -EINVAL; 7475 int policy; 7476 7477 if (len < sizeof(params)) 7478 goto out; 7479 7480 len = sizeof(params); 7481 if (copy_from_user(¶ms, optval, len)) { 7482 retval = -EFAULT; 7483 goto out; 7484 } 7485 7486 policy = params.sprstat_policy; 7487 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7488 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7489 goto out; 7490 7491 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7492 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7493 goto out; 7494 7495 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7496 if (!streamoute) { 7497 /* Not allocated yet, means all stats are 0 */ 7498 params.sprstat_abandoned_unsent = 0; 7499 params.sprstat_abandoned_sent = 0; 7500 retval = 0; 7501 goto out; 7502 } 7503 7504 if (policy == SCTP_PR_SCTP_ALL) { 7505 params.sprstat_abandoned_unsent = 0; 7506 params.sprstat_abandoned_sent = 0; 7507 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7508 params.sprstat_abandoned_unsent += 7509 streamoute->abandoned_unsent[policy]; 7510 params.sprstat_abandoned_sent += 7511 streamoute->abandoned_sent[policy]; 7512 } 7513 } else { 7514 params.sprstat_abandoned_unsent = 7515 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7516 params.sprstat_abandoned_sent = 7517 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7518 } 7519 7520 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7521 retval = -EFAULT; 7522 goto out; 7523 } 7524 7525 retval = 0; 7526 7527 out: 7528 return retval; 7529 } 7530 7531 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7532 char __user *optval, 7533 int __user *optlen) 7534 { 7535 struct sctp_assoc_value params; 7536 struct sctp_association *asoc; 7537 int retval = -EFAULT; 7538 7539 if (len < sizeof(params)) { 7540 retval = -EINVAL; 7541 goto out; 7542 } 7543 7544 len = sizeof(params); 7545 if (copy_from_user(¶ms, optval, len)) 7546 goto out; 7547 7548 asoc = sctp_id2assoc(sk, params.assoc_id); 7549 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7550 sctp_style(sk, UDP)) { 7551 retval = -EINVAL; 7552 goto out; 7553 } 7554 7555 params.assoc_value = asoc ? asoc->peer.reconf_capable 7556 : sctp_sk(sk)->ep->reconf_enable; 7557 7558 if (put_user(len, optlen)) 7559 goto out; 7560 7561 if (copy_to_user(optval, ¶ms, len)) 7562 goto out; 7563 7564 retval = 0; 7565 7566 out: 7567 return retval; 7568 } 7569 7570 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7571 char __user *optval, 7572 int __user *optlen) 7573 { 7574 struct sctp_assoc_value params; 7575 struct sctp_association *asoc; 7576 int retval = -EFAULT; 7577 7578 if (len < sizeof(params)) { 7579 retval = -EINVAL; 7580 goto out; 7581 } 7582 7583 len = sizeof(params); 7584 if (copy_from_user(¶ms, optval, len)) 7585 goto out; 7586 7587 asoc = sctp_id2assoc(sk, params.assoc_id); 7588 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7589 sctp_style(sk, UDP)) { 7590 retval = -EINVAL; 7591 goto out; 7592 } 7593 7594 params.assoc_value = asoc ? asoc->strreset_enable 7595 : sctp_sk(sk)->ep->strreset_enable; 7596 7597 if (put_user(len, optlen)) 7598 goto out; 7599 7600 if (copy_to_user(optval, ¶ms, len)) 7601 goto out; 7602 7603 retval = 0; 7604 7605 out: 7606 return retval; 7607 } 7608 7609 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7610 char __user *optval, 7611 int __user *optlen) 7612 { 7613 struct sctp_assoc_value params; 7614 struct sctp_association *asoc; 7615 int retval = -EFAULT; 7616 7617 if (len < sizeof(params)) { 7618 retval = -EINVAL; 7619 goto out; 7620 } 7621 7622 len = sizeof(params); 7623 if (copy_from_user(¶ms, optval, len)) 7624 goto out; 7625 7626 asoc = sctp_id2assoc(sk, params.assoc_id); 7627 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7628 sctp_style(sk, UDP)) { 7629 retval = -EINVAL; 7630 goto out; 7631 } 7632 7633 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7634 : sctp_sk(sk)->default_ss; 7635 7636 if (put_user(len, optlen)) 7637 goto out; 7638 7639 if (copy_to_user(optval, ¶ms, len)) 7640 goto out; 7641 7642 retval = 0; 7643 7644 out: 7645 return retval; 7646 } 7647 7648 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7649 char __user *optval, 7650 int __user *optlen) 7651 { 7652 struct sctp_stream_value params; 7653 struct sctp_association *asoc; 7654 int retval = -EFAULT; 7655 7656 if (len < sizeof(params)) { 7657 retval = -EINVAL; 7658 goto out; 7659 } 7660 7661 len = sizeof(params); 7662 if (copy_from_user(¶ms, optval, len)) 7663 goto out; 7664 7665 asoc = sctp_id2assoc(sk, params.assoc_id); 7666 if (!asoc) { 7667 retval = -EINVAL; 7668 goto out; 7669 } 7670 7671 retval = sctp_sched_get_value(asoc, params.stream_id, 7672 ¶ms.stream_value); 7673 if (retval) 7674 goto out; 7675 7676 if (put_user(len, optlen)) { 7677 retval = -EFAULT; 7678 goto out; 7679 } 7680 7681 if (copy_to_user(optval, ¶ms, len)) { 7682 retval = -EFAULT; 7683 goto out; 7684 } 7685 7686 out: 7687 return retval; 7688 } 7689 7690 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7691 char __user *optval, 7692 int __user *optlen) 7693 { 7694 struct sctp_assoc_value params; 7695 struct sctp_association *asoc; 7696 int retval = -EFAULT; 7697 7698 if (len < sizeof(params)) { 7699 retval = -EINVAL; 7700 goto out; 7701 } 7702 7703 len = sizeof(params); 7704 if (copy_from_user(¶ms, optval, len)) 7705 goto out; 7706 7707 asoc = sctp_id2assoc(sk, params.assoc_id); 7708 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7709 sctp_style(sk, UDP)) { 7710 retval = -EINVAL; 7711 goto out; 7712 } 7713 7714 params.assoc_value = asoc ? asoc->peer.intl_capable 7715 : sctp_sk(sk)->ep->intl_enable; 7716 7717 if (put_user(len, optlen)) 7718 goto out; 7719 7720 if (copy_to_user(optval, ¶ms, len)) 7721 goto out; 7722 7723 retval = 0; 7724 7725 out: 7726 return retval; 7727 } 7728 7729 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7730 char __user *optval, 7731 int __user *optlen) 7732 { 7733 int val; 7734 7735 if (len < sizeof(int)) 7736 return -EINVAL; 7737 7738 len = sizeof(int); 7739 val = sctp_sk(sk)->reuse; 7740 if (put_user(len, optlen)) 7741 return -EFAULT; 7742 7743 if (copy_to_user(optval, &val, len)) 7744 return -EFAULT; 7745 7746 return 0; 7747 } 7748 7749 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7750 int __user *optlen) 7751 { 7752 struct sctp_association *asoc; 7753 struct sctp_event param; 7754 __u16 subscribe; 7755 7756 if (len < sizeof(param)) 7757 return -EINVAL; 7758 7759 len = sizeof(param); 7760 if (copy_from_user(¶m, optval, len)) 7761 return -EFAULT; 7762 7763 if (param.se_type < SCTP_SN_TYPE_BASE || 7764 param.se_type > SCTP_SN_TYPE_MAX) 7765 return -EINVAL; 7766 7767 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7768 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7769 sctp_style(sk, UDP)) 7770 return -EINVAL; 7771 7772 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7773 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7774 7775 if (put_user(len, optlen)) 7776 return -EFAULT; 7777 7778 if (copy_to_user(optval, ¶m, len)) 7779 return -EFAULT; 7780 7781 return 0; 7782 } 7783 7784 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7785 char __user *optval, 7786 int __user *optlen) 7787 { 7788 struct sctp_assoc_value params; 7789 struct sctp_association *asoc; 7790 int retval = -EFAULT; 7791 7792 if (len < sizeof(params)) { 7793 retval = -EINVAL; 7794 goto out; 7795 } 7796 7797 len = sizeof(params); 7798 if (copy_from_user(¶ms, optval, len)) 7799 goto out; 7800 7801 asoc = sctp_id2assoc(sk, params.assoc_id); 