xref: /openbmc/linux/net/sctp/socket.c (revision 87c2ce3b)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern kmem_cache_t *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	if (asoc->ep->sndbuf_policy) {
119 		/* make sure that no association uses more than sk_sndbuf */
120 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 	} else {
122 		/* do socket level accounting */
123 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 	}
125 
126 	if (amt < 0)
127 		amt = 0;
128 
129 	return amt;
130 }
131 
132 /* Increment the used sndbuf space count of the corresponding association by
133  * the size of the outgoing data chunk.
134  * Also, set the skb destructor for sndbuf accounting later.
135  *
136  * Since it is always 1-1 between chunk and skb, and also a new skb is always
137  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138  * destructor in the data chunk skb for the purpose of the sndbuf space
139  * tracking.
140  */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 	struct sctp_association *asoc = chunk->asoc;
144 	struct sock *sk = asoc->base.sk;
145 
146 	/* The sndbuf space is tracked per association.  */
147 	sctp_association_hold(asoc);
148 
149 	skb_set_owner_w(chunk->skb, sk);
150 
151 	chunk->skb->destructor = sctp_wfree;
152 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
153 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154 
155 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 				sizeof(struct sk_buff) +
157 				sizeof(struct sctp_chunk);
158 
159 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
160 }
161 
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 				   int len)
165 {
166 	struct sctp_af *af;
167 
168 	/* Verify basic sockaddr. */
169 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 	if (!af)
171 		return -EINVAL;
172 
173 	/* Is this a valid SCTP address?  */
174 	if (!af->addr_valid(addr, sctp_sk(sk)))
175 		return -EINVAL;
176 
177 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 /* Look up the association by its id.  If this is not a UDP-style
184  * socket, the ID field is always ignored.
185  */
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
187 {
188 	struct sctp_association *asoc = NULL;
189 
190 	/* If this is not a UDP-style socket, assoc id should be ignored. */
191 	if (!sctp_style(sk, UDP)) {
192 		/* Return NULL if the socket state is not ESTABLISHED. It
193 		 * could be a TCP-style listening socket or a socket which
194 		 * hasn't yet called connect() to establish an association.
195 		 */
196 		if (!sctp_sstate(sk, ESTABLISHED))
197 			return NULL;
198 
199 		/* Get the first and the only association from the list. */
200 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 					  struct sctp_association, asocs);
203 		return asoc;
204 	}
205 
206 	/* Otherwise this is a UDP-style socket. */
207 	if (!id || (id == (sctp_assoc_t)-1))
208 		return NULL;
209 
210 	spin_lock_bh(&sctp_assocs_id_lock);
211 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 	spin_unlock_bh(&sctp_assocs_id_lock);
213 
214 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 		return NULL;
216 
217 	return asoc;
218 }
219 
220 /* Look up the transport from an address and an assoc id. If both address and
221  * id are specified, the associations matching the address and the id should be
222  * the same.
223  */
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 					      struct sockaddr_storage *addr,
226 					      sctp_assoc_t id)
227 {
228 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 	struct sctp_transport *transport;
230 	union sctp_addr *laddr = (union sctp_addr *)addr;
231 
232 	laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
233 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
234 					       (union sctp_addr *)addr,
235 					       &transport);
236 	laddr->v4.sin_port = htons(laddr->v4.sin_port);
237 
238 	if (!addr_asoc)
239 		return NULL;
240 
241 	id_asoc = sctp_id2assoc(sk, id);
242 	if (id_asoc && (id_asoc != addr_asoc))
243 		return NULL;
244 
245 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
246 						(union sctp_addr *)addr);
247 
248 	return transport;
249 }
250 
251 /* API 3.1.2 bind() - UDP Style Syntax
252  * The syntax of bind() is,
253  *
254  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
255  *
256  *   sd      - the socket descriptor returned by socket().
257  *   addr    - the address structure (struct sockaddr_in or struct
258  *             sockaddr_in6 [RFC 2553]),
259  *   addr_len - the size of the address structure.
260  */
261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
262 {
263 	int retval = 0;
264 
265 	sctp_lock_sock(sk);
266 
267 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
268 			  sk, addr, addr_len);
269 
270 	/* Disallow binding twice. */
271 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
272 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
273 				      addr_len);
274 	else
275 		retval = -EINVAL;
276 
277 	sctp_release_sock(sk);
278 
279 	return retval;
280 }
281 
282 static long sctp_get_port_local(struct sock *, union sctp_addr *);
283 
284 /* Verify this is a valid sockaddr. */
285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
286 					union sctp_addr *addr, int len)
287 {
288 	struct sctp_af *af;
289 
290 	/* Check minimum size.  */
291 	if (len < sizeof (struct sockaddr))
292 		return NULL;
293 
294 	/* Does this PF support this AF? */
295 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
296 		return NULL;
297 
298 	/* If we get this far, af is valid. */
299 	af = sctp_get_af_specific(addr->sa.sa_family);
300 
301 	if (len < af->sockaddr_len)
302 		return NULL;
303 
304 	return af;
305 }
306 
307 /* Bind a local address either to an endpoint or to an association.  */
308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
309 {
310 	struct sctp_sock *sp = sctp_sk(sk);
311 	struct sctp_endpoint *ep = sp->ep;
312 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
313 	struct sctp_af *af;
314 	unsigned short snum;
315 	int ret = 0;
316 
317 	/* Common sockaddr verification. */
318 	af = sctp_sockaddr_af(sp, addr, len);
319 	if (!af) {
320 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
321 				  sk, addr, len);
322 		return -EINVAL;
323 	}
324 
325 	snum = ntohs(addr->v4.sin_port);
326 
327 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
328 				 ", port: %d, new port: %d, len: %d)\n",
329 				 sk,
330 				 addr,
331 				 bp->port, snum,
332 				 len);
333 
334 	/* PF specific bind() address verification. */
335 	if (!sp->pf->bind_verify(sp, addr))
336 		return -EADDRNOTAVAIL;
337 
338 	/* We must either be unbound, or bind to the same port.  */
339 	if (bp->port && (snum != bp->port)) {
340 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
341 				  " New port %d does not match existing port "
342 				  "%d.\n", snum, bp->port);
343 		return -EINVAL;
344 	}
345 
346 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
347 		return -EACCES;
348 
349 	/* Make sure we are allowed to bind here.
350 	 * The function sctp_get_port_local() does duplicate address
351 	 * detection.
352 	 */
353 	if ((ret = sctp_get_port_local(sk, addr))) {
354 		if (ret == (long) sk) {
355 			/* This endpoint has a conflicting address. */
356 			return -EINVAL;
357 		} else {
358 			return -EADDRINUSE;
359 		}
360 	}
361 
362 	/* Refresh ephemeral port.  */
363 	if (!bp->port)
364 		bp->port = inet_sk(sk)->num;
365 
366 	/* Add the address to the bind address list.  */
367 	sctp_local_bh_disable();
368 	sctp_write_lock(&ep->base.addr_lock);
369 
370 	/* Use GFP_ATOMIC since BHs are disabled.  */
371 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
372 	ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
373 	addr->v4.sin_port = htons(addr->v4.sin_port);
374 	sctp_write_unlock(&ep->base.addr_lock);
375 	sctp_local_bh_enable();
376 
377 	/* Copy back into socket for getsockname() use. */
378 	if (!ret) {
379 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
380 		af->to_sk_saddr(addr, sk);
381 	}
382 
383 	return ret;
384 }
385 
386  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
387  *
388  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
389  * at any one time.  If a sender, after sending an ASCONF chunk, decides
390  * it needs to transfer another ASCONF Chunk, it MUST wait until the
391  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
392  * subsequent ASCONF. Note this restriction binds each side, so at any
393  * time two ASCONF may be in-transit on any given association (one sent
394  * from each endpoint).
395  */
396 static int sctp_send_asconf(struct sctp_association *asoc,
397 			    struct sctp_chunk *chunk)
398 {
399 	int		retval = 0;
400 
401 	/* If there is an outstanding ASCONF chunk, queue it for later
402 	 * transmission.
403 	 */
404 	if (asoc->addip_last_asconf) {
405 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
406 		goto out;
407 	}
408 
409 	/* Hold the chunk until an ASCONF_ACK is received. */
410 	sctp_chunk_hold(chunk);
411 	retval = sctp_primitive_ASCONF(asoc, chunk);
412 	if (retval)
413 		sctp_chunk_free(chunk);
414 	else
415 		asoc->addip_last_asconf = chunk;
416 
417 out:
418 	return retval;
419 }
420 
421 /* Add a list of addresses as bind addresses to local endpoint or
422  * association.
423  *
424  * Basically run through each address specified in the addrs/addrcnt
425  * array/length pair, determine if it is IPv6 or IPv4 and call
426  * sctp_do_bind() on it.
427  *
428  * If any of them fails, then the operation will be reversed and the
429  * ones that were added will be removed.
430  *
431  * Only sctp_setsockopt_bindx() is supposed to call this function.
432  */
433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
434 {
435 	int cnt;
436 	int retval = 0;
437 	void *addr_buf;
438 	struct sockaddr *sa_addr;
439 	struct sctp_af *af;
440 
441 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
442 			  sk, addrs, addrcnt);
443 
444 	addr_buf = addrs;
445 	for (cnt = 0; cnt < addrcnt; cnt++) {
446 		/* The list may contain either IPv4 or IPv6 address;
447 		 * determine the address length for walking thru the list.
448 		 */
449 		sa_addr = (struct sockaddr *)addr_buf;
450 		af = sctp_get_af_specific(sa_addr->sa_family);
451 		if (!af) {
452 			retval = -EINVAL;
453 			goto err_bindx_add;
454 		}
455 
456 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
457 				      af->sockaddr_len);
458 
459 		addr_buf += af->sockaddr_len;
460 
461 err_bindx_add:
462 		if (retval < 0) {
463 			/* Failed. Cleanup the ones that have been added */
464 			if (cnt > 0)
465 				sctp_bindx_rem(sk, addrs, cnt);
466 			return retval;
467 		}
468 	}
469 
470 	return retval;
471 }
472 
473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
474  * associations that are part of the endpoint indicating that a list of local
475  * addresses are added to the endpoint.
476  *
477  * If any of the addresses is already in the bind address list of the
478  * association, we do not send the chunk for that association.  But it will not
479  * affect other associations.
480  *
481  * Only sctp_setsockopt_bindx() is supposed to call this function.
482  */
483 static int sctp_send_asconf_add_ip(struct sock		*sk,
484 				   struct sockaddr	*addrs,
485 				   int 			addrcnt)
486 {
487 	struct sctp_sock		*sp;
488 	struct sctp_endpoint		*ep;
489 	struct sctp_association		*asoc;
490 	struct sctp_bind_addr		*bp;
491 	struct sctp_chunk		*chunk;
492 	struct sctp_sockaddr_entry	*laddr;
493 	union sctp_addr			*addr;
494 	void				*addr_buf;
495 	struct sctp_af			*af;
496 	struct list_head		*pos;
497 	struct list_head		*p;
498 	int 				i;
499 	int 				retval = 0;
500 
501 	if (!sctp_addip_enable)
502 		return retval;
503 
504 	sp = sctp_sk(sk);
505 	ep = sp->ep;
506 
507 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
508 			  __FUNCTION__, sk, addrs, addrcnt);
509 
510 	list_for_each(pos, &ep->asocs) {
511 		asoc = list_entry(pos, struct sctp_association, asocs);
512 
513 		if (!asoc->peer.asconf_capable)
514 			continue;
515 
516 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
517 			continue;
518 
519 		if (!sctp_state(asoc, ESTABLISHED))
520 			continue;
521 
522 		/* Check if any address in the packed array of addresses is
523 	         * in the bind address list of the association. If so,
524 		 * do not send the asconf chunk to its peer, but continue with
525 		 * other associations.
526 		 */
527 		addr_buf = addrs;
528 		for (i = 0; i < addrcnt; i++) {
529 			addr = (union sctp_addr *)addr_buf;
530 			af = sctp_get_af_specific(addr->v4.sin_family);
531 			if (!af) {
532 				retval = -EINVAL;
533 				goto out;
534 			}
535 
536 			if (sctp_assoc_lookup_laddr(asoc, addr))
537 				break;
538 
539 			addr_buf += af->sockaddr_len;
540 		}
541 		if (i < addrcnt)
542 			continue;
543 
544 		/* Use the first address in bind addr list of association as
545 		 * Address Parameter of ASCONF CHUNK.
546 		 */
547 		sctp_read_lock(&asoc->base.addr_lock);
548 		bp = &asoc->base.bind_addr;
549 		p = bp->address_list.next;
550 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
551 		sctp_read_unlock(&asoc->base.addr_lock);
552 
553 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
554 						   addrcnt, SCTP_PARAM_ADD_IP);
555 		if (!chunk) {
556 			retval = -ENOMEM;
557 			goto out;
558 		}
559 
560 		retval = sctp_send_asconf(asoc, chunk);
561 
562 		/* FIXME: After sending the add address ASCONF chunk, we
563 		 * cannot append the address to the association's binding
564 		 * address list, because the new address may be used as the
565 		 * source of a message sent to the peer before the ASCONF
566 		 * chunk is received by the peer.  So we should wait until
567 		 * ASCONF_ACK is received.
568 		 */
569 	}
570 
571 out:
572 	return retval;
573 }
574 
575 /* Remove a list of addresses from bind addresses list.  Do not remove the
576  * last address.
577  *
578  * Basically run through each address specified in the addrs/addrcnt
579  * array/length pair, determine if it is IPv6 or IPv4 and call
580  * sctp_del_bind() on it.
581  *
582  * If any of them fails, then the operation will be reversed and the
583  * ones that were removed will be added back.
584  *
585  * At least one address has to be left; if only one address is
586  * available, the operation will return -EBUSY.
587  *
588  * Only sctp_setsockopt_bindx() is supposed to call this function.
589  */
590 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
591 {
592 	struct sctp_sock *sp = sctp_sk(sk);
593 	struct sctp_endpoint *ep = sp->ep;
594 	int cnt;
595 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
596 	int retval = 0;
597 	union sctp_addr saveaddr;
598 	void *addr_buf;
599 	struct sockaddr *sa_addr;
600 	struct sctp_af *af;
601 
602 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
603 			  sk, addrs, addrcnt);
604 
605 	addr_buf = addrs;
606 	for (cnt = 0; cnt < addrcnt; cnt++) {
607 		/* If the bind address list is empty or if there is only one
608 		 * bind address, there is nothing more to be removed (we need
609 		 * at least one address here).
610 		 */
611 		if (list_empty(&bp->address_list) ||
612 		    (sctp_list_single_entry(&bp->address_list))) {
613 			retval = -EBUSY;
614 			goto err_bindx_rem;
615 		}
616 
617 		/* The list may contain either IPv4 or IPv6 address;
618 		 * determine the address length to copy the address to
619 		 * saveaddr.
620 		 */
621 		sa_addr = (struct sockaddr *)addr_buf;
622 		af = sctp_get_af_specific(sa_addr->sa_family);
623 		if (!af) {
624 			retval = -EINVAL;
625 			goto err_bindx_rem;
626 		}
627 		memcpy(&saveaddr, sa_addr, af->sockaddr_len);
628 		saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
629 		if (saveaddr.v4.sin_port != bp->port) {
630 			retval = -EINVAL;
631 			goto err_bindx_rem;
632 		}
633 
634 		/* FIXME - There is probably a need to check if sk->sk_saddr and
635 		 * sk->sk_rcv_addr are currently set to one of the addresses to
636 		 * be removed. This is something which needs to be looked into
637 		 * when we are fixing the outstanding issues with multi-homing
638 		 * socket routing and failover schemes. Refer to comments in
639 		 * sctp_do_bind(). -daisy
640 		 */
641 		sctp_local_bh_disable();
642 		sctp_write_lock(&ep->base.addr_lock);
643 
644 		retval = sctp_del_bind_addr(bp, &saveaddr);
645 
646 		sctp_write_unlock(&ep->base.addr_lock);
647 		sctp_local_bh_enable();
648 
649 		addr_buf += af->sockaddr_len;
650 err_bindx_rem:
651 		if (retval < 0) {
652 			/* Failed. Add the ones that has been removed back */
653 			if (cnt > 0)
654 				sctp_bindx_add(sk, addrs, cnt);
655 			return retval;
656 		}
657 	}
658 
659 	return retval;
660 }
661 
662 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
663  * the associations that are part of the endpoint indicating that a list of
664  * local addresses are removed from the endpoint.
665  *
666  * If any of the addresses is already in the bind address list of the
667  * association, we do not send the chunk for that association.  But it will not
668  * affect other associations.
669  *
670  * Only sctp_setsockopt_bindx() is supposed to call this function.
671  */
672 static int sctp_send_asconf_del_ip(struct sock		*sk,
673 				   struct sockaddr	*addrs,
674 				   int			addrcnt)
675 {
676 	struct sctp_sock	*sp;
677 	struct sctp_endpoint	*ep;
678 	struct sctp_association	*asoc;
679 	struct sctp_bind_addr	*bp;
680 	struct sctp_chunk	*chunk;
681 	union sctp_addr		*laddr;
682 	void			*addr_buf;
683 	struct sctp_af		*af;
684 	struct list_head	*pos;
685 	int 			i;
686 	int 			retval = 0;
687 
688 	if (!sctp_addip_enable)
689 		return retval;
690 
691 	sp = sctp_sk(sk);
692 	ep = sp->ep;
693 
694 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
695 			  __FUNCTION__, sk, addrs, addrcnt);
696 
697 	list_for_each(pos, &ep->asocs) {
698 		asoc = list_entry(pos, struct sctp_association, asocs);
699 
700 		if (!asoc->peer.asconf_capable)
701 			continue;
702 
703 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
704 			continue;
705 
706 		if (!sctp_state(asoc, ESTABLISHED))
707 			continue;
708 
709 		/* Check if any address in the packed array of addresses is
710 	         * not present in the bind address list of the association.
711 		 * If so, do not send the asconf chunk to its peer, but
712 		 * continue with other associations.
713 		 */
714 		addr_buf = addrs;
715 		for (i = 0; i < addrcnt; i++) {
716 			laddr = (union sctp_addr *)addr_buf;
717 			af = sctp_get_af_specific(laddr->v4.sin_family);
718 			if (!af) {
719 				retval = -EINVAL;
720 				goto out;
721 			}
722 
723 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
724 				break;
725 
726 			addr_buf += af->sockaddr_len;
727 		}
728 		if (i < addrcnt)
729 			continue;
730 
731 		/* Find one address in the association's bind address list
732 		 * that is not in the packed array of addresses. This is to
733 		 * make sure that we do not delete all the addresses in the
734 		 * association.
735 		 */
736 		sctp_read_lock(&asoc->base.addr_lock);
737 		bp = &asoc->base.bind_addr;
738 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
739 					       addrcnt, sp);
740 		sctp_read_unlock(&asoc->base.addr_lock);
741 		if (!laddr)
742 			continue;
743 
744 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
745 						   SCTP_PARAM_DEL_IP);
746 		if (!chunk) {
747 			retval = -ENOMEM;
748 			goto out;
749 		}
750 
751 		retval = sctp_send_asconf(asoc, chunk);
752 
753 		/* FIXME: After sending the delete address ASCONF chunk, we
754 		 * cannot remove the addresses from the association's bind
755 		 * address list, because there maybe some packet send to
756 		 * the delete addresses, so we should wait until ASCONF_ACK
757 		 * packet is received.
758 		 */
759 	}
760 out:
761 	return retval;
762 }
763 
764 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
765  *
766  * API 8.1
767  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
768  *                int flags);
769  *
770  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
771  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
772  * or IPv6 addresses.
773  *
774  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
775  * Section 3.1.2 for this usage.
776  *
777  * addrs is a pointer to an array of one or more socket addresses. Each
778  * address is contained in its appropriate structure (i.e. struct
779  * sockaddr_in or struct sockaddr_in6) the family of the address type
780  * must be used to distengish the address length (note that this
781  * representation is termed a "packed array" of addresses). The caller
782  * specifies the number of addresses in the array with addrcnt.
783  *
784  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
785  * -1, and sets errno to the appropriate error code.
786  *
787  * For SCTP, the port given in each socket address must be the same, or
788  * sctp_bindx() will fail, setting errno to EINVAL.
789  *
790  * The flags parameter is formed from the bitwise OR of zero or more of
791  * the following currently defined flags:
792  *
793  * SCTP_BINDX_ADD_ADDR
794  *
795  * SCTP_BINDX_REM_ADDR
796  *
797  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
798  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
799  * addresses from the association. The two flags are mutually exclusive;
800  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
801  * not remove all addresses from an association; sctp_bindx() will
802  * reject such an attempt with EINVAL.
803  *
804  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
805  * additional addresses with an endpoint after calling bind().  Or use
806  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
807  * socket is associated with so that no new association accepted will be
808  * associated with those addresses. If the endpoint supports dynamic
809  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
810  * endpoint to send the appropriate message to the peer to change the
811  * peers address lists.
812  *
813  * Adding and removing addresses from a connected association is
814  * optional functionality. Implementations that do not support this
815  * functionality should return EOPNOTSUPP.
816  *
817  * Basically do nothing but copying the addresses from user to kernel
818  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
819  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
820  * from userspace.
821  *
822  * We don't use copy_from_user() for optimization: we first do the
823  * sanity checks (buffer size -fast- and access check-healthy
824  * pointer); if all of those succeed, then we can alloc the memory
825  * (expensive operation) needed to copy the data to kernel. Then we do
826  * the copying without checking the user space area
827  * (__copy_from_user()).
828  *
829  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
830  * it.
831  *
832  * sk        The sk of the socket
833  * addrs     The pointer to the addresses in user land
834  * addrssize Size of the addrs buffer
835  * op        Operation to perform (add or remove, see the flags of
836  *           sctp_bindx)
837  *
838  * Returns 0 if ok, <0 errno code on error.
