1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/config.h> 61 #include <linux/types.h> 62 #include <linux/kernel.h> 63 #include <linux/wait.h> 64 #include <linux/time.h> 65 #include <linux/ip.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern kmem_cache_t *sctp_bucket_cachep; 111 112 /* Get the sndbuf space available at the time on the association. */ 113 static inline int sctp_wspace(struct sctp_association *asoc) 114 { 115 struct sock *sk = asoc->base.sk; 116 int amt = 0; 117 118 if (asoc->ep->sndbuf_policy) { 119 /* make sure that no association uses more than sk_sndbuf */ 120 amt = sk->sk_sndbuf - asoc->sndbuf_used; 121 } else { 122 /* do socket level accounting */ 123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 124 } 125 126 if (amt < 0) 127 amt = 0; 128 129 return amt; 130 } 131 132 /* Increment the used sndbuf space count of the corresponding association by 133 * the size of the outgoing data chunk. 134 * Also, set the skb destructor for sndbuf accounting later. 135 * 136 * Since it is always 1-1 between chunk and skb, and also a new skb is always 137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 138 * destructor in the data chunk skb for the purpose of the sndbuf space 139 * tracking. 140 */ 141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 142 { 143 struct sctp_association *asoc = chunk->asoc; 144 struct sock *sk = asoc->base.sk; 145 146 /* The sndbuf space is tracked per association. */ 147 sctp_association_hold(asoc); 148 149 skb_set_owner_w(chunk->skb, sk); 150 151 chunk->skb->destructor = sctp_wfree; 152 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 154 155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 156 sizeof(struct sk_buff) + 157 sizeof(struct sctp_chunk); 158 159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 160 } 161 162 /* Verify that this is a valid address. */ 163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 164 int len) 165 { 166 struct sctp_af *af; 167 168 /* Verify basic sockaddr. */ 169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 170 if (!af) 171 return -EINVAL; 172 173 /* Is this a valid SCTP address? */ 174 if (!af->addr_valid(addr, sctp_sk(sk))) 175 return -EINVAL; 176 177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 /* Look up the association by its id. If this is not a UDP-style 184 * socket, the ID field is always ignored. 185 */ 186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 187 { 188 struct sctp_association *asoc = NULL; 189 190 /* If this is not a UDP-style socket, assoc id should be ignored. */ 191 if (!sctp_style(sk, UDP)) { 192 /* Return NULL if the socket state is not ESTABLISHED. It 193 * could be a TCP-style listening socket or a socket which 194 * hasn't yet called connect() to establish an association. 195 */ 196 if (!sctp_sstate(sk, ESTABLISHED)) 197 return NULL; 198 199 /* Get the first and the only association from the list. */ 200 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 202 struct sctp_association, asocs); 203 return asoc; 204 } 205 206 /* Otherwise this is a UDP-style socket. */ 207 if (!id || (id == (sctp_assoc_t)-1)) 208 return NULL; 209 210 spin_lock_bh(&sctp_assocs_id_lock); 211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 212 spin_unlock_bh(&sctp_assocs_id_lock); 213 214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 215 return NULL; 216 217 return asoc; 218 } 219 220 /* Look up the transport from an address and an assoc id. If both address and 221 * id are specified, the associations matching the address and the id should be 222 * the same. 223 */ 224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 225 struct sockaddr_storage *addr, 226 sctp_assoc_t id) 227 { 228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 229 struct sctp_transport *transport; 230 union sctp_addr *laddr = (union sctp_addr *)addr; 231 232 laddr->v4.sin_port = ntohs(laddr->v4.sin_port); 233 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 234 (union sctp_addr *)addr, 235 &transport); 236 laddr->v4.sin_port = htons(laddr->v4.sin_port); 237 238 if (!addr_asoc) 239 return NULL; 240 241 id_asoc = sctp_id2assoc(sk, id); 242 if (id_asoc && (id_asoc != addr_asoc)) 243 return NULL; 244 245 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 246 (union sctp_addr *)addr); 247 248 return transport; 249 } 250 251 /* API 3.1.2 bind() - UDP Style Syntax 252 * The syntax of bind() is, 253 * 254 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 255 * 256 * sd - the socket descriptor returned by socket(). 257 * addr - the address structure (struct sockaddr_in or struct 258 * sockaddr_in6 [RFC 2553]), 259 * addr_len - the size of the address structure. 260 */ 261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 262 { 263 int retval = 0; 264 265 sctp_lock_sock(sk); 266 267 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 268 sk, addr, addr_len); 269 270 /* Disallow binding twice. */ 271 if (!sctp_sk(sk)->ep->base.bind_addr.port) 272 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 273 addr_len); 274 else 275 retval = -EINVAL; 276 277 sctp_release_sock(sk); 278 279 return retval; 280 } 281 282 static long sctp_get_port_local(struct sock *, union sctp_addr *); 283 284 /* Verify this is a valid sockaddr. */ 285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 286 union sctp_addr *addr, int len) 287 { 288 struct sctp_af *af; 289 290 /* Check minimum size. */ 291 if (len < sizeof (struct sockaddr)) 292 return NULL; 293 294 /* Does this PF support this AF? */ 295 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 296 return NULL; 297 298 /* If we get this far, af is valid. */ 299 af = sctp_get_af_specific(addr->sa.sa_family); 300 301 if (len < af->sockaddr_len) 302 return NULL; 303 304 return af; 305 } 306 307 /* Bind a local address either to an endpoint or to an association. */ 308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 309 { 310 struct sctp_sock *sp = sctp_sk(sk); 311 struct sctp_endpoint *ep = sp->ep; 312 struct sctp_bind_addr *bp = &ep->base.bind_addr; 313 struct sctp_af *af; 314 unsigned short snum; 315 int ret = 0; 316 317 /* Common sockaddr verification. */ 318 af = sctp_sockaddr_af(sp, addr, len); 319 if (!af) { 320 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 321 sk, addr, len); 322 return -EINVAL; 323 } 324 325 snum = ntohs(addr->v4.sin_port); 326 327 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 328 ", port: %d, new port: %d, len: %d)\n", 329 sk, 330 addr, 331 bp->port, snum, 332 len); 333 334 /* PF specific bind() address verification. */ 335 if (!sp->pf->bind_verify(sp, addr)) 336 return -EADDRNOTAVAIL; 337 338 /* We must either be unbound, or bind to the same port. */ 339 if (bp->port && (snum != bp->port)) { 340 SCTP_DEBUG_PRINTK("sctp_do_bind:" 341 " New port %d does not match existing port " 342 "%d.\n", snum, bp->port); 343 return -EINVAL; 344 } 345 346 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 347 return -EACCES; 348 349 /* Make sure we are allowed to bind here. 350 * The function sctp_get_port_local() does duplicate address 351 * detection. 352 */ 353 if ((ret = sctp_get_port_local(sk, addr))) { 354 if (ret == (long) sk) { 355 /* This endpoint has a conflicting address. */ 356 return -EINVAL; 357 } else { 358 return -EADDRINUSE; 359 } 360 } 361 362 /* Refresh ephemeral port. */ 363 if (!bp->port) 364 bp->port = inet_sk(sk)->num; 365 366 /* Add the address to the bind address list. */ 367 sctp_local_bh_disable(); 368 sctp_write_lock(&ep->base.addr_lock); 369 370 /* Use GFP_ATOMIC since BHs are disabled. */ 371 addr->v4.sin_port = ntohs(addr->v4.sin_port); 372 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC); 373 addr->v4.sin_port = htons(addr->v4.sin_port); 374 sctp_write_unlock(&ep->base.addr_lock); 375 sctp_local_bh_enable(); 376 377 /* Copy back into socket for getsockname() use. */ 378 if (!ret) { 379 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 380 af->to_sk_saddr(addr, sk); 381 } 382 383 return ret; 384 } 385 386 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 387 * 388 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 389 * at any one time. If a sender, after sending an ASCONF chunk, decides 390 * it needs to transfer another ASCONF Chunk, it MUST wait until the 391 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 392 * subsequent ASCONF. Note this restriction binds each side, so at any 393 * time two ASCONF may be in-transit on any given association (one sent 394 * from each endpoint). 395 */ 396 static int sctp_send_asconf(struct sctp_association *asoc, 397 struct sctp_chunk *chunk) 398 { 399 int retval = 0; 400 401 /* If there is an outstanding ASCONF chunk, queue it for later 402 * transmission. 403 */ 404 if (asoc->addip_last_asconf) { 405 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 406 goto out; 407 } 408 409 /* Hold the chunk until an ASCONF_ACK is received. */ 410 sctp_chunk_hold(chunk); 411 retval = sctp_primitive_ASCONF(asoc, chunk); 412 if (retval) 413 sctp_chunk_free(chunk); 414 else 415 asoc->addip_last_asconf = chunk; 416 417 out: 418 return retval; 419 } 420 421 /* Add a list of addresses as bind addresses to local endpoint or 422 * association. 423 * 424 * Basically run through each address specified in the addrs/addrcnt 425 * array/length pair, determine if it is IPv6 or IPv4 and call 426 * sctp_do_bind() on it. 427 * 428 * If any of them fails, then the operation will be reversed and the 429 * ones that were added will be removed. 430 * 431 * Only sctp_setsockopt_bindx() is supposed to call this function. 432 */ 433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 434 { 435 int cnt; 436 int retval = 0; 437 void *addr_buf; 438 struct sockaddr *sa_addr; 439 struct sctp_af *af; 440 441 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 442 sk, addrs, addrcnt); 443 444 addr_buf = addrs; 445 for (cnt = 0; cnt < addrcnt; cnt++) { 446 /* The list may contain either IPv4 or IPv6 address; 447 * determine the address length for walking thru the list. 448 */ 449 sa_addr = (struct sockaddr *)addr_buf; 450 af = sctp_get_af_specific(sa_addr->sa_family); 451 if (!af) { 452 retval = -EINVAL; 453 goto err_bindx_add; 454 } 455 456 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 457 af->sockaddr_len); 458 459 addr_buf += af->sockaddr_len; 460 461 err_bindx_add: 462 if (retval < 0) { 463 /* Failed. Cleanup the ones that have been added */ 464 if (cnt > 0) 465 sctp_bindx_rem(sk, addrs, cnt); 466 return retval; 467 } 468 } 469 470 return retval; 471 } 472 473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 474 * associations that are part of the endpoint indicating that a list of local 475 * addresses are added to the endpoint. 476 * 477 * If any of the addresses is already in the bind address list of the 478 * association, we do not send the chunk for that association. But it will not 479 * affect other associations. 480 * 481 * Only sctp_setsockopt_bindx() is supposed to call this function. 482 */ 483 static int sctp_send_asconf_add_ip(struct sock *sk, 484 struct sockaddr *addrs, 485 int addrcnt) 486 { 487 struct sctp_sock *sp; 488 struct sctp_endpoint *ep; 489 struct sctp_association *asoc; 490 struct sctp_bind_addr *bp; 491 struct sctp_chunk *chunk; 492 struct sctp_sockaddr_entry *laddr; 493 union sctp_addr *addr; 494 void *addr_buf; 495 struct sctp_af *af; 496 struct list_head *pos; 497 struct list_head *p; 498 int i; 499 int retval = 0; 500 501 if (!sctp_addip_enable) 502 return retval; 503 504 sp = sctp_sk(sk); 505 ep = sp->ep; 506 507 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 508 __FUNCTION__, sk, addrs, addrcnt); 509 510 list_for_each(pos, &ep->asocs) { 511 asoc = list_entry(pos, struct sctp_association, asocs); 512 513 if (!asoc->peer.asconf_capable) 514 continue; 515 516 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 517 continue; 518 519 if (!sctp_state(asoc, ESTABLISHED)) 520 continue; 521 522 /* Check if any address in the packed array of addresses is 523 * in the bind address list of the association. If so, 524 * do not send the asconf chunk to its peer, but continue with 525 * other associations. 526 */ 527 addr_buf = addrs; 528 for (i = 0; i < addrcnt; i++) { 529 addr = (union sctp_addr *)addr_buf; 530 af = sctp_get_af_specific(addr->v4.sin_family); 531 if (!af) { 532 retval = -EINVAL; 533 goto out; 534 } 535 536 if (sctp_assoc_lookup_laddr(asoc, addr)) 537 break; 538 539 addr_buf += af->sockaddr_len; 540 } 541 if (i < addrcnt) 542 continue; 543 544 /* Use the first address in bind addr list of association as 545 * Address Parameter of ASCONF CHUNK. 546 */ 547 sctp_read_lock(&asoc->base.addr_lock); 548 bp = &asoc->base.bind_addr; 549 p = bp->address_list.next; 550 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 551 sctp_read_unlock(&asoc->base.addr_lock); 552 553 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 554 addrcnt, SCTP_PARAM_ADD_IP); 555 if (!chunk) { 556 retval = -ENOMEM; 557 goto out; 558 } 559 560 retval = sctp_send_asconf(asoc, chunk); 561 562 /* FIXME: After sending the add address ASCONF chunk, we 563 * cannot append the address to the association's binding 564 * address list, because the new address may be used as the 565 * source of a message sent to the peer before the ASCONF 566 * chunk is received by the peer. So we should wait until 567 * ASCONF_ACK is received. 568 */ 569 } 570 571 out: 572 return retval; 573 } 574 575 /* Remove a list of addresses from bind addresses list. Do not remove the 576 * last address. 577 * 578 * Basically run through each address specified in the addrs/addrcnt 579 * array/length pair, determine if it is IPv6 or IPv4 and call 580 * sctp_del_bind() on it. 581 * 582 * If any of them fails, then the operation will be reversed and the 583 * ones that were removed will be added back. 584 * 585 * At least one address has to be left; if only one address is 586 * available, the operation will return -EBUSY. 587 * 588 * Only sctp_setsockopt_bindx() is supposed to call this function. 589 */ 590 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 591 { 592 struct sctp_sock *sp = sctp_sk(sk); 593 struct sctp_endpoint *ep = sp->ep; 594 int cnt; 595 struct sctp_bind_addr *bp = &ep->base.bind_addr; 596 int retval = 0; 597 union sctp_addr saveaddr; 598 void *addr_buf; 599 struct sockaddr *sa_addr; 600 struct sctp_af *af; 601 602 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 603 sk, addrs, addrcnt); 604 605 addr_buf = addrs; 606 for (cnt = 0; cnt < addrcnt; cnt++) { 607 /* If the bind address list is empty or if there is only one 608 * bind address, there is nothing more to be removed (we need 609 * at least one address here). 610 */ 611 if (list_empty(&bp->address_list) || 612 (sctp_list_single_entry(&bp->address_list))) { 613 retval = -EBUSY; 614 goto err_bindx_rem; 615 } 616 617 /* The list may contain either IPv4 or IPv6 address; 618 * determine the address length to copy the address to 619 * saveaddr. 620 */ 621 sa_addr = (struct sockaddr *)addr_buf; 622 af = sctp_get_af_specific(sa_addr->sa_family); 623 if (!af) { 624 retval = -EINVAL; 625 goto err_bindx_rem; 626 } 627 memcpy(&saveaddr, sa_addr, af->sockaddr_len); 628 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port); 629 if (saveaddr.v4.sin_port != bp->port) { 630 retval = -EINVAL; 631 goto err_bindx_rem; 632 } 633 634 /* FIXME - There is probably a need to check if sk->sk_saddr and 635 * sk->sk_rcv_addr are currently set to one of the addresses to 636 * be removed. This is something which needs to be looked into 637 * when we are fixing the outstanding issues with multi-homing 638 * socket routing and failover schemes. Refer to comments in 639 * sctp_do_bind(). -daisy 640 */ 641 sctp_local_bh_disable(); 642 sctp_write_lock(&ep->base.addr_lock); 643 644 retval = sctp_del_bind_addr(bp, &saveaddr); 645 646 sctp_write_unlock(&ep->base.addr_lock); 647 sctp_local_bh_enable(); 648 649 addr_buf += af->sockaddr_len; 650 err_bindx_rem: 651 if (retval < 0) { 652 /* Failed. Add the ones that has been removed back */ 653 if (cnt > 0) 654 sctp_bindx_add(sk, addrs, cnt); 655 return retval; 656 } 657 } 658 659 return retval; 660 } 661 662 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 663 * the associations that are part of the endpoint indicating that a list of 664 * local addresses are removed from the endpoint. 665 * 666 * If any of the addresses is already in the bind address list of the 667 * association, we do not send the chunk for that association. But it will not 668 * affect other associations. 669 * 670 * Only sctp_setsockopt_bindx() is supposed to call this function. 671 */ 672 static int sctp_send_asconf_del_ip(struct sock *sk, 673 struct sockaddr *addrs, 674 int addrcnt) 675 { 676 struct sctp_sock *sp; 677 struct sctp_endpoint *ep; 678 struct sctp_association *asoc; 679 struct sctp_bind_addr *bp; 680 struct sctp_chunk *chunk; 681 union sctp_addr *laddr; 682 void *addr_buf; 683 struct sctp_af *af; 684 struct list_head *pos; 685 int i; 686 int retval = 0; 687 688 if (!sctp_addip_enable) 689 return retval; 690 691 sp = sctp_sk(sk); 692 ep = sp->ep; 693 694 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 695 __FUNCTION__, sk, addrs, addrcnt); 696 697 list_for_each(pos, &ep->asocs) { 698 asoc = list_entry(pos, struct sctp_association, asocs); 699 700 if (!asoc->peer.asconf_capable) 701 continue; 702 703 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 704 continue; 705 706 if (!sctp_state(asoc, ESTABLISHED)) 707 continue; 708 709 /* Check if any address in the packed array of addresses is 710 * not present in the bind address list of the association. 711 * If so, do not send the asconf chunk to its peer, but 712 * continue with other associations. 713 */ 714 addr_buf = addrs; 715 for (i = 0; i < addrcnt; i++) { 716 laddr = (union sctp_addr *)addr_buf; 717 af = sctp_get_af_specific(laddr->v4.sin_family); 718 if (!af) { 719 retval = -EINVAL; 720 goto out; 721 } 722 723 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 724 break; 725 726 addr_buf += af->sockaddr_len; 727 } 728 if (i < addrcnt) 729 continue; 730 731 /* Find one address in the association's bind address list 732 * that is not in the packed array of addresses. This is to 733 * make sure that we do not delete all the addresses in the 734 * association. 735 */ 736 sctp_read_lock(&asoc->base.addr_lock); 737 bp = &asoc->base.bind_addr; 738 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 739 addrcnt, sp); 740 sctp_read_unlock(&asoc->base.addr_lock); 741 if (!laddr) 742 continue; 743 744 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 745 SCTP_PARAM_DEL_IP); 746 if (!chunk) { 747 retval = -ENOMEM; 748 goto out; 749 } 750 751 retval = sctp_send_asconf(asoc, chunk); 752 753 /* FIXME: After sending the delete address ASCONF chunk, we 754 * cannot remove the addresses from the association's bind 755 * address list, because there maybe some packet send to 756 * the delete addresses, so we should wait until ASCONF_ACK 757 * packet is received. 758 */ 759 } 760 out: 761 return retval; 762 } 763 764 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 765 * 766 * API 8.1 767 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 768 * int flags); 769 * 770 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 771 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 772 * or IPv6 addresses. 773 * 774 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 775 * Section 3.1.2 for this usage. 776 * 777 * addrs is a pointer to an array of one or more socket addresses. Each 778 * address is contained in its appropriate structure (i.e. struct 779 * sockaddr_in or struct sockaddr_in6) the family of the address type 780 * must be used to distengish the address length (note that this 781 * representation is termed a "packed array" of addresses). The caller 782 * specifies the number of addresses in the array with addrcnt. 783 * 784 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 785 * -1, and sets errno to the appropriate error code. 786 * 787 * For SCTP, the port given in each socket address must be the same, or 788 * sctp_bindx() will fail, setting errno to EINVAL. 789 * 790 * The flags parameter is formed from the bitwise OR of zero or more of 791 * the following currently defined flags: 792 * 793 * SCTP_BINDX_ADD_ADDR 794 * 795 * SCTP_BINDX_REM_ADDR 796 * 797 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 798 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 799 * addresses from the association. The two flags are mutually exclusive; 800 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 801 * not remove all addresses from an association; sctp_bindx() will 802 * reject such an attempt with EINVAL. 803 * 804 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 805 * additional addresses with an endpoint after calling bind(). Or use 806 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 807 * socket is associated with so that no new association accepted will be 808 * associated with those addresses. If the endpoint supports dynamic 809 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 810 * endpoint to send the appropriate message to the peer to change the 811 * peers address lists. 