7802 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7803 sctp_style(sk, UDP)) { 7804 retval = -EINVAL; 7805 goto out; 7806 } 7807 7808 params.assoc_value = asoc ? asoc->peer.asconf_capable 7809 : sctp_sk(sk)->ep->asconf_enable; 7810 7811 if (put_user(len, optlen)) 7812 goto out; 7813 7814 if (copy_to_user(optval, ¶ms, len)) 7815 goto out; 7816 7817 retval = 0; 7818 7819 out: 7820 return retval; 7821 } 7822 7823 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7824 char __user *optval, 7825 int __user *optlen) 7826 { 7827 struct sctp_assoc_value params; 7828 struct sctp_association *asoc; 7829 int retval = -EFAULT; 7830 7831 if (len < sizeof(params)) { 7832 retval = -EINVAL; 7833 goto out; 7834 } 7835 7836 len = sizeof(params); 7837 if (copy_from_user(¶ms, optval, len)) 7838 goto out; 7839 7840 asoc = sctp_id2assoc(sk, params.assoc_id); 7841 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7842 sctp_style(sk, UDP)) { 7843 retval = -EINVAL; 7844 goto out; 7845 } 7846 7847 params.assoc_value = asoc ? asoc->peer.auth_capable 7848 : sctp_sk(sk)->ep->auth_enable; 7849 7850 if (put_user(len, optlen)) 7851 goto out; 7852 7853 if (copy_to_user(optval, ¶ms, len)) 7854 goto out; 7855 7856 retval = 0; 7857 7858 out: 7859 return retval; 7860 } 7861 7862 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7863 char __user *optval, 7864 int __user *optlen) 7865 { 7866 struct sctp_assoc_value params; 7867 struct sctp_association *asoc; 7868 int retval = -EFAULT; 7869 7870 if (len < sizeof(params)) { 7871 retval = -EINVAL; 7872 goto out; 7873 } 7874 7875 len = sizeof(params); 7876 if (copy_from_user(¶ms, optval, len)) 7877 goto out; 7878 7879 asoc = sctp_id2assoc(sk, params.assoc_id); 7880 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7881 sctp_style(sk, UDP)) { 7882 retval = -EINVAL; 7883 goto out; 7884 } 7885 7886 params.assoc_value = asoc ? asoc->peer.ecn_capable 7887 : sctp_sk(sk)->ep->ecn_enable; 7888 7889 if (put_user(len, optlen)) 7890 goto out; 7891 7892 if (copy_to_user(optval, ¶ms, len)) 7893 goto out; 7894 7895 retval = 0; 7896 7897 out: 7898 return retval; 7899 } 7900 7901 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7902 char __user *optval, int __user *optlen) 7903 { 7904 int retval = 0; 7905 int len; 7906 7907 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7908 7909 /* I can hardly begin to describe how wrong this is. This is 7910 * so broken as to be worse than useless. The API draft 7911 * REALLY is NOT helpful here... I am not convinced that the 7912 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7913 * are at all well-founded. 7914 */ 7915 if (level != SOL_SCTP) { 7916 struct sctp_af *af = sctp_sk(sk)->pf->af; 7917 7918 retval = af->getsockopt(sk, level, optname, optval, optlen); 7919 return retval; 7920 } 7921 7922 if (get_user(len, optlen)) 7923 return -EFAULT; 7924 7925 if (len < 0) 7926 return -EINVAL; 7927 7928 lock_sock(sk); 7929 7930 switch (optname) { 7931 case SCTP_STATUS: 7932 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7933 break; 7934 case SCTP_DISABLE_FRAGMENTS: 7935 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7936 optlen); 7937 break; 7938 case SCTP_EVENTS: 7939 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7940 break; 7941 case SCTP_AUTOCLOSE: 7942 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7943 break; 7944 case SCTP_SOCKOPT_PEELOFF: 7945 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7946 break; 7947 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7948 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7949 break; 7950 case SCTP_PEER_ADDR_PARAMS: 7951 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7952 optlen); 7953 break; 7954 case SCTP_DELAYED_SACK: 7955 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7956 optlen); 7957 break; 7958 case SCTP_INITMSG: 7959 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7960 break; 7961 case SCTP_GET_PEER_ADDRS: 7962 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7963 optlen); 7964 break; 7965 case SCTP_GET_LOCAL_ADDRS: 7966 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7967 optlen); 7968 break; 7969 case SCTP_SOCKOPT_CONNECTX3: 7970 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7971 break; 7972 case SCTP_DEFAULT_SEND_PARAM: 7973 retval = sctp_getsockopt_default_send_param(sk, len, 7974 optval, optlen); 7975 break; 7976 case SCTP_DEFAULT_SNDINFO: 7977 retval = sctp_getsockopt_default_sndinfo(sk, len, 7978 optval, optlen); 7979 break; 7980 case SCTP_PRIMARY_ADDR: 7981 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7982 break; 7983 case SCTP_NODELAY: 7984 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7985 break; 7986 case SCTP_RTOINFO: 7987 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7988 break; 7989 case SCTP_ASSOCINFO: 7990 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7991 break; 7992 case SCTP_I_WANT_MAPPED_V4_ADDR: 7993 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7994 break; 7995 case SCTP_MAXSEG: 7996 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7997 break; 7998 case SCTP_GET_PEER_ADDR_INFO: 7999 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8000 optlen); 8001 break; 8002 case SCTP_ADAPTATION_LAYER: 8003 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8004 optlen); 8005 break; 8006 case SCTP_CONTEXT: 8007 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8008 break; 8009 case SCTP_FRAGMENT_INTERLEAVE: 8010 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8011 optlen); 8012 break; 8013 case SCTP_PARTIAL_DELIVERY_POINT: 8014 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8015 optlen); 8016 break; 8017 case SCTP_MAX_BURST: 8018 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8019 break; 8020 case SCTP_AUTH_KEY: 8021 case SCTP_AUTH_CHUNK: 8022 case SCTP_AUTH_DELETE_KEY: 8023 case SCTP_AUTH_DEACTIVATE_KEY: 8024 retval = -EOPNOTSUPP; 8025 break; 8026 case SCTP_HMAC_IDENT: 8027 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8028 break; 8029 case SCTP_AUTH_ACTIVE_KEY: 8030 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8031 break; 8032 case SCTP_PEER_AUTH_CHUNKS: 8033 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8034 optlen); 8035 break; 8036 case SCTP_LOCAL_AUTH_CHUNKS: 8037 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8038 optlen); 8039 break; 8040 case SCTP_GET_ASSOC_NUMBER: 8041 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8042 break; 8043 case SCTP_GET_ASSOC_ID_LIST: 8044 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8045 break; 8046 case SCTP_AUTO_ASCONF: 8047 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8048 break; 8049 case SCTP_PEER_ADDR_THLDS: 8050 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 8051 break; 8052 case SCTP_GET_ASSOC_STATS: 8053 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8054 break; 8055 case SCTP_RECVRCVINFO: 8056 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8057 break; 8058 case SCTP_RECVNXTINFO: 8059 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8060 break; 8061 case SCTP_PR_SUPPORTED: 8062 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8063 break; 8064 case SCTP_DEFAULT_PRINFO: 8065 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8066 optlen); 8067 break; 8068 case SCTP_PR_ASSOC_STATUS: 8069 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8070 optlen); 8071 break; 8072 case SCTP_PR_STREAM_STATUS: 8073 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8074 optlen); 8075 break; 