839  */
840 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
841 				      struct sockaddr __user *addrs,
842 				      int addrs_size, int op)
843 {
844 	struct sockaddr *kaddrs;
845 	int err;
846 	int addrcnt = 0;
847 	int walk_size = 0;
848 	struct sockaddr *sa_addr;
849 	void *addr_buf;
850 	struct sctp_af *af;
851 
852 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
853 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
854 
855 	if (unlikely(addrs_size <= 0))
856 		return -EINVAL;
857 
858 	/* Check the user passed a healthy pointer.  */
859 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
860 		return -EFAULT;
861 
862 	/* Alloc space for the address array in kernel memory.  */
863 	kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
864 	if (unlikely(!kaddrs))
865 		return -ENOMEM;
866 
867 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
868 		kfree(kaddrs);
869 		return -EFAULT;
870 	}
871 
872 	/* Walk through the addrs buffer and count the number of addresses. */
873 	addr_buf = kaddrs;
874 	while (walk_size < addrs_size) {
875 		sa_addr = (struct sockaddr *)addr_buf;
876 		af = sctp_get_af_specific(sa_addr->sa_family);
877 
878 		/* If the address family is not supported or if this address
879 		 * causes the address buffer to overflow return EINVAL.
880 		 */
881 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
882 			kfree(kaddrs);
883 			return -EINVAL;
884 		}
885 		addrcnt++;
886 		addr_buf += af->sockaddr_len;
887 		walk_size += af->sockaddr_len;
888 	}
889 
890 	/* Do the work. */
891 	switch (op) {
892 	case SCTP_BINDX_ADD_ADDR:
893 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
894 		if (err)
895 			goto out;
896 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
897 		break;
898 
899 	case SCTP_BINDX_REM_ADDR:
900 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
901 		if (err)
902 			goto out;
903 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
904 		break;
905 
906 	default:
907 		err = -EINVAL;
908 		break;
909         };
910 
911 out:
912 	kfree(kaddrs);
913 
914 	return err;
915 }
916 
917 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
918  *
919  * Common routine for handling connect() and sctp_connectx().
920  * Connect will come in with just a single address.
921  */
922 static int __sctp_connect(struct sock* sk,
923 			  struct sockaddr *kaddrs,
924 			  int addrs_size)
925 {
926 	struct sctp_sock *sp;
927 	struct sctp_endpoint *ep;
928 	struct sctp_association *asoc = NULL;
929 	struct sctp_association *asoc2;
930 	struct sctp_transport *transport;
931 	union sctp_addr to;
932 	struct sctp_af *af;
933 	sctp_scope_t scope;
934 	long timeo;
935 	int err = 0;
936 	int addrcnt = 0;
937 	int walk_size = 0;
938 	struct sockaddr *sa_addr;
939 	void *addr_buf;
940 
941 	sp = sctp_sk(sk);
942 	ep = sp->ep;
943 
944 	/* connect() cannot be done on a socket that is already in ESTABLISHED
945 	 * state - UDP-style peeled off socket or a TCP-style socket that
946 	 * is already connected.
947 	 * It cannot be done even on a TCP-style listening socket.
948 	 */
949 	if (sctp_sstate(sk, ESTABLISHED) ||
950 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
951 		err = -EISCONN;
952 		goto out_free;
953 	}
954 
955 	/* Walk through the addrs buffer and count the number of addresses. */
956 	addr_buf = kaddrs;
957 	while (walk_size < addrs_size) {
958 		sa_addr = (struct sockaddr *)addr_buf;
959 		af = sctp_get_af_specific(sa_addr->sa_family);
960 
961 		/* If the address family is not supported or if this address
962 		 * causes the address buffer to overflow return EINVAL.
963 		 */
964 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
965 			err = -EINVAL;
966 			goto out_free;
967 		}
968 
969 		err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
970 				       af->sockaddr_len);
971 		if (err)
972 			goto out_free;
973 
974 		memcpy(&to, sa_addr, af->sockaddr_len);
975 		to.v4.sin_port = ntohs(to.v4.sin_port);
976 
977 		/* Check if there already is a matching association on the
978 		 * endpoint (other than the one created here).
979 		 */
980 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
981 		if (asoc2 && asoc2 != asoc) {
982 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
983 				err = -EISCONN;
984 			else
985 				err = -EALREADY;
986 			goto out_free;
987 		}
988 
989 		/* If we could not find a matching association on the endpoint,
990 		 * make sure that there is no peeled-off association matching
991 		 * the peer address even on another socket.
992 		 */
993 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
994 			err = -EADDRNOTAVAIL;
995 			goto out_free;
996 		}
997 
998 		if (!asoc) {
999 			/* If a bind() or sctp_bindx() is not called prior to
1000 			 * an sctp_connectx() call, the system picks an
1001 			 * ephemeral port and will choose an address set
1002 			 * equivalent to binding with a wildcard address.
1003 			 */
1004 			if (!ep->base.bind_addr.port) {
1005 				if (sctp_autobind(sk)) {
1006 					err = -EAGAIN;
1007 					goto out_free;
1008 				}
1009 			} else {
1010 				/*
1011 				 * If an unprivileged user inherits a 1-many
1012 				 * style socket with open associations on a
1013 				 * privileged port, it MAY be permitted to
1014 				 * accept new associations, but it SHOULD NOT
1015 				 * be permitted to open new associations.
1016 				 */
1017 				if (ep->base.bind_addr.port < PROT_SOCK &&
1018 				    !capable(CAP_NET_BIND_SERVICE)) {
1019 					err = -EACCES;
1020 					goto out_free;
1021 				}
1022 			}
1023 
1024 			scope = sctp_scope(&to);
1025 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1026 			if (!asoc) {
1027 				err = -ENOMEM;
1028 				goto out_free;
1029 			}
1030 		}
1031 
1032 		/* Prime the peer's transport structures.  */
1033 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1034 						SCTP_UNKNOWN);
1035 		if (!transport) {
1036 			err = -ENOMEM;
1037 			goto out_free;
1038 		}
1039 
1040 		addrcnt++;
1041 		addr_buf += af->sockaddr_len;
1042 		walk_size += af->sockaddr_len;
1043 	}
1044 
1045 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1046 	if (err < 0) {
1047 		goto out_free;
1048 	}
1049 
1050 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1051 	if (err < 0) {
1052 		goto out_free;
1053 	}
1054 
1055 	/* Initialize sk's dport and daddr for getpeername() */
1056 	inet_sk(sk)->dport = htons(asoc->peer.port);
1057 	af = sctp_get_af_specific(to.sa.sa_family);
1058 	af->to_sk_daddr(&to, sk);
1059 
1060 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1061 	err = sctp_wait_for_connect(asoc, &timeo);
1062 
1063 	/* Don't free association on exit. */
1064 	asoc = NULL;
1065 
1066 out_free:
1067 
1068 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1069 		          " kaddrs: %p err: %d\n",
1070 	                  asoc, kaddrs, err);
1071 	if (asoc)
1072 		sctp_association_free(asoc);
1073 	return err;
1074 }
1075 
1076 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1077  *
1078  * API 8.9
1079  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1080  *
1081  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1082  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1083  * or IPv6 addresses.
1084  *
1085  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1086  * Section 3.1.2 for this usage.
1087  *
1088  * addrs is a pointer to an array of one or more socket addresses. Each
1089  * address is contained in its appropriate structure (i.e. struct
1090  * sockaddr_in or struct sockaddr_in6) the family of the address type
1091  * must be used to distengish the address length (note that this
1092  * representation is termed a "packed array" of addresses). The caller
1093  * specifies the number of addresses in the array with addrcnt.
1094  *
1095  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1096  * -1, and sets errno to the appropriate error code.
1097  *
1098  * For SCTP, the port given in each socket address must be the same, or
1099  * sctp_connectx() will fail, setting errno to EINVAL.
1100  *
1101  * An application can use sctp_connectx to initiate an association with
1102  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1103  * allows a caller to specify multiple addresses at which a peer can be
1104  * reached.  The way the SCTP stack uses the list of addresses to set up
1105  * the association is implementation dependant.  This function only
1106  * specifies that the stack will try to make use of all the addresses in
1107  * the list when needed.
1108  *
1109  * Note that the list of addresses passed in is only used for setting up
1110  * the association.  It does not necessarily equal the set of addresses
1111  * the peer uses for the resulting association.  If the caller wants to
1112  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1113  * retrieve them after the association has been set up.
1114  *
1115  * Basically do nothing but copying the addresses from user to kernel
1116  * land and invoking either sctp_connectx(). This is used for tunneling
1117  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1118  *
1119  * We don't use copy_from_user() for optimization: we first do the
1120  * sanity checks (buffer size -fast- and access check-healthy
1121  * pointer); if all of those succeed, then we can alloc the memory
1122  * (expensive operation) needed to copy the data to kernel. Then we do
1123  * the copying without checking the user space area
1124  * (__copy_from_user()).
1125  *
1126  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1127  * it.
1128  *
1129  * sk        The sk of the socket
1130  * addrs     The pointer to the addresses in user land
1131  * addrssize Size of the addrs buffer
1132  *
1133  * Returns 0 if ok, <0 errno code on error.
1134  */
1135 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1136 				      struct sockaddr __user *addrs,
1137 				      int addrs_size)
1138 {
1139 	int err = 0;
1140 	struct sockaddr *kaddrs;
1141 
1142 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1143 			  __FUNCTION__, sk, addrs, addrs_size);
1144 
1145 	if (unlikely(addrs_size <= 0))
1146 		return -EINVAL;
1147 
1148 	/* Check the user passed a healthy pointer.  */
1149 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1150 		return -EFAULT;
1151 
1152 	/* Alloc space for the address array in kernel memory.  */
1153 	kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
1154 	if (unlikely(!kaddrs))
1155 		return -ENOMEM;
1156 
1157 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1158 		err = -EFAULT;
1159 	} else {
1160 		err = __sctp_connect(sk, kaddrs, addrs_size);
1161 	}
1162 
1163 	kfree(kaddrs);
1164 	return err;
1165 }
1166 
1167 /* API 3.1.4 close() - UDP Style Syntax
1168  * Applications use close() to perform graceful shutdown (as described in
1169  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1170  * by a UDP-style socket.
1171  *
1172  * The syntax is
1173  *
1174  *   ret = close(int sd);
1175  *
1176  *   sd      - the socket descriptor of the associations to be closed.
1177  *
1178  * To gracefully shutdown a specific association represented by the
1179  * UDP-style socket, an application should use the sendmsg() call,
1180  * passing no user data, but including the appropriate flag in the
1181  * ancillary data (see Section xxxx).
1182  *
1183  * If sd in the close() call is a branched-off socket representing only
1184  * one association, the shutdown is performed on that association only.
1185  *
1186  * 4.1.6 close() - TCP Style Syntax
1187  *
1188  * Applications use close() to gracefully close down an association.
1189  *
1190  * The syntax is:
1191  *
1192  *    int close(int sd);
1193  *
1194  *      sd      - the socket descriptor of the association to be closed.
1195  *
1196  * After an application calls close() on a socket descriptor, no further
1197  * socket operations will succeed on that descriptor.
1198  *
1199  * API 7.1.4 SO_LINGER
1200  *
1201  * An application using the TCP-style socket can use this option to
1202  * perform the SCTP ABORT primitive.  The linger option structure is:
1203  *
1204  *  struct  linger {
1205  *     int     l_onoff;                // option on/off
1206  *     int     l_linger;               // linger time
1207  * };
1208  *
1209  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1210  * to 0, calling close() is the same as the ABORT primitive.  If the
1211  * value is set to a negative value, the setsockopt() call will return
1212  * an error.  If the value is set to a positive value linger_time, the
1213  * close() can be blocked for at most linger_time ms.  If the graceful
1214  * shutdown phase does not finish during this period, close() will
1215  * return but the graceful shutdown phase continues in the system.
1216  */
1217 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1218 {
1219 	struct sctp_endpoint *ep;
1220 	struct sctp_association *asoc;
1221 	struct list_head *pos, *temp;
1222 
1223 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1224 
1225 	sctp_lock_sock(sk);
1226 	sk->sk_shutdown = SHUTDOWN_MASK;
1227 
1228 	ep = sctp_sk(sk)->ep;
1229 
1230 	/* Walk all associations on a socket, not on an endpoint.  */
1231 	list_for_each_safe(pos, temp, &ep->asocs) {
1232 		asoc = list_entry(pos, struct sctp_association, asocs);
1233 
1234 		if (sctp_style(sk, TCP)) {
1235 			/* A closed association can still be in the list if
1236 			 * it belongs to a TCP-style listening socket that is
1237 			 * not yet accepted. If so, free it. If not, send an
1238 			 * ABORT or SHUTDOWN based on the linger options.
1239 			 */
1240 			if (sctp_state(asoc, CLOSED)) {
1241 				sctp_unhash_established(asoc);
1242 				sctp_association_free(asoc);
1243 
1244 			} else if (sock_flag(sk, SOCK_LINGER) &&
1245 				   !sk->sk_lingertime)
1246 				sctp_primitive_ABORT(asoc, NULL);
1247 			else
1248 				sctp_primitive_SHUTDOWN(asoc, NULL);
1249 		} else
1250 			sctp_primitive_SHUTDOWN(asoc, NULL);
1251 	}
1252 
1253 	/* Clean up any skbs sitting on the receive queue.  */
1254 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1255 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1256 
1257 	/* On a TCP-style socket, block for at most linger_time if set. */
1258 	if (sctp_style(sk, TCP) && timeout)
1259 		sctp_wait_for_close(sk, timeout);
1260 
1261 	/* This will run the backlog queue.  */
1262 	sctp_release_sock(sk);
1263 
1264 	/* Supposedly, no process has access to the socket, but
1265 	 * the net layers still may.
1266 	 */
1267 	sctp_local_bh_disable();
1268 	sctp_bh_lock_sock(sk);
1269 
1270 	/* Hold the sock, since sk_common_release() will put sock_put()
1271 	 * and we have just a little more cleanup.
1272 	 */
1273 	sock_hold(sk);
1274 	sk_common_release(sk);
1275 
1276 	sctp_bh_unlock_sock(sk);
1277 	sctp_local_bh_enable();
1278 
1279 	sock_put(sk);
1280 
1281 	SCTP_DBG_OBJCNT_DEC(sock);
1282 }
1283 
1284 /* Handle EPIPE error. */
1285 static int sctp_error(struct sock *sk, int flags, int err)
1286 {
1287 	if (err == -EPIPE)
1288 		err = sock_error(sk) ? : -EPIPE;
1289 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1290 		send_sig(SIGPIPE, current, 0);
1291 	return err;
1292 }
1293 
1294 /* API 3.1.3 sendmsg() - UDP Style Syntax
1295  *
1296  * An application uses sendmsg() and recvmsg() calls to transmit data to
1297  * and receive data from its peer.
1298  *
1299  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1300  *                  int flags);
1301  *
1302  *  socket  - the socket descriptor of the endpoint.
1303  *  message - pointer to the msghdr structure which contains a single
1304  *            user message and possibly some ancillary data.
1305  *
1306  *            See Section 5 for complete description of the data
1307  *            structures.
1308  *
1309  *  flags   - flags sent or received with the user message, see Section
1310  *            5 for complete description of the flags.
1311  *
1312  * Note:  This function could use a rewrite especially when explicit
1313  * connect support comes in.
1314  */
1315 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1316 
1317 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1318 
1319 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1320 			     struct msghdr *msg, size_t msg_len)
1321 {
1322 	struct sctp_sock *sp;
1323 	struct sctp_endpoint *ep;
1324 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1325 	struct sctp_transport *transport, *chunk_tp;
1326 	struct sctp_chunk *chunk;
1327 	union sctp_addr to;
1328 	struct sockaddr *msg_name = NULL;
1329 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1330 	struct sctp_sndrcvinfo *sinfo;
1331 	struct sctp_initmsg *sinit;
1332 	sctp_assoc_t associd = 0;
1333 	sctp_cmsgs_t cmsgs = { NULL };
1334 	int err;
1335 	sctp_scope_t scope;
1336 	long timeo;
1337 	__u16 sinfo_flags = 0;
1338 	struct sctp_datamsg *datamsg;
1339 	struct list_head *pos;
1340 	int msg_flags = msg->msg_flags;
1341 
1342 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1343 			  sk, msg, msg_len);
1344 
1345 	err = 0;
1346 	sp = sctp_sk(sk);
1347 	ep = sp->ep;
1348 
1349 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1350 
1351 	/* We cannot send a message over a TCP-style listening socket. */
1352 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1353 		err = -EPIPE;
1354 		goto out_nounlock;
1355 	}
1356 
1357 	/* Parse out the SCTP CMSGs.  */
1358 	err = sctp_msghdr_parse(msg, &cmsgs);
1359 
1360 	if (err) {
1361 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1362 		goto out_nounlock;
1363 	}
1364 
1365 	/* Fetch the destination address for this packet.  This
1366 	 * address only selects the association--it is not necessarily
1367 	 * the address we will send to.
1368 	 * For a peeled-off socket, msg_name is ignored.
1369 	 */
1370 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1371 		int msg_namelen = msg->msg_namelen;
1372 
1373 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1374 				       msg_namelen);
1375 		if (err)
1376 			return err;
1377 
1378 		if (msg_namelen > sizeof(to))
1379 			msg_namelen = sizeof(to);
1380 		memcpy(&to, msg->msg_name, msg_namelen);
1381 		SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1382 				  "0x%x:%u.\n",
1383 				  to.v4.sin_addr.s_addr, to.v4.sin_port);
1384 
1385 		to.v4.sin_port = ntohs(to.v4.sin_port);
1386 		msg_name = msg->msg_name;
1387 	}
1388 
1389 	sinfo = cmsgs.info;
1390 	sinit = cmsgs.init;
1391 
1392 	/* Did the user specify SNDRCVINFO?  */
1393 	if (sinfo) {
1394 		sinfo_flags = sinfo->sinfo_flags;
1395 		associd = sinfo->sinfo_assoc_id;
1396 	}
1397 
1398 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1399 			  msg_len, sinfo_flags);
1400 
1401 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1402 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1403 		err = -EINVAL;
1404 		goto out_nounlock;
1405 	}
1406 
1407 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1408 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1409 	 * If SCTP_ABORT is set, the message length could be non zero with
1410 	 * the msg_iov set to the user abort reason.
1411  	 */
1412 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1413 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1414 		err = -EINVAL;
1415 		goto out_nounlock;
1416 	}
1417 
1418 	/* If SCTP_ADDR_OVER is set, there must be an address
1419 	 * specified in msg_name.
1420 	 */
1421 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1422 		err = -EINVAL;
1423 		goto out_nounlock;
1424 	}
1425 
1426 	transport = NULL;
1427 
1428 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1429 
1430 	sctp_lock_sock(sk);
1431 
1432 	/* If a msg_name has been specified, assume this is to be used.  */
1433 	if (msg_name) {
1434 		/* Look for a matching association on the endpoint. */
1435 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1436 		if (!asoc) {
1437 			/* If we could not find a matching association on the
1438 			 * endpoint, make sure that it is not a TCP-style
1439 			 * socket that already has an association or there is
1440 			 * no peeled-off association on another socket.
1441 			 */
1442 			if ((sctp_style(sk, TCP) &&
1443 			     sctp_sstate(sk, ESTABLISHED)) ||
1444 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1445 				err = -EADDRNOTAVAIL;
1446 				goto out_unlock;
1447 			}
1448 		}
1449 	} else {
1450 		asoc = sctp_id2assoc(sk, associd);
1451 		if (!asoc) {
1452 			err = -EPIPE;
1453 			goto out_unlock;
1454 		}
1455 	}
1456 
1457 	if (asoc) {
1458 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1459 
1460 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1461 		 * socket that has an association in CLOSED state. This can
1462 		 * happen when an accepted socket has an association that is
1463 		 * already CLOSED.
1464 		 */
1465 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1466 			err = -EPIPE;
1467 			goto out_unlock;
1468 		}
1469 
1470 		if (sinfo_flags & SCTP_EOF) {
1471 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1472 					  asoc);
1473 			sctp_primitive_SHUTDOWN(asoc, NULL);
1474 			err = 0;
1475 			goto out_unlock;
1476 		}
1477 		if (sinfo_flags & SCTP_ABORT) {
1478 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1479 			sctp_primitive_ABORT(asoc, msg);
1480 			err = 0;
1481 			goto out_unlock;
1482 		}
1483 	}
1484 
1485 	/* Do we need to create the association?  */
1486 	if (!asoc) {
1487 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1488 
1489 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1490 			err = -EINVAL;
1491 			goto out_unlock;
1492 		}
1493 
1494 		/* Check for invalid stream against the stream counts,
1495 		 * either the default or the user specified stream counts.
1496 		 */
1497 		if (sinfo) {
1498 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1499 				/* Check against the defaults. */
1500 				if (sinfo->sinfo_stream >=
1501 				    sp->initmsg.sinit_num_ostreams) {
1502 					err = -EINVAL;
1503 					goto out_unlock;
1504 				}
1505 			} else {
1506 				/* Check against the requested.  */
1507 				if (sinfo->sinfo_stream >=
1508 				    sinit->sinit_num_ostreams) {
1509 					err = -EINVAL;
1510 					goto out_unlock;
1511 				}
1512 			}
1513 		}
1514 
1515 		/*
1516 		 * API 3.1.2 bind() - UDP Style Syntax
1517 		 * If a bind() or sctp_bindx() is not called prior to a
1518 		 * sendmsg() call that initiates a new association, the
1519 		 * system picks an ephemeral port and will choose an address
1520 		 * set equivalent to binding with a wildcard address.
