1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 #include <net/sctp/stream_sched.h> 83 84 /* Forward declarations for internal helper functions. */ 85 static int sctp_writeable(struct sock *sk); 86 static void sctp_wfree(struct sk_buff *skb); 87 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 88 size_t msg_len, struct sock **orig_sk); 89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 91 static int sctp_wait_for_accept(struct sock *sk, long timeo); 92 static void sctp_wait_for_close(struct sock *sk, long timeo); 93 static void sctp_destruct_sock(struct sock *sk); 94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 95 union sctp_addr *addr, int len); 96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf(struct sctp_association *asoc, 101 struct sctp_chunk *chunk); 102 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 103 static int sctp_autobind(struct sock *sk); 104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 105 struct sctp_association *assoc, 106 enum sctp_socket_type type); 107 108 static unsigned long sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 skb_set_owner_w(chunk->skb, sk); 160 161 chunk->skb->destructor = sctp_wfree; 162 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 163 skb_shinfo(chunk->skb)->destructor_arg = chunk; 164 165 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 166 sizeof(struct sk_buff) + 167 sizeof(struct sctp_chunk); 168 169 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 170 sk->sk_wmem_queued += chunk->skb->truesize; 171 sk_mem_charge(sk, chunk->skb->truesize); 172 } 173 174 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 175 { 176 skb_orphan(chunk->skb); 177 } 178 179 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 180 void (*cb)(struct sctp_chunk *)) 181 182 { 183 struct sctp_outq *q = &asoc->outqueue; 184 struct sctp_transport *t; 185 struct sctp_chunk *chunk; 186 187 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 188 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 189 cb(chunk); 190 191 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 192 cb(chunk); 193 194 list_for_each_entry(chunk, &q->sacked, transmitted_list) 195 cb(chunk); 196 197 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 198 cb(chunk); 199 200 list_for_each_entry(chunk, &q->out_chunk_list, list) 201 cb(chunk); 202 } 203 204 /* Verify that this is a valid address. */ 205 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 206 int len) 207 { 208 struct sctp_af *af; 209 210 /* Verify basic sockaddr. */ 211 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 212 if (!af) 213 return -EINVAL; 214 215 /* Is this a valid SCTP address? */ 216 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 217 return -EINVAL; 218 219 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 /* Look up the association by its id. If this is not a UDP-style 226 * socket, the ID field is always ignored. 227 */ 228 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 229 { 230 struct sctp_association *asoc = NULL; 231 232 /* If this is not a UDP-style socket, assoc id should be ignored. */ 233 if (!sctp_style(sk, UDP)) { 234 /* Return NULL if the socket state is not ESTABLISHED. It 235 * could be a TCP-style listening socket or a socket which 236 * hasn't yet called connect() to establish an association. 237 */ 238 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 239 return NULL; 240 241 /* Get the first and the only association from the list. */ 242 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 243 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 244 struct sctp_association, asocs); 245 return asoc; 246 } 247 248 /* Otherwise this is a UDP-style socket. */ 249 if (!id || (id == (sctp_assoc_t)-1)) 250 return NULL; 251 252 spin_lock_bh(&sctp_assocs_id_lock); 253 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 254 spin_unlock_bh(&sctp_assocs_id_lock); 255 256 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 257 return NULL; 258 259 return asoc; 260 } 261 262 /* Look up the transport from an address and an assoc id. If both address and 263 * id are specified, the associations matching the address and the id should be 264 * the same. 265 */ 266 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 267 struct sockaddr_storage *addr, 268 sctp_assoc_t id) 269 { 270 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 271 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 272 union sctp_addr *laddr = (union sctp_addr *)addr; 273 struct sctp_transport *transport; 274 275 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 276 return NULL; 277 278 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 279 laddr, 280 &transport); 281 282 if (!addr_asoc) 283 return NULL; 284 285 id_asoc = sctp_id2assoc(sk, id); 286 if (id_asoc && (id_asoc != addr_asoc)) 287 return NULL; 288 289 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 290 (union sctp_addr *)addr); 291 292 return transport; 293 } 294 295 /* API 3.1.2 bind() - UDP Style Syntax 296 * The syntax of bind() is, 297 * 298 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 299 * 300 * sd - the socket descriptor returned by socket(). 301 * addr - the address structure (struct sockaddr_in or struct 302 * sockaddr_in6 [RFC 2553]), 303 * addr_len - the size of the address structure. 304 */ 305 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 306 { 307 int retval = 0; 308 309 lock_sock(sk); 310 311 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 312 addr, addr_len); 313 314 /* Disallow binding twice. */ 315 if (!sctp_sk(sk)->ep->base.bind_addr.port) 316 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 317 addr_len); 318 else 319 retval = -EINVAL; 320 321 release_sock(sk); 322 323 return retval; 324 } 325 326 static long sctp_get_port_local(struct sock *, union sctp_addr *); 327 328 /* Verify this is a valid sockaddr. */ 329 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 330 union sctp_addr *addr, int len) 331 { 332 struct sctp_af *af; 333 334 /* Check minimum size. */ 335 if (len < sizeof (struct sockaddr)) 336 return NULL; 337 338 /* V4 mapped address are really of AF_INET family */ 339 if (addr->sa.sa_family == AF_INET6 && 340 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 341 if (!opt->pf->af_supported(AF_INET, opt)) 342 return NULL; 343 } else { 344 /* Does this PF support this AF? */ 345 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 346 return NULL; 347 } 348 349 /* If we get this far, af is valid. */ 350 af = sctp_get_af_specific(addr->sa.sa_family); 351 352 if (len < af->sockaddr_len) 353 return NULL; 354 355 return af; 356 } 357 358 /* Bind a local address either to an endpoint or to an association. */ 359 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 360 { 361 struct net *net = sock_net(sk); 362 struct sctp_sock *sp = sctp_sk(sk); 363 struct sctp_endpoint *ep = sp->ep; 364 struct sctp_bind_addr *bp = &ep->base.bind_addr; 365 struct sctp_af *af; 366 unsigned short snum; 367 int ret = 0; 368 369 /* Common sockaddr verification. */ 370 af = sctp_sockaddr_af(sp, addr, len); 371 if (!af) { 372 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 373 __func__, sk, addr, len); 374 return -EINVAL; 375 } 376 377 snum = ntohs(addr->v4.sin_port); 378 379 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 380 __func__, sk, &addr->sa, bp->port, snum, len); 381 382 /* PF specific bind() address verification. */ 383 if (!sp->pf->bind_verify(sp, addr)) 384 return -EADDRNOTAVAIL; 385 386 /* We must either be unbound, or bind to the same port. 387 * It's OK to allow 0 ports if we are already bound. 388 * We'll just inhert an already bound port in this case 389 */ 390 if (bp->port) { 391 if (!snum) 392 snum = bp->port; 393 else if (snum != bp->port) { 394 pr_debug("%s: new port %d doesn't match existing port " 395 "%d\n", __func__, snum, bp->port); 396 return -EINVAL; 397 } 398 } 399 400 if (snum && snum < inet_prot_sock(net) && 401 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 402 return -EACCES; 403 404 /* See if the address matches any of the addresses we may have 405 * already bound before checking against other endpoints. 406 */ 407 if (sctp_bind_addr_match(bp, addr, sp)) 408 return -EINVAL; 409 410 /* Make sure we are allowed to bind here. 411 * The function sctp_get_port_local() does duplicate address 412 * detection. 413 */ 414 addr->v4.sin_port = htons(snum); 415 if ((ret = sctp_get_port_local(sk, addr))) { 416 return -EADDRINUSE; 417 } 418 419 /* Refresh ephemeral port. */ 420 if (!bp->port) 421 bp->port = inet_sk(sk)->inet_num; 422 423 /* Add the address to the bind address list. 424 * Use GFP_ATOMIC since BHs will be disabled. 425 */ 426 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 427 SCTP_ADDR_SRC, GFP_ATOMIC); 428 429 /* Copy back into socket for getsockname() use. */ 430 if (!ret) { 431 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 432 sp->pf->to_sk_saddr(addr, sk); 433 } 434 435 return ret; 436 } 437 438 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 439 * 440 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 441 * at any one time. If a sender, after sending an ASCONF chunk, decides 442 * it needs to transfer another ASCONF Chunk, it MUST wait until the 443 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 444 * subsequent ASCONF. Note this restriction binds each side, so at any 445 * time two ASCONF may be in-transit on any given association (one sent 446 * from each endpoint). 447 */ 448 static int sctp_send_asconf(struct sctp_association *asoc, 449 struct sctp_chunk *chunk) 450 { 451 struct net *net = sock_net(asoc->base.sk); 452 int retval = 0; 453 454 /* If there is an outstanding ASCONF chunk, queue it for later 455 * transmission. 456 */ 457 if (asoc->addip_last_asconf) { 458 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 459 goto out; 460 } 461 462 /* Hold the chunk until an ASCONF_ACK is received. */ 463 sctp_chunk_hold(chunk); 464 retval = sctp_primitive_ASCONF(net, asoc, chunk); 465 if (retval) 466 sctp_chunk_free(chunk); 467 else 468 asoc->addip_last_asconf = chunk; 469 470 out: 471 return retval; 472 } 473 474 /* Add a list of addresses as bind addresses to local endpoint or 475 * association. 476 * 477 * Basically run through each address specified in the addrs/addrcnt 478 * array/length pair, determine if it is IPv6 or IPv4 and call 479 * sctp_do_bind() on it. 480 * 481 * If any of them fails, then the operation will be reversed and the 482 * ones that were added will be removed. 483 * 484 * Only sctp_setsockopt_bindx() is supposed to call this function. 485 */ 486 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 487 { 488 int cnt; 489 int retval = 0; 490 void *addr_buf; 491 struct sockaddr *sa_addr; 492 struct sctp_af *af; 493 494 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 495 addrs, addrcnt); 496 497 addr_buf = addrs; 498 for (cnt = 0; cnt < addrcnt; cnt++) { 499 /* The list may contain either IPv4 or IPv6 address; 500 * determine the address length for walking thru the list. 501 */ 502 sa_addr = addr_buf; 503 af = sctp_get_af_specific(sa_addr->sa_family); 504 if (!af) { 505 retval = -EINVAL; 506 goto err_bindx_add; 507 } 508 509 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 510 af->sockaddr_len); 511 512 addr_buf += af->sockaddr_len; 513 514 err_bindx_add: 515 if (retval < 0) { 516 /* Failed. Cleanup the ones that have been added */ 517 if (cnt > 0) 518 sctp_bindx_rem(sk, addrs, cnt); 519 return retval; 520 } 521 } 522 523 return retval; 524 } 525 526 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 527 * associations that are part of the endpoint indicating that a list of local 528 * addresses are added to the endpoint. 529 * 530 * If any of the addresses is already in the bind address list of the 531 * association, we do not send the chunk for that association. But it will not 532 * affect other associations. 533 * 534 * Only sctp_setsockopt_bindx() is supposed to call this function. 535 */ 536 static int sctp_send_asconf_add_ip(struct sock *sk, 537 struct sockaddr *addrs, 538 int addrcnt) 539 { 540 struct net *net = sock_net(sk); 541 struct sctp_sock *sp; 542 struct sctp_endpoint *ep; 543 struct sctp_association *asoc; 544 struct sctp_bind_addr *bp; 545 struct sctp_chunk *chunk; 546 struct sctp_sockaddr_entry *laddr; 547 union sctp_addr *addr; 548 union sctp_addr saveaddr; 549 void *addr_buf; 550 struct sctp_af *af; 551 struct list_head *p; 552 int i; 553 int retval = 0; 554 555 if (!net->sctp.addip_enable) 556 return retval; 557 558 sp = sctp_sk(sk); 559 ep = sp->ep; 560 561 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 562 __func__, sk, addrs, addrcnt); 563 564 list_for_each_entry(asoc, &ep->asocs, asocs) { 565 if (!asoc->peer.asconf_capable) 566 continue; 567 568 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 569 continue; 570 571 if (!sctp_state(asoc, ESTABLISHED)) 572 continue; 573 574 /* Check if any address in the packed array of addresses is 575 * in the bind address list of the association. If so, 576 * do not send the asconf chunk to its peer, but continue with 577 * other associations. 578 */ 579 addr_buf = addrs; 580 for (i = 0; i < addrcnt; i++) { 581 addr = addr_buf; 582 af = sctp_get_af_specific(addr->v4.sin_family); 583 if (!af) { 584 retval = -EINVAL; 585 goto out; 586 } 587 588 if (sctp_assoc_lookup_laddr(asoc, addr)) 589 break; 590 591 addr_buf += af->sockaddr_len; 592 } 593 if (i < addrcnt) 594 continue; 595 596 /* Use the first valid address in bind addr list of 597 * association as Address Parameter of ASCONF CHUNK. 598 */ 599 bp = &asoc->base.bind_addr; 600 p = bp->address_list.next; 601 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 602 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 603 addrcnt, SCTP_PARAM_ADD_IP); 604 if (!chunk) { 605 retval = -ENOMEM; 606 goto out; 607 } 608 609 /* Add the new addresses to the bind address list with 610 * use_as_src set to 0. 611 */ 612 addr_buf = addrs; 613 for (i = 0; i < addrcnt; i++) { 614 addr = addr_buf; 615 af = sctp_get_af_specific(addr->v4.sin_family); 616 memcpy(&saveaddr, addr, af->sockaddr_len); 617 retval = sctp_add_bind_addr(bp, &saveaddr, 618 sizeof(saveaddr), 619 SCTP_ADDR_NEW, GFP_ATOMIC); 620 addr_buf += af->sockaddr_len; 621 } 622 if (asoc->src_out_of_asoc_ok) { 623 struct sctp_transport *trans; 624 625 list_for_each_entry(trans, 626 &asoc->peer.transport_addr_list, transports) { 627 /* Clear the source and route cache */ 628 sctp_transport_dst_release(trans); 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 sctp_transport_route(trans, NULL, 636 sctp_sk(asoc->base.sk)); 637 } 638 } 639 retval = sctp_send_asconf(asoc, chunk); 640 } 641 642 out: 643 return retval; 644 } 645 646 /* Remove a list of addresses from bind addresses list. Do not remove the 647 * last address. 648 * 649 * Basically run through each address specified in the addrs/addrcnt 650 * array/length pair, determine if it is IPv6 or IPv4 and call 651 * sctp_del_bind() on it. 652 * 653 * If any of them fails, then the operation will be reversed and the 654 * ones that were removed will be added back. 655 * 656 * At least one address has to be left; if only one address is 657 * available, the operation will return -EBUSY. 658 * 659 * Only sctp_setsockopt_bindx() is supposed to call this function. 660 */ 661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 662 { 663 struct sctp_sock *sp = sctp_sk(sk); 664 struct sctp_endpoint *ep = sp->ep; 665 int cnt; 666 struct sctp_bind_addr *bp = &ep->base.bind_addr; 667 int retval = 0; 668 void *addr_buf; 669 union sctp_addr *sa_addr; 670 struct sctp_af *af; 671 672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 673 __func__, sk, addrs, addrcnt); 674 675 addr_buf = addrs; 676 for (cnt = 0; cnt < addrcnt; cnt++) { 677 /* If the bind address list is empty or if there is only one 678 * bind address, there is nothing more to be removed (we need 679 * at least one address here). 680 */ 681 if (list_empty(&bp->address_list) || 682 (sctp_list_single_entry(&bp->address_list))) { 683 retval = -EBUSY; 684 goto err_bindx_rem; 685 } 686 687 sa_addr = addr_buf; 688 af = sctp_get_af_specific(sa_addr->sa.sa_family); 689 if (!af) { 690 retval = -EINVAL; 691 goto err_bindx_rem; 692 } 693 694 if (!af->addr_valid(sa_addr, sp, NULL)) { 695 retval = -EADDRNOTAVAIL; 696 goto err_bindx_rem; 697 } 698 699 if (sa_addr->v4.sin_port && 700 sa_addr->v4.sin_port != htons(bp->port)) { 701 retval = -EINVAL; 702 goto err_bindx_rem; 703 } 704 705 if (!sa_addr->v4.sin_port) 706 sa_addr->v4.sin_port = htons(bp->port); 707 708 /* FIXME - There is probably a need to check if sk->sk_saddr and 709 * sk->sk_rcv_addr are currently set to one of the addresses to 710 * be removed. This is something which needs to be looked into 711 * when we are fixing the outstanding issues with multi-homing 712 * socket routing and failover schemes. Refer to comments in 713 * sctp_do_bind(). -daisy 714 */ 715 retval = sctp_del_bind_addr(bp, sa_addr); 716 717 addr_buf += af->sockaddr_len; 718 err_bindx_rem: 719 if (retval < 0) { 720 /* Failed. Add the ones that has been removed back */ 721 if (cnt > 0) 722 sctp_bindx_add(sk, addrs, cnt); 723 return retval; 724 } 725 } 726 727 return retval; 728 } 729 730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 731 * the associations that are part of the endpoint indicating that a list of 732 * local addresses are removed from the endpoint. 733 * 734 * If any of the addresses is already in the bind address list of the 735 * association, we do not send the chunk for that association. But it will not 736 * affect other associations. 737 * 738 * Only sctp_setsockopt_bindx() is supposed to call this function. 739 */ 740 static int sctp_send_asconf_del_ip(struct sock *sk, 741 struct sockaddr *addrs, 742 int addrcnt) 743 { 744 struct net *net = sock_net(sk); 745 struct sctp_sock *sp; 746 struct sctp_endpoint *ep; 747 struct sctp_association *asoc; 748 struct sctp_transport *transport; 749 struct sctp_bind_addr *bp; 750 struct sctp_chunk *chunk; 751 union sctp_addr *laddr; 752 void *addr_buf; 753 struct sctp_af *af; 754 struct sctp_sockaddr_entry *saddr; 755 int i; 756 int retval = 0; 757 int stored = 0; 758 759 chunk = NULL; 760 if (!net->sctp.addip_enable) 761 return retval; 762 763 sp = sctp_sk(sk); 764 ep = sp->ep; 765 766 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 767 __func__, sk, addrs, addrcnt); 768 769 list_for_each_entry(asoc, &ep->asocs, asocs) { 770 771 if (!asoc->peer.asconf_capable) 772 continue; 773 774 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 775 continue; 776 777 if (!sctp_state(asoc, ESTABLISHED)) 778 continue; 779 780 /* Check if any address in the packed array of addresses is 781 * not present in the bind address list of the association. 782 * If so, do not send the asconf chunk to its peer, but 783 * continue with other associations. 784 */ 785 addr_buf = addrs; 786 for (i = 0; i < addrcnt; i++) { 787 laddr = addr_buf; 788 af = sctp_get_af_specific(laddr->v4.sin_family); 789 if (!af) { 790 retval = -EINVAL; 791 goto out; 792 } 793 794 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 795 break; 796 797 addr_buf += af->sockaddr_len; 798 } 799 if (i < addrcnt) 800 continue; 801 802 /* Find one address in the association's bind address list 803 * that is not in the packed array of addresses. This is to 804 * make sure that we do not delete all the addresses in the 805 * association. 806 */ 807 bp = &asoc->base.bind_addr; 808 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 809 addrcnt, sp); 810 if ((laddr == NULL) && (addrcnt == 1)) { 811 if (asoc->asconf_addr_del_pending) 812 continue; 813 asoc->asconf_addr_del_pending = 814 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 815 if (asoc->asconf_addr_del_pending == NULL) { 816 retval = -ENOMEM; 817 goto out; 818 } 819 asoc->asconf_addr_del_pending->sa.sa_family = 820 addrs->sa_family; 821 asoc->asconf_addr_del_pending->v4.sin_port = 822 htons(bp->port); 823 if (addrs->sa_family == AF_INET) { 824 struct sockaddr_in *sin; 825 826 sin = (struct sockaddr_in *)addrs; 827 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 828 } else if (addrs->sa_family == AF_INET6) { 829 struct sockaddr_in6 *sin6; 830 831 sin6 = (struct sockaddr_in6 *)addrs; 832 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 833 } 834 835 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 836 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 837 asoc->asconf_addr_del_pending); 838 839 asoc->src_out_of_asoc_ok = 1; 840 stored = 1; 841 goto skip_mkasconf; 842 } 843 844 if (laddr == NULL) 845 return -EINVAL; 846 847 /* We do not need RCU protection throughout this loop 848 * because this is done under a socket lock from the 849 * setsockopt call. 850 */ 851 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 852 SCTP_PARAM_DEL_IP); 853 if (!chunk) { 854 retval = -ENOMEM; 855 goto out; 856 } 857 858 skip_mkasconf: 859 /* Reset use_as_src flag for the addresses in the bind address 860 * list that are to be deleted. 861 */ 862 addr_buf = addrs; 863 for (i = 0; i < addrcnt; i++) { 864 laddr = addr_buf; 865 af = sctp_get_af_specific(laddr->v4.sin_family); 866 list_for_each_entry(saddr, &bp->address_list, list) { 867 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 868 saddr->state = SCTP_ADDR_DEL; 869 } 870 addr_buf += af->sockaddr_len; 871 } 872 873 /* Update the route and saddr entries for all the transports 874 * as some of the addresses in the bind address list are 875 * about to be deleted and cannot be used as source addresses. 876 */ 877 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 878 transports) { 879 sctp_transport_dst_release(transport); 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * We don't use copy_from_user() for optimization: we first do the 974 * sanity checks (buffer size -fast- and access check-healthy 975 * pointer); if all of those succeed, then we can alloc the memory 976 * (expensive operation) needed to copy the data to kernel. Then we do 977 * the copying without checking the user space area 978 * (__copy_from_user()). 979 * 980 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 981 * it. 982 * 983 * sk The sk of the socket 984 * addrs The pointer to the addresses in user land 985 * addrssize Size of the addrs buffer 986 * op Operation to perform (add or remove, see the flags of 987 * sctp_bindx) 988 * 989 * Returns 0 if ok, <0 errno code on error. 990 */ 991 static int sctp_setsockopt_bindx(struct sock *sk, 992 struct sockaddr __user *addrs, 993 int addrs_size, int op) 994 { 995 struct sockaddr *kaddrs; 996 int err; 997 int addrcnt = 0; 998 int walk_size = 0; 999 struct sockaddr *sa_addr; 1000 void *addr_buf; 1001 struct sctp_af *af; 1002 1003 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1004 __func__, sk, addrs, addrs_size, op); 1005 1006 if (unlikely(addrs_size <= 0)) 1007 return -EINVAL; 1008 1009 /* Check the user passed a healthy pointer. */ 1010 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1011 return -EFAULT; 1012 1013 /* Alloc space for the address array in kernel memory. */ 1014 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 1015 if (unlikely(!kaddrs)) 1016 return -ENOMEM; 1017 1018 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1019 kfree(kaddrs); 1020 return -EFAULT; 1021 } 1022 1023 /* Walk through the addrs buffer and count the number of addresses. */ 1024 addr_buf = kaddrs; 1025 while (walk_size < addrs_size) { 1026 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1027 kfree(kaddrs); 1028 return -EINVAL; 1029 } 1030 1031 sa_addr = addr_buf; 1032 af = sctp_get_af_specific(sa_addr->sa_family); 1033 1034 /* If the address family is not supported or if this address 1035 * causes the address buffer to overflow return EINVAL. 1036 */ 1037 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1038 kfree(kaddrs); 1039 return -EINVAL; 1040 } 1041 addrcnt++; 1042 addr_buf += af->sockaddr_len; 1043 walk_size += af->sockaddr_len; 1044 } 1045 1046 /* Do the work. */ 1047 switch (op) { 1048 case SCTP_BINDX_ADD_ADDR: 1049 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1050 if (err) 1051 goto out; 1052 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1053 break; 1054 1055 case SCTP_BINDX_REM_ADDR: 1056 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1057 if (err) 1058 goto out; 1059 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1060 break; 1061 1062 default: 1063 err = -EINVAL; 1064 break; 1065 } 1066 1067 out: 1068 kfree(kaddrs); 1069 1070 return err; 1071 } 1072 1073 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1074 * 1075 * Common routine for handling connect() and sctp_connectx(). 1076 * Connect will come in with just a single address. 1077 */ 1078 static int __sctp_connect(struct sock *sk, 1079 struct sockaddr *kaddrs, 1080 int addrs_size, 1081 sctp_assoc_t *assoc_id) 1082 { 1083 struct net *net = sock_net(sk); 1084 struct sctp_sock *sp; 1085 struct sctp_endpoint *ep; 1086 struct sctp_association *asoc = NULL; 1087 struct sctp_association *asoc2; 1088 struct sctp_transport *transport; 1089 union sctp_addr to; 1090 enum sctp_scope scope; 1091 long timeo; 1092 int err = 0; 1093 int addrcnt = 0; 1094 int walk_size = 0; 1095 union sctp_addr *sa_addr = NULL; 1096 void *addr_buf; 1097 unsigned short port; 1098 unsigned int f_flags = 0; 1099 1100 sp = sctp_sk(sk); 1101 ep = sp->ep; 1102 1103 /* connect() cannot be done on a socket that is already in ESTABLISHED 1104 * state - UDP-style peeled off socket or a TCP-style socket that 1105 * is already connected. 1106 * It cannot be done even on a TCP-style listening socket. 1107 */ 1108 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1109 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1110 err = -EISCONN; 1111 goto out_free; 1112 } 1113 1114 /* Walk through the addrs buffer and count the number of addresses. */ 1115 addr_buf = kaddrs; 1116 while (walk_size < addrs_size) { 1117 struct sctp_af *af; 1118 1119 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1120 err = -EINVAL; 1121 goto out_free; 1122 } 1123 1124 sa_addr = addr_buf; 1125 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1126 1127 /* If the address family is not supported or if this address 1128 * causes the address buffer to overflow return EINVAL. 1129 */ 1130 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1131 err = -EINVAL; 1132 goto out_free; 1133 } 1134 1135 port = ntohs(sa_addr->v4.sin_port); 1136 1137 /* Save current address so we can work with it */ 1138 memcpy(&to, sa_addr, af->sockaddr_len); 1139 1140 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1141 if (err) 1142 goto out_free; 1143 1144 /* Make sure the destination port is correctly set 1145 * in all addresses. 1146 */ 1147 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1148 err = -EINVAL; 1149 goto out_free; 1150 } 1151 1152 /* Check if there already is a matching association on the 1153 * endpoint (other than the one created here). 1154 */ 1155 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1156 if (asoc2 && asoc2 != asoc) { 1157 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1158 err = -EISCONN; 1159 else 1160 err = -EALREADY; 1161 goto out_free; 1162 } 1163 1164 /* If we could not find a matching association on the endpoint, 1165 * make sure that there is no peeled-off association matching 1166 * the peer address even on another socket. 1167 */ 1168 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1169 err = -EADDRNOTAVAIL; 1170 goto out_free; 1171 } 1172 1173 if (!asoc) { 1174 /* If a bind() or sctp_bindx() is not called prior to 1175 * an sctp_connectx() call, the system picks an 1176 * ephemeral port and will choose an address set 1177 * equivalent to binding with a wildcard address. 1178 */ 1179 if (!ep->base.bind_addr.port) { 1180 if (sctp_autobind(sk)) { 1181 err = -EAGAIN; 1182 goto out_free; 1183 } 1184 } else { 1185 /* 1186 * If an unprivileged user inherits a 1-many 1187 * style socket with open associations on a 1188 * privileged port, it MAY be permitted to 1189 * accept new associations, but it SHOULD NOT 1190 * be permitted to open new associations. 1191 */ 1192 if (ep->base.bind_addr.port < 1193 inet_prot_sock(net) && 1194 !ns_capable(net->user_ns, 1195 CAP_NET_BIND_SERVICE)) { 1196 err = -EACCES; 1197 goto out_free; 1198 } 1199 } 1200 1201 scope = sctp_scope(&to); 1202 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1203 if (!asoc) { 1204 err = -ENOMEM; 1205 goto out_free; 1206 } 1207 1208 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1209 GFP_KERNEL); 1210 if (err < 0) { 1211 goto out_free; 1212 } 1213 1214 } 1215 1216 /* Prime the peer's transport structures. */ 1217 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1218 SCTP_UNKNOWN); 1219 if (!transport) { 1220 err = -ENOMEM; 1221 goto out_free; 1222 } 1223 1224 addrcnt++; 1225 addr_buf += af->sockaddr_len; 1226 walk_size += af->sockaddr_len; 1227 } 1228 1229 /* In case the user of sctp_connectx() wants an association 1230 * id back, assign one now. 1231 */ 1232 if (assoc_id) { 1233 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1234 if (err < 0) 1235 goto out_free; 1236 } 1237 1238 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1239 if (err < 0) { 1240 goto out_free; 1241 } 1242 1243 /* Initialize sk's dport and daddr for getpeername() */ 1244 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1245 sp->pf->to_sk_daddr(sa_addr, sk); 1246 sk->sk_err = 0; 1247 1248 /* in-kernel sockets don't generally have a file allocated to them 1249 * if all they do is call sock_create_kern(). 1250 */ 1251 if (sk->sk_socket->file) 1252 f_flags = sk->sk_socket->file->f_flags; 1253 1254 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1255 1256 if (assoc_id) 1257 *assoc_id = asoc->assoc_id; 1258 err = sctp_wait_for_connect(asoc, &timeo); 1259 /* Note: the asoc may be freed after the return of 1260 * sctp_wait_for_connect. 1261 */ 1262 1263 /* Don't free association on exit. */ 1264 asoc = NULL; 1265 1266 out_free: 1267 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1268 __func__, asoc, kaddrs, err); 1269 1270 if (asoc) { 1271 /* sctp_primitive_ASSOCIATE may have added this association 1272 * To the hash table, try to unhash it, just in case, its a noop 1273 * if it wasn't hashed so we're safe 1274 */ 1275 sctp_association_free(asoc); 1276 } 1277 return err; 1278 } 1279 1280 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1281 * 1282 * API 8.9 1283 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1284 * sctp_assoc_t *asoc); 1285 * 1286 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1287 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1288 * or IPv6 addresses. 1289 * 1290 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1291 * Section 3.1.2 for this usage. 