xref: /openbmc/linux/net/sctp/socket.c (revision 84d517f3)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 
75 #include <linux/socket.h> /* for sa_family_t */
76 #include <linux/export.h>
77 #include <net/sock.h>
78 #include <net/sctp/sctp.h>
79 #include <net/sctp/sm.h>
80 
81 /* Forward declarations for internal helper functions. */
82 static int sctp_writeable(struct sock *sk);
83 static void sctp_wfree(struct sk_buff *skb);
84 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
85 				size_t msg_len);
86 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
87 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
88 static int sctp_wait_for_accept(struct sock *sk, long timeo);
89 static void sctp_wait_for_close(struct sock *sk, long timeo);
90 static void sctp_destruct_sock(struct sock *sk);
91 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
92 					union sctp_addr *addr, int len);
93 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
94 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
95 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf(struct sctp_association *asoc,
98 			    struct sctp_chunk *chunk);
99 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
100 static int sctp_autobind(struct sock *sk);
101 static void sctp_sock_migrate(struct sock *, struct sock *,
102 			      struct sctp_association *, sctp_socket_type_t);
103 
104 extern struct kmem_cache *sctp_bucket_cachep;
105 extern long sysctl_sctp_mem[3];
106 extern int sysctl_sctp_rmem[3];
107 extern int sysctl_sctp_wmem[3];
108 
109 static int sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	int amt;
123 
124 	if (asoc->ep->sndbuf_policy)
125 		amt = asoc->sndbuf_used;
126 	else
127 		amt = sk_wmem_alloc_get(asoc->base.sk);
128 
129 	if (amt >= asoc->base.sk->sk_sndbuf) {
130 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
131 			amt = 0;
132 		else {
133 			amt = sk_stream_wspace(asoc->base.sk);
134 			if (amt < 0)
135 				amt = 0;
136 		}
137 	} else {
138 		amt = asoc->base.sk->sk_sndbuf - amt;
139 	}
140 	return amt;
141 }
142 
143 /* Increment the used sndbuf space count of the corresponding association by
144  * the size of the outgoing data chunk.
145  * Also, set the skb destructor for sndbuf accounting later.
146  *
147  * Since it is always 1-1 between chunk and skb, and also a new skb is always
148  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
149  * destructor in the data chunk skb for the purpose of the sndbuf space
150  * tracking.
151  */
152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
153 {
154 	struct sctp_association *asoc = chunk->asoc;
155 	struct sock *sk = asoc->base.sk;
156 
157 	/* The sndbuf space is tracked per association.  */
158 	sctp_association_hold(asoc);
159 
160 	skb_set_owner_w(chunk->skb, sk);
161 
162 	chunk->skb->destructor = sctp_wfree;
163 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
164 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
165 
166 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
167 				sizeof(struct sk_buff) +
168 				sizeof(struct sctp_chunk);
169 
170 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
171 	sk->sk_wmem_queued += chunk->skb->truesize;
172 	sk_mem_charge(sk, chunk->skb->truesize);
173 }
174 
175 /* Verify that this is a valid address. */
176 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
177 				   int len)
178 {
179 	struct sctp_af *af;
180 
181 	/* Verify basic sockaddr. */
182 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
183 	if (!af)
184 		return -EINVAL;
185 
186 	/* Is this a valid SCTP address?  */
187 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
188 		return -EINVAL;
189 
190 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 /* Look up the association by its id.  If this is not a UDP-style
197  * socket, the ID field is always ignored.
198  */
199 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
200 {
201 	struct sctp_association *asoc = NULL;
202 
203 	/* If this is not a UDP-style socket, assoc id should be ignored. */
204 	if (!sctp_style(sk, UDP)) {
205 		/* Return NULL if the socket state is not ESTABLISHED. It
206 		 * could be a TCP-style listening socket or a socket which
207 		 * hasn't yet called connect() to establish an association.
208 		 */
209 		if (!sctp_sstate(sk, ESTABLISHED))
210 			return NULL;
211 
212 		/* Get the first and the only association from the list. */
213 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
214 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
215 					  struct sctp_association, asocs);
216 		return asoc;
217 	}
218 
219 	/* Otherwise this is a UDP-style socket. */
220 	if (!id || (id == (sctp_assoc_t)-1))
221 		return NULL;
222 
223 	spin_lock_bh(&sctp_assocs_id_lock);
224 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
225 	spin_unlock_bh(&sctp_assocs_id_lock);
226 
227 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
228 		return NULL;
229 
230 	return asoc;
231 }
232 
233 /* Look up the transport from an address and an assoc id. If both address and
234  * id are specified, the associations matching the address and the id should be
235  * the same.
236  */
237 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
238 					      struct sockaddr_storage *addr,
239 					      sctp_assoc_t id)
240 {
241 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
242 	struct sctp_transport *transport;
243 	union sctp_addr *laddr = (union sctp_addr *)addr;
244 
245 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 					       laddr,
247 					       &transport);
248 
249 	if (!addr_asoc)
250 		return NULL;
251 
252 	id_asoc = sctp_id2assoc(sk, id);
253 	if (id_asoc && (id_asoc != addr_asoc))
254 		return NULL;
255 
256 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
257 						(union sctp_addr *)addr);
258 
259 	return transport;
260 }
261 
262 /* API 3.1.2 bind() - UDP Style Syntax
263  * The syntax of bind() is,
264  *
265  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
266  *
267  *   sd      - the socket descriptor returned by socket().
268  *   addr    - the address structure (struct sockaddr_in or struct
269  *             sockaddr_in6 [RFC 2553]),
270  *   addr_len - the size of the address structure.
271  */
272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273 {
274 	int retval = 0;
275 
276 	lock_sock(sk);
277 
278 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 		 addr, addr_len);
280 
281 	/* Disallow binding twice. */
282 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 				      addr_len);
285 	else
286 		retval = -EINVAL;
287 
288 	release_sock(sk);
289 
290 	return retval;
291 }
292 
293 static long sctp_get_port_local(struct sock *, union sctp_addr *);
294 
295 /* Verify this is a valid sockaddr. */
296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 					union sctp_addr *addr, int len)
298 {
299 	struct sctp_af *af;
300 
301 	/* Check minimum size.  */
302 	if (len < sizeof (struct sockaddr))
303 		return NULL;
304 
305 	/* V4 mapped address are really of AF_INET family */
306 	if (addr->sa.sa_family == AF_INET6 &&
307 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 		if (!opt->pf->af_supported(AF_INET, opt))
309 			return NULL;
310 	} else {
311 		/* Does this PF support this AF? */
312 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 			return NULL;
314 	}
315 
316 	/* If we get this far, af is valid. */
317 	af = sctp_get_af_specific(addr->sa.sa_family);
318 
319 	if (len < af->sockaddr_len)
320 		return NULL;
321 
322 	return af;
323 }
324 
325 /* Bind a local address either to an endpoint or to an association.  */
326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 {
328 	struct net *net = sock_net(sk);
329 	struct sctp_sock *sp = sctp_sk(sk);
330 	struct sctp_endpoint *ep = sp->ep;
331 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 	struct sctp_af *af;
333 	unsigned short snum;
334 	int ret = 0;
335 
336 	/* Common sockaddr verification. */
337 	af = sctp_sockaddr_af(sp, addr, len);
338 	if (!af) {
339 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 			 __func__, sk, addr, len);
341 		return -EINVAL;
342 	}
343 
344 	snum = ntohs(addr->v4.sin_port);
345 
346 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 		 __func__, sk, &addr->sa, bp->port, snum, len);
348 
349 	/* PF specific bind() address verification. */
350 	if (!sp->pf->bind_verify(sp, addr))
351 		return -EADDRNOTAVAIL;
352 
353 	/* We must either be unbound, or bind to the same port.
354 	 * It's OK to allow 0 ports if we are already bound.
355 	 * We'll just inhert an already bound port in this case
356 	 */
357 	if (bp->port) {
358 		if (!snum)
359 			snum = bp->port;
360 		else if (snum != bp->port) {
361 			pr_debug("%s: new port %d doesn't match existing port "
362 				 "%d\n", __func__, snum, bp->port);
363 			return -EINVAL;
364 		}
365 	}
366 
367 	if (snum && snum < PROT_SOCK &&
368 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 		return -EACCES;
370 
371 	/* See if the address matches any of the addresses we may have
372 	 * already bound before checking against other endpoints.
373 	 */
374 	if (sctp_bind_addr_match(bp, addr, sp))
375 		return -EINVAL;
376 
377 	/* Make sure we are allowed to bind here.
378 	 * The function sctp_get_port_local() does duplicate address
379 	 * detection.
380 	 */
381 	addr->v4.sin_port = htons(snum);
382 	if ((ret = sctp_get_port_local(sk, addr))) {
383 		return -EADDRINUSE;
384 	}
385 
386 	/* Refresh ephemeral port.  */
387 	if (!bp->port)
388 		bp->port = inet_sk(sk)->inet_num;
389 
390 	/* Add the address to the bind address list.
391 	 * Use GFP_ATOMIC since BHs will be disabled.
392 	 */
393 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
394 
395 	/* Copy back into socket for getsockname() use. */
396 	if (!ret) {
397 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
398 		af->to_sk_saddr(addr, sk);
399 	}
400 
401 	return ret;
402 }
403 
404  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
405  *
406  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
407  * at any one time.  If a sender, after sending an ASCONF chunk, decides
408  * it needs to transfer another ASCONF Chunk, it MUST wait until the
409  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
410  * subsequent ASCONF. Note this restriction binds each side, so at any
411  * time two ASCONF may be in-transit on any given association (one sent
412  * from each endpoint).
413  */
414 static int sctp_send_asconf(struct sctp_association *asoc,
415 			    struct sctp_chunk *chunk)
416 {
417 	struct net 	*net = sock_net(asoc->base.sk);
418 	int		retval = 0;
419 
420 	/* If there is an outstanding ASCONF chunk, queue it for later
421 	 * transmission.
422 	 */
423 	if (asoc->addip_last_asconf) {
424 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 		goto out;
426 	}
427 
428 	/* Hold the chunk until an ASCONF_ACK is received. */
429 	sctp_chunk_hold(chunk);
430 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
431 	if (retval)
432 		sctp_chunk_free(chunk);
433 	else
434 		asoc->addip_last_asconf = chunk;
435 
436 out:
437 	return retval;
438 }
439 
440 /* Add a list of addresses as bind addresses to local endpoint or
441  * association.
442  *
443  * Basically run through each address specified in the addrs/addrcnt
444  * array/length pair, determine if it is IPv6 or IPv4 and call
445  * sctp_do_bind() on it.
446  *
447  * If any of them fails, then the operation will be reversed and the
448  * ones that were added will be removed.
449  *
450  * Only sctp_setsockopt_bindx() is supposed to call this function.
451  */
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453 {
454 	int cnt;
455 	int retval = 0;
456 	void *addr_buf;
457 	struct sockaddr *sa_addr;
458 	struct sctp_af *af;
459 
460 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
461 		 addrs, addrcnt);
462 
463 	addr_buf = addrs;
464 	for (cnt = 0; cnt < addrcnt; cnt++) {
465 		/* The list may contain either IPv4 or IPv6 address;
466 		 * determine the address length for walking thru the list.
467 		 */
468 		sa_addr = addr_buf;
469 		af = sctp_get_af_specific(sa_addr->sa_family);
470 		if (!af) {
471 			retval = -EINVAL;
472 			goto err_bindx_add;
473 		}
474 
475 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 				      af->sockaddr_len);
477 
478 		addr_buf += af->sockaddr_len;
479 
480 err_bindx_add:
481 		if (retval < 0) {
482 			/* Failed. Cleanup the ones that have been added */
483 			if (cnt > 0)
484 				sctp_bindx_rem(sk, addrs, cnt);
485 			return retval;
486 		}
487 	}
488 
489 	return retval;
490 }
491 
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493  * associations that are part of the endpoint indicating that a list of local
494  * addresses are added to the endpoint.
495  *
496  * If any of the addresses is already in the bind address list of the
497  * association, we do not send the chunk for that association.  But it will not
498  * affect other associations.
499  *
500  * Only sctp_setsockopt_bindx() is supposed to call this function.
501  */
502 static int sctp_send_asconf_add_ip(struct sock		*sk,
503 				   struct sockaddr	*addrs,
504 				   int 			addrcnt)
505 {
506 	struct net *net = sock_net(sk);
507 	struct sctp_sock		*sp;
508 	struct sctp_endpoint		*ep;
509 	struct sctp_association		*asoc;
510 	struct sctp_bind_addr		*bp;
511 	struct sctp_chunk		*chunk;
512 	struct sctp_sockaddr_entry	*laddr;
513 	union sctp_addr			*addr;
514 	union sctp_addr			saveaddr;
515 	void				*addr_buf;
516 	struct sctp_af			*af;
517 	struct list_head		*p;
518 	int 				i;
519 	int 				retval = 0;
520 
521 	if (!net->sctp.addip_enable)
522 		return retval;
523 
524 	sp = sctp_sk(sk);
525 	ep = sp->ep;
526 
527 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
528 		 __func__, sk, addrs, addrcnt);
529 
530 	list_for_each_entry(asoc, &ep->asocs, asocs) {
531 		if (!asoc->peer.asconf_capable)
532 			continue;
533 
534 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 			continue;
536 
537 		if (!sctp_state(asoc, ESTABLISHED))
538 			continue;
539 
540 		/* Check if any address in the packed array of addresses is
541 		 * in the bind address list of the association. If so,
542 		 * do not send the asconf chunk to its peer, but continue with
543 		 * other associations.
544 		 */
545 		addr_buf = addrs;
546 		for (i = 0; i < addrcnt; i++) {
547 			addr = addr_buf;
548 			af = sctp_get_af_specific(addr->v4.sin_family);
549 			if (!af) {
550 				retval = -EINVAL;
551 				goto out;
552 			}
553 
554 			if (sctp_assoc_lookup_laddr(asoc, addr))
555 				break;
556 
557 			addr_buf += af->sockaddr_len;
558 		}
559 		if (i < addrcnt)
560 			continue;
561 
562 		/* Use the first valid address in bind addr list of
563 		 * association as Address Parameter of ASCONF CHUNK.
564 		 */
565 		bp = &asoc->base.bind_addr;
566 		p = bp->address_list.next;
567 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 						   addrcnt, SCTP_PARAM_ADD_IP);
570 		if (!chunk) {
571 			retval = -ENOMEM;
572 			goto out;
573 		}
574 
575 		/* Add the new addresses to the bind address list with
576 		 * use_as_src set to 0.
577 		 */
578 		addr_buf = addrs;
579 		for (i = 0; i < addrcnt; i++) {
580 			addr = addr_buf;
581 			af = sctp_get_af_specific(addr->v4.sin_family);
582 			memcpy(&saveaddr, addr, af->sockaddr_len);
583 			retval = sctp_add_bind_addr(bp, &saveaddr,
584 						    SCTP_ADDR_NEW, GFP_ATOMIC);
585 			addr_buf += af->sockaddr_len;
586 		}
587 		if (asoc->src_out_of_asoc_ok) {
588 			struct sctp_transport *trans;
589 
590 			list_for_each_entry(trans,
591 			    &asoc->peer.transport_addr_list, transports) {
592 				/* Clear the source and route cache */
593 				dst_release(trans->dst);
594 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
595 				    2*asoc->pathmtu, 4380));
596 				trans->ssthresh = asoc->peer.i.a_rwnd;
597 				trans->rto = asoc->rto_initial;
598 				sctp_max_rto(asoc, trans);
599 				trans->rtt = trans->srtt = trans->rttvar = 0;
600 				sctp_transport_route(trans, NULL,
601 				    sctp_sk(asoc->base.sk));
602 			}
603 		}
604 		retval = sctp_send_asconf(asoc, chunk);
605 	}
606 
607 out:
608 	return retval;
609 }
610 
611 /* Remove a list of addresses from bind addresses list.  Do not remove the
612  * last address.
613  *
614  * Basically run through each address specified in the addrs/addrcnt
615  * array/length pair, determine if it is IPv6 or IPv4 and call
616  * sctp_del_bind() on it.
617  *
618  * If any of them fails, then the operation will be reversed and the
619  * ones that were removed will be added back.
620  *
621  * At least one address has to be left; if only one address is
622  * available, the operation will return -EBUSY.
623  *
624  * Only sctp_setsockopt_bindx() is supposed to call this function.
625  */
626 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
627 {
628 	struct sctp_sock *sp = sctp_sk(sk);
629 	struct sctp_endpoint *ep = sp->ep;
630 	int cnt;
631 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
632 	int retval = 0;
633 	void *addr_buf;
634 	union sctp_addr *sa_addr;
635 	struct sctp_af *af;
636 
637 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
638 		 __func__, sk, addrs, addrcnt);
639 
640 	addr_buf = addrs;
641 	for (cnt = 0; cnt < addrcnt; cnt++) {
642 		/* If the bind address list is empty or if there is only one
643 		 * bind address, there is nothing more to be removed (we need
644 		 * at least one address here).
645 		 */
646 		if (list_empty(&bp->address_list) ||
647 		    (sctp_list_single_entry(&bp->address_list))) {
648 			retval = -EBUSY;
649 			goto err_bindx_rem;
650 		}
651 
652 		sa_addr = addr_buf;
653 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
654 		if (!af) {
655 			retval = -EINVAL;
656 			goto err_bindx_rem;
657 		}
658 
659 		if (!af->addr_valid(sa_addr, sp, NULL)) {
660 			retval = -EADDRNOTAVAIL;
661 			goto err_bindx_rem;
662 		}
663 
664 		if (sa_addr->v4.sin_port &&
665 		    sa_addr->v4.sin_port != htons(bp->port)) {
666 			retval = -EINVAL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (!sa_addr->v4.sin_port)
671 			sa_addr->v4.sin_port = htons(bp->port);
672 
673 		/* FIXME - There is probably a need to check if sk->sk_saddr and
674 		 * sk->sk_rcv_addr are currently set to one of the addresses to
675 		 * be removed. This is something which needs to be looked into
676 		 * when we are fixing the outstanding issues with multi-homing
677 		 * socket routing and failover schemes. Refer to comments in
678 		 * sctp_do_bind(). -daisy
679 		 */
680 		retval = sctp_del_bind_addr(bp, sa_addr);
681 
682 		addr_buf += af->sockaddr_len;
683 err_bindx_rem:
684 		if (retval < 0) {
685 			/* Failed. Add the ones that has been removed back */
686 			if (cnt > 0)
687 				sctp_bindx_add(sk, addrs, cnt);
688 			return retval;
689 		}
690 	}
691 
692 	return retval;
693 }
694 
695 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
696  * the associations that are part of the endpoint indicating that a list of
697  * local addresses are removed from the endpoint.
698  *
699  * If any of the addresses is already in the bind address list of the
700  * association, we do not send the chunk for that association.  But it will not
701  * affect other associations.
702  *
703  * Only sctp_setsockopt_bindx() is supposed to call this function.
704  */
705 static int sctp_send_asconf_del_ip(struct sock		*sk,
706 				   struct sockaddr	*addrs,
707 				   int			addrcnt)
708 {
709 	struct net *net = sock_net(sk);
710 	struct sctp_sock	*sp;
711 	struct sctp_endpoint	*ep;
712 	struct sctp_association	*asoc;
713 	struct sctp_transport	*transport;
714 	struct sctp_bind_addr	*bp;
715 	struct sctp_chunk	*chunk;
716 	union sctp_addr		*laddr;
717 	void			*addr_buf;
718 	struct sctp_af		*af;
719 	struct sctp_sockaddr_entry *saddr;
720 	int 			i;
721 	int 			retval = 0;
722 	int			stored = 0;
723 
724 	chunk = NULL;
725 	if (!net->sctp.addip_enable)
726 		return retval;
727 
728 	sp = sctp_sk(sk);
729 	ep = sp->ep;
730 
731 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
732 		 __func__, sk, addrs, addrcnt);
733 
734 	list_for_each_entry(asoc, &ep->asocs, asocs) {
735 
736 		if (!asoc->peer.asconf_capable)
737 			continue;
738 
739 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
740 			continue;
741 
742 		if (!sctp_state(asoc, ESTABLISHED))
743 			continue;
744 
745 		/* Check if any address in the packed array of addresses is
746 		 * not present in the bind address list of the association.
747 		 * If so, do not send the asconf chunk to its peer, but
748 		 * continue with other associations.
749 		 */
750 		addr_buf = addrs;
751 		for (i = 0; i < addrcnt; i++) {
752 			laddr = addr_buf;
753 			af = sctp_get_af_specific(laddr->v4.sin_family);
754 			if (!af) {
755 				retval = -EINVAL;
756 				goto out;
757 			}
758 
759 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
760 				break;
761 
762 			addr_buf += af->sockaddr_len;
763 		}
764 		if (i < addrcnt)
765 			continue;
766 
767 		/* Find one address in the association's bind address list
768 		 * that is not in the packed array of addresses. This is to
769 		 * make sure that we do not delete all the addresses in the
770 		 * association.
771 		 */
772 		bp = &asoc->base.bind_addr;
773 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
774 					       addrcnt, sp);
775 		if ((laddr == NULL) && (addrcnt == 1)) {
776 			if (asoc->asconf_addr_del_pending)
777 				continue;
778 			asoc->asconf_addr_del_pending =
779 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
780 			if (asoc->asconf_addr_del_pending == NULL) {
781 				retval = -ENOMEM;
782 				goto out;
783 			}
784 			asoc->asconf_addr_del_pending->sa.sa_family =
785 				    addrs->sa_family;
786 			asoc->asconf_addr_del_pending->v4.sin_port =
787 				    htons(bp->port);
788 			if (addrs->sa_family == AF_INET) {
789 				struct sockaddr_in *sin;
790 
791 				sin = (struct sockaddr_in *)addrs;
792 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
793 			} else if (addrs->sa_family == AF_INET6) {
794 				struct sockaddr_in6 *sin6;
795 
796 				sin6 = (struct sockaddr_in6 *)addrs;
797 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
798 			}
799 
800 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
801 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
802 				 asoc->asconf_addr_del_pending);
803 
804 			asoc->src_out_of_asoc_ok = 1;
805 			stored = 1;
806 			goto skip_mkasconf;
807 		}
808 
809 		if (laddr == NULL)
810 			return -EINVAL;
811 
812 		/* We do not need RCU protection throughout this loop
813 		 * because this is done under a socket lock from the
814 		 * setsockopt call.
815 		 */
816 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
817 						   SCTP_PARAM_DEL_IP);
818 		if (!chunk) {
819 			retval = -ENOMEM;
820 			goto out;
821 		}
822 
823 skip_mkasconf:
824 		/* Reset use_as_src flag for the addresses in the bind address
825 		 * list that are to be deleted.
826 		 */
827 		addr_buf = addrs;
828 		for (i = 0; i < addrcnt; i++) {
829 			laddr = addr_buf;
830 			af = sctp_get_af_specific(laddr->v4.sin_family);
831 			list_for_each_entry(saddr, &bp->address_list, list) {
832 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
833 					saddr->state = SCTP_ADDR_DEL;
834 			}
835 			addr_buf += af->sockaddr_len;
836 		}
837 
838 		/* Update the route and saddr entries for all the transports
839 		 * as some of the addresses in the bind address list are
840 		 * about to be deleted and cannot be used as source addresses.
841 		 */
842 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
843 					transports) {
844 			dst_release(transport->dst);
845 			sctp_transport_route(transport, NULL,
846 					     sctp_sk(asoc->base.sk));
847 		}
848 
849 		if (stored)
850 			/* We don't need to transmit ASCONF */
851 			continue;
852 		retval = sctp_send_asconf(asoc, chunk);
853 	}
854 out:
855 	return retval;
856 }
857 
858 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
859 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
860 {
861 	struct sock *sk = sctp_opt2sk(sp);
862 	union sctp_addr *addr;
863 	struct sctp_af *af;
864 
865 	/* It is safe to write port space in caller. */
866 	addr = &addrw->a;
867 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
868 	af = sctp_get_af_specific(addr->sa.sa_family);
869 	if (!af)
870 		return -EINVAL;
871 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
872 		return -EINVAL;
873 
874 	if (addrw->state == SCTP_ADDR_NEW)
875 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
876 	else
877 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
878 }
879 
880 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
881  *
882  * API 8.1
883  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
884  *                int flags);
885  *
886  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
887  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
888  * or IPv6 addresses.
889  *
890  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
891  * Section 3.1.2 for this usage.
892  *
893  * addrs is a pointer to an array of one or more socket addresses. Each
894  * address is contained in its appropriate structure (i.e. struct
895  * sockaddr_in or struct sockaddr_in6) the family of the address type
896  * must be used to distinguish the address length (note that this
897  * representation is termed a "packed array" of addresses). The caller
898  * specifies the number of addresses in the array with addrcnt.
899  *
900  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
901  * -1, and sets errno to the appropriate error code.
902  *
903  * For SCTP, the port given in each socket address must be the same, or
904  * sctp_bindx() will fail, setting errno to EINVAL.
905  *
906  * The flags parameter is formed from the bitwise OR of zero or more of
907  * the following currently defined flags:
908  *
909  * SCTP_BINDX_ADD_ADDR
910  *
911  * SCTP_BINDX_REM_ADDR
912  *
913  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
914  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
915  * addresses from the association. The two flags are mutually exclusive;
916  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
917  * not remove all addresses from an association; sctp_bindx() will
918  * reject such an attempt with EINVAL.
919  *
920  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
921  * additional addresses with an endpoint after calling bind().  Or use
922  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
923  * socket is associated with so that no new association accepted will be
924  * associated with those addresses. If the endpoint supports dynamic
925  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
926  * endpoint to send the appropriate message to the peer to change the
927  * peers address lists.
928  *
929  * Adding and removing addresses from a connected association is
930  * optional functionality. Implementations that do not support this
931  * functionality should return EOPNOTSUPP.
932  *
933  * Basically do nothing but copying the addresses from user to kernel
934  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
935  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
936  * from userspace.
937  *
938  * We don't use copy_from_user() for optimization: we first do the
939  * sanity checks (buffer size -fast- and access check-healthy
940  * pointer); if all of those succeed, then we can alloc the memory
941  * (expensive operation) needed to copy the data to kernel. Then we do
942  * the copying without checking the user space area
943  * (__copy_from_user()).
944  *
945  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
946  * it.
947  *
948  * sk        The sk of the socket
949  * addrs     The pointer to the addresses in user land
950  * addrssize Size of the addrs buffer
951  * op        Operation to perform (add or remove, see the flags of
952  *           sctp_bindx)
953  *
954  * Returns 0 if ok, <0 errno code on error.
955  */
956 static int sctp_setsockopt_bindx(struct sock *sk,
957 				 struct sockaddr __user *addrs,
958 				 int addrs_size, int op)
959 {
960 	struct sockaddr *kaddrs;
961 	int err;
962 	int addrcnt = 0;
963 	int walk_size = 0;
964 	struct sockaddr *sa_addr;
965 	void *addr_buf;
966 	struct sctp_af *af;
967 
968 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
969 		 __func__, sk, addrs, addrs_size, op);
970 
971 	if (unlikely(addrs_size <= 0))
972 		return -EINVAL;
973 
974 	/* Check the user passed a healthy pointer.  */
975 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
976 		return -EFAULT;
977 
978 	/* Alloc space for the address array in kernel memory.  */
979 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
980 	if (unlikely(!kaddrs))
981 		return -ENOMEM;
982 
983 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
984 		kfree(kaddrs);
985 		return -EFAULT;
986 	}
987 
988 	/* Walk through the addrs buffer and count the number of addresses. */
989 	addr_buf = kaddrs;
990 	while (walk_size < addrs_size) {
991 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
992 			kfree(kaddrs);
993 			return -EINVAL;
994 		}
995 
996 		sa_addr = addr_buf;
997 		af = sctp_get_af_specific(sa_addr->sa_family);
998 
999 		/* If the address family is not supported or if this address
1000 		 * causes the address buffer to overflow return EINVAL.