1521 		 */
1522 		if (!ep->base.bind_addr.port) {
1523 			if (sctp_autobind(sk)) {
1524 				err = -EAGAIN;
1525 				goto out_unlock;
1526 			}
1527 		} else {
1528 			/*
1529 			 * If an unprivileged user inherits a one-to-many
1530 			 * style socket with open associations on a privileged
1531 			 * port, it MAY be permitted to accept new associations,
1532 			 * but it SHOULD NOT be permitted to open new
1533 			 * associations.
1534 			 */
1535 			if (ep->base.bind_addr.port < PROT_SOCK &&
1536 			    !capable(CAP_NET_BIND_SERVICE)) {
1537 				err = -EACCES;
1538 				goto out_unlock;
1539 			}
1540 		}
1541 
1542 		scope = sctp_scope(&to);
1543 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1544 		if (!new_asoc) {
1545 			err = -ENOMEM;
1546 			goto out_unlock;
1547 		}
1548 		asoc = new_asoc;
1549 
1550 		/* If the SCTP_INIT ancillary data is specified, set all
1551 		 * the association init values accordingly.
1552 		 */
1553 		if (sinit) {
1554 			if (sinit->sinit_num_ostreams) {
1555 				asoc->c.sinit_num_ostreams =
1556 					sinit->sinit_num_ostreams;
1557 			}
1558 			if (sinit->sinit_max_instreams) {
1559 				asoc->c.sinit_max_instreams =
1560 					sinit->sinit_max_instreams;
1561 			}
1562 			if (sinit->sinit_max_attempts) {
1563 				asoc->max_init_attempts
1564 					= sinit->sinit_max_attempts;
1565 			}
1566 			if (sinit->sinit_max_init_timeo) {
1567 				asoc->max_init_timeo =
1568 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1569 			}
1570 		}
1571 
1572 		/* Prime the peer's transport structures.  */
1573 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1574 		if (!transport) {
1575 			err = -ENOMEM;
1576 			goto out_free;
1577 		}
1578 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1579 		if (err < 0) {
1580 			err = -ENOMEM;
1581 			goto out_free;
1582 		}
1583 	}
1584 
1585 	/* ASSERT: we have a valid association at this point.  */
1586 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1587 
1588 	if (!sinfo) {
1589 		/* If the user didn't specify SNDRCVINFO, make up one with
1590 		 * some defaults.
1591 		 */
1592 		default_sinfo.sinfo_stream = asoc->default_stream;
1593 		default_sinfo.sinfo_flags = asoc->default_flags;
1594 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1595 		default_sinfo.sinfo_context = asoc->default_context;
1596 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1597 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1598 		sinfo = &default_sinfo;
1599 	}
1600 
1601 	/* API 7.1.7, the sndbuf size per association bounds the
1602 	 * maximum size of data that can be sent in a single send call.
1603 	 */
1604 	if (msg_len > sk->sk_sndbuf) {
1605 		err = -EMSGSIZE;
1606 		goto out_free;
1607 	}
1608 
1609 	/* If fragmentation is disabled and the message length exceeds the
1610 	 * association fragmentation point, return EMSGSIZE.  The I-D
1611 	 * does not specify what this error is, but this looks like
1612 	 * a great fit.
1613 	 */
1614 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1615 		err = -EMSGSIZE;
1616 		goto out_free;
1617 	}
1618 
1619 	if (sinfo) {
1620 		/* Check for invalid stream. */
1621 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1622 			err = -EINVAL;
1623 			goto out_free;
1624 		}
1625 	}
1626 
1627 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1628 	if (!sctp_wspace(asoc)) {
1629 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1630 		if (err)
1631 			goto out_free;
1632 	}
1633 
1634 	/* If an address is passed with the sendto/sendmsg call, it is used
1635 	 * to override the primary destination address in the TCP model, or
1636 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1637 	 */
1638 	if ((sctp_style(sk, TCP) && msg_name) ||
1639 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1640 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1641 		if (!chunk_tp) {
1642 			err = -EINVAL;
1643 			goto out_free;
1644 		}
1645 	} else
1646 		chunk_tp = NULL;
1647 
1648 	/* Auto-connect, if we aren't connected already. */
1649 	if (sctp_state(asoc, CLOSED)) {
1650 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1651 		if (err < 0)
1652 			goto out_free;
1653 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1654 	}
1655 
1656 	/* Break the message into multiple chunks of maximum size. */
1657 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1658 	if (!datamsg) {
1659 		err = -ENOMEM;
1660 		goto out_free;
1661 	}
1662 
1663 	/* Now send the (possibly) fragmented message. */
1664 	list_for_each(pos, &datamsg->chunks) {
1665 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1666 		sctp_datamsg_track(chunk);
1667 
1668 		/* Do accounting for the write space.  */
1669 		sctp_set_owner_w(chunk);
1670 
1671 		chunk->transport = chunk_tp;
1672 
1673 		/* Send it to the lower layers.  Note:  all chunks
1674 		 * must either fail or succeed.   The lower layer
1675 		 * works that way today.  Keep it that way or this
1676 		 * breaks.
1677 		 */
1678 		err = sctp_primitive_SEND(asoc, chunk);
1679 		/* Did the lower layer accept the chunk? */
1680 		if (err)
1681 			sctp_chunk_free(chunk);
1682 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1683 	}
1684 
1685 	sctp_datamsg_free(datamsg);
1686 	if (err)
1687 		goto out_free;
1688 	else
1689 		err = msg_len;
1690 
1691 	/* If we are already past ASSOCIATE, the lower
1692 	 * layers are responsible for association cleanup.
1693 	 */
1694 	goto out_unlock;
1695 
1696 out_free:
1697 	if (new_asoc)
1698 		sctp_association_free(asoc);
1699 out_unlock:
1700 	sctp_release_sock(sk);
1701 
1702 out_nounlock:
1703 	return sctp_error(sk, msg_flags, err);
1704 
1705 #if 0
1706 do_sock_err:
1707 	if (msg_len)
1708 		err = msg_len;
1709 	else
1710 		err = sock_error(sk);
1711 	goto out;
1712 
1713 do_interrupted:
1714 	if (msg_len)
1715 		err = msg_len;
1716 	goto out;
1717 #endif /* 0 */
1718 }
1719 
1720 /* This is an extended version of skb_pull() that removes the data from the
1721  * start of a skb even when data is spread across the list of skb's in the
1722  * frag_list. len specifies the total amount of data that needs to be removed.
1723  * when 'len' bytes could be removed from the skb, it returns 0.
1724  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1725  * could not be removed.
1726  */
1727 static int sctp_skb_pull(struct sk_buff *skb, int len)
1728 {
1729 	struct sk_buff *list;
1730 	int skb_len = skb_headlen(skb);
1731 	int rlen;
1732 
1733 	if (len <= skb_len) {
1734 		__skb_pull(skb, len);
1735 		return 0;
1736 	}
1737 	len -= skb_len;
1738 	__skb_pull(skb, skb_len);
1739 
1740 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1741 		rlen = sctp_skb_pull(list, len);
1742 		skb->len -= (len-rlen);
1743 		skb->data_len -= (len-rlen);
1744 
1745 		if (!rlen)
1746 			return 0;
1747 
1748 		len = rlen;
1749 	}
1750 
1751 	return len;
1752 }
1753 
1754 /* API 3.1.3  recvmsg() - UDP Style Syntax
1755  *
1756  *  ssize_t recvmsg(int socket, struct msghdr *message,
1757  *                    int flags);
1758  *
1759  *  socket  - the socket descriptor of the endpoint.
1760  *  message - pointer to the msghdr structure which contains a single
1761  *            user message and possibly some ancillary data.
1762  *
1763  *            See Section 5 for complete description of the data
1764  *            structures.
1765  *
1766  *  flags   - flags sent or received with the user message, see Section
1767  *            5 for complete description of the flags.
1768  */
1769 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1770 
1771 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1772 			     struct msghdr *msg, size_t len, int noblock,
1773 			     int flags, int *addr_len)
1774 {
1775 	struct sctp_ulpevent *event = NULL;
1776 	struct sctp_sock *sp = sctp_sk(sk);
1777 	struct sk_buff *skb;
1778 	int copied;
1779 	int err = 0;
1780 	int skb_len;
1781 
1782 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1783 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1784 			  "len", len, "knoblauch", noblock,
1785 			  "flags", flags, "addr_len", addr_len);
1786 
1787 	sctp_lock_sock(sk);
1788 
1789 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1790 		err = -ENOTCONN;
1791 		goto out;
1792 	}
1793 
1794 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1795 	if (!skb)
1796 		goto out;
1797 
1798 	/* Get the total length of the skb including any skb's in the
1799 	 * frag_list.
1800 	 */
1801 	skb_len = skb->len;
1802 
1803 	copied = skb_len;
1804 	if (copied > len)
1805 		copied = len;
1806 
1807 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1808 
1809 	event = sctp_skb2event(skb);
1810 
1811 	if (err)
1812 		goto out_free;
1813 
1814 	sock_recv_timestamp(msg, sk, skb);
1815 	if (sctp_ulpevent_is_notification(event)) {
1816 		msg->msg_flags |= MSG_NOTIFICATION;
1817 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1818 	} else {
1819 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1820 	}
1821 
1822 	/* Check if we allow SCTP_SNDRCVINFO. */
1823 	if (sp->subscribe.sctp_data_io_event)
1824 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1825 #if 0
1826 	/* FIXME: we should be calling IP/IPv6 layers.  */
1827 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1828 		ip_cmsg_recv(msg, skb);
1829 #endif
1830 
1831 	err = copied;
1832 
1833 	/* If skb's length exceeds the user's buffer, update the skb and
1834 	 * push it back to the receive_queue so that the next call to
1835 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1836 	 */
1837 	if (skb_len > copied) {
1838 		msg->msg_flags &= ~MSG_EOR;
1839 		if (flags & MSG_PEEK)
1840 			goto out_free;
1841 		sctp_skb_pull(skb, copied);
1842 		skb_queue_head(&sk->sk_receive_queue, skb);
1843 
1844 		/* When only partial message is copied to the user, increase
1845 		 * rwnd by that amount. If all the data in the skb is read,
1846 		 * rwnd is updated when the event is freed.
1847 		 */
1848 		sctp_assoc_rwnd_increase(event->asoc, copied);
1849 		goto out;
1850 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1851 		   (event->msg_flags & MSG_EOR))
1852 		msg->msg_flags |= MSG_EOR;
1853 	else
1854 		msg->msg_flags &= ~MSG_EOR;
1855 
1856 out_free:
1857 	if (flags & MSG_PEEK) {
1858 		/* Release the skb reference acquired after peeking the skb in
1859 		 * sctp_skb_recv_datagram().
1860 		 */
1861 		kfree_skb(skb);
1862 	} else {
1863 		/* Free the event which includes releasing the reference to
1864 		 * the owner of the skb, freeing the skb and updating the
1865 		 * rwnd.
1866 		 */
1867 		sctp_ulpevent_free(event);
1868 	}
1869 out:
1870 	sctp_release_sock(sk);
1871 	return err;
1872 }
1873 
1874 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1875  *
1876  * This option is a on/off flag.  If enabled no SCTP message
1877  * fragmentation will be performed.  Instead if a message being sent
1878  * exceeds the current PMTU size, the message will NOT be sent and
1879  * instead a error will be indicated to the user.
1880  */
1881 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1882 					    char __user *optval, int optlen)
1883 {
1884 	int val;
1885 
1886 	if (optlen < sizeof(int))
1887 		return -EINVAL;
1888 
1889 	if (get_user(val, (int __user *)optval))
1890 		return -EFAULT;
1891 
1892 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1893 
1894 	return 0;
1895 }
1896 
1897 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1898 					int optlen)
1899 {
1900 	if (optlen != sizeof(struct sctp_event_subscribe))
1901 		return -EINVAL;
1902 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1903 		return -EFAULT;
1904 	return 0;
1905 }
1906 
1907 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1908  *
1909  * This socket option is applicable to the UDP-style socket only.  When
1910  * set it will cause associations that are idle for more than the
1911  * specified number of seconds to automatically close.  An association
1912  * being idle is defined an association that has NOT sent or received
1913  * user data.  The special value of '0' indicates that no automatic
1914  * close of any associations should be performed.  The option expects an
1915  * integer defining the number of seconds of idle time before an
1916  * association is closed.
1917  */
1918 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1919 					    int optlen)
1920 {
1921 	struct sctp_sock *sp = sctp_sk(sk);
1922 
1923 	/* Applicable to UDP-style socket only */
1924 	if (sctp_style(sk, TCP))
1925 		return -EOPNOTSUPP;
1926 	if (optlen != sizeof(int))
1927 		return -EINVAL;
1928 	if (copy_from_user(&sp->autoclose, optval, optlen))
1929 		return -EFAULT;
1930 
1931 	return 0;
1932 }
1933 
1934 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1935  *
1936  * Applications can enable or disable heartbeats for any peer address of
1937  * an association, modify an address's heartbeat interval, force a
1938  * heartbeat to be sent immediately, and adjust the address's maximum
1939  * number of retransmissions sent before an address is considered
1940  * unreachable.  The following structure is used to access and modify an
1941  * address's parameters:
1942  *
1943  *  struct sctp_paddrparams {
1944  *     sctp_assoc_t            spp_assoc_id;
1945  *     struct sockaddr_storage spp_address;
1946  *     uint32_t                spp_hbinterval;
1947  *     uint16_t                spp_pathmaxrxt;
1948  *     uint32_t                spp_pathmtu;
1949  *     uint32_t                spp_sackdelay;
1950  *     uint32_t                spp_flags;
1951  * };
1952  *
1953  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
1954  *                     application, and identifies the association for
1955  *                     this query.
1956  *   spp_address     - This specifies which address is of interest.
1957  *   spp_hbinterval  - This contains the value of the heartbeat interval,
1958  *                     in milliseconds.  If a  value of zero
1959  *                     is present in this field then no changes are to
1960  *                     be made to this parameter.
1961  *   spp_pathmaxrxt  - This contains the maximum number of
1962  *                     retransmissions before this address shall be
1963  *                     considered unreachable. If a  value of zero
1964  *                     is present in this field then no changes are to
1965  *                     be made to this parameter.
1966  *   spp_pathmtu     - When Path MTU discovery is disabled the value
1967  *                     specified here will be the "fixed" path mtu.
1968  *                     Note that if the spp_address field is empty
1969  *                     then all associations on this address will
1970  *                     have this fixed path mtu set upon them.
1971  *
1972  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
1973  *                     the number of milliseconds that sacks will be delayed
1974  *                     for. This value will apply to all addresses of an
1975  *                     association if the spp_address field is empty. Note
1976  *                     also, that if delayed sack is enabled and this
1977  *                     value is set to 0, no change is made to the last
1978  *                     recorded delayed sack timer value.
1979  *
1980  *   spp_flags       - These flags are used to control various features
1981  *                     on an association. The flag field may contain
1982  *                     zero or more of the following options.
1983  *
1984  *                     SPP_HB_ENABLE  - Enable heartbeats on the
1985  *                     specified address. Note that if the address
1986  *                     field is empty all addresses for the association
1987  *                     have heartbeats enabled upon them.
1988  *
1989  *                     SPP_HB_DISABLE - Disable heartbeats on the
1990  *                     speicifed address. Note that if the address
1991  *                     field is empty all addresses for the association
1992  *                     will have their heartbeats disabled. Note also
1993  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
1994  *                     mutually exclusive, only one of these two should
1995  *                     be specified. Enabling both fields will have
1996  *                     undetermined results.
1997  *
1998  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
1999  *                     to be made immediately.
2000  *
2001  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2002  *                     discovery upon the specified address. Note that
2003  *                     if the address feild is empty then all addresses
2004  *                     on the association are effected.
2005  *
2006  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2007  *                     discovery upon the specified address. Note that
2008  *                     if the address feild is empty then all addresses
2009  *                     on the association are effected. Not also that
2010  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2011  *                     exclusive. Enabling both will have undetermined
2012  *                     results.
2013  *
2014  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2015  *                     on delayed sack. The time specified in spp_sackdelay
2016  *                     is used to specify the sack delay for this address. Note
2017  *                     that if spp_address is empty then all addresses will
2018  *                     enable delayed sack and take on the sack delay
2019  *                     value specified in spp_sackdelay.
2020  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2021  *                     off delayed sack. If the spp_address field is blank then
2022  *                     delayed sack is disabled for the entire association. Note
2023  *                     also that this field is mutually exclusive to
2024  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2025  *                     results.
2026  */
2027 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2028 				struct sctp_transport   *trans,
2029 				struct sctp_association *asoc,
2030 				struct sctp_sock        *sp,
2031 				int                      hb_change,
2032 				int                      pmtud_change,
2033 				int                      sackdelay_change)
2034 {
2035 	int error;
2036 
2037 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2038 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2039 		if (error)
2040 			return error;
2041 	}
2042 
2043 	if (params->spp_hbinterval) {
2044 		if (trans) {
2045 			trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2046 		} else if (asoc) {
2047 			asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2048 		} else {
2049 			sp->hbinterval = params->spp_hbinterval;
2050 		}
2051 	}
2052 
2053 	if (hb_change) {
2054 		if (trans) {
2055 			trans->param_flags =
2056 				(trans->param_flags & ~SPP_HB) | hb_change;
2057 		} else if (asoc) {
2058 			asoc->param_flags =
2059 				(asoc->param_flags & ~SPP_HB) | hb_change;
2060 		} else {
2061 			sp->param_flags =
2062 				(sp->param_flags & ~SPP_HB) | hb_change;
2063 		}
2064 	}
2065 
2066 	if (params->spp_pathmtu) {
2067 		if (trans) {
2068 			trans->pathmtu = params->spp_pathmtu;
2069 			sctp_assoc_sync_pmtu(asoc);
2070 		} else if (asoc) {
2071 			asoc->pathmtu = params->spp_pathmtu;
2072 			sctp_frag_point(sp, params->spp_pathmtu);
2073 		} else {
2074 			sp->pathmtu = params->spp_pathmtu;
2075 		}
2076 	}
2077 
2078 	if (pmtud_change) {
2079 		if (trans) {
2080 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2081 				(params->spp_flags & SPP_PMTUD_ENABLE);
2082 			trans->param_flags =
2083 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2084 			if (update) {
2085 				sctp_transport_pmtu(trans);
2086 				sctp_assoc_sync_pmtu(asoc);
2087 			}
2088 		} else if (asoc) {
2089 			asoc->param_flags =
2090 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2091 		} else {
2092 			sp->param_flags =
2093 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2094 		}
2095 	}
2096 
2097 	if (params->spp_sackdelay) {
2098 		if (trans) {
2099 			trans->sackdelay =
2100 				msecs_to_jiffies(params->spp_sackdelay);
2101 		} else if (asoc) {
2102 			asoc->sackdelay =
2103 				msecs_to_jiffies(params->spp_sackdelay);
2104 		} else {
2105 			sp->sackdelay = params->spp_sackdelay;
2106 		}
2107 	}
2108 
2109 	if (sackdelay_change) {
2110 		if (trans) {
2111 			trans->param_flags =
2112 				(trans->param_flags & ~SPP_SACKDELAY) |
2113 				sackdelay_change;
2114 		} else if (asoc) {
2115 			asoc->param_flags =
2116 				(asoc->param_flags & ~SPP_SACKDELAY) |
2117 				sackdelay_change;
2118 		} else {
2119 			sp->param_flags =
2120 				(sp->param_flags & ~SPP_SACKDELAY) |
2121 				sackdelay_change;
2122 		}
2123 	}
2124 
2125 	if (params->spp_pathmaxrxt) {
2126 		if (trans) {
2127 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2128 		} else if (asoc) {
2129 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2130 		} else {
2131 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2132 		}
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2139 					    char __user *optval, int optlen)
2140 {
2141 	struct sctp_paddrparams  params;
2142 	struct sctp_transport   *trans = NULL;
2143 	struct sctp_association *asoc = NULL;
2144 	struct sctp_sock        *sp = sctp_sk(sk);
2145 	int error;
2146 	int hb_change, pmtud_change, sackdelay_change;
2147 
2148 	if (optlen != sizeof(struct sctp_paddrparams))
2149 		return - EINVAL;
2150 
2151 	if (copy_from_user(&params, optval, optlen))
2152 		return -EFAULT;
2153 
2154 	/* Validate flags and value parameters. */
2155 	hb_change        = params.spp_flags & SPP_HB;
2156 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2157 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2158 
2159 	if (hb_change        == SPP_HB ||
2160 	    pmtud_change     == SPP_PMTUD ||
2161 	    sackdelay_change == SPP_SACKDELAY ||
2162 	    params.spp_sackdelay > 500 ||
2163 	    (params.spp_pathmtu
2164 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2165 		return -EINVAL;
2166 
2167 	/* If an address other than INADDR_ANY is specified, and
2168 	 * no transport is found, then the request is invalid.
2169 	 */
2170 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2171 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2172 					       params.spp_assoc_id);
2173 		if (!trans)
2174 			return -EINVAL;
2175 	}
2176 
2177 	/* Get association, if assoc_id != 0 and the socket is a one
2178 	 * to many style socket, and an association was not found, then
2179 	 * the id was invalid.
2180 	 */
2181 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2182 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2183 		return -EINVAL;
2184 
2185 	/* Heartbeat demand can only be sent on a transport or
2186 	 * association, but not a socket.
2187 	 */
2188 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2189 		return -EINVAL;
2190 
2191 	/* Process parameters. */
2192 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2193 					    hb_change, pmtud_change,
2194 					    sackdelay_change);
2195 
2196 	if (error)
2197 		return error;
2198 
2199 	/* If changes are for association, also apply parameters to each
2200 	 * transport.