1292 * 1293 * addrs is a pointer to an array of one or more socket addresses. Each 1294 * address is contained in its appropriate structure (i.e. struct 1295 * sockaddr_in or struct sockaddr_in6) the family of the address type 1296 * must be used to distengish the address length (note that this 1297 * representation is termed a "packed array" of addresses). The caller 1298 * specifies the number of addresses in the array with addrcnt. 1299 * 1300 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1301 * the association id of the new association. On failure, sctp_connectx() 1302 * returns -1, and sets errno to the appropriate error code. The assoc_id 1303 * is not touched by the kernel. 1304 * 1305 * For SCTP, the port given in each socket address must be the same, or 1306 * sctp_connectx() will fail, setting errno to EINVAL. 1307 * 1308 * An application can use sctp_connectx to initiate an association with 1309 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1310 * allows a caller to specify multiple addresses at which a peer can be 1311 * reached. The way the SCTP stack uses the list of addresses to set up 1312 * the association is implementation dependent. This function only 1313 * specifies that the stack will try to make use of all the addresses in 1314 * the list when needed. 1315 * 1316 * Note that the list of addresses passed in is only used for setting up 1317 * the association. It does not necessarily equal the set of addresses 1318 * the peer uses for the resulting association. If the caller wants to 1319 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1320 * retrieve them after the association has been set up. 1321 * 1322 * Basically do nothing but copying the addresses from user to kernel 1323 * land and invoking either sctp_connectx(). This is used for tunneling 1324 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1325 * 1326 * We don't use copy_from_user() for optimization: we first do the 1327 * sanity checks (buffer size -fast- and access check-healthy 1328 * pointer); if all of those succeed, then we can alloc the memory 1329 * (expensive operation) needed to copy the data to kernel. Then we do 1330 * the copying without checking the user space area 1331 * (__copy_from_user()). 1332 * 1333 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1334 * it. 1335 * 1336 * sk The sk of the socket 1337 * addrs The pointer to the addresses in user land 1338 * addrssize Size of the addrs buffer 1339 * 1340 * Returns >=0 if ok, <0 errno code on error. 1341 */ 1342 static int __sctp_setsockopt_connectx(struct sock *sk, 1343 struct sockaddr __user *addrs, 1344 int addrs_size, 1345 sctp_assoc_t *assoc_id) 1346 { 1347 struct sockaddr *kaddrs; 1348 gfp_t gfp = GFP_KERNEL; 1349 int err = 0; 1350 1351 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1352 __func__, sk, addrs, addrs_size); 1353 1354 if (unlikely(addrs_size <= 0)) 1355 return -EINVAL; 1356 1357 /* Check the user passed a healthy pointer. */ 1358 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1359 return -EFAULT; 1360 1361 /* Alloc space for the address array in kernel memory. */ 1362 if (sk->sk_socket->file) 1363 gfp = GFP_USER | __GFP_NOWARN; 1364 kaddrs = kmalloc(addrs_size, gfp); 1365 if (unlikely(!kaddrs)) 1366 return -ENOMEM; 1367 1368 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1369 err = -EFAULT; 1370 } else { 1371 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1372 } 1373 1374 kfree(kaddrs); 1375 1376 return err; 1377 } 1378 1379 /* 1380 * This is an older interface. It's kept for backward compatibility 1381 * to the option that doesn't provide association id. 1382 */ 1383 static int sctp_setsockopt_connectx_old(struct sock *sk, 1384 struct sockaddr __user *addrs, 1385 int addrs_size) 1386 { 1387 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1388 } 1389 1390 /* 1391 * New interface for the API. The since the API is done with a socket 1392 * option, to make it simple we feed back the association id is as a return 1393 * indication to the call. Error is always negative and association id is 1394 * always positive. 1395 */ 1396 static int sctp_setsockopt_connectx(struct sock *sk, 1397 struct sockaddr __user *addrs, 1398 int addrs_size) 1399 { 1400 sctp_assoc_t assoc_id = 0; 1401 int err = 0; 1402 1403 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1404 1405 if (err) 1406 return err; 1407 else 1408 return assoc_id; 1409 } 1410 1411 /* 1412 * New (hopefully final) interface for the API. 1413 * We use the sctp_getaddrs_old structure so that use-space library 1414 * can avoid any unnecessary allocations. The only different part 1415 * is that we store the actual length of the address buffer into the 1416 * addrs_num structure member. That way we can re-use the existing 1417 * code. 1418 */ 1419 #ifdef CONFIG_COMPAT 1420 struct compat_sctp_getaddrs_old { 1421 sctp_assoc_t assoc_id; 1422 s32 addr_num; 1423 compat_uptr_t addrs; /* struct sockaddr * */ 1424 }; 1425 #endif 1426 1427 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1428 char __user *optval, 1429 int __user *optlen) 1430 { 1431 struct sctp_getaddrs_old param; 1432 sctp_assoc_t assoc_id = 0; 1433 int err = 0; 1434 1435 #ifdef CONFIG_COMPAT 1436 if (in_compat_syscall()) { 1437 struct compat_sctp_getaddrs_old param32; 1438 1439 if (len < sizeof(param32)) 1440 return -EINVAL; 1441 if (copy_from_user(¶m32, optval, sizeof(param32))) 1442 return -EFAULT; 1443 1444 param.assoc_id = param32.assoc_id; 1445 param.addr_num = param32.addr_num; 1446 param.addrs = compat_ptr(param32.addrs); 1447 } else 1448 #endif 1449 { 1450 if (len < sizeof(param)) 1451 return -EINVAL; 1452 if (copy_from_user(¶m, optval, sizeof(param))) 1453 return -EFAULT; 1454 } 1455 1456 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1457 param.addrs, param.addr_num, 1458 &assoc_id); 1459 if (err == 0 || err == -EINPROGRESS) { 1460 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1461 return -EFAULT; 1462 if (put_user(sizeof(assoc_id), optlen)) 1463 return -EFAULT; 1464 } 1465 1466 return err; 1467 } 1468 1469 /* API 3.1.4 close() - UDP Style Syntax 1470 * Applications use close() to perform graceful shutdown (as described in 1471 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1472 * by a UDP-style socket. 1473 * 1474 * The syntax is 1475 * 1476 * ret = close(int sd); 1477 * 1478 * sd - the socket descriptor of the associations to be closed. 1479 * 1480 * To gracefully shutdown a specific association represented by the 1481 * UDP-style socket, an application should use the sendmsg() call, 1482 * passing no user data, but including the appropriate flag in the 1483 * ancillary data (see Section xxxx). 1484 * 1485 * If sd in the close() call is a branched-off socket representing only 1486 * one association, the shutdown is performed on that association only. 1487 * 1488 * 4.1.6 close() - TCP Style Syntax 1489 * 1490 * Applications use close() to gracefully close down an association. 1491 * 1492 * The syntax is: 1493 * 1494 * int close(int sd); 1495 * 1496 * sd - the socket descriptor of the association to be closed. 1497 * 1498 * After an application calls close() on a socket descriptor, no further 1499 * socket operations will succeed on that descriptor. 1500 * 1501 * API 7.1.4 SO_LINGER 1502 * 1503 * An application using the TCP-style socket can use this option to 1504 * perform the SCTP ABORT primitive. The linger option structure is: 1505 * 1506 * struct linger { 1507 * int l_onoff; // option on/off 1508 * int l_linger; // linger time 1509 * }; 1510 * 1511 * To enable the option, set l_onoff to 1. If the l_linger value is set 1512 * to 0, calling close() is the same as the ABORT primitive. If the 1513 * value is set to a negative value, the setsockopt() call will return 1514 * an error. If the value is set to a positive value linger_time, the 1515 * close() can be blocked for at most linger_time ms. If the graceful 1516 * shutdown phase does not finish during this period, close() will 1517 * return but the graceful shutdown phase continues in the system. 1518 */ 1519 static void sctp_close(struct sock *sk, long timeout) 1520 { 1521 struct net *net = sock_net(sk); 1522 struct sctp_endpoint *ep; 1523 struct sctp_association *asoc; 1524 struct list_head *pos, *temp; 1525 unsigned int data_was_unread; 1526 1527 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1528 1529 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1530 sk->sk_shutdown = SHUTDOWN_MASK; 1531 sk->sk_state = SCTP_SS_CLOSING; 1532 1533 ep = sctp_sk(sk)->ep; 1534 1535 /* Clean up any skbs sitting on the receive queue. */ 1536 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1537 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1538 1539 /* Walk all associations on an endpoint. */ 1540 list_for_each_safe(pos, temp, &ep->asocs) { 1541 asoc = list_entry(pos, struct sctp_association, asocs); 1542 1543 if (sctp_style(sk, TCP)) { 1544 /* A closed association can still be in the list if 1545 * it belongs to a TCP-style listening socket that is 1546 * not yet accepted. If so, free it. If not, send an 1547 * ABORT or SHUTDOWN based on the linger options. 1548 */ 1549 if (sctp_state(asoc, CLOSED)) { 1550 sctp_association_free(asoc); 1551 continue; 1552 } 1553 } 1554 1555 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1556 !skb_queue_empty(&asoc->ulpq.reasm) || 1557 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1558 struct sctp_chunk *chunk; 1559 1560 chunk = sctp_make_abort_user(asoc, NULL, 0); 1561 sctp_primitive_ABORT(net, asoc, chunk); 1562 } else 1563 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1564 } 1565 1566 /* On a TCP-style socket, block for at most linger_time if set. */ 1567 if (sctp_style(sk, TCP) && timeout) 1568 sctp_wait_for_close(sk, timeout); 1569 1570 /* This will run the backlog queue. */ 1571 release_sock(sk); 1572 1573 /* Supposedly, no process has access to the socket, but 1574 * the net layers still may. 1575 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1576 * held and that should be grabbed before socket lock. 1577 */ 1578 spin_lock_bh(&net->sctp.addr_wq_lock); 1579 bh_lock_sock_nested(sk); 1580 1581 /* Hold the sock, since sk_common_release() will put sock_put() 1582 * and we have just a little more cleanup. 1583 */ 1584 sock_hold(sk); 1585 sk_common_release(sk); 1586 1587 bh_unlock_sock(sk); 1588 spin_unlock_bh(&net->sctp.addr_wq_lock); 1589 1590 sock_put(sk); 1591 1592 SCTP_DBG_OBJCNT_DEC(sock); 1593 } 1594 1595 /* Handle EPIPE error. */ 1596 static int sctp_error(struct sock *sk, int flags, int err) 1597 { 1598 if (err == -EPIPE) 1599 err = sock_error(sk) ? : -EPIPE; 1600 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1601 send_sig(SIGPIPE, current, 0); 1602 return err; 1603 } 1604 1605 /* API 3.1.3 sendmsg() - UDP Style Syntax 1606 * 1607 * An application uses sendmsg() and recvmsg() calls to transmit data to 1608 * and receive data from its peer. 1609 * 1610 * ssize_t sendmsg(int socket, const struct msghdr *message, 1611 * int flags); 1612 * 1613 * socket - the socket descriptor of the endpoint. 1614 * message - pointer to the msghdr structure which contains a single 1615 * user message and possibly some ancillary data. 1616 * 1617 * See Section 5 for complete description of the data 1618 * structures. 1619 * 1620 * flags - flags sent or received with the user message, see Section 1621 * 5 for complete description of the flags. 1622 * 1623 * Note: This function could use a rewrite especially when explicit 1624 * connect support comes in. 1625 */ 1626 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1627 1628 static int sctp_msghdr_parse(const struct msghdr *msg, 1629 struct sctp_cmsgs *cmsgs); 1630 1631 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1632 { 1633 struct net *net = sock_net(sk); 1634 struct sctp_sock *sp; 1635 struct sctp_endpoint *ep; 1636 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1637 struct sctp_transport *transport, *chunk_tp; 1638 struct sctp_chunk *chunk; 1639 union sctp_addr to; 1640 struct sockaddr *msg_name = NULL; 1641 struct sctp_sndrcvinfo default_sinfo; 1642 struct sctp_sndrcvinfo *sinfo; 1643 struct sctp_initmsg *sinit; 1644 sctp_assoc_t associd = 0; 1645 struct sctp_cmsgs cmsgs = { NULL }; 1646 enum sctp_scope scope; 1647 bool fill_sinfo_ttl = false, wait_connect = false; 1648 struct sctp_datamsg *datamsg; 1649 int msg_flags = msg->msg_flags; 1650 __u16 sinfo_flags = 0; 1651 long timeo; 1652 int err; 1653 1654 err = 0; 1655 sp = sctp_sk(sk); 1656 ep = sp->ep; 1657 1658 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1659 msg, msg_len, ep); 1660 1661 /* We cannot send a message over a TCP-style listening socket. */ 1662 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1663 err = -EPIPE; 1664 goto out_nounlock; 1665 } 1666 1667 /* Parse out the SCTP CMSGs. */ 1668 err = sctp_msghdr_parse(msg, &cmsgs); 1669 if (err) { 1670 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1671 goto out_nounlock; 1672 } 1673 1674 /* Fetch the destination address for this packet. This 1675 * address only selects the association--it is not necessarily 1676 * the address we will send to. 1677 * For a peeled-off socket, msg_name is ignored. 1678 */ 1679 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1680 int msg_namelen = msg->msg_namelen; 1681 1682 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1683 msg_namelen); 1684 if (err) 1685 return err; 1686 1687 if (msg_namelen > sizeof(to)) 1688 msg_namelen = sizeof(to); 1689 memcpy(&to, msg->msg_name, msg_namelen); 1690 msg_name = msg->msg_name; 1691 } 1692 1693 sinit = cmsgs.init; 1694 if (cmsgs.sinfo != NULL) { 1695 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1696 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1697 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1698 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1699 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1700 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1701 1702 sinfo = &default_sinfo; 1703 fill_sinfo_ttl = true; 1704 } else { 1705 sinfo = cmsgs.srinfo; 1706 } 1707 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1708 if (sinfo) { 1709 sinfo_flags = sinfo->sinfo_flags; 1710 associd = sinfo->sinfo_assoc_id; 1711 } 1712 1713 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1714 msg_len, sinfo_flags); 1715 1716 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1717 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1718 err = -EINVAL; 1719 goto out_nounlock; 1720 } 1721 1722 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1723 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1724 * If SCTP_ABORT is set, the message length could be non zero with 1725 * the msg_iov set to the user abort reason. 1726 */ 1727 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1728 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1729 err = -EINVAL; 1730 goto out_nounlock; 1731 } 1732 1733 /* If SCTP_ADDR_OVER is set, there must be an address 1734 * specified in msg_name. 1735 */ 1736 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1737 err = -EINVAL; 1738 goto out_nounlock; 1739 } 1740 1741 transport = NULL; 1742 1743 pr_debug("%s: about to look up association\n", __func__); 1744 1745 lock_sock(sk); 1746 1747 /* If a msg_name has been specified, assume this is to be used. */ 1748 if (msg_name) { 1749 /* Look for a matching association on the endpoint. */ 1750 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1751 1752 /* If we could not find a matching association on the 1753 * endpoint, make sure that it is not a TCP-style 1754 * socket that already has an association or there is 1755 * no peeled-off association on another socket. 1756 */ 1757 if (!asoc && 1758 ((sctp_style(sk, TCP) && 1759 (sctp_sstate(sk, ESTABLISHED) || 1760 sctp_sstate(sk, CLOSING))) || 1761 sctp_endpoint_is_peeled_off(ep, &to))) { 1762 err = -EADDRNOTAVAIL; 1763 goto out_unlock; 1764 } 1765 } else { 1766 asoc = sctp_id2assoc(sk, associd); 1767 if (!asoc) { 1768 err = -EPIPE; 1769 goto out_unlock; 1770 } 1771 } 1772 1773 if (asoc) { 1774 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1775 1776 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1777 * socket that has an association in CLOSED state. This can 1778 * happen when an accepted socket has an association that is 1779 * already CLOSED. 1780 */ 1781 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1782 err = -EPIPE; 1783 goto out_unlock; 1784 } 1785 1786 if (sinfo_flags & SCTP_EOF) { 1787 pr_debug("%s: shutting down association:%p\n", 1788 __func__, asoc); 1789 1790 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1791 err = 0; 1792 goto out_unlock; 1793 } 1794 if (sinfo_flags & SCTP_ABORT) { 1795 1796 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1797 if (!chunk) { 1798 err = -ENOMEM; 1799 goto out_unlock; 1800 } 1801 1802 pr_debug("%s: aborting association:%p\n", 1803 __func__, asoc); 1804 1805 sctp_primitive_ABORT(net, asoc, chunk); 1806 err = 0; 1807 goto out_unlock; 1808 } 1809 } 1810 1811 /* Do we need to create the association? */ 1812 if (!asoc) { 1813 pr_debug("%s: there is no association yet\n", __func__); 1814 1815 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1816 err = -EINVAL; 1817 goto out_unlock; 1818 } 1819 1820 /* Check for invalid stream against the stream counts, 1821 * either the default or the user specified stream counts. 1822 */ 1823 if (sinfo) { 1824 if (!sinit || !sinit->sinit_num_ostreams) { 1825 /* Check against the defaults. */ 1826 if (sinfo->sinfo_stream >= 1827 sp->initmsg.sinit_num_ostreams) { 1828 err = -EINVAL; 1829 goto out_unlock; 1830 } 1831 } else { 1832 /* Check against the requested. */ 1833 if (sinfo->sinfo_stream >= 1834 sinit->sinit_num_ostreams) { 1835 err = -EINVAL; 1836 goto out_unlock; 1837 } 1838 } 1839 } 1840 1841 /* 1842 * API 3.1.2 bind() - UDP Style Syntax 1843 * If a bind() or sctp_bindx() is not called prior to a 1844 * sendmsg() call that initiates a new association, the 1845 * system picks an ephemeral port and will choose an address 1846 * set equivalent to binding with a wildcard address. 1847 */ 1848 if (!ep->base.bind_addr.port) { 1849 if (sctp_autobind(sk)) { 1850 err = -EAGAIN; 1851 goto out_unlock; 1852 } 1853 } else { 1854 /* 1855 * If an unprivileged user inherits a one-to-many 1856 * style socket with open associations on a privileged 1857 * port, it MAY be permitted to accept new associations, 1858 * but it SHOULD NOT be permitted to open new 1859 * associations. 1860 */ 1861 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1862 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1863 err = -EACCES; 1864 goto out_unlock; 1865 } 1866 } 1867 1868 scope = sctp_scope(&to); 1869 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1870 if (!new_asoc) { 1871 err = -ENOMEM; 1872 goto out_unlock; 1873 } 1874 asoc = new_asoc; 1875 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1876 if (err < 0) { 1877 err = -ENOMEM; 1878 goto out_free; 1879 } 1880 1881 /* If the SCTP_INIT ancillary data is specified, set all 1882 * the association init values accordingly. 1883 */ 1884 if (sinit) { 1885 if (sinit->sinit_num_ostreams) { 1886 asoc->c.sinit_num_ostreams = 1887 sinit->sinit_num_ostreams; 1888 } 1889 if (sinit->sinit_max_instreams) { 1890 asoc->c.sinit_max_instreams = 1891 sinit->sinit_max_instreams; 1892 } 1893 if (sinit->sinit_max_attempts) { 1894 asoc->max_init_attempts 1895 = sinit->sinit_max_attempts; 1896 } 1897 if (sinit->sinit_max_init_timeo) { 1898 asoc->max_init_timeo = 1899 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1900 } 1901 } 1902 1903 /* Prime the peer's transport structures. */ 1904 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1905 if (!transport) { 1906 err = -ENOMEM; 1907 goto out_free; 1908 } 1909 } 1910 1911 /* ASSERT: we have a valid association at this point. */ 1912 pr_debug("%s: we have a valid association\n", __func__); 1913 1914 if (!sinfo) { 1915 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1916 * one with some defaults. 1917 */ 1918 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1919 default_sinfo.sinfo_stream = asoc->default_stream; 1920 default_sinfo.sinfo_flags = asoc->default_flags; 1921 default_sinfo.sinfo_ppid = asoc->default_ppid; 1922 default_sinfo.sinfo_context = asoc->default_context; 1923 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1924 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1925 1926 sinfo = &default_sinfo; 1927 } else if (fill_sinfo_ttl) { 1928 /* In case SNDINFO was specified, we still need to fill 1929 * it with a default ttl from the assoc here. 1930 */ 1931 sinfo->sinfo_timetolive = asoc->default_timetolive; 1932 } 1933 1934 /* API 7.1.7, the sndbuf size per association bounds the 1935 * maximum size of data that can be sent in a single send call. 1936 */ 1937 if (msg_len > sk->sk_sndbuf) { 1938 err = -EMSGSIZE; 1939 goto out_free; 1940 } 1941 1942 if (asoc->pmtu_pending) 1943 sctp_assoc_pending_pmtu(asoc); 1944 1945 /* If fragmentation is disabled and the message length exceeds the 1946 * association fragmentation point, return EMSGSIZE. The I-D 1947 * does not specify what this error is, but this looks like 1948 * a great fit. 1949 */ 1950 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1951 err = -EMSGSIZE; 1952 goto out_free; 1953 } 1954 1955 /* Check for invalid stream. */ 1956 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1957 err = -EINVAL; 1958 goto out_free; 1959 } 1960 1961 /* Allocate sctp_stream_out_ext if not already done */ 1962 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1963 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1964 if (err) 1965 goto out_free; 1966 } 1967 1968 if (sctp_wspace(asoc) < msg_len) 1969 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1970 1971 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1972 if (!sctp_wspace(asoc)) { 1973 /* sk can be changed by peel off when waiting for buf. */ 1974 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len, &sk); 1975 if (err) { 1976 if (err == -ESRCH) { 1977 /* asoc is already dead. */ 1978 new_asoc = NULL; 1979 err = -EPIPE; 1980 } 1981 goto out_free; 1982 } 1983 } 1984 1985 /* If an address is passed with the sendto/sendmsg call, it is used 1986 * to override the primary destination address in the TCP model, or 1987 * when SCTP_ADDR_OVER flag is set in the UDP model. 1988 */ 1989 if ((sctp_style(sk, TCP) && msg_name) || 1990 (sinfo_flags & SCTP_ADDR_OVER)) { 1991 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1992 if (!chunk_tp) { 1993 err = -EINVAL; 1994 goto out_free; 1995 } 1996 } else 1997 chunk_tp = NULL; 1998 1999 /* Auto-connect, if we aren't connected already. */ 2000 if (sctp_state(asoc, CLOSED)) { 2001 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 2002 if (err < 0) 2003 goto out_free; 2004 2005 wait_connect = true; 2006 pr_debug("%s: we associated primitively\n", __func__); 2007 } 2008 2009 /* Break the message into multiple chunks of maximum size. */ 2010 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 2011 if (IS_ERR(datamsg)) { 2012 err = PTR_ERR(datamsg); 2013 goto out_free; 2014 } 2015 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 2016 2017 /* Now send the (possibly) fragmented message. */ 2018 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 2019 sctp_chunk_hold(chunk); 2020 2021 /* Do accounting for the write space. */ 2022 sctp_set_owner_w(chunk); 2023 2024 chunk->transport = chunk_tp; 2025 } 2026 2027 /* Send it to the lower layers. Note: all chunks 2028 * must either fail or succeed. The lower layer 2029 * works that way today. Keep it that way or this 2030 * breaks. 2031 */ 2032 err = sctp_primitive_SEND(net, asoc, datamsg); 2033 /* Did the lower layer accept the chunk? */ 2034 if (err) { 2035 sctp_datamsg_free(datamsg); 2036 goto out_free; 2037 } 2038 2039 pr_debug("%s: we sent primitively\n", __func__); 2040 2041 sctp_datamsg_put(datamsg); 2042 err = msg_len; 2043 2044 if (unlikely(wait_connect)) { 2045 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 2046 sctp_wait_for_connect(asoc, &timeo); 2047 } 2048 2049 /* If we are already past ASSOCIATE, the lower 2050 * layers are responsible for association cleanup. 2051 */ 2052 goto out_unlock; 2053 2054 out_free: 2055 if (new_asoc) 2056 sctp_association_free(asoc); 2057 out_unlock: 2058 release_sock(sk); 2059 2060 out_nounlock: 2061 return sctp_error(sk, msg_flags, err); 2062 2063 #if 0 2064 do_sock_err: 2065 if (msg_len) 2066 err = msg_len; 2067 else 2068 err = sock_error(sk); 2069 goto out; 2070 2071 do_interrupted: 2072 if (msg_len) 2073 err = msg_len; 2074 goto out; 2075 #endif /* 0 */ 2076 } 2077 2078 /* This is an extended version of skb_pull() that removes the data from the 2079 * start of a skb even when data is spread across the list of skb's in the 2080 * frag_list. len specifies the total amount of data that needs to be removed. 2081 * when 'len' bytes could be removed from the skb, it returns 0. 2082 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2083 * could not be removed. 2084 */ 2085 static int sctp_skb_pull(struct sk_buff *skb, int len) 2086 { 2087 struct sk_buff *list; 2088 int skb_len = skb_headlen(skb); 2089 int rlen; 2090 2091 if (len <= skb_len) { 2092 __skb_pull(skb, len); 2093 return 0; 2094 } 2095 len -= skb_len; 2096 __skb_pull(skb, skb_len); 2097 2098 skb_walk_frags(skb, list) { 2099 rlen = sctp_skb_pull(list, len); 2100 skb->len -= (len-rlen); 2101 skb->data_len -= (len-rlen); 2102 2103 if (!rlen) 2104 return 0; 2105 2106 len = rlen; 2107 } 2108 2109 return len; 2110 } 2111 2112 /* API 3.1.3 recvmsg() - UDP Style Syntax 2113 * 2114 * ssize_t recvmsg(int socket, struct msghdr *message, 2115 * int flags); 2116 * 2117 * socket - the socket descriptor of the endpoint. 2118 * message - pointer to the msghdr structure which contains a single 2119 * user message and possibly some ancillary data. 2120 * 2121 * See Section 5 for complete description of the data 2122 * structures. 2123 * 2124 * flags - flags sent or received with the user message, see Section 2125 * 5 for complete description of the flags. 2126 */ 2127 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2128 int noblock, int flags, int *addr_len) 2129 { 2130 struct sctp_ulpevent *event = NULL; 2131 struct sctp_sock *sp = sctp_sk(sk); 2132 struct sk_buff *skb, *head_skb; 2133 int copied; 2134 int err = 0; 2135 int skb_len; 2136 2137 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2138 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2139 addr_len); 2140 2141 lock_sock(sk); 2142 2143 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2144 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2145 err = -ENOTCONN; 2146 goto out; 2147 } 2148 2149 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2150 if (!skb) 2151 goto out; 2152 2153 /* Get the total length of the skb including any skb's in the 2154 * frag_list. 2155 */ 2156 skb_len = skb->len; 2157 2158 copied = skb_len; 2159 if (copied > len) 2160 copied = len; 2161 2162 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2163 2164 event = sctp_skb2event(skb); 2165 2166 if (err) 2167 goto out_free; 2168 2169 if (event->chunk && event->chunk->head_skb) 2170 head_skb = event->chunk->head_skb; 2171 else 2172 head_skb = skb; 2173 sock_recv_ts_and_drops(msg, sk, head_skb); 2174 if (sctp_ulpevent_is_notification(event)) { 2175 msg->msg_flags |= MSG_NOTIFICATION; 2176 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2177 } else { 2178 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2179 } 2180 2181 /* Check if we allow SCTP_NXTINFO. */ 2182 if (sp->recvnxtinfo) 2183 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2184 /* Check if we allow SCTP_RCVINFO. */ 2185 if (sp->recvrcvinfo) 2186 sctp_ulpevent_read_rcvinfo(event, msg); 2187 /* Check if we allow SCTP_SNDRCVINFO. */ 2188 if (sp->subscribe.sctp_data_io_event) 2189 sctp_ulpevent_read_sndrcvinfo(event, msg); 2190 2191 err = copied; 2192 2193 /* If skb's length exceeds the user's buffer, update the skb and 2194 * push it back to the receive_queue so that the next call to 2195 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2196 */ 2197 if (skb_len > copied) { 2198 msg->msg_flags &= ~MSG_EOR; 2199 if (flags & MSG_PEEK) 2200 goto out_free; 2201 sctp_skb_pull(skb, copied); 2202 skb_queue_head(&sk->sk_receive_queue, skb); 2203 2204 /* When only partial message is copied to the user, increase 2205 * rwnd by that amount. If all the data in the skb is read, 2206 * rwnd is updated when the event is freed. 2207 */ 2208 if (!sctp_ulpevent_is_notification(event)) 2209 sctp_assoc_rwnd_increase(event->asoc, copied); 2210 goto out; 2211 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2212 (event->msg_flags & MSG_EOR)) 2213 msg->msg_flags |= MSG_EOR; 2214 else 2215 msg->msg_flags &= ~MSG_EOR; 2216 2217 out_free: 2218 if (flags & MSG_PEEK) { 2219 /* Release the skb reference acquired after peeking the skb in 2220 * sctp_skb_recv_datagram(). 2221 */ 2222 kfree_skb(skb); 2223 } else { 2224 /* Free the event which includes releasing the reference to 2225 * the owner of the skb, freeing the skb and updating the 2226 * rwnd. 2227 */ 2228 sctp_ulpevent_free(event); 2229 } 2230 out: 2231 release_sock(sk); 2232 return err; 2233 } 2234 2235 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2236 * 2237 * This option is a on/off flag. If enabled no SCTP message 2238 * fragmentation will be performed. Instead if a message being sent 2239 * exceeds the current PMTU size, the message will NOT be sent and 2240 * instead a error will be indicated to the user. 2241 */ 2242 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2243 char __user *optval, 2244 unsigned int optlen) 2245 { 2246 int val; 2247 2248 if (optlen < sizeof(int)) 2249 return -EINVAL; 2250 2251 if (get_user(val, (int __user *)optval)) 2252 return -EFAULT; 2253 2254 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2255 2256 return 0; 2257 } 2258 2259 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2260 unsigned int optlen) 2261 { 2262 struct sctp_association *asoc; 2263 struct sctp_ulpevent *event; 2264 2265 if (optlen > sizeof(struct sctp_event_subscribe)) 2266 return -EINVAL; 2267 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2268 return -EFAULT; 2269 2270 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2271 * if there is no data to be sent or retransmit, the stack will 2272 * immediately send up this notification. 