812 * 813 * Adding and removing addresses from a connected association is 814 * optional functionality. Implementations that do not support this 815 * functionality should return EOPNOTSUPP. 816 * 817 * Basically do nothing but copying the addresses from user to kernel 818 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 819 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 820 * from userspace. 821 * 822 * We don't use copy_from_user() for optimization: we first do the 823 * sanity checks (buffer size -fast- and access check-healthy 824 * pointer); if all of those succeed, then we can alloc the memory 825 * (expensive operation) needed to copy the data to kernel. Then we do 826 * the copying without checking the user space area 827 * (__copy_from_user()). 828 * 829 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 830 * it. 831 * 832 * sk The sk of the socket 833 * addrs The pointer to the addresses in user land 834 * addrssize Size of the addrs buffer 835 * op Operation to perform (add or remove, see the flags of 836 * sctp_bindx) 837 * 838 * Returns 0 if ok, <0 errno code on error. 839 */ 840 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 841 struct sockaddr __user *addrs, 842 int addrs_size, int op) 843 { 844 struct sockaddr *kaddrs; 845 int err; 846 int addrcnt = 0; 847 int walk_size = 0; 848 struct sockaddr *sa_addr; 849 void *addr_buf; 850 struct sctp_af *af; 851 852 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 853 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 854 855 if (unlikely(addrs_size <= 0)) 856 return -EINVAL; 857 858 /* Check the user passed a healthy pointer. */ 859 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 860 return -EFAULT; 861 862 /* Alloc space for the address array in kernel memory. */ 863 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL); 864 if (unlikely(!kaddrs)) 865 return -ENOMEM; 866 867 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 868 kfree(kaddrs); 869 return -EFAULT; 870 } 871 872 /* Walk through the addrs buffer and count the number of addresses. */ 873 addr_buf = kaddrs; 874 while (walk_size < addrs_size) { 875 sa_addr = (struct sockaddr *)addr_buf; 876 af = sctp_get_af_specific(sa_addr->sa_family); 877 878 /* If the address family is not supported or if this address 879 * causes the address buffer to overflow return EINVAL. 880 */ 881 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 882 kfree(kaddrs); 883 return -EINVAL; 884 } 885 addrcnt++; 886 addr_buf += af->sockaddr_len; 887 walk_size += af->sockaddr_len; 888 } 889 890 /* Do the work. */ 891 switch (op) { 892 case SCTP_BINDX_ADD_ADDR: 893 err = sctp_bindx_add(sk, kaddrs, addrcnt); 894 if (err) 895 goto out; 896 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 897 break; 898 899 case SCTP_BINDX_REM_ADDR: 900 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 901 if (err) 902 goto out; 903 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 904 break; 905 906 default: 907 err = -EINVAL; 908 break; 909 }; 910 911 out: 912 kfree(kaddrs); 913 914 return err; 915 } 916 917 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 918 * 919 * Common routine for handling connect() and sctp_connectx(). 920 * Connect will come in with just a single address. 921 */ 922 static int __sctp_connect(struct sock* sk, 923 struct sockaddr *kaddrs, 924 int addrs_size) 925 { 926 struct sctp_sock *sp; 927 struct sctp_endpoint *ep; 928 struct sctp_association *asoc = NULL; 929 struct sctp_association *asoc2; 930 struct sctp_transport *transport; 931 union sctp_addr to; 932 struct sctp_af *af; 933 sctp_scope_t scope; 934 long timeo; 935 int err = 0; 936 int addrcnt = 0; 937 int walk_size = 0; 938 struct sockaddr *sa_addr; 939 void *addr_buf; 940 941 sp = sctp_sk(sk); 942 ep = sp->ep; 943 944 /* connect() cannot be done on a socket that is already in ESTABLISHED 945 * state - UDP-style peeled off socket or a TCP-style socket that 946 * is already connected. 947 * It cannot be done even on a TCP-style listening socket. 948 */ 949 if (sctp_sstate(sk, ESTABLISHED) || 950 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 951 err = -EISCONN; 952 goto out_free; 953 } 954 955 /* Walk through the addrs buffer and count the number of addresses. */ 956 addr_buf = kaddrs; 957 while (walk_size < addrs_size) { 958 sa_addr = (struct sockaddr *)addr_buf; 959 af = sctp_get_af_specific(sa_addr->sa_family); 960 961 /* If the address family is not supported or if this address 962 * causes the address buffer to overflow return EINVAL. 963 */ 964 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 965 err = -EINVAL; 966 goto out_free; 967 } 968 969 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr, 970 af->sockaddr_len); 971 if (err) 972 goto out_free; 973 974 memcpy(&to, sa_addr, af->sockaddr_len); 975 to.v4.sin_port = ntohs(to.v4.sin_port); 976 977 /* Check if there already is a matching association on the 978 * endpoint (other than the one created here). 979 */ 980 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 981 if (asoc2 && asoc2 != asoc) { 982 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 983 err = -EISCONN; 984 else 985 err = -EALREADY; 986 goto out_free; 987 } 988 989 /* If we could not find a matching association on the endpoint, 990 * make sure that there is no peeled-off association matching 991 * the peer address even on another socket. 992 */ 993 if (sctp_endpoint_is_peeled_off(ep, &to)) { 994 err = -EADDRNOTAVAIL; 995 goto out_free; 996 } 997 998 if (!asoc) { 999 /* If a bind() or sctp_bindx() is not called prior to 1000 * an sctp_connectx() call, the system picks an 1001 * ephemeral port and will choose an address set 1002 * equivalent to binding with a wildcard address. 1003 */ 1004 if (!ep->base.bind_addr.port) { 1005 if (sctp_autobind(sk)) { 1006 err = -EAGAIN; 1007 goto out_free; 1008 } 1009 } else { 1010 /* 1011 * If an unprivileged user inherits a 1-many 1012 * style socket with open associations on a 1013 * privileged port, it MAY be permitted to 1014 * accept new associations, but it SHOULD NOT 1015 * be permitted to open new associations. 1016 */ 1017 if (ep->base.bind_addr.port < PROT_SOCK && 1018 !capable(CAP_NET_BIND_SERVICE)) { 1019 err = -EACCES; 1020 goto out_free; 1021 } 1022 } 1023 1024 scope = sctp_scope(&to); 1025 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1026 if (!asoc) { 1027 err = -ENOMEM; 1028 goto out_free; 1029 } 1030 } 1031 1032 /* Prime the peer's transport structures. */ 1033 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1034 SCTP_UNKNOWN); 1035 if (!transport) { 1036 err = -ENOMEM; 1037 goto out_free; 1038 } 1039 1040 addrcnt++; 1041 addr_buf += af->sockaddr_len; 1042 walk_size += af->sockaddr_len; 1043 } 1044 1045 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1046 if (err < 0) { 1047 goto out_free; 1048 } 1049 1050 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1051 if (err < 0) { 1052 goto out_free; 1053 } 1054 1055 /* Initialize sk's dport and daddr for getpeername() */ 1056 inet_sk(sk)->dport = htons(asoc->peer.port); 1057 af = sctp_get_af_specific(to.sa.sa_family); 1058 af->to_sk_daddr(&to, sk); 1059 1060 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 1061 err = sctp_wait_for_connect(asoc, &timeo); 1062 1063 /* Don't free association on exit. */ 1064 asoc = NULL; 1065 1066 out_free: 1067 1068 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1069 " kaddrs: %p err: %d\n", 1070 asoc, kaddrs, err); 1071 if (asoc) 1072 sctp_association_free(asoc); 1073 return err; 1074 } 1075 1076 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1077 * 1078 * API 8.9 1079 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1080 * 1081 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1082 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1083 * or IPv6 addresses. 1084 * 1085 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1086 * Section 3.1.2 for this usage. 1087 * 1088 * addrs is a pointer to an array of one or more socket addresses. Each 1089 * address is contained in its appropriate structure (i.e. struct 1090 * sockaddr_in or struct sockaddr_in6) the family of the address type 1091 * must be used to distengish the address length (note that this 1092 * representation is termed a "packed array" of addresses). The caller 1093 * specifies the number of addresses in the array with addrcnt. 1094 * 1095 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1096 * -1, and sets errno to the appropriate error code. 1097 * 1098 * For SCTP, the port given in each socket address must be the same, or 1099 * sctp_connectx() will fail, setting errno to EINVAL. 1100 * 1101 * An application can use sctp_connectx to initiate an association with 1102 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1103 * allows a caller to specify multiple addresses at which a peer can be 1104 * reached. The way the SCTP stack uses the list of addresses to set up 1105 * the association is implementation dependant. This function only 1106 * specifies that the stack will try to make use of all the addresses in 1107 * the list when needed. 1108 * 1109 * Note that the list of addresses passed in is only used for setting up 1110 * the association. It does not necessarily equal the set of addresses 1111 * the peer uses for the resulting association. If the caller wants to 1112 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1113 * retrieve them after the association has been set up. 1114 * 1115 * Basically do nothing but copying the addresses from user to kernel 1116 * land and invoking either sctp_connectx(). This is used for tunneling 1117 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1118 * 1119 * We don't use copy_from_user() for optimization: we first do the 1120 * sanity checks (buffer size -fast- and access check-healthy 1121 * pointer); if all of those succeed, then we can alloc the memory 1122 * (expensive operation) needed to copy the data to kernel. Then we do 1123 * the copying without checking the user space area 1124 * (__copy_from_user()). 1125 * 1126 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1127 * it. 1128 * 1129 * sk The sk of the socket 1130 * addrs The pointer to the addresses in user land 1131 * addrssize Size of the addrs buffer 1132 * 1133 * Returns 0 if ok, <0 errno code on error. 1134 */ 1135 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1136 struct sockaddr __user *addrs, 1137 int addrs_size) 1138 { 1139 int err = 0; 1140 struct sockaddr *kaddrs; 1141 1142 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1143 __FUNCTION__, sk, addrs, addrs_size); 1144 1145 if (unlikely(addrs_size <= 0)) 1146 return -EINVAL; 1147 1148 /* Check the user passed a healthy pointer. */ 1149 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1150 return -EFAULT; 1151 1152 /* Alloc space for the address array in kernel memory. */ 1153 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL); 1154 if (unlikely(!kaddrs)) 1155 return -ENOMEM; 1156 1157 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1158 err = -EFAULT; 1159 } else { 1160 err = __sctp_connect(sk, kaddrs, addrs_size); 1161 } 1162 1163 kfree(kaddrs); 1164 return err; 1165 } 1166 1167 /* API 3.1.4 close() - UDP Style Syntax 1168 * Applications use close() to perform graceful shutdown (as described in 1169 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1170 * by a UDP-style socket. 1171 * 1172 * The syntax is 1173 * 1174 * ret = close(int sd); 1175 * 1176 * sd - the socket descriptor of the associations to be closed. 1177 * 1178 * To gracefully shutdown a specific association represented by the 1179 * UDP-style socket, an application should use the sendmsg() call, 1180 * passing no user data, but including the appropriate flag in the 1181 * ancillary data (see Section xxxx). 1182 * 1183 * If sd in the close() call is a branched-off socket representing only 1184 * one association, the shutdown is performed on that association only. 1185 * 1186 * 4.1.6 close() - TCP Style Syntax 1187 * 1188 * Applications use close() to gracefully close down an association. 1189 * 1190 * The syntax is: 1191 * 1192 * int close(int sd); 1193 * 1194 * sd - the socket descriptor of the association to be closed. 1195 * 1196 * After an application calls close() on a socket descriptor, no further 1197 * socket operations will succeed on that descriptor. 1198 * 1199 * API 7.1.4 SO_LINGER 1200 * 1201 * An application using the TCP-style socket can use this option to 1202 * perform the SCTP ABORT primitive. The linger option structure is: 1203 * 1204 * struct linger { 1205 * int l_onoff; // option on/off 1206 * int l_linger; // linger time 1207 * }; 1208 * 1209 * To enable the option, set l_onoff to 1. If the l_linger value is set 1210 * to 0, calling close() is the same as the ABORT primitive. If the 1211 * value is set to a negative value, the setsockopt() call will return 1212 * an error. If the value is set to a positive value linger_time, the 1213 * close() can be blocked for at most linger_time ms. If the graceful 1214 * shutdown phase does not finish during this period, close() will 1215 * return but the graceful shutdown phase continues in the system. 1216 */ 1217 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1218 { 1219 struct sctp_endpoint *ep; 1220 struct sctp_association *asoc; 1221 struct list_head *pos, *temp; 1222 1223 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1224 1225 sctp_lock_sock(sk); 1226 sk->sk_shutdown = SHUTDOWN_MASK; 1227 1228 ep = sctp_sk(sk)->ep; 1229 1230 /* Walk all associations on a socket, not on an endpoint. */ 1231 list_for_each_safe(pos, temp, &ep->asocs) { 1232 asoc = list_entry(pos, struct sctp_association, asocs); 1233 1234 if (sctp_style(sk, TCP)) { 1235 /* A closed association can still be in the list if 1236 * it belongs to a TCP-style listening socket that is 1237 * not yet accepted. If so, free it. If not, send an 1238 * ABORT or SHUTDOWN based on the linger options. 1239 */ 1240 if (sctp_state(asoc, CLOSED)) { 1241 sctp_unhash_established(asoc); 1242 sctp_association_free(asoc); 1243 1244 } else if (sock_flag(sk, SOCK_LINGER) && 1245 !sk->sk_lingertime) 1246 sctp_primitive_ABORT(asoc, NULL); 1247 else 1248 sctp_primitive_SHUTDOWN(asoc, NULL); 1249 } else 1250 sctp_primitive_SHUTDOWN(asoc, NULL); 1251 } 1252 1253 /* Clean up any skbs sitting on the receive queue. */ 1254 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1255 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1256 1257 /* On a TCP-style socket, block for at most linger_time if set. */ 1258 if (sctp_style(sk, TCP) && timeout) 1259 sctp_wait_for_close(sk, timeout); 1260 1261 /* This will run the backlog queue. */ 1262 sctp_release_sock(sk); 1263 1264 /* Supposedly, no process has access to the socket, but 1265 * the net layers still may. 1266 */ 1267 sctp_local_bh_disable(); 1268 sctp_bh_lock_sock(sk); 1269 1270 /* Hold the sock, since sk_common_release() will put sock_put() 1271 * and we have just a little more cleanup. 1272 */ 1273 sock_hold(sk); 1274 sk_common_release(sk); 1275 1276 sctp_bh_unlock_sock(sk); 1277 sctp_local_bh_enable(); 1278 1279 sock_put(sk); 1280 1281 SCTP_DBG_OBJCNT_DEC(sock); 1282 } 1283 1284 /* Handle EPIPE error. */ 1285 static int sctp_error(struct sock *sk, int flags, int err) 1286 { 1287 if (err == -EPIPE) 1288 err = sock_error(sk) ? : -EPIPE; 1289 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1290 send_sig(SIGPIPE, current, 0); 1291 return err; 1292 } 1293 1294 /* API 3.1.3 sendmsg() - UDP Style Syntax 1295 * 1296 * An application uses sendmsg() and recvmsg() calls to transmit data to 1297 * and receive data from its peer. 1298 * 1299 * ssize_t sendmsg(int socket, const struct msghdr *message, 1300 * int flags); 1301 * 1302 * socket - the socket descriptor of the endpoint. 1303 * message - pointer to the msghdr structure which contains a single 1304 * user message and possibly some ancillary data. 1305 * 1306 * See Section 5 for complete description of the data 1307 * structures. 1308 * 1309 * flags - flags sent or received with the user message, see Section 1310 * 5 for complete description of the flags. 1311 * 1312 * Note: This function could use a rewrite especially when explicit 1313 * connect support comes in. 1314 */ 1315 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1316 1317 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1318 1319 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1320 struct msghdr *msg, size_t msg_len) 1321 { 1322 struct sctp_sock *sp; 1323 struct sctp_endpoint *ep; 1324 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1325 struct sctp_transport *transport, *chunk_tp; 1326 struct sctp_chunk *chunk; 1327 union sctp_addr to; 1328 struct sockaddr *msg_name = NULL; 1329 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1330 struct sctp_sndrcvinfo *sinfo; 1331 struct sctp_initmsg *sinit; 1332 sctp_assoc_t associd = 0; 1333 sctp_cmsgs_t cmsgs = { NULL }; 1334 int err; 1335 sctp_scope_t scope; 1336 long timeo; 1337 __u16 sinfo_flags = 0; 1338 struct sctp_datamsg *datamsg; 1339 struct list_head *pos; 1340 int msg_flags = msg->msg_flags; 1341 1342 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1343 sk, msg, msg_len); 1344 1345 err = 0; 1346 sp = sctp_sk(sk); 1347 ep = sp->ep; 1348 1349 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1350 1351 /* We cannot send a message over a TCP-style listening socket. */ 1352 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1353 err = -EPIPE; 1354 goto out_nounlock; 1355 } 1356 1357 /* Parse out the SCTP CMSGs. */ 1358 err = sctp_msghdr_parse(msg, &cmsgs); 1359 1360 if (err) { 1361 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1362 goto out_nounlock; 1363 } 1364 1365 /* Fetch the destination address for this packet. This 1366 * address only selects the association--it is not necessarily 1367 * the address we will send to. 1368 * For a peeled-off socket, msg_name is ignored. 1369 */ 1370 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1371 int msg_namelen = msg->msg_namelen; 1372 1373 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1374 msg_namelen); 1375 if (err) 1376 return err; 1377 1378 if (msg_namelen > sizeof(to)) 1379 msg_namelen = sizeof(to); 1380 memcpy(&to, msg->msg_name, msg_namelen); 1381 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is " 1382 "0x%x:%u.\n", 1383 to.v4.sin_addr.s_addr, to.v4.sin_port); 1384 1385 to.v4.sin_port = ntohs(to.v4.sin_port); 1386 msg_name = msg->msg_name; 1387 } 1388 1389 sinfo = cmsgs.info; 1390 sinit = cmsgs.init; 1391 1392 /* Did the user specify SNDRCVINFO? */ 1393 if (sinfo) { 1394 sinfo_flags = sinfo->sinfo_flags; 1395 associd = sinfo->sinfo_assoc_id; 1396 } 1397 1398 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1399 msg_len, sinfo_flags); 1400 1401 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1402 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1403 err = -EINVAL; 1404 goto out_nounlock; 1405 } 1406 1407 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1408 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1409 * If SCTP_ABORT is set, the message length could be non zero with 1410 * the msg_iov set to the user abort reason. 1411 */ 1412 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1413 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1414 err = -EINVAL; 1415 goto out_nounlock; 1416 } 1417 1418 /* If SCTP_ADDR_OVER is set, there must be an address 1419 * specified in msg_name. 1420 */ 1421 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1422 err = -EINVAL; 1423 goto out_nounlock; 1424 } 1425 1426 transport = NULL; 1427 1428 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1429 1430 sctp_lock_sock(sk); 1431 1432 /* If a msg_name has been specified, assume this is to be used. */ 1433 if (msg_name) { 1434 /* Look for a matching association on the endpoint. */ 1435 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1436 if (!asoc) { 1437 /* If we could not find a matching association on the 1438 * endpoint, make sure that it is not a TCP-style 1439 * socket that already has an association or there is 1440 * no peeled-off association on another socket. 1441 */ 1442 if ((sctp_style(sk, TCP) && 1443 sctp_sstate(sk, ESTABLISHED)) || 1444 sctp_endpoint_is_peeled_off(ep, &to)) { 1445 err = -EADDRNOTAVAIL; 1446 goto out_unlock; 1447 } 1448 } 1449 } else { 1450 asoc = sctp_id2assoc(sk, associd); 1451 if (!asoc) { 1452 err = -EPIPE; 1453 goto out_unlock; 1454 } 1455 } 1456 1457 if (asoc) { 1458 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1459 1460 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1461 * socket that has an association in CLOSED state. This can 1462 * happen when an accepted socket has an association that is 1463 * already CLOSED. 1464 */ 1465 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1466 err = -EPIPE; 1467 goto out_unlock; 1468 } 1469 1470 if (sinfo_flags & SCTP_EOF) { 1471 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1472 asoc); 1473 sctp_primitive_SHUTDOWN(asoc, NULL); 1474 err = 0; 1475 goto out_unlock; 1476 } 1477 if (sinfo_flags & SCTP_ABORT) { 1478 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1479 sctp_primitive_ABORT(asoc, msg); 1480 err = 0; 1481 goto out_unlock; 1482 } 1483 } 1484 1485 /* Do we need to create the association? */ 1486 if (!asoc) { 1487 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1488 1489 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1490 err = -EINVAL; 1491 goto out_unlock; 1492 } 1493 1494 /* Check for invalid stream against the stream counts, 1495 * either the default or the user specified stream counts. 