2201 	 */
2202 	if (!trans && asoc) {
2203 		struct list_head *pos;
2204 
2205 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2206 			trans = list_entry(pos, struct sctp_transport,
2207 					   transports);
2208 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2209 						    hb_change, pmtud_change,
2210 						    sackdelay_change);
2211 		}
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2218  *
2219  *   This options will get or set the delayed ack timer.  The time is set
2220  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2221  *   endpoints default delayed ack timer value.  If the assoc_id field is
2222  *   non-zero, then the set or get effects the specified association.
2223  *
2224  *   struct sctp_assoc_value {
2225  *       sctp_assoc_t            assoc_id;
2226  *       uint32_t                assoc_value;
2227  *   };
2228  *
2229  *     assoc_id    - This parameter, indicates which association the
2230  *                   user is preforming an action upon. Note that if
2231  *                   this field's value is zero then the endpoints
2232  *                   default value is changed (effecting future
2233  *                   associations only).
2234  *
2235  *     assoc_value - This parameter contains the number of milliseconds
2236  *                   that the user is requesting the delayed ACK timer
2237  *                   be set to. Note that this value is defined in
2238  *                   the standard to be between 200 and 500 milliseconds.
2239  *
2240  *                   Note: a value of zero will leave the value alone,
2241  *                   but disable SACK delay. A non-zero value will also
2242  *                   enable SACK delay.
2243  */
2244 
2245 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2246 					    char __user *optval, int optlen)
2247 {
2248 	struct sctp_assoc_value  params;
2249 	struct sctp_transport   *trans = NULL;
2250 	struct sctp_association *asoc = NULL;
2251 	struct sctp_sock        *sp = sctp_sk(sk);
2252 
2253 	if (optlen != sizeof(struct sctp_assoc_value))
2254 		return - EINVAL;
2255 
2256 	if (copy_from_user(&params, optval, optlen))
2257 		return -EFAULT;
2258 
2259 	/* Validate value parameter. */
2260 	if (params.assoc_value > 500)
2261 		return -EINVAL;
2262 
2263 	/* Get association, if assoc_id != 0 and the socket is a one
2264 	 * to many style socket, and an association was not found, then
2265 	 * the id was invalid.
2266  	 */
2267 	asoc = sctp_id2assoc(sk, params.assoc_id);
2268 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2269 		return -EINVAL;
2270 
2271 	if (params.assoc_value) {
2272 		if (asoc) {
2273 			asoc->sackdelay =
2274 				msecs_to_jiffies(params.assoc_value);
2275 			asoc->param_flags =
2276 				(asoc->param_flags & ~SPP_SACKDELAY) |
2277 				SPP_SACKDELAY_ENABLE;
2278 		} else {
2279 			sp->sackdelay = params.assoc_value;
2280 			sp->param_flags =
2281 				(sp->param_flags & ~SPP_SACKDELAY) |
2282 				SPP_SACKDELAY_ENABLE;
2283 		}
2284 	} else {
2285 		if (asoc) {
2286 			asoc->param_flags =
2287 				(asoc->param_flags & ~SPP_SACKDELAY) |
2288 				SPP_SACKDELAY_DISABLE;
2289 		} else {
2290 			sp->param_flags =
2291 				(sp->param_flags & ~SPP_SACKDELAY) |
2292 				SPP_SACKDELAY_DISABLE;
2293 		}
2294 	}
2295 
2296 	/* If change is for association, also apply to each transport. */
2297 	if (asoc) {
2298 		struct list_head *pos;
2299 
2300 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2301 			trans = list_entry(pos, struct sctp_transport,
2302 					   transports);
2303 			if (params.assoc_value) {
2304 				trans->sackdelay =
2305 					msecs_to_jiffies(params.assoc_value);
2306 				trans->param_flags =
2307 					(trans->param_flags & ~SPP_SACKDELAY) |
2308 					SPP_SACKDELAY_ENABLE;
2309 			} else {
2310 				trans->param_flags =
2311 					(trans->param_flags & ~SPP_SACKDELAY) |
2312 					SPP_SACKDELAY_DISABLE;
2313 			}
2314 		}
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2321  *
2322  * Applications can specify protocol parameters for the default association
2323  * initialization.  The option name argument to setsockopt() and getsockopt()
2324  * is SCTP_INITMSG.
2325  *
2326  * Setting initialization parameters is effective only on an unconnected
2327  * socket (for UDP-style sockets only future associations are effected
2328  * by the change).  With TCP-style sockets, this option is inherited by
2329  * sockets derived from a listener socket.
2330  */
2331 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2332 {
2333 	struct sctp_initmsg sinit;
2334 	struct sctp_sock *sp = sctp_sk(sk);
2335 
2336 	if (optlen != sizeof(struct sctp_initmsg))
2337 		return -EINVAL;
2338 	if (copy_from_user(&sinit, optval, optlen))
2339 		return -EFAULT;
2340 
2341 	if (sinit.sinit_num_ostreams)
2342 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2343 	if (sinit.sinit_max_instreams)
2344 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2345 	if (sinit.sinit_max_attempts)
2346 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2347 	if (sinit.sinit_max_init_timeo)
2348 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2349 
2350 	return 0;
2351 }
2352 
2353 /*
2354  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2355  *
2356  *   Applications that wish to use the sendto() system call may wish to
2357  *   specify a default set of parameters that would normally be supplied
2358  *   through the inclusion of ancillary data.  This socket option allows
2359  *   such an application to set the default sctp_sndrcvinfo structure.
2360  *   The application that wishes to use this socket option simply passes
2361  *   in to this call the sctp_sndrcvinfo structure defined in Section
2362  *   5.2.2) The input parameters accepted by this call include
2363  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2364  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2365  *   to this call if the caller is using the UDP model.
2366  */
2367 static int sctp_setsockopt_default_send_param(struct sock *sk,
2368 						char __user *optval, int optlen)
2369 {
2370 	struct sctp_sndrcvinfo info;
2371 	struct sctp_association *asoc;
2372 	struct sctp_sock *sp = sctp_sk(sk);
2373 
2374 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2375 		return -EINVAL;
2376 	if (copy_from_user(&info, optval, optlen))
2377 		return -EFAULT;
2378 
2379 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2380 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2381 		return -EINVAL;
2382 
2383 	if (asoc) {
2384 		asoc->default_stream = info.sinfo_stream;
2385 		asoc->default_flags = info.sinfo_flags;
2386 		asoc->default_ppid = info.sinfo_ppid;
2387 		asoc->default_context = info.sinfo_context;
2388 		asoc->default_timetolive = info.sinfo_timetolive;
2389 	} else {
2390 		sp->default_stream = info.sinfo_stream;
2391 		sp->default_flags = info.sinfo_flags;
2392 		sp->default_ppid = info.sinfo_ppid;
2393 		sp->default_context = info.sinfo_context;
2394 		sp->default_timetolive = info.sinfo_timetolive;
2395 	}
2396 
2397 	return 0;
2398 }
2399 
2400 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2401  *
2402  * Requests that the local SCTP stack use the enclosed peer address as
2403  * the association primary.  The enclosed address must be one of the
2404  * association peer's addresses.
2405  */
2406 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2407 					int optlen)
2408 {
2409 	struct sctp_prim prim;
2410 	struct sctp_transport *trans;
2411 
2412 	if (optlen != sizeof(struct sctp_prim))
2413 		return -EINVAL;
2414 
2415 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2416 		return -EFAULT;
2417 
2418 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2419 	if (!trans)
2420 		return -EINVAL;
2421 
2422 	sctp_assoc_set_primary(trans->asoc, trans);
2423 
2424 	return 0;
2425 }
2426 
2427 /*
2428  * 7.1.5 SCTP_NODELAY
2429  *
2430  * Turn on/off any Nagle-like algorithm.  This means that packets are
2431  * generally sent as soon as possible and no unnecessary delays are
2432  * introduced, at the cost of more packets in the network.  Expects an
2433  *  integer boolean flag.
2434  */
2435 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2436 					int optlen)
2437 {
2438 	int val;
2439 
2440 	if (optlen < sizeof(int))
2441 		return -EINVAL;
2442 	if (get_user(val, (int __user *)optval))
2443 		return -EFAULT;
2444 
2445 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2446 	return 0;
2447 }
2448 
2449 /*
2450  *
2451  * 7.1.1 SCTP_RTOINFO
2452  *
2453  * The protocol parameters used to initialize and bound retransmission
2454  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2455  * and modify these parameters.
2456  * All parameters are time values, in milliseconds.  A value of 0, when
2457  * modifying the parameters, indicates that the current value should not
2458  * be changed.
2459  *
2460  */
2461 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2462 	struct sctp_rtoinfo rtoinfo;
2463 	struct sctp_association *asoc;
2464 
2465 	if (optlen != sizeof (struct sctp_rtoinfo))
2466 		return -EINVAL;
2467 
2468 	if (copy_from_user(&rtoinfo, optval, optlen))
2469 		return -EFAULT;
2470 
2471 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2472 
2473 	/* Set the values to the specific association */
2474 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2475 		return -EINVAL;
2476 
2477 	if (asoc) {
2478 		if (rtoinfo.srto_initial != 0)
2479 			asoc->rto_initial =
2480 				msecs_to_jiffies(rtoinfo.srto_initial);
2481 		if (rtoinfo.srto_max != 0)
2482 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2483 		if (rtoinfo.srto_min != 0)
2484 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2485 	} else {
2486 		/* If there is no association or the association-id = 0
2487 		 * set the values to the endpoint.
2488 		 */
2489 		struct sctp_sock *sp = sctp_sk(sk);
2490 
2491 		if (rtoinfo.srto_initial != 0)
2492 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2493 		if (rtoinfo.srto_max != 0)
2494 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2495 		if (rtoinfo.srto_min != 0)
2496 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 /*
2503  *
2504  * 7.1.2 SCTP_ASSOCINFO
2505  *
2506  * This option is used to tune the the maximum retransmission attempts
2507  * of the association.
2508  * Returns an error if the new association retransmission value is
2509  * greater than the sum of the retransmission value  of the peer.
2510  * See [SCTP] for more information.
2511  *
2512  */
2513 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2514 {
2515 
2516 	struct sctp_assocparams assocparams;
2517 	struct sctp_association *asoc;
2518 
2519 	if (optlen != sizeof(struct sctp_assocparams))
2520 		return -EINVAL;
2521 	if (copy_from_user(&assocparams, optval, optlen))
2522 		return -EFAULT;
2523 
2524 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2525 
2526 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2527 		return -EINVAL;
2528 
2529 	/* Set the values to the specific association */
2530 	if (asoc) {
2531 		if (assocparams.sasoc_asocmaxrxt != 0)
2532 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2533 		if (assocparams.sasoc_cookie_life != 0) {
2534 			asoc->cookie_life.tv_sec =
2535 					assocparams.sasoc_cookie_life / 1000;
2536 			asoc->cookie_life.tv_usec =
2537 					(assocparams.sasoc_cookie_life % 1000)
2538 					* 1000;
2539 		}
2540 	} else {
2541 		/* Set the values to the endpoint */
2542 		struct sctp_sock *sp = sctp_sk(sk);
2543 
2544 		if (assocparams.sasoc_asocmaxrxt != 0)
2545 			sp->assocparams.sasoc_asocmaxrxt =
2546 						assocparams.sasoc_asocmaxrxt;
2547 		if (assocparams.sasoc_cookie_life != 0)
2548 			sp->assocparams.sasoc_cookie_life =
2549 						assocparams.sasoc_cookie_life;
2550 	}
2551 	return 0;
2552 }
2553 
2554 /*
2555  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2556  *
2557  * This socket option is a boolean flag which turns on or off mapped V4
2558  * addresses.  If this option is turned on and the socket is type
2559  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2560  * If this option is turned off, then no mapping will be done of V4
2561  * addresses and a user will receive both PF_INET6 and PF_INET type
2562  * addresses on the socket.
2563  */
2564 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2565 {
2566 	int val;
2567 	struct sctp_sock *sp = sctp_sk(sk);
2568 
2569 	if (optlen < sizeof(int))
2570 		return -EINVAL;
2571 	if (get_user(val, (int __user *)optval))
2572 		return -EFAULT;
2573 	if (val)
2574 		sp->v4mapped = 1;
2575 	else
2576 		sp->v4mapped = 0;
2577 
2578 	return 0;
2579 }
2580 
2581 /*
2582  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2583  *
2584  * This socket option specifies the maximum size to put in any outgoing
2585  * SCTP chunk.  If a message is larger than this size it will be
2586  * fragmented by SCTP into the specified size.  Note that the underlying
2587  * SCTP implementation may fragment into smaller sized chunks when the
2588  * PMTU of the underlying association is smaller than the value set by
2589  * the user.
2590  */
2591 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2592 {
2593 	struct sctp_association *asoc;
2594 	struct list_head *pos;
2595 	struct sctp_sock *sp = sctp_sk(sk);
2596 	int val;
2597 
2598 	if (optlen < sizeof(int))
2599 		return -EINVAL;
2600 	if (get_user(val, (int __user *)optval))
2601 		return -EFAULT;
2602 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2603 		return -EINVAL;
2604 	sp->user_frag = val;
2605 
2606 	/* Update the frag_point of the existing associations. */
2607 	list_for_each(pos, &(sp->ep->asocs)) {
2608 		asoc = list_entry(pos, struct sctp_association, asocs);
2609 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 
2616 /*
2617  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2618  *
2619  *   Requests that the peer mark the enclosed address as the association
2620  *   primary. The enclosed address must be one of the association's
2621  *   locally bound addresses. The following structure is used to make a
2622  *   set primary request:
2623  */
2624 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2625 					     int optlen)
2626 {
2627 	struct sctp_sock	*sp;
2628 	struct sctp_endpoint	*ep;
2629 	struct sctp_association	*asoc = NULL;
2630 	struct sctp_setpeerprim	prim;
2631 	struct sctp_chunk	*chunk;
2632 	int 			err;
2633 
2634 	sp = sctp_sk(sk);
2635 	ep = sp->ep;
2636 
2637 	if (!sctp_addip_enable)
2638 		return -EPERM;
2639 
2640 	if (optlen != sizeof(struct sctp_setpeerprim))
2641 		return -EINVAL;
2642 
2643 	if (copy_from_user(&prim, optval, optlen))
2644 		return -EFAULT;
2645 
2646 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2647 	if (!asoc)
2648 		return -EINVAL;
2649 
2650 	if (!asoc->peer.asconf_capable)
2651 		return -EPERM;
2652 
2653 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2654 		return -EPERM;
2655 
2656 	if (!sctp_state(asoc, ESTABLISHED))
2657 		return -ENOTCONN;
2658 
2659 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2660 		return -EADDRNOTAVAIL;
2661 
2662 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2663 	chunk = sctp_make_asconf_set_prim(asoc,
2664 					  (union sctp_addr *)&prim.sspp_addr);
2665 	if (!chunk)
2666 		return -ENOMEM;
2667 
2668 	err = sctp_send_asconf(asoc, chunk);
2669 
2670 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2671 
2672 	return err;
2673 }
2674 
2675 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2676 					  int optlen)
2677 {
2678 	struct sctp_setadaption adaption;
2679 
2680 	if (optlen != sizeof(struct sctp_setadaption))
2681 		return -EINVAL;
2682 	if (copy_from_user(&adaption, optval, optlen))
2683 		return -EFAULT;
2684 
2685 	sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2686 
2687 	return 0;
2688 }
2689 
2690 /* API 6.2 setsockopt(), getsockopt()
2691  *
2692  * Applications use setsockopt() and getsockopt() to set or retrieve
2693  * socket options.  Socket options are used to change the default
2694  * behavior of sockets calls.  They are described in Section 7.
2695  *
2696  * The syntax is:
2697  *
2698  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2699  *                    int __user *optlen);
2700  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2701  *                    int optlen);
2702  *
2703  *   sd      - the socket descript.
2704  *   level   - set to IPPROTO_SCTP for all SCTP options.
2705  *   optname - the option name.
2706  *   optval  - the buffer to store the value of the option.
2707  *   optlen  - the size of the buffer.
2708  */
2709 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2710 				char __user *optval, int optlen)
2711 {
2712 	int retval = 0;
2713 
2714 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2715 			  sk, optname);
2716 
2717 	/* I can hardly begin to describe how wrong this is.  This is
2718 	 * so broken as to be worse than useless.  The API draft
2719 	 * REALLY is NOT helpful here...  I am not convinced that the
2720 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2721 	 * are at all well-founded.
2722 	 */
2723 	if (level != SOL_SCTP) {
2724 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2725 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2726 		goto out_nounlock;
2727 	}
2728 
2729 	sctp_lock_sock(sk);
2730 
2731 	switch (optname) {
2732 	case SCTP_SOCKOPT_BINDX_ADD:
2733 		/* 'optlen' is the size of the addresses buffer. */
2734 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2735 					       optlen, SCTP_BINDX_ADD_ADDR);
2736 		break;
2737 
2738 	case SCTP_SOCKOPT_BINDX_REM:
2739 		/* 'optlen' is the size of the addresses buffer. */
2740 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2741 					       optlen, SCTP_BINDX_REM_ADDR);
2742 		break;
2743 
2744 	case SCTP_SOCKOPT_CONNECTX:
2745 		/* 'optlen' is the size of the addresses buffer. */
2746 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2747 					       optlen);
2748 		break;
2749 
2750 	case SCTP_DISABLE_FRAGMENTS:
2751 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2752 		break;
2753 
2754 	case SCTP_EVENTS:
2755 		retval = sctp_setsockopt_events(sk, optval, optlen);
2756 		break;
2757 
2758 	case SCTP_AUTOCLOSE:
2759 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2760 		break;
2761 
2762 	case SCTP_PEER_ADDR_PARAMS:
2763 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2764 		break;
2765 
2766 	case SCTP_DELAYED_ACK_TIME:
2767 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2768 		break;
2769 
2770 	case SCTP_INITMSG:
2771 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2772 		break;
2773 	case SCTP_DEFAULT_SEND_PARAM:
2774 		retval = sctp_setsockopt_default_send_param(sk, optval,
2775 							    optlen);
2776 		break;
2777 	case SCTP_PRIMARY_ADDR:
2778 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2779 		break;
2780 	case SCTP_SET_PEER_PRIMARY_ADDR:
2781 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2782 		break;
2783 	case SCTP_NODELAY:
2784 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2785 		break;
2786 	case SCTP_RTOINFO:
2787 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2788 		break;
2789 	case SCTP_ASSOCINFO:
2790 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2791 		break;
2792 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2793 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2794 		break;
2795 	case SCTP_MAXSEG:
2796 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2797 		break;
2798 	case SCTP_ADAPTION_LAYER:
2799 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2800 		break;
2801 
2802 	default:
2803 		retval = -ENOPROTOOPT;
2804 		break;
2805 	};
2806 
2807 	sctp_release_sock(sk);
2808 
2809 out_nounlock:
2810 	return retval;
2811 }
2812 
2813 /* API 3.1.6 connect() - UDP Style Syntax
2814  *
2815  * An application may use the connect() call in the UDP model to initiate an
2816  * association without sending data.
2817  *
2818  * The syntax is:
2819  *
2820  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2821  *
2822  * sd: the socket descriptor to have a new association added to.
2823  *
2824  * nam: the address structure (either struct sockaddr_in or struct
2825  *    sockaddr_in6 defined in RFC2553 [7]).
2826  *
2827  * len: the size of the address.
2828  */
2829 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2830 			     int addr_len)
2831 {
2832 	int err = 0;
2833 	struct sctp_af *af;
2834 
2835 	sctp_lock_sock(sk);
2836 
2837 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2838 			  __FUNCTION__, sk, addr, addr_len);
2839 
2840 	/* Validate addr_len before calling common connect/connectx routine. */
2841 	af = sctp_get_af_specific(addr->sa_family);
2842 	if (!af || addr_len < af->sockaddr_len) {
2843 		err = -EINVAL;
2844 	} else {
2845 		/* Pass correct addr len to common routine (so it knows there
2846 		 * is only one address being passed.
2847 		 */
2848 		err = __sctp_connect(sk, addr, af->sockaddr_len);
2849 	}
2850 
2851 	sctp_release_sock(sk);
2852 	return err;
2853 }
2854 
2855 /* FIXME: Write comments. */
2856 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2857 {
2858 	return -EOPNOTSUPP; /* STUB */
2859 }
2860 
2861 /* 4.1.4 accept() - TCP Style Syntax
2862  *
2863  * Applications use accept() call to remove an established SCTP
2864  * association from the accept queue of the endpoint.  A new socket
2865  * descriptor will be returned from accept() to represent the newly
2866  * formed association.
2867  */
2868 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2869 {
2870 	struct sctp_sock *sp;
2871 	struct sctp_endpoint *ep;
2872 	struct sock *newsk = NULL;
2873 	struct sctp_association *asoc;
2874 	long timeo;
2875 	int error = 0;
2876 
2877 	sctp_lock_sock(sk);
2878 
2879 	sp = sctp_sk(sk);
2880 	ep = sp->ep;
2881 
2882 	if (!sctp_style(sk, TCP)) {
2883 		error = -EOPNOTSUPP;
2884 		goto out;
2885 	}
2886 
2887 	if (!sctp_sstate(sk, LISTENING)) {
2888 		error = -EINVAL;
2889 		goto out;
2890 	}
2891 
2892 	timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2893 
2894 	error = sctp_wait_for_accept(sk, timeo);
2895 	if (error)
2896 		goto out;
2897 
2898 	/* We treat the list of associations on the endpoint as the accept
2899 	 * queue and pick the first association on the list.
2900 	 */
2901 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2902 
2903 	newsk = sp->pf->create_accept_sk(sk, asoc);
2904 	if (!newsk) {
2905 		error = -ENOMEM;
2906 		goto out;
2907 	}
2908 
2909 	/* Populate the fields of the newsk from the oldsk and migrate the
2910 	 * asoc to the newsk.