2273 */ 2274 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2275 &sctp_sk(sk)->subscribe)) { 2276 asoc = sctp_id2assoc(sk, 0); 2277 2278 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2279 event = sctp_ulpevent_make_sender_dry_event(asoc, 2280 GFP_ATOMIC); 2281 if (!event) 2282 return -ENOMEM; 2283 2284 sctp_ulpq_tail_event(&asoc->ulpq, event); 2285 } 2286 } 2287 2288 return 0; 2289 } 2290 2291 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2292 * 2293 * This socket option is applicable to the UDP-style socket only. When 2294 * set it will cause associations that are idle for more than the 2295 * specified number of seconds to automatically close. An association 2296 * being idle is defined an association that has NOT sent or received 2297 * user data. The special value of '0' indicates that no automatic 2298 * close of any associations should be performed. The option expects an 2299 * integer defining the number of seconds of idle time before an 2300 * association is closed. 2301 */ 2302 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2303 unsigned int optlen) 2304 { 2305 struct sctp_sock *sp = sctp_sk(sk); 2306 struct net *net = sock_net(sk); 2307 2308 /* Applicable to UDP-style socket only */ 2309 if (sctp_style(sk, TCP)) 2310 return -EOPNOTSUPP; 2311 if (optlen != sizeof(int)) 2312 return -EINVAL; 2313 if (copy_from_user(&sp->autoclose, optval, optlen)) 2314 return -EFAULT; 2315 2316 if (sp->autoclose > net->sctp.max_autoclose) 2317 sp->autoclose = net->sctp.max_autoclose; 2318 2319 return 0; 2320 } 2321 2322 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2323 * 2324 * Applications can enable or disable heartbeats for any peer address of 2325 * an association, modify an address's heartbeat interval, force a 2326 * heartbeat to be sent immediately, and adjust the address's maximum 2327 * number of retransmissions sent before an address is considered 2328 * unreachable. The following structure is used to access and modify an 2329 * address's parameters: 2330 * 2331 * struct sctp_paddrparams { 2332 * sctp_assoc_t spp_assoc_id; 2333 * struct sockaddr_storage spp_address; 2334 * uint32_t spp_hbinterval; 2335 * uint16_t spp_pathmaxrxt; 2336 * uint32_t spp_pathmtu; 2337 * uint32_t spp_sackdelay; 2338 * uint32_t spp_flags; 2339 * }; 2340 * 2341 * spp_assoc_id - (one-to-many style socket) This is filled in the 2342 * application, and identifies the association for 2343 * this query. 2344 * spp_address - This specifies which address is of interest. 2345 * spp_hbinterval - This contains the value of the heartbeat interval, 2346 * in milliseconds. If a value of zero 2347 * is present in this field then no changes are to 2348 * be made to this parameter. 2349 * spp_pathmaxrxt - This contains the maximum number of 2350 * retransmissions before this address shall be 2351 * considered unreachable. If a value of zero 2352 * is present in this field then no changes are to 2353 * be made to this parameter. 2354 * spp_pathmtu - When Path MTU discovery is disabled the value 2355 * specified here will be the "fixed" path mtu. 2356 * Note that if the spp_address field is empty 2357 * then all associations on this address will 2358 * have this fixed path mtu set upon them. 2359 * 2360 * spp_sackdelay - When delayed sack is enabled, this value specifies 2361 * the number of milliseconds that sacks will be delayed 2362 * for. This value will apply to all addresses of an 2363 * association if the spp_address field is empty. Note 2364 * also, that if delayed sack is enabled and this 2365 * value is set to 0, no change is made to the last 2366 * recorded delayed sack timer value. 2367 * 2368 * spp_flags - These flags are used to control various features 2369 * on an association. The flag field may contain 2370 * zero or more of the following options. 2371 * 2372 * SPP_HB_ENABLE - Enable heartbeats on the 2373 * specified address. Note that if the address 2374 * field is empty all addresses for the association 2375 * have heartbeats enabled upon them. 2376 * 2377 * SPP_HB_DISABLE - Disable heartbeats on the 2378 * speicifed address. Note that if the address 2379 * field is empty all addresses for the association 2380 * will have their heartbeats disabled. Note also 2381 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2382 * mutually exclusive, only one of these two should 2383 * be specified. Enabling both fields will have 2384 * undetermined results. 2385 * 2386 * SPP_HB_DEMAND - Request a user initiated heartbeat 2387 * to be made immediately. 2388 * 2389 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2390 * heartbeat delayis to be set to the value of 0 2391 * milliseconds. 2392 * 2393 * SPP_PMTUD_ENABLE - This field will enable PMTU 2394 * discovery upon the specified address. Note that 2395 * if the address feild is empty then all addresses 2396 * on the association are effected. 2397 * 2398 * SPP_PMTUD_DISABLE - This field will disable PMTU 2399 * discovery upon the specified address. Note that 2400 * if the address feild is empty then all addresses 2401 * on the association are effected. Not also that 2402 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2403 * exclusive. Enabling both will have undetermined 2404 * results. 2405 * 2406 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2407 * on delayed sack. The time specified in spp_sackdelay 2408 * is used to specify the sack delay for this address. Note 2409 * that if spp_address is empty then all addresses will 2410 * enable delayed sack and take on the sack delay 2411 * value specified in spp_sackdelay. 2412 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2413 * off delayed sack. If the spp_address field is blank then 2414 * delayed sack is disabled for the entire association. Note 2415 * also that this field is mutually exclusive to 2416 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2417 * results. 2418 */ 2419 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2420 struct sctp_transport *trans, 2421 struct sctp_association *asoc, 2422 struct sctp_sock *sp, 2423 int hb_change, 2424 int pmtud_change, 2425 int sackdelay_change) 2426 { 2427 int error; 2428 2429 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2430 struct net *net = sock_net(trans->asoc->base.sk); 2431 2432 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2433 if (error) 2434 return error; 2435 } 2436 2437 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2438 * this field is ignored. Note also that a value of zero indicates 2439 * the current setting should be left unchanged. 2440 */ 2441 if (params->spp_flags & SPP_HB_ENABLE) { 2442 2443 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2444 * set. This lets us use 0 value when this flag 2445 * is set. 2446 */ 2447 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2448 params->spp_hbinterval = 0; 2449 2450 if (params->spp_hbinterval || 2451 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2452 if (trans) { 2453 trans->hbinterval = 2454 msecs_to_jiffies(params->spp_hbinterval); 2455 } else if (asoc) { 2456 asoc->hbinterval = 2457 msecs_to_jiffies(params->spp_hbinterval); 2458 } else { 2459 sp->hbinterval = params->spp_hbinterval; 2460 } 2461 } 2462 } 2463 2464 if (hb_change) { 2465 if (trans) { 2466 trans->param_flags = 2467 (trans->param_flags & ~SPP_HB) | hb_change; 2468 } else if (asoc) { 2469 asoc->param_flags = 2470 (asoc->param_flags & ~SPP_HB) | hb_change; 2471 } else { 2472 sp->param_flags = 2473 (sp->param_flags & ~SPP_HB) | hb_change; 2474 } 2475 } 2476 2477 /* When Path MTU discovery is disabled the value specified here will 2478 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2479 * include the flag SPP_PMTUD_DISABLE for this field to have any 2480 * effect). 2481 */ 2482 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2483 if (trans) { 2484 trans->pathmtu = params->spp_pathmtu; 2485 sctp_assoc_sync_pmtu(asoc); 2486 } else if (asoc) { 2487 asoc->pathmtu = params->spp_pathmtu; 2488 } else { 2489 sp->pathmtu = params->spp_pathmtu; 2490 } 2491 } 2492 2493 if (pmtud_change) { 2494 if (trans) { 2495 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2496 (params->spp_flags & SPP_PMTUD_ENABLE); 2497 trans->param_flags = 2498 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2499 if (update) { 2500 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2501 sctp_assoc_sync_pmtu(asoc); 2502 } 2503 } else if (asoc) { 2504 asoc->param_flags = 2505 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2506 } else { 2507 sp->param_flags = 2508 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2509 } 2510 } 2511 2512 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2513 * value of this field is ignored. Note also that a value of zero 2514 * indicates the current setting should be left unchanged. 2515 */ 2516 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2517 if (trans) { 2518 trans->sackdelay = 2519 msecs_to_jiffies(params->spp_sackdelay); 2520 } else if (asoc) { 2521 asoc->sackdelay = 2522 msecs_to_jiffies(params->spp_sackdelay); 2523 } else { 2524 sp->sackdelay = params->spp_sackdelay; 2525 } 2526 } 2527 2528 if (sackdelay_change) { 2529 if (trans) { 2530 trans->param_flags = 2531 (trans->param_flags & ~SPP_SACKDELAY) | 2532 sackdelay_change; 2533 } else if (asoc) { 2534 asoc->param_flags = 2535 (asoc->param_flags & ~SPP_SACKDELAY) | 2536 sackdelay_change; 2537 } else { 2538 sp->param_flags = 2539 (sp->param_flags & ~SPP_SACKDELAY) | 2540 sackdelay_change; 2541 } 2542 } 2543 2544 /* Note that a value of zero indicates the current setting should be 2545 left unchanged. 2546 */ 2547 if (params->spp_pathmaxrxt) { 2548 if (trans) { 2549 trans->pathmaxrxt = params->spp_pathmaxrxt; 2550 } else if (asoc) { 2551 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2552 } else { 2553 sp->pathmaxrxt = params->spp_pathmaxrxt; 2554 } 2555 } 2556 2557 return 0; 2558 } 2559 2560 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2561 char __user *optval, 2562 unsigned int optlen) 2563 { 2564 struct sctp_paddrparams params; 2565 struct sctp_transport *trans = NULL; 2566 struct sctp_association *asoc = NULL; 2567 struct sctp_sock *sp = sctp_sk(sk); 2568 int error; 2569 int hb_change, pmtud_change, sackdelay_change; 2570 2571 if (optlen != sizeof(struct sctp_paddrparams)) 2572 return -EINVAL; 2573 2574 if (copy_from_user(¶ms, optval, optlen)) 2575 return -EFAULT; 2576 2577 /* Validate flags and value parameters. */ 2578 hb_change = params.spp_flags & SPP_HB; 2579 pmtud_change = params.spp_flags & SPP_PMTUD; 2580 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2581 2582 if (hb_change == SPP_HB || 2583 pmtud_change == SPP_PMTUD || 2584 sackdelay_change == SPP_SACKDELAY || 2585 params.spp_sackdelay > 500 || 2586 (params.spp_pathmtu && 2587 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2588 return -EINVAL; 2589 2590 /* If an address other than INADDR_ANY is specified, and 2591 * no transport is found, then the request is invalid. 2592 */ 2593 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2594 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2595 params.spp_assoc_id); 2596 if (!trans) 2597 return -EINVAL; 2598 } 2599 2600 /* Get association, if assoc_id != 0 and the socket is a one 2601 * to many style socket, and an association was not found, then 2602 * the id was invalid. 2603 */ 2604 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2605 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2606 return -EINVAL; 2607 2608 /* Heartbeat demand can only be sent on a transport or 2609 * association, but not a socket. 2610 */ 2611 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2612 return -EINVAL; 2613 2614 /* Process parameters. */ 2615 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2616 hb_change, pmtud_change, 2617 sackdelay_change); 2618 2619 if (error) 2620 return error; 2621 2622 /* If changes are for association, also apply parameters to each 2623 * transport. 2624 */ 2625 if (!trans && asoc) { 2626 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2627 transports) { 2628 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2629 hb_change, pmtud_change, 2630 sackdelay_change); 2631 } 2632 } 2633 2634 return 0; 2635 } 2636 2637 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2638 { 2639 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2640 } 2641 2642 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2643 { 2644 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2645 } 2646 2647 /* 2648 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2649 * 2650 * This option will effect the way delayed acks are performed. This 2651 * option allows you to get or set the delayed ack time, in 2652 * milliseconds. It also allows changing the delayed ack frequency. 2653 * Changing the frequency to 1 disables the delayed sack algorithm. If 2654 * the assoc_id is 0, then this sets or gets the endpoints default 2655 * values. If the assoc_id field is non-zero, then the set or get 2656 * effects the specified association for the one to many model (the 2657 * assoc_id field is ignored by the one to one model). Note that if 2658 * sack_delay or sack_freq are 0 when setting this option, then the 2659 * current values will remain unchanged. 2660 * 2661 * struct sctp_sack_info { 2662 * sctp_assoc_t sack_assoc_id; 2663 * uint32_t sack_delay; 2664 * uint32_t sack_freq; 2665 * }; 2666 * 2667 * sack_assoc_id - This parameter, indicates which association the user 2668 * is performing an action upon. Note that if this field's value is 2669 * zero then the endpoints default value is changed (effecting future 2670 * associations only). 2671 * 2672 * sack_delay - This parameter contains the number of milliseconds that 2673 * the user is requesting the delayed ACK timer be set to. Note that 2674 * this value is defined in the standard to be between 200 and 500 2675 * milliseconds. 2676 * 2677 * sack_freq - This parameter contains the number of packets that must 2678 * be received before a sack is sent without waiting for the delay 2679 * timer to expire. The default value for this is 2, setting this 2680 * value to 1 will disable the delayed sack algorithm. 2681 */ 2682 2683 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2684 char __user *optval, unsigned int optlen) 2685 { 2686 struct sctp_sack_info params; 2687 struct sctp_transport *trans = NULL; 2688 struct sctp_association *asoc = NULL; 2689 struct sctp_sock *sp = sctp_sk(sk); 2690 2691 if (optlen == sizeof(struct sctp_sack_info)) { 2692 if (copy_from_user(¶ms, optval, optlen)) 2693 return -EFAULT; 2694 2695 if (params.sack_delay == 0 && params.sack_freq == 0) 2696 return 0; 2697 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2698 pr_warn_ratelimited(DEPRECATED 2699 "%s (pid %d) " 2700 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2701 "Use struct sctp_sack_info instead\n", 2702 current->comm, task_pid_nr(current)); 2703 if (copy_from_user(¶ms, optval, optlen)) 2704 return -EFAULT; 2705 2706 if (params.sack_delay == 0) 2707 params.sack_freq = 1; 2708 else 2709 params.sack_freq = 0; 2710 } else 2711 return -EINVAL; 2712 2713 /* Validate value parameter. */ 2714 if (params.sack_delay > 500) 2715 return -EINVAL; 2716 2717 /* Get association, if sack_assoc_id != 0 and the socket is a one 2718 * to many style socket, and an association was not found, then 2719 * the id was invalid. 2720 */ 2721 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2722 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2723 return -EINVAL; 2724 2725 if (params.sack_delay) { 2726 if (asoc) { 2727 asoc->sackdelay = 2728 msecs_to_jiffies(params.sack_delay); 2729 asoc->param_flags = 2730 sctp_spp_sackdelay_enable(asoc->param_flags); 2731 } else { 2732 sp->sackdelay = params.sack_delay; 2733 sp->param_flags = 2734 sctp_spp_sackdelay_enable(sp->param_flags); 2735 } 2736 } 2737 2738 if (params.sack_freq == 1) { 2739 if (asoc) { 2740 asoc->param_flags = 2741 sctp_spp_sackdelay_disable(asoc->param_flags); 2742 } else { 2743 sp->param_flags = 2744 sctp_spp_sackdelay_disable(sp->param_flags); 2745 } 2746 } else if (params.sack_freq > 1) { 2747 if (asoc) { 2748 asoc->sackfreq = params.sack_freq; 2749 asoc->param_flags = 2750 sctp_spp_sackdelay_enable(asoc->param_flags); 2751 } else { 2752 sp->sackfreq = params.sack_freq; 2753 sp->param_flags = 2754 sctp_spp_sackdelay_enable(sp->param_flags); 2755 } 2756 } 2757 2758 /* If change is for association, also apply to each transport. */ 2759 if (asoc) { 2760 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2761 transports) { 2762 if (params.sack_delay) { 2763 trans->sackdelay = 2764 msecs_to_jiffies(params.sack_delay); 2765 trans->param_flags = 2766 sctp_spp_sackdelay_enable(trans->param_flags); 2767 } 2768 if (params.sack_freq == 1) { 2769 trans->param_flags = 2770 sctp_spp_sackdelay_disable(trans->param_flags); 2771 } else if (params.sack_freq > 1) { 2772 trans->sackfreq = params.sack_freq; 2773 trans->param_flags = 2774 sctp_spp_sackdelay_enable(trans->param_flags); 2775 } 2776 } 2777 } 2778 2779 return 0; 2780 } 2781 2782 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2783 * 2784 * Applications can specify protocol parameters for the default association 2785 * initialization. The option name argument to setsockopt() and getsockopt() 2786 * is SCTP_INITMSG. 2787 * 2788 * Setting initialization parameters is effective only on an unconnected 2789 * socket (for UDP-style sockets only future associations are effected 2790 * by the change). With TCP-style sockets, this option is inherited by 2791 * sockets derived from a listener socket. 2792 */ 2793 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2794 { 2795 struct sctp_initmsg sinit; 2796 struct sctp_sock *sp = sctp_sk(sk); 2797 2798 if (optlen != sizeof(struct sctp_initmsg)) 2799 return -EINVAL; 2800 if (copy_from_user(&sinit, optval, optlen)) 2801 return -EFAULT; 2802 2803 if (sinit.sinit_num_ostreams) 2804 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2805 if (sinit.sinit_max_instreams) 2806 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2807 if (sinit.sinit_max_attempts) 2808 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2809 if (sinit.sinit_max_init_timeo) 2810 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2811 2812 return 0; 2813 } 2814 2815 /* 2816 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2817 * 2818 * Applications that wish to use the sendto() system call may wish to 2819 * specify a default set of parameters that would normally be supplied 2820 * through the inclusion of ancillary data. This socket option allows 2821 * such an application to set the default sctp_sndrcvinfo structure. 2822 * The application that wishes to use this socket option simply passes 2823 * in to this call the sctp_sndrcvinfo structure defined in Section 2824 * 5.2.2) The input parameters accepted by this call include 2825 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2826 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2827 * to this call if the caller is using the UDP model. 2828 */ 2829 static int sctp_setsockopt_default_send_param(struct sock *sk, 2830 char __user *optval, 2831 unsigned int optlen) 2832 { 2833 struct sctp_sock *sp = sctp_sk(sk); 2834 struct sctp_association *asoc; 2835 struct sctp_sndrcvinfo info; 2836 2837 if (optlen != sizeof(info)) 2838 return -EINVAL; 2839 if (copy_from_user(&info, optval, optlen)) 2840 return -EFAULT; 2841 if (info.sinfo_flags & 2842 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2843 SCTP_ABORT | SCTP_EOF)) 2844 return -EINVAL; 2845 2846 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2847 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2848 return -EINVAL; 2849 if (asoc) { 2850 asoc->default_stream = info.sinfo_stream; 2851 asoc->default_flags = info.sinfo_flags; 2852 asoc->default_ppid = info.sinfo_ppid; 2853 asoc->default_context = info.sinfo_context; 2854 asoc->default_timetolive = info.sinfo_timetolive; 2855 } else { 2856 sp->default_stream = info.sinfo_stream; 2857 sp->default_flags = info.sinfo_flags; 2858 sp->default_ppid = info.sinfo_ppid; 2859 sp->default_context = info.sinfo_context; 2860 sp->default_timetolive = info.sinfo_timetolive; 2861 } 2862 2863 return 0; 2864 } 2865 2866 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2867 * (SCTP_DEFAULT_SNDINFO) 2868 */ 2869 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2870 char __user *optval, 2871 unsigned int optlen) 2872 { 2873 struct sctp_sock *sp = sctp_sk(sk); 2874 struct sctp_association *asoc; 2875 struct sctp_sndinfo info; 2876 2877 if (optlen != sizeof(info)) 2878 return -EINVAL; 2879 if (copy_from_user(&info, optval, optlen)) 2880 return -EFAULT; 2881 if (info.snd_flags & 2882 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2883 SCTP_ABORT | SCTP_EOF)) 2884 return -EINVAL; 2885 2886 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2887 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2888 return -EINVAL; 2889 if (asoc) { 2890 asoc->default_stream = info.snd_sid; 2891 asoc->default_flags = info.snd_flags; 2892 asoc->default_ppid = info.snd_ppid; 2893 asoc->default_context = info.snd_context; 2894 } else { 2895 sp->default_stream = info.snd_sid; 2896 sp->default_flags = info.snd_flags; 2897 sp->default_ppid = info.snd_ppid; 2898 sp->default_context = info.snd_context; 2899 } 2900 2901 return 0; 2902 } 2903 2904 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2905 * 2906 * Requests that the local SCTP stack use the enclosed peer address as 2907 * the association primary. The enclosed address must be one of the 2908 * association peer's addresses. 2909 */ 2910 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2911 unsigned int optlen) 2912 { 2913 struct sctp_prim prim; 2914 struct sctp_transport *trans; 2915 2916 if (optlen != sizeof(struct sctp_prim)) 2917 return -EINVAL; 2918 2919 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2920 return -EFAULT; 2921 2922 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2923 if (!trans) 2924 return -EINVAL; 2925 2926 sctp_assoc_set_primary(trans->asoc, trans); 2927 2928 return 0; 2929 } 2930 2931 /* 2932 * 7.1.5 SCTP_NODELAY 2933 * 2934 * Turn on/off any Nagle-like algorithm. This means that packets are 2935 * generally sent as soon as possible and no unnecessary delays are 2936 * introduced, at the cost of more packets in the network. Expects an 2937 * integer boolean flag. 2938 */ 2939 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2940 unsigned int optlen) 2941 { 2942 int val; 2943 2944 if (optlen < sizeof(int)) 2945 return -EINVAL; 2946 if (get_user(val, (int __user *)optval)) 2947 return -EFAULT; 2948 2949 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2950 return 0; 2951 } 2952 2953 /* 2954 * 2955 * 7.1.1 SCTP_RTOINFO 2956 * 2957 * The protocol parameters used to initialize and bound retransmission 2958 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2959 * and modify these parameters. 2960 * All parameters are time values, in milliseconds. A value of 0, when 2961 * modifying the parameters, indicates that the current value should not 2962 * be changed. 2963 * 2964 */ 2965 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2966 { 2967 struct sctp_rtoinfo rtoinfo; 2968 struct sctp_association *asoc; 2969 unsigned long rto_min, rto_max; 2970 struct sctp_sock *sp = sctp_sk(sk); 2971 2972 if (optlen != sizeof (struct sctp_rtoinfo)) 2973 return -EINVAL; 2974 2975 if (copy_from_user(&rtoinfo, optval, optlen)) 2976 return -EFAULT; 2977 2978 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2979 2980 /* Set the values to the specific association */ 2981 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2982 return -EINVAL; 2983 2984 rto_max = rtoinfo.srto_max; 2985 rto_min = rtoinfo.srto_min; 2986 2987 if (rto_max) 2988 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2989 else 2990 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2991 2992 if (rto_min) 2993 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2994 else 2995 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2996 2997 if (rto_min > rto_max) 2998 return -EINVAL; 2999 3000 if (asoc) { 3001 if (rtoinfo.srto_initial != 0) 3002 asoc->rto_initial = 3003 msecs_to_jiffies(rtoinfo.srto_initial); 3004 asoc->rto_max = rto_max; 3005 asoc->rto_min = rto_min; 3006 } else { 3007 /* If there is no association or the association-id = 0 3008 * set the values to the endpoint. 3009 */ 3010 if (rtoinfo.srto_initial != 0) 3011 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3012 sp->rtoinfo.srto_max = rto_max; 3013 sp->rtoinfo.srto_min = rto_min; 3014 } 3015 3016 return 0; 3017 } 3018 3019 /* 3020 * 3021 * 7.1.2 SCTP_ASSOCINFO 3022 * 3023 * This option is used to tune the maximum retransmission attempts 3024 * of the association. 3025 * Returns an error if the new association retransmission value is 3026 * greater than the sum of the retransmission value of the peer. 3027 * See [SCTP] for more information. 3028 * 3029 */ 3030 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3031 { 3032 3033 struct sctp_assocparams assocparams; 3034 struct sctp_association *asoc; 3035 3036 if (optlen != sizeof(struct sctp_assocparams)) 3037 return -EINVAL; 3038 if (copy_from_user(&assocparams, optval, optlen)) 3039 return -EFAULT; 3040 3041 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3042 3043 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3044 return -EINVAL; 3045 3046 /* Set the values to the specific association */ 3047 if (asoc) { 3048 if (assocparams.sasoc_asocmaxrxt != 0) { 3049 __u32 path_sum = 0; 3050 int paths = 0; 3051 struct sctp_transport *peer_addr; 3052 3053 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3054 transports) { 3055 path_sum += peer_addr->pathmaxrxt; 3056 paths++; 3057 } 3058 3059 /* Only validate asocmaxrxt if we have more than 3060 * one path/transport. We do this because path 3061 * retransmissions are only counted when we have more 3062 * then one path. 3063 */ 3064 if (paths > 1 && 3065 assocparams.sasoc_asocmaxrxt > path_sum) 3066 return -EINVAL; 3067 3068 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3069 } 3070 3071 if (assocparams.sasoc_cookie_life != 0) 3072 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3073 } else { 3074 /* Set the values to the endpoint */ 3075 struct sctp_sock *sp = sctp_sk(sk); 3076 3077 if (assocparams.sasoc_asocmaxrxt != 0) 3078 sp->assocparams.sasoc_asocmaxrxt = 3079 assocparams.sasoc_asocmaxrxt; 3080 if (assocparams.sasoc_cookie_life != 0) 3081 sp->assocparams.sasoc_cookie_life = 3082 assocparams.sasoc_cookie_life; 3083 } 3084 return 0; 3085 } 3086 3087 /* 3088 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3089 * 3090 * This socket option is a boolean flag which turns on or off mapped V4 3091 * addresses. If this option is turned on and the socket is type 3092 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3093 * If this option is turned off, then no mapping will be done of V4 3094 * addresses and a user will receive both PF_INET6 and PF_INET type 3095 * addresses on the socket. 3096 */ 3097 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3098 { 3099 int val; 3100 struct sctp_sock *sp = sctp_sk(sk); 3101 3102 if (optlen < sizeof(int)) 3103 return -EINVAL; 3104 if (get_user(val, (int __user *)optval)) 3105 return -EFAULT; 3106 if (val) 3107 sp->v4mapped = 1; 3108 else 3109 sp->v4mapped = 0; 3110 3111 return 0; 3112 } 3113 3114 /* 3115 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3116 * This option will get or set the maximum size to put in any outgoing 3117 * SCTP DATA chunk. If a message is larger than this size it will be 3118 * fragmented by SCTP into the specified size. Note that the underlying 3119 * SCTP implementation may fragment into smaller sized chunks when the 3120 * PMTU of the underlying association is smaller than the value set by 3121 * the user. The default value for this option is '0' which indicates 3122 * the user is NOT limiting fragmentation and only the PMTU will effect 3123 * SCTP's choice of DATA chunk size. Note also that values set larger 3124 * than the maximum size of an IP datagram will effectively let SCTP 3125 * control fragmentation (i.e. the same as setting this option to 0). 3126 * 3127 * The following structure is used to access and modify this parameter: 3128 * 3129 * struct sctp_assoc_value { 3130 * sctp_assoc_t assoc_id; 3131 * uint32_t assoc_value; 3132 * }; 3133 * 3134 * assoc_id: This parameter is ignored for one-to-one style sockets. 3135 * For one-to-many style sockets this parameter indicates which 3136 * association the user is performing an action upon. Note that if 3137 * this field's value is zero then the endpoints default value is 3138 * changed (effecting future associations only). 3139 * assoc_value: This parameter specifies the maximum size in bytes. 3140 */ 3141 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3142 { 3143 struct sctp_sock *sp = sctp_sk(sk); 3144 struct sctp_assoc_value params; 3145 struct sctp_association *asoc; 3146 int val; 3147 3148 if (optlen == sizeof(int)) { 3149 pr_warn_ratelimited(DEPRECATED 3150 "%s (pid %d) " 3151 "Use of int in maxseg socket option.\n" 3152 "Use struct sctp_assoc_value instead\n", 3153 current->comm, task_pid_nr(current)); 3154 if (copy_from_user(&val, optval, optlen)) 3155 return -EFAULT; 3156 params.assoc_id = 0; 3157 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3158 if (copy_from_user(¶ms, optval, optlen)) 3159 return -EFAULT; 3160 val = params.assoc_value; 3161 } else { 3162 return -EINVAL; 3163 } 3164 3165 if (val) { 3166 int min_len, max_len; 3167 3168 min_len = SCTP_DEFAULT_MINSEGMENT - sp->pf->af->net_header_len; 3169 min_len -= sizeof(struct sctphdr) + 3170 sizeof(struct sctp_data_chunk); 3171 3172 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk); 3173 3174 if (val < min_len || val > max_len) 3175 return -EINVAL; 3176 } 3177 3178 asoc = sctp_id2assoc(sk, params.assoc_id); 3179 if (asoc) { 3180 if (val == 0) { 3181 val = asoc->pathmtu - sp->pf->af->net_header_len; 3182 val -= sizeof(struct sctphdr) + 3183 sizeof(struct sctp_data_chunk); 3184 } 3185 asoc->user_frag = val; 3186 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3187 } else { 3188 if (params.assoc_id && sctp_style(sk, UDP)) 3189 return -EINVAL; 3190 sp->user_frag = val; 3191 } 3192 3193 return 0; 3194 } 3195 3196 3197 /* 3198 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3199 * 3200 * Requests that the peer mark the enclosed address as the association 3201 * primary. The enclosed address must be one of the association's 3202 * locally bound addresses. The following structure is used to make a 3203 * set primary request: 3204 */ 3205 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3206 unsigned int optlen) 3207 { 3208 struct net *net = sock_net(sk); 3209 struct sctp_sock *sp; 3210 struct sctp_association *asoc = NULL; 3211 struct sctp_setpeerprim prim; 3212 struct sctp_chunk *chunk; 3213 struct sctp_af *af; 3214 int err; 3215 3216 sp = sctp_sk(sk); 3217 3218 if (!net->sctp.addip_enable) 3219 return -EPERM; 3220 3221 if (optlen != sizeof(struct sctp_setpeerprim)) 3222 return -EINVAL; 3223 3224 if (copy_from_user(&prim, optval, optlen)) 3225 return -EFAULT; 3226 3227 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3228 if (!asoc) 3229 return -EINVAL; 3230 3231 if (!asoc->peer.asconf_capable) 3232 return -EPERM; 3233 3234 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3235 return -EPERM; 3236 3237 if (!sctp_state(asoc, ESTABLISHED)) 3238 return -ENOTCONN; 3239 3240 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3241 if (!af) 3242 return -EINVAL; 3243 3244 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3245 return -EADDRNOTAVAIL; 3246 3247 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3248 return -EADDRNOTAVAIL; 3249 3250 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3251 chunk = sctp_make_asconf_set_prim(asoc, 3252 (union sctp_addr *)&prim.sspp_addr); 3253 if (!chunk) 3254 return -ENOMEM; 3255 3256 err = sctp_send_asconf(asoc, chunk); 3257 3258 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3259 3260 return err; 3261 } 3262 3263 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3264 unsigned int optlen) 3265 { 3266 struct sctp_setadaptation adaptation; 3267 3268 if (optlen != sizeof(struct sctp_setadaptation)) 3269 return -EINVAL; 3270 if (copy_from_user(&adaptation, optval, optlen)) 3271 return -EFAULT; 3272 3273 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3274 3275 return 0; 3276 } 3277 3278 /* 3279 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3280 * 3281 * The context field in the sctp_sndrcvinfo structure is normally only 3282 * used when a failed message is retrieved holding the value that was 3283 * sent down on the actual send call. This option allows the setting of 3284 * a default context on an association basis that will be received on 3285 * reading messages from the peer. This is especially helpful in the 3286 * one-2-many model for an application to keep some reference to an 3287 * internal state machine that is processing messages on the 3288 * association. Note that the setting of this value only effects 3289 * received messages from the peer and does not effect the value that is 3290 * saved with outbound messages. 