1496 */ 1497 if (sinfo) { 1498 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1499 /* Check against the defaults. */ 1500 if (sinfo->sinfo_stream >= 1501 sp->initmsg.sinit_num_ostreams) { 1502 err = -EINVAL; 1503 goto out_unlock; 1504 } 1505 } else { 1506 /* Check against the requested. */ 1507 if (sinfo->sinfo_stream >= 1508 sinit->sinit_num_ostreams) { 1509 err = -EINVAL; 1510 goto out_unlock; 1511 } 1512 } 1513 } 1514 1515 /* 1516 * API 3.1.2 bind() - UDP Style Syntax 1517 * If a bind() or sctp_bindx() is not called prior to a 1518 * sendmsg() call that initiates a new association, the 1519 * system picks an ephemeral port and will choose an address 1520 * set equivalent to binding with a wildcard address. 1521 */ 1522 if (!ep->base.bind_addr.port) { 1523 if (sctp_autobind(sk)) { 1524 err = -EAGAIN; 1525 goto out_unlock; 1526 } 1527 } else { 1528 /* 1529 * If an unprivileged user inherits a one-to-many 1530 * style socket with open associations on a privileged 1531 * port, it MAY be permitted to accept new associations, 1532 * but it SHOULD NOT be permitted to open new 1533 * associations. 1534 */ 1535 if (ep->base.bind_addr.port < PROT_SOCK && 1536 !capable(CAP_NET_BIND_SERVICE)) { 1537 err = -EACCES; 1538 goto out_unlock; 1539 } 1540 } 1541 1542 scope = sctp_scope(&to); 1543 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1544 if (!new_asoc) { 1545 err = -ENOMEM; 1546 goto out_unlock; 1547 } 1548 asoc = new_asoc; 1549 1550 /* If the SCTP_INIT ancillary data is specified, set all 1551 * the association init values accordingly. 1552 */ 1553 if (sinit) { 1554 if (sinit->sinit_num_ostreams) { 1555 asoc->c.sinit_num_ostreams = 1556 sinit->sinit_num_ostreams; 1557 } 1558 if (sinit->sinit_max_instreams) { 1559 asoc->c.sinit_max_instreams = 1560 sinit->sinit_max_instreams; 1561 } 1562 if (sinit->sinit_max_attempts) { 1563 asoc->max_init_attempts 1564 = sinit->sinit_max_attempts; 1565 } 1566 if (sinit->sinit_max_init_timeo) { 1567 asoc->max_init_timeo = 1568 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1569 } 1570 } 1571 1572 /* Prime the peer's transport structures. */ 1573 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1574 if (!transport) { 1575 err = -ENOMEM; 1576 goto out_free; 1577 } 1578 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1579 if (err < 0) { 1580 err = -ENOMEM; 1581 goto out_free; 1582 } 1583 } 1584 1585 /* ASSERT: we have a valid association at this point. */ 1586 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1587 1588 if (!sinfo) { 1589 /* If the user didn't specify SNDRCVINFO, make up one with 1590 * some defaults. 1591 */ 1592 default_sinfo.sinfo_stream = asoc->default_stream; 1593 default_sinfo.sinfo_flags = asoc->default_flags; 1594 default_sinfo.sinfo_ppid = asoc->default_ppid; 1595 default_sinfo.sinfo_context = asoc->default_context; 1596 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1597 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1598 sinfo = &default_sinfo; 1599 } 1600 1601 /* API 7.1.7, the sndbuf size per association bounds the 1602 * maximum size of data that can be sent in a single send call. 1603 */ 1604 if (msg_len > sk->sk_sndbuf) { 1605 err = -EMSGSIZE; 1606 goto out_free; 1607 } 1608 1609 /* If fragmentation is disabled and the message length exceeds the 1610 * association fragmentation point, return EMSGSIZE. The I-D 1611 * does not specify what this error is, but this looks like 1612 * a great fit. 1613 */ 1614 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1615 err = -EMSGSIZE; 1616 goto out_free; 1617 } 1618 1619 if (sinfo) { 1620 /* Check for invalid stream. */ 1621 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1622 err = -EINVAL; 1623 goto out_free; 1624 } 1625 } 1626 1627 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1628 if (!sctp_wspace(asoc)) { 1629 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1630 if (err) 1631 goto out_free; 1632 } 1633 1634 /* If an address is passed with the sendto/sendmsg call, it is used 1635 * to override the primary destination address in the TCP model, or 1636 * when SCTP_ADDR_OVER flag is set in the UDP model. 1637 */ 1638 if ((sctp_style(sk, TCP) && msg_name) || 1639 (sinfo_flags & SCTP_ADDR_OVER)) { 1640 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1641 if (!chunk_tp) { 1642 err = -EINVAL; 1643 goto out_free; 1644 } 1645 } else 1646 chunk_tp = NULL; 1647 1648 /* Auto-connect, if we aren't connected already. */ 1649 if (sctp_state(asoc, CLOSED)) { 1650 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1651 if (err < 0) 1652 goto out_free; 1653 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1654 } 1655 1656 /* Break the message into multiple chunks of maximum size. */ 1657 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1658 if (!datamsg) { 1659 err = -ENOMEM; 1660 goto out_free; 1661 } 1662 1663 /* Now send the (possibly) fragmented message. */ 1664 list_for_each(pos, &datamsg->chunks) { 1665 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1666 sctp_datamsg_track(chunk); 1667 1668 /* Do accounting for the write space. */ 1669 sctp_set_owner_w(chunk); 1670 1671 chunk->transport = chunk_tp; 1672 1673 /* Send it to the lower layers. Note: all chunks 1674 * must either fail or succeed. The lower layer 1675 * works that way today. Keep it that way or this 1676 * breaks. 1677 */ 1678 err = sctp_primitive_SEND(asoc, chunk); 1679 /* Did the lower layer accept the chunk? */ 1680 if (err) 1681 sctp_chunk_free(chunk); 1682 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1683 } 1684 1685 sctp_datamsg_free(datamsg); 1686 if (err) 1687 goto out_free; 1688 else 1689 err = msg_len; 1690 1691 /* If we are already past ASSOCIATE, the lower 1692 * layers are responsible for association cleanup. 1693 */ 1694 goto out_unlock; 1695 1696 out_free: 1697 if (new_asoc) 1698 sctp_association_free(asoc); 1699 out_unlock: 1700 sctp_release_sock(sk); 1701 1702 out_nounlock: 1703 return sctp_error(sk, msg_flags, err); 1704 1705 #if 0 1706 do_sock_err: 1707 if (msg_len) 1708 err = msg_len; 1709 else 1710 err = sock_error(sk); 1711 goto out; 1712 1713 do_interrupted: 1714 if (msg_len) 1715 err = msg_len; 1716 goto out; 1717 #endif /* 0 */ 1718 } 1719 1720 /* This is an extended version of skb_pull() that removes the data from the 1721 * start of a skb even when data is spread across the list of skb's in the 1722 * frag_list. len specifies the total amount of data that needs to be removed. 1723 * when 'len' bytes could be removed from the skb, it returns 0. 1724 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1725 * could not be removed. 1726 */ 1727 static int sctp_skb_pull(struct sk_buff *skb, int len) 1728 { 1729 struct sk_buff *list; 1730 int skb_len = skb_headlen(skb); 1731 int rlen; 1732 1733 if (len <= skb_len) { 1734 __skb_pull(skb, len); 1735 return 0; 1736 } 1737 len -= skb_len; 1738 __skb_pull(skb, skb_len); 1739 1740 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1741 rlen = sctp_skb_pull(list, len); 1742 skb->len -= (len-rlen); 1743 skb->data_len -= (len-rlen); 1744 1745 if (!rlen) 1746 return 0; 1747 1748 len = rlen; 1749 } 1750 1751 return len; 1752 } 1753 1754 /* API 3.1.3 recvmsg() - UDP Style Syntax 1755 * 1756 * ssize_t recvmsg(int socket, struct msghdr *message, 1757 * int flags); 1758 * 1759 * socket - the socket descriptor of the endpoint. 1760 * message - pointer to the msghdr structure which contains a single 1761 * user message and possibly some ancillary data. 1762 * 1763 * See Section 5 for complete description of the data 1764 * structures. 1765 * 1766 * flags - flags sent or received with the user message, see Section 1767 * 5 for complete description of the flags. 1768 */ 1769 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1770 1771 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1772 struct msghdr *msg, size_t len, int noblock, 1773 int flags, int *addr_len) 1774 { 1775 struct sctp_ulpevent *event = NULL; 1776 struct sctp_sock *sp = sctp_sk(sk); 1777 struct sk_buff *skb; 1778 int copied; 1779 int err = 0; 1780 int skb_len; 1781 1782 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1783 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1784 "len", len, "knoblauch", noblock, 1785 "flags", flags, "addr_len", addr_len); 1786 1787 sctp_lock_sock(sk); 1788 1789 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1790 err = -ENOTCONN; 1791 goto out; 1792 } 1793 1794 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1795 if (!skb) 1796 goto out; 1797 1798 /* Get the total length of the skb including any skb's in the 1799 * frag_list. 1800 */ 1801 skb_len = skb->len; 1802 1803 copied = skb_len; 1804 if (copied > len) 1805 copied = len; 1806 1807 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1808 1809 event = sctp_skb2event(skb); 1810 1811 if (err) 1812 goto out_free; 1813 1814 sock_recv_timestamp(msg, sk, skb); 1815 if (sctp_ulpevent_is_notification(event)) { 1816 msg->msg_flags |= MSG_NOTIFICATION; 1817 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1818 } else { 1819 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1820 } 1821 1822 /* Check if we allow SCTP_SNDRCVINFO. */ 1823 if (sp->subscribe.sctp_data_io_event) 1824 sctp_ulpevent_read_sndrcvinfo(event, msg); 1825 #if 0 1826 /* FIXME: we should be calling IP/IPv6 layers. */ 1827 if (sk->sk_protinfo.af_inet.cmsg_flags) 1828 ip_cmsg_recv(msg, skb); 1829 #endif 1830 1831 err = copied; 1832 1833 /* If skb's length exceeds the user's buffer, update the skb and 1834 * push it back to the receive_queue so that the next call to 1835 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1836 */ 1837 if (skb_len > copied) { 1838 msg->msg_flags &= ~MSG_EOR; 1839 if (flags & MSG_PEEK) 1840 goto out_free; 1841 sctp_skb_pull(skb, copied); 1842 skb_queue_head(&sk->sk_receive_queue, skb); 1843 1844 /* When only partial message is copied to the user, increase 1845 * rwnd by that amount. If all the data in the skb is read, 1846 * rwnd is updated when the event is freed. 1847 */ 1848 sctp_assoc_rwnd_increase(event->asoc, copied); 1849 goto out; 1850 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1851 (event->msg_flags & MSG_EOR)) 1852 msg->msg_flags |= MSG_EOR; 1853 else 1854 msg->msg_flags &= ~MSG_EOR; 1855 1856 out_free: 1857 if (flags & MSG_PEEK) { 1858 /* Release the skb reference acquired after peeking the skb in 1859 * sctp_skb_recv_datagram(). 1860 */ 1861 kfree_skb(skb); 1862 } else { 1863 /* Free the event which includes releasing the reference to 1864 * the owner of the skb, freeing the skb and updating the 1865 * rwnd. 1866 */ 1867 sctp_ulpevent_free(event); 1868 } 1869 out: 1870 sctp_release_sock(sk); 1871 return err; 1872 } 1873 1874 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1875 * 1876 * This option is a on/off flag. If enabled no SCTP message 1877 * fragmentation will be performed. Instead if a message being sent 1878 * exceeds the current PMTU size, the message will NOT be sent and 1879 * instead a error will be indicated to the user. 1880 */ 1881 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1882 char __user *optval, int optlen) 1883 { 1884 int val; 1885 1886 if (optlen < sizeof(int)) 1887 return -EINVAL; 1888 1889 if (get_user(val, (int __user *)optval)) 1890 return -EFAULT; 1891 1892 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1893 1894 return 0; 1895 } 1896 1897 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1898 int optlen) 1899 { 1900 if (optlen != sizeof(struct sctp_event_subscribe)) 1901 return -EINVAL; 1902 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1903 return -EFAULT; 1904 return 0; 1905 } 1906 1907 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1908 * 1909 * This socket option is applicable to the UDP-style socket only. When 1910 * set it will cause associations that are idle for more than the 1911 * specified number of seconds to automatically close. An association 1912 * being idle is defined an association that has NOT sent or received 1913 * user data. The special value of '0' indicates that no automatic 1914 * close of any associations should be performed. The option expects an 1915 * integer defining the number of seconds of idle time before an 1916 * association is closed. 1917 */ 1918 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1919 int optlen) 1920 { 1921 struct sctp_sock *sp = sctp_sk(sk); 1922 1923 /* Applicable to UDP-style socket only */ 1924 if (sctp_style(sk, TCP)) 1925 return -EOPNOTSUPP; 1926 if (optlen != sizeof(int)) 1927 return -EINVAL; 1928 if (copy_from_user(&sp->autoclose, optval, optlen)) 1929 return -EFAULT; 1930 1931 return 0; 1932 } 1933 1934 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1935 * 1936 * Applications can enable or disable heartbeats for any peer address of 1937 * an association, modify an address's heartbeat interval, force a 1938 * heartbeat to be sent immediately, and adjust the address's maximum 1939 * number of retransmissions sent before an address is considered 1940 * unreachable. The following structure is used to access and modify an 1941 * address's parameters: 1942 * 1943 * struct sctp_paddrparams { 1944 * sctp_assoc_t spp_assoc_id; 1945 * struct sockaddr_storage spp_address; 1946 * uint32_t spp_hbinterval; 1947 * uint16_t spp_pathmaxrxt; 1948 * uint32_t spp_pathmtu; 1949 * uint32_t spp_sackdelay; 1950 * uint32_t spp_flags; 1951 * }; 1952 * 1953 * spp_assoc_id - (one-to-many style socket) This is filled in the 1954 * application, and identifies the association for 1955 * this query. 1956 * spp_address - This specifies which address is of interest. 1957 * spp_hbinterval - This contains the value of the heartbeat interval, 1958 * in milliseconds. If a value of zero 1959 * is present in this field then no changes are to 1960 * be made to this parameter. 1961 * spp_pathmaxrxt - This contains the maximum number of 1962 * retransmissions before this address shall be 1963 * considered unreachable. If a value of zero 1964 * is present in this field then no changes are to 1965 * be made to this parameter. 1966 * spp_pathmtu - When Path MTU discovery is disabled the value 1967 * specified here will be the "fixed" path mtu. 1968 * Note that if the spp_address field is empty 1969 * then all associations on this address will 1970 * have this fixed path mtu set upon them. 1971 * 1972 * spp_sackdelay - When delayed sack is enabled, this value specifies 1973 * the number of milliseconds that sacks will be delayed 1974 * for. This value will apply to all addresses of an 1975 * association if the spp_address field is empty. Note 1976 * also, that if delayed sack is enabled and this 1977 * value is set to 0, no change is made to the last 1978 * recorded delayed sack timer value. 1979 * 1980 * spp_flags - These flags are used to control various features 1981 * on an association. The flag field may contain 1982 * zero or more of the following options. 1983 * 1984 * SPP_HB_ENABLE - Enable heartbeats on the 1985 * specified address. Note that if the address 1986 * field is empty all addresses for the association 1987 * have heartbeats enabled upon them. 1988 * 1989 * SPP_HB_DISABLE - Disable heartbeats on the 1990 * speicifed address. Note that if the address 1991 * field is empty all addresses for the association 1992 * will have their heartbeats disabled. Note also 1993 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 1994 * mutually exclusive, only one of these two should 1995 * be specified. Enabling both fields will have 1996 * undetermined results. 1997 * 1998 * SPP_HB_DEMAND - Request a user initiated heartbeat 1999 * to be made immediately. 2000 * 2001 * SPP_PMTUD_ENABLE - This field will enable PMTU 2002 * discovery upon the specified address. Note that 2003 * if the address feild is empty then all addresses 2004 * on the association are effected. 2005 * 2006 * SPP_PMTUD_DISABLE - This field will disable PMTU 2007 * discovery upon the specified address. Note that 2008 * if the address feild is empty then all addresses 2009 * on the association are effected. Not also that 2010 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2011 * exclusive. Enabling both will have undetermined 2012 * results. 2013 * 2014 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2015 * on delayed sack. The time specified in spp_sackdelay 2016 * is used to specify the sack delay for this address. Note 2017 * that if spp_address is empty then all addresses will 2018 * enable delayed sack and take on the sack delay 2019 * value specified in spp_sackdelay. 2020 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2021 * off delayed sack. If the spp_address field is blank then 2022 * delayed sack is disabled for the entire association. Note 2023 * also that this field is mutually exclusive to 2024 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2025 * results. 2026 */ 2027 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2028 struct sctp_transport *trans, 2029 struct sctp_association *asoc, 2030 struct sctp_sock *sp, 2031 int hb_change, 2032 int pmtud_change, 2033 int sackdelay_change) 2034 { 2035 int error; 2036 2037 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2038 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2039 if (error) 2040 return error; 2041 } 2042 2043 if (params->spp_hbinterval) { 2044 if (trans) { 2045 trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2046 } else if (asoc) { 2047 asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2048 } else { 2049 sp->hbinterval = params->spp_hbinterval; 2050 } 2051 } 2052 2053 if (hb_change) { 2054 if (trans) { 2055 trans->param_flags = 2056 (trans->param_flags & ~SPP_HB) | hb_change; 2057 } else if (asoc) { 2058 asoc->param_flags = 2059 (asoc->param_flags & ~SPP_HB) | hb_change; 2060 } else { 2061 sp->param_flags = 2062 (sp->param_flags & ~SPP_HB) | hb_change; 2063 } 2064 } 2065 2066 if (params->spp_pathmtu) { 2067 if (trans) { 2068 trans->pathmtu = params->spp_pathmtu; 2069 sctp_assoc_sync_pmtu(asoc); 2070 } else if (asoc) { 2071 asoc->pathmtu = params->spp_pathmtu; 2072 sctp_frag_point(sp, params->spp_pathmtu); 2073 } else { 2074 sp->pathmtu = params->spp_pathmtu; 2075 } 2076 } 2077 2078 if (pmtud_change) { 2079 if (trans) { 2080 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2081 (params->spp_flags & SPP_PMTUD_ENABLE); 2082 trans->param_flags = 2083 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2084 if (update) { 2085 sctp_transport_pmtu(trans); 2086 sctp_assoc_sync_pmtu(asoc); 2087 } 2088 } else if (asoc) { 2089 asoc->param_flags = 2090 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2091 } else { 2092 sp->param_flags = 2093 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2094 } 2095 } 2096 2097 if (params->spp_sackdelay) { 2098 if (trans) { 2099 trans->sackdelay = 2100 msecs_to_jiffies(params->spp_sackdelay); 2101 } else if (asoc) { 2102 asoc->sackdelay = 2103 msecs_to_jiffies(params->spp_sackdelay); 2104 } else { 2105 sp->sackdelay = params->spp_sackdelay; 2106 } 2107 } 2108 2109 if (sackdelay_change) { 2110 if (trans) { 2111 trans->param_flags = 2112 (trans->param_flags & ~SPP_SACKDELAY) | 2113 sackdelay_change; 2114 } else if (asoc) { 2115 asoc->param_flags = 2116 (asoc->param_flags & ~SPP_SACKDELAY) | 2117 sackdelay_change; 2118 } else { 2119 sp->param_flags = 2120 (sp->param_flags & ~SPP_SACKDELAY) | 2121 sackdelay_change; 2122 } 2123 } 2124 2125 if (params->spp_pathmaxrxt) { 2126 if (trans) { 2127 trans->pathmaxrxt = params->spp_pathmaxrxt; 2128 } else if (asoc) { 2129 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2130 } else { 2131 sp->pathmaxrxt = params->spp_pathmaxrxt; 2132 } 2133 } 2134 2135 return 0; 2136 } 2137 2138 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2139 char __user *optval, int optlen) 2140 { 2141 struct sctp_paddrparams params; 2142 struct sctp_transport *trans = NULL; 2143 struct sctp_association *asoc = NULL; 2144 struct sctp_sock *sp = sctp_sk(sk); 2145 int error; 2146 int hb_change, pmtud_change, sackdelay_change; 2147 2148 if (optlen != sizeof(struct sctp_paddrparams)) 2149 return - EINVAL; 2150 2151 if (copy_from_user(¶ms, optval, optlen)) 2152 return -EFAULT; 2153 2154 /* Validate flags and value parameters. */ 2155 hb_change = params.spp_flags & SPP_HB; 2156 pmtud_change = params.spp_flags & SPP_PMTUD; 2157 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2158 2159 if (hb_change == SPP_HB || 2160 pmtud_change == SPP_PMTUD || 2161 sackdelay_change == SPP_SACKDELAY || 2162 params.spp_sackdelay > 500 || 2163 (params.spp_pathmtu 2164 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2165 return -EINVAL; 2166 2167 /* If an address other than INADDR_ANY is specified, and 2168 * no transport is found, then the request is invalid. 