1001 		 */
1002 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003 			kfree(kaddrs);
1004 			return -EINVAL;
1005 		}
1006 		addrcnt++;
1007 		addr_buf += af->sockaddr_len;
1008 		walk_size += af->sockaddr_len;
1009 	}
1010 
1011 	/* Do the work. */
1012 	switch (op) {
1013 	case SCTP_BINDX_ADD_ADDR:
1014 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1015 		if (err)
1016 			goto out;
1017 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1018 		break;
1019 
1020 	case SCTP_BINDX_REM_ADDR:
1021 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1022 		if (err)
1023 			goto out;
1024 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1025 		break;
1026 
1027 	default:
1028 		err = -EINVAL;
1029 		break;
1030 	}
1031 
1032 out:
1033 	kfree(kaddrs);
1034 
1035 	return err;
1036 }
1037 
1038 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1039  *
1040  * Common routine for handling connect() and sctp_connectx().
1041  * Connect will come in with just a single address.
1042  */
1043 static int __sctp_connect(struct sock *sk,
1044 			  struct sockaddr *kaddrs,
1045 			  int addrs_size,
1046 			  sctp_assoc_t *assoc_id)
1047 {
1048 	struct net *net = sock_net(sk);
1049 	struct sctp_sock *sp;
1050 	struct sctp_endpoint *ep;
1051 	struct sctp_association *asoc = NULL;
1052 	struct sctp_association *asoc2;
1053 	struct sctp_transport *transport;
1054 	union sctp_addr to;
1055 	struct sctp_af *af;
1056 	sctp_scope_t scope;
1057 	long timeo;
1058 	int err = 0;
1059 	int addrcnt = 0;
1060 	int walk_size = 0;
1061 	union sctp_addr *sa_addr = NULL;
1062 	void *addr_buf;
1063 	unsigned short port;
1064 	unsigned int f_flags = 0;
1065 
1066 	sp = sctp_sk(sk);
1067 	ep = sp->ep;
1068 
1069 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1070 	 * state - UDP-style peeled off socket or a TCP-style socket that
1071 	 * is already connected.
1072 	 * It cannot be done even on a TCP-style listening socket.
1073 	 */
1074 	if (sctp_sstate(sk, ESTABLISHED) ||
1075 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1076 		err = -EISCONN;
1077 		goto out_free;
1078 	}
1079 
1080 	/* Walk through the addrs buffer and count the number of addresses. */
1081 	addr_buf = kaddrs;
1082 	while (walk_size < addrs_size) {
1083 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1084 			err = -EINVAL;
1085 			goto out_free;
1086 		}
1087 
1088 		sa_addr = addr_buf;
1089 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1090 
1091 		/* If the address family is not supported or if this address
1092 		 * causes the address buffer to overflow return EINVAL.
1093 		 */
1094 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1095 			err = -EINVAL;
1096 			goto out_free;
1097 		}
1098 
1099 		port = ntohs(sa_addr->v4.sin_port);
1100 
1101 		/* Save current address so we can work with it */
1102 		memcpy(&to, sa_addr, af->sockaddr_len);
1103 
1104 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1105 		if (err)
1106 			goto out_free;
1107 
1108 		/* Make sure the destination port is correctly set
1109 		 * in all addresses.
1110 		 */
1111 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1112 			err = -EINVAL;
1113 			goto out_free;
1114 		}
1115 
1116 		/* Check if there already is a matching association on the
1117 		 * endpoint (other than the one created here).
1118 		 */
1119 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1120 		if (asoc2 && asoc2 != asoc) {
1121 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1122 				err = -EISCONN;
1123 			else
1124 				err = -EALREADY;
1125 			goto out_free;
1126 		}
1127 
1128 		/* If we could not find a matching association on the endpoint,
1129 		 * make sure that there is no peeled-off association matching
1130 		 * the peer address even on another socket.
1131 		 */
1132 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1133 			err = -EADDRNOTAVAIL;
1134 			goto out_free;
1135 		}
1136 
1137 		if (!asoc) {
1138 			/* If a bind() or sctp_bindx() is not called prior to
1139 			 * an sctp_connectx() call, the system picks an
1140 			 * ephemeral port and will choose an address set
1141 			 * equivalent to binding with a wildcard address.
1142 			 */
1143 			if (!ep->base.bind_addr.port) {
1144 				if (sctp_autobind(sk)) {
1145 					err = -EAGAIN;
1146 					goto out_free;
1147 				}
1148 			} else {
1149 				/*
1150 				 * If an unprivileged user inherits a 1-many
1151 				 * style socket with open associations on a
1152 				 * privileged port, it MAY be permitted to
1153 				 * accept new associations, but it SHOULD NOT
1154 				 * be permitted to open new associations.
1155 				 */
1156 				if (ep->base.bind_addr.port < PROT_SOCK &&
1157 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1158 					err = -EACCES;
1159 					goto out_free;
1160 				}
1161 			}
1162 
1163 			scope = sctp_scope(&to);
1164 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1165 			if (!asoc) {
1166 				err = -ENOMEM;
1167 				goto out_free;
1168 			}
1169 
1170 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1171 							      GFP_KERNEL);
1172 			if (err < 0) {
1173 				goto out_free;
1174 			}
1175 
1176 		}
1177 
1178 		/* Prime the peer's transport structures.  */
1179 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1180 						SCTP_UNKNOWN);
1181 		if (!transport) {
1182 			err = -ENOMEM;
1183 			goto out_free;
1184 		}
1185 
1186 		addrcnt++;
1187 		addr_buf += af->sockaddr_len;
1188 		walk_size += af->sockaddr_len;
1189 	}
1190 
1191 	/* In case the user of sctp_connectx() wants an association
1192 	 * id back, assign one now.
1193 	 */
1194 	if (assoc_id) {
1195 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1196 		if (err < 0)
1197 			goto out_free;
1198 	}
1199 
1200 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1201 	if (err < 0) {
1202 		goto out_free;
1203 	}
1204 
1205 	/* Initialize sk's dport and daddr for getpeername() */
1206 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1207 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1208 	af->to_sk_daddr(sa_addr, sk);
1209 	sk->sk_err = 0;
1210 
1211 	/* in-kernel sockets don't generally have a file allocated to them
1212 	 * if all they do is call sock_create_kern().
1213 	 */
1214 	if (sk->sk_socket->file)
1215 		f_flags = sk->sk_socket->file->f_flags;
1216 
1217 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1218 
1219 	err = sctp_wait_for_connect(asoc, &timeo);
1220 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1221 		*assoc_id = asoc->assoc_id;
1222 
1223 	/* Don't free association on exit. */
1224 	asoc = NULL;
1225 
1226 out_free:
1227 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1228 		 __func__, asoc, kaddrs, err);
1229 
1230 	if (asoc) {
1231 		/* sctp_primitive_ASSOCIATE may have added this association
1232 		 * To the hash table, try to unhash it, just in case, its a noop
1233 		 * if it wasn't hashed so we're safe
1234 		 */
1235 		sctp_unhash_established(asoc);
1236 		sctp_association_free(asoc);
1237 	}
1238 	return err;
1239 }
1240 
1241 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1242  *
1243  * API 8.9
1244  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1245  * 			sctp_assoc_t *asoc);
1246  *
1247  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1248  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1249  * or IPv6 addresses.
1250  *
1251  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1252  * Section 3.1.2 for this usage.
1253  *
1254  * addrs is a pointer to an array of one or more socket addresses. Each
1255  * address is contained in its appropriate structure (i.e. struct
1256  * sockaddr_in or struct sockaddr_in6) the family of the address type
1257  * must be used to distengish the address length (note that this
1258  * representation is termed a "packed array" of addresses). The caller
1259  * specifies the number of addresses in the array with addrcnt.
1260  *
1261  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1262  * the association id of the new association.  On failure, sctp_connectx()
1263  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1264  * is not touched by the kernel.
1265  *
1266  * For SCTP, the port given in each socket address must be the same, or
1267  * sctp_connectx() will fail, setting errno to EINVAL.
1268  *
1269  * An application can use sctp_connectx to initiate an association with
1270  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1271  * allows a caller to specify multiple addresses at which a peer can be
1272  * reached.  The way the SCTP stack uses the list of addresses to set up
1273  * the association is implementation dependent.  This function only
1274  * specifies that the stack will try to make use of all the addresses in
1275  * the list when needed.
1276  *
1277  * Note that the list of addresses passed in is only used for setting up
1278  * the association.  It does not necessarily equal the set of addresses
1279  * the peer uses for the resulting association.  If the caller wants to
1280  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1281  * retrieve them after the association has been set up.
1282  *
1283  * Basically do nothing but copying the addresses from user to kernel
1284  * land and invoking either sctp_connectx(). This is used for tunneling
1285  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1286  *
1287  * We don't use copy_from_user() for optimization: we first do the
1288  * sanity checks (buffer size -fast- and access check-healthy
1289  * pointer); if all of those succeed, then we can alloc the memory
1290  * (expensive operation) needed to copy the data to kernel. Then we do
1291  * the copying without checking the user space area
1292  * (__copy_from_user()).
1293  *
1294  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295  * it.
1296  *
1297  * sk        The sk of the socket
1298  * addrs     The pointer to the addresses in user land
1299  * addrssize Size of the addrs buffer
1300  *
1301  * Returns >=0 if ok, <0 errno code on error.
1302  */
1303 static int __sctp_setsockopt_connectx(struct sock *sk,
1304 				      struct sockaddr __user *addrs,
1305 				      int addrs_size,
1306 				      sctp_assoc_t *assoc_id)
1307 {
1308 	int err = 0;
1309 	struct sockaddr *kaddrs;
1310 
1311 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1312 		 __func__, sk, addrs, addrs_size);
1313 
1314 	if (unlikely(addrs_size <= 0))
1315 		return -EINVAL;
1316 
1317 	/* Check the user passed a healthy pointer.  */
1318 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1319 		return -EFAULT;
1320 
1321 	/* Alloc space for the address array in kernel memory.  */
1322 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1323 	if (unlikely(!kaddrs))
1324 		return -ENOMEM;
1325 
1326 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 		err = -EFAULT;
1328 	} else {
1329 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 	}
1331 
1332 	kfree(kaddrs);
1333 
1334 	return err;
1335 }
1336 
1337 /*
1338  * This is an older interface.  It's kept for backward compatibility
1339  * to the option that doesn't provide association id.
1340  */
1341 static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 					struct sockaddr __user *addrs,
1343 					int addrs_size)
1344 {
1345 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346 }
1347 
1348 /*
1349  * New interface for the API.  The since the API is done with a socket
1350  * option, to make it simple we feed back the association id is as a return
1351  * indication to the call.  Error is always negative and association id is
1352  * always positive.
1353  */
1354 static int sctp_setsockopt_connectx(struct sock *sk,
1355 				    struct sockaddr __user *addrs,
1356 				    int addrs_size)
1357 {
1358 	sctp_assoc_t assoc_id = 0;
1359 	int err = 0;
1360 
1361 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362 
1363 	if (err)
1364 		return err;
1365 	else
1366 		return assoc_id;
1367 }
1368 
1369 /*
1370  * New (hopefully final) interface for the API.
1371  * We use the sctp_getaddrs_old structure so that use-space library
1372  * can avoid any unnecessary allocations. The only different part
1373  * is that we store the actual length of the address buffer into the
1374  * addrs_num structure member. That way we can re-use the existing
1375  * code.
1376  */
1377 #ifdef CONFIG_COMPAT
1378 struct compat_sctp_getaddrs_old {
1379 	sctp_assoc_t	assoc_id;
1380 	s32		addr_num;
1381 	compat_uptr_t	addrs;		/* struct sockaddr * */
1382 };
1383 #endif
1384 
1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 				     char __user *optval,
1387 				     int __user *optlen)
1388 {
1389 	struct sctp_getaddrs_old param;
1390 	sctp_assoc_t assoc_id = 0;
1391 	int err = 0;
1392 
1393 #ifdef CONFIG_COMPAT
1394 	if (is_compat_task()) {
1395 		struct compat_sctp_getaddrs_old param32;
1396 
1397 		if (len < sizeof(param32))
1398 			return -EINVAL;
1399 		if (copy_from_user(&param32, optval, sizeof(param32)))
1400 			return -EFAULT;
1401 
1402 		param.assoc_id = param32.assoc_id;
1403 		param.addr_num = param32.addr_num;
1404 		param.addrs = compat_ptr(param32.addrs);
1405 	} else
1406 #endif
1407 	{
1408 		if (len < sizeof(param))
1409 			return -EINVAL;
1410 		if (copy_from_user(&param, optval, sizeof(param)))
1411 			return -EFAULT;
1412 	}
1413 
1414 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415 					 param.addrs, param.addr_num,
1416 					 &assoc_id);
1417 	if (err == 0 || err == -EINPROGRESS) {
1418 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419 			return -EFAULT;
1420 		if (put_user(sizeof(assoc_id), optlen))
1421 			return -EFAULT;
1422 	}
1423 
1424 	return err;
1425 }
1426 
1427 /* API 3.1.4 close() - UDP Style Syntax
1428  * Applications use close() to perform graceful shutdown (as described in
1429  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430  * by a UDP-style socket.
1431  *
1432  * The syntax is
1433  *
1434  *   ret = close(int sd);
1435  *
1436  *   sd      - the socket descriptor of the associations to be closed.
1437  *
1438  * To gracefully shutdown a specific association represented by the
1439  * UDP-style socket, an application should use the sendmsg() call,
1440  * passing no user data, but including the appropriate flag in the
1441  * ancillary data (see Section xxxx).
1442  *
1443  * If sd in the close() call is a branched-off socket representing only
1444  * one association, the shutdown is performed on that association only.
1445  *
1446  * 4.1.6 close() - TCP Style Syntax
1447  *
1448  * Applications use close() to gracefully close down an association.
1449  *
1450  * The syntax is:
1451  *
1452  *    int close(int sd);
1453  *
1454  *      sd      - the socket descriptor of the association to be closed.
1455  *
1456  * After an application calls close() on a socket descriptor, no further
1457  * socket operations will succeed on that descriptor.
1458  *
1459  * API 7.1.4 SO_LINGER
1460  *
1461  * An application using the TCP-style socket can use this option to
1462  * perform the SCTP ABORT primitive.  The linger option structure is:
1463  *
1464  *  struct  linger {
1465  *     int     l_onoff;                // option on/off
1466  *     int     l_linger;               // linger time
1467  * };
1468  *
1469  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1470  * to 0, calling close() is the same as the ABORT primitive.  If the
1471  * value is set to a negative value, the setsockopt() call will return
1472  * an error.  If the value is set to a positive value linger_time, the
1473  * close() can be blocked for at most linger_time ms.  If the graceful
1474  * shutdown phase does not finish during this period, close() will
1475  * return but the graceful shutdown phase continues in the system.
1476  */
1477 static void sctp_close(struct sock *sk, long timeout)
1478 {
1479 	struct net *net = sock_net(sk);
1480 	struct sctp_endpoint *ep;
1481 	struct sctp_association *asoc;
1482 	struct list_head *pos, *temp;
1483 	unsigned int data_was_unread;
1484 
1485 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486 
1487 	lock_sock(sk);
1488 	sk->sk_shutdown = SHUTDOWN_MASK;
1489 	sk->sk_state = SCTP_SS_CLOSING;
1490 
1491 	ep = sctp_sk(sk)->ep;
1492 
1493 	/* Clean up any skbs sitting on the receive queue.  */
1494 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496 
1497 	/* Walk all associations on an endpoint.  */
1498 	list_for_each_safe(pos, temp, &ep->asocs) {
1499 		asoc = list_entry(pos, struct sctp_association, asocs);
1500 
1501 		if (sctp_style(sk, TCP)) {
1502 			/* A closed association can still be in the list if
1503 			 * it belongs to a TCP-style listening socket that is
1504 			 * not yet accepted. If so, free it. If not, send an
1505 			 * ABORT or SHUTDOWN based on the linger options.
1506 			 */
1507 			if (sctp_state(asoc, CLOSED)) {
1508 				sctp_unhash_established(asoc);
1509 				sctp_association_free(asoc);
1510 				continue;
1511 			}
1512 		}
1513 
1514 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1515 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1516 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1517 			struct sctp_chunk *chunk;
1518 
1519 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1520 			if (chunk)
1521 				sctp_primitive_ABORT(net, asoc, chunk);
1522 		} else
1523 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1524 	}
1525 
1526 	/* On a TCP-style socket, block for at most linger_time if set. */
1527 	if (sctp_style(sk, TCP) && timeout)
1528 		sctp_wait_for_close(sk, timeout);
1529 
1530 	/* This will run the backlog queue.  */
1531 	release_sock(sk);
1532 
1533 	/* Supposedly, no process has access to the socket, but
1534 	 * the net layers still may.
1535 	 */
1536 	local_bh_disable();
1537 	bh_lock_sock(sk);
1538 
1539 	/* Hold the sock, since sk_common_release() will put sock_put()
1540 	 * and we have just a little more cleanup.
1541 	 */
1542 	sock_hold(sk);
1543 	sk_common_release(sk);
1544 
1545 	bh_unlock_sock(sk);
1546 	local_bh_enable();
1547 
1548 	sock_put(sk);
1549 
1550 	SCTP_DBG_OBJCNT_DEC(sock);
1551 }
1552 
1553 /* Handle EPIPE error. */
1554 static int sctp_error(struct sock *sk, int flags, int err)
1555 {
1556 	if (err == -EPIPE)
1557 		err = sock_error(sk) ? : -EPIPE;
1558 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 		send_sig(SIGPIPE, current, 0);
1560 	return err;
1561 }
1562 
1563 /* API 3.1.3 sendmsg() - UDP Style Syntax
1564  *
1565  * An application uses sendmsg() and recvmsg() calls to transmit data to
1566  * and receive data from its peer.
1567  *
1568  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1569  *                  int flags);
1570  *
1571  *  socket  - the socket descriptor of the endpoint.
1572  *  message - pointer to the msghdr structure which contains a single
1573  *            user message and possibly some ancillary data.
1574  *
1575  *            See Section 5 for complete description of the data
1576  *            structures.
1577  *
1578  *  flags   - flags sent or received with the user message, see Section
1579  *            5 for complete description of the flags.
1580  *
1581  * Note:  This function could use a rewrite especially when explicit
1582  * connect support comes in.
1583  */
1584 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1585 
1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587 
1588 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1589 			struct msghdr *msg, size_t msg_len)
1590 {
1591 	struct net *net = sock_net(sk);
1592 	struct sctp_sock *sp;
1593 	struct sctp_endpoint *ep;
1594 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1595 	struct sctp_transport *transport, *chunk_tp;
1596 	struct sctp_chunk *chunk;
1597 	union sctp_addr to;
1598 	struct sockaddr *msg_name = NULL;
1599 	struct sctp_sndrcvinfo default_sinfo;
1600 	struct sctp_sndrcvinfo *sinfo;
1601 	struct sctp_initmsg *sinit;
1602 	sctp_assoc_t associd = 0;
1603 	sctp_cmsgs_t cmsgs = { NULL };
1604 	int err;
1605 	sctp_scope_t scope;
1606 	long timeo;
1607 	__u16 sinfo_flags = 0;
1608 	struct sctp_datamsg *datamsg;
1609 	int msg_flags = msg->msg_flags;
1610 
1611 	err = 0;
1612 	sp = sctp_sk(sk);
1613 	ep = sp->ep;
1614 
1615 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 		 msg, msg_len, ep);
1617 
1618 	/* We cannot send a message over a TCP-style listening socket. */
1619 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 		err = -EPIPE;
1621 		goto out_nounlock;
1622 	}
1623 
1624 	/* Parse out the SCTP CMSGs.  */
1625 	err = sctp_msghdr_parse(msg, &cmsgs);
1626 	if (err) {
1627 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 		goto out_nounlock;
1629 	}
1630 
1631 	/* Fetch the destination address for this packet.  This
1632 	 * address only selects the association--it is not necessarily
1633 	 * the address we will send to.
1634 	 * For a peeled-off socket, msg_name is ignored.
1635 	 */
1636 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 		int msg_namelen = msg->msg_namelen;
1638 
1639 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 				       msg_namelen);
1641 		if (err)
1642 			return err;
1643 
1644 		if (msg_namelen > sizeof(to))
1645 			msg_namelen = sizeof(to);
1646 		memcpy(&to, msg->msg_name, msg_namelen);
1647 		msg_name = msg->msg_name;
1648 	}
1649 
1650 	sinfo = cmsgs.info;
1651 	sinit = cmsgs.init;
1652 
1653 	/* Did the user specify SNDRCVINFO?  */
1654 	if (sinfo) {
1655 		sinfo_flags = sinfo->sinfo_flags;
1656 		associd = sinfo->sinfo_assoc_id;
1657 	}
1658 
1659 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1660 		 msg_len, sinfo_flags);
1661 
1662 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1663 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1664 		err = -EINVAL;
1665 		goto out_nounlock;
1666 	}
1667 
1668 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1669 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1670 	 * If SCTP_ABORT is set, the message length could be non zero with
1671 	 * the msg_iov set to the user abort reason.
1672 	 */
1673 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1674 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1675 		err = -EINVAL;
1676 		goto out_nounlock;
1677 	}
1678 
1679 	/* If SCTP_ADDR_OVER is set, there must be an address
1680 	 * specified in msg_name.
1681 	 */
1682 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1683 		err = -EINVAL;
1684 		goto out_nounlock;
1685 	}
1686 
1687 	transport = NULL;
1688 
1689 	pr_debug("%s: about to look up association\n", __func__);
1690 
1691 	lock_sock(sk);
1692 
1693 	/* If a msg_name has been specified, assume this is to be used.  */
1694 	if (msg_name) {
1695 		/* Look for a matching association on the endpoint. */
1696 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1697 		if (!asoc) {
1698 			/* If we could not find a matching association on the
1699 			 * endpoint, make sure that it is not a TCP-style
1700 			 * socket that already has an association or there is
1701 			 * no peeled-off association on another socket.
1702 			 */
1703 			if ((sctp_style(sk, TCP) &&
1704 			     sctp_sstate(sk, ESTABLISHED)) ||
1705 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1706 				err = -EADDRNOTAVAIL;
1707 				goto out_unlock;
1708 			}
1709 		}
1710 	} else {
1711 		asoc = sctp_id2assoc(sk, associd);
1712 		if (!asoc) {
1713 			err = -EPIPE;
1714 			goto out_unlock;
1715 		}
1716 	}
1717 
1718 	if (asoc) {
1719 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1720 
1721 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1722 		 * socket that has an association in CLOSED state. This can
1723 		 * happen when an accepted socket has an association that is
1724 		 * already CLOSED.
1725 		 */
1726 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1727 			err = -EPIPE;
1728 			goto out_unlock;
1729 		}
1730 
1731 		if (sinfo_flags & SCTP_EOF) {
1732 			pr_debug("%s: shutting down association:%p\n",
1733 				 __func__, asoc);
1734 
1735 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1736 			err = 0;
1737 			goto out_unlock;
1738 		}
1739 		if (sinfo_flags & SCTP_ABORT) {
1740 
1741 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1742 			if (!chunk) {
1743 				err = -ENOMEM;
1744 				goto out_unlock;
1745 			}
1746 
1747 			pr_debug("%s: aborting association:%p\n",
1748 				 __func__, asoc);
1749 
1750 			sctp_primitive_ABORT(net, asoc, chunk);
1751 			err = 0;
1752 			goto out_unlock;
1753 		}
1754 	}
1755 
1756 	/* Do we need to create the association?  */
1757 	if (!asoc) {
1758 		pr_debug("%s: there is no association yet\n", __func__);
1759 
1760 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1761 			err = -EINVAL;
1762 			goto out_unlock;
1763 		}
1764 
1765 		/* Check for invalid stream against the stream counts,
1766 		 * either the default or the user specified stream counts.
1767 		 */
1768 		if (sinfo) {
1769 			if (!sinit || !sinit->sinit_num_ostreams) {
1770 				/* Check against the defaults. */
1771 				if (sinfo->sinfo_stream >=
1772 				    sp->initmsg.sinit_num_ostreams) {
1773 					err = -EINVAL;
1774 					goto out_unlock;
1775 				}
1776 			} else {
1777 				/* Check against the requested.  */
1778 				if (sinfo->sinfo_stream >=
1779 				    sinit->sinit_num_ostreams) {
1780 					err = -EINVAL;
1781 					goto out_unlock;
1782 				}
1783 			}
1784 		}
1785 
1786 		/*
1787 		 * API 3.1.2 bind() - UDP Style Syntax
1788 		 * If a bind() or sctp_bindx() is not called prior to a
1789 		 * sendmsg() call that initiates a new association, the
1790 		 * system picks an ephemeral port and will choose an address
1791 		 * set equivalent to binding with a wildcard address.
1792 		 */
1793 		if (!ep->base.bind_addr.port) {
1794 			if (sctp_autobind(sk)) {
1795 				err = -EAGAIN;
1796 				goto out_unlock;
1797 			}
1798 		} else {
1799 			/*
1800 			 * If an unprivileged user inherits a one-to-many
1801 			 * style socket with open associations on a privileged
1802 			 * port, it MAY be permitted to accept new associations,
1803 			 * but it SHOULD NOT be permitted to open new
1804 			 * associations.
1805 			 */
1806 			if (ep->base.bind_addr.port < PROT_SOCK &&
1807 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1808 				err = -EACCES;
1809 				goto out_unlock;
1810 			}
1811 		}
1812 
1813 		scope = sctp_scope(&to);
1814 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1815 		if (!new_asoc) {
1816 			err = -ENOMEM;
1817 			goto out_unlock;
1818 		}
1819 		asoc = new_asoc;
1820 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1821 		if (err < 0) {
1822 			err = -ENOMEM;
1823 			goto out_free;
1824 		}
1825 
1826 		/* If the SCTP_INIT ancillary data is specified, set all
1827 		 * the association init values accordingly.
1828 		 */
1829 		if (sinit) {
1830 			if (sinit->sinit_num_ostreams) {
1831 				asoc->c.sinit_num_ostreams =
1832 					sinit->sinit_num_ostreams;
1833 			}
1834 			if (sinit->sinit_max_instreams) {
1835 				asoc->c.sinit_max_instreams =
1836 					sinit->sinit_max_instreams;
1837 			}
1838 			if (sinit->sinit_max_attempts) {
1839 				asoc->max_init_attempts
1840 					= sinit->sinit_max_attempts;
1841 			}
1842 			if (sinit->sinit_max_init_timeo) {
1843 				asoc->max_init_timeo =
1844 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1845 			}
1846 		}
1847 
1848 		/* Prime the peer's transport structures.  */
1849 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1850 		if (!transport) {
1851 			err = -ENOMEM;
1852 			goto out_free;
1853 		}
1854 	}
1855 
1856 	/* ASSERT: we have a valid association at this point.  */
1857 	pr_debug("%s: we have a valid association\n", __func__);
1858 
1859 	if (!sinfo) {
1860 		/* If the user didn't specify SNDRCVINFO, make up one with
1861 		 * some defaults.
1862 		 */
1863 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1864 		default_sinfo.sinfo_stream = asoc->default_stream;
1865 		default_sinfo.sinfo_flags = asoc->default_flags;
1866 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1867 		default_sinfo.sinfo_context = asoc->default_context;
1868 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1869 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1870 		sinfo = &default_sinfo;
1871 	}
1872 
1873 	/* API 7.1.7, the sndbuf size per association bounds the
1874 	 * maximum size of data that can be sent in a single send call.