3291 */ 3292 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3293 unsigned int optlen) 3294 { 3295 struct sctp_assoc_value params; 3296 struct sctp_sock *sp; 3297 struct sctp_association *asoc; 3298 3299 if (optlen != sizeof(struct sctp_assoc_value)) 3300 return -EINVAL; 3301 if (copy_from_user(¶ms, optval, optlen)) 3302 return -EFAULT; 3303 3304 sp = sctp_sk(sk); 3305 3306 if (params.assoc_id != 0) { 3307 asoc = sctp_id2assoc(sk, params.assoc_id); 3308 if (!asoc) 3309 return -EINVAL; 3310 asoc->default_rcv_context = params.assoc_value; 3311 } else { 3312 sp->default_rcv_context = params.assoc_value; 3313 } 3314 3315 return 0; 3316 } 3317 3318 /* 3319 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3320 * 3321 * This options will at a minimum specify if the implementation is doing 3322 * fragmented interleave. Fragmented interleave, for a one to many 3323 * socket, is when subsequent calls to receive a message may return 3324 * parts of messages from different associations. Some implementations 3325 * may allow you to turn this value on or off. If so, when turned off, 3326 * no fragment interleave will occur (which will cause a head of line 3327 * blocking amongst multiple associations sharing the same one to many 3328 * socket). When this option is turned on, then each receive call may 3329 * come from a different association (thus the user must receive data 3330 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3331 * association each receive belongs to. 3332 * 3333 * This option takes a boolean value. A non-zero value indicates that 3334 * fragmented interleave is on. A value of zero indicates that 3335 * fragmented interleave is off. 3336 * 3337 * Note that it is important that an implementation that allows this 3338 * option to be turned on, have it off by default. Otherwise an unaware 3339 * application using the one to many model may become confused and act 3340 * incorrectly. 3341 */ 3342 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3343 char __user *optval, 3344 unsigned int optlen) 3345 { 3346 int val; 3347 3348 if (optlen != sizeof(int)) 3349 return -EINVAL; 3350 if (get_user(val, (int __user *)optval)) 3351 return -EFAULT; 3352 3353 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3354 3355 return 0; 3356 } 3357 3358 /* 3359 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3360 * (SCTP_PARTIAL_DELIVERY_POINT) 3361 * 3362 * This option will set or get the SCTP partial delivery point. This 3363 * point is the size of a message where the partial delivery API will be 3364 * invoked to help free up rwnd space for the peer. Setting this to a 3365 * lower value will cause partial deliveries to happen more often. The 3366 * calls argument is an integer that sets or gets the partial delivery 3367 * point. Note also that the call will fail if the user attempts to set 3368 * this value larger than the socket receive buffer size. 3369 * 3370 * Note that any single message having a length smaller than or equal to 3371 * the SCTP partial delivery point will be delivered in one single read 3372 * call as long as the user provided buffer is large enough to hold the 3373 * message. 3374 */ 3375 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3376 char __user *optval, 3377 unsigned int optlen) 3378 { 3379 u32 val; 3380 3381 if (optlen != sizeof(u32)) 3382 return -EINVAL; 3383 if (get_user(val, (int __user *)optval)) 3384 return -EFAULT; 3385 3386 /* Note: We double the receive buffer from what the user sets 3387 * it to be, also initial rwnd is based on rcvbuf/2. 3388 */ 3389 if (val > (sk->sk_rcvbuf >> 1)) 3390 return -EINVAL; 3391 3392 sctp_sk(sk)->pd_point = val; 3393 3394 return 0; /* is this the right error code? */ 3395 } 3396 3397 /* 3398 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3399 * 3400 * This option will allow a user to change the maximum burst of packets 3401 * that can be emitted by this association. Note that the default value 3402 * is 4, and some implementations may restrict this setting so that it 3403 * can only be lowered. 3404 * 3405 * NOTE: This text doesn't seem right. Do this on a socket basis with 3406 * future associations inheriting the socket value. 3407 */ 3408 static int sctp_setsockopt_maxburst(struct sock *sk, 3409 char __user *optval, 3410 unsigned int optlen) 3411 { 3412 struct sctp_assoc_value params; 3413 struct sctp_sock *sp; 3414 struct sctp_association *asoc; 3415 int val; 3416 int assoc_id = 0; 3417 3418 if (optlen == sizeof(int)) { 3419 pr_warn_ratelimited(DEPRECATED 3420 "%s (pid %d) " 3421 "Use of int in max_burst socket option deprecated.\n" 3422 "Use struct sctp_assoc_value instead\n", 3423 current->comm, task_pid_nr(current)); 3424 if (copy_from_user(&val, optval, optlen)) 3425 return -EFAULT; 3426 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3427 if (copy_from_user(¶ms, optval, optlen)) 3428 return -EFAULT; 3429 val = params.assoc_value; 3430 assoc_id = params.assoc_id; 3431 } else 3432 return -EINVAL; 3433 3434 sp = sctp_sk(sk); 3435 3436 if (assoc_id != 0) { 3437 asoc = sctp_id2assoc(sk, assoc_id); 3438 if (!asoc) 3439 return -EINVAL; 3440 asoc->max_burst = val; 3441 } else 3442 sp->max_burst = val; 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3449 * 3450 * This set option adds a chunk type that the user is requesting to be 3451 * received only in an authenticated way. Changes to the list of chunks 3452 * will only effect future associations on the socket. 3453 */ 3454 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3455 char __user *optval, 3456 unsigned int optlen) 3457 { 3458 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3459 struct sctp_authchunk val; 3460 3461 if (!ep->auth_enable) 3462 return -EACCES; 3463 3464 if (optlen != sizeof(struct sctp_authchunk)) 3465 return -EINVAL; 3466 if (copy_from_user(&val, optval, optlen)) 3467 return -EFAULT; 3468 3469 switch (val.sauth_chunk) { 3470 case SCTP_CID_INIT: 3471 case SCTP_CID_INIT_ACK: 3472 case SCTP_CID_SHUTDOWN_COMPLETE: 3473 case SCTP_CID_AUTH: 3474 return -EINVAL; 3475 } 3476 3477 /* add this chunk id to the endpoint */ 3478 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3479 } 3480 3481 /* 3482 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3483 * 3484 * This option gets or sets the list of HMAC algorithms that the local 3485 * endpoint requires the peer to use. 3486 */ 3487 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3488 char __user *optval, 3489 unsigned int optlen) 3490 { 3491 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3492 struct sctp_hmacalgo *hmacs; 3493 u32 idents; 3494 int err; 3495 3496 if (!ep->auth_enable) 3497 return -EACCES; 3498 3499 if (optlen < sizeof(struct sctp_hmacalgo)) 3500 return -EINVAL; 3501 3502 hmacs = memdup_user(optval, optlen); 3503 if (IS_ERR(hmacs)) 3504 return PTR_ERR(hmacs); 3505 3506 idents = hmacs->shmac_num_idents; 3507 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3508 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3509 err = -EINVAL; 3510 goto out; 3511 } 3512 3513 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3514 out: 3515 kfree(hmacs); 3516 return err; 3517 } 3518 3519 /* 3520 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3521 * 3522 * This option will set a shared secret key which is used to build an 3523 * association shared key. 3524 */ 3525 static int sctp_setsockopt_auth_key(struct sock *sk, 3526 char __user *optval, 3527 unsigned int optlen) 3528 { 3529 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3530 struct sctp_authkey *authkey; 3531 struct sctp_association *asoc; 3532 int ret; 3533 3534 if (!ep->auth_enable) 3535 return -EACCES; 3536 3537 if (optlen <= sizeof(struct sctp_authkey)) 3538 return -EINVAL; 3539 3540 authkey = memdup_user(optval, optlen); 3541 if (IS_ERR(authkey)) 3542 return PTR_ERR(authkey); 3543 3544 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3545 ret = -EINVAL; 3546 goto out; 3547 } 3548 3549 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3550 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3551 ret = -EINVAL; 3552 goto out; 3553 } 3554 3555 ret = sctp_auth_set_key(ep, asoc, authkey); 3556 out: 3557 kzfree(authkey); 3558 return ret; 3559 } 3560 3561 /* 3562 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3563 * 3564 * This option will get or set the active shared key to be used to build 3565 * the association shared key. 3566 */ 3567 static int sctp_setsockopt_active_key(struct sock *sk, 3568 char __user *optval, 3569 unsigned int optlen) 3570 { 3571 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3572 struct sctp_authkeyid val; 3573 struct sctp_association *asoc; 3574 3575 if (!ep->auth_enable) 3576 return -EACCES; 3577 3578 if (optlen != sizeof(struct sctp_authkeyid)) 3579 return -EINVAL; 3580 if (copy_from_user(&val, optval, optlen)) 3581 return -EFAULT; 3582 3583 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3584 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3585 return -EINVAL; 3586 3587 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3588 } 3589 3590 /* 3591 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3592 * 3593 * This set option will delete a shared secret key from use. 3594 */ 3595 static int sctp_setsockopt_del_key(struct sock *sk, 3596 char __user *optval, 3597 unsigned int optlen) 3598 { 3599 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3600 struct sctp_authkeyid val; 3601 struct sctp_association *asoc; 3602 3603 if (!ep->auth_enable) 3604 return -EACCES; 3605 3606 if (optlen != sizeof(struct sctp_authkeyid)) 3607 return -EINVAL; 3608 if (copy_from_user(&val, optval, optlen)) 3609 return -EFAULT; 3610 3611 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3612 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3613 return -EINVAL; 3614 3615 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3616 3617 } 3618 3619 /* 3620 * 8.1.23 SCTP_AUTO_ASCONF 3621 * 3622 * This option will enable or disable the use of the automatic generation of 3623 * ASCONF chunks to add and delete addresses to an existing association. Note 3624 * that this option has two caveats namely: a) it only affects sockets that 3625 * are bound to all addresses available to the SCTP stack, and b) the system 3626 * administrator may have an overriding control that turns the ASCONF feature 3627 * off no matter what setting the socket option may have. 3628 * This option expects an integer boolean flag, where a non-zero value turns on 3629 * the option, and a zero value turns off the option. 3630 * Note. In this implementation, socket operation overrides default parameter 3631 * being set by sysctl as well as FreeBSD implementation 3632 */ 3633 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3634 unsigned int optlen) 3635 { 3636 int val; 3637 struct sctp_sock *sp = sctp_sk(sk); 3638 3639 if (optlen < sizeof(int)) 3640 return -EINVAL; 3641 if (get_user(val, (int __user *)optval)) 3642 return -EFAULT; 3643 if (!sctp_is_ep_boundall(sk) && val) 3644 return -EINVAL; 3645 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3646 return 0; 3647 3648 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3649 if (val == 0 && sp->do_auto_asconf) { 3650 list_del(&sp->auto_asconf_list); 3651 sp->do_auto_asconf = 0; 3652 } else if (val && !sp->do_auto_asconf) { 3653 list_add_tail(&sp->auto_asconf_list, 3654 &sock_net(sk)->sctp.auto_asconf_splist); 3655 sp->do_auto_asconf = 1; 3656 } 3657 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3658 return 0; 3659 } 3660 3661 /* 3662 * SCTP_PEER_ADDR_THLDS 3663 * 3664 * This option allows us to alter the partially failed threshold for one or all 3665 * transports in an association. See Section 6.1 of: 3666 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3667 */ 3668 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3669 char __user *optval, 3670 unsigned int optlen) 3671 { 3672 struct sctp_paddrthlds val; 3673 struct sctp_transport *trans; 3674 struct sctp_association *asoc; 3675 3676 if (optlen < sizeof(struct sctp_paddrthlds)) 3677 return -EINVAL; 3678 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3679 sizeof(struct sctp_paddrthlds))) 3680 return -EFAULT; 3681 3682 3683 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3684 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3685 if (!asoc) 3686 return -ENOENT; 3687 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3688 transports) { 3689 if (val.spt_pathmaxrxt) 3690 trans->pathmaxrxt = val.spt_pathmaxrxt; 3691 trans->pf_retrans = val.spt_pathpfthld; 3692 } 3693 3694 if (val.spt_pathmaxrxt) 3695 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3696 asoc->pf_retrans = val.spt_pathpfthld; 3697 } else { 3698 trans = sctp_addr_id2transport(sk, &val.spt_address, 3699 val.spt_assoc_id); 3700 if (!trans) 3701 return -ENOENT; 3702 3703 if (val.spt_pathmaxrxt) 3704 trans->pathmaxrxt = val.spt_pathmaxrxt; 3705 trans->pf_retrans = val.spt_pathpfthld; 3706 } 3707 3708 return 0; 3709 } 3710 3711 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3712 char __user *optval, 3713 unsigned int optlen) 3714 { 3715 int val; 3716 3717 if (optlen < sizeof(int)) 3718 return -EINVAL; 3719 if (get_user(val, (int __user *) optval)) 3720 return -EFAULT; 3721 3722 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3723 3724 return 0; 3725 } 3726 3727 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3728 char __user *optval, 3729 unsigned int optlen) 3730 { 3731 int val; 3732 3733 if (optlen < sizeof(int)) 3734 return -EINVAL; 3735 if (get_user(val, (int __user *) optval)) 3736 return -EFAULT; 3737 3738 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3739 3740 return 0; 3741 } 3742 3743 static int sctp_setsockopt_pr_supported(struct sock *sk, 3744 char __user *optval, 3745 unsigned int optlen) 3746 { 3747 struct sctp_assoc_value params; 3748 struct sctp_association *asoc; 3749 int retval = -EINVAL; 3750 3751 if (optlen != sizeof(params)) 3752 goto out; 3753 3754 if (copy_from_user(¶ms, optval, optlen)) { 3755 retval = -EFAULT; 3756 goto out; 3757 } 3758 3759 asoc = sctp_id2assoc(sk, params.assoc_id); 3760 if (asoc) { 3761 asoc->prsctp_enable = !!params.assoc_value; 3762 } else if (!params.assoc_id) { 3763 struct sctp_sock *sp = sctp_sk(sk); 3764 3765 sp->ep->prsctp_enable = !!params.assoc_value; 3766 } else { 3767 goto out; 3768 } 3769 3770 retval = 0; 3771 3772 out: 3773 return retval; 3774 } 3775 3776 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3777 char __user *optval, 3778 unsigned int optlen) 3779 { 3780 struct sctp_default_prinfo info; 3781 struct sctp_association *asoc; 3782 int retval = -EINVAL; 3783 3784 if (optlen != sizeof(info)) 3785 goto out; 3786 3787 if (copy_from_user(&info, optval, sizeof(info))) { 3788 retval = -EFAULT; 3789 goto out; 3790 } 3791 3792 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3793 goto out; 3794 3795 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3796 info.pr_value = 0; 3797 3798 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3799 if (asoc) { 3800 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3801 asoc->default_timetolive = info.pr_value; 3802 } else if (!info.pr_assoc_id) { 3803 struct sctp_sock *sp = sctp_sk(sk); 3804 3805 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3806 sp->default_timetolive = info.pr_value; 3807 } else { 3808 goto out; 3809 } 3810 3811 retval = 0; 3812 3813 out: 3814 return retval; 3815 } 3816 3817 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3818 char __user *optval, 3819 unsigned int optlen) 3820 { 3821 struct sctp_assoc_value params; 3822 struct sctp_association *asoc; 3823 int retval = -EINVAL; 3824 3825 if (optlen != sizeof(params)) 3826 goto out; 3827 3828 if (copy_from_user(¶ms, optval, optlen)) { 3829 retval = -EFAULT; 3830 goto out; 3831 } 3832 3833 asoc = sctp_id2assoc(sk, params.assoc_id); 3834 if (asoc) { 3835 asoc->reconf_enable = !!params.assoc_value; 3836 } else if (!params.assoc_id) { 3837 struct sctp_sock *sp = sctp_sk(sk); 3838 3839 sp->ep->reconf_enable = !!params.assoc_value; 3840 } else { 3841 goto out; 3842 } 3843 3844 retval = 0; 3845 3846 out: 3847 return retval; 3848 } 3849 3850 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3851 char __user *optval, 3852 unsigned int optlen) 3853 { 3854 struct sctp_assoc_value params; 3855 struct sctp_association *asoc; 3856 int retval = -EINVAL; 3857 3858 if (optlen != sizeof(params)) 3859 goto out; 3860 3861 if (copy_from_user(¶ms, optval, optlen)) { 3862 retval = -EFAULT; 3863 goto out; 3864 } 3865 3866 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3867 goto out; 3868 3869 asoc = sctp_id2assoc(sk, params.assoc_id); 3870 if (asoc) { 3871 asoc->strreset_enable = params.assoc_value; 3872 } else if (!params.assoc_id) { 3873 struct sctp_sock *sp = sctp_sk(sk); 3874 3875 sp->ep->strreset_enable = params.assoc_value; 3876 } else { 3877 goto out; 3878 } 3879 3880 retval = 0; 3881 3882 out: 3883 return retval; 3884 } 3885 3886 static int sctp_setsockopt_reset_streams(struct sock *sk, 3887 char __user *optval, 3888 unsigned int optlen) 3889 { 3890 struct sctp_reset_streams *params; 3891 struct sctp_association *asoc; 3892 int retval = -EINVAL; 3893 3894 if (optlen < sizeof(struct sctp_reset_streams)) 3895 return -EINVAL; 3896 3897 params = memdup_user(optval, optlen); 3898 if (IS_ERR(params)) 3899 return PTR_ERR(params); 3900 3901 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3902 if (!asoc) 3903 goto out; 3904 3905 retval = sctp_send_reset_streams(asoc, params); 3906 3907 out: 3908 kfree(params); 3909 return retval; 3910 } 3911 3912 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3913 char __user *optval, 3914 unsigned int optlen) 3915 { 3916 struct sctp_association *asoc; 3917 sctp_assoc_t associd; 3918 int retval = -EINVAL; 3919 3920 if (optlen != sizeof(associd)) 3921 goto out; 3922 3923 if (copy_from_user(&associd, optval, optlen)) { 3924 retval = -EFAULT; 3925 goto out; 3926 } 3927 3928 asoc = sctp_id2assoc(sk, associd); 3929 if (!asoc) 3930 goto out; 3931 3932 retval = sctp_send_reset_assoc(asoc); 3933 3934 out: 3935 return retval; 3936 } 3937 3938 static int sctp_setsockopt_add_streams(struct sock *sk, 3939 char __user *optval, 3940 unsigned int optlen) 3941 { 3942 struct sctp_association *asoc; 3943 struct sctp_add_streams params; 3944 int retval = -EINVAL; 3945 3946 if (optlen != sizeof(params)) 3947 goto out; 3948 3949 if (copy_from_user(¶ms, optval, optlen)) { 3950 retval = -EFAULT; 3951 goto out; 3952 } 3953 3954 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3955 if (!asoc) 3956 goto out; 3957 3958 retval = sctp_send_add_streams(asoc, ¶ms); 3959 3960 out: 3961 return retval; 3962 } 3963 3964 static int sctp_setsockopt_scheduler(struct sock *sk, 3965 char __user *optval, 3966 unsigned int optlen) 3967 { 3968 struct sctp_association *asoc; 3969 struct sctp_assoc_value params; 3970 int retval = -EINVAL; 3971 3972 if (optlen < sizeof(params)) 3973 goto out; 3974 3975 optlen = sizeof(params); 3976 if (copy_from_user(¶ms, optval, optlen)) { 3977 retval = -EFAULT; 3978 goto out; 3979 } 3980 3981 if (params.assoc_value > SCTP_SS_MAX) 3982 goto out; 3983 3984 asoc = sctp_id2assoc(sk, params.assoc_id); 3985 if (!asoc) 3986 goto out; 3987 3988 retval = sctp_sched_set_sched(asoc, params.assoc_value); 3989 3990 out: 3991 return retval; 3992 } 3993 3994 static int sctp_setsockopt_scheduler_value(struct sock *sk, 3995 char __user *optval, 3996 unsigned int optlen) 3997 { 3998 struct sctp_association *asoc; 3999 struct sctp_stream_value params; 4000 int retval = -EINVAL; 4001 4002 if (optlen < sizeof(params)) 4003 goto out; 4004 4005 optlen = sizeof(params); 4006 if (copy_from_user(¶ms, optval, optlen)) { 4007 retval = -EFAULT; 4008 goto out; 4009 } 4010 4011 asoc = sctp_id2assoc(sk, params.assoc_id); 4012 if (!asoc) 4013 goto out; 4014 4015 retval = sctp_sched_set_value(asoc, params.stream_id, 4016 params.stream_value, GFP_KERNEL); 4017 4018 out: 4019 return retval; 4020 } 4021 4022 /* API 6.2 setsockopt(), getsockopt() 4023 * 4024 * Applications use setsockopt() and getsockopt() to set or retrieve 4025 * socket options. Socket options are used to change the default 4026 * behavior of sockets calls. They are described in Section 7. 4027 * 4028 * The syntax is: 4029 * 4030 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4031 * int __user *optlen); 4032 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4033 * int optlen); 4034 * 4035 * sd - the socket descript. 4036 * level - set to IPPROTO_SCTP for all SCTP options. 4037 * optname - the option name. 4038 * optval - the buffer to store the value of the option. 4039 * optlen - the size of the buffer. 4040 */ 4041 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4042 char __user *optval, unsigned int optlen) 4043 { 4044 int retval = 0; 4045 4046 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4047 4048 /* I can hardly begin to describe how wrong this is. This is 4049 * so broken as to be worse than useless. The API draft 4050 * REALLY is NOT helpful here... I am not convinced that the 4051 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4052 * are at all well-founded. 4053 */ 4054 if (level != SOL_SCTP) { 4055 struct sctp_af *af = sctp_sk(sk)->pf->af; 4056 retval = af->setsockopt(sk, level, optname, optval, optlen); 4057 goto out_nounlock; 4058 } 4059 4060 lock_sock(sk); 4061 4062 switch (optname) { 4063 case SCTP_SOCKOPT_BINDX_ADD: 4064 /* 'optlen' is the size of the addresses buffer. */ 4065 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4066 optlen, SCTP_BINDX_ADD_ADDR); 4067 break; 4068 4069 case SCTP_SOCKOPT_BINDX_REM: 4070 /* 'optlen' is the size of the addresses buffer. */ 4071 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4072 optlen, SCTP_BINDX_REM_ADDR); 4073 break; 4074 4075 case SCTP_SOCKOPT_CONNECTX_OLD: 4076 /* 'optlen' is the size of the addresses buffer. */ 4077 retval = sctp_setsockopt_connectx_old(sk, 4078 (struct sockaddr __user *)optval, 4079 optlen); 4080 break; 4081 4082 case SCTP_SOCKOPT_CONNECTX: 4083 /* 'optlen' is the size of the addresses buffer. */ 4084 retval = sctp_setsockopt_connectx(sk, 4085 (struct sockaddr __user *)optval, 4086 optlen); 4087 break; 4088 4089 case SCTP_DISABLE_FRAGMENTS: 4090 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4091 break; 4092 4093 case SCTP_EVENTS: 4094 retval = sctp_setsockopt_events(sk, optval, optlen); 4095 break; 4096 4097 case SCTP_AUTOCLOSE: 4098 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4099 break; 4100 4101 case SCTP_PEER_ADDR_PARAMS: 4102 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4103 break; 4104 4105 case SCTP_DELAYED_SACK: 4106 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4107 break; 4108 case SCTP_PARTIAL_DELIVERY_POINT: 4109 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4110 break; 4111 4112 case SCTP_INITMSG: 4113 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4114 break; 4115 case SCTP_DEFAULT_SEND_PARAM: 4116 retval = sctp_setsockopt_default_send_param(sk, optval, 4117 optlen); 4118 break; 4119 case SCTP_DEFAULT_SNDINFO: 4120 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4121 break; 4122 case SCTP_PRIMARY_ADDR: 4123 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4124 break; 4125 case SCTP_SET_PEER_PRIMARY_ADDR: 4126 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4127 break; 4128 case SCTP_NODELAY: 4129 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4130 break; 4131 case SCTP_RTOINFO: 4132 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4133 break; 4134 case SCTP_ASSOCINFO: 4135 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4136 break; 4137 case SCTP_I_WANT_MAPPED_V4_ADDR: 4138 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4139 break; 4140 case SCTP_MAXSEG: 4141 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4142 break; 4143 case SCTP_ADAPTATION_LAYER: 4144 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4145 break; 4146 case SCTP_CONTEXT: 4147 retval = sctp_setsockopt_context(sk, optval, optlen); 4148 break; 4149 case SCTP_FRAGMENT_INTERLEAVE: 4150 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4151 break; 4152 case SCTP_MAX_BURST: 4153 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4154 break; 4155 case SCTP_AUTH_CHUNK: 4156 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4157 break; 4158 case SCTP_HMAC_IDENT: 4159 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4160 break; 4161 case SCTP_AUTH_KEY: 4162 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4163 break; 4164 case SCTP_AUTH_ACTIVE_KEY: 4165 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4166 break; 4167 case SCTP_AUTH_DELETE_KEY: 4168 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4169 break; 4170 case SCTP_AUTO_ASCONF: 4171 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4172 break; 4173 case SCTP_PEER_ADDR_THLDS: 4174 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4175 break; 4176 case SCTP_RECVRCVINFO: 4177 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4178 break; 4179 case SCTP_RECVNXTINFO: 4180 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4181 break; 4182 case SCTP_PR_SUPPORTED: 4183 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4184 break; 4185 case SCTP_DEFAULT_PRINFO: 4186 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4187 break; 4188 case SCTP_RECONFIG_SUPPORTED: 4189 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4190 break; 4191 case SCTP_ENABLE_STREAM_RESET: 4192 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4193 break; 4194 case SCTP_RESET_STREAMS: 4195 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4196 break; 4197 case SCTP_RESET_ASSOC: 4198 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4199 break; 4200 case SCTP_ADD_STREAMS: 4201 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4202 break; 4203 case SCTP_STREAM_SCHEDULER: 4204 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4205 break; 4206 case SCTP_STREAM_SCHEDULER_VALUE: 4207 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4208 break; 4209 default: 4210 retval = -ENOPROTOOPT; 4211 break; 4212 } 4213 4214 release_sock(sk); 4215 4216 out_nounlock: 4217 return retval; 4218 } 4219 4220 /* API 3.1.6 connect() - UDP Style Syntax 4221 * 4222 * An application may use the connect() call in the UDP model to initiate an 4223 * association without sending data. 4224 * 4225 * The syntax is: 4226 * 4227 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4228 * 4229 * sd: the socket descriptor to have a new association added to. 4230 * 4231 * nam: the address structure (either struct sockaddr_in or struct 4232 * sockaddr_in6 defined in RFC2553 [7]). 4233 * 4234 * len: the size of the address. 4235 */ 4236 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4237 int addr_len) 4238 { 4239 int err = 0; 4240 struct sctp_af *af; 4241 4242 lock_sock(sk); 4243 4244 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4245 addr, addr_len); 4246 4247 /* Validate addr_len before calling common connect/connectx routine. */ 4248 af = sctp_get_af_specific(addr->sa_family); 4249 if (!af || addr_len < af->sockaddr_len) { 4250 err = -EINVAL; 4251 } else { 4252 /* Pass correct addr len to common routine (so it knows there 4253 * is only one address being passed. 4254 */ 4255 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4256 } 4257 4258 release_sock(sk); 4259 return err; 4260 } 4261 4262 /* FIXME: Write comments. */ 4263 static int sctp_disconnect(struct sock *sk, int flags) 4264 { 4265 return -EOPNOTSUPP; /* STUB */ 4266 } 4267 4268 /* 4.1.4 accept() - TCP Style Syntax 4269 * 4270 * Applications use accept() call to remove an established SCTP 4271 * association from the accept queue of the endpoint. A new socket 4272 * descriptor will be returned from accept() to represent the newly 4273 * formed association. 4274 */ 4275 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4276 { 4277 struct sctp_sock *sp; 4278 struct sctp_endpoint *ep; 4279 struct sock *newsk = NULL; 4280 struct sctp_association *asoc; 4281 long timeo; 4282 int error = 0; 4283 4284 lock_sock(sk); 4285 4286 sp = sctp_sk(sk); 4287 ep = sp->ep; 4288 4289 if (!sctp_style(sk, TCP)) { 4290 error = -EOPNOTSUPP; 4291 goto out; 4292 } 4293 4294 if (!sctp_sstate(sk, LISTENING)) { 4295 error = -EINVAL; 4296 goto out; 4297 } 4298 4299 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4300 4301 error = sctp_wait_for_accept(sk, timeo); 4302 if (error) 4303 goto out; 4304 4305 /* We treat the list of associations on the endpoint as the accept 4306 * queue and pick the first association on the list. 4307 */ 4308 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4309 4310 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4311 if (!newsk) { 4312 error = -ENOMEM; 4313 goto out; 4314 } 4315 4316 /* Populate the fields of the newsk from the oldsk and migrate the 4317 * asoc to the newsk. 