2169 */ 2170 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2171 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2172 params.spp_assoc_id); 2173 if (!trans) 2174 return -EINVAL; 2175 } 2176 2177 /* Get association, if assoc_id != 0 and the socket is a one 2178 * to many style socket, and an association was not found, then 2179 * the id was invalid. 2180 */ 2181 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2182 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2183 return -EINVAL; 2184 2185 /* Heartbeat demand can only be sent on a transport or 2186 * association, but not a socket. 2187 */ 2188 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2189 return -EINVAL; 2190 2191 /* Process parameters. */ 2192 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2193 hb_change, pmtud_change, 2194 sackdelay_change); 2195 2196 if (error) 2197 return error; 2198 2199 /* If changes are for association, also apply parameters to each 2200 * transport. 2201 */ 2202 if (!trans && asoc) { 2203 struct list_head *pos; 2204 2205 list_for_each(pos, &asoc->peer.transport_addr_list) { 2206 trans = list_entry(pos, struct sctp_transport, 2207 transports); 2208 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2209 hb_change, pmtud_change, 2210 sackdelay_change); 2211 } 2212 } 2213 2214 return 0; 2215 } 2216 2217 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2218 * 2219 * This options will get or set the delayed ack timer. The time is set 2220 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2221 * endpoints default delayed ack timer value. If the assoc_id field is 2222 * non-zero, then the set or get effects the specified association. 2223 * 2224 * struct sctp_assoc_value { 2225 * sctp_assoc_t assoc_id; 2226 * uint32_t assoc_value; 2227 * }; 2228 * 2229 * assoc_id - This parameter, indicates which association the 2230 * user is preforming an action upon. Note that if 2231 * this field's value is zero then the endpoints 2232 * default value is changed (effecting future 2233 * associations only). 2234 * 2235 * assoc_value - This parameter contains the number of milliseconds 2236 * that the user is requesting the delayed ACK timer 2237 * be set to. Note that this value is defined in 2238 * the standard to be between 200 and 500 milliseconds. 2239 * 2240 * Note: a value of zero will leave the value alone, 2241 * but disable SACK delay. A non-zero value will also 2242 * enable SACK delay. 2243 */ 2244 2245 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2246 char __user *optval, int optlen) 2247 { 2248 struct sctp_assoc_value params; 2249 struct sctp_transport *trans = NULL; 2250 struct sctp_association *asoc = NULL; 2251 struct sctp_sock *sp = sctp_sk(sk); 2252 2253 if (optlen != sizeof(struct sctp_assoc_value)) 2254 return - EINVAL; 2255 2256 if (copy_from_user(¶ms, optval, optlen)) 2257 return -EFAULT; 2258 2259 /* Validate value parameter. */ 2260 if (params.assoc_value > 500) 2261 return -EINVAL; 2262 2263 /* Get association, if assoc_id != 0 and the socket is a one 2264 * to many style socket, and an association was not found, then 2265 * the id was invalid. 2266 */ 2267 asoc = sctp_id2assoc(sk, params.assoc_id); 2268 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2269 return -EINVAL; 2270 2271 if (params.assoc_value) { 2272 if (asoc) { 2273 asoc->sackdelay = 2274 msecs_to_jiffies(params.assoc_value); 2275 asoc->param_flags = 2276 (asoc->param_flags & ~SPP_SACKDELAY) | 2277 SPP_SACKDELAY_ENABLE; 2278 } else { 2279 sp->sackdelay = params.assoc_value; 2280 sp->param_flags = 2281 (sp->param_flags & ~SPP_SACKDELAY) | 2282 SPP_SACKDELAY_ENABLE; 2283 } 2284 } else { 2285 if (asoc) { 2286 asoc->param_flags = 2287 (asoc->param_flags & ~SPP_SACKDELAY) | 2288 SPP_SACKDELAY_DISABLE; 2289 } else { 2290 sp->param_flags = 2291 (sp->param_flags & ~SPP_SACKDELAY) | 2292 SPP_SACKDELAY_DISABLE; 2293 } 2294 } 2295 2296 /* If change is for association, also apply to each transport. */ 2297 if (asoc) { 2298 struct list_head *pos; 2299 2300 list_for_each(pos, &asoc->peer.transport_addr_list) { 2301 trans = list_entry(pos, struct sctp_transport, 2302 transports); 2303 if (params.assoc_value) { 2304 trans->sackdelay = 2305 msecs_to_jiffies(params.assoc_value); 2306 trans->param_flags = 2307 (trans->param_flags & ~SPP_SACKDELAY) | 2308 SPP_SACKDELAY_ENABLE; 2309 } else { 2310 trans->param_flags = 2311 (trans->param_flags & ~SPP_SACKDELAY) | 2312 SPP_SACKDELAY_DISABLE; 2313 } 2314 } 2315 } 2316 2317 return 0; 2318 } 2319 2320 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2321 * 2322 * Applications can specify protocol parameters for the default association 2323 * initialization. The option name argument to setsockopt() and getsockopt() 2324 * is SCTP_INITMSG. 2325 * 2326 * Setting initialization parameters is effective only on an unconnected 2327 * socket (for UDP-style sockets only future associations are effected 2328 * by the change). With TCP-style sockets, this option is inherited by 2329 * sockets derived from a listener socket. 2330 */ 2331 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2332 { 2333 struct sctp_initmsg sinit; 2334 struct sctp_sock *sp = sctp_sk(sk); 2335 2336 if (optlen != sizeof(struct sctp_initmsg)) 2337 return -EINVAL; 2338 if (copy_from_user(&sinit, optval, optlen)) 2339 return -EFAULT; 2340 2341 if (sinit.sinit_num_ostreams) 2342 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2343 if (sinit.sinit_max_instreams) 2344 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2345 if (sinit.sinit_max_attempts) 2346 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2347 if (sinit.sinit_max_init_timeo) 2348 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2349 2350 return 0; 2351 } 2352 2353 /* 2354 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2355 * 2356 * Applications that wish to use the sendto() system call may wish to 2357 * specify a default set of parameters that would normally be supplied 2358 * through the inclusion of ancillary data. This socket option allows 2359 * such an application to set the default sctp_sndrcvinfo structure. 2360 * The application that wishes to use this socket option simply passes 2361 * in to this call the sctp_sndrcvinfo structure defined in Section 2362 * 5.2.2) The input parameters accepted by this call include 2363 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2364 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2365 * to this call if the caller is using the UDP model. 2366 */ 2367 static int sctp_setsockopt_default_send_param(struct sock *sk, 2368 char __user *optval, int optlen) 2369 { 2370 struct sctp_sndrcvinfo info; 2371 struct sctp_association *asoc; 2372 struct sctp_sock *sp = sctp_sk(sk); 2373 2374 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2375 return -EINVAL; 2376 if (copy_from_user(&info, optval, optlen)) 2377 return -EFAULT; 2378 2379 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2380 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2381 return -EINVAL; 2382 2383 if (asoc) { 2384 asoc->default_stream = info.sinfo_stream; 2385 asoc->default_flags = info.sinfo_flags; 2386 asoc->default_ppid = info.sinfo_ppid; 2387 asoc->default_context = info.sinfo_context; 2388 asoc->default_timetolive = info.sinfo_timetolive; 2389 } else { 2390 sp->default_stream = info.sinfo_stream; 2391 sp->default_flags = info.sinfo_flags; 2392 sp->default_ppid = info.sinfo_ppid; 2393 sp->default_context = info.sinfo_context; 2394 sp->default_timetolive = info.sinfo_timetolive; 2395 } 2396 2397 return 0; 2398 } 2399 2400 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2401 * 2402 * Requests that the local SCTP stack use the enclosed peer address as 2403 * the association primary. The enclosed address must be one of the 2404 * association peer's addresses. 2405 */ 2406 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2407 int optlen) 2408 { 2409 struct sctp_prim prim; 2410 struct sctp_transport *trans; 2411 2412 if (optlen != sizeof(struct sctp_prim)) 2413 return -EINVAL; 2414 2415 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2416 return -EFAULT; 2417 2418 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2419 if (!trans) 2420 return -EINVAL; 2421 2422 sctp_assoc_set_primary(trans->asoc, trans); 2423 2424 return 0; 2425 } 2426 2427 /* 2428 * 7.1.5 SCTP_NODELAY 2429 * 2430 * Turn on/off any Nagle-like algorithm. This means that packets are 2431 * generally sent as soon as possible and no unnecessary delays are 2432 * introduced, at the cost of more packets in the network. Expects an 2433 * integer boolean flag. 2434 */ 2435 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2436 int optlen) 2437 { 2438 int val; 2439 2440 if (optlen < sizeof(int)) 2441 return -EINVAL; 2442 if (get_user(val, (int __user *)optval)) 2443 return -EFAULT; 2444 2445 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2446 return 0; 2447 } 2448 2449 /* 2450 * 2451 * 7.1.1 SCTP_RTOINFO 2452 * 2453 * The protocol parameters used to initialize and bound retransmission 2454 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2455 * and modify these parameters. 2456 * All parameters are time values, in milliseconds. A value of 0, when 2457 * modifying the parameters, indicates that the current value should not 2458 * be changed. 2459 * 2460 */ 2461 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2462 struct sctp_rtoinfo rtoinfo; 2463 struct sctp_association *asoc; 2464 2465 if (optlen != sizeof (struct sctp_rtoinfo)) 2466 return -EINVAL; 2467 2468 if (copy_from_user(&rtoinfo, optval, optlen)) 2469 return -EFAULT; 2470 2471 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2472 2473 /* Set the values to the specific association */ 2474 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2475 return -EINVAL; 2476 2477 if (asoc) { 2478 if (rtoinfo.srto_initial != 0) 2479 asoc->rto_initial = 2480 msecs_to_jiffies(rtoinfo.srto_initial); 2481 if (rtoinfo.srto_max != 0) 2482 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2483 if (rtoinfo.srto_min != 0) 2484 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2485 } else { 2486 /* If there is no association or the association-id = 0 2487 * set the values to the endpoint. 2488 */ 2489 struct sctp_sock *sp = sctp_sk(sk); 2490 2491 if (rtoinfo.srto_initial != 0) 2492 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2493 if (rtoinfo.srto_max != 0) 2494 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2495 if (rtoinfo.srto_min != 0) 2496 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2497 } 2498 2499 return 0; 2500 } 2501 2502 /* 2503 * 2504 * 7.1.2 SCTP_ASSOCINFO 2505 * 2506 * This option is used to tune the the maximum retransmission attempts 2507 * of the association. 2508 * Returns an error if the new association retransmission value is 2509 * greater than the sum of the retransmission value of the peer. 2510 * See [SCTP] for more information. 2511 * 2512 */ 2513 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2514 { 2515 2516 struct sctp_assocparams assocparams; 2517 struct sctp_association *asoc; 2518 2519 if (optlen != sizeof(struct sctp_assocparams)) 2520 return -EINVAL; 2521 if (copy_from_user(&assocparams, optval, optlen)) 2522 return -EFAULT; 2523 2524 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2525 2526 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2527 return -EINVAL; 2528 2529 /* Set the values to the specific association */ 2530 if (asoc) { 2531 if (assocparams.sasoc_asocmaxrxt != 0) 2532 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2533 if (assocparams.sasoc_cookie_life != 0) { 2534 asoc->cookie_life.tv_sec = 2535 assocparams.sasoc_cookie_life / 1000; 2536 asoc->cookie_life.tv_usec = 2537 (assocparams.sasoc_cookie_life % 1000) 2538 * 1000; 2539 } 2540 } else { 2541 /* Set the values to the endpoint */ 2542 struct sctp_sock *sp = sctp_sk(sk); 2543 2544 if (assocparams.sasoc_asocmaxrxt != 0) 2545 sp->assocparams.sasoc_asocmaxrxt = 2546 assocparams.sasoc_asocmaxrxt; 2547 if (assocparams.sasoc_cookie_life != 0) 2548 sp->assocparams.sasoc_cookie_life = 2549 assocparams.sasoc_cookie_life; 2550 } 2551 return 0; 2552 } 2553 2554 /* 2555 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2556 * 2557 * This socket option is a boolean flag which turns on or off mapped V4 2558 * addresses. If this option is turned on and the socket is type 2559 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2560 * If this option is turned off, then no mapping will be done of V4 2561 * addresses and a user will receive both PF_INET6 and PF_INET type 2562 * addresses on the socket. 2563 */ 2564 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2565 { 2566 int val; 2567 struct sctp_sock *sp = sctp_sk(sk); 2568 2569 if (optlen < sizeof(int)) 2570 return -EINVAL; 2571 if (get_user(val, (int __user *)optval)) 2572 return -EFAULT; 2573 if (val) 2574 sp->v4mapped = 1; 2575 else 2576 sp->v4mapped = 0; 2577 2578 return 0; 2579 } 2580 2581 /* 2582 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2583 * 2584 * This socket option specifies the maximum size to put in any outgoing 2585 * SCTP chunk. If a message is larger than this size it will be 2586 * fragmented by SCTP into the specified size. Note that the underlying 2587 * SCTP implementation may fragment into smaller sized chunks when the 2588 * PMTU of the underlying association is smaller than the value set by 2589 * the user. 2590 */ 2591 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2592 { 2593 struct sctp_association *asoc; 2594 struct list_head *pos; 2595 struct sctp_sock *sp = sctp_sk(sk); 2596 int val; 2597 2598 if (optlen < sizeof(int)) 2599 return -EINVAL; 2600 if (get_user(val, (int __user *)optval)) 2601 return -EFAULT; 2602 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2603 return -EINVAL; 2604 sp->user_frag = val; 2605 2606 /* Update the frag_point of the existing associations. */ 2607 list_for_each(pos, &(sp->ep->asocs)) { 2608 asoc = list_entry(pos, struct sctp_association, asocs); 2609 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2610 } 2611 2612 return 0; 2613 } 2614 2615 2616 /* 2617 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2618 * 2619 * Requests that the peer mark the enclosed address as the association 2620 * primary. The enclosed address must be one of the association's 2621 * locally bound addresses. The following structure is used to make a 2622 * set primary request: 2623 */ 2624 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2625 int optlen) 2626 { 2627 struct sctp_sock *sp; 2628 struct sctp_endpoint *ep; 2629 struct sctp_association *asoc = NULL; 2630 struct sctp_setpeerprim prim; 2631 struct sctp_chunk *chunk; 2632 int err; 2633 2634 sp = sctp_sk(sk); 2635 ep = sp->ep; 2636 2637 if (!sctp_addip_enable) 2638 return -EPERM; 2639 2640 if (optlen != sizeof(struct sctp_setpeerprim)) 2641 return -EINVAL; 2642 2643 if (copy_from_user(&prim, optval, optlen)) 2644 return -EFAULT; 2645 2646 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2647 if (!asoc) 2648 return -EINVAL; 2649 2650 if (!asoc->peer.asconf_capable) 2651 return -EPERM; 2652 2653 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2654 return -EPERM; 2655 2656 if (!sctp_state(asoc, ESTABLISHED)) 2657 return -ENOTCONN; 2658 2659 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2660 return -EADDRNOTAVAIL; 2661 2662 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2663 chunk = sctp_make_asconf_set_prim(asoc, 2664 (union sctp_addr *)&prim.sspp_addr); 2665 if (!chunk) 2666 return -ENOMEM; 2667 2668 err = sctp_send_asconf(asoc, chunk); 2669 2670 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2671 2672 return err; 2673 } 2674 2675 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval, 2676 int optlen) 2677 { 2678 struct sctp_setadaption adaption; 2679 2680 if (optlen != sizeof(struct sctp_setadaption)) 2681 return -EINVAL; 2682 if (copy_from_user(&adaption, optval, optlen)) 2683 return -EFAULT; 2684 2685 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind; 2686 2687 return 0; 2688 } 2689 2690 /* API 6.2 setsockopt(), getsockopt() 2691 * 2692 * Applications use setsockopt() and getsockopt() to set or retrieve 2693 * socket options. Socket options are used to change the default 2694 * behavior of sockets calls. They are described in Section 7. 2695 * 2696 * The syntax is: 2697 * 2698 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2699 * int __user *optlen); 2700 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2701 * int optlen); 2702 * 2703 * sd - the socket descript. 2704 * level - set to IPPROTO_SCTP for all SCTP options. 2705 * optname - the option name. 2706 * optval - the buffer to store the value of the option. 2707 * optlen - the size of the buffer. 2708 */ 2709 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2710 char __user *optval, int optlen) 2711 { 2712 int retval = 0; 2713 2714 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2715 sk, optname); 2716 2717 /* I can hardly begin to describe how wrong this is. This is 2718 * so broken as to be worse than useless. The API draft 2719 * REALLY is NOT helpful here... I am not convinced that the 2720 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2721 * are at all well-founded. 2722 */ 2723 if (level != SOL_SCTP) { 2724 struct sctp_af *af = sctp_sk(sk)->pf->af; 2725 retval = af->setsockopt(sk, level, optname, optval, optlen); 2726 goto out_nounlock; 2727 } 2728 2729 sctp_lock_sock(sk); 2730 2731 switch (optname) { 2732 case SCTP_SOCKOPT_BINDX_ADD: 2733 /* 'optlen' is the size of the addresses buffer. */ 2734 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2735 optlen, SCTP_BINDX_ADD_ADDR); 2736 break; 2737 2738 case SCTP_SOCKOPT_BINDX_REM: 2739 /* 'optlen' is the size of the addresses buffer. */ 2740 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2741 optlen, SCTP_BINDX_REM_ADDR); 2742 break; 2743 2744 case SCTP_SOCKOPT_CONNECTX: 2745 /* 'optlen' is the size of the addresses buffer. */ 2746 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 2747 optlen); 2748 break; 2749 2750 case SCTP_DISABLE_FRAGMENTS: 2751 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 2752 break; 2753 2754 case SCTP_EVENTS: 2755 retval = sctp_setsockopt_events(sk, optval, optlen); 2756 break; 2757 2758 case SCTP_AUTOCLOSE: 2759 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 2760 break; 2761 2762 case SCTP_PEER_ADDR_PARAMS: 2763 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 2764 break; 2765 2766 case SCTP_DELAYED_ACK_TIME: 2767 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 2768 break; 2769 2770 case SCTP_INITMSG: 2771 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 2772 break; 2773 case SCTP_DEFAULT_SEND_PARAM: 2774 retval = sctp_setsockopt_default_send_param(sk, optval, 2775 optlen); 2776 break; 2777 case SCTP_PRIMARY_ADDR: 2778 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 2779 break; 2780 case SCTP_SET_PEER_PRIMARY_ADDR: 2781 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 2782 break; 2783 case SCTP_NODELAY: 2784 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 2785 break; 2786 case SCTP_RTOINFO: 2787 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 2788 break; 2789 case SCTP_ASSOCINFO: 2790 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 2791 break; 2792 case SCTP_I_WANT_MAPPED_V4_ADDR: 2793 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 2794 break; 2795 case SCTP_MAXSEG: 2796 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 2797 break; 2798 case SCTP_ADAPTION_LAYER: 2799 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen); 2800 break; 2801 2802 default: 2803 retval = -ENOPROTOOPT; 2804 break; 2805 }; 2806 2807 sctp_release_sock(sk); 2808 2809 out_nounlock: 2810 return retval; 2811 } 2812 2813 /* API 3.1.6 connect() - UDP Style Syntax 2814 * 2815 * An application may use the connect() call in the UDP model to initiate an 2816 * association without sending data. 2817 * 2818 * The syntax is: 2819 * 2820 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 2821 * 2822 * sd: the socket descriptor to have a new association added to. 2823 * 2824 * nam: the address structure (either struct sockaddr_in or struct 2825 * sockaddr_in6 defined in RFC2553 [7]). 2826 * 2827 * len: the size of the address. 2828 */ 2829 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 2830 int addr_len) 2831 { 2832 int err = 0; 2833 struct sctp_af *af; 2834 2835 sctp_lock_sock(sk); 2836 2837 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 2838 __FUNCTION__, sk, addr, addr_len); 2839 2840 /* Validate addr_len before calling common connect/connectx routine. */ 2841 af = sctp_get_af_specific(addr->sa_family); 2842 if (!af || addr_len < af->sockaddr_len) { 2843 err = -EINVAL; 2844 } else { 2845 /* Pass correct addr len to common routine (so it knows there 2846 * is only one address being passed. 2847 */ 2848 err = __sctp_connect(sk, addr, af->sockaddr_len); 2849 } 2850 2851 sctp_release_sock(sk); 2852 return err; 2853 } 2854 2855 /* FIXME: Write comments. */ 2856 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 2857 { 2858 return -EOPNOTSUPP; /* STUB */ 2859 } 2860 2861 /* 4.1.4 accept() - TCP Style Syntax 2862 * 2863 * Applications use accept() call to remove an established SCTP 2864 * association from the accept queue of the endpoint. A new socket 2865 * descriptor will be returned from accept() to represent the newly 2866 * formed association. 