8076 case SCTP_RECONFIG_SUPPORTED: 8077 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8078 optlen); 8079 break; 8080 case SCTP_ENABLE_STREAM_RESET: 8081 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8082 optlen); 8083 break; 8084 case SCTP_STREAM_SCHEDULER: 8085 retval = sctp_getsockopt_scheduler(sk, len, optval, 8086 optlen); 8087 break; 8088 case SCTP_STREAM_SCHEDULER_VALUE: 8089 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8090 optlen); 8091 break; 8092 case SCTP_INTERLEAVING_SUPPORTED: 8093 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8094 optlen); 8095 break; 8096 case SCTP_REUSE_PORT: 8097 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8098 break; 8099 case SCTP_EVENT: 8100 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8101 break; 8102 case SCTP_ASCONF_SUPPORTED: 8103 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8104 optlen); 8105 break; 8106 case SCTP_AUTH_SUPPORTED: 8107 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8108 optlen); 8109 break; 8110 case SCTP_ECN_SUPPORTED: 8111 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8112 break; 8113 default: 8114 retval = -ENOPROTOOPT; 8115 break; 8116 } 8117 8118 release_sock(sk); 8119 return retval; 8120 } 8121 8122 static int sctp_hash(struct sock *sk) 8123 { 8124 /* STUB */ 8125 return 0; 8126 } 8127 8128 static void sctp_unhash(struct sock *sk) 8129 { 8130 /* STUB */ 8131 } 8132 8133 /* Check if port is acceptable. Possibly find first available port. 8134 * 8135 * The port hash table (contained in the 'global' SCTP protocol storage 8136 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8137 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8138 * list (the list number is the port number hashed out, so as you 8139 * would expect from a hash function, all the ports in a given list have 8140 * such a number that hashes out to the same list number; you were 8141 * expecting that, right?); so each list has a set of ports, with a 8142 * link to the socket (struct sock) that uses it, the port number and 8143 * a fastreuse flag (FIXME: NPI ipg). 8144 */ 8145 static struct sctp_bind_bucket *sctp_bucket_create( 8146 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8147 8148 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8149 { 8150 struct sctp_sock *sp = sctp_sk(sk); 8151 bool reuse = (sk->sk_reuse || sp->reuse); 8152 struct sctp_bind_hashbucket *head; /* hash list */ 8153 kuid_t uid = sock_i_uid(sk); 8154 struct sctp_bind_bucket *pp; 8155 unsigned short snum; 8156 int ret; 8157 8158 snum = ntohs(addr->v4.sin_port); 8159 8160 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8161 8162 local_bh_disable(); 8163 8164 if (snum == 0) { 8165 /* Search for an available port. */ 8166 int low, high, remaining, index; 8167 unsigned int rover; 8168 struct net *net = sock_net(sk); 8169 8170 inet_get_local_port_range(net, &low, &high); 8171 remaining = (high - low) + 1; 8172 rover = prandom_u32() % remaining + low; 8173 8174 do { 8175 rover++; 8176 if ((rover < low) || (rover > high)) 8177 rover = low; 8178 if (inet_is_local_reserved_port(net, rover)) 8179 continue; 8180 index = sctp_phashfn(sock_net(sk), rover); 8181 head = &sctp_port_hashtable[index]; 8182 spin_lock(&head->lock); 8183 sctp_for_each_hentry(pp, &head->chain) 8184 if ((pp->port == rover) && 8185 net_eq(sock_net(sk), pp->net)) 8186 goto next; 8187 break; 8188 next: 8189 spin_unlock(&head->lock); 8190 } while (--remaining > 0); 8191 8192 /* Exhausted local port range during search? */ 8193 ret = 1; 8194 if (remaining <= 0) 8195 goto fail; 8196 8197 /* OK, here is the one we will use. HEAD (the port 8198 * hash table list entry) is non-NULL and we hold it's 8199 * mutex. 8200 */ 8201 snum = rover; 8202 } else { 8203 /* We are given an specific port number; we verify 8204 * that it is not being used. If it is used, we will 8205 * exahust the search in the hash list corresponding 8206 * to the port number (snum) - we detect that with the 8207 * port iterator, pp being NULL. 8208 */ 8209 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8210 spin_lock(&head->lock); 8211 sctp_for_each_hentry(pp, &head->chain) { 8212 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8213 goto pp_found; 8214 } 8215 } 8216 pp = NULL; 8217 goto pp_not_found; 8218 pp_found: 8219 if (!hlist_empty(&pp->owner)) { 8220 /* We had a port hash table hit - there is an 8221 * available port (pp != NULL) and it is being 8222 * used by other socket (pp->owner not empty); that other 8223 * socket is going to be sk2. 8224 */ 8225 struct sock *sk2; 8226 8227 pr_debug("%s: found a possible match\n", __func__); 8228 8229 if ((pp->fastreuse && reuse && 8230 sk->sk_state != SCTP_SS_LISTENING) || 8231 (pp->fastreuseport && sk->sk_reuseport && 8232 uid_eq(pp->fastuid, uid))) 8233 goto success; 8234 8235 /* Run through the list of sockets bound to the port 8236 * (pp->port) [via the pointers bind_next and 8237 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8238 * we get the endpoint they describe and run through 8239 * the endpoint's list of IP (v4 or v6) addresses, 8240 * comparing each of the addresses with the address of 8241 * the socket sk. If we find a match, then that means 8242 * that this port/socket (sk) combination are already 8243 * in an endpoint. 8244 */ 8245 sk_for_each_bound(sk2, &pp->owner) { 8246 struct sctp_sock *sp2 = sctp_sk(sk2); 8247 struct sctp_endpoint *ep2 = sp2->ep; 8248 8249 if (sk == sk2 || 8250 (reuse && (sk2->sk_reuse || sp2->reuse) && 8251 sk2->sk_state != SCTP_SS_LISTENING) || 8252 (sk->sk_reuseport && sk2->sk_reuseport && 8253 uid_eq(uid, sock_i_uid(sk2)))) 8254 continue; 8255 8256 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8257 addr, sp2, sp)) { 8258 ret = (long)sk2; 8259 goto fail_unlock; 8260 } 8261 } 8262 8263 pr_debug("%s: found a match\n", __func__); 8264 } 8265 pp_not_found: 8266 /* If there was a hash table miss, create a new port. */ 8267 ret = 1; 8268 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8269 goto fail_unlock; 8270 8271 /* In either case (hit or miss), make sure fastreuse is 1 only 8272 * if sk->sk_reuse is too (that is, if the caller requested 8273 * SO_REUSEADDR on this socket -sk-). 8274 */ 8275 if (hlist_empty(&pp->owner)) { 8276 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8277 pp->fastreuse = 1; 8278 else 8279 pp->fastreuse = 0; 8280 8281 if (sk->sk_reuseport) { 8282 pp->fastreuseport = 1; 8283 pp->fastuid = uid; 8284 } else { 8285 pp->fastreuseport = 0; 8286 } 8287 } else { 8288 if (pp->fastreuse && 8289 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8290 pp->fastreuse = 0; 8291 8292 if (pp->fastreuseport && 8293 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8294 pp->fastreuseport = 0; 8295 } 8296 8297 /* We are set, so fill up all the data in the hash table 8298 * entry, tie the socket list information with the rest of the 8299 * sockets FIXME: Blurry, NPI (ipg). 8300 */ 8301 success: 8302 if (!sp->bind_hash) { 8303 inet_sk(sk)->inet_num = snum; 8304 sk_add_bind_node(sk, &pp->owner); 8305 sp->bind_hash = pp; 8306 } 8307 ret = 0; 8308 8309 fail_unlock: 8310 spin_unlock(&head->lock); 8311 8312 fail: 8313 local_bh_enable(); 8314 return ret; 8315 } 8316 8317 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8318 * port is requested. 