4318 */ 4319 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4320 4321 out: 4322 release_sock(sk); 4323 *err = error; 4324 return newsk; 4325 } 4326 4327 /* The SCTP ioctl handler. */ 4328 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4329 { 4330 int rc = -ENOTCONN; 4331 4332 lock_sock(sk); 4333 4334 /* 4335 * SEQPACKET-style sockets in LISTENING state are valid, for 4336 * SCTP, so only discard TCP-style sockets in LISTENING state. 4337 */ 4338 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4339 goto out; 4340 4341 switch (cmd) { 4342 case SIOCINQ: { 4343 struct sk_buff *skb; 4344 unsigned int amount = 0; 4345 4346 skb = skb_peek(&sk->sk_receive_queue); 4347 if (skb != NULL) { 4348 /* 4349 * We will only return the amount of this packet since 4350 * that is all that will be read. 4351 */ 4352 amount = skb->len; 4353 } 4354 rc = put_user(amount, (int __user *)arg); 4355 break; 4356 } 4357 default: 4358 rc = -ENOIOCTLCMD; 4359 break; 4360 } 4361 out: 4362 release_sock(sk); 4363 return rc; 4364 } 4365 4366 /* This is the function which gets called during socket creation to 4367 * initialized the SCTP-specific portion of the sock. 4368 * The sock structure should already be zero-filled memory. 4369 */ 4370 static int sctp_init_sock(struct sock *sk) 4371 { 4372 struct net *net = sock_net(sk); 4373 struct sctp_sock *sp; 4374 4375 pr_debug("%s: sk:%p\n", __func__, sk); 4376 4377 sp = sctp_sk(sk); 4378 4379 /* Initialize the SCTP per socket area. */ 4380 switch (sk->sk_type) { 4381 case SOCK_SEQPACKET: 4382 sp->type = SCTP_SOCKET_UDP; 4383 break; 4384 case SOCK_STREAM: 4385 sp->type = SCTP_SOCKET_TCP; 4386 break; 4387 default: 4388 return -ESOCKTNOSUPPORT; 4389 } 4390 4391 sk->sk_gso_type = SKB_GSO_SCTP; 4392 4393 /* Initialize default send parameters. These parameters can be 4394 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4395 */ 4396 sp->default_stream = 0; 4397 sp->default_ppid = 0; 4398 sp->default_flags = 0; 4399 sp->default_context = 0; 4400 sp->default_timetolive = 0; 4401 4402 sp->default_rcv_context = 0; 4403 sp->max_burst = net->sctp.max_burst; 4404 4405 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4406 4407 /* Initialize default setup parameters. These parameters 4408 * can be modified with the SCTP_INITMSG socket option or 4409 * overridden by the SCTP_INIT CMSG. 4410 */ 4411 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4412 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4413 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4414 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4415 4416 /* Initialize default RTO related parameters. These parameters can 4417 * be modified for with the SCTP_RTOINFO socket option. 4418 */ 4419 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4420 sp->rtoinfo.srto_max = net->sctp.rto_max; 4421 sp->rtoinfo.srto_min = net->sctp.rto_min; 4422 4423 /* Initialize default association related parameters. These parameters 4424 * can be modified with the SCTP_ASSOCINFO socket option. 4425 */ 4426 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4427 sp->assocparams.sasoc_number_peer_destinations = 0; 4428 sp->assocparams.sasoc_peer_rwnd = 0; 4429 sp->assocparams.sasoc_local_rwnd = 0; 4430 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4431 4432 /* Initialize default event subscriptions. By default, all the 4433 * options are off. 4434 */ 4435 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4436 4437 /* Default Peer Address Parameters. These defaults can 4438 * be modified via SCTP_PEER_ADDR_PARAMS 4439 */ 4440 sp->hbinterval = net->sctp.hb_interval; 4441 sp->pathmaxrxt = net->sctp.max_retrans_path; 4442 sp->pathmtu = 0; /* allow default discovery */ 4443 sp->sackdelay = net->sctp.sack_timeout; 4444 sp->sackfreq = 2; 4445 sp->param_flags = SPP_HB_ENABLE | 4446 SPP_PMTUD_ENABLE | 4447 SPP_SACKDELAY_ENABLE; 4448 4449 /* If enabled no SCTP message fragmentation will be performed. 4450 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4451 */ 4452 sp->disable_fragments = 0; 4453 4454 /* Enable Nagle algorithm by default. */ 4455 sp->nodelay = 0; 4456 4457 sp->recvrcvinfo = 0; 4458 sp->recvnxtinfo = 0; 4459 4460 /* Enable by default. */ 4461 sp->v4mapped = 1; 4462 4463 /* Auto-close idle associations after the configured 4464 * number of seconds. A value of 0 disables this 4465 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4466 * for UDP-style sockets only. 4467 */ 4468 sp->autoclose = 0; 4469 4470 /* User specified fragmentation limit. */ 4471 sp->user_frag = 0; 4472 4473 sp->adaptation_ind = 0; 4474 4475 sp->pf = sctp_get_pf_specific(sk->sk_family); 4476 4477 /* Control variables for partial data delivery. */ 4478 atomic_set(&sp->pd_mode, 0); 4479 skb_queue_head_init(&sp->pd_lobby); 4480 sp->frag_interleave = 0; 4481 4482 /* Create a per socket endpoint structure. Even if we 4483 * change the data structure relationships, this may still 4484 * be useful for storing pre-connect address information. 4485 */ 4486 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4487 if (!sp->ep) 4488 return -ENOMEM; 4489 4490 sp->hmac = NULL; 4491 4492 sk->sk_destruct = sctp_destruct_sock; 4493 4494 SCTP_DBG_OBJCNT_INC(sock); 4495 4496 local_bh_disable(); 4497 percpu_counter_inc(&sctp_sockets_allocated); 4498 sock_prot_inuse_add(net, sk->sk_prot, 1); 4499 4500 /* Nothing can fail after this block, otherwise 4501 * sctp_destroy_sock() will be called without addr_wq_lock held 4502 */ 4503 if (net->sctp.default_auto_asconf) { 4504 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4505 list_add_tail(&sp->auto_asconf_list, 4506 &net->sctp.auto_asconf_splist); 4507 sp->do_auto_asconf = 1; 4508 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4509 } else { 4510 sp->do_auto_asconf = 0; 4511 } 4512 4513 local_bh_enable(); 4514 4515 return 0; 4516 } 4517 4518 /* Cleanup any SCTP per socket resources. Must be called with 4519 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4520 */ 4521 static void sctp_destroy_sock(struct sock *sk) 4522 { 4523 struct sctp_sock *sp; 4524 4525 pr_debug("%s: sk:%p\n", __func__, sk); 4526 4527 /* Release our hold on the endpoint. */ 4528 sp = sctp_sk(sk); 4529 /* This could happen during socket init, thus we bail out 4530 * early, since the rest of the below is not setup either. 4531 */ 4532 if (sp->ep == NULL) 4533 return; 4534 4535 if (sp->do_auto_asconf) { 4536 sp->do_auto_asconf = 0; 4537 list_del(&sp->auto_asconf_list); 4538 } 4539 sctp_endpoint_free(sp->ep); 4540 local_bh_disable(); 4541 percpu_counter_dec(&sctp_sockets_allocated); 4542 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4543 local_bh_enable(); 4544 } 4545 4546 /* Triggered when there are no references on the socket anymore */ 4547 static void sctp_destruct_sock(struct sock *sk) 4548 { 4549 struct sctp_sock *sp = sctp_sk(sk); 4550 4551 /* Free up the HMAC transform. */ 4552 crypto_free_shash(sp->hmac); 4553 4554 inet_sock_destruct(sk); 4555 } 4556 4557 /* API 4.1.7 shutdown() - TCP Style Syntax 4558 * int shutdown(int socket, int how); 4559 * 4560 * sd - the socket descriptor of the association to be closed. 4561 * how - Specifies the type of shutdown. The values are 4562 * as follows: 4563 * SHUT_RD 4564 * Disables further receive operations. No SCTP 4565 * protocol action is taken. 4566 * SHUT_WR 4567 * Disables further send operations, and initiates 4568 * the SCTP shutdown sequence. 4569 * SHUT_RDWR 4570 * Disables further send and receive operations 4571 * and initiates the SCTP shutdown sequence. 4572 */ 4573 static void sctp_shutdown(struct sock *sk, int how) 4574 { 4575 struct net *net = sock_net(sk); 4576 struct sctp_endpoint *ep; 4577 4578 if (!sctp_style(sk, TCP)) 4579 return; 4580 4581 ep = sctp_sk(sk)->ep; 4582 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4583 struct sctp_association *asoc; 4584 4585 sk->sk_state = SCTP_SS_CLOSING; 4586 asoc = list_entry(ep->asocs.next, 4587 struct sctp_association, asocs); 4588 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4589 } 4590 } 4591 4592 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4593 struct sctp_info *info) 4594 { 4595 struct sctp_transport *prim; 4596 struct list_head *pos; 4597 int mask; 4598 4599 memset(info, 0, sizeof(*info)); 4600 if (!asoc) { 4601 struct sctp_sock *sp = sctp_sk(sk); 4602 4603 info->sctpi_s_autoclose = sp->autoclose; 4604 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4605 info->sctpi_s_pd_point = sp->pd_point; 4606 info->sctpi_s_nodelay = sp->nodelay; 4607 info->sctpi_s_disable_fragments = sp->disable_fragments; 4608 info->sctpi_s_v4mapped = sp->v4mapped; 4609 info->sctpi_s_frag_interleave = sp->frag_interleave; 4610 info->sctpi_s_type = sp->type; 4611 4612 return 0; 4613 } 4614 4615 info->sctpi_tag = asoc->c.my_vtag; 4616 info->sctpi_state = asoc->state; 4617 info->sctpi_rwnd = asoc->a_rwnd; 4618 info->sctpi_unackdata = asoc->unack_data; 4619 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4620 info->sctpi_instrms = asoc->stream.incnt; 4621 info->sctpi_outstrms = asoc->stream.outcnt; 4622 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4623 info->sctpi_inqueue++; 4624 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4625 info->sctpi_outqueue++; 4626 info->sctpi_overall_error = asoc->overall_error_count; 4627 info->sctpi_max_burst = asoc->max_burst; 4628 info->sctpi_maxseg = asoc->frag_point; 4629 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4630 info->sctpi_peer_tag = asoc->c.peer_vtag; 4631 4632 mask = asoc->peer.ecn_capable << 1; 4633 mask = (mask | asoc->peer.ipv4_address) << 1; 4634 mask = (mask | asoc->peer.ipv6_address) << 1; 4635 mask = (mask | asoc->peer.hostname_address) << 1; 4636 mask = (mask | asoc->peer.asconf_capable) << 1; 4637 mask = (mask | asoc->peer.prsctp_capable) << 1; 4638 mask = (mask | asoc->peer.auth_capable); 4639 info->sctpi_peer_capable = mask; 4640 mask = asoc->peer.sack_needed << 1; 4641 mask = (mask | asoc->peer.sack_generation) << 1; 4642 mask = (mask | asoc->peer.zero_window_announced); 4643 info->sctpi_peer_sack = mask; 4644 4645 info->sctpi_isacks = asoc->stats.isacks; 4646 info->sctpi_osacks = asoc->stats.osacks; 4647 info->sctpi_opackets = asoc->stats.opackets; 4648 info->sctpi_ipackets = asoc->stats.ipackets; 4649 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4650 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4651 info->sctpi_idupchunks = asoc->stats.idupchunks; 4652 info->sctpi_gapcnt = asoc->stats.gapcnt; 4653 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4654 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4655 info->sctpi_oodchunks = asoc->stats.oodchunks; 4656 info->sctpi_iodchunks = asoc->stats.iodchunks; 4657 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4658 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4659 4660 prim = asoc->peer.primary_path; 4661 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4662 info->sctpi_p_state = prim->state; 4663 info->sctpi_p_cwnd = prim->cwnd; 4664 info->sctpi_p_srtt = prim->srtt; 4665 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4666 info->sctpi_p_hbinterval = prim->hbinterval; 4667 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4668 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4669 info->sctpi_p_ssthresh = prim->ssthresh; 4670 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4671 info->sctpi_p_flight_size = prim->flight_size; 4672 info->sctpi_p_error = prim->error_count; 4673 4674 return 0; 4675 } 4676 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4677 4678 /* use callback to avoid exporting the core structure */ 4679 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4680 { 4681 int err; 4682 4683 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4684 4685 err = rhashtable_walk_start(iter); 4686 if (err && err != -EAGAIN) { 4687 rhashtable_walk_stop(iter); 4688 rhashtable_walk_exit(iter); 4689 return err; 4690 } 4691 4692 return 0; 4693 } 4694 4695 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4696 { 4697 rhashtable_walk_stop(iter); 4698 rhashtable_walk_exit(iter); 4699 } 4700 4701 struct sctp_transport *sctp_transport_get_next(struct net *net, 4702 struct rhashtable_iter *iter) 4703 { 4704 struct sctp_transport *t; 4705 4706 t = rhashtable_walk_next(iter); 4707 for (; t; t = rhashtable_walk_next(iter)) { 4708 if (IS_ERR(t)) { 4709 if (PTR_ERR(t) == -EAGAIN) 4710 continue; 4711 break; 4712 } 4713 4714 if (net_eq(sock_net(t->asoc->base.sk), net) && 4715 t->asoc->peer.primary_path == t) 4716 break; 4717 } 4718 4719 return t; 4720 } 4721 4722 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4723 struct rhashtable_iter *iter, 4724 int pos) 4725 { 4726 void *obj = SEQ_START_TOKEN; 4727 4728 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4729 !IS_ERR(obj)) 4730 pos--; 4731 4732 return obj; 4733 } 4734 4735 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4736 void *p) { 4737 int err = 0; 4738 int hash = 0; 4739 struct sctp_ep_common *epb; 4740 struct sctp_hashbucket *head; 4741 4742 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4743 hash++, head++) { 4744 read_lock_bh(&head->lock); 4745 sctp_for_each_hentry(epb, &head->chain) { 4746 err = cb(sctp_ep(epb), p); 4747 if (err) 4748 break; 4749 } 4750 read_unlock_bh(&head->lock); 4751 } 4752 4753 return err; 4754 } 4755 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4756 4757 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4758 struct net *net, 4759 const union sctp_addr *laddr, 4760 const union sctp_addr *paddr, void *p) 4761 { 4762 struct sctp_transport *transport; 4763 int err; 4764 4765 rcu_read_lock(); 4766 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4767 rcu_read_unlock(); 4768 if (!transport) 4769 return -ENOENT; 4770 4771 err = cb(transport, p); 4772 sctp_transport_put(transport); 4773 4774 return err; 4775 } 4776 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4777 4778 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4779 int (*cb_done)(struct sctp_transport *, void *), 4780 struct net *net, int *pos, void *p) { 4781 struct rhashtable_iter hti; 4782 struct sctp_transport *tsp; 4783 int ret; 4784 4785 again: 4786 ret = sctp_transport_walk_start(&hti); 4787 if (ret) 4788 return ret; 4789 4790 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4791 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4792 if (!sctp_transport_hold(tsp)) 4793 continue; 4794 ret = cb(tsp, p); 4795 if (ret) 4796 break; 4797 (*pos)++; 4798 sctp_transport_put(tsp); 4799 } 4800 sctp_transport_walk_stop(&hti); 4801 4802 if (ret) { 4803 if (cb_done && !cb_done(tsp, p)) { 4804 (*pos)++; 4805 sctp_transport_put(tsp); 4806 goto again; 4807 } 4808 sctp_transport_put(tsp); 4809 } 4810 4811 return ret; 4812 } 4813 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4814 4815 /* 7.2.1 Association Status (SCTP_STATUS) 4816 4817 * Applications can retrieve current status information about an 4818 * association, including association state, peer receiver window size, 4819 * number of unacked data chunks, and number of data chunks pending 4820 * receipt. This information is read-only. 4821 */ 4822 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4823 char __user *optval, 4824 int __user *optlen) 4825 { 4826 struct sctp_status status; 4827 struct sctp_association *asoc = NULL; 4828 struct sctp_transport *transport; 4829 sctp_assoc_t associd; 4830 int retval = 0; 4831 4832 if (len < sizeof(status)) { 4833 retval = -EINVAL; 4834 goto out; 4835 } 4836 4837 len = sizeof(status); 4838 if (copy_from_user(&status, optval, len)) { 4839 retval = -EFAULT; 4840 goto out; 4841 } 4842 4843 associd = status.sstat_assoc_id; 4844 asoc = sctp_id2assoc(sk, associd); 4845 if (!asoc) { 4846 retval = -EINVAL; 4847 goto out; 4848 } 4849 4850 transport = asoc->peer.primary_path; 4851 4852 status.sstat_assoc_id = sctp_assoc2id(asoc); 4853 status.sstat_state = sctp_assoc_to_state(asoc); 4854 status.sstat_rwnd = asoc->peer.rwnd; 4855 status.sstat_unackdata = asoc->unack_data; 4856 4857 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4858 status.sstat_instrms = asoc->stream.incnt; 4859 status.sstat_outstrms = asoc->stream.outcnt; 4860 status.sstat_fragmentation_point = asoc->frag_point; 4861 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4862 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4863 transport->af_specific->sockaddr_len); 4864 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4865 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4866 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4867 status.sstat_primary.spinfo_state = transport->state; 4868 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4869 status.sstat_primary.spinfo_srtt = transport->srtt; 4870 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4871 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4872 4873 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4874 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4875 4876 if (put_user(len, optlen)) { 4877 retval = -EFAULT; 4878 goto out; 4879 } 4880 4881 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4882 __func__, len, status.sstat_state, status.sstat_rwnd, 4883 status.sstat_assoc_id); 4884 4885 if (copy_to_user(optval, &status, len)) { 4886 retval = -EFAULT; 4887 goto out; 4888 } 4889 4890 out: 4891 return retval; 4892 } 4893 4894 4895 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4896 * 4897 * Applications can retrieve information about a specific peer address 4898 * of an association, including its reachability state, congestion 4899 * window, and retransmission timer values. This information is 4900 * read-only. 4901 */ 4902 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4903 char __user *optval, 4904 int __user *optlen) 4905 { 4906 struct sctp_paddrinfo pinfo; 4907 struct sctp_transport *transport; 4908 int retval = 0; 4909 4910 if (len < sizeof(pinfo)) { 4911 retval = -EINVAL; 4912 goto out; 4913 } 4914 4915 len = sizeof(pinfo); 4916 if (copy_from_user(&pinfo, optval, len)) { 4917 retval = -EFAULT; 4918 goto out; 4919 } 4920 4921 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4922 pinfo.spinfo_assoc_id); 4923 if (!transport) 4924 return -EINVAL; 4925 4926 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4927 pinfo.spinfo_state = transport->state; 4928 pinfo.spinfo_cwnd = transport->cwnd; 4929 pinfo.spinfo_srtt = transport->srtt; 4930 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4931 pinfo.spinfo_mtu = transport->pathmtu; 4932 4933 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4934 pinfo.spinfo_state = SCTP_ACTIVE; 4935 4936 if (put_user(len, optlen)) { 4937 retval = -EFAULT; 4938 goto out; 4939 } 4940 4941 if (copy_to_user(optval, &pinfo, len)) { 4942 retval = -EFAULT; 4943 goto out; 4944 } 4945 4946 out: 4947 return retval; 4948 } 4949 4950 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4951 * 4952 * This option is a on/off flag. If enabled no SCTP message 4953 * fragmentation will be performed. Instead if a message being sent 4954 * exceeds the current PMTU size, the message will NOT be sent and 4955 * instead a error will be indicated to the user. 4956 */ 4957 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4958 char __user *optval, int __user *optlen) 4959 { 4960 int val; 4961 4962 if (len < sizeof(int)) 4963 return -EINVAL; 4964 4965 len = sizeof(int); 4966 val = (sctp_sk(sk)->disable_fragments == 1); 4967 if (put_user(len, optlen)) 4968 return -EFAULT; 4969 if (copy_to_user(optval, &val, len)) 4970 return -EFAULT; 4971 return 0; 4972 } 4973 4974 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4975 * 4976 * This socket option is used to specify various notifications and 4977 * ancillary data the user wishes to receive. 4978 */ 4979 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4980 int __user *optlen) 4981 { 4982 if (len == 0) 4983 return -EINVAL; 4984 if (len > sizeof(struct sctp_event_subscribe)) 4985 len = sizeof(struct sctp_event_subscribe); 4986 if (put_user(len, optlen)) 4987 return -EFAULT; 4988 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4989 return -EFAULT; 4990 return 0; 4991 } 4992 4993 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4994 * 4995 * This socket option is applicable to the UDP-style socket only. When 4996 * set it will cause associations that are idle for more than the 4997 * specified number of seconds to automatically close. An association 4998 * being idle is defined an association that has NOT sent or received 4999 * user data. The special value of '0' indicates that no automatic 5000 * close of any associations should be performed. The option expects an 5001 * integer defining the number of seconds of idle time before an 5002 * association is closed. 5003 */ 5004 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5005 { 5006 /* Applicable to UDP-style socket only */ 5007 if (sctp_style(sk, TCP)) 5008 return -EOPNOTSUPP; 5009 if (len < sizeof(int)) 5010 return -EINVAL; 5011 len = sizeof(int); 5012 if (put_user(len, optlen)) 5013 return -EFAULT; 5014 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 5015 return -EFAULT; 5016 return 0; 5017 } 5018 5019 /* Helper routine to branch off an association to a new socket. */ 5020 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5021 { 5022 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5023 struct sctp_sock *sp = sctp_sk(sk); 5024 struct socket *sock; 5025 int err = 0; 5026 5027 /* Do not peel off from one netns to another one. */ 5028 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5029 return -EINVAL; 5030 5031 if (!asoc) 5032 return -EINVAL; 5033 5034 /* An association cannot be branched off from an already peeled-off 5035 * socket, nor is this supported for tcp style sockets. 5036 */ 5037 if (!sctp_style(sk, UDP)) 5038 return -EINVAL; 5039 5040 /* Create a new socket. */ 5041 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5042 if (err < 0) 5043 return err; 5044 5045 sctp_copy_sock(sock->sk, sk, asoc); 5046 5047 /* Make peeled-off sockets more like 1-1 accepted sockets. 5048 * Set the daddr and initialize id to something more random 5049 */ 5050 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5051 5052 /* Populate the fields of the newsk from the oldsk and migrate the 5053 * asoc to the newsk. 5054 */ 5055 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5056 5057 *sockp = sock; 5058 5059 return err; 5060 } 5061 EXPORT_SYMBOL(sctp_do_peeloff); 5062 5063 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5064 struct file **newfile, unsigned flags) 5065 { 5066 struct socket *newsock; 5067 int retval; 5068 5069 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5070 if (retval < 0) 5071 goto out; 5072 5073 /* Map the socket to an unused fd that can be returned to the user. */ 5074 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5075 if (retval < 0) { 5076 sock_release(newsock); 5077 goto out; 5078 } 5079 5080 *newfile = sock_alloc_file(newsock, 0, NULL); 5081 if (IS_ERR(*newfile)) { 5082 put_unused_fd(retval); 5083 sock_release(newsock); 5084 retval = PTR_ERR(*newfile); 5085 *newfile = NULL; 5086 return retval; 5087 } 5088 5089 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5090 retval); 5091 5092 peeloff->sd = retval; 5093 5094 if (flags & SOCK_NONBLOCK) 5095 (*newfile)->f_flags |= O_NONBLOCK; 5096 out: 5097 return retval; 5098 } 5099 5100 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5101 { 5102 sctp_peeloff_arg_t peeloff; 5103 struct file *newfile = NULL; 5104 int retval = 0; 5105 5106 if (len < sizeof(sctp_peeloff_arg_t)) 5107 return -EINVAL; 5108 len = sizeof(sctp_peeloff_arg_t); 5109 if (copy_from_user(&peeloff, optval, len)) 5110 return -EFAULT; 5111 5112 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5113 if (retval < 0) 5114 goto out; 5115 5116 /* Return the fd mapped to the new socket. */ 5117 if (put_user(len, optlen)) { 5118 fput(newfile); 5119 put_unused_fd(retval); 5120 return -EFAULT; 5121 } 5122 5123 if (copy_to_user(optval, &peeloff, len)) { 5124 fput(newfile); 5125 put_unused_fd(retval); 5126 return -EFAULT; 5127 } 5128 fd_install(retval, newfile); 5129 out: 5130 return retval; 5131 } 5132 5133 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5134 char __user *optval, int __user *optlen) 5135 { 5136 sctp_peeloff_flags_arg_t peeloff; 5137 struct file *newfile = NULL; 5138 int retval = 0; 5139 5140 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5141 return -EINVAL; 5142 len = sizeof(sctp_peeloff_flags_arg_t); 5143 if (copy_from_user(&peeloff, optval, len)) 5144 return -EFAULT; 5145 5146 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5147 &newfile, peeloff.flags); 5148 if (retval < 0) 5149 goto out; 5150 5151 /* Return the fd mapped to the new socket. */ 5152 if (put_user(len, optlen)) { 5153 fput(newfile); 5154 put_unused_fd(retval); 5155 return -EFAULT; 5156 } 5157 5158 if (copy_to_user(optval, &peeloff, len)) { 5159 fput(newfile); 5160 put_unused_fd(retval); 5161 return -EFAULT; 5162 } 5163 fd_install(retval, newfile); 5164 out: 5165 return retval; 5166 } 5167 5168 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5169 * 5170 * Applications can enable or disable heartbeats for any peer address of 5171 * an association, modify an address's heartbeat interval, force a 5172 * heartbeat to be sent immediately, and adjust the address's maximum 5173 * number of retransmissions sent before an address is considered 5174 * unreachable. The following structure is used to access and modify an 5175 * address's parameters: 5176 * 5177 * struct sctp_paddrparams { 5178 * sctp_assoc_t spp_assoc_id; 5179 * struct sockaddr_storage spp_address; 5180 * uint32_t spp_hbinterval; 5181 * uint16_t spp_pathmaxrxt; 5182 * uint32_t spp_pathmtu; 5183 * uint32_t spp_sackdelay; 5184 * uint32_t spp_flags; 5185 * }; 5186 * 5187 * spp_assoc_id - (one-to-many style socket) This is filled in the 5188 * application, and identifies the association for 5189 * this query. 5190 * spp_address - This specifies which address is of interest. 5191 * spp_hbinterval - This contains the value of the heartbeat interval, 5192 * in milliseconds. If a value of zero 5193 * is present in this field then no changes are to 5194 * be made to this parameter. 5195 * spp_pathmaxrxt - This contains the maximum number of 5196 * retransmissions before this address shall be 5197 * considered unreachable. If a value of zero 5198 * is present in this field then no changes are to 5199 * be made to this parameter. 5200 * spp_pathmtu - When Path MTU discovery is disabled the value 5201 * specified here will be the "fixed" path mtu. 5202 * Note that if the spp_address field is empty 5203 * then all associations on this address will 5204 * have this fixed path mtu set upon them. 5205 * 5206 * spp_sackdelay - When delayed sack is enabled, this value specifies 5207 * the number of milliseconds that sacks will be delayed 5208 * for. This value will apply to all addresses of an 5209 * association if the spp_address field is empty. Note 5210 * also, that if delayed sack is enabled and this 5211 * value is set to 0, no change is made to the last 5212 * recorded delayed sack timer value. 5213 * 5214 * spp_flags - These flags are used to control various features 5215 * on an association. The flag field may contain 5216 * zero or more of the following options. 5217 * 5218 * SPP_HB_ENABLE - Enable heartbeats on the 5219 * specified address. Note that if the address 5220 * field is empty all addresses for the association 5221 * have heartbeats enabled upon them. 5222 * 5223 * SPP_HB_DISABLE - Disable heartbeats on the 5224 * speicifed address. Note that if the address 5225 * field is empty all addresses for the association 5226 * will have their heartbeats disabled. Note also 5227 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5228 * mutually exclusive, only one of these two should 5229 * be specified. Enabling both fields will have 5230 * undetermined results. 5231 * 5232 * SPP_HB_DEMAND - Request a user initiated heartbeat 5233 * to be made immediately. 5234 * 5235 * SPP_PMTUD_ENABLE - This field will enable PMTU 5236 * discovery upon the specified address. Note that 5237 * if the address feild is empty then all addresses 5238 * on the association are effected. 5239 * 5240 * SPP_PMTUD_DISABLE - This field will disable PMTU 5241 * discovery upon the specified address. Note that 5242 * if the address feild is empty then all addresses 5243 * on the association are effected. Not also that 5244 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5245 * exclusive. Enabling both will have undetermined 5246 * results. 5247 * 5248 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5249 * on delayed sack. The time specified in spp_sackdelay 5250 * is used to specify the sack delay for this address. Note 5251 * that if spp_address is empty then all addresses will 5252 * enable delayed sack and take on the sack delay 5253 * value specified in spp_sackdelay. 5254 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5255 * off delayed sack. If the spp_address field is blank then 5256 * delayed sack is disabled for the entire association. Note 5257 * also that this field is mutually exclusive to 5258 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5259 * results. 5260 */ 5261 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5262 char __user *optval, int __user *optlen) 5263 { 5264 struct sctp_paddrparams params; 5265 struct sctp_transport *trans = NULL; 5266 struct sctp_association *asoc = NULL; 5267 struct sctp_sock *sp = sctp_sk(sk); 5268 5269 if (len < sizeof(struct sctp_paddrparams)) 5270 return -EINVAL; 5271 len = sizeof(struct sctp_paddrparams); 5272 if (copy_from_user(¶ms, optval, len)) 5273 return -EFAULT; 5274 5275 /* If an address other than INADDR_ANY is specified, and 5276 * no transport is found, then the request is invalid. 5277 */ 5278 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5279 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5280 params.spp_assoc_id); 5281 if (!trans) { 5282 pr_debug("%s: failed no transport\n", __func__); 5283 return -EINVAL; 5284 } 5285 } 5286 5287 /* Get association, if assoc_id != 0 and the socket is a one 5288 * to many style socket, and an association was not found, then 5289 * the id was invalid. 