1875 	 */
1876 	if (msg_len > sk->sk_sndbuf) {
1877 		err = -EMSGSIZE;
1878 		goto out_free;
1879 	}
1880 
1881 	if (asoc->pmtu_pending)
1882 		sctp_assoc_pending_pmtu(sk, asoc);
1883 
1884 	/* If fragmentation is disabled and the message length exceeds the
1885 	 * association fragmentation point, return EMSGSIZE.  The I-D
1886 	 * does not specify what this error is, but this looks like
1887 	 * a great fit.
1888 	 */
1889 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1890 		err = -EMSGSIZE;
1891 		goto out_free;
1892 	}
1893 
1894 	/* Check for invalid stream. */
1895 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1896 		err = -EINVAL;
1897 		goto out_free;
1898 	}
1899 
1900 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1901 	if (!sctp_wspace(asoc)) {
1902 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1903 		if (err)
1904 			goto out_free;
1905 	}
1906 
1907 	/* If an address is passed with the sendto/sendmsg call, it is used
1908 	 * to override the primary destination address in the TCP model, or
1909 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1910 	 */
1911 	if ((sctp_style(sk, TCP) && msg_name) ||
1912 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1913 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1914 		if (!chunk_tp) {
1915 			err = -EINVAL;
1916 			goto out_free;
1917 		}
1918 	} else
1919 		chunk_tp = NULL;
1920 
1921 	/* Auto-connect, if we aren't connected already. */
1922 	if (sctp_state(asoc, CLOSED)) {
1923 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 		if (err < 0)
1925 			goto out_free;
1926 
1927 		pr_debug("%s: we associated primitively\n", __func__);
1928 	}
1929 
1930 	/* Break the message into multiple chunks of maximum size. */
1931 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1932 	if (IS_ERR(datamsg)) {
1933 		err = PTR_ERR(datamsg);
1934 		goto out_free;
1935 	}
1936 
1937 	/* Now send the (possibly) fragmented message. */
1938 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1939 		sctp_chunk_hold(chunk);
1940 
1941 		/* Do accounting for the write space.  */
1942 		sctp_set_owner_w(chunk);
1943 
1944 		chunk->transport = chunk_tp;
1945 	}
1946 
1947 	/* Send it to the lower layers.  Note:  all chunks
1948 	 * must either fail or succeed.   The lower layer
1949 	 * works that way today.  Keep it that way or this
1950 	 * breaks.
1951 	 */
1952 	err = sctp_primitive_SEND(net, asoc, datamsg);
1953 	/* Did the lower layer accept the chunk? */
1954 	if (err) {
1955 		sctp_datamsg_free(datamsg);
1956 		goto out_free;
1957 	}
1958 
1959 	pr_debug("%s: we sent primitively\n", __func__);
1960 
1961 	sctp_datamsg_put(datamsg);
1962 	err = msg_len;
1963 
1964 	/* If we are already past ASSOCIATE, the lower
1965 	 * layers are responsible for association cleanup.
1966 	 */
1967 	goto out_unlock;
1968 
1969 out_free:
1970 	if (new_asoc) {
1971 		sctp_unhash_established(asoc);
1972 		sctp_association_free(asoc);
1973 	}
1974 out_unlock:
1975 	release_sock(sk);
1976 
1977 out_nounlock:
1978 	return sctp_error(sk, msg_flags, err);
1979 
1980 #if 0
1981 do_sock_err:
1982 	if (msg_len)
1983 		err = msg_len;
1984 	else
1985 		err = sock_error(sk);
1986 	goto out;
1987 
1988 do_interrupted:
1989 	if (msg_len)
1990 		err = msg_len;
1991 	goto out;
1992 #endif /* 0 */
1993 }
1994 
1995 /* This is an extended version of skb_pull() that removes the data from the
1996  * start of a skb even when data is spread across the list of skb's in the
1997  * frag_list. len specifies the total amount of data that needs to be removed.
1998  * when 'len' bytes could be removed from the skb, it returns 0.
1999  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2000  * could not be removed.
2001  */
2002 static int sctp_skb_pull(struct sk_buff *skb, int len)
2003 {
2004 	struct sk_buff *list;
2005 	int skb_len = skb_headlen(skb);
2006 	int rlen;
2007 
2008 	if (len <= skb_len) {
2009 		__skb_pull(skb, len);
2010 		return 0;
2011 	}
2012 	len -= skb_len;
2013 	__skb_pull(skb, skb_len);
2014 
2015 	skb_walk_frags(skb, list) {
2016 		rlen = sctp_skb_pull(list, len);
2017 		skb->len -= (len-rlen);
2018 		skb->data_len -= (len-rlen);
2019 
2020 		if (!rlen)
2021 			return 0;
2022 
2023 		len = rlen;
2024 	}
2025 
2026 	return len;
2027 }
2028 
2029 /* API 3.1.3  recvmsg() - UDP Style Syntax
2030  *
2031  *  ssize_t recvmsg(int socket, struct msghdr *message,
2032  *                    int flags);
2033  *
2034  *  socket  - the socket descriptor of the endpoint.
2035  *  message - pointer to the msghdr structure which contains a single
2036  *            user message and possibly some ancillary data.
2037  *
2038  *            See Section 5 for complete description of the data
2039  *            structures.
2040  *
2041  *  flags   - flags sent or received with the user message, see Section
2042  *            5 for complete description of the flags.
2043  */
2044 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2045 
2046 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2047 			struct msghdr *msg, size_t len, int noblock,
2048 			int flags, int *addr_len)
2049 {
2050 	struct sctp_ulpevent *event = NULL;
2051 	struct sctp_sock *sp = sctp_sk(sk);
2052 	struct sk_buff *skb;
2053 	int copied;
2054 	int err = 0;
2055 	int skb_len;
2056 
2057 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2058 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2059 		 addr_len);
2060 
2061 	lock_sock(sk);
2062 
2063 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2064 		err = -ENOTCONN;
2065 		goto out;
2066 	}
2067 
2068 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2069 	if (!skb)
2070 		goto out;
2071 
2072 	/* Get the total length of the skb including any skb's in the
2073 	 * frag_list.
2074 	 */
2075 	skb_len = skb->len;
2076 
2077 	copied = skb_len;
2078 	if (copied > len)
2079 		copied = len;
2080 
2081 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2082 
2083 	event = sctp_skb2event(skb);
2084 
2085 	if (err)
2086 		goto out_free;
2087 
2088 	sock_recv_ts_and_drops(msg, sk, skb);
2089 	if (sctp_ulpevent_is_notification(event)) {
2090 		msg->msg_flags |= MSG_NOTIFICATION;
2091 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2092 	} else {
2093 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2094 	}
2095 
2096 	/* Check if we allow SCTP_SNDRCVINFO. */
2097 	if (sp->subscribe.sctp_data_io_event)
2098 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2099 #if 0
2100 	/* FIXME: we should be calling IP/IPv6 layers.  */
2101 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2102 		ip_cmsg_recv(msg, skb);
2103 #endif
2104 
2105 	err = copied;
2106 
2107 	/* If skb's length exceeds the user's buffer, update the skb and
2108 	 * push it back to the receive_queue so that the next call to
2109 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2110 	 */
2111 	if (skb_len > copied) {
2112 		msg->msg_flags &= ~MSG_EOR;
2113 		if (flags & MSG_PEEK)
2114 			goto out_free;
2115 		sctp_skb_pull(skb, copied);
2116 		skb_queue_head(&sk->sk_receive_queue, skb);
2117 
2118 		/* When only partial message is copied to the user, increase
2119 		 * rwnd by that amount. If all the data in the skb is read,
2120 		 * rwnd is updated when the event is freed.
2121 		 */
2122 		if (!sctp_ulpevent_is_notification(event))
2123 			sctp_assoc_rwnd_increase(event->asoc, copied);
2124 		goto out;
2125 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2126 		   (event->msg_flags & MSG_EOR))
2127 		msg->msg_flags |= MSG_EOR;
2128 	else
2129 		msg->msg_flags &= ~MSG_EOR;
2130 
2131 out_free:
2132 	if (flags & MSG_PEEK) {
2133 		/* Release the skb reference acquired after peeking the skb in
2134 		 * sctp_skb_recv_datagram().
2135 		 */
2136 		kfree_skb(skb);
2137 	} else {
2138 		/* Free the event which includes releasing the reference to
2139 		 * the owner of the skb, freeing the skb and updating the
2140 		 * rwnd.
2141 		 */
2142 		sctp_ulpevent_free(event);
2143 	}
2144 out:
2145 	release_sock(sk);
2146 	return err;
2147 }
2148 
2149 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2150  *
2151  * This option is a on/off flag.  If enabled no SCTP message
2152  * fragmentation will be performed.  Instead if a message being sent
2153  * exceeds the current PMTU size, the message will NOT be sent and
2154  * instead a error will be indicated to the user.
2155  */
2156 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2157 					     char __user *optval,
2158 					     unsigned int optlen)
2159 {
2160 	int val;
2161 
2162 	if (optlen < sizeof(int))
2163 		return -EINVAL;
2164 
2165 	if (get_user(val, (int __user *)optval))
2166 		return -EFAULT;
2167 
2168 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2169 
2170 	return 0;
2171 }
2172 
2173 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2174 				  unsigned int optlen)
2175 {
2176 	struct sctp_association *asoc;
2177 	struct sctp_ulpevent *event;
2178 
2179 	if (optlen > sizeof(struct sctp_event_subscribe))
2180 		return -EINVAL;
2181 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2182 		return -EFAULT;
2183 
2184 	/*
2185 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2186 	 * if there is no data to be sent or retransmit, the stack will
2187 	 * immediately send up this notification.
2188 	 */
2189 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2190 				       &sctp_sk(sk)->subscribe)) {
2191 		asoc = sctp_id2assoc(sk, 0);
2192 
2193 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2194 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2195 					GFP_ATOMIC);
2196 			if (!event)
2197 				return -ENOMEM;
2198 
2199 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2200 		}
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2207  *
2208  * This socket option is applicable to the UDP-style socket only.  When
2209  * set it will cause associations that are idle for more than the
2210  * specified number of seconds to automatically close.  An association
2211  * being idle is defined an association that has NOT sent or received
2212  * user data.  The special value of '0' indicates that no automatic
2213  * close of any associations should be performed.  The option expects an
2214  * integer defining the number of seconds of idle time before an
2215  * association is closed.
2216  */
2217 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2218 				     unsigned int optlen)
2219 {
2220 	struct sctp_sock *sp = sctp_sk(sk);
2221 	struct net *net = sock_net(sk);
2222 
2223 	/* Applicable to UDP-style socket only */
2224 	if (sctp_style(sk, TCP))
2225 		return -EOPNOTSUPP;
2226 	if (optlen != sizeof(int))
2227 		return -EINVAL;
2228 	if (copy_from_user(&sp->autoclose, optval, optlen))
2229 		return -EFAULT;
2230 
2231 	if (sp->autoclose > net->sctp.max_autoclose)
2232 		sp->autoclose = net->sctp.max_autoclose;
2233 
2234 	return 0;
2235 }
2236 
2237 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2238  *
2239  * Applications can enable or disable heartbeats for any peer address of
2240  * an association, modify an address's heartbeat interval, force a
2241  * heartbeat to be sent immediately, and adjust the address's maximum
2242  * number of retransmissions sent before an address is considered
2243  * unreachable.  The following structure is used to access and modify an
2244  * address's parameters:
2245  *
2246  *  struct sctp_paddrparams {
2247  *     sctp_assoc_t            spp_assoc_id;
2248  *     struct sockaddr_storage spp_address;
2249  *     uint32_t                spp_hbinterval;
2250  *     uint16_t                spp_pathmaxrxt;
2251  *     uint32_t                spp_pathmtu;
2252  *     uint32_t                spp_sackdelay;
2253  *     uint32_t                spp_flags;
2254  * };
2255  *
2256  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2257  *                     application, and identifies the association for
2258  *                     this query.
2259  *   spp_address     - This specifies which address is of interest.
2260  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2261  *                     in milliseconds.  If a  value of zero
2262  *                     is present in this field then no changes are to
2263  *                     be made to this parameter.
2264  *   spp_pathmaxrxt  - This contains the maximum number of
2265  *                     retransmissions before this address shall be
2266  *                     considered unreachable. If a  value of zero
2267  *                     is present in this field then no changes are to
2268  *                     be made to this parameter.
2269  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2270  *                     specified here will be the "fixed" path mtu.
2271  *                     Note that if the spp_address field is empty
2272  *                     then all associations on this address will
2273  *                     have this fixed path mtu set upon them.
2274  *
2275  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2276  *                     the number of milliseconds that sacks will be delayed
2277  *                     for. This value will apply to all addresses of an
2278  *                     association if the spp_address field is empty. Note
2279  *                     also, that if delayed sack is enabled and this
2280  *                     value is set to 0, no change is made to the last
2281  *                     recorded delayed sack timer value.
2282  *
2283  *   spp_flags       - These flags are used to control various features
2284  *                     on an association. The flag field may contain
2285  *                     zero or more of the following options.
2286  *
2287  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2288  *                     specified address. Note that if the address
2289  *                     field is empty all addresses for the association
2290  *                     have heartbeats enabled upon them.
2291  *
2292  *                     SPP_HB_DISABLE - Disable heartbeats on the
2293  *                     speicifed address. Note that if the address
2294  *                     field is empty all addresses for the association
2295  *                     will have their heartbeats disabled. Note also
2296  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2297  *                     mutually exclusive, only one of these two should
2298  *                     be specified. Enabling both fields will have
2299  *                     undetermined results.
2300  *
2301  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2302  *                     to be made immediately.
2303  *
2304  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2305  *                     heartbeat delayis to be set to the value of 0
2306  *                     milliseconds.
2307  *
2308  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2309  *                     discovery upon the specified address. Note that
2310  *                     if the address feild is empty then all addresses
2311  *                     on the association are effected.
2312  *
2313  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2314  *                     discovery upon the specified address. Note that
2315  *                     if the address feild is empty then all addresses
2316  *                     on the association are effected. Not also that
2317  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2318  *                     exclusive. Enabling both will have undetermined
2319  *                     results.
2320  *
2321  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2322  *                     on delayed sack. The time specified in spp_sackdelay
2323  *                     is used to specify the sack delay for this address. Note
2324  *                     that if spp_address is empty then all addresses will
2325  *                     enable delayed sack and take on the sack delay
2326  *                     value specified in spp_sackdelay.
2327  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2328  *                     off delayed sack. If the spp_address field is blank then
2329  *                     delayed sack is disabled for the entire association. Note
2330  *                     also that this field is mutually exclusive to
2331  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2332  *                     results.
2333  */
2334 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2335 				       struct sctp_transport   *trans,
2336 				       struct sctp_association *asoc,
2337 				       struct sctp_sock        *sp,
2338 				       int                      hb_change,
2339 				       int                      pmtud_change,
2340 				       int                      sackdelay_change)
2341 {
2342 	int error;
2343 
2344 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2345 		struct net *net = sock_net(trans->asoc->base.sk);
2346 
2347 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2348 		if (error)
2349 			return error;
2350 	}
2351 
2352 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2353 	 * this field is ignored.  Note also that a value of zero indicates
2354 	 * the current setting should be left unchanged.
2355 	 */
2356 	if (params->spp_flags & SPP_HB_ENABLE) {
2357 
2358 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2359 		 * set.  This lets us use 0 value when this flag
2360 		 * is set.
2361 		 */
2362 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2363 			params->spp_hbinterval = 0;
2364 
2365 		if (params->spp_hbinterval ||
2366 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2367 			if (trans) {
2368 				trans->hbinterval =
2369 				    msecs_to_jiffies(params->spp_hbinterval);
2370 			} else if (asoc) {
2371 				asoc->hbinterval =
2372 				    msecs_to_jiffies(params->spp_hbinterval);
2373 			} else {
2374 				sp->hbinterval = params->spp_hbinterval;
2375 			}
2376 		}
2377 	}
2378 
2379 	if (hb_change) {
2380 		if (trans) {
2381 			trans->param_flags =
2382 				(trans->param_flags & ~SPP_HB) | hb_change;
2383 		} else if (asoc) {
2384 			asoc->param_flags =
2385 				(asoc->param_flags & ~SPP_HB) | hb_change;
2386 		} else {
2387 			sp->param_flags =
2388 				(sp->param_flags & ~SPP_HB) | hb_change;
2389 		}
2390 	}
2391 
2392 	/* When Path MTU discovery is disabled the value specified here will
2393 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2394 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2395 	 * effect).
2396 	 */
2397 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2398 		if (trans) {
2399 			trans->pathmtu = params->spp_pathmtu;
2400 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2401 		} else if (asoc) {
2402 			asoc->pathmtu = params->spp_pathmtu;
2403 			sctp_frag_point(asoc, params->spp_pathmtu);
2404 		} else {
2405 			sp->pathmtu = params->spp_pathmtu;
2406 		}
2407 	}
2408 
2409 	if (pmtud_change) {
2410 		if (trans) {
2411 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2412 				(params->spp_flags & SPP_PMTUD_ENABLE);
2413 			trans->param_flags =
2414 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2415 			if (update) {
2416 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2417 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2418 			}
2419 		} else if (asoc) {
2420 			asoc->param_flags =
2421 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2422 		} else {
2423 			sp->param_flags =
2424 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2425 		}
2426 	}
2427 
2428 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2429 	 * value of this field is ignored.  Note also that a value of zero
2430 	 * indicates the current setting should be left unchanged.
2431 	 */
2432 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2433 		if (trans) {
2434 			trans->sackdelay =
2435 				msecs_to_jiffies(params->spp_sackdelay);
2436 		} else if (asoc) {
2437 			asoc->sackdelay =
2438 				msecs_to_jiffies(params->spp_sackdelay);
2439 		} else {
2440 			sp->sackdelay = params->spp_sackdelay;
2441 		}
2442 	}
2443 
2444 	if (sackdelay_change) {
2445 		if (trans) {
2446 			trans->param_flags =
2447 				(trans->param_flags & ~SPP_SACKDELAY) |
2448 				sackdelay_change;
2449 		} else if (asoc) {
2450 			asoc->param_flags =
2451 				(asoc->param_flags & ~SPP_SACKDELAY) |
2452 				sackdelay_change;
2453 		} else {
2454 			sp->param_flags =
2455 				(sp->param_flags & ~SPP_SACKDELAY) |
2456 				sackdelay_change;
2457 		}
2458 	}
2459 
2460 	/* Note that a value of zero indicates the current setting should be
2461 	   left unchanged.
2462 	 */
2463 	if (params->spp_pathmaxrxt) {
2464 		if (trans) {
2465 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2466 		} else if (asoc) {
2467 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2468 		} else {
2469 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2470 		}
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2477 					    char __user *optval,
2478 					    unsigned int optlen)
2479 {
2480 	struct sctp_paddrparams  params;
2481 	struct sctp_transport   *trans = NULL;
2482 	struct sctp_association *asoc = NULL;
2483 	struct sctp_sock        *sp = sctp_sk(sk);
2484 	int error;
2485 	int hb_change, pmtud_change, sackdelay_change;
2486 
2487 	if (optlen != sizeof(struct sctp_paddrparams))
2488 		return -EINVAL;
2489 
2490 	if (copy_from_user(&params, optval, optlen))
2491 		return -EFAULT;
2492 
2493 	/* Validate flags and value parameters. */
2494 	hb_change        = params.spp_flags & SPP_HB;
2495 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2496 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2497 
2498 	if (hb_change        == SPP_HB ||
2499 	    pmtud_change     == SPP_PMTUD ||
2500 	    sackdelay_change == SPP_SACKDELAY ||
2501 	    params.spp_sackdelay > 500 ||
2502 	    (params.spp_pathmtu &&
2503 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2504 		return -EINVAL;
2505 
2506 	/* If an address other than INADDR_ANY is specified, and
2507 	 * no transport is found, then the request is invalid.
2508 	 */
2509 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2510 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2511 					       params.spp_assoc_id);
2512 		if (!trans)
2513 			return -EINVAL;
2514 	}
2515 
2516 	/* Get association, if assoc_id != 0 and the socket is a one
2517 	 * to many style socket, and an association was not found, then
2518 	 * the id was invalid.
2519 	 */
2520 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2521 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2522 		return -EINVAL;
2523 
2524 	/* Heartbeat demand can only be sent on a transport or
2525 	 * association, but not a socket.
2526 	 */
2527 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2528 		return -EINVAL;
2529 
2530 	/* Process parameters. */
2531 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2532 					    hb_change, pmtud_change,
2533 					    sackdelay_change);
2534 
2535 	if (error)
2536 		return error;
2537 
2538 	/* If changes are for association, also apply parameters to each
2539 	 * transport.
2540 	 */
2541 	if (!trans && asoc) {
2542 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2543 				transports) {
2544 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2545 						    hb_change, pmtud_change,
2546 						    sackdelay_change);
2547 		}
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2554 {
2555 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2556 }
2557 
2558 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2559 {
2560 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2561 }
2562 
2563 /*
2564  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2565  *
2566  * This option will effect the way delayed acks are performed.  This
2567  * option allows you to get or set the delayed ack time, in
2568  * milliseconds.  It also allows changing the delayed ack frequency.
2569  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2570  * the assoc_id is 0, then this sets or gets the endpoints default
2571  * values.  If the assoc_id field is non-zero, then the set or get
2572  * effects the specified association for the one to many model (the
2573  * assoc_id field is ignored by the one to one model).  Note that if
2574  * sack_delay or sack_freq are 0 when setting this option, then the
2575  * current values will remain unchanged.
2576  *
2577  * struct sctp_sack_info {
2578  *     sctp_assoc_t            sack_assoc_id;
2579  *     uint32_t                sack_delay;
2580  *     uint32_t                sack_freq;
2581  * };
2582  *
2583  * sack_assoc_id -  This parameter, indicates which association the user
2584  *    is performing an action upon.  Note that if this field's value is
2585  *    zero then the endpoints default value is changed (effecting future
2586  *    associations only).
2587  *
2588  * sack_delay -  This parameter contains the number of milliseconds that
2589  *    the user is requesting the delayed ACK timer be set to.  Note that
2590  *    this value is defined in the standard to be between 200 and 500
2591  *    milliseconds.
2592  *
2593  * sack_freq -  This parameter contains the number of packets that must
2594  *    be received before a sack is sent without waiting for the delay
2595  *    timer to expire.  The default value for this is 2, setting this
2596  *    value to 1 will disable the delayed sack algorithm.
2597  */
2598 
2599 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2600 				       char __user *optval, unsigned int optlen)
2601 {
2602 	struct sctp_sack_info    params;
2603 	struct sctp_transport   *trans = NULL;
2604 	struct sctp_association *asoc = NULL;
2605 	struct sctp_sock        *sp = sctp_sk(sk);
2606 
2607 	if (optlen == sizeof(struct sctp_sack_info)) {
2608 		if (copy_from_user(&params, optval, optlen))
2609 			return -EFAULT;
2610 
2611 		if (params.sack_delay == 0 && params.sack_freq == 0)
2612 			return 0;
2613 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2614 		pr_warn_ratelimited(DEPRECATED
2615 				    "%s (pid %d) "
2616 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2617 				    "Use struct sctp_sack_info instead\n",
2618 				    current->comm, task_pid_nr(current));
2619 		if (copy_from_user(&params, optval, optlen))
2620 			return -EFAULT;
2621 
2622 		if (params.sack_delay == 0)
2623 			params.sack_freq = 1;
2624 		else
2625 			params.sack_freq = 0;
2626 	} else
2627 		return -EINVAL;
2628 
2629 	/* Validate value parameter. */
2630 	if (params.sack_delay > 500)
2631 		return -EINVAL;
2632 
2633 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2634 	 * to many style socket, and an association was not found, then
2635 	 * the id was invalid.
2636 	 */
2637 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2638 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2639 		return -EINVAL;
2640 
2641 	if (params.sack_delay) {
2642 		if (asoc) {
2643 			asoc->sackdelay =
2644 				msecs_to_jiffies(params.sack_delay);
2645 			asoc->param_flags =
2646 				sctp_spp_sackdelay_enable(asoc->param_flags);
2647 		} else {
2648 			sp->sackdelay = params.sack_delay;
2649 			sp->param_flags =
2650 				sctp_spp_sackdelay_enable(sp->param_flags);
2651 		}
2652 	}
2653 
2654 	if (params.sack_freq == 1) {
2655 		if (asoc) {
2656 			asoc->param_flags =
2657 				sctp_spp_sackdelay_disable(asoc->param_flags);
2658 		} else {
2659 			sp->param_flags =
2660 				sctp_spp_sackdelay_disable(sp->param_flags);
2661 		}
2662 	} else if (params.sack_freq > 1) {
2663 		if (asoc) {
2664 			asoc->sackfreq = params.sack_freq;
2665 			asoc->param_flags =
2666 				sctp_spp_sackdelay_enable(asoc->param_flags);
2667 		} else {
2668 			sp->sackfreq = params.sack_freq;
2669 			sp->param_flags =
2670 				sctp_spp_sackdelay_enable(sp->param_flags);
2671 		}
2672 	}
2673 
2674 	/* If change is for association, also apply to each transport. */
2675 	if (asoc) {
2676 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2677 				transports) {
2678 			if (params.sack_delay) {
2679 				trans->sackdelay =
2680 					msecs_to_jiffies(params.sack_delay);
2681 				trans->param_flags =
2682 					sctp_spp_sackdelay_enable(trans->param_flags);
2683 			}
2684 			if (params.sack_freq == 1) {
2685 				trans->param_flags =
2686 					sctp_spp_sackdelay_disable(trans->param_flags);
2687 			} else if (params.sack_freq > 1) {
2688 				trans->sackfreq = params.sack_freq;
2689 				trans->param_flags =
2690 					sctp_spp_sackdelay_enable(trans->param_flags);
2691 			}
2692 		}
2693 	}
2694 
2695 	return 0;
2696 }
2697 
2698 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2699  *
2700  * Applications can specify protocol parameters for the default association
2701  * initialization.  The option name argument to setsockopt() and getsockopt()
2702  * is SCTP_INITMSG.
2703  *
2704  * Setting initialization parameters is effective only on an unconnected
2705  * socket (for UDP-style sockets only future associations are effected
2706  * by the change).  With TCP-style sockets, this option is inherited by
2707  * sockets derived from a listener socket.
2708  */
2709 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2710 {
2711 	struct sctp_initmsg sinit;
2712 	struct sctp_sock *sp = sctp_sk(sk);
2713 
2714 	if (optlen != sizeof(struct sctp_initmsg))
2715 		return -EINVAL;
2716 	if (copy_from_user(&sinit, optval, optlen))
2717 		return -EFAULT;
2718 
2719 	if (sinit.sinit_num_ostreams)
2720 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2721 	if (sinit.sinit_max_instreams)
2722 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2723 	if (sinit.sinit_max_attempts)
2724 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2725 	if (sinit.sinit_max_init_timeo)
2726 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2727 
2728 	return 0;
2729 }
2730 
2731 /*
2732  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2733  *
2734  *   Applications that wish to use the sendto() system call may wish to
2735  *   specify a default set of parameters that would normally be supplied
2736  *   through the inclusion of ancillary data.  This socket option allows
2737  *   such an application to set the default sctp_sndrcvinfo structure.
2738  *   The application that wishes to use this socket option simply passes
2739  *   in to this call the sctp_sndrcvinfo structure defined in Section
2740  *   5.2.2) The input parameters accepted by this call include
2741  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2742  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2743  *   to this call if the caller is using the UDP model.