2911 	 */
2912 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2913 
2914 out:
2915 	sctp_release_sock(sk);
2916  	*err = error;
2917 	return newsk;
2918 }
2919 
2920 /* The SCTP ioctl handler. */
2921 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2922 {
2923 	return -ENOIOCTLCMD;
2924 }
2925 
2926 /* This is the function which gets called during socket creation to
2927  * initialized the SCTP-specific portion of the sock.
2928  * The sock structure should already be zero-filled memory.
2929  */
2930 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2931 {
2932 	struct sctp_endpoint *ep;
2933 	struct sctp_sock *sp;
2934 
2935 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2936 
2937 	sp = sctp_sk(sk);
2938 
2939 	/* Initialize the SCTP per socket area.  */
2940 	switch (sk->sk_type) {
2941 	case SOCK_SEQPACKET:
2942 		sp->type = SCTP_SOCKET_UDP;
2943 		break;
2944 	case SOCK_STREAM:
2945 		sp->type = SCTP_SOCKET_TCP;
2946 		break;
2947 	default:
2948 		return -ESOCKTNOSUPPORT;
2949 	}
2950 
2951 	/* Initialize default send parameters. These parameters can be
2952 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2953 	 */
2954 	sp->default_stream = 0;
2955 	sp->default_ppid = 0;
2956 	sp->default_flags = 0;
2957 	sp->default_context = 0;
2958 	sp->default_timetolive = 0;
2959 
2960 	/* Initialize default setup parameters. These parameters
2961 	 * can be modified with the SCTP_INITMSG socket option or
2962 	 * overridden by the SCTP_INIT CMSG.
2963 	 */
2964 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
2965 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
2966 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
2967 	sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2968 
2969 	/* Initialize default RTO related parameters.  These parameters can
2970 	 * be modified for with the SCTP_RTOINFO socket option.
2971 	 */
2972 	sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2973 	sp->rtoinfo.srto_max     = jiffies_to_msecs(sctp_rto_max);
2974 	sp->rtoinfo.srto_min     = jiffies_to_msecs(sctp_rto_min);
2975 
2976 	/* Initialize default association related parameters. These parameters
2977 	 * can be modified with the SCTP_ASSOCINFO socket option.
2978 	 */
2979 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2980 	sp->assocparams.sasoc_number_peer_destinations = 0;
2981 	sp->assocparams.sasoc_peer_rwnd = 0;
2982 	sp->assocparams.sasoc_local_rwnd = 0;
2983 	sp->assocparams.sasoc_cookie_life =
2984 		jiffies_to_msecs(sctp_valid_cookie_life);
2985 
2986 	/* Initialize default event subscriptions. By default, all the
2987 	 * options are off.
2988 	 */
2989 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2990 
2991 	/* Default Peer Address Parameters.  These defaults can
2992 	 * be modified via SCTP_PEER_ADDR_PARAMS
2993 	 */
2994 	sp->hbinterval  = jiffies_to_msecs(sctp_hb_interval);
2995 	sp->pathmaxrxt  = sctp_max_retrans_path;
2996 	sp->pathmtu     = 0; // allow default discovery
2997 	sp->sackdelay   = sctp_sack_timeout;
2998 	sp->param_flags = SPP_HB_ENABLE |
2999 	                  SPP_PMTUD_ENABLE |
3000 	                  SPP_SACKDELAY_ENABLE;
3001 
3002 	/* If enabled no SCTP message fragmentation will be performed.
3003 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3004 	 */
3005 	sp->disable_fragments = 0;
3006 
3007 	/* Turn on/off any Nagle-like algorithm.  */
3008 	sp->nodelay           = 1;
3009 
3010 	/* Enable by default. */
3011 	sp->v4mapped          = 1;
3012 
3013 	/* Auto-close idle associations after the configured
3014 	 * number of seconds.  A value of 0 disables this
3015 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3016 	 * for UDP-style sockets only.
3017 	 */
3018 	sp->autoclose         = 0;
3019 
3020 	/* User specified fragmentation limit. */
3021 	sp->user_frag         = 0;
3022 
3023 	sp->adaption_ind = 0;
3024 
3025 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3026 
3027 	/* Control variables for partial data delivery. */
3028 	sp->pd_mode           = 0;
3029 	skb_queue_head_init(&sp->pd_lobby);
3030 
3031 	/* Create a per socket endpoint structure.  Even if we
3032 	 * change the data structure relationships, this may still
3033 	 * be useful for storing pre-connect address information.
3034 	 */
3035 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3036 	if (!ep)
3037 		return -ENOMEM;
3038 
3039 	sp->ep = ep;
3040 	sp->hmac = NULL;
3041 
3042 	SCTP_DBG_OBJCNT_INC(sock);
3043 	return 0;
3044 }
3045 
3046 /* Cleanup any SCTP per socket resources.  */
3047 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3048 {
3049 	struct sctp_endpoint *ep;
3050 
3051 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3052 
3053 	/* Release our hold on the endpoint. */
3054 	ep = sctp_sk(sk)->ep;
3055 	sctp_endpoint_free(ep);
3056 
3057 	return 0;
3058 }
3059 
3060 /* API 4.1.7 shutdown() - TCP Style Syntax
3061  *     int shutdown(int socket, int how);
3062  *
3063  *     sd      - the socket descriptor of the association to be closed.
3064  *     how     - Specifies the type of shutdown.  The  values  are
3065  *               as follows:
3066  *               SHUT_RD
3067  *                     Disables further receive operations. No SCTP
3068  *                     protocol action is taken.
3069  *               SHUT_WR
3070  *                     Disables further send operations, and initiates
3071  *                     the SCTP shutdown sequence.
3072  *               SHUT_RDWR
3073  *                     Disables further send  and  receive  operations
3074  *                     and initiates the SCTP shutdown sequence.
3075  */
3076 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3077 {
3078 	struct sctp_endpoint *ep;
3079 	struct sctp_association *asoc;
3080 
3081 	if (!sctp_style(sk, TCP))
3082 		return;
3083 
3084 	if (how & SEND_SHUTDOWN) {
3085 		ep = sctp_sk(sk)->ep;
3086 		if (!list_empty(&ep->asocs)) {
3087 			asoc = list_entry(ep->asocs.next,
3088 					  struct sctp_association, asocs);
3089 			sctp_primitive_SHUTDOWN(asoc, NULL);
3090 		}
3091 	}
3092 }
3093 
3094 /* 7.2.1 Association Status (SCTP_STATUS)
3095 
3096  * Applications can retrieve current status information about an
3097  * association, including association state, peer receiver window size,
3098  * number of unacked data chunks, and number of data chunks pending
3099  * receipt.  This information is read-only.
3100  */
3101 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3102 				       char __user *optval,
3103 				       int __user *optlen)
3104 {
3105 	struct sctp_status status;
3106 	struct sctp_association *asoc = NULL;
3107 	struct sctp_transport *transport;
3108 	sctp_assoc_t associd;
3109 	int retval = 0;
3110 
3111 	if (len != sizeof(status)) {
3112 		retval = -EINVAL;
3113 		goto out;
3114 	}
3115 
3116 	if (copy_from_user(&status, optval, sizeof(status))) {
3117 		retval = -EFAULT;
3118 		goto out;
3119 	}
3120 
3121 	associd = status.sstat_assoc_id;
3122 	asoc = sctp_id2assoc(sk, associd);
3123 	if (!asoc) {
3124 		retval = -EINVAL;
3125 		goto out;
3126 	}
3127 
3128 	transport = asoc->peer.primary_path;
3129 
3130 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3131 	status.sstat_state = asoc->state;
3132 	status.sstat_rwnd =  asoc->peer.rwnd;
3133 	status.sstat_unackdata = asoc->unack_data;
3134 
3135 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3136 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3137 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3138 	status.sstat_fragmentation_point = asoc->frag_point;
3139 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3140 	memcpy(&status.sstat_primary.spinfo_address,
3141 	       &(transport->ipaddr), sizeof(union sctp_addr));
3142 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3143 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3144 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3145 	status.sstat_primary.spinfo_state = transport->state;
3146 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3147 	status.sstat_primary.spinfo_srtt = transport->srtt;
3148 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3149 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3150 
3151 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3152 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3153 
3154 	if (put_user(len, optlen)) {
3155 		retval = -EFAULT;
3156 		goto out;
3157 	}
3158 
3159 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3160 			  len, status.sstat_state, status.sstat_rwnd,
3161 			  status.sstat_assoc_id);
3162 
3163 	if (copy_to_user(optval, &status, len)) {
3164 		retval = -EFAULT;
3165 		goto out;
3166 	}
3167 
3168 out:
3169 	return (retval);
3170 }
3171 
3172 
3173 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3174  *
3175  * Applications can retrieve information about a specific peer address
3176  * of an association, including its reachability state, congestion
3177  * window, and retransmission timer values.  This information is
3178  * read-only.
3179  */
3180 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3181 					  char __user *optval,
3182 					  int __user *optlen)
3183 {
3184 	struct sctp_paddrinfo pinfo;
3185 	struct sctp_transport *transport;
3186 	int retval = 0;
3187 
3188 	if (len != sizeof(pinfo)) {
3189 		retval = -EINVAL;
3190 		goto out;
3191 	}
3192 
3193 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3194 		retval = -EFAULT;
3195 		goto out;
3196 	}
3197 
3198 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3199 					   pinfo.spinfo_assoc_id);
3200 	if (!transport)
3201 		return -EINVAL;
3202 
3203 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3204 	pinfo.spinfo_state = transport->state;
3205 	pinfo.spinfo_cwnd = transport->cwnd;
3206 	pinfo.spinfo_srtt = transport->srtt;
3207 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3208 	pinfo.spinfo_mtu = transport->pathmtu;
3209 
3210 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3211 		pinfo.spinfo_state = SCTP_ACTIVE;
3212 
3213 	if (put_user(len, optlen)) {
3214 		retval = -EFAULT;
3215 		goto out;
3216 	}
3217 
3218 	if (copy_to_user(optval, &pinfo, len)) {
3219 		retval = -EFAULT;
3220 		goto out;
3221 	}
3222 
3223 out:
3224 	return (retval);
3225 }
3226 
3227 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3228  *
3229  * This option is a on/off flag.  If enabled no SCTP message
3230  * fragmentation will be performed.  Instead if a message being sent
3231  * exceeds the current PMTU size, the message will NOT be sent and
3232  * instead a error will be indicated to the user.
3233  */
3234 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3235 					char __user *optval, int __user *optlen)
3236 {
3237 	int val;
3238 
3239 	if (len < sizeof(int))
3240 		return -EINVAL;
3241 
3242 	len = sizeof(int);
3243 	val = (sctp_sk(sk)->disable_fragments == 1);
3244 	if (put_user(len, optlen))
3245 		return -EFAULT;
3246 	if (copy_to_user(optval, &val, len))
3247 		return -EFAULT;
3248 	return 0;
3249 }
3250 
3251 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3252  *
3253  * This socket option is used to specify various notifications and
3254  * ancillary data the user wishes to receive.
3255  */
3256 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3257 				  int __user *optlen)
3258 {
3259 	if (len != sizeof(struct sctp_event_subscribe))
3260 		return -EINVAL;
3261 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3262 		return -EFAULT;
3263 	return 0;
3264 }
3265 
3266 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3267  *
3268  * This socket option is applicable to the UDP-style socket only.  When
3269  * set it will cause associations that are idle for more than the
3270  * specified number of seconds to automatically close.  An association
3271  * being idle is defined an association that has NOT sent or received
3272  * user data.  The special value of '0' indicates that no automatic
3273  * close of any associations should be performed.  The option expects an
3274  * integer defining the number of seconds of idle time before an
3275  * association is closed.
3276  */
3277 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3278 {
3279 	/* Applicable to UDP-style socket only */
3280 	if (sctp_style(sk, TCP))
3281 		return -EOPNOTSUPP;
3282 	if (len != sizeof(int))
3283 		return -EINVAL;
3284 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3285 		return -EFAULT;
3286 	return 0;
3287 }
3288 
3289 /* Helper routine to branch off an association to a new socket.  */
3290 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3291 				struct socket **sockp)
3292 {
3293 	struct sock *sk = asoc->base.sk;
3294 	struct socket *sock;
3295 	int err = 0;
3296 
3297 	/* An association cannot be branched off from an already peeled-off
3298 	 * socket, nor is this supported for tcp style sockets.
3299 	 */
3300 	if (!sctp_style(sk, UDP))
3301 		return -EINVAL;
3302 
3303 	/* Create a new socket.  */
3304 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3305 	if (err < 0)
3306 		return err;
3307 
3308 	/* Populate the fields of the newsk from the oldsk and migrate the
3309 	 * asoc to the newsk.
3310 	 */
3311 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3312 	*sockp = sock;
3313 
3314 	return err;
3315 }
3316 
3317 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3318 {
3319 	sctp_peeloff_arg_t peeloff;
3320 	struct socket *newsock;
3321 	int retval = 0;
3322 	struct sctp_association *asoc;
3323 
3324 	if (len != sizeof(sctp_peeloff_arg_t))
3325 		return -EINVAL;
3326 	if (copy_from_user(&peeloff, optval, len))
3327 		return -EFAULT;
3328 
3329 	asoc = sctp_id2assoc(sk, peeloff.associd);
3330 	if (!asoc) {
3331 		retval = -EINVAL;
3332 		goto out;
3333 	}
3334 
3335 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3336 
3337 	retval = sctp_do_peeloff(asoc, &newsock);
3338 	if (retval < 0)
3339 		goto out;
3340 
3341 	/* Map the socket to an unused fd that can be returned to the user.  */
3342 	retval = sock_map_fd(newsock);
3343 	if (retval < 0) {
3344 		sock_release(newsock);
3345 		goto out;
3346 	}
3347 
3348 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3349 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3350 
3351 	/* Return the fd mapped to the new socket.  */
3352 	peeloff.sd = retval;
3353 	if (copy_to_user(optval, &peeloff, len))
3354 		retval = -EFAULT;
3355 
3356 out:
3357 	return retval;
3358 }
3359 
3360 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3361  *
3362  * Applications can enable or disable heartbeats for any peer address of
3363  * an association, modify an address's heartbeat interval, force a
3364  * heartbeat to be sent immediately, and adjust the address's maximum
3365  * number of retransmissions sent before an address is considered
3366  * unreachable.  The following structure is used to access and modify an
3367  * address's parameters:
3368  *
3369  *  struct sctp_paddrparams {
3370  *     sctp_assoc_t            spp_assoc_id;
3371  *     struct sockaddr_storage spp_address;
3372  *     uint32_t                spp_hbinterval;
3373  *     uint16_t                spp_pathmaxrxt;
3374  *     uint32_t                spp_pathmtu;
3375  *     uint32_t                spp_sackdelay;
3376  *     uint32_t                spp_flags;
3377  * };
3378  *
3379  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3380  *                     application, and identifies the association for
3381  *                     this query.
3382  *   spp_address     - This specifies which address is of interest.
3383  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3384  *                     in milliseconds.  If a  value of zero
3385  *                     is present in this field then no changes are to
3386  *                     be made to this parameter.
3387  *   spp_pathmaxrxt  - This contains the maximum number of
3388  *                     retransmissions before this address shall be
3389  *                     considered unreachable. If a  value of zero
3390  *                     is present in this field then no changes are to
3391  *                     be made to this parameter.
3392  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3393  *                     specified here will be the "fixed" path mtu.
3394  *                     Note that if the spp_address field is empty
3395  *                     then all associations on this address will
3396  *                     have this fixed path mtu set upon them.
3397  *
3398  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3399  *                     the number of milliseconds that sacks will be delayed
3400  *                     for. This value will apply to all addresses of an
3401  *                     association if the spp_address field is empty. Note
3402  *                     also, that if delayed sack is enabled and this
3403  *                     value is set to 0, no change is made to the last
3404  *                     recorded delayed sack timer value.
3405  *
3406  *   spp_flags       - These flags are used to control various features
3407  *                     on an association. The flag field may contain
3408  *                     zero or more of the following options.
3409  *
3410  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3411  *                     specified address. Note that if the address
3412  *                     field is empty all addresses for the association
3413  *                     have heartbeats enabled upon them.
3414  *
3415  *                     SPP_HB_DISABLE - Disable heartbeats on the
3416  *                     speicifed address. Note that if the address
3417  *                     field is empty all addresses for the association
3418  *                     will have their heartbeats disabled. Note also
3419  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3420  *                     mutually exclusive, only one of these two should
3421  *                     be specified. Enabling both fields will have
3422  *                     undetermined results.
3423  *
3424  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3425  *                     to be made immediately.
3426  *
3427  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3428  *                     discovery upon the specified address. Note that
3429  *                     if the address feild is empty then all addresses
3430  *                     on the association are effected.
3431  *
3432  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3433  *                     discovery upon the specified address. Note that
3434  *                     if the address feild is empty then all addresses
3435  *                     on the association are effected. Not also that
3436  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3437  *                     exclusive. Enabling both will have undetermined
3438  *                     results.
3439  *
3440  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3441  *                     on delayed sack. The time specified in spp_sackdelay
3442  *                     is used to specify the sack delay for this address. Note
3443  *                     that if spp_address is empty then all addresses will
3444  *                     enable delayed sack and take on the sack delay
3445  *                     value specified in spp_sackdelay.
3446  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3447  *                     off delayed sack. If the spp_address field is blank then
3448  *                     delayed sack is disabled for the entire association. Note
3449  *                     also that this field is mutually exclusive to
3450  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3451  *                     results.
3452  */
3453 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3454 					    char __user *optval, int __user *optlen)
3455 {
3456 	struct sctp_paddrparams  params;
3457 	struct sctp_transport   *trans = NULL;
3458 	struct sctp_association *asoc = NULL;
3459 	struct sctp_sock        *sp = sctp_sk(sk);
3460 
3461 	if (len != sizeof(struct sctp_paddrparams))
3462 		return -EINVAL;
3463 
3464 	if (copy_from_user(&params, optval, len))
3465 		return -EFAULT;
3466 
3467 	/* If an address other than INADDR_ANY is specified, and
3468 	 * no transport is found, then the request is invalid.
3469 	 */
3470 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3471 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3472 					       params.spp_assoc_id);
3473 		if (!trans) {
3474 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3475 			return -EINVAL;
3476 		}
3477 	}
3478 
3479 	/* Get association, if assoc_id != 0 and the socket is a one
3480 	 * to many style socket, and an association was not found, then
3481 	 * the id was invalid.
3482 	 */
3483 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3484 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3485 		SCTP_DEBUG_PRINTK("Failed no association\n");
3486 		return -EINVAL;
3487 	}
3488 
3489 	if (trans) {
3490 		/* Fetch transport values. */
3491 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3492 		params.spp_pathmtu    = trans->pathmtu;
3493 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3494 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3495 
3496 		/*draft-11 doesn't say what to return in spp_flags*/
3497 		params.spp_flags      = trans->param_flags;
3498 	} else if (asoc) {
3499 		/* Fetch association values. */
3500 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3501 		params.spp_pathmtu    = asoc->pathmtu;
3502 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3503 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3504 
3505 		/*draft-11 doesn't say what to return in spp_flags*/
3506 		params.spp_flags      = asoc->param_flags;
3507 	} else {
3508 		/* Fetch socket values. */
3509 		params.spp_hbinterval = sp->hbinterval;
3510 		params.spp_pathmtu    = sp->pathmtu;
3511 		params.spp_sackdelay  = sp->sackdelay;
3512 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3513 
3514 		/*draft-11 doesn't say what to return in spp_flags*/
3515 		params.spp_flags      = sp->param_flags;
3516 	}
3517 
3518 	if (copy_to_user(optval, &params, len))
3519 		return -EFAULT;
3520 
3521 	if (put_user(len, optlen))
3522 		return -EFAULT;
3523 
3524 	return 0;
3525 }
3526 
3527 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3528  *
3529  *   This options will get or set the delayed ack timer.  The time is set
3530  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3531  *   endpoints default delayed ack timer value.  If the assoc_id field is
3532  *   non-zero, then the set or get effects the specified association.
3533  *
3534  *   struct sctp_assoc_value {
3535  *       sctp_assoc_t            assoc_id;
3536  *       uint32_t                assoc_value;
3537  *   };
3538  *
3539  *     assoc_id    - This parameter, indicates which association the
3540  *                   user is preforming an action upon. Note that if
3541  *                   this field's value is zero then the endpoints
3542  *                   default value is changed (effecting future
3543  *                   associations only).
3544  *
3545  *     assoc_value - This parameter contains the number of milliseconds
3546  *                   that the user is requesting the delayed ACK timer
3547  *                   be set to. Note that this value is defined in
3548  *                   the standard to be between 200 and 500 milliseconds.
3549  *
3550  *                   Note: a value of zero will leave the value alone,
3551  *                   but disable SACK delay. A non-zero value will also
3552  *                   enable SACK delay.
3553  */
3554 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3555 					    char __user *optval,
3556 					    int __user *optlen)
3557 {
3558 	struct sctp_assoc_value  params;
3559 	struct sctp_association *asoc = NULL;
3560 	struct sctp_sock        *sp = sctp_sk(sk);
3561 
3562 	if (len != sizeof(struct sctp_assoc_value))
3563 		return - EINVAL;
3564 
3565 	if (copy_from_user(&params, optval, len))
3566 		return -EFAULT;
3567 
3568 	/* Get association, if assoc_id != 0 and the socket is a one
3569 	 * to many style socket, and an association was not found, then
3570 	 * the id was invalid.