5290 */ 5291 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5292 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5293 pr_debug("%s: failed no association\n", __func__); 5294 return -EINVAL; 5295 } 5296 5297 if (trans) { 5298 /* Fetch transport values. */ 5299 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5300 params.spp_pathmtu = trans->pathmtu; 5301 params.spp_pathmaxrxt = trans->pathmaxrxt; 5302 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5303 5304 /*draft-11 doesn't say what to return in spp_flags*/ 5305 params.spp_flags = trans->param_flags; 5306 } else if (asoc) { 5307 /* Fetch association values. */ 5308 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5309 params.spp_pathmtu = asoc->pathmtu; 5310 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5311 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5312 5313 /*draft-11 doesn't say what to return in spp_flags*/ 5314 params.spp_flags = asoc->param_flags; 5315 } else { 5316 /* Fetch socket values. */ 5317 params.spp_hbinterval = sp->hbinterval; 5318 params.spp_pathmtu = sp->pathmtu; 5319 params.spp_sackdelay = sp->sackdelay; 5320 params.spp_pathmaxrxt = sp->pathmaxrxt; 5321 5322 /*draft-11 doesn't say what to return in spp_flags*/ 5323 params.spp_flags = sp->param_flags; 5324 } 5325 5326 if (copy_to_user(optval, ¶ms, len)) 5327 return -EFAULT; 5328 5329 if (put_user(len, optlen)) 5330 return -EFAULT; 5331 5332 return 0; 5333 } 5334 5335 /* 5336 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5337 * 5338 * This option will effect the way delayed acks are performed. This 5339 * option allows you to get or set the delayed ack time, in 5340 * milliseconds. It also allows changing the delayed ack frequency. 5341 * Changing the frequency to 1 disables the delayed sack algorithm. If 5342 * the assoc_id is 0, then this sets or gets the endpoints default 5343 * values. If the assoc_id field is non-zero, then the set or get 5344 * effects the specified association for the one to many model (the 5345 * assoc_id field is ignored by the one to one model). Note that if 5346 * sack_delay or sack_freq are 0 when setting this option, then the 5347 * current values will remain unchanged. 5348 * 5349 * struct sctp_sack_info { 5350 * sctp_assoc_t sack_assoc_id; 5351 * uint32_t sack_delay; 5352 * uint32_t sack_freq; 5353 * }; 5354 * 5355 * sack_assoc_id - This parameter, indicates which association the user 5356 * is performing an action upon. Note that if this field's value is 5357 * zero then the endpoints default value is changed (effecting future 5358 * associations only). 5359 * 5360 * sack_delay - This parameter contains the number of milliseconds that 5361 * the user is requesting the delayed ACK timer be set to. Note that 5362 * this value is defined in the standard to be between 200 and 500 5363 * milliseconds. 5364 * 5365 * sack_freq - This parameter contains the number of packets that must 5366 * be received before a sack is sent without waiting for the delay 5367 * timer to expire. The default value for this is 2, setting this 5368 * value to 1 will disable the delayed sack algorithm. 5369 */ 5370 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5371 char __user *optval, 5372 int __user *optlen) 5373 { 5374 struct sctp_sack_info params; 5375 struct sctp_association *asoc = NULL; 5376 struct sctp_sock *sp = sctp_sk(sk); 5377 5378 if (len >= sizeof(struct sctp_sack_info)) { 5379 len = sizeof(struct sctp_sack_info); 5380 5381 if (copy_from_user(¶ms, optval, len)) 5382 return -EFAULT; 5383 } else if (len == sizeof(struct sctp_assoc_value)) { 5384 pr_warn_ratelimited(DEPRECATED 5385 "%s (pid %d) " 5386 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5387 "Use struct sctp_sack_info instead\n", 5388 current->comm, task_pid_nr(current)); 5389 if (copy_from_user(¶ms, optval, len)) 5390 return -EFAULT; 5391 } else 5392 return -EINVAL; 5393 5394 /* Get association, if sack_assoc_id != 0 and the socket is a one 5395 * to many style socket, and an association was not found, then 5396 * the id was invalid. 5397 */ 5398 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5399 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5400 return -EINVAL; 5401 5402 if (asoc) { 5403 /* Fetch association values. */ 5404 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5405 params.sack_delay = jiffies_to_msecs( 5406 asoc->sackdelay); 5407 params.sack_freq = asoc->sackfreq; 5408 5409 } else { 5410 params.sack_delay = 0; 5411 params.sack_freq = 1; 5412 } 5413 } else { 5414 /* Fetch socket values. */ 5415 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5416 params.sack_delay = sp->sackdelay; 5417 params.sack_freq = sp->sackfreq; 5418 } else { 5419 params.sack_delay = 0; 5420 params.sack_freq = 1; 5421 } 5422 } 5423 5424 if (copy_to_user(optval, ¶ms, len)) 5425 return -EFAULT; 5426 5427 if (put_user(len, optlen)) 5428 return -EFAULT; 5429 5430 return 0; 5431 } 5432 5433 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5434 * 5435 * Applications can specify protocol parameters for the default association 5436 * initialization. The option name argument to setsockopt() and getsockopt() 5437 * is SCTP_INITMSG. 5438 * 5439 * Setting initialization parameters is effective only on an unconnected 5440 * socket (for UDP-style sockets only future associations are effected 5441 * by the change). With TCP-style sockets, this option is inherited by 5442 * sockets derived from a listener socket. 5443 */ 5444 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5445 { 5446 if (len < sizeof(struct sctp_initmsg)) 5447 return -EINVAL; 5448 len = sizeof(struct sctp_initmsg); 5449 if (put_user(len, optlen)) 5450 return -EFAULT; 5451 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5452 return -EFAULT; 5453 return 0; 5454 } 5455 5456 5457 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5458 char __user *optval, int __user *optlen) 5459 { 5460 struct sctp_association *asoc; 5461 int cnt = 0; 5462 struct sctp_getaddrs getaddrs; 5463 struct sctp_transport *from; 5464 void __user *to; 5465 union sctp_addr temp; 5466 struct sctp_sock *sp = sctp_sk(sk); 5467 int addrlen; 5468 size_t space_left; 5469 int bytes_copied; 5470 5471 if (len < sizeof(struct sctp_getaddrs)) 5472 return -EINVAL; 5473 5474 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5475 return -EFAULT; 5476 5477 /* For UDP-style sockets, id specifies the association to query. */ 5478 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5479 if (!asoc) 5480 return -EINVAL; 5481 5482 to = optval + offsetof(struct sctp_getaddrs, addrs); 5483 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5484 5485 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5486 transports) { 5487 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5488 addrlen = sctp_get_pf_specific(sk->sk_family) 5489 ->addr_to_user(sp, &temp); 5490 if (space_left < addrlen) 5491 return -ENOMEM; 5492 if (copy_to_user(to, &temp, addrlen)) 5493 return -EFAULT; 5494 to += addrlen; 5495 cnt++; 5496 space_left -= addrlen; 5497 } 5498 5499 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5500 return -EFAULT; 5501 bytes_copied = ((char __user *)to) - optval; 5502 if (put_user(bytes_copied, optlen)) 5503 return -EFAULT; 5504 5505 return 0; 5506 } 5507 5508 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5509 size_t space_left, int *bytes_copied) 5510 { 5511 struct sctp_sockaddr_entry *addr; 5512 union sctp_addr temp; 5513 int cnt = 0; 5514 int addrlen; 5515 struct net *net = sock_net(sk); 5516 5517 rcu_read_lock(); 5518 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5519 if (!addr->valid) 5520 continue; 5521 5522 if ((PF_INET == sk->sk_family) && 5523 (AF_INET6 == addr->a.sa.sa_family)) 5524 continue; 5525 if ((PF_INET6 == sk->sk_family) && 5526 inet_v6_ipv6only(sk) && 5527 (AF_INET == addr->a.sa.sa_family)) 5528 continue; 5529 memcpy(&temp, &addr->a, sizeof(temp)); 5530 if (!temp.v4.sin_port) 5531 temp.v4.sin_port = htons(port); 5532 5533 addrlen = sctp_get_pf_specific(sk->sk_family) 5534 ->addr_to_user(sctp_sk(sk), &temp); 5535 5536 if (space_left < addrlen) { 5537 cnt = -ENOMEM; 5538 break; 5539 } 5540 memcpy(to, &temp, addrlen); 5541 5542 to += addrlen; 5543 cnt++; 5544 space_left -= addrlen; 5545 *bytes_copied += addrlen; 5546 } 5547 rcu_read_unlock(); 5548 5549 return cnt; 5550 } 5551 5552 5553 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5554 char __user *optval, int __user *optlen) 5555 { 5556 struct sctp_bind_addr *bp; 5557 struct sctp_association *asoc; 5558 int cnt = 0; 5559 struct sctp_getaddrs getaddrs; 5560 struct sctp_sockaddr_entry *addr; 5561 void __user *to; 5562 union sctp_addr temp; 5563 struct sctp_sock *sp = sctp_sk(sk); 5564 int addrlen; 5565 int err = 0; 5566 size_t space_left; 5567 int bytes_copied = 0; 5568 void *addrs; 5569 void *buf; 5570 5571 if (len < sizeof(struct sctp_getaddrs)) 5572 return -EINVAL; 5573 5574 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5575 return -EFAULT; 5576 5577 /* 5578 * For UDP-style sockets, id specifies the association to query. 5579 * If the id field is set to the value '0' then the locally bound 5580 * addresses are returned without regard to any particular 5581 * association. 5582 */ 5583 if (0 == getaddrs.assoc_id) { 5584 bp = &sctp_sk(sk)->ep->base.bind_addr; 5585 } else { 5586 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5587 if (!asoc) 5588 return -EINVAL; 5589 bp = &asoc->base.bind_addr; 5590 } 5591 5592 to = optval + offsetof(struct sctp_getaddrs, addrs); 5593 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5594 5595 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5596 if (!addrs) 5597 return -ENOMEM; 5598 5599 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5600 * addresses from the global local address list. 5601 */ 5602 if (sctp_list_single_entry(&bp->address_list)) { 5603 addr = list_entry(bp->address_list.next, 5604 struct sctp_sockaddr_entry, list); 5605 if (sctp_is_any(sk, &addr->a)) { 5606 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5607 space_left, &bytes_copied); 5608 if (cnt < 0) { 5609 err = cnt; 5610 goto out; 5611 } 5612 goto copy_getaddrs; 5613 } 5614 } 5615 5616 buf = addrs; 5617 /* Protection on the bound address list is not needed since 5618 * in the socket option context we hold a socket lock and 5619 * thus the bound address list can't change. 5620 */ 5621 list_for_each_entry(addr, &bp->address_list, list) { 5622 memcpy(&temp, &addr->a, sizeof(temp)); 5623 addrlen = sctp_get_pf_specific(sk->sk_family) 5624 ->addr_to_user(sp, &temp); 5625 if (space_left < addrlen) { 5626 err = -ENOMEM; /*fixme: right error?*/ 5627 goto out; 5628 } 5629 memcpy(buf, &temp, addrlen); 5630 buf += addrlen; 5631 bytes_copied += addrlen; 5632 cnt++; 5633 space_left -= addrlen; 5634 } 5635 5636 copy_getaddrs: 5637 if (copy_to_user(to, addrs, bytes_copied)) { 5638 err = -EFAULT; 5639 goto out; 5640 } 5641 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5642 err = -EFAULT; 5643 goto out; 5644 } 5645 if (put_user(bytes_copied, optlen)) 5646 err = -EFAULT; 5647 out: 5648 kfree(addrs); 5649 return err; 5650 } 5651 5652 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5653 * 5654 * Requests that the local SCTP stack use the enclosed peer address as 5655 * the association primary. The enclosed address must be one of the 5656 * association peer's addresses. 5657 */ 5658 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5659 char __user *optval, int __user *optlen) 5660 { 5661 struct sctp_prim prim; 5662 struct sctp_association *asoc; 5663 struct sctp_sock *sp = sctp_sk(sk); 5664 5665 if (len < sizeof(struct sctp_prim)) 5666 return -EINVAL; 5667 5668 len = sizeof(struct sctp_prim); 5669 5670 if (copy_from_user(&prim, optval, len)) 5671 return -EFAULT; 5672 5673 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5674 if (!asoc) 5675 return -EINVAL; 5676 5677 if (!asoc->peer.primary_path) 5678 return -ENOTCONN; 5679 5680 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5681 asoc->peer.primary_path->af_specific->sockaddr_len); 5682 5683 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5684 (union sctp_addr *)&prim.ssp_addr); 5685 5686 if (put_user(len, optlen)) 5687 return -EFAULT; 5688 if (copy_to_user(optval, &prim, len)) 5689 return -EFAULT; 5690 5691 return 0; 5692 } 5693 5694 /* 5695 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5696 * 5697 * Requests that the local endpoint set the specified Adaptation Layer 5698 * Indication parameter for all future INIT and INIT-ACK exchanges. 5699 */ 5700 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5701 char __user *optval, int __user *optlen) 5702 { 5703 struct sctp_setadaptation adaptation; 5704 5705 if (len < sizeof(struct sctp_setadaptation)) 5706 return -EINVAL; 5707 5708 len = sizeof(struct sctp_setadaptation); 5709 5710 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5711 5712 if (put_user(len, optlen)) 5713 return -EFAULT; 5714 if (copy_to_user(optval, &adaptation, len)) 5715 return -EFAULT; 5716 5717 return 0; 5718 } 5719 5720 /* 5721 * 5722 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5723 * 5724 * Applications that wish to use the sendto() system call may wish to 5725 * specify a default set of parameters that would normally be supplied 5726 * through the inclusion of ancillary data. This socket option allows 5727 * such an application to set the default sctp_sndrcvinfo structure. 5728 5729 5730 * The application that wishes to use this socket option simply passes 5731 * in to this call the sctp_sndrcvinfo structure defined in Section 5732 * 5.2.2) The input parameters accepted by this call include 5733 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5734 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5735 * to this call if the caller is using the UDP model. 5736 * 5737 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5738 */ 5739 static int sctp_getsockopt_default_send_param(struct sock *sk, 5740 int len, char __user *optval, 5741 int __user *optlen) 5742 { 5743 struct sctp_sock *sp = sctp_sk(sk); 5744 struct sctp_association *asoc; 5745 struct sctp_sndrcvinfo info; 5746 5747 if (len < sizeof(info)) 5748 return -EINVAL; 5749 5750 len = sizeof(info); 5751 5752 if (copy_from_user(&info, optval, len)) 5753 return -EFAULT; 5754 5755 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5756 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5757 return -EINVAL; 5758 if (asoc) { 5759 info.sinfo_stream = asoc->default_stream; 5760 info.sinfo_flags = asoc->default_flags; 5761 info.sinfo_ppid = asoc->default_ppid; 5762 info.sinfo_context = asoc->default_context; 5763 info.sinfo_timetolive = asoc->default_timetolive; 5764 } else { 5765 info.sinfo_stream = sp->default_stream; 5766 info.sinfo_flags = sp->default_flags; 5767 info.sinfo_ppid = sp->default_ppid; 5768 info.sinfo_context = sp->default_context; 5769 info.sinfo_timetolive = sp->default_timetolive; 5770 } 5771 5772 if (put_user(len, optlen)) 5773 return -EFAULT; 5774 if (copy_to_user(optval, &info, len)) 5775 return -EFAULT; 5776 5777 return 0; 5778 } 5779 5780 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5781 * (SCTP_DEFAULT_SNDINFO) 5782 */ 5783 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5784 char __user *optval, 5785 int __user *optlen) 5786 { 5787 struct sctp_sock *sp = sctp_sk(sk); 5788 struct sctp_association *asoc; 5789 struct sctp_sndinfo info; 5790 5791 if (len < sizeof(info)) 5792 return -EINVAL; 5793 5794 len = sizeof(info); 5795 5796 if (copy_from_user(&info, optval, len)) 5797 return -EFAULT; 5798 5799 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5800 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5801 return -EINVAL; 5802 if (asoc) { 5803 info.snd_sid = asoc->default_stream; 5804 info.snd_flags = asoc->default_flags; 5805 info.snd_ppid = asoc->default_ppid; 5806 info.snd_context = asoc->default_context; 5807 } else { 5808 info.snd_sid = sp->default_stream; 5809 info.snd_flags = sp->default_flags; 5810 info.snd_ppid = sp->default_ppid; 5811 info.snd_context = sp->default_context; 5812 } 5813 5814 if (put_user(len, optlen)) 5815 return -EFAULT; 5816 if (copy_to_user(optval, &info, len)) 5817 return -EFAULT; 5818 5819 return 0; 5820 } 5821 5822 /* 5823 * 5824 * 7.1.5 SCTP_NODELAY 5825 * 5826 * Turn on/off any Nagle-like algorithm. This means that packets are 5827 * generally sent as soon as possible and no unnecessary delays are 5828 * introduced, at the cost of more packets in the network. Expects an 5829 * integer boolean flag. 5830 */ 5831 5832 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5833 char __user *optval, int __user *optlen) 5834 { 5835 int val; 5836 5837 if (len < sizeof(int)) 5838 return -EINVAL; 5839 5840 len = sizeof(int); 5841 val = (sctp_sk(sk)->nodelay == 1); 5842 if (put_user(len, optlen)) 5843 return -EFAULT; 5844 if (copy_to_user(optval, &val, len)) 5845 return -EFAULT; 5846 return 0; 5847 } 5848 5849 /* 5850 * 5851 * 7.1.1 SCTP_RTOINFO 5852 * 5853 * The protocol parameters used to initialize and bound retransmission 5854 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5855 * and modify these parameters. 5856 * All parameters are time values, in milliseconds. A value of 0, when 5857 * modifying the parameters, indicates that the current value should not 5858 * be changed. 5859 * 5860 */ 5861 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5862 char __user *optval, 5863 int __user *optlen) { 5864 struct sctp_rtoinfo rtoinfo; 5865 struct sctp_association *asoc; 5866 5867 if (len < sizeof (struct sctp_rtoinfo)) 5868 return -EINVAL; 5869 5870 len = sizeof(struct sctp_rtoinfo); 5871 5872 if (copy_from_user(&rtoinfo, optval, len)) 5873 return -EFAULT; 5874 5875 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5876 5877 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5878 return -EINVAL; 5879 5880 /* Values corresponding to the specific association. */ 5881 if (asoc) { 5882 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5883 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5884 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5885 } else { 5886 /* Values corresponding to the endpoint. */ 5887 struct sctp_sock *sp = sctp_sk(sk); 5888 5889 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5890 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5891 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5892 } 5893 5894 if (put_user(len, optlen)) 5895 return -EFAULT; 5896 5897 if (copy_to_user(optval, &rtoinfo, len)) 5898 return -EFAULT; 5899 5900 return 0; 5901 } 5902 5903 /* 5904 * 5905 * 7.1.2 SCTP_ASSOCINFO 5906 * 5907 * This option is used to tune the maximum retransmission attempts 5908 * of the association. 5909 * Returns an error if the new association retransmission value is 5910 * greater than the sum of the retransmission value of the peer. 5911 * See [SCTP] for more information. 5912 * 5913 */ 5914 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5915 char __user *optval, 5916 int __user *optlen) 5917 { 5918 5919 struct sctp_assocparams assocparams; 5920 struct sctp_association *asoc; 5921 struct list_head *pos; 5922 int cnt = 0; 5923 5924 if (len < sizeof (struct sctp_assocparams)) 5925 return -EINVAL; 5926 5927 len = sizeof(struct sctp_assocparams); 5928 5929 if (copy_from_user(&assocparams, optval, len)) 5930 return -EFAULT; 5931 5932 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5933 5934 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5935 return -EINVAL; 5936 5937 /* Values correspoinding to the specific association */ 5938 if (asoc) { 5939 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5940 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5941 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5942 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5943 5944 list_for_each(pos, &asoc->peer.transport_addr_list) { 5945 cnt++; 5946 } 5947 5948 assocparams.sasoc_number_peer_destinations = cnt; 5949 } else { 5950 /* Values corresponding to the endpoint */ 5951 struct sctp_sock *sp = sctp_sk(sk); 5952 5953 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5954 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5955 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5956 assocparams.sasoc_cookie_life = 5957 sp->assocparams.sasoc_cookie_life; 5958 assocparams.sasoc_number_peer_destinations = 5959 sp->assocparams. 5960 sasoc_number_peer_destinations; 5961 } 5962 5963 if (put_user(len, optlen)) 5964 return -EFAULT; 5965 5966 if (copy_to_user(optval, &assocparams, len)) 5967 return -EFAULT; 5968 5969 return 0; 5970 } 5971 5972 /* 5973 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5974 * 5975 * This socket option is a boolean flag which turns on or off mapped V4 5976 * addresses. If this option is turned on and the socket is type 5977 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5978 * If this option is turned off, then no mapping will be done of V4 5979 * addresses and a user will receive both PF_INET6 and PF_INET type 5980 * addresses on the socket. 5981 */ 5982 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5983 char __user *optval, int __user *optlen) 5984 { 5985 int val; 5986 struct sctp_sock *sp = sctp_sk(sk); 5987 5988 if (len < sizeof(int)) 5989 return -EINVAL; 5990 5991 len = sizeof(int); 5992 val = sp->v4mapped; 5993 if (put_user(len, optlen)) 5994 return -EFAULT; 5995 if (copy_to_user(optval, &val, len)) 5996 return -EFAULT; 5997 5998 return 0; 5999 } 6000 6001 /* 6002 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6003 * (chapter and verse is quoted at sctp_setsockopt_context()) 6004 */ 6005 static int sctp_getsockopt_context(struct sock *sk, int len, 6006 char __user *optval, int __user *optlen) 6007 { 6008 struct sctp_assoc_value params; 6009 struct sctp_sock *sp; 6010 struct sctp_association *asoc; 6011 6012 if (len < sizeof(struct sctp_assoc_value)) 6013 return -EINVAL; 6014 6015 len = sizeof(struct sctp_assoc_value); 6016 6017 if (copy_from_user(¶ms, optval, len)) 6018 return -EFAULT; 6019 6020 sp = sctp_sk(sk); 6021 6022 if (params.assoc_id != 0) { 6023 asoc = sctp_id2assoc(sk, params.assoc_id); 6024 if (!asoc) 6025 return -EINVAL; 6026 params.assoc_value = asoc->default_rcv_context; 6027 } else { 6028 params.assoc_value = sp->default_rcv_context; 6029 } 6030 6031 if (put_user(len, optlen)) 6032 return -EFAULT; 6033 if (copy_to_user(optval, ¶ms, len)) 6034 return -EFAULT; 6035 6036 return 0; 6037 } 6038 6039 /* 6040 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6041 * This option will get or set the maximum size to put in any outgoing 6042 * SCTP DATA chunk. If a message is larger than this size it will be 6043 * fragmented by SCTP into the specified size. Note that the underlying 6044 * SCTP implementation may fragment into smaller sized chunks when the 6045 * PMTU of the underlying association is smaller than the value set by 6046 * the user. The default value for this option is '0' which indicates 6047 * the user is NOT limiting fragmentation and only the PMTU will effect 6048 * SCTP's choice of DATA chunk size. Note also that values set larger 6049 * than the maximum size of an IP datagram will effectively let SCTP 6050 * control fragmentation (i.e. the same as setting this option to 0). 6051 * 6052 * The following structure is used to access and modify this parameter: 6053 * 6054 * struct sctp_assoc_value { 6055 * sctp_assoc_t assoc_id; 6056 * uint32_t assoc_value; 6057 * }; 6058 * 6059 * assoc_id: This parameter is ignored for one-to-one style sockets. 6060 * For one-to-many style sockets this parameter indicates which 6061 * association the user is performing an action upon. Note that if 6062 * this field's value is zero then the endpoints default value is 6063 * changed (effecting future associations only). 6064 * assoc_value: This parameter specifies the maximum size in bytes. 6065 */ 6066 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6067 char __user *optval, int __user *optlen) 6068 { 6069 struct sctp_assoc_value params; 6070 struct sctp_association *asoc; 6071 6072 if (len == sizeof(int)) { 6073 pr_warn_ratelimited(DEPRECATED 6074 "%s (pid %d) " 6075 "Use of int in maxseg socket option.\n" 6076 "Use struct sctp_assoc_value instead\n", 6077 current->comm, task_pid_nr(current)); 6078 params.assoc_id = 0; 6079 } else if (len >= sizeof(struct sctp_assoc_value)) { 6080 len = sizeof(struct sctp_assoc_value); 6081 if (copy_from_user(¶ms, optval, sizeof(params))) 6082 return -EFAULT; 6083 } else 6084 return -EINVAL; 6085 6086 asoc = sctp_id2assoc(sk, params.assoc_id); 6087 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6088 return -EINVAL; 6089 6090 if (asoc) 6091 params.assoc_value = asoc->frag_point; 6092 else 6093 params.assoc_value = sctp_sk(sk)->user_frag; 6094 6095 if (put_user(len, optlen)) 6096 return -EFAULT; 6097 if (len == sizeof(int)) { 6098 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6099 return -EFAULT; 6100 } else { 6101 if (copy_to_user(optval, ¶ms, len)) 6102 return -EFAULT; 6103 } 6104 6105 return 0; 6106 } 6107 6108 /* 6109 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6110 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6111 */ 6112 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6113 char __user *optval, int __user *optlen) 6114 { 6115 int val; 6116 6117 if (len < sizeof(int)) 6118 return -EINVAL; 6119 6120 len = sizeof(int); 6121 6122 val = sctp_sk(sk)->frag_interleave; 6123 if (put_user(len, optlen)) 6124 return -EFAULT; 6125 if (copy_to_user(optval, &val, len)) 6126 return -EFAULT; 6127 6128 return 0; 6129 } 6130 6131 /* 6132 * 7.1.25. Set or Get the sctp partial delivery point 6133 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6134 */ 6135 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6136 char __user *optval, 6137 int __user *optlen) 6138 { 6139 u32 val; 6140 6141 if (len < sizeof(u32)) 6142 return -EINVAL; 6143 6144 len = sizeof(u32); 6145 6146 val = sctp_sk(sk)->pd_point; 6147 if (put_user(len, optlen)) 6148 return -EFAULT; 6149 if (copy_to_user(optval, &val, len)) 6150 return -EFAULT; 6151 6152 return 0; 6153 } 6154 6155 /* 6156 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6157 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6158 */ 6159 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6160 char __user *optval, 6161 int __user *optlen) 6162 { 6163 struct sctp_assoc_value params; 6164 struct sctp_sock *sp; 6165 struct sctp_association *asoc; 6166 6167 if (len == sizeof(int)) { 6168 pr_warn_ratelimited(DEPRECATED 6169 "%s (pid %d) " 6170 "Use of int in max_burst socket option.\n" 6171 "Use struct sctp_assoc_value instead\n", 6172 current->comm, task_pid_nr(current)); 6173 params.assoc_id = 0; 6174 } else if (len >= sizeof(struct sctp_assoc_value)) { 6175 len = sizeof(struct sctp_assoc_value); 6176 if (copy_from_user(¶ms, optval, len)) 6177 return -EFAULT; 6178 } else 6179 return -EINVAL; 6180 6181 sp = sctp_sk(sk); 6182 6183 if (params.assoc_id != 0) { 6184 asoc = sctp_id2assoc(sk, params.assoc_id); 6185 if (!asoc) 6186 return -EINVAL; 6187 params.assoc_value = asoc->max_burst; 6188 } else 6189 params.assoc_value = sp->max_burst; 6190 6191 if (len == sizeof(int)) { 6192 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6193 return -EFAULT; 6194 } else { 6195 if (copy_to_user(optval, ¶ms, len)) 6196 return -EFAULT; 6197 } 6198 6199 return 0; 6200 6201 } 6202 6203 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6204 char __user *optval, int __user *optlen) 6205 { 6206 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6207 struct sctp_hmacalgo __user *p = (void __user *)optval; 6208 struct sctp_hmac_algo_param *hmacs; 6209 __u16 data_len = 0; 6210 u32 num_idents; 6211 int i; 6212 6213 if (!ep->auth_enable) 6214 return -EACCES; 6215 6216 hmacs = ep->auth_hmacs_list; 6217 data_len = ntohs(hmacs->param_hdr.length) - 6218 sizeof(struct sctp_paramhdr); 6219 6220 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6221 return -EINVAL; 6222 6223 len = sizeof(struct sctp_hmacalgo) + data_len; 6224 num_idents = data_len / sizeof(u16); 6225 6226 if (put_user(len, optlen)) 6227 return -EFAULT; 6228 if (put_user(num_idents, &p->shmac_num_idents)) 6229 return -EFAULT; 6230 for (i = 0; i < num_idents; i++) { 6231 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6232 6233 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6234 return -EFAULT; 6235 } 6236 return 0; 6237 } 6238 6239 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6240 char __user *optval, int __user *optlen) 6241 { 6242 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6243 struct sctp_authkeyid val; 6244 struct sctp_association *asoc; 6245 6246 if (!ep->auth_enable) 6247 return -EACCES; 6248 6249 if (len < sizeof(struct sctp_authkeyid)) 6250 return -EINVAL; 6251 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 6252 return -EFAULT; 6253 6254 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6255 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6256 return -EINVAL; 6257 6258 if (asoc) 6259 val.scact_keynumber = asoc->active_key_id; 6260 else 6261 val.scact_keynumber = ep->active_key_id; 6262 6263 len = sizeof(struct sctp_authkeyid); 6264 if (put_user(len, optlen)) 6265 return -EFAULT; 6266 if (copy_to_user(optval, &val, len)) 6267 return -EFAULT; 6268 6269 return 0; 6270 } 6271 6272 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6273 char __user *optval, int __user *optlen) 6274 { 6275 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6276 struct sctp_authchunks __user *p = (void __user *)optval; 6277 struct sctp_authchunks val; 6278 struct sctp_association *asoc; 6279 struct sctp_chunks_param *ch; 6280 u32 num_chunks = 0; 6281 char __user *to; 6282 6283 if (!ep->auth_enable) 6284 return -EACCES; 6285 6286 if (len < sizeof(struct sctp_authchunks)) 6287 return -EINVAL; 6288 6289 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6290 return -EFAULT; 6291 6292 to = p->gauth_chunks; 6293 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6294 if (!asoc) 6295 return -EINVAL; 6296 6297 ch = asoc->peer.peer_chunks; 6298 if (!ch) 6299 goto num; 6300 6301 /* See if the user provided enough room for all the data */ 6302 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6303 if (len < num_chunks) 6304 return -EINVAL; 6305 6306 if (copy_to_user(to, ch->chunks, num_chunks)) 6307 return -EFAULT; 6308 num: 6309 len = sizeof(struct sctp_authchunks) + num_chunks; 6310 if (put_user(len, optlen)) 6311 return -EFAULT; 6312 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6313 return -EFAULT; 6314 return 0; 6315 } 6316 6317 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6318 char __user *optval, int __user *optlen) 6319 { 6320 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6321 struct sctp_authchunks __user *p = (void __user *)optval; 6322 struct sctp_authchunks val; 6323 struct sctp_association *asoc; 6324 struct sctp_chunks_param *ch; 6325 u32 num_chunks = 0; 6326 char __user *to; 6327 6328 if (!ep->auth_enable) 6329 return -EACCES; 6330 6331 if (len < sizeof(struct sctp_authchunks)) 6332 return -EINVAL; 6333 6334 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6335 return -EFAULT; 6336 6337 to = p->gauth_chunks; 6338 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6339 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6340 return -EINVAL; 6341 6342 if (asoc) 6343 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6344 else 6345 ch = ep->auth_chunk_list; 6346 6347 if (!ch) 6348 goto num; 6349 6350 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6351 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6352 return -EINVAL; 6353 6354 if (copy_to_user(to, ch->chunks, num_chunks)) 6355 return -EFAULT; 6356 num: 6357 len = sizeof(struct sctp_authchunks) + num_chunks; 6358 if (put_user(len, optlen)) 6359 return -EFAULT; 6360 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6361 return -EFAULT; 6362 6363 return 0; 6364 } 6365 6366 /* 6367 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6368 * This option gets the current number of associations that are attached 6369 * to a one-to-many style socket. The option value is an uint32_t. 6370 */ 6371 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6372 char __user *optval, int __user *optlen) 6373 { 6374 struct sctp_sock *sp = sctp_sk(sk); 6375 struct sctp_association *asoc; 6376 u32 val = 0; 6377 6378 if (sctp_style(sk, TCP)) 6379 return -EOPNOTSUPP; 6380 6381 if (len < sizeof(u32)) 6382 return -EINVAL; 6383 6384 len = sizeof(u32); 6385 6386 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6387 val++; 6388 } 6389 6390 if (put_user(len, optlen)) 6391 return -EFAULT; 6392 if (copy_to_user(optval, &val, len)) 6393 return -EFAULT; 6394 6395 return 0; 6396 } 6397 6398 /* 6399 * 8.1.23 SCTP_AUTO_ASCONF 6400 * See the corresponding setsockopt entry as description 6401 */ 6402 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6403 char __user *optval, int __user *optlen) 6404 { 6405 int val = 0; 6406 6407 if (len < sizeof(int)) 6408 return -EINVAL; 6409 6410 len = sizeof(int); 6411 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6412 val = 1; 6413 if (put_user(len, optlen)) 6414 return -EFAULT; 6415 if (copy_to_user(optval, &val, len)) 6416 return -EFAULT; 6417 return 0; 6418 } 6419 6420 /* 6421 * 8.2.6. Get the Current Identifiers of Associations 6422 * (SCTP_GET_ASSOC_ID_LIST) 6423 * 6424 * This option gets the current list of SCTP association identifiers of 6425 * the SCTP associations handled by a one-to-many style socket. 