2744  */
2745 static int sctp_setsockopt_default_send_param(struct sock *sk,
2746 					      char __user *optval,
2747 					      unsigned int optlen)
2748 {
2749 	struct sctp_sndrcvinfo info;
2750 	struct sctp_association *asoc;
2751 	struct sctp_sock *sp = sctp_sk(sk);
2752 
2753 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2754 		return -EINVAL;
2755 	if (copy_from_user(&info, optval, optlen))
2756 		return -EFAULT;
2757 
2758 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2759 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2760 		return -EINVAL;
2761 
2762 	if (asoc) {
2763 		asoc->default_stream = info.sinfo_stream;
2764 		asoc->default_flags = info.sinfo_flags;
2765 		asoc->default_ppid = info.sinfo_ppid;
2766 		asoc->default_context = info.sinfo_context;
2767 		asoc->default_timetolive = info.sinfo_timetolive;
2768 	} else {
2769 		sp->default_stream = info.sinfo_stream;
2770 		sp->default_flags = info.sinfo_flags;
2771 		sp->default_ppid = info.sinfo_ppid;
2772 		sp->default_context = info.sinfo_context;
2773 		sp->default_timetolive = info.sinfo_timetolive;
2774 	}
2775 
2776 	return 0;
2777 }
2778 
2779 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2780  *
2781  * Requests that the local SCTP stack use the enclosed peer address as
2782  * the association primary.  The enclosed address must be one of the
2783  * association peer's addresses.
2784  */
2785 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2786 					unsigned int optlen)
2787 {
2788 	struct sctp_prim prim;
2789 	struct sctp_transport *trans;
2790 
2791 	if (optlen != sizeof(struct sctp_prim))
2792 		return -EINVAL;
2793 
2794 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2795 		return -EFAULT;
2796 
2797 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2798 	if (!trans)
2799 		return -EINVAL;
2800 
2801 	sctp_assoc_set_primary(trans->asoc, trans);
2802 
2803 	return 0;
2804 }
2805 
2806 /*
2807  * 7.1.5 SCTP_NODELAY
2808  *
2809  * Turn on/off any Nagle-like algorithm.  This means that packets are
2810  * generally sent as soon as possible and no unnecessary delays are
2811  * introduced, at the cost of more packets in the network.  Expects an
2812  *  integer boolean flag.
2813  */
2814 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2815 				   unsigned int optlen)
2816 {
2817 	int val;
2818 
2819 	if (optlen < sizeof(int))
2820 		return -EINVAL;
2821 	if (get_user(val, (int __user *)optval))
2822 		return -EFAULT;
2823 
2824 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2825 	return 0;
2826 }
2827 
2828 /*
2829  *
2830  * 7.1.1 SCTP_RTOINFO
2831  *
2832  * The protocol parameters used to initialize and bound retransmission
2833  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2834  * and modify these parameters.
2835  * All parameters are time values, in milliseconds.  A value of 0, when
2836  * modifying the parameters, indicates that the current value should not
2837  * be changed.
2838  *
2839  */
2840 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2841 {
2842 	struct sctp_rtoinfo rtoinfo;
2843 	struct sctp_association *asoc;
2844 	unsigned long rto_min, rto_max;
2845 	struct sctp_sock *sp = sctp_sk(sk);
2846 
2847 	if (optlen != sizeof (struct sctp_rtoinfo))
2848 		return -EINVAL;
2849 
2850 	if (copy_from_user(&rtoinfo, optval, optlen))
2851 		return -EFAULT;
2852 
2853 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2854 
2855 	/* Set the values to the specific association */
2856 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2857 		return -EINVAL;
2858 
2859 	rto_max = rtoinfo.srto_max;
2860 	rto_min = rtoinfo.srto_min;
2861 
2862 	if (rto_max)
2863 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2864 	else
2865 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2866 
2867 	if (rto_min)
2868 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2869 	else
2870 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2871 
2872 	if (rto_min > rto_max)
2873 		return -EINVAL;
2874 
2875 	if (asoc) {
2876 		if (rtoinfo.srto_initial != 0)
2877 			asoc->rto_initial =
2878 				msecs_to_jiffies(rtoinfo.srto_initial);
2879 		asoc->rto_max = rto_max;
2880 		asoc->rto_min = rto_min;
2881 	} else {
2882 		/* If there is no association or the association-id = 0
2883 		 * set the values to the endpoint.
2884 		 */
2885 		if (rtoinfo.srto_initial != 0)
2886 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2887 		sp->rtoinfo.srto_max = rto_max;
2888 		sp->rtoinfo.srto_min = rto_min;
2889 	}
2890 
2891 	return 0;
2892 }
2893 
2894 /*
2895  *
2896  * 7.1.2 SCTP_ASSOCINFO
2897  *
2898  * This option is used to tune the maximum retransmission attempts
2899  * of the association.
2900  * Returns an error if the new association retransmission value is
2901  * greater than the sum of the retransmission value  of the peer.
2902  * See [SCTP] for more information.
2903  *
2904  */
2905 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2906 {
2907 
2908 	struct sctp_assocparams assocparams;
2909 	struct sctp_association *asoc;
2910 
2911 	if (optlen != sizeof(struct sctp_assocparams))
2912 		return -EINVAL;
2913 	if (copy_from_user(&assocparams, optval, optlen))
2914 		return -EFAULT;
2915 
2916 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2917 
2918 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2919 		return -EINVAL;
2920 
2921 	/* Set the values to the specific association */
2922 	if (asoc) {
2923 		if (assocparams.sasoc_asocmaxrxt != 0) {
2924 			__u32 path_sum = 0;
2925 			int   paths = 0;
2926 			struct sctp_transport *peer_addr;
2927 
2928 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2929 					transports) {
2930 				path_sum += peer_addr->pathmaxrxt;
2931 				paths++;
2932 			}
2933 
2934 			/* Only validate asocmaxrxt if we have more than
2935 			 * one path/transport.  We do this because path
2936 			 * retransmissions are only counted when we have more
2937 			 * then one path.
2938 			 */
2939 			if (paths > 1 &&
2940 			    assocparams.sasoc_asocmaxrxt > path_sum)
2941 				return -EINVAL;
2942 
2943 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2944 		}
2945 
2946 		if (assocparams.sasoc_cookie_life != 0)
2947 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2948 	} else {
2949 		/* Set the values to the endpoint */
2950 		struct sctp_sock *sp = sctp_sk(sk);
2951 
2952 		if (assocparams.sasoc_asocmaxrxt != 0)
2953 			sp->assocparams.sasoc_asocmaxrxt =
2954 						assocparams.sasoc_asocmaxrxt;
2955 		if (assocparams.sasoc_cookie_life != 0)
2956 			sp->assocparams.sasoc_cookie_life =
2957 						assocparams.sasoc_cookie_life;
2958 	}
2959 	return 0;
2960 }
2961 
2962 /*
2963  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2964  *
2965  * This socket option is a boolean flag which turns on or off mapped V4
2966  * addresses.  If this option is turned on and the socket is type
2967  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2968  * If this option is turned off, then no mapping will be done of V4
2969  * addresses and a user will receive both PF_INET6 and PF_INET type
2970  * addresses on the socket.
2971  */
2972 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2973 {
2974 	int val;
2975 	struct sctp_sock *sp = sctp_sk(sk);
2976 
2977 	if (optlen < sizeof(int))
2978 		return -EINVAL;
2979 	if (get_user(val, (int __user *)optval))
2980 		return -EFAULT;
2981 	if (val)
2982 		sp->v4mapped = 1;
2983 	else
2984 		sp->v4mapped = 0;
2985 
2986 	return 0;
2987 }
2988 
2989 /*
2990  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2991  * This option will get or set the maximum size to put in any outgoing
2992  * SCTP DATA chunk.  If a message is larger than this size it will be
2993  * fragmented by SCTP into the specified size.  Note that the underlying
2994  * SCTP implementation may fragment into smaller sized chunks when the
2995  * PMTU of the underlying association is smaller than the value set by
2996  * the user.  The default value for this option is '0' which indicates
2997  * the user is NOT limiting fragmentation and only the PMTU will effect
2998  * SCTP's choice of DATA chunk size.  Note also that values set larger
2999  * than the maximum size of an IP datagram will effectively let SCTP
3000  * control fragmentation (i.e. the same as setting this option to 0).
3001  *
3002  * The following structure is used to access and modify this parameter:
3003  *
3004  * struct sctp_assoc_value {
3005  *   sctp_assoc_t assoc_id;
3006  *   uint32_t assoc_value;
3007  * };
3008  *
3009  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3010  *    For one-to-many style sockets this parameter indicates which
3011  *    association the user is performing an action upon.  Note that if
3012  *    this field's value is zero then the endpoints default value is
3013  *    changed (effecting future associations only).
3014  * assoc_value:  This parameter specifies the maximum size in bytes.
3015  */
3016 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3017 {
3018 	struct sctp_assoc_value params;
3019 	struct sctp_association *asoc;
3020 	struct sctp_sock *sp = sctp_sk(sk);
3021 	int val;
3022 
3023 	if (optlen == sizeof(int)) {
3024 		pr_warn_ratelimited(DEPRECATED
3025 				    "%s (pid %d) "
3026 				    "Use of int in maxseg socket option.\n"
3027 				    "Use struct sctp_assoc_value instead\n",
3028 				    current->comm, task_pid_nr(current));
3029 		if (copy_from_user(&val, optval, optlen))
3030 			return -EFAULT;
3031 		params.assoc_id = 0;
3032 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3033 		if (copy_from_user(&params, optval, optlen))
3034 			return -EFAULT;
3035 		val = params.assoc_value;
3036 	} else
3037 		return -EINVAL;
3038 
3039 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3040 		return -EINVAL;
3041 
3042 	asoc = sctp_id2assoc(sk, params.assoc_id);
3043 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3044 		return -EINVAL;
3045 
3046 	if (asoc) {
3047 		if (val == 0) {
3048 			val = asoc->pathmtu;
3049 			val -= sp->pf->af->net_header_len;
3050 			val -= sizeof(struct sctphdr) +
3051 					sizeof(struct sctp_data_chunk);
3052 		}
3053 		asoc->user_frag = val;
3054 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3055 	} else {
3056 		sp->user_frag = val;
3057 	}
3058 
3059 	return 0;
3060 }
3061 
3062 
3063 /*
3064  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3065  *
3066  *   Requests that the peer mark the enclosed address as the association
3067  *   primary. The enclosed address must be one of the association's
3068  *   locally bound addresses. The following structure is used to make a
3069  *   set primary request:
3070  */
3071 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3072 					     unsigned int optlen)
3073 {
3074 	struct net *net = sock_net(sk);
3075 	struct sctp_sock	*sp;
3076 	struct sctp_association	*asoc = NULL;
3077 	struct sctp_setpeerprim	prim;
3078 	struct sctp_chunk	*chunk;
3079 	struct sctp_af		*af;
3080 	int 			err;
3081 
3082 	sp = sctp_sk(sk);
3083 
3084 	if (!net->sctp.addip_enable)
3085 		return -EPERM;
3086 
3087 	if (optlen != sizeof(struct sctp_setpeerprim))
3088 		return -EINVAL;
3089 
3090 	if (copy_from_user(&prim, optval, optlen))
3091 		return -EFAULT;
3092 
3093 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3094 	if (!asoc)
3095 		return -EINVAL;
3096 
3097 	if (!asoc->peer.asconf_capable)
3098 		return -EPERM;
3099 
3100 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3101 		return -EPERM;
3102 
3103 	if (!sctp_state(asoc, ESTABLISHED))
3104 		return -ENOTCONN;
3105 
3106 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3107 	if (!af)
3108 		return -EINVAL;
3109 
3110 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3111 		return -EADDRNOTAVAIL;
3112 
3113 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3114 		return -EADDRNOTAVAIL;
3115 
3116 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3117 	chunk = sctp_make_asconf_set_prim(asoc,
3118 					  (union sctp_addr *)&prim.sspp_addr);
3119 	if (!chunk)
3120 		return -ENOMEM;
3121 
3122 	err = sctp_send_asconf(asoc, chunk);
3123 
3124 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3125 
3126 	return err;
3127 }
3128 
3129 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3130 					    unsigned int optlen)
3131 {
3132 	struct sctp_setadaptation adaptation;
3133 
3134 	if (optlen != sizeof(struct sctp_setadaptation))
3135 		return -EINVAL;
3136 	if (copy_from_user(&adaptation, optval, optlen))
3137 		return -EFAULT;
3138 
3139 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3140 
3141 	return 0;
3142 }
3143 
3144 /*
3145  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3146  *
3147  * The context field in the sctp_sndrcvinfo structure is normally only
3148  * used when a failed message is retrieved holding the value that was
3149  * sent down on the actual send call.  This option allows the setting of
3150  * a default context on an association basis that will be received on
3151  * reading messages from the peer.  This is especially helpful in the
3152  * one-2-many model for an application to keep some reference to an
3153  * internal state machine that is processing messages on the
3154  * association.  Note that the setting of this value only effects
3155  * received messages from the peer and does not effect the value that is
3156  * saved with outbound messages.
3157  */
3158 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3159 				   unsigned int optlen)
3160 {
3161 	struct sctp_assoc_value params;
3162 	struct sctp_sock *sp;
3163 	struct sctp_association *asoc;
3164 
3165 	if (optlen != sizeof(struct sctp_assoc_value))
3166 		return -EINVAL;
3167 	if (copy_from_user(&params, optval, optlen))
3168 		return -EFAULT;
3169 
3170 	sp = sctp_sk(sk);
3171 
3172 	if (params.assoc_id != 0) {
3173 		asoc = sctp_id2assoc(sk, params.assoc_id);
3174 		if (!asoc)
3175 			return -EINVAL;
3176 		asoc->default_rcv_context = params.assoc_value;
3177 	} else {
3178 		sp->default_rcv_context = params.assoc_value;
3179 	}
3180 
3181 	return 0;
3182 }
3183 
3184 /*
3185  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3186  *
3187  * This options will at a minimum specify if the implementation is doing
3188  * fragmented interleave.  Fragmented interleave, for a one to many
3189  * socket, is when subsequent calls to receive a message may return
3190  * parts of messages from different associations.  Some implementations
3191  * may allow you to turn this value on or off.  If so, when turned off,
3192  * no fragment interleave will occur (which will cause a head of line
3193  * blocking amongst multiple associations sharing the same one to many
3194  * socket).  When this option is turned on, then each receive call may
3195  * come from a different association (thus the user must receive data
3196  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3197  * association each receive belongs to.
3198  *
3199  * This option takes a boolean value.  A non-zero value indicates that
3200  * fragmented interleave is on.  A value of zero indicates that
3201  * fragmented interleave is off.
3202  *
3203  * Note that it is important that an implementation that allows this
3204  * option to be turned on, have it off by default.  Otherwise an unaware
3205  * application using the one to many model may become confused and act
3206  * incorrectly.
3207  */
3208 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3209 					       char __user *optval,
3210 					       unsigned int optlen)
3211 {
3212 	int val;
3213 
3214 	if (optlen != sizeof(int))
3215 		return -EINVAL;
3216 	if (get_user(val, (int __user *)optval))
3217 		return -EFAULT;
3218 
3219 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3220 
3221 	return 0;
3222 }
3223 
3224 /*
3225  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3226  *       (SCTP_PARTIAL_DELIVERY_POINT)
3227  *
3228  * This option will set or get the SCTP partial delivery point.  This
3229  * point is the size of a message where the partial delivery API will be
3230  * invoked to help free up rwnd space for the peer.  Setting this to a
3231  * lower value will cause partial deliveries to happen more often.  The
3232  * calls argument is an integer that sets or gets the partial delivery
3233  * point.  Note also that the call will fail if the user attempts to set
3234  * this value larger than the socket receive buffer size.
3235  *
3236  * Note that any single message having a length smaller than or equal to
3237  * the SCTP partial delivery point will be delivered in one single read
3238  * call as long as the user provided buffer is large enough to hold the
3239  * message.
3240  */
3241 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3242 						  char __user *optval,
3243 						  unsigned int optlen)
3244 {
3245 	u32 val;
3246 
3247 	if (optlen != sizeof(u32))
3248 		return -EINVAL;
3249 	if (get_user(val, (int __user *)optval))
3250 		return -EFAULT;
3251 
3252 	/* Note: We double the receive buffer from what the user sets
3253 	 * it to be, also initial rwnd is based on rcvbuf/2.
3254 	 */
3255 	if (val > (sk->sk_rcvbuf >> 1))
3256 		return -EINVAL;
3257 
3258 	sctp_sk(sk)->pd_point = val;
3259 
3260 	return 0; /* is this the right error code? */
3261 }
3262 
3263 /*
3264  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3265  *
3266  * This option will allow a user to change the maximum burst of packets
3267  * that can be emitted by this association.  Note that the default value
3268  * is 4, and some implementations may restrict this setting so that it
3269  * can only be lowered.
3270  *
3271  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3272  * future associations inheriting the socket value.
3273  */
3274 static int sctp_setsockopt_maxburst(struct sock *sk,
3275 				    char __user *optval,
3276 				    unsigned int optlen)
3277 {
3278 	struct sctp_assoc_value params;
3279 	struct sctp_sock *sp;
3280 	struct sctp_association *asoc;
3281 	int val;
3282 	int assoc_id = 0;
3283 
3284 	if (optlen == sizeof(int)) {
3285 		pr_warn_ratelimited(DEPRECATED
3286 				    "%s (pid %d) "
3287 				    "Use of int in max_burst socket option deprecated.\n"
3288 				    "Use struct sctp_assoc_value instead\n",
3289 				    current->comm, task_pid_nr(current));
3290 		if (copy_from_user(&val, optval, optlen))
3291 			return -EFAULT;
3292 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3293 		if (copy_from_user(&params, optval, optlen))
3294 			return -EFAULT;
3295 		val = params.assoc_value;
3296 		assoc_id = params.assoc_id;
3297 	} else
3298 		return -EINVAL;
3299 
3300 	sp = sctp_sk(sk);
3301 
3302 	if (assoc_id != 0) {
3303 		asoc = sctp_id2assoc(sk, assoc_id);
3304 		if (!asoc)
3305 			return -EINVAL;
3306 		asoc->max_burst = val;
3307 	} else
3308 		sp->max_burst = val;
3309 
3310 	return 0;
3311 }
3312 
3313 /*
3314  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3315  *
3316  * This set option adds a chunk type that the user is requesting to be
3317  * received only in an authenticated way.  Changes to the list of chunks
3318  * will only effect future associations on the socket.
3319  */
3320 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3321 				      char __user *optval,
3322 				      unsigned int optlen)
3323 {
3324 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3325 	struct sctp_authchunk val;
3326 
3327 	if (!ep->auth_enable)
3328 		return -EACCES;
3329 
3330 	if (optlen != sizeof(struct sctp_authchunk))
3331 		return -EINVAL;
3332 	if (copy_from_user(&val, optval, optlen))
3333 		return -EFAULT;
3334 
3335 	switch (val.sauth_chunk) {
3336 	case SCTP_CID_INIT:
3337 	case SCTP_CID_INIT_ACK:
3338 	case SCTP_CID_SHUTDOWN_COMPLETE:
3339 	case SCTP_CID_AUTH:
3340 		return -EINVAL;
3341 	}
3342 
3343 	/* add this chunk id to the endpoint */
3344 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3345 }
3346 
3347 /*
3348  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3349  *
3350  * This option gets or sets the list of HMAC algorithms that the local
3351  * endpoint requires the peer to use.
3352  */
3353 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3354 				      char __user *optval,
3355 				      unsigned int optlen)
3356 {
3357 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3358 	struct sctp_hmacalgo *hmacs;
3359 	u32 idents;
3360 	int err;
3361 
3362 	if (!ep->auth_enable)
3363 		return -EACCES;
3364 
3365 	if (optlen < sizeof(struct sctp_hmacalgo))
3366 		return -EINVAL;
3367 
3368 	hmacs = memdup_user(optval, optlen);
3369 	if (IS_ERR(hmacs))
3370 		return PTR_ERR(hmacs);
3371 
3372 	idents = hmacs->shmac_num_idents;
3373 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3374 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3375 		err = -EINVAL;
3376 		goto out;
3377 	}
3378 
3379 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3380 out:
3381 	kfree(hmacs);
3382 	return err;
3383 }
3384 
3385 /*
3386  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3387  *
3388  * This option will set a shared secret key which is used to build an
3389  * association shared key.
3390  */
3391 static int sctp_setsockopt_auth_key(struct sock *sk,
3392 				    char __user *optval,
3393 				    unsigned int optlen)
3394 {
3395 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3396 	struct sctp_authkey *authkey;
3397 	struct sctp_association *asoc;
3398 	int ret;
3399 
3400 	if (!ep->auth_enable)
3401 		return -EACCES;
3402 
3403 	if (optlen <= sizeof(struct sctp_authkey))
3404 		return -EINVAL;
3405 
3406 	authkey = memdup_user(optval, optlen);
3407 	if (IS_ERR(authkey))
3408 		return PTR_ERR(authkey);
3409 
3410 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3411 		ret = -EINVAL;
3412 		goto out;
3413 	}
3414 
3415 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3416 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3417 		ret = -EINVAL;
3418 		goto out;
3419 	}
3420 
3421 	ret = sctp_auth_set_key(ep, asoc, authkey);
3422 out:
3423 	kzfree(authkey);
3424 	return ret;
3425 }
3426 
3427 /*
3428  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3429  *
3430  * This option will get or set the active shared key to be used to build
3431  * the association shared key.
3432  */
3433 static int sctp_setsockopt_active_key(struct sock *sk,
3434 				      char __user *optval,
3435 				      unsigned int optlen)
3436 {
3437 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3438 	struct sctp_authkeyid val;
3439 	struct sctp_association *asoc;
3440 
3441 	if (!ep->auth_enable)
3442 		return -EACCES;
3443 
3444 	if (optlen != sizeof(struct sctp_authkeyid))
3445 		return -EINVAL;
3446 	if (copy_from_user(&val, optval, optlen))
3447 		return -EFAULT;
3448 
3449 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3450 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3451 		return -EINVAL;
3452 
3453 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3454 }
3455 
3456 /*
3457  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3458  *
3459  * This set option will delete a shared secret key from use.
3460  */
3461 static int sctp_setsockopt_del_key(struct sock *sk,
3462 				   char __user *optval,
3463 				   unsigned int optlen)
3464 {
3465 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3466 	struct sctp_authkeyid val;
3467 	struct sctp_association *asoc;
3468 
3469 	if (!ep->auth_enable)
3470 		return -EACCES;
3471 
3472 	if (optlen != sizeof(struct sctp_authkeyid))
3473 		return -EINVAL;
3474 	if (copy_from_user(&val, optval, optlen))
3475 		return -EFAULT;
3476 
3477 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3478 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3479 		return -EINVAL;
3480 
3481 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3482 
3483 }
3484 
3485 /*
3486  * 8.1.23 SCTP_AUTO_ASCONF
3487  *
3488  * This option will enable or disable the use of the automatic generation of
3489  * ASCONF chunks to add and delete addresses to an existing association.  Note
3490  * that this option has two caveats namely: a) it only affects sockets that
3491  * are bound to all addresses available to the SCTP stack, and b) the system
3492  * administrator may have an overriding control that turns the ASCONF feature
3493  * off no matter what setting the socket option may have.
3494  * This option expects an integer boolean flag, where a non-zero value turns on
3495  * the option, and a zero value turns off the option.
3496  * Note. In this implementation, socket operation overrides default parameter
3497  * being set by sysctl as well as FreeBSD implementation
3498  */
3499 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3500 					unsigned int optlen)
3501 {
3502 	int val;
3503 	struct sctp_sock *sp = sctp_sk(sk);
3504 
3505 	if (optlen < sizeof(int))
3506 		return -EINVAL;
3507 	if (get_user(val, (int __user *)optval))
3508 		return -EFAULT;
3509 	if (!sctp_is_ep_boundall(sk) && val)
3510 		return -EINVAL;
3511 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3512 		return 0;
3513 
3514 	if (val == 0 && sp->do_auto_asconf) {
3515 		list_del(&sp->auto_asconf_list);
3516 		sp->do_auto_asconf = 0;
3517 	} else if (val && !sp->do_auto_asconf) {
3518 		list_add_tail(&sp->auto_asconf_list,
3519 		    &sock_net(sk)->sctp.auto_asconf_splist);
3520 		sp->do_auto_asconf = 1;
3521 	}
3522 	return 0;
3523 }
3524 
3525 
3526 /*
3527  * SCTP_PEER_ADDR_THLDS
3528  *
3529  * This option allows us to alter the partially failed threshold for one or all
3530  * transports in an association.  See Section 6.1 of:
3531  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3532  */
3533 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3534 					    char __user *optval,
3535 					    unsigned int optlen)
3536 {
3537 	struct sctp_paddrthlds val;
3538 	struct sctp_transport *trans;
3539 	struct sctp_association *asoc;
3540 
3541 	if (optlen < sizeof(struct sctp_paddrthlds))
3542 		return -EINVAL;
3543 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3544 			   sizeof(struct sctp_paddrthlds)))
3545 		return -EFAULT;
3546 
3547 
3548 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3549 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3550 		if (!asoc)
3551 			return -ENOENT;
3552 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3553 				    transports) {
3554 			if (val.spt_pathmaxrxt)
3555 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3556 			trans->pf_retrans = val.spt_pathpfthld;
3557 		}
3558 
3559 		if (val.spt_pathmaxrxt)
3560 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3561 		asoc->pf_retrans = val.spt_pathpfthld;
3562 	} else {
3563 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3564 					       val.spt_assoc_id);
3565 		if (!trans)
3566 			return -ENOENT;
3567 
3568 		if (val.spt_pathmaxrxt)
3569 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3570 		trans->pf_retrans = val.spt_pathpfthld;
3571 	}
3572 
3573 	return 0;
3574 }
3575 
3576 /* API 6.2 setsockopt(), getsockopt()
3577  *
3578  * Applications use setsockopt() and getsockopt() to set or retrieve
3579  * socket options.  Socket options are used to change the default
3580  * behavior of sockets calls.  They are described in Section 7.
3581  *
3582  * The syntax is:
3583  *
3584  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3585  *                    int __user *optlen);
3586  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3587  *                    int optlen);
3588  *
3589  *   sd      - the socket descript.
3590  *   level   - set to IPPROTO_SCTP for all SCTP options.
3591  *   optname - the option name.
3592  *   optval  - the buffer to store the value of the option.
3593  *   optlen  - the size of the buffer.
3594  */
3595 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3596 			   char __user *optval, unsigned int optlen)
3597 {
3598 	int retval = 0;
3599 
3600 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3601 
3602 	/* I can hardly begin to describe how wrong this is.  This is
3603 	 * so broken as to be worse than useless.  The API draft
3604 	 * REALLY is NOT helpful here...  I am not convinced that the
3605 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3606 	 * are at all well-founded.