8319 */ 8320 static int sctp_get_port(struct sock *sk, unsigned short snum) 8321 { 8322 union sctp_addr addr; 8323 struct sctp_af *af = sctp_sk(sk)->pf->af; 8324 8325 /* Set up a dummy address struct from the sk. */ 8326 af->from_sk(&addr, sk); 8327 addr.v4.sin_port = htons(snum); 8328 8329 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8330 return !!sctp_get_port_local(sk, &addr); 8331 } 8332 8333 /* 8334 * Move a socket to LISTENING state. 8335 */ 8336 static int sctp_listen_start(struct sock *sk, int backlog) 8337 { 8338 struct sctp_sock *sp = sctp_sk(sk); 8339 struct sctp_endpoint *ep = sp->ep; 8340 struct crypto_shash *tfm = NULL; 8341 char alg[32]; 8342 8343 /* Allocate HMAC for generating cookie. */ 8344 if (!sp->hmac && sp->sctp_hmac_alg) { 8345 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8346 tfm = crypto_alloc_shash(alg, 0, 0); 8347 if (IS_ERR(tfm)) { 8348 net_info_ratelimited("failed to load transform for %s: %ld\n", 8349 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8350 return -ENOSYS; 8351 } 8352 sctp_sk(sk)->hmac = tfm; 8353 } 8354 8355 /* 8356 * If a bind() or sctp_bindx() is not called prior to a listen() 8357 * call that allows new associations to be accepted, the system 8358 * picks an ephemeral port and will choose an address set equivalent 8359 * to binding with a wildcard address. 8360 * 8361 * This is not currently spelled out in the SCTP sockets 8362 * extensions draft, but follows the practice as seen in TCP 8363 * sockets. 8364 * 8365 */ 8366 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8367 if (!ep->base.bind_addr.port) { 8368 if (sctp_autobind(sk)) 8369 return -EAGAIN; 8370 } else { 8371 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8372 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8373 return -EADDRINUSE; 8374 } 8375 } 8376 8377 sk->sk_max_ack_backlog = backlog; 8378 return sctp_hash_endpoint(ep); 8379 } 8380 8381 /* 8382 * 4.1.3 / 5.1.3 listen() 8383 * 8384 * By default, new associations are not accepted for UDP style sockets. 8385 * An application uses listen() to mark a socket as being able to 8386 * accept new associations. 8387 * 8388 * On TCP style sockets, applications use listen() to ready the SCTP 8389 * endpoint for accepting inbound associations. 8390 * 8391 * On both types of endpoints a backlog of '0' disables listening. 8392 * 8393 * Move a socket to LISTENING state. 8394 */ 8395 int sctp_inet_listen(struct socket *sock, int backlog) 8396 { 8397 struct sock *sk = sock->sk; 8398 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8399 int err = -EINVAL; 8400 8401 if (unlikely(backlog < 0)) 8402 return err; 8403 8404 lock_sock(sk); 8405 8406 /* Peeled-off sockets are not allowed to listen(). */ 8407 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8408 goto out; 8409 8410 if (sock->state != SS_UNCONNECTED) 8411 goto out; 8412 8413 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8414 goto out; 8415 8416 /* If backlog is zero, disable listening. */ 8417 if (!backlog) { 8418 if (sctp_sstate(sk, CLOSED)) 8419 goto out; 8420 8421 err = 0; 8422 sctp_unhash_endpoint(ep); 8423 sk->sk_state = SCTP_SS_CLOSED; 8424 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8425 sctp_sk(sk)->bind_hash->fastreuse = 1; 8426 goto out; 8427 } 8428 8429 /* If we are already listening, just update the backlog */ 8430 if (sctp_sstate(sk, LISTENING)) 8431 sk->sk_max_ack_backlog = backlog; 8432 else { 8433 err = sctp_listen_start(sk, backlog); 8434 if (err) 8435 goto out; 8436 } 8437 8438 err = 0; 8439 out: 8440 release_sock(sk); 8441 return err; 8442 } 8443 8444 /* 8445 * This function is done by modeling the current datagram_poll() and the 8446 * tcp_poll(). Note that, based on these implementations, we don't 8447 * lock the socket in this function, even though it seems that, 8448 * ideally, locking or some other mechanisms can be used to ensure 8449 * the integrity of the counters (sndbuf and wmem_alloc) used 8450 * in this place. We assume that we don't need locks either until proven 8451 * otherwise. 8452 * 8453 * Another thing to note is that we include the Async I/O support 8454 * here, again, by modeling the current TCP/UDP code. We don't have 8455 * a good way to test with it yet. 8456 */ 8457 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8458 { 8459 struct sock *sk = sock->sk; 8460 struct sctp_sock *sp = sctp_sk(sk); 8461 __poll_t mask; 8462 8463 poll_wait(file, sk_sleep(sk), wait); 8464 8465 sock_rps_record_flow(sk); 8466 8467 /* A TCP-style listening socket becomes readable when the accept queue 8468 * is not empty. 8469 */ 8470 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8471 return (!list_empty(&sp->ep->asocs)) ? 8472 (EPOLLIN | EPOLLRDNORM) : 0; 8473 8474 mask = 0; 8475 8476 /* Is there any exceptional events? */ 8477 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8478 mask |= EPOLLERR | 8479 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8480 if (sk->sk_shutdown & RCV_SHUTDOWN) 8481 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8482 if (sk->sk_shutdown == SHUTDOWN_MASK) 8483 mask |= EPOLLHUP; 8484 8485 /* Is it readable? Reconsider this code with TCP-style support. */ 8486 if (!skb_queue_empty(&sk->sk_receive_queue)) 8487 mask |= EPOLLIN | EPOLLRDNORM; 8488 8489 /* The association is either gone or not ready. */ 8490 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8491 return mask; 8492 8493 /* Is it writable? */ 8494 if (sctp_writeable(sk)) { 8495 mask |= EPOLLOUT | EPOLLWRNORM; 8496 } else { 8497 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8498 /* 8499 * Since the socket is not locked, the buffer 8500 * might be made available after the writeable check and 8501 * before the bit is set. This could cause a lost I/O 8502 * signal. tcp_poll() has a race breaker for this race 8503 * condition. Based on their implementation, we put 8504 * in the following code to cover it as well. 8505 */ 8506 if (sctp_writeable(sk)) 8507 mask |= EPOLLOUT | EPOLLWRNORM; 8508 } 8509 return mask; 8510 } 8511 8512 /******************************************************************** 8513 * 2nd Level Abstractions 8514 ********************************************************************/ 8515 8516 static struct sctp_bind_bucket *sctp_bucket_create( 8517 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8518 { 8519 struct sctp_bind_bucket *pp; 8520 8521 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8522 if (pp) { 8523 SCTP_DBG_OBJCNT_INC(bind_bucket); 8524 pp->port = snum; 8525 pp->fastreuse = 0; 8526 INIT_HLIST_HEAD(&pp->owner); 8527 pp->net = net; 8528 hlist_add_head(&pp->node, &head->chain); 8529 } 8530 return pp; 8531 } 8532 8533 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8534 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8535 { 8536 if (pp && hlist_empty(&pp->owner)) { 8537 __hlist_del(&pp->node); 8538 kmem_cache_free(sctp_bucket_cachep, pp); 8539 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8540 } 8541 } 8542 8543 /* Release this socket's reference to a local port. */ 8544 static inline void __sctp_put_port(struct sock *sk) 8545 { 8546 struct sctp_bind_hashbucket *head = 8547 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8548 inet_sk(sk)->inet_num)]; 8549 struct sctp_bind_bucket *pp; 8550 8551 spin_lock(&head->lock); 8552 pp = sctp_sk(sk)->bind_hash; 8553 __sk_del_bind_node(sk); 8554 sctp_sk(sk)->bind_hash = NULL; 8555 inet_sk(sk)->inet_num = 0; 8556 sctp_bucket_destroy(pp); 8557 spin_unlock(&head->lock); 8558 } 8559 8560 void sctp_put_port(struct sock *sk) 8561 { 8562 local_bh_disable(); 8563 __sctp_put_port(sk); 8564 local_bh_enable(); 8565 } 8566 8567 /* 8568 * The system picks an ephemeral port and choose an address set equivalent 8569 * to binding with a wildcard address. 