6426 */ 6427 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6428 char __user *optval, int __user *optlen) 6429 { 6430 struct sctp_sock *sp = sctp_sk(sk); 6431 struct sctp_association *asoc; 6432 struct sctp_assoc_ids *ids; 6433 u32 num = 0; 6434 6435 if (sctp_style(sk, TCP)) 6436 return -EOPNOTSUPP; 6437 6438 if (len < sizeof(struct sctp_assoc_ids)) 6439 return -EINVAL; 6440 6441 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6442 num++; 6443 } 6444 6445 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6446 return -EINVAL; 6447 6448 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6449 6450 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6451 if (unlikely(!ids)) 6452 return -ENOMEM; 6453 6454 ids->gaids_number_of_ids = num; 6455 num = 0; 6456 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6457 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6458 } 6459 6460 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6461 kfree(ids); 6462 return -EFAULT; 6463 } 6464 6465 kfree(ids); 6466 return 0; 6467 } 6468 6469 /* 6470 * SCTP_PEER_ADDR_THLDS 6471 * 6472 * This option allows us to fetch the partially failed threshold for one or all 6473 * transports in an association. See Section 6.1 of: 6474 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6475 */ 6476 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6477 char __user *optval, 6478 int len, 6479 int __user *optlen) 6480 { 6481 struct sctp_paddrthlds val; 6482 struct sctp_transport *trans; 6483 struct sctp_association *asoc; 6484 6485 if (len < sizeof(struct sctp_paddrthlds)) 6486 return -EINVAL; 6487 len = sizeof(struct sctp_paddrthlds); 6488 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6489 return -EFAULT; 6490 6491 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6492 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6493 if (!asoc) 6494 return -ENOENT; 6495 6496 val.spt_pathpfthld = asoc->pf_retrans; 6497 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6498 } else { 6499 trans = sctp_addr_id2transport(sk, &val.spt_address, 6500 val.spt_assoc_id); 6501 if (!trans) 6502 return -ENOENT; 6503 6504 val.spt_pathmaxrxt = trans->pathmaxrxt; 6505 val.spt_pathpfthld = trans->pf_retrans; 6506 } 6507 6508 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6509 return -EFAULT; 6510 6511 return 0; 6512 } 6513 6514 /* 6515 * SCTP_GET_ASSOC_STATS 6516 * 6517 * This option retrieves local per endpoint statistics. It is modeled 6518 * after OpenSolaris' implementation 6519 */ 6520 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6521 char __user *optval, 6522 int __user *optlen) 6523 { 6524 struct sctp_assoc_stats sas; 6525 struct sctp_association *asoc = NULL; 6526 6527 /* User must provide at least the assoc id */ 6528 if (len < sizeof(sctp_assoc_t)) 6529 return -EINVAL; 6530 6531 /* Allow the struct to grow and fill in as much as possible */ 6532 len = min_t(size_t, len, sizeof(sas)); 6533 6534 if (copy_from_user(&sas, optval, len)) 6535 return -EFAULT; 6536 6537 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6538 if (!asoc) 6539 return -EINVAL; 6540 6541 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6542 sas.sas_gapcnt = asoc->stats.gapcnt; 6543 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6544 sas.sas_osacks = asoc->stats.osacks; 6545 sas.sas_isacks = asoc->stats.isacks; 6546 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6547 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6548 sas.sas_oodchunks = asoc->stats.oodchunks; 6549 sas.sas_iodchunks = asoc->stats.iodchunks; 6550 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6551 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6552 sas.sas_idupchunks = asoc->stats.idupchunks; 6553 sas.sas_opackets = asoc->stats.opackets; 6554 sas.sas_ipackets = asoc->stats.ipackets; 6555 6556 /* New high max rto observed, will return 0 if not a single 6557 * RTO update took place. obs_rto_ipaddr will be bogus 6558 * in such a case 6559 */ 6560 sas.sas_maxrto = asoc->stats.max_obs_rto; 6561 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6562 sizeof(struct sockaddr_storage)); 6563 6564 /* Mark beginning of a new observation period */ 6565 asoc->stats.max_obs_rto = asoc->rto_min; 6566 6567 if (put_user(len, optlen)) 6568 return -EFAULT; 6569 6570 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6571 6572 if (copy_to_user(optval, &sas, len)) 6573 return -EFAULT; 6574 6575 return 0; 6576 } 6577 6578 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6579 char __user *optval, 6580 int __user *optlen) 6581 { 6582 int val = 0; 6583 6584 if (len < sizeof(int)) 6585 return -EINVAL; 6586 6587 len = sizeof(int); 6588 if (sctp_sk(sk)->recvrcvinfo) 6589 val = 1; 6590 if (put_user(len, optlen)) 6591 return -EFAULT; 6592 if (copy_to_user(optval, &val, len)) 6593 return -EFAULT; 6594 6595 return 0; 6596 } 6597 6598 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6599 char __user *optval, 6600 int __user *optlen) 6601 { 6602 int val = 0; 6603 6604 if (len < sizeof(int)) 6605 return -EINVAL; 6606 6607 len = sizeof(int); 6608 if (sctp_sk(sk)->recvnxtinfo) 6609 val = 1; 6610 if (put_user(len, optlen)) 6611 return -EFAULT; 6612 if (copy_to_user(optval, &val, len)) 6613 return -EFAULT; 6614 6615 return 0; 6616 } 6617 6618 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6619 char __user *optval, 6620 int __user *optlen) 6621 { 6622 struct sctp_assoc_value params; 6623 struct sctp_association *asoc; 6624 int retval = -EFAULT; 6625 6626 if (len < sizeof(params)) { 6627 retval = -EINVAL; 6628 goto out; 6629 } 6630 6631 len = sizeof(params); 6632 if (copy_from_user(¶ms, optval, len)) 6633 goto out; 6634 6635 asoc = sctp_id2assoc(sk, params.assoc_id); 6636 if (asoc) { 6637 params.assoc_value = asoc->prsctp_enable; 6638 } else if (!params.assoc_id) { 6639 struct sctp_sock *sp = sctp_sk(sk); 6640 6641 params.assoc_value = sp->ep->prsctp_enable; 6642 } else { 6643 retval = -EINVAL; 6644 goto out; 6645 } 6646 6647 if (put_user(len, optlen)) 6648 goto out; 6649 6650 if (copy_to_user(optval, ¶ms, len)) 6651 goto out; 6652 6653 retval = 0; 6654 6655 out: 6656 return retval; 6657 } 6658 6659 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6660 char __user *optval, 6661 int __user *optlen) 6662 { 6663 struct sctp_default_prinfo info; 6664 struct sctp_association *asoc; 6665 int retval = -EFAULT; 6666 6667 if (len < sizeof(info)) { 6668 retval = -EINVAL; 6669 goto out; 6670 } 6671 6672 len = sizeof(info); 6673 if (copy_from_user(&info, optval, len)) 6674 goto out; 6675 6676 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6677 if (asoc) { 6678 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6679 info.pr_value = asoc->default_timetolive; 6680 } else if (!info.pr_assoc_id) { 6681 struct sctp_sock *sp = sctp_sk(sk); 6682 6683 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6684 info.pr_value = sp->default_timetolive; 6685 } else { 6686 retval = -EINVAL; 6687 goto out; 6688 } 6689 6690 if (put_user(len, optlen)) 6691 goto out; 6692 6693 if (copy_to_user(optval, &info, len)) 6694 goto out; 6695 6696 retval = 0; 6697 6698 out: 6699 return retval; 6700 } 6701 6702 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6703 char __user *optval, 6704 int __user *optlen) 6705 { 6706 struct sctp_prstatus params; 6707 struct sctp_association *asoc; 6708 int policy; 6709 int retval = -EINVAL; 6710 6711 if (len < sizeof(params)) 6712 goto out; 6713 6714 len = sizeof(params); 6715 if (copy_from_user(¶ms, optval, len)) { 6716 retval = -EFAULT; 6717 goto out; 6718 } 6719 6720 policy = params.sprstat_policy; 6721 if (policy & ~SCTP_PR_SCTP_MASK) 6722 goto out; 6723 6724 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6725 if (!asoc) 6726 goto out; 6727 6728 if (policy == SCTP_PR_SCTP_NONE) { 6729 params.sprstat_abandoned_unsent = 0; 6730 params.sprstat_abandoned_sent = 0; 6731 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6732 params.sprstat_abandoned_unsent += 6733 asoc->abandoned_unsent[policy]; 6734 params.sprstat_abandoned_sent += 6735 asoc->abandoned_sent[policy]; 6736 } 6737 } else { 6738 params.sprstat_abandoned_unsent = 6739 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6740 params.sprstat_abandoned_sent = 6741 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6742 } 6743 6744 if (put_user(len, optlen)) { 6745 retval = -EFAULT; 6746 goto out; 6747 } 6748 6749 if (copy_to_user(optval, ¶ms, len)) { 6750 retval = -EFAULT; 6751 goto out; 6752 } 6753 6754 retval = 0; 6755 6756 out: 6757 return retval; 6758 } 6759 6760 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6761 char __user *optval, 6762 int __user *optlen) 6763 { 6764 struct sctp_stream_out_ext *streamoute; 6765 struct sctp_association *asoc; 6766 struct sctp_prstatus params; 6767 int retval = -EINVAL; 6768 int policy; 6769 6770 if (len < sizeof(params)) 6771 goto out; 6772 6773 len = sizeof(params); 6774 if (copy_from_user(¶ms, optval, len)) { 6775 retval = -EFAULT; 6776 goto out; 6777 } 6778 6779 policy = params.sprstat_policy; 6780 if (policy & ~SCTP_PR_SCTP_MASK) 6781 goto out; 6782 6783 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6784 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6785 goto out; 6786 6787 streamoute = asoc->stream.out[params.sprstat_sid].ext; 6788 if (!streamoute) { 6789 /* Not allocated yet, means all stats are 0 */ 6790 params.sprstat_abandoned_unsent = 0; 6791 params.sprstat_abandoned_sent = 0; 6792 retval = 0; 6793 goto out; 6794 } 6795 6796 if (policy == SCTP_PR_SCTP_NONE) { 6797 params.sprstat_abandoned_unsent = 0; 6798 params.sprstat_abandoned_sent = 0; 6799 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6800 params.sprstat_abandoned_unsent += 6801 streamoute->abandoned_unsent[policy]; 6802 params.sprstat_abandoned_sent += 6803 streamoute->abandoned_sent[policy]; 6804 } 6805 } else { 6806 params.sprstat_abandoned_unsent = 6807 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6808 params.sprstat_abandoned_sent = 6809 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6810 } 6811 6812 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6813 retval = -EFAULT; 6814 goto out; 6815 } 6816 6817 retval = 0; 6818 6819 out: 6820 return retval; 6821 } 6822 6823 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6824 char __user *optval, 6825 int __user *optlen) 6826 { 6827 struct sctp_assoc_value params; 6828 struct sctp_association *asoc; 6829 int retval = -EFAULT; 6830 6831 if (len < sizeof(params)) { 6832 retval = -EINVAL; 6833 goto out; 6834 } 6835 6836 len = sizeof(params); 6837 if (copy_from_user(¶ms, optval, len)) 6838 goto out; 6839 6840 asoc = sctp_id2assoc(sk, params.assoc_id); 6841 if (asoc) { 6842 params.assoc_value = asoc->reconf_enable; 6843 } else if (!params.assoc_id) { 6844 struct sctp_sock *sp = sctp_sk(sk); 6845 6846 params.assoc_value = sp->ep->reconf_enable; 6847 } else { 6848 retval = -EINVAL; 6849 goto out; 6850 } 6851 6852 if (put_user(len, optlen)) 6853 goto out; 6854 6855 if (copy_to_user(optval, ¶ms, len)) 6856 goto out; 6857 6858 retval = 0; 6859 6860 out: 6861 return retval; 6862 } 6863 6864 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6865 char __user *optval, 6866 int __user *optlen) 6867 { 6868 struct sctp_assoc_value params; 6869 struct sctp_association *asoc; 6870 int retval = -EFAULT; 6871 6872 if (len < sizeof(params)) { 6873 retval = -EINVAL; 6874 goto out; 6875 } 6876 6877 len = sizeof(params); 6878 if (copy_from_user(¶ms, optval, len)) 6879 goto out; 6880 6881 asoc = sctp_id2assoc(sk, params.assoc_id); 6882 if (asoc) { 6883 params.assoc_value = asoc->strreset_enable; 6884 } else if (!params.assoc_id) { 6885 struct sctp_sock *sp = sctp_sk(sk); 6886 6887 params.assoc_value = sp->ep->strreset_enable; 6888 } else { 6889 retval = -EINVAL; 6890 goto out; 6891 } 6892 6893 if (put_user(len, optlen)) 6894 goto out; 6895 6896 if (copy_to_user(optval, ¶ms, len)) 6897 goto out; 6898 6899 retval = 0; 6900 6901 out: 6902 return retval; 6903 } 6904 6905 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 6906 char __user *optval, 6907 int __user *optlen) 6908 { 6909 struct sctp_assoc_value params; 6910 struct sctp_association *asoc; 6911 int retval = -EFAULT; 6912 6913 if (len < sizeof(params)) { 6914 retval = -EINVAL; 6915 goto out; 6916 } 6917 6918 len = sizeof(params); 6919 if (copy_from_user(¶ms, optval, len)) 6920 goto out; 6921 6922 asoc = sctp_id2assoc(sk, params.assoc_id); 6923 if (!asoc) { 6924 retval = -EINVAL; 6925 goto out; 6926 } 6927 6928 params.assoc_value = sctp_sched_get_sched(asoc); 6929 6930 if (put_user(len, optlen)) 6931 goto out; 6932 6933 if (copy_to_user(optval, ¶ms, len)) 6934 goto out; 6935 6936 retval = 0; 6937 6938 out: 6939 return retval; 6940 } 6941 6942 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 6943 char __user *optval, 6944 int __user *optlen) 6945 { 6946 struct sctp_stream_value params; 6947 struct sctp_association *asoc; 6948 int retval = -EFAULT; 6949 6950 if (len < sizeof(params)) { 6951 retval = -EINVAL; 6952 goto out; 6953 } 6954 6955 len = sizeof(params); 6956 if (copy_from_user(¶ms, optval, len)) 6957 goto out; 6958 6959 asoc = sctp_id2assoc(sk, params.assoc_id); 6960 if (!asoc) { 6961 retval = -EINVAL; 6962 goto out; 6963 } 6964 6965 retval = sctp_sched_get_value(asoc, params.stream_id, 6966 ¶ms.stream_value); 6967 if (retval) 6968 goto out; 6969 6970 if (put_user(len, optlen)) { 6971 retval = -EFAULT; 6972 goto out; 6973 } 6974 6975 if (copy_to_user(optval, ¶ms, len)) { 6976 retval = -EFAULT; 6977 goto out; 6978 } 6979 6980 out: 6981 return retval; 6982 } 6983 6984 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6985 char __user *optval, int __user *optlen) 6986 { 6987 int retval = 0; 6988 int len; 6989 6990 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6991 6992 /* I can hardly begin to describe how wrong this is. This is 6993 * so broken as to be worse than useless. The API draft 6994 * REALLY is NOT helpful here... I am not convinced that the 6995 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6996 * are at all well-founded. 6997 */ 6998 if (level != SOL_SCTP) { 6999 struct sctp_af *af = sctp_sk(sk)->pf->af; 7000 7001 retval = af->getsockopt(sk, level, optname, optval, optlen); 7002 return retval; 7003 } 7004 7005 if (get_user(len, optlen)) 7006 return -EFAULT; 7007 7008 if (len < 0) 7009 return -EINVAL; 7010 7011 lock_sock(sk); 7012 7013 switch (optname) { 7014 case SCTP_STATUS: 7015 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7016 break; 7017 case SCTP_DISABLE_FRAGMENTS: 7018 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7019 optlen); 7020 break; 7021 case SCTP_EVENTS: 7022 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7023 break; 7024 case SCTP_AUTOCLOSE: 7025 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7026 break; 7027 case SCTP_SOCKOPT_PEELOFF: 7028 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7029 break; 7030 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7031 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7032 break; 7033 case SCTP_PEER_ADDR_PARAMS: 7034 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7035 optlen); 7036 break; 7037 case SCTP_DELAYED_SACK: 7038 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7039 optlen); 7040 break; 7041 case SCTP_INITMSG: 7042 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7043 break; 7044 case SCTP_GET_PEER_ADDRS: 7045 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7046 optlen); 7047 break; 7048 case SCTP_GET_LOCAL_ADDRS: 7049 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7050 optlen); 7051 break; 7052 case SCTP_SOCKOPT_CONNECTX3: 7053 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7054 break; 7055 case SCTP_DEFAULT_SEND_PARAM: 7056 retval = sctp_getsockopt_default_send_param(sk, len, 7057 optval, optlen); 7058 break; 7059 case SCTP_DEFAULT_SNDINFO: 7060 retval = sctp_getsockopt_default_sndinfo(sk, len, 7061 optval, optlen); 7062 break; 7063 case SCTP_PRIMARY_ADDR: 7064 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7065 break; 7066 case SCTP_NODELAY: 7067 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7068 break; 7069 case SCTP_RTOINFO: 7070 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7071 break; 7072 case SCTP_ASSOCINFO: 7073 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7074 break; 7075 case SCTP_I_WANT_MAPPED_V4_ADDR: 7076 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7077 break; 7078 case SCTP_MAXSEG: 7079 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7080 break; 7081 case SCTP_GET_PEER_ADDR_INFO: 7082 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7083 optlen); 7084 break; 7085 case SCTP_ADAPTATION_LAYER: 7086 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7087 optlen); 7088 break; 7089 case SCTP_CONTEXT: 7090 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7091 break; 7092 case SCTP_FRAGMENT_INTERLEAVE: 7093 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7094 optlen); 7095 break; 7096 case SCTP_PARTIAL_DELIVERY_POINT: 7097 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7098 optlen); 7099 break; 7100 case SCTP_MAX_BURST: 7101 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7102 break; 7103 case SCTP_AUTH_KEY: 7104 case SCTP_AUTH_CHUNK: 7105 case SCTP_AUTH_DELETE_KEY: 7106 retval = -EOPNOTSUPP; 7107 break; 7108 case SCTP_HMAC_IDENT: 7109 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7110 break; 7111 case SCTP_AUTH_ACTIVE_KEY: 7112 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7113 break; 7114 case SCTP_PEER_AUTH_CHUNKS: 7115 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7116 optlen); 7117 break; 7118 case SCTP_LOCAL_AUTH_CHUNKS: 7119 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7120 optlen); 7121 break; 7122 case SCTP_GET_ASSOC_NUMBER: 7123 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7124 break; 7125 case SCTP_GET_ASSOC_ID_LIST: 7126 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7127 break; 7128 case SCTP_AUTO_ASCONF: 7129 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7130 break; 7131 case SCTP_PEER_ADDR_THLDS: 7132 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7133 break; 7134 case SCTP_GET_ASSOC_STATS: 7135 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7136 break; 7137 case SCTP_RECVRCVINFO: 7138 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7139 break; 7140 case SCTP_RECVNXTINFO: 7141 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7142 break; 7143 case SCTP_PR_SUPPORTED: 7144 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7145 break; 7146 case SCTP_DEFAULT_PRINFO: 7147 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7148 optlen); 7149 break; 7150 case SCTP_PR_ASSOC_STATUS: 7151 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7152 optlen); 7153 break; 7154 case SCTP_PR_STREAM_STATUS: 7155 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7156 optlen); 7157 break; 7158 case SCTP_RECONFIG_SUPPORTED: 7159 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7160 optlen); 7161 break; 7162 case SCTP_ENABLE_STREAM_RESET: 7163 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7164 optlen); 7165 break; 7166 case SCTP_STREAM_SCHEDULER: 7167 retval = sctp_getsockopt_scheduler(sk, len, optval, 7168 optlen); 7169 break; 7170 case SCTP_STREAM_SCHEDULER_VALUE: 7171 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7172 optlen); 7173 break; 7174 default: 7175 retval = -ENOPROTOOPT; 7176 break; 7177 } 7178 7179 release_sock(sk); 7180 return retval; 7181 } 7182 7183 static int sctp_hash(struct sock *sk) 7184 { 7185 /* STUB */ 7186 return 0; 7187 } 7188 7189 static void sctp_unhash(struct sock *sk) 7190 { 7191 /* STUB */ 7192 } 7193 7194 /* Check if port is acceptable. Possibly find first available port. 7195 * 7196 * The port hash table (contained in the 'global' SCTP protocol storage 7197 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7198 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7199 * list (the list number is the port number hashed out, so as you 7200 * would expect from a hash function, all the ports in a given list have 7201 * such a number that hashes out to the same list number; you were 7202 * expecting that, right?); so each list has a set of ports, with a 7203 * link to the socket (struct sock) that uses it, the port number and 7204 * a fastreuse flag (FIXME: NPI ipg). 7205 */ 7206 static struct sctp_bind_bucket *sctp_bucket_create( 7207 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7208 7209 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7210 { 7211 struct sctp_bind_hashbucket *head; /* hash list */ 7212 struct sctp_bind_bucket *pp; 7213 unsigned short snum; 7214 int ret; 7215 7216 snum = ntohs(addr->v4.sin_port); 7217 7218 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7219 7220 local_bh_disable(); 7221 7222 if (snum == 0) { 7223 /* Search for an available port. */ 7224 int low, high, remaining, index; 7225 unsigned int rover; 7226 struct net *net = sock_net(sk); 7227 7228 inet_get_local_port_range(net, &low, &high); 7229 remaining = (high - low) + 1; 7230 rover = prandom_u32() % remaining + low; 7231 7232 do { 7233 rover++; 7234 if ((rover < low) || (rover > high)) 7235 rover = low; 7236 if (inet_is_local_reserved_port(net, rover)) 7237 continue; 7238 index = sctp_phashfn(sock_net(sk), rover); 7239 head = &sctp_port_hashtable[index]; 7240 spin_lock(&head->lock); 7241 sctp_for_each_hentry(pp, &head->chain) 7242 if ((pp->port == rover) && 7243 net_eq(sock_net(sk), pp->net)) 7244 goto next; 7245 break; 7246 next: 7247 spin_unlock(&head->lock); 7248 } while (--remaining > 0); 7249 7250 /* Exhausted local port range during search? */ 7251 ret = 1; 7252 if (remaining <= 0) 7253 goto fail; 7254 7255 /* OK, here is the one we will use. HEAD (the port 7256 * hash table list entry) is non-NULL and we hold it's 7257 * mutex. 7258 */ 7259 snum = rover; 7260 } else { 7261 /* We are given an specific port number; we verify 7262 * that it is not being used. If it is used, we will 7263 * exahust the search in the hash list corresponding 7264 * to the port number (snum) - we detect that with the 7265 * port iterator, pp being NULL. 7266 */ 7267 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7268 spin_lock(&head->lock); 7269 sctp_for_each_hentry(pp, &head->chain) { 7270 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7271 goto pp_found; 7272 } 7273 } 7274 pp = NULL; 7275 goto pp_not_found; 7276 pp_found: 7277 if (!hlist_empty(&pp->owner)) { 7278 /* We had a port hash table hit - there is an 7279 * available port (pp != NULL) and it is being 7280 * used by other socket (pp->owner not empty); that other 7281 * socket is going to be sk2. 7282 */ 7283 int reuse = sk->sk_reuse; 7284 struct sock *sk2; 7285 7286 pr_debug("%s: found a possible match\n", __func__); 7287 7288 if (pp->fastreuse && sk->sk_reuse && 7289 sk->sk_state != SCTP_SS_LISTENING) 7290 goto success; 7291 7292 /* Run through the list of sockets bound to the port 7293 * (pp->port) [via the pointers bind_next and 7294 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7295 * we get the endpoint they describe and run through 7296 * the endpoint's list of IP (v4 or v6) addresses, 7297 * comparing each of the addresses with the address of 7298 * the socket sk. If we find a match, then that means 7299 * that this port/socket (sk) combination are already 7300 * in an endpoint. 7301 */ 7302 sk_for_each_bound(sk2, &pp->owner) { 7303 struct sctp_endpoint *ep2; 7304 ep2 = sctp_sk(sk2)->ep; 7305 7306 if (sk == sk2 || 7307 (reuse && sk2->sk_reuse && 7308 sk2->sk_state != SCTP_SS_LISTENING)) 7309 continue; 7310 7311 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7312 sctp_sk(sk2), sctp_sk(sk))) { 7313 ret = (long)sk2; 7314 goto fail_unlock; 7315 } 7316 } 7317 7318 pr_debug("%s: found a match\n", __func__); 7319 } 7320 pp_not_found: 7321 /* If there was a hash table miss, create a new port. */ 7322 ret = 1; 7323 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7324 goto fail_unlock; 7325 7326 /* In either case (hit or miss), make sure fastreuse is 1 only 7327 * if sk->sk_reuse is too (that is, if the caller requested 7328 * SO_REUSEADDR on this socket -sk-). 7329 */ 7330 if (hlist_empty(&pp->owner)) { 7331 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7332 pp->fastreuse = 1; 7333 else 7334 pp->fastreuse = 0; 7335 } else if (pp->fastreuse && 7336 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7337 pp->fastreuse = 0; 7338 7339 /* We are set, so fill up all the data in the hash table 7340 * entry, tie the socket list information with the rest of the 7341 * sockets FIXME: Blurry, NPI (ipg). 7342 */ 7343 success: 7344 if (!sctp_sk(sk)->bind_hash) { 7345 inet_sk(sk)->inet_num = snum; 7346 sk_add_bind_node(sk, &pp->owner); 7347 sctp_sk(sk)->bind_hash = pp; 7348 } 7349 ret = 0; 7350 7351 fail_unlock: 7352 spin_unlock(&head->lock); 7353 7354 fail: 7355 local_bh_enable(); 7356 return ret; 7357 } 7358 7359 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7360 * port is requested. 7361 */ 7362 static int sctp_get_port(struct sock *sk, unsigned short snum) 7363 { 7364 union sctp_addr addr; 7365 struct sctp_af *af = sctp_sk(sk)->pf->af; 7366 7367 /* Set up a dummy address struct from the sk. */ 7368 af->from_sk(&addr, sk); 7369 addr.v4.sin_port = htons(snum); 7370 7371 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7372 return !!sctp_get_port_local(sk, &addr); 7373 } 7374 7375 /* 7376 * Move a socket to LISTENING state. 7377 */ 7378 static int sctp_listen_start(struct sock *sk, int backlog) 7379 { 7380 struct sctp_sock *sp = sctp_sk(sk); 7381 struct sctp_endpoint *ep = sp->ep; 7382 struct crypto_shash *tfm = NULL; 7383 char alg[32]; 7384 7385 /* Allocate HMAC for generating cookie. */ 7386 if (!sp->hmac && sp->sctp_hmac_alg) { 7387 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7388 tfm = crypto_alloc_shash(alg, 0, 0); 7389 if (IS_ERR(tfm)) { 7390 net_info_ratelimited("failed to load transform for %s: %ld\n", 7391 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7392 return -ENOSYS; 7393 } 7394 sctp_sk(sk)->hmac = tfm; 7395 } 7396 7397 /* 7398 * If a bind() or sctp_bindx() is not called prior to a listen() 7399 * call that allows new associations to be accepted, the system 7400 * picks an ephemeral port and will choose an address set equivalent 7401 * to binding with a wildcard address. 7402 * 7403 * This is not currently spelled out in the SCTP sockets 7404 * extensions draft, but follows the practice as seen in TCP 7405 * sockets. 7406 * 7407 */ 7408 sk->sk_state = SCTP_SS_LISTENING; 7409 if (!ep->base.bind_addr.port) { 7410 if (sctp_autobind(sk)) 7411 return -EAGAIN; 7412 } else { 7413 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7414 sk->sk_state = SCTP_SS_CLOSED; 7415 return -EADDRINUSE; 7416 } 7417 } 7418 7419 sk->sk_max_ack_backlog = backlog; 7420 sctp_hash_endpoint(ep); 7421 return 0; 7422 } 7423 7424 /* 7425 * 4.1.3 / 5.1.3 listen() 7426 * 7427 * By default, new associations are not accepted for UDP style sockets. 7428 * An application uses listen() to mark a socket as being able to 7429 * accept new associations. 7430 * 7431 * On TCP style sockets, applications use listen() to ready the SCTP 7432 * endpoint for accepting inbound associations. 7433 * 7434 * On both types of endpoints a backlog of '0' disables listening. 7435 * 7436 * Move a socket to LISTENING state. 7437 */ 7438 int sctp_inet_listen(struct socket *sock, int backlog) 7439 { 7440 struct sock *sk = sock->sk; 7441 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7442 int err = -EINVAL; 7443 7444 if (unlikely(backlog < 0)) 7445 return err; 7446 7447 lock_sock(sk); 7448 7449 /* Peeled-off sockets are not allowed to listen(). */ 7450 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7451 goto out; 7452 7453 if (sock->state != SS_UNCONNECTED) 7454 goto out; 7455 7456 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7457 goto out; 7458 7459 /* If backlog is zero, disable listening. */ 7460 if (!backlog) { 7461 if (sctp_sstate(sk, CLOSED)) 7462 goto out; 7463 7464 err = 0; 7465 sctp_unhash_endpoint(ep); 7466 sk->sk_state = SCTP_SS_CLOSED; 7467 if (sk->sk_reuse) 7468 sctp_sk(sk)->bind_hash->fastreuse = 1; 7469 goto out; 7470 } 7471 7472 /* If we are already listening, just update the backlog */ 7473 if (sctp_sstate(sk, LISTENING)) 7474 sk->sk_max_ack_backlog = backlog; 7475 else { 7476 err = sctp_listen_start(sk, backlog); 7477 if (err) 7478 goto out; 7479 } 7480 7481 err = 0; 7482 out: 7483 release_sock(sk); 7484 return err; 7485 } 7486 7487 /* 7488 * This function is done by modeling the current datagram_poll() and the 7489 * tcp_poll(). Note that, based on these implementations, we don't 7490 * lock the socket in this function, even though it seems that, 7491 * ideally, locking or some other mechanisms can be used to ensure 7492 * the integrity of the counters (sndbuf and wmem_alloc) used 7493 * in this place. We assume that we don't need locks either until proven 7494 * otherwise. 