2867 */ 2868 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 2869 { 2870 struct sctp_sock *sp; 2871 struct sctp_endpoint *ep; 2872 struct sock *newsk = NULL; 2873 struct sctp_association *asoc; 2874 long timeo; 2875 int error = 0; 2876 2877 sctp_lock_sock(sk); 2878 2879 sp = sctp_sk(sk); 2880 ep = sp->ep; 2881 2882 if (!sctp_style(sk, TCP)) { 2883 error = -EOPNOTSUPP; 2884 goto out; 2885 } 2886 2887 if (!sctp_sstate(sk, LISTENING)) { 2888 error = -EINVAL; 2889 goto out; 2890 } 2891 2892 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 2893 2894 error = sctp_wait_for_accept(sk, timeo); 2895 if (error) 2896 goto out; 2897 2898 /* We treat the list of associations on the endpoint as the accept 2899 * queue and pick the first association on the list. 2900 */ 2901 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 2902 2903 newsk = sp->pf->create_accept_sk(sk, asoc); 2904 if (!newsk) { 2905 error = -ENOMEM; 2906 goto out; 2907 } 2908 2909 /* Populate the fields of the newsk from the oldsk and migrate the 2910 * asoc to the newsk. 2911 */ 2912 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 2913 2914 out: 2915 sctp_release_sock(sk); 2916 *err = error; 2917 return newsk; 2918 } 2919 2920 /* The SCTP ioctl handler. */ 2921 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 2922 { 2923 return -ENOIOCTLCMD; 2924 } 2925 2926 /* This is the function which gets called during socket creation to 2927 * initialized the SCTP-specific portion of the sock. 2928 * The sock structure should already be zero-filled memory. 2929 */ 2930 SCTP_STATIC int sctp_init_sock(struct sock *sk) 2931 { 2932 struct sctp_endpoint *ep; 2933 struct sctp_sock *sp; 2934 2935 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 2936 2937 sp = sctp_sk(sk); 2938 2939 /* Initialize the SCTP per socket area. */ 2940 switch (sk->sk_type) { 2941 case SOCK_SEQPACKET: 2942 sp->type = SCTP_SOCKET_UDP; 2943 break; 2944 case SOCK_STREAM: 2945 sp->type = SCTP_SOCKET_TCP; 2946 break; 2947 default: 2948 return -ESOCKTNOSUPPORT; 2949 } 2950 2951 /* Initialize default send parameters. These parameters can be 2952 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 2953 */ 2954 sp->default_stream = 0; 2955 sp->default_ppid = 0; 2956 sp->default_flags = 0; 2957 sp->default_context = 0; 2958 sp->default_timetolive = 0; 2959 2960 /* Initialize default setup parameters. These parameters 2961 * can be modified with the SCTP_INITMSG socket option or 2962 * overridden by the SCTP_INIT CMSG. 2963 */ 2964 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 2965 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 2966 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 2967 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max); 2968 2969 /* Initialize default RTO related parameters. These parameters can 2970 * be modified for with the SCTP_RTOINFO socket option. 2971 */ 2972 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial); 2973 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max); 2974 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min); 2975 2976 /* Initialize default association related parameters. These parameters 2977 * can be modified with the SCTP_ASSOCINFO socket option. 2978 */ 2979 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 2980 sp->assocparams.sasoc_number_peer_destinations = 0; 2981 sp->assocparams.sasoc_peer_rwnd = 0; 2982 sp->assocparams.sasoc_local_rwnd = 0; 2983 sp->assocparams.sasoc_cookie_life = 2984 jiffies_to_msecs(sctp_valid_cookie_life); 2985 2986 /* Initialize default event subscriptions. By default, all the 2987 * options are off. 2988 */ 2989 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 2990 2991 /* Default Peer Address Parameters. These defaults can 2992 * be modified via SCTP_PEER_ADDR_PARAMS 2993 */ 2994 sp->hbinterval = jiffies_to_msecs(sctp_hb_interval); 2995 sp->pathmaxrxt = sctp_max_retrans_path; 2996 sp->pathmtu = 0; // allow default discovery 2997 sp->sackdelay = sctp_sack_timeout; 2998 sp->param_flags = SPP_HB_ENABLE | 2999 SPP_PMTUD_ENABLE | 3000 SPP_SACKDELAY_ENABLE; 3001 3002 /* If enabled no SCTP message fragmentation will be performed. 3003 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3004 */ 3005 sp->disable_fragments = 0; 3006 3007 /* Turn on/off any Nagle-like algorithm. */ 3008 sp->nodelay = 1; 3009 3010 /* Enable by default. */ 3011 sp->v4mapped = 1; 3012 3013 /* Auto-close idle associations after the configured 3014 * number of seconds. A value of 0 disables this 3015 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3016 * for UDP-style sockets only. 3017 */ 3018 sp->autoclose = 0; 3019 3020 /* User specified fragmentation limit. */ 3021 sp->user_frag = 0; 3022 3023 sp->adaption_ind = 0; 3024 3025 sp->pf = sctp_get_pf_specific(sk->sk_family); 3026 3027 /* Control variables for partial data delivery. */ 3028 sp->pd_mode = 0; 3029 skb_queue_head_init(&sp->pd_lobby); 3030 3031 /* Create a per socket endpoint structure. Even if we 3032 * change the data structure relationships, this may still 3033 * be useful for storing pre-connect address information. 3034 */ 3035 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3036 if (!ep) 3037 return -ENOMEM; 3038 3039 sp->ep = ep; 3040 sp->hmac = NULL; 3041 3042 SCTP_DBG_OBJCNT_INC(sock); 3043 return 0; 3044 } 3045 3046 /* Cleanup any SCTP per socket resources. */ 3047 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3048 { 3049 struct sctp_endpoint *ep; 3050 3051 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3052 3053 /* Release our hold on the endpoint. */ 3054 ep = sctp_sk(sk)->ep; 3055 sctp_endpoint_free(ep); 3056 3057 return 0; 3058 } 3059 3060 /* API 4.1.7 shutdown() - TCP Style Syntax 3061 * int shutdown(int socket, int how); 3062 * 3063 * sd - the socket descriptor of the association to be closed. 3064 * how - Specifies the type of shutdown. The values are 3065 * as follows: 3066 * SHUT_RD 3067 * Disables further receive operations. No SCTP 3068 * protocol action is taken. 3069 * SHUT_WR 3070 * Disables further send operations, and initiates 3071 * the SCTP shutdown sequence. 3072 * SHUT_RDWR 3073 * Disables further send and receive operations 3074 * and initiates the SCTP shutdown sequence. 3075 */ 3076 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3077 { 3078 struct sctp_endpoint *ep; 3079 struct sctp_association *asoc; 3080 3081 if (!sctp_style(sk, TCP)) 3082 return; 3083 3084 if (how & SEND_SHUTDOWN) { 3085 ep = sctp_sk(sk)->ep; 3086 if (!list_empty(&ep->asocs)) { 3087 asoc = list_entry(ep->asocs.next, 3088 struct sctp_association, asocs); 3089 sctp_primitive_SHUTDOWN(asoc, NULL); 3090 } 3091 } 3092 } 3093 3094 /* 7.2.1 Association Status (SCTP_STATUS) 3095 3096 * Applications can retrieve current status information about an 3097 * association, including association state, peer receiver window size, 3098 * number of unacked data chunks, and number of data chunks pending 3099 * receipt. This information is read-only. 3100 */ 3101 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3102 char __user *optval, 3103 int __user *optlen) 3104 { 3105 struct sctp_status status; 3106 struct sctp_association *asoc = NULL; 3107 struct sctp_transport *transport; 3108 sctp_assoc_t associd; 3109 int retval = 0; 3110 3111 if (len != sizeof(status)) { 3112 retval = -EINVAL; 3113 goto out; 3114 } 3115 3116 if (copy_from_user(&status, optval, sizeof(status))) { 3117 retval = -EFAULT; 3118 goto out; 3119 } 3120 3121 associd = status.sstat_assoc_id; 3122 asoc = sctp_id2assoc(sk, associd); 3123 if (!asoc) { 3124 retval = -EINVAL; 3125 goto out; 3126 } 3127 3128 transport = asoc->peer.primary_path; 3129 3130 status.sstat_assoc_id = sctp_assoc2id(asoc); 3131 status.sstat_state = asoc->state; 3132 status.sstat_rwnd = asoc->peer.rwnd; 3133 status.sstat_unackdata = asoc->unack_data; 3134 3135 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3136 status.sstat_instrms = asoc->c.sinit_max_instreams; 3137 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3138 status.sstat_fragmentation_point = asoc->frag_point; 3139 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3140 memcpy(&status.sstat_primary.spinfo_address, 3141 &(transport->ipaddr), sizeof(union sctp_addr)); 3142 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3143 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3144 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3145 status.sstat_primary.spinfo_state = transport->state; 3146 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3147 status.sstat_primary.spinfo_srtt = transport->srtt; 3148 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3149 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3150 3151 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3152 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3153 3154 if (put_user(len, optlen)) { 3155 retval = -EFAULT; 3156 goto out; 3157 } 3158 3159 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3160 len, status.sstat_state, status.sstat_rwnd, 3161 status.sstat_assoc_id); 3162 3163 if (copy_to_user(optval, &status, len)) { 3164 retval = -EFAULT; 3165 goto out; 3166 } 3167 3168 out: 3169 return (retval); 3170 } 3171 3172 3173 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3174 * 3175 * Applications can retrieve information about a specific peer address 3176 * of an association, including its reachability state, congestion 3177 * window, and retransmission timer values. This information is 3178 * read-only. 3179 */ 3180 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3181 char __user *optval, 3182 int __user *optlen) 3183 { 3184 struct sctp_paddrinfo pinfo; 3185 struct sctp_transport *transport; 3186 int retval = 0; 3187 3188 if (len != sizeof(pinfo)) { 3189 retval = -EINVAL; 3190 goto out; 3191 } 3192 3193 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) { 3194 retval = -EFAULT; 3195 goto out; 3196 } 3197 3198 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3199 pinfo.spinfo_assoc_id); 3200 if (!transport) 3201 return -EINVAL; 3202 3203 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3204 pinfo.spinfo_state = transport->state; 3205 pinfo.spinfo_cwnd = transport->cwnd; 3206 pinfo.spinfo_srtt = transport->srtt; 3207 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3208 pinfo.spinfo_mtu = transport->pathmtu; 3209 3210 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3211 pinfo.spinfo_state = SCTP_ACTIVE; 3212 3213 if (put_user(len, optlen)) { 3214 retval = -EFAULT; 3215 goto out; 3216 } 3217 3218 if (copy_to_user(optval, &pinfo, len)) { 3219 retval = -EFAULT; 3220 goto out; 3221 } 3222 3223 out: 3224 return (retval); 3225 } 3226 3227 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3228 * 3229 * This option is a on/off flag. If enabled no SCTP message 3230 * fragmentation will be performed. Instead if a message being sent 3231 * exceeds the current PMTU size, the message will NOT be sent and 3232 * instead a error will be indicated to the user. 3233 */ 3234 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3235 char __user *optval, int __user *optlen) 3236 { 3237 int val; 3238 3239 if (len < sizeof(int)) 3240 return -EINVAL; 3241 3242 len = sizeof(int); 3243 val = (sctp_sk(sk)->disable_fragments == 1); 3244 if (put_user(len, optlen)) 3245 return -EFAULT; 3246 if (copy_to_user(optval, &val, len)) 3247 return -EFAULT; 3248 return 0; 3249 } 3250 3251 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3252 * 3253 * This socket option is used to specify various notifications and 3254 * ancillary data the user wishes to receive. 3255 */ 3256 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3257 int __user *optlen) 3258 { 3259 if (len != sizeof(struct sctp_event_subscribe)) 3260 return -EINVAL; 3261 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3262 return -EFAULT; 3263 return 0; 3264 } 3265 3266 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3267 * 3268 * This socket option is applicable to the UDP-style socket only. When 3269 * set it will cause associations that are idle for more than the 3270 * specified number of seconds to automatically close. An association 3271 * being idle is defined an association that has NOT sent or received 3272 * user data. The special value of '0' indicates that no automatic 3273 * close of any associations should be performed. The option expects an 3274 * integer defining the number of seconds of idle time before an 3275 * association is closed. 3276 */ 3277 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3278 { 3279 /* Applicable to UDP-style socket only */ 3280 if (sctp_style(sk, TCP)) 3281 return -EOPNOTSUPP; 3282 if (len != sizeof(int)) 3283 return -EINVAL; 3284 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len)) 3285 return -EFAULT; 3286 return 0; 3287 } 3288 3289 /* Helper routine to branch off an association to a new socket. */ 3290 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3291 struct socket **sockp) 3292 { 3293 struct sock *sk = asoc->base.sk; 3294 struct socket *sock; 3295 int err = 0; 3296 3297 /* An association cannot be branched off from an already peeled-off 3298 * socket, nor is this supported for tcp style sockets. 3299 */ 3300 if (!sctp_style(sk, UDP)) 3301 return -EINVAL; 3302 3303 /* Create a new socket. */ 3304 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3305 if (err < 0) 3306 return err; 3307 3308 /* Populate the fields of the newsk from the oldsk and migrate the 3309 * asoc to the newsk. 3310 */ 3311 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3312 *sockp = sock; 3313 3314 return err; 3315 } 3316 3317 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3318 { 3319 sctp_peeloff_arg_t peeloff; 3320 struct socket *newsock; 3321 int retval = 0; 3322 struct sctp_association *asoc; 3323 3324 if (len != sizeof(sctp_peeloff_arg_t)) 3325 return -EINVAL; 3326 if (copy_from_user(&peeloff, optval, len)) 3327 return -EFAULT; 3328 3329 asoc = sctp_id2assoc(sk, peeloff.associd); 3330 if (!asoc) { 3331 retval = -EINVAL; 3332 goto out; 3333 } 3334 3335 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3336 3337 retval = sctp_do_peeloff(asoc, &newsock); 3338 if (retval < 0) 3339 goto out; 3340 3341 /* Map the socket to an unused fd that can be returned to the user. */ 3342 retval = sock_map_fd(newsock); 3343 if (retval < 0) { 3344 sock_release(newsock); 3345 goto out; 3346 } 3347 3348 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3349 __FUNCTION__, sk, asoc, newsock->sk, retval); 3350 3351 /* Return the fd mapped to the new socket. */ 3352 peeloff.sd = retval; 3353 if (copy_to_user(optval, &peeloff, len)) 3354 retval = -EFAULT; 3355 3356 out: 3357 return retval; 3358 } 3359 3360 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3361 * 3362 * Applications can enable or disable heartbeats for any peer address of 3363 * an association, modify an address's heartbeat interval, force a 3364 * heartbeat to be sent immediately, and adjust the address's maximum 3365 * number of retransmissions sent before an address is considered 3366 * unreachable. The following structure is used to access and modify an 3367 * address's parameters: 3368 * 3369 * struct sctp_paddrparams { 3370 * sctp_assoc_t spp_assoc_id; 3371 * struct sockaddr_storage spp_address; 3372 * uint32_t spp_hbinterval; 3373 * uint16_t spp_pathmaxrxt; 3374 * uint32_t spp_pathmtu; 3375 * uint32_t spp_sackdelay; 3376 * uint32_t spp_flags; 3377 * }; 3378 * 3379 * spp_assoc_id - (one-to-many style socket) This is filled in the 3380 * application, and identifies the association for 3381 * this query. 3382 * spp_address - This specifies which address is of interest. 3383 * spp_hbinterval - This contains the value of the heartbeat interval, 3384 * in milliseconds. If a value of zero 3385 * is present in this field then no changes are to 3386 * be made to this parameter. 3387 * spp_pathmaxrxt - This contains the maximum number of 3388 * retransmissions before this address shall be 3389 * considered unreachable. If a value of zero 3390 * is present in this field then no changes are to 3391 * be made to this parameter. 3392 * spp_pathmtu - When Path MTU discovery is disabled the value 3393 * specified here will be the "fixed" path mtu. 3394 * Note that if the spp_address field is empty 3395 * then all associations on this address will 3396 * have this fixed path mtu set upon them. 3397 * 3398 * spp_sackdelay - When delayed sack is enabled, this value specifies 3399 * the number of milliseconds that sacks will be delayed 3400 * for. This value will apply to all addresses of an 3401 * association if the spp_address field is empty. Note 3402 * also, that if delayed sack is enabled and this 3403 * value is set to 0, no change is made to the last 3404 * recorded delayed sack timer value. 3405 * 3406 * spp_flags - These flags are used to control various features 3407 * on an association. The flag field may contain 3408 * zero or more of the following options. 3409 * 3410 * SPP_HB_ENABLE - Enable heartbeats on the 3411 * specified address. Note that if the address 3412 * field is empty all addresses for the association 3413 * have heartbeats enabled upon them. 3414 * 3415 * SPP_HB_DISABLE - Disable heartbeats on the 3416 * speicifed address. Note that if the address 3417 * field is empty all addresses for the association 3418 * will have their heartbeats disabled. Note also 3419 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3420 * mutually exclusive, only one of these two should 3421 * be specified. Enabling both fields will have 3422 * undetermined results. 3423 * 3424 * SPP_HB_DEMAND - Request a user initiated heartbeat 3425 * to be made immediately. 3426 * 3427 * SPP_PMTUD_ENABLE - This field will enable PMTU 3428 * discovery upon the specified address. Note that 3429 * if the address feild is empty then all addresses 3430 * on the association are effected. 3431 * 3432 * SPP_PMTUD_DISABLE - This field will disable PMTU 3433 * discovery upon the specified address. Note that 3434 * if the address feild is empty then all addresses 3435 * on the association are effected. Not also that 3436 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3437 * exclusive. Enabling both will have undetermined 3438 * results. 3439 * 3440 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3441 * on delayed sack. The time specified in spp_sackdelay 3442 * is used to specify the sack delay for this address. Note 3443 * that if spp_address is empty then all addresses will 3444 * enable delayed sack and take on the sack delay 3445 * value specified in spp_sackdelay. 3446 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3447 * off delayed sack. If the spp_address field is blank then 3448 * delayed sack is disabled for the entire association. Note 3449 * also that this field is mutually exclusive to 3450 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3451 * results. 3452 */ 3453 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3454 char __user *optval, int __user *optlen) 3455 { 3456 struct sctp_paddrparams params; 3457 struct sctp_transport *trans = NULL; 3458 struct sctp_association *asoc = NULL; 3459 struct sctp_sock *sp = sctp_sk(sk); 3460 3461 if (len != sizeof(struct sctp_paddrparams)) 3462 return -EINVAL; 3463 3464 if (copy_from_user(¶ms, optval, len)) 3465 return -EFAULT; 3466 3467 /* If an address other than INADDR_ANY is specified, and 3468 * no transport is found, then the request is invalid. 3469 */ 3470 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3471 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3472 params.spp_assoc_id); 3473 if (!trans) { 3474 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3475 return -EINVAL; 3476 } 3477 } 3478 3479 /* Get association, if assoc_id != 0 and the socket is a one 3480 * to many style socket, and an association was not found, then 3481 * the id was invalid. 3482 */ 3483 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3484 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3485 SCTP_DEBUG_PRINTK("Failed no association\n"); 3486 return -EINVAL; 3487 } 3488 3489 if (trans) { 3490 /* Fetch transport values. */ 3491 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3492 params.spp_pathmtu = trans->pathmtu; 3493 params.spp_pathmaxrxt = trans->pathmaxrxt; 3494 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3495 3496 /*draft-11 doesn't say what to return in spp_flags*/ 3497 params.spp_flags = trans->param_flags; 3498 } else if (asoc) { 3499 /* Fetch association values. */ 3500 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3501 params.spp_pathmtu = asoc->pathmtu; 3502 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3503 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3504 3505 /*draft-11 doesn't say what to return in spp_flags*/ 3506 params.spp_flags = asoc->param_flags; 3507 } else { 3508 /* Fetch socket values. */ 3509 params.spp_hbinterval = sp->hbinterval; 3510 params.spp_pathmtu = sp->pathmtu; 3511 params.spp_sackdelay = sp->sackdelay; 3512 params.spp_pathmaxrxt = sp->pathmaxrxt; 3513 3514 /*draft-11 doesn't say what to return in spp_flags*/ 3515 params.spp_flags = sp->param_flags; 3516 } 3517 3518 if (copy_to_user(optval, ¶ms, len)) 3519 return -EFAULT; 3520 3521 if (put_user(len, optlen)) 3522 return -EFAULT; 3523 3524 return 0; 3525 } 3526 3527 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3528 * 3529 * This options will get or set the delayed ack timer. The time is set 3530 * in milliseconds. If the assoc_id is 0, then this sets or gets the 3531 * endpoints default delayed ack timer value. If the assoc_id field is 3532 * non-zero, then the set or get effects the specified association. 