3607 	 */
3608 	if (level != SOL_SCTP) {
3609 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3610 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3611 		goto out_nounlock;
3612 	}
3613 
3614 	lock_sock(sk);
3615 
3616 	switch (optname) {
3617 	case SCTP_SOCKOPT_BINDX_ADD:
3618 		/* 'optlen' is the size of the addresses buffer. */
3619 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3620 					       optlen, SCTP_BINDX_ADD_ADDR);
3621 		break;
3622 
3623 	case SCTP_SOCKOPT_BINDX_REM:
3624 		/* 'optlen' is the size of the addresses buffer. */
3625 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3626 					       optlen, SCTP_BINDX_REM_ADDR);
3627 		break;
3628 
3629 	case SCTP_SOCKOPT_CONNECTX_OLD:
3630 		/* 'optlen' is the size of the addresses buffer. */
3631 		retval = sctp_setsockopt_connectx_old(sk,
3632 					    (struct sockaddr __user *)optval,
3633 					    optlen);
3634 		break;
3635 
3636 	case SCTP_SOCKOPT_CONNECTX:
3637 		/* 'optlen' is the size of the addresses buffer. */
3638 		retval = sctp_setsockopt_connectx(sk,
3639 					    (struct sockaddr __user *)optval,
3640 					    optlen);
3641 		break;
3642 
3643 	case SCTP_DISABLE_FRAGMENTS:
3644 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3645 		break;
3646 
3647 	case SCTP_EVENTS:
3648 		retval = sctp_setsockopt_events(sk, optval, optlen);
3649 		break;
3650 
3651 	case SCTP_AUTOCLOSE:
3652 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3653 		break;
3654 
3655 	case SCTP_PEER_ADDR_PARAMS:
3656 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3657 		break;
3658 
3659 	case SCTP_DELAYED_SACK:
3660 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3661 		break;
3662 	case SCTP_PARTIAL_DELIVERY_POINT:
3663 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3664 		break;
3665 
3666 	case SCTP_INITMSG:
3667 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3668 		break;
3669 	case SCTP_DEFAULT_SEND_PARAM:
3670 		retval = sctp_setsockopt_default_send_param(sk, optval,
3671 							    optlen);
3672 		break;
3673 	case SCTP_PRIMARY_ADDR:
3674 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3675 		break;
3676 	case SCTP_SET_PEER_PRIMARY_ADDR:
3677 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3678 		break;
3679 	case SCTP_NODELAY:
3680 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3681 		break;
3682 	case SCTP_RTOINFO:
3683 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3684 		break;
3685 	case SCTP_ASSOCINFO:
3686 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3687 		break;
3688 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3689 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3690 		break;
3691 	case SCTP_MAXSEG:
3692 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3693 		break;
3694 	case SCTP_ADAPTATION_LAYER:
3695 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3696 		break;
3697 	case SCTP_CONTEXT:
3698 		retval = sctp_setsockopt_context(sk, optval, optlen);
3699 		break;
3700 	case SCTP_FRAGMENT_INTERLEAVE:
3701 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3702 		break;
3703 	case SCTP_MAX_BURST:
3704 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3705 		break;
3706 	case SCTP_AUTH_CHUNK:
3707 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3708 		break;
3709 	case SCTP_HMAC_IDENT:
3710 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3711 		break;
3712 	case SCTP_AUTH_KEY:
3713 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3714 		break;
3715 	case SCTP_AUTH_ACTIVE_KEY:
3716 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3717 		break;
3718 	case SCTP_AUTH_DELETE_KEY:
3719 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3720 		break;
3721 	case SCTP_AUTO_ASCONF:
3722 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3723 		break;
3724 	case SCTP_PEER_ADDR_THLDS:
3725 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3726 		break;
3727 	default:
3728 		retval = -ENOPROTOOPT;
3729 		break;
3730 	}
3731 
3732 	release_sock(sk);
3733 
3734 out_nounlock:
3735 	return retval;
3736 }
3737 
3738 /* API 3.1.6 connect() - UDP Style Syntax
3739  *
3740  * An application may use the connect() call in the UDP model to initiate an
3741  * association without sending data.
3742  *
3743  * The syntax is:
3744  *
3745  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3746  *
3747  * sd: the socket descriptor to have a new association added to.
3748  *
3749  * nam: the address structure (either struct sockaddr_in or struct
3750  *    sockaddr_in6 defined in RFC2553 [7]).
3751  *
3752  * len: the size of the address.
3753  */
3754 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3755 			int addr_len)
3756 {
3757 	int err = 0;
3758 	struct sctp_af *af;
3759 
3760 	lock_sock(sk);
3761 
3762 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3763 		 addr, addr_len);
3764 
3765 	/* Validate addr_len before calling common connect/connectx routine. */
3766 	af = sctp_get_af_specific(addr->sa_family);
3767 	if (!af || addr_len < af->sockaddr_len) {
3768 		err = -EINVAL;
3769 	} else {
3770 		/* Pass correct addr len to common routine (so it knows there
3771 		 * is only one address being passed.
3772 		 */
3773 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3774 	}
3775 
3776 	release_sock(sk);
3777 	return err;
3778 }
3779 
3780 /* FIXME: Write comments. */
3781 static int sctp_disconnect(struct sock *sk, int flags)
3782 {
3783 	return -EOPNOTSUPP; /* STUB */
3784 }
3785 
3786 /* 4.1.4 accept() - TCP Style Syntax
3787  *
3788  * Applications use accept() call to remove an established SCTP
3789  * association from the accept queue of the endpoint.  A new socket
3790  * descriptor will be returned from accept() to represent the newly
3791  * formed association.
3792  */
3793 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3794 {
3795 	struct sctp_sock *sp;
3796 	struct sctp_endpoint *ep;
3797 	struct sock *newsk = NULL;
3798 	struct sctp_association *asoc;
3799 	long timeo;
3800 	int error = 0;
3801 
3802 	lock_sock(sk);
3803 
3804 	sp = sctp_sk(sk);
3805 	ep = sp->ep;
3806 
3807 	if (!sctp_style(sk, TCP)) {
3808 		error = -EOPNOTSUPP;
3809 		goto out;
3810 	}
3811 
3812 	if (!sctp_sstate(sk, LISTENING)) {
3813 		error = -EINVAL;
3814 		goto out;
3815 	}
3816 
3817 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3818 
3819 	error = sctp_wait_for_accept(sk, timeo);
3820 	if (error)
3821 		goto out;
3822 
3823 	/* We treat the list of associations on the endpoint as the accept
3824 	 * queue and pick the first association on the list.
3825 	 */
3826 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3827 
3828 	newsk = sp->pf->create_accept_sk(sk, asoc);
3829 	if (!newsk) {
3830 		error = -ENOMEM;
3831 		goto out;
3832 	}
3833 
3834 	/* Populate the fields of the newsk from the oldsk and migrate the
3835 	 * asoc to the newsk.
3836 	 */
3837 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3838 
3839 out:
3840 	release_sock(sk);
3841 	*err = error;
3842 	return newsk;
3843 }
3844 
3845 /* The SCTP ioctl handler. */
3846 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3847 {
3848 	int rc = -ENOTCONN;
3849 
3850 	lock_sock(sk);
3851 
3852 	/*
3853 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3854 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3855 	 */
3856 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3857 		goto out;
3858 
3859 	switch (cmd) {
3860 	case SIOCINQ: {
3861 		struct sk_buff *skb;
3862 		unsigned int amount = 0;
3863 
3864 		skb = skb_peek(&sk->sk_receive_queue);
3865 		if (skb != NULL) {
3866 			/*
3867 			 * We will only return the amount of this packet since
3868 			 * that is all that will be read.
3869 			 */
3870 			amount = skb->len;
3871 		}
3872 		rc = put_user(amount, (int __user *)arg);
3873 		break;
3874 	}
3875 	default:
3876 		rc = -ENOIOCTLCMD;
3877 		break;
3878 	}
3879 out:
3880 	release_sock(sk);
3881 	return rc;
3882 }
3883 
3884 /* This is the function which gets called during socket creation to
3885  * initialized the SCTP-specific portion of the sock.
3886  * The sock structure should already be zero-filled memory.
3887  */
3888 static int sctp_init_sock(struct sock *sk)
3889 {
3890 	struct net *net = sock_net(sk);
3891 	struct sctp_sock *sp;
3892 
3893 	pr_debug("%s: sk:%p\n", __func__, sk);
3894 
3895 	sp = sctp_sk(sk);
3896 
3897 	/* Initialize the SCTP per socket area.  */
3898 	switch (sk->sk_type) {
3899 	case SOCK_SEQPACKET:
3900 		sp->type = SCTP_SOCKET_UDP;
3901 		break;
3902 	case SOCK_STREAM:
3903 		sp->type = SCTP_SOCKET_TCP;
3904 		break;
3905 	default:
3906 		return -ESOCKTNOSUPPORT;
3907 	}
3908 
3909 	/* Initialize default send parameters. These parameters can be
3910 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3911 	 */
3912 	sp->default_stream = 0;
3913 	sp->default_ppid = 0;
3914 	sp->default_flags = 0;
3915 	sp->default_context = 0;
3916 	sp->default_timetolive = 0;
3917 
3918 	sp->default_rcv_context = 0;
3919 	sp->max_burst = net->sctp.max_burst;
3920 
3921 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3922 
3923 	/* Initialize default setup parameters. These parameters
3924 	 * can be modified with the SCTP_INITMSG socket option or
3925 	 * overridden by the SCTP_INIT CMSG.
3926 	 */
3927 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3928 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3929 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3930 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3931 
3932 	/* Initialize default RTO related parameters.  These parameters can
3933 	 * be modified for with the SCTP_RTOINFO socket option.
3934 	 */
3935 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3936 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3937 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3938 
3939 	/* Initialize default association related parameters. These parameters
3940 	 * can be modified with the SCTP_ASSOCINFO socket option.
3941 	 */
3942 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3943 	sp->assocparams.sasoc_number_peer_destinations = 0;
3944 	sp->assocparams.sasoc_peer_rwnd = 0;
3945 	sp->assocparams.sasoc_local_rwnd = 0;
3946 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3947 
3948 	/* Initialize default event subscriptions. By default, all the
3949 	 * options are off.
3950 	 */
3951 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3952 
3953 	/* Default Peer Address Parameters.  These defaults can
3954 	 * be modified via SCTP_PEER_ADDR_PARAMS
3955 	 */
3956 	sp->hbinterval  = net->sctp.hb_interval;
3957 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3958 	sp->pathmtu     = 0; /* allow default discovery */
3959 	sp->sackdelay   = net->sctp.sack_timeout;
3960 	sp->sackfreq	= 2;
3961 	sp->param_flags = SPP_HB_ENABLE |
3962 			  SPP_PMTUD_ENABLE |
3963 			  SPP_SACKDELAY_ENABLE;
3964 
3965 	/* If enabled no SCTP message fragmentation will be performed.
3966 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3967 	 */
3968 	sp->disable_fragments = 0;
3969 
3970 	/* Enable Nagle algorithm by default.  */
3971 	sp->nodelay           = 0;
3972 
3973 	/* Enable by default. */
3974 	sp->v4mapped          = 1;
3975 
3976 	/* Auto-close idle associations after the configured
3977 	 * number of seconds.  A value of 0 disables this
3978 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3979 	 * for UDP-style sockets only.
3980 	 */
3981 	sp->autoclose         = 0;
3982 
3983 	/* User specified fragmentation limit. */
3984 	sp->user_frag         = 0;
3985 
3986 	sp->adaptation_ind = 0;
3987 
3988 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3989 
3990 	/* Control variables for partial data delivery. */
3991 	atomic_set(&sp->pd_mode, 0);
3992 	skb_queue_head_init(&sp->pd_lobby);
3993 	sp->frag_interleave = 0;
3994 
3995 	/* Create a per socket endpoint structure.  Even if we
3996 	 * change the data structure relationships, this may still
3997 	 * be useful for storing pre-connect address information.
3998 	 */
3999 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4000 	if (!sp->ep)
4001 		return -ENOMEM;
4002 
4003 	sp->hmac = NULL;
4004 
4005 	sk->sk_destruct = sctp_destruct_sock;
4006 
4007 	SCTP_DBG_OBJCNT_INC(sock);
4008 
4009 	local_bh_disable();
4010 	percpu_counter_inc(&sctp_sockets_allocated);
4011 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4012 	if (net->sctp.default_auto_asconf) {
4013 		list_add_tail(&sp->auto_asconf_list,
4014 		    &net->sctp.auto_asconf_splist);
4015 		sp->do_auto_asconf = 1;
4016 	} else
4017 		sp->do_auto_asconf = 0;
4018 	local_bh_enable();
4019 
4020 	return 0;
4021 }
4022 
4023 /* Cleanup any SCTP per socket resources.  */
4024 static void sctp_destroy_sock(struct sock *sk)
4025 {
4026 	struct sctp_sock *sp;
4027 
4028 	pr_debug("%s: sk:%p\n", __func__, sk);
4029 
4030 	/* Release our hold on the endpoint. */
4031 	sp = sctp_sk(sk);
4032 	/* This could happen during socket init, thus we bail out
4033 	 * early, since the rest of the below is not setup either.
4034 	 */
4035 	if (sp->ep == NULL)
4036 		return;
4037 
4038 	if (sp->do_auto_asconf) {
4039 		sp->do_auto_asconf = 0;
4040 		list_del(&sp->auto_asconf_list);
4041 	}
4042 	sctp_endpoint_free(sp->ep);
4043 	local_bh_disable();
4044 	percpu_counter_dec(&sctp_sockets_allocated);
4045 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4046 	local_bh_enable();
4047 }
4048 
4049 /* Triggered when there are no references on the socket anymore */
4050 static void sctp_destruct_sock(struct sock *sk)
4051 {
4052 	struct sctp_sock *sp = sctp_sk(sk);
4053 
4054 	/* Free up the HMAC transform. */
4055 	crypto_free_hash(sp->hmac);
4056 
4057 	inet_sock_destruct(sk);
4058 }
4059 
4060 /* API 4.1.7 shutdown() - TCP Style Syntax
4061  *     int shutdown(int socket, int how);
4062  *
4063  *     sd      - the socket descriptor of the association to be closed.
4064  *     how     - Specifies the type of shutdown.  The  values  are
4065  *               as follows:
4066  *               SHUT_RD
4067  *                     Disables further receive operations. No SCTP
4068  *                     protocol action is taken.
4069  *               SHUT_WR
4070  *                     Disables further send operations, and initiates
4071  *                     the SCTP shutdown sequence.
4072  *               SHUT_RDWR
4073  *                     Disables further send  and  receive  operations
4074  *                     and initiates the SCTP shutdown sequence.
4075  */
4076 static void sctp_shutdown(struct sock *sk, int how)
4077 {
4078 	struct net *net = sock_net(sk);
4079 	struct sctp_endpoint *ep;
4080 	struct sctp_association *asoc;
4081 
4082 	if (!sctp_style(sk, TCP))
4083 		return;
4084 
4085 	if (how & SEND_SHUTDOWN) {
4086 		ep = sctp_sk(sk)->ep;
4087 		if (!list_empty(&ep->asocs)) {
4088 			asoc = list_entry(ep->asocs.next,
4089 					  struct sctp_association, asocs);
4090 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4091 		}
4092 	}
4093 }
4094 
4095 /* 7.2.1 Association Status (SCTP_STATUS)
4096 
4097  * Applications can retrieve current status information about an
4098  * association, including association state, peer receiver window size,
4099  * number of unacked data chunks, and number of data chunks pending
4100  * receipt.  This information is read-only.
4101  */
4102 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4103 				       char __user *optval,
4104 				       int __user *optlen)
4105 {
4106 	struct sctp_status status;
4107 	struct sctp_association *asoc = NULL;
4108 	struct sctp_transport *transport;
4109 	sctp_assoc_t associd;
4110 	int retval = 0;
4111 
4112 	if (len < sizeof(status)) {
4113 		retval = -EINVAL;
4114 		goto out;
4115 	}
4116 
4117 	len = sizeof(status);
4118 	if (copy_from_user(&status, optval, len)) {
4119 		retval = -EFAULT;
4120 		goto out;
4121 	}
4122 
4123 	associd = status.sstat_assoc_id;
4124 	asoc = sctp_id2assoc(sk, associd);
4125 	if (!asoc) {
4126 		retval = -EINVAL;
4127 		goto out;
4128 	}
4129 
4130 	transport = asoc->peer.primary_path;
4131 
4132 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4133 	status.sstat_state = asoc->state;
4134 	status.sstat_rwnd =  asoc->peer.rwnd;
4135 	status.sstat_unackdata = asoc->unack_data;
4136 
4137 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4138 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4139 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4140 	status.sstat_fragmentation_point = asoc->frag_point;
4141 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4142 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4143 			transport->af_specific->sockaddr_len);
4144 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4145 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4146 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4147 	status.sstat_primary.spinfo_state = transport->state;
4148 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4149 	status.sstat_primary.spinfo_srtt = transport->srtt;
4150 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4151 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4152 
4153 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4154 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4155 
4156 	if (put_user(len, optlen)) {
4157 		retval = -EFAULT;
4158 		goto out;
4159 	}
4160 
4161 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4162 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4163 		 status.sstat_assoc_id);
4164 
4165 	if (copy_to_user(optval, &status, len)) {
4166 		retval = -EFAULT;
4167 		goto out;
4168 	}
4169 
4170 out:
4171 	return retval;
4172 }
4173 
4174 
4175 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4176  *
4177  * Applications can retrieve information about a specific peer address
4178  * of an association, including its reachability state, congestion
4179  * window, and retransmission timer values.  This information is
4180  * read-only.
4181  */
4182 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4183 					  char __user *optval,
4184 					  int __user *optlen)
4185 {
4186 	struct sctp_paddrinfo pinfo;
4187 	struct sctp_transport *transport;
4188 	int retval = 0;
4189 
4190 	if (len < sizeof(pinfo)) {
4191 		retval = -EINVAL;
4192 		goto out;
4193 	}
4194 
4195 	len = sizeof(pinfo);
4196 	if (copy_from_user(&pinfo, optval, len)) {
4197 		retval = -EFAULT;
4198 		goto out;
4199 	}
4200 
4201 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4202 					   pinfo.spinfo_assoc_id);
4203 	if (!transport)
4204 		return -EINVAL;
4205 
4206 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4207 	pinfo.spinfo_state = transport->state;
4208 	pinfo.spinfo_cwnd = transport->cwnd;
4209 	pinfo.spinfo_srtt = transport->srtt;
4210 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4211 	pinfo.spinfo_mtu = transport->pathmtu;
4212 
4213 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4214 		pinfo.spinfo_state = SCTP_ACTIVE;
4215 
4216 	if (put_user(len, optlen)) {
4217 		retval = -EFAULT;
4218 		goto out;
4219 	}
4220 
4221 	if (copy_to_user(optval, &pinfo, len)) {
4222 		retval = -EFAULT;
4223 		goto out;
4224 	}
4225 
4226 out:
4227 	return retval;
4228 }
4229 
4230 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4231  *
4232  * This option is a on/off flag.  If enabled no SCTP message
4233  * fragmentation will be performed.  Instead if a message being sent
4234  * exceeds the current PMTU size, the message will NOT be sent and
4235  * instead a error will be indicated to the user.
4236  */
4237 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4238 					char __user *optval, int __user *optlen)
4239 {
4240 	int val;
4241 
4242 	if (len < sizeof(int))
4243 		return -EINVAL;
4244 
4245 	len = sizeof(int);
4246 	val = (sctp_sk(sk)->disable_fragments == 1);
4247 	if (put_user(len, optlen))
4248 		return -EFAULT;
4249 	if (copy_to_user(optval, &val, len))
4250 		return -EFAULT;
4251 	return 0;
4252 }
4253 
4254 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4255  *
4256  * This socket option is used to specify various notifications and
4257  * ancillary data the user wishes to receive.
4258  */
4259 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4260 				  int __user *optlen)
4261 {
4262 	if (len <= 0)
4263 		return -EINVAL;
4264 	if (len > sizeof(struct sctp_event_subscribe))
4265 		len = sizeof(struct sctp_event_subscribe);
4266 	if (put_user(len, optlen))
4267 		return -EFAULT;
4268 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4269 		return -EFAULT;
4270 	return 0;
4271 }
4272 
4273 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4274  *
4275  * This socket option is applicable to the UDP-style socket only.  When
4276  * set it will cause associations that are idle for more than the
4277  * specified number of seconds to automatically close.  An association
4278  * being idle is defined an association that has NOT sent or received
4279  * user data.  The special value of '0' indicates that no automatic
4280  * close of any associations should be performed.  The option expects an
4281  * integer defining the number of seconds of idle time before an
4282  * association is closed.
4283  */
4284 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4285 {
4286 	/* Applicable to UDP-style socket only */
4287 	if (sctp_style(sk, TCP))
4288 		return -EOPNOTSUPP;
4289 	if (len < sizeof(int))
4290 		return -EINVAL;
4291 	len = sizeof(int);
4292 	if (put_user(len, optlen))
4293 		return -EFAULT;
4294 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4295 		return -EFAULT;
4296 	return 0;
4297 }
4298 
4299 /* Helper routine to branch off an association to a new socket.  */
4300 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4301 {
4302 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4303 	struct socket *sock;
4304 	struct sctp_af *af;
4305 	int err = 0;
4306 
4307 	if (!asoc)
4308 		return -EINVAL;
4309 
4310 	/* An association cannot be branched off from an already peeled-off
4311 	 * socket, nor is this supported for tcp style sockets.
4312 	 */
4313 	if (!sctp_style(sk, UDP))
4314 		return -EINVAL;
4315 
4316 	/* Create a new socket.  */
4317 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4318 	if (err < 0)
4319 		return err;
4320 
4321 	sctp_copy_sock(sock->sk, sk, asoc);
4322 
4323 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4324 	 * Set the daddr and initialize id to something more random
4325 	 */
4326 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4327 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4328 
4329 	/* Populate the fields of the newsk from the oldsk and migrate the
4330 	 * asoc to the newsk.
4331 	 */
4332 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4333 
4334 	*sockp = sock;
4335 
4336 	return err;
4337 }
4338 EXPORT_SYMBOL(sctp_do_peeloff);
4339 
4340 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4341 {
4342 	sctp_peeloff_arg_t peeloff;
4343 	struct socket *newsock;
4344 	struct file *newfile;
4345 	int retval = 0;
4346 
4347 	if (len < sizeof(sctp_peeloff_arg_t))
4348 		return -EINVAL;
4349 	len = sizeof(sctp_peeloff_arg_t);
4350 	if (copy_from_user(&peeloff, optval, len))
4351 		return -EFAULT;
4352 
4353 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4354 	if (retval < 0)
4355 		goto out;
4356 
4357 	/* Map the socket to an unused fd that can be returned to the user.  */
4358 	retval = get_unused_fd_flags(0);
4359 	if (retval < 0) {
4360 		sock_release(newsock);
4361 		goto out;
4362 	}
4363 
4364 	newfile = sock_alloc_file(newsock, 0, NULL);
4365 	if (unlikely(IS_ERR(newfile))) {
4366 		put_unused_fd(retval);
4367 		sock_release(newsock);
4368 		return PTR_ERR(newfile);
4369 	}
4370 
4371 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4372 		 retval);
4373 
4374 	/* Return the fd mapped to the new socket.  */
4375 	if (put_user(len, optlen)) {
4376 		fput(newfile);
4377 		put_unused_fd(retval);
4378 		return -EFAULT;
4379 	}
4380 	peeloff.sd = retval;
4381 	if (copy_to_user(optval, &peeloff, len)) {
4382 		fput(newfile);
4383 		put_unused_fd(retval);
4384 		return -EFAULT;
4385 	}
4386 	fd_install(retval, newfile);
4387 out:
4388 	return retval;
4389 }
4390 
4391 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4392  *
4393  * Applications can enable or disable heartbeats for any peer address of
4394  * an association, modify an address's heartbeat interval, force a
4395  * heartbeat to be sent immediately, and adjust the address's maximum
4396  * number of retransmissions sent before an address is considered
4397  * unreachable.  The following structure is used to access and modify an
4398  * address's parameters:
4399  *
4400  *  struct sctp_paddrparams {
4401  *     sctp_assoc_t            spp_assoc_id;
4402  *     struct sockaddr_storage spp_address;
4403  *     uint32_t                spp_hbinterval;
4404  *     uint16_t                spp_pathmaxrxt;
4405  *     uint32_t                spp_pathmtu;
4406  *     uint32_t                spp_sackdelay;
4407  *     uint32_t                spp_flags;
4408  * };
4409  *
4410  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4411  *                     application, and identifies the association for
4412  *                     this query.
4413  *   spp_address     - This specifies which address is of interest.
4414  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4415  *                     in milliseconds.  If a  value of zero
4416  *                     is present in this field then no changes are to
4417  *                     be made to this parameter.
4418  *   spp_pathmaxrxt  - This contains the maximum number of
4419  *                     retransmissions before this address shall be
4420  *                     considered unreachable. If a  value of zero
4421  *                     is present in this field then no changes are to
4422  *                     be made to this parameter.
4423  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4424  *                     specified here will be the "fixed" path mtu.
4425  *                     Note that if the spp_address field is empty
4426  *                     then all associations on this address will
4427  *                     have this fixed path mtu set upon them.
4428  *
4429  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4430  *                     the number of milliseconds that sacks will be delayed
4431  *                     for. This value will apply to all addresses of an
4432  *                     association if the spp_address field is empty. Note
4433  *                     also, that if delayed sack is enabled and this
4434  *                     value is set to 0, no change is made to the last
4435  *                     recorded delayed sack timer value.
4436  *
4437  *   spp_flags       - These flags are used to control various features
4438  *                     on an association. The flag field may contain
4439  *                     zero or more of the following options.
4440  *
4441  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4442  *                     specified address. Note that if the address
4443  *                     field is empty all addresses for the association
4444  *                     have heartbeats enabled upon them.
4445  *
4446  *                     SPP_HB_DISABLE - Disable heartbeats on the
4447  *                     speicifed address. Note that if the address
4448  *                     field is empty all addresses for the association
4449  *                     will have their heartbeats disabled. Note also
4450  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4451  *                     mutually exclusive, only one of these two should
4452  *                     be specified. Enabling both fields will have
4453  *                     undetermined results.
4454  *
4455  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4456  *                     to be made immediately.
4457  *
4458  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4459  *                     discovery upon the specified address. Note that
4460  *                     if the address feild is empty then all addresses
4461  *                     on the association are effected.
4462  *
4463  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4464  *                     discovery upon the specified address. Note that
4465  *                     if the address feild is empty then all addresses
4466  *                     on the association are effected. Not also that
4467  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4468  *                     exclusive. Enabling both will have undetermined
4469  *                     results.
4470  *
4471  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4472  *                     on delayed sack. The time specified in spp_sackdelay
4473  *                     is used to specify the sack delay for this address. Note
4474  *                     that if spp_address is empty then all addresses will
4475  *                     enable delayed sack and take on the sack delay
4476  *                     value specified in spp_sackdelay.
4477  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4478  *                     off delayed sack. If the spp_address field is blank then
4479  *                     delayed sack is disabled for the entire association. Note
4480  *                     also that this field is mutually exclusive to
4481  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4482  *                     results.
4483  */
4484 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4485 					    char __user *optval, int __user *optlen)
4486 {
4487 	struct sctp_paddrparams  params;
4488 	struct sctp_transport   *trans = NULL;
4489 	struct sctp_association *asoc = NULL;
4490 	struct sctp_sock        *sp = sctp_sk(sk);
4491 
4492 	if (len < sizeof(struct sctp_paddrparams))
4493 		return -EINVAL;
4494 	len = sizeof(struct sctp_paddrparams);
4495 	if (copy_from_user(&params, optval, len))
4496 		return -EFAULT;
4497 
4498 	/* If an address other than INADDR_ANY is specified, and
4499 	 * no transport is found, then the request is invalid.
4500 	 */
4501 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4502 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4503 					       params.spp_assoc_id);
4504 		if (!trans) {
4505 			pr_debug("%s: failed no transport\n", __func__);
4506 			return -EINVAL;
4507 		}
4508 	}
4509 
4510 	/* Get association, if assoc_id != 0 and the socket is a one
4511 	 * to many style socket, and an association was not found, then
4512 	 * the id was invalid.