3571  	 */
3572 	asoc = sctp_id2assoc(sk, params.assoc_id);
3573 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3574 		return -EINVAL;
3575 
3576 	if (asoc) {
3577 		/* Fetch association values. */
3578 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3579 			params.assoc_value = jiffies_to_msecs(
3580 				asoc->sackdelay);
3581 		else
3582 			params.assoc_value = 0;
3583 	} else {
3584 		/* Fetch socket values. */
3585 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3586 			params.assoc_value  = sp->sackdelay;
3587 		else
3588 			params.assoc_value  = 0;
3589 	}
3590 
3591 	if (copy_to_user(optval, &params, len))
3592 		return -EFAULT;
3593 
3594 	if (put_user(len, optlen))
3595 		return -EFAULT;
3596 
3597 	return 0;
3598 }
3599 
3600 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3601  *
3602  * Applications can specify protocol parameters for the default association
3603  * initialization.  The option name argument to setsockopt() and getsockopt()
3604  * is SCTP_INITMSG.
3605  *
3606  * Setting initialization parameters is effective only on an unconnected
3607  * socket (for UDP-style sockets only future associations are effected
3608  * by the change).  With TCP-style sockets, this option is inherited by
3609  * sockets derived from a listener socket.
3610  */
3611 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3612 {
3613 	if (len != sizeof(struct sctp_initmsg))
3614 		return -EINVAL;
3615 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3616 		return -EFAULT;
3617 	return 0;
3618 }
3619 
3620 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3621 					      char __user *optval,
3622 					      int __user *optlen)
3623 {
3624 	sctp_assoc_t id;
3625 	struct sctp_association *asoc;
3626 	struct list_head *pos;
3627 	int cnt = 0;
3628 
3629 	if (len != sizeof(sctp_assoc_t))
3630 		return -EINVAL;
3631 
3632 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3633 		return -EFAULT;
3634 
3635 	/* For UDP-style sockets, id specifies the association to query.  */
3636 	asoc = sctp_id2assoc(sk, id);
3637 	if (!asoc)
3638 		return -EINVAL;
3639 
3640 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3641 		cnt ++;
3642 	}
3643 
3644 	return cnt;
3645 }
3646 
3647 /*
3648  * Old API for getting list of peer addresses. Does not work for 32-bit
3649  * programs running on a 64-bit kernel
3650  */
3651 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3652 					  char __user *optval,
3653 					  int __user *optlen)
3654 {
3655 	struct sctp_association *asoc;
3656 	struct list_head *pos;
3657 	int cnt = 0;
3658 	struct sctp_getaddrs_old getaddrs;
3659 	struct sctp_transport *from;
3660 	void __user *to;
3661 	union sctp_addr temp;
3662 	struct sctp_sock *sp = sctp_sk(sk);
3663 	int addrlen;
3664 
3665 	if (len != sizeof(struct sctp_getaddrs_old))
3666 		return -EINVAL;
3667 
3668 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3669 		return -EFAULT;
3670 
3671 	if (getaddrs.addr_num <= 0) return -EINVAL;
3672 
3673 	/* For UDP-style sockets, id specifies the association to query.  */
3674 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3675 	if (!asoc)
3676 		return -EINVAL;
3677 
3678 	to = (void __user *)getaddrs.addrs;
3679 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3680 		from = list_entry(pos, struct sctp_transport, transports);
3681 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3682 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3683 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3684 		temp.v4.sin_port = htons(temp.v4.sin_port);
3685 		if (copy_to_user(to, &temp, addrlen))
3686 			return -EFAULT;
3687 		to += addrlen ;
3688 		cnt ++;
3689 		if (cnt >= getaddrs.addr_num) break;
3690 	}
3691 	getaddrs.addr_num = cnt;
3692 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3693 		return -EFAULT;
3694 
3695 	return 0;
3696 }
3697 
3698 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3699 				      char __user *optval, int __user *optlen)
3700 {
3701 	struct sctp_association *asoc;
3702 	struct list_head *pos;
3703 	int cnt = 0;
3704 	struct sctp_getaddrs getaddrs;
3705 	struct sctp_transport *from;
3706 	void __user *to;
3707 	union sctp_addr temp;
3708 	struct sctp_sock *sp = sctp_sk(sk);
3709 	int addrlen;
3710 	size_t space_left;
3711 	int bytes_copied;
3712 
3713 	if (len < sizeof(struct sctp_getaddrs))
3714 		return -EINVAL;
3715 
3716 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3717 		return -EFAULT;
3718 
3719 	/* For UDP-style sockets, id specifies the association to query.  */
3720 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3721 	if (!asoc)
3722 		return -EINVAL;
3723 
3724 	to = optval + offsetof(struct sctp_getaddrs,addrs);
3725 	space_left = len - sizeof(struct sctp_getaddrs) -
3726 			offsetof(struct sctp_getaddrs,addrs);
3727 
3728 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3729 		from = list_entry(pos, struct sctp_transport, transports);
3730 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3731 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3732 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3733 		if(space_left < addrlen)
3734 			return -ENOMEM;
3735 		temp.v4.sin_port = htons(temp.v4.sin_port);
3736 		if (copy_to_user(to, &temp, addrlen))
3737 			return -EFAULT;
3738 		to += addrlen;
3739 		cnt++;
3740 		space_left -= addrlen;
3741 	}
3742 
3743 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3744 		return -EFAULT;
3745 	bytes_copied = ((char __user *)to) - optval;
3746 	if (put_user(bytes_copied, optlen))
3747 		return -EFAULT;
3748 
3749 	return 0;
3750 }
3751 
3752 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3753 					       char __user *optval,
3754 					       int __user *optlen)
3755 {
3756 	sctp_assoc_t id;
3757 	struct sctp_bind_addr *bp;
3758 	struct sctp_association *asoc;
3759 	struct list_head *pos;
3760 	struct sctp_sockaddr_entry *addr;
3761 	rwlock_t *addr_lock;
3762 	unsigned long flags;
3763 	int cnt = 0;
3764 
3765 	if (len != sizeof(sctp_assoc_t))
3766 		return -EINVAL;
3767 
3768 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3769 		return -EFAULT;
3770 
3771 	/*
3772 	 *  For UDP-style sockets, id specifies the association to query.
3773 	 *  If the id field is set to the value '0' then the locally bound
3774 	 *  addresses are returned without regard to any particular
3775 	 *  association.
3776 	 */
3777 	if (0 == id) {
3778 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3779 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3780 	} else {
3781 		asoc = sctp_id2assoc(sk, id);
3782 		if (!asoc)
3783 			return -EINVAL;
3784 		bp = &asoc->base.bind_addr;
3785 		addr_lock = &asoc->base.addr_lock;
3786 	}
3787 
3788 	sctp_read_lock(addr_lock);
3789 
3790 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3791 	 * addresses from the global local address list.
3792 	 */
3793 	if (sctp_list_single_entry(&bp->address_list)) {
3794 		addr = list_entry(bp->address_list.next,
3795 				  struct sctp_sockaddr_entry, list);
3796 		if (sctp_is_any(&addr->a)) {
3797 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3798 			list_for_each(pos, &sctp_local_addr_list) {
3799 				addr = list_entry(pos,
3800 						  struct sctp_sockaddr_entry,
3801 						  list);
3802 				if ((PF_INET == sk->sk_family) &&
3803 				    (AF_INET6 == addr->a.sa.sa_family))
3804 					continue;
3805 				cnt++;
3806 			}
3807 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3808 						    flags);
3809 		} else {
3810 			cnt = 1;
3811 		}
3812 		goto done;
3813 	}
3814 
3815 	list_for_each(pos, &bp->address_list) {
3816 		cnt ++;
3817 	}
3818 
3819 done:
3820 	sctp_read_unlock(addr_lock);
3821 	return cnt;
3822 }
3823 
3824 /* Helper function that copies local addresses to user and returns the number
3825  * of addresses copied.
3826  */
3827 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3828 					void __user *to)
3829 {
3830 	struct list_head *pos;
3831 	struct sctp_sockaddr_entry *addr;
3832 	unsigned long flags;
3833 	union sctp_addr temp;
3834 	int cnt = 0;
3835 	int addrlen;
3836 
3837 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3838 	list_for_each(pos, &sctp_local_addr_list) {
3839 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3840 		if ((PF_INET == sk->sk_family) &&
3841 		    (AF_INET6 == addr->a.sa.sa_family))
3842 			continue;
3843 		memcpy(&temp, &addr->a, sizeof(temp));
3844 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3845 								&temp);
3846 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3847 		temp.v4.sin_port = htons(port);
3848 		if (copy_to_user(to, &temp, addrlen)) {
3849 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3850 						    flags);
3851 			return -EFAULT;
3852 		}
3853 		to += addrlen;
3854 		cnt ++;
3855 		if (cnt >= max_addrs) break;
3856 	}
3857 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3858 
3859 	return cnt;
3860 }
3861 
3862 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3863 				    void __user **to, size_t space_left)
3864 {
3865 	struct list_head *pos;
3866 	struct sctp_sockaddr_entry *addr;
3867 	unsigned long flags;
3868 	union sctp_addr temp;
3869 	int cnt = 0;
3870 	int addrlen;
3871 
3872 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3873 	list_for_each(pos, &sctp_local_addr_list) {
3874 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3875 		if ((PF_INET == sk->sk_family) &&
3876 		    (AF_INET6 == addr->a.sa.sa_family))
3877 			continue;
3878 		memcpy(&temp, &addr->a, sizeof(temp));
3879 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3880 								&temp);
3881 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3882 		if(space_left<addrlen)
3883 			return -ENOMEM;
3884 		temp.v4.sin_port = htons(port);
3885 		if (copy_to_user(*to, &temp, addrlen)) {
3886 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3887 						    flags);
3888 			return -EFAULT;
3889 		}
3890 		*to += addrlen;
3891 		cnt ++;
3892 		space_left -= addrlen;
3893 	}
3894 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3895 
3896 	return cnt;
3897 }
3898 
3899 /* Old API for getting list of local addresses. Does not work for 32-bit
3900  * programs running on a 64-bit kernel
3901  */
3902 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3903 					   char __user *optval, int __user *optlen)
3904 {
3905 	struct sctp_bind_addr *bp;
3906 	struct sctp_association *asoc;
3907 	struct list_head *pos;
3908 	int cnt = 0;
3909 	struct sctp_getaddrs_old getaddrs;
3910 	struct sctp_sockaddr_entry *addr;
3911 	void __user *to;
3912 	union sctp_addr temp;
3913 	struct sctp_sock *sp = sctp_sk(sk);
3914 	int addrlen;
3915 	rwlock_t *addr_lock;
3916 	int err = 0;
3917 
3918 	if (len != sizeof(struct sctp_getaddrs_old))
3919 		return -EINVAL;
3920 
3921 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3922 		return -EFAULT;
3923 
3924 	if (getaddrs.addr_num <= 0) return -EINVAL;
3925 	/*
3926 	 *  For UDP-style sockets, id specifies the association to query.
3927 	 *  If the id field is set to the value '0' then the locally bound
3928 	 *  addresses are returned without regard to any particular
3929 	 *  association.
3930 	 */
3931 	if (0 == getaddrs.assoc_id) {
3932 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3933 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3934 	} else {
3935 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3936 		if (!asoc)
3937 			return -EINVAL;
3938 		bp = &asoc->base.bind_addr;
3939 		addr_lock = &asoc->base.addr_lock;
3940 	}
3941 
3942 	to = getaddrs.addrs;
3943 
3944 	sctp_read_lock(addr_lock);
3945 
3946 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3947 	 * addresses from the global local address list.
3948 	 */
3949 	if (sctp_list_single_entry(&bp->address_list)) {
3950 		addr = list_entry(bp->address_list.next,
3951 				  struct sctp_sockaddr_entry, list);
3952 		if (sctp_is_any(&addr->a)) {
3953 			cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
3954 							   getaddrs.addr_num,
3955 							   to);
3956 			if (cnt < 0) {
3957 				err = cnt;
3958 				goto unlock;
3959 			}
3960 			goto copy_getaddrs;
3961 		}
3962 	}
3963 
3964 	list_for_each(pos, &bp->address_list) {
3965 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3966 		memcpy(&temp, &addr->a, sizeof(temp));
3967 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3968 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3969 		temp.v4.sin_port = htons(temp.v4.sin_port);
3970 		if (copy_to_user(to, &temp, addrlen)) {
3971 			err = -EFAULT;
3972 			goto unlock;
3973 		}
3974 		to += addrlen;
3975 		cnt ++;
3976 		if (cnt >= getaddrs.addr_num) break;
3977 	}
3978 
3979 copy_getaddrs:
3980 	getaddrs.addr_num = cnt;
3981 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3982 		err = -EFAULT;
3983 
3984 unlock:
3985 	sctp_read_unlock(addr_lock);
3986 	return err;
3987 }
3988 
3989 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3990 				       char __user *optval, int __user *optlen)
3991 {
3992 	struct sctp_bind_addr *bp;
3993 	struct sctp_association *asoc;
3994 	struct list_head *pos;
3995 	int cnt = 0;
3996 	struct sctp_getaddrs getaddrs;
3997 	struct sctp_sockaddr_entry *addr;
3998 	void __user *to;
3999 	union sctp_addr temp;
4000 	struct sctp_sock *sp = sctp_sk(sk);
4001 	int addrlen;
4002 	rwlock_t *addr_lock;
4003 	int err = 0;
4004 	size_t space_left;
4005 	int bytes_copied;
4006 
4007 	if (len <= sizeof(struct sctp_getaddrs))
4008 		return -EINVAL;
4009 
4010 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4011 		return -EFAULT;
4012 
4013 	/*
4014 	 *  For UDP-style sockets, id specifies the association to query.
4015 	 *  If the id field is set to the value '0' then the locally bound
4016 	 *  addresses are returned without regard to any particular
4017 	 *  association.
4018 	 */
4019 	if (0 == getaddrs.assoc_id) {
4020 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4021 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4022 	} else {
4023 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4024 		if (!asoc)
4025 			return -EINVAL;
4026 		bp = &asoc->base.bind_addr;
4027 		addr_lock = &asoc->base.addr_lock;
4028 	}
4029 
4030 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4031 	space_left = len - sizeof(struct sctp_getaddrs) -
4032 			 offsetof(struct sctp_getaddrs,addrs);
4033 
4034 	sctp_read_lock(addr_lock);
4035 
4036 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4037 	 * addresses from the global local address list.
4038 	 */
4039 	if (sctp_list_single_entry(&bp->address_list)) {
4040 		addr = list_entry(bp->address_list.next,
4041 				  struct sctp_sockaddr_entry, list);
4042 		if (sctp_is_any(&addr->a)) {
4043 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4044 						       &to, space_left);
4045 			if (cnt < 0) {
4046 				err = cnt;
4047 				goto unlock;
4048 			}
4049 			goto copy_getaddrs;
4050 		}
4051 	}
4052 
4053 	list_for_each(pos, &bp->address_list) {
4054 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4055 		memcpy(&temp, &addr->a, sizeof(temp));
4056 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4057 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4058 		if(space_left < addrlen)
4059 			return -ENOMEM; /*fixme: right error?*/
4060 		temp.v4.sin_port = htons(temp.v4.sin_port);
4061 		if (copy_to_user(to, &temp, addrlen)) {
4062 			err = -EFAULT;
4063 			goto unlock;
4064 		}
4065 		to += addrlen;
4066 		cnt ++;
4067 		space_left -= addrlen;
4068 	}
4069 
4070 copy_getaddrs:
4071 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4072 		return -EFAULT;
4073 	bytes_copied = ((char __user *)to) - optval;
4074 	if (put_user(bytes_copied, optlen))
4075 		return -EFAULT;
4076 
4077 unlock:
4078 	sctp_read_unlock(addr_lock);
4079 	return err;
4080 }
4081 
4082 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4083  *
4084  * Requests that the local SCTP stack use the enclosed peer address as
4085  * the association primary.  The enclosed address must be one of the
4086  * association peer's addresses.
4087  */
4088 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4089 					char __user *optval, int __user *optlen)
4090 {
4091 	struct sctp_prim prim;
4092 	struct sctp_association *asoc;
4093 	struct sctp_sock *sp = sctp_sk(sk);
4094 
4095 	if (len != sizeof(struct sctp_prim))
4096 		return -EINVAL;
4097 
4098 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4099 		return -EFAULT;
4100 
4101 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4102 	if (!asoc)
4103 		return -EINVAL;
4104 
4105 	if (!asoc->peer.primary_path)
4106 		return -ENOTCONN;
4107 
4108 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4109 		htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
4110 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4111 	       sizeof(union sctp_addr));
4112 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4113 		ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
4114 
4115 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4116 			(union sctp_addr *)&prim.ssp_addr);
4117 
4118 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4119 		return -EFAULT;
4120 
4121 	return 0;
4122 }
4123 
4124 /*
4125  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4126  *
4127  * Requests that the local endpoint set the specified Adaption Layer
4128  * Indication parameter for all future INIT and INIT-ACK exchanges.
4129  */
4130 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4131 				  char __user *optval, int __user *optlen)
4132 {
4133 	struct sctp_setadaption adaption;
4134 
4135 	if (len != sizeof(struct sctp_setadaption))
4136 		return -EINVAL;
4137 
4138 	adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4139 	if (copy_to_user(optval, &adaption, len))
4140 		return -EFAULT;
4141 
4142 	return 0;
4143 }
4144 
4145 /*
4146  *
4147  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4148  *
4149  *   Applications that wish to use the sendto() system call may wish to
4150  *   specify a default set of parameters that would normally be supplied
4151  *   through the inclusion of ancillary data.  This socket option allows
4152  *   such an application to set the default sctp_sndrcvinfo structure.
4153 
4154 
4155  *   The application that wishes to use this socket option simply passes
4156  *   in to this call the sctp_sndrcvinfo structure defined in Section
4157  *   5.2.2) The input parameters accepted by this call include
4158  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4159  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4160  *   to this call if the caller is using the UDP model.
4161  *
4162  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4163  */
4164 static int sctp_getsockopt_default_send_param(struct sock *sk,
4165 					int len, char __user *optval,
4166 					int __user *optlen)
4167 {
4168 	struct sctp_sndrcvinfo info;
4169 	struct sctp_association *asoc;
4170 	struct sctp_sock *sp = sctp_sk(sk);
4171 
4172 	if (len != sizeof(struct sctp_sndrcvinfo))
4173 		return -EINVAL;
4174 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4175 		return -EFAULT;
4176 
4177 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4178 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4179 		return -EINVAL;
4180 
4181 	if (asoc) {
4182 		info.sinfo_stream = asoc->default_stream;
4183 		info.sinfo_flags = asoc->default_flags;
4184 		info.sinfo_ppid = asoc->default_ppid;
4185 		info.sinfo_context = asoc->default_context;
4186 		info.sinfo_timetolive = asoc->default_timetolive;
4187 	} else {
4188 		info.sinfo_stream = sp->default_stream;
4189 		info.sinfo_flags = sp->default_flags;
4190 		info.sinfo_ppid = sp->default_ppid;
4191 		info.sinfo_context = sp->default_context;
4192 		info.sinfo_timetolive = sp->default_timetolive;
4193 	}
4194 
4195 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4196 		return -EFAULT;
4197 
4198 	return 0;
4199 }
4200 
4201 /*
4202  *
4203  * 7.1.5 SCTP_NODELAY
4204  *
4205  * Turn on/off any Nagle-like algorithm.  This means that packets are
4206  * generally sent as soon as possible and no unnecessary delays are
4207  * introduced, at the cost of more packets in the network.  Expects an
4208  * integer boolean flag.
4209  */
4210 
4211 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4212 				   char __user *optval, int __user *optlen)
4213 {
4214 	int val;
4215 
4216 	if (len < sizeof(int))
4217 		return -EINVAL;
4218 
4219 	len = sizeof(int);
4220 	val = (sctp_sk(sk)->nodelay == 1);
4221 	if (put_user(len, optlen))
4222 		return -EFAULT;
4223 	if (copy_to_user(optval, &val, len))
4224 		return -EFAULT;
4225 	return 0;
4226 }
4227 
4228 /*
4229  *
4230  * 7.1.1 SCTP_RTOINFO
4231  *
4232  * The protocol parameters used to initialize and bound retransmission
4233  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4234  * and modify these parameters.
4235  * All parameters are time values, in milliseconds.  A value of 0, when
4236  * modifying the parameters, indicates that the current value should not
4237  * be changed.
4238  *
4239  */
4240 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4241 				char __user *optval,
4242 				int __user *optlen) {
4243 	struct sctp_rtoinfo rtoinfo;
4244 	struct sctp_association *asoc;
4245 
4246 	if (len != sizeof (struct sctp_rtoinfo))
4247 		return -EINVAL;
4248 
4249 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4250 		return -EFAULT;
4251 
4252 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4253 
4254 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4255 		return -EINVAL;
4256 
4257 	/* Values corresponding to the specific association. */
4258 	if (asoc) {
4259 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4260 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4261 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4262 	} else {
4263 		/* Values corresponding to the endpoint. */
4264 		struct sctp_sock *sp = sctp_sk(sk);
4265 
4266 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4267 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4268 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4269 	}
4270 
4271 	if (put_user(len, optlen))
4272 		return -EFAULT;
4273 
4274 	if (copy_to_user(optval, &rtoinfo, len))
4275 		return -EFAULT;
4276 
4277 	return 0;
4278 }
4279 
4280 /*
4281  *
4282  * 7.1.2 SCTP_ASSOCINFO
4283  *
4284  * This option is used to tune the the maximum retransmission attempts
4285  * of the association.
4286  * Returns an error if the new association retransmission value is
4287  * greater than the sum of the retransmission value  of the peer.
4288  * See [SCTP] for more information.