3533 * 3534 * struct sctp_assoc_value { 3535 * sctp_assoc_t assoc_id; 3536 * uint32_t assoc_value; 3537 * }; 3538 * 3539 * assoc_id - This parameter, indicates which association the 3540 * user is preforming an action upon. Note that if 3541 * this field's value is zero then the endpoints 3542 * default value is changed (effecting future 3543 * associations only). 3544 * 3545 * assoc_value - This parameter contains the number of milliseconds 3546 * that the user is requesting the delayed ACK timer 3547 * be set to. Note that this value is defined in 3548 * the standard to be between 200 and 500 milliseconds. 3549 * 3550 * Note: a value of zero will leave the value alone, 3551 * but disable SACK delay. A non-zero value will also 3552 * enable SACK delay. 3553 */ 3554 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 3555 char __user *optval, 3556 int __user *optlen) 3557 { 3558 struct sctp_assoc_value params; 3559 struct sctp_association *asoc = NULL; 3560 struct sctp_sock *sp = sctp_sk(sk); 3561 3562 if (len != sizeof(struct sctp_assoc_value)) 3563 return - EINVAL; 3564 3565 if (copy_from_user(¶ms, optval, len)) 3566 return -EFAULT; 3567 3568 /* Get association, if assoc_id != 0 and the socket is a one 3569 * to many style socket, and an association was not found, then 3570 * the id was invalid. 3571 */ 3572 asoc = sctp_id2assoc(sk, params.assoc_id); 3573 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3574 return -EINVAL; 3575 3576 if (asoc) { 3577 /* Fetch association values. */ 3578 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 3579 params.assoc_value = jiffies_to_msecs( 3580 asoc->sackdelay); 3581 else 3582 params.assoc_value = 0; 3583 } else { 3584 /* Fetch socket values. */ 3585 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 3586 params.assoc_value = sp->sackdelay; 3587 else 3588 params.assoc_value = 0; 3589 } 3590 3591 if (copy_to_user(optval, ¶ms, len)) 3592 return -EFAULT; 3593 3594 if (put_user(len, optlen)) 3595 return -EFAULT; 3596 3597 return 0; 3598 } 3599 3600 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3601 * 3602 * Applications can specify protocol parameters for the default association 3603 * initialization. The option name argument to setsockopt() and getsockopt() 3604 * is SCTP_INITMSG. 3605 * 3606 * Setting initialization parameters is effective only on an unconnected 3607 * socket (for UDP-style sockets only future associations are effected 3608 * by the change). With TCP-style sockets, this option is inherited by 3609 * sockets derived from a listener socket. 3610 */ 3611 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3612 { 3613 if (len != sizeof(struct sctp_initmsg)) 3614 return -EINVAL; 3615 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3616 return -EFAULT; 3617 return 0; 3618 } 3619 3620 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3621 char __user *optval, 3622 int __user *optlen) 3623 { 3624 sctp_assoc_t id; 3625 struct sctp_association *asoc; 3626 struct list_head *pos; 3627 int cnt = 0; 3628 3629 if (len != sizeof(sctp_assoc_t)) 3630 return -EINVAL; 3631 3632 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3633 return -EFAULT; 3634 3635 /* For UDP-style sockets, id specifies the association to query. */ 3636 asoc = sctp_id2assoc(sk, id); 3637 if (!asoc) 3638 return -EINVAL; 3639 3640 list_for_each(pos, &asoc->peer.transport_addr_list) { 3641 cnt ++; 3642 } 3643 3644 return cnt; 3645 } 3646 3647 /* 3648 * Old API for getting list of peer addresses. Does not work for 32-bit 3649 * programs running on a 64-bit kernel 3650 */ 3651 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3652 char __user *optval, 3653 int __user *optlen) 3654 { 3655 struct sctp_association *asoc; 3656 struct list_head *pos; 3657 int cnt = 0; 3658 struct sctp_getaddrs_old getaddrs; 3659 struct sctp_transport *from; 3660 void __user *to; 3661 union sctp_addr temp; 3662 struct sctp_sock *sp = sctp_sk(sk); 3663 int addrlen; 3664 3665 if (len != sizeof(struct sctp_getaddrs_old)) 3666 return -EINVAL; 3667 3668 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3669 return -EFAULT; 3670 3671 if (getaddrs.addr_num <= 0) return -EINVAL; 3672 3673 /* For UDP-style sockets, id specifies the association to query. */ 3674 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3675 if (!asoc) 3676 return -EINVAL; 3677 3678 to = (void __user *)getaddrs.addrs; 3679 list_for_each(pos, &asoc->peer.transport_addr_list) { 3680 from = list_entry(pos, struct sctp_transport, transports); 3681 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3682 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3683 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3684 temp.v4.sin_port = htons(temp.v4.sin_port); 3685 if (copy_to_user(to, &temp, addrlen)) 3686 return -EFAULT; 3687 to += addrlen ; 3688 cnt ++; 3689 if (cnt >= getaddrs.addr_num) break; 3690 } 3691 getaddrs.addr_num = cnt; 3692 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3693 return -EFAULT; 3694 3695 return 0; 3696 } 3697 3698 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 3699 char __user *optval, int __user *optlen) 3700 { 3701 struct sctp_association *asoc; 3702 struct list_head *pos; 3703 int cnt = 0; 3704 struct sctp_getaddrs getaddrs; 3705 struct sctp_transport *from; 3706 void __user *to; 3707 union sctp_addr temp; 3708 struct sctp_sock *sp = sctp_sk(sk); 3709 int addrlen; 3710 size_t space_left; 3711 int bytes_copied; 3712 3713 if (len < sizeof(struct sctp_getaddrs)) 3714 return -EINVAL; 3715 3716 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3717 return -EFAULT; 3718 3719 /* For UDP-style sockets, id specifies the association to query. */ 3720 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3721 if (!asoc) 3722 return -EINVAL; 3723 3724 to = optval + offsetof(struct sctp_getaddrs,addrs); 3725 space_left = len - sizeof(struct sctp_getaddrs) - 3726 offsetof(struct sctp_getaddrs,addrs); 3727 3728 list_for_each(pos, &asoc->peer.transport_addr_list) { 3729 from = list_entry(pos, struct sctp_transport, transports); 3730 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3731 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3732 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3733 if(space_left < addrlen) 3734 return -ENOMEM; 3735 temp.v4.sin_port = htons(temp.v4.sin_port); 3736 if (copy_to_user(to, &temp, addrlen)) 3737 return -EFAULT; 3738 to += addrlen; 3739 cnt++; 3740 space_left -= addrlen; 3741 } 3742 3743 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 3744 return -EFAULT; 3745 bytes_copied = ((char __user *)to) - optval; 3746 if (put_user(bytes_copied, optlen)) 3747 return -EFAULT; 3748 3749 return 0; 3750 } 3751 3752 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 3753 char __user *optval, 3754 int __user *optlen) 3755 { 3756 sctp_assoc_t id; 3757 struct sctp_bind_addr *bp; 3758 struct sctp_association *asoc; 3759 struct list_head *pos; 3760 struct sctp_sockaddr_entry *addr; 3761 rwlock_t *addr_lock; 3762 unsigned long flags; 3763 int cnt = 0; 3764 3765 if (len != sizeof(sctp_assoc_t)) 3766 return -EINVAL; 3767 3768 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3769 return -EFAULT; 3770 3771 /* 3772 * For UDP-style sockets, id specifies the association to query. 3773 * If the id field is set to the value '0' then the locally bound 3774 * addresses are returned without regard to any particular 3775 * association. 3776 */ 3777 if (0 == id) { 3778 bp = &sctp_sk(sk)->ep->base.bind_addr; 3779 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3780 } else { 3781 asoc = sctp_id2assoc(sk, id); 3782 if (!asoc) 3783 return -EINVAL; 3784 bp = &asoc->base.bind_addr; 3785 addr_lock = &asoc->base.addr_lock; 3786 } 3787 3788 sctp_read_lock(addr_lock); 3789 3790 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 3791 * addresses from the global local address list. 3792 */ 3793 if (sctp_list_single_entry(&bp->address_list)) { 3794 addr = list_entry(bp->address_list.next, 3795 struct sctp_sockaddr_entry, list); 3796 if (sctp_is_any(&addr->a)) { 3797 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3798 list_for_each(pos, &sctp_local_addr_list) { 3799 addr = list_entry(pos, 3800 struct sctp_sockaddr_entry, 3801 list); 3802 if ((PF_INET == sk->sk_family) && 3803 (AF_INET6 == addr->a.sa.sa_family)) 3804 continue; 3805 cnt++; 3806 } 3807 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3808 flags); 3809 } else { 3810 cnt = 1; 3811 } 3812 goto done; 3813 } 3814 3815 list_for_each(pos, &bp->address_list) { 3816 cnt ++; 3817 } 3818 3819 done: 3820 sctp_read_unlock(addr_lock); 3821 return cnt; 3822 } 3823 3824 /* Helper function that copies local addresses to user and returns the number 3825 * of addresses copied. 3826 */ 3827 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs, 3828 void __user *to) 3829 { 3830 struct list_head *pos; 3831 struct sctp_sockaddr_entry *addr; 3832 unsigned long flags; 3833 union sctp_addr temp; 3834 int cnt = 0; 3835 int addrlen; 3836 3837 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3838 list_for_each(pos, &sctp_local_addr_list) { 3839 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3840 if ((PF_INET == sk->sk_family) && 3841 (AF_INET6 == addr->a.sa.sa_family)) 3842 continue; 3843 memcpy(&temp, &addr->a, sizeof(temp)); 3844 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3845 &temp); 3846 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3847 temp.v4.sin_port = htons(port); 3848 if (copy_to_user(to, &temp, addrlen)) { 3849 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3850 flags); 3851 return -EFAULT; 3852 } 3853 to += addrlen; 3854 cnt ++; 3855 if (cnt >= max_addrs) break; 3856 } 3857 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3858 3859 return cnt; 3860 } 3861 3862 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, 3863 void __user **to, size_t space_left) 3864 { 3865 struct list_head *pos; 3866 struct sctp_sockaddr_entry *addr; 3867 unsigned long flags; 3868 union sctp_addr temp; 3869 int cnt = 0; 3870 int addrlen; 3871 3872 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3873 list_for_each(pos, &sctp_local_addr_list) { 3874 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3875 if ((PF_INET == sk->sk_family) && 3876 (AF_INET6 == addr->a.sa.sa_family)) 3877 continue; 3878 memcpy(&temp, &addr->a, sizeof(temp)); 3879 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3880 &temp); 3881 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3882 if(space_left<addrlen) 3883 return -ENOMEM; 3884 temp.v4.sin_port = htons(port); 3885 if (copy_to_user(*to, &temp, addrlen)) { 3886 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3887 flags); 3888 return -EFAULT; 3889 } 3890 *to += addrlen; 3891 cnt ++; 3892 space_left -= addrlen; 3893 } 3894 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3895 3896 return cnt; 3897 } 3898 3899 /* Old API for getting list of local addresses. Does not work for 32-bit 3900 * programs running on a 64-bit kernel 3901 */ 3902 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 3903 char __user *optval, int __user *optlen) 3904 { 3905 struct sctp_bind_addr *bp; 3906 struct sctp_association *asoc; 3907 struct list_head *pos; 3908 int cnt = 0; 3909 struct sctp_getaddrs_old getaddrs; 3910 struct sctp_sockaddr_entry *addr; 3911 void __user *to; 3912 union sctp_addr temp; 3913 struct sctp_sock *sp = sctp_sk(sk); 3914 int addrlen; 3915 rwlock_t *addr_lock; 3916 int err = 0; 3917 3918 if (len != sizeof(struct sctp_getaddrs_old)) 3919 return -EINVAL; 3920 3921 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3922 return -EFAULT; 3923 3924 if (getaddrs.addr_num <= 0) return -EINVAL; 3925 /* 3926 * For UDP-style sockets, id specifies the association to query. 3927 * If the id field is set to the value '0' then the locally bound 3928 * addresses are returned without regard to any particular 3929 * association. 3930 */ 3931 if (0 == getaddrs.assoc_id) { 3932 bp = &sctp_sk(sk)->ep->base.bind_addr; 3933 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3934 } else { 3935 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3936 if (!asoc) 3937 return -EINVAL; 3938 bp = &asoc->base.bind_addr; 3939 addr_lock = &asoc->base.addr_lock; 3940 } 3941 3942 to = getaddrs.addrs; 3943 3944 sctp_read_lock(addr_lock); 3945 3946 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 3947 * addresses from the global local address list. 3948 */ 3949 if (sctp_list_single_entry(&bp->address_list)) { 3950 addr = list_entry(bp->address_list.next, 3951 struct sctp_sockaddr_entry, list); 3952 if (sctp_is_any(&addr->a)) { 3953 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port, 3954 getaddrs.addr_num, 3955 to); 3956 if (cnt < 0) { 3957 err = cnt; 3958 goto unlock; 3959 } 3960 goto copy_getaddrs; 3961 } 3962 } 3963 3964 list_for_each(pos, &bp->address_list) { 3965 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3966 memcpy(&temp, &addr->a, sizeof(temp)); 3967 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3968 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3969 temp.v4.sin_port = htons(temp.v4.sin_port); 3970 if (copy_to_user(to, &temp, addrlen)) { 3971 err = -EFAULT; 3972 goto unlock; 3973 } 3974 to += addrlen; 3975 cnt ++; 3976 if (cnt >= getaddrs.addr_num) break; 3977 } 3978 3979 copy_getaddrs: 3980 getaddrs.addr_num = cnt; 3981 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3982 err = -EFAULT; 3983 3984 unlock: 3985 sctp_read_unlock(addr_lock); 3986 return err; 3987 } 3988 3989 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 3990 char __user *optval, int __user *optlen) 3991 { 3992 struct sctp_bind_addr *bp; 3993 struct sctp_association *asoc; 3994 struct list_head *pos; 3995 int cnt = 0; 3996 struct sctp_getaddrs getaddrs; 3997 struct sctp_sockaddr_entry *addr; 3998 void __user *to; 3999 union sctp_addr temp; 4000 struct sctp_sock *sp = sctp_sk(sk); 4001 int addrlen; 4002 rwlock_t *addr_lock; 4003 int err = 0; 4004 size_t space_left; 4005 int bytes_copied; 4006 4007 if (len <= sizeof(struct sctp_getaddrs)) 4008 return -EINVAL; 4009 4010 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4011 return -EFAULT; 4012 4013 /* 4014 * For UDP-style sockets, id specifies the association to query. 4015 * If the id field is set to the value '0' then the locally bound 4016 * addresses are returned without regard to any particular 4017 * association. 4018 */ 4019 if (0 == getaddrs.assoc_id) { 4020 bp = &sctp_sk(sk)->ep->base.bind_addr; 4021 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4022 } else { 4023 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4024 if (!asoc) 4025 return -EINVAL; 4026 bp = &asoc->base.bind_addr; 4027 addr_lock = &asoc->base.addr_lock; 4028 } 4029 4030 to = optval + offsetof(struct sctp_getaddrs,addrs); 4031 space_left = len - sizeof(struct sctp_getaddrs) - 4032 offsetof(struct sctp_getaddrs,addrs); 4033 4034 sctp_read_lock(addr_lock); 4035 4036 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4037 * addresses from the global local address list. 4038 */ 4039 if (sctp_list_single_entry(&bp->address_list)) { 4040 addr = list_entry(bp->address_list.next, 4041 struct sctp_sockaddr_entry, list); 4042 if (sctp_is_any(&addr->a)) { 4043 cnt = sctp_copy_laddrs_to_user(sk, bp->port, 4044 &to, space_left); 4045 if (cnt < 0) { 4046 err = cnt; 4047 goto unlock; 4048 } 4049 goto copy_getaddrs; 4050 } 4051 } 4052 4053 list_for_each(pos, &bp->address_list) { 4054 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4055 memcpy(&temp, &addr->a, sizeof(temp)); 4056 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4057 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4058 if(space_left < addrlen) 4059 return -ENOMEM; /*fixme: right error?*/ 4060 temp.v4.sin_port = htons(temp.v4.sin_port); 4061 if (copy_to_user(to, &temp, addrlen)) { 4062 err = -EFAULT; 4063 goto unlock; 4064 } 4065 to += addrlen; 4066 cnt ++; 4067 space_left -= addrlen; 4068 } 4069 4070 copy_getaddrs: 4071 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4072 return -EFAULT; 4073 bytes_copied = ((char __user *)to) - optval; 4074 if (put_user(bytes_copied, optlen)) 4075 return -EFAULT; 4076 4077 unlock: 4078 sctp_read_unlock(addr_lock); 4079 return err; 4080 } 4081 4082 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4083 * 4084 * Requests that the local SCTP stack use the enclosed peer address as 4085 * the association primary. The enclosed address must be one of the 4086 * association peer's addresses. 4087 */ 4088 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4089 char __user *optval, int __user *optlen) 4090 { 4091 struct sctp_prim prim; 4092 struct sctp_association *asoc; 4093 struct sctp_sock *sp = sctp_sk(sk); 4094 4095 if (len != sizeof(struct sctp_prim)) 4096 return -EINVAL; 4097 4098 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 4099 return -EFAULT; 4100 4101 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4102 if (!asoc) 4103 return -EINVAL; 4104 4105 if (!asoc->peer.primary_path) 4106 return -ENOTCONN; 4107 4108 asoc->peer.primary_path->ipaddr.v4.sin_port = 4109 htons(asoc->peer.primary_path->ipaddr.v4.sin_port); 4110 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4111 sizeof(union sctp_addr)); 4112 asoc->peer.primary_path->ipaddr.v4.sin_port = 4113 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port); 4114 4115 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4116 (union sctp_addr *)&prim.ssp_addr); 4117 4118 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim))) 4119 return -EFAULT; 4120 4121 return 0; 4122 } 4123 4124 /* 4125 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER) 4126 * 4127 * Requests that the local endpoint set the specified Adaption Layer 4128 * Indication parameter for all future INIT and INIT-ACK exchanges. 4129 */ 4130 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len, 4131 char __user *optval, int __user *optlen) 4132 { 4133 struct sctp_setadaption adaption; 4134 4135 if (len != sizeof(struct sctp_setadaption)) 4136 return -EINVAL; 4137 4138 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind; 4139 if (copy_to_user(optval, &adaption, len)) 4140 return -EFAULT; 4141 4142 return 0; 4143 } 4144 4145 /* 4146 * 4147 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4148 * 4149 * Applications that wish to use the sendto() system call may wish to 4150 * specify a default set of parameters that would normally be supplied 4151 * through the inclusion of ancillary data. This socket option allows 4152 * such an application to set the default sctp_sndrcvinfo structure. 4153 4154 4155 * The application that wishes to use this socket option simply passes 4156 * in to this call the sctp_sndrcvinfo structure defined in Section 4157 * 5.2.2) The input parameters accepted by this call include 4158 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4159 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4160 * to this call if the caller is using the UDP model. 4161 * 4162 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4163 */ 4164 static int sctp_getsockopt_default_send_param(struct sock *sk, 4165 int len, char __user *optval, 4166 int __user *optlen) 4167 { 4168 struct sctp_sndrcvinfo info; 4169 struct sctp_association *asoc; 4170 struct sctp_sock *sp = sctp_sk(sk); 4171 4172 if (len != sizeof(struct sctp_sndrcvinfo)) 4173 return -EINVAL; 4174 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo))) 4175 return -EFAULT; 4176 4177 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4178 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4179 return -EINVAL; 4180 4181 if (asoc) { 4182 info.sinfo_stream = asoc->default_stream; 4183 info.sinfo_flags = asoc->default_flags; 4184 info.sinfo_ppid = asoc->default_ppid; 4185 info.sinfo_context = asoc->default_context; 4186 info.sinfo_timetolive = asoc->default_timetolive; 4187 } else { 4188 info.sinfo_stream = sp->default_stream; 4189 info.sinfo_flags = sp->default_flags; 4190 info.sinfo_ppid = sp->default_ppid; 4191 info.sinfo_context = sp->default_context; 4192 info.sinfo_timetolive = sp->default_timetolive; 4193 } 4194 4195 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo))) 4196 return -EFAULT; 4197 4198 return 0; 4199 } 4200 4201 /* 4202 * 4203 * 7.1.5 SCTP_NODELAY 4204 * 4205 * Turn on/off any Nagle-like algorithm. This means that packets are 4206 * generally sent as soon as possible and no unnecessary delays are 4207 * introduced, at the cost of more packets in the network. Expects an 4208 * integer boolean flag. 4209 */ 4210 4211 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4212 char __user *optval, int __user *optlen) 4213 { 4214 int val; 4215 4216 if (len < sizeof(int)) 4217 return -EINVAL; 4218 4219 len = sizeof(int); 4220 val = (sctp_sk(sk)->nodelay == 1); 4221 if (put_user(len, optlen)) 4222 return -EFAULT; 4223 if (copy_to_user(optval, &val, len)) 4224 return -EFAULT; 4225 return 0; 4226 } 4227 4228 /* 4229 * 4230 * 7.1.1 SCTP_RTOINFO 4231 * 4232 * The protocol parameters used to initialize and bound retransmission 4233 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4234 * and modify these parameters. 