4513 	 */
4514 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4515 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4516 		pr_debug("%s: failed no association\n", __func__);
4517 		return -EINVAL;
4518 	}
4519 
4520 	if (trans) {
4521 		/* Fetch transport values. */
4522 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4523 		params.spp_pathmtu    = trans->pathmtu;
4524 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4525 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4526 
4527 		/*draft-11 doesn't say what to return in spp_flags*/
4528 		params.spp_flags      = trans->param_flags;
4529 	} else if (asoc) {
4530 		/* Fetch association values. */
4531 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4532 		params.spp_pathmtu    = asoc->pathmtu;
4533 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4534 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4535 
4536 		/*draft-11 doesn't say what to return in spp_flags*/
4537 		params.spp_flags      = asoc->param_flags;
4538 	} else {
4539 		/* Fetch socket values. */
4540 		params.spp_hbinterval = sp->hbinterval;
4541 		params.spp_pathmtu    = sp->pathmtu;
4542 		params.spp_sackdelay  = sp->sackdelay;
4543 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4544 
4545 		/*draft-11 doesn't say what to return in spp_flags*/
4546 		params.spp_flags      = sp->param_flags;
4547 	}
4548 
4549 	if (copy_to_user(optval, &params, len))
4550 		return -EFAULT;
4551 
4552 	if (put_user(len, optlen))
4553 		return -EFAULT;
4554 
4555 	return 0;
4556 }
4557 
4558 /*
4559  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4560  *
4561  * This option will effect the way delayed acks are performed.  This
4562  * option allows you to get or set the delayed ack time, in
4563  * milliseconds.  It also allows changing the delayed ack frequency.
4564  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4565  * the assoc_id is 0, then this sets or gets the endpoints default
4566  * values.  If the assoc_id field is non-zero, then the set or get
4567  * effects the specified association for the one to many model (the
4568  * assoc_id field is ignored by the one to one model).  Note that if
4569  * sack_delay or sack_freq are 0 when setting this option, then the
4570  * current values will remain unchanged.
4571  *
4572  * struct sctp_sack_info {
4573  *     sctp_assoc_t            sack_assoc_id;
4574  *     uint32_t                sack_delay;
4575  *     uint32_t                sack_freq;
4576  * };
4577  *
4578  * sack_assoc_id -  This parameter, indicates which association the user
4579  *    is performing an action upon.  Note that if this field's value is
4580  *    zero then the endpoints default value is changed (effecting future
4581  *    associations only).
4582  *
4583  * sack_delay -  This parameter contains the number of milliseconds that
4584  *    the user is requesting the delayed ACK timer be set to.  Note that
4585  *    this value is defined in the standard to be between 200 and 500
4586  *    milliseconds.
4587  *
4588  * sack_freq -  This parameter contains the number of packets that must
4589  *    be received before a sack is sent without waiting for the delay
4590  *    timer to expire.  The default value for this is 2, setting this
4591  *    value to 1 will disable the delayed sack algorithm.
4592  */
4593 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4594 					    char __user *optval,
4595 					    int __user *optlen)
4596 {
4597 	struct sctp_sack_info    params;
4598 	struct sctp_association *asoc = NULL;
4599 	struct sctp_sock        *sp = sctp_sk(sk);
4600 
4601 	if (len >= sizeof(struct sctp_sack_info)) {
4602 		len = sizeof(struct sctp_sack_info);
4603 
4604 		if (copy_from_user(&params, optval, len))
4605 			return -EFAULT;
4606 	} else if (len == sizeof(struct sctp_assoc_value)) {
4607 		pr_warn_ratelimited(DEPRECATED
4608 				    "%s (pid %d) "
4609 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4610 				    "Use struct sctp_sack_info instead\n",
4611 				    current->comm, task_pid_nr(current));
4612 		if (copy_from_user(&params, optval, len))
4613 			return -EFAULT;
4614 	} else
4615 		return -EINVAL;
4616 
4617 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4618 	 * to many style socket, and an association was not found, then
4619 	 * the id was invalid.
4620 	 */
4621 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4622 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4623 		return -EINVAL;
4624 
4625 	if (asoc) {
4626 		/* Fetch association values. */
4627 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4628 			params.sack_delay = jiffies_to_msecs(
4629 				asoc->sackdelay);
4630 			params.sack_freq = asoc->sackfreq;
4631 
4632 		} else {
4633 			params.sack_delay = 0;
4634 			params.sack_freq = 1;
4635 		}
4636 	} else {
4637 		/* Fetch socket values. */
4638 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4639 			params.sack_delay  = sp->sackdelay;
4640 			params.sack_freq = sp->sackfreq;
4641 		} else {
4642 			params.sack_delay  = 0;
4643 			params.sack_freq = 1;
4644 		}
4645 	}
4646 
4647 	if (copy_to_user(optval, &params, len))
4648 		return -EFAULT;
4649 
4650 	if (put_user(len, optlen))
4651 		return -EFAULT;
4652 
4653 	return 0;
4654 }
4655 
4656 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4657  *
4658  * Applications can specify protocol parameters for the default association
4659  * initialization.  The option name argument to setsockopt() and getsockopt()
4660  * is SCTP_INITMSG.
4661  *
4662  * Setting initialization parameters is effective only on an unconnected
4663  * socket (for UDP-style sockets only future associations are effected
4664  * by the change).  With TCP-style sockets, this option is inherited by
4665  * sockets derived from a listener socket.
4666  */
4667 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4668 {
4669 	if (len < sizeof(struct sctp_initmsg))
4670 		return -EINVAL;
4671 	len = sizeof(struct sctp_initmsg);
4672 	if (put_user(len, optlen))
4673 		return -EFAULT;
4674 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4675 		return -EFAULT;
4676 	return 0;
4677 }
4678 
4679 
4680 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4681 				      char __user *optval, int __user *optlen)
4682 {
4683 	struct sctp_association *asoc;
4684 	int cnt = 0;
4685 	struct sctp_getaddrs getaddrs;
4686 	struct sctp_transport *from;
4687 	void __user *to;
4688 	union sctp_addr temp;
4689 	struct sctp_sock *sp = sctp_sk(sk);
4690 	int addrlen;
4691 	size_t space_left;
4692 	int bytes_copied;
4693 
4694 	if (len < sizeof(struct sctp_getaddrs))
4695 		return -EINVAL;
4696 
4697 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4698 		return -EFAULT;
4699 
4700 	/* For UDP-style sockets, id specifies the association to query.  */
4701 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4702 	if (!asoc)
4703 		return -EINVAL;
4704 
4705 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4706 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4707 
4708 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4709 				transports) {
4710 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4711 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4712 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4713 		if (space_left < addrlen)
4714 			return -ENOMEM;
4715 		if (copy_to_user(to, &temp, addrlen))
4716 			return -EFAULT;
4717 		to += addrlen;
4718 		cnt++;
4719 		space_left -= addrlen;
4720 	}
4721 
4722 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4723 		return -EFAULT;
4724 	bytes_copied = ((char __user *)to) - optval;
4725 	if (put_user(bytes_copied, optlen))
4726 		return -EFAULT;
4727 
4728 	return 0;
4729 }
4730 
4731 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4732 			    size_t space_left, int *bytes_copied)
4733 {
4734 	struct sctp_sockaddr_entry *addr;
4735 	union sctp_addr temp;
4736 	int cnt = 0;
4737 	int addrlen;
4738 	struct net *net = sock_net(sk);
4739 
4740 	rcu_read_lock();
4741 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4742 		if (!addr->valid)
4743 			continue;
4744 
4745 		if ((PF_INET == sk->sk_family) &&
4746 		    (AF_INET6 == addr->a.sa.sa_family))
4747 			continue;
4748 		if ((PF_INET6 == sk->sk_family) &&
4749 		    inet_v6_ipv6only(sk) &&
4750 		    (AF_INET == addr->a.sa.sa_family))
4751 			continue;
4752 		memcpy(&temp, &addr->a, sizeof(temp));
4753 		if (!temp.v4.sin_port)
4754 			temp.v4.sin_port = htons(port);
4755 
4756 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4757 								&temp);
4758 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4759 		if (space_left < addrlen) {
4760 			cnt =  -ENOMEM;
4761 			break;
4762 		}
4763 		memcpy(to, &temp, addrlen);
4764 
4765 		to += addrlen;
4766 		cnt++;
4767 		space_left -= addrlen;
4768 		*bytes_copied += addrlen;
4769 	}
4770 	rcu_read_unlock();
4771 
4772 	return cnt;
4773 }
4774 
4775 
4776 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4777 				       char __user *optval, int __user *optlen)
4778 {
4779 	struct sctp_bind_addr *bp;
4780 	struct sctp_association *asoc;
4781 	int cnt = 0;
4782 	struct sctp_getaddrs getaddrs;
4783 	struct sctp_sockaddr_entry *addr;
4784 	void __user *to;
4785 	union sctp_addr temp;
4786 	struct sctp_sock *sp = sctp_sk(sk);
4787 	int addrlen;
4788 	int err = 0;
4789 	size_t space_left;
4790 	int bytes_copied = 0;
4791 	void *addrs;
4792 	void *buf;
4793 
4794 	if (len < sizeof(struct sctp_getaddrs))
4795 		return -EINVAL;
4796 
4797 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4798 		return -EFAULT;
4799 
4800 	/*
4801 	 *  For UDP-style sockets, id specifies the association to query.
4802 	 *  If the id field is set to the value '0' then the locally bound
4803 	 *  addresses are returned without regard to any particular
4804 	 *  association.
4805 	 */
4806 	if (0 == getaddrs.assoc_id) {
4807 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4808 	} else {
4809 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4810 		if (!asoc)
4811 			return -EINVAL;
4812 		bp = &asoc->base.bind_addr;
4813 	}
4814 
4815 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4816 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4817 
4818 	addrs = kmalloc(space_left, GFP_KERNEL);
4819 	if (!addrs)
4820 		return -ENOMEM;
4821 
4822 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4823 	 * addresses from the global local address list.
4824 	 */
4825 	if (sctp_list_single_entry(&bp->address_list)) {
4826 		addr = list_entry(bp->address_list.next,
4827 				  struct sctp_sockaddr_entry, list);
4828 		if (sctp_is_any(sk, &addr->a)) {
4829 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4830 						space_left, &bytes_copied);
4831 			if (cnt < 0) {
4832 				err = cnt;
4833 				goto out;
4834 			}
4835 			goto copy_getaddrs;
4836 		}
4837 	}
4838 
4839 	buf = addrs;
4840 	/* Protection on the bound address list is not needed since
4841 	 * in the socket option context we hold a socket lock and
4842 	 * thus the bound address list can't change.
4843 	 */
4844 	list_for_each_entry(addr, &bp->address_list, list) {
4845 		memcpy(&temp, &addr->a, sizeof(temp));
4846 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4847 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4848 		if (space_left < addrlen) {
4849 			err =  -ENOMEM; /*fixme: right error?*/
4850 			goto out;
4851 		}
4852 		memcpy(buf, &temp, addrlen);
4853 		buf += addrlen;
4854 		bytes_copied += addrlen;
4855 		cnt++;
4856 		space_left -= addrlen;
4857 	}
4858 
4859 copy_getaddrs:
4860 	if (copy_to_user(to, addrs, bytes_copied)) {
4861 		err = -EFAULT;
4862 		goto out;
4863 	}
4864 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4865 		err = -EFAULT;
4866 		goto out;
4867 	}
4868 	if (put_user(bytes_copied, optlen))
4869 		err = -EFAULT;
4870 out:
4871 	kfree(addrs);
4872 	return err;
4873 }
4874 
4875 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4876  *
4877  * Requests that the local SCTP stack use the enclosed peer address as
4878  * the association primary.  The enclosed address must be one of the
4879  * association peer's addresses.
4880  */
4881 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4882 					char __user *optval, int __user *optlen)
4883 {
4884 	struct sctp_prim prim;
4885 	struct sctp_association *asoc;
4886 	struct sctp_sock *sp = sctp_sk(sk);
4887 
4888 	if (len < sizeof(struct sctp_prim))
4889 		return -EINVAL;
4890 
4891 	len = sizeof(struct sctp_prim);
4892 
4893 	if (copy_from_user(&prim, optval, len))
4894 		return -EFAULT;
4895 
4896 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4897 	if (!asoc)
4898 		return -EINVAL;
4899 
4900 	if (!asoc->peer.primary_path)
4901 		return -ENOTCONN;
4902 
4903 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4904 		asoc->peer.primary_path->af_specific->sockaddr_len);
4905 
4906 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4907 			(union sctp_addr *)&prim.ssp_addr);
4908 
4909 	if (put_user(len, optlen))
4910 		return -EFAULT;
4911 	if (copy_to_user(optval, &prim, len))
4912 		return -EFAULT;
4913 
4914 	return 0;
4915 }
4916 
4917 /*
4918  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4919  *
4920  * Requests that the local endpoint set the specified Adaptation Layer
4921  * Indication parameter for all future INIT and INIT-ACK exchanges.
4922  */
4923 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4924 				  char __user *optval, int __user *optlen)
4925 {
4926 	struct sctp_setadaptation adaptation;
4927 
4928 	if (len < sizeof(struct sctp_setadaptation))
4929 		return -EINVAL;
4930 
4931 	len = sizeof(struct sctp_setadaptation);
4932 
4933 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4934 
4935 	if (put_user(len, optlen))
4936 		return -EFAULT;
4937 	if (copy_to_user(optval, &adaptation, len))
4938 		return -EFAULT;
4939 
4940 	return 0;
4941 }
4942 
4943 /*
4944  *
4945  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4946  *
4947  *   Applications that wish to use the sendto() system call may wish to
4948  *   specify a default set of parameters that would normally be supplied
4949  *   through the inclusion of ancillary data.  This socket option allows
4950  *   such an application to set the default sctp_sndrcvinfo structure.
4951 
4952 
4953  *   The application that wishes to use this socket option simply passes
4954  *   in to this call the sctp_sndrcvinfo structure defined in Section
4955  *   5.2.2) The input parameters accepted by this call include
4956  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4957  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4958  *   to this call if the caller is using the UDP model.
4959  *
4960  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4961  */
4962 static int sctp_getsockopt_default_send_param(struct sock *sk,
4963 					int len, char __user *optval,
4964 					int __user *optlen)
4965 {
4966 	struct sctp_sndrcvinfo info;
4967 	struct sctp_association *asoc;
4968 	struct sctp_sock *sp = sctp_sk(sk);
4969 
4970 	if (len < sizeof(struct sctp_sndrcvinfo))
4971 		return -EINVAL;
4972 
4973 	len = sizeof(struct sctp_sndrcvinfo);
4974 
4975 	if (copy_from_user(&info, optval, len))
4976 		return -EFAULT;
4977 
4978 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4979 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4980 		return -EINVAL;
4981 
4982 	if (asoc) {
4983 		info.sinfo_stream = asoc->default_stream;
4984 		info.sinfo_flags = asoc->default_flags;
4985 		info.sinfo_ppid = asoc->default_ppid;
4986 		info.sinfo_context = asoc->default_context;
4987 		info.sinfo_timetolive = asoc->default_timetolive;
4988 	} else {
4989 		info.sinfo_stream = sp->default_stream;
4990 		info.sinfo_flags = sp->default_flags;
4991 		info.sinfo_ppid = sp->default_ppid;
4992 		info.sinfo_context = sp->default_context;
4993 		info.sinfo_timetolive = sp->default_timetolive;
4994 	}
4995 
4996 	if (put_user(len, optlen))
4997 		return -EFAULT;
4998 	if (copy_to_user(optval, &info, len))
4999 		return -EFAULT;
5000 
5001 	return 0;
5002 }
5003 
5004 /*
5005  *
5006  * 7.1.5 SCTP_NODELAY
5007  *
5008  * Turn on/off any Nagle-like algorithm.  This means that packets are
5009  * generally sent as soon as possible and no unnecessary delays are
5010  * introduced, at the cost of more packets in the network.  Expects an
5011  * integer boolean flag.
5012  */
5013 
5014 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5015 				   char __user *optval, int __user *optlen)
5016 {
5017 	int val;
5018 
5019 	if (len < sizeof(int))
5020 		return -EINVAL;
5021 
5022 	len = sizeof(int);
5023 	val = (sctp_sk(sk)->nodelay == 1);
5024 	if (put_user(len, optlen))
5025 		return -EFAULT;
5026 	if (copy_to_user(optval, &val, len))
5027 		return -EFAULT;
5028 	return 0;
5029 }
5030 
5031 /*
5032  *
5033  * 7.1.1 SCTP_RTOINFO
5034  *
5035  * The protocol parameters used to initialize and bound retransmission
5036  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5037  * and modify these parameters.
5038  * All parameters are time values, in milliseconds.  A value of 0, when
5039  * modifying the parameters, indicates that the current value should not
5040  * be changed.
5041  *
5042  */
5043 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5044 				char __user *optval,
5045 				int __user *optlen) {
5046 	struct sctp_rtoinfo rtoinfo;
5047 	struct sctp_association *asoc;
5048 
5049 	if (len < sizeof (struct sctp_rtoinfo))
5050 		return -EINVAL;
5051 
5052 	len = sizeof(struct sctp_rtoinfo);
5053 
5054 	if (copy_from_user(&rtoinfo, optval, len))
5055 		return -EFAULT;
5056 
5057 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5058 
5059 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5060 		return -EINVAL;
5061 
5062 	/* Values corresponding to the specific association. */
5063 	if (asoc) {
5064 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5065 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5066 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5067 	} else {
5068 		/* Values corresponding to the endpoint. */
5069 		struct sctp_sock *sp = sctp_sk(sk);
5070 
5071 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5072 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5073 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5074 	}
5075 
5076 	if (put_user(len, optlen))
5077 		return -EFAULT;
5078 
5079 	if (copy_to_user(optval, &rtoinfo, len))
5080 		return -EFAULT;
5081 
5082 	return 0;
5083 }
5084 
5085 /*
5086  *
5087  * 7.1.2 SCTP_ASSOCINFO
5088  *
5089  * This option is used to tune the maximum retransmission attempts
5090  * of the association.
5091  * Returns an error if the new association retransmission value is
5092  * greater than the sum of the retransmission value  of the peer.
5093  * See [SCTP] for more information.
5094  *
5095  */
5096 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5097 				     char __user *optval,
5098 				     int __user *optlen)
5099 {
5100 
5101 	struct sctp_assocparams assocparams;
5102 	struct sctp_association *asoc;
5103 	struct list_head *pos;
5104 	int cnt = 0;
5105 
5106 	if (len < sizeof (struct sctp_assocparams))
5107 		return -EINVAL;
5108 
5109 	len = sizeof(struct sctp_assocparams);
5110 
5111 	if (copy_from_user(&assocparams, optval, len))
5112 		return -EFAULT;
5113 
5114 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5115 
5116 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5117 		return -EINVAL;
5118 
5119 	/* Values correspoinding to the specific association */
5120 	if (asoc) {
5121 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5122 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5123 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5124 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5125 
5126 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5127 			cnt++;
5128 		}
5129 
5130 		assocparams.sasoc_number_peer_destinations = cnt;
5131 	} else {
5132 		/* Values corresponding to the endpoint */
5133 		struct sctp_sock *sp = sctp_sk(sk);
5134 
5135 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5136 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5137 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5138 		assocparams.sasoc_cookie_life =
5139 					sp->assocparams.sasoc_cookie_life;
5140 		assocparams.sasoc_number_peer_destinations =
5141 					sp->assocparams.
5142 					sasoc_number_peer_destinations;
5143 	}
5144 
5145 	if (put_user(len, optlen))
5146 		return -EFAULT;
5147 
5148 	if (copy_to_user(optval, &assocparams, len))
5149 		return -EFAULT;
5150 
5151 	return 0;
5152 }
5153 
5154 /*
5155  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5156  *
5157  * This socket option is a boolean flag which turns on or off mapped V4
5158  * addresses.  If this option is turned on and the socket is type
5159  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5160  * If this option is turned off, then no mapping will be done of V4
5161  * addresses and a user will receive both PF_INET6 and PF_INET type
5162  * addresses on the socket.
5163  */
5164 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5165 				    char __user *optval, int __user *optlen)
5166 {
5167 	int val;
5168 	struct sctp_sock *sp = sctp_sk(sk);
5169 
5170 	if (len < sizeof(int))
5171 		return -EINVAL;
5172 
5173 	len = sizeof(int);
5174 	val = sp->v4mapped;
5175 	if (put_user(len, optlen))
5176 		return -EFAULT;
5177 	if (copy_to_user(optval, &val, len))
5178 		return -EFAULT;
5179 
5180 	return 0;
5181 }
5182 
5183 /*
5184  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5185  * (chapter and verse is quoted at sctp_setsockopt_context())
5186  */
5187 static int sctp_getsockopt_context(struct sock *sk, int len,
5188 				   char __user *optval, int __user *optlen)
5189 {
5190 	struct sctp_assoc_value params;
5191 	struct sctp_sock *sp;
5192 	struct sctp_association *asoc;
5193 
5194 	if (len < sizeof(struct sctp_assoc_value))
5195 		return -EINVAL;
5196 
5197 	len = sizeof(struct sctp_assoc_value);
5198 
5199 	if (copy_from_user(&params, optval, len))
5200 		return -EFAULT;
5201 
5202 	sp = sctp_sk(sk);
5203 
5204 	if (params.assoc_id != 0) {
5205 		asoc = sctp_id2assoc(sk, params.assoc_id);
5206 		if (!asoc)
5207 			return -EINVAL;
5208 		params.assoc_value = asoc->default_rcv_context;
5209 	} else {
5210 		params.assoc_value = sp->default_rcv_context;
5211 	}
5212 
5213 	if (put_user(len, optlen))
5214 		return -EFAULT;
5215 	if (copy_to_user(optval, &params, len))
5216 		return -EFAULT;
5217 
5218 	return 0;
5219 }
5220 
5221 /*
5222  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5223  * This option will get or set the maximum size to put in any outgoing
5224  * SCTP DATA chunk.  If a message is larger than this size it will be
5225  * fragmented by SCTP into the specified size.  Note that the underlying
5226  * SCTP implementation may fragment into smaller sized chunks when the
5227  * PMTU of the underlying association is smaller than the value set by
5228  * the user.  The default value for this option is '0' which indicates
5229  * the user is NOT limiting fragmentation and only the PMTU will effect
5230  * SCTP's choice of DATA chunk size.  Note also that values set larger
5231  * than the maximum size of an IP datagram will effectively let SCTP
5232  * control fragmentation (i.e. the same as setting this option to 0).
5233  *
5234  * The following structure is used to access and modify this parameter:
5235  *
5236  * struct sctp_assoc_value {
5237  *   sctp_assoc_t assoc_id;
5238  *   uint32_t assoc_value;
5239  * };
5240  *
5241  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5242  *    For one-to-many style sockets this parameter indicates which
5243  *    association the user is performing an action upon.  Note that if
5244  *    this field's value is zero then the endpoints default value is
5245  *    changed (effecting future associations only).
5246  * assoc_value:  This parameter specifies the maximum size in bytes.
5247  */
5248 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5249 				  char __user *optval, int __user *optlen)
5250 {
5251 	struct sctp_assoc_value params;
5252 	struct sctp_association *asoc;
5253 
5254 	if (len == sizeof(int)) {
5255 		pr_warn_ratelimited(DEPRECATED
5256 				    "%s (pid %d) "
5257 				    "Use of int in maxseg socket option.\n"
5258 				    "Use struct sctp_assoc_value instead\n",
5259 				    current->comm, task_pid_nr(current));
5260 		params.assoc_id = 0;
5261 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5262 		len = sizeof(struct sctp_assoc_value);
5263 		if (copy_from_user(&params, optval, sizeof(params)))
5264 			return -EFAULT;
5265 	} else
5266 		return -EINVAL;
5267 
5268 	asoc = sctp_id2assoc(sk, params.assoc_id);
5269 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5270 		return -EINVAL;
5271 
5272 	if (asoc)
5273 		params.assoc_value = asoc->frag_point;
5274 	else
5275 		params.assoc_value = sctp_sk(sk)->user_frag;
5276 
5277 	if (put_user(len, optlen))
5278 		return -EFAULT;
5279 	if (len == sizeof(int)) {
5280 		if (copy_to_user(optval, &params.assoc_value, len))
5281 			return -EFAULT;
5282 	} else {
5283 		if (copy_to_user(optval, &params, len))
5284 			return -EFAULT;
5285 	}
5286 
5287 	return 0;
5288 }
5289 
5290 /*
5291  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5292  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5293  */
5294 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5295 					       char __user *optval, int __user *optlen)
5296 {
5297 	int val;
5298 
5299 	if (len < sizeof(int))
5300 		return -EINVAL;
5301 
5302 	len = sizeof(int);
5303 
5304 	val = sctp_sk(sk)->frag_interleave;
5305 	if (put_user(len, optlen))
5306 		return -EFAULT;
5307 	if (copy_to_user(optval, &val, len))
5308 		return -EFAULT;
5309 
5310 	return 0;
5311 }
5312 
5313 /*
5314  * 7.1.25.  Set or Get the sctp partial delivery point
5315  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5316  */
5317 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5318 						  char __user *optval,
5319 						  int __user *optlen)
5320 {
5321 	u32 val;
5322 
5323 	if (len < sizeof(u32))
5324 		return -EINVAL;
5325 
5326 	len = sizeof(u32);
5327 
5328 	val = sctp_sk(sk)->pd_point;
5329 	if (put_user(len, optlen))
5330 		return -EFAULT;
5331 	if (copy_to_user(optval, &val, len))
5332 		return -EFAULT;
5333 
5334 	return 0;
5335 }
5336 
5337 /*
5338  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5339  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5340  */
5341 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5342 				    char __user *optval,
5343 				    int __user *optlen)
5344 {
5345 	struct sctp_assoc_value params;
5346 	struct sctp_sock *sp;
5347 	struct sctp_association *asoc;
5348 
5349 	if (len == sizeof(int)) {
5350 		pr_warn_ratelimited(DEPRECATED
5351 				    "%s (pid %d) "
5352 				    "Use of int in max_burst socket option.\n"
5353 				    "Use struct sctp_assoc_value instead\n",
5354 				    current->comm, task_pid_nr(current));
5355 		params.assoc_id = 0;
5356 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5357 		len = sizeof(struct sctp_assoc_value);
5358 		if (copy_from_user(&params, optval, len))
5359 			return -EFAULT;
5360 	} else
5361 		return -EINVAL;
5362 
5363 	sp = sctp_sk(sk);
5364 
5365 	if (params.assoc_id != 0) {
5366 		asoc = sctp_id2assoc(sk, params.assoc_id);
5367 		if (!asoc)
5368 			return -EINVAL;
5369 		params.assoc_value = asoc->max_burst;
5370 	} else
5371 		params.assoc_value = sp->max_burst;
5372 
5373 	if (len == sizeof(int)) {
5374 		if (copy_to_user(optval, &params.assoc_value, len))
5375 			return -EFAULT;
5376 	} else {
5377 		if (copy_to_user(optval, &params, len))
5378 			return -EFAULT;
5379 	}
5380 
5381 	return 0;
5382 
5383 }
5384 
5385 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5386 				    char __user *optval, int __user *optlen)
5387 {
5388 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5389 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5390 	struct sctp_hmac_algo_param *hmacs;
5391 	__u16 data_len = 0;
5392 	u32 num_idents;
5393 
5394 	if (!ep->auth_enable)
5395 		return -EACCES;
5396 
5397 	hmacs = ep->auth_hmacs_list;
5398 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5399 
5400 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5401 		return -EINVAL;
5402 
5403 	len = sizeof(struct sctp_hmacalgo) + data_len;
5404 	num_idents = data_len / sizeof(u16);
5405 
5406 	if (put_user(len, optlen))
5407 		return -EFAULT;
5408 	if (put_user(num_idents, &p->shmac_num_idents))
5409 		return -EFAULT;
5410 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5411 		return -EFAULT;
5412 	return 0;
5413 }
5414 
5415 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5416 				    char __user *optval, int __user *optlen)
5417 {
5418 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5419 	struct sctp_authkeyid val;
5420 	struct sctp_association *asoc;
5421 
5422 	if (!ep->auth_enable)
5423 		return -EACCES;
5424 
5425 	if (len < sizeof(struct sctp_authkeyid))
5426 		return -EINVAL;
5427 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5428 		return -EFAULT;
5429 
5430 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5431 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5432 		return -EINVAL;
5433 
5434 	if (asoc)
5435 		val.scact_keynumber = asoc->active_key_id;
5436 	else
5437 		val.scact_keynumber = ep->active_key_id;
5438 
5439 	len = sizeof(struct sctp_authkeyid);
5440 	if (put_user(len, optlen))
5441 		return -EFAULT;
5442 	if (copy_to_user(optval, &val, len))
5443 		return -EFAULT;
5444 
5445 	return 0;
5446 }
5447 
5448 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5449 				    char __user *optval, int __user *optlen)
5450 {
5451 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5452 	struct sctp_authchunks __user *p = (void __user *)optval;
5453 	struct sctp_authchunks val;
5454 	struct sctp_association *asoc;
5455 	struct sctp_chunks_param *ch;
5456 	u32    num_chunks = 0;
5457 	char __user *to;
5458 
5459 	if (!ep->auth_enable)
5460 		return -EACCES;
5461 
5462 	if (len < sizeof(struct sctp_authchunks))
5463 		return -EINVAL;
5464 
5465 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5466 		return -EFAULT;
5467 
5468 	to = p->gauth_chunks;
5469 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5470 	if (!asoc)
5471 		return -EINVAL;
5472 
5473 	ch = asoc->peer.peer_chunks;
5474 	if (!ch)
5475 		goto num;
5476 
5477 	/* See if the user provided enough room for all the data */
5478 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5479 	if (len < num_chunks)
5480 		return -EINVAL;
5481 
5482 	if (copy_to_user(to, ch->chunks, num_chunks))
5483 		return -EFAULT;
5484 num:
5485 	len = sizeof(struct sctp_authchunks) + num_chunks;
5486 	if (put_user(len, optlen))
5487 		return -EFAULT;
5488 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5489 		return -EFAULT;
5490 	return 0;
5491 }
5492 
5493 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5494 				    char __user *optval, int __user *optlen)
5495 {
5496 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5497 	struct sctp_authchunks __user *p = (void __user *)optval;
5498 	struct sctp_authchunks val;
5499 	struct sctp_association *asoc;
5500 	struct sctp_chunks_param *ch;
5501 	u32    num_chunks = 0;
5502 	char __user *to;
5503 
5504 	if (!ep->auth_enable)
5505 		return -EACCES;
5506 
5507 	if (len < sizeof(struct sctp_authchunks))
5508 		return -EINVAL;
5509 
5510 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5511 		return -EFAULT;
5512 
5513 	to = p->gauth_chunks;
5514 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5515 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5516 		return -EINVAL;
5517 
5518 	if (asoc)
5519 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5520 	else
5521 		ch = ep->auth_chunk_list;
5522 
5523 	if (!ch)
5524 		goto num;
5525 
5526 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5527 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5528 		return -EINVAL;
5529 
5530 	if (copy_to_user(to, ch->chunks, num_chunks))
5531 		return -EFAULT;
5532 num:
5533 	len = sizeof(struct sctp_authchunks) + num_chunks;
5534 	if (put_user(len, optlen))
5535 		return -EFAULT;
5536 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5537 		return -EFAULT;
5538 
5539 	return 0;
5540 }
5541 
5542 /*
5543  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5544  * This option gets the current number of associations that are attached
5545  * to a one-to-many style socket.  The option value is an uint32_t.