8570 * One of those addresses will be the primary address for the association. 8571 * This automatically enables the multihoming capability of SCTP. 8572 */ 8573 static int sctp_autobind(struct sock *sk) 8574 { 8575 union sctp_addr autoaddr; 8576 struct sctp_af *af; 8577 __be16 port; 8578 8579 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8580 af = sctp_sk(sk)->pf->af; 8581 8582 port = htons(inet_sk(sk)->inet_num); 8583 af->inaddr_any(&autoaddr, port); 8584 8585 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8586 } 8587 8588 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8589 * 8590 * From RFC 2292 8591 * 4.2 The cmsghdr Structure * 8592 * 8593 * When ancillary data is sent or received, any number of ancillary data 8594 * objects can be specified by the msg_control and msg_controllen members of 8595 * the msghdr structure, because each object is preceded by 8596 * a cmsghdr structure defining the object's length (the cmsg_len member). 8597 * Historically Berkeley-derived implementations have passed only one object 8598 * at a time, but this API allows multiple objects to be 8599 * passed in a single call to sendmsg() or recvmsg(). The following example 8600 * shows two ancillary data objects in a control buffer. 8601 * 8602 * |<--------------------------- msg_controllen -------------------------->| 8603 * | | 8604 * 8605 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8606 * 8607 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8608 * | | | 8609 * 8610 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8611 * 8612 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8613 * | | | | | 8614 * 8615 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8616 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8617 * 8618 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8619 * 8620 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8621 * ^ 8622 * | 8623 * 8624 * msg_control 8625 * points here 8626 */ 8627 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8628 { 8629 struct msghdr *my_msg = (struct msghdr *)msg; 8630 struct cmsghdr *cmsg; 8631 8632 for_each_cmsghdr(cmsg, my_msg) { 8633 if (!CMSG_OK(my_msg, cmsg)) 8634 return -EINVAL; 8635 8636 /* Should we parse this header or ignore? */ 8637 if (cmsg->cmsg_level != IPPROTO_SCTP) 8638 continue; 8639 8640 /* Strictly check lengths following example in SCM code. */ 8641 switch (cmsg->cmsg_type) { 8642 case SCTP_INIT: 8643 /* SCTP Socket API Extension 8644 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8645 * 8646 * This cmsghdr structure provides information for 8647 * initializing new SCTP associations with sendmsg(). 8648 * The SCTP_INITMSG socket option uses this same data 8649 * structure. This structure is not used for 8650 * recvmsg(). 8651 * 8652 * cmsg_level cmsg_type cmsg_data[] 8653 * ------------ ------------ ---------------------- 8654 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8655 */ 8656 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8657 return -EINVAL; 8658 8659 cmsgs->init = CMSG_DATA(cmsg); 8660 break; 8661 8662 case SCTP_SNDRCV: 8663 /* SCTP Socket API Extension 8664 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8665 * 8666 * This cmsghdr structure specifies SCTP options for 8667 * sendmsg() and describes SCTP header information 8668 * about a received message through recvmsg(). 8669 * 8670 * cmsg_level cmsg_type cmsg_data[] 8671 * ------------ ------------ ---------------------- 8672 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8673 */ 8674 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8675 return -EINVAL; 8676 8677 cmsgs->srinfo = CMSG_DATA(cmsg); 8678 8679 if (cmsgs->srinfo->sinfo_flags & 8680 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8681 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8682 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8683 return -EINVAL; 8684 break; 8685 8686 case SCTP_SNDINFO: 8687 /* SCTP Socket API Extension 8688 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8689 * 8690 * This cmsghdr structure specifies SCTP options for 8691 * sendmsg(). This structure and SCTP_RCVINFO replaces 8692 * SCTP_SNDRCV which has been deprecated. 8693 * 8694 * cmsg_level cmsg_type cmsg_data[] 8695 * ------------ ------------ --------------------- 8696 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8697 */ 8698 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8699 return -EINVAL; 8700 8701 cmsgs->sinfo = CMSG_DATA(cmsg); 8702 8703 if (cmsgs->sinfo->snd_flags & 8704 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8705 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8706 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8707 return -EINVAL; 8708 break; 8709 case SCTP_PRINFO: 8710 /* SCTP Socket API Extension 8711 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8712 * 8713 * This cmsghdr structure specifies SCTP options for sendmsg(). 8714 * 8715 * cmsg_level cmsg_type cmsg_data[] 8716 * ------------ ------------ --------------------- 8717 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8718 */ 8719 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8720 return -EINVAL; 8721 8722 cmsgs->prinfo = CMSG_DATA(cmsg); 8723 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8724 return -EINVAL; 8725 8726 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8727 cmsgs->prinfo->pr_value = 0; 8728 break; 8729 case SCTP_AUTHINFO: 8730 /* SCTP Socket API Extension 8731 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8732 * 8733 * This cmsghdr structure specifies SCTP options for sendmsg(). 8734 * 8735 * cmsg_level cmsg_type cmsg_data[] 8736 * ------------ ------------ --------------------- 8737 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8738 */ 8739 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8740 return -EINVAL; 8741 8742 cmsgs->authinfo = CMSG_DATA(cmsg); 8743 break; 8744 case SCTP_DSTADDRV4: 8745 case SCTP_DSTADDRV6: 8746 /* SCTP Socket API Extension 8747 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8748 * 8749 * This cmsghdr structure specifies SCTP options for sendmsg(). 8750 * 8751 * cmsg_level cmsg_type cmsg_data[] 8752 * ------------ ------------ --------------------- 8753 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8754 * ------------ ------------ --------------------- 8755 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8756 */ 8757 cmsgs->addrs_msg = my_msg; 8758 break; 8759 default: 8760 return -EINVAL; 8761 } 8762 } 8763 8764 return 0; 8765 } 8766 8767 /* 8768 * Wait for a packet.. 8769 * Note: This function is the same function as in core/datagram.c 8770 * with a few modifications to make lksctp work. 8771 */ 8772 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8773 { 8774 int error; 8775 DEFINE_WAIT(wait); 8776 8777 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8778 8779 /* Socket errors? */ 8780 error = sock_error(sk); 8781 if (error) 8782 goto out; 8783 8784 if (!skb_queue_empty(&sk->sk_receive_queue)) 8785 goto ready; 8786 8787 /* Socket shut down? */ 8788 if (sk->sk_shutdown & RCV_SHUTDOWN) 8789 goto out; 8790 8791 /* Sequenced packets can come disconnected. If so we report the 8792 * problem. 