4289  *
4290  */
4291 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4292 				     char __user *optval,
4293 				     int __user *optlen)
4294 {
4295 
4296 	struct sctp_assocparams assocparams;
4297 	struct sctp_association *asoc;
4298 	struct list_head *pos;
4299 	int cnt = 0;
4300 
4301 	if (len != sizeof (struct sctp_assocparams))
4302 		return -EINVAL;
4303 
4304 	if (copy_from_user(&assocparams, optval,
4305 			sizeof (struct sctp_assocparams)))
4306 		return -EFAULT;
4307 
4308 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4309 
4310 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4311 		return -EINVAL;
4312 
4313 	/* Values correspoinding to the specific association */
4314 	if (asoc) {
4315 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4316 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4317 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4318 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4319 						* 1000) +
4320 						(asoc->cookie_life.tv_usec
4321 						/ 1000);
4322 
4323 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4324 			cnt ++;
4325 		}
4326 
4327 		assocparams.sasoc_number_peer_destinations = cnt;
4328 	} else {
4329 		/* Values corresponding to the endpoint */
4330 		struct sctp_sock *sp = sctp_sk(sk);
4331 
4332 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4333 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4334 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4335 		assocparams.sasoc_cookie_life =
4336 					sp->assocparams.sasoc_cookie_life;
4337 		assocparams.sasoc_number_peer_destinations =
4338 					sp->assocparams.
4339 					sasoc_number_peer_destinations;
4340 	}
4341 
4342 	if (put_user(len, optlen))
4343 		return -EFAULT;
4344 
4345 	if (copy_to_user(optval, &assocparams, len))
4346 		return -EFAULT;
4347 
4348 	return 0;
4349 }
4350 
4351 /*
4352  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4353  *
4354  * This socket option is a boolean flag which turns on or off mapped V4
4355  * addresses.  If this option is turned on and the socket is type
4356  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4357  * If this option is turned off, then no mapping will be done of V4
4358  * addresses and a user will receive both PF_INET6 and PF_INET type
4359  * addresses on the socket.
4360  */
4361 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4362 				    char __user *optval, int __user *optlen)
4363 {
4364 	int val;
4365 	struct sctp_sock *sp = sctp_sk(sk);
4366 
4367 	if (len < sizeof(int))
4368 		return -EINVAL;
4369 
4370 	len = sizeof(int);
4371 	val = sp->v4mapped;
4372 	if (put_user(len, optlen))
4373 		return -EFAULT;
4374 	if (copy_to_user(optval, &val, len))
4375 		return -EFAULT;
4376 
4377 	return 0;
4378 }
4379 
4380 /*
4381  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4382  *
4383  * This socket option specifies the maximum size to put in any outgoing
4384  * SCTP chunk.  If a message is larger than this size it will be
4385  * fragmented by SCTP into the specified size.  Note that the underlying
4386  * SCTP implementation may fragment into smaller sized chunks when the
4387  * PMTU of the underlying association is smaller than the value set by
4388  * the user.
4389  */
4390 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4391 				  char __user *optval, int __user *optlen)
4392 {
4393 	int val;
4394 
4395 	if (len < sizeof(int))
4396 		return -EINVAL;
4397 
4398 	len = sizeof(int);
4399 
4400 	val = sctp_sk(sk)->user_frag;
4401 	if (put_user(len, optlen))
4402 		return -EFAULT;
4403 	if (copy_to_user(optval, &val, len))
4404 		return -EFAULT;
4405 
4406 	return 0;
4407 }
4408 
4409 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4410 				char __user *optval, int __user *optlen)
4411 {
4412 	int retval = 0;
4413 	int len;
4414 
4415 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4416 			  sk, optname);
4417 
4418 	/* I can hardly begin to describe how wrong this is.  This is
4419 	 * so broken as to be worse than useless.  The API draft
4420 	 * REALLY is NOT helpful here...  I am not convinced that the
4421 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4422 	 * are at all well-founded.
4423 	 */
4424 	if (level != SOL_SCTP) {
4425 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4426 
4427 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4428 		return retval;
4429 	}
4430 
4431 	if (get_user(len, optlen))
4432 		return -EFAULT;
4433 
4434 	sctp_lock_sock(sk);
4435 
4436 	switch (optname) {
4437 	case SCTP_STATUS:
4438 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4439 		break;
4440 	case SCTP_DISABLE_FRAGMENTS:
4441 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4442 							   optlen);
4443 		break;
4444 	case SCTP_EVENTS:
4445 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4446 		break;
4447 	case SCTP_AUTOCLOSE:
4448 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4449 		break;
4450 	case SCTP_SOCKOPT_PEELOFF:
4451 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4452 		break;
4453 	case SCTP_PEER_ADDR_PARAMS:
4454 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4455 							  optlen);
4456 		break;
4457 	case SCTP_DELAYED_ACK_TIME:
4458 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4459 							  optlen);
4460 		break;
4461 	case SCTP_INITMSG:
4462 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4463 		break;
4464 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4465 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4466 							    optlen);
4467 		break;
4468 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4469 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4470 							     optlen);
4471 		break;
4472 	case SCTP_GET_PEER_ADDRS_OLD:
4473 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4474 							optlen);
4475 		break;
4476 	case SCTP_GET_LOCAL_ADDRS_OLD:
4477 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4478 							 optlen);
4479 		break;
4480 	case SCTP_GET_PEER_ADDRS:
4481 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4482 						    optlen);
4483 		break;
4484 	case SCTP_GET_LOCAL_ADDRS:
4485 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4486 						     optlen);
4487 		break;
4488 	case SCTP_DEFAULT_SEND_PARAM:
4489 		retval = sctp_getsockopt_default_send_param(sk, len,
4490 							    optval, optlen);
4491 		break;
4492 	case SCTP_PRIMARY_ADDR:
4493 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4494 		break;
4495 	case SCTP_NODELAY:
4496 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4497 		break;
4498 	case SCTP_RTOINFO:
4499 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4500 		break;
4501 	case SCTP_ASSOCINFO:
4502 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4503 		break;
4504 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4505 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4506 		break;
4507 	case SCTP_MAXSEG:
4508 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4509 		break;
4510 	case SCTP_GET_PEER_ADDR_INFO:
4511 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4512 							optlen);
4513 		break;
4514 	case SCTP_ADAPTION_LAYER:
4515 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4516 							optlen);
4517 		break;
4518 	default:
4519 		retval = -ENOPROTOOPT;
4520 		break;
4521 	};
4522 
4523 	sctp_release_sock(sk);
4524 	return retval;
4525 }
4526 
4527 static void sctp_hash(struct sock *sk)
4528 {
4529 	/* STUB */
4530 }
4531 
4532 static void sctp_unhash(struct sock *sk)
4533 {
4534 	/* STUB */
4535 }
4536 
4537 /* Check if port is acceptable.  Possibly find first available port.
4538  *
4539  * The port hash table (contained in the 'global' SCTP protocol storage
4540  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4541  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4542  * list (the list number is the port number hashed out, so as you
4543  * would expect from a hash function, all the ports in a given list have
4544  * such a number that hashes out to the same list number; you were
4545  * expecting that, right?); so each list has a set of ports, with a
4546  * link to the socket (struct sock) that uses it, the port number and
4547  * a fastreuse flag (FIXME: NPI ipg).
4548  */
4549 static struct sctp_bind_bucket *sctp_bucket_create(
4550 	struct sctp_bind_hashbucket *head, unsigned short snum);
4551 
4552 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4553 {
4554 	struct sctp_bind_hashbucket *head; /* hash list */
4555 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4556 	unsigned short snum;
4557 	int ret;
4558 
4559 	/* NOTE:  Remember to put this back to net order. */
4560 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
4561 	snum = addr->v4.sin_port;
4562 
4563 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4564 	sctp_local_bh_disable();
4565 
4566 	if (snum == 0) {
4567 		/* Search for an available port.
4568 		 *
4569 		 * 'sctp_port_rover' was the last port assigned, so
4570 		 * we start to search from 'sctp_port_rover +
4571 		 * 1'. What we do is first check if port 'rover' is
4572 		 * already in the hash table; if not, we use that; if
4573 		 * it is, we try next.
4574 		 */
4575 		int low = sysctl_local_port_range[0];
4576 		int high = sysctl_local_port_range[1];
4577 		int remaining = (high - low) + 1;
4578 		int rover;
4579 		int index;
4580 
4581 		sctp_spin_lock(&sctp_port_alloc_lock);
4582 		rover = sctp_port_rover;
4583 		do {
4584 			rover++;
4585 			if ((rover < low) || (rover > high))
4586 				rover = low;
4587 			index = sctp_phashfn(rover);
4588 			head = &sctp_port_hashtable[index];
4589 			sctp_spin_lock(&head->lock);
4590 			for (pp = head->chain; pp; pp = pp->next)
4591 				if (pp->port == rover)
4592 					goto next;
4593 			break;
4594 		next:
4595 			sctp_spin_unlock(&head->lock);
4596 		} while (--remaining > 0);
4597 		sctp_port_rover = rover;
4598 		sctp_spin_unlock(&sctp_port_alloc_lock);
4599 
4600 		/* Exhausted local port range during search? */
4601 		ret = 1;
4602 		if (remaining <= 0)
4603 			goto fail;
4604 
4605 		/* OK, here is the one we will use.  HEAD (the port
4606 		 * hash table list entry) is non-NULL and we hold it's
4607 		 * mutex.
4608 		 */
4609 		snum = rover;
4610 	} else {
4611 		/* We are given an specific port number; we verify
4612 		 * that it is not being used. If it is used, we will
4613 		 * exahust the search in the hash list corresponding
4614 		 * to the port number (snum) - we detect that with the
4615 		 * port iterator, pp being NULL.
4616 		 */
4617 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
4618 		sctp_spin_lock(&head->lock);
4619 		for (pp = head->chain; pp; pp = pp->next) {
4620 			if (pp->port == snum)
4621 				goto pp_found;
4622 		}
4623 	}
4624 	pp = NULL;
4625 	goto pp_not_found;
4626 pp_found:
4627 	if (!hlist_empty(&pp->owner)) {
4628 		/* We had a port hash table hit - there is an
4629 		 * available port (pp != NULL) and it is being
4630 		 * used by other socket (pp->owner not empty); that other
4631 		 * socket is going to be sk2.
4632 		 */
4633 		int reuse = sk->sk_reuse;
4634 		struct sock *sk2;
4635 		struct hlist_node *node;
4636 
4637 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4638 		if (pp->fastreuse && sk->sk_reuse)
4639 			goto success;
4640 
4641 		/* Run through the list of sockets bound to the port
4642 		 * (pp->port) [via the pointers bind_next and
4643 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4644 		 * we get the endpoint they describe and run through
4645 		 * the endpoint's list of IP (v4 or v6) addresses,
4646 		 * comparing each of the addresses with the address of
4647 		 * the socket sk. If we find a match, then that means
4648 		 * that this port/socket (sk) combination are already
4649 		 * in an endpoint.
4650 		 */
4651 		sk_for_each_bound(sk2, node, &pp->owner) {
4652 			struct sctp_endpoint *ep2;
4653 			ep2 = sctp_sk(sk2)->ep;
4654 
4655 			if (reuse && sk2->sk_reuse)
4656 				continue;
4657 
4658 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4659 						 sctp_sk(sk))) {
4660 				ret = (long)sk2;
4661 				goto fail_unlock;
4662 			}
4663 		}
4664 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4665 	}
4666 pp_not_found:
4667 	/* If there was a hash table miss, create a new port.  */
4668 	ret = 1;
4669 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
4670 		goto fail_unlock;
4671 
4672 	/* In either case (hit or miss), make sure fastreuse is 1 only
4673 	 * if sk->sk_reuse is too (that is, if the caller requested
4674 	 * SO_REUSEADDR on this socket -sk-).
4675 	 */
4676 	if (hlist_empty(&pp->owner))
4677 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
4678 	else if (pp->fastreuse && !sk->sk_reuse)
4679 		pp->fastreuse = 0;
4680 
4681 	/* We are set, so fill up all the data in the hash table
4682 	 * entry, tie the socket list information with the rest of the
4683 	 * sockets FIXME: Blurry, NPI (ipg).
4684 	 */
4685 success:
4686 	inet_sk(sk)->num = snum;
4687 	if (!sctp_sk(sk)->bind_hash) {
4688 		sk_add_bind_node(sk, &pp->owner);
4689 		sctp_sk(sk)->bind_hash = pp;
4690 	}
4691 	ret = 0;
4692 
4693 fail_unlock:
4694 	sctp_spin_unlock(&head->lock);
4695 
4696 fail:
4697 	sctp_local_bh_enable();
4698 	addr->v4.sin_port = htons(addr->v4.sin_port);
4699 	return ret;
4700 }
4701 
4702 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
4703  * port is requested.
4704  */
4705 static int sctp_get_port(struct sock *sk, unsigned short snum)
4706 {
4707 	long ret;
4708 	union sctp_addr addr;
4709 	struct sctp_af *af = sctp_sk(sk)->pf->af;
4710 
4711 	/* Set up a dummy address struct from the sk. */
4712 	af->from_sk(&addr, sk);
4713 	addr.v4.sin_port = htons(snum);
4714 
4715 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
4716 	ret = sctp_get_port_local(sk, &addr);
4717 
4718 	return (ret ? 1 : 0);
4719 }
4720 
4721 /*
4722  * 3.1.3 listen() - UDP Style Syntax
4723  *
4724  *   By default, new associations are not accepted for UDP style sockets.
4725  *   An application uses listen() to mark a socket as being able to
4726  *   accept new associations.
4727  */
4728 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4729 {
4730 	struct sctp_sock *sp = sctp_sk(sk);
4731 	struct sctp_endpoint *ep = sp->ep;
4732 
4733 	/* Only UDP style sockets that are not peeled off are allowed to
4734 	 * listen().
4735 	 */
4736 	if (!sctp_style(sk, UDP))
4737 		return -EINVAL;
4738 
4739 	/* If backlog is zero, disable listening. */
4740 	if (!backlog) {
4741 		if (sctp_sstate(sk, CLOSED))
4742 			return 0;
4743 
4744 		sctp_unhash_endpoint(ep);
4745 		sk->sk_state = SCTP_SS_CLOSED;
4746 	}
4747 
4748 	/* Return if we are already listening. */
4749 	if (sctp_sstate(sk, LISTENING))
4750 		return 0;
4751 
4752 	/*
4753 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4754 	 * call that allows new associations to be accepted, the system
4755 	 * picks an ephemeral port and will choose an address set equivalent
4756 	 * to binding with a wildcard address.
4757 	 *
4758 	 * This is not currently spelled out in the SCTP sockets
4759 	 * extensions draft, but follows the practice as seen in TCP
4760 	 * sockets.
4761 	 */
4762 	if (!ep->base.bind_addr.port) {
4763 		if (sctp_autobind(sk))
4764 			return -EAGAIN;
4765 	}
4766 	sk->sk_state = SCTP_SS_LISTENING;
4767 	sctp_hash_endpoint(ep);
4768 	return 0;
4769 }
4770 
4771 /*
4772  * 4.1.3 listen() - TCP Style Syntax
4773  *
4774  *   Applications uses listen() to ready the SCTP endpoint for accepting
4775  *   inbound associations.
4776  */
4777 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4778 {
4779 	struct sctp_sock *sp = sctp_sk(sk);
4780 	struct sctp_endpoint *ep = sp->ep;
4781 
4782 	/* If backlog is zero, disable listening. */
4783 	if (!backlog) {
4784 		if (sctp_sstate(sk, CLOSED))
4785 			return 0;
4786 
4787 		sctp_unhash_endpoint(ep);
4788 		sk->sk_state = SCTP_SS_CLOSED;
4789 	}
4790 
4791 	if (sctp_sstate(sk, LISTENING))
4792 		return 0;
4793 
4794 	/*
4795 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4796 	 * call that allows new associations to be accepted, the system
4797 	 * picks an ephemeral port and will choose an address set equivalent
4798 	 * to binding with a wildcard address.
4799 	 *
4800 	 * This is not currently spelled out in the SCTP sockets
4801 	 * extensions draft, but follows the practice as seen in TCP
4802 	 * sockets.
4803 	 */
4804 	if (!ep->base.bind_addr.port) {
4805 		if (sctp_autobind(sk))
4806 			return -EAGAIN;
4807 	}
4808 	sk->sk_state = SCTP_SS_LISTENING;
4809 	sk->sk_max_ack_backlog = backlog;
4810 	sctp_hash_endpoint(ep);
4811 	return 0;
4812 }
4813 
4814 /*
4815  *  Move a socket to LISTENING state.
4816  */
4817 int sctp_inet_listen(struct socket *sock, int backlog)
4818 {
4819 	struct sock *sk = sock->sk;
4820 	struct crypto_tfm *tfm=NULL;
4821 	int err = -EINVAL;
4822 
4823 	if (unlikely(backlog < 0))
4824 		goto out;
4825 
4826 	sctp_lock_sock(sk);
4827 
4828 	if (sock->state != SS_UNCONNECTED)
4829 		goto out;
4830 
4831 	/* Allocate HMAC for generating cookie. */
4832 	if (sctp_hmac_alg) {
4833 		tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4834 		if (!tfm) {
4835 			err = -ENOSYS;
4836 			goto out;
4837 		}
4838 	}
4839 
4840 	switch (sock->type) {
4841 	case SOCK_SEQPACKET:
4842 		err = sctp_seqpacket_listen(sk, backlog);
4843 		break;
4844 	case SOCK_STREAM:
4845 		err = sctp_stream_listen(sk, backlog);
4846 		break;
4847 	default:
4848 		break;
4849 	};
4850 	if (err)
4851 		goto cleanup;
4852 
4853 	/* Store away the transform reference. */
4854 	sctp_sk(sk)->hmac = tfm;
4855 out:
4856 	sctp_release_sock(sk);
4857 	return err;
4858 cleanup:
4859 	sctp_crypto_free_tfm(tfm);
4860 	goto out;
4861 }
4862 
4863 /*
4864  * This function is done by modeling the current datagram_poll() and the
4865  * tcp_poll().  Note that, based on these implementations, we don't
4866  * lock the socket in this function, even though it seems that,
4867  * ideally, locking or some other mechanisms can be used to ensure
4868  * the integrity of the counters (sndbuf and wmem_alloc) used
4869  * in this place.  We assume that we don't need locks either until proven
4870  * otherwise.
4871  *
4872  * Another thing to note is that we include the Async I/O support
4873  * here, again, by modeling the current TCP/UDP code.  We don't have
4874  * a good way to test with it yet.
4875  */
4876 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4877 {
4878 	struct sock *sk = sock->sk;
4879 	struct sctp_sock *sp = sctp_sk(sk);
4880 	unsigned int mask;
4881 
4882 	poll_wait(file, sk->sk_sleep, wait);
4883 
4884 	/* A TCP-style listening socket becomes readable when the accept queue
4885 	 * is not empty.
4886 	 */
4887 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4888 		return (!list_empty(&sp->ep->asocs)) ?
4889 		       	(POLLIN | POLLRDNORM) : 0;
4890 
4891 	mask = 0;
4892 
4893 	/* Is there any exceptional events?  */
4894 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4895 		mask |= POLLERR;
4896 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4897 		mask |= POLLHUP;
4898 
4899 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4900 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4901 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4902 		mask |= POLLIN | POLLRDNORM;
4903 
4904 	/* The association is either gone or not ready.  */
4905 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4906 		return mask;
4907 
4908 	/* Is it writable?  */
4909 	if (sctp_writeable(sk)) {
4910 		mask |= POLLOUT | POLLWRNORM;
4911 	} else {
4912 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4913 		/*
4914 		 * Since the socket is not locked, the buffer
4915 		 * might be made available after the writeable check and
4916 		 * before the bit is set.  This could cause a lost I/O
4917 		 * signal.  tcp_poll() has a race breaker for this race
4918 		 * condition.  Based on their implementation, we put
4919 		 * in the following code to cover it as well.
4920 		 */
4921 		if (sctp_writeable(sk))
4922 			mask |= POLLOUT | POLLWRNORM;
4923 	}
4924 	return mask;
4925 }
4926 
4927 /********************************************************************
4928  * 2nd Level Abstractions
4929  ********************************************************************/
4930 
4931 static struct sctp_bind_bucket *sctp_bucket_create(
4932 	struct sctp_bind_hashbucket *head, unsigned short snum)
4933 {
4934 	struct sctp_bind_bucket *pp;
4935 
4936 	pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4937 	SCTP_DBG_OBJCNT_INC(bind_bucket);
4938 	if (pp) {
4939 		pp->port = snum;
4940 		pp->fastreuse = 0;
4941 		INIT_HLIST_HEAD(&pp->owner);
4942 		if ((pp->next = head->chain) != NULL)
4943 			pp->next->pprev = &pp->next;
4944 		head->chain = pp;
4945 		pp->pprev = &head->chain;
4946 	}
4947 	return pp;
4948 }
4949 
4950 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4951 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4952 {
4953 	if (hlist_empty(&pp->owner)) {
4954 		if (pp->next)
4955 			pp->next->pprev = pp->pprev;
4956 		*(pp->pprev) = pp->next;
4957 		kmem_cache_free(sctp_bucket_cachep, pp);
4958 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
4959 	}
4960 }
4961 
4962 /* Release this socket's reference to a local port.  */
4963 static inline void __sctp_put_port(struct sock *sk)
4964 {
4965 	struct sctp_bind_hashbucket *head =
4966 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4967 	struct sctp_bind_bucket *pp;
4968 
4969 	sctp_spin_lock(&head->lock);
4970 	pp = sctp_sk(sk)->bind_hash;
4971 	__sk_del_bind_node(sk);
4972 	sctp_sk(sk)->bind_hash = NULL;
4973 	inet_sk(sk)->num = 0;
4974 	sctp_bucket_destroy(pp);
4975 	sctp_spin_unlock(&head->lock);
4976 }
4977 
4978 void sctp_put_port(struct sock *sk)
4979 {
4980 	sctp_local_bh_disable();
4981 	__sctp_put_port(sk);
4982 	sctp_local_bh_enable();
4983 }
4984 
4985 /*
4986  * The system picks an ephemeral port and choose an address set equivalent
4987  * to binding with a wildcard address.