5546  */
5547 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5548 				    char __user *optval, int __user *optlen)
5549 {
5550 	struct sctp_sock *sp = sctp_sk(sk);
5551 	struct sctp_association *asoc;
5552 	u32 val = 0;
5553 
5554 	if (sctp_style(sk, TCP))
5555 		return -EOPNOTSUPP;
5556 
5557 	if (len < sizeof(u32))
5558 		return -EINVAL;
5559 
5560 	len = sizeof(u32);
5561 
5562 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5563 		val++;
5564 	}
5565 
5566 	if (put_user(len, optlen))
5567 		return -EFAULT;
5568 	if (copy_to_user(optval, &val, len))
5569 		return -EFAULT;
5570 
5571 	return 0;
5572 }
5573 
5574 /*
5575  * 8.1.23 SCTP_AUTO_ASCONF
5576  * See the corresponding setsockopt entry as description
5577  */
5578 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5579 				   char __user *optval, int __user *optlen)
5580 {
5581 	int val = 0;
5582 
5583 	if (len < sizeof(int))
5584 		return -EINVAL;
5585 
5586 	len = sizeof(int);
5587 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5588 		val = 1;
5589 	if (put_user(len, optlen))
5590 		return -EFAULT;
5591 	if (copy_to_user(optval, &val, len))
5592 		return -EFAULT;
5593 	return 0;
5594 }
5595 
5596 /*
5597  * 8.2.6. Get the Current Identifiers of Associations
5598  *        (SCTP_GET_ASSOC_ID_LIST)
5599  *
5600  * This option gets the current list of SCTP association identifiers of
5601  * the SCTP associations handled by a one-to-many style socket.
5602  */
5603 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5604 				    char __user *optval, int __user *optlen)
5605 {
5606 	struct sctp_sock *sp = sctp_sk(sk);
5607 	struct sctp_association *asoc;
5608 	struct sctp_assoc_ids *ids;
5609 	u32 num = 0;
5610 
5611 	if (sctp_style(sk, TCP))
5612 		return -EOPNOTSUPP;
5613 
5614 	if (len < sizeof(struct sctp_assoc_ids))
5615 		return -EINVAL;
5616 
5617 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5618 		num++;
5619 	}
5620 
5621 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5622 		return -EINVAL;
5623 
5624 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5625 
5626 	ids = kmalloc(len, GFP_KERNEL);
5627 	if (unlikely(!ids))
5628 		return -ENOMEM;
5629 
5630 	ids->gaids_number_of_ids = num;
5631 	num = 0;
5632 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5633 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5634 	}
5635 
5636 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5637 		kfree(ids);
5638 		return -EFAULT;
5639 	}
5640 
5641 	kfree(ids);
5642 	return 0;
5643 }
5644 
5645 /*
5646  * SCTP_PEER_ADDR_THLDS
5647  *
5648  * This option allows us to fetch the partially failed threshold for one or all
5649  * transports in an association.  See Section 6.1 of:
5650  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5651  */
5652 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5653 					    char __user *optval,
5654 					    int len,
5655 					    int __user *optlen)
5656 {
5657 	struct sctp_paddrthlds val;
5658 	struct sctp_transport *trans;
5659 	struct sctp_association *asoc;
5660 
5661 	if (len < sizeof(struct sctp_paddrthlds))
5662 		return -EINVAL;
5663 	len = sizeof(struct sctp_paddrthlds);
5664 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5665 		return -EFAULT;
5666 
5667 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5668 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5669 		if (!asoc)
5670 			return -ENOENT;
5671 
5672 		val.spt_pathpfthld = asoc->pf_retrans;
5673 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5674 	} else {
5675 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5676 					       val.spt_assoc_id);
5677 		if (!trans)
5678 			return -ENOENT;
5679 
5680 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5681 		val.spt_pathpfthld = trans->pf_retrans;
5682 	}
5683 
5684 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5685 		return -EFAULT;
5686 
5687 	return 0;
5688 }
5689 
5690 /*
5691  * SCTP_GET_ASSOC_STATS
5692  *
5693  * This option retrieves local per endpoint statistics. It is modeled
5694  * after OpenSolaris' implementation
5695  */
5696 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5697 				       char __user *optval,
5698 				       int __user *optlen)
5699 {
5700 	struct sctp_assoc_stats sas;
5701 	struct sctp_association *asoc = NULL;
5702 
5703 	/* User must provide at least the assoc id */
5704 	if (len < sizeof(sctp_assoc_t))
5705 		return -EINVAL;
5706 
5707 	/* Allow the struct to grow and fill in as much as possible */
5708 	len = min_t(size_t, len, sizeof(sas));
5709 
5710 	if (copy_from_user(&sas, optval, len))
5711 		return -EFAULT;
5712 
5713 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5714 	if (!asoc)
5715 		return -EINVAL;
5716 
5717 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5718 	sas.sas_gapcnt = asoc->stats.gapcnt;
5719 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5720 	sas.sas_osacks = asoc->stats.osacks;
5721 	sas.sas_isacks = asoc->stats.isacks;
5722 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5723 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5724 	sas.sas_oodchunks = asoc->stats.oodchunks;
5725 	sas.sas_iodchunks = asoc->stats.iodchunks;
5726 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5727 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5728 	sas.sas_idupchunks = asoc->stats.idupchunks;
5729 	sas.sas_opackets = asoc->stats.opackets;
5730 	sas.sas_ipackets = asoc->stats.ipackets;
5731 
5732 	/* New high max rto observed, will return 0 if not a single
5733 	 * RTO update took place. obs_rto_ipaddr will be bogus
5734 	 * in such a case
5735 	 */
5736 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5737 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5738 		sizeof(struct sockaddr_storage));
5739 
5740 	/* Mark beginning of a new observation period */
5741 	asoc->stats.max_obs_rto = asoc->rto_min;
5742 
5743 	if (put_user(len, optlen))
5744 		return -EFAULT;
5745 
5746 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5747 
5748 	if (copy_to_user(optval, &sas, len))
5749 		return -EFAULT;
5750 
5751 	return 0;
5752 }
5753 
5754 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5755 			   char __user *optval, int __user *optlen)
5756 {
5757 	int retval = 0;
5758 	int len;
5759 
5760 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5761 
5762 	/* I can hardly begin to describe how wrong this is.  This is
5763 	 * so broken as to be worse than useless.  The API draft
5764 	 * REALLY is NOT helpful here...  I am not convinced that the
5765 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5766 	 * are at all well-founded.
5767 	 */
5768 	if (level != SOL_SCTP) {
5769 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5770 
5771 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5772 		return retval;
5773 	}
5774 
5775 	if (get_user(len, optlen))
5776 		return -EFAULT;
5777 
5778 	lock_sock(sk);
5779 
5780 	switch (optname) {
5781 	case SCTP_STATUS:
5782 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5783 		break;
5784 	case SCTP_DISABLE_FRAGMENTS:
5785 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5786 							   optlen);
5787 		break;
5788 	case SCTP_EVENTS:
5789 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5790 		break;
5791 	case SCTP_AUTOCLOSE:
5792 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5793 		break;
5794 	case SCTP_SOCKOPT_PEELOFF:
5795 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5796 		break;
5797 	case SCTP_PEER_ADDR_PARAMS:
5798 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5799 							  optlen);
5800 		break;
5801 	case SCTP_DELAYED_SACK:
5802 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5803 							  optlen);
5804 		break;
5805 	case SCTP_INITMSG:
5806 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5807 		break;
5808 	case SCTP_GET_PEER_ADDRS:
5809 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5810 						    optlen);
5811 		break;
5812 	case SCTP_GET_LOCAL_ADDRS:
5813 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5814 						     optlen);
5815 		break;
5816 	case SCTP_SOCKOPT_CONNECTX3:
5817 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5818 		break;
5819 	case SCTP_DEFAULT_SEND_PARAM:
5820 		retval = sctp_getsockopt_default_send_param(sk, len,
5821 							    optval, optlen);
5822 		break;
5823 	case SCTP_PRIMARY_ADDR:
5824 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5825 		break;
5826 	case SCTP_NODELAY:
5827 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5828 		break;
5829 	case SCTP_RTOINFO:
5830 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5831 		break;
5832 	case SCTP_ASSOCINFO:
5833 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5834 		break;
5835 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5836 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5837 		break;
5838 	case SCTP_MAXSEG:
5839 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5840 		break;
5841 	case SCTP_GET_PEER_ADDR_INFO:
5842 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5843 							optlen);
5844 		break;
5845 	case SCTP_ADAPTATION_LAYER:
5846 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5847 							optlen);
5848 		break;
5849 	case SCTP_CONTEXT:
5850 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5851 		break;
5852 	case SCTP_FRAGMENT_INTERLEAVE:
5853 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5854 							     optlen);
5855 		break;
5856 	case SCTP_PARTIAL_DELIVERY_POINT:
5857 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5858 								optlen);
5859 		break;
5860 	case SCTP_MAX_BURST:
5861 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5862 		break;
5863 	case SCTP_AUTH_KEY:
5864 	case SCTP_AUTH_CHUNK:
5865 	case SCTP_AUTH_DELETE_KEY:
5866 		retval = -EOPNOTSUPP;
5867 		break;
5868 	case SCTP_HMAC_IDENT:
5869 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5870 		break;
5871 	case SCTP_AUTH_ACTIVE_KEY:
5872 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5873 		break;
5874 	case SCTP_PEER_AUTH_CHUNKS:
5875 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5876 							optlen);
5877 		break;
5878 	case SCTP_LOCAL_AUTH_CHUNKS:
5879 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5880 							optlen);
5881 		break;
5882 	case SCTP_GET_ASSOC_NUMBER:
5883 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5884 		break;
5885 	case SCTP_GET_ASSOC_ID_LIST:
5886 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5887 		break;
5888 	case SCTP_AUTO_ASCONF:
5889 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5890 		break;
5891 	case SCTP_PEER_ADDR_THLDS:
5892 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5893 		break;
5894 	case SCTP_GET_ASSOC_STATS:
5895 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5896 		break;
5897 	default:
5898 		retval = -ENOPROTOOPT;
5899 		break;
5900 	}
5901 
5902 	release_sock(sk);
5903 	return retval;
5904 }
5905 
5906 static void sctp_hash(struct sock *sk)
5907 {
5908 	/* STUB */
5909 }
5910 
5911 static void sctp_unhash(struct sock *sk)
5912 {
5913 	/* STUB */
5914 }
5915 
5916 /* Check if port is acceptable.  Possibly find first available port.
5917  *
5918  * The port hash table (contained in the 'global' SCTP protocol storage
5919  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5920  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5921  * list (the list number is the port number hashed out, so as you
5922  * would expect from a hash function, all the ports in a given list have
5923  * such a number that hashes out to the same list number; you were
5924  * expecting that, right?); so each list has a set of ports, with a
5925  * link to the socket (struct sock) that uses it, the port number and
5926  * a fastreuse flag (FIXME: NPI ipg).
5927  */
5928 static struct sctp_bind_bucket *sctp_bucket_create(
5929 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5930 
5931 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5932 {
5933 	struct sctp_bind_hashbucket *head; /* hash list */
5934 	struct sctp_bind_bucket *pp;
5935 	unsigned short snum;
5936 	int ret;
5937 
5938 	snum = ntohs(addr->v4.sin_port);
5939 
5940 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5941 
5942 	local_bh_disable();
5943 
5944 	if (snum == 0) {
5945 		/* Search for an available port. */
5946 		int low, high, remaining, index;
5947 		unsigned int rover;
5948 
5949 		inet_get_local_port_range(sock_net(sk), &low, &high);
5950 		remaining = (high - low) + 1;
5951 		rover = prandom_u32() % remaining + low;
5952 
5953 		do {
5954 			rover++;
5955 			if ((rover < low) || (rover > high))
5956 				rover = low;
5957 			if (inet_is_reserved_local_port(rover))
5958 				continue;
5959 			index = sctp_phashfn(sock_net(sk), rover);
5960 			head = &sctp_port_hashtable[index];
5961 			spin_lock(&head->lock);
5962 			sctp_for_each_hentry(pp, &head->chain)
5963 				if ((pp->port == rover) &&
5964 				    net_eq(sock_net(sk), pp->net))
5965 					goto next;
5966 			break;
5967 		next:
5968 			spin_unlock(&head->lock);
5969 		} while (--remaining > 0);
5970 
5971 		/* Exhausted local port range during search? */
5972 		ret = 1;
5973 		if (remaining <= 0)
5974 			goto fail;
5975 
5976 		/* OK, here is the one we will use.  HEAD (the port
5977 		 * hash table list entry) is non-NULL and we hold it's
5978 		 * mutex.
5979 		 */
5980 		snum = rover;
5981 	} else {
5982 		/* We are given an specific port number; we verify
5983 		 * that it is not being used. If it is used, we will
5984 		 * exahust the search in the hash list corresponding
5985 		 * to the port number (snum) - we detect that with the
5986 		 * port iterator, pp being NULL.
5987 		 */
5988 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5989 		spin_lock(&head->lock);
5990 		sctp_for_each_hentry(pp, &head->chain) {
5991 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5992 				goto pp_found;
5993 		}
5994 	}
5995 	pp = NULL;
5996 	goto pp_not_found;
5997 pp_found:
5998 	if (!hlist_empty(&pp->owner)) {
5999 		/* We had a port hash table hit - there is an
6000 		 * available port (pp != NULL) and it is being
6001 		 * used by other socket (pp->owner not empty); that other
6002 		 * socket is going to be sk2.
6003 		 */
6004 		int reuse = sk->sk_reuse;
6005 		struct sock *sk2;
6006 
6007 		pr_debug("%s: found a possible match\n", __func__);
6008 
6009 		if (pp->fastreuse && sk->sk_reuse &&
6010 			sk->sk_state != SCTP_SS_LISTENING)
6011 			goto success;
6012 
6013 		/* Run through the list of sockets bound to the port
6014 		 * (pp->port) [via the pointers bind_next and
6015 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6016 		 * we get the endpoint they describe and run through
6017 		 * the endpoint's list of IP (v4 or v6) addresses,
6018 		 * comparing each of the addresses with the address of
6019 		 * the socket sk. If we find a match, then that means
6020 		 * that this port/socket (sk) combination are already
6021 		 * in an endpoint.
6022 		 */
6023 		sk_for_each_bound(sk2, &pp->owner) {
6024 			struct sctp_endpoint *ep2;
6025 			ep2 = sctp_sk(sk2)->ep;
6026 
6027 			if (sk == sk2 ||
6028 			    (reuse && sk2->sk_reuse &&
6029 			     sk2->sk_state != SCTP_SS_LISTENING))
6030 				continue;
6031 
6032 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6033 						 sctp_sk(sk2), sctp_sk(sk))) {
6034 				ret = (long)sk2;
6035 				goto fail_unlock;
6036 			}
6037 		}
6038 
6039 		pr_debug("%s: found a match\n", __func__);
6040 	}
6041 pp_not_found:
6042 	/* If there was a hash table miss, create a new port.  */
6043 	ret = 1;
6044 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6045 		goto fail_unlock;
6046 
6047 	/* In either case (hit or miss), make sure fastreuse is 1 only
6048 	 * if sk->sk_reuse is too (that is, if the caller requested
6049 	 * SO_REUSEADDR on this socket -sk-).
6050 	 */
6051 	if (hlist_empty(&pp->owner)) {
6052 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6053 			pp->fastreuse = 1;
6054 		else
6055 			pp->fastreuse = 0;
6056 	} else if (pp->fastreuse &&
6057 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6058 		pp->fastreuse = 0;
6059 
6060 	/* We are set, so fill up all the data in the hash table
6061 	 * entry, tie the socket list information with the rest of the
6062 	 * sockets FIXME: Blurry, NPI (ipg).
6063 	 */
6064 success:
6065 	if (!sctp_sk(sk)->bind_hash) {
6066 		inet_sk(sk)->inet_num = snum;
6067 		sk_add_bind_node(sk, &pp->owner);
6068 		sctp_sk(sk)->bind_hash = pp;
6069 	}
6070 	ret = 0;
6071 
6072 fail_unlock:
6073 	spin_unlock(&head->lock);
6074 
6075 fail:
6076 	local_bh_enable();
6077 	return ret;
6078 }
6079 
6080 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6081  * port is requested.
6082  */
6083 static int sctp_get_port(struct sock *sk, unsigned short snum)
6084 {
6085 	union sctp_addr addr;
6086 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6087 
6088 	/* Set up a dummy address struct from the sk. */
6089 	af->from_sk(&addr, sk);
6090 	addr.v4.sin_port = htons(snum);
6091 
6092 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6093 	return !!sctp_get_port_local(sk, &addr);
6094 }
6095 
6096 /*
6097  *  Move a socket to LISTENING state.
6098  */
6099 static int sctp_listen_start(struct sock *sk, int backlog)
6100 {
6101 	struct sctp_sock *sp = sctp_sk(sk);
6102 	struct sctp_endpoint *ep = sp->ep;
6103 	struct crypto_hash *tfm = NULL;
6104 	char alg[32];
6105 
6106 	/* Allocate HMAC for generating cookie. */
6107 	if (!sp->hmac && sp->sctp_hmac_alg) {
6108 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6109 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6110 		if (IS_ERR(tfm)) {
6111 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6112 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6113 			return -ENOSYS;
6114 		}
6115 		sctp_sk(sk)->hmac = tfm;
6116 	}
6117 
6118 	/*
6119 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6120 	 * call that allows new associations to be accepted, the system
6121 	 * picks an ephemeral port and will choose an address set equivalent
6122 	 * to binding with a wildcard address.
6123 	 *
6124 	 * This is not currently spelled out in the SCTP sockets
6125 	 * extensions draft, but follows the practice as seen in TCP
6126 	 * sockets.
6127 	 *
6128 	 */
6129 	sk->sk_state = SCTP_SS_LISTENING;
6130 	if (!ep->base.bind_addr.port) {
6131 		if (sctp_autobind(sk))
6132 			return -EAGAIN;
6133 	} else {
6134 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6135 			sk->sk_state = SCTP_SS_CLOSED;
6136 			return -EADDRINUSE;
6137 		}
6138 	}
6139 
6140 	sk->sk_max_ack_backlog = backlog;
6141 	sctp_hash_endpoint(ep);
6142 	return 0;
6143 }
6144 
6145 /*
6146  * 4.1.3 / 5.1.3 listen()
6147  *
6148  *   By default, new associations are not accepted for UDP style sockets.
6149  *   An application uses listen() to mark a socket as being able to
6150  *   accept new associations.
6151  *
6152  *   On TCP style sockets, applications use listen() to ready the SCTP
6153  *   endpoint for accepting inbound associations.
6154  *
6155  *   On both types of endpoints a backlog of '0' disables listening.
6156  *
6157  *  Move a socket to LISTENING state.
6158  */
6159 int sctp_inet_listen(struct socket *sock, int backlog)
6160 {
6161 	struct sock *sk = sock->sk;
6162 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6163 	int err = -EINVAL;
6164 
6165 	if (unlikely(backlog < 0))
6166 		return err;
6167 
6168 	lock_sock(sk);
6169 
6170 	/* Peeled-off sockets are not allowed to listen().  */
6171 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6172 		goto out;
6173 
6174 	if (sock->state != SS_UNCONNECTED)
6175 		goto out;
6176 
6177 	/* If backlog is zero, disable listening. */
6178 	if (!backlog) {
6179 		if (sctp_sstate(sk, CLOSED))
6180 			goto out;
6181 
6182 		err = 0;
6183 		sctp_unhash_endpoint(ep);
6184 		sk->sk_state = SCTP_SS_CLOSED;
6185 		if (sk->sk_reuse)
6186 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6187 		goto out;
6188 	}
6189 
6190 	/* If we are already listening, just update the backlog */
6191 	if (sctp_sstate(sk, LISTENING))
6192 		sk->sk_max_ack_backlog = backlog;
6193 	else {
6194 		err = sctp_listen_start(sk, backlog);
6195 		if (err)
6196 			goto out;
6197 	}
6198 
6199 	err = 0;
6200 out:
6201 	release_sock(sk);
6202 	return err;
6203 }
6204 
6205 /*
6206  * This function is done by modeling the current datagram_poll() and the
6207  * tcp_poll().  Note that, based on these implementations, we don't
6208  * lock the socket in this function, even though it seems that,
6209  * ideally, locking or some other mechanisms can be used to ensure
6210  * the integrity of the counters (sndbuf and wmem_alloc) used
6211  * in this place.  We assume that we don't need locks either until proven
6212  * otherwise.
6213  *
6214  * Another thing to note is that we include the Async I/O support
6215  * here, again, by modeling the current TCP/UDP code.  We don't have
6216  * a good way to test with it yet.
6217  */
6218 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6219 {
6220 	struct sock *sk = sock->sk;
6221 	struct sctp_sock *sp = sctp_sk(sk);
6222 	unsigned int mask;
6223 
6224 	poll_wait(file, sk_sleep(sk), wait);
6225 
6226 	/* A TCP-style listening socket becomes readable when the accept queue
6227 	 * is not empty.
6228 	 */
6229 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6230 		return (!list_empty(&sp->ep->asocs)) ?
6231 			(POLLIN | POLLRDNORM) : 0;
6232 
6233 	mask = 0;
6234 
6235 	/* Is there any exceptional events?  */
6236 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6237 		mask |= POLLERR |
6238 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6239 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6240 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6241 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6242 		mask |= POLLHUP;
6243 
6244 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6245 	if (!skb_queue_empty(&sk->sk_receive_queue))
6246 		mask |= POLLIN | POLLRDNORM;
6247 
6248 	/* The association is either gone or not ready.  */
6249 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6250 		return mask;
6251 
6252 	/* Is it writable?  */
6253 	if (sctp_writeable(sk)) {
6254 		mask |= POLLOUT | POLLWRNORM;
6255 	} else {
6256 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6257 		/*
6258 		 * Since the socket is not locked, the buffer
6259 		 * might be made available after the writeable check and
6260 		 * before the bit is set.  This could cause a lost I/O
6261 		 * signal.  tcp_poll() has a race breaker for this race
6262 		 * condition.  Based on their implementation, we put
6263 		 * in the following code to cover it as well.
6264 		 */
6265 		if (sctp_writeable(sk))
6266 			mask |= POLLOUT | POLLWRNORM;
6267 	}
6268 	return mask;
6269 }
6270 
6271 /********************************************************************
6272  * 2nd Level Abstractions
6273  ********************************************************************/
6274 
6275 static struct sctp_bind_bucket *sctp_bucket_create(
6276 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6277 {
6278 	struct sctp_bind_bucket *pp;
6279 
6280 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6281 	if (pp) {
6282 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6283 		pp->port = snum;
6284 		pp->fastreuse = 0;
6285 		INIT_HLIST_HEAD(&pp->owner);
6286 		pp->net = net;
6287 		hlist_add_head(&pp->node, &head->chain);
6288 	}
6289 	return pp;
6290 }
6291 
6292 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6293 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6294 {
6295 	if (pp && hlist_empty(&pp->owner)) {
6296 		__hlist_del(&pp->node);
6297 		kmem_cache_free(sctp_bucket_cachep, pp);
6298 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6299 	}
6300 }
6301 
6302 /* Release this socket's reference to a local port.  */
6303 static inline void __sctp_put_port(struct sock *sk)
6304 {
6305 	struct sctp_bind_hashbucket *head =
6306 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6307 						  inet_sk(sk)->inet_num)];
6308 	struct sctp_bind_bucket *pp;
6309 
6310 	spin_lock(&head->lock);
6311 	pp = sctp_sk(sk)->bind_hash;
6312 	__sk_del_bind_node(sk);
6313 	sctp_sk(sk)->bind_hash = NULL;
6314 	inet_sk(sk)->inet_num = 0;
6315 	sctp_bucket_destroy(pp);
6316 	spin_unlock(&head->lock);
6317 }
6318 
6319 void sctp_put_port(struct sock *sk)
6320 {
6321 	local_bh_disable();
6322 	__sctp_put_port(sk);
6323 	local_bh_enable();
6324 }
6325 
6326 /*
6327  * The system picks an ephemeral port and choose an address set equivalent
6328  * to binding with a wildcard address.