8793 */ 8794 error = -ENOTCONN; 8795 8796 /* Is there a good reason to think that we may receive some data? */ 8797 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8798 goto out; 8799 8800 /* Handle signals. */ 8801 if (signal_pending(current)) 8802 goto interrupted; 8803 8804 /* Let another process have a go. Since we are going to sleep 8805 * anyway. Note: This may cause odd behaviors if the message 8806 * does not fit in the user's buffer, but this seems to be the 8807 * only way to honor MSG_DONTWAIT realistically. 8808 */ 8809 release_sock(sk); 8810 *timeo_p = schedule_timeout(*timeo_p); 8811 lock_sock(sk); 8812 8813 ready: 8814 finish_wait(sk_sleep(sk), &wait); 8815 return 0; 8816 8817 interrupted: 8818 error = sock_intr_errno(*timeo_p); 8819 8820 out: 8821 finish_wait(sk_sleep(sk), &wait); 8822 *err = error; 8823 return error; 8824 } 8825 8826 /* Receive a datagram. 8827 * Note: This is pretty much the same routine as in core/datagram.c 8828 * with a few changes to make lksctp work. 8829 */ 8830 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8831 int noblock, int *err) 8832 { 8833 int error; 8834 struct sk_buff *skb; 8835 long timeo; 8836 8837 timeo = sock_rcvtimeo(sk, noblock); 8838 8839 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8840 MAX_SCHEDULE_TIMEOUT); 8841 8842 do { 8843 /* Again only user level code calls this function, 8844 * so nothing interrupt level 8845 * will suddenly eat the receive_queue. 8846 * 8847 * Look at current nfs client by the way... 8848 * However, this function was correct in any case. 8) 8849 */ 8850 if (flags & MSG_PEEK) { 8851 skb = skb_peek(&sk->sk_receive_queue); 8852 if (skb) 8853 refcount_inc(&skb->users); 8854 } else { 8855 skb = __skb_dequeue(&sk->sk_receive_queue); 8856 } 8857 8858 if (skb) 8859 return skb; 8860 8861 /* Caller is allowed not to check sk->sk_err before calling. */ 8862 error = sock_error(sk); 8863 if (error) 8864 goto no_packet; 8865 8866 if (sk->sk_shutdown & RCV_SHUTDOWN) 8867 break; 8868 8869 if (sk_can_busy_loop(sk)) { 8870 sk_busy_loop(sk, noblock); 8871 8872 if (!skb_queue_empty(&sk->sk_receive_queue)) 8873 continue; 8874 } 8875 8876 /* User doesn't want to wait. */ 8877 error = -EAGAIN; 8878 if (!timeo) 8879 goto no_packet; 8880 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8881 8882 return NULL; 8883 8884 no_packet: 8885 *err = error; 8886 return NULL; 8887 } 8888 8889 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8890 static void __sctp_write_space(struct sctp_association *asoc) 8891 { 8892 struct sock *sk = asoc->base.sk; 8893 8894 if (sctp_wspace(asoc) <= 0) 8895 return; 8896 8897 if (waitqueue_active(&asoc->wait)) 8898 wake_up_interruptible(&asoc->wait); 8899 8900 if (sctp_writeable(sk)) { 8901 struct socket_wq *wq; 8902 8903 rcu_read_lock(); 8904 wq = rcu_dereference(sk->sk_wq); 8905 if (wq) { 8906 if (waitqueue_active(&wq->wait)) 8907 wake_up_interruptible(&wq->wait); 8908 8909 /* Note that we try to include the Async I/O support 8910 * here by modeling from the current TCP/UDP code. 8911 * We have not tested with it yet. 8912 */ 8913 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8914 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8915 } 8916 rcu_read_unlock(); 8917 } 8918 } 8919 8920 static void sctp_wake_up_waiters(struct sock *sk, 8921 struct sctp_association *asoc) 8922 { 8923 struct sctp_association *tmp = asoc; 8924 8925 /* We do accounting for the sndbuf space per association, 8926 * so we only need to wake our own association. 8927 */ 8928 if (asoc->ep->sndbuf_policy) 8929 return __sctp_write_space(asoc); 8930 8931 /* If association goes down and is just flushing its 8932 * outq, then just normally notify others. 8933 */ 8934 if (asoc->base.dead) 8935 return sctp_write_space(sk); 8936 8937 /* Accounting for the sndbuf space is per socket, so we 8938 * need to wake up others, try to be fair and in case of 8939 * other associations, let them have a go first instead 8940 * of just doing a sctp_write_space() call. 8941 * 8942 * Note that we reach sctp_wake_up_waiters() only when 8943 * associations free up queued chunks, thus we are under 8944 * lock and the list of associations on a socket is 8945 * guaranteed not to change. 8946 */ 8947 for (tmp = list_next_entry(tmp, asocs); 1; 8948 tmp = list_next_entry(tmp, asocs)) { 8949 /* Manually skip the head element. */ 8950 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8951 continue; 8952 /* Wake up association. */ 8953 __sctp_write_space(tmp); 8954 /* We've reached the end. */ 8955 if (tmp == asoc) 8956 break; 8957 } 8958 } 8959 8960 /* Do accounting for the sndbuf space. 8961 * Decrement the used sndbuf space of the corresponding association by the 8962 * data size which was just transmitted(freed). 8963 */ 8964 static void sctp_wfree(struct sk_buff *skb) 8965 { 8966 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8967 struct sctp_association *asoc = chunk->asoc; 8968 struct sock *sk = asoc->base.sk; 8969 8970 sk_mem_uncharge(sk, skb->truesize); 8971 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8972 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8973 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8974 &sk->sk_wmem_alloc)); 8975 8976 if (chunk->shkey) { 8977 struct sctp_shared_key *shkey = chunk->shkey; 8978 8979 /* refcnt == 2 and !list_empty mean after this release, it's 8980 * not being used anywhere, and it's time to notify userland 8981 * that this shkey can be freed if it's been deactivated. 8982 */ 8983 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8984 refcount_read(&shkey->refcnt) == 2) { 8985 struct sctp_ulpevent *ev; 8986 8987 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8988 SCTP_AUTH_FREE_KEY, 8989 GFP_KERNEL); 8990 if (ev) 8991 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8992 } 8993 sctp_auth_shkey_release(chunk->shkey); 8994 } 8995 8996 sock_wfree(skb); 8997 sctp_wake_up_waiters(sk, asoc); 8998 8999 sctp_association_put(asoc); 9000 } 9001 9002 /* Do accounting for the receive space on the socket. 9003 * Accounting for the association is done in ulpevent.c 9004 * We set this as a destructor for the cloned data skbs so that 9005 * accounting is done at the correct time. 9006 */ 9007 void sctp_sock_rfree(struct sk_buff *skb) 9008 { 9009 struct sock *sk = skb->sk; 9010 struct sctp_ulpevent *event = sctp_skb2event(skb); 9011 9012 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9013 9014 /* 9015 * Mimic the behavior of sock_rfree 9016 */ 9017 sk_mem_uncharge(sk, event->rmem_len); 9018 } 9019 9020 9021 /* Helper function to wait for space in the sndbuf. */ 9022 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9023 size_t msg_len) 9024 { 9025 struct sock *sk = asoc->base.sk; 9026 long current_timeo = *timeo_p; 9027 DEFINE_WAIT(wait); 9028 int err = 0; 9029 9030 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9031 *timeo_p, msg_len); 9032 9033 /* Increment the association's refcnt. */ 9034 sctp_association_hold(asoc); 9035 9036 /* Wait on the association specific sndbuf space. */ 9037 for (;;) { 9038 prepare_to_wait_exclusive(&asoc->wait, &wait, 9039 TASK_INTERRUPTIBLE); 9040 if (asoc->base.dead) 9041 goto do_dead; 9042 if (!*timeo_p) 9043 goto do_nonblock; 9044 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9045 goto do_error; 9046 if (signal_pending(current)) 9047 goto do_interrupted; 9048 if (sk_under_memory_pressure(sk)) 9049 sk_mem_reclaim(sk); 9050 if ((int)msg_len <= sctp_wspace(asoc) && 9051 sk_wmem_schedule(sk, msg_len)) 9052 break; 9053 9054 /* Let another process have a go. Since we are going 9055 * to sleep anyway. 