7495 * 7496 * Another thing to note is that we include the Async I/O support 7497 * here, again, by modeling the current TCP/UDP code. We don't have 7498 * a good way to test with it yet. 7499 */ 7500 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7501 { 7502 struct sock *sk = sock->sk; 7503 struct sctp_sock *sp = sctp_sk(sk); 7504 unsigned int mask; 7505 7506 poll_wait(file, sk_sleep(sk), wait); 7507 7508 sock_rps_record_flow(sk); 7509 7510 /* A TCP-style listening socket becomes readable when the accept queue 7511 * is not empty. 7512 */ 7513 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7514 return (!list_empty(&sp->ep->asocs)) ? 7515 (POLLIN | POLLRDNORM) : 0; 7516 7517 mask = 0; 7518 7519 /* Is there any exceptional events? */ 7520 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7521 mask |= POLLERR | 7522 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7523 if (sk->sk_shutdown & RCV_SHUTDOWN) 7524 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7525 if (sk->sk_shutdown == SHUTDOWN_MASK) 7526 mask |= POLLHUP; 7527 7528 /* Is it readable? Reconsider this code with TCP-style support. */ 7529 if (!skb_queue_empty(&sk->sk_receive_queue)) 7530 mask |= POLLIN | POLLRDNORM; 7531 7532 /* The association is either gone or not ready. */ 7533 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7534 return mask; 7535 7536 /* Is it writable? */ 7537 if (sctp_writeable(sk)) { 7538 mask |= POLLOUT | POLLWRNORM; 7539 } else { 7540 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7541 /* 7542 * Since the socket is not locked, the buffer 7543 * might be made available after the writeable check and 7544 * before the bit is set. This could cause a lost I/O 7545 * signal. tcp_poll() has a race breaker for this race 7546 * condition. Based on their implementation, we put 7547 * in the following code to cover it as well. 7548 */ 7549 if (sctp_writeable(sk)) 7550 mask |= POLLOUT | POLLWRNORM; 7551 } 7552 return mask; 7553 } 7554 7555 /******************************************************************** 7556 * 2nd Level Abstractions 7557 ********************************************************************/ 7558 7559 static struct sctp_bind_bucket *sctp_bucket_create( 7560 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7561 { 7562 struct sctp_bind_bucket *pp; 7563 7564 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7565 if (pp) { 7566 SCTP_DBG_OBJCNT_INC(bind_bucket); 7567 pp->port = snum; 7568 pp->fastreuse = 0; 7569 INIT_HLIST_HEAD(&pp->owner); 7570 pp->net = net; 7571 hlist_add_head(&pp->node, &head->chain); 7572 } 7573 return pp; 7574 } 7575 7576 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7577 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7578 { 7579 if (pp && hlist_empty(&pp->owner)) { 7580 __hlist_del(&pp->node); 7581 kmem_cache_free(sctp_bucket_cachep, pp); 7582 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7583 } 7584 } 7585 7586 /* Release this socket's reference to a local port. */ 7587 static inline void __sctp_put_port(struct sock *sk) 7588 { 7589 struct sctp_bind_hashbucket *head = 7590 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7591 inet_sk(sk)->inet_num)]; 7592 struct sctp_bind_bucket *pp; 7593 7594 spin_lock(&head->lock); 7595 pp = sctp_sk(sk)->bind_hash; 7596 __sk_del_bind_node(sk); 7597 sctp_sk(sk)->bind_hash = NULL; 7598 inet_sk(sk)->inet_num = 0; 7599 sctp_bucket_destroy(pp); 7600 spin_unlock(&head->lock); 7601 } 7602 7603 void sctp_put_port(struct sock *sk) 7604 { 7605 local_bh_disable(); 7606 __sctp_put_port(sk); 7607 local_bh_enable(); 7608 } 7609 7610 /* 7611 * The system picks an ephemeral port and choose an address set equivalent 7612 * to binding with a wildcard address. 7613 * One of those addresses will be the primary address for the association. 7614 * This automatically enables the multihoming capability of SCTP. 7615 */ 7616 static int sctp_autobind(struct sock *sk) 7617 { 7618 union sctp_addr autoaddr; 7619 struct sctp_af *af; 7620 __be16 port; 7621 7622 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7623 af = sctp_sk(sk)->pf->af; 7624 7625 port = htons(inet_sk(sk)->inet_num); 7626 af->inaddr_any(&autoaddr, port); 7627 7628 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7629 } 7630 7631 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7632 * 7633 * From RFC 2292 7634 * 4.2 The cmsghdr Structure * 7635 * 7636 * When ancillary data is sent or received, any number of ancillary data 7637 * objects can be specified by the msg_control and msg_controllen members of 7638 * the msghdr structure, because each object is preceded by 7639 * a cmsghdr structure defining the object's length (the cmsg_len member). 7640 * Historically Berkeley-derived implementations have passed only one object 7641 * at a time, but this API allows multiple objects to be 7642 * passed in a single call to sendmsg() or recvmsg(). The following example 7643 * shows two ancillary data objects in a control buffer. 7644 * 7645 * |<--------------------------- msg_controllen -------------------------->| 7646 * | | 7647 * 7648 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7649 * 7650 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7651 * | | | 7652 * 7653 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7654 * 7655 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7656 * | | | | | 7657 * 7658 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7659 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7660 * 7661 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7662 * 7663 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7664 * ^ 7665 * | 7666 * 7667 * msg_control 7668 * points here 7669 */ 7670 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7671 { 7672 struct msghdr *my_msg = (struct msghdr *)msg; 7673 struct cmsghdr *cmsg; 7674 7675 for_each_cmsghdr(cmsg, my_msg) { 7676 if (!CMSG_OK(my_msg, cmsg)) 7677 return -EINVAL; 7678 7679 /* Should we parse this header or ignore? */ 7680 if (cmsg->cmsg_level != IPPROTO_SCTP) 7681 continue; 7682 7683 /* Strictly check lengths following example in SCM code. */ 7684 switch (cmsg->cmsg_type) { 7685 case SCTP_INIT: 7686 /* SCTP Socket API Extension 7687 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7688 * 7689 * This cmsghdr structure provides information for 7690 * initializing new SCTP associations with sendmsg(). 7691 * The SCTP_INITMSG socket option uses this same data 7692 * structure. This structure is not used for 7693 * recvmsg(). 7694 * 7695 * cmsg_level cmsg_type cmsg_data[] 7696 * ------------ ------------ ---------------------- 7697 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7698 */ 7699 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7700 return -EINVAL; 7701 7702 cmsgs->init = CMSG_DATA(cmsg); 7703 break; 7704 7705 case SCTP_SNDRCV: 7706 /* SCTP Socket API Extension 7707 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7708 * 7709 * This cmsghdr structure specifies SCTP options for 7710 * sendmsg() and describes SCTP header information 7711 * about a received message through recvmsg(). 7712 * 7713 * cmsg_level cmsg_type cmsg_data[] 7714 * ------------ ------------ ---------------------- 7715 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7716 */ 7717 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7718 return -EINVAL; 7719 7720 cmsgs->srinfo = CMSG_DATA(cmsg); 7721 7722 if (cmsgs->srinfo->sinfo_flags & 7723 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7724 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7725 SCTP_ABORT | SCTP_EOF)) 7726 return -EINVAL; 7727 break; 7728 7729 case SCTP_SNDINFO: 7730 /* SCTP Socket API Extension 7731 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7732 * 7733 * This cmsghdr structure specifies SCTP options for 7734 * sendmsg(). This structure and SCTP_RCVINFO replaces 7735 * SCTP_SNDRCV which has been deprecated. 7736 * 7737 * cmsg_level cmsg_type cmsg_data[] 7738 * ------------ ------------ --------------------- 7739 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7740 */ 7741 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7742 return -EINVAL; 7743 7744 cmsgs->sinfo = CMSG_DATA(cmsg); 7745 7746 if (cmsgs->sinfo->snd_flags & 7747 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7748 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7749 SCTP_ABORT | SCTP_EOF)) 7750 return -EINVAL; 7751 break; 7752 default: 7753 return -EINVAL; 7754 } 7755 } 7756 7757 return 0; 7758 } 7759 7760 /* 7761 * Wait for a packet.. 7762 * Note: This function is the same function as in core/datagram.c 7763 * with a few modifications to make lksctp work. 7764 */ 7765 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7766 { 7767 int error; 7768 DEFINE_WAIT(wait); 7769 7770 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7771 7772 /* Socket errors? */ 7773 error = sock_error(sk); 7774 if (error) 7775 goto out; 7776 7777 if (!skb_queue_empty(&sk->sk_receive_queue)) 7778 goto ready; 7779 7780 /* Socket shut down? */ 7781 if (sk->sk_shutdown & RCV_SHUTDOWN) 7782 goto out; 7783 7784 /* Sequenced packets can come disconnected. If so we report the 7785 * problem. 7786 */ 7787 error = -ENOTCONN; 7788 7789 /* Is there a good reason to think that we may receive some data? */ 7790 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7791 goto out; 7792 7793 /* Handle signals. */ 7794 if (signal_pending(current)) 7795 goto interrupted; 7796 7797 /* Let another process have a go. Since we are going to sleep 7798 * anyway. Note: This may cause odd behaviors if the message 7799 * does not fit in the user's buffer, but this seems to be the 7800 * only way to honor MSG_DONTWAIT realistically. 7801 */ 7802 release_sock(sk); 7803 *timeo_p = schedule_timeout(*timeo_p); 7804 lock_sock(sk); 7805 7806 ready: 7807 finish_wait(sk_sleep(sk), &wait); 7808 return 0; 7809 7810 interrupted: 7811 error = sock_intr_errno(*timeo_p); 7812 7813 out: 7814 finish_wait(sk_sleep(sk), &wait); 7815 *err = error; 7816 return error; 7817 } 7818 7819 /* Receive a datagram. 7820 * Note: This is pretty much the same routine as in core/datagram.c 7821 * with a few changes to make lksctp work. 7822 */ 7823 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7824 int noblock, int *err) 7825 { 7826 int error; 7827 struct sk_buff *skb; 7828 long timeo; 7829 7830 timeo = sock_rcvtimeo(sk, noblock); 7831 7832 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7833 MAX_SCHEDULE_TIMEOUT); 7834 7835 do { 7836 /* Again only user level code calls this function, 7837 * so nothing interrupt level 7838 * will suddenly eat the receive_queue. 7839 * 7840 * Look at current nfs client by the way... 7841 * However, this function was correct in any case. 8) 7842 */ 7843 if (flags & MSG_PEEK) { 7844 skb = skb_peek(&sk->sk_receive_queue); 7845 if (skb) 7846 refcount_inc(&skb->users); 7847 } else { 7848 skb = __skb_dequeue(&sk->sk_receive_queue); 7849 } 7850 7851 if (skb) 7852 return skb; 7853 7854 /* Caller is allowed not to check sk->sk_err before calling. */ 7855 error = sock_error(sk); 7856 if (error) 7857 goto no_packet; 7858 7859 if (sk->sk_shutdown & RCV_SHUTDOWN) 7860 break; 7861 7862 if (sk_can_busy_loop(sk)) { 7863 sk_busy_loop(sk, noblock); 7864 7865 if (!skb_queue_empty(&sk->sk_receive_queue)) 7866 continue; 7867 } 7868 7869 /* User doesn't want to wait. */ 7870 error = -EAGAIN; 7871 if (!timeo) 7872 goto no_packet; 7873 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7874 7875 return NULL; 7876 7877 no_packet: 7878 *err = error; 7879 return NULL; 7880 } 7881 7882 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7883 static void __sctp_write_space(struct sctp_association *asoc) 7884 { 7885 struct sock *sk = asoc->base.sk; 7886 7887 if (sctp_wspace(asoc) <= 0) 7888 return; 7889 7890 if (waitqueue_active(&asoc->wait)) 7891 wake_up_interruptible(&asoc->wait); 7892 7893 if (sctp_writeable(sk)) { 7894 struct socket_wq *wq; 7895 7896 rcu_read_lock(); 7897 wq = rcu_dereference(sk->sk_wq); 7898 if (wq) { 7899 if (waitqueue_active(&wq->wait)) 7900 wake_up_interruptible(&wq->wait); 7901 7902 /* Note that we try to include the Async I/O support 7903 * here by modeling from the current TCP/UDP code. 7904 * We have not tested with it yet. 7905 */ 7906 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7907 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7908 } 7909 rcu_read_unlock(); 7910 } 7911 } 7912 7913 static void sctp_wake_up_waiters(struct sock *sk, 7914 struct sctp_association *asoc) 7915 { 7916 struct sctp_association *tmp = asoc; 7917 7918 /* We do accounting for the sndbuf space per association, 7919 * so we only need to wake our own association. 7920 */ 7921 if (asoc->ep->sndbuf_policy) 7922 return __sctp_write_space(asoc); 7923 7924 /* If association goes down and is just flushing its 7925 * outq, then just normally notify others. 7926 */ 7927 if (asoc->base.dead) 7928 return sctp_write_space(sk); 7929 7930 /* Accounting for the sndbuf space is per socket, so we 7931 * need to wake up others, try to be fair and in case of 7932 * other associations, let them have a go first instead 7933 * of just doing a sctp_write_space() call. 7934 * 7935 * Note that we reach sctp_wake_up_waiters() only when 7936 * associations free up queued chunks, thus we are under 7937 * lock and the list of associations on a socket is 7938 * guaranteed not to change. 7939 */ 7940 for (tmp = list_next_entry(tmp, asocs); 1; 7941 tmp = list_next_entry(tmp, asocs)) { 7942 /* Manually skip the head element. */ 7943 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7944 continue; 7945 /* Wake up association. */ 7946 __sctp_write_space(tmp); 7947 /* We've reached the end. */ 7948 if (tmp == asoc) 7949 break; 7950 } 7951 } 7952 7953 /* Do accounting for the sndbuf space. 7954 * Decrement the used sndbuf space of the corresponding association by the 7955 * data size which was just transmitted(freed). 7956 */ 7957 static void sctp_wfree(struct sk_buff *skb) 7958 { 7959 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7960 struct sctp_association *asoc = chunk->asoc; 7961 struct sock *sk = asoc->base.sk; 7962 7963 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7964 sizeof(struct sk_buff) + 7965 sizeof(struct sctp_chunk); 7966 7967 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 7968 7969 /* 7970 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7971 */ 7972 sk->sk_wmem_queued -= skb->truesize; 7973 sk_mem_uncharge(sk, skb->truesize); 7974 7975 sock_wfree(skb); 7976 sctp_wake_up_waiters(sk, asoc); 7977 7978 sctp_association_put(asoc); 7979 } 7980 7981 /* Do accounting for the receive space on the socket. 7982 * Accounting for the association is done in ulpevent.c 7983 * We set this as a destructor for the cloned data skbs so that 7984 * accounting is done at the correct time. 7985 */ 7986 void sctp_sock_rfree(struct sk_buff *skb) 7987 { 7988 struct sock *sk = skb->sk; 7989 struct sctp_ulpevent *event = sctp_skb2event(skb); 7990 7991 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7992 7993 /* 7994 * Mimic the behavior of sock_rfree 7995 */ 7996 sk_mem_uncharge(sk, event->rmem_len); 7997 } 7998 7999 8000 /* Helper function to wait for space in the sndbuf. */ 8001 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8002 size_t msg_len, struct sock **orig_sk) 8003 { 8004 struct sock *sk = asoc->base.sk; 8005 int err = 0; 8006 long current_timeo = *timeo_p; 8007 DEFINE_WAIT(wait); 8008 8009 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8010 *timeo_p, msg_len); 8011 8012 /* Increment the association's refcnt. */ 8013 sctp_association_hold(asoc); 8014 8015 /* Wait on the association specific sndbuf space. */ 8016 for (;;) { 8017 prepare_to_wait_exclusive(&asoc->wait, &wait, 8018 TASK_INTERRUPTIBLE); 8019 if (asoc->base.dead) 8020 goto do_dead; 8021 if (!*timeo_p) 8022 goto do_nonblock; 8023 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8024 goto do_error; 8025 if (signal_pending(current)) 8026 goto do_interrupted; 8027 if (msg_len <= sctp_wspace(asoc)) 8028 break; 8029 8030 /* Let another process have a go. Since we are going 8031 * to sleep anyway. 8032 */ 8033 release_sock(sk); 8034 current_timeo = schedule_timeout(current_timeo); 8035 lock_sock(sk); 8036 if (sk != asoc->base.sk) { 8037 release_sock(sk); 8038 sk = asoc->base.sk; 8039 lock_sock(sk); 8040 } 8041 8042 *timeo_p = current_timeo; 8043 } 8044 8045 out: 8046 *orig_sk = sk; 8047 finish_wait(&asoc->wait, &wait); 8048 8049 /* Release the association's refcnt. */ 8050 sctp_association_put(asoc); 8051 8052 return err; 8053 8054 do_dead: 8055 err = -ESRCH; 8056 goto out; 8057 8058 do_error: 8059 err = -EPIPE; 8060 goto out; 8061 8062 do_interrupted: 8063 err = sock_intr_errno(*timeo_p); 8064 goto out; 8065 8066 do_nonblock: 8067 err = -EAGAIN; 8068 goto out; 8069 } 8070 8071 void sctp_data_ready(struct sock *sk) 8072 { 8073 struct socket_wq *wq; 8074 8075 rcu_read_lock(); 8076 wq = rcu_dereference(sk->sk_wq); 8077 if (skwq_has_sleeper(wq)) 8078 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 8079 POLLRDNORM | POLLRDBAND); 8080 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8081 rcu_read_unlock(); 8082 } 8083 8084 /* If socket sndbuf has changed, wake up all per association waiters. */ 8085 void sctp_write_space(struct sock *sk) 8086 { 8087 struct sctp_association *asoc; 8088 8089 /* Wake up the tasks in each wait queue. */ 8090 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8091 __sctp_write_space(asoc); 8092 } 8093 } 8094 8095 /* Is there any sndbuf space available on the socket? 8096 * 8097 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8098 * associations on the same socket. For a UDP-style socket with 8099 * multiple associations, it is possible for it to be "unwriteable" 8100 * prematurely. I assume that this is acceptable because 8101 * a premature "unwriteable" is better than an accidental "writeable" which 8102 * would cause an unwanted block under certain circumstances. For the 1-1 8103 * UDP-style sockets or TCP-style sockets, this code should work. 8104 * - Daisy 8105 */ 8106 static int sctp_writeable(struct sock *sk) 8107 { 8108 int amt = 0; 8109 8110 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8111 if (amt < 0) 8112 amt = 0; 8113 return amt; 8114 } 8115 8116 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8117 * returns immediately with EINPROGRESS. 8118 */ 8119 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8120 { 8121 struct sock *sk = asoc->base.sk; 8122 int err = 0; 8123 long current_timeo = *timeo_p; 8124 DEFINE_WAIT(wait); 8125 8126 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8127 8128 /* Increment the association's refcnt. */ 8129 sctp_association_hold(asoc); 8130 8131 for (;;) { 8132 prepare_to_wait_exclusive(&asoc->wait, &wait, 8133 TASK_INTERRUPTIBLE); 8134 if (!*timeo_p) 8135 goto do_nonblock; 8136 if (sk->sk_shutdown & RCV_SHUTDOWN) 8137 break; 8138 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8139 asoc->base.dead) 8140 goto do_error; 8141 if (signal_pending(current)) 8142 goto do_interrupted; 8143 8144 if (sctp_state(asoc, ESTABLISHED)) 8145 break; 8146 8147 /* Let another process have a go. Since we are going 8148 * to sleep anyway. 8149 */ 8150 release_sock(sk); 8151 current_timeo = schedule_timeout(current_timeo); 8152 lock_sock(sk); 8153 8154 *timeo_p = current_timeo; 8155 } 8156 8157 out: 8158 finish_wait(&asoc->wait, &wait); 8159 8160 /* Release the association's refcnt. */ 8161 sctp_association_put(asoc); 8162 8163 return err; 8164 8165 do_error: 8166 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8167 err = -ETIMEDOUT; 8168 else 8169 err = -ECONNREFUSED; 8170 goto out; 8171 8172 do_interrupted: 8173 err = sock_intr_errno(*timeo_p); 8174 goto out; 8175 8176 do_nonblock: 8177 err = -EINPROGRESS; 8178 goto out; 8179 } 8180 8181 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8182 { 8183 struct sctp_endpoint *ep; 8184 int err = 0; 8185 DEFINE_WAIT(wait); 8186 8187 ep = sctp_sk(sk)->ep; 8188 8189 8190 for (;;) { 8191 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8192 TASK_INTERRUPTIBLE); 8193 8194 if (list_empty(&ep->asocs)) { 8195 release_sock(sk); 8196 timeo = schedule_timeout(timeo); 8197 lock_sock(sk); 8198 } 8199 8200 err = -EINVAL; 8201 if (!sctp_sstate(sk, LISTENING)) 8202 break; 8203 8204 err = 0; 8205 if (!list_empty(&ep->asocs)) 8206 break; 8207 8208 err = sock_intr_errno(timeo); 8209 if (signal_pending(current)) 8210 break; 8211 8212 err = -EAGAIN; 8213 if (!timeo) 8214 break; 8215 } 8216 8217 finish_wait(sk_sleep(sk), &wait); 8218 8219 return err; 8220 } 8221 8222 static void sctp_wait_for_close(struct sock *sk, long timeout) 8223 { 8224 DEFINE_WAIT(wait); 8225 8226 do { 8227 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8228 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8229 break; 8230 release_sock(sk); 8231 timeout = schedule_timeout(timeout); 8232 lock_sock(sk); 8233 } while (!signal_pending(current) && timeout); 8234 8235 finish_wait(sk_sleep(sk), &wait); 8236 } 8237 8238 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8239 { 8240 struct sk_buff *frag; 8241 8242 if (!skb->data_len) 8243 goto done; 8244 8245 /* Don't forget the fragments. */ 8246 skb_walk_frags(skb, frag) 8247 sctp_skb_set_owner_r_frag(frag, sk); 8248 8249 done: 8250 sctp_skb_set_owner_r(skb, sk); 8251 } 8252 8253 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8254 struct sctp_association *asoc) 8255 { 8256 struct inet_sock *inet = inet_sk(sk); 8257 struct inet_sock *newinet; 8258 8259 newsk->sk_type = sk->sk_type; 8260 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8261 newsk->sk_flags = sk->sk_flags; 8262 newsk->sk_tsflags = sk->sk_tsflags; 8263 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8264 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8265 newsk->sk_reuse = sk->sk_reuse; 8266 8267 newsk->sk_shutdown = sk->sk_shutdown; 8268 newsk->sk_destruct = sctp_destruct_sock; 8269 newsk->sk_family = sk->sk_family; 8270 newsk->sk_protocol = IPPROTO_SCTP; 8271 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8272 newsk->sk_sndbuf = sk->sk_sndbuf; 8273 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8274 newsk->sk_lingertime = sk->sk_lingertime; 8275 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8276 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8277 newsk->sk_rxhash = sk->sk_rxhash; 8278 8279 newinet = inet_sk(newsk); 8280 8281 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8282 * getsockname() and getpeername() 8283 */ 8284 newinet->inet_sport = inet->inet_sport; 8285 newinet->inet_saddr = inet->inet_saddr; 8286 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8287 newinet->inet_dport = htons(asoc->peer.port); 8288 newinet->pmtudisc = inet->pmtudisc; 8289 newinet->inet_id = asoc->next_tsn ^ jiffies; 8290 8291 newinet->uc_ttl = inet->uc_ttl; 8292 newinet->mc_loop = 1; 8293 newinet->mc_ttl = 1; 8294 newinet->mc_index = 0; 8295 newinet->mc_list = NULL; 8296 8297 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8298 net_enable_timestamp(); 8299 8300 security_sk_clone(sk, newsk); 8301 } 8302 8303 static inline void sctp_copy_descendant(struct sock *sk_to, 8304 const struct sock *sk_from) 8305 { 8306 int ancestor_size = sizeof(struct inet_sock) + 8307 sizeof(struct sctp_sock) - 8308 offsetof(struct sctp_sock, auto_asconf_list); 8309 8310 if (sk_from->sk_family == PF_INET6) 8311 ancestor_size += sizeof(struct ipv6_pinfo); 8312 8313 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8314 } 8315 8316 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8317 * and its messages to the newsk. 8318 */ 8319 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8320 struct sctp_association *assoc, 8321 enum sctp_socket_type type) 8322 { 8323 struct sctp_sock *oldsp = sctp_sk(oldsk); 8324 struct sctp_sock *newsp = sctp_sk(newsk); 8325 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8326 struct sctp_endpoint *newep = newsp->ep; 8327 struct sk_buff *skb, *tmp; 8328 struct sctp_ulpevent *event; 8329 struct sctp_bind_hashbucket *head; 8330 8331 /* Migrate socket buffer sizes and all the socket level options to the 8332 * new socket. 8333 */ 8334 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8335 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8336 /* Brute force copy old sctp opt. */ 8337 sctp_copy_descendant(newsk, oldsk); 8338 8339 /* Restore the ep value that was overwritten with the above structure 8340 * copy. 8341 */ 8342 newsp->ep = newep; 8343 newsp->hmac = NULL; 8344 8345 /* Hook this new socket in to the bind_hash list. */ 8346 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8347 inet_sk(oldsk)->inet_num)]; 8348 spin_lock_bh(&head->lock); 8349 pp = sctp_sk(oldsk)->bind_hash; 8350 sk_add_bind_node(newsk, &pp->owner); 8351 sctp_sk(newsk)->bind_hash = pp; 8352 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8353 spin_unlock_bh(&head->lock); 8354 8355 /* Copy the bind_addr list from the original endpoint to the new 8356 * endpoint so that we can handle restarts properly 8357 */ 8358 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8359 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8360 8361 /* Move any messages in the old socket's receive queue that are for the 8362 * peeled off association to the new socket's receive queue. 8363 */ 8364 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8365 event = sctp_skb2event(skb); 8366 if (event->asoc == assoc) { 8367 __skb_unlink(skb, &oldsk->sk_receive_queue); 8368 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8369 sctp_skb_set_owner_r_frag(skb, newsk); 8370 } 8371 } 8372 8373 /* Clean up any messages pending delivery due to partial 8374 * delivery. Three cases: 8375 * 1) No partial deliver; no work. 8376 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8377 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8378 */ 8379 skb_queue_head_init(&newsp->pd_lobby); 8380 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8381 8382 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8383 struct sk_buff_head *queue; 8384 8385 /* Decide which queue to move pd_lobby skbs to. */ 8386 if (assoc->ulpq.pd_mode) { 8387 queue = &newsp->pd_lobby; 8388 } else 8389 queue = &newsk->sk_receive_queue; 8390 8391 /* Walk through the pd_lobby, looking for skbs that 8392 * need moved to the new socket. 8393 */ 8394 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8395 event = sctp_skb2event(skb); 8396 if (event->asoc == assoc) { 8397 __skb_unlink(skb, &oldsp->pd_lobby); 8398 __skb_queue_tail(queue, skb); 8399 sctp_skb_set_owner_r_frag(skb, newsk); 8400 } 8401 } 8402 8403 /* Clear up any skbs waiting for the partial 8404 * delivery to finish. 8405 */ 8406 if (assoc->ulpq.pd_mode) 8407 sctp_clear_pd(oldsk, NULL); 8408 8409 } 8410 8411 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 8412 sctp_skb_set_owner_r_frag(skb, newsk); 8413 8414 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 8415 sctp_skb_set_owner_r_frag(skb, newsk); 8416 8417 /* Set the type of socket to indicate that it is peeled off from the 8418 * original UDP-style socket or created with the accept() call on a 8419 * TCP-style socket.. 8420 */ 8421 newsp->type = type; 8422 8423 /* Mark the new socket "in-use" by the user so that any packets 8424 * that may arrive on the association after we've moved it are 8425 * queued to the backlog. This prevents a potential race between 8426 * backlog processing on the old socket and new-packet processing 8427 * on the new socket. 8428 * 8429 * The caller has just allocated newsk so we can guarantee that other 8430 * paths won't try to lock it and then oldsk. 8431 */ 8432 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8433 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8434 sctp_assoc_migrate(assoc, newsk); 8435 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8436 8437 /* If the association on the newsk is already closed before accept() 8438 * is called, set RCV_SHUTDOWN flag. 8439 */ 8440 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8441 newsk->sk_state = SCTP_SS_CLOSED; 8442 newsk->sk_shutdown |= RCV_SHUTDOWN; 8443 } else { 8444 newsk->sk_state = SCTP_SS_ESTABLISHED; 8445 } 8446 8447 release_sock(newsk); 8448 } 8449 8450 8451 /* This proto struct describes the ULP interface for SCTP. */ 8452 struct proto sctp_prot = { 8453 .name = "SCTP", 8454 .owner = THIS_MODULE, 8455 .close = sctp_close, 8456 .connect = sctp_connect, 8457 .disconnect = sctp_disconnect, 8458 .accept = sctp_accept, 8459 .ioctl = sctp_ioctl, 8460 .init = sctp_init_sock, 8461 .destroy = sctp_destroy_sock, 8462 .shutdown = sctp_shutdown, 8463 .setsockopt = sctp_setsockopt, 8464 .getsockopt = sctp_getsockopt, 8465 .sendmsg = sctp_sendmsg, 8466 .recvmsg = sctp_recvmsg, 8467 .bind = sctp_bind, 8468 .backlog_rcv = sctp_backlog_rcv, 8469 .hash = sctp_hash, 8470 .unhash = sctp_unhash, 8471 .get_port = sctp_get_port, 8472 .obj_size = sizeof(struct sctp_sock), 8473 .sysctl_mem = sysctl_sctp_mem, 8474 .sysctl_rmem = sysctl_sctp_rmem, 8475 .sysctl_wmem = sysctl_sctp_wmem, 8476 .memory_pressure = &sctp_memory_pressure, 8477 .enter_memory_pressure = sctp_enter_memory_pressure, 8478 .memory_allocated = &sctp_memory_allocated, 8479 .sockets_allocated = &sctp_sockets_allocated, 8480 }; 8481 8482 #if IS_ENABLED(CONFIG_IPV6) 8483 8484 #include <net/transp_v6.h> 8485 static void sctp_v6_destroy_sock(struct sock *sk) 8486 { 8487 sctp_destroy_sock(sk); 8488 inet6_destroy_sock(sk); 8489 } 8490 8491 struct proto sctpv6_prot = { 8492 .name = "SCTPv6", 8493 .owner = THIS_MODULE, 8494 .close = sctp_close, 8495 .connect = sctp_connect, 8496 .disconnect = sctp_disconnect, 8497 .accept = sctp_accept, 8498 .ioctl = sctp_ioctl, 8499 .init = sctp_init_sock, 8500 .destroy = sctp_v6_destroy_sock, 8501 .shutdown = sctp_shutdown, 8502 .setsockopt = sctp_setsockopt, 8503 .getsockopt = sctp_getsockopt, 8504 .sendmsg = sctp_sendmsg, 8505 .recvmsg = sctp_recvmsg, 8506 .bind = sctp_bind, 8507 .backlog_rcv = sctp_backlog_rcv, 8508 .hash = sctp_hash, 8509 .unhash = sctp_unhash, 8510 .get_port = sctp_get_port, 8511 .obj_size = sizeof(struct sctp6_sock), 8512 .sysctl_mem = sysctl_sctp_mem, 8513 .sysctl_rmem = sysctl_sctp_rmem, 8514 .sysctl_wmem = sysctl_sctp_wmem, 8515 .memory_pressure = &sctp_memory_pressure, 8516 .enter_memory_pressure = sctp_enter_memory_pressure, 8517 .memory_allocated = &sctp_memory_allocated, 8518 .sockets_allocated = &sctp_sockets_allocated, 8519 }; 8520 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8521