4235 * All parameters are time values, in milliseconds. A value of 0, when 4236 * modifying the parameters, indicates that the current value should not 4237 * be changed. 4238 * 4239 */ 4240 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4241 char __user *optval, 4242 int __user *optlen) { 4243 struct sctp_rtoinfo rtoinfo; 4244 struct sctp_association *asoc; 4245 4246 if (len != sizeof (struct sctp_rtoinfo)) 4247 return -EINVAL; 4248 4249 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo))) 4250 return -EFAULT; 4251 4252 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4253 4254 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4255 return -EINVAL; 4256 4257 /* Values corresponding to the specific association. */ 4258 if (asoc) { 4259 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4260 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4261 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4262 } else { 4263 /* Values corresponding to the endpoint. */ 4264 struct sctp_sock *sp = sctp_sk(sk); 4265 4266 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4267 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4268 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4269 } 4270 4271 if (put_user(len, optlen)) 4272 return -EFAULT; 4273 4274 if (copy_to_user(optval, &rtoinfo, len)) 4275 return -EFAULT; 4276 4277 return 0; 4278 } 4279 4280 /* 4281 * 4282 * 7.1.2 SCTP_ASSOCINFO 4283 * 4284 * This option is used to tune the the maximum retransmission attempts 4285 * of the association. 4286 * Returns an error if the new association retransmission value is 4287 * greater than the sum of the retransmission value of the peer. 4288 * See [SCTP] for more information. 4289 * 4290 */ 4291 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4292 char __user *optval, 4293 int __user *optlen) 4294 { 4295 4296 struct sctp_assocparams assocparams; 4297 struct sctp_association *asoc; 4298 struct list_head *pos; 4299 int cnt = 0; 4300 4301 if (len != sizeof (struct sctp_assocparams)) 4302 return -EINVAL; 4303 4304 if (copy_from_user(&assocparams, optval, 4305 sizeof (struct sctp_assocparams))) 4306 return -EFAULT; 4307 4308 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4309 4310 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4311 return -EINVAL; 4312 4313 /* Values correspoinding to the specific association */ 4314 if (asoc) { 4315 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4316 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4317 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4318 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4319 * 1000) + 4320 (asoc->cookie_life.tv_usec 4321 / 1000); 4322 4323 list_for_each(pos, &asoc->peer.transport_addr_list) { 4324 cnt ++; 4325 } 4326 4327 assocparams.sasoc_number_peer_destinations = cnt; 4328 } else { 4329 /* Values corresponding to the endpoint */ 4330 struct sctp_sock *sp = sctp_sk(sk); 4331 4332 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4333 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4334 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4335 assocparams.sasoc_cookie_life = 4336 sp->assocparams.sasoc_cookie_life; 4337 assocparams.sasoc_number_peer_destinations = 4338 sp->assocparams. 4339 sasoc_number_peer_destinations; 4340 } 4341 4342 if (put_user(len, optlen)) 4343 return -EFAULT; 4344 4345 if (copy_to_user(optval, &assocparams, len)) 4346 return -EFAULT; 4347 4348 return 0; 4349 } 4350 4351 /* 4352 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4353 * 4354 * This socket option is a boolean flag which turns on or off mapped V4 4355 * addresses. If this option is turned on and the socket is type 4356 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4357 * If this option is turned off, then no mapping will be done of V4 4358 * addresses and a user will receive both PF_INET6 and PF_INET type 4359 * addresses on the socket. 4360 */ 4361 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4362 char __user *optval, int __user *optlen) 4363 { 4364 int val; 4365 struct sctp_sock *sp = sctp_sk(sk); 4366 4367 if (len < sizeof(int)) 4368 return -EINVAL; 4369 4370 len = sizeof(int); 4371 val = sp->v4mapped; 4372 if (put_user(len, optlen)) 4373 return -EFAULT; 4374 if (copy_to_user(optval, &val, len)) 4375 return -EFAULT; 4376 4377 return 0; 4378 } 4379 4380 /* 4381 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4382 * 4383 * This socket option specifies the maximum size to put in any outgoing 4384 * SCTP chunk. If a message is larger than this size it will be 4385 * fragmented by SCTP into the specified size. Note that the underlying 4386 * SCTP implementation may fragment into smaller sized chunks when the 4387 * PMTU of the underlying association is smaller than the value set by 4388 * the user. 4389 */ 4390 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4391 char __user *optval, int __user *optlen) 4392 { 4393 int val; 4394 4395 if (len < sizeof(int)) 4396 return -EINVAL; 4397 4398 len = sizeof(int); 4399 4400 val = sctp_sk(sk)->user_frag; 4401 if (put_user(len, optlen)) 4402 return -EFAULT; 4403 if (copy_to_user(optval, &val, len)) 4404 return -EFAULT; 4405 4406 return 0; 4407 } 4408 4409 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 4410 char __user *optval, int __user *optlen) 4411 { 4412 int retval = 0; 4413 int len; 4414 4415 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 4416 sk, optname); 4417 4418 /* I can hardly begin to describe how wrong this is. This is 4419 * so broken as to be worse than useless. The API draft 4420 * REALLY is NOT helpful here... I am not convinced that the 4421 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 4422 * are at all well-founded. 4423 */ 4424 if (level != SOL_SCTP) { 4425 struct sctp_af *af = sctp_sk(sk)->pf->af; 4426 4427 retval = af->getsockopt(sk, level, optname, optval, optlen); 4428 return retval; 4429 } 4430 4431 if (get_user(len, optlen)) 4432 return -EFAULT; 4433 4434 sctp_lock_sock(sk); 4435 4436 switch (optname) { 4437 case SCTP_STATUS: 4438 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4439 break; 4440 case SCTP_DISABLE_FRAGMENTS: 4441 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4442 optlen); 4443 break; 4444 case SCTP_EVENTS: 4445 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4446 break; 4447 case SCTP_AUTOCLOSE: 4448 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4449 break; 4450 case SCTP_SOCKOPT_PEELOFF: 4451 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4452 break; 4453 case SCTP_PEER_ADDR_PARAMS: 4454 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4455 optlen); 4456 break; 4457 case SCTP_DELAYED_ACK_TIME: 4458 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 4459 optlen); 4460 break; 4461 case SCTP_INITMSG: 4462 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4463 break; 4464 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4465 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4466 optlen); 4467 break; 4468 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4469 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4470 optlen); 4471 break; 4472 case SCTP_GET_PEER_ADDRS_OLD: 4473 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4474 optlen); 4475 break; 4476 case SCTP_GET_LOCAL_ADDRS_OLD: 4477 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4478 optlen); 4479 break; 4480 case SCTP_GET_PEER_ADDRS: 4481 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4482 optlen); 4483 break; 4484 case SCTP_GET_LOCAL_ADDRS: 4485 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4486 optlen); 4487 break; 4488 case SCTP_DEFAULT_SEND_PARAM: 4489 retval = sctp_getsockopt_default_send_param(sk, len, 4490 optval, optlen); 4491 break; 4492 case SCTP_PRIMARY_ADDR: 4493 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4494 break; 4495 case SCTP_NODELAY: 4496 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4497 break; 4498 case SCTP_RTOINFO: 4499 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4500 break; 4501 case SCTP_ASSOCINFO: 4502 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4503 break; 4504 case SCTP_I_WANT_MAPPED_V4_ADDR: 4505 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4506 break; 4507 case SCTP_MAXSEG: 4508 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4509 break; 4510 case SCTP_GET_PEER_ADDR_INFO: 4511 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4512 optlen); 4513 break; 4514 case SCTP_ADAPTION_LAYER: 4515 retval = sctp_getsockopt_adaption_layer(sk, len, optval, 4516 optlen); 4517 break; 4518 default: 4519 retval = -ENOPROTOOPT; 4520 break; 4521 }; 4522 4523 sctp_release_sock(sk); 4524 return retval; 4525 } 4526 4527 static void sctp_hash(struct sock *sk) 4528 { 4529 /* STUB */ 4530 } 4531 4532 static void sctp_unhash(struct sock *sk) 4533 { 4534 /* STUB */ 4535 } 4536 4537 /* Check if port is acceptable. Possibly find first available port. 4538 * 4539 * The port hash table (contained in the 'global' SCTP protocol storage 4540 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4541 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4542 * list (the list number is the port number hashed out, so as you 4543 * would expect from a hash function, all the ports in a given list have 4544 * such a number that hashes out to the same list number; you were 4545 * expecting that, right?); so each list has a set of ports, with a 4546 * link to the socket (struct sock) that uses it, the port number and 4547 * a fastreuse flag (FIXME: NPI ipg). 4548 */ 4549 static struct sctp_bind_bucket *sctp_bucket_create( 4550 struct sctp_bind_hashbucket *head, unsigned short snum); 4551 4552 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 4553 { 4554 struct sctp_bind_hashbucket *head; /* hash list */ 4555 struct sctp_bind_bucket *pp; /* hash list port iterator */ 4556 unsigned short snum; 4557 int ret; 4558 4559 /* NOTE: Remember to put this back to net order. */ 4560 addr->v4.sin_port = ntohs(addr->v4.sin_port); 4561 snum = addr->v4.sin_port; 4562 4563 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 4564 sctp_local_bh_disable(); 4565 4566 if (snum == 0) { 4567 /* Search for an available port. 4568 * 4569 * 'sctp_port_rover' was the last port assigned, so 4570 * we start to search from 'sctp_port_rover + 4571 * 1'. What we do is first check if port 'rover' is 4572 * already in the hash table; if not, we use that; if 4573 * it is, we try next. 4574 */ 4575 int low = sysctl_local_port_range[0]; 4576 int high = sysctl_local_port_range[1]; 4577 int remaining = (high - low) + 1; 4578 int rover; 4579 int index; 4580 4581 sctp_spin_lock(&sctp_port_alloc_lock); 4582 rover = sctp_port_rover; 4583 do { 4584 rover++; 4585 if ((rover < low) || (rover > high)) 4586 rover = low; 4587 index = sctp_phashfn(rover); 4588 head = &sctp_port_hashtable[index]; 4589 sctp_spin_lock(&head->lock); 4590 for (pp = head->chain; pp; pp = pp->next) 4591 if (pp->port == rover) 4592 goto next; 4593 break; 4594 next: 4595 sctp_spin_unlock(&head->lock); 4596 } while (--remaining > 0); 4597 sctp_port_rover = rover; 4598 sctp_spin_unlock(&sctp_port_alloc_lock); 4599 4600 /* Exhausted local port range during search? */ 4601 ret = 1; 4602 if (remaining <= 0) 4603 goto fail; 4604 4605 /* OK, here is the one we will use. HEAD (the port 4606 * hash table list entry) is non-NULL and we hold it's 4607 * mutex. 4608 */ 4609 snum = rover; 4610 } else { 4611 /* We are given an specific port number; we verify 4612 * that it is not being used. If it is used, we will 4613 * exahust the search in the hash list corresponding 4614 * to the port number (snum) - we detect that with the 4615 * port iterator, pp being NULL. 4616 */ 4617 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 4618 sctp_spin_lock(&head->lock); 4619 for (pp = head->chain; pp; pp = pp->next) { 4620 if (pp->port == snum) 4621 goto pp_found; 4622 } 4623 } 4624 pp = NULL; 4625 goto pp_not_found; 4626 pp_found: 4627 if (!hlist_empty(&pp->owner)) { 4628 /* We had a port hash table hit - there is an 4629 * available port (pp != NULL) and it is being 4630 * used by other socket (pp->owner not empty); that other 4631 * socket is going to be sk2. 4632 */ 4633 int reuse = sk->sk_reuse; 4634 struct sock *sk2; 4635 struct hlist_node *node; 4636 4637 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 4638 if (pp->fastreuse && sk->sk_reuse) 4639 goto success; 4640 4641 /* Run through the list of sockets bound to the port 4642 * (pp->port) [via the pointers bind_next and 4643 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 4644 * we get the endpoint they describe and run through 4645 * the endpoint's list of IP (v4 or v6) addresses, 4646 * comparing each of the addresses with the address of 4647 * the socket sk. If we find a match, then that means 4648 * that this port/socket (sk) combination are already 4649 * in an endpoint. 4650 */ 4651 sk_for_each_bound(sk2, node, &pp->owner) { 4652 struct sctp_endpoint *ep2; 4653 ep2 = sctp_sk(sk2)->ep; 4654 4655 if (reuse && sk2->sk_reuse) 4656 continue; 4657 4658 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 4659 sctp_sk(sk))) { 4660 ret = (long)sk2; 4661 goto fail_unlock; 4662 } 4663 } 4664 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 4665 } 4666 pp_not_found: 4667 /* If there was a hash table miss, create a new port. */ 4668 ret = 1; 4669 if (!pp && !(pp = sctp_bucket_create(head, snum))) 4670 goto fail_unlock; 4671 4672 /* In either case (hit or miss), make sure fastreuse is 1 only 4673 * if sk->sk_reuse is too (that is, if the caller requested 4674 * SO_REUSEADDR on this socket -sk-). 4675 */ 4676 if (hlist_empty(&pp->owner)) 4677 pp->fastreuse = sk->sk_reuse ? 1 : 0; 4678 else if (pp->fastreuse && !sk->sk_reuse) 4679 pp->fastreuse = 0; 4680 4681 /* We are set, so fill up all the data in the hash table 4682 * entry, tie the socket list information with the rest of the 4683 * sockets FIXME: Blurry, NPI (ipg). 4684 */ 4685 success: 4686 inet_sk(sk)->num = snum; 4687 if (!sctp_sk(sk)->bind_hash) { 4688 sk_add_bind_node(sk, &pp->owner); 4689 sctp_sk(sk)->bind_hash = pp; 4690 } 4691 ret = 0; 4692 4693 fail_unlock: 4694 sctp_spin_unlock(&head->lock); 4695 4696 fail: 4697 sctp_local_bh_enable(); 4698 addr->v4.sin_port = htons(addr->v4.sin_port); 4699 return ret; 4700 } 4701 4702 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 4703 * port is requested. 4704 */ 4705 static int sctp_get_port(struct sock *sk, unsigned short snum) 4706 { 4707 long ret; 4708 union sctp_addr addr; 4709 struct sctp_af *af = sctp_sk(sk)->pf->af; 4710 4711 /* Set up a dummy address struct from the sk. */ 4712 af->from_sk(&addr, sk); 4713 addr.v4.sin_port = htons(snum); 4714 4715 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 4716 ret = sctp_get_port_local(sk, &addr); 4717 4718 return (ret ? 1 : 0); 4719 } 4720 4721 /* 4722 * 3.1.3 listen() - UDP Style Syntax 4723 * 4724 * By default, new associations are not accepted for UDP style sockets. 4725 * An application uses listen() to mark a socket as being able to 4726 * accept new associations. 4727 */ 4728 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 4729 { 4730 struct sctp_sock *sp = sctp_sk(sk); 4731 struct sctp_endpoint *ep = sp->ep; 4732 4733 /* Only UDP style sockets that are not peeled off are allowed to 4734 * listen(). 4735 */ 4736 if (!sctp_style(sk, UDP)) 4737 return -EINVAL; 4738 4739 /* If backlog is zero, disable listening. */ 4740 if (!backlog) { 4741 if (sctp_sstate(sk, CLOSED)) 4742 return 0; 4743 4744 sctp_unhash_endpoint(ep); 4745 sk->sk_state = SCTP_SS_CLOSED; 4746 } 4747 4748 /* Return if we are already listening. */ 4749 if (sctp_sstate(sk, LISTENING)) 4750 return 0; 4751 4752 /* 4753 * If a bind() or sctp_bindx() is not called prior to a listen() 4754 * call that allows new associations to be accepted, the system 4755 * picks an ephemeral port and will choose an address set equivalent 4756 * to binding with a wildcard address. 4757 * 4758 * This is not currently spelled out in the SCTP sockets 4759 * extensions draft, but follows the practice as seen in TCP 4760 * sockets. 4761 */ 4762 if (!ep->base.bind_addr.port) { 4763 if (sctp_autobind(sk)) 4764 return -EAGAIN; 4765 } 4766 sk->sk_state = SCTP_SS_LISTENING; 4767 sctp_hash_endpoint(ep); 4768 return 0; 4769 } 4770 4771 /* 4772 * 4.1.3 listen() - TCP Style Syntax 4773 * 4774 * Applications uses listen() to ready the SCTP endpoint for accepting 4775 * inbound associations. 4776 */ 4777 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 4778 { 4779 struct sctp_sock *sp = sctp_sk(sk); 4780 struct sctp_endpoint *ep = sp->ep; 4781 4782 /* If backlog is zero, disable listening. */ 4783 if (!backlog) { 4784 if (sctp_sstate(sk, CLOSED)) 4785 return 0; 4786 4787 sctp_unhash_endpoint(ep); 4788 sk->sk_state = SCTP_SS_CLOSED; 4789 } 4790 4791 if (sctp_sstate(sk, LISTENING)) 4792 return 0; 4793 4794 /* 4795 * If a bind() or sctp_bindx() is not called prior to a listen() 4796 * call that allows new associations to be accepted, the system 4797 * picks an ephemeral port and will choose an address set equivalent 4798 * to binding with a wildcard address. 4799 * 4800 * This is not currently spelled out in the SCTP sockets 4801 * extensions draft, but follows the practice as seen in TCP 4802 * sockets. 4803 */ 4804 if (!ep->base.bind_addr.port) { 4805 if (sctp_autobind(sk)) 4806 return -EAGAIN; 4807 } 4808 sk->sk_state = SCTP_SS_LISTENING; 4809 sk->sk_max_ack_backlog = backlog; 4810 sctp_hash_endpoint(ep); 4811 return 0; 4812 } 4813 4814 /* 4815 * Move a socket to LISTENING state. 4816 */ 4817 int sctp_inet_listen(struct socket *sock, int backlog) 4818 { 4819 struct sock *sk = sock->sk; 4820 struct crypto_tfm *tfm=NULL; 4821 int err = -EINVAL; 4822 4823 if (unlikely(backlog < 0)) 4824 goto out; 4825 4826 sctp_lock_sock(sk); 4827 4828 if (sock->state != SS_UNCONNECTED) 4829 goto out; 4830 4831 /* Allocate HMAC for generating cookie. */ 4832 if (sctp_hmac_alg) { 4833 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0); 4834 if (!tfm) { 4835 err = -ENOSYS; 4836 goto out; 4837 } 4838 } 4839 4840 switch (sock->type) { 4841 case SOCK_SEQPACKET: 4842 err = sctp_seqpacket_listen(sk, backlog); 4843 break; 4844 case SOCK_STREAM: 4845 err = sctp_stream_listen(sk, backlog); 4846 break; 4847 default: 4848 break; 4849 }; 4850 if (err) 4851 goto cleanup; 4852 4853 /* Store away the transform reference. */ 4854 sctp_sk(sk)->hmac = tfm; 4855 out: 4856 sctp_release_sock(sk); 4857 return err; 4858 cleanup: 4859 sctp_crypto_free_tfm(tfm); 4860 goto out; 4861 } 4862 4863 /* 4864 * This function is done by modeling the current datagram_poll() and the 4865 * tcp_poll(). Note that, based on these implementations, we don't 4866 * lock the socket in this function, even though it seems that, 4867 * ideally, locking or some other mechanisms can be used to ensure 4868 * the integrity of the counters (sndbuf and wmem_alloc) used 4869 * in this place. We assume that we don't need locks either until proven 4870 * otherwise. 4871 * 4872 * Another thing to note is that we include the Async I/O support 4873 * here, again, by modeling the current TCP/UDP code. We don't have 4874 * a good way to test with it yet. 4875 */ 4876 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 4877 { 4878 struct sock *sk = sock->sk; 4879 struct sctp_sock *sp = sctp_sk(sk); 4880 unsigned int mask; 4881 4882 poll_wait(file, sk->sk_sleep, wait); 4883 4884 /* A TCP-style listening socket becomes readable when the accept queue 4885 * is not empty. 4886 */ 4887 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4888 return (!list_empty(&sp->ep->asocs)) ? 