9056 */ 9057 release_sock(sk); 9058 current_timeo = schedule_timeout(current_timeo); 9059 lock_sock(sk); 9060 if (sk != asoc->base.sk) 9061 goto do_error; 9062 9063 *timeo_p = current_timeo; 9064 } 9065 9066 out: 9067 finish_wait(&asoc->wait, &wait); 9068 9069 /* Release the association's refcnt. */ 9070 sctp_association_put(asoc); 9071 9072 return err; 9073 9074 do_dead: 9075 err = -ESRCH; 9076 goto out; 9077 9078 do_error: 9079 err = -EPIPE; 9080 goto out; 9081 9082 do_interrupted: 9083 err = sock_intr_errno(*timeo_p); 9084 goto out; 9085 9086 do_nonblock: 9087 err = -EAGAIN; 9088 goto out; 9089 } 9090 9091 void sctp_data_ready(struct sock *sk) 9092 { 9093 struct socket_wq *wq; 9094 9095 rcu_read_lock(); 9096 wq = rcu_dereference(sk->sk_wq); 9097 if (skwq_has_sleeper(wq)) 9098 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9099 EPOLLRDNORM | EPOLLRDBAND); 9100 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9101 rcu_read_unlock(); 9102 } 9103 9104 /* If socket sndbuf has changed, wake up all per association waiters. */ 9105 void sctp_write_space(struct sock *sk) 9106 { 9107 struct sctp_association *asoc; 9108 9109 /* Wake up the tasks in each wait queue. */ 9110 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9111 __sctp_write_space(asoc); 9112 } 9113 } 9114 9115 /* Is there any sndbuf space available on the socket? 9116 * 9117 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9118 * associations on the same socket. For a UDP-style socket with 9119 * multiple associations, it is possible for it to be "unwriteable" 9120 * prematurely. I assume that this is acceptable because 9121 * a premature "unwriteable" is better than an accidental "writeable" which 9122 * would cause an unwanted block under certain circumstances. For the 1-1 9123 * UDP-style sockets or TCP-style sockets, this code should work. 9124 * - Daisy 9125 */ 9126 static bool sctp_writeable(struct sock *sk) 9127 { 9128 return sk->sk_sndbuf > sk->sk_wmem_queued; 9129 } 9130 9131 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9132 * returns immediately with EINPROGRESS. 9133 */ 9134 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9135 { 9136 struct sock *sk = asoc->base.sk; 9137 int err = 0; 9138 long current_timeo = *timeo_p; 9139 DEFINE_WAIT(wait); 9140 9141 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9142 9143 /* Increment the association's refcnt. */ 9144 sctp_association_hold(asoc); 9145 9146 for (;;) { 9147 prepare_to_wait_exclusive(&asoc->wait, &wait, 9148 TASK_INTERRUPTIBLE); 9149 if (!*timeo_p) 9150 goto do_nonblock; 9151 if (sk->sk_shutdown & RCV_SHUTDOWN) 9152 break; 9153 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9154 asoc->base.dead) 9155 goto do_error; 9156 if (signal_pending(current)) 9157 goto do_interrupted; 9158 9159 if (sctp_state(asoc, ESTABLISHED)) 9160 break; 9161 9162 /* Let another process have a go. Since we are going 9163 * to sleep anyway. 9164 */ 9165 release_sock(sk); 9166 current_timeo = schedule_timeout(current_timeo); 9167 lock_sock(sk); 9168 9169 *timeo_p = current_timeo; 9170 } 9171 9172 out: 9173 finish_wait(&asoc->wait, &wait); 9174 9175 /* Release the association's refcnt. */ 9176 sctp_association_put(asoc); 9177 9178 return err; 9179 9180 do_error: 9181 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9182 err = -ETIMEDOUT; 9183 else 9184 err = -ECONNREFUSED; 9185 goto out; 9186 9187 do_interrupted: 9188 err = sock_intr_errno(*timeo_p); 9189 goto out; 9190 9191 do_nonblock: 9192 err = -EINPROGRESS; 9193 goto out; 9194 } 9195 9196 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9197 { 9198 struct sctp_endpoint *ep; 9199 int err = 0; 9200 DEFINE_WAIT(wait); 9201 9202 ep = sctp_sk(sk)->ep; 9203 9204 9205 for (;;) { 9206 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9207 TASK_INTERRUPTIBLE); 9208 9209 if (list_empty(&ep->asocs)) { 9210 release_sock(sk); 9211 timeo = schedule_timeout(timeo); 9212 lock_sock(sk); 9213 } 9214 9215 err = -EINVAL; 9216 if (!sctp_sstate(sk, LISTENING)) 9217 break; 9218 9219 err = 0; 9220 if (!list_empty(&ep->asocs)) 9221 break; 9222 9223 err = sock_intr_errno(timeo); 9224 if (signal_pending(current)) 9225 break; 9226 9227 err = -EAGAIN; 9228 if (!timeo) 9229 break; 9230 } 9231 9232 finish_wait(sk_sleep(sk), &wait); 9233 9234 return err; 9235 } 9236 9237 static void sctp_wait_for_close(struct sock *sk, long timeout) 9238 { 9239 DEFINE_WAIT(wait); 9240 9241 do { 9242 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9243 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9244 break; 9245 release_sock(sk); 9246 timeout = schedule_timeout(timeout); 9247 lock_sock(sk); 9248 } while (!signal_pending(current) && timeout); 9249 9250 finish_wait(sk_sleep(sk), &wait); 9251 } 9252 9253 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9254 { 9255 struct sk_buff *frag; 9256 9257 if (!skb->data_len) 9258 goto done; 9259 9260 /* Don't forget the fragments. */ 9261 skb_walk_frags(skb, frag) 9262 sctp_skb_set_owner_r_frag(frag, sk); 9263 9264 done: 9265 sctp_skb_set_owner_r(skb, sk); 9266 } 9267 9268 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9269 struct sctp_association *asoc) 9270 { 9271 struct inet_sock *inet = inet_sk(sk); 9272 struct inet_sock *newinet; 9273 struct sctp_sock *sp = sctp_sk(sk); 9274 struct sctp_endpoint *ep = sp->ep; 9275 9276 newsk->sk_type = sk->sk_type; 9277 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9278 newsk->sk_flags = sk->sk_flags; 9279 newsk->sk_tsflags = sk->sk_tsflags; 9280 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9281 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9282 newsk->sk_reuse = sk->sk_reuse; 9283 sctp_sk(newsk)->reuse = sp->reuse; 9284 9285 newsk->sk_shutdown = sk->sk_shutdown; 9286 newsk->sk_destruct = sctp_destruct_sock; 9287 newsk->sk_family = sk->sk_family; 9288 newsk->sk_protocol = IPPROTO_SCTP; 9289 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9290 newsk->sk_sndbuf = sk->sk_sndbuf; 9291 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9292 newsk->sk_lingertime = sk->sk_lingertime; 9293 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9294 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9295 newsk->sk_rxhash = sk->sk_rxhash; 9296 9297 newinet = inet_sk(newsk); 9298 9299 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9300 * getsockname() and getpeername() 9301 */ 9302 newinet->inet_sport = inet->inet_sport; 9303 newinet->inet_saddr = inet->inet_saddr; 9304 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9305 newinet->inet_dport = htons(asoc->peer.port); 9306 newinet->pmtudisc = inet->pmtudisc; 9307 newinet->inet_id = asoc->next_tsn ^ jiffies; 9308 9309 newinet->uc_ttl = inet->uc_ttl; 9310 newinet->mc_loop = 1; 9311 newinet->mc_ttl = 1; 9312 newinet->mc_index = 0; 9313 newinet->mc_list = NULL; 9314 9315 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9316 net_enable_timestamp(); 9317 9318 /* Set newsk security attributes from orginal sk and connection 9319 * security attribute from ep. 9320 */ 9321 security_sctp_sk_clone(ep, sk, newsk); 9322 } 9323 9324 static inline void sctp_copy_descendant(struct sock *sk_to, 9325 const struct sock *sk_from) 9326 { 9327 int ancestor_size = sizeof(struct inet_sock) + 9328 sizeof(struct sctp_sock) - 9329 offsetof(struct sctp_sock, pd_lobby); 9330 9331 if (sk_from->sk_family == PF_INET6) 9332 ancestor_size += sizeof(struct ipv6_pinfo); 9333 9334 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9335 } 9336 9337 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9338 * and its messages to the newsk. 