6329  * One of those addresses will be the primary address for the association.
6330  * This automatically enables the multihoming capability of SCTP.
6331  */
6332 static int sctp_autobind(struct sock *sk)
6333 {
6334 	union sctp_addr autoaddr;
6335 	struct sctp_af *af;
6336 	__be16 port;
6337 
6338 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6339 	af = sctp_sk(sk)->pf->af;
6340 
6341 	port = htons(inet_sk(sk)->inet_num);
6342 	af->inaddr_any(&autoaddr, port);
6343 
6344 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6345 }
6346 
6347 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6348  *
6349  * From RFC 2292
6350  * 4.2 The cmsghdr Structure *
6351  *
6352  * When ancillary data is sent or received, any number of ancillary data
6353  * objects can be specified by the msg_control and msg_controllen members of
6354  * the msghdr structure, because each object is preceded by
6355  * a cmsghdr structure defining the object's length (the cmsg_len member).
6356  * Historically Berkeley-derived implementations have passed only one object
6357  * at a time, but this API allows multiple objects to be
6358  * passed in a single call to sendmsg() or recvmsg(). The following example
6359  * shows two ancillary data objects in a control buffer.
6360  *
6361  *   |<--------------------------- msg_controllen -------------------------->|
6362  *   |                                                                       |
6363  *
6364  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6365  *
6366  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6367  *   |                                   |                                   |
6368  *
6369  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6370  *
6371  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6372  *   |                                |  |                                |  |
6373  *
6374  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6375  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6376  *
6377  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6378  *
6379  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6380  *    ^
6381  *    |
6382  *
6383  * msg_control
6384  * points here
6385  */
6386 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6387 {
6388 	struct cmsghdr *cmsg;
6389 	struct msghdr *my_msg = (struct msghdr *)msg;
6390 
6391 	for (cmsg = CMSG_FIRSTHDR(msg);
6392 	     cmsg != NULL;
6393 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6394 		if (!CMSG_OK(my_msg, cmsg))
6395 			return -EINVAL;
6396 
6397 		/* Should we parse this header or ignore?  */
6398 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6399 			continue;
6400 
6401 		/* Strictly check lengths following example in SCM code.  */
6402 		switch (cmsg->cmsg_type) {
6403 		case SCTP_INIT:
6404 			/* SCTP Socket API Extension
6405 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6406 			 *
6407 			 * This cmsghdr structure provides information for
6408 			 * initializing new SCTP associations with sendmsg().
6409 			 * The SCTP_INITMSG socket option uses this same data
6410 			 * structure.  This structure is not used for
6411 			 * recvmsg().
6412 			 *
6413 			 * cmsg_level    cmsg_type      cmsg_data[]
6414 			 * ------------  ------------   ----------------------
6415 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6416 			 */
6417 			if (cmsg->cmsg_len !=
6418 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6419 				return -EINVAL;
6420 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6421 			break;
6422 
6423 		case SCTP_SNDRCV:
6424 			/* SCTP Socket API Extension
6425 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6426 			 *
6427 			 * This cmsghdr structure specifies SCTP options for
6428 			 * sendmsg() and describes SCTP header information
6429 			 * about a received message through recvmsg().
6430 			 *
6431 			 * cmsg_level    cmsg_type      cmsg_data[]
6432 			 * ------------  ------------   ----------------------
6433 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6434 			 */
6435 			if (cmsg->cmsg_len !=
6436 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6437 				return -EINVAL;
6438 
6439 			cmsgs->info =
6440 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6441 
6442 			/* Minimally, validate the sinfo_flags. */
6443 			if (cmsgs->info->sinfo_flags &
6444 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6445 			      SCTP_ABORT | SCTP_EOF))
6446 				return -EINVAL;
6447 			break;
6448 
6449 		default:
6450 			return -EINVAL;
6451 		}
6452 	}
6453 	return 0;
6454 }
6455 
6456 /*
6457  * Wait for a packet..
6458  * Note: This function is the same function as in core/datagram.c
6459  * with a few modifications to make lksctp work.
6460  */
6461 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6462 {
6463 	int error;
6464 	DEFINE_WAIT(wait);
6465 
6466 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6467 
6468 	/* Socket errors? */
6469 	error = sock_error(sk);
6470 	if (error)
6471 		goto out;
6472 
6473 	if (!skb_queue_empty(&sk->sk_receive_queue))
6474 		goto ready;
6475 
6476 	/* Socket shut down?  */
6477 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6478 		goto out;
6479 
6480 	/* Sequenced packets can come disconnected.  If so we report the
6481 	 * problem.
6482 	 */
6483 	error = -ENOTCONN;
6484 
6485 	/* Is there a good reason to think that we may receive some data?  */
6486 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6487 		goto out;
6488 
6489 	/* Handle signals.  */
6490 	if (signal_pending(current))
6491 		goto interrupted;
6492 
6493 	/* Let another process have a go.  Since we are going to sleep
6494 	 * anyway.  Note: This may cause odd behaviors if the message
6495 	 * does not fit in the user's buffer, but this seems to be the
6496 	 * only way to honor MSG_DONTWAIT realistically.
6497 	 */
6498 	release_sock(sk);
6499 	*timeo_p = schedule_timeout(*timeo_p);
6500 	lock_sock(sk);
6501 
6502 ready:
6503 	finish_wait(sk_sleep(sk), &wait);
6504 	return 0;
6505 
6506 interrupted:
6507 	error = sock_intr_errno(*timeo_p);
6508 
6509 out:
6510 	finish_wait(sk_sleep(sk), &wait);
6511 	*err = error;
6512 	return error;
6513 }
6514 
6515 /* Receive a datagram.
6516  * Note: This is pretty much the same routine as in core/datagram.c
6517  * with a few changes to make lksctp work.
6518  */
6519 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6520 					      int noblock, int *err)
6521 {
6522 	int error;
6523 	struct sk_buff *skb;
6524 	long timeo;
6525 
6526 	timeo = sock_rcvtimeo(sk, noblock);
6527 
6528 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6529 		 MAX_SCHEDULE_TIMEOUT);
6530 
6531 	do {
6532 		/* Again only user level code calls this function,
6533 		 * so nothing interrupt level
6534 		 * will suddenly eat the receive_queue.
6535 		 *
6536 		 *  Look at current nfs client by the way...
6537 		 *  However, this function was correct in any case. 8)
6538 		 */
6539 		if (flags & MSG_PEEK) {
6540 			spin_lock_bh(&sk->sk_receive_queue.lock);
6541 			skb = skb_peek(&sk->sk_receive_queue);
6542 			if (skb)
6543 				atomic_inc(&skb->users);
6544 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6545 		} else {
6546 			skb = skb_dequeue(&sk->sk_receive_queue);
6547 		}
6548 
6549 		if (skb)
6550 			return skb;
6551 
6552 		/* Caller is allowed not to check sk->sk_err before calling. */
6553 		error = sock_error(sk);
6554 		if (error)
6555 			goto no_packet;
6556 
6557 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6558 			break;
6559 
6560 		/* User doesn't want to wait.  */
6561 		error = -EAGAIN;
6562 		if (!timeo)
6563 			goto no_packet;
6564 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6565 
6566 	return NULL;
6567 
6568 no_packet:
6569 	*err = error;
6570 	return NULL;
6571 }
6572 
6573 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6574 static void __sctp_write_space(struct sctp_association *asoc)
6575 {
6576 	struct sock *sk = asoc->base.sk;
6577 	struct socket *sock = sk->sk_socket;
6578 
6579 	if ((sctp_wspace(asoc) > 0) && sock) {
6580 		if (waitqueue_active(&asoc->wait))
6581 			wake_up_interruptible(&asoc->wait);
6582 
6583 		if (sctp_writeable(sk)) {
6584 			wait_queue_head_t *wq = sk_sleep(sk);
6585 
6586 			if (wq && waitqueue_active(wq))
6587 				wake_up_interruptible(wq);
6588 
6589 			/* Note that we try to include the Async I/O support
6590 			 * here by modeling from the current TCP/UDP code.
6591 			 * We have not tested with it yet.
6592 			 */
6593 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6594 				sock_wake_async(sock,
6595 						SOCK_WAKE_SPACE, POLL_OUT);
6596 		}
6597 	}
6598 }
6599 
6600 static void sctp_wake_up_waiters(struct sock *sk,
6601 				 struct sctp_association *asoc)
6602 {
6603 	struct sctp_association *tmp = asoc;
6604 
6605 	/* We do accounting for the sndbuf space per association,
6606 	 * so we only need to wake our own association.
6607 	 */
6608 	if (asoc->ep->sndbuf_policy)
6609 		return __sctp_write_space(asoc);
6610 
6611 	/* If association goes down and is just flushing its
6612 	 * outq, then just normally notify others.
6613 	 */
6614 	if (asoc->base.dead)
6615 		return sctp_write_space(sk);
6616 
6617 	/* Accounting for the sndbuf space is per socket, so we
6618 	 * need to wake up others, try to be fair and in case of
6619 	 * other associations, let them have a go first instead
6620 	 * of just doing a sctp_write_space() call.
6621 	 *
6622 	 * Note that we reach sctp_wake_up_waiters() only when
6623 	 * associations free up queued chunks, thus we are under
6624 	 * lock and the list of associations on a socket is
6625 	 * guaranteed not to change.
6626 	 */
6627 	for (tmp = list_next_entry(tmp, asocs); 1;
6628 	     tmp = list_next_entry(tmp, asocs)) {
6629 		/* Manually skip the head element. */
6630 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6631 			continue;
6632 		/* Wake up association. */
6633 		__sctp_write_space(tmp);
6634 		/* We've reached the end. */
6635 		if (tmp == asoc)
6636 			break;
6637 	}
6638 }
6639 
6640 /* Do accounting for the sndbuf space.
6641  * Decrement the used sndbuf space of the corresponding association by the
6642  * data size which was just transmitted(freed).
6643  */
6644 static void sctp_wfree(struct sk_buff *skb)
6645 {
6646 	struct sctp_association *asoc;
6647 	struct sctp_chunk *chunk;
6648 	struct sock *sk;
6649 
6650 	/* Get the saved chunk pointer.  */
6651 	chunk = *((struct sctp_chunk **)(skb->cb));
6652 	asoc = chunk->asoc;
6653 	sk = asoc->base.sk;
6654 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6655 				sizeof(struct sk_buff) +
6656 				sizeof(struct sctp_chunk);
6657 
6658 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6659 
6660 	/*
6661 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6662 	 */
6663 	sk->sk_wmem_queued   -= skb->truesize;
6664 	sk_mem_uncharge(sk, skb->truesize);
6665 
6666 	sock_wfree(skb);
6667 	sctp_wake_up_waiters(sk, asoc);
6668 
6669 	sctp_association_put(asoc);
6670 }
6671 
6672 /* Do accounting for the receive space on the socket.
6673  * Accounting for the association is done in ulpevent.c
6674  * We set this as a destructor for the cloned data skbs so that
6675  * accounting is done at the correct time.
6676  */
6677 void sctp_sock_rfree(struct sk_buff *skb)
6678 {
6679 	struct sock *sk = skb->sk;
6680 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6681 
6682 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6683 
6684 	/*
6685 	 * Mimic the behavior of sock_rfree
6686 	 */
6687 	sk_mem_uncharge(sk, event->rmem_len);
6688 }
6689 
6690 
6691 /* Helper function to wait for space in the sndbuf.  */
6692 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6693 				size_t msg_len)
6694 {
6695 	struct sock *sk = asoc->base.sk;
6696 	int err = 0;
6697 	long current_timeo = *timeo_p;
6698 	DEFINE_WAIT(wait);
6699 
6700 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6701 		 *timeo_p, msg_len);
6702 
6703 	/* Increment the association's refcnt.  */
6704 	sctp_association_hold(asoc);
6705 
6706 	/* Wait on the association specific sndbuf space. */
6707 	for (;;) {
6708 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6709 					  TASK_INTERRUPTIBLE);
6710 		if (!*timeo_p)
6711 			goto do_nonblock;
6712 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6713 		    asoc->base.dead)
6714 			goto do_error;
6715 		if (signal_pending(current))
6716 			goto do_interrupted;
6717 		if (msg_len <= sctp_wspace(asoc))
6718 			break;
6719 
6720 		/* Let another process have a go.  Since we are going
6721 		 * to sleep anyway.
6722 		 */
6723 		release_sock(sk);
6724 		current_timeo = schedule_timeout(current_timeo);
6725 		BUG_ON(sk != asoc->base.sk);
6726 		lock_sock(sk);
6727 
6728 		*timeo_p = current_timeo;
6729 	}
6730 
6731 out:
6732 	finish_wait(&asoc->wait, &wait);
6733 
6734 	/* Release the association's refcnt.  */
6735 	sctp_association_put(asoc);
6736 
6737 	return err;
6738 
6739 do_error:
6740 	err = -EPIPE;
6741 	goto out;
6742 
6743 do_interrupted:
6744 	err = sock_intr_errno(*timeo_p);
6745 	goto out;
6746 
6747 do_nonblock:
6748 	err = -EAGAIN;
6749 	goto out;
6750 }
6751 
6752 void sctp_data_ready(struct sock *sk)
6753 {
6754 	struct socket_wq *wq;
6755 
6756 	rcu_read_lock();
6757 	wq = rcu_dereference(sk->sk_wq);
6758 	if (wq_has_sleeper(wq))
6759 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6760 						POLLRDNORM | POLLRDBAND);
6761 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6762 	rcu_read_unlock();
6763 }
6764 
6765 /* If socket sndbuf has changed, wake up all per association waiters.  */
6766 void sctp_write_space(struct sock *sk)
6767 {
6768 	struct sctp_association *asoc;
6769 
6770 	/* Wake up the tasks in each wait queue.  */
6771 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6772 		__sctp_write_space(asoc);
6773 	}
6774 }
6775 
6776 /* Is there any sndbuf space available on the socket?
6777  *
6778  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6779  * associations on the same socket.  For a UDP-style socket with
6780  * multiple associations, it is possible for it to be "unwriteable"
6781  * prematurely.  I assume that this is acceptable because
6782  * a premature "unwriteable" is better than an accidental "writeable" which
6783  * would cause an unwanted block under certain circumstances.  For the 1-1
6784  * UDP-style sockets or TCP-style sockets, this code should work.
6785  *  - Daisy
6786  */
6787 static int sctp_writeable(struct sock *sk)
6788 {
6789 	int amt = 0;
6790 
6791 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6792 	if (amt < 0)
6793 		amt = 0;
6794 	return amt;
6795 }
6796 
6797 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6798  * returns immediately with EINPROGRESS.
6799  */
6800 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6801 {
6802 	struct sock *sk = asoc->base.sk;
6803 	int err = 0;
6804 	long current_timeo = *timeo_p;
6805 	DEFINE_WAIT(wait);
6806 
6807 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6808 
6809 	/* Increment the association's refcnt.  */
6810 	sctp_association_hold(asoc);
6811 
6812 	for (;;) {
6813 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6814 					  TASK_INTERRUPTIBLE);
6815 		if (!*timeo_p)
6816 			goto do_nonblock;
6817 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6818 			break;
6819 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6820 		    asoc->base.dead)
6821 			goto do_error;
6822 		if (signal_pending(current))
6823 			goto do_interrupted;
6824 
6825 		if (sctp_state(asoc, ESTABLISHED))
6826 			break;
6827 
6828 		/* Let another process have a go.  Since we are going
6829 		 * to sleep anyway.
6830 		 */
6831 		release_sock(sk);
6832 		current_timeo = schedule_timeout(current_timeo);
6833 		lock_sock(sk);
6834 
6835 		*timeo_p = current_timeo;
6836 	}
6837 
6838 out:
6839 	finish_wait(&asoc->wait, &wait);
6840 
6841 	/* Release the association's refcnt.  */
6842 	sctp_association_put(asoc);
6843 
6844 	return err;
6845 
6846 do_error:
6847 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6848 		err = -ETIMEDOUT;
6849 	else
6850 		err = -ECONNREFUSED;
6851 	goto out;
6852 
6853 do_interrupted:
6854 	err = sock_intr_errno(*timeo_p);
6855 	goto out;
6856 
6857 do_nonblock:
6858 	err = -EINPROGRESS;
6859 	goto out;
6860 }
6861 
6862 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6863 {
6864 	struct sctp_endpoint *ep;
6865 	int err = 0;
6866 	DEFINE_WAIT(wait);
6867 
6868 	ep = sctp_sk(sk)->ep;
6869 
6870 
6871 	for (;;) {
6872 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6873 					  TASK_INTERRUPTIBLE);
6874 
6875 		if (list_empty(&ep->asocs)) {
6876 			release_sock(sk);
6877 			timeo = schedule_timeout(timeo);
6878 			lock_sock(sk);
6879 		}
6880 
6881 		err = -EINVAL;
6882 		if (!sctp_sstate(sk, LISTENING))
6883 			break;
6884 
6885 		err = 0;
6886 		if (!list_empty(&ep->asocs))
6887 			break;
6888 
6889 		err = sock_intr_errno(timeo);
6890 		if (signal_pending(current))
6891 			break;
6892 
6893 		err = -EAGAIN;
6894 		if (!timeo)
6895 			break;
6896 	}
6897 
6898 	finish_wait(sk_sleep(sk), &wait);
6899 
6900 	return err;
6901 }
6902 
6903 static void sctp_wait_for_close(struct sock *sk, long timeout)
6904 {
6905 	DEFINE_WAIT(wait);
6906 
6907 	do {
6908 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6909 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6910 			break;
6911 		release_sock(sk);
6912 		timeout = schedule_timeout(timeout);
6913 		lock_sock(sk);
6914 	} while (!signal_pending(current) && timeout);
6915 
6916 	finish_wait(sk_sleep(sk), &wait);
6917 }
6918 
6919 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6920 {
6921 	struct sk_buff *frag;
6922 
6923 	if (!skb->data_len)
6924 		goto done;
6925 
6926 	/* Don't forget the fragments. */
6927 	skb_walk_frags(skb, frag)
6928 		sctp_skb_set_owner_r_frag(frag, sk);
6929 
6930 done:
6931 	sctp_skb_set_owner_r(skb, sk);
6932 }
6933 
6934 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6935 		    struct sctp_association *asoc)
6936 {
6937 	struct inet_sock *inet = inet_sk(sk);
6938 	struct inet_sock *newinet;
6939 
6940 	newsk->sk_type = sk->sk_type;
6941 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6942 	newsk->sk_flags = sk->sk_flags;
6943 	newsk->sk_no_check = sk->sk_no_check;
6944 	newsk->sk_reuse = sk->sk_reuse;
6945 
6946 	newsk->sk_shutdown = sk->sk_shutdown;
6947 	newsk->sk_destruct = sctp_destruct_sock;
6948 	newsk->sk_family = sk->sk_family;
6949 	newsk->sk_protocol = IPPROTO_SCTP;
6950 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6951 	newsk->sk_sndbuf = sk->sk_sndbuf;
6952 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6953 	newsk->sk_lingertime = sk->sk_lingertime;
6954 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6955 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6956 
6957 	newinet = inet_sk(newsk);
6958 
6959 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6960 	 * getsockname() and getpeername()
6961 	 */
6962 	newinet->inet_sport = inet->inet_sport;
6963 	newinet->inet_saddr = inet->inet_saddr;
6964 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6965 	newinet->inet_dport = htons(asoc->peer.port);
6966 	newinet->pmtudisc = inet->pmtudisc;
6967 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6968 
6969 	newinet->uc_ttl = inet->uc_ttl;
6970 	newinet->mc_loop = 1;
6971 	newinet->mc_ttl = 1;
6972 	newinet->mc_index = 0;
6973 	newinet->mc_list = NULL;
6974 }
6975 
6976 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6977  * and its messages to the newsk.
6978  */
6979 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6980 			      struct sctp_association *assoc,
6981 			      sctp_socket_type_t type)
6982 {
6983 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6984 	struct sctp_sock *newsp = sctp_sk(newsk);
6985 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6986 	struct sctp_endpoint *newep = newsp->ep;
6987 	struct sk_buff *skb, *tmp;
6988 	struct sctp_ulpevent *event;
6989 	struct sctp_bind_hashbucket *head;
6990 	struct list_head tmplist;
6991 
6992 	/* Migrate socket buffer sizes and all the socket level options to the
6993 	 * new socket.
6994 	 */
6995 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6996 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6997 	/* Brute force copy old sctp opt. */
6998 	if (oldsp->do_auto_asconf) {
6999 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
7000 		inet_sk_copy_descendant(newsk, oldsk);
7001 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
7002 	} else
7003 		inet_sk_copy_descendant(newsk, oldsk);
7004 
7005 	/* Restore the ep value that was overwritten with the above structure
7006 	 * copy.
7007 	 */
7008 	newsp->ep = newep;
7009 	newsp->hmac = NULL;
7010 
7011 	/* Hook this new socket in to the bind_hash list. */
7012 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7013 						 inet_sk(oldsk)->inet_num)];
7014 	local_bh_disable();
7015 	spin_lock(&head->lock);
7016 	pp = sctp_sk(oldsk)->bind_hash;
7017 	sk_add_bind_node(newsk, &pp->owner);
7018 	sctp_sk(newsk)->bind_hash = pp;
7019 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7020 	spin_unlock(&head->lock);
7021 	local_bh_enable();
7022 
7023 	/* Copy the bind_addr list from the original endpoint to the new
7024 	 * endpoint so that we can handle restarts properly
7025 	 */
7026 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7027 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7028 
7029 	/* Move any messages in the old socket's receive queue that are for the
7030 	 * peeled off association to the new socket's receive queue.
7031 	 */
7032 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7033 		event = sctp_skb2event(skb);
7034 		if (event->asoc == assoc) {
7035 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7036 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7037 			sctp_skb_set_owner_r_frag(skb, newsk);
7038 		}
7039 	}
7040 
7041 	/* Clean up any messages pending delivery due to partial
7042 	 * delivery.   Three cases:
7043 	 * 1) No partial deliver;  no work.
7044 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7045 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7046 	 */
7047 	skb_queue_head_init(&newsp->pd_lobby);
7048 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7049 
7050 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7051 		struct sk_buff_head *queue;
7052 
7053 		/* Decide which queue to move pd_lobby skbs to. */
7054 		if (assoc->ulpq.pd_mode) {
7055 			queue = &newsp->pd_lobby;
7056 		} else
7057 			queue = &newsk->sk_receive_queue;
7058 
7059 		/* Walk through the pd_lobby, looking for skbs that
7060 		 * need moved to the new socket.
7061 		 */
7062 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7063 			event = sctp_skb2event(skb);
7064 			if (event->asoc == assoc) {
7065 				__skb_unlink(skb, &oldsp->pd_lobby);
7066 				__skb_queue_tail(queue, skb);
7067 				sctp_skb_set_owner_r_frag(skb, newsk);
7068 			}
7069 		}
7070 
7071 		/* Clear up any skbs waiting for the partial
7072 		 * delivery to finish.
7073 		 */
7074 		if (assoc->ulpq.pd_mode)
7075 			sctp_clear_pd(oldsk, NULL);
7076 
7077 	}
7078 
7079 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7080 		sctp_skb_set_owner_r_frag(skb, newsk);
7081 
7082 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7083 		sctp_skb_set_owner_r_frag(skb, newsk);
7084 
7085 	/* Set the type of socket to indicate that it is peeled off from the
7086 	 * original UDP-style socket or created with the accept() call on a
7087 	 * TCP-style socket..
7088 	 */
7089 	newsp->type = type;
7090 
7091 	/* Mark the new socket "in-use" by the user so that any packets
7092 	 * that may arrive on the association after we've moved it are
7093 	 * queued to the backlog.  This prevents a potential race between
7094 	 * backlog processing on the old socket and new-packet processing
7095 	 * on the new socket.
7096 	 *
7097 	 * The caller has just allocated newsk so we can guarantee that other
7098 	 * paths won't try to lock it and then oldsk.
7099 	 */
7100 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7101 	sctp_assoc_migrate(assoc, newsk);
7102 
7103 	/* If the association on the newsk is already closed before accept()
7104 	 * is called, set RCV_SHUTDOWN flag.
7105 	 */
7106 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7107 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7108 
7109 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7110 	release_sock(newsk);
7111 }
7112 
7113 
7114 /* This proto struct describes the ULP interface for SCTP.  */
7115 struct proto sctp_prot = {
7116 	.name        =	"SCTP",
7117 	.owner       =	THIS_MODULE,
7118 	.close       =	sctp_close,
7119 	.connect     =	sctp_connect,
7120 	.disconnect  =	sctp_disconnect,
7121 	.accept      =	sctp_accept,
7122 	.ioctl       =	sctp_ioctl,
7123 	.init        =	sctp_init_sock,
7124 	.destroy     =	sctp_destroy_sock,
7125 	.shutdown    =	sctp_shutdown,
7126 	.setsockopt  =	sctp_setsockopt,
7127 	.getsockopt  =	sctp_getsockopt,
7128 	.sendmsg     =	sctp_sendmsg,
7129 	.recvmsg     =	sctp_recvmsg,
7130 	.bind        =	sctp_bind,
7131 	.backlog_rcv =	sctp_backlog_rcv,
7132 	.hash        =	sctp_hash,
7133 	.unhash      =	sctp_unhash,
7134 	.get_port    =	sctp_get_port,
7135 	.obj_size    =  sizeof(struct sctp_sock),
7136 	.sysctl_mem  =  sysctl_sctp_mem,
7137 	.sysctl_rmem =  sysctl_sctp_rmem,
7138 	.sysctl_wmem =  sysctl_sctp_wmem,
7139 	.memory_pressure = &sctp_memory_pressure,
7140 	.enter_memory_pressure = sctp_enter_memory_pressure,
7141 	.memory_allocated = &sctp_memory_allocated,
7142 	.sockets_allocated = &sctp_sockets_allocated,
7143 };
7144 
7145 #if IS_ENABLED(CONFIG_IPV6)
7146 
7147 struct proto sctpv6_prot = {
7148 	.name		= "SCTPv6",
7149 	.owner		= THIS_MODULE,
7150 	.close		= sctp_close,
7151 	.connect	= sctp_connect,
7152 	.disconnect	= sctp_disconnect,
7153 	.accept		= sctp_accept,
7154 	.ioctl		= sctp_ioctl,
7155 	.init		= sctp_init_sock,
7156 	.destroy	= sctp_destroy_sock,
7157 	.shutdown	= sctp_shutdown,
7158 	.setsockopt	= sctp_setsockopt,
7159 	.getsockopt	= sctp_getsockopt,
7160 	.sendmsg	= sctp_sendmsg,
7161 	.recvmsg	= sctp_recvmsg,
7162 	.bind		= sctp_bind,
7163 	.backlog_rcv	= sctp_backlog_rcv,
7164 	.hash		= sctp_hash,
7165 	.unhash		= sctp_unhash,
7166 	.get_port	= sctp_get_port,
7167 	.obj_size	= sizeof(struct sctp6_sock),
7168 	.sysctl_mem	= sysctl_sctp_mem,
7169 	.sysctl_rmem	= sysctl_sctp_rmem,
7170 	.sysctl_wmem	= sysctl_sctp_wmem,
7171 	.memory_pressure = &sctp_memory_pressure,
7172 	.enter_memory_pressure = sctp_enter_memory_pressure,
7173 	.memory_allocated = &sctp_memory_allocated,
7174 	.sockets_allocated = &sctp_sockets_allocated,
7175 };
7176 #endif /* IS_ENABLED(CONFIG_IPV6) */
7177