4988  * One of those addresses will be the primary address for the association.
4989  * This automatically enables the multihoming capability of SCTP.
4990  */
4991 static int sctp_autobind(struct sock *sk)
4992 {
4993 	union sctp_addr autoaddr;
4994 	struct sctp_af *af;
4995 	unsigned short port;
4996 
4997 	/* Initialize a local sockaddr structure to INADDR_ANY. */
4998 	af = sctp_sk(sk)->pf->af;
4999 
5000 	port = htons(inet_sk(sk)->num);
5001 	af->inaddr_any(&autoaddr, port);
5002 
5003 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5004 }
5005 
5006 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5007  *
5008  * From RFC 2292
5009  * 4.2 The cmsghdr Structure *
5010  *
5011  * When ancillary data is sent or received, any number of ancillary data
5012  * objects can be specified by the msg_control and msg_controllen members of
5013  * the msghdr structure, because each object is preceded by
5014  * a cmsghdr structure defining the object's length (the cmsg_len member).
5015  * Historically Berkeley-derived implementations have passed only one object
5016  * at a time, but this API allows multiple objects to be
5017  * passed in a single call to sendmsg() or recvmsg(). The following example
5018  * shows two ancillary data objects in a control buffer.
5019  *
5020  *   |<--------------------------- msg_controllen -------------------------->|
5021  *   |                                                                       |
5022  *
5023  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5024  *
5025  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5026  *   |                                   |                                   |
5027  *
5028  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5029  *
5030  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5031  *   |                                |  |                                |  |
5032  *
5033  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5034  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5035  *
5036  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5037  *
5038  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5039  *    ^
5040  *    |
5041  *
5042  * msg_control
5043  * points here
5044  */
5045 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5046 				  sctp_cmsgs_t *cmsgs)
5047 {
5048 	struct cmsghdr *cmsg;
5049 
5050 	for (cmsg = CMSG_FIRSTHDR(msg);
5051 	     cmsg != NULL;
5052 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5053 		if (!CMSG_OK(msg, cmsg))
5054 			return -EINVAL;
5055 
5056 		/* Should we parse this header or ignore?  */
5057 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5058 			continue;
5059 
5060 		/* Strictly check lengths following example in SCM code.  */
5061 		switch (cmsg->cmsg_type) {
5062 		case SCTP_INIT:
5063 			/* SCTP Socket API Extension
5064 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5065 			 *
5066 			 * This cmsghdr structure provides information for
5067 			 * initializing new SCTP associations with sendmsg().
5068 			 * The SCTP_INITMSG socket option uses this same data
5069 			 * structure.  This structure is not used for
5070 			 * recvmsg().
5071 			 *
5072 			 * cmsg_level    cmsg_type      cmsg_data[]
5073 			 * ------------  ------------   ----------------------
5074 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5075 			 */
5076 			if (cmsg->cmsg_len !=
5077 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5078 				return -EINVAL;
5079 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5080 			break;
5081 
5082 		case SCTP_SNDRCV:
5083 			/* SCTP Socket API Extension
5084 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5085 			 *
5086 			 * This cmsghdr structure specifies SCTP options for
5087 			 * sendmsg() and describes SCTP header information
5088 			 * about a received message through recvmsg().
5089 			 *
5090 			 * cmsg_level    cmsg_type      cmsg_data[]
5091 			 * ------------  ------------   ----------------------
5092 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5093 			 */
5094 			if (cmsg->cmsg_len !=
5095 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5096 				return -EINVAL;
5097 
5098 			cmsgs->info =
5099 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5100 
5101 			/* Minimally, validate the sinfo_flags. */
5102 			if (cmsgs->info->sinfo_flags &
5103 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5104 			      SCTP_ABORT | SCTP_EOF))
5105 				return -EINVAL;
5106 			break;
5107 
5108 		default:
5109 			return -EINVAL;
5110 		};
5111 	}
5112 	return 0;
5113 }
5114 
5115 /*
5116  * Wait for a packet..
5117  * Note: This function is the same function as in core/datagram.c
5118  * with a few modifications to make lksctp work.
5119  */
5120 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5121 {
5122 	int error;
5123 	DEFINE_WAIT(wait);
5124 
5125 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5126 
5127 	/* Socket errors? */
5128 	error = sock_error(sk);
5129 	if (error)
5130 		goto out;
5131 
5132 	if (!skb_queue_empty(&sk->sk_receive_queue))
5133 		goto ready;
5134 
5135 	/* Socket shut down?  */
5136 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5137 		goto out;
5138 
5139 	/* Sequenced packets can come disconnected.  If so we report the
5140 	 * problem.
5141 	 */
5142 	error = -ENOTCONN;
5143 
5144 	/* Is there a good reason to think that we may receive some data?  */
5145 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5146 		goto out;
5147 
5148 	/* Handle signals.  */
5149 	if (signal_pending(current))
5150 		goto interrupted;
5151 
5152 	/* Let another process have a go.  Since we are going to sleep
5153 	 * anyway.  Note: This may cause odd behaviors if the message
5154 	 * does not fit in the user's buffer, but this seems to be the
5155 	 * only way to honor MSG_DONTWAIT realistically.
5156 	 */
5157 	sctp_release_sock(sk);
5158 	*timeo_p = schedule_timeout(*timeo_p);
5159 	sctp_lock_sock(sk);
5160 
5161 ready:
5162 	finish_wait(sk->sk_sleep, &wait);
5163 	return 0;
5164 
5165 interrupted:
5166 	error = sock_intr_errno(*timeo_p);
5167 
5168 out:
5169 	finish_wait(sk->sk_sleep, &wait);
5170 	*err = error;
5171 	return error;
5172 }
5173 
5174 /* Receive a datagram.
5175  * Note: This is pretty much the same routine as in core/datagram.c
5176  * with a few changes to make lksctp work.
5177  */
5178 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5179 					      int noblock, int *err)
5180 {
5181 	int error;
5182 	struct sk_buff *skb;
5183 	long timeo;
5184 
5185 	timeo = sock_rcvtimeo(sk, noblock);
5186 
5187 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5188 			  timeo, MAX_SCHEDULE_TIMEOUT);
5189 
5190 	do {
5191 		/* Again only user level code calls this function,
5192 		 * so nothing interrupt level
5193 		 * will suddenly eat the receive_queue.
5194 		 *
5195 		 *  Look at current nfs client by the way...
5196 		 *  However, this function was corrent in any case. 8)
5197 		 */
5198 		if (flags & MSG_PEEK) {
5199 			spin_lock_bh(&sk->sk_receive_queue.lock);
5200 			skb = skb_peek(&sk->sk_receive_queue);
5201 			if (skb)
5202 				atomic_inc(&skb->users);
5203 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5204 		} else {
5205 			skb = skb_dequeue(&sk->sk_receive_queue);
5206 		}
5207 
5208 		if (skb)
5209 			return skb;
5210 
5211 		/* Caller is allowed not to check sk->sk_err before calling. */
5212 		error = sock_error(sk);
5213 		if (error)
5214 			goto no_packet;
5215 
5216 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5217 			break;
5218 
5219 		/* User doesn't want to wait.  */
5220 		error = -EAGAIN;
5221 		if (!timeo)
5222 			goto no_packet;
5223 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5224 
5225 	return NULL;
5226 
5227 no_packet:
5228 	*err = error;
5229 	return NULL;
5230 }
5231 
5232 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5233 static void __sctp_write_space(struct sctp_association *asoc)
5234 {
5235 	struct sock *sk = asoc->base.sk;
5236 	struct socket *sock = sk->sk_socket;
5237 
5238 	if ((sctp_wspace(asoc) > 0) && sock) {
5239 		if (waitqueue_active(&asoc->wait))
5240 			wake_up_interruptible(&asoc->wait);
5241 
5242 		if (sctp_writeable(sk)) {
5243 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5244 				wake_up_interruptible(sk->sk_sleep);
5245 
5246 			/* Note that we try to include the Async I/O support
5247 			 * here by modeling from the current TCP/UDP code.
5248 			 * We have not tested with it yet.
5249 			 */
5250 			if (sock->fasync_list &&
5251 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5252 				sock_wake_async(sock, 2, POLL_OUT);
5253 		}
5254 	}
5255 }
5256 
5257 /* Do accounting for the sndbuf space.
5258  * Decrement the used sndbuf space of the corresponding association by the
5259  * data size which was just transmitted(freed).
5260  */
5261 static void sctp_wfree(struct sk_buff *skb)
5262 {
5263 	struct sctp_association *asoc;
5264 	struct sctp_chunk *chunk;
5265 	struct sock *sk;
5266 
5267 	/* Get the saved chunk pointer.  */
5268 	chunk = *((struct sctp_chunk **)(skb->cb));
5269 	asoc = chunk->asoc;
5270 	sk = asoc->base.sk;
5271 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5272 				sizeof(struct sk_buff) +
5273 				sizeof(struct sctp_chunk);
5274 
5275 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5276 
5277 	sock_wfree(skb);
5278 	__sctp_write_space(asoc);
5279 
5280 	sctp_association_put(asoc);
5281 }
5282 
5283 /* Helper function to wait for space in the sndbuf.  */
5284 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5285 				size_t msg_len)
5286 {
5287 	struct sock *sk = asoc->base.sk;
5288 	int err = 0;
5289 	long current_timeo = *timeo_p;
5290 	DEFINE_WAIT(wait);
5291 
5292 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5293 	                  asoc, (long)(*timeo_p), msg_len);
5294 
5295 	/* Increment the association's refcnt.  */
5296 	sctp_association_hold(asoc);
5297 
5298 	/* Wait on the association specific sndbuf space. */
5299 	for (;;) {
5300 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5301 					  TASK_INTERRUPTIBLE);
5302 		if (!*timeo_p)
5303 			goto do_nonblock;
5304 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5305 		    asoc->base.dead)
5306 			goto do_error;
5307 		if (signal_pending(current))
5308 			goto do_interrupted;
5309 		if (msg_len <= sctp_wspace(asoc))
5310 			break;
5311 
5312 		/* Let another process have a go.  Since we are going
5313 		 * to sleep anyway.
5314 		 */
5315 		sctp_release_sock(sk);
5316 		current_timeo = schedule_timeout(current_timeo);
5317 		sctp_lock_sock(sk);
5318 
5319 		*timeo_p = current_timeo;
5320 	}
5321 
5322 out:
5323 	finish_wait(&asoc->wait, &wait);
5324 
5325 	/* Release the association's refcnt.  */
5326 	sctp_association_put(asoc);
5327 
5328 	return err;
5329 
5330 do_error:
5331 	err = -EPIPE;
5332 	goto out;
5333 
5334 do_interrupted:
5335 	err = sock_intr_errno(*timeo_p);
5336 	goto out;
5337 
5338 do_nonblock:
5339 	err = -EAGAIN;
5340 	goto out;
5341 }
5342 
5343 /* If socket sndbuf has changed, wake up all per association waiters.  */
5344 void sctp_write_space(struct sock *sk)
5345 {
5346 	struct sctp_association *asoc;
5347 	struct list_head *pos;
5348 
5349 	/* Wake up the tasks in each wait queue.  */
5350 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5351 		asoc = list_entry(pos, struct sctp_association, asocs);
5352 		__sctp_write_space(asoc);
5353 	}
5354 }
5355 
5356 /* Is there any sndbuf space available on the socket?
5357  *
5358  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5359  * associations on the same socket.  For a UDP-style socket with
5360  * multiple associations, it is possible for it to be "unwriteable"
5361  * prematurely.  I assume that this is acceptable because
5362  * a premature "unwriteable" is better than an accidental "writeable" which
5363  * would cause an unwanted block under certain circumstances.  For the 1-1
5364  * UDP-style sockets or TCP-style sockets, this code should work.
5365  *  - Daisy
5366  */
5367 static int sctp_writeable(struct sock *sk)
5368 {
5369 	int amt = 0;
5370 
5371 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5372 	if (amt < 0)
5373 		amt = 0;
5374 	return amt;
5375 }
5376 
5377 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5378  * returns immediately with EINPROGRESS.
5379  */
5380 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5381 {
5382 	struct sock *sk = asoc->base.sk;
5383 	int err = 0;
5384 	long current_timeo = *timeo_p;
5385 	DEFINE_WAIT(wait);
5386 
5387 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5388 			  (long)(*timeo_p));
5389 
5390 	/* Increment the association's refcnt.  */
5391 	sctp_association_hold(asoc);
5392 
5393 	for (;;) {
5394 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5395 					  TASK_INTERRUPTIBLE);
5396 		if (!*timeo_p)
5397 			goto do_nonblock;
5398 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5399 			break;
5400 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5401 		    asoc->base.dead)
5402 			goto do_error;
5403 		if (signal_pending(current))
5404 			goto do_interrupted;
5405 
5406 		if (sctp_state(asoc, ESTABLISHED))
5407 			break;
5408 
5409 		/* Let another process have a go.  Since we are going
5410 		 * to sleep anyway.
5411 		 */
5412 		sctp_release_sock(sk);
5413 		current_timeo = schedule_timeout(current_timeo);
5414 		sctp_lock_sock(sk);
5415 
5416 		*timeo_p = current_timeo;
5417 	}
5418 
5419 out:
5420 	finish_wait(&asoc->wait, &wait);
5421 
5422 	/* Release the association's refcnt.  */
5423 	sctp_association_put(asoc);
5424 
5425 	return err;
5426 
5427 do_error:
5428 	if (asoc->init_err_counter + 1 >= asoc->max_init_attempts)
5429 		err = -ETIMEDOUT;
5430 	else
5431 		err = -ECONNREFUSED;
5432 	goto out;
5433 
5434 do_interrupted:
5435 	err = sock_intr_errno(*timeo_p);
5436 	goto out;
5437 
5438 do_nonblock:
5439 	err = -EINPROGRESS;
5440 	goto out;
5441 }
5442 
5443 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5444 {
5445 	struct sctp_endpoint *ep;
5446 	int err = 0;
5447 	DEFINE_WAIT(wait);
5448 
5449 	ep = sctp_sk(sk)->ep;
5450 
5451 
5452 	for (;;) {
5453 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5454 					  TASK_INTERRUPTIBLE);
5455 
5456 		if (list_empty(&ep->asocs)) {
5457 			sctp_release_sock(sk);
5458 			timeo = schedule_timeout(timeo);
5459 			sctp_lock_sock(sk);
5460 		}
5461 
5462 		err = -EINVAL;
5463 		if (!sctp_sstate(sk, LISTENING))
5464 			break;
5465 
5466 		err = 0;
5467 		if (!list_empty(&ep->asocs))
5468 			break;
5469 
5470 		err = sock_intr_errno(timeo);
5471 		if (signal_pending(current))
5472 			break;
5473 
5474 		err = -EAGAIN;
5475 		if (!timeo)
5476 			break;
5477 	}
5478 
5479 	finish_wait(sk->sk_sleep, &wait);
5480 
5481 	return err;
5482 }
5483 
5484 void sctp_wait_for_close(struct sock *sk, long timeout)
5485 {
5486 	DEFINE_WAIT(wait);
5487 
5488 	do {
5489 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5490 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5491 			break;
5492 		sctp_release_sock(sk);
5493 		timeout = schedule_timeout(timeout);
5494 		sctp_lock_sock(sk);
5495 	} while (!signal_pending(current) && timeout);
5496 
5497 	finish_wait(sk->sk_sleep, &wait);
5498 }
5499 
5500 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5501  * and its messages to the newsk.
5502  */
5503 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5504 			      struct sctp_association *assoc,
5505 			      sctp_socket_type_t type)
5506 {
5507 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5508 	struct sctp_sock *newsp = sctp_sk(newsk);
5509 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5510 	struct sctp_endpoint *newep = newsp->ep;
5511 	struct sk_buff *skb, *tmp;
5512 	struct sctp_ulpevent *event;
5513 	int flags = 0;
5514 
5515 	/* Migrate socket buffer sizes and all the socket level options to the
5516 	 * new socket.
5517 	 */
5518 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
5519 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5520 	/* Brute force copy old sctp opt. */
5521 	inet_sk_copy_descendant(newsk, oldsk);
5522 
5523 	/* Restore the ep value that was overwritten with the above structure
5524 	 * copy.
5525 	 */
5526 	newsp->ep = newep;
5527 	newsp->hmac = NULL;
5528 
5529 	/* Hook this new socket in to the bind_hash list. */
5530 	pp = sctp_sk(oldsk)->bind_hash;
5531 	sk_add_bind_node(newsk, &pp->owner);
5532 	sctp_sk(newsk)->bind_hash = pp;
5533 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
5534 
5535 	/* Copy the bind_addr list from the original endpoint to the new
5536 	 * endpoint so that we can handle restarts properly
5537 	 */
5538 	if (assoc->peer.ipv4_address)
5539 		flags |= SCTP_ADDR4_PEERSUPP;
5540 	if (assoc->peer.ipv6_address)
5541 		flags |= SCTP_ADDR6_PEERSUPP;
5542 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5543 			     &oldsp->ep->base.bind_addr,
5544 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5545 
5546 	/* Move any messages in the old socket's receive queue that are for the
5547 	 * peeled off association to the new socket's receive queue.
5548 	 */
5549 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5550 		event = sctp_skb2event(skb);
5551 		if (event->asoc == assoc) {
5552 			sock_rfree(skb);
5553 			__skb_unlink(skb, &oldsk->sk_receive_queue);
5554 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
5555 			skb_set_owner_r(skb, newsk);
5556 		}
5557 	}
5558 
5559 	/* Clean up any messages pending delivery due to partial
5560 	 * delivery.   Three cases:
5561 	 * 1) No partial deliver;  no work.
5562 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5563 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5564 	 */
5565 	skb_queue_head_init(&newsp->pd_lobby);
5566 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5567 
5568 	if (sctp_sk(oldsk)->pd_mode) {
5569 		struct sk_buff_head *queue;
5570 
5571 		/* Decide which queue to move pd_lobby skbs to. */
5572 		if (assoc->ulpq.pd_mode) {
5573 			queue = &newsp->pd_lobby;
5574 		} else
5575 			queue = &newsk->sk_receive_queue;
5576 
5577 		/* Walk through the pd_lobby, looking for skbs that
5578 		 * need moved to the new socket.
5579 		 */
5580 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5581 			event = sctp_skb2event(skb);
5582 			if (event->asoc == assoc) {
5583 				sock_rfree(skb);
5584 				__skb_unlink(skb, &oldsp->pd_lobby);
5585 				__skb_queue_tail(queue, skb);
5586 				skb_set_owner_r(skb, newsk);
5587 			}
5588 		}
5589 
5590 		/* Clear up any skbs waiting for the partial
5591 		 * delivery to finish.
5592 		 */
5593 		if (assoc->ulpq.pd_mode)
5594 			sctp_clear_pd(oldsk);
5595 
5596 	}
5597 
5598 	/* Set the type of socket to indicate that it is peeled off from the
5599 	 * original UDP-style socket or created with the accept() call on a
5600 	 * TCP-style socket..
5601 	 */
5602 	newsp->type = type;
5603 
5604 	/* Migrate the association to the new socket. */
5605 	sctp_assoc_migrate(assoc, newsk);
5606 
5607 	/* If the association on the newsk is already closed before accept()
5608 	 * is called, set RCV_SHUTDOWN flag.
5609 	 */
5610 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5611 		newsk->sk_shutdown |= RCV_SHUTDOWN;
5612 
5613 	newsk->sk_state = SCTP_SS_ESTABLISHED;
5614 }
5615 
5616 /* This proto struct describes the ULP interface for SCTP.  */
5617 struct proto sctp_prot = {
5618 	.name        =	"SCTP",
5619 	.owner       =	THIS_MODULE,
5620 	.close       =	sctp_close,
5621 	.connect     =	sctp_connect,
5622 	.disconnect  =	sctp_disconnect,
5623 	.accept      =	sctp_accept,
5624 	.ioctl       =	sctp_ioctl,
5625 	.init        =	sctp_init_sock,
5626 	.destroy     =	sctp_destroy_sock,
5627 	.shutdown    =	sctp_shutdown,
5628 	.setsockopt  =	sctp_setsockopt,
5629 	.getsockopt  =	sctp_getsockopt,
5630 	.sendmsg     =	sctp_sendmsg,
5631 	.recvmsg     =	sctp_recvmsg,
5632 	.bind        =	sctp_bind,
5633 	.backlog_rcv =	sctp_backlog_rcv,
5634 	.hash        =	sctp_hash,
5635 	.unhash      =	sctp_unhash,
5636 	.get_port    =	sctp_get_port,
5637 	.obj_size    =  sizeof(struct sctp_sock),
5638 };
5639 
5640 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5641 struct proto sctpv6_prot = {
5642 	.name		= "SCTPv6",
5643 	.owner		= THIS_MODULE,
5644 	.close		= sctp_close,
5645 	.connect	= sctp_connect,
5646 	.disconnect	= sctp_disconnect,
5647 	.accept		= sctp_accept,
5648 	.ioctl		= sctp_ioctl,
5649 	.init		= sctp_init_sock,
5650 	.destroy	= sctp_destroy_sock,
5651 	.shutdown	= sctp_shutdown,
5652 	.setsockopt	= sctp_setsockopt,
5653 	.getsockopt	= sctp_getsockopt,
5654 	.sendmsg	= sctp_sendmsg,
5655 	.recvmsg	= sctp_recvmsg,
5656 	.bind		= sctp_bind,
5657 	.backlog_rcv	= sctp_backlog_rcv,
5658 	.hash		= sctp_hash,
5659 	.unhash		= sctp_unhash,
5660 	.get_port	= sctp_get_port,
5661 	.obj_size	= sizeof(struct sctp6_sock),
5662 };
5663 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
5664