9339 */ 9340 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9341 struct sctp_association *assoc, 9342 enum sctp_socket_type type) 9343 { 9344 struct sctp_sock *oldsp = sctp_sk(oldsk); 9345 struct sctp_sock *newsp = sctp_sk(newsk); 9346 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9347 struct sctp_endpoint *newep = newsp->ep; 9348 struct sk_buff *skb, *tmp; 9349 struct sctp_ulpevent *event; 9350 struct sctp_bind_hashbucket *head; 9351 int err; 9352 9353 /* Migrate socket buffer sizes and all the socket level options to the 9354 * new socket. 9355 */ 9356 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9357 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9358 /* Brute force copy old sctp opt. */ 9359 sctp_copy_descendant(newsk, oldsk); 9360 9361 /* Restore the ep value that was overwritten with the above structure 9362 * copy. 9363 */ 9364 newsp->ep = newep; 9365 newsp->hmac = NULL; 9366 9367 /* Hook this new socket in to the bind_hash list. */ 9368 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9369 inet_sk(oldsk)->inet_num)]; 9370 spin_lock_bh(&head->lock); 9371 pp = sctp_sk(oldsk)->bind_hash; 9372 sk_add_bind_node(newsk, &pp->owner); 9373 sctp_sk(newsk)->bind_hash = pp; 9374 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9375 spin_unlock_bh(&head->lock); 9376 9377 /* Copy the bind_addr list from the original endpoint to the new 9378 * endpoint so that we can handle restarts properly 9379 */ 9380 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9381 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9382 if (err) 9383 return err; 9384 9385 /* New ep's auth_hmacs should be set if old ep's is set, in case 9386 * that net->sctp.auth_enable has been changed to 0 by users and 9387 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9388 */ 9389 if (oldsp->ep->auth_hmacs) { 9390 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9391 if (err) 9392 return err; 9393 } 9394 9395 /* Move any messages in the old socket's receive queue that are for the 9396 * peeled off association to the new socket's receive queue. 9397 */ 9398 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9399 event = sctp_skb2event(skb); 9400 if (event->asoc == assoc) { 9401 __skb_unlink(skb, &oldsk->sk_receive_queue); 9402 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9403 sctp_skb_set_owner_r_frag(skb, newsk); 9404 } 9405 } 9406 9407 /* Clean up any messages pending delivery due to partial 9408 * delivery. Three cases: 9409 * 1) No partial deliver; no work. 9410 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9411 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9412 */ 9413 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9414 9415 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9416 struct sk_buff_head *queue; 9417 9418 /* Decide which queue to move pd_lobby skbs to. */ 9419 if (assoc->ulpq.pd_mode) { 9420 queue = &newsp->pd_lobby; 9421 } else 9422 queue = &newsk->sk_receive_queue; 9423 9424 /* Walk through the pd_lobby, looking for skbs that 9425 * need moved to the new socket. 9426 */ 9427 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9428 event = sctp_skb2event(skb); 9429 if (event->asoc == assoc) { 9430 __skb_unlink(skb, &oldsp->pd_lobby); 9431 __skb_queue_tail(queue, skb); 9432 sctp_skb_set_owner_r_frag(skb, newsk); 9433 } 9434 } 9435 9436 /* Clear up any skbs waiting for the partial 9437 * delivery to finish. 9438 */ 9439 if (assoc->ulpq.pd_mode) 9440 sctp_clear_pd(oldsk, NULL); 9441 9442 } 9443 9444 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9445 9446 /* Set the type of socket to indicate that it is peeled off from the 9447 * original UDP-style socket or created with the accept() call on a 9448 * TCP-style socket.. 9449 */ 9450 newsp->type = type; 9451 9452 /* Mark the new socket "in-use" by the user so that any packets 9453 * that may arrive on the association after we've moved it are 9454 * queued to the backlog. This prevents a potential race between 9455 * backlog processing on the old socket and new-packet processing 9456 * on the new socket. 9457 * 9458 * The caller has just allocated newsk so we can guarantee that other 9459 * paths won't try to lock it and then oldsk. 9460 */ 9461 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9462 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9463 sctp_assoc_migrate(assoc, newsk); 9464 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9465 9466 /* If the association on the newsk is already closed before accept() 9467 * is called, set RCV_SHUTDOWN flag. 9468 */ 9469 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9470 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9471 newsk->sk_shutdown |= RCV_SHUTDOWN; 9472 } else { 9473 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9474 } 9475 9476 release_sock(newsk); 9477 9478 return 0; 9479 } 9480 9481 9482 /* This proto struct describes the ULP interface for SCTP. */ 9483 struct proto sctp_prot = { 9484 .name = "SCTP", 9485 .owner = THIS_MODULE, 9486 .close = sctp_close, 9487 .disconnect = sctp_disconnect, 9488 .accept = sctp_accept, 9489 .ioctl = sctp_ioctl, 9490 .init = sctp_init_sock, 9491 .destroy = sctp_destroy_sock, 9492 .shutdown = sctp_shutdown, 9493 .setsockopt = sctp_setsockopt, 9494 .getsockopt = sctp_getsockopt, 9495 .sendmsg = sctp_sendmsg, 9496 .recvmsg = sctp_recvmsg, 9497 .bind = sctp_bind, 9498 .backlog_rcv = sctp_backlog_rcv, 9499 .hash = sctp_hash, 9500 .unhash = sctp_unhash, 9501 .get_port = sctp_get_port, 9502 .obj_size = sizeof(struct sctp_sock), 9503 .useroffset = offsetof(struct sctp_sock, subscribe), 9504 .usersize = offsetof(struct sctp_sock, initmsg) - 9505 offsetof(struct sctp_sock, subscribe) + 9506 sizeof_field(struct sctp_sock, initmsg), 9507 .sysctl_mem = sysctl_sctp_mem, 9508 .sysctl_rmem = sysctl_sctp_rmem, 9509 .sysctl_wmem = sysctl_sctp_wmem, 9510 .memory_pressure = &sctp_memory_pressure, 9511 .enter_memory_pressure = sctp_enter_memory_pressure, 9512 .memory_allocated = &sctp_memory_allocated, 9513 .sockets_allocated = &sctp_sockets_allocated, 9514 }; 9515 9516 #if IS_ENABLED(CONFIG_IPV6) 9517 9518 #include <net/transp_v6.h> 9519 static void sctp_v6_destroy_sock(struct sock *sk) 9520 { 9521 sctp_destroy_sock(sk); 9522 inet6_destroy_sock(sk); 9523 } 9524 9525 struct proto sctpv6_prot = { 9526 .name = "SCTPv6", 9527 .owner = THIS_MODULE, 9528 .close = sctp_close, 9529 .disconnect = sctp_disconnect, 9530 .accept = sctp_accept, 9531 .ioctl = sctp_ioctl, 9532 .init = sctp_init_sock, 9533 .destroy = sctp_v6_destroy_sock, 9534 .shutdown = sctp_shutdown, 9535 .setsockopt = sctp_setsockopt, 9536 .getsockopt = sctp_getsockopt, 9537 .sendmsg = sctp_sendmsg, 9538 .recvmsg = sctp_recvmsg, 9539 .bind = sctp_bind, 9540 .backlog_rcv = sctp_backlog_rcv, 9541 .hash = sctp_hash, 9542 .unhash = sctp_unhash, 9543 .get_port = sctp_get_port, 9544 .obj_size = sizeof(struct sctp6_sock), 9545 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9546 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9547 offsetof(struct sctp6_sock, sctp.subscribe) + 9548 sizeof_field(struct sctp6_sock, sctp.initmsg), 9549 .sysctl_mem = sysctl_sctp_mem, 9550 .sysctl_rmem = sysctl_sctp_rmem, 9551 .sysctl_wmem = sysctl_sctp_wmem, 9552 .memory_pressure = &sctp_memory_pressure, 9553 .enter_memory_pressure = sctp_enter_memory_pressure, 9554 .memory_allocated = &sctp_memory_allocated, 9555 .sockets_allocated = &sctp_sockets_allocated, 9556 }; 9557 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9558