4889 (POLLIN | POLLRDNORM) : 0; 4890 4891 mask = 0; 4892 4893 /* Is there any exceptional events? */ 4894 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 4895 mask |= POLLERR; 4896 if (sk->sk_shutdown == SHUTDOWN_MASK) 4897 mask |= POLLHUP; 4898 4899 /* Is it readable? Reconsider this code with TCP-style support. */ 4900 if (!skb_queue_empty(&sk->sk_receive_queue) || 4901 (sk->sk_shutdown & RCV_SHUTDOWN)) 4902 mask |= POLLIN | POLLRDNORM; 4903 4904 /* The association is either gone or not ready. */ 4905 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 4906 return mask; 4907 4908 /* Is it writable? */ 4909 if (sctp_writeable(sk)) { 4910 mask |= POLLOUT | POLLWRNORM; 4911 } else { 4912 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 4913 /* 4914 * Since the socket is not locked, the buffer 4915 * might be made available after the writeable check and 4916 * before the bit is set. This could cause a lost I/O 4917 * signal. tcp_poll() has a race breaker for this race 4918 * condition. Based on their implementation, we put 4919 * in the following code to cover it as well. 4920 */ 4921 if (sctp_writeable(sk)) 4922 mask |= POLLOUT | POLLWRNORM; 4923 } 4924 return mask; 4925 } 4926 4927 /******************************************************************** 4928 * 2nd Level Abstractions 4929 ********************************************************************/ 4930 4931 static struct sctp_bind_bucket *sctp_bucket_create( 4932 struct sctp_bind_hashbucket *head, unsigned short snum) 4933 { 4934 struct sctp_bind_bucket *pp; 4935 4936 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC); 4937 SCTP_DBG_OBJCNT_INC(bind_bucket); 4938 if (pp) { 4939 pp->port = snum; 4940 pp->fastreuse = 0; 4941 INIT_HLIST_HEAD(&pp->owner); 4942 if ((pp->next = head->chain) != NULL) 4943 pp->next->pprev = &pp->next; 4944 head->chain = pp; 4945 pp->pprev = &head->chain; 4946 } 4947 return pp; 4948 } 4949 4950 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 4951 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 4952 { 4953 if (hlist_empty(&pp->owner)) { 4954 if (pp->next) 4955 pp->next->pprev = pp->pprev; 4956 *(pp->pprev) = pp->next; 4957 kmem_cache_free(sctp_bucket_cachep, pp); 4958 SCTP_DBG_OBJCNT_DEC(bind_bucket); 4959 } 4960 } 4961 4962 /* Release this socket's reference to a local port. */ 4963 static inline void __sctp_put_port(struct sock *sk) 4964 { 4965 struct sctp_bind_hashbucket *head = 4966 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 4967 struct sctp_bind_bucket *pp; 4968 4969 sctp_spin_lock(&head->lock); 4970 pp = sctp_sk(sk)->bind_hash; 4971 __sk_del_bind_node(sk); 4972 sctp_sk(sk)->bind_hash = NULL; 4973 inet_sk(sk)->num = 0; 4974 sctp_bucket_destroy(pp); 4975 sctp_spin_unlock(&head->lock); 4976 } 4977 4978 void sctp_put_port(struct sock *sk) 4979 { 4980 sctp_local_bh_disable(); 4981 __sctp_put_port(sk); 4982 sctp_local_bh_enable(); 4983 } 4984 4985 /* 4986 * The system picks an ephemeral port and choose an address set equivalent 4987 * to binding with a wildcard address. 4988 * One of those addresses will be the primary address for the association. 4989 * This automatically enables the multihoming capability of SCTP. 4990 */ 4991 static int sctp_autobind(struct sock *sk) 4992 { 4993 union sctp_addr autoaddr; 4994 struct sctp_af *af; 4995 unsigned short port; 4996 4997 /* Initialize a local sockaddr structure to INADDR_ANY. */ 4998 af = sctp_sk(sk)->pf->af; 4999 5000 port = htons(inet_sk(sk)->num); 5001 af->inaddr_any(&autoaddr, port); 5002 5003 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5004 } 5005 5006 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5007 * 5008 * From RFC 2292 5009 * 4.2 The cmsghdr Structure * 5010 * 5011 * When ancillary data is sent or received, any number of ancillary data 5012 * objects can be specified by the msg_control and msg_controllen members of 5013 * the msghdr structure, because each object is preceded by 5014 * a cmsghdr structure defining the object's length (the cmsg_len member). 5015 * Historically Berkeley-derived implementations have passed only one object 5016 * at a time, but this API allows multiple objects to be 5017 * passed in a single call to sendmsg() or recvmsg(). The following example 5018 * shows two ancillary data objects in a control buffer. 5019 * 5020 * |<--------------------------- msg_controllen -------------------------->| 5021 * | | 5022 * 5023 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5024 * 5025 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5026 * | | | 5027 * 5028 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5029 * 5030 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5031 * | | | | | 5032 * 5033 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5034 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5035 * 5036 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5037 * 5038 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5039 * ^ 5040 * | 5041 * 5042 * msg_control 5043 * points here 5044 */ 5045 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5046 sctp_cmsgs_t *cmsgs) 5047 { 5048 struct cmsghdr *cmsg; 5049 5050 for (cmsg = CMSG_FIRSTHDR(msg); 5051 cmsg != NULL; 5052 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5053 if (!CMSG_OK(msg, cmsg)) 5054 return -EINVAL; 5055 5056 /* Should we parse this header or ignore? */ 5057 if (cmsg->cmsg_level != IPPROTO_SCTP) 5058 continue; 5059 5060 /* Strictly check lengths following example in SCM code. */ 5061 switch (cmsg->cmsg_type) { 5062 case SCTP_INIT: 5063 /* SCTP Socket API Extension 5064 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5065 * 5066 * This cmsghdr structure provides information for 5067 * initializing new SCTP associations with sendmsg(). 5068 * The SCTP_INITMSG socket option uses this same data 5069 * structure. This structure is not used for 5070 * recvmsg(). 5071 * 5072 * cmsg_level cmsg_type cmsg_data[] 5073 * ------------ ------------ ---------------------- 5074 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5075 */ 5076 if (cmsg->cmsg_len != 5077 CMSG_LEN(sizeof(struct sctp_initmsg))) 5078 return -EINVAL; 5079 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5080 break; 5081 5082 case SCTP_SNDRCV: 5083 /* SCTP Socket API Extension 5084 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5085 * 5086 * This cmsghdr structure specifies SCTP options for 5087 * sendmsg() and describes SCTP header information 5088 * about a received message through recvmsg(). 5089 * 5090 * cmsg_level cmsg_type cmsg_data[] 5091 * ------------ ------------ ---------------------- 5092 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5093 */ 5094 if (cmsg->cmsg_len != 5095 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5096 return -EINVAL; 5097 5098 cmsgs->info = 5099 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5100 5101 /* Minimally, validate the sinfo_flags. */ 5102 if (cmsgs->info->sinfo_flags & 5103 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5104 SCTP_ABORT | SCTP_EOF)) 5105 return -EINVAL; 5106 break; 5107 5108 default: 5109 return -EINVAL; 5110 }; 5111 } 5112 return 0; 5113 } 5114 5115 /* 5116 * Wait for a packet.. 5117 * Note: This function is the same function as in core/datagram.c 5118 * with a few modifications to make lksctp work. 5119 */ 5120 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5121 { 5122 int error; 5123 DEFINE_WAIT(wait); 5124 5125 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5126 5127 /* Socket errors? */ 5128 error = sock_error(sk); 5129 if (error) 5130 goto out; 5131 5132 if (!skb_queue_empty(&sk->sk_receive_queue)) 5133 goto ready; 5134 5135 /* Socket shut down? */ 5136 if (sk->sk_shutdown & RCV_SHUTDOWN) 5137 goto out; 5138 5139 /* Sequenced packets can come disconnected. If so we report the 5140 * problem. 5141 */ 5142 error = -ENOTCONN; 5143 5144 /* Is there a good reason to think that we may receive some data? */ 5145 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5146 goto out; 5147 5148 /* Handle signals. */ 5149 if (signal_pending(current)) 5150 goto interrupted; 5151 5152 /* Let another process have a go. Since we are going to sleep 5153 * anyway. Note: This may cause odd behaviors if the message 5154 * does not fit in the user's buffer, but this seems to be the 5155 * only way to honor MSG_DONTWAIT realistically. 5156 */ 5157 sctp_release_sock(sk); 5158 *timeo_p = schedule_timeout(*timeo_p); 5159 sctp_lock_sock(sk); 5160 5161 ready: 5162 finish_wait(sk->sk_sleep, &wait); 5163 return 0; 5164 5165 interrupted: 5166 error = sock_intr_errno(*timeo_p); 5167 5168 out: 5169 finish_wait(sk->sk_sleep, &wait); 5170 *err = error; 5171 return error; 5172 } 5173 5174 /* Receive a datagram. 5175 * Note: This is pretty much the same routine as in core/datagram.c 5176 * with a few changes to make lksctp work. 5177 */ 5178 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5179 int noblock, int *err) 5180 { 5181 int error; 5182 struct sk_buff *skb; 5183 long timeo; 5184 5185 timeo = sock_rcvtimeo(sk, noblock); 5186 5187 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5188 timeo, MAX_SCHEDULE_TIMEOUT); 5189 5190 do { 5191 /* Again only user level code calls this function, 5192 * so nothing interrupt level 5193 * will suddenly eat the receive_queue. 5194 * 5195 * Look at current nfs client by the way... 5196 * However, this function was corrent in any case. 8) 5197 */ 5198 if (flags & MSG_PEEK) { 5199 spin_lock_bh(&sk->sk_receive_queue.lock); 5200 skb = skb_peek(&sk->sk_receive_queue); 5201 if (skb) 5202 atomic_inc(&skb->users); 5203 spin_unlock_bh(&sk->sk_receive_queue.lock); 5204 } else { 5205 skb = skb_dequeue(&sk->sk_receive_queue); 5206 } 5207 5208 if (skb) 5209 return skb; 5210 5211 /* Caller is allowed not to check sk->sk_err before calling. */ 5212 error = sock_error(sk); 5213 if (error) 5214 goto no_packet; 5215 5216 if (sk->sk_shutdown & RCV_SHUTDOWN) 5217 break; 5218 5219 /* User doesn't want to wait. */ 5220 error = -EAGAIN; 5221 if (!timeo) 5222 goto no_packet; 5223 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5224 5225 return NULL; 5226 5227 no_packet: 5228 *err = error; 5229 return NULL; 5230 } 5231 5232 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 5233 static void __sctp_write_space(struct sctp_association *asoc) 5234 { 5235 struct sock *sk = asoc->base.sk; 5236 struct socket *sock = sk->sk_socket; 5237 5238 if ((sctp_wspace(asoc) > 0) && sock) { 5239 if (waitqueue_active(&asoc->wait)) 5240 wake_up_interruptible(&asoc->wait); 5241 5242 if (sctp_writeable(sk)) { 5243 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 5244 wake_up_interruptible(sk->sk_sleep); 5245 5246 /* Note that we try to include the Async I/O support 5247 * here by modeling from the current TCP/UDP code. 5248 * We have not tested with it yet. 5249 */ 5250 if (sock->fasync_list && 5251 !(sk->sk_shutdown & SEND_SHUTDOWN)) 5252 sock_wake_async(sock, 2, POLL_OUT); 5253 } 5254 } 5255 } 5256 5257 /* Do accounting for the sndbuf space. 5258 * Decrement the used sndbuf space of the corresponding association by the 5259 * data size which was just transmitted(freed). 5260 */ 5261 static void sctp_wfree(struct sk_buff *skb) 5262 { 5263 struct sctp_association *asoc; 5264 struct sctp_chunk *chunk; 5265 struct sock *sk; 5266 5267 /* Get the saved chunk pointer. */ 5268 chunk = *((struct sctp_chunk **)(skb->cb)); 5269 asoc = chunk->asoc; 5270 sk = asoc->base.sk; 5271 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 5272 sizeof(struct sk_buff) + 5273 sizeof(struct sctp_chunk); 5274 5275 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 5276 5277 sock_wfree(skb); 5278 __sctp_write_space(asoc); 5279 5280 sctp_association_put(asoc); 5281 } 5282 5283 /* Helper function to wait for space in the sndbuf. */ 5284 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 5285 size_t msg_len) 5286 { 5287 struct sock *sk = asoc->base.sk; 5288 int err = 0; 5289 long current_timeo = *timeo_p; 5290 DEFINE_WAIT(wait); 5291 5292 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 5293 asoc, (long)(*timeo_p), msg_len); 5294 5295 /* Increment the association's refcnt. */ 5296 sctp_association_hold(asoc); 5297 5298 /* Wait on the association specific sndbuf space. */ 5299 for (;;) { 5300 prepare_to_wait_exclusive(&asoc->wait, &wait, 5301 TASK_INTERRUPTIBLE); 5302 if (!*timeo_p) 5303 goto do_nonblock; 5304 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5305 asoc->base.dead) 5306 goto do_error; 5307 if (signal_pending(current)) 5308 goto do_interrupted; 5309 if (msg_len <= sctp_wspace(asoc)) 5310 break; 5311 5312 /* Let another process have a go. Since we are going 5313 * to sleep anyway. 5314 */ 5315 sctp_release_sock(sk); 5316 current_timeo = schedule_timeout(current_timeo); 5317 sctp_lock_sock(sk); 5318 5319 *timeo_p = current_timeo; 5320 } 5321 5322 out: 5323 finish_wait(&asoc->wait, &wait); 5324 5325 /* Release the association's refcnt. */ 5326 sctp_association_put(asoc); 5327 5328 return err; 5329 5330 do_error: 5331 err = -EPIPE; 5332 goto out; 5333 5334 do_interrupted: 5335 err = sock_intr_errno(*timeo_p); 5336 goto out; 5337 5338 do_nonblock: 5339 err = -EAGAIN; 5340 goto out; 5341 } 5342 5343 /* If socket sndbuf has changed, wake up all per association waiters. */ 5344 void sctp_write_space(struct sock *sk) 5345 { 5346 struct sctp_association *asoc; 5347 struct list_head *pos; 5348 5349 /* Wake up the tasks in each wait queue. */ 5350 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 5351 asoc = list_entry(pos, struct sctp_association, asocs); 5352 __sctp_write_space(asoc); 5353 } 5354 } 5355 5356 /* Is there any sndbuf space available on the socket? 5357 * 5358 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 5359 * associations on the same socket. For a UDP-style socket with 5360 * multiple associations, it is possible for it to be "unwriteable" 5361 * prematurely. I assume that this is acceptable because 5362 * a premature "unwriteable" is better than an accidental "writeable" which 5363 * would cause an unwanted block under certain circumstances. For the 1-1 5364 * UDP-style sockets or TCP-style sockets, this code should work. 5365 * - Daisy 5366 */ 5367 static int sctp_writeable(struct sock *sk) 5368 { 5369 int amt = 0; 5370 5371 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 5372 if (amt < 0) 5373 amt = 0; 5374 return amt; 5375 } 5376 5377 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 5378 * returns immediately with EINPROGRESS. 5379 */ 5380 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 5381 { 5382 struct sock *sk = asoc->base.sk; 5383 int err = 0; 5384 long current_timeo = *timeo_p; 5385 DEFINE_WAIT(wait); 5386 5387 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 5388 (long)(*timeo_p)); 5389 5390 /* Increment the association's refcnt. */ 5391 sctp_association_hold(asoc); 5392 5393 for (;;) { 5394 prepare_to_wait_exclusive(&asoc->wait, &wait, 5395 TASK_INTERRUPTIBLE); 5396 if (!*timeo_p) 5397 goto do_nonblock; 5398 if (sk->sk_shutdown & RCV_SHUTDOWN) 5399 break; 5400 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5401 asoc->base.dead) 5402 goto do_error; 5403 if (signal_pending(current)) 5404 goto do_interrupted; 5405 5406 if (sctp_state(asoc, ESTABLISHED)) 5407 break; 5408 5409 /* Let another process have a go. Since we are going 5410 * to sleep anyway. 5411 */ 5412 sctp_release_sock(sk); 5413 current_timeo = schedule_timeout(current_timeo); 5414 sctp_lock_sock(sk); 5415 5416 *timeo_p = current_timeo; 5417 } 5418 5419 out: 5420 finish_wait(&asoc->wait, &wait); 5421 5422 /* Release the association's refcnt. */ 5423 sctp_association_put(asoc); 5424 5425 return err; 5426 5427 do_error: 5428 if (asoc->init_err_counter + 1 >= asoc->max_init_attempts) 5429 err = -ETIMEDOUT; 5430 else 5431 err = -ECONNREFUSED; 5432 goto out; 5433 5434 do_interrupted: 5435 err = sock_intr_errno(*timeo_p); 5436 goto out; 5437 5438 do_nonblock: 5439 err = -EINPROGRESS; 5440 goto out; 5441 } 5442 5443 static int sctp_wait_for_accept(struct sock *sk, long timeo) 5444 { 5445 struct sctp_endpoint *ep; 5446 int err = 0; 5447 DEFINE_WAIT(wait); 5448 5449 ep = sctp_sk(sk)->ep; 5450 5451 5452 for (;;) { 5453 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5454 TASK_INTERRUPTIBLE); 5455 5456 if (list_empty(&ep->asocs)) { 5457 sctp_release_sock(sk); 5458 timeo = schedule_timeout(timeo); 5459 sctp_lock_sock(sk); 5460 } 5461 5462 err = -EINVAL; 5463 if (!sctp_sstate(sk, LISTENING)) 5464 break; 5465 5466 err = 0; 5467 if (!list_empty(&ep->asocs)) 5468 break; 5469 5470 err = sock_intr_errno(timeo); 5471 if (signal_pending(current)) 5472 break; 5473 5474 err = -EAGAIN; 5475 if (!timeo) 5476 break; 5477 } 5478 5479 finish_wait(sk->sk_sleep, &wait); 5480 5481 return err; 5482 } 5483 5484 void sctp_wait_for_close(struct sock *sk, long timeout) 5485 { 5486 DEFINE_WAIT(wait); 5487 5488 do { 5489 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5490 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5491 break; 5492 sctp_release_sock(sk); 5493 timeout = schedule_timeout(timeout); 5494 sctp_lock_sock(sk); 5495 } while (!signal_pending(current) && timeout); 5496 5497 finish_wait(sk->sk_sleep, &wait); 5498 } 5499 5500 /* Populate the fields of the newsk from the oldsk and migrate the assoc 5501 * and its messages to the newsk. 5502 */ 5503 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 5504 struct sctp_association *assoc, 5505 sctp_socket_type_t type) 5506 { 5507 struct sctp_sock *oldsp = sctp_sk(oldsk); 5508 struct sctp_sock *newsp = sctp_sk(newsk); 5509 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5510 struct sctp_endpoint *newep = newsp->ep; 5511 struct sk_buff *skb, *tmp; 5512 struct sctp_ulpevent *event; 5513 int flags = 0; 5514 5515 /* Migrate socket buffer sizes and all the socket level options to the 5516 * new socket. 5517 */ 5518 newsk->sk_sndbuf = oldsk->sk_sndbuf; 5519 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 5520 /* Brute force copy old sctp opt. */ 5521 inet_sk_copy_descendant(newsk, oldsk); 5522 5523 /* Restore the ep value that was overwritten with the above structure 5524 * copy. 5525 */ 5526 newsp->ep = newep; 5527 newsp->hmac = NULL; 5528 5529 /* Hook this new socket in to the bind_hash list. */ 5530 pp = sctp_sk(oldsk)->bind_hash; 5531 sk_add_bind_node(newsk, &pp->owner); 5532 sctp_sk(newsk)->bind_hash = pp; 5533 inet_sk(newsk)->num = inet_sk(oldsk)->num; 5534 5535 /* Copy the bind_addr list from the original endpoint to the new 5536 * endpoint so that we can handle restarts properly 5537 */ 5538 if (assoc->peer.ipv4_address) 5539 flags |= SCTP_ADDR4_PEERSUPP; 5540 if (assoc->peer.ipv6_address) 5541 flags |= SCTP_ADDR6_PEERSUPP; 5542 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 5543 &oldsp->ep->base.bind_addr, 5544 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 5545 5546 /* Move any messages in the old socket's receive queue that are for the 5547 * peeled off association to the new socket's receive queue. 5548 */ 5549 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 5550 event = sctp_skb2event(skb); 5551 if (event->asoc == assoc) { 5552 sock_rfree(skb); 5553 __skb_unlink(skb, &oldsk->sk_receive_queue); 5554 __skb_queue_tail(&newsk->sk_receive_queue, skb); 5555 skb_set_owner_r(skb, newsk); 5556 } 5557 } 5558 5559 /* Clean up any messages pending delivery due to partial 5560 * delivery. Three cases: 5561 * 1) No partial deliver; no work. 5562 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 5563 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 5564 */ 5565 skb_queue_head_init(&newsp->pd_lobby); 5566 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode; 5567 5568 if (sctp_sk(oldsk)->pd_mode) { 5569 struct sk_buff_head *queue; 5570 5571 /* Decide which queue to move pd_lobby skbs to. */ 5572 if (assoc->ulpq.pd_mode) { 5573 queue = &newsp->pd_lobby; 5574 } else 5575 queue = &newsk->sk_receive_queue; 5576 5577 /* Walk through the pd_lobby, looking for skbs that 5578 * need moved to the new socket. 5579 */ 5580 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 5581 event = sctp_skb2event(skb); 5582 if (event->asoc == assoc) { 5583 sock_rfree(skb); 5584 __skb_unlink(skb, &oldsp->pd_lobby); 5585 __skb_queue_tail(queue, skb); 5586 skb_set_owner_r(skb, newsk); 5587 } 5588 } 5589 5590 /* Clear up any skbs waiting for the partial 5591 * delivery to finish. 5592 */ 5593 if (assoc->ulpq.pd_mode) 5594 sctp_clear_pd(oldsk); 5595 5596 } 5597 5598 /* Set the type of socket to indicate that it is peeled off from the 5599 * original UDP-style socket or created with the accept() call on a 5600 * TCP-style socket.. 5601 */ 5602 newsp->type = type; 5603 5604 /* Migrate the association to the new socket. */ 5605 sctp_assoc_migrate(assoc, newsk); 5606 5607 /* If the association on the newsk is already closed before accept() 5608 * is called, set RCV_SHUTDOWN flag. 5609 */ 5610 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 5611 newsk->sk_shutdown |= RCV_SHUTDOWN; 5612 5613 newsk->sk_state = SCTP_SS_ESTABLISHED; 5614 } 5615 5616 /* This proto struct describes the ULP interface for SCTP. */ 5617 struct proto sctp_prot = { 5618 .name = "SCTP", 5619 .owner = THIS_MODULE, 5620 .close = sctp_close, 5621 .connect = sctp_connect, 5622 .disconnect = sctp_disconnect, 5623 .accept = sctp_accept, 5624 .ioctl = sctp_ioctl, 5625 .init = sctp_init_sock, 5626 .destroy = sctp_destroy_sock, 5627 .shutdown = sctp_shutdown, 5628 .setsockopt = sctp_setsockopt, 5629 .getsockopt = sctp_getsockopt, 5630 .sendmsg = sctp_sendmsg, 5631 .recvmsg = sctp_recvmsg, 5632 .bind = sctp_bind, 5633 .backlog_rcv = sctp_backlog_rcv, 5634 .hash = sctp_hash, 5635 .unhash = sctp_unhash, 5636 .get_port = sctp_get_port, 5637 .obj_size = sizeof(struct sctp_sock), 5638 }; 5639 5640 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5641 struct proto sctpv6_prot = { 5642 .name = "SCTPv6", 5643 .owner = THIS_MODULE, 5644 .close = sctp_close, 5645 .connect = sctp_connect, 5646 .disconnect = sctp_disconnect, 5647 .accept = sctp_accept, 5648 .ioctl = sctp_ioctl, 5649 .init = sctp_init_sock, 5650 .destroy = sctp_destroy_sock, 5651 .shutdown = sctp_shutdown, 5652 .setsockopt = sctp_setsockopt, 5653 .getsockopt = sctp_getsockopt, 5654 .sendmsg = sctp_sendmsg, 5655 .recvmsg = sctp_recvmsg, 5656 .bind = sctp_bind, 5657 .backlog_rcv = sctp_backlog_rcv, 5658 .hash = sctp_hash, 5659 .unhash = sctp_unhash, 5660 .get_port = sctp_get_port, 5661 .obj_size = sizeof(struct sctp6_sock), 5662 }; 5663 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 5664